]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
preempt: Reorganize the notrace definitions a bit
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 579 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
316c1608 837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
074c2381
MG
1625 * to automatic numa balancing. Related to that, if there were failed
1626 * migration then it implies we are migrating too quickly or the local
1627 * node is overloaded. In either case, scan slower
04bb2f94 1628 */
074c2381 1629 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1630 p->numa_scan_period = min(p->numa_scan_period_max,
1631 p->numa_scan_period << 1);
1632
1633 p->mm->numa_next_scan = jiffies +
1634 msecs_to_jiffies(p->numa_scan_period);
1635
1636 return;
1637 }
1638
1639 /*
1640 * Prepare to scale scan period relative to the current period.
1641 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1642 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1643 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1644 */
1645 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1646 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1647 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1648 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1649 if (!slot)
1650 slot = 1;
1651 diff = slot * period_slot;
1652 } else {
1653 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1654
1655 /*
1656 * Scale scan rate increases based on sharing. There is an
1657 * inverse relationship between the degree of sharing and
1658 * the adjustment made to the scanning period. Broadly
1659 * speaking the intent is that there is little point
1660 * scanning faster if shared accesses dominate as it may
1661 * simply bounce migrations uselessly
1662 */
2847c90e 1663 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1664 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1665 }
1666
1667 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1668 task_scan_min(p), task_scan_max(p));
1669 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1670}
1671
7e2703e6
RR
1672/*
1673 * Get the fraction of time the task has been running since the last
1674 * NUMA placement cycle. The scheduler keeps similar statistics, but
1675 * decays those on a 32ms period, which is orders of magnitude off
1676 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1677 * stats only if the task is so new there are no NUMA statistics yet.
1678 */
1679static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1680{
1681 u64 runtime, delta, now;
1682 /* Use the start of this time slice to avoid calculations. */
1683 now = p->se.exec_start;
1684 runtime = p->se.sum_exec_runtime;
1685
1686 if (p->last_task_numa_placement) {
1687 delta = runtime - p->last_sum_exec_runtime;
1688 *period = now - p->last_task_numa_placement;
1689 } else {
1690 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1691 *period = p->se.avg.avg_period;
7e2703e6
RR
1692 }
1693
1694 p->last_sum_exec_runtime = runtime;
1695 p->last_task_numa_placement = now;
1696
1697 return delta;
1698}
1699
54009416
RR
1700/*
1701 * Determine the preferred nid for a task in a numa_group. This needs to
1702 * be done in a way that produces consistent results with group_weight,
1703 * otherwise workloads might not converge.
1704 */
1705static int preferred_group_nid(struct task_struct *p, int nid)
1706{
1707 nodemask_t nodes;
1708 int dist;
1709
1710 /* Direct connections between all NUMA nodes. */
1711 if (sched_numa_topology_type == NUMA_DIRECT)
1712 return nid;
1713
1714 /*
1715 * On a system with glueless mesh NUMA topology, group_weight
1716 * scores nodes according to the number of NUMA hinting faults on
1717 * both the node itself, and on nearby nodes.
1718 */
1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1720 unsigned long score, max_score = 0;
1721 int node, max_node = nid;
1722
1723 dist = sched_max_numa_distance;
1724
1725 for_each_online_node(node) {
1726 score = group_weight(p, node, dist);
1727 if (score > max_score) {
1728 max_score = score;
1729 max_node = node;
1730 }
1731 }
1732 return max_node;
1733 }
1734
1735 /*
1736 * Finding the preferred nid in a system with NUMA backplane
1737 * interconnect topology is more involved. The goal is to locate
1738 * tasks from numa_groups near each other in the system, and
1739 * untangle workloads from different sides of the system. This requires
1740 * searching down the hierarchy of node groups, recursively searching
1741 * inside the highest scoring group of nodes. The nodemask tricks
1742 * keep the complexity of the search down.
1743 */
1744 nodes = node_online_map;
1745 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1746 unsigned long max_faults = 0;
81907478 1747 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1748 int a, b;
1749
1750 /* Are there nodes at this distance from each other? */
1751 if (!find_numa_distance(dist))
1752 continue;
1753
1754 for_each_node_mask(a, nodes) {
1755 unsigned long faults = 0;
1756 nodemask_t this_group;
1757 nodes_clear(this_group);
1758
1759 /* Sum group's NUMA faults; includes a==b case. */
1760 for_each_node_mask(b, nodes) {
1761 if (node_distance(a, b) < dist) {
1762 faults += group_faults(p, b);
1763 node_set(b, this_group);
1764 node_clear(b, nodes);
1765 }
1766 }
1767
1768 /* Remember the top group. */
1769 if (faults > max_faults) {
1770 max_faults = faults;
1771 max_group = this_group;
1772 /*
1773 * subtle: at the smallest distance there is
1774 * just one node left in each "group", the
1775 * winner is the preferred nid.
1776 */
1777 nid = a;
1778 }
1779 }
1780 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1781 if (!max_faults)
1782 break;
54009416
RR
1783 nodes = max_group;
1784 }
1785 return nid;
1786}
1787
cbee9f88
PZ
1788static void task_numa_placement(struct task_struct *p)
1789{
83e1d2cd
MG
1790 int seq, nid, max_nid = -1, max_group_nid = -1;
1791 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1792 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1793 unsigned long total_faults;
1794 u64 runtime, period;
7dbd13ed 1795 spinlock_t *group_lock = NULL;
cbee9f88 1796
7e5a2c17
JL
1797 /*
1798 * The p->mm->numa_scan_seq field gets updated without
1799 * exclusive access. Use READ_ONCE() here to ensure
1800 * that the field is read in a single access:
1801 */
316c1608 1802 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1803 if (p->numa_scan_seq == seq)
1804 return;
1805 p->numa_scan_seq = seq;
598f0ec0 1806 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1807
7e2703e6
RR
1808 total_faults = p->numa_faults_locality[0] +
1809 p->numa_faults_locality[1];
1810 runtime = numa_get_avg_runtime(p, &period);
1811
7dbd13ed
MG
1812 /* If the task is part of a group prevent parallel updates to group stats */
1813 if (p->numa_group) {
1814 group_lock = &p->numa_group->lock;
60e69eed 1815 spin_lock_irq(group_lock);
7dbd13ed
MG
1816 }
1817
688b7585
MG
1818 /* Find the node with the highest number of faults */
1819 for_each_online_node(nid) {
44dba3d5
IM
1820 /* Keep track of the offsets in numa_faults array */
1821 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1822 unsigned long faults = 0, group_faults = 0;
44dba3d5 1823 int priv;
745d6147 1824
be1e4e76 1825 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1826 long diff, f_diff, f_weight;
8c8a743c 1827
44dba3d5
IM
1828 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1829 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1830 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1831 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1832
ac8e895b 1833 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1834 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1835 fault_types[priv] += p->numa_faults[membuf_idx];
1836 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1837
7e2703e6
RR
1838 /*
1839 * Normalize the faults_from, so all tasks in a group
1840 * count according to CPU use, instead of by the raw
1841 * number of faults. Tasks with little runtime have
1842 * little over-all impact on throughput, and thus their
1843 * faults are less important.
1844 */
1845 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1846 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1847 (total_faults + 1);
44dba3d5
IM
1848 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1849 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1850
44dba3d5
IM
1851 p->numa_faults[mem_idx] += diff;
1852 p->numa_faults[cpu_idx] += f_diff;
1853 faults += p->numa_faults[mem_idx];
83e1d2cd 1854 p->total_numa_faults += diff;
8c8a743c 1855 if (p->numa_group) {
44dba3d5
IM
1856 /*
1857 * safe because we can only change our own group
1858 *
1859 * mem_idx represents the offset for a given
1860 * nid and priv in a specific region because it
1861 * is at the beginning of the numa_faults array.
1862 */
1863 p->numa_group->faults[mem_idx] += diff;
1864 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1865 p->numa_group->total_faults += diff;
44dba3d5 1866 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1867 }
ac8e895b
MG
1868 }
1869
688b7585
MG
1870 if (faults > max_faults) {
1871 max_faults = faults;
1872 max_nid = nid;
1873 }
83e1d2cd
MG
1874
1875 if (group_faults > max_group_faults) {
1876 max_group_faults = group_faults;
1877 max_group_nid = nid;
1878 }
1879 }
1880
04bb2f94
RR
1881 update_task_scan_period(p, fault_types[0], fault_types[1]);
1882
7dbd13ed 1883 if (p->numa_group) {
20e07dea 1884 update_numa_active_node_mask(p->numa_group);
60e69eed 1885 spin_unlock_irq(group_lock);
54009416 1886 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1887 }
1888
bb97fc31
RR
1889 if (max_faults) {
1890 /* Set the new preferred node */
1891 if (max_nid != p->numa_preferred_nid)
1892 sched_setnuma(p, max_nid);
1893
1894 if (task_node(p) != p->numa_preferred_nid)
1895 numa_migrate_preferred(p);
3a7053b3 1896 }
cbee9f88
PZ
1897}
1898
8c8a743c
PZ
1899static inline int get_numa_group(struct numa_group *grp)
1900{
1901 return atomic_inc_not_zero(&grp->refcount);
1902}
1903
1904static inline void put_numa_group(struct numa_group *grp)
1905{
1906 if (atomic_dec_and_test(&grp->refcount))
1907 kfree_rcu(grp, rcu);
1908}
1909
3e6a9418
MG
1910static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1911 int *priv)
8c8a743c
PZ
1912{
1913 struct numa_group *grp, *my_grp;
1914 struct task_struct *tsk;
1915 bool join = false;
1916 int cpu = cpupid_to_cpu(cpupid);
1917 int i;
1918
1919 if (unlikely(!p->numa_group)) {
1920 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1921 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1922
1923 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1924 if (!grp)
1925 return;
1926
1927 atomic_set(&grp->refcount, 1);
1928 spin_lock_init(&grp->lock);
e29cf08b 1929 grp->gid = p->pid;
50ec8a40 1930 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1931 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1932 nr_node_ids;
8c8a743c 1933
20e07dea
RR
1934 node_set(task_node(current), grp->active_nodes);
1935
be1e4e76 1936 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1937 grp->faults[i] = p->numa_faults[i];
8c8a743c 1938
989348b5 1939 grp->total_faults = p->total_numa_faults;
83e1d2cd 1940
8c8a743c
PZ
1941 grp->nr_tasks++;
1942 rcu_assign_pointer(p->numa_group, grp);
1943 }
1944
1945 rcu_read_lock();
316c1608 1946 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1947
1948 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1949 goto no_join;
8c8a743c
PZ
1950
1951 grp = rcu_dereference(tsk->numa_group);
1952 if (!grp)
3354781a 1953 goto no_join;
8c8a743c
PZ
1954
1955 my_grp = p->numa_group;
1956 if (grp == my_grp)
3354781a 1957 goto no_join;
8c8a743c
PZ
1958
1959 /*
1960 * Only join the other group if its bigger; if we're the bigger group,
1961 * the other task will join us.
1962 */
1963 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1964 goto no_join;
8c8a743c
PZ
1965
1966 /*
1967 * Tie-break on the grp address.
1968 */
1969 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1970 goto no_join;
8c8a743c 1971
dabe1d99
RR
1972 /* Always join threads in the same process. */
1973 if (tsk->mm == current->mm)
1974 join = true;
1975
1976 /* Simple filter to avoid false positives due to PID collisions */
1977 if (flags & TNF_SHARED)
1978 join = true;
8c8a743c 1979
3e6a9418
MG
1980 /* Update priv based on whether false sharing was detected */
1981 *priv = !join;
1982
dabe1d99 1983 if (join && !get_numa_group(grp))
3354781a 1984 goto no_join;
8c8a743c 1985
8c8a743c
PZ
1986 rcu_read_unlock();
1987
1988 if (!join)
1989 return;
1990
60e69eed
MG
1991 BUG_ON(irqs_disabled());
1992 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1993
be1e4e76 1994 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1995 my_grp->faults[i] -= p->numa_faults[i];
1996 grp->faults[i] += p->numa_faults[i];
8c8a743c 1997 }
989348b5
MG
1998 my_grp->total_faults -= p->total_numa_faults;
1999 grp->total_faults += p->total_numa_faults;
8c8a743c 2000
8c8a743c
PZ
2001 my_grp->nr_tasks--;
2002 grp->nr_tasks++;
2003
2004 spin_unlock(&my_grp->lock);
60e69eed 2005 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2006
2007 rcu_assign_pointer(p->numa_group, grp);
2008
2009 put_numa_group(my_grp);
3354781a
PZ
2010 return;
2011
2012no_join:
2013 rcu_read_unlock();
2014 return;
8c8a743c
PZ
2015}
2016
2017void task_numa_free(struct task_struct *p)
2018{
2019 struct numa_group *grp = p->numa_group;
44dba3d5 2020 void *numa_faults = p->numa_faults;
e9dd685c
SR
2021 unsigned long flags;
2022 int i;
8c8a743c
PZ
2023
2024 if (grp) {
e9dd685c 2025 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2027 grp->faults[i] -= p->numa_faults[i];
989348b5 2028 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2029
8c8a743c 2030 grp->nr_tasks--;
e9dd685c 2031 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2032 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2033 put_numa_group(grp);
2034 }
2035
44dba3d5 2036 p->numa_faults = NULL;
82727018 2037 kfree(numa_faults);
8c8a743c
PZ
2038}
2039
cbee9f88
PZ
2040/*
2041 * Got a PROT_NONE fault for a page on @node.
2042 */
58b46da3 2043void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2044{
2045 struct task_struct *p = current;
6688cc05 2046 bool migrated = flags & TNF_MIGRATED;
58b46da3 2047 int cpu_node = task_node(current);
792568ec 2048 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2049 int priv;
cbee9f88 2050
10e84b97 2051 if (!numabalancing_enabled)
1a687c2e
MG
2052 return;
2053
9ff1d9ff
MG
2054 /* for example, ksmd faulting in a user's mm */
2055 if (!p->mm)
2056 return;
2057
f809ca9a 2058 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2059 if (unlikely(!p->numa_faults)) {
2060 int size = sizeof(*p->numa_faults) *
be1e4e76 2061 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2062
44dba3d5
IM
2063 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2064 if (!p->numa_faults)
f809ca9a 2065 return;
745d6147 2066
83e1d2cd 2067 p->total_numa_faults = 0;
04bb2f94 2068 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2069 }
cbee9f88 2070
8c8a743c
PZ
2071 /*
2072 * First accesses are treated as private, otherwise consider accesses
2073 * to be private if the accessing pid has not changed
2074 */
2075 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2076 priv = 1;
2077 } else {
2078 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2079 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2080 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2081 }
2082
792568ec
RR
2083 /*
2084 * If a workload spans multiple NUMA nodes, a shared fault that
2085 * occurs wholly within the set of nodes that the workload is
2086 * actively using should be counted as local. This allows the
2087 * scan rate to slow down when a workload has settled down.
2088 */
2089 if (!priv && !local && p->numa_group &&
2090 node_isset(cpu_node, p->numa_group->active_nodes) &&
2091 node_isset(mem_node, p->numa_group->active_nodes))
2092 local = 1;
2093
cbee9f88 2094 task_numa_placement(p);
f809ca9a 2095
2739d3ee
RR
2096 /*
2097 * Retry task to preferred node migration periodically, in case it
2098 * case it previously failed, or the scheduler moved us.
2099 */
2100 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2101 numa_migrate_preferred(p);
2102
b32e86b4
IM
2103 if (migrated)
2104 p->numa_pages_migrated += pages;
074c2381
MG
2105 if (flags & TNF_MIGRATE_FAIL)
2106 p->numa_faults_locality[2] += pages;
b32e86b4 2107
44dba3d5
IM
2108 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2109 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2110 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2111}
2112
6e5fb223
PZ
2113static void reset_ptenuma_scan(struct task_struct *p)
2114{
7e5a2c17
JL
2115 /*
2116 * We only did a read acquisition of the mmap sem, so
2117 * p->mm->numa_scan_seq is written to without exclusive access
2118 * and the update is not guaranteed to be atomic. That's not
2119 * much of an issue though, since this is just used for
2120 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2121 * expensive, to avoid any form of compiler optimizations:
2122 */
316c1608 2123 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2124 p->mm->numa_scan_offset = 0;
2125}
2126
cbee9f88
PZ
2127/*
2128 * The expensive part of numa migration is done from task_work context.
2129 * Triggered from task_tick_numa().
2130 */
2131void task_numa_work(struct callback_head *work)
2132{
2133 unsigned long migrate, next_scan, now = jiffies;
2134 struct task_struct *p = current;
2135 struct mm_struct *mm = p->mm;
6e5fb223 2136 struct vm_area_struct *vma;
9f40604c 2137 unsigned long start, end;
598f0ec0 2138 unsigned long nr_pte_updates = 0;
9f40604c 2139 long pages;
cbee9f88
PZ
2140
2141 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2142
2143 work->next = work; /* protect against double add */
2144 /*
2145 * Who cares about NUMA placement when they're dying.
2146 *
2147 * NOTE: make sure not to dereference p->mm before this check,
2148 * exit_task_work() happens _after_ exit_mm() so we could be called
2149 * without p->mm even though we still had it when we enqueued this
2150 * work.
2151 */
2152 if (p->flags & PF_EXITING)
2153 return;
2154
930aa174 2155 if (!mm->numa_next_scan) {
7e8d16b6
MG
2156 mm->numa_next_scan = now +
2157 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2158 }
2159
cbee9f88
PZ
2160 /*
2161 * Enforce maximal scan/migration frequency..
2162 */
2163 migrate = mm->numa_next_scan;
2164 if (time_before(now, migrate))
2165 return;
2166
598f0ec0
MG
2167 if (p->numa_scan_period == 0) {
2168 p->numa_scan_period_max = task_scan_max(p);
2169 p->numa_scan_period = task_scan_min(p);
2170 }
cbee9f88 2171
fb003b80 2172 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2173 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2174 return;
2175
19a78d11
PZ
2176 /*
2177 * Delay this task enough that another task of this mm will likely win
2178 * the next time around.
2179 */
2180 p->node_stamp += 2 * TICK_NSEC;
2181
9f40604c
MG
2182 start = mm->numa_scan_offset;
2183 pages = sysctl_numa_balancing_scan_size;
2184 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2185 if (!pages)
2186 return;
cbee9f88 2187
6e5fb223 2188 down_read(&mm->mmap_sem);
9f40604c 2189 vma = find_vma(mm, start);
6e5fb223
PZ
2190 if (!vma) {
2191 reset_ptenuma_scan(p);
9f40604c 2192 start = 0;
6e5fb223
PZ
2193 vma = mm->mmap;
2194 }
9f40604c 2195 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2196 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2197 is_vm_hugetlb_page(vma)) {
6e5fb223 2198 continue;
6b79c57b 2199 }
6e5fb223 2200
4591ce4f
MG
2201 /*
2202 * Shared library pages mapped by multiple processes are not
2203 * migrated as it is expected they are cache replicated. Avoid
2204 * hinting faults in read-only file-backed mappings or the vdso
2205 * as migrating the pages will be of marginal benefit.
2206 */
2207 if (!vma->vm_mm ||
2208 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2209 continue;
2210
3c67f474
MG
2211 /*
2212 * Skip inaccessible VMAs to avoid any confusion between
2213 * PROT_NONE and NUMA hinting ptes
2214 */
2215 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2216 continue;
4591ce4f 2217
9f40604c
MG
2218 do {
2219 start = max(start, vma->vm_start);
2220 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2221 end = min(end, vma->vm_end);
598f0ec0
MG
2222 nr_pte_updates += change_prot_numa(vma, start, end);
2223
2224 /*
2225 * Scan sysctl_numa_balancing_scan_size but ensure that
2226 * at least one PTE is updated so that unused virtual
2227 * address space is quickly skipped.
2228 */
2229 if (nr_pte_updates)
2230 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2231
9f40604c
MG
2232 start = end;
2233 if (pages <= 0)
2234 goto out;
3cf1962c
RR
2235
2236 cond_resched();
9f40604c 2237 } while (end != vma->vm_end);
cbee9f88 2238 }
6e5fb223 2239
9f40604c 2240out:
6e5fb223 2241 /*
c69307d5
PZ
2242 * It is possible to reach the end of the VMA list but the last few
2243 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2244 * would find the !migratable VMA on the next scan but not reset the
2245 * scanner to the start so check it now.
6e5fb223
PZ
2246 */
2247 if (vma)
9f40604c 2248 mm->numa_scan_offset = start;
6e5fb223
PZ
2249 else
2250 reset_ptenuma_scan(p);
2251 up_read(&mm->mmap_sem);
cbee9f88
PZ
2252}
2253
2254/*
2255 * Drive the periodic memory faults..
2256 */
2257void task_tick_numa(struct rq *rq, struct task_struct *curr)
2258{
2259 struct callback_head *work = &curr->numa_work;
2260 u64 period, now;
2261
2262 /*
2263 * We don't care about NUMA placement if we don't have memory.
2264 */
2265 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2266 return;
2267
2268 /*
2269 * Using runtime rather than walltime has the dual advantage that
2270 * we (mostly) drive the selection from busy threads and that the
2271 * task needs to have done some actual work before we bother with
2272 * NUMA placement.
2273 */
2274 now = curr->se.sum_exec_runtime;
2275 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2276
2277 if (now - curr->node_stamp > period) {
4b96a29b 2278 if (!curr->node_stamp)
598f0ec0 2279 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2280 curr->node_stamp += period;
cbee9f88
PZ
2281
2282 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2283 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2284 task_work_add(curr, work, true);
2285 }
2286 }
2287}
2288#else
2289static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2290{
2291}
0ec8aa00
PZ
2292
2293static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2294{
2295}
2296
2297static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2298{
2299}
cbee9f88
PZ
2300#endif /* CONFIG_NUMA_BALANCING */
2301
30cfdcfc
DA
2302static void
2303account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2304{
2305 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2306 if (!parent_entity(se))
029632fb 2307 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2308#ifdef CONFIG_SMP
0ec8aa00
PZ
2309 if (entity_is_task(se)) {
2310 struct rq *rq = rq_of(cfs_rq);
2311
2312 account_numa_enqueue(rq, task_of(se));
2313 list_add(&se->group_node, &rq->cfs_tasks);
2314 }
367456c7 2315#endif
30cfdcfc 2316 cfs_rq->nr_running++;
30cfdcfc
DA
2317}
2318
2319static void
2320account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2321{
2322 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2323 if (!parent_entity(se))
029632fb 2324 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2325 if (entity_is_task(se)) {
2326 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2327 list_del_init(&se->group_node);
0ec8aa00 2328 }
30cfdcfc 2329 cfs_rq->nr_running--;
30cfdcfc
DA
2330}
2331
3ff6dcac
YZ
2332#ifdef CONFIG_FAIR_GROUP_SCHED
2333# ifdef CONFIG_SMP
cf5f0acf
PZ
2334static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2335{
2336 long tg_weight;
2337
2338 /*
2339 * Use this CPU's actual weight instead of the last load_contribution
2340 * to gain a more accurate current total weight. See
2341 * update_cfs_rq_load_contribution().
2342 */
bf5b986e 2343 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2344 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2345 tg_weight += cfs_rq->load.weight;
2346
2347 return tg_weight;
2348}
2349
6d5ab293 2350static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2351{
cf5f0acf 2352 long tg_weight, load, shares;
3ff6dcac 2353
cf5f0acf 2354 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2355 load = cfs_rq->load.weight;
3ff6dcac 2356
3ff6dcac 2357 shares = (tg->shares * load);
cf5f0acf
PZ
2358 if (tg_weight)
2359 shares /= tg_weight;
3ff6dcac
YZ
2360
2361 if (shares < MIN_SHARES)
2362 shares = MIN_SHARES;
2363 if (shares > tg->shares)
2364 shares = tg->shares;
2365
2366 return shares;
2367}
3ff6dcac 2368# else /* CONFIG_SMP */
6d5ab293 2369static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2370{
2371 return tg->shares;
2372}
3ff6dcac 2373# endif /* CONFIG_SMP */
2069dd75
PZ
2374static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2375 unsigned long weight)
2376{
19e5eebb
PT
2377 if (se->on_rq) {
2378 /* commit outstanding execution time */
2379 if (cfs_rq->curr == se)
2380 update_curr(cfs_rq);
2069dd75 2381 account_entity_dequeue(cfs_rq, se);
19e5eebb 2382 }
2069dd75
PZ
2383
2384 update_load_set(&se->load, weight);
2385
2386 if (se->on_rq)
2387 account_entity_enqueue(cfs_rq, se);
2388}
2389
82958366
PT
2390static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2391
6d5ab293 2392static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2393{
2394 struct task_group *tg;
2395 struct sched_entity *se;
3ff6dcac 2396 long shares;
2069dd75 2397
2069dd75
PZ
2398 tg = cfs_rq->tg;
2399 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2400 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2401 return;
3ff6dcac
YZ
2402#ifndef CONFIG_SMP
2403 if (likely(se->load.weight == tg->shares))
2404 return;
2405#endif
6d5ab293 2406 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2407
2408 reweight_entity(cfs_rq_of(se), se, shares);
2409}
2410#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2411static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2412{
2413}
2414#endif /* CONFIG_FAIR_GROUP_SCHED */
2415
141965c7 2416#ifdef CONFIG_SMP
5b51f2f8
PT
2417/*
2418 * We choose a half-life close to 1 scheduling period.
2419 * Note: The tables below are dependent on this value.
2420 */
2421#define LOAD_AVG_PERIOD 32
2422#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2423#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2424
2425/* Precomputed fixed inverse multiplies for multiplication by y^n */
2426static const u32 runnable_avg_yN_inv[] = {
2427 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2428 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2429 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2430 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2431 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2432 0x85aac367, 0x82cd8698,
2433};
2434
2435/*
2436 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2437 * over-estimates when re-combining.
2438 */
2439static const u32 runnable_avg_yN_sum[] = {
2440 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2441 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2442 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2443};
2444
9d85f21c
PT
2445/*
2446 * Approximate:
2447 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2448 */
2449static __always_inline u64 decay_load(u64 val, u64 n)
2450{
5b51f2f8
PT
2451 unsigned int local_n;
2452
2453 if (!n)
2454 return val;
2455 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2456 return 0;
2457
2458 /* after bounds checking we can collapse to 32-bit */
2459 local_n = n;
2460
2461 /*
2462 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2463 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2464 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2465 *
2466 * To achieve constant time decay_load.
2467 */
2468 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2469 val >>= local_n / LOAD_AVG_PERIOD;
2470 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2471 }
2472
5b51f2f8
PT
2473 val *= runnable_avg_yN_inv[local_n];
2474 /* We don't use SRR here since we always want to round down. */
2475 return val >> 32;
2476}
2477
2478/*
2479 * For updates fully spanning n periods, the contribution to runnable
2480 * average will be: \Sum 1024*y^n
2481 *
2482 * We can compute this reasonably efficiently by combining:
2483 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2484 */
2485static u32 __compute_runnable_contrib(u64 n)
2486{
2487 u32 contrib = 0;
2488
2489 if (likely(n <= LOAD_AVG_PERIOD))
2490 return runnable_avg_yN_sum[n];
2491 else if (unlikely(n >= LOAD_AVG_MAX_N))
2492 return LOAD_AVG_MAX;
2493
2494 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2495 do {
2496 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2497 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2498
2499 n -= LOAD_AVG_PERIOD;
2500 } while (n > LOAD_AVG_PERIOD);
2501
2502 contrib = decay_load(contrib, n);
2503 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2504}
2505
2506/*
2507 * We can represent the historical contribution to runnable average as the
2508 * coefficients of a geometric series. To do this we sub-divide our runnable
2509 * history into segments of approximately 1ms (1024us); label the segment that
2510 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2511 *
2512 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2513 * p0 p1 p2
2514 * (now) (~1ms ago) (~2ms ago)
2515 *
2516 * Let u_i denote the fraction of p_i that the entity was runnable.
2517 *
2518 * We then designate the fractions u_i as our co-efficients, yielding the
2519 * following representation of historical load:
2520 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2521 *
2522 * We choose y based on the with of a reasonably scheduling period, fixing:
2523 * y^32 = 0.5
2524 *
2525 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2526 * approximately half as much as the contribution to load within the last ms
2527 * (u_0).
2528 *
2529 * When a period "rolls over" and we have new u_0`, multiplying the previous
2530 * sum again by y is sufficient to update:
2531 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2532 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2533 */
0c1dc6b2 2534static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2535 struct sched_avg *sa,
36ee28e4
VG
2536 int runnable,
2537 int running)
9d85f21c 2538{
5b51f2f8
PT
2539 u64 delta, periods;
2540 u32 runnable_contrib;
9d85f21c 2541 int delta_w, decayed = 0;
0c1dc6b2 2542 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2543
2544 delta = now - sa->last_runnable_update;
2545 /*
2546 * This should only happen when time goes backwards, which it
2547 * unfortunately does during sched clock init when we swap over to TSC.
2548 */
2549 if ((s64)delta < 0) {
2550 sa->last_runnable_update = now;
2551 return 0;
2552 }
2553
2554 /*
2555 * Use 1024ns as the unit of measurement since it's a reasonable
2556 * approximation of 1us and fast to compute.
2557 */
2558 delta >>= 10;
2559 if (!delta)
2560 return 0;
2561 sa->last_runnable_update = now;
2562
2563 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2564 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2565 if (delta + delta_w >= 1024) {
2566 /* period roll-over */
2567 decayed = 1;
2568
2569 /*
2570 * Now that we know we're crossing a period boundary, figure
2571 * out how much from delta we need to complete the current
2572 * period and accrue it.
2573 */
2574 delta_w = 1024 - delta_w;
5b51f2f8
PT
2575 if (runnable)
2576 sa->runnable_avg_sum += delta_w;
36ee28e4 2577 if (running)
0c1dc6b2
MR
2578 sa->running_avg_sum += delta_w * scale_freq
2579 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2580 sa->avg_period += delta_w;
5b51f2f8
PT
2581
2582 delta -= delta_w;
2583
2584 /* Figure out how many additional periods this update spans */
2585 periods = delta / 1024;
2586 delta %= 1024;
2587
2588 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2589 periods + 1);
36ee28e4
VG
2590 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2591 periods + 1);
2592 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2593 periods + 1);
2594
2595 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2596 runnable_contrib = __compute_runnable_contrib(periods);
2597 if (runnable)
2598 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2599 if (running)
0c1dc6b2
MR
2600 sa->running_avg_sum += runnable_contrib * scale_freq
2601 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2602 sa->avg_period += runnable_contrib;
9d85f21c
PT
2603 }
2604
2605 /* Remainder of delta accrued against u_0` */
2606 if (runnable)
2607 sa->runnable_avg_sum += delta;
36ee28e4 2608 if (running)
0c1dc6b2
MR
2609 sa->running_avg_sum += delta * scale_freq
2610 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2611 sa->avg_period += delta;
9d85f21c
PT
2612
2613 return decayed;
2614}
2615
9ee474f5 2616/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2617static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2618{
2619 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2620 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2621
2622 decays -= se->avg.decay_count;
63847600 2623 se->avg.decay_count = 0;
9ee474f5 2624 if (!decays)
aff3e498 2625 return 0;
9ee474f5
PT
2626
2627 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2628 se->avg.utilization_avg_contrib =
2629 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2630
2631 return decays;
9ee474f5
PT
2632}
2633
c566e8e9
PT
2634#ifdef CONFIG_FAIR_GROUP_SCHED
2635static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2636 int force_update)
2637{
2638 struct task_group *tg = cfs_rq->tg;
bf5b986e 2639 long tg_contrib;
c566e8e9
PT
2640
2641 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2642 tg_contrib -= cfs_rq->tg_load_contrib;
2643
8236d907
JL
2644 if (!tg_contrib)
2645 return;
2646
bf5b986e
AS
2647 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2648 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2649 cfs_rq->tg_load_contrib += tg_contrib;
2650 }
2651}
8165e145 2652
bb17f655
PT
2653/*
2654 * Aggregate cfs_rq runnable averages into an equivalent task_group
2655 * representation for computing load contributions.
2656 */
2657static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2658 struct cfs_rq *cfs_rq)
2659{
2660 struct task_group *tg = cfs_rq->tg;
2661 long contrib;
2662
2663 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2664 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2665 sa->avg_period + 1);
bb17f655
PT
2666 contrib -= cfs_rq->tg_runnable_contrib;
2667
2668 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2669 atomic_add(contrib, &tg->runnable_avg);
2670 cfs_rq->tg_runnable_contrib += contrib;
2671 }
2672}
2673
8165e145
PT
2674static inline void __update_group_entity_contrib(struct sched_entity *se)
2675{
2676 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2677 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2678 int runnable_avg;
2679
8165e145
PT
2680 u64 contrib;
2681
2682 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2683 se->avg.load_avg_contrib = div_u64(contrib,
2684 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2685
2686 /*
2687 * For group entities we need to compute a correction term in the case
2688 * that they are consuming <1 cpu so that we would contribute the same
2689 * load as a task of equal weight.
2690 *
2691 * Explicitly co-ordinating this measurement would be expensive, but
2692 * fortunately the sum of each cpus contribution forms a usable
2693 * lower-bound on the true value.
2694 *
2695 * Consider the aggregate of 2 contributions. Either they are disjoint
2696 * (and the sum represents true value) or they are disjoint and we are
2697 * understating by the aggregate of their overlap.
2698 *
2699 * Extending this to N cpus, for a given overlap, the maximum amount we
2700 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2701 * cpus that overlap for this interval and w_i is the interval width.
2702 *
2703 * On a small machine; the first term is well-bounded which bounds the
2704 * total error since w_i is a subset of the period. Whereas on a
2705 * larger machine, while this first term can be larger, if w_i is the
2706 * of consequential size guaranteed to see n_i*w_i quickly converge to
2707 * our upper bound of 1-cpu.
2708 */
2709 runnable_avg = atomic_read(&tg->runnable_avg);
2710 if (runnable_avg < NICE_0_LOAD) {
2711 se->avg.load_avg_contrib *= runnable_avg;
2712 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2713 }
8165e145 2714}
f5f9739d
DE
2715
2716static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2717{
0c1dc6b2
MR
2718 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2719 runnable, runnable);
f5f9739d
DE
2720 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2721}
6e83125c 2722#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2723static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2724 int force_update) {}
bb17f655
PT
2725static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2726 struct cfs_rq *cfs_rq) {}
8165e145 2727static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2728static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2729#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2730
8165e145
PT
2731static inline void __update_task_entity_contrib(struct sched_entity *se)
2732{
2733 u32 contrib;
2734
2735 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2736 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2737 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2738 se->avg.load_avg_contrib = scale_load(contrib);
2739}
2740
2dac754e
PT
2741/* Compute the current contribution to load_avg by se, return any delta */
2742static long __update_entity_load_avg_contrib(struct sched_entity *se)
2743{
2744 long old_contrib = se->avg.load_avg_contrib;
2745
8165e145
PT
2746 if (entity_is_task(se)) {
2747 __update_task_entity_contrib(se);
2748 } else {
bb17f655 2749 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2750 __update_group_entity_contrib(se);
2751 }
2dac754e
PT
2752
2753 return se->avg.load_avg_contrib - old_contrib;
2754}
2755
36ee28e4
VG
2756
2757static inline void __update_task_entity_utilization(struct sched_entity *se)
2758{
2759 u32 contrib;
2760
2761 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2762 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2763 contrib /= (se->avg.avg_period + 1);
2764 se->avg.utilization_avg_contrib = scale_load(contrib);
2765}
2766
2767static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2768{
2769 long old_contrib = se->avg.utilization_avg_contrib;
2770
2771 if (entity_is_task(se))
2772 __update_task_entity_utilization(se);
21f44866
MR
2773 else
2774 se->avg.utilization_avg_contrib =
2775 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2776
2777 return se->avg.utilization_avg_contrib - old_contrib;
2778}
2779
9ee474f5
PT
2780static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2781 long load_contrib)
2782{
2783 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2784 cfs_rq->blocked_load_avg -= load_contrib;
2785 else
2786 cfs_rq->blocked_load_avg = 0;
2787}
2788
f1b17280
PT
2789static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2790
9d85f21c 2791/* Update a sched_entity's runnable average */
9ee474f5
PT
2792static inline void update_entity_load_avg(struct sched_entity *se,
2793 int update_cfs_rq)
9d85f21c 2794{
2dac754e 2795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2796 long contrib_delta, utilization_delta;
0c1dc6b2 2797 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2798 u64 now;
2dac754e 2799
f1b17280
PT
2800 /*
2801 * For a group entity we need to use their owned cfs_rq_clock_task() in
2802 * case they are the parent of a throttled hierarchy.
2803 */
2804 if (entity_is_task(se))
2805 now = cfs_rq_clock_task(cfs_rq);
2806 else
2807 now = cfs_rq_clock_task(group_cfs_rq(se));
2808
0c1dc6b2 2809 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2810 cfs_rq->curr == se))
2dac754e
PT
2811 return;
2812
2813 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2814 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2815
2816 if (!update_cfs_rq)
2817 return;
2818
36ee28e4 2819 if (se->on_rq) {
2dac754e 2820 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2821 cfs_rq->utilization_load_avg += utilization_delta;
2822 } else {
9ee474f5 2823 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2824 }
9ee474f5
PT
2825}
2826
2827/*
2828 * Decay the load contributed by all blocked children and account this so that
2829 * their contribution may appropriately discounted when they wake up.
2830 */
aff3e498 2831static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2832{
f1b17280 2833 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2834 u64 decays;
2835
2836 decays = now - cfs_rq->last_decay;
aff3e498 2837 if (!decays && !force_update)
9ee474f5
PT
2838 return;
2839
2509940f
AS
2840 if (atomic_long_read(&cfs_rq->removed_load)) {
2841 unsigned long removed_load;
2842 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2843 subtract_blocked_load_contrib(cfs_rq, removed_load);
2844 }
9ee474f5 2845
aff3e498
PT
2846 if (decays) {
2847 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2848 decays);
2849 atomic64_add(decays, &cfs_rq->decay_counter);
2850 cfs_rq->last_decay = now;
2851 }
c566e8e9
PT
2852
2853 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2854}
18bf2805 2855
2dac754e
PT
2856/* Add the load generated by se into cfs_rq's child load-average */
2857static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2858 struct sched_entity *se,
2859 int wakeup)
2dac754e 2860{
aff3e498
PT
2861 /*
2862 * We track migrations using entity decay_count <= 0, on a wake-up
2863 * migration we use a negative decay count to track the remote decays
2864 * accumulated while sleeping.
a75cdaa9
AS
2865 *
2866 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2867 * are seen by enqueue_entity_load_avg() as a migration with an already
2868 * constructed load_avg_contrib.
aff3e498
PT
2869 */
2870 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2871 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2872 if (se->avg.decay_count) {
2873 /*
2874 * In a wake-up migration we have to approximate the
2875 * time sleeping. This is because we can't synchronize
2876 * clock_task between the two cpus, and it is not
2877 * guaranteed to be read-safe. Instead, we can
2878 * approximate this using our carried decays, which are
2879 * explicitly atomically readable.
2880 */
2881 se->avg.last_runnable_update -= (-se->avg.decay_count)
2882 << 20;
2883 update_entity_load_avg(se, 0);
2884 /* Indicate that we're now synchronized and on-rq */
2885 se->avg.decay_count = 0;
2886 }
9ee474f5
PT
2887 wakeup = 0;
2888 } else {
9390675a 2889 __synchronize_entity_decay(se);
9ee474f5
PT
2890 }
2891
aff3e498
PT
2892 /* migrated tasks did not contribute to our blocked load */
2893 if (wakeup) {
9ee474f5 2894 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2895 update_entity_load_avg(se, 0);
2896 }
9ee474f5 2897
2dac754e 2898 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2899 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2900 /* we force update consideration on load-balancer moves */
2901 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2902}
2903
9ee474f5
PT
2904/*
2905 * Remove se's load from this cfs_rq child load-average, if the entity is
2906 * transitioning to a blocked state we track its projected decay using
2907 * blocked_load_avg.
2908 */
2dac754e 2909static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2910 struct sched_entity *se,
2911 int sleep)
2dac754e 2912{
9ee474f5 2913 update_entity_load_avg(se, 1);
aff3e498
PT
2914 /* we force update consideration on load-balancer moves */
2915 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2916
2dac754e 2917 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2918 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2919 if (sleep) {
2920 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2921 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2922 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2923}
642dbc39
VG
2924
2925/*
2926 * Update the rq's load with the elapsed running time before entering
2927 * idle. if the last scheduled task is not a CFS task, idle_enter will
2928 * be the only way to update the runnable statistic.
2929 */
2930void idle_enter_fair(struct rq *this_rq)
2931{
2932 update_rq_runnable_avg(this_rq, 1);
2933}
2934
2935/*
2936 * Update the rq's load with the elapsed idle time before a task is
2937 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2938 * be the only way to update the runnable statistic.
2939 */
2940void idle_exit_fair(struct rq *this_rq)
2941{
2942 update_rq_runnable_avg(this_rq, 0);
2943}
2944
6e83125c
PZ
2945static int idle_balance(struct rq *this_rq);
2946
38033c37
PZ
2947#else /* CONFIG_SMP */
2948
9ee474f5
PT
2949static inline void update_entity_load_avg(struct sched_entity *se,
2950 int update_cfs_rq) {}
18bf2805 2951static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2952static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2953 struct sched_entity *se,
2954 int wakeup) {}
2dac754e 2955static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2956 struct sched_entity *se,
2957 int sleep) {}
aff3e498
PT
2958static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2959 int force_update) {}
6e83125c
PZ
2960
2961static inline int idle_balance(struct rq *rq)
2962{
2963 return 0;
2964}
2965
38033c37 2966#endif /* CONFIG_SMP */
9d85f21c 2967
2396af69 2968static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2969{
bf0f6f24 2970#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2971 struct task_struct *tsk = NULL;
2972
2973 if (entity_is_task(se))
2974 tsk = task_of(se);
2975
41acab88 2976 if (se->statistics.sleep_start) {
78becc27 2977 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2978
2979 if ((s64)delta < 0)
2980 delta = 0;
2981
41acab88
LDM
2982 if (unlikely(delta > se->statistics.sleep_max))
2983 se->statistics.sleep_max = delta;
bf0f6f24 2984
8c79a045 2985 se->statistics.sleep_start = 0;
41acab88 2986 se->statistics.sum_sleep_runtime += delta;
9745512c 2987
768d0c27 2988 if (tsk) {
e414314c 2989 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2990 trace_sched_stat_sleep(tsk, delta);
2991 }
bf0f6f24 2992 }
41acab88 2993 if (se->statistics.block_start) {
78becc27 2994 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2995
2996 if ((s64)delta < 0)
2997 delta = 0;
2998
41acab88
LDM
2999 if (unlikely(delta > se->statistics.block_max))
3000 se->statistics.block_max = delta;
bf0f6f24 3001
8c79a045 3002 se->statistics.block_start = 0;
41acab88 3003 se->statistics.sum_sleep_runtime += delta;
30084fbd 3004
e414314c 3005 if (tsk) {
8f0dfc34 3006 if (tsk->in_iowait) {
41acab88
LDM
3007 se->statistics.iowait_sum += delta;
3008 se->statistics.iowait_count++;
768d0c27 3009 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3010 }
3011
b781a602
AV
3012 trace_sched_stat_blocked(tsk, delta);
3013
e414314c
PZ
3014 /*
3015 * Blocking time is in units of nanosecs, so shift by
3016 * 20 to get a milliseconds-range estimation of the
3017 * amount of time that the task spent sleeping:
3018 */
3019 if (unlikely(prof_on == SLEEP_PROFILING)) {
3020 profile_hits(SLEEP_PROFILING,
3021 (void *)get_wchan(tsk),
3022 delta >> 20);
3023 }
3024 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3025 }
bf0f6f24
IM
3026 }
3027#endif
3028}
3029
ddc97297
PZ
3030static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3031{
3032#ifdef CONFIG_SCHED_DEBUG
3033 s64 d = se->vruntime - cfs_rq->min_vruntime;
3034
3035 if (d < 0)
3036 d = -d;
3037
3038 if (d > 3*sysctl_sched_latency)
3039 schedstat_inc(cfs_rq, nr_spread_over);
3040#endif
3041}
3042
aeb73b04
PZ
3043static void
3044place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3045{
1af5f730 3046 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3047
2cb8600e
PZ
3048 /*
3049 * The 'current' period is already promised to the current tasks,
3050 * however the extra weight of the new task will slow them down a
3051 * little, place the new task so that it fits in the slot that
3052 * stays open at the end.
3053 */
94dfb5e7 3054 if (initial && sched_feat(START_DEBIT))
f9c0b095 3055 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3056
a2e7a7eb 3057 /* sleeps up to a single latency don't count. */
5ca9880c 3058 if (!initial) {
a2e7a7eb 3059 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3060
a2e7a7eb
MG
3061 /*
3062 * Halve their sleep time's effect, to allow
3063 * for a gentler effect of sleepers:
3064 */
3065 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3066 thresh >>= 1;
51e0304c 3067
a2e7a7eb 3068 vruntime -= thresh;
aeb73b04
PZ
3069 }
3070
b5d9d734 3071 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3072 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3073}
3074
d3d9dc33
PT
3075static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3076
bf0f6f24 3077static void
88ec22d3 3078enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3079{
88ec22d3
PZ
3080 /*
3081 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3082 * through calling update_curr().
88ec22d3 3083 */
371fd7e7 3084 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3085 se->vruntime += cfs_rq->min_vruntime;
3086
bf0f6f24 3087 /*
a2a2d680 3088 * Update run-time statistics of the 'current'.
bf0f6f24 3089 */
b7cc0896 3090 update_curr(cfs_rq);
f269ae04 3091 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3092 account_entity_enqueue(cfs_rq, se);
3093 update_cfs_shares(cfs_rq);
bf0f6f24 3094
88ec22d3 3095 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3096 place_entity(cfs_rq, se, 0);
2396af69 3097 enqueue_sleeper(cfs_rq, se);
e9acbff6 3098 }
bf0f6f24 3099
d2417e5a 3100 update_stats_enqueue(cfs_rq, se);
ddc97297 3101 check_spread(cfs_rq, se);
83b699ed
SV
3102 if (se != cfs_rq->curr)
3103 __enqueue_entity(cfs_rq, se);
2069dd75 3104 se->on_rq = 1;
3d4b47b4 3105
d3d9dc33 3106 if (cfs_rq->nr_running == 1) {
3d4b47b4 3107 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3108 check_enqueue_throttle(cfs_rq);
3109 }
bf0f6f24
IM
3110}
3111
2c13c919 3112static void __clear_buddies_last(struct sched_entity *se)
2002c695 3113{
2c13c919
RR
3114 for_each_sched_entity(se) {
3115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3116 if (cfs_rq->last != se)
2c13c919 3117 break;
f1044799
PZ
3118
3119 cfs_rq->last = NULL;
2c13c919
RR
3120 }
3121}
2002c695 3122
2c13c919
RR
3123static void __clear_buddies_next(struct sched_entity *se)
3124{
3125 for_each_sched_entity(se) {
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3127 if (cfs_rq->next != se)
2c13c919 3128 break;
f1044799
PZ
3129
3130 cfs_rq->next = NULL;
2c13c919 3131 }
2002c695
PZ
3132}
3133
ac53db59
RR
3134static void __clear_buddies_skip(struct sched_entity *se)
3135{
3136 for_each_sched_entity(se) {
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3138 if (cfs_rq->skip != se)
ac53db59 3139 break;
f1044799
PZ
3140
3141 cfs_rq->skip = NULL;
ac53db59
RR
3142 }
3143}
3144
a571bbea
PZ
3145static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3146{
2c13c919
RR
3147 if (cfs_rq->last == se)
3148 __clear_buddies_last(se);
3149
3150 if (cfs_rq->next == se)
3151 __clear_buddies_next(se);
ac53db59
RR
3152
3153 if (cfs_rq->skip == se)
3154 __clear_buddies_skip(se);
a571bbea
PZ
3155}
3156
6c16a6dc 3157static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3158
bf0f6f24 3159static void
371fd7e7 3160dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3161{
a2a2d680
DA
3162 /*
3163 * Update run-time statistics of the 'current'.
3164 */
3165 update_curr(cfs_rq);
17bc14b7 3166 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3167
19b6a2e3 3168 update_stats_dequeue(cfs_rq, se);
371fd7e7 3169 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3170#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3171 if (entity_is_task(se)) {
3172 struct task_struct *tsk = task_of(se);
3173
3174 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3175 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3176 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3177 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3178 }
db36cc7d 3179#endif
67e9fb2a
PZ
3180 }
3181
2002c695 3182 clear_buddies(cfs_rq, se);
4793241b 3183
83b699ed 3184 if (se != cfs_rq->curr)
30cfdcfc 3185 __dequeue_entity(cfs_rq, se);
17bc14b7 3186 se->on_rq = 0;
30cfdcfc 3187 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3188
3189 /*
3190 * Normalize the entity after updating the min_vruntime because the
3191 * update can refer to the ->curr item and we need to reflect this
3192 * movement in our normalized position.
3193 */
371fd7e7 3194 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3195 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3196
d8b4986d
PT
3197 /* return excess runtime on last dequeue */
3198 return_cfs_rq_runtime(cfs_rq);
3199
1e876231 3200 update_min_vruntime(cfs_rq);
17bc14b7 3201 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3202}
3203
3204/*
3205 * Preempt the current task with a newly woken task if needed:
3206 */
7c92e54f 3207static void
2e09bf55 3208check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3209{
11697830 3210 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3211 struct sched_entity *se;
3212 s64 delta;
11697830 3213
6d0f0ebd 3214 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3215 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3216 if (delta_exec > ideal_runtime) {
8875125e 3217 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3218 /*
3219 * The current task ran long enough, ensure it doesn't get
3220 * re-elected due to buddy favours.
3221 */
3222 clear_buddies(cfs_rq, curr);
f685ceac
MG
3223 return;
3224 }
3225
3226 /*
3227 * Ensure that a task that missed wakeup preemption by a
3228 * narrow margin doesn't have to wait for a full slice.
3229 * This also mitigates buddy induced latencies under load.
3230 */
f685ceac
MG
3231 if (delta_exec < sysctl_sched_min_granularity)
3232 return;
3233
f4cfb33e
WX
3234 se = __pick_first_entity(cfs_rq);
3235 delta = curr->vruntime - se->vruntime;
f685ceac 3236
f4cfb33e
WX
3237 if (delta < 0)
3238 return;
d7d82944 3239
f4cfb33e 3240 if (delta > ideal_runtime)
8875125e 3241 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3242}
3243
83b699ed 3244static void
8494f412 3245set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3246{
83b699ed
SV
3247 /* 'current' is not kept within the tree. */
3248 if (se->on_rq) {
3249 /*
3250 * Any task has to be enqueued before it get to execute on
3251 * a CPU. So account for the time it spent waiting on the
3252 * runqueue.
3253 */
3254 update_stats_wait_end(cfs_rq, se);
3255 __dequeue_entity(cfs_rq, se);
36ee28e4 3256 update_entity_load_avg(se, 1);
83b699ed
SV
3257 }
3258
79303e9e 3259 update_stats_curr_start(cfs_rq, se);
429d43bc 3260 cfs_rq->curr = se;
eba1ed4b
IM
3261#ifdef CONFIG_SCHEDSTATS
3262 /*
3263 * Track our maximum slice length, if the CPU's load is at
3264 * least twice that of our own weight (i.e. dont track it
3265 * when there are only lesser-weight tasks around):
3266 */
495eca49 3267 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3268 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3269 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3270 }
3271#endif
4a55b450 3272 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3273}
3274
3f3a4904
PZ
3275static int
3276wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3277
ac53db59
RR
3278/*
3279 * Pick the next process, keeping these things in mind, in this order:
3280 * 1) keep things fair between processes/task groups
3281 * 2) pick the "next" process, since someone really wants that to run
3282 * 3) pick the "last" process, for cache locality
3283 * 4) do not run the "skip" process, if something else is available
3284 */
678d5718
PZ
3285static struct sched_entity *
3286pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3287{
678d5718
PZ
3288 struct sched_entity *left = __pick_first_entity(cfs_rq);
3289 struct sched_entity *se;
3290
3291 /*
3292 * If curr is set we have to see if its left of the leftmost entity
3293 * still in the tree, provided there was anything in the tree at all.
3294 */
3295 if (!left || (curr && entity_before(curr, left)))
3296 left = curr;
3297
3298 se = left; /* ideally we run the leftmost entity */
f4b6755f 3299
ac53db59
RR
3300 /*
3301 * Avoid running the skip buddy, if running something else can
3302 * be done without getting too unfair.
3303 */
3304 if (cfs_rq->skip == se) {
678d5718
PZ
3305 struct sched_entity *second;
3306
3307 if (se == curr) {
3308 second = __pick_first_entity(cfs_rq);
3309 } else {
3310 second = __pick_next_entity(se);
3311 if (!second || (curr && entity_before(curr, second)))
3312 second = curr;
3313 }
3314
ac53db59
RR
3315 if (second && wakeup_preempt_entity(second, left) < 1)
3316 se = second;
3317 }
aa2ac252 3318
f685ceac
MG
3319 /*
3320 * Prefer last buddy, try to return the CPU to a preempted task.
3321 */
3322 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3323 se = cfs_rq->last;
3324
ac53db59
RR
3325 /*
3326 * Someone really wants this to run. If it's not unfair, run it.
3327 */
3328 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3329 se = cfs_rq->next;
3330
f685ceac 3331 clear_buddies(cfs_rq, se);
4793241b
PZ
3332
3333 return se;
aa2ac252
PZ
3334}
3335
678d5718 3336static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3337
ab6cde26 3338static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3339{
3340 /*
3341 * If still on the runqueue then deactivate_task()
3342 * was not called and update_curr() has to be done:
3343 */
3344 if (prev->on_rq)
b7cc0896 3345 update_curr(cfs_rq);
bf0f6f24 3346
d3d9dc33
PT
3347 /* throttle cfs_rqs exceeding runtime */
3348 check_cfs_rq_runtime(cfs_rq);
3349
ddc97297 3350 check_spread(cfs_rq, prev);
30cfdcfc 3351 if (prev->on_rq) {
5870db5b 3352 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3353 /* Put 'current' back into the tree. */
3354 __enqueue_entity(cfs_rq, prev);
9d85f21c 3355 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3356 update_entity_load_avg(prev, 1);
30cfdcfc 3357 }
429d43bc 3358 cfs_rq->curr = NULL;
bf0f6f24
IM
3359}
3360
8f4d37ec
PZ
3361static void
3362entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3363{
bf0f6f24 3364 /*
30cfdcfc 3365 * Update run-time statistics of the 'current'.
bf0f6f24 3366 */
30cfdcfc 3367 update_curr(cfs_rq);
bf0f6f24 3368
9d85f21c
PT
3369 /*
3370 * Ensure that runnable average is periodically updated.
3371 */
9ee474f5 3372 update_entity_load_avg(curr, 1);
aff3e498 3373 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3374 update_cfs_shares(cfs_rq);
9d85f21c 3375
8f4d37ec
PZ
3376#ifdef CONFIG_SCHED_HRTICK
3377 /*
3378 * queued ticks are scheduled to match the slice, so don't bother
3379 * validating it and just reschedule.
3380 */
983ed7a6 3381 if (queued) {
8875125e 3382 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3383 return;
3384 }
8f4d37ec
PZ
3385 /*
3386 * don't let the period tick interfere with the hrtick preemption
3387 */
3388 if (!sched_feat(DOUBLE_TICK) &&
3389 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3390 return;
3391#endif
3392
2c2efaed 3393 if (cfs_rq->nr_running > 1)
2e09bf55 3394 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3395}
3396
ab84d31e
PT
3397
3398/**************************************************
3399 * CFS bandwidth control machinery
3400 */
3401
3402#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3403
3404#ifdef HAVE_JUMP_LABEL
c5905afb 3405static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3406
3407static inline bool cfs_bandwidth_used(void)
3408{
c5905afb 3409 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3410}
3411
1ee14e6c 3412void cfs_bandwidth_usage_inc(void)
029632fb 3413{
1ee14e6c
BS
3414 static_key_slow_inc(&__cfs_bandwidth_used);
3415}
3416
3417void cfs_bandwidth_usage_dec(void)
3418{
3419 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3420}
3421#else /* HAVE_JUMP_LABEL */
3422static bool cfs_bandwidth_used(void)
3423{
3424 return true;
3425}
3426
1ee14e6c
BS
3427void cfs_bandwidth_usage_inc(void) {}
3428void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3429#endif /* HAVE_JUMP_LABEL */
3430
ab84d31e
PT
3431/*
3432 * default period for cfs group bandwidth.
3433 * default: 0.1s, units: nanoseconds
3434 */
3435static inline u64 default_cfs_period(void)
3436{
3437 return 100000000ULL;
3438}
ec12cb7f
PT
3439
3440static inline u64 sched_cfs_bandwidth_slice(void)
3441{
3442 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3443}
3444
a9cf55b2
PT
3445/*
3446 * Replenish runtime according to assigned quota and update expiration time.
3447 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3448 * additional synchronization around rq->lock.
3449 *
3450 * requires cfs_b->lock
3451 */
029632fb 3452void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3453{
3454 u64 now;
3455
3456 if (cfs_b->quota == RUNTIME_INF)
3457 return;
3458
3459 now = sched_clock_cpu(smp_processor_id());
3460 cfs_b->runtime = cfs_b->quota;
3461 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3462}
3463
029632fb
PZ
3464static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3465{
3466 return &tg->cfs_bandwidth;
3467}
3468
f1b17280
PT
3469/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3470static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3471{
3472 if (unlikely(cfs_rq->throttle_count))
3473 return cfs_rq->throttled_clock_task;
3474
78becc27 3475 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3476}
3477
85dac906
PT
3478/* returns 0 on failure to allocate runtime */
3479static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3480{
3481 struct task_group *tg = cfs_rq->tg;
3482 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3483 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3484
3485 /* note: this is a positive sum as runtime_remaining <= 0 */
3486 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3487
3488 raw_spin_lock(&cfs_b->lock);
3489 if (cfs_b->quota == RUNTIME_INF)
3490 amount = min_amount;
58088ad0 3491 else {
a9cf55b2
PT
3492 /*
3493 * If the bandwidth pool has become inactive, then at least one
3494 * period must have elapsed since the last consumption.
3495 * Refresh the global state and ensure bandwidth timer becomes
3496 * active.
3497 */
3498 if (!cfs_b->timer_active) {
3499 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3500 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3501 }
58088ad0
PT
3502
3503 if (cfs_b->runtime > 0) {
3504 amount = min(cfs_b->runtime, min_amount);
3505 cfs_b->runtime -= amount;
3506 cfs_b->idle = 0;
3507 }
ec12cb7f 3508 }
a9cf55b2 3509 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3510 raw_spin_unlock(&cfs_b->lock);
3511
3512 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3513 /*
3514 * we may have advanced our local expiration to account for allowed
3515 * spread between our sched_clock and the one on which runtime was
3516 * issued.
3517 */
3518 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3519 cfs_rq->runtime_expires = expires;
85dac906
PT
3520
3521 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3522}
3523
a9cf55b2
PT
3524/*
3525 * Note: This depends on the synchronization provided by sched_clock and the
3526 * fact that rq->clock snapshots this value.
3527 */
3528static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3529{
a9cf55b2 3530 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3531
3532 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3533 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3534 return;
3535
a9cf55b2
PT
3536 if (cfs_rq->runtime_remaining < 0)
3537 return;
3538
3539 /*
3540 * If the local deadline has passed we have to consider the
3541 * possibility that our sched_clock is 'fast' and the global deadline
3542 * has not truly expired.
3543 *
3544 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3545 * whether the global deadline has advanced. It is valid to compare
3546 * cfs_b->runtime_expires without any locks since we only care about
3547 * exact equality, so a partial write will still work.
a9cf55b2
PT
3548 */
3549
51f2176d 3550 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3551 /* extend local deadline, drift is bounded above by 2 ticks */
3552 cfs_rq->runtime_expires += TICK_NSEC;
3553 } else {
3554 /* global deadline is ahead, expiration has passed */
3555 cfs_rq->runtime_remaining = 0;
3556 }
3557}
3558
9dbdb155 3559static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3560{
3561 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3562 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3563 expire_cfs_rq_runtime(cfs_rq);
3564
3565 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3566 return;
3567
85dac906
PT
3568 /*
3569 * if we're unable to extend our runtime we resched so that the active
3570 * hierarchy can be throttled
3571 */
3572 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3573 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3574}
3575
6c16a6dc 3576static __always_inline
9dbdb155 3577void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3578{
56f570e5 3579 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3580 return;
3581
3582 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3583}
3584
85dac906
PT
3585static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3586{
56f570e5 3587 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3588}
3589
64660c86
PT
3590/* check whether cfs_rq, or any parent, is throttled */
3591static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3592{
56f570e5 3593 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3594}
3595
3596/*
3597 * Ensure that neither of the group entities corresponding to src_cpu or
3598 * dest_cpu are members of a throttled hierarchy when performing group
3599 * load-balance operations.
3600 */
3601static inline int throttled_lb_pair(struct task_group *tg,
3602 int src_cpu, int dest_cpu)
3603{
3604 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3605
3606 src_cfs_rq = tg->cfs_rq[src_cpu];
3607 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3608
3609 return throttled_hierarchy(src_cfs_rq) ||
3610 throttled_hierarchy(dest_cfs_rq);
3611}
3612
3613/* updated child weight may affect parent so we have to do this bottom up */
3614static int tg_unthrottle_up(struct task_group *tg, void *data)
3615{
3616 struct rq *rq = data;
3617 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3618
3619 cfs_rq->throttle_count--;
3620#ifdef CONFIG_SMP
3621 if (!cfs_rq->throttle_count) {
f1b17280 3622 /* adjust cfs_rq_clock_task() */
78becc27 3623 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3624 cfs_rq->throttled_clock_task;
64660c86
PT
3625 }
3626#endif
3627
3628 return 0;
3629}
3630
3631static int tg_throttle_down(struct task_group *tg, void *data)
3632{
3633 struct rq *rq = data;
3634 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3635
82958366
PT
3636 /* group is entering throttled state, stop time */
3637 if (!cfs_rq->throttle_count)
78becc27 3638 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3639 cfs_rq->throttle_count++;
3640
3641 return 0;
3642}
3643
d3d9dc33 3644static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3645{
3646 struct rq *rq = rq_of(cfs_rq);
3647 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3648 struct sched_entity *se;
3649 long task_delta, dequeue = 1;
3650
3651 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3652
f1b17280 3653 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3654 rcu_read_lock();
3655 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3656 rcu_read_unlock();
85dac906
PT
3657
3658 task_delta = cfs_rq->h_nr_running;
3659 for_each_sched_entity(se) {
3660 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3661 /* throttled entity or throttle-on-deactivate */
3662 if (!se->on_rq)
3663 break;
3664
3665 if (dequeue)
3666 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3667 qcfs_rq->h_nr_running -= task_delta;
3668
3669 if (qcfs_rq->load.weight)
3670 dequeue = 0;
3671 }
3672
3673 if (!se)
72465447 3674 sub_nr_running(rq, task_delta);
85dac906
PT
3675
3676 cfs_rq->throttled = 1;
78becc27 3677 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3678 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3679 /*
3680 * Add to the _head_ of the list, so that an already-started
3681 * distribute_cfs_runtime will not see us
3682 */
3683 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3684 if (!cfs_b->timer_active)
09dc4ab0 3685 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3686 raw_spin_unlock(&cfs_b->lock);
3687}
3688
029632fb 3689void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3690{
3691 struct rq *rq = rq_of(cfs_rq);
3692 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3693 struct sched_entity *se;
3694 int enqueue = 1;
3695 long task_delta;
3696
22b958d8 3697 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3698
3699 cfs_rq->throttled = 0;
1a55af2e
FW
3700
3701 update_rq_clock(rq);
3702
671fd9da 3703 raw_spin_lock(&cfs_b->lock);
78becc27 3704 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3705 list_del_rcu(&cfs_rq->throttled_list);
3706 raw_spin_unlock(&cfs_b->lock);
3707
64660c86
PT
3708 /* update hierarchical throttle state */
3709 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3710
671fd9da
PT
3711 if (!cfs_rq->load.weight)
3712 return;
3713
3714 task_delta = cfs_rq->h_nr_running;
3715 for_each_sched_entity(se) {
3716 if (se->on_rq)
3717 enqueue = 0;
3718
3719 cfs_rq = cfs_rq_of(se);
3720 if (enqueue)
3721 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3722 cfs_rq->h_nr_running += task_delta;
3723
3724 if (cfs_rq_throttled(cfs_rq))
3725 break;
3726 }
3727
3728 if (!se)
72465447 3729 add_nr_running(rq, task_delta);
671fd9da
PT
3730
3731 /* determine whether we need to wake up potentially idle cpu */
3732 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3733 resched_curr(rq);
671fd9da
PT
3734}
3735
3736static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3737 u64 remaining, u64 expires)
3738{
3739 struct cfs_rq *cfs_rq;
c06f04c7
BS
3740 u64 runtime;
3741 u64 starting_runtime = remaining;
671fd9da
PT
3742
3743 rcu_read_lock();
3744 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3745 throttled_list) {
3746 struct rq *rq = rq_of(cfs_rq);
3747
3748 raw_spin_lock(&rq->lock);
3749 if (!cfs_rq_throttled(cfs_rq))
3750 goto next;
3751
3752 runtime = -cfs_rq->runtime_remaining + 1;
3753 if (runtime > remaining)
3754 runtime = remaining;
3755 remaining -= runtime;
3756
3757 cfs_rq->runtime_remaining += runtime;
3758 cfs_rq->runtime_expires = expires;
3759
3760 /* we check whether we're throttled above */
3761 if (cfs_rq->runtime_remaining > 0)
3762 unthrottle_cfs_rq(cfs_rq);
3763
3764next:
3765 raw_spin_unlock(&rq->lock);
3766
3767 if (!remaining)
3768 break;
3769 }
3770 rcu_read_unlock();
3771
c06f04c7 3772 return starting_runtime - remaining;
671fd9da
PT
3773}
3774
58088ad0
PT
3775/*
3776 * Responsible for refilling a task_group's bandwidth and unthrottling its
3777 * cfs_rqs as appropriate. If there has been no activity within the last
3778 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3779 * used to track this state.
3780 */
3781static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3782{
671fd9da 3783 u64 runtime, runtime_expires;
51f2176d 3784 int throttled;
58088ad0 3785
58088ad0
PT
3786 /* no need to continue the timer with no bandwidth constraint */
3787 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3788 goto out_deactivate;
58088ad0 3789
671fd9da 3790 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3791 cfs_b->nr_periods += overrun;
671fd9da 3792
51f2176d
BS
3793 /*
3794 * idle depends on !throttled (for the case of a large deficit), and if
3795 * we're going inactive then everything else can be deferred
3796 */
3797 if (cfs_b->idle && !throttled)
3798 goto out_deactivate;
a9cf55b2 3799
927b54fc
BS
3800 /*
3801 * if we have relooped after returning idle once, we need to update our
3802 * status as actually running, so that other cpus doing
3803 * __start_cfs_bandwidth will stop trying to cancel us.
3804 */
3805 cfs_b->timer_active = 1;
3806
a9cf55b2
PT
3807 __refill_cfs_bandwidth_runtime(cfs_b);
3808
671fd9da
PT
3809 if (!throttled) {
3810 /* mark as potentially idle for the upcoming period */
3811 cfs_b->idle = 1;
51f2176d 3812 return 0;
671fd9da
PT
3813 }
3814
e8da1b18
NR
3815 /* account preceding periods in which throttling occurred */
3816 cfs_b->nr_throttled += overrun;
3817
671fd9da 3818 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3819
3820 /*
c06f04c7
BS
3821 * This check is repeated as we are holding onto the new bandwidth while
3822 * we unthrottle. This can potentially race with an unthrottled group
3823 * trying to acquire new bandwidth from the global pool. This can result
3824 * in us over-using our runtime if it is all used during this loop, but
3825 * only by limited amounts in that extreme case.
671fd9da 3826 */
c06f04c7
BS
3827 while (throttled && cfs_b->runtime > 0) {
3828 runtime = cfs_b->runtime;
671fd9da
PT
3829 raw_spin_unlock(&cfs_b->lock);
3830 /* we can't nest cfs_b->lock while distributing bandwidth */
3831 runtime = distribute_cfs_runtime(cfs_b, runtime,
3832 runtime_expires);
3833 raw_spin_lock(&cfs_b->lock);
3834
3835 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3836
3837 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3838 }
58088ad0 3839
671fd9da
PT
3840 /*
3841 * While we are ensured activity in the period following an
3842 * unthrottle, this also covers the case in which the new bandwidth is
3843 * insufficient to cover the existing bandwidth deficit. (Forcing the
3844 * timer to remain active while there are any throttled entities.)
3845 */
3846 cfs_b->idle = 0;
58088ad0 3847
51f2176d
BS
3848 return 0;
3849
3850out_deactivate:
3851 cfs_b->timer_active = 0;
3852 return 1;
58088ad0 3853}
d3d9dc33 3854
d8b4986d
PT
3855/* a cfs_rq won't donate quota below this amount */
3856static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3857/* minimum remaining period time to redistribute slack quota */
3858static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3859/* how long we wait to gather additional slack before distributing */
3860static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3861
db06e78c
BS
3862/*
3863 * Are we near the end of the current quota period?
3864 *
3865 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3866 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3867 * migrate_hrtimers, base is never cleared, so we are fine.
3868 */
d8b4986d
PT
3869static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3870{
3871 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3872 u64 remaining;
3873
3874 /* if the call-back is running a quota refresh is already occurring */
3875 if (hrtimer_callback_running(refresh_timer))
3876 return 1;
3877
3878 /* is a quota refresh about to occur? */
3879 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3880 if (remaining < min_expire)
3881 return 1;
3882
3883 return 0;
3884}
3885
3886static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3887{
3888 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3889
3890 /* if there's a quota refresh soon don't bother with slack */
3891 if (runtime_refresh_within(cfs_b, min_left))
3892 return;
3893
3894 start_bandwidth_timer(&cfs_b->slack_timer,
3895 ns_to_ktime(cfs_bandwidth_slack_period));
3896}
3897
3898/* we know any runtime found here is valid as update_curr() precedes return */
3899static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3900{
3901 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3902 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3903
3904 if (slack_runtime <= 0)
3905 return;
3906
3907 raw_spin_lock(&cfs_b->lock);
3908 if (cfs_b->quota != RUNTIME_INF &&
3909 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3910 cfs_b->runtime += slack_runtime;
3911
3912 /* we are under rq->lock, defer unthrottling using a timer */
3913 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3914 !list_empty(&cfs_b->throttled_cfs_rq))
3915 start_cfs_slack_bandwidth(cfs_b);
3916 }
3917 raw_spin_unlock(&cfs_b->lock);
3918
3919 /* even if it's not valid for return we don't want to try again */
3920 cfs_rq->runtime_remaining -= slack_runtime;
3921}
3922
3923static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3924{
56f570e5
PT
3925 if (!cfs_bandwidth_used())
3926 return;
3927
fccfdc6f 3928 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3929 return;
3930
3931 __return_cfs_rq_runtime(cfs_rq);
3932}
3933
3934/*
3935 * This is done with a timer (instead of inline with bandwidth return) since
3936 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3937 */
3938static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3939{
3940 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3941 u64 expires;
3942
3943 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3944 raw_spin_lock(&cfs_b->lock);
3945 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3946 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3947 return;
db06e78c 3948 }
d8b4986d 3949
c06f04c7 3950 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3951 runtime = cfs_b->runtime;
c06f04c7 3952
d8b4986d
PT
3953 expires = cfs_b->runtime_expires;
3954 raw_spin_unlock(&cfs_b->lock);
3955
3956 if (!runtime)
3957 return;
3958
3959 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3960
3961 raw_spin_lock(&cfs_b->lock);
3962 if (expires == cfs_b->runtime_expires)
c06f04c7 3963 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3964 raw_spin_unlock(&cfs_b->lock);
3965}
3966
d3d9dc33
PT
3967/*
3968 * When a group wakes up we want to make sure that its quota is not already
3969 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3970 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3971 */
3972static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3973{
56f570e5
PT
3974 if (!cfs_bandwidth_used())
3975 return;
3976
d3d9dc33
PT
3977 /* an active group must be handled by the update_curr()->put() path */
3978 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3979 return;
3980
3981 /* ensure the group is not already throttled */
3982 if (cfs_rq_throttled(cfs_rq))
3983 return;
3984
3985 /* update runtime allocation */
3986 account_cfs_rq_runtime(cfs_rq, 0);
3987 if (cfs_rq->runtime_remaining <= 0)
3988 throttle_cfs_rq(cfs_rq);
3989}
3990
3991/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3992static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3993{
56f570e5 3994 if (!cfs_bandwidth_used())
678d5718 3995 return false;
56f570e5 3996
d3d9dc33 3997 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3998 return false;
d3d9dc33
PT
3999
4000 /*
4001 * it's possible for a throttled entity to be forced into a running
4002 * state (e.g. set_curr_task), in this case we're finished.
4003 */
4004 if (cfs_rq_throttled(cfs_rq))
678d5718 4005 return true;
d3d9dc33
PT
4006
4007 throttle_cfs_rq(cfs_rq);
678d5718 4008 return true;
d3d9dc33 4009}
029632fb 4010
029632fb
PZ
4011static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4012{
4013 struct cfs_bandwidth *cfs_b =
4014 container_of(timer, struct cfs_bandwidth, slack_timer);
4015 do_sched_cfs_slack_timer(cfs_b);
4016
4017 return HRTIMER_NORESTART;
4018}
4019
4020static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4021{
4022 struct cfs_bandwidth *cfs_b =
4023 container_of(timer, struct cfs_bandwidth, period_timer);
4024 ktime_t now;
4025 int overrun;
4026 int idle = 0;
4027
51f2176d 4028 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4029 for (;;) {
4030 now = hrtimer_cb_get_time(timer);
4031 overrun = hrtimer_forward(timer, now, cfs_b->period);
4032
4033 if (!overrun)
4034 break;
4035
4036 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4037 }
51f2176d 4038 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4039
4040 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4041}
4042
4043void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4044{
4045 raw_spin_lock_init(&cfs_b->lock);
4046 cfs_b->runtime = 0;
4047 cfs_b->quota = RUNTIME_INF;
4048 cfs_b->period = ns_to_ktime(default_cfs_period());
4049
4050 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4051 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4052 cfs_b->period_timer.function = sched_cfs_period_timer;
4053 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4054 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4055}
4056
4057static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4058{
4059 cfs_rq->runtime_enabled = 0;
4060 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4061}
4062
4063/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4064void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4065{
4066 /*
4067 * The timer may be active because we're trying to set a new bandwidth
4068 * period or because we're racing with the tear-down path
4069 * (timer_active==0 becomes visible before the hrtimer call-back
4070 * terminates). In either case we ensure that it's re-programmed
4071 */
927b54fc
BS
4072 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4073 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4074 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4075 raw_spin_unlock(&cfs_b->lock);
927b54fc 4076 cpu_relax();
029632fb
PZ
4077 raw_spin_lock(&cfs_b->lock);
4078 /* if someone else restarted the timer then we're done */
09dc4ab0 4079 if (!force && cfs_b->timer_active)
029632fb
PZ
4080 return;
4081 }
4082
4083 cfs_b->timer_active = 1;
4084 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4085}
4086
4087static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4088{
7f1a169b
TH
4089 /* init_cfs_bandwidth() was not called */
4090 if (!cfs_b->throttled_cfs_rq.next)
4091 return;
4092
029632fb
PZ
4093 hrtimer_cancel(&cfs_b->period_timer);
4094 hrtimer_cancel(&cfs_b->slack_timer);
4095}
4096
0e59bdae
KT
4097static void __maybe_unused update_runtime_enabled(struct rq *rq)
4098{
4099 struct cfs_rq *cfs_rq;
4100
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4103
4104 raw_spin_lock(&cfs_b->lock);
4105 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4106 raw_spin_unlock(&cfs_b->lock);
4107 }
4108}
4109
38dc3348 4110static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4111{
4112 struct cfs_rq *cfs_rq;
4113
4114 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4115 if (!cfs_rq->runtime_enabled)
4116 continue;
4117
4118 /*
4119 * clock_task is not advancing so we just need to make sure
4120 * there's some valid quota amount
4121 */
51f2176d 4122 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4123 /*
4124 * Offline rq is schedulable till cpu is completely disabled
4125 * in take_cpu_down(), so we prevent new cfs throttling here.
4126 */
4127 cfs_rq->runtime_enabled = 0;
4128
029632fb
PZ
4129 if (cfs_rq_throttled(cfs_rq))
4130 unthrottle_cfs_rq(cfs_rq);
4131 }
4132}
4133
4134#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4135static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4136{
78becc27 4137 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4138}
4139
9dbdb155 4140static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4141static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4142static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4143static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4144
4145static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4146{
4147 return 0;
4148}
64660c86
PT
4149
4150static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4151{
4152 return 0;
4153}
4154
4155static inline int throttled_lb_pair(struct task_group *tg,
4156 int src_cpu, int dest_cpu)
4157{
4158 return 0;
4159}
029632fb
PZ
4160
4161void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4162
4163#ifdef CONFIG_FAIR_GROUP_SCHED
4164static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4165#endif
4166
029632fb
PZ
4167static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4168{
4169 return NULL;
4170}
4171static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4172static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4173static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4174
4175#endif /* CONFIG_CFS_BANDWIDTH */
4176
bf0f6f24
IM
4177/**************************************************
4178 * CFS operations on tasks:
4179 */
4180
8f4d37ec
PZ
4181#ifdef CONFIG_SCHED_HRTICK
4182static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4183{
8f4d37ec
PZ
4184 struct sched_entity *se = &p->se;
4185 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4186
4187 WARN_ON(task_rq(p) != rq);
4188
b39e66ea 4189 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4190 u64 slice = sched_slice(cfs_rq, se);
4191 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4192 s64 delta = slice - ran;
4193
4194 if (delta < 0) {
4195 if (rq->curr == p)
8875125e 4196 resched_curr(rq);
8f4d37ec
PZ
4197 return;
4198 }
31656519 4199 hrtick_start(rq, delta);
8f4d37ec
PZ
4200 }
4201}
a4c2f00f
PZ
4202
4203/*
4204 * called from enqueue/dequeue and updates the hrtick when the
4205 * current task is from our class and nr_running is low enough
4206 * to matter.
4207 */
4208static void hrtick_update(struct rq *rq)
4209{
4210 struct task_struct *curr = rq->curr;
4211
b39e66ea 4212 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4213 return;
4214
4215 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4216 hrtick_start_fair(rq, curr);
4217}
55e12e5e 4218#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4219static inline void
4220hrtick_start_fair(struct rq *rq, struct task_struct *p)
4221{
4222}
a4c2f00f
PZ
4223
4224static inline void hrtick_update(struct rq *rq)
4225{
4226}
8f4d37ec
PZ
4227#endif
4228
bf0f6f24
IM
4229/*
4230 * The enqueue_task method is called before nr_running is
4231 * increased. Here we update the fair scheduling stats and
4232 * then put the task into the rbtree:
4233 */
ea87bb78 4234static void
371fd7e7 4235enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4236{
4237 struct cfs_rq *cfs_rq;
62fb1851 4238 struct sched_entity *se = &p->se;
bf0f6f24
IM
4239
4240 for_each_sched_entity(se) {
62fb1851 4241 if (se->on_rq)
bf0f6f24
IM
4242 break;
4243 cfs_rq = cfs_rq_of(se);
88ec22d3 4244 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4245
4246 /*
4247 * end evaluation on encountering a throttled cfs_rq
4248 *
4249 * note: in the case of encountering a throttled cfs_rq we will
4250 * post the final h_nr_running increment below.
4251 */
4252 if (cfs_rq_throttled(cfs_rq))
4253 break;
953bfcd1 4254 cfs_rq->h_nr_running++;
85dac906 4255
88ec22d3 4256 flags = ENQUEUE_WAKEUP;
bf0f6f24 4257 }
8f4d37ec 4258
2069dd75 4259 for_each_sched_entity(se) {
0f317143 4260 cfs_rq = cfs_rq_of(se);
953bfcd1 4261 cfs_rq->h_nr_running++;
2069dd75 4262
85dac906
PT
4263 if (cfs_rq_throttled(cfs_rq))
4264 break;
4265
17bc14b7 4266 update_cfs_shares(cfs_rq);
9ee474f5 4267 update_entity_load_avg(se, 1);
2069dd75
PZ
4268 }
4269
18bf2805
BS
4270 if (!se) {
4271 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4272 add_nr_running(rq, 1);
18bf2805 4273 }
a4c2f00f 4274 hrtick_update(rq);
bf0f6f24
IM
4275}
4276
2f36825b
VP
4277static void set_next_buddy(struct sched_entity *se);
4278
bf0f6f24
IM
4279/*
4280 * The dequeue_task method is called before nr_running is
4281 * decreased. We remove the task from the rbtree and
4282 * update the fair scheduling stats:
4283 */
371fd7e7 4284static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4285{
4286 struct cfs_rq *cfs_rq;
62fb1851 4287 struct sched_entity *se = &p->se;
2f36825b 4288 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4289
4290 for_each_sched_entity(se) {
4291 cfs_rq = cfs_rq_of(se);
371fd7e7 4292 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4293
4294 /*
4295 * end evaluation on encountering a throttled cfs_rq
4296 *
4297 * note: in the case of encountering a throttled cfs_rq we will
4298 * post the final h_nr_running decrement below.
4299 */
4300 if (cfs_rq_throttled(cfs_rq))
4301 break;
953bfcd1 4302 cfs_rq->h_nr_running--;
2069dd75 4303
bf0f6f24 4304 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4305 if (cfs_rq->load.weight) {
4306 /*
4307 * Bias pick_next to pick a task from this cfs_rq, as
4308 * p is sleeping when it is within its sched_slice.
4309 */
4310 if (task_sleep && parent_entity(se))
4311 set_next_buddy(parent_entity(se));
9598c82d
PT
4312
4313 /* avoid re-evaluating load for this entity */
4314 se = parent_entity(se);
bf0f6f24 4315 break;
2f36825b 4316 }
371fd7e7 4317 flags |= DEQUEUE_SLEEP;
bf0f6f24 4318 }
8f4d37ec 4319
2069dd75 4320 for_each_sched_entity(se) {
0f317143 4321 cfs_rq = cfs_rq_of(se);
953bfcd1 4322 cfs_rq->h_nr_running--;
2069dd75 4323
85dac906
PT
4324 if (cfs_rq_throttled(cfs_rq))
4325 break;
4326
17bc14b7 4327 update_cfs_shares(cfs_rq);
9ee474f5 4328 update_entity_load_avg(se, 1);
2069dd75
PZ
4329 }
4330
18bf2805 4331 if (!se) {
72465447 4332 sub_nr_running(rq, 1);
18bf2805
BS
4333 update_rq_runnable_avg(rq, 1);
4334 }
a4c2f00f 4335 hrtick_update(rq);
bf0f6f24
IM
4336}
4337
e7693a36 4338#ifdef CONFIG_SMP
3289bdb4
PZ
4339
4340/*
4341 * per rq 'load' arrray crap; XXX kill this.
4342 */
4343
4344/*
4345 * The exact cpuload at various idx values, calculated at every tick would be
4346 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4347 *
4348 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4349 * on nth tick when cpu may be busy, then we have:
4350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4351 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4352 *
4353 * decay_load_missed() below does efficient calculation of
4354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4355 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4356 *
4357 * The calculation is approximated on a 128 point scale.
4358 * degrade_zero_ticks is the number of ticks after which load at any
4359 * particular idx is approximated to be zero.
4360 * degrade_factor is a precomputed table, a row for each load idx.
4361 * Each column corresponds to degradation factor for a power of two ticks,
4362 * based on 128 point scale.
4363 * Example:
4364 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4365 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4366 *
4367 * With this power of 2 load factors, we can degrade the load n times
4368 * by looking at 1 bits in n and doing as many mult/shift instead of
4369 * n mult/shifts needed by the exact degradation.
4370 */
4371#define DEGRADE_SHIFT 7
4372static const unsigned char
4373 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4374static const unsigned char
4375 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4376 {0, 0, 0, 0, 0, 0, 0, 0},
4377 {64, 32, 8, 0, 0, 0, 0, 0},
4378 {96, 72, 40, 12, 1, 0, 0},
4379 {112, 98, 75, 43, 15, 1, 0},
4380 {120, 112, 98, 76, 45, 16, 2} };
4381
4382/*
4383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4384 * would be when CPU is idle and so we just decay the old load without
4385 * adding any new load.
4386 */
4387static unsigned long
4388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4389{
4390 int j = 0;
4391
4392 if (!missed_updates)
4393 return load;
4394
4395 if (missed_updates >= degrade_zero_ticks[idx])
4396 return 0;
4397
4398 if (idx == 1)
4399 return load >> missed_updates;
4400
4401 while (missed_updates) {
4402 if (missed_updates % 2)
4403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4404
4405 missed_updates >>= 1;
4406 j++;
4407 }
4408 return load;
4409}
4410
4411/*
4412 * Update rq->cpu_load[] statistics. This function is usually called every
4413 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4414 * every tick. We fix it up based on jiffies.
4415 */
4416static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4417 unsigned long pending_updates)
4418{
4419 int i, scale;
4420
4421 this_rq->nr_load_updates++;
4422
4423 /* Update our load: */
4424 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4425 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4426 unsigned long old_load, new_load;
4427
4428 /* scale is effectively 1 << i now, and >> i divides by scale */
4429
4430 old_load = this_rq->cpu_load[i];
4431 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4432 new_load = this_load;
4433 /*
4434 * Round up the averaging division if load is increasing. This
4435 * prevents us from getting stuck on 9 if the load is 10, for
4436 * example.
4437 */
4438 if (new_load > old_load)
4439 new_load += scale - 1;
4440
4441 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4442 }
4443
4444 sched_avg_update(this_rq);
4445}
4446
4447#ifdef CONFIG_NO_HZ_COMMON
4448/*
4449 * There is no sane way to deal with nohz on smp when using jiffies because the
4450 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4451 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4452 *
4453 * Therefore we cannot use the delta approach from the regular tick since that
4454 * would seriously skew the load calculation. However we'll make do for those
4455 * updates happening while idle (nohz_idle_balance) or coming out of idle
4456 * (tick_nohz_idle_exit).
4457 *
4458 * This means we might still be one tick off for nohz periods.
4459 */
4460
4461/*
4462 * Called from nohz_idle_balance() to update the load ratings before doing the
4463 * idle balance.
4464 */
4465static void update_idle_cpu_load(struct rq *this_rq)
4466{
316c1608 4467 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4468 unsigned long load = this_rq->cfs.runnable_load_avg;
4469 unsigned long pending_updates;
4470
4471 /*
4472 * bail if there's load or we're actually up-to-date.
4473 */
4474 if (load || curr_jiffies == this_rq->last_load_update_tick)
4475 return;
4476
4477 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4478 this_rq->last_load_update_tick = curr_jiffies;
4479
4480 __update_cpu_load(this_rq, load, pending_updates);
4481}
4482
4483/*
4484 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4485 */
4486void update_cpu_load_nohz(void)
4487{
4488 struct rq *this_rq = this_rq();
316c1608 4489 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4490 unsigned long pending_updates;
4491
4492 if (curr_jiffies == this_rq->last_load_update_tick)
4493 return;
4494
4495 raw_spin_lock(&this_rq->lock);
4496 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4497 if (pending_updates) {
4498 this_rq->last_load_update_tick = curr_jiffies;
4499 /*
4500 * We were idle, this means load 0, the current load might be
4501 * !0 due to remote wakeups and the sort.
4502 */
4503 __update_cpu_load(this_rq, 0, pending_updates);
4504 }
4505 raw_spin_unlock(&this_rq->lock);
4506}
4507#endif /* CONFIG_NO_HZ */
4508
4509/*
4510 * Called from scheduler_tick()
4511 */
4512void update_cpu_load_active(struct rq *this_rq)
4513{
4514 unsigned long load = this_rq->cfs.runnable_load_avg;
4515 /*
4516 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4517 */
4518 this_rq->last_load_update_tick = jiffies;
4519 __update_cpu_load(this_rq, load, 1);
4520}
4521
029632fb
PZ
4522/* Used instead of source_load when we know the type == 0 */
4523static unsigned long weighted_cpuload(const int cpu)
4524{
b92486cb 4525 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4526}
4527
4528/*
4529 * Return a low guess at the load of a migration-source cpu weighted
4530 * according to the scheduling class and "nice" value.
4531 *
4532 * We want to under-estimate the load of migration sources, to
4533 * balance conservatively.
4534 */
4535static unsigned long source_load(int cpu, int type)
4536{
4537 struct rq *rq = cpu_rq(cpu);
4538 unsigned long total = weighted_cpuload(cpu);
4539
4540 if (type == 0 || !sched_feat(LB_BIAS))
4541 return total;
4542
4543 return min(rq->cpu_load[type-1], total);
4544}
4545
4546/*
4547 * Return a high guess at the load of a migration-target cpu weighted
4548 * according to the scheduling class and "nice" value.
4549 */
4550static unsigned long target_load(int cpu, int type)
4551{
4552 struct rq *rq = cpu_rq(cpu);
4553 unsigned long total = weighted_cpuload(cpu);
4554
4555 if (type == 0 || !sched_feat(LB_BIAS))
4556 return total;
4557
4558 return max(rq->cpu_load[type-1], total);
4559}
4560
ced549fa 4561static unsigned long capacity_of(int cpu)
029632fb 4562{
ced549fa 4563 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4564}
4565
ca6d75e6
VG
4566static unsigned long capacity_orig_of(int cpu)
4567{
4568 return cpu_rq(cpu)->cpu_capacity_orig;
4569}
4570
029632fb
PZ
4571static unsigned long cpu_avg_load_per_task(int cpu)
4572{
4573 struct rq *rq = cpu_rq(cpu);
316c1608 4574 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
b92486cb 4575 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4576
4577 if (nr_running)
b92486cb 4578 return load_avg / nr_running;
029632fb
PZ
4579
4580 return 0;
4581}
4582
62470419
MW
4583static void record_wakee(struct task_struct *p)
4584{
4585 /*
4586 * Rough decay (wiping) for cost saving, don't worry
4587 * about the boundary, really active task won't care
4588 * about the loss.
4589 */
2538d960 4590 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4591 current->wakee_flips >>= 1;
62470419
MW
4592 current->wakee_flip_decay_ts = jiffies;
4593 }
4594
4595 if (current->last_wakee != p) {
4596 current->last_wakee = p;
4597 current->wakee_flips++;
4598 }
4599}
098fb9db 4600
74f8e4b2 4601static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4602{
4603 struct sched_entity *se = &p->se;
4604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4605 u64 min_vruntime;
4606
4607#ifndef CONFIG_64BIT
4608 u64 min_vruntime_copy;
88ec22d3 4609
3fe1698b
PZ
4610 do {
4611 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4612 smp_rmb();
4613 min_vruntime = cfs_rq->min_vruntime;
4614 } while (min_vruntime != min_vruntime_copy);
4615#else
4616 min_vruntime = cfs_rq->min_vruntime;
4617#endif
88ec22d3 4618
3fe1698b 4619 se->vruntime -= min_vruntime;
62470419 4620 record_wakee(p);
88ec22d3
PZ
4621}
4622
bb3469ac 4623#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4624/*
4625 * effective_load() calculates the load change as seen from the root_task_group
4626 *
4627 * Adding load to a group doesn't make a group heavier, but can cause movement
4628 * of group shares between cpus. Assuming the shares were perfectly aligned one
4629 * can calculate the shift in shares.
cf5f0acf
PZ
4630 *
4631 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4632 * on this @cpu and results in a total addition (subtraction) of @wg to the
4633 * total group weight.
4634 *
4635 * Given a runqueue weight distribution (rw_i) we can compute a shares
4636 * distribution (s_i) using:
4637 *
4638 * s_i = rw_i / \Sum rw_j (1)
4639 *
4640 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4641 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4642 * shares distribution (s_i):
4643 *
4644 * rw_i = { 2, 4, 1, 0 }
4645 * s_i = { 2/7, 4/7, 1/7, 0 }
4646 *
4647 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4648 * task used to run on and the CPU the waker is running on), we need to
4649 * compute the effect of waking a task on either CPU and, in case of a sync
4650 * wakeup, compute the effect of the current task going to sleep.
4651 *
4652 * So for a change of @wl to the local @cpu with an overall group weight change
4653 * of @wl we can compute the new shares distribution (s'_i) using:
4654 *
4655 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4656 *
4657 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4658 * differences in waking a task to CPU 0. The additional task changes the
4659 * weight and shares distributions like:
4660 *
4661 * rw'_i = { 3, 4, 1, 0 }
4662 * s'_i = { 3/8, 4/8, 1/8, 0 }
4663 *
4664 * We can then compute the difference in effective weight by using:
4665 *
4666 * dw_i = S * (s'_i - s_i) (3)
4667 *
4668 * Where 'S' is the group weight as seen by its parent.
4669 *
4670 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4671 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4672 * 4/7) times the weight of the group.
f5bfb7d9 4673 */
2069dd75 4674static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4675{
4be9daaa 4676 struct sched_entity *se = tg->se[cpu];
f1d239f7 4677
9722c2da 4678 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4679 return wl;
4680
4be9daaa 4681 for_each_sched_entity(se) {
cf5f0acf 4682 long w, W;
4be9daaa 4683
977dda7c 4684 tg = se->my_q->tg;
bb3469ac 4685
cf5f0acf
PZ
4686 /*
4687 * W = @wg + \Sum rw_j
4688 */
4689 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4690
cf5f0acf
PZ
4691 /*
4692 * w = rw_i + @wl
4693 */
4694 w = se->my_q->load.weight + wl;
940959e9 4695
cf5f0acf
PZ
4696 /*
4697 * wl = S * s'_i; see (2)
4698 */
4699 if (W > 0 && w < W)
32a8df4e 4700 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4701 else
4702 wl = tg->shares;
940959e9 4703
cf5f0acf
PZ
4704 /*
4705 * Per the above, wl is the new se->load.weight value; since
4706 * those are clipped to [MIN_SHARES, ...) do so now. See
4707 * calc_cfs_shares().
4708 */
977dda7c
PT
4709 if (wl < MIN_SHARES)
4710 wl = MIN_SHARES;
cf5f0acf
PZ
4711
4712 /*
4713 * wl = dw_i = S * (s'_i - s_i); see (3)
4714 */
977dda7c 4715 wl -= se->load.weight;
cf5f0acf
PZ
4716
4717 /*
4718 * Recursively apply this logic to all parent groups to compute
4719 * the final effective load change on the root group. Since
4720 * only the @tg group gets extra weight, all parent groups can
4721 * only redistribute existing shares. @wl is the shift in shares
4722 * resulting from this level per the above.
4723 */
4be9daaa 4724 wg = 0;
4be9daaa 4725 }
bb3469ac 4726
4be9daaa 4727 return wl;
bb3469ac
PZ
4728}
4729#else
4be9daaa 4730
58d081b5 4731static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4732{
83378269 4733 return wl;
bb3469ac 4734}
4be9daaa 4735
bb3469ac
PZ
4736#endif
4737
62470419
MW
4738static int wake_wide(struct task_struct *p)
4739{
7d9ffa89 4740 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4741
4742 /*
4743 * Yeah, it's the switching-frequency, could means many wakee or
4744 * rapidly switch, use factor here will just help to automatically
4745 * adjust the loose-degree, so bigger node will lead to more pull.
4746 */
4747 if (p->wakee_flips > factor) {
4748 /*
4749 * wakee is somewhat hot, it needs certain amount of cpu
4750 * resource, so if waker is far more hot, prefer to leave
4751 * it alone.
4752 */
4753 if (current->wakee_flips > (factor * p->wakee_flips))
4754 return 1;
4755 }
4756
4757 return 0;
4758}
4759
c88d5910 4760static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4761{
e37b6a7b 4762 s64 this_load, load;
bd61c98f 4763 s64 this_eff_load, prev_eff_load;
c88d5910 4764 int idx, this_cpu, prev_cpu;
c88d5910 4765 struct task_group *tg;
83378269 4766 unsigned long weight;
b3137bc8 4767 int balanced;
098fb9db 4768
62470419
MW
4769 /*
4770 * If we wake multiple tasks be careful to not bounce
4771 * ourselves around too much.
4772 */
4773 if (wake_wide(p))
4774 return 0;
4775
c88d5910
PZ
4776 idx = sd->wake_idx;
4777 this_cpu = smp_processor_id();
4778 prev_cpu = task_cpu(p);
4779 load = source_load(prev_cpu, idx);
4780 this_load = target_load(this_cpu, idx);
098fb9db 4781
b3137bc8
MG
4782 /*
4783 * If sync wakeup then subtract the (maximum possible)
4784 * effect of the currently running task from the load
4785 * of the current CPU:
4786 */
83378269
PZ
4787 if (sync) {
4788 tg = task_group(current);
4789 weight = current->se.load.weight;
4790
c88d5910 4791 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4792 load += effective_load(tg, prev_cpu, 0, -weight);
4793 }
b3137bc8 4794
83378269
PZ
4795 tg = task_group(p);
4796 weight = p->se.load.weight;
b3137bc8 4797
71a29aa7
PZ
4798 /*
4799 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4800 * due to the sync cause above having dropped this_load to 0, we'll
4801 * always have an imbalance, but there's really nothing you can do
4802 * about that, so that's good too.
71a29aa7
PZ
4803 *
4804 * Otherwise check if either cpus are near enough in load to allow this
4805 * task to be woken on this_cpu.
4806 */
bd61c98f
VG
4807 this_eff_load = 100;
4808 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4809
bd61c98f
VG
4810 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4811 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4812
bd61c98f 4813 if (this_load > 0) {
e51fd5e2
PZ
4814 this_eff_load *= this_load +
4815 effective_load(tg, this_cpu, weight, weight);
4816
e51fd5e2 4817 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4818 }
e51fd5e2 4819
bd61c98f 4820 balanced = this_eff_load <= prev_eff_load;
098fb9db 4821
41acab88 4822 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4823
05bfb65f
VG
4824 if (!balanced)
4825 return 0;
098fb9db 4826
05bfb65f
VG
4827 schedstat_inc(sd, ttwu_move_affine);
4828 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4829
4830 return 1;
098fb9db
IM
4831}
4832
aaee1203
PZ
4833/*
4834 * find_idlest_group finds and returns the least busy CPU group within the
4835 * domain.
4836 */
4837static struct sched_group *
78e7ed53 4838find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4839 int this_cpu, int sd_flag)
e7693a36 4840{
b3bd3de6 4841 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4842 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4843 int load_idx = sd->forkexec_idx;
aaee1203 4844 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4845
c44f2a02
VG
4846 if (sd_flag & SD_BALANCE_WAKE)
4847 load_idx = sd->wake_idx;
4848
aaee1203
PZ
4849 do {
4850 unsigned long load, avg_load;
4851 int local_group;
4852 int i;
e7693a36 4853
aaee1203
PZ
4854 /* Skip over this group if it has no CPUs allowed */
4855 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4856 tsk_cpus_allowed(p)))
aaee1203
PZ
4857 continue;
4858
4859 local_group = cpumask_test_cpu(this_cpu,
4860 sched_group_cpus(group));
4861
4862 /* Tally up the load of all CPUs in the group */
4863 avg_load = 0;
4864
4865 for_each_cpu(i, sched_group_cpus(group)) {
4866 /* Bias balancing toward cpus of our domain */
4867 if (local_group)
4868 load = source_load(i, load_idx);
4869 else
4870 load = target_load(i, load_idx);
4871
4872 avg_load += load;
4873 }
4874
63b2ca30 4875 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4876 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4877
4878 if (local_group) {
4879 this_load = avg_load;
aaee1203
PZ
4880 } else if (avg_load < min_load) {
4881 min_load = avg_load;
4882 idlest = group;
4883 }
4884 } while (group = group->next, group != sd->groups);
4885
4886 if (!idlest || 100*this_load < imbalance*min_load)
4887 return NULL;
4888 return idlest;
4889}
4890
4891/*
4892 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4893 */
4894static int
4895find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4896{
4897 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4898 unsigned int min_exit_latency = UINT_MAX;
4899 u64 latest_idle_timestamp = 0;
4900 int least_loaded_cpu = this_cpu;
4901 int shallowest_idle_cpu = -1;
aaee1203
PZ
4902 int i;
4903
4904 /* Traverse only the allowed CPUs */
fa17b507 4905 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4906 if (idle_cpu(i)) {
4907 struct rq *rq = cpu_rq(i);
4908 struct cpuidle_state *idle = idle_get_state(rq);
4909 if (idle && idle->exit_latency < min_exit_latency) {
4910 /*
4911 * We give priority to a CPU whose idle state
4912 * has the smallest exit latency irrespective
4913 * of any idle timestamp.
4914 */
4915 min_exit_latency = idle->exit_latency;
4916 latest_idle_timestamp = rq->idle_stamp;
4917 shallowest_idle_cpu = i;
4918 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4919 rq->idle_stamp > latest_idle_timestamp) {
4920 /*
4921 * If equal or no active idle state, then
4922 * the most recently idled CPU might have
4923 * a warmer cache.
4924 */
4925 latest_idle_timestamp = rq->idle_stamp;
4926 shallowest_idle_cpu = i;
4927 }
9f96742a 4928 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4929 load = weighted_cpuload(i);
4930 if (load < min_load || (load == min_load && i == this_cpu)) {
4931 min_load = load;
4932 least_loaded_cpu = i;
4933 }
e7693a36
GH
4934 }
4935 }
4936
83a0a96a 4937 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4938}
e7693a36 4939
a50bde51
PZ
4940/*
4941 * Try and locate an idle CPU in the sched_domain.
4942 */
99bd5e2f 4943static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4944{
99bd5e2f 4945 struct sched_domain *sd;
37407ea7 4946 struct sched_group *sg;
e0a79f52 4947 int i = task_cpu(p);
a50bde51 4948
e0a79f52
MG
4949 if (idle_cpu(target))
4950 return target;
99bd5e2f
SS
4951
4952 /*
e0a79f52 4953 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4954 */
e0a79f52
MG
4955 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4956 return i;
a50bde51
PZ
4957
4958 /*
37407ea7 4959 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4960 */
518cd623 4961 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4962 for_each_lower_domain(sd) {
37407ea7
LT
4963 sg = sd->groups;
4964 do {
4965 if (!cpumask_intersects(sched_group_cpus(sg),
4966 tsk_cpus_allowed(p)))
4967 goto next;
4968
4969 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4970 if (i == target || !idle_cpu(i))
37407ea7
LT
4971 goto next;
4972 }
970e1789 4973
37407ea7
LT
4974 target = cpumask_first_and(sched_group_cpus(sg),
4975 tsk_cpus_allowed(p));
4976 goto done;
4977next:
4978 sg = sg->next;
4979 } while (sg != sd->groups);
4980 }
4981done:
a50bde51
PZ
4982 return target;
4983}
8bb5b00c
VG
4984/*
4985 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4986 * tasks. The unit of the return value must be the one of capacity so we can
4987 * compare the usage with the capacity of the CPU that is available for CFS
4988 * task (ie cpu_capacity).
4989 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4990 * CPU. It represents the amount of utilization of a CPU in the range
4991 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4992 * capacity of the CPU because it's about the running time on this CPU.
4993 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4994 * because of unfortunate rounding in avg_period and running_load_avg or just
4995 * after migrating tasks until the average stabilizes with the new running
4996 * time. So we need to check that the usage stays into the range
4997 * [0..cpu_capacity_orig] and cap if necessary.
4998 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4999 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
5000 */
5001static int get_cpu_usage(int cpu)
5002{
5003 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
5004 unsigned long capacity = capacity_orig_of(cpu);
5005
5006 if (usage >= SCHED_LOAD_SCALE)
5007 return capacity;
5008
5009 return (usage * capacity) >> SCHED_LOAD_SHIFT;
5010}
a50bde51 5011
aaee1203 5012/*
de91b9cb
MR
5013 * select_task_rq_fair: Select target runqueue for the waking task in domains
5014 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5015 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5016 *
de91b9cb
MR
5017 * Balances load by selecting the idlest cpu in the idlest group, or under
5018 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5019 *
de91b9cb 5020 * Returns the target cpu number.
aaee1203
PZ
5021 *
5022 * preempt must be disabled.
5023 */
0017d735 5024static int
ac66f547 5025select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5026{
29cd8bae 5027 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5028 int cpu = smp_processor_id();
c88d5910 5029 int new_cpu = cpu;
99bd5e2f 5030 int want_affine = 0;
5158f4e4 5031 int sync = wake_flags & WF_SYNC;
c88d5910 5032
a8edd075
KT
5033 if (sd_flag & SD_BALANCE_WAKE)
5034 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5035
dce840a0 5036 rcu_read_lock();
aaee1203 5037 for_each_domain(cpu, tmp) {
e4f42888
PZ
5038 if (!(tmp->flags & SD_LOAD_BALANCE))
5039 continue;
5040
fe3bcfe1 5041 /*
99bd5e2f
SS
5042 * If both cpu and prev_cpu are part of this domain,
5043 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5044 */
99bd5e2f
SS
5045 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5046 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5047 affine_sd = tmp;
29cd8bae 5048 break;
f03542a7 5049 }
29cd8bae 5050
f03542a7 5051 if (tmp->flags & sd_flag)
29cd8bae
PZ
5052 sd = tmp;
5053 }
5054
8bf21433
RR
5055 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5056 prev_cpu = cpu;
dce840a0 5057
8bf21433 5058 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
5059 new_cpu = select_idle_sibling(p, prev_cpu);
5060 goto unlock;
8b911acd 5061 }
e7693a36 5062
aaee1203
PZ
5063 while (sd) {
5064 struct sched_group *group;
c88d5910 5065 int weight;
098fb9db 5066
0763a660 5067 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5068 sd = sd->child;
5069 continue;
5070 }
098fb9db 5071
c44f2a02 5072 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5073 if (!group) {
5074 sd = sd->child;
5075 continue;
5076 }
4ae7d5ce 5077
d7c33c49 5078 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5079 if (new_cpu == -1 || new_cpu == cpu) {
5080 /* Now try balancing at a lower domain level of cpu */
5081 sd = sd->child;
5082 continue;
e7693a36 5083 }
aaee1203
PZ
5084
5085 /* Now try balancing at a lower domain level of new_cpu */
5086 cpu = new_cpu;
669c55e9 5087 weight = sd->span_weight;
aaee1203
PZ
5088 sd = NULL;
5089 for_each_domain(cpu, tmp) {
669c55e9 5090 if (weight <= tmp->span_weight)
aaee1203 5091 break;
0763a660 5092 if (tmp->flags & sd_flag)
aaee1203
PZ
5093 sd = tmp;
5094 }
5095 /* while loop will break here if sd == NULL */
e7693a36 5096 }
dce840a0
PZ
5097unlock:
5098 rcu_read_unlock();
e7693a36 5099
c88d5910 5100 return new_cpu;
e7693a36 5101}
0a74bef8
PT
5102
5103/*
5104 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5105 * cfs_rq_of(p) references at time of call are still valid and identify the
5106 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5107 * other assumptions, including the state of rq->lock, should be made.
5108 */
5109static void
5110migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5111{
aff3e498
PT
5112 struct sched_entity *se = &p->se;
5113 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5114
5115 /*
5116 * Load tracking: accumulate removed load so that it can be processed
5117 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5118 * to blocked load iff they have a positive decay-count. It can never
5119 * be negative here since on-rq tasks have decay-count == 0.
5120 */
5121 if (se->avg.decay_count) {
5122 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5123 atomic_long_add(se->avg.load_avg_contrib,
5124 &cfs_rq->removed_load);
aff3e498 5125 }
3944a927
BS
5126
5127 /* We have migrated, no longer consider this task hot */
5128 se->exec_start = 0;
0a74bef8 5129}
e7693a36
GH
5130#endif /* CONFIG_SMP */
5131
e52fb7c0
PZ
5132static unsigned long
5133wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5134{
5135 unsigned long gran = sysctl_sched_wakeup_granularity;
5136
5137 /*
e52fb7c0
PZ
5138 * Since its curr running now, convert the gran from real-time
5139 * to virtual-time in his units.
13814d42
MG
5140 *
5141 * By using 'se' instead of 'curr' we penalize light tasks, so
5142 * they get preempted easier. That is, if 'se' < 'curr' then
5143 * the resulting gran will be larger, therefore penalizing the
5144 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5145 * be smaller, again penalizing the lighter task.
5146 *
5147 * This is especially important for buddies when the leftmost
5148 * task is higher priority than the buddy.
0bbd3336 5149 */
f4ad9bd2 5150 return calc_delta_fair(gran, se);
0bbd3336
PZ
5151}
5152
464b7527
PZ
5153/*
5154 * Should 'se' preempt 'curr'.
5155 *
5156 * |s1
5157 * |s2
5158 * |s3
5159 * g
5160 * |<--->|c
5161 *
5162 * w(c, s1) = -1
5163 * w(c, s2) = 0
5164 * w(c, s3) = 1
5165 *
5166 */
5167static int
5168wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5169{
5170 s64 gran, vdiff = curr->vruntime - se->vruntime;
5171
5172 if (vdiff <= 0)
5173 return -1;
5174
e52fb7c0 5175 gran = wakeup_gran(curr, se);
464b7527
PZ
5176 if (vdiff > gran)
5177 return 1;
5178
5179 return 0;
5180}
5181
02479099
PZ
5182static void set_last_buddy(struct sched_entity *se)
5183{
69c80f3e
VP
5184 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5185 return;
5186
5187 for_each_sched_entity(se)
5188 cfs_rq_of(se)->last = se;
02479099
PZ
5189}
5190
5191static void set_next_buddy(struct sched_entity *se)
5192{
69c80f3e
VP
5193 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5194 return;
5195
5196 for_each_sched_entity(se)
5197 cfs_rq_of(se)->next = se;
02479099
PZ
5198}
5199
ac53db59
RR
5200static void set_skip_buddy(struct sched_entity *se)
5201{
69c80f3e
VP
5202 for_each_sched_entity(se)
5203 cfs_rq_of(se)->skip = se;
ac53db59
RR
5204}
5205
bf0f6f24
IM
5206/*
5207 * Preempt the current task with a newly woken task if needed:
5208 */
5a9b86f6 5209static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5210{
5211 struct task_struct *curr = rq->curr;
8651a86c 5212 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5213 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5214 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5215 int next_buddy_marked = 0;
bf0f6f24 5216
4ae7d5ce
IM
5217 if (unlikely(se == pse))
5218 return;
5219
5238cdd3 5220 /*
163122b7 5221 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5222 * unconditionally check_prempt_curr() after an enqueue (which may have
5223 * lead to a throttle). This both saves work and prevents false
5224 * next-buddy nomination below.
5225 */
5226 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5227 return;
5228
2f36825b 5229 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5230 set_next_buddy(pse);
2f36825b
VP
5231 next_buddy_marked = 1;
5232 }
57fdc26d 5233
aec0a514
BR
5234 /*
5235 * We can come here with TIF_NEED_RESCHED already set from new task
5236 * wake up path.
5238cdd3
PT
5237 *
5238 * Note: this also catches the edge-case of curr being in a throttled
5239 * group (e.g. via set_curr_task), since update_curr() (in the
5240 * enqueue of curr) will have resulted in resched being set. This
5241 * prevents us from potentially nominating it as a false LAST_BUDDY
5242 * below.
aec0a514
BR
5243 */
5244 if (test_tsk_need_resched(curr))
5245 return;
5246
a2f5c9ab
DH
5247 /* Idle tasks are by definition preempted by non-idle tasks. */
5248 if (unlikely(curr->policy == SCHED_IDLE) &&
5249 likely(p->policy != SCHED_IDLE))
5250 goto preempt;
5251
91c234b4 5252 /*
a2f5c9ab
DH
5253 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5254 * is driven by the tick):
91c234b4 5255 */
8ed92e51 5256 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5257 return;
bf0f6f24 5258
464b7527 5259 find_matching_se(&se, &pse);
9bbd7374 5260 update_curr(cfs_rq_of(se));
002f128b 5261 BUG_ON(!pse);
2f36825b
VP
5262 if (wakeup_preempt_entity(se, pse) == 1) {
5263 /*
5264 * Bias pick_next to pick the sched entity that is
5265 * triggering this preemption.
5266 */
5267 if (!next_buddy_marked)
5268 set_next_buddy(pse);
3a7e73a2 5269 goto preempt;
2f36825b 5270 }
464b7527 5271
3a7e73a2 5272 return;
a65ac745 5273
3a7e73a2 5274preempt:
8875125e 5275 resched_curr(rq);
3a7e73a2
PZ
5276 /*
5277 * Only set the backward buddy when the current task is still
5278 * on the rq. This can happen when a wakeup gets interleaved
5279 * with schedule on the ->pre_schedule() or idle_balance()
5280 * point, either of which can * drop the rq lock.
5281 *
5282 * Also, during early boot the idle thread is in the fair class,
5283 * for obvious reasons its a bad idea to schedule back to it.
5284 */
5285 if (unlikely(!se->on_rq || curr == rq->idle))
5286 return;
5287
5288 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5289 set_last_buddy(se);
bf0f6f24
IM
5290}
5291
606dba2e
PZ
5292static struct task_struct *
5293pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5294{
5295 struct cfs_rq *cfs_rq = &rq->cfs;
5296 struct sched_entity *se;
678d5718 5297 struct task_struct *p;
37e117c0 5298 int new_tasks;
678d5718 5299
6e83125c 5300again:
678d5718
PZ
5301#ifdef CONFIG_FAIR_GROUP_SCHED
5302 if (!cfs_rq->nr_running)
38033c37 5303 goto idle;
678d5718 5304
3f1d2a31 5305 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5306 goto simple;
5307
5308 /*
5309 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5310 * likely that a next task is from the same cgroup as the current.
5311 *
5312 * Therefore attempt to avoid putting and setting the entire cgroup
5313 * hierarchy, only change the part that actually changes.
5314 */
5315
5316 do {
5317 struct sched_entity *curr = cfs_rq->curr;
5318
5319 /*
5320 * Since we got here without doing put_prev_entity() we also
5321 * have to consider cfs_rq->curr. If it is still a runnable
5322 * entity, update_curr() will update its vruntime, otherwise
5323 * forget we've ever seen it.
5324 */
5325 if (curr && curr->on_rq)
5326 update_curr(cfs_rq);
5327 else
5328 curr = NULL;
5329
5330 /*
5331 * This call to check_cfs_rq_runtime() will do the throttle and
5332 * dequeue its entity in the parent(s). Therefore the 'simple'
5333 * nr_running test will indeed be correct.
5334 */
5335 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5336 goto simple;
5337
5338 se = pick_next_entity(cfs_rq, curr);
5339 cfs_rq = group_cfs_rq(se);
5340 } while (cfs_rq);
5341
5342 p = task_of(se);
5343
5344 /*
5345 * Since we haven't yet done put_prev_entity and if the selected task
5346 * is a different task than we started out with, try and touch the
5347 * least amount of cfs_rqs.
5348 */
5349 if (prev != p) {
5350 struct sched_entity *pse = &prev->se;
5351
5352 while (!(cfs_rq = is_same_group(se, pse))) {
5353 int se_depth = se->depth;
5354 int pse_depth = pse->depth;
5355
5356 if (se_depth <= pse_depth) {
5357 put_prev_entity(cfs_rq_of(pse), pse);
5358 pse = parent_entity(pse);
5359 }
5360 if (se_depth >= pse_depth) {
5361 set_next_entity(cfs_rq_of(se), se);
5362 se = parent_entity(se);
5363 }
5364 }
5365
5366 put_prev_entity(cfs_rq, pse);
5367 set_next_entity(cfs_rq, se);
5368 }
5369
5370 if (hrtick_enabled(rq))
5371 hrtick_start_fair(rq, p);
5372
5373 return p;
5374simple:
5375 cfs_rq = &rq->cfs;
5376#endif
bf0f6f24 5377
36ace27e 5378 if (!cfs_rq->nr_running)
38033c37 5379 goto idle;
bf0f6f24 5380
3f1d2a31 5381 put_prev_task(rq, prev);
606dba2e 5382
bf0f6f24 5383 do {
678d5718 5384 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5385 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5386 cfs_rq = group_cfs_rq(se);
5387 } while (cfs_rq);
5388
8f4d37ec 5389 p = task_of(se);
678d5718 5390
b39e66ea
MG
5391 if (hrtick_enabled(rq))
5392 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5393
5394 return p;
38033c37
PZ
5395
5396idle:
e4aa358b 5397 new_tasks = idle_balance(rq);
37e117c0
PZ
5398 /*
5399 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5400 * possible for any higher priority task to appear. In that case we
5401 * must re-start the pick_next_entity() loop.
5402 */
e4aa358b 5403 if (new_tasks < 0)
37e117c0
PZ
5404 return RETRY_TASK;
5405
e4aa358b 5406 if (new_tasks > 0)
38033c37 5407 goto again;
38033c37
PZ
5408
5409 return NULL;
bf0f6f24
IM
5410}
5411
5412/*
5413 * Account for a descheduled task:
5414 */
31ee529c 5415static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5416{
5417 struct sched_entity *se = &prev->se;
5418 struct cfs_rq *cfs_rq;
5419
5420 for_each_sched_entity(se) {
5421 cfs_rq = cfs_rq_of(se);
ab6cde26 5422 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5423 }
5424}
5425
ac53db59
RR
5426/*
5427 * sched_yield() is very simple
5428 *
5429 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5430 */
5431static void yield_task_fair(struct rq *rq)
5432{
5433 struct task_struct *curr = rq->curr;
5434 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5435 struct sched_entity *se = &curr->se;
5436
5437 /*
5438 * Are we the only task in the tree?
5439 */
5440 if (unlikely(rq->nr_running == 1))
5441 return;
5442
5443 clear_buddies(cfs_rq, se);
5444
5445 if (curr->policy != SCHED_BATCH) {
5446 update_rq_clock(rq);
5447 /*
5448 * Update run-time statistics of the 'current'.
5449 */
5450 update_curr(cfs_rq);
916671c0
MG
5451 /*
5452 * Tell update_rq_clock() that we've just updated,
5453 * so we don't do microscopic update in schedule()
5454 * and double the fastpath cost.
5455 */
9edfbfed 5456 rq_clock_skip_update(rq, true);
ac53db59
RR
5457 }
5458
5459 set_skip_buddy(se);
5460}
5461
d95f4122
MG
5462static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5463{
5464 struct sched_entity *se = &p->se;
5465
5238cdd3
PT
5466 /* throttled hierarchies are not runnable */
5467 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5468 return false;
5469
5470 /* Tell the scheduler that we'd really like pse to run next. */
5471 set_next_buddy(se);
5472
d95f4122
MG
5473 yield_task_fair(rq);
5474
5475 return true;
5476}
5477
681f3e68 5478#ifdef CONFIG_SMP
bf0f6f24 5479/**************************************************
e9c84cb8
PZ
5480 * Fair scheduling class load-balancing methods.
5481 *
5482 * BASICS
5483 *
5484 * The purpose of load-balancing is to achieve the same basic fairness the
5485 * per-cpu scheduler provides, namely provide a proportional amount of compute
5486 * time to each task. This is expressed in the following equation:
5487 *
5488 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5489 *
5490 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5491 * W_i,0 is defined as:
5492 *
5493 * W_i,0 = \Sum_j w_i,j (2)
5494 *
5495 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5496 * is derived from the nice value as per prio_to_weight[].
5497 *
5498 * The weight average is an exponential decay average of the instantaneous
5499 * weight:
5500 *
5501 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5502 *
ced549fa 5503 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5504 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5505 * can also include other factors [XXX].
5506 *
5507 * To achieve this balance we define a measure of imbalance which follows
5508 * directly from (1):
5509 *
ced549fa 5510 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5511 *
5512 * We them move tasks around to minimize the imbalance. In the continuous
5513 * function space it is obvious this converges, in the discrete case we get
5514 * a few fun cases generally called infeasible weight scenarios.
5515 *
5516 * [XXX expand on:
5517 * - infeasible weights;
5518 * - local vs global optima in the discrete case. ]
5519 *
5520 *
5521 * SCHED DOMAINS
5522 *
5523 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5524 * for all i,j solution, we create a tree of cpus that follows the hardware
5525 * topology where each level pairs two lower groups (or better). This results
5526 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5527 * tree to only the first of the previous level and we decrease the frequency
5528 * of load-balance at each level inv. proportional to the number of cpus in
5529 * the groups.
5530 *
5531 * This yields:
5532 *
5533 * log_2 n 1 n
5534 * \Sum { --- * --- * 2^i } = O(n) (5)
5535 * i = 0 2^i 2^i
5536 * `- size of each group
5537 * | | `- number of cpus doing load-balance
5538 * | `- freq
5539 * `- sum over all levels
5540 *
5541 * Coupled with a limit on how many tasks we can migrate every balance pass,
5542 * this makes (5) the runtime complexity of the balancer.
5543 *
5544 * An important property here is that each CPU is still (indirectly) connected
5545 * to every other cpu in at most O(log n) steps:
5546 *
5547 * The adjacency matrix of the resulting graph is given by:
5548 *
5549 * log_2 n
5550 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5551 * k = 0
5552 *
5553 * And you'll find that:
5554 *
5555 * A^(log_2 n)_i,j != 0 for all i,j (7)
5556 *
5557 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5558 * The task movement gives a factor of O(m), giving a convergence complexity
5559 * of:
5560 *
5561 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5562 *
5563 *
5564 * WORK CONSERVING
5565 *
5566 * In order to avoid CPUs going idle while there's still work to do, new idle
5567 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5568 * tree itself instead of relying on other CPUs to bring it work.
5569 *
5570 * This adds some complexity to both (5) and (8) but it reduces the total idle
5571 * time.
5572 *
5573 * [XXX more?]
5574 *
5575 *
5576 * CGROUPS
5577 *
5578 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5579 *
5580 * s_k,i
5581 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5582 * S_k
5583 *
5584 * Where
5585 *
5586 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5587 *
5588 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5589 *
5590 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5591 * property.
5592 *
5593 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5594 * rewrite all of this once again.]
5595 */
bf0f6f24 5596
ed387b78
HS
5597static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5598
0ec8aa00
PZ
5599enum fbq_type { regular, remote, all };
5600
ddcdf6e7 5601#define LBF_ALL_PINNED 0x01
367456c7 5602#define LBF_NEED_BREAK 0x02
6263322c
PZ
5603#define LBF_DST_PINNED 0x04
5604#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5605
5606struct lb_env {
5607 struct sched_domain *sd;
5608
ddcdf6e7 5609 struct rq *src_rq;
85c1e7da 5610 int src_cpu;
ddcdf6e7
PZ
5611
5612 int dst_cpu;
5613 struct rq *dst_rq;
5614
88b8dac0
SV
5615 struct cpumask *dst_grpmask;
5616 int new_dst_cpu;
ddcdf6e7 5617 enum cpu_idle_type idle;
bd939f45 5618 long imbalance;
b9403130
MW
5619 /* The set of CPUs under consideration for load-balancing */
5620 struct cpumask *cpus;
5621
ddcdf6e7 5622 unsigned int flags;
367456c7
PZ
5623
5624 unsigned int loop;
5625 unsigned int loop_break;
5626 unsigned int loop_max;
0ec8aa00
PZ
5627
5628 enum fbq_type fbq_type;
163122b7 5629 struct list_head tasks;
ddcdf6e7
PZ
5630};
5631
029632fb
PZ
5632/*
5633 * Is this task likely cache-hot:
5634 */
5d5e2b1b 5635static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5636{
5637 s64 delta;
5638
e5673f28
KT
5639 lockdep_assert_held(&env->src_rq->lock);
5640
029632fb
PZ
5641 if (p->sched_class != &fair_sched_class)
5642 return 0;
5643
5644 if (unlikely(p->policy == SCHED_IDLE))
5645 return 0;
5646
5647 /*
5648 * Buddy candidates are cache hot:
5649 */
5d5e2b1b 5650 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5651 (&p->se == cfs_rq_of(&p->se)->next ||
5652 &p->se == cfs_rq_of(&p->se)->last))
5653 return 1;
5654
5655 if (sysctl_sched_migration_cost == -1)
5656 return 1;
5657 if (sysctl_sched_migration_cost == 0)
5658 return 0;
5659
5d5e2b1b 5660 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5661
5662 return delta < (s64)sysctl_sched_migration_cost;
5663}
5664
3a7053b3 5665#ifdef CONFIG_NUMA_BALANCING
c1ceac62
RR
5666/*
5667 * Returns true if the destination node is the preferred node.
5668 * Needs to match fbq_classify_rq(): if there is a runnable task
5669 * that is not on its preferred node, we should identify it.
5670 */
3a7053b3
MG
5671static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5672{
b1ad065e 5673 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5674 unsigned long src_faults, dst_faults;
3a7053b3
MG
5675 int src_nid, dst_nid;
5676
44dba3d5 5677 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5678 !(env->sd->flags & SD_NUMA)) {
5679 return false;
5680 }
5681
5682 src_nid = cpu_to_node(env->src_cpu);
5683 dst_nid = cpu_to_node(env->dst_cpu);
5684
83e1d2cd 5685 if (src_nid == dst_nid)
3a7053b3
MG
5686 return false;
5687
b1ad065e
RR
5688 /* Encourage migration to the preferred node. */
5689 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5690 return true;
5691
c1ceac62
RR
5692 /* Migrating away from the preferred node is bad. */
5693 if (src_nid == p->numa_preferred_nid)
5694 return false;
5695
5696 if (numa_group) {
5697 src_faults = group_faults(p, src_nid);
5698 dst_faults = group_faults(p, dst_nid);
5699 } else {
5700 src_faults = task_faults(p, src_nid);
5701 dst_faults = task_faults(p, dst_nid);
5702 }
5703
5704 return dst_faults > src_faults;
3a7053b3 5705}
7a0f3083
MG
5706
5707
5708static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5709{
b1ad065e 5710 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5711 unsigned long src_faults, dst_faults;
7a0f3083
MG
5712 int src_nid, dst_nid;
5713
5714 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5715 return false;
5716
44dba3d5 5717 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5718 return false;
5719
5720 src_nid = cpu_to_node(env->src_cpu);
5721 dst_nid = cpu_to_node(env->dst_cpu);
5722
83e1d2cd 5723 if (src_nid == dst_nid)
7a0f3083
MG
5724 return false;
5725
c1ceac62
RR
5726 /* Migrating away from the preferred node is bad. */
5727 if (src_nid == p->numa_preferred_nid)
5728 return true;
b1ad065e 5729
c1ceac62
RR
5730 /* Encourage migration to the preferred node. */
5731 if (dst_nid == p->numa_preferred_nid)
5732 return false;
b1ad065e 5733
c1ceac62
RR
5734 if (numa_group) {
5735 src_faults = group_faults(p, src_nid);
5736 dst_faults = group_faults(p, dst_nid);
5737 } else {
5738 src_faults = task_faults(p, src_nid);
5739 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5740 }
5741
c1ceac62 5742 return dst_faults < src_faults;
7a0f3083
MG
5743}
5744
3a7053b3
MG
5745#else
5746static inline bool migrate_improves_locality(struct task_struct *p,
5747 struct lb_env *env)
5748{
5749 return false;
5750}
7a0f3083
MG
5751
5752static inline bool migrate_degrades_locality(struct task_struct *p,
5753 struct lb_env *env)
5754{
5755 return false;
5756}
3a7053b3
MG
5757#endif
5758
1e3c88bd
PZ
5759/*
5760 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5761 */
5762static
8e45cb54 5763int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5764{
5765 int tsk_cache_hot = 0;
e5673f28
KT
5766
5767 lockdep_assert_held(&env->src_rq->lock);
5768
1e3c88bd
PZ
5769 /*
5770 * We do not migrate tasks that are:
d3198084 5771 * 1) throttled_lb_pair, or
1e3c88bd 5772 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5773 * 3) running (obviously), or
5774 * 4) are cache-hot on their current CPU.
1e3c88bd 5775 */
d3198084
JK
5776 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5777 return 0;
5778
ddcdf6e7 5779 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5780 int cpu;
88b8dac0 5781
41acab88 5782 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5783
6263322c
PZ
5784 env->flags |= LBF_SOME_PINNED;
5785
88b8dac0
SV
5786 /*
5787 * Remember if this task can be migrated to any other cpu in
5788 * our sched_group. We may want to revisit it if we couldn't
5789 * meet load balance goals by pulling other tasks on src_cpu.
5790 *
5791 * Also avoid computing new_dst_cpu if we have already computed
5792 * one in current iteration.
5793 */
6263322c 5794 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5795 return 0;
5796
e02e60c1
JK
5797 /* Prevent to re-select dst_cpu via env's cpus */
5798 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5799 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5800 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5801 env->new_dst_cpu = cpu;
5802 break;
5803 }
88b8dac0 5804 }
e02e60c1 5805
1e3c88bd
PZ
5806 return 0;
5807 }
88b8dac0
SV
5808
5809 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5810 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5811
ddcdf6e7 5812 if (task_running(env->src_rq, p)) {
41acab88 5813 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5814 return 0;
5815 }
5816
5817 /*
5818 * Aggressive migration if:
3a7053b3
MG
5819 * 1) destination numa is preferred
5820 * 2) task is cache cold, or
5821 * 3) too many balance attempts have failed.
1e3c88bd 5822 */
5d5e2b1b 5823 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5824 if (!tsk_cache_hot)
5825 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5826
7a96c231
KT
5827 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5828 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5829 if (tsk_cache_hot) {
5830 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5831 schedstat_inc(p, se.statistics.nr_forced_migrations);
5832 }
1e3c88bd
PZ
5833 return 1;
5834 }
5835
4e2dcb73
ZH
5836 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5837 return 0;
1e3c88bd
PZ
5838}
5839
897c395f 5840/*
163122b7
KT
5841 * detach_task() -- detach the task for the migration specified in env
5842 */
5843static void detach_task(struct task_struct *p, struct lb_env *env)
5844{
5845 lockdep_assert_held(&env->src_rq->lock);
5846
5847 deactivate_task(env->src_rq, p, 0);
5848 p->on_rq = TASK_ON_RQ_MIGRATING;
5849 set_task_cpu(p, env->dst_cpu);
5850}
5851
897c395f 5852/*
e5673f28 5853 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5854 * part of active balancing operations within "domain".
897c395f 5855 *
e5673f28 5856 * Returns a task if successful and NULL otherwise.
897c395f 5857 */
e5673f28 5858static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5859{
5860 struct task_struct *p, *n;
897c395f 5861
e5673f28
KT
5862 lockdep_assert_held(&env->src_rq->lock);
5863
367456c7 5864 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5865 if (!can_migrate_task(p, env))
5866 continue;
897c395f 5867
163122b7 5868 detach_task(p, env);
e5673f28 5869
367456c7 5870 /*
e5673f28 5871 * Right now, this is only the second place where
163122b7 5872 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5873 * so we can safely collect stats here rather than
163122b7 5874 * inside detach_tasks().
367456c7
PZ
5875 */
5876 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5877 return p;
897c395f 5878 }
e5673f28 5879 return NULL;
897c395f
PZ
5880}
5881
eb95308e
PZ
5882static const unsigned int sched_nr_migrate_break = 32;
5883
5d6523eb 5884/*
163122b7
KT
5885 * detach_tasks() -- tries to detach up to imbalance weighted load from
5886 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5887 *
163122b7 5888 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5889 */
163122b7 5890static int detach_tasks(struct lb_env *env)
1e3c88bd 5891{
5d6523eb
PZ
5892 struct list_head *tasks = &env->src_rq->cfs_tasks;
5893 struct task_struct *p;
367456c7 5894 unsigned long load;
163122b7
KT
5895 int detached = 0;
5896
5897 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5898
bd939f45 5899 if (env->imbalance <= 0)
5d6523eb 5900 return 0;
1e3c88bd 5901
5d6523eb
PZ
5902 while (!list_empty(tasks)) {
5903 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5904
367456c7
PZ
5905 env->loop++;
5906 /* We've more or less seen every task there is, call it quits */
5d6523eb 5907 if (env->loop > env->loop_max)
367456c7 5908 break;
5d6523eb
PZ
5909
5910 /* take a breather every nr_migrate tasks */
367456c7 5911 if (env->loop > env->loop_break) {
eb95308e 5912 env->loop_break += sched_nr_migrate_break;
8e45cb54 5913 env->flags |= LBF_NEED_BREAK;
ee00e66f 5914 break;
a195f004 5915 }
1e3c88bd 5916
d3198084 5917 if (!can_migrate_task(p, env))
367456c7
PZ
5918 goto next;
5919
5920 load = task_h_load(p);
5d6523eb 5921
eb95308e 5922 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5923 goto next;
5924
bd939f45 5925 if ((load / 2) > env->imbalance)
367456c7 5926 goto next;
1e3c88bd 5927
163122b7
KT
5928 detach_task(p, env);
5929 list_add(&p->se.group_node, &env->tasks);
5930
5931 detached++;
bd939f45 5932 env->imbalance -= load;
1e3c88bd
PZ
5933
5934#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5935 /*
5936 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5937 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5938 * the critical section.
5939 */
5d6523eb 5940 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5941 break;
1e3c88bd
PZ
5942#endif
5943
ee00e66f
PZ
5944 /*
5945 * We only want to steal up to the prescribed amount of
5946 * weighted load.
5947 */
bd939f45 5948 if (env->imbalance <= 0)
ee00e66f 5949 break;
367456c7
PZ
5950
5951 continue;
5952next:
5d6523eb 5953 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5954 }
5d6523eb 5955
1e3c88bd 5956 /*
163122b7
KT
5957 * Right now, this is one of only two places we collect this stat
5958 * so we can safely collect detach_one_task() stats here rather
5959 * than inside detach_one_task().
1e3c88bd 5960 */
163122b7 5961 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5962
163122b7
KT
5963 return detached;
5964}
5965
5966/*
5967 * attach_task() -- attach the task detached by detach_task() to its new rq.
5968 */
5969static void attach_task(struct rq *rq, struct task_struct *p)
5970{
5971 lockdep_assert_held(&rq->lock);
5972
5973 BUG_ON(task_rq(p) != rq);
5974 p->on_rq = TASK_ON_RQ_QUEUED;
5975 activate_task(rq, p, 0);
5976 check_preempt_curr(rq, p, 0);
5977}
5978
5979/*
5980 * attach_one_task() -- attaches the task returned from detach_one_task() to
5981 * its new rq.
5982 */
5983static void attach_one_task(struct rq *rq, struct task_struct *p)
5984{
5985 raw_spin_lock(&rq->lock);
5986 attach_task(rq, p);
5987 raw_spin_unlock(&rq->lock);
5988}
5989
5990/*
5991 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5992 * new rq.
5993 */
5994static void attach_tasks(struct lb_env *env)
5995{
5996 struct list_head *tasks = &env->tasks;
5997 struct task_struct *p;
5998
5999 raw_spin_lock(&env->dst_rq->lock);
6000
6001 while (!list_empty(tasks)) {
6002 p = list_first_entry(tasks, struct task_struct, se.group_node);
6003 list_del_init(&p->se.group_node);
1e3c88bd 6004
163122b7
KT
6005 attach_task(env->dst_rq, p);
6006 }
6007
6008 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6009}
6010
230059de 6011#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
6012/*
6013 * update tg->load_weight by folding this cpu's load_avg
6014 */
48a16753 6015static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 6016{
48a16753
PT
6017 struct sched_entity *se = tg->se[cpu];
6018 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 6019
48a16753
PT
6020 /* throttled entities do not contribute to load */
6021 if (throttled_hierarchy(cfs_rq))
6022 return;
9e3081ca 6023
aff3e498 6024 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 6025
82958366
PT
6026 if (se) {
6027 update_entity_load_avg(se, 1);
6028 /*
6029 * We pivot on our runnable average having decayed to zero for
6030 * list removal. This generally implies that all our children
6031 * have also been removed (modulo rounding error or bandwidth
6032 * control); however, such cases are rare and we can fix these
6033 * at enqueue.
6034 *
6035 * TODO: fix up out-of-order children on enqueue.
6036 */
6037 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6038 list_del_leaf_cfs_rq(cfs_rq);
6039 } else {
48a16753 6040 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6041 update_rq_runnable_avg(rq, rq->nr_running);
6042 }
9e3081ca
PZ
6043}
6044
48a16753 6045static void update_blocked_averages(int cpu)
9e3081ca 6046{
9e3081ca 6047 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6048 struct cfs_rq *cfs_rq;
6049 unsigned long flags;
9e3081ca 6050
48a16753
PT
6051 raw_spin_lock_irqsave(&rq->lock, flags);
6052 update_rq_clock(rq);
9763b67f
PZ
6053 /*
6054 * Iterates the task_group tree in a bottom up fashion, see
6055 * list_add_leaf_cfs_rq() for details.
6056 */
64660c86 6057 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6058 /*
6059 * Note: We may want to consider periodically releasing
6060 * rq->lock about these updates so that creating many task
6061 * groups does not result in continually extending hold time.
6062 */
6063 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6064 }
48a16753
PT
6065
6066 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6067}
6068
9763b67f 6069/*
68520796 6070 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6071 * This needs to be done in a top-down fashion because the load of a child
6072 * group is a fraction of its parents load.
6073 */
68520796 6074static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6075{
68520796
VD
6076 struct rq *rq = rq_of(cfs_rq);
6077 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6078 unsigned long now = jiffies;
68520796 6079 unsigned long load;
a35b6466 6080
68520796 6081 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6082 return;
6083
68520796
VD
6084 cfs_rq->h_load_next = NULL;
6085 for_each_sched_entity(se) {
6086 cfs_rq = cfs_rq_of(se);
6087 cfs_rq->h_load_next = se;
6088 if (cfs_rq->last_h_load_update == now)
6089 break;
6090 }
a35b6466 6091
68520796 6092 if (!se) {
7e3115ef 6093 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6094 cfs_rq->last_h_load_update = now;
6095 }
6096
6097 while ((se = cfs_rq->h_load_next) != NULL) {
6098 load = cfs_rq->h_load;
6099 load = div64_ul(load * se->avg.load_avg_contrib,
6100 cfs_rq->runnable_load_avg + 1);
6101 cfs_rq = group_cfs_rq(se);
6102 cfs_rq->h_load = load;
6103 cfs_rq->last_h_load_update = now;
6104 }
9763b67f
PZ
6105}
6106
367456c7 6107static unsigned long task_h_load(struct task_struct *p)
230059de 6108{
367456c7 6109 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6110
68520796 6111 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6112 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6113 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6114}
6115#else
48a16753 6116static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6117{
6118}
6119
367456c7 6120static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6121{
a003a25b 6122 return p->se.avg.load_avg_contrib;
1e3c88bd 6123}
230059de 6124#endif
1e3c88bd 6125
1e3c88bd 6126/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6127
6128enum group_type {
6129 group_other = 0,
6130 group_imbalanced,
6131 group_overloaded,
6132};
6133
1e3c88bd
PZ
6134/*
6135 * sg_lb_stats - stats of a sched_group required for load_balancing
6136 */
6137struct sg_lb_stats {
6138 unsigned long avg_load; /*Avg load across the CPUs of the group */
6139 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6140 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6141 unsigned long load_per_task;
63b2ca30 6142 unsigned long group_capacity;
8bb5b00c 6143 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6144 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6145 unsigned int idle_cpus;
6146 unsigned int group_weight;
caeb178c 6147 enum group_type group_type;
ea67821b 6148 int group_no_capacity;
0ec8aa00
PZ
6149#ifdef CONFIG_NUMA_BALANCING
6150 unsigned int nr_numa_running;
6151 unsigned int nr_preferred_running;
6152#endif
1e3c88bd
PZ
6153};
6154
56cf515b
JK
6155/*
6156 * sd_lb_stats - Structure to store the statistics of a sched_domain
6157 * during load balancing.
6158 */
6159struct sd_lb_stats {
6160 struct sched_group *busiest; /* Busiest group in this sd */
6161 struct sched_group *local; /* Local group in this sd */
6162 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6163 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6164 unsigned long avg_load; /* Average load across all groups in sd */
6165
56cf515b 6166 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6167 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6168};
6169
147c5fc2
PZ
6170static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6171{
6172 /*
6173 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6174 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6175 * We must however clear busiest_stat::avg_load because
6176 * update_sd_pick_busiest() reads this before assignment.
6177 */
6178 *sds = (struct sd_lb_stats){
6179 .busiest = NULL,
6180 .local = NULL,
6181 .total_load = 0UL,
63b2ca30 6182 .total_capacity = 0UL,
147c5fc2
PZ
6183 .busiest_stat = {
6184 .avg_load = 0UL,
caeb178c
RR
6185 .sum_nr_running = 0,
6186 .group_type = group_other,
147c5fc2
PZ
6187 },
6188 };
6189}
6190
1e3c88bd
PZ
6191/**
6192 * get_sd_load_idx - Obtain the load index for a given sched domain.
6193 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6194 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6195 *
6196 * Return: The load index.
1e3c88bd
PZ
6197 */
6198static inline int get_sd_load_idx(struct sched_domain *sd,
6199 enum cpu_idle_type idle)
6200{
6201 int load_idx;
6202
6203 switch (idle) {
6204 case CPU_NOT_IDLE:
6205 load_idx = sd->busy_idx;
6206 break;
6207
6208 case CPU_NEWLY_IDLE:
6209 load_idx = sd->newidle_idx;
6210 break;
6211 default:
6212 load_idx = sd->idle_idx;
6213 break;
6214 }
6215
6216 return load_idx;
6217}
6218
26bc3c50 6219static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6220{
26bc3c50
VG
6221 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6222 return sd->smt_gain / sd->span_weight;
1e3c88bd 6223
26bc3c50 6224 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6225}
6226
26bc3c50 6227unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6228{
26bc3c50 6229 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6230}
6231
ced549fa 6232static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6233{
6234 struct rq *rq = cpu_rq(cpu);
b5b4860d 6235 u64 total, used, age_stamp, avg;
cadefd3d 6236 s64 delta;
1e3c88bd 6237
b654f7de
PZ
6238 /*
6239 * Since we're reading these variables without serialization make sure
6240 * we read them once before doing sanity checks on them.
6241 */
316c1608
JL
6242 age_stamp = READ_ONCE(rq->age_stamp);
6243 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6244 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6245
cadefd3d
PZ
6246 if (unlikely(delta < 0))
6247 delta = 0;
6248
6249 total = sched_avg_period() + delta;
aa483808 6250
b5b4860d 6251 used = div_u64(avg, total);
1e3c88bd 6252
b5b4860d
VG
6253 if (likely(used < SCHED_CAPACITY_SCALE))
6254 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6255
b5b4860d 6256 return 1;
1e3c88bd
PZ
6257}
6258
ced549fa 6259static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6260{
ca8ce3d0 6261 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6262 struct sched_group *sdg = sd->groups;
6263
26bc3c50
VG
6264 if (sched_feat(ARCH_CAPACITY))
6265 capacity *= arch_scale_cpu_capacity(sd, cpu);
6266 else
6267 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6268
26bc3c50 6269 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6270
ca6d75e6 6271 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6272
ced549fa 6273 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6274 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6275
ced549fa
NP
6276 if (!capacity)
6277 capacity = 1;
1e3c88bd 6278
ced549fa
NP
6279 cpu_rq(cpu)->cpu_capacity = capacity;
6280 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6281}
6282
63b2ca30 6283void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6284{
6285 struct sched_domain *child = sd->child;
6286 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6287 unsigned long capacity;
4ec4412e
VG
6288 unsigned long interval;
6289
6290 interval = msecs_to_jiffies(sd->balance_interval);
6291 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6292 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6293
6294 if (!child) {
ced549fa 6295 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6296 return;
6297 }
6298
dc7ff76e 6299 capacity = 0;
1e3c88bd 6300
74a5ce20
PZ
6301 if (child->flags & SD_OVERLAP) {
6302 /*
6303 * SD_OVERLAP domains cannot assume that child groups
6304 * span the current group.
6305 */
6306
863bffc8 6307 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6308 struct sched_group_capacity *sgc;
9abf24d4 6309 struct rq *rq = cpu_rq(cpu);
863bffc8 6310
9abf24d4 6311 /*
63b2ca30 6312 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6313 * gets here before we've attached the domains to the
6314 * runqueues.
6315 *
ced549fa
NP
6316 * Use capacity_of(), which is set irrespective of domains
6317 * in update_cpu_capacity().
9abf24d4 6318 *
dc7ff76e 6319 * This avoids capacity from being 0 and
9abf24d4 6320 * causing divide-by-zero issues on boot.
9abf24d4
SD
6321 */
6322 if (unlikely(!rq->sd)) {
ced549fa 6323 capacity += capacity_of(cpu);
9abf24d4
SD
6324 continue;
6325 }
863bffc8 6326
63b2ca30 6327 sgc = rq->sd->groups->sgc;
63b2ca30 6328 capacity += sgc->capacity;
863bffc8 6329 }
74a5ce20
PZ
6330 } else {
6331 /*
6332 * !SD_OVERLAP domains can assume that child groups
6333 * span the current group.
6334 */
6335
6336 group = child->groups;
6337 do {
63b2ca30 6338 capacity += group->sgc->capacity;
74a5ce20
PZ
6339 group = group->next;
6340 } while (group != child->groups);
6341 }
1e3c88bd 6342
63b2ca30 6343 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6344}
6345
9d5efe05 6346/*
ea67821b
VG
6347 * Check whether the capacity of the rq has been noticeably reduced by side
6348 * activity. The imbalance_pct is used for the threshold.
6349 * Return true is the capacity is reduced
9d5efe05
SV
6350 */
6351static inline int
ea67821b 6352check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6353{
ea67821b
VG
6354 return ((rq->cpu_capacity * sd->imbalance_pct) <
6355 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6356}
6357
30ce5dab
PZ
6358/*
6359 * Group imbalance indicates (and tries to solve) the problem where balancing
6360 * groups is inadequate due to tsk_cpus_allowed() constraints.
6361 *
6362 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6363 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6364 * Something like:
6365 *
6366 * { 0 1 2 3 } { 4 5 6 7 }
6367 * * * * *
6368 *
6369 * If we were to balance group-wise we'd place two tasks in the first group and
6370 * two tasks in the second group. Clearly this is undesired as it will overload
6371 * cpu 3 and leave one of the cpus in the second group unused.
6372 *
6373 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6374 * by noticing the lower domain failed to reach balance and had difficulty
6375 * moving tasks due to affinity constraints.
30ce5dab
PZ
6376 *
6377 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6378 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6379 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6380 * to create an effective group imbalance.
6381 *
6382 * This is a somewhat tricky proposition since the next run might not find the
6383 * group imbalance and decide the groups need to be balanced again. A most
6384 * subtle and fragile situation.
6385 */
6386
6263322c 6387static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6388{
63b2ca30 6389 return group->sgc->imbalance;
30ce5dab
PZ
6390}
6391
b37d9316 6392/*
ea67821b
VG
6393 * group_has_capacity returns true if the group has spare capacity that could
6394 * be used by some tasks.
6395 * We consider that a group has spare capacity if the * number of task is
6396 * smaller than the number of CPUs or if the usage is lower than the available
6397 * capacity for CFS tasks.
6398 * For the latter, we use a threshold to stabilize the state, to take into
6399 * account the variance of the tasks' load and to return true if the available
6400 * capacity in meaningful for the load balancer.
6401 * As an example, an available capacity of 1% can appear but it doesn't make
6402 * any benefit for the load balance.
b37d9316 6403 */
ea67821b
VG
6404static inline bool
6405group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6406{
ea67821b
VG
6407 if (sgs->sum_nr_running < sgs->group_weight)
6408 return true;
c61037e9 6409
ea67821b
VG
6410 if ((sgs->group_capacity * 100) >
6411 (sgs->group_usage * env->sd->imbalance_pct))
6412 return true;
b37d9316 6413
ea67821b
VG
6414 return false;
6415}
6416
6417/*
6418 * group_is_overloaded returns true if the group has more tasks than it can
6419 * handle.
6420 * group_is_overloaded is not equals to !group_has_capacity because a group
6421 * with the exact right number of tasks, has no more spare capacity but is not
6422 * overloaded so both group_has_capacity and group_is_overloaded return
6423 * false.
6424 */
6425static inline bool
6426group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6427{
6428 if (sgs->sum_nr_running <= sgs->group_weight)
6429 return false;
b37d9316 6430
ea67821b
VG
6431 if ((sgs->group_capacity * 100) <
6432 (sgs->group_usage * env->sd->imbalance_pct))
6433 return true;
b37d9316 6434
ea67821b 6435 return false;
b37d9316
PZ
6436}
6437
ea67821b
VG
6438static enum group_type group_classify(struct lb_env *env,
6439 struct sched_group *group,
6440 struct sg_lb_stats *sgs)
caeb178c 6441{
ea67821b 6442 if (sgs->group_no_capacity)
caeb178c
RR
6443 return group_overloaded;
6444
6445 if (sg_imbalanced(group))
6446 return group_imbalanced;
6447
6448 return group_other;
6449}
6450
1e3c88bd
PZ
6451/**
6452 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6453 * @env: The load balancing environment.
1e3c88bd 6454 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6455 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6456 * @local_group: Does group contain this_cpu.
1e3c88bd 6457 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6458 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6459 */
bd939f45
PZ
6460static inline void update_sg_lb_stats(struct lb_env *env,
6461 struct sched_group *group, int load_idx,
4486edd1
TC
6462 int local_group, struct sg_lb_stats *sgs,
6463 bool *overload)
1e3c88bd 6464{
30ce5dab 6465 unsigned long load;
bd939f45 6466 int i;
1e3c88bd 6467
b72ff13c
PZ
6468 memset(sgs, 0, sizeof(*sgs));
6469
b9403130 6470 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6471 struct rq *rq = cpu_rq(i);
6472
1e3c88bd 6473 /* Bias balancing toward cpus of our domain */
6263322c 6474 if (local_group)
04f733b4 6475 load = target_load(i, load_idx);
6263322c 6476 else
1e3c88bd 6477 load = source_load(i, load_idx);
1e3c88bd
PZ
6478
6479 sgs->group_load += load;
8bb5b00c 6480 sgs->group_usage += get_cpu_usage(i);
65fdac08 6481 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6482
6483 if (rq->nr_running > 1)
6484 *overload = true;
6485
0ec8aa00
PZ
6486#ifdef CONFIG_NUMA_BALANCING
6487 sgs->nr_numa_running += rq->nr_numa_running;
6488 sgs->nr_preferred_running += rq->nr_preferred_running;
6489#endif
1e3c88bd 6490 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6491 if (idle_cpu(i))
6492 sgs->idle_cpus++;
1e3c88bd
PZ
6493 }
6494
63b2ca30
NP
6495 /* Adjust by relative CPU capacity of the group */
6496 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6497 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6498
dd5feea1 6499 if (sgs->sum_nr_running)
38d0f770 6500 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6501
aae6d3dd 6502 sgs->group_weight = group->group_weight;
b37d9316 6503
ea67821b
VG
6504 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6505 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6506}
6507
532cb4c4
MN
6508/**
6509 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6510 * @env: The load balancing environment.
532cb4c4
MN
6511 * @sds: sched_domain statistics
6512 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6513 * @sgs: sched_group statistics
532cb4c4
MN
6514 *
6515 * Determine if @sg is a busier group than the previously selected
6516 * busiest group.
e69f6186
YB
6517 *
6518 * Return: %true if @sg is a busier group than the previously selected
6519 * busiest group. %false otherwise.
532cb4c4 6520 */
bd939f45 6521static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6522 struct sd_lb_stats *sds,
6523 struct sched_group *sg,
bd939f45 6524 struct sg_lb_stats *sgs)
532cb4c4 6525{
caeb178c 6526 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6527
caeb178c 6528 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6529 return true;
6530
caeb178c
RR
6531 if (sgs->group_type < busiest->group_type)
6532 return false;
6533
6534 if (sgs->avg_load <= busiest->avg_load)
6535 return false;
6536
6537 /* This is the busiest node in its class. */
6538 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6539 return true;
6540
6541 /*
6542 * ASYM_PACKING needs to move all the work to the lowest
6543 * numbered CPUs in the group, therefore mark all groups
6544 * higher than ourself as busy.
6545 */
caeb178c 6546 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6547 if (!sds->busiest)
6548 return true;
6549
6550 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6551 return true;
6552 }
6553
6554 return false;
6555}
6556
0ec8aa00
PZ
6557#ifdef CONFIG_NUMA_BALANCING
6558static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6559{
6560 if (sgs->sum_nr_running > sgs->nr_numa_running)
6561 return regular;
6562 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6563 return remote;
6564 return all;
6565}
6566
6567static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6568{
6569 if (rq->nr_running > rq->nr_numa_running)
6570 return regular;
6571 if (rq->nr_running > rq->nr_preferred_running)
6572 return remote;
6573 return all;
6574}
6575#else
6576static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6577{
6578 return all;
6579}
6580
6581static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6582{
6583 return regular;
6584}
6585#endif /* CONFIG_NUMA_BALANCING */
6586
1e3c88bd 6587/**
461819ac 6588 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6589 * @env: The load balancing environment.
1e3c88bd
PZ
6590 * @sds: variable to hold the statistics for this sched_domain.
6591 */
0ec8aa00 6592static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6593{
bd939f45
PZ
6594 struct sched_domain *child = env->sd->child;
6595 struct sched_group *sg = env->sd->groups;
56cf515b 6596 struct sg_lb_stats tmp_sgs;
1e3c88bd 6597 int load_idx, prefer_sibling = 0;
4486edd1 6598 bool overload = false;
1e3c88bd
PZ
6599
6600 if (child && child->flags & SD_PREFER_SIBLING)
6601 prefer_sibling = 1;
6602
bd939f45 6603 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6604
6605 do {
56cf515b 6606 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6607 int local_group;
6608
bd939f45 6609 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6610 if (local_group) {
6611 sds->local = sg;
6612 sgs = &sds->local_stat;
b72ff13c
PZ
6613
6614 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6615 time_after_eq(jiffies, sg->sgc->next_update))
6616 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6617 }
1e3c88bd 6618
4486edd1
TC
6619 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6620 &overload);
1e3c88bd 6621
b72ff13c
PZ
6622 if (local_group)
6623 goto next_group;
6624
1e3c88bd
PZ
6625 /*
6626 * In case the child domain prefers tasks go to siblings
ea67821b 6627 * first, lower the sg capacity so that we'll try
75dd321d
NR
6628 * and move all the excess tasks away. We lower the capacity
6629 * of a group only if the local group has the capacity to fit
ea67821b
VG
6630 * these excess tasks. The extra check prevents the case where
6631 * you always pull from the heaviest group when it is already
6632 * under-utilized (possible with a large weight task outweighs
6633 * the tasks on the system).
1e3c88bd 6634 */
b72ff13c 6635 if (prefer_sibling && sds->local &&
ea67821b
VG
6636 group_has_capacity(env, &sds->local_stat) &&
6637 (sgs->sum_nr_running > 1)) {
6638 sgs->group_no_capacity = 1;
6639 sgs->group_type = group_overloaded;
cb0b9f24 6640 }
1e3c88bd 6641
b72ff13c 6642 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6643 sds->busiest = sg;
56cf515b 6644 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6645 }
6646
b72ff13c
PZ
6647next_group:
6648 /* Now, start updating sd_lb_stats */
6649 sds->total_load += sgs->group_load;
63b2ca30 6650 sds->total_capacity += sgs->group_capacity;
b72ff13c 6651
532cb4c4 6652 sg = sg->next;
bd939f45 6653 } while (sg != env->sd->groups);
0ec8aa00
PZ
6654
6655 if (env->sd->flags & SD_NUMA)
6656 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6657
6658 if (!env->sd->parent) {
6659 /* update overload indicator if we are at root domain */
6660 if (env->dst_rq->rd->overload != overload)
6661 env->dst_rq->rd->overload = overload;
6662 }
6663
532cb4c4
MN
6664}
6665
532cb4c4
MN
6666/**
6667 * check_asym_packing - Check to see if the group is packed into the
6668 * sched doman.
6669 *
6670 * This is primarily intended to used at the sibling level. Some
6671 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6672 * case of POWER7, it can move to lower SMT modes only when higher
6673 * threads are idle. When in lower SMT modes, the threads will
6674 * perform better since they share less core resources. Hence when we
6675 * have idle threads, we want them to be the higher ones.
6676 *
6677 * This packing function is run on idle threads. It checks to see if
6678 * the busiest CPU in this domain (core in the P7 case) has a higher
6679 * CPU number than the packing function is being run on. Here we are
6680 * assuming lower CPU number will be equivalent to lower a SMT thread
6681 * number.
6682 *
e69f6186 6683 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6684 * this CPU. The amount of the imbalance is returned in *imbalance.
6685 *
cd96891d 6686 * @env: The load balancing environment.
532cb4c4 6687 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6688 */
bd939f45 6689static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6690{
6691 int busiest_cpu;
6692
bd939f45 6693 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6694 return 0;
6695
6696 if (!sds->busiest)
6697 return 0;
6698
6699 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6700 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6701 return 0;
6702
bd939f45 6703 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6704 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6705 SCHED_CAPACITY_SCALE);
bd939f45 6706
532cb4c4 6707 return 1;
1e3c88bd
PZ
6708}
6709
6710/**
6711 * fix_small_imbalance - Calculate the minor imbalance that exists
6712 * amongst the groups of a sched_domain, during
6713 * load balancing.
cd96891d 6714 * @env: The load balancing environment.
1e3c88bd 6715 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6716 */
bd939f45
PZ
6717static inline
6718void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6719{
63b2ca30 6720 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6721 unsigned int imbn = 2;
dd5feea1 6722 unsigned long scaled_busy_load_per_task;
56cf515b 6723 struct sg_lb_stats *local, *busiest;
1e3c88bd 6724
56cf515b
JK
6725 local = &sds->local_stat;
6726 busiest = &sds->busiest_stat;
1e3c88bd 6727
56cf515b
JK
6728 if (!local->sum_nr_running)
6729 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6730 else if (busiest->load_per_task > local->load_per_task)
6731 imbn = 1;
dd5feea1 6732
56cf515b 6733 scaled_busy_load_per_task =
ca8ce3d0 6734 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6735 busiest->group_capacity;
56cf515b 6736
3029ede3
VD
6737 if (busiest->avg_load + scaled_busy_load_per_task >=
6738 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6739 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6740 return;
6741 }
6742
6743 /*
6744 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6745 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6746 * moving them.
6747 */
6748
63b2ca30 6749 capa_now += busiest->group_capacity *
56cf515b 6750 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6751 capa_now += local->group_capacity *
56cf515b 6752 min(local->load_per_task, local->avg_load);
ca8ce3d0 6753 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6754
6755 /* Amount of load we'd subtract */
a2cd4260 6756 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6757 capa_move += busiest->group_capacity *
56cf515b 6758 min(busiest->load_per_task,
a2cd4260 6759 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6760 }
1e3c88bd
PZ
6761
6762 /* Amount of load we'd add */
63b2ca30 6763 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6764 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6765 tmp = (busiest->avg_load * busiest->group_capacity) /
6766 local->group_capacity;
56cf515b 6767 } else {
ca8ce3d0 6768 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6769 local->group_capacity;
56cf515b 6770 }
63b2ca30 6771 capa_move += local->group_capacity *
3ae11c90 6772 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6773 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6774
6775 /* Move if we gain throughput */
63b2ca30 6776 if (capa_move > capa_now)
56cf515b 6777 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6778}
6779
6780/**
6781 * calculate_imbalance - Calculate the amount of imbalance present within the
6782 * groups of a given sched_domain during load balance.
bd939f45 6783 * @env: load balance environment
1e3c88bd 6784 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6785 */
bd939f45 6786static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6787{
dd5feea1 6788 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6789 struct sg_lb_stats *local, *busiest;
6790
6791 local = &sds->local_stat;
56cf515b 6792 busiest = &sds->busiest_stat;
dd5feea1 6793
caeb178c 6794 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6795 /*
6796 * In the group_imb case we cannot rely on group-wide averages
6797 * to ensure cpu-load equilibrium, look at wider averages. XXX
6798 */
56cf515b
JK
6799 busiest->load_per_task =
6800 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6801 }
6802
1e3c88bd
PZ
6803 /*
6804 * In the presence of smp nice balancing, certain scenarios can have
6805 * max load less than avg load(as we skip the groups at or below
ced549fa 6806 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6807 */
b1885550
VD
6808 if (busiest->avg_load <= sds->avg_load ||
6809 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6810 env->imbalance = 0;
6811 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6812 }
6813
9a5d9ba6
PZ
6814 /*
6815 * If there aren't any idle cpus, avoid creating some.
6816 */
6817 if (busiest->group_type == group_overloaded &&
6818 local->group_type == group_overloaded) {
ea67821b
VG
6819 load_above_capacity = busiest->sum_nr_running *
6820 SCHED_LOAD_SCALE;
6821 if (load_above_capacity > busiest->group_capacity)
6822 load_above_capacity -= busiest->group_capacity;
6823 else
6824 load_above_capacity = ~0UL;
dd5feea1
SS
6825 }
6826
6827 /*
6828 * We're trying to get all the cpus to the average_load, so we don't
6829 * want to push ourselves above the average load, nor do we wish to
6830 * reduce the max loaded cpu below the average load. At the same time,
6831 * we also don't want to reduce the group load below the group capacity
6832 * (so that we can implement power-savings policies etc). Thus we look
6833 * for the minimum possible imbalance.
dd5feea1 6834 */
30ce5dab 6835 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6836
6837 /* How much load to actually move to equalise the imbalance */
56cf515b 6838 env->imbalance = min(
63b2ca30
NP
6839 max_pull * busiest->group_capacity,
6840 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6841 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6842
6843 /*
6844 * if *imbalance is less than the average load per runnable task
25985edc 6845 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6846 * a think about bumping its value to force at least one task to be
6847 * moved
6848 */
56cf515b 6849 if (env->imbalance < busiest->load_per_task)
bd939f45 6850 return fix_small_imbalance(env, sds);
1e3c88bd 6851}
fab47622 6852
1e3c88bd
PZ
6853/******* find_busiest_group() helpers end here *********************/
6854
6855/**
6856 * find_busiest_group - Returns the busiest group within the sched_domain
6857 * if there is an imbalance. If there isn't an imbalance, and
6858 * the user has opted for power-savings, it returns a group whose
6859 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6860 * such a group exists.
6861 *
6862 * Also calculates the amount of weighted load which should be moved
6863 * to restore balance.
6864 *
cd96891d 6865 * @env: The load balancing environment.
1e3c88bd 6866 *
e69f6186 6867 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6868 * - If no imbalance and user has opted for power-savings balance,
6869 * return the least loaded group whose CPUs can be
6870 * put to idle by rebalancing its tasks onto our group.
6871 */
56cf515b 6872static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6873{
56cf515b 6874 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6875 struct sd_lb_stats sds;
6876
147c5fc2 6877 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6878
6879 /*
6880 * Compute the various statistics relavent for load balancing at
6881 * this level.
6882 */
23f0d209 6883 update_sd_lb_stats(env, &sds);
56cf515b
JK
6884 local = &sds.local_stat;
6885 busiest = &sds.busiest_stat;
1e3c88bd 6886
ea67821b 6887 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6888 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6889 check_asym_packing(env, &sds))
532cb4c4
MN
6890 return sds.busiest;
6891
cc57aa8f 6892 /* There is no busy sibling group to pull tasks from */
56cf515b 6893 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6894 goto out_balanced;
6895
ca8ce3d0
NP
6896 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6897 / sds.total_capacity;
b0432d8f 6898
866ab43e
PZ
6899 /*
6900 * If the busiest group is imbalanced the below checks don't
30ce5dab 6901 * work because they assume all things are equal, which typically
866ab43e
PZ
6902 * isn't true due to cpus_allowed constraints and the like.
6903 */
caeb178c 6904 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6905 goto force_balance;
6906
cc57aa8f 6907 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6908 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6909 busiest->group_no_capacity)
fab47622
NR
6910 goto force_balance;
6911
cc57aa8f 6912 /*
9c58c79a 6913 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6914 * don't try and pull any tasks.
6915 */
56cf515b 6916 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6917 goto out_balanced;
6918
cc57aa8f
PZ
6919 /*
6920 * Don't pull any tasks if this group is already above the domain
6921 * average load.
6922 */
56cf515b 6923 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6924 goto out_balanced;
6925
bd939f45 6926 if (env->idle == CPU_IDLE) {
aae6d3dd 6927 /*
43f4d666
VG
6928 * This cpu is idle. If the busiest group is not overloaded
6929 * and there is no imbalance between this and busiest group
6930 * wrt idle cpus, it is balanced. The imbalance becomes
6931 * significant if the diff is greater than 1 otherwise we
6932 * might end up to just move the imbalance on another group
aae6d3dd 6933 */
43f4d666
VG
6934 if ((busiest->group_type != group_overloaded) &&
6935 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6936 goto out_balanced;
c186fafe
PZ
6937 } else {
6938 /*
6939 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6940 * imbalance_pct to be conservative.
6941 */
56cf515b
JK
6942 if (100 * busiest->avg_load <=
6943 env->sd->imbalance_pct * local->avg_load)
c186fafe 6944 goto out_balanced;
aae6d3dd 6945 }
1e3c88bd 6946
fab47622 6947force_balance:
1e3c88bd 6948 /* Looks like there is an imbalance. Compute it */
bd939f45 6949 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6950 return sds.busiest;
6951
6952out_balanced:
bd939f45 6953 env->imbalance = 0;
1e3c88bd
PZ
6954 return NULL;
6955}
6956
6957/*
6958 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6959 */
bd939f45 6960static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6961 struct sched_group *group)
1e3c88bd
PZ
6962{
6963 struct rq *busiest = NULL, *rq;
ced549fa 6964 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6965 int i;
6966
6906a408 6967 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6968 unsigned long capacity, wl;
0ec8aa00
PZ
6969 enum fbq_type rt;
6970
6971 rq = cpu_rq(i);
6972 rt = fbq_classify_rq(rq);
1e3c88bd 6973
0ec8aa00
PZ
6974 /*
6975 * We classify groups/runqueues into three groups:
6976 * - regular: there are !numa tasks
6977 * - remote: there are numa tasks that run on the 'wrong' node
6978 * - all: there is no distinction
6979 *
6980 * In order to avoid migrating ideally placed numa tasks,
6981 * ignore those when there's better options.
6982 *
6983 * If we ignore the actual busiest queue to migrate another
6984 * task, the next balance pass can still reduce the busiest
6985 * queue by moving tasks around inside the node.
6986 *
6987 * If we cannot move enough load due to this classification
6988 * the next pass will adjust the group classification and
6989 * allow migration of more tasks.
6990 *
6991 * Both cases only affect the total convergence complexity.
6992 */
6993 if (rt > env->fbq_type)
6994 continue;
6995
ced549fa 6996 capacity = capacity_of(i);
9d5efe05 6997
6e40f5bb 6998 wl = weighted_cpuload(i);
1e3c88bd 6999
6e40f5bb
TG
7000 /*
7001 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7002 * which is not scaled with the cpu capacity.
6e40f5bb 7003 */
ea67821b
VG
7004
7005 if (rq->nr_running == 1 && wl > env->imbalance &&
7006 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7007 continue;
7008
6e40f5bb
TG
7009 /*
7010 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7011 * the weighted_cpuload() scaled with the cpu capacity, so
7012 * that the load can be moved away from the cpu that is
7013 * potentially running at a lower capacity.
95a79b80 7014 *
ced549fa 7015 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7016 * multiplication to rid ourselves of the division works out
ced549fa
NP
7017 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7018 * our previous maximum.
6e40f5bb 7019 */
ced549fa 7020 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7021 busiest_load = wl;
ced549fa 7022 busiest_capacity = capacity;
1e3c88bd
PZ
7023 busiest = rq;
7024 }
7025 }
7026
7027 return busiest;
7028}
7029
7030/*
7031 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7032 * so long as it is large enough.
7033 */
7034#define MAX_PINNED_INTERVAL 512
7035
7036/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7037DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7038
bd939f45 7039static int need_active_balance(struct lb_env *env)
1af3ed3d 7040{
bd939f45
PZ
7041 struct sched_domain *sd = env->sd;
7042
7043 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7044
7045 /*
7046 * ASYM_PACKING needs to force migrate tasks from busy but
7047 * higher numbered CPUs in order to pack all tasks in the
7048 * lowest numbered CPUs.
7049 */
bd939f45 7050 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7051 return 1;
1af3ed3d
PZ
7052 }
7053
1aaf90a4
VG
7054 /*
7055 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7056 * It's worth migrating the task if the src_cpu's capacity is reduced
7057 * because of other sched_class or IRQs if more capacity stays
7058 * available on dst_cpu.
7059 */
7060 if ((env->idle != CPU_NOT_IDLE) &&
7061 (env->src_rq->cfs.h_nr_running == 1)) {
7062 if ((check_cpu_capacity(env->src_rq, sd)) &&
7063 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7064 return 1;
7065 }
7066
1af3ed3d
PZ
7067 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7068}
7069
969c7921
TH
7070static int active_load_balance_cpu_stop(void *data);
7071
23f0d209
JK
7072static int should_we_balance(struct lb_env *env)
7073{
7074 struct sched_group *sg = env->sd->groups;
7075 struct cpumask *sg_cpus, *sg_mask;
7076 int cpu, balance_cpu = -1;
7077
7078 /*
7079 * In the newly idle case, we will allow all the cpu's
7080 * to do the newly idle load balance.
7081 */
7082 if (env->idle == CPU_NEWLY_IDLE)
7083 return 1;
7084
7085 sg_cpus = sched_group_cpus(sg);
7086 sg_mask = sched_group_mask(sg);
7087 /* Try to find first idle cpu */
7088 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7089 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7090 continue;
7091
7092 balance_cpu = cpu;
7093 break;
7094 }
7095
7096 if (balance_cpu == -1)
7097 balance_cpu = group_balance_cpu(sg);
7098
7099 /*
7100 * First idle cpu or the first cpu(busiest) in this sched group
7101 * is eligible for doing load balancing at this and above domains.
7102 */
b0cff9d8 7103 return balance_cpu == env->dst_cpu;
23f0d209
JK
7104}
7105
1e3c88bd
PZ
7106/*
7107 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7108 * tasks if there is an imbalance.
7109 */
7110static int load_balance(int this_cpu, struct rq *this_rq,
7111 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7112 int *continue_balancing)
1e3c88bd 7113{
88b8dac0 7114 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7115 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7116 struct sched_group *group;
1e3c88bd
PZ
7117 struct rq *busiest;
7118 unsigned long flags;
4ba29684 7119 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7120
8e45cb54
PZ
7121 struct lb_env env = {
7122 .sd = sd,
ddcdf6e7
PZ
7123 .dst_cpu = this_cpu,
7124 .dst_rq = this_rq,
88b8dac0 7125 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7126 .idle = idle,
eb95308e 7127 .loop_break = sched_nr_migrate_break,
b9403130 7128 .cpus = cpus,
0ec8aa00 7129 .fbq_type = all,
163122b7 7130 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7131 };
7132
cfc03118
JK
7133 /*
7134 * For NEWLY_IDLE load_balancing, we don't need to consider
7135 * other cpus in our group
7136 */
e02e60c1 7137 if (idle == CPU_NEWLY_IDLE)
cfc03118 7138 env.dst_grpmask = NULL;
cfc03118 7139
1e3c88bd
PZ
7140 cpumask_copy(cpus, cpu_active_mask);
7141
1e3c88bd
PZ
7142 schedstat_inc(sd, lb_count[idle]);
7143
7144redo:
23f0d209
JK
7145 if (!should_we_balance(&env)) {
7146 *continue_balancing = 0;
1e3c88bd 7147 goto out_balanced;
23f0d209 7148 }
1e3c88bd 7149
23f0d209 7150 group = find_busiest_group(&env);
1e3c88bd
PZ
7151 if (!group) {
7152 schedstat_inc(sd, lb_nobusyg[idle]);
7153 goto out_balanced;
7154 }
7155
b9403130 7156 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7157 if (!busiest) {
7158 schedstat_inc(sd, lb_nobusyq[idle]);
7159 goto out_balanced;
7160 }
7161
78feefc5 7162 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7163
bd939f45 7164 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7165
1aaf90a4
VG
7166 env.src_cpu = busiest->cpu;
7167 env.src_rq = busiest;
7168
1e3c88bd
PZ
7169 ld_moved = 0;
7170 if (busiest->nr_running > 1) {
7171 /*
7172 * Attempt to move tasks. If find_busiest_group has found
7173 * an imbalance but busiest->nr_running <= 1, the group is
7174 * still unbalanced. ld_moved simply stays zero, so it is
7175 * correctly treated as an imbalance.
7176 */
8e45cb54 7177 env.flags |= LBF_ALL_PINNED;
c82513e5 7178 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7179
5d6523eb 7180more_balance:
163122b7 7181 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7182
7183 /*
7184 * cur_ld_moved - load moved in current iteration
7185 * ld_moved - cumulative load moved across iterations
7186 */
163122b7 7187 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7188
7189 /*
163122b7
KT
7190 * We've detached some tasks from busiest_rq. Every
7191 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7192 * unlock busiest->lock, and we are able to be sure
7193 * that nobody can manipulate the tasks in parallel.
7194 * See task_rq_lock() family for the details.
1e3c88bd 7195 */
163122b7
KT
7196
7197 raw_spin_unlock(&busiest->lock);
7198
7199 if (cur_ld_moved) {
7200 attach_tasks(&env);
7201 ld_moved += cur_ld_moved;
7202 }
7203
1e3c88bd 7204 local_irq_restore(flags);
88b8dac0 7205
f1cd0858
JK
7206 if (env.flags & LBF_NEED_BREAK) {
7207 env.flags &= ~LBF_NEED_BREAK;
7208 goto more_balance;
7209 }
7210
88b8dac0
SV
7211 /*
7212 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7213 * us and move them to an alternate dst_cpu in our sched_group
7214 * where they can run. The upper limit on how many times we
7215 * iterate on same src_cpu is dependent on number of cpus in our
7216 * sched_group.
7217 *
7218 * This changes load balance semantics a bit on who can move
7219 * load to a given_cpu. In addition to the given_cpu itself
7220 * (or a ilb_cpu acting on its behalf where given_cpu is
7221 * nohz-idle), we now have balance_cpu in a position to move
7222 * load to given_cpu. In rare situations, this may cause
7223 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7224 * _independently_ and at _same_ time to move some load to
7225 * given_cpu) causing exceess load to be moved to given_cpu.
7226 * This however should not happen so much in practice and
7227 * moreover subsequent load balance cycles should correct the
7228 * excess load moved.
7229 */
6263322c 7230 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7231
7aff2e3a
VD
7232 /* Prevent to re-select dst_cpu via env's cpus */
7233 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7234
78feefc5 7235 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7236 env.dst_cpu = env.new_dst_cpu;
6263322c 7237 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7238 env.loop = 0;
7239 env.loop_break = sched_nr_migrate_break;
e02e60c1 7240
88b8dac0
SV
7241 /*
7242 * Go back to "more_balance" rather than "redo" since we
7243 * need to continue with same src_cpu.
7244 */
7245 goto more_balance;
7246 }
1e3c88bd 7247
6263322c
PZ
7248 /*
7249 * We failed to reach balance because of affinity.
7250 */
7251 if (sd_parent) {
63b2ca30 7252 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7253
afdeee05 7254 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7255 *group_imbalance = 1;
6263322c
PZ
7256 }
7257
1e3c88bd 7258 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7259 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7260 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7261 if (!cpumask_empty(cpus)) {
7262 env.loop = 0;
7263 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7264 goto redo;
bbf18b19 7265 }
afdeee05 7266 goto out_all_pinned;
1e3c88bd
PZ
7267 }
7268 }
7269
7270 if (!ld_moved) {
7271 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7272 /*
7273 * Increment the failure counter only on periodic balance.
7274 * We do not want newidle balance, which can be very
7275 * frequent, pollute the failure counter causing
7276 * excessive cache_hot migrations and active balances.
7277 */
7278 if (idle != CPU_NEWLY_IDLE)
7279 sd->nr_balance_failed++;
1e3c88bd 7280
bd939f45 7281 if (need_active_balance(&env)) {
1e3c88bd
PZ
7282 raw_spin_lock_irqsave(&busiest->lock, flags);
7283
969c7921
TH
7284 /* don't kick the active_load_balance_cpu_stop,
7285 * if the curr task on busiest cpu can't be
7286 * moved to this_cpu
1e3c88bd
PZ
7287 */
7288 if (!cpumask_test_cpu(this_cpu,
fa17b507 7289 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7290 raw_spin_unlock_irqrestore(&busiest->lock,
7291 flags);
8e45cb54 7292 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7293 goto out_one_pinned;
7294 }
7295
969c7921
TH
7296 /*
7297 * ->active_balance synchronizes accesses to
7298 * ->active_balance_work. Once set, it's cleared
7299 * only after active load balance is finished.
7300 */
1e3c88bd
PZ
7301 if (!busiest->active_balance) {
7302 busiest->active_balance = 1;
7303 busiest->push_cpu = this_cpu;
7304 active_balance = 1;
7305 }
7306 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7307
bd939f45 7308 if (active_balance) {
969c7921
TH
7309 stop_one_cpu_nowait(cpu_of(busiest),
7310 active_load_balance_cpu_stop, busiest,
7311 &busiest->active_balance_work);
bd939f45 7312 }
1e3c88bd
PZ
7313
7314 /*
7315 * We've kicked active balancing, reset the failure
7316 * counter.
7317 */
7318 sd->nr_balance_failed = sd->cache_nice_tries+1;
7319 }
7320 } else
7321 sd->nr_balance_failed = 0;
7322
7323 if (likely(!active_balance)) {
7324 /* We were unbalanced, so reset the balancing interval */
7325 sd->balance_interval = sd->min_interval;
7326 } else {
7327 /*
7328 * If we've begun active balancing, start to back off. This
7329 * case may not be covered by the all_pinned logic if there
7330 * is only 1 task on the busy runqueue (because we don't call
163122b7 7331 * detach_tasks).
1e3c88bd
PZ
7332 */
7333 if (sd->balance_interval < sd->max_interval)
7334 sd->balance_interval *= 2;
7335 }
7336
1e3c88bd
PZ
7337 goto out;
7338
7339out_balanced:
afdeee05
VG
7340 /*
7341 * We reach balance although we may have faced some affinity
7342 * constraints. Clear the imbalance flag if it was set.
7343 */
7344 if (sd_parent) {
7345 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7346
7347 if (*group_imbalance)
7348 *group_imbalance = 0;
7349 }
7350
7351out_all_pinned:
7352 /*
7353 * We reach balance because all tasks are pinned at this level so
7354 * we can't migrate them. Let the imbalance flag set so parent level
7355 * can try to migrate them.
7356 */
1e3c88bd
PZ
7357 schedstat_inc(sd, lb_balanced[idle]);
7358
7359 sd->nr_balance_failed = 0;
7360
7361out_one_pinned:
7362 /* tune up the balancing interval */
8e45cb54 7363 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7364 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7365 (sd->balance_interval < sd->max_interval))
7366 sd->balance_interval *= 2;
7367
46e49b38 7368 ld_moved = 0;
1e3c88bd 7369out:
1e3c88bd
PZ
7370 return ld_moved;
7371}
7372
52a08ef1
JL
7373static inline unsigned long
7374get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7375{
7376 unsigned long interval = sd->balance_interval;
7377
7378 if (cpu_busy)
7379 interval *= sd->busy_factor;
7380
7381 /* scale ms to jiffies */
7382 interval = msecs_to_jiffies(interval);
7383 interval = clamp(interval, 1UL, max_load_balance_interval);
7384
7385 return interval;
7386}
7387
7388static inline void
7389update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7390{
7391 unsigned long interval, next;
7392
7393 interval = get_sd_balance_interval(sd, cpu_busy);
7394 next = sd->last_balance + interval;
7395
7396 if (time_after(*next_balance, next))
7397 *next_balance = next;
7398}
7399
1e3c88bd
PZ
7400/*
7401 * idle_balance is called by schedule() if this_cpu is about to become
7402 * idle. Attempts to pull tasks from other CPUs.
7403 */
6e83125c 7404static int idle_balance(struct rq *this_rq)
1e3c88bd 7405{
52a08ef1
JL
7406 unsigned long next_balance = jiffies + HZ;
7407 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7408 struct sched_domain *sd;
7409 int pulled_task = 0;
9bd721c5 7410 u64 curr_cost = 0;
1e3c88bd 7411
6e83125c 7412 idle_enter_fair(this_rq);
0e5b5337 7413
6e83125c
PZ
7414 /*
7415 * We must set idle_stamp _before_ calling idle_balance(), such that we
7416 * measure the duration of idle_balance() as idle time.
7417 */
7418 this_rq->idle_stamp = rq_clock(this_rq);
7419
4486edd1
TC
7420 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7421 !this_rq->rd->overload) {
52a08ef1
JL
7422 rcu_read_lock();
7423 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7424 if (sd)
7425 update_next_balance(sd, 0, &next_balance);
7426 rcu_read_unlock();
7427
6e83125c 7428 goto out;
52a08ef1 7429 }
1e3c88bd 7430
f492e12e
PZ
7431 /*
7432 * Drop the rq->lock, but keep IRQ/preempt disabled.
7433 */
7434 raw_spin_unlock(&this_rq->lock);
7435
48a16753 7436 update_blocked_averages(this_cpu);
dce840a0 7437 rcu_read_lock();
1e3c88bd 7438 for_each_domain(this_cpu, sd) {
23f0d209 7439 int continue_balancing = 1;
9bd721c5 7440 u64 t0, domain_cost;
1e3c88bd
PZ
7441
7442 if (!(sd->flags & SD_LOAD_BALANCE))
7443 continue;
7444
52a08ef1
JL
7445 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7446 update_next_balance(sd, 0, &next_balance);
9bd721c5 7447 break;
52a08ef1 7448 }
9bd721c5 7449
f492e12e 7450 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7451 t0 = sched_clock_cpu(this_cpu);
7452
f492e12e 7453 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7454 sd, CPU_NEWLY_IDLE,
7455 &continue_balancing);
9bd721c5
JL
7456
7457 domain_cost = sched_clock_cpu(this_cpu) - t0;
7458 if (domain_cost > sd->max_newidle_lb_cost)
7459 sd->max_newidle_lb_cost = domain_cost;
7460
7461 curr_cost += domain_cost;
f492e12e 7462 }
1e3c88bd 7463
52a08ef1 7464 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7465
7466 /*
7467 * Stop searching for tasks to pull if there are
7468 * now runnable tasks on this rq.
7469 */
7470 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7471 break;
1e3c88bd 7472 }
dce840a0 7473 rcu_read_unlock();
f492e12e
PZ
7474
7475 raw_spin_lock(&this_rq->lock);
7476
0e5b5337
JL
7477 if (curr_cost > this_rq->max_idle_balance_cost)
7478 this_rq->max_idle_balance_cost = curr_cost;
7479
e5fc6611 7480 /*
0e5b5337
JL
7481 * While browsing the domains, we released the rq lock, a task could
7482 * have been enqueued in the meantime. Since we're not going idle,
7483 * pretend we pulled a task.
e5fc6611 7484 */
0e5b5337 7485 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7486 pulled_task = 1;
e5fc6611 7487
52a08ef1
JL
7488out:
7489 /* Move the next balance forward */
7490 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7491 this_rq->next_balance = next_balance;
9bd721c5 7492
e4aa358b 7493 /* Is there a task of a high priority class? */
46383648 7494 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7495 pulled_task = -1;
7496
7497 if (pulled_task) {
7498 idle_exit_fair(this_rq);
6e83125c 7499 this_rq->idle_stamp = 0;
e4aa358b 7500 }
6e83125c 7501
3c4017c1 7502 return pulled_task;
1e3c88bd
PZ
7503}
7504
7505/*
969c7921
TH
7506 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7507 * running tasks off the busiest CPU onto idle CPUs. It requires at
7508 * least 1 task to be running on each physical CPU where possible, and
7509 * avoids physical / logical imbalances.
1e3c88bd 7510 */
969c7921 7511static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7512{
969c7921
TH
7513 struct rq *busiest_rq = data;
7514 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7515 int target_cpu = busiest_rq->push_cpu;
969c7921 7516 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7517 struct sched_domain *sd;
e5673f28 7518 struct task_struct *p = NULL;
969c7921
TH
7519
7520 raw_spin_lock_irq(&busiest_rq->lock);
7521
7522 /* make sure the requested cpu hasn't gone down in the meantime */
7523 if (unlikely(busiest_cpu != smp_processor_id() ||
7524 !busiest_rq->active_balance))
7525 goto out_unlock;
1e3c88bd
PZ
7526
7527 /* Is there any task to move? */
7528 if (busiest_rq->nr_running <= 1)
969c7921 7529 goto out_unlock;
1e3c88bd
PZ
7530
7531 /*
7532 * This condition is "impossible", if it occurs
7533 * we need to fix it. Originally reported by
7534 * Bjorn Helgaas on a 128-cpu setup.
7535 */
7536 BUG_ON(busiest_rq == target_rq);
7537
1e3c88bd 7538 /* Search for an sd spanning us and the target CPU. */
dce840a0 7539 rcu_read_lock();
1e3c88bd
PZ
7540 for_each_domain(target_cpu, sd) {
7541 if ((sd->flags & SD_LOAD_BALANCE) &&
7542 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7543 break;
7544 }
7545
7546 if (likely(sd)) {
8e45cb54
PZ
7547 struct lb_env env = {
7548 .sd = sd,
ddcdf6e7
PZ
7549 .dst_cpu = target_cpu,
7550 .dst_rq = target_rq,
7551 .src_cpu = busiest_rq->cpu,
7552 .src_rq = busiest_rq,
8e45cb54
PZ
7553 .idle = CPU_IDLE,
7554 };
7555
1e3c88bd
PZ
7556 schedstat_inc(sd, alb_count);
7557
e5673f28
KT
7558 p = detach_one_task(&env);
7559 if (p)
1e3c88bd
PZ
7560 schedstat_inc(sd, alb_pushed);
7561 else
7562 schedstat_inc(sd, alb_failed);
7563 }
dce840a0 7564 rcu_read_unlock();
969c7921
TH
7565out_unlock:
7566 busiest_rq->active_balance = 0;
e5673f28
KT
7567 raw_spin_unlock(&busiest_rq->lock);
7568
7569 if (p)
7570 attach_one_task(target_rq, p);
7571
7572 local_irq_enable();
7573
969c7921 7574 return 0;
1e3c88bd
PZ
7575}
7576
d987fc7f
MG
7577static inline int on_null_domain(struct rq *rq)
7578{
7579 return unlikely(!rcu_dereference_sched(rq->sd));
7580}
7581
3451d024 7582#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7583/*
7584 * idle load balancing details
83cd4fe2
VP
7585 * - When one of the busy CPUs notice that there may be an idle rebalancing
7586 * needed, they will kick the idle load balancer, which then does idle
7587 * load balancing for all the idle CPUs.
7588 */
1e3c88bd 7589static struct {
83cd4fe2 7590 cpumask_var_t idle_cpus_mask;
0b005cf5 7591 atomic_t nr_cpus;
83cd4fe2
VP
7592 unsigned long next_balance; /* in jiffy units */
7593} nohz ____cacheline_aligned;
1e3c88bd 7594
3dd0337d 7595static inline int find_new_ilb(void)
1e3c88bd 7596{
0b005cf5 7597 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7598
786d6dc7
SS
7599 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7600 return ilb;
7601
7602 return nr_cpu_ids;
1e3c88bd 7603}
1e3c88bd 7604
83cd4fe2
VP
7605/*
7606 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7607 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7608 * CPU (if there is one).
7609 */
0aeeeeba 7610static void nohz_balancer_kick(void)
83cd4fe2
VP
7611{
7612 int ilb_cpu;
7613
7614 nohz.next_balance++;
7615
3dd0337d 7616 ilb_cpu = find_new_ilb();
83cd4fe2 7617
0b005cf5
SS
7618 if (ilb_cpu >= nr_cpu_ids)
7619 return;
83cd4fe2 7620
cd490c5b 7621 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7622 return;
7623 /*
7624 * Use smp_send_reschedule() instead of resched_cpu().
7625 * This way we generate a sched IPI on the target cpu which
7626 * is idle. And the softirq performing nohz idle load balance
7627 * will be run before returning from the IPI.
7628 */
7629 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7630 return;
7631}
7632
c1cc017c 7633static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7634{
7635 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7636 /*
7637 * Completely isolated CPUs don't ever set, so we must test.
7638 */
7639 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7640 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7641 atomic_dec(&nohz.nr_cpus);
7642 }
71325960
SS
7643 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7644 }
7645}
7646
69e1e811
SS
7647static inline void set_cpu_sd_state_busy(void)
7648{
7649 struct sched_domain *sd;
37dc6b50 7650 int cpu = smp_processor_id();
69e1e811 7651
69e1e811 7652 rcu_read_lock();
37dc6b50 7653 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7654
7655 if (!sd || !sd->nohz_idle)
7656 goto unlock;
7657 sd->nohz_idle = 0;
7658
63b2ca30 7659 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7660unlock:
69e1e811
SS
7661 rcu_read_unlock();
7662}
7663
7664void set_cpu_sd_state_idle(void)
7665{
7666 struct sched_domain *sd;
37dc6b50 7667 int cpu = smp_processor_id();
69e1e811 7668
69e1e811 7669 rcu_read_lock();
37dc6b50 7670 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7671
7672 if (!sd || sd->nohz_idle)
7673 goto unlock;
7674 sd->nohz_idle = 1;
7675
63b2ca30 7676 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7677unlock:
69e1e811
SS
7678 rcu_read_unlock();
7679}
7680
1e3c88bd 7681/*
c1cc017c 7682 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7683 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7684 */
c1cc017c 7685void nohz_balance_enter_idle(int cpu)
1e3c88bd 7686{
71325960
SS
7687 /*
7688 * If this cpu is going down, then nothing needs to be done.
7689 */
7690 if (!cpu_active(cpu))
7691 return;
7692
c1cc017c
AS
7693 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7694 return;
1e3c88bd 7695
d987fc7f
MG
7696 /*
7697 * If we're a completely isolated CPU, we don't play.
7698 */
7699 if (on_null_domain(cpu_rq(cpu)))
7700 return;
7701
c1cc017c
AS
7702 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7703 atomic_inc(&nohz.nr_cpus);
7704 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7705}
71325960 7706
0db0628d 7707static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7708 unsigned long action, void *hcpu)
7709{
7710 switch (action & ~CPU_TASKS_FROZEN) {
7711 case CPU_DYING:
c1cc017c 7712 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7713 return NOTIFY_OK;
7714 default:
7715 return NOTIFY_DONE;
7716 }
7717}
1e3c88bd
PZ
7718#endif
7719
7720static DEFINE_SPINLOCK(balancing);
7721
49c022e6
PZ
7722/*
7723 * Scale the max load_balance interval with the number of CPUs in the system.
7724 * This trades load-balance latency on larger machines for less cross talk.
7725 */
029632fb 7726void update_max_interval(void)
49c022e6
PZ
7727{
7728 max_load_balance_interval = HZ*num_online_cpus()/10;
7729}
7730
1e3c88bd
PZ
7731/*
7732 * It checks each scheduling domain to see if it is due to be balanced,
7733 * and initiates a balancing operation if so.
7734 *
b9b0853a 7735 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7736 */
f7ed0a89 7737static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7738{
23f0d209 7739 int continue_balancing = 1;
f7ed0a89 7740 int cpu = rq->cpu;
1e3c88bd 7741 unsigned long interval;
04f733b4 7742 struct sched_domain *sd;
1e3c88bd
PZ
7743 /* Earliest time when we have to do rebalance again */
7744 unsigned long next_balance = jiffies + 60*HZ;
7745 int update_next_balance = 0;
f48627e6
JL
7746 int need_serialize, need_decay = 0;
7747 u64 max_cost = 0;
1e3c88bd 7748
48a16753 7749 update_blocked_averages(cpu);
2069dd75 7750
dce840a0 7751 rcu_read_lock();
1e3c88bd 7752 for_each_domain(cpu, sd) {
f48627e6
JL
7753 /*
7754 * Decay the newidle max times here because this is a regular
7755 * visit to all the domains. Decay ~1% per second.
7756 */
7757 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7758 sd->max_newidle_lb_cost =
7759 (sd->max_newidle_lb_cost * 253) / 256;
7760 sd->next_decay_max_lb_cost = jiffies + HZ;
7761 need_decay = 1;
7762 }
7763 max_cost += sd->max_newidle_lb_cost;
7764
1e3c88bd
PZ
7765 if (!(sd->flags & SD_LOAD_BALANCE))
7766 continue;
7767
f48627e6
JL
7768 /*
7769 * Stop the load balance at this level. There is another
7770 * CPU in our sched group which is doing load balancing more
7771 * actively.
7772 */
7773 if (!continue_balancing) {
7774 if (need_decay)
7775 continue;
7776 break;
7777 }
7778
52a08ef1 7779 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7780
7781 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7782 if (need_serialize) {
7783 if (!spin_trylock(&balancing))
7784 goto out;
7785 }
7786
7787 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7788 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7789 /*
6263322c 7790 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7791 * env->dst_cpu, so we can't know our idle
7792 * state even if we migrated tasks. Update it.
1e3c88bd 7793 */
de5eb2dd 7794 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7795 }
7796 sd->last_balance = jiffies;
52a08ef1 7797 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7798 }
7799 if (need_serialize)
7800 spin_unlock(&balancing);
7801out:
7802 if (time_after(next_balance, sd->last_balance + interval)) {
7803 next_balance = sd->last_balance + interval;
7804 update_next_balance = 1;
7805 }
f48627e6
JL
7806 }
7807 if (need_decay) {
1e3c88bd 7808 /*
f48627e6
JL
7809 * Ensure the rq-wide value also decays but keep it at a
7810 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7811 */
f48627e6
JL
7812 rq->max_idle_balance_cost =
7813 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7814 }
dce840a0 7815 rcu_read_unlock();
1e3c88bd
PZ
7816
7817 /*
7818 * next_balance will be updated only when there is a need.
7819 * When the cpu is attached to null domain for ex, it will not be
7820 * updated.
7821 */
7822 if (likely(update_next_balance))
7823 rq->next_balance = next_balance;
7824}
7825
3451d024 7826#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7827/*
3451d024 7828 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7829 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7830 */
208cb16b 7831static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7832{
208cb16b 7833 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7834 struct rq *rq;
7835 int balance_cpu;
7836
1c792db7
SS
7837 if (idle != CPU_IDLE ||
7838 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7839 goto end;
83cd4fe2
VP
7840
7841 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7842 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7843 continue;
7844
7845 /*
7846 * If this cpu gets work to do, stop the load balancing
7847 * work being done for other cpus. Next load
7848 * balancing owner will pick it up.
7849 */
1c792db7 7850 if (need_resched())
83cd4fe2 7851 break;
83cd4fe2 7852
5ed4f1d9
VG
7853 rq = cpu_rq(balance_cpu);
7854
ed61bbc6
TC
7855 /*
7856 * If time for next balance is due,
7857 * do the balance.
7858 */
7859 if (time_after_eq(jiffies, rq->next_balance)) {
7860 raw_spin_lock_irq(&rq->lock);
7861 update_rq_clock(rq);
7862 update_idle_cpu_load(rq);
7863 raw_spin_unlock_irq(&rq->lock);
7864 rebalance_domains(rq, CPU_IDLE);
7865 }
83cd4fe2 7866
83cd4fe2
VP
7867 if (time_after(this_rq->next_balance, rq->next_balance))
7868 this_rq->next_balance = rq->next_balance;
7869 }
7870 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7871end:
7872 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7873}
7874
7875/*
0b005cf5 7876 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7877 * of an idle cpu in the system.
0b005cf5 7878 * - This rq has more than one task.
1aaf90a4
VG
7879 * - This rq has at least one CFS task and the capacity of the CPU is
7880 * significantly reduced because of RT tasks or IRQs.
7881 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7882 * multiple busy cpu.
0b005cf5
SS
7883 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7884 * domain span are idle.
83cd4fe2 7885 */
1aaf90a4 7886static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7887{
7888 unsigned long now = jiffies;
0b005cf5 7889 struct sched_domain *sd;
63b2ca30 7890 struct sched_group_capacity *sgc;
4a725627 7891 int nr_busy, cpu = rq->cpu;
1aaf90a4 7892 bool kick = false;
83cd4fe2 7893
4a725627 7894 if (unlikely(rq->idle_balance))
1aaf90a4 7895 return false;
83cd4fe2 7896
1c792db7
SS
7897 /*
7898 * We may be recently in ticked or tickless idle mode. At the first
7899 * busy tick after returning from idle, we will update the busy stats.
7900 */
69e1e811 7901 set_cpu_sd_state_busy();
c1cc017c 7902 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7903
7904 /*
7905 * None are in tickless mode and hence no need for NOHZ idle load
7906 * balancing.
7907 */
7908 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7909 return false;
1c792db7
SS
7910
7911 if (time_before(now, nohz.next_balance))
1aaf90a4 7912 return false;
83cd4fe2 7913
0b005cf5 7914 if (rq->nr_running >= 2)
1aaf90a4 7915 return true;
83cd4fe2 7916
067491b7 7917 rcu_read_lock();
37dc6b50 7918 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7919 if (sd) {
63b2ca30
NP
7920 sgc = sd->groups->sgc;
7921 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7922
1aaf90a4
VG
7923 if (nr_busy > 1) {
7924 kick = true;
7925 goto unlock;
7926 }
7927
83cd4fe2 7928 }
37dc6b50 7929
1aaf90a4
VG
7930 sd = rcu_dereference(rq->sd);
7931 if (sd) {
7932 if ((rq->cfs.h_nr_running >= 1) &&
7933 check_cpu_capacity(rq, sd)) {
7934 kick = true;
7935 goto unlock;
7936 }
7937 }
37dc6b50 7938
1aaf90a4 7939 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7940 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7941 sched_domain_span(sd)) < cpu)) {
7942 kick = true;
7943 goto unlock;
7944 }
067491b7 7945
1aaf90a4 7946unlock:
067491b7 7947 rcu_read_unlock();
1aaf90a4 7948 return kick;
83cd4fe2
VP
7949}
7950#else
208cb16b 7951static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7952#endif
7953
7954/*
7955 * run_rebalance_domains is triggered when needed from the scheduler tick.
7956 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7957 */
1e3c88bd
PZ
7958static void run_rebalance_domains(struct softirq_action *h)
7959{
208cb16b 7960 struct rq *this_rq = this_rq();
6eb57e0d 7961 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7962 CPU_IDLE : CPU_NOT_IDLE;
7963
1e3c88bd 7964 /*
83cd4fe2 7965 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7966 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7967 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7968 * give the idle cpus a chance to load balance. Else we may
7969 * load balance only within the local sched_domain hierarchy
7970 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7971 */
208cb16b 7972 nohz_idle_balance(this_rq, idle);
d4573c3e 7973 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7974}
7975
1e3c88bd
PZ
7976/*
7977 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7978 */
7caff66f 7979void trigger_load_balance(struct rq *rq)
1e3c88bd 7980{
1e3c88bd 7981 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7982 if (unlikely(on_null_domain(rq)))
7983 return;
7984
7985 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7986 raise_softirq(SCHED_SOFTIRQ);
3451d024 7987#ifdef CONFIG_NO_HZ_COMMON
c726099e 7988 if (nohz_kick_needed(rq))
0aeeeeba 7989 nohz_balancer_kick();
83cd4fe2 7990#endif
1e3c88bd
PZ
7991}
7992
0bcdcf28
CE
7993static void rq_online_fair(struct rq *rq)
7994{
7995 update_sysctl();
0e59bdae
KT
7996
7997 update_runtime_enabled(rq);
0bcdcf28
CE
7998}
7999
8000static void rq_offline_fair(struct rq *rq)
8001{
8002 update_sysctl();
a4c96ae3
PB
8003
8004 /* Ensure any throttled groups are reachable by pick_next_task */
8005 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8006}
8007
55e12e5e 8008#endif /* CONFIG_SMP */
e1d1484f 8009
bf0f6f24
IM
8010/*
8011 * scheduler tick hitting a task of our scheduling class:
8012 */
8f4d37ec 8013static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8014{
8015 struct cfs_rq *cfs_rq;
8016 struct sched_entity *se = &curr->se;
8017
8018 for_each_sched_entity(se) {
8019 cfs_rq = cfs_rq_of(se);
8f4d37ec 8020 entity_tick(cfs_rq, se, queued);
bf0f6f24 8021 }
18bf2805 8022
10e84b97 8023 if (numabalancing_enabled)
cbee9f88 8024 task_tick_numa(rq, curr);
3d59eebc 8025
18bf2805 8026 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
8027}
8028
8029/*
cd29fe6f
PZ
8030 * called on fork with the child task as argument from the parent's context
8031 * - child not yet on the tasklist
8032 * - preemption disabled
bf0f6f24 8033 */
cd29fe6f 8034static void task_fork_fair(struct task_struct *p)
bf0f6f24 8035{
4fc420c9
DN
8036 struct cfs_rq *cfs_rq;
8037 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8038 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8039 struct rq *rq = this_rq();
8040 unsigned long flags;
8041
05fa785c 8042 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8043
861d034e
PZ
8044 update_rq_clock(rq);
8045
4fc420c9
DN
8046 cfs_rq = task_cfs_rq(current);
8047 curr = cfs_rq->curr;
8048
6c9a27f5
DN
8049 /*
8050 * Not only the cpu but also the task_group of the parent might have
8051 * been changed after parent->se.parent,cfs_rq were copied to
8052 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8053 * of child point to valid ones.
8054 */
8055 rcu_read_lock();
8056 __set_task_cpu(p, this_cpu);
8057 rcu_read_unlock();
bf0f6f24 8058
7109c442 8059 update_curr(cfs_rq);
cd29fe6f 8060
b5d9d734
MG
8061 if (curr)
8062 se->vruntime = curr->vruntime;
aeb73b04 8063 place_entity(cfs_rq, se, 1);
4d78e7b6 8064
cd29fe6f 8065 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8066 /*
edcb60a3
IM
8067 * Upon rescheduling, sched_class::put_prev_task() will place
8068 * 'current' within the tree based on its new key value.
8069 */
4d78e7b6 8070 swap(curr->vruntime, se->vruntime);
8875125e 8071 resched_curr(rq);
4d78e7b6 8072 }
bf0f6f24 8073
88ec22d3
PZ
8074 se->vruntime -= cfs_rq->min_vruntime;
8075
05fa785c 8076 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8077}
8078
cb469845
SR
8079/*
8080 * Priority of the task has changed. Check to see if we preempt
8081 * the current task.
8082 */
da7a735e
PZ
8083static void
8084prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8085{
da0c1e65 8086 if (!task_on_rq_queued(p))
da7a735e
PZ
8087 return;
8088
cb469845
SR
8089 /*
8090 * Reschedule if we are currently running on this runqueue and
8091 * our priority decreased, or if we are not currently running on
8092 * this runqueue and our priority is higher than the current's
8093 */
da7a735e 8094 if (rq->curr == p) {
cb469845 8095 if (p->prio > oldprio)
8875125e 8096 resched_curr(rq);
cb469845 8097 } else
15afe09b 8098 check_preempt_curr(rq, p, 0);
cb469845
SR
8099}
8100
da7a735e
PZ
8101static void switched_from_fair(struct rq *rq, struct task_struct *p)
8102{
8103 struct sched_entity *se = &p->se;
8104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8105
8106 /*
791c9e02 8107 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8108 * switched back to the fair class the enqueue_entity(.flags=0) will
8109 * do the right thing.
8110 *
da0c1e65
KT
8111 * If it's queued, then the dequeue_entity(.flags=0) will already
8112 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8113 * the task is sleeping will it still have non-normalized vruntime.
8114 */
da0c1e65 8115 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8116 /*
8117 * Fix up our vruntime so that the current sleep doesn't
8118 * cause 'unlimited' sleep bonus.
8119 */
8120 place_entity(cfs_rq, se, 0);
8121 se->vruntime -= cfs_rq->min_vruntime;
8122 }
9ee474f5 8123
141965c7 8124#ifdef CONFIG_SMP
9ee474f5
PT
8125 /*
8126 * Remove our load from contribution when we leave sched_fair
8127 * and ensure we don't carry in an old decay_count if we
8128 * switch back.
8129 */
87e3c8ae
KT
8130 if (se->avg.decay_count) {
8131 __synchronize_entity_decay(se);
8132 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8133 }
8134#endif
da7a735e
PZ
8135}
8136
cb469845
SR
8137/*
8138 * We switched to the sched_fair class.
8139 */
da7a735e 8140static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8141{
eb7a59b2 8142#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8143 struct sched_entity *se = &p->se;
eb7a59b2
M
8144 /*
8145 * Since the real-depth could have been changed (only FAIR
8146 * class maintain depth value), reset depth properly.
8147 */
8148 se->depth = se->parent ? se->parent->depth + 1 : 0;
8149#endif
da0c1e65 8150 if (!task_on_rq_queued(p))
da7a735e
PZ
8151 return;
8152
cb469845
SR
8153 /*
8154 * We were most likely switched from sched_rt, so
8155 * kick off the schedule if running, otherwise just see
8156 * if we can still preempt the current task.
8157 */
da7a735e 8158 if (rq->curr == p)
8875125e 8159 resched_curr(rq);
cb469845 8160 else
15afe09b 8161 check_preempt_curr(rq, p, 0);
cb469845
SR
8162}
8163
83b699ed
SV
8164/* Account for a task changing its policy or group.
8165 *
8166 * This routine is mostly called to set cfs_rq->curr field when a task
8167 * migrates between groups/classes.
8168 */
8169static void set_curr_task_fair(struct rq *rq)
8170{
8171 struct sched_entity *se = &rq->curr->se;
8172
ec12cb7f
PT
8173 for_each_sched_entity(se) {
8174 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8175
8176 set_next_entity(cfs_rq, se);
8177 /* ensure bandwidth has been allocated on our new cfs_rq */
8178 account_cfs_rq_runtime(cfs_rq, 0);
8179 }
83b699ed
SV
8180}
8181
029632fb
PZ
8182void init_cfs_rq(struct cfs_rq *cfs_rq)
8183{
8184 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8185 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8186#ifndef CONFIG_64BIT
8187 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8188#endif
141965c7 8189#ifdef CONFIG_SMP
9ee474f5 8190 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8191 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8192#endif
029632fb
PZ
8193}
8194
810b3817 8195#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8196static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8197{
fed14d45 8198 struct sched_entity *se = &p->se;
aff3e498 8199 struct cfs_rq *cfs_rq;
fed14d45 8200
b2b5ce02
PZ
8201 /*
8202 * If the task was not on the rq at the time of this cgroup movement
8203 * it must have been asleep, sleeping tasks keep their ->vruntime
8204 * absolute on their old rq until wakeup (needed for the fair sleeper
8205 * bonus in place_entity()).
8206 *
8207 * If it was on the rq, we've just 'preempted' it, which does convert
8208 * ->vruntime to a relative base.
8209 *
8210 * Make sure both cases convert their relative position when migrating
8211 * to another cgroup's rq. This does somewhat interfere with the
8212 * fair sleeper stuff for the first placement, but who cares.
8213 */
7ceff013 8214 /*
da0c1e65 8215 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8216 * But there are some cases where it has already been normalized:
8217 *
8218 * - Moving a forked child which is waiting for being woken up by
8219 * wake_up_new_task().
62af3783
DN
8220 * - Moving a task which has been woken up by try_to_wake_up() and
8221 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8222 *
8223 * To prevent boost or penalty in the new cfs_rq caused by delta
8224 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8225 */
da0c1e65
KT
8226 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8227 queued = 1;
7ceff013 8228
da0c1e65 8229 if (!queued)
fed14d45 8230 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8231 set_task_rq(p, task_cpu(p));
fed14d45 8232 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8233 if (!queued) {
fed14d45
PZ
8234 cfs_rq = cfs_rq_of(se);
8235 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8236#ifdef CONFIG_SMP
8237 /*
8238 * migrate_task_rq_fair() will have removed our previous
8239 * contribution, but we must synchronize for ongoing future
8240 * decay.
8241 */
fed14d45
PZ
8242 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8243 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8244#endif
8245 }
810b3817 8246}
029632fb
PZ
8247
8248void free_fair_sched_group(struct task_group *tg)
8249{
8250 int i;
8251
8252 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8253
8254 for_each_possible_cpu(i) {
8255 if (tg->cfs_rq)
8256 kfree(tg->cfs_rq[i]);
8257 if (tg->se)
8258 kfree(tg->se[i]);
8259 }
8260
8261 kfree(tg->cfs_rq);
8262 kfree(tg->se);
8263}
8264
8265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8266{
8267 struct cfs_rq *cfs_rq;
8268 struct sched_entity *se;
8269 int i;
8270
8271 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8272 if (!tg->cfs_rq)
8273 goto err;
8274 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8275 if (!tg->se)
8276 goto err;
8277
8278 tg->shares = NICE_0_LOAD;
8279
8280 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8281
8282 for_each_possible_cpu(i) {
8283 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8284 GFP_KERNEL, cpu_to_node(i));
8285 if (!cfs_rq)
8286 goto err;
8287
8288 se = kzalloc_node(sizeof(struct sched_entity),
8289 GFP_KERNEL, cpu_to_node(i));
8290 if (!se)
8291 goto err_free_rq;
8292
8293 init_cfs_rq(cfs_rq);
8294 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8295 }
8296
8297 return 1;
8298
8299err_free_rq:
8300 kfree(cfs_rq);
8301err:
8302 return 0;
8303}
8304
8305void unregister_fair_sched_group(struct task_group *tg, int cpu)
8306{
8307 struct rq *rq = cpu_rq(cpu);
8308 unsigned long flags;
8309
8310 /*
8311 * Only empty task groups can be destroyed; so we can speculatively
8312 * check on_list without danger of it being re-added.
8313 */
8314 if (!tg->cfs_rq[cpu]->on_list)
8315 return;
8316
8317 raw_spin_lock_irqsave(&rq->lock, flags);
8318 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8319 raw_spin_unlock_irqrestore(&rq->lock, flags);
8320}
8321
8322void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8323 struct sched_entity *se, int cpu,
8324 struct sched_entity *parent)
8325{
8326 struct rq *rq = cpu_rq(cpu);
8327
8328 cfs_rq->tg = tg;
8329 cfs_rq->rq = rq;
029632fb
PZ
8330 init_cfs_rq_runtime(cfs_rq);
8331
8332 tg->cfs_rq[cpu] = cfs_rq;
8333 tg->se[cpu] = se;
8334
8335 /* se could be NULL for root_task_group */
8336 if (!se)
8337 return;
8338
fed14d45 8339 if (!parent) {
029632fb 8340 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8341 se->depth = 0;
8342 } else {
029632fb 8343 se->cfs_rq = parent->my_q;
fed14d45
PZ
8344 se->depth = parent->depth + 1;
8345 }
029632fb
PZ
8346
8347 se->my_q = cfs_rq;
0ac9b1c2
PT
8348 /* guarantee group entities always have weight */
8349 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8350 se->parent = parent;
8351}
8352
8353static DEFINE_MUTEX(shares_mutex);
8354
8355int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8356{
8357 int i;
8358 unsigned long flags;
8359
8360 /*
8361 * We can't change the weight of the root cgroup.
8362 */
8363 if (!tg->se[0])
8364 return -EINVAL;
8365
8366 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8367
8368 mutex_lock(&shares_mutex);
8369 if (tg->shares == shares)
8370 goto done;
8371
8372 tg->shares = shares;
8373 for_each_possible_cpu(i) {
8374 struct rq *rq = cpu_rq(i);
8375 struct sched_entity *se;
8376
8377 se = tg->se[i];
8378 /* Propagate contribution to hierarchy */
8379 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8380
8381 /* Possible calls to update_curr() need rq clock */
8382 update_rq_clock(rq);
17bc14b7 8383 for_each_sched_entity(se)
029632fb
PZ
8384 update_cfs_shares(group_cfs_rq(se));
8385 raw_spin_unlock_irqrestore(&rq->lock, flags);
8386 }
8387
8388done:
8389 mutex_unlock(&shares_mutex);
8390 return 0;
8391}
8392#else /* CONFIG_FAIR_GROUP_SCHED */
8393
8394void free_fair_sched_group(struct task_group *tg) { }
8395
8396int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8397{
8398 return 1;
8399}
8400
8401void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8402
8403#endif /* CONFIG_FAIR_GROUP_SCHED */
8404
810b3817 8405
6d686f45 8406static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8407{
8408 struct sched_entity *se = &task->se;
0d721cea
PW
8409 unsigned int rr_interval = 0;
8410
8411 /*
8412 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8413 * idle runqueue:
8414 */
0d721cea 8415 if (rq->cfs.load.weight)
a59f4e07 8416 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8417
8418 return rr_interval;
8419}
8420
bf0f6f24
IM
8421/*
8422 * All the scheduling class methods:
8423 */
029632fb 8424const struct sched_class fair_sched_class = {
5522d5d5 8425 .next = &idle_sched_class,
bf0f6f24
IM
8426 .enqueue_task = enqueue_task_fair,
8427 .dequeue_task = dequeue_task_fair,
8428 .yield_task = yield_task_fair,
d95f4122 8429 .yield_to_task = yield_to_task_fair,
bf0f6f24 8430
2e09bf55 8431 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8432
8433 .pick_next_task = pick_next_task_fair,
8434 .put_prev_task = put_prev_task_fair,
8435
681f3e68 8436#ifdef CONFIG_SMP
4ce72a2c 8437 .select_task_rq = select_task_rq_fair,
0a74bef8 8438 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8439
0bcdcf28
CE
8440 .rq_online = rq_online_fair,
8441 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8442
8443 .task_waking = task_waking_fair,
681f3e68 8444#endif
bf0f6f24 8445
83b699ed 8446 .set_curr_task = set_curr_task_fair,
bf0f6f24 8447 .task_tick = task_tick_fair,
cd29fe6f 8448 .task_fork = task_fork_fair,
cb469845
SR
8449
8450 .prio_changed = prio_changed_fair,
da7a735e 8451 .switched_from = switched_from_fair,
cb469845 8452 .switched_to = switched_to_fair,
810b3817 8453
0d721cea
PW
8454 .get_rr_interval = get_rr_interval_fair,
8455
6e998916
SG
8456 .update_curr = update_curr_fair,
8457
810b3817 8458#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8459 .task_move_group = task_move_group_fair,
810b3817 8460#endif
bf0f6f24
IM
8461};
8462
8463#ifdef CONFIG_SCHED_DEBUG
029632fb 8464void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8465{
bf0f6f24
IM
8466 struct cfs_rq *cfs_rq;
8467
5973e5b9 8468 rcu_read_lock();
c3b64f1e 8469 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8470 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8471 rcu_read_unlock();
bf0f6f24
IM
8472}
8473#endif
029632fb
PZ
8474
8475__init void init_sched_fair_class(void)
8476{
8477#ifdef CONFIG_SMP
8478 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8479
3451d024 8480#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8481 nohz.next_balance = jiffies;
029632fb 8482 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8483 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8484#endif
8485#endif /* SMP */
8486
8487}