]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/fair: Tweak pick_next_entity()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
2b4d5b25 52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
afe06efd
TC
116#endif
117
ec12cb7f
PT
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
2b4d5b25
IM
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
130#endif
131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
f38f12d1 192void __init sched_init_granularity(void)
029632fb
PZ
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155
PZ
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
029632fb 233
9dbdb155 234 __update_inv_weight(lw);
029632fb 235
9dbdb155
PZ
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb
PZ
241 }
242
2eeb01a2 243 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 244
9dbdb155
PZ
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
029632fb 249
9dbdb155 250 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
251}
252
253
254const struct sched_class fair_sched_class;
a4c2f00f 255
bf0f6f24
IM
256/**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
62160e3f 260#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
261static inline struct task_struct *task_of(struct sched_entity *se)
262{
9148a3a1 263 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
264 return container_of(se, struct task_struct, se);
265}
266
b758149c
PZ
267/* Walk up scheduling entities hierarchy */
268#define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272{
273 return p->se.cfs_rq;
274}
275
276/* runqueue on which this entity is (to be) queued */
277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278{
279 return se->cfs_rq;
280}
281
282/* runqueue "owned" by this group */
283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284{
285 return grp->my_q;
286}
287
3c93a0c0
QY
288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289{
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299}
300
f6783319 301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 302{
5d299eab
PZ
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
f6783319 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 322 /*
5d299eab
PZ
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
67e86250 327 */
5d299eab
PZ
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 336 return true;
5d299eab 337 }
3d4b47b4 338
5d299eab
PZ
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 351 return true;
3d4b47b4 352 }
5d299eab
PZ
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 366 return false;
3d4b47b4
PZ
367}
368
369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370{
371 if (cfs_rq->on_list) {
31bc6aea
VG
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
3d4b47b4
PZ
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387}
388
5d299eab
PZ
389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390{
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392}
393
039ae8bc
VG
394/* Iterate thr' all leaf cfs_rq's on a runqueue */
395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
b758149c
PZ
398
399/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 400static inline struct cfs_rq *
b758149c
PZ
401is_same_group(struct sched_entity *se, struct sched_entity *pse)
402{
403 if (se->cfs_rq == pse->cfs_rq)
fed14d45 404 return se->cfs_rq;
b758149c 405
fed14d45 406 return NULL;
b758149c
PZ
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return se->parent;
412}
413
464b7527
PZ
414static void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
fed14d45
PZ
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
464b7527
PZ
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444}
445
8f48894f
PZ
446#else /* !CONFIG_FAIR_GROUP_SCHED */
447
448static inline struct task_struct *task_of(struct sched_entity *se)
449{
450 return container_of(se, struct task_struct, se);
451}
bf0f6f24 452
b758149c
PZ
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
bf0f6f24 455
b758149c 456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 457{
b758149c 458 return &task_rq(p)->cfs;
bf0f6f24
IM
459}
460
b758149c
PZ
461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462{
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467}
468
469/* runqueue "owned" by this group */
470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471{
472 return NULL;
473}
474
3c93a0c0
QY
475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476{
477 if (path)
478 strlcpy(path, "(null)", len);
479}
480
f6783319 481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 482{
f6783319 483 return true;
3d4b47b4
PZ
484}
485
486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487{
488}
489
5d299eab
PZ
490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491{
492}
493
039ae8bc
VG
494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 496
b758149c
PZ
497static inline struct sched_entity *parent_entity(struct sched_entity *se)
498{
499 return NULL;
500}
501
464b7527
PZ
502static inline void
503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504{
505}
506
b758149c
PZ
507#endif /* CONFIG_FAIR_GROUP_SCHED */
508
6c16a6dc 509static __always_inline
9dbdb155 510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
511
512/**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
1bf08230 516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 517{
1bf08230 518 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 519 if (delta > 0)
1bf08230 520 max_vruntime = vruntime;
02e0431a 521
1bf08230 522 return max_vruntime;
02e0431a
PZ
523}
524
0702e3eb 525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
526{
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532}
533
54fdc581
FC
534static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536{
537 return (s64)(a->vruntime - b->vruntime) < 0;
538}
539
1af5f730
PZ
540static void update_min_vruntime(struct cfs_rq *cfs_rq)
541{
b60205c7 542 struct sched_entity *curr = cfs_rq->curr;
bfb06889 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 544
1af5f730
PZ
545 u64 vruntime = cfs_rq->min_vruntime;
546
b60205c7
PZ
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
1af5f730 553
bfb06889
DB
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 557
b60205c7 558 if (!curr)
1af5f730
PZ
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
1bf08230 564 /* ensure we never gain time by being placed backwards. */
1af5f730 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
566#ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569#endif
1af5f730
PZ
570}
571
bf0f6f24
IM
572/*
573 * Enqueue an entity into the rb-tree:
574 */
0702e3eb 575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 576{
bfb06889 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
bfb06889 580 bool leftmost = true;
bf0f6f24
IM
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
2bd2d6f2 592 if (entity_before(se, entry)) {
bf0f6f24
IM
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
bfb06889 596 leftmost = false;
bf0f6f24
IM
597 }
598 }
599
bf0f6f24 600 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
603}
604
0702e3eb 605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bfb06889 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
608}
609
029632fb 610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 611{
bfb06889 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
618}
619
ac53db59
RR
620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621{
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628}
629
630#ifdef CONFIG_SCHED_DEBUG
029632fb 631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 632{
bfb06889 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 634
70eee74b
BS
635 if (!last)
636 return NULL;
7eee3e67
IM
637
638 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
639}
640
bf0f6f24
IM
641/**************************************************************
642 * Scheduling class statistics methods:
643 */
644
acb4a848 645int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 646 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 647{
8d65af78 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 649 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
acb4a848
CE
657#define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
662#undef WRT_SYSCTL
663
b2be5e96
PZ
664 return 0;
665}
666#endif
647e7cac 667
a7be37ac 668/*
f9c0b095 669 * delta /= w
a7be37ac 670 */
9dbdb155 671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 672{
f9c0b095 673 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
675
676 return delta;
677}
678
647e7cac
IM
679/*
680 * The idea is to set a period in which each task runs once.
681 *
532b1858 682 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
4d78e7b6
PZ
687static u64 __sched_period(unsigned long nr_running)
688{
8e2b0bf3
BF
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
4d78e7b6
PZ
693}
694
647e7cac
IM
695/*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
f9c0b095 699 * s = p*P[w/rw]
647e7cac 700 */
6d0f0ebd 701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 702{
0a582440 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 704
0a582440 705 for_each_sched_entity(se) {
6272d68c 706 struct load_weight *load;
3104bf03 707 struct load_weight lw;
6272d68c
LM
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
f9c0b095 711
0a582440 712 if (unlikely(!se->on_rq)) {
3104bf03 713 lw = cfs_rq->load;
0a582440
MG
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
9dbdb155 718 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
719 }
720 return slice;
bf0f6f24
IM
721}
722
647e7cac 723/*
660cc00f 724 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 725 *
f9c0b095 726 * vs = s/w
647e7cac 727 */
f9c0b095 728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 729{
f9c0b095 730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
731}
732
c0796298 733#include "pelt.h"
23127296 734#ifdef CONFIG_SMP
283e2ed3 735
772bd008 736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 737static unsigned long task_h_load(struct task_struct *p);
3b1baa64 738static unsigned long capacity_of(int cpu);
fb13c7ee 739
540247fb
YD
740/* Give new sched_entity start runnable values to heavy its load in infant time */
741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 742{
540247fb 743 struct sched_avg *sa = &se->avg;
a75cdaa9 744
f207934f
PZ
745 memset(sa, 0, sizeof(*sa));
746
b5a9b340 747 /*
dfcb245e 748 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 749 * they get a chance to stabilize to their real load level.
dfcb245e 750 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
0dacee1b 754 sa->load_avg = scale_load_down(se->load.weight);
f207934f 755
9d89c257 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 757}
7ea241af 758
df217913 759static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 760
2b8c41da
YD
761/*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
8fe5c5a9 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 775 *
8fe5c5a9 776 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 777 *
8fe5c5a9
QP
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
2b8c41da
YD
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
d0fe0b9c 787void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 788{
d0fe0b9c 789 struct sched_entity *se = &p->se;
2b8c41da
YD
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
8ec59c0f 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
2b8c41da 805 }
7dc603c9 806
e21cf434 807 sa->runnable_avg = sa->util_avg;
9f683953 808
d0fe0b9c
DE
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 814 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
7dc603c9
PZ
822 }
823
df217913 824 attach_entity_cfs_rq(se);
2b8c41da
YD
825}
826
7dc603c9 827#else /* !CONFIG_SMP */
540247fb 828void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
829{
830}
d0fe0b9c 831void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
832{
833}
fe749158 834static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
835{
836}
7dc603c9 837#endif /* CONFIG_SMP */
a75cdaa9 838
bf0f6f24 839/*
9dbdb155 840 * Update the current task's runtime statistics.
bf0f6f24 841 */
b7cc0896 842static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 843{
429d43bc 844 struct sched_entity *curr = cfs_rq->curr;
78becc27 845 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 846 u64 delta_exec;
bf0f6f24
IM
847
848 if (unlikely(!curr))
849 return;
850
9dbdb155
PZ
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
34f28ecd 853 return;
bf0f6f24 854
8ebc91d9 855 curr->exec_start = now;
d842de87 856
9dbdb155
PZ
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
ae92882e 861 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
d842de87
SV
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
f977bb49 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 870 cgroup_account_cputime(curtask, delta_exec);
f06febc9 871 account_group_exec_runtime(curtask, delta_exec);
d842de87 872 }
ec12cb7f
PT
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
875}
876
6e998916
SG
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
bf0f6f24 882static inline void
5870db5b 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 884{
4fa8d299
JP
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
3ea94de1 896
2ed41a55 897 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
898}
899
4fa8d299 900static inline void
3ea94de1
JP
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
cb251765
MG
904 u64 delta;
905
4fa8d299
JP
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
2ed41a55 919 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
2ed41a55 925 __schedstat_set(se->statistics.wait_max,
4fa8d299 926 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
927 __schedstat_inc(se->statistics.wait_count);
928 __schedstat_add(se->statistics.wait_sum, delta);
929 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 930}
3ea94de1 931
4fa8d299 932static inline void
1a3d027c
JP
933update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934{
935 struct task_struct *tsk = NULL;
4fa8d299
JP
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
4fa8d299
JP
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
949
950 if ((s64)delta < 0)
951 delta = 0;
952
4fa8d299 953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 954 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 955
2ed41a55
PZ
956 __schedstat_set(se->statistics.sleep_start, 0);
957 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
4fa8d299
JP
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
966
967 if ((s64)delta < 0)
968 delta = 0;
969
4fa8d299 970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 971 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 972
2ed41a55
PZ
973 __schedstat_set(se->statistics.block_start, 0);
974 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
975
976 if (tsk) {
977 if (tsk->in_iowait) {
2ed41a55
PZ
978 __schedstat_add(se->statistics.iowait_sum, delta);
979 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
3ea94de1 998}
3ea94de1 999
bf0f6f24
IM
1000/*
1001 * Task is being enqueued - update stats:
1002 */
cb251765 1003static inline void
1a3d027c 1004update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1005{
4fa8d299
JP
1006 if (!schedstat_enabled())
1007 return;
1008
bf0f6f24
IM
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
429d43bc 1013 if (se != cfs_rq->curr)
5870db5b 1014 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1018}
1019
bf0f6f24 1020static inline void
cb251765 1021update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1022{
4fa8d299
JP
1023
1024 if (!schedstat_enabled())
1025 return;
1026
bf0f6f24
IM
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
429d43bc 1031 if (se != cfs_rq->curr)
9ef0a961 1032 update_stats_wait_end(cfs_rq, se);
cb251765 1033
4fa8d299
JP
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
cb251765 1036
4fa8d299 1037 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1038 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1041 __schedstat_set(se->statistics.block_start,
4fa8d299 1042 rq_clock(rq_of(cfs_rq)));
cb251765 1043 }
cb251765
MG
1044}
1045
bf0f6f24
IM
1046/*
1047 * We are picking a new current task - update its stats:
1048 */
1049static inline void
79303e9e 1050update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1051{
1052 /*
1053 * We are starting a new run period:
1054 */
78becc27 1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1056}
1057
bf0f6f24
IM
1058/**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
cbee9f88
PZ
1062#ifdef CONFIG_NUMA_BALANCING
1063/*
598f0ec0
MG
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
cbee9f88 1067 */
598f0ec0
MG
1068unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1070
1071/* Portion of address space to scan in MB */
1072unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1073
4b96a29b
PZ
1074/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
b5dd77c8 1077struct numa_group {
c45a7795 1078 refcount_t refcount;
b5dd77c8
RR
1079
1080 spinlock_t lock; /* nr_tasks, tasks */
1081 int nr_tasks;
1082 pid_t gid;
1083 int active_nodes;
1084
1085 struct rcu_head rcu;
1086 unsigned long total_faults;
1087 unsigned long max_faults_cpu;
1088 /*
1089 * Faults_cpu is used to decide whether memory should move
1090 * towards the CPU. As a consequence, these stats are weighted
1091 * more by CPU use than by memory faults.
1092 */
1093 unsigned long *faults_cpu;
04f5c362 1094 unsigned long faults[];
b5dd77c8
RR
1095};
1096
cb361d8c
JH
1097/*
1098 * For functions that can be called in multiple contexts that permit reading
1099 * ->numa_group (see struct task_struct for locking rules).
1100 */
1101static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102{
1103 return rcu_dereference_check(p->numa_group, p == current ||
1104 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105}
1106
1107static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108{
1109 return rcu_dereference_protected(p->numa_group, p == current);
1110}
1111
b5dd77c8
RR
1112static inline unsigned long group_faults_priv(struct numa_group *ng);
1113static inline unsigned long group_faults_shared(struct numa_group *ng);
1114
598f0ec0
MG
1115static unsigned int task_nr_scan_windows(struct task_struct *p)
1116{
1117 unsigned long rss = 0;
1118 unsigned long nr_scan_pages;
1119
1120 /*
1121 * Calculations based on RSS as non-present and empty pages are skipped
1122 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 * on resident pages
1124 */
1125 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 rss = get_mm_rss(p->mm);
1127 if (!rss)
1128 rss = nr_scan_pages;
1129
1130 rss = round_up(rss, nr_scan_pages);
1131 return rss / nr_scan_pages;
1132}
1133
1134/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135#define MAX_SCAN_WINDOW 2560
1136
1137static unsigned int task_scan_min(struct task_struct *p)
1138{
316c1608 1139 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1140 unsigned int scan, floor;
1141 unsigned int windows = 1;
1142
64192658
KT
1143 if (scan_size < MAX_SCAN_WINDOW)
1144 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1145 floor = 1000 / windows;
1146
1147 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 return max_t(unsigned int, floor, scan);
1149}
1150
b5dd77c8
RR
1151static unsigned int task_scan_start(struct task_struct *p)
1152{
1153 unsigned long smin = task_scan_min(p);
1154 unsigned long period = smin;
cb361d8c 1155 struct numa_group *ng;
b5dd77c8
RR
1156
1157 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1158 rcu_read_lock();
1159 ng = rcu_dereference(p->numa_group);
1160 if (ng) {
b5dd77c8
RR
1161 unsigned long shared = group_faults_shared(ng);
1162 unsigned long private = group_faults_priv(ng);
1163
c45a7795 1164 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1165 period *= shared + 1;
1166 period /= private + shared + 1;
1167 }
cb361d8c 1168 rcu_read_unlock();
b5dd77c8
RR
1169
1170 return max(smin, period);
1171}
1172
598f0ec0
MG
1173static unsigned int task_scan_max(struct task_struct *p)
1174{
b5dd77c8
RR
1175 unsigned long smin = task_scan_min(p);
1176 unsigned long smax;
cb361d8c 1177 struct numa_group *ng;
598f0ec0
MG
1178
1179 /* Watch for min being lower than max due to floor calculations */
1180 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1181
1182 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1183 ng = deref_curr_numa_group(p);
1184 if (ng) {
b5dd77c8
RR
1185 unsigned long shared = group_faults_shared(ng);
1186 unsigned long private = group_faults_priv(ng);
1187 unsigned long period = smax;
1188
c45a7795 1189 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1190 period *= shared + 1;
1191 period /= private + shared + 1;
1192
1193 smax = max(smax, period);
1194 }
1195
598f0ec0
MG
1196 return max(smin, smax);
1197}
1198
0ec8aa00
PZ
1199static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200{
98fa15f3 1201 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1202 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203}
1204
1205static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206{
98fa15f3 1207 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1208 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209}
1210
be1e4e76
RR
1211/* Shared or private faults. */
1212#define NR_NUMA_HINT_FAULT_TYPES 2
1213
1214/* Memory and CPU locality */
1215#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216
1217/* Averaged statistics, and temporary buffers. */
1218#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219
e29cf08b
MG
1220pid_t task_numa_group_id(struct task_struct *p)
1221{
cb361d8c
JH
1222 struct numa_group *ng;
1223 pid_t gid = 0;
1224
1225 rcu_read_lock();
1226 ng = rcu_dereference(p->numa_group);
1227 if (ng)
1228 gid = ng->gid;
1229 rcu_read_unlock();
1230
1231 return gid;
e29cf08b
MG
1232}
1233
44dba3d5 1234/*
97fb7a0a 1235 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1236 * occupy the first half of the array. The second half of the
1237 * array is for current counters, which are averaged into the
1238 * first set by task_numa_placement.
1239 */
1240static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1241{
44dba3d5 1242 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1243}
1244
1245static inline unsigned long task_faults(struct task_struct *p, int nid)
1246{
44dba3d5 1247 if (!p->numa_faults)
ac8e895b
MG
1248 return 0;
1249
44dba3d5
IM
1250 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1252}
1253
83e1d2cd
MG
1254static inline unsigned long group_faults(struct task_struct *p, int nid)
1255{
cb361d8c
JH
1256 struct numa_group *ng = deref_task_numa_group(p);
1257
1258 if (!ng)
83e1d2cd
MG
1259 return 0;
1260
cb361d8c
JH
1261 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1263}
1264
20e07dea
RR
1265static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266{
44dba3d5
IM
1267 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1269}
1270
b5dd77c8
RR
1271static inline unsigned long group_faults_priv(struct numa_group *ng)
1272{
1273 unsigned long faults = 0;
1274 int node;
1275
1276 for_each_online_node(node) {
1277 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 }
1279
1280 return faults;
1281}
1282
1283static inline unsigned long group_faults_shared(struct numa_group *ng)
1284{
1285 unsigned long faults = 0;
1286 int node;
1287
1288 for_each_online_node(node) {
1289 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 }
1291
1292 return faults;
1293}
1294
4142c3eb
RR
1295/*
1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297 * considered part of a numa group's pseudo-interleaving set. Migrations
1298 * between these nodes are slowed down, to allow things to settle down.
1299 */
1300#define ACTIVE_NODE_FRACTION 3
1301
1302static bool numa_is_active_node(int nid, struct numa_group *ng)
1303{
1304 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305}
1306
6c6b1193
RR
1307/* Handle placement on systems where not all nodes are directly connected. */
1308static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 int maxdist, bool task)
1310{
1311 unsigned long score = 0;
1312 int node;
1313
1314 /*
1315 * All nodes are directly connected, and the same distance
1316 * from each other. No need for fancy placement algorithms.
1317 */
1318 if (sched_numa_topology_type == NUMA_DIRECT)
1319 return 0;
1320
1321 /*
1322 * This code is called for each node, introducing N^2 complexity,
1323 * which should be ok given the number of nodes rarely exceeds 8.
1324 */
1325 for_each_online_node(node) {
1326 unsigned long faults;
1327 int dist = node_distance(nid, node);
1328
1329 /*
1330 * The furthest away nodes in the system are not interesting
1331 * for placement; nid was already counted.
1332 */
1333 if (dist == sched_max_numa_distance || node == nid)
1334 continue;
1335
1336 /*
1337 * On systems with a backplane NUMA topology, compare groups
1338 * of nodes, and move tasks towards the group with the most
1339 * memory accesses. When comparing two nodes at distance
1340 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 * of each group. Skip other nodes.
1342 */
1343 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1344 dist >= maxdist)
6c6b1193
RR
1345 continue;
1346
1347 /* Add up the faults from nearby nodes. */
1348 if (task)
1349 faults = task_faults(p, node);
1350 else
1351 faults = group_faults(p, node);
1352
1353 /*
1354 * On systems with a glueless mesh NUMA topology, there are
1355 * no fixed "groups of nodes". Instead, nodes that are not
1356 * directly connected bounce traffic through intermediate
1357 * nodes; a numa_group can occupy any set of nodes.
1358 * The further away a node is, the less the faults count.
1359 * This seems to result in good task placement.
1360 */
1361 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 faults *= (sched_max_numa_distance - dist);
1363 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 }
1365
1366 score += faults;
1367 }
1368
1369 return score;
1370}
1371
83e1d2cd
MG
1372/*
1373 * These return the fraction of accesses done by a particular task, or
1374 * task group, on a particular numa node. The group weight is given a
1375 * larger multiplier, in order to group tasks together that are almost
1376 * evenly spread out between numa nodes.
1377 */
7bd95320
RR
1378static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 int dist)
83e1d2cd 1380{
7bd95320 1381 unsigned long faults, total_faults;
83e1d2cd 1382
44dba3d5 1383 if (!p->numa_faults)
83e1d2cd
MG
1384 return 0;
1385
1386 total_faults = p->total_numa_faults;
1387
1388 if (!total_faults)
1389 return 0;
1390
7bd95320 1391 faults = task_faults(p, nid);
6c6b1193
RR
1392 faults += score_nearby_nodes(p, nid, dist, true);
1393
7bd95320 1394 return 1000 * faults / total_faults;
83e1d2cd
MG
1395}
1396
7bd95320
RR
1397static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 int dist)
83e1d2cd 1399{
cb361d8c 1400 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1401 unsigned long faults, total_faults;
1402
cb361d8c 1403 if (!ng)
7bd95320
RR
1404 return 0;
1405
cb361d8c 1406 total_faults = ng->total_faults;
7bd95320
RR
1407
1408 if (!total_faults)
83e1d2cd
MG
1409 return 0;
1410
7bd95320 1411 faults = group_faults(p, nid);
6c6b1193
RR
1412 faults += score_nearby_nodes(p, nid, dist, false);
1413
7bd95320 1414 return 1000 * faults / total_faults;
83e1d2cd
MG
1415}
1416
10f39042
RR
1417bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 int src_nid, int dst_cpu)
1419{
cb361d8c 1420 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1421 int dst_nid = cpu_to_node(dst_cpu);
1422 int last_cpupid, this_cpupid;
1423
1424 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1425 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426
1427 /*
1428 * Allow first faults or private faults to migrate immediately early in
1429 * the lifetime of a task. The magic number 4 is based on waiting for
1430 * two full passes of the "multi-stage node selection" test that is
1431 * executed below.
1432 */
98fa15f3 1433 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1434 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 return true;
10f39042
RR
1436
1437 /*
1438 * Multi-stage node selection is used in conjunction with a periodic
1439 * migration fault to build a temporal task<->page relation. By using
1440 * a two-stage filter we remove short/unlikely relations.
1441 *
1442 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 * a task's usage of a particular page (n_p) per total usage of this
1444 * page (n_t) (in a given time-span) to a probability.
1445 *
1446 * Our periodic faults will sample this probability and getting the
1447 * same result twice in a row, given these samples are fully
1448 * independent, is then given by P(n)^2, provided our sample period
1449 * is sufficiently short compared to the usage pattern.
1450 *
1451 * This quadric squishes small probabilities, making it less likely we
1452 * act on an unlikely task<->page relation.
1453 */
10f39042
RR
1454 if (!cpupid_pid_unset(last_cpupid) &&
1455 cpupid_to_nid(last_cpupid) != dst_nid)
1456 return false;
1457
1458 /* Always allow migrate on private faults */
1459 if (cpupid_match_pid(p, last_cpupid))
1460 return true;
1461
1462 /* A shared fault, but p->numa_group has not been set up yet. */
1463 if (!ng)
1464 return true;
1465
1466 /*
4142c3eb
RR
1467 * Destination node is much more heavily used than the source
1468 * node? Allow migration.
10f39042 1469 */
4142c3eb
RR
1470 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 ACTIVE_NODE_FRACTION)
10f39042
RR
1472 return true;
1473
1474 /*
4142c3eb
RR
1475 * Distribute memory according to CPU & memory use on each node,
1476 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 *
1478 * faults_cpu(dst) 3 faults_cpu(src)
1479 * --------------- * - > ---------------
1480 * faults_mem(dst) 4 faults_mem(src)
10f39042 1481 */
4142c3eb
RR
1482 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1484}
1485
6499b1b2
VG
1486/*
1487 * 'numa_type' describes the node at the moment of load balancing.
1488 */
1489enum numa_type {
1490 /* The node has spare capacity that can be used to run more tasks. */
1491 node_has_spare = 0,
1492 /*
1493 * The node is fully used and the tasks don't compete for more CPU
1494 * cycles. Nevertheless, some tasks might wait before running.
1495 */
1496 node_fully_busy,
1497 /*
1498 * The node is overloaded and can't provide expected CPU cycles to all
1499 * tasks.
1500 */
1501 node_overloaded
1502};
58d081b5 1503
fb13c7ee 1504/* Cached statistics for all CPUs within a node */
58d081b5
MG
1505struct numa_stats {
1506 unsigned long load;
8e0e0eda 1507 unsigned long runnable;
6499b1b2 1508 unsigned long util;
fb13c7ee 1509 /* Total compute capacity of CPUs on a node */
5ef20ca1 1510 unsigned long compute_capacity;
6499b1b2
VG
1511 unsigned int nr_running;
1512 unsigned int weight;
1513 enum numa_type node_type;
ff7db0bf 1514 int idle_cpu;
58d081b5 1515};
e6628d5b 1516
ff7db0bf
MG
1517static inline bool is_core_idle(int cpu)
1518{
1519#ifdef CONFIG_SCHED_SMT
1520 int sibling;
1521
1522 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1523 if (cpu == sibling)
1524 continue;
1525
1526 if (!idle_cpu(cpu))
1527 return false;
1528 }
1529#endif
1530
1531 return true;
1532}
1533
58d081b5
MG
1534struct task_numa_env {
1535 struct task_struct *p;
e6628d5b 1536
58d081b5
MG
1537 int src_cpu, src_nid;
1538 int dst_cpu, dst_nid;
e6628d5b 1539
58d081b5 1540 struct numa_stats src_stats, dst_stats;
e6628d5b 1541
40ea2b42 1542 int imbalance_pct;
7bd95320 1543 int dist;
fb13c7ee
MG
1544
1545 struct task_struct *best_task;
1546 long best_imp;
58d081b5
MG
1547 int best_cpu;
1548};
1549
6499b1b2 1550static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1551static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1552static unsigned long cpu_util(int cpu);
233e7aca 1553static inline long adjust_numa_imbalance(int imbalance, int nr_running);
6499b1b2
VG
1554
1555static inline enum
1556numa_type numa_classify(unsigned int imbalance_pct,
1557 struct numa_stats *ns)
1558{
1559 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1560 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1561 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1562 return node_overloaded;
1563
1564 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1565 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1566 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1567 return node_has_spare;
1568
1569 return node_fully_busy;
1570}
1571
76c389ab
VS
1572#ifdef CONFIG_SCHED_SMT
1573/* Forward declarations of select_idle_sibling helpers */
1574static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1575static inline int numa_idle_core(int idle_core, int cpu)
1576{
ff7db0bf
MG
1577 if (!static_branch_likely(&sched_smt_present) ||
1578 idle_core >= 0 || !test_idle_cores(cpu, false))
1579 return idle_core;
1580
1581 /*
1582 * Prefer cores instead of packing HT siblings
1583 * and triggering future load balancing.
1584 */
1585 if (is_core_idle(cpu))
1586 idle_core = cpu;
ff7db0bf
MG
1587
1588 return idle_core;
1589}
76c389ab
VS
1590#else
1591static inline int numa_idle_core(int idle_core, int cpu)
1592{
1593 return idle_core;
1594}
1595#endif
ff7db0bf 1596
6499b1b2 1597/*
ff7db0bf
MG
1598 * Gather all necessary information to make NUMA balancing placement
1599 * decisions that are compatible with standard load balancer. This
1600 * borrows code and logic from update_sg_lb_stats but sharing a
1601 * common implementation is impractical.
6499b1b2
VG
1602 */
1603static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1604 struct numa_stats *ns, int nid,
1605 bool find_idle)
6499b1b2 1606{
ff7db0bf 1607 int cpu, idle_core = -1;
6499b1b2
VG
1608
1609 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1610 ns->idle_cpu = -1;
1611
0621df31 1612 rcu_read_lock();
6499b1b2
VG
1613 for_each_cpu(cpu, cpumask_of_node(nid)) {
1614 struct rq *rq = cpu_rq(cpu);
1615
1616 ns->load += cpu_load(rq);
8e0e0eda 1617 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1618 ns->util += cpu_util(cpu);
1619 ns->nr_running += rq->cfs.h_nr_running;
1620 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1621
1622 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1623 if (READ_ONCE(rq->numa_migrate_on) ||
1624 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1625 continue;
1626
1627 if (ns->idle_cpu == -1)
1628 ns->idle_cpu = cpu;
1629
1630 idle_core = numa_idle_core(idle_core, cpu);
1631 }
6499b1b2 1632 }
0621df31 1633 rcu_read_unlock();
6499b1b2
VG
1634
1635 ns->weight = cpumask_weight(cpumask_of_node(nid));
1636
1637 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1638
1639 if (idle_core >= 0)
1640 ns->idle_cpu = idle_core;
6499b1b2
VG
1641}
1642
fb13c7ee
MG
1643static void task_numa_assign(struct task_numa_env *env,
1644 struct task_struct *p, long imp)
1645{
a4739eca
SD
1646 struct rq *rq = cpu_rq(env->dst_cpu);
1647
5fb52dd9
MG
1648 /* Check if run-queue part of active NUMA balance. */
1649 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1650 int cpu;
1651 int start = env->dst_cpu;
1652
1653 /* Find alternative idle CPU. */
1654 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1655 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1656 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1657 continue;
1658 }
1659
1660 env->dst_cpu = cpu;
1661 rq = cpu_rq(env->dst_cpu);
1662 if (!xchg(&rq->numa_migrate_on, 1))
1663 goto assign;
1664 }
1665
1666 /* Failed to find an alternative idle CPU */
a4739eca 1667 return;
5fb52dd9 1668 }
a4739eca 1669
5fb52dd9 1670assign:
a4739eca
SD
1671 /*
1672 * Clear previous best_cpu/rq numa-migrate flag, since task now
1673 * found a better CPU to move/swap.
1674 */
5fb52dd9 1675 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1676 rq = cpu_rq(env->best_cpu);
1677 WRITE_ONCE(rq->numa_migrate_on, 0);
1678 }
1679
fb13c7ee
MG
1680 if (env->best_task)
1681 put_task_struct(env->best_task);
bac78573
ON
1682 if (p)
1683 get_task_struct(p);
fb13c7ee
MG
1684
1685 env->best_task = p;
1686 env->best_imp = imp;
1687 env->best_cpu = env->dst_cpu;
1688}
1689
28a21745 1690static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1691 struct task_numa_env *env)
1692{
e4991b24
RR
1693 long imb, old_imb;
1694 long orig_src_load, orig_dst_load;
28a21745
RR
1695 long src_capacity, dst_capacity;
1696
1697 /*
1698 * The load is corrected for the CPU capacity available on each node.
1699 *
1700 * src_load dst_load
1701 * ------------ vs ---------
1702 * src_capacity dst_capacity
1703 */
1704 src_capacity = env->src_stats.compute_capacity;
1705 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1706
5f95ba7a 1707 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1708
28a21745 1709 orig_src_load = env->src_stats.load;
e4991b24 1710 orig_dst_load = env->dst_stats.load;
28a21745 1711
5f95ba7a 1712 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1713
1714 /* Would this change make things worse? */
1715 return (imb > old_imb);
e63da036
RR
1716}
1717
6fd98e77
SD
1718/*
1719 * Maximum NUMA importance can be 1998 (2*999);
1720 * SMALLIMP @ 30 would be close to 1998/64.
1721 * Used to deter task migration.
1722 */
1723#define SMALLIMP 30
1724
fb13c7ee
MG
1725/*
1726 * This checks if the overall compute and NUMA accesses of the system would
1727 * be improved if the source tasks was migrated to the target dst_cpu taking
1728 * into account that it might be best if task running on the dst_cpu should
1729 * be exchanged with the source task
1730 */
a0f03b61 1731static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1732 long taskimp, long groupimp, bool maymove)
fb13c7ee 1733{
cb361d8c 1734 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1735 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1736 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1737 struct task_struct *cur;
28a21745 1738 long src_load, dst_load;
7bd95320 1739 int dist = env->dist;
cb361d8c
JH
1740 long moveimp = imp;
1741 long load;
a0f03b61 1742 bool stopsearch = false;
fb13c7ee 1743
a4739eca 1744 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1745 return false;
a4739eca 1746
fb13c7ee 1747 rcu_read_lock();
154abafc 1748 cur = rcu_dereference(dst_rq->curr);
bac78573 1749 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1750 cur = NULL;
1751
7af68335
PZ
1752 /*
1753 * Because we have preemption enabled we can get migrated around and
1754 * end try selecting ourselves (current == env->p) as a swap candidate.
1755 */
a0f03b61
MG
1756 if (cur == env->p) {
1757 stopsearch = true;
7af68335 1758 goto unlock;
a0f03b61 1759 }
7af68335 1760
305c1fac 1761 if (!cur) {
6fd98e77 1762 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1763 goto assign;
1764 else
1765 goto unlock;
1766 }
1767
88cca72c
MG
1768 /* Skip this swap candidate if cannot move to the source cpu. */
1769 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1770 goto unlock;
1771
1772 /*
1773 * Skip this swap candidate if it is not moving to its preferred
1774 * node and the best task is.
1775 */
1776 if (env->best_task &&
1777 env->best_task->numa_preferred_nid == env->src_nid &&
1778 cur->numa_preferred_nid != env->src_nid) {
1779 goto unlock;
1780 }
1781
fb13c7ee
MG
1782 /*
1783 * "imp" is the fault differential for the source task between the
1784 * source and destination node. Calculate the total differential for
1785 * the source task and potential destination task. The more negative
305c1fac 1786 * the value is, the more remote accesses that would be expected to
fb13c7ee 1787 * be incurred if the tasks were swapped.
88cca72c 1788 *
305c1fac
SD
1789 * If dst and source tasks are in the same NUMA group, or not
1790 * in any group then look only at task weights.
1791 */
cb361d8c
JH
1792 cur_ng = rcu_dereference(cur->numa_group);
1793 if (cur_ng == p_ng) {
305c1fac
SD
1794 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1795 task_weight(cur, env->dst_nid, dist);
887c290e 1796 /*
305c1fac
SD
1797 * Add some hysteresis to prevent swapping the
1798 * tasks within a group over tiny differences.
887c290e 1799 */
cb361d8c 1800 if (cur_ng)
305c1fac
SD
1801 imp -= imp / 16;
1802 } else {
1803 /*
1804 * Compare the group weights. If a task is all by itself
1805 * (not part of a group), use the task weight instead.
1806 */
cb361d8c 1807 if (cur_ng && p_ng)
305c1fac
SD
1808 imp += group_weight(cur, env->src_nid, dist) -
1809 group_weight(cur, env->dst_nid, dist);
1810 else
1811 imp += task_weight(cur, env->src_nid, dist) -
1812 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1813 }
1814
88cca72c
MG
1815 /* Discourage picking a task already on its preferred node */
1816 if (cur->numa_preferred_nid == env->dst_nid)
1817 imp -= imp / 16;
1818
1819 /*
1820 * Encourage picking a task that moves to its preferred node.
1821 * This potentially makes imp larger than it's maximum of
1822 * 1998 (see SMALLIMP and task_weight for why) but in this
1823 * case, it does not matter.
1824 */
1825 if (cur->numa_preferred_nid == env->src_nid)
1826 imp += imp / 8;
1827
305c1fac 1828 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1829 imp = moveimp;
305c1fac 1830 cur = NULL;
fb13c7ee 1831 goto assign;
305c1fac 1832 }
fb13c7ee 1833
88cca72c
MG
1834 /*
1835 * Prefer swapping with a task moving to its preferred node over a
1836 * task that is not.
1837 */
1838 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1839 env->best_task->numa_preferred_nid != env->src_nid) {
1840 goto assign;
1841 }
1842
6fd98e77
SD
1843 /*
1844 * If the NUMA importance is less than SMALLIMP,
1845 * task migration might only result in ping pong
1846 * of tasks and also hurt performance due to cache
1847 * misses.
1848 */
1849 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1850 goto unlock;
1851
fb13c7ee
MG
1852 /*
1853 * In the overloaded case, try and keep the load balanced.
1854 */
305c1fac
SD
1855 load = task_h_load(env->p) - task_h_load(cur);
1856 if (!load)
1857 goto assign;
1858
e720fff6
PZ
1859 dst_load = env->dst_stats.load + load;
1860 src_load = env->src_stats.load - load;
fb13c7ee 1861
28a21745 1862 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1863 goto unlock;
1864
305c1fac 1865assign:
ff7db0bf 1866 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1867 if (!cur) {
ff7db0bf
MG
1868 int cpu = env->dst_stats.idle_cpu;
1869
1870 /* Nothing cached so current CPU went idle since the search. */
1871 if (cpu < 0)
1872 cpu = env->dst_cpu;
1873
10e2f1ac 1874 /*
ff7db0bf
MG
1875 * If the CPU is no longer truly idle and the previous best CPU
1876 * is, keep using it.
10e2f1ac 1877 */
ff7db0bf
MG
1878 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1879 idle_cpu(env->best_cpu)) {
1880 cpu = env->best_cpu;
1881 }
1882
ff7db0bf 1883 env->dst_cpu = cpu;
10e2f1ac 1884 }
ba7e5a27 1885
fb13c7ee 1886 task_numa_assign(env, cur, imp);
a0f03b61
MG
1887
1888 /*
1889 * If a move to idle is allowed because there is capacity or load
1890 * balance improves then stop the search. While a better swap
1891 * candidate may exist, a search is not free.
1892 */
1893 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1894 stopsearch = true;
1895
1896 /*
1897 * If a swap candidate must be identified and the current best task
1898 * moves its preferred node then stop the search.
1899 */
1900 if (!maymove && env->best_task &&
1901 env->best_task->numa_preferred_nid == env->src_nid) {
1902 stopsearch = true;
1903 }
fb13c7ee
MG
1904unlock:
1905 rcu_read_unlock();
a0f03b61
MG
1906
1907 return stopsearch;
fb13c7ee
MG
1908}
1909
887c290e
RR
1910static void task_numa_find_cpu(struct task_numa_env *env,
1911 long taskimp, long groupimp)
2c8a50aa 1912{
305c1fac 1913 bool maymove = false;
2c8a50aa
MG
1914 int cpu;
1915
305c1fac 1916 /*
fb86f5b2
MG
1917 * If dst node has spare capacity, then check if there is an
1918 * imbalance that would be overruled by the load balancer.
305c1fac 1919 */
fb86f5b2
MG
1920 if (env->dst_stats.node_type == node_has_spare) {
1921 unsigned int imbalance;
1922 int src_running, dst_running;
1923
1924 /*
1925 * Would movement cause an imbalance? Note that if src has
1926 * more running tasks that the imbalance is ignored as the
1927 * move improves the imbalance from the perspective of the
1928 * CPU load balancer.
1929 * */
1930 src_running = env->src_stats.nr_running - 1;
1931 dst_running = env->dst_stats.nr_running + 1;
1932 imbalance = max(0, dst_running - src_running);
233e7aca 1933 imbalance = adjust_numa_imbalance(imbalance, dst_running);
fb86f5b2
MG
1934
1935 /* Use idle CPU if there is no imbalance */
ff7db0bf 1936 if (!imbalance) {
fb86f5b2 1937 maymove = true;
ff7db0bf
MG
1938 if (env->dst_stats.idle_cpu >= 0) {
1939 env->dst_cpu = env->dst_stats.idle_cpu;
1940 task_numa_assign(env, NULL, 0);
1941 return;
1942 }
1943 }
fb86f5b2
MG
1944 } else {
1945 long src_load, dst_load, load;
1946 /*
1947 * If the improvement from just moving env->p direction is better
1948 * than swapping tasks around, check if a move is possible.
1949 */
1950 load = task_h_load(env->p);
1951 dst_load = env->dst_stats.load + load;
1952 src_load = env->src_stats.load - load;
1953 maymove = !load_too_imbalanced(src_load, dst_load, env);
1954 }
305c1fac 1955
2c8a50aa
MG
1956 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1957 /* Skip this CPU if the source task cannot migrate */
3bd37062 1958 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1959 continue;
1960
1961 env->dst_cpu = cpu;
a0f03b61
MG
1962 if (task_numa_compare(env, taskimp, groupimp, maymove))
1963 break;
2c8a50aa
MG
1964 }
1965}
1966
58d081b5
MG
1967static int task_numa_migrate(struct task_struct *p)
1968{
58d081b5
MG
1969 struct task_numa_env env = {
1970 .p = p,
fb13c7ee 1971
58d081b5 1972 .src_cpu = task_cpu(p),
b32e86b4 1973 .src_nid = task_node(p),
fb13c7ee
MG
1974
1975 .imbalance_pct = 112,
1976
1977 .best_task = NULL,
1978 .best_imp = 0,
4142c3eb 1979 .best_cpu = -1,
58d081b5 1980 };
cb361d8c 1981 unsigned long taskweight, groupweight;
58d081b5 1982 struct sched_domain *sd;
cb361d8c
JH
1983 long taskimp, groupimp;
1984 struct numa_group *ng;
a4739eca 1985 struct rq *best_rq;
7bd95320 1986 int nid, ret, dist;
e6628d5b 1987
58d081b5 1988 /*
fb13c7ee
MG
1989 * Pick the lowest SD_NUMA domain, as that would have the smallest
1990 * imbalance and would be the first to start moving tasks about.
1991 *
1992 * And we want to avoid any moving of tasks about, as that would create
1993 * random movement of tasks -- counter the numa conditions we're trying
1994 * to satisfy here.
58d081b5
MG
1995 */
1996 rcu_read_lock();
fb13c7ee 1997 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1998 if (sd)
1999 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
2000 rcu_read_unlock();
2001
46a73e8a
RR
2002 /*
2003 * Cpusets can break the scheduler domain tree into smaller
2004 * balance domains, some of which do not cross NUMA boundaries.
2005 * Tasks that are "trapped" in such domains cannot be migrated
2006 * elsewhere, so there is no point in (re)trying.
2007 */
2008 if (unlikely(!sd)) {
8cd45eee 2009 sched_setnuma(p, task_node(p));
46a73e8a
RR
2010 return -EINVAL;
2011 }
2012
2c8a50aa 2013 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2014 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2015 taskweight = task_weight(p, env.src_nid, dist);
2016 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2017 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2018 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2019 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2020 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2021
a43455a1 2022 /* Try to find a spot on the preferred nid. */
2d4056fa 2023 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2024
9de05d48
RR
2025 /*
2026 * Look at other nodes in these cases:
2027 * - there is no space available on the preferred_nid
2028 * - the task is part of a numa_group that is interleaved across
2029 * multiple NUMA nodes; in order to better consolidate the group,
2030 * we need to check other locations.
2031 */
cb361d8c
JH
2032 ng = deref_curr_numa_group(p);
2033 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2034 for_each_online_node(nid) {
2035 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2036 continue;
58d081b5 2037
7bd95320 2038 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2039 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2040 dist != env.dist) {
2041 taskweight = task_weight(p, env.src_nid, dist);
2042 groupweight = group_weight(p, env.src_nid, dist);
2043 }
7bd95320 2044
83e1d2cd 2045 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2046 taskimp = task_weight(p, nid, dist) - taskweight;
2047 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2048 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2049 continue;
2050
7bd95320 2051 env.dist = dist;
2c8a50aa 2052 env.dst_nid = nid;
ff7db0bf 2053 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2054 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2055 }
2056 }
2057
68d1b02a
RR
2058 /*
2059 * If the task is part of a workload that spans multiple NUMA nodes,
2060 * and is migrating into one of the workload's active nodes, remember
2061 * this node as the task's preferred numa node, so the workload can
2062 * settle down.
2063 * A task that migrated to a second choice node will be better off
2064 * trying for a better one later. Do not set the preferred node here.
2065 */
cb361d8c 2066 if (ng) {
db015dae
RR
2067 if (env.best_cpu == -1)
2068 nid = env.src_nid;
2069 else
8cd45eee 2070 nid = cpu_to_node(env.best_cpu);
db015dae 2071
8cd45eee
SD
2072 if (nid != p->numa_preferred_nid)
2073 sched_setnuma(p, nid);
db015dae
RR
2074 }
2075
2076 /* No better CPU than the current one was found. */
f22aef4a 2077 if (env.best_cpu == -1) {
b2b2042b 2078 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2079 return -EAGAIN;
f22aef4a 2080 }
0ec8aa00 2081
a4739eca 2082 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2083 if (env.best_task == NULL) {
286549dc 2084 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2085 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2086 if (ret != 0)
b2b2042b 2087 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2088 return ret;
2089 }
2090
0ad4e3df 2091 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2092 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2093
286549dc 2094 if (ret != 0)
b2b2042b 2095 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2096 put_task_struct(env.best_task);
2097 return ret;
e6628d5b
MG
2098}
2099
6b9a7460
MG
2100/* Attempt to migrate a task to a CPU on the preferred node. */
2101static void numa_migrate_preferred(struct task_struct *p)
2102{
5085e2a3
RR
2103 unsigned long interval = HZ;
2104
2739d3ee 2105 /* This task has no NUMA fault statistics yet */
98fa15f3 2106 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2107 return;
2108
2739d3ee 2109 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2110 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2111 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2112
2113 /* Success if task is already running on preferred CPU */
de1b301a 2114 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2115 return;
2116
2117 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2118 task_numa_migrate(p);
6b9a7460
MG
2119}
2120
20e07dea 2121/*
4142c3eb 2122 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2123 * tracking the nodes from which NUMA hinting faults are triggered. This can
2124 * be different from the set of nodes where the workload's memory is currently
2125 * located.
20e07dea 2126 */
4142c3eb 2127static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2128{
2129 unsigned long faults, max_faults = 0;
4142c3eb 2130 int nid, active_nodes = 0;
20e07dea
RR
2131
2132 for_each_online_node(nid) {
2133 faults = group_faults_cpu(numa_group, nid);
2134 if (faults > max_faults)
2135 max_faults = faults;
2136 }
2137
2138 for_each_online_node(nid) {
2139 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2140 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2141 active_nodes++;
20e07dea 2142 }
4142c3eb
RR
2143
2144 numa_group->max_faults_cpu = max_faults;
2145 numa_group->active_nodes = active_nodes;
20e07dea
RR
2146}
2147
04bb2f94
RR
2148/*
2149 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2150 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2151 * period will be for the next scan window. If local/(local+remote) ratio is
2152 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2153 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2154 */
2155#define NUMA_PERIOD_SLOTS 10
a22b4b01 2156#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2157
2158/*
2159 * Increase the scan period (slow down scanning) if the majority of
2160 * our memory is already on our local node, or if the majority of
2161 * the page accesses are shared with other processes.
2162 * Otherwise, decrease the scan period.
2163 */
2164static void update_task_scan_period(struct task_struct *p,
2165 unsigned long shared, unsigned long private)
2166{
2167 unsigned int period_slot;
37ec97de 2168 int lr_ratio, ps_ratio;
04bb2f94
RR
2169 int diff;
2170
2171 unsigned long remote = p->numa_faults_locality[0];
2172 unsigned long local = p->numa_faults_locality[1];
2173
2174 /*
2175 * If there were no record hinting faults then either the task is
2176 * completely idle or all activity is areas that are not of interest
074c2381
MG
2177 * to automatic numa balancing. Related to that, if there were failed
2178 * migration then it implies we are migrating too quickly or the local
2179 * node is overloaded. In either case, scan slower
04bb2f94 2180 */
074c2381 2181 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2182 p->numa_scan_period = min(p->numa_scan_period_max,
2183 p->numa_scan_period << 1);
2184
2185 p->mm->numa_next_scan = jiffies +
2186 msecs_to_jiffies(p->numa_scan_period);
2187
2188 return;
2189 }
2190
2191 /*
2192 * Prepare to scale scan period relative to the current period.
2193 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2194 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2195 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2196 */
2197 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2198 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2199 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2200
2201 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2202 /*
2203 * Most memory accesses are local. There is no need to
2204 * do fast NUMA scanning, since memory is already local.
2205 */
2206 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2207 if (!slot)
2208 slot = 1;
2209 diff = slot * period_slot;
2210 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2211 /*
2212 * Most memory accesses are shared with other tasks.
2213 * There is no point in continuing fast NUMA scanning,
2214 * since other tasks may just move the memory elsewhere.
2215 */
2216 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2217 if (!slot)
2218 slot = 1;
2219 diff = slot * period_slot;
2220 } else {
04bb2f94 2221 /*
37ec97de
RR
2222 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2223 * yet they are not on the local NUMA node. Speed up
2224 * NUMA scanning to get the memory moved over.
04bb2f94 2225 */
37ec97de
RR
2226 int ratio = max(lr_ratio, ps_ratio);
2227 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2228 }
2229
2230 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2231 task_scan_min(p), task_scan_max(p));
2232 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2233}
2234
7e2703e6
RR
2235/*
2236 * Get the fraction of time the task has been running since the last
2237 * NUMA placement cycle. The scheduler keeps similar statistics, but
2238 * decays those on a 32ms period, which is orders of magnitude off
2239 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2240 * stats only if the task is so new there are no NUMA statistics yet.
2241 */
2242static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2243{
2244 u64 runtime, delta, now;
2245 /* Use the start of this time slice to avoid calculations. */
2246 now = p->se.exec_start;
2247 runtime = p->se.sum_exec_runtime;
2248
2249 if (p->last_task_numa_placement) {
2250 delta = runtime - p->last_sum_exec_runtime;
2251 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2252
2253 /* Avoid time going backwards, prevent potential divide error: */
2254 if (unlikely((s64)*period < 0))
2255 *period = 0;
7e2703e6 2256 } else {
c7b50216 2257 delta = p->se.avg.load_sum;
9d89c257 2258 *period = LOAD_AVG_MAX;
7e2703e6
RR
2259 }
2260
2261 p->last_sum_exec_runtime = runtime;
2262 p->last_task_numa_placement = now;
2263
2264 return delta;
2265}
2266
54009416
RR
2267/*
2268 * Determine the preferred nid for a task in a numa_group. This needs to
2269 * be done in a way that produces consistent results with group_weight,
2270 * otherwise workloads might not converge.
2271 */
2272static int preferred_group_nid(struct task_struct *p, int nid)
2273{
2274 nodemask_t nodes;
2275 int dist;
2276
2277 /* Direct connections between all NUMA nodes. */
2278 if (sched_numa_topology_type == NUMA_DIRECT)
2279 return nid;
2280
2281 /*
2282 * On a system with glueless mesh NUMA topology, group_weight
2283 * scores nodes according to the number of NUMA hinting faults on
2284 * both the node itself, and on nearby nodes.
2285 */
2286 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2287 unsigned long score, max_score = 0;
2288 int node, max_node = nid;
2289
2290 dist = sched_max_numa_distance;
2291
2292 for_each_online_node(node) {
2293 score = group_weight(p, node, dist);
2294 if (score > max_score) {
2295 max_score = score;
2296 max_node = node;
2297 }
2298 }
2299 return max_node;
2300 }
2301
2302 /*
2303 * Finding the preferred nid in a system with NUMA backplane
2304 * interconnect topology is more involved. The goal is to locate
2305 * tasks from numa_groups near each other in the system, and
2306 * untangle workloads from different sides of the system. This requires
2307 * searching down the hierarchy of node groups, recursively searching
2308 * inside the highest scoring group of nodes. The nodemask tricks
2309 * keep the complexity of the search down.
2310 */
2311 nodes = node_online_map;
2312 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2313 unsigned long max_faults = 0;
81907478 2314 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2315 int a, b;
2316
2317 /* Are there nodes at this distance from each other? */
2318 if (!find_numa_distance(dist))
2319 continue;
2320
2321 for_each_node_mask(a, nodes) {
2322 unsigned long faults = 0;
2323 nodemask_t this_group;
2324 nodes_clear(this_group);
2325
2326 /* Sum group's NUMA faults; includes a==b case. */
2327 for_each_node_mask(b, nodes) {
2328 if (node_distance(a, b) < dist) {
2329 faults += group_faults(p, b);
2330 node_set(b, this_group);
2331 node_clear(b, nodes);
2332 }
2333 }
2334
2335 /* Remember the top group. */
2336 if (faults > max_faults) {
2337 max_faults = faults;
2338 max_group = this_group;
2339 /*
2340 * subtle: at the smallest distance there is
2341 * just one node left in each "group", the
2342 * winner is the preferred nid.
2343 */
2344 nid = a;
2345 }
2346 }
2347 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2348 if (!max_faults)
2349 break;
54009416
RR
2350 nodes = max_group;
2351 }
2352 return nid;
2353}
2354
cbee9f88
PZ
2355static void task_numa_placement(struct task_struct *p)
2356{
98fa15f3 2357 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2358 unsigned long max_faults = 0;
04bb2f94 2359 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2360 unsigned long total_faults;
2361 u64 runtime, period;
7dbd13ed 2362 spinlock_t *group_lock = NULL;
cb361d8c 2363 struct numa_group *ng;
cbee9f88 2364
7e5a2c17
JL
2365 /*
2366 * The p->mm->numa_scan_seq field gets updated without
2367 * exclusive access. Use READ_ONCE() here to ensure
2368 * that the field is read in a single access:
2369 */
316c1608 2370 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2371 if (p->numa_scan_seq == seq)
2372 return;
2373 p->numa_scan_seq = seq;
598f0ec0 2374 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2375
7e2703e6
RR
2376 total_faults = p->numa_faults_locality[0] +
2377 p->numa_faults_locality[1];
2378 runtime = numa_get_avg_runtime(p, &period);
2379
7dbd13ed 2380 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2381 ng = deref_curr_numa_group(p);
2382 if (ng) {
2383 group_lock = &ng->lock;
60e69eed 2384 spin_lock_irq(group_lock);
7dbd13ed
MG
2385 }
2386
688b7585
MG
2387 /* Find the node with the highest number of faults */
2388 for_each_online_node(nid) {
44dba3d5
IM
2389 /* Keep track of the offsets in numa_faults array */
2390 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2391 unsigned long faults = 0, group_faults = 0;
44dba3d5 2392 int priv;
745d6147 2393
be1e4e76 2394 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2395 long diff, f_diff, f_weight;
8c8a743c 2396
44dba3d5
IM
2397 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2398 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2399 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2400 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2401
ac8e895b 2402 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2403 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2404 fault_types[priv] += p->numa_faults[membuf_idx];
2405 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2406
7e2703e6
RR
2407 /*
2408 * Normalize the faults_from, so all tasks in a group
2409 * count according to CPU use, instead of by the raw
2410 * number of faults. Tasks with little runtime have
2411 * little over-all impact on throughput, and thus their
2412 * faults are less important.
2413 */
2414 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2415 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2416 (total_faults + 1);
44dba3d5
IM
2417 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2418 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2419
44dba3d5
IM
2420 p->numa_faults[mem_idx] += diff;
2421 p->numa_faults[cpu_idx] += f_diff;
2422 faults += p->numa_faults[mem_idx];
83e1d2cd 2423 p->total_numa_faults += diff;
cb361d8c 2424 if (ng) {
44dba3d5
IM
2425 /*
2426 * safe because we can only change our own group
2427 *
2428 * mem_idx represents the offset for a given
2429 * nid and priv in a specific region because it
2430 * is at the beginning of the numa_faults array.
2431 */
cb361d8c
JH
2432 ng->faults[mem_idx] += diff;
2433 ng->faults_cpu[mem_idx] += f_diff;
2434 ng->total_faults += diff;
2435 group_faults += ng->faults[mem_idx];
8c8a743c 2436 }
ac8e895b
MG
2437 }
2438
cb361d8c 2439 if (!ng) {
f03bb676
SD
2440 if (faults > max_faults) {
2441 max_faults = faults;
2442 max_nid = nid;
2443 }
2444 } else if (group_faults > max_faults) {
2445 max_faults = group_faults;
688b7585
MG
2446 max_nid = nid;
2447 }
83e1d2cd
MG
2448 }
2449
cb361d8c
JH
2450 if (ng) {
2451 numa_group_count_active_nodes(ng);
60e69eed 2452 spin_unlock_irq(group_lock);
f03bb676 2453 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2454 }
2455
bb97fc31
RR
2456 if (max_faults) {
2457 /* Set the new preferred node */
2458 if (max_nid != p->numa_preferred_nid)
2459 sched_setnuma(p, max_nid);
3a7053b3 2460 }
30619c89
SD
2461
2462 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2463}
2464
8c8a743c
PZ
2465static inline int get_numa_group(struct numa_group *grp)
2466{
c45a7795 2467 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2468}
2469
2470static inline void put_numa_group(struct numa_group *grp)
2471{
c45a7795 2472 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2473 kfree_rcu(grp, rcu);
2474}
2475
3e6a9418
MG
2476static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2477 int *priv)
8c8a743c
PZ
2478{
2479 struct numa_group *grp, *my_grp;
2480 struct task_struct *tsk;
2481 bool join = false;
2482 int cpu = cpupid_to_cpu(cpupid);
2483 int i;
2484
cb361d8c 2485 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2486 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2487 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2488
2489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2490 if (!grp)
2491 return;
2492
c45a7795 2493 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2494 grp->active_nodes = 1;
2495 grp->max_faults_cpu = 0;
8c8a743c 2496 spin_lock_init(&grp->lock);
e29cf08b 2497 grp->gid = p->pid;
50ec8a40 2498 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2499 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2500 nr_node_ids;
8c8a743c 2501
be1e4e76 2502 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2503 grp->faults[i] = p->numa_faults[i];
8c8a743c 2504
989348b5 2505 grp->total_faults = p->total_numa_faults;
83e1d2cd 2506
8c8a743c
PZ
2507 grp->nr_tasks++;
2508 rcu_assign_pointer(p->numa_group, grp);
2509 }
2510
2511 rcu_read_lock();
316c1608 2512 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2513
2514 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2515 goto no_join;
8c8a743c
PZ
2516
2517 grp = rcu_dereference(tsk->numa_group);
2518 if (!grp)
3354781a 2519 goto no_join;
8c8a743c 2520
cb361d8c 2521 my_grp = deref_curr_numa_group(p);
8c8a743c 2522 if (grp == my_grp)
3354781a 2523 goto no_join;
8c8a743c
PZ
2524
2525 /*
2526 * Only join the other group if its bigger; if we're the bigger group,
2527 * the other task will join us.
2528 */
2529 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2530 goto no_join;
8c8a743c
PZ
2531
2532 /*
2533 * Tie-break on the grp address.
2534 */
2535 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2536 goto no_join;
8c8a743c 2537
dabe1d99
RR
2538 /* Always join threads in the same process. */
2539 if (tsk->mm == current->mm)
2540 join = true;
2541
2542 /* Simple filter to avoid false positives due to PID collisions */
2543 if (flags & TNF_SHARED)
2544 join = true;
8c8a743c 2545
3e6a9418
MG
2546 /* Update priv based on whether false sharing was detected */
2547 *priv = !join;
2548
dabe1d99 2549 if (join && !get_numa_group(grp))
3354781a 2550 goto no_join;
8c8a743c 2551
8c8a743c
PZ
2552 rcu_read_unlock();
2553
2554 if (!join)
2555 return;
2556
60e69eed
MG
2557 BUG_ON(irqs_disabled());
2558 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2559
be1e4e76 2560 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2561 my_grp->faults[i] -= p->numa_faults[i];
2562 grp->faults[i] += p->numa_faults[i];
8c8a743c 2563 }
989348b5
MG
2564 my_grp->total_faults -= p->total_numa_faults;
2565 grp->total_faults += p->total_numa_faults;
8c8a743c 2566
8c8a743c
PZ
2567 my_grp->nr_tasks--;
2568 grp->nr_tasks++;
2569
2570 spin_unlock(&my_grp->lock);
60e69eed 2571 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2572
2573 rcu_assign_pointer(p->numa_group, grp);
2574
2575 put_numa_group(my_grp);
3354781a
PZ
2576 return;
2577
2578no_join:
2579 rcu_read_unlock();
2580 return;
8c8a743c
PZ
2581}
2582
16d51a59
JH
2583/*
2584 * Get rid of NUMA staticstics associated with a task (either current or dead).
2585 * If @final is set, the task is dead and has reached refcount zero, so we can
2586 * safely free all relevant data structures. Otherwise, there might be
2587 * concurrent reads from places like load balancing and procfs, and we should
2588 * reset the data back to default state without freeing ->numa_faults.
2589 */
2590void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2591{
cb361d8c
JH
2592 /* safe: p either is current or is being freed by current */
2593 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2594 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2595 unsigned long flags;
2596 int i;
8c8a743c 2597
16d51a59
JH
2598 if (!numa_faults)
2599 return;
2600
8c8a743c 2601 if (grp) {
e9dd685c 2602 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2603 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2604 grp->faults[i] -= p->numa_faults[i];
989348b5 2605 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2606
8c8a743c 2607 grp->nr_tasks--;
e9dd685c 2608 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2609 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2610 put_numa_group(grp);
2611 }
2612
16d51a59
JH
2613 if (final) {
2614 p->numa_faults = NULL;
2615 kfree(numa_faults);
2616 } else {
2617 p->total_numa_faults = 0;
2618 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2619 numa_faults[i] = 0;
2620 }
8c8a743c
PZ
2621}
2622
cbee9f88
PZ
2623/*
2624 * Got a PROT_NONE fault for a page on @node.
2625 */
58b46da3 2626void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2627{
2628 struct task_struct *p = current;
6688cc05 2629 bool migrated = flags & TNF_MIGRATED;
58b46da3 2630 int cpu_node = task_node(current);
792568ec 2631 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2632 struct numa_group *ng;
ac8e895b 2633 int priv;
cbee9f88 2634
2a595721 2635 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2636 return;
2637
9ff1d9ff
MG
2638 /* for example, ksmd faulting in a user's mm */
2639 if (!p->mm)
2640 return;
2641
f809ca9a 2642 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2643 if (unlikely(!p->numa_faults)) {
2644 int size = sizeof(*p->numa_faults) *
be1e4e76 2645 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2646
44dba3d5
IM
2647 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2648 if (!p->numa_faults)
f809ca9a 2649 return;
745d6147 2650
83e1d2cd 2651 p->total_numa_faults = 0;
04bb2f94 2652 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2653 }
cbee9f88 2654
8c8a743c
PZ
2655 /*
2656 * First accesses are treated as private, otherwise consider accesses
2657 * to be private if the accessing pid has not changed
2658 */
2659 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2660 priv = 1;
2661 } else {
2662 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2663 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2664 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2665 }
2666
792568ec
RR
2667 /*
2668 * If a workload spans multiple NUMA nodes, a shared fault that
2669 * occurs wholly within the set of nodes that the workload is
2670 * actively using should be counted as local. This allows the
2671 * scan rate to slow down when a workload has settled down.
2672 */
cb361d8c 2673 ng = deref_curr_numa_group(p);
4142c3eb
RR
2674 if (!priv && !local && ng && ng->active_nodes > 1 &&
2675 numa_is_active_node(cpu_node, ng) &&
2676 numa_is_active_node(mem_node, ng))
792568ec
RR
2677 local = 1;
2678
2739d3ee 2679 /*
e1ff516a
YW
2680 * Retry to migrate task to preferred node periodically, in case it
2681 * previously failed, or the scheduler moved us.
2739d3ee 2682 */
b6a60cf3
SD
2683 if (time_after(jiffies, p->numa_migrate_retry)) {
2684 task_numa_placement(p);
6b9a7460 2685 numa_migrate_preferred(p);
b6a60cf3 2686 }
6b9a7460 2687
b32e86b4
IM
2688 if (migrated)
2689 p->numa_pages_migrated += pages;
074c2381
MG
2690 if (flags & TNF_MIGRATE_FAIL)
2691 p->numa_faults_locality[2] += pages;
b32e86b4 2692
44dba3d5
IM
2693 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2694 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2695 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2696}
2697
6e5fb223
PZ
2698static void reset_ptenuma_scan(struct task_struct *p)
2699{
7e5a2c17
JL
2700 /*
2701 * We only did a read acquisition of the mmap sem, so
2702 * p->mm->numa_scan_seq is written to without exclusive access
2703 * and the update is not guaranteed to be atomic. That's not
2704 * much of an issue though, since this is just used for
2705 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2706 * expensive, to avoid any form of compiler optimizations:
2707 */
316c1608 2708 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2709 p->mm->numa_scan_offset = 0;
2710}
2711
cbee9f88
PZ
2712/*
2713 * The expensive part of numa migration is done from task_work context.
2714 * Triggered from task_tick_numa().
2715 */
9434f9f5 2716static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2717{
2718 unsigned long migrate, next_scan, now = jiffies;
2719 struct task_struct *p = current;
2720 struct mm_struct *mm = p->mm;
51170840 2721 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2722 struct vm_area_struct *vma;
9f40604c 2723 unsigned long start, end;
598f0ec0 2724 unsigned long nr_pte_updates = 0;
4620f8c1 2725 long pages, virtpages;
cbee9f88 2726
9148a3a1 2727 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2728
b34920d4 2729 work->next = work;
cbee9f88
PZ
2730 /*
2731 * Who cares about NUMA placement when they're dying.
2732 *
2733 * NOTE: make sure not to dereference p->mm before this check,
2734 * exit_task_work() happens _after_ exit_mm() so we could be called
2735 * without p->mm even though we still had it when we enqueued this
2736 * work.
2737 */
2738 if (p->flags & PF_EXITING)
2739 return;
2740
930aa174 2741 if (!mm->numa_next_scan) {
7e8d16b6
MG
2742 mm->numa_next_scan = now +
2743 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2744 }
2745
cbee9f88
PZ
2746 /*
2747 * Enforce maximal scan/migration frequency..
2748 */
2749 migrate = mm->numa_next_scan;
2750 if (time_before(now, migrate))
2751 return;
2752
598f0ec0
MG
2753 if (p->numa_scan_period == 0) {
2754 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2755 p->numa_scan_period = task_scan_start(p);
598f0ec0 2756 }
cbee9f88 2757
fb003b80 2758 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2759 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2760 return;
2761
19a78d11
PZ
2762 /*
2763 * Delay this task enough that another task of this mm will likely win
2764 * the next time around.
2765 */
2766 p->node_stamp += 2 * TICK_NSEC;
2767
9f40604c
MG
2768 start = mm->numa_scan_offset;
2769 pages = sysctl_numa_balancing_scan_size;
2770 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2771 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2772 if (!pages)
2773 return;
cbee9f88 2774
4620f8c1 2775
d8ed45c5 2776 if (!mmap_read_trylock(mm))
8655d549 2777 return;
9f40604c 2778 vma = find_vma(mm, start);
6e5fb223
PZ
2779 if (!vma) {
2780 reset_ptenuma_scan(p);
9f40604c 2781 start = 0;
6e5fb223
PZ
2782 vma = mm->mmap;
2783 }
9f40604c 2784 for (; vma; vma = vma->vm_next) {
6b79c57b 2785 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2786 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2787 continue;
6b79c57b 2788 }
6e5fb223 2789
4591ce4f
MG
2790 /*
2791 * Shared library pages mapped by multiple processes are not
2792 * migrated as it is expected they are cache replicated. Avoid
2793 * hinting faults in read-only file-backed mappings or the vdso
2794 * as migrating the pages will be of marginal benefit.
2795 */
2796 if (!vma->vm_mm ||
2797 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2798 continue;
2799
3c67f474
MG
2800 /*
2801 * Skip inaccessible VMAs to avoid any confusion between
2802 * PROT_NONE and NUMA hinting ptes
2803 */
3122e80e 2804 if (!vma_is_accessible(vma))
3c67f474 2805 continue;
4591ce4f 2806
9f40604c
MG
2807 do {
2808 start = max(start, vma->vm_start);
2809 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2810 end = min(end, vma->vm_end);
4620f8c1 2811 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2812
2813 /*
4620f8c1
RR
2814 * Try to scan sysctl_numa_balancing_size worth of
2815 * hpages that have at least one present PTE that
2816 * is not already pte-numa. If the VMA contains
2817 * areas that are unused or already full of prot_numa
2818 * PTEs, scan up to virtpages, to skip through those
2819 * areas faster.
598f0ec0
MG
2820 */
2821 if (nr_pte_updates)
2822 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2823 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2824
9f40604c 2825 start = end;
4620f8c1 2826 if (pages <= 0 || virtpages <= 0)
9f40604c 2827 goto out;
3cf1962c
RR
2828
2829 cond_resched();
9f40604c 2830 } while (end != vma->vm_end);
cbee9f88 2831 }
6e5fb223 2832
9f40604c 2833out:
6e5fb223 2834 /*
c69307d5
PZ
2835 * It is possible to reach the end of the VMA list but the last few
2836 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2837 * would find the !migratable VMA on the next scan but not reset the
2838 * scanner to the start so check it now.
6e5fb223
PZ
2839 */
2840 if (vma)
9f40604c 2841 mm->numa_scan_offset = start;
6e5fb223
PZ
2842 else
2843 reset_ptenuma_scan(p);
d8ed45c5 2844 mmap_read_unlock(mm);
51170840
RR
2845
2846 /*
2847 * Make sure tasks use at least 32x as much time to run other code
2848 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2849 * Usually update_task_scan_period slows down scanning enough; on an
2850 * overloaded system we need to limit overhead on a per task basis.
2851 */
2852 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2853 u64 diff = p->se.sum_exec_runtime - runtime;
2854 p->node_stamp += 32 * diff;
2855 }
cbee9f88
PZ
2856}
2857
d35927a1
VS
2858void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2859{
2860 int mm_users = 0;
2861 struct mm_struct *mm = p->mm;
2862
2863 if (mm) {
2864 mm_users = atomic_read(&mm->mm_users);
2865 if (mm_users == 1) {
2866 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2867 mm->numa_scan_seq = 0;
2868 }
2869 }
2870 p->node_stamp = 0;
2871 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2872 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2873 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2874 p->numa_work.next = &p->numa_work;
2875 p->numa_faults = NULL;
2876 RCU_INIT_POINTER(p->numa_group, NULL);
2877 p->last_task_numa_placement = 0;
2878 p->last_sum_exec_runtime = 0;
2879
b34920d4
VS
2880 init_task_work(&p->numa_work, task_numa_work);
2881
d35927a1
VS
2882 /* New address space, reset the preferred nid */
2883 if (!(clone_flags & CLONE_VM)) {
2884 p->numa_preferred_nid = NUMA_NO_NODE;
2885 return;
2886 }
2887
2888 /*
2889 * New thread, keep existing numa_preferred_nid which should be copied
2890 * already by arch_dup_task_struct but stagger when scans start.
2891 */
2892 if (mm) {
2893 unsigned int delay;
2894
2895 delay = min_t(unsigned int, task_scan_max(current),
2896 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2897 delay += 2 * TICK_NSEC;
2898 p->node_stamp = delay;
2899 }
2900}
2901
cbee9f88
PZ
2902/*
2903 * Drive the periodic memory faults..
2904 */
b1546edc 2905static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2906{
2907 struct callback_head *work = &curr->numa_work;
2908 u64 period, now;
2909
2910 /*
2911 * We don't care about NUMA placement if we don't have memory.
2912 */
18f855e5 2913 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2914 return;
2915
2916 /*
2917 * Using runtime rather than walltime has the dual advantage that
2918 * we (mostly) drive the selection from busy threads and that the
2919 * task needs to have done some actual work before we bother with
2920 * NUMA placement.
2921 */
2922 now = curr->se.sum_exec_runtime;
2923 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2924
25b3e5a3 2925 if (now > curr->node_stamp + period) {
4b96a29b 2926 if (!curr->node_stamp)
b5dd77c8 2927 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2928 curr->node_stamp += period;
cbee9f88 2929
b34920d4 2930 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2931 task_work_add(curr, work, true);
cbee9f88
PZ
2932 }
2933}
3fed382b 2934
3f9672ba
SD
2935static void update_scan_period(struct task_struct *p, int new_cpu)
2936{
2937 int src_nid = cpu_to_node(task_cpu(p));
2938 int dst_nid = cpu_to_node(new_cpu);
2939
05cbdf4f
MG
2940 if (!static_branch_likely(&sched_numa_balancing))
2941 return;
2942
3f9672ba
SD
2943 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2944 return;
2945
05cbdf4f
MG
2946 if (src_nid == dst_nid)
2947 return;
2948
2949 /*
2950 * Allow resets if faults have been trapped before one scan
2951 * has completed. This is most likely due to a new task that
2952 * is pulled cross-node due to wakeups or load balancing.
2953 */
2954 if (p->numa_scan_seq) {
2955 /*
2956 * Avoid scan adjustments if moving to the preferred
2957 * node or if the task was not previously running on
2958 * the preferred node.
2959 */
2960 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2961 (p->numa_preferred_nid != NUMA_NO_NODE &&
2962 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2963 return;
2964 }
2965
2966 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2967}
2968
cbee9f88
PZ
2969#else
2970static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2971{
2972}
0ec8aa00
PZ
2973
2974static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2975{
2976}
2977
2978static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2979{
2980}
3fed382b 2981
3f9672ba
SD
2982static inline void update_scan_period(struct task_struct *p, int new_cpu)
2983{
2984}
2985
cbee9f88
PZ
2986#endif /* CONFIG_NUMA_BALANCING */
2987
30cfdcfc
DA
2988static void
2989account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2990{
2991 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2992#ifdef CONFIG_SMP
0ec8aa00
PZ
2993 if (entity_is_task(se)) {
2994 struct rq *rq = rq_of(cfs_rq);
2995
2996 account_numa_enqueue(rq, task_of(se));
2997 list_add(&se->group_node, &rq->cfs_tasks);
2998 }
367456c7 2999#endif
30cfdcfc 3000 cfs_rq->nr_running++;
30cfdcfc
DA
3001}
3002
3003static void
3004account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3005{
3006 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3007#ifdef CONFIG_SMP
0ec8aa00
PZ
3008 if (entity_is_task(se)) {
3009 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3010 list_del_init(&se->group_node);
0ec8aa00 3011 }
bfdb198c 3012#endif
30cfdcfc 3013 cfs_rq->nr_running--;
30cfdcfc
DA
3014}
3015
8d5b9025
PZ
3016/*
3017 * Signed add and clamp on underflow.
3018 *
3019 * Explicitly do a load-store to ensure the intermediate value never hits
3020 * memory. This allows lockless observations without ever seeing the negative
3021 * values.
3022 */
3023#define add_positive(_ptr, _val) do { \
3024 typeof(_ptr) ptr = (_ptr); \
3025 typeof(_val) val = (_val); \
3026 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3027 \
3028 res = var + val; \
3029 \
3030 if (val < 0 && res > var) \
3031 res = 0; \
3032 \
3033 WRITE_ONCE(*ptr, res); \
3034} while (0)
3035
3036/*
3037 * Unsigned subtract and clamp on underflow.
3038 *
3039 * Explicitly do a load-store to ensure the intermediate value never hits
3040 * memory. This allows lockless observations without ever seeing the negative
3041 * values.
3042 */
3043#define sub_positive(_ptr, _val) do { \
3044 typeof(_ptr) ptr = (_ptr); \
3045 typeof(*ptr) val = (_val); \
3046 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3047 res = var - val; \
3048 if (res > var) \
3049 res = 0; \
3050 WRITE_ONCE(*ptr, res); \
3051} while (0)
3052
b5c0ce7b
PB
3053/*
3054 * Remove and clamp on negative, from a local variable.
3055 *
3056 * A variant of sub_positive(), which does not use explicit load-store
3057 * and is thus optimized for local variable updates.
3058 */
3059#define lsub_positive(_ptr, _val) do { \
3060 typeof(_ptr) ptr = (_ptr); \
3061 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3062} while (0)
3063
8d5b9025 3064#ifdef CONFIG_SMP
8d5b9025
PZ
3065static inline void
3066enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067{
3068 cfs_rq->avg.load_avg += se->avg.load_avg;
3069 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3070}
3071
3072static inline void
3073dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3074{
3075 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3076 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3077}
3078#else
3079static inline void
8d5b9025
PZ
3080enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081static inline void
3082dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3083#endif
3084
9059393e 3085static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3086 unsigned long weight)
9059393e
VG
3087{
3088 if (se->on_rq) {
3089 /* commit outstanding execution time */
3090 if (cfs_rq->curr == se)
3091 update_curr(cfs_rq);
1724b95b 3092 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3093 }
3094 dequeue_load_avg(cfs_rq, se);
3095
3096 update_load_set(&se->load, weight);
3097
3098#ifdef CONFIG_SMP
1ea6c46a 3099 do {
87e867b4 3100 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3101
3102 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3103 } while (0);
9059393e
VG
3104#endif
3105
3106 enqueue_load_avg(cfs_rq, se);
0dacee1b 3107 if (se->on_rq)
1724b95b 3108 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3109
9059393e
VG
3110}
3111
3112void reweight_task(struct task_struct *p, int prio)
3113{
3114 struct sched_entity *se = &p->se;
3115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3116 struct load_weight *load = &se->load;
3117 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3118
0dacee1b 3119 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3120 load->inv_weight = sched_prio_to_wmult[prio];
3121}
3122
3ff6dcac 3123#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3124#ifdef CONFIG_SMP
cef27403
PZ
3125/*
3126 * All this does is approximate the hierarchical proportion which includes that
3127 * global sum we all love to hate.
3128 *
3129 * That is, the weight of a group entity, is the proportional share of the
3130 * group weight based on the group runqueue weights. That is:
3131 *
3132 * tg->weight * grq->load.weight
3133 * ge->load.weight = ----------------------------- (1)
3134 * \Sum grq->load.weight
3135 *
3136 * Now, because computing that sum is prohibitively expensive to compute (been
3137 * there, done that) we approximate it with this average stuff. The average
3138 * moves slower and therefore the approximation is cheaper and more stable.
3139 *
3140 * So instead of the above, we substitute:
3141 *
3142 * grq->load.weight -> grq->avg.load_avg (2)
3143 *
3144 * which yields the following:
3145 *
3146 * tg->weight * grq->avg.load_avg
3147 * ge->load.weight = ------------------------------ (3)
3148 * tg->load_avg
3149 *
3150 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3151 *
3152 * That is shares_avg, and it is right (given the approximation (2)).
3153 *
3154 * The problem with it is that because the average is slow -- it was designed
3155 * to be exactly that of course -- this leads to transients in boundary
3156 * conditions. In specific, the case where the group was idle and we start the
3157 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3158 * yielding bad latency etc..
3159 *
3160 * Now, in that special case (1) reduces to:
3161 *
3162 * tg->weight * grq->load.weight
17de4ee0 3163 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3164 * grp->load.weight
3165 *
3166 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3167 *
3168 * So what we do is modify our approximation (3) to approach (4) in the (near)
3169 * UP case, like:
3170 *
3171 * ge->load.weight =
3172 *
3173 * tg->weight * grq->load.weight
3174 * --------------------------------------------------- (5)
3175 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3176 *
17de4ee0
PZ
3177 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3178 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3179 *
3180 *
3181 * tg->weight * grq->load.weight
3182 * ge->load.weight = ----------------------------- (6)
3183 * tg_load_avg'
3184 *
3185 * Where:
3186 *
3187 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3188 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3189 *
3190 * And that is shares_weight and is icky. In the (near) UP case it approaches
3191 * (4) while in the normal case it approaches (3). It consistently
3192 * overestimates the ge->load.weight and therefore:
3193 *
3194 * \Sum ge->load.weight >= tg->weight
3195 *
3196 * hence icky!
3197 */
2c8e4dce 3198static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3199{
7c80cfc9
PZ
3200 long tg_weight, tg_shares, load, shares;
3201 struct task_group *tg = cfs_rq->tg;
3202
3203 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3204
3d4b60d3 3205 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3206
ea1dc6fc 3207 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3208
ea1dc6fc
PZ
3209 /* Ensure tg_weight >= load */
3210 tg_weight -= cfs_rq->tg_load_avg_contrib;
3211 tg_weight += load;
3ff6dcac 3212
7c80cfc9 3213 shares = (tg_shares * load);
cf5f0acf
PZ
3214 if (tg_weight)
3215 shares /= tg_weight;
3ff6dcac 3216
b8fd8423
DE
3217 /*
3218 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3219 * of a group with small tg->shares value. It is a floor value which is
3220 * assigned as a minimum load.weight to the sched_entity representing
3221 * the group on a CPU.
3222 *
3223 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3224 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3225 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3226 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3227 * instead of 0.
3228 */
7c80cfc9 3229 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3230}
387f77cc 3231#endif /* CONFIG_SMP */
ea1dc6fc 3232
82958366
PT
3233static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3234
1ea6c46a
PZ
3235/*
3236 * Recomputes the group entity based on the current state of its group
3237 * runqueue.
3238 */
3239static void update_cfs_group(struct sched_entity *se)
2069dd75 3240{
1ea6c46a 3241 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3242 long shares;
2069dd75 3243
1ea6c46a 3244 if (!gcfs_rq)
89ee048f
VG
3245 return;
3246
1ea6c46a 3247 if (throttled_hierarchy(gcfs_rq))
2069dd75 3248 return;
89ee048f 3249
3ff6dcac 3250#ifndef CONFIG_SMP
0dacee1b 3251 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3252
3253 if (likely(se->load.weight == shares))
3ff6dcac 3254 return;
7c80cfc9 3255#else
2c8e4dce 3256 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3257#endif
2069dd75 3258
0dacee1b 3259 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3260}
89ee048f 3261
2069dd75 3262#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3263static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3264{
3265}
3266#endif /* CONFIG_FAIR_GROUP_SCHED */
3267
ea14b57e 3268static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3269{
43964409
LT
3270 struct rq *rq = rq_of(cfs_rq);
3271
a4f9a0e5 3272 if (&rq->cfs == cfs_rq) {
a030d738
VK
3273 /*
3274 * There are a few boundary cases this might miss but it should
3275 * get called often enough that that should (hopefully) not be
9783be2c 3276 * a real problem.
a030d738
VK
3277 *
3278 * It will not get called when we go idle, because the idle
3279 * thread is a different class (!fair), nor will the utilization
3280 * number include things like RT tasks.
3281 *
3282 * As is, the util number is not freq-invariant (we'd have to
3283 * implement arch_scale_freq_capacity() for that).
3284 *
3285 * See cpu_util().
3286 */
ea14b57e 3287 cpufreq_update_util(rq, flags);
a030d738
VK
3288 }
3289}
3290
141965c7 3291#ifdef CONFIG_SMP
c566e8e9 3292#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3293/**
3294 * update_tg_load_avg - update the tg's load avg
3295 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3296 *
3297 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3298 * However, because tg->load_avg is a global value there are performance
3299 * considerations.
3300 *
3301 * In order to avoid having to look at the other cfs_rq's, we use a
3302 * differential update where we store the last value we propagated. This in
3303 * turn allows skipping updates if the differential is 'small'.
3304 *
815abf5a 3305 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3306 */
fe749158 3307static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3308{
9d89c257 3309 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3310
aa0b7ae0
WL
3311 /*
3312 * No need to update load_avg for root_task_group as it is not used.
3313 */
3314 if (cfs_rq->tg == &root_task_group)
3315 return;
3316
fe749158 3317 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3318 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3319 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3320 }
8165e145 3321}
f5f9739d 3322
ad936d86 3323/*
97fb7a0a 3324 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3325 * caller only guarantees p->pi_lock is held; no other assumptions,
3326 * including the state of rq->lock, should be made.
3327 */
3328void set_task_rq_fair(struct sched_entity *se,
3329 struct cfs_rq *prev, struct cfs_rq *next)
3330{
0ccb977f
PZ
3331 u64 p_last_update_time;
3332 u64 n_last_update_time;
3333
ad936d86
BP
3334 if (!sched_feat(ATTACH_AGE_LOAD))
3335 return;
3336
3337 /*
3338 * We are supposed to update the task to "current" time, then its up to
3339 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3340 * getting what current time is, so simply throw away the out-of-date
3341 * time. This will result in the wakee task is less decayed, but giving
3342 * the wakee more load sounds not bad.
3343 */
0ccb977f
PZ
3344 if (!(se->avg.last_update_time && prev))
3345 return;
ad936d86
BP
3346
3347#ifndef CONFIG_64BIT
0ccb977f 3348 {
ad936d86
BP
3349 u64 p_last_update_time_copy;
3350 u64 n_last_update_time_copy;
3351
3352 do {
3353 p_last_update_time_copy = prev->load_last_update_time_copy;
3354 n_last_update_time_copy = next->load_last_update_time_copy;
3355
3356 smp_rmb();
3357
3358 p_last_update_time = prev->avg.last_update_time;
3359 n_last_update_time = next->avg.last_update_time;
3360
3361 } while (p_last_update_time != p_last_update_time_copy ||
3362 n_last_update_time != n_last_update_time_copy);
0ccb977f 3363 }
ad936d86 3364#else
0ccb977f
PZ
3365 p_last_update_time = prev->avg.last_update_time;
3366 n_last_update_time = next->avg.last_update_time;
ad936d86 3367#endif
23127296 3368 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3369 se->avg.last_update_time = n_last_update_time;
ad936d86 3370}
09a43ace 3371
0e2d2aaa
PZ
3372
3373/*
3374 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3375 * propagate its contribution. The key to this propagation is the invariant
3376 * that for each group:
3377 *
3378 * ge->avg == grq->avg (1)
3379 *
3380 * _IFF_ we look at the pure running and runnable sums. Because they
3381 * represent the very same entity, just at different points in the hierarchy.
3382 *
9f683953
VG
3383 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3384 * and simply copies the running/runnable sum over (but still wrong, because
3385 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3386 *
0dacee1b 3387 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3388 *
3389 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3390 *
3391 * And since, like util, the runnable part should be directly transferable,
3392 * the following would _appear_ to be the straight forward approach:
3393 *
a4c3c049 3394 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3395 *
3396 * And per (1) we have:
3397 *
a4c3c049 3398 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3399 *
3400 * Which gives:
3401 *
3402 * ge->load.weight * grq->avg.load_avg
3403 * ge->avg.load_avg = ----------------------------------- (4)
3404 * grq->load.weight
3405 *
3406 * Except that is wrong!
3407 *
3408 * Because while for entities historical weight is not important and we
3409 * really only care about our future and therefore can consider a pure
3410 * runnable sum, runqueues can NOT do this.
3411 *
3412 * We specifically want runqueues to have a load_avg that includes
3413 * historical weights. Those represent the blocked load, the load we expect
3414 * to (shortly) return to us. This only works by keeping the weights as
3415 * integral part of the sum. We therefore cannot decompose as per (3).
3416 *
a4c3c049
VG
3417 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3418 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3419 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3420 * runnable section of these tasks overlap (or not). If they were to perfectly
3421 * align the rq as a whole would be runnable 2/3 of the time. If however we
3422 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3423 *
a4c3c049 3424 * So we'll have to approximate.. :/
0e2d2aaa 3425 *
a4c3c049 3426 * Given the constraint:
0e2d2aaa 3427 *
a4c3c049 3428 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3429 *
a4c3c049
VG
3430 * We can construct a rule that adds runnable to a rq by assuming minimal
3431 * overlap.
0e2d2aaa 3432 *
a4c3c049 3433 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3434 *
a4c3c049 3435 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3436 *
a4c3c049 3437 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3438 *
0e2d2aaa
PZ
3439 */
3440
09a43ace 3441static inline void
0e2d2aaa 3442update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3443{
09a43ace 3444 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3445 u32 divider;
09a43ace
VG
3446
3447 /* Nothing to update */
3448 if (!delta)
3449 return;
3450
87e867b4
VG
3451 /*
3452 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3453 * See ___update_load_avg() for details.
3454 */
3455 divider = get_pelt_divider(&cfs_rq->avg);
3456
09a43ace
VG
3457 /* Set new sched_entity's utilization */
3458 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3459 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3460
3461 /* Update parent cfs_rq utilization */
3462 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3463 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3464}
3465
9f683953
VG
3466static inline void
3467update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3468{
3469 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3470 u32 divider;
9f683953
VG
3471
3472 /* Nothing to update */
3473 if (!delta)
3474 return;
3475
87e867b4
VG
3476 /*
3477 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3478 * See ___update_load_avg() for details.
3479 */
3480 divider = get_pelt_divider(&cfs_rq->avg);
3481
9f683953
VG
3482 /* Set new sched_entity's runnable */
3483 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3484 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3485
3486 /* Update parent cfs_rq runnable */
3487 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3488 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3489}
3490
09a43ace 3491static inline void
0dacee1b 3492update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3493{
a4c3c049 3494 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3495 unsigned long load_avg;
3496 u64 load_sum = 0;
a4c3c049 3497 s64 delta_sum;
95d68593 3498 u32 divider;
09a43ace 3499
0e2d2aaa
PZ
3500 if (!runnable_sum)
3501 return;
09a43ace 3502
0e2d2aaa 3503 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3504
95d68593
VG
3505 /*
3506 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3507 * See ___update_load_avg() for details.
3508 */
87e867b4 3509 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3510
a4c3c049
VG
3511 if (runnable_sum >= 0) {
3512 /*
3513 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3514 * the CPU is saturated running == runnable.
3515 */
3516 runnable_sum += se->avg.load_sum;
95d68593 3517 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3518 } else {
3519 /*
3520 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3521 * assuming all tasks are equally runnable.
3522 */
3523 if (scale_load_down(gcfs_rq->load.weight)) {
3524 load_sum = div_s64(gcfs_rq->avg.load_sum,
3525 scale_load_down(gcfs_rq->load.weight));
3526 }
3527
3528 /* But make sure to not inflate se's runnable */
3529 runnable_sum = min(se->avg.load_sum, load_sum);
3530 }
3531
3532 /*
3533 * runnable_sum can't be lower than running_sum
23127296
VG
3534 * Rescale running sum to be in the same range as runnable sum
3535 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3536 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3537 */
23127296 3538 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3539 runnable_sum = max(runnable_sum, running_sum);
3540
0e2d2aaa 3541 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3542 load_avg = div_s64(load_sum, divider);
09a43ace 3543
a4c3c049
VG
3544 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3545 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3546
a4c3c049
VG
3547 se->avg.load_sum = runnable_sum;
3548 se->avg.load_avg = load_avg;
3549 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3550 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3551}
3552
0e2d2aaa 3553static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3554{
0e2d2aaa
PZ
3555 cfs_rq->propagate = 1;
3556 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3557}
3558
3559/* Update task and its cfs_rq load average */
3560static inline int propagate_entity_load_avg(struct sched_entity *se)
3561{
0e2d2aaa 3562 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3563
3564 if (entity_is_task(se))
3565 return 0;
3566
0e2d2aaa
PZ
3567 gcfs_rq = group_cfs_rq(se);
3568 if (!gcfs_rq->propagate)
09a43ace
VG
3569 return 0;
3570
0e2d2aaa
PZ
3571 gcfs_rq->propagate = 0;
3572
09a43ace
VG
3573 cfs_rq = cfs_rq_of(se);
3574
0e2d2aaa 3575 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3576
0e2d2aaa 3577 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3578 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3579 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3580
ba19f51f 3581 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3582 trace_pelt_se_tp(se);
ba19f51f 3583
09a43ace
VG
3584 return 1;
3585}
3586
bc427898
VG
3587/*
3588 * Check if we need to update the load and the utilization of a blocked
3589 * group_entity:
3590 */
3591static inline bool skip_blocked_update(struct sched_entity *se)
3592{
3593 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3594
3595 /*
3596 * If sched_entity still have not zero load or utilization, we have to
3597 * decay it:
3598 */
3599 if (se->avg.load_avg || se->avg.util_avg)
3600 return false;
3601
3602 /*
3603 * If there is a pending propagation, we have to update the load and
3604 * the utilization of the sched_entity:
3605 */
0e2d2aaa 3606 if (gcfs_rq->propagate)
bc427898
VG
3607 return false;
3608
3609 /*
3610 * Otherwise, the load and the utilization of the sched_entity is
3611 * already zero and there is no pending propagation, so it will be a
3612 * waste of time to try to decay it:
3613 */
3614 return true;
3615}
3616
6e83125c 3617#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3618
fe749158 3619static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3620
3621static inline int propagate_entity_load_avg(struct sched_entity *se)
3622{
3623 return 0;
3624}
3625
0e2d2aaa 3626static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3627
6e83125c 3628#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3629
3d30544f
PZ
3630/**
3631 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3632 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3633 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3634 *
3635 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3636 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3637 * post_init_entity_util_avg().
3638 *
3639 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3640 *
7c3edd2c
PZ
3641 * Returns true if the load decayed or we removed load.
3642 *
3643 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3644 * call update_tg_load_avg() when this function returns true.
3d30544f 3645 */
a2c6c91f 3646static inline int
3a123bbb 3647update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3648{
9f683953 3649 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3650 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3651 int decayed = 0;
2dac754e 3652
2a2f5d4e
PZ
3653 if (cfs_rq->removed.nr) {
3654 unsigned long r;
87e867b4 3655 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3656
3657 raw_spin_lock(&cfs_rq->removed.lock);
3658 swap(cfs_rq->removed.util_avg, removed_util);
3659 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3660 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3661 cfs_rq->removed.nr = 0;
3662 raw_spin_unlock(&cfs_rq->removed.lock);
3663
2a2f5d4e 3664 r = removed_load;
89741892 3665 sub_positive(&sa->load_avg, r);
9a2dd585 3666 sub_positive(&sa->load_sum, r * divider);
2dac754e 3667
2a2f5d4e 3668 r = removed_util;
89741892 3669 sub_positive(&sa->util_avg, r);
9a2dd585 3670 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3671
9f683953
VG
3672 r = removed_runnable;
3673 sub_positive(&sa->runnable_avg, r);
3674 sub_positive(&sa->runnable_sum, r * divider);
3675
3676 /*
3677 * removed_runnable is the unweighted version of removed_load so we
3678 * can use it to estimate removed_load_sum.
3679 */
3680 add_tg_cfs_propagate(cfs_rq,
3681 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3682
3683 decayed = 1;
9d89c257 3684 }
36ee28e4 3685
23127296 3686 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3687
9d89c257
YD
3688#ifndef CONFIG_64BIT
3689 smp_wmb();
3690 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3691#endif
36ee28e4 3692
2a2f5d4e 3693 return decayed;
21e96f88
SM
3694}
3695
3d30544f
PZ
3696/**
3697 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3698 * @cfs_rq: cfs_rq to attach to
3699 * @se: sched_entity to attach
3700 *
3701 * Must call update_cfs_rq_load_avg() before this, since we rely on
3702 * cfs_rq->avg.last_update_time being current.
3703 */
a4f9a0e5 3704static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3705{
95d68593
VG
3706 /*
3707 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3708 * See ___update_load_avg() for details.
3709 */
87e867b4 3710 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3711
3712 /*
3713 * When we attach the @se to the @cfs_rq, we must align the decay
3714 * window because without that, really weird and wonderful things can
3715 * happen.
3716 *
3717 * XXX illustrate
3718 */
a05e8c51 3719 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3720 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3721
3722 /*
3723 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3724 * period_contrib. This isn't strictly correct, but since we're
3725 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3726 * _sum a little.
3727 */
3728 se->avg.util_sum = se->avg.util_avg * divider;
3729
9f683953
VG
3730 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3731
f207934f
PZ
3732 se->avg.load_sum = divider;
3733 if (se_weight(se)) {
3734 se->avg.load_sum =
3735 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3736 }
3737
8d5b9025 3738 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3739 cfs_rq->avg.util_avg += se->avg.util_avg;
3740 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3741 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3742 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3743
3744 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3745
a4f9a0e5 3746 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3747
3748 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3749}
3750
3d30544f
PZ
3751/**
3752 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3753 * @cfs_rq: cfs_rq to detach from
3754 * @se: sched_entity to detach
3755 *
3756 * Must call update_cfs_rq_load_avg() before this, since we rely on
3757 * cfs_rq->avg.last_update_time being current.
3758 */
a05e8c51
BP
3759static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760{
8d5b9025 3761 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3762 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3763 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3764 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3765 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3766
3767 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3768
ea14b57e 3769 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3770
3771 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3772}
3773
b382a531
PZ
3774/*
3775 * Optional action to be done while updating the load average
3776 */
3777#define UPDATE_TG 0x1
3778#define SKIP_AGE_LOAD 0x2
3779#define DO_ATTACH 0x4
3780
3781/* Update task and its cfs_rq load average */
3782static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3783{
23127296 3784 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3785 int decayed;
3786
3787 /*
3788 * Track task load average for carrying it to new CPU after migrated, and
3789 * track group sched_entity load average for task_h_load calc in migration
3790 */
3791 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3792 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3793
3794 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3795 decayed |= propagate_entity_load_avg(se);
3796
3797 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3798
ea14b57e
PZ
3799 /*
3800 * DO_ATTACH means we're here from enqueue_entity().
3801 * !last_update_time means we've passed through
3802 * migrate_task_rq_fair() indicating we migrated.
3803 *
3804 * IOW we're enqueueing a task on a new CPU.
3805 */
a4f9a0e5 3806 attach_entity_load_avg(cfs_rq, se);
fe749158 3807 update_tg_load_avg(cfs_rq);
b382a531 3808
bef69dd8
VG
3809 } else if (decayed) {
3810 cfs_rq_util_change(cfs_rq, 0);
3811
3812 if (flags & UPDATE_TG)
fe749158 3813 update_tg_load_avg(cfs_rq);
bef69dd8 3814 }
b382a531
PZ
3815}
3816
9d89c257 3817#ifndef CONFIG_64BIT
0905f04e
YD
3818static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3819{
9d89c257 3820 u64 last_update_time_copy;
0905f04e 3821 u64 last_update_time;
9ee474f5 3822
9d89c257
YD
3823 do {
3824 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3825 smp_rmb();
3826 last_update_time = cfs_rq->avg.last_update_time;
3827 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3828
3829 return last_update_time;
3830}
9d89c257 3831#else
0905f04e
YD
3832static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3833{
3834 return cfs_rq->avg.last_update_time;
3835}
9d89c257
YD
3836#endif
3837
104cb16d
MR
3838/*
3839 * Synchronize entity load avg of dequeued entity without locking
3840 * the previous rq.
3841 */
71b47eaf 3842static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3843{
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3845 u64 last_update_time;
3846
3847 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3848 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3849}
3850
0905f04e
YD
3851/*
3852 * Task first catches up with cfs_rq, and then subtract
3853 * itself from the cfs_rq (task must be off the queue now).
3854 */
71b47eaf 3855static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3856{
3857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3858 unsigned long flags;
0905f04e
YD
3859
3860 /*
7dc603c9
PZ
3861 * tasks cannot exit without having gone through wake_up_new_task() ->
3862 * post_init_entity_util_avg() which will have added things to the
3863 * cfs_rq, so we can remove unconditionally.
0905f04e 3864 */
0905f04e 3865
104cb16d 3866 sync_entity_load_avg(se);
2a2f5d4e
PZ
3867
3868 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3869 ++cfs_rq->removed.nr;
3870 cfs_rq->removed.util_avg += se->avg.util_avg;
3871 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3872 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3873 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3874}
642dbc39 3875
9f683953
VG
3876static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3877{
3878 return cfs_rq->avg.runnable_avg;
3879}
3880
7ea241af
YD
3881static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3882{
3883 return cfs_rq->avg.load_avg;
3884}
3885
d91cecc1
CY
3886static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3887
7f65ea42
PB
3888static inline unsigned long task_util(struct task_struct *p)
3889{
3890 return READ_ONCE(p->se.avg.util_avg);
3891}
3892
3893static inline unsigned long _task_util_est(struct task_struct *p)
3894{
3895 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3896
92a801e5 3897 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3898}
3899
3900static inline unsigned long task_util_est(struct task_struct *p)
3901{
3902 return max(task_util(p), _task_util_est(p));
3903}
3904
a7008c07
VS
3905#ifdef CONFIG_UCLAMP_TASK
3906static inline unsigned long uclamp_task_util(struct task_struct *p)
3907{
3908 return clamp(task_util_est(p),
3909 uclamp_eff_value(p, UCLAMP_MIN),
3910 uclamp_eff_value(p, UCLAMP_MAX));
3911}
3912#else
3913static inline unsigned long uclamp_task_util(struct task_struct *p)
3914{
3915 return task_util_est(p);
3916}
3917#endif
3918
7f65ea42
PB
3919static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3920 struct task_struct *p)
3921{
3922 unsigned int enqueued;
3923
3924 if (!sched_feat(UTIL_EST))
3925 return;
3926
3927 /* Update root cfs_rq's estimated utilization */
3928 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3929 enqueued += _task_util_est(p);
7f65ea42 3930 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3931
3932 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3933}
3934
3935/*
3936 * Check if a (signed) value is within a specified (unsigned) margin,
3937 * based on the observation that:
3938 *
3939 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3940 *
3941 * NOTE: this only works when value + maring < INT_MAX.
3942 */
3943static inline bool within_margin(int value, int margin)
3944{
3945 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3946}
3947
3948static void
3949util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3950{
3951 long last_ewma_diff;
3952 struct util_est ue;
10a35e68 3953 int cpu;
7f65ea42
PB
3954
3955 if (!sched_feat(UTIL_EST))
3956 return;
3957
3482d98b
VG
3958 /* Update root cfs_rq's estimated utilization */
3959 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3960 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3961 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3962
4581bea8
VD
3963 trace_sched_util_est_cfs_tp(cfs_rq);
3964
7f65ea42
PB
3965 /*
3966 * Skip update of task's estimated utilization when the task has not
3967 * yet completed an activation, e.g. being migrated.
3968 */
3969 if (!task_sleep)
3970 return;
3971
d519329f
PB
3972 /*
3973 * If the PELT values haven't changed since enqueue time,
3974 * skip the util_est update.
3975 */
3976 ue = p->se.avg.util_est;
3977 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3978 return;
3979
b8c96361
PB
3980 /*
3981 * Reset EWMA on utilization increases, the moving average is used only
3982 * to smooth utilization decreases.
3983 */
3984 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3985 if (sched_feat(UTIL_EST_FASTUP)) {
3986 if (ue.ewma < ue.enqueued) {
3987 ue.ewma = ue.enqueued;
3988 goto done;
3989 }
3990 }
3991
7f65ea42
PB
3992 /*
3993 * Skip update of task's estimated utilization when its EWMA is
3994 * already ~1% close to its last activation value.
3995 */
7f65ea42
PB
3996 last_ewma_diff = ue.enqueued - ue.ewma;
3997 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3998 return;
3999
10a35e68
VG
4000 /*
4001 * To avoid overestimation of actual task utilization, skip updates if
4002 * we cannot grant there is idle time in this CPU.
4003 */
4004 cpu = cpu_of(rq_of(cfs_rq));
4005 if (task_util(p) > capacity_orig_of(cpu))
4006 return;
4007
7f65ea42
PB
4008 /*
4009 * Update Task's estimated utilization
4010 *
4011 * When *p completes an activation we can consolidate another sample
4012 * of the task size. This is done by storing the current PELT value
4013 * as ue.enqueued and by using this value to update the Exponential
4014 * Weighted Moving Average (EWMA):
4015 *
4016 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4017 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4018 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4019 * = w * ( last_ewma_diff ) + ewma(t-1)
4020 * = w * (last_ewma_diff + ewma(t-1) / w)
4021 *
4022 * Where 'w' is the weight of new samples, which is configured to be
4023 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4024 */
4025 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4026 ue.ewma += last_ewma_diff;
4027 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4028done:
7f65ea42 4029 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4030
4031 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4032}
4033
3b1baa64
MR
4034static inline int task_fits_capacity(struct task_struct *p, long capacity)
4035{
a7008c07 4036 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4037}
4038
4039static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4040{
4041 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4042 return;
4043
4044 if (!p) {
4045 rq->misfit_task_load = 0;
4046 return;
4047 }
4048
4049 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4050 rq->misfit_task_load = 0;
4051 return;
4052 }
4053
01cfcde9
VG
4054 /*
4055 * Make sure that misfit_task_load will not be null even if
4056 * task_h_load() returns 0.
4057 */
4058 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4059}
4060
38033c37
PZ
4061#else /* CONFIG_SMP */
4062
d31b1a66
VG
4063#define UPDATE_TG 0x0
4064#define SKIP_AGE_LOAD 0x0
b382a531 4065#define DO_ATTACH 0x0
d31b1a66 4066
88c0616e 4067static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4068{
ea14b57e 4069 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4070}
4071
9d89c257 4072static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4073
a05e8c51 4074static inline void
a4f9a0e5 4075attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4076static inline void
4077detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4078
d91cecc1 4079static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4080{
4081 return 0;
4082}
4083
7f65ea42
PB
4084static inline void
4085util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4086
4087static inline void
4088util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4089 bool task_sleep) {}
3b1baa64 4090static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4091
38033c37 4092#endif /* CONFIG_SMP */
9d85f21c 4093
ddc97297
PZ
4094static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4095{
4096#ifdef CONFIG_SCHED_DEBUG
4097 s64 d = se->vruntime - cfs_rq->min_vruntime;
4098
4099 if (d < 0)
4100 d = -d;
4101
4102 if (d > 3*sysctl_sched_latency)
ae92882e 4103 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4104#endif
4105}
4106
aeb73b04
PZ
4107static void
4108place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4109{
1af5f730 4110 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4111
2cb8600e
PZ
4112 /*
4113 * The 'current' period is already promised to the current tasks,
4114 * however the extra weight of the new task will slow them down a
4115 * little, place the new task so that it fits in the slot that
4116 * stays open at the end.
4117 */
94dfb5e7 4118 if (initial && sched_feat(START_DEBIT))
f9c0b095 4119 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4120
a2e7a7eb 4121 /* sleeps up to a single latency don't count. */
5ca9880c 4122 if (!initial) {
a2e7a7eb 4123 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4124
a2e7a7eb
MG
4125 /*
4126 * Halve their sleep time's effect, to allow
4127 * for a gentler effect of sleepers:
4128 */
4129 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4130 thresh >>= 1;
51e0304c 4131
a2e7a7eb 4132 vruntime -= thresh;
aeb73b04
PZ
4133 }
4134
b5d9d734 4135 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4136 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4137}
4138
d3d9dc33
PT
4139static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4140
cb251765
MG
4141static inline void check_schedstat_required(void)
4142{
4143#ifdef CONFIG_SCHEDSTATS
4144 if (schedstat_enabled())
4145 return;
4146
4147 /* Force schedstat enabled if a dependent tracepoint is active */
4148 if (trace_sched_stat_wait_enabled() ||
4149 trace_sched_stat_sleep_enabled() ||
4150 trace_sched_stat_iowait_enabled() ||
4151 trace_sched_stat_blocked_enabled() ||
4152 trace_sched_stat_runtime_enabled()) {
eda8dca5 4153 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4154 "stat_blocked and stat_runtime require the "
f67abed5 4155 "kernel parameter schedstats=enable or "
cb251765
MG
4156 "kernel.sched_schedstats=1\n");
4157 }
4158#endif
4159}
4160
fe61468b 4161static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4162
4163/*
4164 * MIGRATION
4165 *
4166 * dequeue
4167 * update_curr()
4168 * update_min_vruntime()
4169 * vruntime -= min_vruntime
4170 *
4171 * enqueue
4172 * update_curr()
4173 * update_min_vruntime()
4174 * vruntime += min_vruntime
4175 *
4176 * this way the vruntime transition between RQs is done when both
4177 * min_vruntime are up-to-date.
4178 *
4179 * WAKEUP (remote)
4180 *
59efa0ba 4181 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4182 * vruntime -= min_vruntime
4183 *
4184 * enqueue
4185 * update_curr()
4186 * update_min_vruntime()
4187 * vruntime += min_vruntime
4188 *
4189 * this way we don't have the most up-to-date min_vruntime on the originating
4190 * CPU and an up-to-date min_vruntime on the destination CPU.
4191 */
4192
bf0f6f24 4193static void
88ec22d3 4194enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4195{
2f950354
PZ
4196 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4197 bool curr = cfs_rq->curr == se;
4198
88ec22d3 4199 /*
2f950354
PZ
4200 * If we're the current task, we must renormalise before calling
4201 * update_curr().
88ec22d3 4202 */
2f950354 4203 if (renorm && curr)
88ec22d3
PZ
4204 se->vruntime += cfs_rq->min_vruntime;
4205
2f950354
PZ
4206 update_curr(cfs_rq);
4207
bf0f6f24 4208 /*
2f950354
PZ
4209 * Otherwise, renormalise after, such that we're placed at the current
4210 * moment in time, instead of some random moment in the past. Being
4211 * placed in the past could significantly boost this task to the
4212 * fairness detriment of existing tasks.
bf0f6f24 4213 */
2f950354
PZ
4214 if (renorm && !curr)
4215 se->vruntime += cfs_rq->min_vruntime;
4216
89ee048f
VG
4217 /*
4218 * When enqueuing a sched_entity, we must:
4219 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4220 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4221 * - For group_entity, update its weight to reflect the new share of
4222 * its group cfs_rq
4223 * - Add its new weight to cfs_rq->load.weight
4224 */
b382a531 4225 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4226 se_update_runnable(se);
1ea6c46a 4227 update_cfs_group(se);
17bc14b7 4228 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4229
1a3d027c 4230 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4231 place_entity(cfs_rq, se, 0);
bf0f6f24 4232
cb251765 4233 check_schedstat_required();
4fa8d299
JP
4234 update_stats_enqueue(cfs_rq, se, flags);
4235 check_spread(cfs_rq, se);
2f950354 4236 if (!curr)
83b699ed 4237 __enqueue_entity(cfs_rq, se);
2069dd75 4238 se->on_rq = 1;
3d4b47b4 4239
fe61468b
VG
4240 /*
4241 * When bandwidth control is enabled, cfs might have been removed
4242 * because of a parent been throttled but cfs->nr_running > 1. Try to
4243 * add it unconditionnally.
4244 */
4245 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4246 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4247
4248 if (cfs_rq->nr_running == 1)
d3d9dc33 4249 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4250}
4251
2c13c919 4252static void __clear_buddies_last(struct sched_entity *se)
2002c695 4253{
2c13c919
RR
4254 for_each_sched_entity(se) {
4255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4256 if (cfs_rq->last != se)
2c13c919 4257 break;
f1044799
PZ
4258
4259 cfs_rq->last = NULL;
2c13c919
RR
4260 }
4261}
2002c695 4262
2c13c919
RR
4263static void __clear_buddies_next(struct sched_entity *se)
4264{
4265 for_each_sched_entity(se) {
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4267 if (cfs_rq->next != se)
2c13c919 4268 break;
f1044799
PZ
4269
4270 cfs_rq->next = NULL;
2c13c919 4271 }
2002c695
PZ
4272}
4273
ac53db59
RR
4274static void __clear_buddies_skip(struct sched_entity *se)
4275{
4276 for_each_sched_entity(se) {
4277 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4278 if (cfs_rq->skip != se)
ac53db59 4279 break;
f1044799
PZ
4280
4281 cfs_rq->skip = NULL;
ac53db59
RR
4282 }
4283}
4284
a571bbea
PZ
4285static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4286{
2c13c919
RR
4287 if (cfs_rq->last == se)
4288 __clear_buddies_last(se);
4289
4290 if (cfs_rq->next == se)
4291 __clear_buddies_next(se);
ac53db59
RR
4292
4293 if (cfs_rq->skip == se)
4294 __clear_buddies_skip(se);
a571bbea
PZ
4295}
4296
6c16a6dc 4297static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4298
bf0f6f24 4299static void
371fd7e7 4300dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4301{
a2a2d680
DA
4302 /*
4303 * Update run-time statistics of the 'current'.
4304 */
4305 update_curr(cfs_rq);
89ee048f
VG
4306
4307 /*
4308 * When dequeuing a sched_entity, we must:
4309 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4310 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4311 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4312 * - For group entity, update its weight to reflect the new share
4313 * of its group cfs_rq.
4314 */
88c0616e 4315 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4316 se_update_runnable(se);
a2a2d680 4317
4fa8d299 4318 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4319
2002c695 4320 clear_buddies(cfs_rq, se);
4793241b 4321
83b699ed 4322 if (se != cfs_rq->curr)
30cfdcfc 4323 __dequeue_entity(cfs_rq, se);
17bc14b7 4324 se->on_rq = 0;
30cfdcfc 4325 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4326
4327 /*
b60205c7
PZ
4328 * Normalize after update_curr(); which will also have moved
4329 * min_vruntime if @se is the one holding it back. But before doing
4330 * update_min_vruntime() again, which will discount @se's position and
4331 * can move min_vruntime forward still more.
88ec22d3 4332 */
371fd7e7 4333 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4334 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4335
d8b4986d
PT
4336 /* return excess runtime on last dequeue */
4337 return_cfs_rq_runtime(cfs_rq);
4338
1ea6c46a 4339 update_cfs_group(se);
b60205c7
PZ
4340
4341 /*
4342 * Now advance min_vruntime if @se was the entity holding it back,
4343 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4344 * put back on, and if we advance min_vruntime, we'll be placed back
4345 * further than we started -- ie. we'll be penalized.
4346 */
9845c49c 4347 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4348 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4349}
4350
4351/*
4352 * Preempt the current task with a newly woken task if needed:
4353 */
7c92e54f 4354static void
2e09bf55 4355check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4356{
11697830 4357 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4358 struct sched_entity *se;
4359 s64 delta;
11697830 4360
6d0f0ebd 4361 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4362 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4363 if (delta_exec > ideal_runtime) {
8875125e 4364 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4365 /*
4366 * The current task ran long enough, ensure it doesn't get
4367 * re-elected due to buddy favours.
4368 */
4369 clear_buddies(cfs_rq, curr);
f685ceac
MG
4370 return;
4371 }
4372
4373 /*
4374 * Ensure that a task that missed wakeup preemption by a
4375 * narrow margin doesn't have to wait for a full slice.
4376 * This also mitigates buddy induced latencies under load.
4377 */
f685ceac
MG
4378 if (delta_exec < sysctl_sched_min_granularity)
4379 return;
4380
f4cfb33e
WX
4381 se = __pick_first_entity(cfs_rq);
4382 delta = curr->vruntime - se->vruntime;
f685ceac 4383
f4cfb33e
WX
4384 if (delta < 0)
4385 return;
d7d82944 4386
f4cfb33e 4387 if (delta > ideal_runtime)
8875125e 4388 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4389}
4390
83b699ed 4391static void
8494f412 4392set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4393{
83b699ed
SV
4394 /* 'current' is not kept within the tree. */
4395 if (se->on_rq) {
4396 /*
4397 * Any task has to be enqueued before it get to execute on
4398 * a CPU. So account for the time it spent waiting on the
4399 * runqueue.
4400 */
4fa8d299 4401 update_stats_wait_end(cfs_rq, se);
83b699ed 4402 __dequeue_entity(cfs_rq, se);
88c0616e 4403 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4404 }
4405
79303e9e 4406 update_stats_curr_start(cfs_rq, se);
429d43bc 4407 cfs_rq->curr = se;
4fa8d299 4408
eba1ed4b
IM
4409 /*
4410 * Track our maximum slice length, if the CPU's load is at
4411 * least twice that of our own weight (i.e. dont track it
4412 * when there are only lesser-weight tasks around):
4413 */
f2bedc47
DE
4414 if (schedstat_enabled() &&
4415 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4416 schedstat_set(se->statistics.slice_max,
4417 max((u64)schedstat_val(se->statistics.slice_max),
4418 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4419 }
4fa8d299 4420
4a55b450 4421 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4422}
4423
3f3a4904
PZ
4424static int
4425wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4426
ac53db59
RR
4427/*
4428 * Pick the next process, keeping these things in mind, in this order:
4429 * 1) keep things fair between processes/task groups
4430 * 2) pick the "next" process, since someone really wants that to run
4431 * 3) pick the "last" process, for cache locality
4432 * 4) do not run the "skip" process, if something else is available
4433 */
678d5718
PZ
4434static struct sched_entity *
4435pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4436{
678d5718
PZ
4437 struct sched_entity *left = __pick_first_entity(cfs_rq);
4438 struct sched_entity *se;
4439
4440 /*
4441 * If curr is set we have to see if its left of the leftmost entity
4442 * still in the tree, provided there was anything in the tree at all.
4443 */
4444 if (!left || (curr && entity_before(curr, left)))
4445 left = curr;
4446
4447 se = left; /* ideally we run the leftmost entity */
f4b6755f 4448
ac53db59
RR
4449 /*
4450 * Avoid running the skip buddy, if running something else can
4451 * be done without getting too unfair.
4452 */
4453 if (cfs_rq->skip == se) {
678d5718
PZ
4454 struct sched_entity *second;
4455
4456 if (se == curr) {
4457 second = __pick_first_entity(cfs_rq);
4458 } else {
4459 second = __pick_next_entity(se);
4460 if (!second || (curr && entity_before(curr, second)))
4461 second = curr;
4462 }
4463
ac53db59
RR
4464 if (second && wakeup_preempt_entity(second, left) < 1)
4465 se = second;
4466 }
aa2ac252 4467
9abb8973
PO
4468 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4469 /*
4470 * Someone really wants this to run. If it's not unfair, run it.
4471 */
ac53db59 4472 se = cfs_rq->next;
9abb8973
PO
4473 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4474 /*
4475 * Prefer last buddy, try to return the CPU to a preempted task.
4476 */
4477 se = cfs_rq->last;
4478 }
ac53db59 4479
f685ceac 4480 clear_buddies(cfs_rq, se);
4793241b
PZ
4481
4482 return se;
aa2ac252
PZ
4483}
4484
678d5718 4485static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4486
ab6cde26 4487static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4488{
4489 /*
4490 * If still on the runqueue then deactivate_task()
4491 * was not called and update_curr() has to be done:
4492 */
4493 if (prev->on_rq)
b7cc0896 4494 update_curr(cfs_rq);
bf0f6f24 4495
d3d9dc33
PT
4496 /* throttle cfs_rqs exceeding runtime */
4497 check_cfs_rq_runtime(cfs_rq);
4498
4fa8d299 4499 check_spread(cfs_rq, prev);
cb251765 4500
30cfdcfc 4501 if (prev->on_rq) {
4fa8d299 4502 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4503 /* Put 'current' back into the tree. */
4504 __enqueue_entity(cfs_rq, prev);
9d85f21c 4505 /* in !on_rq case, update occurred at dequeue */
88c0616e 4506 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4507 }
429d43bc 4508 cfs_rq->curr = NULL;
bf0f6f24
IM
4509}
4510
8f4d37ec
PZ
4511static void
4512entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4513{
bf0f6f24 4514 /*
30cfdcfc 4515 * Update run-time statistics of the 'current'.
bf0f6f24 4516 */
30cfdcfc 4517 update_curr(cfs_rq);
bf0f6f24 4518
9d85f21c
PT
4519 /*
4520 * Ensure that runnable average is periodically updated.
4521 */
88c0616e 4522 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4523 update_cfs_group(curr);
9d85f21c 4524
8f4d37ec
PZ
4525#ifdef CONFIG_SCHED_HRTICK
4526 /*
4527 * queued ticks are scheduled to match the slice, so don't bother
4528 * validating it and just reschedule.
4529 */
983ed7a6 4530 if (queued) {
8875125e 4531 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4532 return;
4533 }
8f4d37ec
PZ
4534 /*
4535 * don't let the period tick interfere with the hrtick preemption
4536 */
4537 if (!sched_feat(DOUBLE_TICK) &&
4538 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4539 return;
4540#endif
4541
2c2efaed 4542 if (cfs_rq->nr_running > 1)
2e09bf55 4543 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4544}
4545
ab84d31e
PT
4546
4547/**************************************************
4548 * CFS bandwidth control machinery
4549 */
4550
4551#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4552
e9666d10 4553#ifdef CONFIG_JUMP_LABEL
c5905afb 4554static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4555
4556static inline bool cfs_bandwidth_used(void)
4557{
c5905afb 4558 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4559}
4560
1ee14e6c 4561void cfs_bandwidth_usage_inc(void)
029632fb 4562{
ce48c146 4563 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4564}
4565
4566void cfs_bandwidth_usage_dec(void)
4567{
ce48c146 4568 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4569}
e9666d10 4570#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4571static bool cfs_bandwidth_used(void)
4572{
4573 return true;
4574}
4575
1ee14e6c
BS
4576void cfs_bandwidth_usage_inc(void) {}
4577void cfs_bandwidth_usage_dec(void) {}
e9666d10 4578#endif /* CONFIG_JUMP_LABEL */
029632fb 4579
ab84d31e
PT
4580/*
4581 * default period for cfs group bandwidth.
4582 * default: 0.1s, units: nanoseconds
4583 */
4584static inline u64 default_cfs_period(void)
4585{
4586 return 100000000ULL;
4587}
ec12cb7f
PT
4588
4589static inline u64 sched_cfs_bandwidth_slice(void)
4590{
4591 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4592}
4593
a9cf55b2 4594/*
763a9ec0
QC
4595 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4596 * directly instead of rq->clock to avoid adding additional synchronization
4597 * around rq->lock.
a9cf55b2
PT
4598 *
4599 * requires cfs_b->lock
4600 */
029632fb 4601void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4602{
763a9ec0
QC
4603 if (cfs_b->quota != RUNTIME_INF)
4604 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4605}
4606
029632fb
PZ
4607static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4608{
4609 return &tg->cfs_bandwidth;
4610}
4611
85dac906 4612/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4613static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4614 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4615{
e98fa02c
PT
4616 u64 min_amount, amount = 0;
4617
4618 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4619
4620 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4621 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4622
ec12cb7f
PT
4623 if (cfs_b->quota == RUNTIME_INF)
4624 amount = min_amount;
58088ad0 4625 else {
77a4d1a1 4626 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4627
4628 if (cfs_b->runtime > 0) {
4629 amount = min(cfs_b->runtime, min_amount);
4630 cfs_b->runtime -= amount;
4631 cfs_b->idle = 0;
4632 }
ec12cb7f 4633 }
ec12cb7f
PT
4634
4635 cfs_rq->runtime_remaining += amount;
85dac906
PT
4636
4637 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4638}
4639
e98fa02c
PT
4640/* returns 0 on failure to allocate runtime */
4641static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4642{
4643 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4644 int ret;
4645
4646 raw_spin_lock(&cfs_b->lock);
4647 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4648 raw_spin_unlock(&cfs_b->lock);
4649
4650 return ret;
4651}
4652
9dbdb155 4653static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4654{
4655 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4656 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4657
4658 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4659 return;
4660
5e2d2cc2
L
4661 if (cfs_rq->throttled)
4662 return;
85dac906
PT
4663 /*
4664 * if we're unable to extend our runtime we resched so that the active
4665 * hierarchy can be throttled
4666 */
4667 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4668 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4669}
4670
6c16a6dc 4671static __always_inline
9dbdb155 4672void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4673{
56f570e5 4674 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4675 return;
4676
4677 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4678}
4679
85dac906
PT
4680static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4681{
56f570e5 4682 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4683}
4684
64660c86
PT
4685/* check whether cfs_rq, or any parent, is throttled */
4686static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4687{
56f570e5 4688 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4689}
4690
4691/*
4692 * Ensure that neither of the group entities corresponding to src_cpu or
4693 * dest_cpu are members of a throttled hierarchy when performing group
4694 * load-balance operations.
4695 */
4696static inline int throttled_lb_pair(struct task_group *tg,
4697 int src_cpu, int dest_cpu)
4698{
4699 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4700
4701 src_cfs_rq = tg->cfs_rq[src_cpu];
4702 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4703
4704 return throttled_hierarchy(src_cfs_rq) ||
4705 throttled_hierarchy(dest_cfs_rq);
4706}
4707
64660c86
PT
4708static int tg_unthrottle_up(struct task_group *tg, void *data)
4709{
4710 struct rq *rq = data;
4711 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4712
4713 cfs_rq->throttle_count--;
64660c86 4714 if (!cfs_rq->throttle_count) {
78becc27 4715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4716 cfs_rq->throttled_clock_task;
31bc6aea
VG
4717
4718 /* Add cfs_rq with already running entity in the list */
4719 if (cfs_rq->nr_running >= 1)
4720 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4721 }
64660c86
PT
4722
4723 return 0;
4724}
4725
4726static int tg_throttle_down(struct task_group *tg, void *data)
4727{
4728 struct rq *rq = data;
4729 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4730
82958366 4731 /* group is entering throttled state, stop time */
31bc6aea 4732 if (!cfs_rq->throttle_count) {
78becc27 4733 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4734 list_del_leaf_cfs_rq(cfs_rq);
4735 }
64660c86
PT
4736 cfs_rq->throttle_count++;
4737
4738 return 0;
4739}
4740
e98fa02c 4741static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4742{
4743 struct rq *rq = rq_of(cfs_rq);
4744 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4745 struct sched_entity *se;
43e9f7f2 4746 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4747
4748 raw_spin_lock(&cfs_b->lock);
4749 /* This will start the period timer if necessary */
4750 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4751 /*
4752 * We have raced with bandwidth becoming available, and if we
4753 * actually throttled the timer might not unthrottle us for an
4754 * entire period. We additionally needed to make sure that any
4755 * subsequent check_cfs_rq_runtime calls agree not to throttle
4756 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4757 * for 1ns of runtime rather than just check cfs_b.
4758 */
4759 dequeue = 0;
4760 } else {
4761 list_add_tail_rcu(&cfs_rq->throttled_list,
4762 &cfs_b->throttled_cfs_rq);
4763 }
4764 raw_spin_unlock(&cfs_b->lock);
4765
4766 if (!dequeue)
4767 return false; /* Throttle no longer required. */
85dac906
PT
4768
4769 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4770
f1b17280 4771 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4772 rcu_read_lock();
4773 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4774 rcu_read_unlock();
85dac906
PT
4775
4776 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4777 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4778 for_each_sched_entity(se) {
4779 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4780 /* throttled entity or throttle-on-deactivate */
4781 if (!se->on_rq)
4782 break;
4783
6212437f 4784 if (dequeue) {
85dac906 4785 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f
VG
4786 } else {
4787 update_load_avg(qcfs_rq, se, 0);
4788 se_update_runnable(se);
4789 }
4790
85dac906 4791 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4792 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4793
4794 if (qcfs_rq->load.weight)
4795 dequeue = 0;
4796 }
4797
4798 if (!se)
72465447 4799 sub_nr_running(rq, task_delta);
85dac906 4800
c06f04c7 4801 /*
e98fa02c
PT
4802 * Note: distribution will already see us throttled via the
4803 * throttled-list. rq->lock protects completion.
c06f04c7 4804 */
e98fa02c
PT
4805 cfs_rq->throttled = 1;
4806 cfs_rq->throttled_clock = rq_clock(rq);
4807 return true;
85dac906
PT
4808}
4809
029632fb 4810void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4811{
4812 struct rq *rq = rq_of(cfs_rq);
4813 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4814 struct sched_entity *se;
43e9f7f2 4815 long task_delta, idle_task_delta;
671fd9da 4816
22b958d8 4817 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4818
4819 cfs_rq->throttled = 0;
1a55af2e
FW
4820
4821 update_rq_clock(rq);
4822
671fd9da 4823 raw_spin_lock(&cfs_b->lock);
78becc27 4824 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4825 list_del_rcu(&cfs_rq->throttled_list);
4826 raw_spin_unlock(&cfs_b->lock);
4827
64660c86
PT
4828 /* update hierarchical throttle state */
4829 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4830
671fd9da
PT
4831 if (!cfs_rq->load.weight)
4832 return;
4833
4834 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4835 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4836 for_each_sched_entity(se) {
4837 if (se->on_rq)
39f23ce0
VG
4838 break;
4839 cfs_rq = cfs_rq_of(se);
4840 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4841
4842 cfs_rq->h_nr_running += task_delta;
4843 cfs_rq->idle_h_nr_running += idle_task_delta;
4844
4845 /* end evaluation on encountering a throttled cfs_rq */
4846 if (cfs_rq_throttled(cfs_rq))
4847 goto unthrottle_throttle;
4848 }
671fd9da 4849
39f23ce0 4850 for_each_sched_entity(se) {
671fd9da 4851 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4852
4853 update_load_avg(cfs_rq, se, UPDATE_TG);
4854 se_update_runnable(se);
6212437f 4855
671fd9da 4856 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4857 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4858
39f23ce0
VG
4859
4860 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4861 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4862 goto unthrottle_throttle;
4863
4864 /*
4865 * One parent has been throttled and cfs_rq removed from the
4866 * list. Add it back to not break the leaf list.
4867 */
4868 if (throttled_hierarchy(cfs_rq))
4869 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4870 }
4871
39f23ce0
VG
4872 /* At this point se is NULL and we are at root level*/
4873 add_nr_running(rq, task_delta);
671fd9da 4874
39f23ce0 4875unthrottle_throttle:
fe61468b
VG
4876 /*
4877 * The cfs_rq_throttled() breaks in the above iteration can result in
4878 * incomplete leaf list maintenance, resulting in triggering the
4879 * assertion below.
4880 */
4881 for_each_sched_entity(se) {
4882 cfs_rq = cfs_rq_of(se);
4883
39f23ce0
VG
4884 if (list_add_leaf_cfs_rq(cfs_rq))
4885 break;
fe61468b
VG
4886 }
4887
4888 assert_list_leaf_cfs_rq(rq);
4889
97fb7a0a 4890 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4891 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4892 resched_curr(rq);
671fd9da
PT
4893}
4894
26a8b127 4895static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4896{
4897 struct cfs_rq *cfs_rq;
26a8b127 4898 u64 runtime, remaining = 1;
671fd9da
PT
4899
4900 rcu_read_lock();
4901 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4902 throttled_list) {
4903 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4904 struct rq_flags rf;
671fd9da 4905
c0ad4aa4 4906 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4907 if (!cfs_rq_throttled(cfs_rq))
4908 goto next;
4909
5e2d2cc2
L
4910 /* By the above check, this should never be true */
4911 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4912
26a8b127 4913 raw_spin_lock(&cfs_b->lock);
671fd9da 4914 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4915 if (runtime > cfs_b->runtime)
4916 runtime = cfs_b->runtime;
4917 cfs_b->runtime -= runtime;
4918 remaining = cfs_b->runtime;
4919 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4920
4921 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4922
4923 /* we check whether we're throttled above */
4924 if (cfs_rq->runtime_remaining > 0)
4925 unthrottle_cfs_rq(cfs_rq);
4926
4927next:
c0ad4aa4 4928 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4929
4930 if (!remaining)
4931 break;
4932 }
4933 rcu_read_unlock();
671fd9da
PT
4934}
4935
58088ad0
PT
4936/*
4937 * Responsible for refilling a task_group's bandwidth and unthrottling its
4938 * cfs_rqs as appropriate. If there has been no activity within the last
4939 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4940 * used to track this state.
4941 */
c0ad4aa4 4942static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4943{
51f2176d 4944 int throttled;
58088ad0 4945
58088ad0
PT
4946 /* no need to continue the timer with no bandwidth constraint */
4947 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4948 goto out_deactivate;
58088ad0 4949
671fd9da 4950 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4951 cfs_b->nr_periods += overrun;
671fd9da 4952
51f2176d
BS
4953 /*
4954 * idle depends on !throttled (for the case of a large deficit), and if
4955 * we're going inactive then everything else can be deferred
4956 */
4957 if (cfs_b->idle && !throttled)
4958 goto out_deactivate;
a9cf55b2
PT
4959
4960 __refill_cfs_bandwidth_runtime(cfs_b);
4961
671fd9da
PT
4962 if (!throttled) {
4963 /* mark as potentially idle for the upcoming period */
4964 cfs_b->idle = 1;
51f2176d 4965 return 0;
671fd9da
PT
4966 }
4967
e8da1b18
NR
4968 /* account preceding periods in which throttling occurred */
4969 cfs_b->nr_throttled += overrun;
4970
671fd9da 4971 /*
26a8b127 4972 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4973 */
ab93a4bc 4974 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 4975 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4976 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 4977 distribute_cfs_runtime(cfs_b);
c0ad4aa4 4978 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
4979
4980 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4981 }
58088ad0 4982
671fd9da
PT
4983 /*
4984 * While we are ensured activity in the period following an
4985 * unthrottle, this also covers the case in which the new bandwidth is
4986 * insufficient to cover the existing bandwidth deficit. (Forcing the
4987 * timer to remain active while there are any throttled entities.)
4988 */
4989 cfs_b->idle = 0;
58088ad0 4990
51f2176d
BS
4991 return 0;
4992
4993out_deactivate:
51f2176d 4994 return 1;
58088ad0 4995}
d3d9dc33 4996
d8b4986d
PT
4997/* a cfs_rq won't donate quota below this amount */
4998static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4999/* minimum remaining period time to redistribute slack quota */
5000static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5001/* how long we wait to gather additional slack before distributing */
5002static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5003
db06e78c
BS
5004/*
5005 * Are we near the end of the current quota period?
5006 *
5007 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5008 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5009 * migrate_hrtimers, base is never cleared, so we are fine.
5010 */
d8b4986d
PT
5011static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5012{
5013 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5014 u64 remaining;
5015
5016 /* if the call-back is running a quota refresh is already occurring */
5017 if (hrtimer_callback_running(refresh_timer))
5018 return 1;
5019
5020 /* is a quota refresh about to occur? */
5021 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5022 if (remaining < min_expire)
5023 return 1;
5024
5025 return 0;
5026}
5027
5028static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5029{
5030 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5031
5032 /* if there's a quota refresh soon don't bother with slack */
5033 if (runtime_refresh_within(cfs_b, min_left))
5034 return;
5035
66567fcb 5036 /* don't push forwards an existing deferred unthrottle */
5037 if (cfs_b->slack_started)
5038 return;
5039 cfs_b->slack_started = true;
5040
4cfafd30
PZ
5041 hrtimer_start(&cfs_b->slack_timer,
5042 ns_to_ktime(cfs_bandwidth_slack_period),
5043 HRTIMER_MODE_REL);
d8b4986d
PT
5044}
5045
5046/* we know any runtime found here is valid as update_curr() precedes return */
5047static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5048{
5049 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5050 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5051
5052 if (slack_runtime <= 0)
5053 return;
5054
5055 raw_spin_lock(&cfs_b->lock);
de53fd7a 5056 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5057 cfs_b->runtime += slack_runtime;
5058
5059 /* we are under rq->lock, defer unthrottling using a timer */
5060 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5061 !list_empty(&cfs_b->throttled_cfs_rq))
5062 start_cfs_slack_bandwidth(cfs_b);
5063 }
5064 raw_spin_unlock(&cfs_b->lock);
5065
5066 /* even if it's not valid for return we don't want to try again */
5067 cfs_rq->runtime_remaining -= slack_runtime;
5068}
5069
5070static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5071{
56f570e5
PT
5072 if (!cfs_bandwidth_used())
5073 return;
5074
fccfdc6f 5075 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5076 return;
5077
5078 __return_cfs_rq_runtime(cfs_rq);
5079}
5080
5081/*
5082 * This is done with a timer (instead of inline with bandwidth return) since
5083 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5084 */
5085static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5086{
5087 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5088 unsigned long flags;
d8b4986d
PT
5089
5090 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5091 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5092 cfs_b->slack_started = false;
baa9be4f 5093
db06e78c 5094 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5095 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5096 return;
db06e78c 5097 }
d8b4986d 5098
c06f04c7 5099 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5100 runtime = cfs_b->runtime;
c06f04c7 5101
c0ad4aa4 5102 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5103
5104 if (!runtime)
5105 return;
5106
26a8b127 5107 distribute_cfs_runtime(cfs_b);
d8b4986d 5108
c0ad4aa4 5109 raw_spin_lock_irqsave(&cfs_b->lock, flags);
c0ad4aa4 5110 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5111}
5112
d3d9dc33
PT
5113/*
5114 * When a group wakes up we want to make sure that its quota is not already
5115 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5116 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5117 */
5118static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5119{
56f570e5
PT
5120 if (!cfs_bandwidth_used())
5121 return;
5122
d3d9dc33
PT
5123 /* an active group must be handled by the update_curr()->put() path */
5124 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5125 return;
5126
5127 /* ensure the group is not already throttled */
5128 if (cfs_rq_throttled(cfs_rq))
5129 return;
5130
5131 /* update runtime allocation */
5132 account_cfs_rq_runtime(cfs_rq, 0);
5133 if (cfs_rq->runtime_remaining <= 0)
5134 throttle_cfs_rq(cfs_rq);
5135}
5136
55e16d30
PZ
5137static void sync_throttle(struct task_group *tg, int cpu)
5138{
5139 struct cfs_rq *pcfs_rq, *cfs_rq;
5140
5141 if (!cfs_bandwidth_used())
5142 return;
5143
5144 if (!tg->parent)
5145 return;
5146
5147 cfs_rq = tg->cfs_rq[cpu];
5148 pcfs_rq = tg->parent->cfs_rq[cpu];
5149
5150 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5151 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5152}
5153
d3d9dc33 5154/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5155static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5156{
56f570e5 5157 if (!cfs_bandwidth_used())
678d5718 5158 return false;
56f570e5 5159
d3d9dc33 5160 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5161 return false;
d3d9dc33
PT
5162
5163 /*
5164 * it's possible for a throttled entity to be forced into a running
5165 * state (e.g. set_curr_task), in this case we're finished.
5166 */
5167 if (cfs_rq_throttled(cfs_rq))
678d5718 5168 return true;
d3d9dc33 5169
e98fa02c 5170 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5171}
029632fb 5172
029632fb
PZ
5173static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5174{
5175 struct cfs_bandwidth *cfs_b =
5176 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5177
029632fb
PZ
5178 do_sched_cfs_slack_timer(cfs_b);
5179
5180 return HRTIMER_NORESTART;
5181}
5182
2e8e1922
PA
5183extern const u64 max_cfs_quota_period;
5184
029632fb
PZ
5185static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5186{
5187 struct cfs_bandwidth *cfs_b =
5188 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5189 unsigned long flags;
029632fb
PZ
5190 int overrun;
5191 int idle = 0;
2e8e1922 5192 int count = 0;
029632fb 5193
c0ad4aa4 5194 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5195 for (;;) {
77a4d1a1 5196 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5197 if (!overrun)
5198 break;
5199
5a6d6a6c
HC
5200 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5201
2e8e1922
PA
5202 if (++count > 3) {
5203 u64 new, old = ktime_to_ns(cfs_b->period);
5204
4929a4e6
XZ
5205 /*
5206 * Grow period by a factor of 2 to avoid losing precision.
5207 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5208 * to fail.
5209 */
5210 new = old * 2;
5211 if (new < max_cfs_quota_period) {
5212 cfs_b->period = ns_to_ktime(new);
5213 cfs_b->quota *= 2;
5214
5215 pr_warn_ratelimited(
5216 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5217 smp_processor_id(),
5218 div_u64(new, NSEC_PER_USEC),
5219 div_u64(cfs_b->quota, NSEC_PER_USEC));
5220 } else {
5221 pr_warn_ratelimited(
5222 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5223 smp_processor_id(),
5224 div_u64(old, NSEC_PER_USEC),
5225 div_u64(cfs_b->quota, NSEC_PER_USEC));
5226 }
2e8e1922
PA
5227
5228 /* reset count so we don't come right back in here */
5229 count = 0;
5230 }
029632fb 5231 }
4cfafd30
PZ
5232 if (idle)
5233 cfs_b->period_active = 0;
c0ad4aa4 5234 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5235
5236 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5237}
5238
5239void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5240{
5241 raw_spin_lock_init(&cfs_b->lock);
5242 cfs_b->runtime = 0;
5243 cfs_b->quota = RUNTIME_INF;
5244 cfs_b->period = ns_to_ktime(default_cfs_period());
5245
5246 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5247 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5248 cfs_b->period_timer.function = sched_cfs_period_timer;
5249 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5250 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5251 cfs_b->slack_started = false;
029632fb
PZ
5252}
5253
5254static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5255{
5256 cfs_rq->runtime_enabled = 0;
5257 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5258}
5259
77a4d1a1 5260void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5261{
4cfafd30 5262 lockdep_assert_held(&cfs_b->lock);
029632fb 5263
f1d1be8a
XP
5264 if (cfs_b->period_active)
5265 return;
5266
5267 cfs_b->period_active = 1;
763a9ec0 5268 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5269 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5270}
5271
5272static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5273{
7f1a169b
TH
5274 /* init_cfs_bandwidth() was not called */
5275 if (!cfs_b->throttled_cfs_rq.next)
5276 return;
5277
029632fb
PZ
5278 hrtimer_cancel(&cfs_b->period_timer);
5279 hrtimer_cancel(&cfs_b->slack_timer);
5280}
5281
502ce005 5282/*
97fb7a0a 5283 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5284 *
5285 * The race is harmless, since modifying bandwidth settings of unhooked group
5286 * bits doesn't do much.
5287 */
5288
5289/* cpu online calback */
0e59bdae
KT
5290static void __maybe_unused update_runtime_enabled(struct rq *rq)
5291{
502ce005 5292 struct task_group *tg;
0e59bdae 5293
502ce005
PZ
5294 lockdep_assert_held(&rq->lock);
5295
5296 rcu_read_lock();
5297 list_for_each_entry_rcu(tg, &task_groups, list) {
5298 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5299 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5300
5301 raw_spin_lock(&cfs_b->lock);
5302 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5303 raw_spin_unlock(&cfs_b->lock);
5304 }
502ce005 5305 rcu_read_unlock();
0e59bdae
KT
5306}
5307
502ce005 5308/* cpu offline callback */
38dc3348 5309static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5310{
502ce005
PZ
5311 struct task_group *tg;
5312
5313 lockdep_assert_held(&rq->lock);
5314
5315 rcu_read_lock();
5316 list_for_each_entry_rcu(tg, &task_groups, list) {
5317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5318
029632fb
PZ
5319 if (!cfs_rq->runtime_enabled)
5320 continue;
5321
5322 /*
5323 * clock_task is not advancing so we just need to make sure
5324 * there's some valid quota amount
5325 */
51f2176d 5326 cfs_rq->runtime_remaining = 1;
0e59bdae 5327 /*
97fb7a0a 5328 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5329 * in take_cpu_down(), so we prevent new cfs throttling here.
5330 */
5331 cfs_rq->runtime_enabled = 0;
5332
029632fb
PZ
5333 if (cfs_rq_throttled(cfs_rq))
5334 unthrottle_cfs_rq(cfs_rq);
5335 }
502ce005 5336 rcu_read_unlock();
029632fb
PZ
5337}
5338
5339#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5340
5341static inline bool cfs_bandwidth_used(void)
5342{
5343 return false;
5344}
5345
9dbdb155 5346static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5347static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5348static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5349static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5350static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5351
5352static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5353{
5354 return 0;
5355}
64660c86
PT
5356
5357static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5358{
5359 return 0;
5360}
5361
5362static inline int throttled_lb_pair(struct task_group *tg,
5363 int src_cpu, int dest_cpu)
5364{
5365 return 0;
5366}
029632fb
PZ
5367
5368void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5369
5370#ifdef CONFIG_FAIR_GROUP_SCHED
5371static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5372#endif
5373
029632fb
PZ
5374static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5375{
5376 return NULL;
5377}
5378static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5379static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5380static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5381
5382#endif /* CONFIG_CFS_BANDWIDTH */
5383
bf0f6f24
IM
5384/**************************************************
5385 * CFS operations on tasks:
5386 */
5387
8f4d37ec
PZ
5388#ifdef CONFIG_SCHED_HRTICK
5389static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5390{
8f4d37ec
PZ
5391 struct sched_entity *se = &p->se;
5392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5393
9148a3a1 5394 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5395
8bf46a39 5396 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5397 u64 slice = sched_slice(cfs_rq, se);
5398 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5399 s64 delta = slice - ran;
5400
5401 if (delta < 0) {
5402 if (rq->curr == p)
8875125e 5403 resched_curr(rq);
8f4d37ec
PZ
5404 return;
5405 }
31656519 5406 hrtick_start(rq, delta);
8f4d37ec
PZ
5407 }
5408}
a4c2f00f
PZ
5409
5410/*
5411 * called from enqueue/dequeue and updates the hrtick when the
5412 * current task is from our class and nr_running is low enough
5413 * to matter.
5414 */
5415static void hrtick_update(struct rq *rq)
5416{
5417 struct task_struct *curr = rq->curr;
5418
b39e66ea 5419 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5420 return;
5421
5422 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5423 hrtick_start_fair(rq, curr);
5424}
55e12e5e 5425#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5426static inline void
5427hrtick_start_fair(struct rq *rq, struct task_struct *p)
5428{
5429}
a4c2f00f
PZ
5430
5431static inline void hrtick_update(struct rq *rq)
5432{
5433}
8f4d37ec
PZ
5434#endif
5435
2802bf3c
MR
5436#ifdef CONFIG_SMP
5437static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5438
5439static inline bool cpu_overutilized(int cpu)
5440{
60e17f5c 5441 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5442}
5443
5444static inline void update_overutilized_status(struct rq *rq)
5445{
f9f240f9 5446 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5447 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5448 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5449 }
2802bf3c
MR
5450}
5451#else
5452static inline void update_overutilized_status(struct rq *rq) { }
5453#endif
5454
323af6de
VK
5455/* Runqueue only has SCHED_IDLE tasks enqueued */
5456static int sched_idle_rq(struct rq *rq)
5457{
5458 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5459 rq->nr_running);
5460}
5461
afa70d94 5462#ifdef CONFIG_SMP
323af6de
VK
5463static int sched_idle_cpu(int cpu)
5464{
5465 return sched_idle_rq(cpu_rq(cpu));
5466}
afa70d94 5467#endif
323af6de 5468
bf0f6f24
IM
5469/*
5470 * The enqueue_task method is called before nr_running is
5471 * increased. Here we update the fair scheduling stats and
5472 * then put the task into the rbtree:
5473 */
ea87bb78 5474static void
371fd7e7 5475enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5476{
5477 struct cfs_rq *cfs_rq;
62fb1851 5478 struct sched_entity *se = &p->se;
43e9f7f2 5479 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5480
2539fc82
PB
5481 /*
5482 * The code below (indirectly) updates schedutil which looks at
5483 * the cfs_rq utilization to select a frequency.
5484 * Let's add the task's estimated utilization to the cfs_rq's
5485 * estimated utilization, before we update schedutil.
5486 */
5487 util_est_enqueue(&rq->cfs, p);
5488
8c34ab19
RW
5489 /*
5490 * If in_iowait is set, the code below may not trigger any cpufreq
5491 * utilization updates, so do it here explicitly with the IOWAIT flag
5492 * passed.
5493 */
5494 if (p->in_iowait)
674e7541 5495 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5496
bf0f6f24 5497 for_each_sched_entity(se) {
62fb1851 5498 if (se->on_rq)
bf0f6f24
IM
5499 break;
5500 cfs_rq = cfs_rq_of(se);
88ec22d3 5501 enqueue_entity(cfs_rq, se, flags);
85dac906 5502
953bfcd1 5503 cfs_rq->h_nr_running++;
43e9f7f2 5504 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5505
6d4d2246
VG
5506 /* end evaluation on encountering a throttled cfs_rq */
5507 if (cfs_rq_throttled(cfs_rq))
5508 goto enqueue_throttle;
5509
88ec22d3 5510 flags = ENQUEUE_WAKEUP;
bf0f6f24 5511 }
8f4d37ec 5512
2069dd75 5513 for_each_sched_entity(se) {
0f317143 5514 cfs_rq = cfs_rq_of(se);
2069dd75 5515
88c0616e 5516 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5517 se_update_runnable(se);
1ea6c46a 5518 update_cfs_group(se);
6d4d2246
VG
5519
5520 cfs_rq->h_nr_running++;
5521 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5522
5523 /* end evaluation on encountering a throttled cfs_rq */
5524 if (cfs_rq_throttled(cfs_rq))
5525 goto enqueue_throttle;
b34cb07d
PA
5526
5527 /*
5528 * One parent has been throttled and cfs_rq removed from the
5529 * list. Add it back to not break the leaf list.
5530 */
5531 if (throttled_hierarchy(cfs_rq))
5532 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5533 }
5534
7d148be6
VG
5535 /* At this point se is NULL and we are at root level*/
5536 add_nr_running(rq, 1);
2802bf3c 5537
7d148be6
VG
5538 /*
5539 * Since new tasks are assigned an initial util_avg equal to
5540 * half of the spare capacity of their CPU, tiny tasks have the
5541 * ability to cross the overutilized threshold, which will
5542 * result in the load balancer ruining all the task placement
5543 * done by EAS. As a way to mitigate that effect, do not account
5544 * for the first enqueue operation of new tasks during the
5545 * overutilized flag detection.
5546 *
5547 * A better way of solving this problem would be to wait for
5548 * the PELT signals of tasks to converge before taking them
5549 * into account, but that is not straightforward to implement,
5550 * and the following generally works well enough in practice.
5551 */
5552 if (flags & ENQUEUE_WAKEUP)
5553 update_overutilized_status(rq);
cd126afe 5554
7d148be6 5555enqueue_throttle:
f6783319
VG
5556 if (cfs_bandwidth_used()) {
5557 /*
5558 * When bandwidth control is enabled; the cfs_rq_throttled()
5559 * breaks in the above iteration can result in incomplete
5560 * leaf list maintenance, resulting in triggering the assertion
5561 * below.
5562 */
5563 for_each_sched_entity(se) {
5564 cfs_rq = cfs_rq_of(se);
5565
5566 if (list_add_leaf_cfs_rq(cfs_rq))
5567 break;
5568 }
5569 }
5570
5d299eab
PZ
5571 assert_list_leaf_cfs_rq(rq);
5572
a4c2f00f 5573 hrtick_update(rq);
bf0f6f24
IM
5574}
5575
2f36825b
VP
5576static void set_next_buddy(struct sched_entity *se);
5577
bf0f6f24
IM
5578/*
5579 * The dequeue_task method is called before nr_running is
5580 * decreased. We remove the task from the rbtree and
5581 * update the fair scheduling stats:
5582 */
371fd7e7 5583static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5584{
5585 struct cfs_rq *cfs_rq;
62fb1851 5586 struct sched_entity *se = &p->se;
2f36825b 5587 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5588 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5589 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5590
5591 for_each_sched_entity(se) {
5592 cfs_rq = cfs_rq_of(se);
371fd7e7 5593 dequeue_entity(cfs_rq, se, flags);
85dac906 5594
953bfcd1 5595 cfs_rq->h_nr_running--;
43e9f7f2 5596 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5597
6d4d2246
VG
5598 /* end evaluation on encountering a throttled cfs_rq */
5599 if (cfs_rq_throttled(cfs_rq))
5600 goto dequeue_throttle;
5601
bf0f6f24 5602 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5603 if (cfs_rq->load.weight) {
754bd598
KK
5604 /* Avoid re-evaluating load for this entity: */
5605 se = parent_entity(se);
2f36825b
VP
5606 /*
5607 * Bias pick_next to pick a task from this cfs_rq, as
5608 * p is sleeping when it is within its sched_slice.
5609 */
754bd598
KK
5610 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5611 set_next_buddy(se);
bf0f6f24 5612 break;
2f36825b 5613 }
371fd7e7 5614 flags |= DEQUEUE_SLEEP;
bf0f6f24 5615 }
8f4d37ec 5616
2069dd75 5617 for_each_sched_entity(se) {
0f317143 5618 cfs_rq = cfs_rq_of(se);
2069dd75 5619
88c0616e 5620 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5621 se_update_runnable(se);
1ea6c46a 5622 update_cfs_group(se);
6d4d2246
VG
5623
5624 cfs_rq->h_nr_running--;
5625 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5626
5627 /* end evaluation on encountering a throttled cfs_rq */
5628 if (cfs_rq_throttled(cfs_rq))
5629 goto dequeue_throttle;
5630
2069dd75
PZ
5631 }
5632
423d02e1
PW
5633 /* At this point se is NULL and we are at root level*/
5634 sub_nr_running(rq, 1);
cd126afe 5635
323af6de
VK
5636 /* balance early to pull high priority tasks */
5637 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5638 rq->next_balance = jiffies;
5639
423d02e1 5640dequeue_throttle:
7f65ea42 5641 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5642 hrtick_update(rq);
bf0f6f24
IM
5643}
5644
e7693a36 5645#ifdef CONFIG_SMP
10e2f1ac
PZ
5646
5647/* Working cpumask for: load_balance, load_balance_newidle. */
5648DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5649DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5650
9fd81dd5 5651#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5652
5653static struct {
5654 cpumask_var_t idle_cpus_mask;
5655 atomic_t nr_cpus;
f643ea22 5656 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5657 unsigned long next_balance; /* in jiffy units */
f643ea22 5658 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5659} nohz ____cacheline_aligned;
5660
9fd81dd5 5661#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5662
b0fb1eb4
VG
5663static unsigned long cpu_load(struct rq *rq)
5664{
5665 return cfs_rq_load_avg(&rq->cfs);
5666}
5667
3318544b
VG
5668/*
5669 * cpu_load_without - compute CPU load without any contributions from *p
5670 * @cpu: the CPU which load is requested
5671 * @p: the task which load should be discounted
5672 *
5673 * The load of a CPU is defined by the load of tasks currently enqueued on that
5674 * CPU as well as tasks which are currently sleeping after an execution on that
5675 * CPU.
5676 *
5677 * This method returns the load of the specified CPU by discounting the load of
5678 * the specified task, whenever the task is currently contributing to the CPU
5679 * load.
5680 */
5681static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5682{
5683 struct cfs_rq *cfs_rq;
5684 unsigned int load;
5685
5686 /* Task has no contribution or is new */
5687 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5688 return cpu_load(rq);
5689
5690 cfs_rq = &rq->cfs;
5691 load = READ_ONCE(cfs_rq->avg.load_avg);
5692
5693 /* Discount task's util from CPU's util */
5694 lsub_positive(&load, task_h_load(p));
5695
5696 return load;
5697}
5698
9f683953
VG
5699static unsigned long cpu_runnable(struct rq *rq)
5700{
5701 return cfs_rq_runnable_avg(&rq->cfs);
5702}
5703
070f5e86
VG
5704static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5705{
5706 struct cfs_rq *cfs_rq;
5707 unsigned int runnable;
5708
5709 /* Task has no contribution or is new */
5710 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5711 return cpu_runnable(rq);
5712
5713 cfs_rq = &rq->cfs;
5714 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5715
5716 /* Discount task's runnable from CPU's runnable */
5717 lsub_positive(&runnable, p->se.avg.runnable_avg);
5718
5719 return runnable;
5720}
5721
ced549fa 5722static unsigned long capacity_of(int cpu)
029632fb 5723{
ced549fa 5724 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5725}
5726
c58d25f3
PZ
5727static void record_wakee(struct task_struct *p)
5728{
5729 /*
5730 * Only decay a single time; tasks that have less then 1 wakeup per
5731 * jiffy will not have built up many flips.
5732 */
5733 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5734 current->wakee_flips >>= 1;
5735 current->wakee_flip_decay_ts = jiffies;
5736 }
5737
5738 if (current->last_wakee != p) {
5739 current->last_wakee = p;
5740 current->wakee_flips++;
5741 }
5742}
5743
63b0e9ed
MG
5744/*
5745 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5746 *
63b0e9ed 5747 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5748 * at a frequency roughly N times higher than one of its wakees.
5749 *
5750 * In order to determine whether we should let the load spread vs consolidating
5751 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5752 * partner, and a factor of lls_size higher frequency in the other.
5753 *
5754 * With both conditions met, we can be relatively sure that the relationship is
5755 * non-monogamous, with partner count exceeding socket size.
5756 *
5757 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5758 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5759 * socket size.
63b0e9ed 5760 */
62470419
MW
5761static int wake_wide(struct task_struct *p)
5762{
63b0e9ed
MG
5763 unsigned int master = current->wakee_flips;
5764 unsigned int slave = p->wakee_flips;
17c891ab 5765 int factor = __this_cpu_read(sd_llc_size);
62470419 5766
63b0e9ed
MG
5767 if (master < slave)
5768 swap(master, slave);
5769 if (slave < factor || master < slave * factor)
5770 return 0;
5771 return 1;
62470419
MW
5772}
5773
90001d67 5774/*
d153b153
PZ
5775 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5776 * soonest. For the purpose of speed we only consider the waking and previous
5777 * CPU.
90001d67 5778 *
7332dec0
MG
5779 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5780 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5781 *
5782 * wake_affine_weight() - considers the weight to reflect the average
5783 * scheduling latency of the CPUs. This seems to work
5784 * for the overloaded case.
90001d67 5785 */
3b76c4a3 5786static int
89a55f56 5787wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5788{
7332dec0
MG
5789 /*
5790 * If this_cpu is idle, it implies the wakeup is from interrupt
5791 * context. Only allow the move if cache is shared. Otherwise an
5792 * interrupt intensive workload could force all tasks onto one
5793 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5794 *
5795 * If the prev_cpu is idle and cache affine then avoid a migration.
5796 * There is no guarantee that the cache hot data from an interrupt
5797 * is more important than cache hot data on the prev_cpu and from
5798 * a cpufreq perspective, it's better to have higher utilisation
5799 * on one CPU.
7332dec0 5800 */
943d355d
RJ
5801 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5802 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5803
d153b153 5804 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5805 return this_cpu;
90001d67 5806
3b76c4a3 5807 return nr_cpumask_bits;
90001d67
PZ
5808}
5809
3b76c4a3 5810static int
f2cdd9cc
PZ
5811wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5812 int this_cpu, int prev_cpu, int sync)
90001d67 5813{
90001d67
PZ
5814 s64 this_eff_load, prev_eff_load;
5815 unsigned long task_load;
5816
11f10e54 5817 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5818
90001d67
PZ
5819 if (sync) {
5820 unsigned long current_load = task_h_load(current);
5821
f2cdd9cc 5822 if (current_load > this_eff_load)
3b76c4a3 5823 return this_cpu;
90001d67 5824
f2cdd9cc 5825 this_eff_load -= current_load;
90001d67
PZ
5826 }
5827
90001d67
PZ
5828 task_load = task_h_load(p);
5829
f2cdd9cc
PZ
5830 this_eff_load += task_load;
5831 if (sched_feat(WA_BIAS))
5832 this_eff_load *= 100;
5833 this_eff_load *= capacity_of(prev_cpu);
90001d67 5834
11f10e54 5835 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5836 prev_eff_load -= task_load;
5837 if (sched_feat(WA_BIAS))
5838 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5839 prev_eff_load *= capacity_of(this_cpu);
90001d67 5840
082f764a
MG
5841 /*
5842 * If sync, adjust the weight of prev_eff_load such that if
5843 * prev_eff == this_eff that select_idle_sibling() will consider
5844 * stacking the wakee on top of the waker if no other CPU is
5845 * idle.
5846 */
5847 if (sync)
5848 prev_eff_load += 1;
5849
5850 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5851}
5852
772bd008 5853static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5854 int this_cpu, int prev_cpu, int sync)
098fb9db 5855{
3b76c4a3 5856 int target = nr_cpumask_bits;
098fb9db 5857
89a55f56 5858 if (sched_feat(WA_IDLE))
3b76c4a3 5859 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5860
3b76c4a3
MG
5861 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5862 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5863
ae92882e 5864 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5865 if (target == nr_cpumask_bits)
5866 return prev_cpu;
098fb9db 5867
3b76c4a3
MG
5868 schedstat_inc(sd->ttwu_move_affine);
5869 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5870 return target;
098fb9db
IM
5871}
5872
aaee1203 5873static struct sched_group *
45da2773 5874find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5875
5876/*
97fb7a0a 5877 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5878 */
5879static int
18bd1b4b 5880find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5881{
5882 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5883 unsigned int min_exit_latency = UINT_MAX;
5884 u64 latest_idle_timestamp = 0;
5885 int least_loaded_cpu = this_cpu;
17346452 5886 int shallowest_idle_cpu = -1;
aaee1203
PZ
5887 int i;
5888
eaecf41f
MR
5889 /* Check if we have any choice: */
5890 if (group->group_weight == 1)
ae4df9d6 5891 return cpumask_first(sched_group_span(group));
eaecf41f 5892
aaee1203 5893 /* Traverse only the allowed CPUs */
3bd37062 5894 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5895 if (sched_idle_cpu(i))
5896 return i;
5897
943d355d 5898 if (available_idle_cpu(i)) {
83a0a96a
NP
5899 struct rq *rq = cpu_rq(i);
5900 struct cpuidle_state *idle = idle_get_state(rq);
5901 if (idle && idle->exit_latency < min_exit_latency) {
5902 /*
5903 * We give priority to a CPU whose idle state
5904 * has the smallest exit latency irrespective
5905 * of any idle timestamp.
5906 */
5907 min_exit_latency = idle->exit_latency;
5908 latest_idle_timestamp = rq->idle_stamp;
5909 shallowest_idle_cpu = i;
5910 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5911 rq->idle_stamp > latest_idle_timestamp) {
5912 /*
5913 * If equal or no active idle state, then
5914 * the most recently idled CPU might have
5915 * a warmer cache.
5916 */
5917 latest_idle_timestamp = rq->idle_stamp;
5918 shallowest_idle_cpu = i;
5919 }
17346452 5920 } else if (shallowest_idle_cpu == -1) {
11f10e54 5921 load = cpu_load(cpu_rq(i));
18cec7e0 5922 if (load < min_load) {
83a0a96a
NP
5923 min_load = load;
5924 least_loaded_cpu = i;
5925 }
e7693a36
GH
5926 }
5927 }
5928
17346452 5929 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5930}
e7693a36 5931
18bd1b4b
BJ
5932static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5933 int cpu, int prev_cpu, int sd_flag)
5934{
93f50f90 5935 int new_cpu = cpu;
18bd1b4b 5936
3bd37062 5937 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5938 return prev_cpu;
5939
c976a862 5940 /*
57abff06 5941 * We need task's util for cpu_util_without, sync it up to
c469933e 5942 * prev_cpu's last_update_time.
c976a862
VK
5943 */
5944 if (!(sd_flag & SD_BALANCE_FORK))
5945 sync_entity_load_avg(&p->se);
5946
18bd1b4b
BJ
5947 while (sd) {
5948 struct sched_group *group;
5949 struct sched_domain *tmp;
5950 int weight;
5951
5952 if (!(sd->flags & sd_flag)) {
5953 sd = sd->child;
5954 continue;
5955 }
5956
45da2773 5957 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5958 if (!group) {
5959 sd = sd->child;
5960 continue;
5961 }
5962
5963 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5964 if (new_cpu == cpu) {
97fb7a0a 5965 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5966 sd = sd->child;
5967 continue;
5968 }
5969
97fb7a0a 5970 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5971 cpu = new_cpu;
5972 weight = sd->span_weight;
5973 sd = NULL;
5974 for_each_domain(cpu, tmp) {
5975 if (weight <= tmp->span_weight)
5976 break;
5977 if (tmp->flags & sd_flag)
5978 sd = tmp;
5979 }
18bd1b4b
BJ
5980 }
5981
5982 return new_cpu;
5983}
5984
10e2f1ac 5985#ifdef CONFIG_SCHED_SMT
ba2591a5 5986DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5987EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5988
5989static inline void set_idle_cores(int cpu, int val)
5990{
5991 struct sched_domain_shared *sds;
5992
5993 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5994 if (sds)
5995 WRITE_ONCE(sds->has_idle_cores, val);
5996}
5997
5998static inline bool test_idle_cores(int cpu, bool def)
5999{
6000 struct sched_domain_shared *sds;
6001
6002 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6003 if (sds)
6004 return READ_ONCE(sds->has_idle_cores);
6005
6006 return def;
6007}
6008
6009/*
6010 * Scans the local SMT mask to see if the entire core is idle, and records this
6011 * information in sd_llc_shared->has_idle_cores.
6012 *
6013 * Since SMT siblings share all cache levels, inspecting this limited remote
6014 * state should be fairly cheap.
6015 */
1b568f0a 6016void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6017{
6018 int core = cpu_of(rq);
6019 int cpu;
6020
6021 rcu_read_lock();
6022 if (test_idle_cores(core, true))
6023 goto unlock;
6024
6025 for_each_cpu(cpu, cpu_smt_mask(core)) {
6026 if (cpu == core)
6027 continue;
6028
943d355d 6029 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6030 goto unlock;
6031 }
6032
6033 set_idle_cores(core, 1);
6034unlock:
6035 rcu_read_unlock();
6036}
6037
6038/*
6039 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6040 * there are no idle cores left in the system; tracked through
6041 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6042 */
6043static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6044{
6045 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6046 int core, cpu;
10e2f1ac 6047
1b568f0a
PZ
6048 if (!static_branch_likely(&sched_smt_present))
6049 return -1;
6050
10e2f1ac
PZ
6051 if (!test_idle_cores(target, false))
6052 return -1;
6053
3bd37062 6054 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6055
c743f0a5 6056 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6057 bool idle = true;
6058
6059 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6060 if (!available_idle_cpu(cpu)) {
10e2f1ac 6061 idle = false;
bec2860a
SD
6062 break;
6063 }
10e2f1ac 6064 }
bec2860a 6065 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6066
6067 if (idle)
6068 return core;
6069 }
6070
6071 /*
6072 * Failed to find an idle core; stop looking for one.
6073 */
6074 set_idle_cores(target, 0);
6075
6076 return -1;
6077}
6078
6079/*
6080 * Scan the local SMT mask for idle CPUs.
6081 */
df3cb4ea 6082static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac 6083{
17346452 6084 int cpu;
10e2f1ac 6085
1b568f0a
PZ
6086 if (!static_branch_likely(&sched_smt_present))
6087 return -1;
6088
10e2f1ac 6089 for_each_cpu(cpu, cpu_smt_mask(target)) {
df3cb4ea
XP
6090 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6091 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
10e2f1ac 6092 continue;
17346452 6093 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6094 return cpu;
6095 }
6096
17346452 6097 return -1;
10e2f1ac
PZ
6098}
6099
6100#else /* CONFIG_SCHED_SMT */
6101
6102static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6103{
6104 return -1;
6105}
6106
df3cb4ea 6107static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac
PZ
6108{
6109 return -1;
6110}
6111
6112#endif /* CONFIG_SCHED_SMT */
6113
6114/*
6115 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6116 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6117 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6118 */
10e2f1ac
PZ
6119static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6120{
60588bfa 6121 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6122 struct sched_domain *this_sd;
1ad3aaf3 6123 u64 avg_cost, avg_idle;
d76343c6 6124 u64 time;
8dc2d993 6125 int this = smp_processor_id();
17346452 6126 int cpu, nr = INT_MAX;
10e2f1ac 6127
9cfb38a7
WL
6128 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6129 if (!this_sd)
6130 return -1;
6131
10e2f1ac
PZ
6132 /*
6133 * Due to large variance we need a large fuzz factor; hackbench in
6134 * particularly is sensitive here.
6135 */
1ad3aaf3
PZ
6136 avg_idle = this_rq()->avg_idle / 512;
6137 avg_cost = this_sd->avg_scan_cost + 1;
6138
6139 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6140 return -1;
6141
1ad3aaf3
PZ
6142 if (sched_feat(SIS_PROP)) {
6143 u64 span_avg = sd->span_weight * avg_idle;
6144 if (span_avg > 4*avg_cost)
6145 nr = div_u64(span_avg, avg_cost);
6146 else
6147 nr = 4;
6148 }
6149
8dc2d993 6150 time = cpu_clock(this);
10e2f1ac 6151
60588bfa
CJ
6152 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6153
6154 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6155 if (!--nr)
17346452
VK
6156 return -1;
6157 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6158 break;
6159 }
6160
8dc2d993 6161 time = cpu_clock(this) - time;
d76343c6 6162 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6163
6164 return cpu;
6165}
6166
b7a33161
MR
6167/*
6168 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6169 * the task fits. If no CPU is big enough, but there are idle ones, try to
6170 * maximize capacity.
6171 */
6172static int
6173select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6174{
6175 unsigned long best_cap = 0;
6176 int cpu, best_cpu = -1;
6177 struct cpumask *cpus;
6178
6179 sync_entity_load_avg(&p->se);
6180
6181 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6182 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6183
6184 for_each_cpu_wrap(cpu, cpus, target) {
6185 unsigned long cpu_cap = capacity_of(cpu);
6186
6187 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6188 continue;
6189 if (task_fits_capacity(p, cpu_cap))
6190 return cpu;
6191
6192 if (cpu_cap > best_cap) {
6193 best_cap = cpu_cap;
6194 best_cpu = cpu;
6195 }
6196 }
6197
6198 return best_cpu;
6199}
6200
10e2f1ac
PZ
6201/*
6202 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6203 */
772bd008 6204static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6205{
99bd5e2f 6206 struct sched_domain *sd;
32e839dd 6207 int i, recent_used_cpu;
a50bde51 6208
b7a33161
MR
6209 /*
6210 * For asymmetric CPU capacity systems, our domain of interest is
6211 * sd_asym_cpucapacity rather than sd_llc.
6212 */
6213 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6214 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6215 /*
6216 * On an asymmetric CPU capacity system where an exclusive
6217 * cpuset defines a symmetric island (i.e. one unique
6218 * capacity_orig value through the cpuset), the key will be set
6219 * but the CPUs within that cpuset will not have a domain with
6220 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6221 * capacity path.
6222 */
6223 if (!sd)
6224 goto symmetric;
6225
6226 i = select_idle_capacity(p, sd, target);
6227 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6228 }
6229
6230symmetric:
3c29e651 6231 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 6232 return target;
99bd5e2f
SS
6233
6234 /*
97fb7a0a 6235 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6236 */
3c29e651
VK
6237 if (prev != target && cpus_share_cache(prev, target) &&
6238 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6239 return prev;
a50bde51 6240
52262ee5
MG
6241 /*
6242 * Allow a per-cpu kthread to stack with the wakee if the
6243 * kworker thread and the tasks previous CPUs are the same.
6244 * The assumption is that the wakee queued work for the
6245 * per-cpu kthread that is now complete and the wakeup is
6246 * essentially a sync wakeup. An obvious example of this
6247 * pattern is IO completions.
6248 */
6249 if (is_per_cpu_kthread(current) &&
6250 prev == smp_processor_id() &&
6251 this_rq()->nr_running <= 1) {
6252 return prev;
6253 }
6254
97fb7a0a 6255 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6256 recent_used_cpu = p->recent_used_cpu;
6257 if (recent_used_cpu != prev &&
6258 recent_used_cpu != target &&
6259 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6260 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6261 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6262 /*
6263 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6264 * candidate for the next wake:
32e839dd
MG
6265 */
6266 p->recent_used_cpu = prev;
6267 return recent_used_cpu;
6268 }
6269
518cd623 6270 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6271 if (!sd)
6272 return target;
772bd008 6273
10e2f1ac
PZ
6274 i = select_idle_core(p, sd, target);
6275 if ((unsigned)i < nr_cpumask_bits)
6276 return i;
37407ea7 6277
10e2f1ac
PZ
6278 i = select_idle_cpu(p, sd, target);
6279 if ((unsigned)i < nr_cpumask_bits)
6280 return i;
6281
df3cb4ea 6282 i = select_idle_smt(p, sd, target);
10e2f1ac
PZ
6283 if ((unsigned)i < nr_cpumask_bits)
6284 return i;
970e1789 6285
a50bde51
PZ
6286 return target;
6287}
231678b7 6288
f9be3e59
PB
6289/**
6290 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6291 * @cpu: the CPU to get the utilization of
6292 *
6293 * The unit of the return value must be the one of capacity so we can compare
6294 * the utilization with the capacity of the CPU that is available for CFS task
6295 * (ie cpu_capacity).
231678b7
DE
6296 *
6297 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6298 * recent utilization of currently non-runnable tasks on a CPU. It represents
6299 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6300 * capacity_orig is the cpu_capacity available at the highest frequency
6301 * (arch_scale_freq_capacity()).
6302 * The utilization of a CPU converges towards a sum equal to or less than the
6303 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6304 * the running time on this CPU scaled by capacity_curr.
6305 *
f9be3e59
PB
6306 * The estimated utilization of a CPU is defined to be the maximum between its
6307 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6308 * currently RUNNABLE on that CPU.
6309 * This allows to properly represent the expected utilization of a CPU which
6310 * has just got a big task running since a long sleep period. At the same time
6311 * however it preserves the benefits of the "blocked utilization" in
6312 * describing the potential for other tasks waking up on the same CPU.
6313 *
231678b7
DE
6314 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6315 * higher than capacity_orig because of unfortunate rounding in
6316 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6317 * the average stabilizes with the new running time. We need to check that the
6318 * utilization stays within the range of [0..capacity_orig] and cap it if
6319 * necessary. Without utilization capping, a group could be seen as overloaded
6320 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6321 * available capacity. We allow utilization to overshoot capacity_curr (but not
6322 * capacity_orig) as it useful for predicting the capacity required after task
6323 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6324 *
6325 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6326 */
f9be3e59 6327static inline unsigned long cpu_util(int cpu)
8bb5b00c 6328{
f9be3e59
PB
6329 struct cfs_rq *cfs_rq;
6330 unsigned int util;
6331
6332 cfs_rq = &cpu_rq(cpu)->cfs;
6333 util = READ_ONCE(cfs_rq->avg.util_avg);
6334
6335 if (sched_feat(UTIL_EST))
6336 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6337
f9be3e59 6338 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6339}
a50bde51 6340
104cb16d 6341/*
c469933e
PB
6342 * cpu_util_without: compute cpu utilization without any contributions from *p
6343 * @cpu: the CPU which utilization is requested
6344 * @p: the task which utilization should be discounted
6345 *
6346 * The utilization of a CPU is defined by the utilization of tasks currently
6347 * enqueued on that CPU as well as tasks which are currently sleeping after an
6348 * execution on that CPU.
6349 *
6350 * This method returns the utilization of the specified CPU by discounting the
6351 * utilization of the specified task, whenever the task is currently
6352 * contributing to the CPU utilization.
104cb16d 6353 */
c469933e 6354static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6355{
f9be3e59
PB
6356 struct cfs_rq *cfs_rq;
6357 unsigned int util;
104cb16d
MR
6358
6359 /* Task has no contribution or is new */
f9be3e59 6360 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6361 return cpu_util(cpu);
6362
f9be3e59
PB
6363 cfs_rq = &cpu_rq(cpu)->cfs;
6364 util = READ_ONCE(cfs_rq->avg.util_avg);
6365
c469933e 6366 /* Discount task's util from CPU's util */
b5c0ce7b 6367 lsub_positive(&util, task_util(p));
104cb16d 6368
f9be3e59
PB
6369 /*
6370 * Covered cases:
6371 *
6372 * a) if *p is the only task sleeping on this CPU, then:
6373 * cpu_util (== task_util) > util_est (== 0)
6374 * and thus we return:
c469933e 6375 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6376 *
6377 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6378 * IDLE, then:
6379 * cpu_util >= task_util
6380 * cpu_util > util_est (== 0)
6381 * and thus we discount *p's blocked utilization to return:
c469933e 6382 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6383 *
6384 * c) if other tasks are RUNNABLE on that CPU and
6385 * util_est > cpu_util
6386 * then we use util_est since it returns a more restrictive
6387 * estimation of the spare capacity on that CPU, by just
6388 * considering the expected utilization of tasks already
6389 * runnable on that CPU.
6390 *
6391 * Cases a) and b) are covered by the above code, while case c) is
6392 * covered by the following code when estimated utilization is
6393 * enabled.
6394 */
c469933e
PB
6395 if (sched_feat(UTIL_EST)) {
6396 unsigned int estimated =
6397 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6398
6399 /*
6400 * Despite the following checks we still have a small window
6401 * for a possible race, when an execl's select_task_rq_fair()
6402 * races with LB's detach_task():
6403 *
6404 * detach_task()
6405 * p->on_rq = TASK_ON_RQ_MIGRATING;
6406 * ---------------------------------- A
6407 * deactivate_task() \
6408 * dequeue_task() + RaceTime
6409 * util_est_dequeue() /
6410 * ---------------------------------- B
6411 *
6412 * The additional check on "current == p" it's required to
6413 * properly fix the execl regression and it helps in further
6414 * reducing the chances for the above race.
6415 */
b5c0ce7b
PB
6416 if (unlikely(task_on_rq_queued(p) || current == p))
6417 lsub_positive(&estimated, _task_util_est(p));
6418
c469933e
PB
6419 util = max(util, estimated);
6420 }
f9be3e59
PB
6421
6422 /*
6423 * Utilization (estimated) can exceed the CPU capacity, thus let's
6424 * clamp to the maximum CPU capacity to ensure consistency with
6425 * the cpu_util call.
6426 */
6427 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6428}
6429
390031e4
QP
6430/*
6431 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6432 * to @dst_cpu.
6433 */
6434static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6435{
6436 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6437 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6438
6439 /*
6440 * If @p migrates from @cpu to another, remove its contribution. Or,
6441 * if @p migrates from another CPU to @cpu, add its contribution. In
6442 * the other cases, @cpu is not impacted by the migration, so the
6443 * util_avg should already be correct.
6444 */
6445 if (task_cpu(p) == cpu && dst_cpu != cpu)
6446 sub_positive(&util, task_util(p));
6447 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6448 util += task_util(p);
6449
6450 if (sched_feat(UTIL_EST)) {
6451 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6452
6453 /*
6454 * During wake-up, the task isn't enqueued yet and doesn't
6455 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6456 * so just add it (if needed) to "simulate" what will be
6457 * cpu_util() after the task has been enqueued.
6458 */
6459 if (dst_cpu == cpu)
6460 util_est += _task_util_est(p);
6461
6462 util = max(util, util_est);
6463 }
6464
6465 return min(util, capacity_orig_of(cpu));
6466}
6467
6468/*
eb92692b 6469 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6470 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6471 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6472 * to compute what would be the energy if we decided to actually migrate that
6473 * task.
6474 */
6475static long
6476compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6477{
eb92692b
QP
6478 struct cpumask *pd_mask = perf_domain_span(pd);
6479 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6480 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6481 int cpu;
6482
eb92692b
QP
6483 /*
6484 * The capacity state of CPUs of the current rd can be driven by CPUs
6485 * of another rd if they belong to the same pd. So, account for the
6486 * utilization of these CPUs too by masking pd with cpu_online_mask
6487 * instead of the rd span.
6488 *
6489 * If an entire pd is outside of the current rd, it will not appear in
6490 * its pd list and will not be accounted by compute_energy().
6491 */
6492 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6493 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6494 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6495
6496 /*
eb92692b
QP
6497 * Busy time computation: utilization clamping is not
6498 * required since the ratio (sum_util / cpu_capacity)
6499 * is already enough to scale the EM reported power
6500 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6501 */
eb92692b
QP
6502 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6503 ENERGY_UTIL, NULL);
af24bde8 6504
390031e4 6505 /*
eb92692b
QP
6506 * Performance domain frequency: utilization clamping
6507 * must be considered since it affects the selection
6508 * of the performance domain frequency.
6509 * NOTE: in case RT tasks are running, by default the
6510 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6511 */
eb92692b
QP
6512 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6513 FREQUENCY_UTIL, tsk);
6514 max_util = max(max_util, cpu_util);
390031e4
QP
6515 }
6516
f0b56947 6517 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6518}
6519
732cd75b
QP
6520/*
6521 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6522 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6523 * spare capacity in each performance domain and uses it as a potential
6524 * candidate to execute the task. Then, it uses the Energy Model to figure
6525 * out which of the CPU candidates is the most energy-efficient.
6526 *
6527 * The rationale for this heuristic is as follows. In a performance domain,
6528 * all the most energy efficient CPU candidates (according to the Energy
6529 * Model) are those for which we'll request a low frequency. When there are
6530 * several CPUs for which the frequency request will be the same, we don't
6531 * have enough data to break the tie between them, because the Energy Model
6532 * only includes active power costs. With this model, if we assume that
6533 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6534 * the maximum spare capacity in a performance domain is guaranteed to be among
6535 * the best candidates of the performance domain.
6536 *
6537 * In practice, it could be preferable from an energy standpoint to pack
6538 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6539 * but that could also hurt our chances to go cluster idle, and we have no
6540 * ways to tell with the current Energy Model if this is actually a good
6541 * idea or not. So, find_energy_efficient_cpu() basically favors
6542 * cluster-packing, and spreading inside a cluster. That should at least be
6543 * a good thing for latency, and this is consistent with the idea that most
6544 * of the energy savings of EAS come from the asymmetry of the system, and
6545 * not so much from breaking the tie between identical CPUs. That's also the
6546 * reason why EAS is enabled in the topology code only for systems where
6547 * SD_ASYM_CPUCAPACITY is set.
6548 *
6549 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6550 * they don't have any useful utilization data yet and it's not possible to
6551 * forecast their impact on energy consumption. Consequently, they will be
6552 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6553 * to be energy-inefficient in some use-cases. The alternative would be to
6554 * bias new tasks towards specific types of CPUs first, or to try to infer
6555 * their util_avg from the parent task, but those heuristics could hurt
6556 * other use-cases too. So, until someone finds a better way to solve this,
6557 * let's keep things simple by re-using the existing slow path.
6558 */
732cd75b
QP
6559static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6560{
eb92692b 6561 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6562 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6563 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6564 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6565 struct sched_domain *sd;
eb92692b 6566 struct perf_domain *pd;
732cd75b
QP
6567
6568 rcu_read_lock();
6569 pd = rcu_dereference(rd->pd);
6570 if (!pd || READ_ONCE(rd->overutilized))
6571 goto fail;
732cd75b
QP
6572
6573 /*
6574 * Energy-aware wake-up happens on the lowest sched_domain starting
6575 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6576 */
6577 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6578 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6579 sd = sd->parent;
6580 if (!sd)
6581 goto fail;
6582
6583 sync_entity_load_avg(&p->se);
6584 if (!task_util_est(p))
6585 goto unlock;
6586
6587 for (; pd; pd = pd->next) {
eb92692b
QP
6588 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6589 unsigned long base_energy_pd;
732cd75b
QP
6590 int max_spare_cap_cpu = -1;
6591
eb92692b
QP
6592 /* Compute the 'base' energy of the pd, without @p */
6593 base_energy_pd = compute_energy(p, -1, pd);
6594 base_energy += base_energy_pd;
6595
732cd75b 6596 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6597 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6598 continue;
6599
732cd75b
QP
6600 util = cpu_util_next(cpu, p, cpu);
6601 cpu_cap = capacity_of(cpu);
da0777d3
LL
6602 spare_cap = cpu_cap;
6603 lsub_positive(&spare_cap, util);
1d42509e
VS
6604
6605 /*
6606 * Skip CPUs that cannot satisfy the capacity request.
6607 * IOW, placing the task there would make the CPU
6608 * overutilized. Take uclamp into account to see how
6609 * much capacity we can get out of the CPU; this is
6610 * aligned with schedutil_cpu_util().
6611 */
6612 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6613 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6614 continue;
6615
6616 /* Always use prev_cpu as a candidate. */
6617 if (cpu == prev_cpu) {
eb92692b
QP
6618 prev_delta = compute_energy(p, prev_cpu, pd);
6619 prev_delta -= base_energy_pd;
6620 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6621 }
6622
6623 /*
6624 * Find the CPU with the maximum spare capacity in
6625 * the performance domain
6626 */
732cd75b
QP
6627 if (spare_cap > max_spare_cap) {
6628 max_spare_cap = spare_cap;
6629 max_spare_cap_cpu = cpu;
6630 }
6631 }
6632
6633 /* Evaluate the energy impact of using this CPU. */
4892f51a 6634 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6635 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6636 cur_delta -= base_energy_pd;
6637 if (cur_delta < best_delta) {
6638 best_delta = cur_delta;
732cd75b
QP
6639 best_energy_cpu = max_spare_cap_cpu;
6640 }
6641 }
6642 }
6643unlock:
6644 rcu_read_unlock();
6645
6646 /*
6647 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6648 * least 6% of the energy used by prev_cpu.
6649 */
eb92692b 6650 if (prev_delta == ULONG_MAX)
732cd75b
QP
6651 return best_energy_cpu;
6652
eb92692b 6653 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6654 return best_energy_cpu;
6655
6656 return prev_cpu;
6657
6658fail:
6659 rcu_read_unlock();
6660
6661 return -1;
6662}
6663
aaee1203 6664/*
de91b9cb
MR
6665 * select_task_rq_fair: Select target runqueue for the waking task in domains
6666 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6667 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6668 *
97fb7a0a
IM
6669 * Balances load by selecting the idlest CPU in the idlest group, or under
6670 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6671 *
97fb7a0a 6672 * Returns the target CPU number.
aaee1203
PZ
6673 *
6674 * preempt must be disabled.
6675 */
0017d735 6676static int
ac66f547 6677select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6678{
f1d88b44 6679 struct sched_domain *tmp, *sd = NULL;
c88d5910 6680 int cpu = smp_processor_id();
63b0e9ed 6681 int new_cpu = prev_cpu;
99bd5e2f 6682 int want_affine = 0;
24d0c1d6 6683 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6684
c58d25f3
PZ
6685 if (sd_flag & SD_BALANCE_WAKE) {
6686 record_wakee(p);
732cd75b 6687
f8a696f2 6688 if (sched_energy_enabled()) {
732cd75b
QP
6689 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6690 if (new_cpu >= 0)
6691 return new_cpu;
6692 new_cpu = prev_cpu;
6693 }
6694
00061968 6695 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6696 }
aaee1203 6697
dce840a0 6698 rcu_read_lock();
aaee1203 6699 for_each_domain(cpu, tmp) {
fe3bcfe1 6700 /*
97fb7a0a 6701 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6702 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6703 */
99bd5e2f
SS
6704 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6705 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6706 if (cpu != prev_cpu)
6707 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6708
6709 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6710 break;
f03542a7 6711 }
29cd8bae 6712
f03542a7 6713 if (tmp->flags & sd_flag)
29cd8bae 6714 sd = tmp;
63b0e9ed
MG
6715 else if (!want_affine)
6716 break;
29cd8bae
PZ
6717 }
6718
f1d88b44
VK
6719 if (unlikely(sd)) {
6720 /* Slow path */
18bd1b4b 6721 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6722 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6723 /* Fast path */
6724
6725 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6726
6727 if (want_affine)
6728 current->recent_used_cpu = cpu;
e7693a36 6729 }
dce840a0 6730 rcu_read_unlock();
e7693a36 6731
c88d5910 6732 return new_cpu;
e7693a36 6733}
0a74bef8 6734
144d8487
PZ
6735static void detach_entity_cfs_rq(struct sched_entity *se);
6736
0a74bef8 6737/*
97fb7a0a 6738 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6739 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6740 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6741 */
3f9672ba 6742static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6743{
59efa0ba
PZ
6744 /*
6745 * As blocked tasks retain absolute vruntime the migration needs to
6746 * deal with this by subtracting the old and adding the new
6747 * min_vruntime -- the latter is done by enqueue_entity() when placing
6748 * the task on the new runqueue.
6749 */
6750 if (p->state == TASK_WAKING) {
6751 struct sched_entity *se = &p->se;
6752 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6753 u64 min_vruntime;
6754
6755#ifndef CONFIG_64BIT
6756 u64 min_vruntime_copy;
6757
6758 do {
6759 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6760 smp_rmb();
6761 min_vruntime = cfs_rq->min_vruntime;
6762 } while (min_vruntime != min_vruntime_copy);
6763#else
6764 min_vruntime = cfs_rq->min_vruntime;
6765#endif
6766
6767 se->vruntime -= min_vruntime;
6768 }
6769
144d8487
PZ
6770 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6771 /*
6772 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6773 * rq->lock and can modify state directly.
6774 */
6775 lockdep_assert_held(&task_rq(p)->lock);
6776 detach_entity_cfs_rq(&p->se);
6777
6778 } else {
6779 /*
6780 * We are supposed to update the task to "current" time, then
6781 * its up to date and ready to go to new CPU/cfs_rq. But we
6782 * have difficulty in getting what current time is, so simply
6783 * throw away the out-of-date time. This will result in the
6784 * wakee task is less decayed, but giving the wakee more load
6785 * sounds not bad.
6786 */
6787 remove_entity_load_avg(&p->se);
6788 }
9d89c257
YD
6789
6790 /* Tell new CPU we are migrated */
6791 p->se.avg.last_update_time = 0;
3944a927
BS
6792
6793 /* We have migrated, no longer consider this task hot */
9d89c257 6794 p->se.exec_start = 0;
3f9672ba
SD
6795
6796 update_scan_period(p, new_cpu);
0a74bef8 6797}
12695578
YD
6798
6799static void task_dead_fair(struct task_struct *p)
6800{
6801 remove_entity_load_avg(&p->se);
6802}
6e2df058
PZ
6803
6804static int
6805balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6806{
6807 if (rq->nr_running)
6808 return 1;
6809
6810 return newidle_balance(rq, rf) != 0;
6811}
e7693a36
GH
6812#endif /* CONFIG_SMP */
6813
a555e9d8 6814static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6815{
6816 unsigned long gran = sysctl_sched_wakeup_granularity;
6817
6818 /*
e52fb7c0
PZ
6819 * Since its curr running now, convert the gran from real-time
6820 * to virtual-time in his units.
13814d42
MG
6821 *
6822 * By using 'se' instead of 'curr' we penalize light tasks, so
6823 * they get preempted easier. That is, if 'se' < 'curr' then
6824 * the resulting gran will be larger, therefore penalizing the
6825 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6826 * be smaller, again penalizing the lighter task.
6827 *
6828 * This is especially important for buddies when the leftmost
6829 * task is higher priority than the buddy.
0bbd3336 6830 */
f4ad9bd2 6831 return calc_delta_fair(gran, se);
0bbd3336
PZ
6832}
6833
464b7527
PZ
6834/*
6835 * Should 'se' preempt 'curr'.
6836 *
6837 * |s1
6838 * |s2
6839 * |s3
6840 * g
6841 * |<--->|c
6842 *
6843 * w(c, s1) = -1
6844 * w(c, s2) = 0
6845 * w(c, s3) = 1
6846 *
6847 */
6848static int
6849wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6850{
6851 s64 gran, vdiff = curr->vruntime - se->vruntime;
6852
6853 if (vdiff <= 0)
6854 return -1;
6855
a555e9d8 6856 gran = wakeup_gran(se);
464b7527
PZ
6857 if (vdiff > gran)
6858 return 1;
6859
6860 return 0;
6861}
6862
02479099
PZ
6863static void set_last_buddy(struct sched_entity *se)
6864{
1da1843f 6865 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6866 return;
6867
c5ae366e
DA
6868 for_each_sched_entity(se) {
6869 if (SCHED_WARN_ON(!se->on_rq))
6870 return;
69c80f3e 6871 cfs_rq_of(se)->last = se;
c5ae366e 6872 }
02479099
PZ
6873}
6874
6875static void set_next_buddy(struct sched_entity *se)
6876{
1da1843f 6877 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6878 return;
6879
c5ae366e
DA
6880 for_each_sched_entity(se) {
6881 if (SCHED_WARN_ON(!se->on_rq))
6882 return;
69c80f3e 6883 cfs_rq_of(se)->next = se;
c5ae366e 6884 }
02479099
PZ
6885}
6886
ac53db59
RR
6887static void set_skip_buddy(struct sched_entity *se)
6888{
69c80f3e
VP
6889 for_each_sched_entity(se)
6890 cfs_rq_of(se)->skip = se;
ac53db59
RR
6891}
6892
bf0f6f24
IM
6893/*
6894 * Preempt the current task with a newly woken task if needed:
6895 */
5a9b86f6 6896static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6897{
6898 struct task_struct *curr = rq->curr;
8651a86c 6899 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6900 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6901 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6902 int next_buddy_marked = 0;
bf0f6f24 6903
4ae7d5ce
IM
6904 if (unlikely(se == pse))
6905 return;
6906
5238cdd3 6907 /*
163122b7 6908 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6909 * unconditionally check_prempt_curr() after an enqueue (which may have
6910 * lead to a throttle). This both saves work and prevents false
6911 * next-buddy nomination below.
6912 */
6913 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6914 return;
6915
2f36825b 6916 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6917 set_next_buddy(pse);
2f36825b
VP
6918 next_buddy_marked = 1;
6919 }
57fdc26d 6920
aec0a514
BR
6921 /*
6922 * We can come here with TIF_NEED_RESCHED already set from new task
6923 * wake up path.
5238cdd3
PT
6924 *
6925 * Note: this also catches the edge-case of curr being in a throttled
6926 * group (e.g. via set_curr_task), since update_curr() (in the
6927 * enqueue of curr) will have resulted in resched being set. This
6928 * prevents us from potentially nominating it as a false LAST_BUDDY
6929 * below.
aec0a514
BR
6930 */
6931 if (test_tsk_need_resched(curr))
6932 return;
6933
a2f5c9ab 6934 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6935 if (unlikely(task_has_idle_policy(curr)) &&
6936 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6937 goto preempt;
6938
91c234b4 6939 /*
a2f5c9ab
DH
6940 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6941 * is driven by the tick):
91c234b4 6942 */
8ed92e51 6943 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6944 return;
bf0f6f24 6945
464b7527 6946 find_matching_se(&se, &pse);
9bbd7374 6947 update_curr(cfs_rq_of(se));
002f128b 6948 BUG_ON(!pse);
2f36825b
VP
6949 if (wakeup_preempt_entity(se, pse) == 1) {
6950 /*
6951 * Bias pick_next to pick the sched entity that is
6952 * triggering this preemption.
6953 */
6954 if (!next_buddy_marked)
6955 set_next_buddy(pse);
3a7e73a2 6956 goto preempt;
2f36825b 6957 }
464b7527 6958
3a7e73a2 6959 return;
a65ac745 6960
3a7e73a2 6961preempt:
8875125e 6962 resched_curr(rq);
3a7e73a2
PZ
6963 /*
6964 * Only set the backward buddy when the current task is still
6965 * on the rq. This can happen when a wakeup gets interleaved
6966 * with schedule on the ->pre_schedule() or idle_balance()
6967 * point, either of which can * drop the rq lock.
6968 *
6969 * Also, during early boot the idle thread is in the fair class,
6970 * for obvious reasons its a bad idea to schedule back to it.
6971 */
6972 if (unlikely(!se->on_rq || curr == rq->idle))
6973 return;
6974
6975 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6976 set_last_buddy(se);
bf0f6f24
IM
6977}
6978
5d7d6056 6979struct task_struct *
d8ac8971 6980pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6981{
6982 struct cfs_rq *cfs_rq = &rq->cfs;
6983 struct sched_entity *se;
678d5718 6984 struct task_struct *p;
37e117c0 6985 int new_tasks;
678d5718 6986
6e83125c 6987again:
6e2df058 6988 if (!sched_fair_runnable(rq))
38033c37 6989 goto idle;
678d5718 6990
9674f5ca 6991#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6992 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6993 goto simple;
6994
6995 /*
6996 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6997 * likely that a next task is from the same cgroup as the current.
6998 *
6999 * Therefore attempt to avoid putting and setting the entire cgroup
7000 * hierarchy, only change the part that actually changes.
7001 */
7002
7003 do {
7004 struct sched_entity *curr = cfs_rq->curr;
7005
7006 /*
7007 * Since we got here without doing put_prev_entity() we also
7008 * have to consider cfs_rq->curr. If it is still a runnable
7009 * entity, update_curr() will update its vruntime, otherwise
7010 * forget we've ever seen it.
7011 */
54d27365
BS
7012 if (curr) {
7013 if (curr->on_rq)
7014 update_curr(cfs_rq);
7015 else
7016 curr = NULL;
678d5718 7017
54d27365
BS
7018 /*
7019 * This call to check_cfs_rq_runtime() will do the
7020 * throttle and dequeue its entity in the parent(s).
9674f5ca 7021 * Therefore the nr_running test will indeed
54d27365
BS
7022 * be correct.
7023 */
9674f5ca
VK
7024 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7025 cfs_rq = &rq->cfs;
7026
7027 if (!cfs_rq->nr_running)
7028 goto idle;
7029
54d27365 7030 goto simple;
9674f5ca 7031 }
54d27365 7032 }
678d5718
PZ
7033
7034 se = pick_next_entity(cfs_rq, curr);
7035 cfs_rq = group_cfs_rq(se);
7036 } while (cfs_rq);
7037
7038 p = task_of(se);
7039
7040 /*
7041 * Since we haven't yet done put_prev_entity and if the selected task
7042 * is a different task than we started out with, try and touch the
7043 * least amount of cfs_rqs.
7044 */
7045 if (prev != p) {
7046 struct sched_entity *pse = &prev->se;
7047
7048 while (!(cfs_rq = is_same_group(se, pse))) {
7049 int se_depth = se->depth;
7050 int pse_depth = pse->depth;
7051
7052 if (se_depth <= pse_depth) {
7053 put_prev_entity(cfs_rq_of(pse), pse);
7054 pse = parent_entity(pse);
7055 }
7056 if (se_depth >= pse_depth) {
7057 set_next_entity(cfs_rq_of(se), se);
7058 se = parent_entity(se);
7059 }
7060 }
7061
7062 put_prev_entity(cfs_rq, pse);
7063 set_next_entity(cfs_rq, se);
7064 }
7065
93824900 7066 goto done;
678d5718 7067simple:
678d5718 7068#endif
67692435
PZ
7069 if (prev)
7070 put_prev_task(rq, prev);
606dba2e 7071
bf0f6f24 7072 do {
678d5718 7073 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7074 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7075 cfs_rq = group_cfs_rq(se);
7076 } while (cfs_rq);
7077
8f4d37ec 7078 p = task_of(se);
678d5718 7079
13a453c2 7080done: __maybe_unused;
93824900
UR
7081#ifdef CONFIG_SMP
7082 /*
7083 * Move the next running task to the front of
7084 * the list, so our cfs_tasks list becomes MRU
7085 * one.
7086 */
7087 list_move(&p->se.group_node, &rq->cfs_tasks);
7088#endif
7089
b39e66ea
MG
7090 if (hrtick_enabled(rq))
7091 hrtick_start_fair(rq, p);
8f4d37ec 7092
3b1baa64
MR
7093 update_misfit_status(p, rq);
7094
8f4d37ec 7095 return p;
38033c37
PZ
7096
7097idle:
67692435
PZ
7098 if (!rf)
7099 return NULL;
7100
5ba553ef 7101 new_tasks = newidle_balance(rq, rf);
46f69fa3 7102
37e117c0 7103 /*
5ba553ef 7104 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7105 * possible for any higher priority task to appear. In that case we
7106 * must re-start the pick_next_entity() loop.
7107 */
e4aa358b 7108 if (new_tasks < 0)
37e117c0
PZ
7109 return RETRY_TASK;
7110
e4aa358b 7111 if (new_tasks > 0)
38033c37 7112 goto again;
38033c37 7113
23127296
VG
7114 /*
7115 * rq is about to be idle, check if we need to update the
7116 * lost_idle_time of clock_pelt
7117 */
7118 update_idle_rq_clock_pelt(rq);
7119
38033c37 7120 return NULL;
bf0f6f24
IM
7121}
7122
98c2f700
PZ
7123static struct task_struct *__pick_next_task_fair(struct rq *rq)
7124{
7125 return pick_next_task_fair(rq, NULL, NULL);
7126}
7127
bf0f6f24
IM
7128/*
7129 * Account for a descheduled task:
7130 */
6e2df058 7131static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7132{
7133 struct sched_entity *se = &prev->se;
7134 struct cfs_rq *cfs_rq;
7135
7136 for_each_sched_entity(se) {
7137 cfs_rq = cfs_rq_of(se);
ab6cde26 7138 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7139 }
7140}
7141
ac53db59
RR
7142/*
7143 * sched_yield() is very simple
7144 *
7145 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7146 */
7147static void yield_task_fair(struct rq *rq)
7148{
7149 struct task_struct *curr = rq->curr;
7150 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7151 struct sched_entity *se = &curr->se;
7152
7153 /*
7154 * Are we the only task in the tree?
7155 */
7156 if (unlikely(rq->nr_running == 1))
7157 return;
7158
7159 clear_buddies(cfs_rq, se);
7160
7161 if (curr->policy != SCHED_BATCH) {
7162 update_rq_clock(rq);
7163 /*
7164 * Update run-time statistics of the 'current'.
7165 */
7166 update_curr(cfs_rq);
916671c0
MG
7167 /*
7168 * Tell update_rq_clock() that we've just updated,
7169 * so we don't do microscopic update in schedule()
7170 * and double the fastpath cost.
7171 */
adcc8da8 7172 rq_clock_skip_update(rq);
ac53db59
RR
7173 }
7174
7175 set_skip_buddy(se);
7176}
7177
0900acf2 7178static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7179{
7180 struct sched_entity *se = &p->se;
7181
5238cdd3
PT
7182 /* throttled hierarchies are not runnable */
7183 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7184 return false;
7185
7186 /* Tell the scheduler that we'd really like pse to run next. */
7187 set_next_buddy(se);
7188
d95f4122
MG
7189 yield_task_fair(rq);
7190
7191 return true;
7192}
7193
681f3e68 7194#ifdef CONFIG_SMP
bf0f6f24 7195/**************************************************
e9c84cb8
PZ
7196 * Fair scheduling class load-balancing methods.
7197 *
7198 * BASICS
7199 *
7200 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7201 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7202 * time to each task. This is expressed in the following equation:
7203 *
7204 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7205 *
97fb7a0a 7206 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7207 * W_i,0 is defined as:
7208 *
7209 * W_i,0 = \Sum_j w_i,j (2)
7210 *
97fb7a0a 7211 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7212 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7213 *
7214 * The weight average is an exponential decay average of the instantaneous
7215 * weight:
7216 *
7217 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7218 *
97fb7a0a 7219 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7220 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7221 * can also include other factors [XXX].
7222 *
7223 * To achieve this balance we define a measure of imbalance which follows
7224 * directly from (1):
7225 *
ced549fa 7226 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7227 *
7228 * We them move tasks around to minimize the imbalance. In the continuous
7229 * function space it is obvious this converges, in the discrete case we get
7230 * a few fun cases generally called infeasible weight scenarios.
7231 *
7232 * [XXX expand on:
7233 * - infeasible weights;
7234 * - local vs global optima in the discrete case. ]
7235 *
7236 *
7237 * SCHED DOMAINS
7238 *
7239 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7240 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7241 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7242 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7243 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7244 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7245 * the groups.
7246 *
7247 * This yields:
7248 *
7249 * log_2 n 1 n
7250 * \Sum { --- * --- * 2^i } = O(n) (5)
7251 * i = 0 2^i 2^i
7252 * `- size of each group
97fb7a0a 7253 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7254 * | `- freq
7255 * `- sum over all levels
7256 *
7257 * Coupled with a limit on how many tasks we can migrate every balance pass,
7258 * this makes (5) the runtime complexity of the balancer.
7259 *
7260 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7261 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7262 *
7263 * The adjacency matrix of the resulting graph is given by:
7264 *
97a7142f 7265 * log_2 n
e9c84cb8
PZ
7266 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7267 * k = 0
7268 *
7269 * And you'll find that:
7270 *
7271 * A^(log_2 n)_i,j != 0 for all i,j (7)
7272 *
97fb7a0a 7273 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7274 * The task movement gives a factor of O(m), giving a convergence complexity
7275 * of:
7276 *
7277 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7278 *
7279 *
7280 * WORK CONSERVING
7281 *
7282 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7283 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7284 * tree itself instead of relying on other CPUs to bring it work.
7285 *
7286 * This adds some complexity to both (5) and (8) but it reduces the total idle
7287 * time.
7288 *
7289 * [XXX more?]
7290 *
7291 *
7292 * CGROUPS
7293 *
7294 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7295 *
7296 * s_k,i
7297 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7298 * S_k
7299 *
7300 * Where
7301 *
7302 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7303 *
97fb7a0a 7304 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7305 *
7306 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7307 * property.
7308 *
7309 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7310 * rewrite all of this once again.]
97a7142f 7311 */
bf0f6f24 7312
ed387b78
HS
7313static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7314
0ec8aa00
PZ
7315enum fbq_type { regular, remote, all };
7316
0b0695f2 7317/*
a9723389
VG
7318 * 'group_type' describes the group of CPUs at the moment of load balancing.
7319 *
0b0695f2 7320 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7321 * first so the group_type can simply be compared when selecting the busiest
7322 * group. See update_sd_pick_busiest().
0b0695f2 7323 */
3b1baa64 7324enum group_type {
a9723389 7325 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7326 group_has_spare = 0,
a9723389
VG
7327 /*
7328 * The group is fully used and the tasks don't compete for more CPU
7329 * cycles. Nevertheless, some tasks might wait before running.
7330 */
0b0695f2 7331 group_fully_busy,
a9723389
VG
7332 /*
7333 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7334 * and must be migrated to a more powerful CPU.
7335 */
3b1baa64 7336 group_misfit_task,
a9723389
VG
7337 /*
7338 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7339 * and the task should be migrated to it instead of running on the
7340 * current CPU.
7341 */
0b0695f2 7342 group_asym_packing,
a9723389
VG
7343 /*
7344 * The tasks' affinity constraints previously prevented the scheduler
7345 * from balancing the load across the system.
7346 */
3b1baa64 7347 group_imbalanced,
a9723389
VG
7348 /*
7349 * The CPU is overloaded and can't provide expected CPU cycles to all
7350 * tasks.
7351 */
0b0695f2
VG
7352 group_overloaded
7353};
7354
7355enum migration_type {
7356 migrate_load = 0,
7357 migrate_util,
7358 migrate_task,
7359 migrate_misfit
3b1baa64
MR
7360};
7361
ddcdf6e7 7362#define LBF_ALL_PINNED 0x01
367456c7 7363#define LBF_NEED_BREAK 0x02
6263322c
PZ
7364#define LBF_DST_PINNED 0x04
7365#define LBF_SOME_PINNED 0x08
e022e0d3 7366#define LBF_NOHZ_STATS 0x10
f643ea22 7367#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7368
7369struct lb_env {
7370 struct sched_domain *sd;
7371
ddcdf6e7 7372 struct rq *src_rq;
85c1e7da 7373 int src_cpu;
ddcdf6e7
PZ
7374
7375 int dst_cpu;
7376 struct rq *dst_rq;
7377
88b8dac0
SV
7378 struct cpumask *dst_grpmask;
7379 int new_dst_cpu;
ddcdf6e7 7380 enum cpu_idle_type idle;
bd939f45 7381 long imbalance;
b9403130
MW
7382 /* The set of CPUs under consideration for load-balancing */
7383 struct cpumask *cpus;
7384
ddcdf6e7 7385 unsigned int flags;
367456c7
PZ
7386
7387 unsigned int loop;
7388 unsigned int loop_break;
7389 unsigned int loop_max;
0ec8aa00
PZ
7390
7391 enum fbq_type fbq_type;
0b0695f2 7392 enum migration_type migration_type;
163122b7 7393 struct list_head tasks;
ddcdf6e7
PZ
7394};
7395
029632fb
PZ
7396/*
7397 * Is this task likely cache-hot:
7398 */
5d5e2b1b 7399static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7400{
7401 s64 delta;
7402
e5673f28
KT
7403 lockdep_assert_held(&env->src_rq->lock);
7404
029632fb
PZ
7405 if (p->sched_class != &fair_sched_class)
7406 return 0;
7407
1da1843f 7408 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7409 return 0;
7410
ec73240b
JD
7411 /* SMT siblings share cache */
7412 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7413 return 0;
7414
029632fb
PZ
7415 /*
7416 * Buddy candidates are cache hot:
7417 */
5d5e2b1b 7418 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7419 (&p->se == cfs_rq_of(&p->se)->next ||
7420 &p->se == cfs_rq_of(&p->se)->last))
7421 return 1;
7422
7423 if (sysctl_sched_migration_cost == -1)
7424 return 1;
7425 if (sysctl_sched_migration_cost == 0)
7426 return 0;
7427
5d5e2b1b 7428 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7429
7430 return delta < (s64)sysctl_sched_migration_cost;
7431}
7432
3a7053b3 7433#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7434/*
2a1ed24c
SD
7435 * Returns 1, if task migration degrades locality
7436 * Returns 0, if task migration improves locality i.e migration preferred.
7437 * Returns -1, if task migration is not affected by locality.
c1ceac62 7438 */
2a1ed24c 7439static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7440{
b1ad065e 7441 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7442 unsigned long src_weight, dst_weight;
7443 int src_nid, dst_nid, dist;
3a7053b3 7444
2a595721 7445 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7446 return -1;
7447
c3b9bc5b 7448 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7449 return -1;
7a0f3083
MG
7450
7451 src_nid = cpu_to_node(env->src_cpu);
7452 dst_nid = cpu_to_node(env->dst_cpu);
7453
83e1d2cd 7454 if (src_nid == dst_nid)
2a1ed24c 7455 return -1;
7a0f3083 7456
2a1ed24c
SD
7457 /* Migrating away from the preferred node is always bad. */
7458 if (src_nid == p->numa_preferred_nid) {
7459 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7460 return 1;
7461 else
7462 return -1;
7463 }
b1ad065e 7464
c1ceac62
RR
7465 /* Encourage migration to the preferred node. */
7466 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7467 return 0;
b1ad065e 7468
739294fb 7469 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7470 if (env->idle == CPU_IDLE)
739294fb
RR
7471 return -1;
7472
f35678b6 7473 dist = node_distance(src_nid, dst_nid);
c1ceac62 7474 if (numa_group) {
f35678b6
SD
7475 src_weight = group_weight(p, src_nid, dist);
7476 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7477 } else {
f35678b6
SD
7478 src_weight = task_weight(p, src_nid, dist);
7479 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7480 }
7481
f35678b6 7482 return dst_weight < src_weight;
7a0f3083
MG
7483}
7484
3a7053b3 7485#else
2a1ed24c 7486static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7487 struct lb_env *env)
7488{
2a1ed24c 7489 return -1;
7a0f3083 7490}
3a7053b3
MG
7491#endif
7492
1e3c88bd
PZ
7493/*
7494 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7495 */
7496static
8e45cb54 7497int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7498{
2a1ed24c 7499 int tsk_cache_hot;
e5673f28
KT
7500
7501 lockdep_assert_held(&env->src_rq->lock);
7502
1e3c88bd
PZ
7503 /*
7504 * We do not migrate tasks that are:
d3198084 7505 * 1) throttled_lb_pair, or
3bd37062 7506 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7507 * 3) running (obviously), or
7508 * 4) are cache-hot on their current CPU.
1e3c88bd 7509 */
d3198084
JK
7510 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7511 return 0;
7512
3bd37062 7513 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7514 int cpu;
88b8dac0 7515
ae92882e 7516 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7517
6263322c
PZ
7518 env->flags |= LBF_SOME_PINNED;
7519
88b8dac0 7520 /*
97fb7a0a 7521 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7522 * our sched_group. We may want to revisit it if we couldn't
7523 * meet load balance goals by pulling other tasks on src_cpu.
7524 *
65a4433a
JH
7525 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7526 * already computed one in current iteration.
88b8dac0 7527 */
65a4433a 7528 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7529 return 0;
7530
97fb7a0a 7531 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7532 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7533 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7534 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7535 env->new_dst_cpu = cpu;
7536 break;
7537 }
88b8dac0 7538 }
e02e60c1 7539
1e3c88bd
PZ
7540 return 0;
7541 }
88b8dac0
SV
7542
7543 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7544 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7545
ddcdf6e7 7546 if (task_running(env->src_rq, p)) {
ae92882e 7547 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7548 return 0;
7549 }
7550
7551 /*
7552 * Aggressive migration if:
3a7053b3
MG
7553 * 1) destination numa is preferred
7554 * 2) task is cache cold, or
7555 * 3) too many balance attempts have failed.
1e3c88bd 7556 */
2a1ed24c
SD
7557 tsk_cache_hot = migrate_degrades_locality(p, env);
7558 if (tsk_cache_hot == -1)
7559 tsk_cache_hot = task_hot(p, env);
3a7053b3 7560
2a1ed24c 7561 if (tsk_cache_hot <= 0 ||
7a96c231 7562 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7563 if (tsk_cache_hot == 1) {
ae92882e
JP
7564 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7565 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7566 }
1e3c88bd
PZ
7567 return 1;
7568 }
7569
ae92882e 7570 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7571 return 0;
1e3c88bd
PZ
7572}
7573
897c395f 7574/*
163122b7
KT
7575 * detach_task() -- detach the task for the migration specified in env
7576 */
7577static void detach_task(struct task_struct *p, struct lb_env *env)
7578{
7579 lockdep_assert_held(&env->src_rq->lock);
7580
5704ac0a 7581 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7582 set_task_cpu(p, env->dst_cpu);
7583}
7584
897c395f 7585/*
e5673f28 7586 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7587 * part of active balancing operations within "domain".
897c395f 7588 *
e5673f28 7589 * Returns a task if successful and NULL otherwise.
897c395f 7590 */
e5673f28 7591static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7592{
93824900 7593 struct task_struct *p;
897c395f 7594
e5673f28
KT
7595 lockdep_assert_held(&env->src_rq->lock);
7596
93824900
UR
7597 list_for_each_entry_reverse(p,
7598 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7599 if (!can_migrate_task(p, env))
7600 continue;
897c395f 7601
163122b7 7602 detach_task(p, env);
e5673f28 7603
367456c7 7604 /*
e5673f28 7605 * Right now, this is only the second place where
163122b7 7606 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7607 * so we can safely collect stats here rather than
163122b7 7608 * inside detach_tasks().
367456c7 7609 */
ae92882e 7610 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7611 return p;
897c395f 7612 }
e5673f28 7613 return NULL;
897c395f
PZ
7614}
7615
eb95308e
PZ
7616static const unsigned int sched_nr_migrate_break = 32;
7617
5d6523eb 7618/*
0b0695f2 7619 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7620 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7621 *
163122b7 7622 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7623 */
163122b7 7624static int detach_tasks(struct lb_env *env)
1e3c88bd 7625{
5d6523eb 7626 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7627 unsigned long util, load;
5d6523eb 7628 struct task_struct *p;
163122b7
KT
7629 int detached = 0;
7630
7631 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7632
bd939f45 7633 if (env->imbalance <= 0)
5d6523eb 7634 return 0;
1e3c88bd 7635
5d6523eb 7636 while (!list_empty(tasks)) {
985d3a4c
YD
7637 /*
7638 * We don't want to steal all, otherwise we may be treated likewise,
7639 * which could at worst lead to a livelock crash.
7640 */
7641 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7642 break;
7643
93824900 7644 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7645
367456c7
PZ
7646 env->loop++;
7647 /* We've more or less seen every task there is, call it quits */
5d6523eb 7648 if (env->loop > env->loop_max)
367456c7 7649 break;
5d6523eb
PZ
7650
7651 /* take a breather every nr_migrate tasks */
367456c7 7652 if (env->loop > env->loop_break) {
eb95308e 7653 env->loop_break += sched_nr_migrate_break;
8e45cb54 7654 env->flags |= LBF_NEED_BREAK;
ee00e66f 7655 break;
a195f004 7656 }
1e3c88bd 7657
d3198084 7658 if (!can_migrate_task(p, env))
367456c7
PZ
7659 goto next;
7660
0b0695f2
VG
7661 switch (env->migration_type) {
7662 case migrate_load:
01cfcde9
VG
7663 /*
7664 * Depending of the number of CPUs and tasks and the
7665 * cgroup hierarchy, task_h_load() can return a null
7666 * value. Make sure that env->imbalance decreases
7667 * otherwise detach_tasks() will stop only after
7668 * detaching up to loop_max tasks.
7669 */
7670 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7671
0b0695f2
VG
7672 if (sched_feat(LB_MIN) &&
7673 load < 16 && !env->sd->nr_balance_failed)
7674 goto next;
367456c7 7675
6cf82d55
VG
7676 /*
7677 * Make sure that we don't migrate too much load.
7678 * Nevertheless, let relax the constraint if
7679 * scheduler fails to find a good waiting task to
7680 * migrate.
7681 */
5a7f5559
VG
7682
7683 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7684 goto next;
7685
7686 env->imbalance -= load;
7687 break;
7688
7689 case migrate_util:
7690 util = task_util_est(p);
7691
7692 if (util > env->imbalance)
7693 goto next;
7694
7695 env->imbalance -= util;
7696 break;
7697
7698 case migrate_task:
7699 env->imbalance--;
7700 break;
7701
7702 case migrate_misfit:
c63be7be
VG
7703 /* This is not a misfit task */
7704 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7705 goto next;
7706
7707 env->imbalance = 0;
7708 break;
7709 }
1e3c88bd 7710
163122b7
KT
7711 detach_task(p, env);
7712 list_add(&p->se.group_node, &env->tasks);
7713
7714 detached++;
1e3c88bd 7715
c1a280b6 7716#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7717 /*
7718 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7719 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7720 * the critical section.
7721 */
5d6523eb 7722 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7723 break;
1e3c88bd
PZ
7724#endif
7725
ee00e66f
PZ
7726 /*
7727 * We only want to steal up to the prescribed amount of
0b0695f2 7728 * load/util/tasks.
ee00e66f 7729 */
bd939f45 7730 if (env->imbalance <= 0)
ee00e66f 7731 break;
367456c7
PZ
7732
7733 continue;
7734next:
93824900 7735 list_move(&p->se.group_node, tasks);
1e3c88bd 7736 }
5d6523eb 7737
1e3c88bd 7738 /*
163122b7
KT
7739 * Right now, this is one of only two places we collect this stat
7740 * so we can safely collect detach_one_task() stats here rather
7741 * than inside detach_one_task().
1e3c88bd 7742 */
ae92882e 7743 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7744
163122b7
KT
7745 return detached;
7746}
7747
7748/*
7749 * attach_task() -- attach the task detached by detach_task() to its new rq.
7750 */
7751static void attach_task(struct rq *rq, struct task_struct *p)
7752{
7753 lockdep_assert_held(&rq->lock);
7754
7755 BUG_ON(task_rq(p) != rq);
5704ac0a 7756 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7757 check_preempt_curr(rq, p, 0);
7758}
7759
7760/*
7761 * attach_one_task() -- attaches the task returned from detach_one_task() to
7762 * its new rq.
7763 */
7764static void attach_one_task(struct rq *rq, struct task_struct *p)
7765{
8a8c69c3
PZ
7766 struct rq_flags rf;
7767
7768 rq_lock(rq, &rf);
5704ac0a 7769 update_rq_clock(rq);
163122b7 7770 attach_task(rq, p);
8a8c69c3 7771 rq_unlock(rq, &rf);
163122b7
KT
7772}
7773
7774/*
7775 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7776 * new rq.
7777 */
7778static void attach_tasks(struct lb_env *env)
7779{
7780 struct list_head *tasks = &env->tasks;
7781 struct task_struct *p;
8a8c69c3 7782 struct rq_flags rf;
163122b7 7783
8a8c69c3 7784 rq_lock(env->dst_rq, &rf);
5704ac0a 7785 update_rq_clock(env->dst_rq);
163122b7
KT
7786
7787 while (!list_empty(tasks)) {
7788 p = list_first_entry(tasks, struct task_struct, se.group_node);
7789 list_del_init(&p->se.group_node);
1e3c88bd 7790
163122b7
KT
7791 attach_task(env->dst_rq, p);
7792 }
7793
8a8c69c3 7794 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7795}
7796
b0c79224 7797#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7798static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7799{
7800 if (cfs_rq->avg.load_avg)
7801 return true;
7802
7803 if (cfs_rq->avg.util_avg)
7804 return true;
7805
7806 return false;
7807}
7808
91c27493 7809static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7810{
7811 if (READ_ONCE(rq->avg_rt.util_avg))
7812 return true;
7813
3727e0e1
VG
7814 if (READ_ONCE(rq->avg_dl.util_avg))
7815 return true;
7816
b4eccf5f
TG
7817 if (thermal_load_avg(rq))
7818 return true;
7819
11d4afd4 7820#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7821 if (READ_ONCE(rq->avg_irq.util_avg))
7822 return true;
7823#endif
7824
371bf427
VG
7825 return false;
7826}
7827
b0c79224
VS
7828static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7829{
7830 rq->last_blocked_load_update_tick = jiffies;
7831
7832 if (!has_blocked)
7833 rq->has_blocked_load = 0;
7834}
7835#else
7836static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7837static inline bool others_have_blocked(struct rq *rq) { return false; }
7838static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7839#endif
7840
bef69dd8
VG
7841static bool __update_blocked_others(struct rq *rq, bool *done)
7842{
7843 const struct sched_class *curr_class;
7844 u64 now = rq_clock_pelt(rq);
b4eccf5f 7845 unsigned long thermal_pressure;
bef69dd8
VG
7846 bool decayed;
7847
7848 /*
7849 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7850 * DL and IRQ signals have been updated before updating CFS.
7851 */
7852 curr_class = rq->curr->sched_class;
7853
b4eccf5f
TG
7854 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7855
bef69dd8
VG
7856 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7857 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7858 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7859 update_irq_load_avg(rq, 0);
7860
7861 if (others_have_blocked(rq))
7862 *done = false;
7863
7864 return decayed;
7865}
7866
1936c53c
VG
7867#ifdef CONFIG_FAIR_GROUP_SCHED
7868
039ae8bc
VG
7869static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7870{
7871 if (cfs_rq->load.weight)
7872 return false;
7873
7874 if (cfs_rq->avg.load_sum)
7875 return false;
7876
7877 if (cfs_rq->avg.util_sum)
7878 return false;
7879
9f683953
VG
7880 if (cfs_rq->avg.runnable_sum)
7881 return false;
7882
039ae8bc
VG
7883 return true;
7884}
7885
bef69dd8 7886static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7887{
039ae8bc 7888 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7889 bool decayed = false;
7890 int cpu = cpu_of(rq);
b90f7c9d 7891
9763b67f
PZ
7892 /*
7893 * Iterates the task_group tree in a bottom up fashion, see
7894 * list_add_leaf_cfs_rq() for details.
7895 */
039ae8bc 7896 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7897 struct sched_entity *se;
7898
bef69dd8 7899 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 7900 update_tg_load_avg(cfs_rq);
4e516076 7901
bef69dd8
VG
7902 if (cfs_rq == &rq->cfs)
7903 decayed = true;
7904 }
7905
bc427898
VG
7906 /* Propagate pending load changes to the parent, if any: */
7907 se = cfs_rq->tg->se[cpu];
7908 if (se && !skip_blocked_update(se))
88c0616e 7909 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7910
039ae8bc
VG
7911 /*
7912 * There can be a lot of idle CPU cgroups. Don't let fully
7913 * decayed cfs_rqs linger on the list.
7914 */
7915 if (cfs_rq_is_decayed(cfs_rq))
7916 list_del_leaf_cfs_rq(cfs_rq);
7917
1936c53c
VG
7918 /* Don't need periodic decay once load/util_avg are null */
7919 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7920 *done = false;
9d89c257 7921 }
12b04875 7922
bef69dd8 7923 return decayed;
9e3081ca
PZ
7924}
7925
9763b67f 7926/*
68520796 7927 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7928 * This needs to be done in a top-down fashion because the load of a child
7929 * group is a fraction of its parents load.
7930 */
68520796 7931static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7932{
68520796
VD
7933 struct rq *rq = rq_of(cfs_rq);
7934 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7935 unsigned long now = jiffies;
68520796 7936 unsigned long load;
a35b6466 7937
68520796 7938 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7939 return;
7940
0e9f0245 7941 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7942 for_each_sched_entity(se) {
7943 cfs_rq = cfs_rq_of(se);
0e9f0245 7944 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7945 if (cfs_rq->last_h_load_update == now)
7946 break;
7947 }
a35b6466 7948
68520796 7949 if (!se) {
7ea241af 7950 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7951 cfs_rq->last_h_load_update = now;
7952 }
7953
0e9f0245 7954 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7955 load = cfs_rq->h_load;
7ea241af
YD
7956 load = div64_ul(load * se->avg.load_avg,
7957 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7958 cfs_rq = group_cfs_rq(se);
7959 cfs_rq->h_load = load;
7960 cfs_rq->last_h_load_update = now;
7961 }
9763b67f
PZ
7962}
7963
367456c7 7964static unsigned long task_h_load(struct task_struct *p)
230059de 7965{
367456c7 7966 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7967
68520796 7968 update_cfs_rq_h_load(cfs_rq);
9d89c257 7969 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7970 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7971}
7972#else
bef69dd8 7973static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7974{
6c1d47c0 7975 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7976 bool decayed;
b90f7c9d 7977
bef69dd8
VG
7978 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7979 if (cfs_rq_has_blocked(cfs_rq))
7980 *done = false;
b90f7c9d 7981
bef69dd8 7982 return decayed;
9e3081ca
PZ
7983}
7984
367456c7 7985static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7986{
9d89c257 7987 return p->se.avg.load_avg;
1e3c88bd 7988}
230059de 7989#endif
1e3c88bd 7990
bef69dd8
VG
7991static void update_blocked_averages(int cpu)
7992{
7993 bool decayed = false, done = true;
7994 struct rq *rq = cpu_rq(cpu);
7995 struct rq_flags rf;
7996
7997 rq_lock_irqsave(rq, &rf);
7998 update_rq_clock(rq);
7999
8000 decayed |= __update_blocked_others(rq, &done);
8001 decayed |= __update_blocked_fair(rq, &done);
8002
8003 update_blocked_load_status(rq, !done);
8004 if (decayed)
8005 cpufreq_update_util(rq, 0);
8006 rq_unlock_irqrestore(rq, &rf);
8007}
8008
1e3c88bd 8009/********** Helpers for find_busiest_group ************************/
caeb178c 8010
1e3c88bd
PZ
8011/*
8012 * sg_lb_stats - stats of a sched_group required for load_balancing
8013 */
8014struct sg_lb_stats {
8015 unsigned long avg_load; /*Avg load across the CPUs of the group */
8016 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8017 unsigned long group_capacity;
070f5e86
VG
8018 unsigned long group_util; /* Total utilization over the CPUs of the group */
8019 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8020 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8021 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8022 unsigned int idle_cpus;
8023 unsigned int group_weight;
caeb178c 8024 enum group_type group_type;
490ba971 8025 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8026 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8027#ifdef CONFIG_NUMA_BALANCING
8028 unsigned int nr_numa_running;
8029 unsigned int nr_preferred_running;
8030#endif
1e3c88bd
PZ
8031};
8032
56cf515b
JK
8033/*
8034 * sd_lb_stats - Structure to store the statistics of a sched_domain
8035 * during load balancing.
8036 */
8037struct sd_lb_stats {
8038 struct sched_group *busiest; /* Busiest group in this sd */
8039 struct sched_group *local; /* Local group in this sd */
8040 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8041 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8042 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8043 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8044
56cf515b 8045 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8046 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8047};
8048
147c5fc2
PZ
8049static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8050{
8051 /*
8052 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8053 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8054 * We must however set busiest_stat::group_type and
8055 * busiest_stat::idle_cpus to the worst busiest group because
8056 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8057 */
8058 *sds = (struct sd_lb_stats){
8059 .busiest = NULL,
8060 .local = NULL,
8061 .total_load = 0UL,
63b2ca30 8062 .total_capacity = 0UL,
147c5fc2 8063 .busiest_stat = {
0b0695f2
VG
8064 .idle_cpus = UINT_MAX,
8065 .group_type = group_has_spare,
147c5fc2
PZ
8066 },
8067 };
8068}
8069
1ca2034e 8070static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8071{
8072 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8073 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8074 unsigned long used, free;
523e979d 8075 unsigned long irq;
b654f7de 8076
2e62c474 8077 irq = cpu_util_irq(rq);
cadefd3d 8078
523e979d
VG
8079 if (unlikely(irq >= max))
8080 return 1;
aa483808 8081
467b7d01
TG
8082 /*
8083 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8084 * (running and not running) with weights 0 and 1024 respectively.
8085 * avg_thermal.load_avg tracks thermal pressure and the weighted
8086 * average uses the actual delta max capacity(load).
8087 */
523e979d
VG
8088 used = READ_ONCE(rq->avg_rt.util_avg);
8089 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8090 used += thermal_load_avg(rq);
1e3c88bd 8091
523e979d
VG
8092 if (unlikely(used >= max))
8093 return 1;
1e3c88bd 8094
523e979d 8095 free = max - used;
2e62c474
VG
8096
8097 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8098}
8099
ced549fa 8100static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8101{
1ca2034e 8102 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8103 struct sched_group *sdg = sd->groups;
8104
8ec59c0f 8105 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8106
ced549fa
NP
8107 if (!capacity)
8108 capacity = 1;
1e3c88bd 8109
ced549fa
NP
8110 cpu_rq(cpu)->cpu_capacity = capacity;
8111 sdg->sgc->capacity = capacity;
bf475ce0 8112 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8113 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8114}
8115
63b2ca30 8116void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8117{
8118 struct sched_domain *child = sd->child;
8119 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8120 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8121 unsigned long interval;
8122
8123 interval = msecs_to_jiffies(sd->balance_interval);
8124 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8125 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8126
8127 if (!child) {
ced549fa 8128 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8129 return;
8130 }
8131
dc7ff76e 8132 capacity = 0;
bf475ce0 8133 min_capacity = ULONG_MAX;
e3d6d0cb 8134 max_capacity = 0;
1e3c88bd 8135
74a5ce20
PZ
8136 if (child->flags & SD_OVERLAP) {
8137 /*
8138 * SD_OVERLAP domains cannot assume that child groups
8139 * span the current group.
8140 */
8141
ae4df9d6 8142 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8143 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8144
4c58f57f
PL
8145 capacity += cpu_cap;
8146 min_capacity = min(cpu_cap, min_capacity);
8147 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8148 }
74a5ce20
PZ
8149 } else {
8150 /*
8151 * !SD_OVERLAP domains can assume that child groups
8152 * span the current group.
97a7142f 8153 */
74a5ce20
PZ
8154
8155 group = child->groups;
8156 do {
bf475ce0
MR
8157 struct sched_group_capacity *sgc = group->sgc;
8158
8159 capacity += sgc->capacity;
8160 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8161 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8162 group = group->next;
8163 } while (group != child->groups);
8164 }
1e3c88bd 8165
63b2ca30 8166 sdg->sgc->capacity = capacity;
bf475ce0 8167 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8168 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8169}
8170
9d5efe05 8171/*
ea67821b
VG
8172 * Check whether the capacity of the rq has been noticeably reduced by side
8173 * activity. The imbalance_pct is used for the threshold.
8174 * Return true is the capacity is reduced
9d5efe05
SV
8175 */
8176static inline int
ea67821b 8177check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8178{
ea67821b
VG
8179 return ((rq->cpu_capacity * sd->imbalance_pct) <
8180 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8181}
8182
a0fe2cf0
VS
8183/*
8184 * Check whether a rq has a misfit task and if it looks like we can actually
8185 * help that task: we can migrate the task to a CPU of higher capacity, or
8186 * the task's current CPU is heavily pressured.
8187 */
8188static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8189{
8190 return rq->misfit_task_load &&
8191 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8192 check_cpu_capacity(rq, sd));
8193}
8194
30ce5dab
PZ
8195/*
8196 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8197 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8198 *
97fb7a0a
IM
8199 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8200 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8201 * Something like:
8202 *
2b4d5b25
IM
8203 * { 0 1 2 3 } { 4 5 6 7 }
8204 * * * * *
30ce5dab
PZ
8205 *
8206 * If we were to balance group-wise we'd place two tasks in the first group and
8207 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8208 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8209 *
8210 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8211 * by noticing the lower domain failed to reach balance and had difficulty
8212 * moving tasks due to affinity constraints.
30ce5dab
PZ
8213 *
8214 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8215 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8216 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8217 * to create an effective group imbalance.
8218 *
8219 * This is a somewhat tricky proposition since the next run might not find the
8220 * group imbalance and decide the groups need to be balanced again. A most
8221 * subtle and fragile situation.
8222 */
8223
6263322c 8224static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8225{
63b2ca30 8226 return group->sgc->imbalance;
30ce5dab
PZ
8227}
8228
b37d9316 8229/*
ea67821b
VG
8230 * group_has_capacity returns true if the group has spare capacity that could
8231 * be used by some tasks.
8232 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8233 * smaller than the number of CPUs or if the utilization is lower than the
8234 * available capacity for CFS tasks.
ea67821b
VG
8235 * For the latter, we use a threshold to stabilize the state, to take into
8236 * account the variance of the tasks' load and to return true if the available
8237 * capacity in meaningful for the load balancer.
8238 * As an example, an available capacity of 1% can appear but it doesn't make
8239 * any benefit for the load balance.
b37d9316 8240 */
ea67821b 8241static inline bool
57abff06 8242group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8243{
5e23e474 8244 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8245 return true;
c61037e9 8246
070f5e86
VG
8247 if ((sgs->group_capacity * imbalance_pct) <
8248 (sgs->group_runnable * 100))
8249 return false;
8250
ea67821b 8251 if ((sgs->group_capacity * 100) >
57abff06 8252 (sgs->group_util * imbalance_pct))
ea67821b 8253 return true;
b37d9316 8254
ea67821b
VG
8255 return false;
8256}
8257
8258/*
8259 * group_is_overloaded returns true if the group has more tasks than it can
8260 * handle.
8261 * group_is_overloaded is not equals to !group_has_capacity because a group
8262 * with the exact right number of tasks, has no more spare capacity but is not
8263 * overloaded so both group_has_capacity and group_is_overloaded return
8264 * false.
8265 */
8266static inline bool
57abff06 8267group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8268{
5e23e474 8269 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8270 return false;
b37d9316 8271
ea67821b 8272 if ((sgs->group_capacity * 100) <
57abff06 8273 (sgs->group_util * imbalance_pct))
ea67821b 8274 return true;
b37d9316 8275
070f5e86
VG
8276 if ((sgs->group_capacity * imbalance_pct) <
8277 (sgs->group_runnable * 100))
8278 return true;
8279
ea67821b 8280 return false;
b37d9316
PZ
8281}
8282
9e0994c0 8283/*
e3d6d0cb 8284 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8285 * per-CPU capacity than sched_group ref.
8286 */
8287static inline bool
e3d6d0cb 8288group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8289{
60e17f5c 8290 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8291}
8292
e3d6d0cb
MR
8293/*
8294 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8295 * per-CPU capacity_orig than sched_group ref.
8296 */
8297static inline bool
8298group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8299{
60e17f5c 8300 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8301}
8302
79a89f92 8303static inline enum
57abff06 8304group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8305 struct sched_group *group,
79a89f92 8306 struct sg_lb_stats *sgs)
caeb178c 8307{
57abff06 8308 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8309 return group_overloaded;
8310
8311 if (sg_imbalanced(group))
8312 return group_imbalanced;
8313
0b0695f2
VG
8314 if (sgs->group_asym_packing)
8315 return group_asym_packing;
8316
3b1baa64
MR
8317 if (sgs->group_misfit_task_load)
8318 return group_misfit_task;
8319
57abff06 8320 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8321 return group_fully_busy;
8322
8323 return group_has_spare;
caeb178c
RR
8324}
8325
63928384 8326static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8327{
8328#ifdef CONFIG_NO_HZ_COMMON
8329 unsigned int cpu = rq->cpu;
8330
f643ea22
VG
8331 if (!rq->has_blocked_load)
8332 return false;
8333
e022e0d3 8334 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8335 return false;
e022e0d3 8336
63928384 8337 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8338 return true;
e022e0d3
PZ
8339
8340 update_blocked_averages(cpu);
f643ea22
VG
8341
8342 return rq->has_blocked_load;
8343#else
8344 return false;
e022e0d3
PZ
8345#endif
8346}
8347
1e3c88bd
PZ
8348/**
8349 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8350 * @env: The load balancing environment.
1e3c88bd 8351 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8352 * @sgs: variable to hold the statistics for this group.
630246a0 8353 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8354 */
bd939f45 8355static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8356 struct sched_group *group,
8357 struct sg_lb_stats *sgs,
8358 int *sg_status)
1e3c88bd 8359{
0b0695f2 8360 int i, nr_running, local_group;
1e3c88bd 8361
b72ff13c
PZ
8362 memset(sgs, 0, sizeof(*sgs));
8363
0b0695f2
VG
8364 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8365
ae4df9d6 8366 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8367 struct rq *rq = cpu_rq(i);
8368
63928384 8369 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8370 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8371
b0fb1eb4 8372 sgs->group_load += cpu_load(rq);
9e91d61d 8373 sgs->group_util += cpu_util(i);
070f5e86 8374 sgs->group_runnable += cpu_runnable(rq);
a3498347 8375 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8376
a426f99c 8377 nr_running = rq->nr_running;
5e23e474
VG
8378 sgs->sum_nr_running += nr_running;
8379
a426f99c 8380 if (nr_running > 1)
630246a0 8381 *sg_status |= SG_OVERLOAD;
4486edd1 8382
2802bf3c
MR
8383 if (cpu_overutilized(i))
8384 *sg_status |= SG_OVERUTILIZED;
4486edd1 8385
0ec8aa00
PZ
8386#ifdef CONFIG_NUMA_BALANCING
8387 sgs->nr_numa_running += rq->nr_numa_running;
8388 sgs->nr_preferred_running += rq->nr_preferred_running;
8389#endif
a426f99c
WL
8390 /*
8391 * No need to call idle_cpu() if nr_running is not 0
8392 */
0b0695f2 8393 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8394 sgs->idle_cpus++;
0b0695f2
VG
8395 /* Idle cpu can't have misfit task */
8396 continue;
8397 }
8398
8399 if (local_group)
8400 continue;
3b1baa64 8401
0b0695f2 8402 /* Check for a misfit task on the cpu */
3b1baa64 8403 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8404 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8405 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8406 *sg_status |= SG_OVERLOAD;
757ffdd7 8407 }
1e3c88bd
PZ
8408 }
8409
0b0695f2
VG
8410 /* Check if dst CPU is idle and preferred to this group */
8411 if (env->sd->flags & SD_ASYM_PACKING &&
8412 env->idle != CPU_NOT_IDLE &&
8413 sgs->sum_h_nr_running &&
8414 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8415 sgs->group_asym_packing = 1;
8416 }
8417
63b2ca30 8418 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8419
aae6d3dd 8420 sgs->group_weight = group->group_weight;
b37d9316 8421
57abff06 8422 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8423
8424 /* Computing avg_load makes sense only when group is overloaded */
8425 if (sgs->group_type == group_overloaded)
8426 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8427 sgs->group_capacity;
1e3c88bd
PZ
8428}
8429
532cb4c4
MN
8430/**
8431 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8432 * @env: The load balancing environment.
532cb4c4
MN
8433 * @sds: sched_domain statistics
8434 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8435 * @sgs: sched_group statistics
532cb4c4
MN
8436 *
8437 * Determine if @sg is a busier group than the previously selected
8438 * busiest group.
e69f6186
YB
8439 *
8440 * Return: %true if @sg is a busier group than the previously selected
8441 * busiest group. %false otherwise.
532cb4c4 8442 */
bd939f45 8443static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8444 struct sd_lb_stats *sds,
8445 struct sched_group *sg,
bd939f45 8446 struct sg_lb_stats *sgs)
532cb4c4 8447{
caeb178c 8448 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8449
0b0695f2
VG
8450 /* Make sure that there is at least one task to pull */
8451 if (!sgs->sum_h_nr_running)
8452 return false;
8453
cad68e55
MR
8454 /*
8455 * Don't try to pull misfit tasks we can't help.
8456 * We can use max_capacity here as reduction in capacity on some
8457 * CPUs in the group should either be possible to resolve
8458 * internally or be covered by avg_load imbalance (eventually).
8459 */
8460 if (sgs->group_type == group_misfit_task &&
8461 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8462 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8463 return false;
8464
caeb178c 8465 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8466 return true;
8467
caeb178c
RR
8468 if (sgs->group_type < busiest->group_type)
8469 return false;
8470
9e0994c0 8471 /*
0b0695f2
VG
8472 * The candidate and the current busiest group are the same type of
8473 * group. Let check which one is the busiest according to the type.
9e0994c0 8474 */
9e0994c0 8475
0b0695f2
VG
8476 switch (sgs->group_type) {
8477 case group_overloaded:
8478 /* Select the overloaded group with highest avg_load. */
8479 if (sgs->avg_load <= busiest->avg_load)
8480 return false;
8481 break;
8482
8483 case group_imbalanced:
8484 /*
8485 * Select the 1st imbalanced group as we don't have any way to
8486 * choose one more than another.
8487 */
9e0994c0
MR
8488 return false;
8489
0b0695f2
VG
8490 case group_asym_packing:
8491 /* Prefer to move from lowest priority CPU's work */
8492 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8493 return false;
8494 break;
532cb4c4 8495
0b0695f2
VG
8496 case group_misfit_task:
8497 /*
8498 * If we have more than one misfit sg go with the biggest
8499 * misfit.
8500 */
8501 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8502 return false;
8503 break;
532cb4c4 8504
0b0695f2
VG
8505 case group_fully_busy:
8506 /*
8507 * Select the fully busy group with highest avg_load. In
8508 * theory, there is no need to pull task from such kind of
8509 * group because tasks have all compute capacity that they need
8510 * but we can still improve the overall throughput by reducing
8511 * contention when accessing shared HW resources.
8512 *
8513 * XXX for now avg_load is not computed and always 0 so we
8514 * select the 1st one.
8515 */
8516 if (sgs->avg_load <= busiest->avg_load)
8517 return false;
8518 break;
8519
8520 case group_has_spare:
8521 /*
5f68eb19
VG
8522 * Select not overloaded group with lowest number of idle cpus
8523 * and highest number of running tasks. We could also compare
8524 * the spare capacity which is more stable but it can end up
8525 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8526 * CPUs which means less opportunity to pull tasks.
8527 */
5f68eb19 8528 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8529 return false;
5f68eb19
VG
8530 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8531 (sgs->sum_nr_running <= busiest->sum_nr_running))
8532 return false;
8533
0b0695f2 8534 break;
532cb4c4
MN
8535 }
8536
0b0695f2
VG
8537 /*
8538 * Candidate sg has no more than one task per CPU and has higher
8539 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8540 * throughput. Maximize throughput, power/energy consequences are not
8541 * considered.
8542 */
8543 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8544 (sgs->group_type <= group_fully_busy) &&
8545 (group_smaller_min_cpu_capacity(sds->local, sg)))
8546 return false;
8547
8548 return true;
532cb4c4
MN
8549}
8550
0ec8aa00
PZ
8551#ifdef CONFIG_NUMA_BALANCING
8552static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8553{
a3498347 8554 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8555 return regular;
a3498347 8556 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8557 return remote;
8558 return all;
8559}
8560
8561static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8562{
8563 if (rq->nr_running > rq->nr_numa_running)
8564 return regular;
8565 if (rq->nr_running > rq->nr_preferred_running)
8566 return remote;
8567 return all;
8568}
8569#else
8570static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8571{
8572 return all;
8573}
8574
8575static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8576{
8577 return regular;
8578}
8579#endif /* CONFIG_NUMA_BALANCING */
8580
57abff06
VG
8581
8582struct sg_lb_stats;
8583
3318544b
VG
8584/*
8585 * task_running_on_cpu - return 1 if @p is running on @cpu.
8586 */
8587
8588static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8589{
8590 /* Task has no contribution or is new */
8591 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8592 return 0;
8593
8594 if (task_on_rq_queued(p))
8595 return 1;
8596
8597 return 0;
8598}
8599
8600/**
8601 * idle_cpu_without - would a given CPU be idle without p ?
8602 * @cpu: the processor on which idleness is tested.
8603 * @p: task which should be ignored.
8604 *
8605 * Return: 1 if the CPU would be idle. 0 otherwise.
8606 */
8607static int idle_cpu_without(int cpu, struct task_struct *p)
8608{
8609 struct rq *rq = cpu_rq(cpu);
8610
8611 if (rq->curr != rq->idle && rq->curr != p)
8612 return 0;
8613
8614 /*
8615 * rq->nr_running can't be used but an updated version without the
8616 * impact of p on cpu must be used instead. The updated nr_running
8617 * be computed and tested before calling idle_cpu_without().
8618 */
8619
8620#ifdef CONFIG_SMP
126c2092 8621 if (rq->ttwu_pending)
3318544b
VG
8622 return 0;
8623#endif
8624
8625 return 1;
8626}
8627
57abff06
VG
8628/*
8629 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8630 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8631 * @group: sched_group whose statistics are to be updated.
8632 * @sgs: variable to hold the statistics for this group.
3318544b 8633 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8634 */
8635static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8636 struct sched_group *group,
8637 struct sg_lb_stats *sgs,
8638 struct task_struct *p)
8639{
8640 int i, nr_running;
8641
8642 memset(sgs, 0, sizeof(*sgs));
8643
8644 for_each_cpu(i, sched_group_span(group)) {
8645 struct rq *rq = cpu_rq(i);
3318544b 8646 unsigned int local;
57abff06 8647
3318544b 8648 sgs->group_load += cpu_load_without(rq, p);
57abff06 8649 sgs->group_util += cpu_util_without(i, p);
070f5e86 8650 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8651 local = task_running_on_cpu(i, p);
8652 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8653
3318544b 8654 nr_running = rq->nr_running - local;
57abff06
VG
8655 sgs->sum_nr_running += nr_running;
8656
8657 /*
3318544b 8658 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8659 */
3318544b 8660 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8661 sgs->idle_cpus++;
8662
57abff06
VG
8663 }
8664
8665 /* Check if task fits in the group */
8666 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8667 !task_fits_capacity(p, group->sgc->max_capacity)) {
8668 sgs->group_misfit_task_load = 1;
8669 }
8670
8671 sgs->group_capacity = group->sgc->capacity;
8672
289de359
VG
8673 sgs->group_weight = group->group_weight;
8674
57abff06
VG
8675 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8676
8677 /*
8678 * Computing avg_load makes sense only when group is fully busy or
8679 * overloaded
8680 */
6c8116c9
TZ
8681 if (sgs->group_type == group_fully_busy ||
8682 sgs->group_type == group_overloaded)
57abff06
VG
8683 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8684 sgs->group_capacity;
8685}
8686
8687static bool update_pick_idlest(struct sched_group *idlest,
8688 struct sg_lb_stats *idlest_sgs,
8689 struct sched_group *group,
8690 struct sg_lb_stats *sgs)
8691{
8692 if (sgs->group_type < idlest_sgs->group_type)
8693 return true;
8694
8695 if (sgs->group_type > idlest_sgs->group_type)
8696 return false;
8697
8698 /*
8699 * The candidate and the current idlest group are the same type of
8700 * group. Let check which one is the idlest according to the type.
8701 */
8702
8703 switch (sgs->group_type) {
8704 case group_overloaded:
8705 case group_fully_busy:
8706 /* Select the group with lowest avg_load. */
8707 if (idlest_sgs->avg_load <= sgs->avg_load)
8708 return false;
8709 break;
8710
8711 case group_imbalanced:
8712 case group_asym_packing:
8713 /* Those types are not used in the slow wakeup path */
8714 return false;
8715
8716 case group_misfit_task:
8717 /* Select group with the highest max capacity */
8718 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8719 return false;
8720 break;
8721
8722 case group_has_spare:
8723 /* Select group with most idle CPUs */
3edecfef 8724 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8725 return false;
3edecfef
PP
8726
8727 /* Select group with lowest group_util */
8728 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8729 idlest_sgs->group_util <= sgs->group_util)
8730 return false;
8731
57abff06
VG
8732 break;
8733 }
8734
8735 return true;
8736}
8737
8738/*
8739 * find_idlest_group() finds and returns the least busy CPU group within the
8740 * domain.
8741 *
8742 * Assumes p is allowed on at least one CPU in sd.
8743 */
8744static struct sched_group *
45da2773 8745find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8746{
8747 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8748 struct sg_lb_stats local_sgs, tmp_sgs;
8749 struct sg_lb_stats *sgs;
8750 unsigned long imbalance;
8751 struct sg_lb_stats idlest_sgs = {
8752 .avg_load = UINT_MAX,
8753 .group_type = group_overloaded,
8754 };
8755
8756 imbalance = scale_load_down(NICE_0_LOAD) *
8757 (sd->imbalance_pct-100) / 100;
8758
8759 do {
8760 int local_group;
8761
8762 /* Skip over this group if it has no CPUs allowed */
8763 if (!cpumask_intersects(sched_group_span(group),
8764 p->cpus_ptr))
8765 continue;
8766
8767 local_group = cpumask_test_cpu(this_cpu,
8768 sched_group_span(group));
8769
8770 if (local_group) {
8771 sgs = &local_sgs;
8772 local = group;
8773 } else {
8774 sgs = &tmp_sgs;
8775 }
8776
8777 update_sg_wakeup_stats(sd, group, sgs, p);
8778
8779 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8780 idlest = group;
8781 idlest_sgs = *sgs;
8782 }
8783
8784 } while (group = group->next, group != sd->groups);
8785
8786
8787 /* There is no idlest group to push tasks to */
8788 if (!idlest)
8789 return NULL;
8790
7ed735c3
VG
8791 /* The local group has been skipped because of CPU affinity */
8792 if (!local)
8793 return idlest;
8794
57abff06
VG
8795 /*
8796 * If the local group is idler than the selected idlest group
8797 * don't try and push the task.
8798 */
8799 if (local_sgs.group_type < idlest_sgs.group_type)
8800 return NULL;
8801
8802 /*
8803 * If the local group is busier than the selected idlest group
8804 * try and push the task.
8805 */
8806 if (local_sgs.group_type > idlest_sgs.group_type)
8807 return idlest;
8808
8809 switch (local_sgs.group_type) {
8810 case group_overloaded:
8811 case group_fully_busy:
8812 /*
8813 * When comparing groups across NUMA domains, it's possible for
8814 * the local domain to be very lightly loaded relative to the
8815 * remote domains but "imbalance" skews the comparison making
8816 * remote CPUs look much more favourable. When considering
8817 * cross-domain, add imbalance to the load on the remote node
8818 * and consider staying local.
8819 */
8820
8821 if ((sd->flags & SD_NUMA) &&
8822 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8823 return NULL;
8824
8825 /*
8826 * If the local group is less loaded than the selected
8827 * idlest group don't try and push any tasks.
8828 */
8829 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8830 return NULL;
8831
8832 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8833 return NULL;
8834 break;
8835
8836 case group_imbalanced:
8837 case group_asym_packing:
8838 /* Those type are not used in the slow wakeup path */
8839 return NULL;
8840
8841 case group_misfit_task:
8842 /* Select group with the highest max capacity */
8843 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8844 return NULL;
8845 break;
8846
8847 case group_has_spare:
8848 if (sd->flags & SD_NUMA) {
8849#ifdef CONFIG_NUMA_BALANCING
8850 int idlest_cpu;
8851 /*
8852 * If there is spare capacity at NUMA, try to select
8853 * the preferred node
8854 */
8855 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8856 return NULL;
8857
8858 idlest_cpu = cpumask_first(sched_group_span(idlest));
8859 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8860 return idlest;
8861#endif
8862 /*
8863 * Otherwise, keep the task on this node to stay close
8864 * its wakeup source and improve locality. If there is
8865 * a real need of migration, periodic load balance will
8866 * take care of it.
8867 */
8868 if (local_sgs.idle_cpus)
8869 return NULL;
8870 }
8871
8872 /*
8873 * Select group with highest number of idle CPUs. We could also
8874 * compare the utilization which is more stable but it can end
8875 * up that the group has less spare capacity but finally more
8876 * idle CPUs which means more opportunity to run task.
8877 */
8878 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8879 return NULL;
8880 break;
8881 }
8882
8883 return idlest;
8884}
8885
1e3c88bd 8886/**
461819ac 8887 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8888 * @env: The load balancing environment.
1e3c88bd
PZ
8889 * @sds: variable to hold the statistics for this sched_domain.
8890 */
0b0695f2 8891
0ec8aa00 8892static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8893{
bd939f45
PZ
8894 struct sched_domain *child = env->sd->child;
8895 struct sched_group *sg = env->sd->groups;
05b40e05 8896 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8897 struct sg_lb_stats tmp_sgs;
630246a0 8898 int sg_status = 0;
1e3c88bd 8899
e022e0d3 8900#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8901 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8902 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8903#endif
8904
1e3c88bd 8905 do {
56cf515b 8906 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8907 int local_group;
8908
ae4df9d6 8909 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8910 if (local_group) {
8911 sds->local = sg;
05b40e05 8912 sgs = local;
b72ff13c
PZ
8913
8914 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8915 time_after_eq(jiffies, sg->sgc->next_update))
8916 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8917 }
1e3c88bd 8918
630246a0 8919 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8920
b72ff13c
PZ
8921 if (local_group)
8922 goto next_group;
8923
1e3c88bd 8924
b72ff13c 8925 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8926 sds->busiest = sg;
56cf515b 8927 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8928 }
8929
b72ff13c
PZ
8930next_group:
8931 /* Now, start updating sd_lb_stats */
8932 sds->total_load += sgs->group_load;
63b2ca30 8933 sds->total_capacity += sgs->group_capacity;
b72ff13c 8934
532cb4c4 8935 sg = sg->next;
bd939f45 8936 } while (sg != env->sd->groups);
0ec8aa00 8937
0b0695f2
VG
8938 /* Tag domain that child domain prefers tasks go to siblings first */
8939 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8940
f643ea22
VG
8941#ifdef CONFIG_NO_HZ_COMMON
8942 if ((env->flags & LBF_NOHZ_AGAIN) &&
8943 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8944
8945 WRITE_ONCE(nohz.next_blocked,
8946 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8947 }
8948#endif
8949
0ec8aa00
PZ
8950 if (env->sd->flags & SD_NUMA)
8951 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8952
8953 if (!env->sd->parent) {
2802bf3c
MR
8954 struct root_domain *rd = env->dst_rq->rd;
8955
4486edd1 8956 /* update overload indicator if we are at root domain */
2802bf3c
MR
8957 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8958
8959 /* Update over-utilization (tipping point, U >= 0) indicator */
8960 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8961 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8962 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8963 struct root_domain *rd = env->dst_rq->rd;
8964
8965 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8966 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8967 }
532cb4c4
MN
8968}
8969
233e7aca 8970static inline long adjust_numa_imbalance(int imbalance, int nr_running)
fb86f5b2
MG
8971{
8972 unsigned int imbalance_min;
8973
8974 /*
8975 * Allow a small imbalance based on a simple pair of communicating
8976 * tasks that remain local when the source domain is almost idle.
8977 */
8978 imbalance_min = 2;
233e7aca 8979 if (nr_running <= imbalance_min)
fb86f5b2
MG
8980 return 0;
8981
8982 return imbalance;
8983}
8984
1e3c88bd
PZ
8985/**
8986 * calculate_imbalance - Calculate the amount of imbalance present within the
8987 * groups of a given sched_domain during load balance.
bd939f45 8988 * @env: load balance environment
1e3c88bd 8989 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8990 */
bd939f45 8991static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8992{
56cf515b
JK
8993 struct sg_lb_stats *local, *busiest;
8994
8995 local = &sds->local_stat;
56cf515b 8996 busiest = &sds->busiest_stat;
dd5feea1 8997
0b0695f2
VG
8998 if (busiest->group_type == group_misfit_task) {
8999 /* Set imbalance to allow misfit tasks to be balanced. */
9000 env->migration_type = migrate_misfit;
c63be7be 9001 env->imbalance = 1;
0b0695f2
VG
9002 return;
9003 }
9004
9005 if (busiest->group_type == group_asym_packing) {
9006 /*
9007 * In case of asym capacity, we will try to migrate all load to
9008 * the preferred CPU.
9009 */
9010 env->migration_type = migrate_task;
9011 env->imbalance = busiest->sum_h_nr_running;
9012 return;
9013 }
9014
9015 if (busiest->group_type == group_imbalanced) {
9016 /*
9017 * In the group_imb case we cannot rely on group-wide averages
9018 * to ensure CPU-load equilibrium, try to move any task to fix
9019 * the imbalance. The next load balance will take care of
9020 * balancing back the system.
9021 */
9022 env->migration_type = migrate_task;
9023 env->imbalance = 1;
490ba971
VG
9024 return;
9025 }
9026
1e3c88bd 9027 /*
0b0695f2 9028 * Try to use spare capacity of local group without overloading it or
a9723389 9029 * emptying busiest.
1e3c88bd 9030 */
0b0695f2
VG
9031 if (local->group_type == group_has_spare) {
9032 if (busiest->group_type > group_fully_busy) {
9033 /*
9034 * If busiest is overloaded, try to fill spare
9035 * capacity. This might end up creating spare capacity
9036 * in busiest or busiest still being overloaded but
9037 * there is no simple way to directly compute the
9038 * amount of load to migrate in order to balance the
9039 * system.
9040 */
9041 env->migration_type = migrate_util;
9042 env->imbalance = max(local->group_capacity, local->group_util) -
9043 local->group_util;
9044
9045 /*
9046 * In some cases, the group's utilization is max or even
9047 * higher than capacity because of migrations but the
9048 * local CPU is (newly) idle. There is at least one
9049 * waiting task in this overloaded busiest group. Let's
9050 * try to pull it.
9051 */
9052 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9053 env->migration_type = migrate_task;
9054 env->imbalance = 1;
9055 }
9056
9057 return;
9058 }
9059
9060 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9061 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9062 /*
9063 * When prefer sibling, evenly spread running tasks on
9064 * groups.
9065 */
9066 env->migration_type = migrate_task;
5e23e474 9067 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9068 env->imbalance = nr_diff >> 1;
b396f523 9069 } else {
0b0695f2 9070
b396f523
MG
9071 /*
9072 * If there is no overload, we just want to even the number of
9073 * idle cpus.
9074 */
9075 env->migration_type = migrate_task;
9076 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9077 busiest->idle_cpus) >> 1);
b396f523
MG
9078 }
9079
9080 /* Consider allowing a small imbalance between NUMA groups */
fb86f5b2
MG
9081 if (env->sd->flags & SD_NUMA)
9082 env->imbalance = adjust_numa_imbalance(env->imbalance,
9083 busiest->sum_nr_running);
b396f523 9084
fcf0553d 9085 return;
1e3c88bd
PZ
9086 }
9087
9a5d9ba6 9088 /*
0b0695f2
VG
9089 * Local is fully busy but has to take more load to relieve the
9090 * busiest group
9a5d9ba6 9091 */
0b0695f2
VG
9092 if (local->group_type < group_overloaded) {
9093 /*
9094 * Local will become overloaded so the avg_load metrics are
9095 * finally needed.
9096 */
9097
9098 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9099 local->group_capacity;
9100
9101 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9102 sds->total_capacity;
111688ca
AL
9103 /*
9104 * If the local group is more loaded than the selected
9105 * busiest group don't try to pull any tasks.
9106 */
9107 if (local->avg_load >= busiest->avg_load) {
9108 env->imbalance = 0;
9109 return;
9110 }
dd5feea1
SS
9111 }
9112
9113 /*
0b0695f2
VG
9114 * Both group are or will become overloaded and we're trying to get all
9115 * the CPUs to the average_load, so we don't want to push ourselves
9116 * above the average load, nor do we wish to reduce the max loaded CPU
9117 * below the average load. At the same time, we also don't want to
9118 * reduce the group load below the group capacity. Thus we look for
9119 * the minimum possible imbalance.
dd5feea1 9120 */
0b0695f2 9121 env->migration_type = migrate_load;
56cf515b 9122 env->imbalance = min(
0b0695f2 9123 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9124 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9125 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9126}
fab47622 9127
1e3c88bd
PZ
9128/******* find_busiest_group() helpers end here *********************/
9129
0b0695f2
VG
9130/*
9131 * Decision matrix according to the local and busiest group type:
9132 *
9133 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9134 * has_spare nr_idle balanced N/A N/A balanced balanced
9135 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9136 * misfit_task force N/A N/A N/A force force
9137 * asym_packing force force N/A N/A force force
9138 * imbalanced force force N/A N/A force force
9139 * overloaded force force N/A N/A force avg_load
9140 *
9141 * N/A : Not Applicable because already filtered while updating
9142 * statistics.
9143 * balanced : The system is balanced for these 2 groups.
9144 * force : Calculate the imbalance as load migration is probably needed.
9145 * avg_load : Only if imbalance is significant enough.
9146 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9147 * different in groups.
9148 */
9149
1e3c88bd
PZ
9150/**
9151 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9152 * if there is an imbalance.
1e3c88bd 9153 *
a3df0679 9154 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9155 * to restore balance.
9156 *
cd96891d 9157 * @env: The load balancing environment.
1e3c88bd 9158 *
e69f6186 9159 * Return: - The busiest group if imbalance exists.
1e3c88bd 9160 */
56cf515b 9161static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9162{
56cf515b 9163 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9164 struct sd_lb_stats sds;
9165
147c5fc2 9166 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9167
9168 /*
b0fb1eb4 9169 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9170 * this level.
9171 */
23f0d209 9172 update_sd_lb_stats(env, &sds);
2802bf3c 9173
f8a696f2 9174 if (sched_energy_enabled()) {
2802bf3c
MR
9175 struct root_domain *rd = env->dst_rq->rd;
9176
9177 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9178 goto out_balanced;
9179 }
9180
56cf515b
JK
9181 local = &sds.local_stat;
9182 busiest = &sds.busiest_stat;
1e3c88bd 9183
cc57aa8f 9184 /* There is no busy sibling group to pull tasks from */
0b0695f2 9185 if (!sds.busiest)
1e3c88bd
PZ
9186 goto out_balanced;
9187
0b0695f2
VG
9188 /* Misfit tasks should be dealt with regardless of the avg load */
9189 if (busiest->group_type == group_misfit_task)
9190 goto force_balance;
9191
9192 /* ASYM feature bypasses nice load balance check */
9193 if (busiest->group_type == group_asym_packing)
9194 goto force_balance;
b0432d8f 9195
866ab43e
PZ
9196 /*
9197 * If the busiest group is imbalanced the below checks don't
30ce5dab 9198 * work because they assume all things are equal, which typically
3bd37062 9199 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9200 */
caeb178c 9201 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9202 goto force_balance;
9203
cc57aa8f 9204 /*
9c58c79a 9205 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9206 * don't try and pull any tasks.
9207 */
0b0695f2 9208 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9209 goto out_balanced;
9210
cc57aa8f 9211 /*
0b0695f2
VG
9212 * When groups are overloaded, use the avg_load to ensure fairness
9213 * between tasks.
cc57aa8f 9214 */
0b0695f2
VG
9215 if (local->group_type == group_overloaded) {
9216 /*
9217 * If the local group is more loaded than the selected
9218 * busiest group don't try to pull any tasks.
9219 */
9220 if (local->avg_load >= busiest->avg_load)
9221 goto out_balanced;
9222
9223 /* XXX broken for overlapping NUMA groups */
9224 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9225 sds.total_capacity;
1e3c88bd 9226
aae6d3dd 9227 /*
0b0695f2
VG
9228 * Don't pull any tasks if this group is already above the
9229 * domain average load.
aae6d3dd 9230 */
0b0695f2 9231 if (local->avg_load >= sds.avg_load)
aae6d3dd 9232 goto out_balanced;
0b0695f2 9233
c186fafe 9234 /*
0b0695f2
VG
9235 * If the busiest group is more loaded, use imbalance_pct to be
9236 * conservative.
c186fafe 9237 */
56cf515b
JK
9238 if (100 * busiest->avg_load <=
9239 env->sd->imbalance_pct * local->avg_load)
c186fafe 9240 goto out_balanced;
aae6d3dd 9241 }
1e3c88bd 9242
0b0695f2
VG
9243 /* Try to move all excess tasks to child's sibling domain */
9244 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9245 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9246 goto force_balance;
9247
2ab4092f
VG
9248 if (busiest->group_type != group_overloaded) {
9249 if (env->idle == CPU_NOT_IDLE)
9250 /*
9251 * If the busiest group is not overloaded (and as a
9252 * result the local one too) but this CPU is already
9253 * busy, let another idle CPU try to pull task.
9254 */
9255 goto out_balanced;
9256
9257 if (busiest->group_weight > 1 &&
9258 local->idle_cpus <= (busiest->idle_cpus + 1))
9259 /*
9260 * If the busiest group is not overloaded
9261 * and there is no imbalance between this and busiest
9262 * group wrt idle CPUs, it is balanced. The imbalance
9263 * becomes significant if the diff is greater than 1
9264 * otherwise we might end up to just move the imbalance
9265 * on another group. Of course this applies only if
9266 * there is more than 1 CPU per group.
9267 */
9268 goto out_balanced;
9269
9270 if (busiest->sum_h_nr_running == 1)
9271 /*
9272 * busiest doesn't have any tasks waiting to run
9273 */
9274 goto out_balanced;
9275 }
0b0695f2 9276
fab47622 9277force_balance:
1e3c88bd 9278 /* Looks like there is an imbalance. Compute it */
bd939f45 9279 calculate_imbalance(env, &sds);
bb3485c8 9280 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9281
9282out_balanced:
bd939f45 9283 env->imbalance = 0;
1e3c88bd
PZ
9284 return NULL;
9285}
9286
9287/*
97fb7a0a 9288 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9289 */
bd939f45 9290static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9291 struct sched_group *group)
1e3c88bd
PZ
9292{
9293 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9294 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9295 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9296 int i;
9297
ae4df9d6 9298 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9299 unsigned long capacity, load, util;
9300 unsigned int nr_running;
0ec8aa00
PZ
9301 enum fbq_type rt;
9302
9303 rq = cpu_rq(i);
9304 rt = fbq_classify_rq(rq);
1e3c88bd 9305
0ec8aa00
PZ
9306 /*
9307 * We classify groups/runqueues into three groups:
9308 * - regular: there are !numa tasks
9309 * - remote: there are numa tasks that run on the 'wrong' node
9310 * - all: there is no distinction
9311 *
9312 * In order to avoid migrating ideally placed numa tasks,
9313 * ignore those when there's better options.
9314 *
9315 * If we ignore the actual busiest queue to migrate another
9316 * task, the next balance pass can still reduce the busiest
9317 * queue by moving tasks around inside the node.
9318 *
9319 * If we cannot move enough load due to this classification
9320 * the next pass will adjust the group classification and
9321 * allow migration of more tasks.
9322 *
9323 * Both cases only affect the total convergence complexity.
9324 */
9325 if (rt > env->fbq_type)
9326 continue;
9327
ced549fa 9328 capacity = capacity_of(i);
0b0695f2 9329 nr_running = rq->cfs.h_nr_running;
9d5efe05 9330
4ad3831a
CR
9331 /*
9332 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9333 * eventually lead to active_balancing high->low capacity.
9334 * Higher per-CPU capacity is considered better than balancing
9335 * average load.
9336 */
9337 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9338 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9339 nr_running == 1)
4ad3831a
CR
9340 continue;
9341
0b0695f2
VG
9342 switch (env->migration_type) {
9343 case migrate_load:
9344 /*
b0fb1eb4
VG
9345 * When comparing with load imbalance, use cpu_load()
9346 * which is not scaled with the CPU capacity.
0b0695f2 9347 */
b0fb1eb4 9348 load = cpu_load(rq);
1e3c88bd 9349
0b0695f2
VG
9350 if (nr_running == 1 && load > env->imbalance &&
9351 !check_cpu_capacity(rq, env->sd))
9352 break;
ea67821b 9353
0b0695f2
VG
9354 /*
9355 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9356 * consider the cpu_load() scaled with the CPU
9357 * capacity, so that the load can be moved away
9358 * from the CPU that is potentially running at a
9359 * lower capacity.
0b0695f2
VG
9360 *
9361 * Thus we're looking for max(load_i / capacity_i),
9362 * crosswise multiplication to rid ourselves of the
9363 * division works out to:
9364 * load_i * capacity_j > load_j * capacity_i;
9365 * where j is our previous maximum.
9366 */
9367 if (load * busiest_capacity > busiest_load * capacity) {
9368 busiest_load = load;
9369 busiest_capacity = capacity;
9370 busiest = rq;
9371 }
9372 break;
9373
9374 case migrate_util:
9375 util = cpu_util(cpu_of(rq));
9376
c32b4308
VG
9377 /*
9378 * Don't try to pull utilization from a CPU with one
9379 * running task. Whatever its utilization, we will fail
9380 * detach the task.
9381 */
9382 if (nr_running <= 1)
9383 continue;
9384
0b0695f2
VG
9385 if (busiest_util < util) {
9386 busiest_util = util;
9387 busiest = rq;
9388 }
9389 break;
9390
9391 case migrate_task:
9392 if (busiest_nr < nr_running) {
9393 busiest_nr = nr_running;
9394 busiest = rq;
9395 }
9396 break;
9397
9398 case migrate_misfit:
9399 /*
9400 * For ASYM_CPUCAPACITY domains with misfit tasks we
9401 * simply seek the "biggest" misfit task.
9402 */
9403 if (rq->misfit_task_load > busiest_load) {
9404 busiest_load = rq->misfit_task_load;
9405 busiest = rq;
9406 }
9407
9408 break;
1e3c88bd 9409
1e3c88bd
PZ
9410 }
9411 }
9412
9413 return busiest;
9414}
9415
9416/*
9417 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9418 * so long as it is large enough.
9419 */
9420#define MAX_PINNED_INTERVAL 512
9421
46a745d9
VG
9422static inline bool
9423asym_active_balance(struct lb_env *env)
1af3ed3d 9424{
46a745d9
VG
9425 /*
9426 * ASYM_PACKING needs to force migrate tasks from busy but
9427 * lower priority CPUs in order to pack all tasks in the
9428 * highest priority CPUs.
9429 */
9430 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9431 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9432}
bd939f45 9433
46a745d9
VG
9434static inline bool
9435voluntary_active_balance(struct lb_env *env)
9436{
9437 struct sched_domain *sd = env->sd;
532cb4c4 9438
46a745d9
VG
9439 if (asym_active_balance(env))
9440 return 1;
1af3ed3d 9441
1aaf90a4
VG
9442 /*
9443 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9444 * It's worth migrating the task if the src_cpu's capacity is reduced
9445 * because of other sched_class or IRQs if more capacity stays
9446 * available on dst_cpu.
9447 */
9448 if ((env->idle != CPU_NOT_IDLE) &&
9449 (env->src_rq->cfs.h_nr_running == 1)) {
9450 if ((check_cpu_capacity(env->src_rq, sd)) &&
9451 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9452 return 1;
9453 }
9454
0b0695f2 9455 if (env->migration_type == migrate_misfit)
cad68e55
MR
9456 return 1;
9457
46a745d9
VG
9458 return 0;
9459}
9460
9461static int need_active_balance(struct lb_env *env)
9462{
9463 struct sched_domain *sd = env->sd;
9464
9465 if (voluntary_active_balance(env))
9466 return 1;
9467
1af3ed3d
PZ
9468 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9469}
9470
969c7921
TH
9471static int active_load_balance_cpu_stop(void *data);
9472
23f0d209
JK
9473static int should_we_balance(struct lb_env *env)
9474{
9475 struct sched_group *sg = env->sd->groups;
64297f2b 9476 int cpu;
23f0d209 9477
024c9d2f
PZ
9478 /*
9479 * Ensure the balancing environment is consistent; can happen
9480 * when the softirq triggers 'during' hotplug.
9481 */
9482 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9483 return 0;
9484
23f0d209 9485 /*
97fb7a0a 9486 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9487 * to do the newly idle load balance.
9488 */
9489 if (env->idle == CPU_NEWLY_IDLE)
9490 return 1;
9491
97fb7a0a 9492 /* Try to find first idle CPU */
e5c14b1f 9493 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9494 if (!idle_cpu(cpu))
23f0d209
JK
9495 continue;
9496
64297f2b
PW
9497 /* Are we the first idle CPU? */
9498 return cpu == env->dst_cpu;
23f0d209
JK
9499 }
9500
64297f2b
PW
9501 /* Are we the first CPU of this group ? */
9502 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9503}
9504
1e3c88bd
PZ
9505/*
9506 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9507 * tasks if there is an imbalance.
9508 */
9509static int load_balance(int this_cpu, struct rq *this_rq,
9510 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9511 int *continue_balancing)
1e3c88bd 9512{
88b8dac0 9513 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9514 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9515 struct sched_group *group;
1e3c88bd 9516 struct rq *busiest;
8a8c69c3 9517 struct rq_flags rf;
4ba29684 9518 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9519
8e45cb54
PZ
9520 struct lb_env env = {
9521 .sd = sd,
ddcdf6e7
PZ
9522 .dst_cpu = this_cpu,
9523 .dst_rq = this_rq,
ae4df9d6 9524 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9525 .idle = idle,
eb95308e 9526 .loop_break = sched_nr_migrate_break,
b9403130 9527 .cpus = cpus,
0ec8aa00 9528 .fbq_type = all,
163122b7 9529 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9530 };
9531
65a4433a 9532 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9533
ae92882e 9534 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9535
9536redo:
23f0d209
JK
9537 if (!should_we_balance(&env)) {
9538 *continue_balancing = 0;
1e3c88bd 9539 goto out_balanced;
23f0d209 9540 }
1e3c88bd 9541
23f0d209 9542 group = find_busiest_group(&env);
1e3c88bd 9543 if (!group) {
ae92882e 9544 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9545 goto out_balanced;
9546 }
9547
b9403130 9548 busiest = find_busiest_queue(&env, group);
1e3c88bd 9549 if (!busiest) {
ae92882e 9550 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9551 goto out_balanced;
9552 }
9553
78feefc5 9554 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9555
ae92882e 9556 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9557
1aaf90a4
VG
9558 env.src_cpu = busiest->cpu;
9559 env.src_rq = busiest;
9560
1e3c88bd
PZ
9561 ld_moved = 0;
9562 if (busiest->nr_running > 1) {
9563 /*
9564 * Attempt to move tasks. If find_busiest_group has found
9565 * an imbalance but busiest->nr_running <= 1, the group is
9566 * still unbalanced. ld_moved simply stays zero, so it is
9567 * correctly treated as an imbalance.
9568 */
8e45cb54 9569 env.flags |= LBF_ALL_PINNED;
c82513e5 9570 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9571
5d6523eb 9572more_balance:
8a8c69c3 9573 rq_lock_irqsave(busiest, &rf);
3bed5e21 9574 update_rq_clock(busiest);
88b8dac0
SV
9575
9576 /*
9577 * cur_ld_moved - load moved in current iteration
9578 * ld_moved - cumulative load moved across iterations
9579 */
163122b7 9580 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9581
9582 /*
163122b7
KT
9583 * We've detached some tasks from busiest_rq. Every
9584 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9585 * unlock busiest->lock, and we are able to be sure
9586 * that nobody can manipulate the tasks in parallel.
9587 * See task_rq_lock() family for the details.
1e3c88bd 9588 */
163122b7 9589
8a8c69c3 9590 rq_unlock(busiest, &rf);
163122b7
KT
9591
9592 if (cur_ld_moved) {
9593 attach_tasks(&env);
9594 ld_moved += cur_ld_moved;
9595 }
9596
8a8c69c3 9597 local_irq_restore(rf.flags);
88b8dac0 9598
f1cd0858
JK
9599 if (env.flags & LBF_NEED_BREAK) {
9600 env.flags &= ~LBF_NEED_BREAK;
9601 goto more_balance;
9602 }
9603
88b8dac0
SV
9604 /*
9605 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9606 * us and move them to an alternate dst_cpu in our sched_group
9607 * where they can run. The upper limit on how many times we
97fb7a0a 9608 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9609 * sched_group.
9610 *
9611 * This changes load balance semantics a bit on who can move
9612 * load to a given_cpu. In addition to the given_cpu itself
9613 * (or a ilb_cpu acting on its behalf where given_cpu is
9614 * nohz-idle), we now have balance_cpu in a position to move
9615 * load to given_cpu. In rare situations, this may cause
9616 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9617 * _independently_ and at _same_ time to move some load to
9618 * given_cpu) causing exceess load to be moved to given_cpu.
9619 * This however should not happen so much in practice and
9620 * moreover subsequent load balance cycles should correct the
9621 * excess load moved.
9622 */
6263322c 9623 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9624
97fb7a0a 9625 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9626 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9627
78feefc5 9628 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9629 env.dst_cpu = env.new_dst_cpu;
6263322c 9630 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9631 env.loop = 0;
9632 env.loop_break = sched_nr_migrate_break;
e02e60c1 9633
88b8dac0
SV
9634 /*
9635 * Go back to "more_balance" rather than "redo" since we
9636 * need to continue with same src_cpu.
9637 */
9638 goto more_balance;
9639 }
1e3c88bd 9640
6263322c
PZ
9641 /*
9642 * We failed to reach balance because of affinity.
9643 */
9644 if (sd_parent) {
63b2ca30 9645 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9646
afdeee05 9647 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9648 *group_imbalance = 1;
6263322c
PZ
9649 }
9650
1e3c88bd 9651 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9652 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9653 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9654 /*
9655 * Attempting to continue load balancing at the current
9656 * sched_domain level only makes sense if there are
9657 * active CPUs remaining as possible busiest CPUs to
9658 * pull load from which are not contained within the
9659 * destination group that is receiving any migrated
9660 * load.
9661 */
9662 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9663 env.loop = 0;
9664 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9665 goto redo;
bbf18b19 9666 }
afdeee05 9667 goto out_all_pinned;
1e3c88bd
PZ
9668 }
9669 }
9670
9671 if (!ld_moved) {
ae92882e 9672 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9673 /*
9674 * Increment the failure counter only on periodic balance.
9675 * We do not want newidle balance, which can be very
9676 * frequent, pollute the failure counter causing
9677 * excessive cache_hot migrations and active balances.
9678 */
9679 if (idle != CPU_NEWLY_IDLE)
9680 sd->nr_balance_failed++;
1e3c88bd 9681
bd939f45 9682 if (need_active_balance(&env)) {
8a8c69c3
PZ
9683 unsigned long flags;
9684
1e3c88bd
PZ
9685 raw_spin_lock_irqsave(&busiest->lock, flags);
9686
97fb7a0a
IM
9687 /*
9688 * Don't kick the active_load_balance_cpu_stop,
9689 * if the curr task on busiest CPU can't be
9690 * moved to this_cpu:
1e3c88bd 9691 */
3bd37062 9692 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9693 raw_spin_unlock_irqrestore(&busiest->lock,
9694 flags);
8e45cb54 9695 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9696 goto out_one_pinned;
9697 }
9698
969c7921
TH
9699 /*
9700 * ->active_balance synchronizes accesses to
9701 * ->active_balance_work. Once set, it's cleared
9702 * only after active load balance is finished.
9703 */
1e3c88bd
PZ
9704 if (!busiest->active_balance) {
9705 busiest->active_balance = 1;
9706 busiest->push_cpu = this_cpu;
9707 active_balance = 1;
9708 }
9709 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9710
bd939f45 9711 if (active_balance) {
969c7921
TH
9712 stop_one_cpu_nowait(cpu_of(busiest),
9713 active_load_balance_cpu_stop, busiest,
9714 &busiest->active_balance_work);
bd939f45 9715 }
1e3c88bd 9716
d02c0711 9717 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9718 sd->nr_balance_failed = sd->cache_nice_tries+1;
9719 }
9720 } else
9721 sd->nr_balance_failed = 0;
9722
46a745d9 9723 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9724 /* We were unbalanced, so reset the balancing interval */
9725 sd->balance_interval = sd->min_interval;
9726 } else {
9727 /*
9728 * If we've begun active balancing, start to back off. This
9729 * case may not be covered by the all_pinned logic if there
9730 * is only 1 task on the busy runqueue (because we don't call
163122b7 9731 * detach_tasks).
1e3c88bd
PZ
9732 */
9733 if (sd->balance_interval < sd->max_interval)
9734 sd->balance_interval *= 2;
9735 }
9736
1e3c88bd
PZ
9737 goto out;
9738
9739out_balanced:
afdeee05
VG
9740 /*
9741 * We reach balance although we may have faced some affinity
f6cad8df
VG
9742 * constraints. Clear the imbalance flag only if other tasks got
9743 * a chance to move and fix the imbalance.
afdeee05 9744 */
f6cad8df 9745 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9746 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9747
9748 if (*group_imbalance)
9749 *group_imbalance = 0;
9750 }
9751
9752out_all_pinned:
9753 /*
9754 * We reach balance because all tasks are pinned at this level so
9755 * we can't migrate them. Let the imbalance flag set so parent level
9756 * can try to migrate them.
9757 */
ae92882e 9758 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9759
9760 sd->nr_balance_failed = 0;
9761
9762out_one_pinned:
3f130a37
VS
9763 ld_moved = 0;
9764
9765 /*
5ba553ef
PZ
9766 * newidle_balance() disregards balance intervals, so we could
9767 * repeatedly reach this code, which would lead to balance_interval
9768 * skyrocketting in a short amount of time. Skip the balance_interval
9769 * increase logic to avoid that.
3f130a37
VS
9770 */
9771 if (env.idle == CPU_NEWLY_IDLE)
9772 goto out;
9773
1e3c88bd 9774 /* tune up the balancing interval */
47b7aee1
VS
9775 if ((env.flags & LBF_ALL_PINNED &&
9776 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9777 sd->balance_interval < sd->max_interval)
1e3c88bd 9778 sd->balance_interval *= 2;
1e3c88bd 9779out:
1e3c88bd
PZ
9780 return ld_moved;
9781}
9782
52a08ef1
JL
9783static inline unsigned long
9784get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9785{
9786 unsigned long interval = sd->balance_interval;
9787
9788 if (cpu_busy)
9789 interval *= sd->busy_factor;
9790
9791 /* scale ms to jiffies */
9792 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9793
9794 /*
9795 * Reduce likelihood of busy balancing at higher domains racing with
9796 * balancing at lower domains by preventing their balancing periods
9797 * from being multiples of each other.
9798 */
9799 if (cpu_busy)
9800 interval -= 1;
9801
52a08ef1
JL
9802 interval = clamp(interval, 1UL, max_load_balance_interval);
9803
9804 return interval;
9805}
9806
9807static inline void
31851a98 9808update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9809{
9810 unsigned long interval, next;
9811
31851a98
LY
9812 /* used by idle balance, so cpu_busy = 0 */
9813 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9814 next = sd->last_balance + interval;
9815
9816 if (time_after(*next_balance, next))
9817 *next_balance = next;
9818}
9819
1e3c88bd 9820/*
97fb7a0a 9821 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9822 * running tasks off the busiest CPU onto idle CPUs. It requires at
9823 * least 1 task to be running on each physical CPU where possible, and
9824 * avoids physical / logical imbalances.
1e3c88bd 9825 */
969c7921 9826static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9827{
969c7921
TH
9828 struct rq *busiest_rq = data;
9829 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9830 int target_cpu = busiest_rq->push_cpu;
969c7921 9831 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9832 struct sched_domain *sd;
e5673f28 9833 struct task_struct *p = NULL;
8a8c69c3 9834 struct rq_flags rf;
969c7921 9835
8a8c69c3 9836 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9837 /*
9838 * Between queueing the stop-work and running it is a hole in which
9839 * CPUs can become inactive. We should not move tasks from or to
9840 * inactive CPUs.
9841 */
9842 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9843 goto out_unlock;
969c7921 9844
97fb7a0a 9845 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9846 if (unlikely(busiest_cpu != smp_processor_id() ||
9847 !busiest_rq->active_balance))
9848 goto out_unlock;
1e3c88bd
PZ
9849
9850 /* Is there any task to move? */
9851 if (busiest_rq->nr_running <= 1)
969c7921 9852 goto out_unlock;
1e3c88bd
PZ
9853
9854 /*
9855 * This condition is "impossible", if it occurs
9856 * we need to fix it. Originally reported by
97fb7a0a 9857 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9858 */
9859 BUG_ON(busiest_rq == target_rq);
9860
1e3c88bd 9861 /* Search for an sd spanning us and the target CPU. */
dce840a0 9862 rcu_read_lock();
1e3c88bd 9863 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9864 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9865 break;
1e3c88bd
PZ
9866 }
9867
9868 if (likely(sd)) {
8e45cb54
PZ
9869 struct lb_env env = {
9870 .sd = sd,
ddcdf6e7
PZ
9871 .dst_cpu = target_cpu,
9872 .dst_rq = target_rq,
9873 .src_cpu = busiest_rq->cpu,
9874 .src_rq = busiest_rq,
8e45cb54 9875 .idle = CPU_IDLE,
65a4433a
JH
9876 /*
9877 * can_migrate_task() doesn't need to compute new_dst_cpu
9878 * for active balancing. Since we have CPU_IDLE, but no
9879 * @dst_grpmask we need to make that test go away with lying
9880 * about DST_PINNED.
9881 */
9882 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9883 };
9884
ae92882e 9885 schedstat_inc(sd->alb_count);
3bed5e21 9886 update_rq_clock(busiest_rq);
1e3c88bd 9887
e5673f28 9888 p = detach_one_task(&env);
d02c0711 9889 if (p) {
ae92882e 9890 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9891 /* Active balancing done, reset the failure counter. */
9892 sd->nr_balance_failed = 0;
9893 } else {
ae92882e 9894 schedstat_inc(sd->alb_failed);
d02c0711 9895 }
1e3c88bd 9896 }
dce840a0 9897 rcu_read_unlock();
969c7921
TH
9898out_unlock:
9899 busiest_rq->active_balance = 0;
8a8c69c3 9900 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9901
9902 if (p)
9903 attach_one_task(target_rq, p);
9904
9905 local_irq_enable();
9906
969c7921 9907 return 0;
1e3c88bd
PZ
9908}
9909
af3fe03c
PZ
9910static DEFINE_SPINLOCK(balancing);
9911
9912/*
9913 * Scale the max load_balance interval with the number of CPUs in the system.
9914 * This trades load-balance latency on larger machines for less cross talk.
9915 */
9916void update_max_interval(void)
9917{
9918 max_load_balance_interval = HZ*num_online_cpus()/10;
9919}
9920
9921/*
9922 * It checks each scheduling domain to see if it is due to be balanced,
9923 * and initiates a balancing operation if so.
9924 *
9925 * Balancing parameters are set up in init_sched_domains.
9926 */
9927static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9928{
9929 int continue_balancing = 1;
9930 int cpu = rq->cpu;
323af6de 9931 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9932 unsigned long interval;
9933 struct sched_domain *sd;
9934 /* Earliest time when we have to do rebalance again */
9935 unsigned long next_balance = jiffies + 60*HZ;
9936 int update_next_balance = 0;
9937 int need_serialize, need_decay = 0;
9938 u64 max_cost = 0;
9939
9940 rcu_read_lock();
9941 for_each_domain(cpu, sd) {
9942 /*
9943 * Decay the newidle max times here because this is a regular
9944 * visit to all the domains. Decay ~1% per second.
9945 */
9946 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9947 sd->max_newidle_lb_cost =
9948 (sd->max_newidle_lb_cost * 253) / 256;
9949 sd->next_decay_max_lb_cost = jiffies + HZ;
9950 need_decay = 1;
9951 }
9952 max_cost += sd->max_newidle_lb_cost;
9953
af3fe03c
PZ
9954 /*
9955 * Stop the load balance at this level. There is another
9956 * CPU in our sched group which is doing load balancing more
9957 * actively.
9958 */
9959 if (!continue_balancing) {
9960 if (need_decay)
9961 continue;
9962 break;
9963 }
9964
323af6de 9965 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9966
9967 need_serialize = sd->flags & SD_SERIALIZE;
9968 if (need_serialize) {
9969 if (!spin_trylock(&balancing))
9970 goto out;
9971 }
9972
9973 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9974 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9975 /*
9976 * The LBF_DST_PINNED logic could have changed
9977 * env->dst_cpu, so we can't know our idle
9978 * state even if we migrated tasks. Update it.
9979 */
9980 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 9981 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9982 }
9983 sd->last_balance = jiffies;
323af6de 9984 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9985 }
9986 if (need_serialize)
9987 spin_unlock(&balancing);
9988out:
9989 if (time_after(next_balance, sd->last_balance + interval)) {
9990 next_balance = sd->last_balance + interval;
9991 update_next_balance = 1;
9992 }
9993 }
9994 if (need_decay) {
9995 /*
9996 * Ensure the rq-wide value also decays but keep it at a
9997 * reasonable floor to avoid funnies with rq->avg_idle.
9998 */
9999 rq->max_idle_balance_cost =
10000 max((u64)sysctl_sched_migration_cost, max_cost);
10001 }
10002 rcu_read_unlock();
10003
10004 /*
10005 * next_balance will be updated only when there is a need.
10006 * When the cpu is attached to null domain for ex, it will not be
10007 * updated.
10008 */
10009 if (likely(update_next_balance)) {
10010 rq->next_balance = next_balance;
10011
10012#ifdef CONFIG_NO_HZ_COMMON
10013 /*
10014 * If this CPU has been elected to perform the nohz idle
10015 * balance. Other idle CPUs have already rebalanced with
10016 * nohz_idle_balance() and nohz.next_balance has been
10017 * updated accordingly. This CPU is now running the idle load
10018 * balance for itself and we need to update the
10019 * nohz.next_balance accordingly.
10020 */
10021 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10022 nohz.next_balance = rq->next_balance;
10023#endif
10024 }
10025}
10026
d987fc7f
MG
10027static inline int on_null_domain(struct rq *rq)
10028{
10029 return unlikely(!rcu_dereference_sched(rq->sd));
10030}
10031
3451d024 10032#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10033/*
10034 * idle load balancing details
83cd4fe2
VP
10035 * - When one of the busy CPUs notice that there may be an idle rebalancing
10036 * needed, they will kick the idle load balancer, which then does idle
10037 * load balancing for all the idle CPUs.
9b019acb
NP
10038 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10039 * anywhere yet.
83cd4fe2 10040 */
1e3c88bd 10041
3dd0337d 10042static inline int find_new_ilb(void)
1e3c88bd 10043{
9b019acb 10044 int ilb;
1e3c88bd 10045
9b019acb
NP
10046 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10047 housekeeping_cpumask(HK_FLAG_MISC)) {
10048 if (idle_cpu(ilb))
10049 return ilb;
10050 }
786d6dc7
SS
10051
10052 return nr_cpu_ids;
1e3c88bd 10053}
1e3c88bd 10054
83cd4fe2 10055/*
9b019acb
NP
10056 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10057 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10058 */
a4064fb6 10059static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10060{
10061 int ilb_cpu;
10062
3ea2f097
VG
10063 /*
10064 * Increase nohz.next_balance only when if full ilb is triggered but
10065 * not if we only update stats.
10066 */
10067 if (flags & NOHZ_BALANCE_KICK)
10068 nohz.next_balance = jiffies+1;
83cd4fe2 10069
3dd0337d 10070 ilb_cpu = find_new_ilb();
83cd4fe2 10071
0b005cf5
SS
10072 if (ilb_cpu >= nr_cpu_ids)
10073 return;
83cd4fe2 10074
19a1f5ec
PZ
10075 /*
10076 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10077 * the first flag owns it; cleared by nohz_csd_func().
10078 */
a4064fb6 10079 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10080 if (flags & NOHZ_KICK_MASK)
1c792db7 10081 return;
4550487a 10082
1c792db7 10083 /*
90b5363a 10084 * This way we generate an IPI on the target CPU which
1c792db7
SS
10085 * is idle. And the softirq performing nohz idle load balance
10086 * will be run before returning from the IPI.
10087 */
90b5363a 10088 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10089}
10090
10091/*
9f132742
VS
10092 * Current decision point for kicking the idle load balancer in the presence
10093 * of idle CPUs in the system.
4550487a
PZ
10094 */
10095static void nohz_balancer_kick(struct rq *rq)
10096{
10097 unsigned long now = jiffies;
10098 struct sched_domain_shared *sds;
10099 struct sched_domain *sd;
10100 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10101 unsigned int flags = 0;
4550487a
PZ
10102
10103 if (unlikely(rq->idle_balance))
10104 return;
10105
10106 /*
10107 * We may be recently in ticked or tickless idle mode. At the first
10108 * busy tick after returning from idle, we will update the busy stats.
10109 */
00357f5e 10110 nohz_balance_exit_idle(rq);
4550487a
PZ
10111
10112 /*
10113 * None are in tickless mode and hence no need for NOHZ idle load
10114 * balancing.
10115 */
10116 if (likely(!atomic_read(&nohz.nr_cpus)))
10117 return;
10118
f643ea22
VG
10119 if (READ_ONCE(nohz.has_blocked) &&
10120 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10121 flags = NOHZ_STATS_KICK;
10122
4550487a 10123 if (time_before(now, nohz.next_balance))
a4064fb6 10124 goto out;
4550487a 10125
a0fe2cf0 10126 if (rq->nr_running >= 2) {
a4064fb6 10127 flags = NOHZ_KICK_MASK;
4550487a
PZ
10128 goto out;
10129 }
10130
10131 rcu_read_lock();
4550487a
PZ
10132
10133 sd = rcu_dereference(rq->sd);
10134 if (sd) {
e25a7a94
VS
10135 /*
10136 * If there's a CFS task and the current CPU has reduced
10137 * capacity; kick the ILB to see if there's a better CPU to run
10138 * on.
10139 */
10140 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10141 flags = NOHZ_KICK_MASK;
4550487a
PZ
10142 goto unlock;
10143 }
10144 }
10145
011b27bb 10146 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10147 if (sd) {
b9a7b883
VS
10148 /*
10149 * When ASYM_PACKING; see if there's a more preferred CPU
10150 * currently idle; in which case, kick the ILB to move tasks
10151 * around.
10152 */
7edab78d 10153 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10154 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10155 flags = NOHZ_KICK_MASK;
4550487a
PZ
10156 goto unlock;
10157 }
10158 }
10159 }
b9a7b883 10160
a0fe2cf0
VS
10161 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10162 if (sd) {
10163 /*
10164 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10165 * to run the misfit task on.
10166 */
10167 if (check_misfit_status(rq, sd)) {
10168 flags = NOHZ_KICK_MASK;
10169 goto unlock;
10170 }
b9a7b883
VS
10171
10172 /*
10173 * For asymmetric systems, we do not want to nicely balance
10174 * cache use, instead we want to embrace asymmetry and only
10175 * ensure tasks have enough CPU capacity.
10176 *
10177 * Skip the LLC logic because it's not relevant in that case.
10178 */
10179 goto unlock;
a0fe2cf0
VS
10180 }
10181
b9a7b883
VS
10182 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10183 if (sds) {
e25a7a94 10184 /*
b9a7b883
VS
10185 * If there is an imbalance between LLC domains (IOW we could
10186 * increase the overall cache use), we need some less-loaded LLC
10187 * domain to pull some load. Likewise, we may need to spread
10188 * load within the current LLC domain (e.g. packed SMT cores but
10189 * other CPUs are idle). We can't really know from here how busy
10190 * the others are - so just get a nohz balance going if it looks
10191 * like this LLC domain has tasks we could move.
e25a7a94 10192 */
b9a7b883
VS
10193 nr_busy = atomic_read(&sds->nr_busy_cpus);
10194 if (nr_busy > 1) {
10195 flags = NOHZ_KICK_MASK;
10196 goto unlock;
4550487a
PZ
10197 }
10198 }
10199unlock:
10200 rcu_read_unlock();
10201out:
a4064fb6
PZ
10202 if (flags)
10203 kick_ilb(flags);
83cd4fe2
VP
10204}
10205
00357f5e 10206static void set_cpu_sd_state_busy(int cpu)
71325960 10207{
00357f5e 10208 struct sched_domain *sd;
a22e47a4 10209
00357f5e
PZ
10210 rcu_read_lock();
10211 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10212
00357f5e
PZ
10213 if (!sd || !sd->nohz_idle)
10214 goto unlock;
10215 sd->nohz_idle = 0;
10216
10217 atomic_inc(&sd->shared->nr_busy_cpus);
10218unlock:
10219 rcu_read_unlock();
71325960
SS
10220}
10221
00357f5e
PZ
10222void nohz_balance_exit_idle(struct rq *rq)
10223{
10224 SCHED_WARN_ON(rq != this_rq());
10225
10226 if (likely(!rq->nohz_tick_stopped))
10227 return;
10228
10229 rq->nohz_tick_stopped = 0;
10230 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10231 atomic_dec(&nohz.nr_cpus);
10232
10233 set_cpu_sd_state_busy(rq->cpu);
10234}
10235
10236static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10237{
10238 struct sched_domain *sd;
69e1e811 10239
69e1e811 10240 rcu_read_lock();
0e369d75 10241 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10242
10243 if (!sd || sd->nohz_idle)
10244 goto unlock;
10245 sd->nohz_idle = 1;
10246
0e369d75 10247 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10248unlock:
69e1e811
SS
10249 rcu_read_unlock();
10250}
10251
1e3c88bd 10252/*
97fb7a0a 10253 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10254 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10255 */
c1cc017c 10256void nohz_balance_enter_idle(int cpu)
1e3c88bd 10257{
00357f5e
PZ
10258 struct rq *rq = cpu_rq(cpu);
10259
10260 SCHED_WARN_ON(cpu != smp_processor_id());
10261
97fb7a0a 10262 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10263 if (!cpu_active(cpu))
10264 return;
10265
387bc8b5 10266 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10267 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10268 return;
10269
f643ea22
VG
10270 /*
10271 * Can be set safely without rq->lock held
10272 * If a clear happens, it will have evaluated last additions because
10273 * rq->lock is held during the check and the clear
10274 */
10275 rq->has_blocked_load = 1;
10276
10277 /*
10278 * The tick is still stopped but load could have been added in the
10279 * meantime. We set the nohz.has_blocked flag to trig a check of the
10280 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10281 * of nohz.has_blocked can only happen after checking the new load
10282 */
00357f5e 10283 if (rq->nohz_tick_stopped)
f643ea22 10284 goto out;
1e3c88bd 10285
97fb7a0a 10286 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10287 if (on_null_domain(rq))
d987fc7f
MG
10288 return;
10289
00357f5e
PZ
10290 rq->nohz_tick_stopped = 1;
10291
c1cc017c
AS
10292 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10293 atomic_inc(&nohz.nr_cpus);
00357f5e 10294
f643ea22
VG
10295 /*
10296 * Ensures that if nohz_idle_balance() fails to observe our
10297 * @idle_cpus_mask store, it must observe the @has_blocked
10298 * store.
10299 */
10300 smp_mb__after_atomic();
10301
00357f5e 10302 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10303
10304out:
10305 /*
10306 * Each time a cpu enter idle, we assume that it has blocked load and
10307 * enable the periodic update of the load of idle cpus
10308 */
10309 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10310}
1e3c88bd 10311
1e3c88bd 10312/*
31e77c93
VG
10313 * Internal function that runs load balance for all idle cpus. The load balance
10314 * can be a simple update of blocked load or a complete load balance with
10315 * tasks movement depending of flags.
10316 * The function returns false if the loop has stopped before running
10317 * through all idle CPUs.
1e3c88bd 10318 */
31e77c93
VG
10319static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10320 enum cpu_idle_type idle)
83cd4fe2 10321{
c5afb6a8 10322 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10323 unsigned long now = jiffies;
10324 unsigned long next_balance = now + 60*HZ;
f643ea22 10325 bool has_blocked_load = false;
c5afb6a8 10326 int update_next_balance = 0;
b7031a02 10327 int this_cpu = this_rq->cpu;
b7031a02 10328 int balance_cpu;
31e77c93 10329 int ret = false;
b7031a02 10330 struct rq *rq;
83cd4fe2 10331
b7031a02 10332 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10333
f643ea22
VG
10334 /*
10335 * We assume there will be no idle load after this update and clear
10336 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10337 * set the has_blocked flag and trig another update of idle load.
10338 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10339 * setting the flag, we are sure to not clear the state and not
10340 * check the load of an idle cpu.
10341 */
10342 WRITE_ONCE(nohz.has_blocked, 0);
10343
10344 /*
10345 * Ensures that if we miss the CPU, we must see the has_blocked
10346 * store from nohz_balance_enter_idle().
10347 */
10348 smp_mb();
10349
83cd4fe2 10350 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10351 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10352 continue;
10353
10354 /*
97fb7a0a
IM
10355 * If this CPU gets work to do, stop the load balancing
10356 * work being done for other CPUs. Next load
83cd4fe2
VP
10357 * balancing owner will pick it up.
10358 */
f643ea22
VG
10359 if (need_resched()) {
10360 has_blocked_load = true;
10361 goto abort;
10362 }
83cd4fe2 10363
5ed4f1d9
VG
10364 rq = cpu_rq(balance_cpu);
10365
63928384 10366 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10367
ed61bbc6
TC
10368 /*
10369 * If time for next balance is due,
10370 * do the balance.
10371 */
10372 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10373 struct rq_flags rf;
10374
31e77c93 10375 rq_lock_irqsave(rq, &rf);
ed61bbc6 10376 update_rq_clock(rq);
31e77c93 10377 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10378
b7031a02
PZ
10379 if (flags & NOHZ_BALANCE_KICK)
10380 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10381 }
83cd4fe2 10382
c5afb6a8
VG
10383 if (time_after(next_balance, rq->next_balance)) {
10384 next_balance = rq->next_balance;
10385 update_next_balance = 1;
10386 }
83cd4fe2 10387 }
c5afb6a8 10388
3ea2f097
VG
10389 /*
10390 * next_balance will be updated only when there is a need.
10391 * When the CPU is attached to null domain for ex, it will not be
10392 * updated.
10393 */
10394 if (likely(update_next_balance))
10395 nohz.next_balance = next_balance;
10396
31e77c93
VG
10397 /* Newly idle CPU doesn't need an update */
10398 if (idle != CPU_NEWLY_IDLE) {
10399 update_blocked_averages(this_cpu);
10400 has_blocked_load |= this_rq->has_blocked_load;
10401 }
10402
b7031a02
PZ
10403 if (flags & NOHZ_BALANCE_KICK)
10404 rebalance_domains(this_rq, CPU_IDLE);
10405
f643ea22
VG
10406 WRITE_ONCE(nohz.next_blocked,
10407 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10408
31e77c93
VG
10409 /* The full idle balance loop has been done */
10410 ret = true;
10411
f643ea22
VG
10412abort:
10413 /* There is still blocked load, enable periodic update */
10414 if (has_blocked_load)
10415 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10416
31e77c93
VG
10417 return ret;
10418}
10419
10420/*
10421 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10422 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10423 */
10424static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10425{
19a1f5ec 10426 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10427
19a1f5ec 10428 if (!flags)
31e77c93
VG
10429 return false;
10430
19a1f5ec 10431 this_rq->nohz_idle_balance = 0;
31e77c93 10432
19a1f5ec 10433 if (idle != CPU_IDLE)
31e77c93
VG
10434 return false;
10435
10436 _nohz_idle_balance(this_rq, flags, idle);
10437
b7031a02 10438 return true;
83cd4fe2 10439}
31e77c93
VG
10440
10441static void nohz_newidle_balance(struct rq *this_rq)
10442{
10443 int this_cpu = this_rq->cpu;
10444
10445 /*
10446 * This CPU doesn't want to be disturbed by scheduler
10447 * housekeeping
10448 */
10449 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10450 return;
10451
10452 /* Will wake up very soon. No time for doing anything else*/
10453 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10454 return;
10455
10456 /* Don't need to update blocked load of idle CPUs*/
10457 if (!READ_ONCE(nohz.has_blocked) ||
10458 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10459 return;
10460
10461 raw_spin_unlock(&this_rq->lock);
10462 /*
10463 * This CPU is going to be idle and blocked load of idle CPUs
10464 * need to be updated. Run the ilb locally as it is a good
10465 * candidate for ilb instead of waking up another idle CPU.
10466 * Kick an normal ilb if we failed to do the update.
10467 */
10468 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10469 kick_ilb(NOHZ_STATS_KICK);
10470 raw_spin_lock(&this_rq->lock);
10471}
10472
dd707247
PZ
10473#else /* !CONFIG_NO_HZ_COMMON */
10474static inline void nohz_balancer_kick(struct rq *rq) { }
10475
31e77c93 10476static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10477{
10478 return false;
10479}
31e77c93
VG
10480
10481static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10482#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10483
47ea5412
PZ
10484/*
10485 * idle_balance is called by schedule() if this_cpu is about to become
10486 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10487 *
10488 * Returns:
10489 * < 0 - we released the lock and there are !fair tasks present
10490 * 0 - failed, no new tasks
10491 * > 0 - success, new (fair) tasks present
47ea5412 10492 */
d91cecc1 10493static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10494{
10495 unsigned long next_balance = jiffies + HZ;
10496 int this_cpu = this_rq->cpu;
10497 struct sched_domain *sd;
10498 int pulled_task = 0;
10499 u64 curr_cost = 0;
10500
5ba553ef 10501 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10502 /*
10503 * We must set idle_stamp _before_ calling idle_balance(), such that we
10504 * measure the duration of idle_balance() as idle time.
10505 */
10506 this_rq->idle_stamp = rq_clock(this_rq);
10507
10508 /*
10509 * Do not pull tasks towards !active CPUs...
10510 */
10511 if (!cpu_active(this_cpu))
10512 return 0;
10513
10514 /*
10515 * This is OK, because current is on_cpu, which avoids it being picked
10516 * for load-balance and preemption/IRQs are still disabled avoiding
10517 * further scheduler activity on it and we're being very careful to
10518 * re-start the picking loop.
10519 */
10520 rq_unpin_lock(this_rq, rf);
10521
10522 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10523 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10524
47ea5412
PZ
10525 rcu_read_lock();
10526 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10527 if (sd)
10528 update_next_balance(sd, &next_balance);
10529 rcu_read_unlock();
10530
31e77c93
VG
10531 nohz_newidle_balance(this_rq);
10532
47ea5412
PZ
10533 goto out;
10534 }
10535
10536 raw_spin_unlock(&this_rq->lock);
10537
10538 update_blocked_averages(this_cpu);
10539 rcu_read_lock();
10540 for_each_domain(this_cpu, sd) {
10541 int continue_balancing = 1;
10542 u64 t0, domain_cost;
10543
47ea5412
PZ
10544 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10545 update_next_balance(sd, &next_balance);
10546 break;
10547 }
10548
10549 if (sd->flags & SD_BALANCE_NEWIDLE) {
10550 t0 = sched_clock_cpu(this_cpu);
10551
10552 pulled_task = load_balance(this_cpu, this_rq,
10553 sd, CPU_NEWLY_IDLE,
10554 &continue_balancing);
10555
10556 domain_cost = sched_clock_cpu(this_cpu) - t0;
10557 if (domain_cost > sd->max_newidle_lb_cost)
10558 sd->max_newidle_lb_cost = domain_cost;
10559
10560 curr_cost += domain_cost;
10561 }
10562
10563 update_next_balance(sd, &next_balance);
10564
10565 /*
10566 * Stop searching for tasks to pull if there are
10567 * now runnable tasks on this rq.
10568 */
10569 if (pulled_task || this_rq->nr_running > 0)
10570 break;
10571 }
10572 rcu_read_unlock();
10573
10574 raw_spin_lock(&this_rq->lock);
10575
10576 if (curr_cost > this_rq->max_idle_balance_cost)
10577 this_rq->max_idle_balance_cost = curr_cost;
10578
457be908 10579out:
47ea5412
PZ
10580 /*
10581 * While browsing the domains, we released the rq lock, a task could
10582 * have been enqueued in the meantime. Since we're not going idle,
10583 * pretend we pulled a task.
10584 */
10585 if (this_rq->cfs.h_nr_running && !pulled_task)
10586 pulled_task = 1;
10587
47ea5412
PZ
10588 /* Move the next balance forward */
10589 if (time_after(this_rq->next_balance, next_balance))
10590 this_rq->next_balance = next_balance;
10591
10592 /* Is there a task of a high priority class? */
10593 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10594 pulled_task = -1;
10595
10596 if (pulled_task)
10597 this_rq->idle_stamp = 0;
10598
10599 rq_repin_lock(this_rq, rf);
10600
10601 return pulled_task;
10602}
10603
83cd4fe2
VP
10604/*
10605 * run_rebalance_domains is triggered when needed from the scheduler tick.
10606 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10607 */
0766f788 10608static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10609{
208cb16b 10610 struct rq *this_rq = this_rq();
6eb57e0d 10611 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10612 CPU_IDLE : CPU_NOT_IDLE;
10613
1e3c88bd 10614 /*
97fb7a0a
IM
10615 * If this CPU has a pending nohz_balance_kick, then do the
10616 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10617 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10618 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10619 * load balance only within the local sched_domain hierarchy
10620 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10621 */
b7031a02
PZ
10622 if (nohz_idle_balance(this_rq, idle))
10623 return;
10624
10625 /* normal load balance */
10626 update_blocked_averages(this_rq->cpu);
d4573c3e 10627 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10628}
10629
1e3c88bd
PZ
10630/*
10631 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10632 */
7caff66f 10633void trigger_load_balance(struct rq *rq)
1e3c88bd 10634{
1e3c88bd 10635 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10636 if (unlikely(on_null_domain(rq)))
10637 return;
10638
10639 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10640 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10641
10642 nohz_balancer_kick(rq);
1e3c88bd
PZ
10643}
10644
0bcdcf28
CE
10645static void rq_online_fair(struct rq *rq)
10646{
10647 update_sysctl();
0e59bdae
KT
10648
10649 update_runtime_enabled(rq);
0bcdcf28
CE
10650}
10651
10652static void rq_offline_fair(struct rq *rq)
10653{
10654 update_sysctl();
a4c96ae3
PB
10655
10656 /* Ensure any throttled groups are reachable by pick_next_task */
10657 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10658}
10659
55e12e5e 10660#endif /* CONFIG_SMP */
e1d1484f 10661
bf0f6f24 10662/*
d84b3131
FW
10663 * scheduler tick hitting a task of our scheduling class.
10664 *
10665 * NOTE: This function can be called remotely by the tick offload that
10666 * goes along full dynticks. Therefore no local assumption can be made
10667 * and everything must be accessed through the @rq and @curr passed in
10668 * parameters.
bf0f6f24 10669 */
8f4d37ec 10670static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10671{
10672 struct cfs_rq *cfs_rq;
10673 struct sched_entity *se = &curr->se;
10674
10675 for_each_sched_entity(se) {
10676 cfs_rq = cfs_rq_of(se);
8f4d37ec 10677 entity_tick(cfs_rq, se, queued);
bf0f6f24 10678 }
18bf2805 10679
b52da86e 10680 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10681 task_tick_numa(rq, curr);
3b1baa64
MR
10682
10683 update_misfit_status(curr, rq);
2802bf3c 10684 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10685}
10686
10687/*
cd29fe6f
PZ
10688 * called on fork with the child task as argument from the parent's context
10689 * - child not yet on the tasklist
10690 * - preemption disabled
bf0f6f24 10691 */
cd29fe6f 10692static void task_fork_fair(struct task_struct *p)
bf0f6f24 10693{
4fc420c9
DN
10694 struct cfs_rq *cfs_rq;
10695 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10696 struct rq *rq = this_rq();
8a8c69c3 10697 struct rq_flags rf;
bf0f6f24 10698
8a8c69c3 10699 rq_lock(rq, &rf);
861d034e
PZ
10700 update_rq_clock(rq);
10701
4fc420c9
DN
10702 cfs_rq = task_cfs_rq(current);
10703 curr = cfs_rq->curr;
e210bffd
PZ
10704 if (curr) {
10705 update_curr(cfs_rq);
b5d9d734 10706 se->vruntime = curr->vruntime;
e210bffd 10707 }
aeb73b04 10708 place_entity(cfs_rq, se, 1);
4d78e7b6 10709
cd29fe6f 10710 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10711 /*
edcb60a3
IM
10712 * Upon rescheduling, sched_class::put_prev_task() will place
10713 * 'current' within the tree based on its new key value.
10714 */
4d78e7b6 10715 swap(curr->vruntime, se->vruntime);
8875125e 10716 resched_curr(rq);
4d78e7b6 10717 }
bf0f6f24 10718
88ec22d3 10719 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10720 rq_unlock(rq, &rf);
bf0f6f24
IM
10721}
10722
cb469845
SR
10723/*
10724 * Priority of the task has changed. Check to see if we preempt
10725 * the current task.
10726 */
da7a735e
PZ
10727static void
10728prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10729{
da0c1e65 10730 if (!task_on_rq_queued(p))
da7a735e
PZ
10731 return;
10732
7c2e8bbd
FW
10733 if (rq->cfs.nr_running == 1)
10734 return;
10735
cb469845
SR
10736 /*
10737 * Reschedule if we are currently running on this runqueue and
10738 * our priority decreased, or if we are not currently running on
10739 * this runqueue and our priority is higher than the current's
10740 */
da7a735e 10741 if (rq->curr == p) {
cb469845 10742 if (p->prio > oldprio)
8875125e 10743 resched_curr(rq);
cb469845 10744 } else
15afe09b 10745 check_preempt_curr(rq, p, 0);
cb469845
SR
10746}
10747
daa59407 10748static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10749{
10750 struct sched_entity *se = &p->se;
da7a735e
PZ
10751
10752 /*
daa59407
BP
10753 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10754 * the dequeue_entity(.flags=0) will already have normalized the
10755 * vruntime.
10756 */
10757 if (p->on_rq)
10758 return true;
10759
10760 /*
10761 * When !on_rq, vruntime of the task has usually NOT been normalized.
10762 * But there are some cases where it has already been normalized:
da7a735e 10763 *
daa59407
BP
10764 * - A forked child which is waiting for being woken up by
10765 * wake_up_new_task().
10766 * - A task which has been woken up by try_to_wake_up() and
10767 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10768 */
d0cdb3ce
SM
10769 if (!se->sum_exec_runtime ||
10770 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10771 return true;
10772
10773 return false;
10774}
10775
09a43ace
VG
10776#ifdef CONFIG_FAIR_GROUP_SCHED
10777/*
10778 * Propagate the changes of the sched_entity across the tg tree to make it
10779 * visible to the root
10780 */
10781static void propagate_entity_cfs_rq(struct sched_entity *se)
10782{
10783 struct cfs_rq *cfs_rq;
10784
10785 /* Start to propagate at parent */
10786 se = se->parent;
10787
10788 for_each_sched_entity(se) {
10789 cfs_rq = cfs_rq_of(se);
10790
10791 if (cfs_rq_throttled(cfs_rq))
10792 break;
10793
88c0616e 10794 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10795 }
10796}
10797#else
10798static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10799#endif
10800
df217913 10801static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10802{
daa59407
BP
10803 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10804
9d89c257 10805 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10806 update_load_avg(cfs_rq, se, 0);
a05e8c51 10807 detach_entity_load_avg(cfs_rq, se);
fe749158 10808 update_tg_load_avg(cfs_rq);
09a43ace 10809 propagate_entity_cfs_rq(se);
da7a735e
PZ
10810}
10811
df217913 10812static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10813{
daa59407 10814 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10815
10816#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10817 /*
10818 * Since the real-depth could have been changed (only FAIR
10819 * class maintain depth value), reset depth properly.
10820 */
10821 se->depth = se->parent ? se->parent->depth + 1 : 0;
10822#endif
7855a35a 10823
df217913 10824 /* Synchronize entity with its cfs_rq */
88c0616e 10825 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10826 attach_entity_load_avg(cfs_rq, se);
fe749158 10827 update_tg_load_avg(cfs_rq);
09a43ace 10828 propagate_entity_cfs_rq(se);
df217913
VG
10829}
10830
10831static void detach_task_cfs_rq(struct task_struct *p)
10832{
10833 struct sched_entity *se = &p->se;
10834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10835
10836 if (!vruntime_normalized(p)) {
10837 /*
10838 * Fix up our vruntime so that the current sleep doesn't
10839 * cause 'unlimited' sleep bonus.
10840 */
10841 place_entity(cfs_rq, se, 0);
10842 se->vruntime -= cfs_rq->min_vruntime;
10843 }
10844
10845 detach_entity_cfs_rq(se);
10846}
10847
10848static void attach_task_cfs_rq(struct task_struct *p)
10849{
10850 struct sched_entity *se = &p->se;
10851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10852
10853 attach_entity_cfs_rq(se);
daa59407
BP
10854
10855 if (!vruntime_normalized(p))
10856 se->vruntime += cfs_rq->min_vruntime;
10857}
6efdb105 10858
daa59407
BP
10859static void switched_from_fair(struct rq *rq, struct task_struct *p)
10860{
10861 detach_task_cfs_rq(p);
10862}
10863
10864static void switched_to_fair(struct rq *rq, struct task_struct *p)
10865{
10866 attach_task_cfs_rq(p);
7855a35a 10867
daa59407 10868 if (task_on_rq_queued(p)) {
7855a35a 10869 /*
daa59407
BP
10870 * We were most likely switched from sched_rt, so
10871 * kick off the schedule if running, otherwise just see
10872 * if we can still preempt the current task.
7855a35a 10873 */
daa59407
BP
10874 if (rq->curr == p)
10875 resched_curr(rq);
10876 else
10877 check_preempt_curr(rq, p, 0);
7855a35a 10878 }
cb469845
SR
10879}
10880
83b699ed
SV
10881/* Account for a task changing its policy or group.
10882 *
10883 * This routine is mostly called to set cfs_rq->curr field when a task
10884 * migrates between groups/classes.
10885 */
a0e813f2 10886static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10887{
03b7fad1
PZ
10888 struct sched_entity *se = &p->se;
10889
10890#ifdef CONFIG_SMP
10891 if (task_on_rq_queued(p)) {
10892 /*
10893 * Move the next running task to the front of the list, so our
10894 * cfs_tasks list becomes MRU one.
10895 */
10896 list_move(&se->group_node, &rq->cfs_tasks);
10897 }
10898#endif
83b699ed 10899
ec12cb7f
PT
10900 for_each_sched_entity(se) {
10901 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10902
10903 set_next_entity(cfs_rq, se);
10904 /* ensure bandwidth has been allocated on our new cfs_rq */
10905 account_cfs_rq_runtime(cfs_rq, 0);
10906 }
83b699ed
SV
10907}
10908
029632fb
PZ
10909void init_cfs_rq(struct cfs_rq *cfs_rq)
10910{
bfb06889 10911 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10912 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10913#ifndef CONFIG_64BIT
10914 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10915#endif
141965c7 10916#ifdef CONFIG_SMP
2a2f5d4e 10917 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10918#endif
029632fb
PZ
10919}
10920
810b3817 10921#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10922static void task_set_group_fair(struct task_struct *p)
10923{
10924 struct sched_entity *se = &p->se;
10925
10926 set_task_rq(p, task_cpu(p));
10927 se->depth = se->parent ? se->parent->depth + 1 : 0;
10928}
10929
bc54da21 10930static void task_move_group_fair(struct task_struct *p)
810b3817 10931{
daa59407 10932 detach_task_cfs_rq(p);
b2b5ce02 10933 set_task_rq(p, task_cpu(p));
6efdb105
BP
10934
10935#ifdef CONFIG_SMP
10936 /* Tell se's cfs_rq has been changed -- migrated */
10937 p->se.avg.last_update_time = 0;
10938#endif
daa59407 10939 attach_task_cfs_rq(p);
810b3817 10940}
029632fb 10941
ea86cb4b
VG
10942static void task_change_group_fair(struct task_struct *p, int type)
10943{
10944 switch (type) {
10945 case TASK_SET_GROUP:
10946 task_set_group_fair(p);
10947 break;
10948
10949 case TASK_MOVE_GROUP:
10950 task_move_group_fair(p);
10951 break;
10952 }
10953}
10954
029632fb
PZ
10955void free_fair_sched_group(struct task_group *tg)
10956{
10957 int i;
10958
10959 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10960
10961 for_each_possible_cpu(i) {
10962 if (tg->cfs_rq)
10963 kfree(tg->cfs_rq[i]);
6fe1f348 10964 if (tg->se)
029632fb
PZ
10965 kfree(tg->se[i]);
10966 }
10967
10968 kfree(tg->cfs_rq);
10969 kfree(tg->se);
10970}
10971
10972int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10973{
029632fb 10974 struct sched_entity *se;
b7fa30c9 10975 struct cfs_rq *cfs_rq;
029632fb
PZ
10976 int i;
10977
6396bb22 10978 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10979 if (!tg->cfs_rq)
10980 goto err;
6396bb22 10981 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10982 if (!tg->se)
10983 goto err;
10984
10985 tg->shares = NICE_0_LOAD;
10986
10987 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10988
10989 for_each_possible_cpu(i) {
10990 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10991 GFP_KERNEL, cpu_to_node(i));
10992 if (!cfs_rq)
10993 goto err;
10994
10995 se = kzalloc_node(sizeof(struct sched_entity),
10996 GFP_KERNEL, cpu_to_node(i));
10997 if (!se)
10998 goto err_free_rq;
10999
11000 init_cfs_rq(cfs_rq);
11001 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11002 init_entity_runnable_average(se);
029632fb
PZ
11003 }
11004
11005 return 1;
11006
11007err_free_rq:
11008 kfree(cfs_rq);
11009err:
11010 return 0;
11011}
11012
8663e24d
PZ
11013void online_fair_sched_group(struct task_group *tg)
11014{
11015 struct sched_entity *se;
a46d14ec 11016 struct rq_flags rf;
8663e24d
PZ
11017 struct rq *rq;
11018 int i;
11019
11020 for_each_possible_cpu(i) {
11021 rq = cpu_rq(i);
11022 se = tg->se[i];
a46d14ec 11023 rq_lock_irq(rq, &rf);
4126bad6 11024 update_rq_clock(rq);
d0326691 11025 attach_entity_cfs_rq(se);
55e16d30 11026 sync_throttle(tg, i);
a46d14ec 11027 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11028 }
11029}
11030
6fe1f348 11031void unregister_fair_sched_group(struct task_group *tg)
029632fb 11032{
029632fb 11033 unsigned long flags;
6fe1f348
PZ
11034 struct rq *rq;
11035 int cpu;
029632fb 11036
6fe1f348
PZ
11037 for_each_possible_cpu(cpu) {
11038 if (tg->se[cpu])
11039 remove_entity_load_avg(tg->se[cpu]);
029632fb 11040
6fe1f348
PZ
11041 /*
11042 * Only empty task groups can be destroyed; so we can speculatively
11043 * check on_list without danger of it being re-added.
11044 */
11045 if (!tg->cfs_rq[cpu]->on_list)
11046 continue;
11047
11048 rq = cpu_rq(cpu);
11049
11050 raw_spin_lock_irqsave(&rq->lock, flags);
11051 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11052 raw_spin_unlock_irqrestore(&rq->lock, flags);
11053 }
029632fb
PZ
11054}
11055
11056void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11057 struct sched_entity *se, int cpu,
11058 struct sched_entity *parent)
11059{
11060 struct rq *rq = cpu_rq(cpu);
11061
11062 cfs_rq->tg = tg;
11063 cfs_rq->rq = rq;
029632fb
PZ
11064 init_cfs_rq_runtime(cfs_rq);
11065
11066 tg->cfs_rq[cpu] = cfs_rq;
11067 tg->se[cpu] = se;
11068
11069 /* se could be NULL for root_task_group */
11070 if (!se)
11071 return;
11072
fed14d45 11073 if (!parent) {
029632fb 11074 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11075 se->depth = 0;
11076 } else {
029632fb 11077 se->cfs_rq = parent->my_q;
fed14d45
PZ
11078 se->depth = parent->depth + 1;
11079 }
029632fb
PZ
11080
11081 se->my_q = cfs_rq;
0ac9b1c2
PT
11082 /* guarantee group entities always have weight */
11083 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11084 se->parent = parent;
11085}
11086
11087static DEFINE_MUTEX(shares_mutex);
11088
11089int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11090{
11091 int i;
029632fb
PZ
11092
11093 /*
11094 * We can't change the weight of the root cgroup.
11095 */
11096 if (!tg->se[0])
11097 return -EINVAL;
11098
11099 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11100
11101 mutex_lock(&shares_mutex);
11102 if (tg->shares == shares)
11103 goto done;
11104
11105 tg->shares = shares;
11106 for_each_possible_cpu(i) {
11107 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11108 struct sched_entity *se = tg->se[i];
11109 struct rq_flags rf;
029632fb 11110
029632fb 11111 /* Propagate contribution to hierarchy */
8a8c69c3 11112 rq_lock_irqsave(rq, &rf);
71b1da46 11113 update_rq_clock(rq);
89ee048f 11114 for_each_sched_entity(se) {
88c0616e 11115 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11116 update_cfs_group(se);
89ee048f 11117 }
8a8c69c3 11118 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11119 }
11120
11121done:
11122 mutex_unlock(&shares_mutex);
11123 return 0;
11124}
11125#else /* CONFIG_FAIR_GROUP_SCHED */
11126
11127void free_fair_sched_group(struct task_group *tg) { }
11128
11129int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11130{
11131 return 1;
11132}
11133
8663e24d
PZ
11134void online_fair_sched_group(struct task_group *tg) { }
11135
6fe1f348 11136void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11137
11138#endif /* CONFIG_FAIR_GROUP_SCHED */
11139
810b3817 11140
6d686f45 11141static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11142{
11143 struct sched_entity *se = &task->se;
0d721cea
PW
11144 unsigned int rr_interval = 0;
11145
11146 /*
11147 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11148 * idle runqueue:
11149 */
0d721cea 11150 if (rq->cfs.load.weight)
a59f4e07 11151 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11152
11153 return rr_interval;
11154}
11155
bf0f6f24
IM
11156/*
11157 * All the scheduling class methods:
11158 */
590d6979
SRV
11159const struct sched_class fair_sched_class
11160 __attribute__((section("__fair_sched_class"))) = {
bf0f6f24
IM
11161 .enqueue_task = enqueue_task_fair,
11162 .dequeue_task = dequeue_task_fair,
11163 .yield_task = yield_task_fair,
d95f4122 11164 .yield_to_task = yield_to_task_fair,
bf0f6f24 11165
2e09bf55 11166 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11167
98c2f700 11168 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11169 .put_prev_task = put_prev_task_fair,
03b7fad1 11170 .set_next_task = set_next_task_fair,
bf0f6f24 11171
681f3e68 11172#ifdef CONFIG_SMP
6e2df058 11173 .balance = balance_fair,
4ce72a2c 11174 .select_task_rq = select_task_rq_fair,
0a74bef8 11175 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11176
0bcdcf28
CE
11177 .rq_online = rq_online_fair,
11178 .rq_offline = rq_offline_fair,
88ec22d3 11179
12695578 11180 .task_dead = task_dead_fair,
c5b28038 11181 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11182#endif
bf0f6f24 11183
bf0f6f24 11184 .task_tick = task_tick_fair,
cd29fe6f 11185 .task_fork = task_fork_fair,
cb469845
SR
11186
11187 .prio_changed = prio_changed_fair,
da7a735e 11188 .switched_from = switched_from_fair,
cb469845 11189 .switched_to = switched_to_fair,
810b3817 11190
0d721cea
PW
11191 .get_rr_interval = get_rr_interval_fair,
11192
6e998916
SG
11193 .update_curr = update_curr_fair,
11194
810b3817 11195#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11196 .task_change_group = task_change_group_fair,
810b3817 11197#endif
982d9cdc
PB
11198
11199#ifdef CONFIG_UCLAMP_TASK
11200 .uclamp_enabled = 1,
11201#endif
bf0f6f24
IM
11202};
11203
11204#ifdef CONFIG_SCHED_DEBUG
029632fb 11205void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11206{
039ae8bc 11207 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11208
5973e5b9 11209 rcu_read_lock();
039ae8bc 11210 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11211 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11212 rcu_read_unlock();
bf0f6f24 11213}
397f2378
SD
11214
11215#ifdef CONFIG_NUMA_BALANCING
11216void show_numa_stats(struct task_struct *p, struct seq_file *m)
11217{
11218 int node;
11219 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11220 struct numa_group *ng;
397f2378 11221
cb361d8c
JH
11222 rcu_read_lock();
11223 ng = rcu_dereference(p->numa_group);
397f2378
SD
11224 for_each_online_node(node) {
11225 if (p->numa_faults) {
11226 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11227 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11228 }
cb361d8c
JH
11229 if (ng) {
11230 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11231 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11232 }
11233 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11234 }
cb361d8c 11235 rcu_read_unlock();
397f2378
SD
11236}
11237#endif /* CONFIG_NUMA_BALANCING */
11238#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11239
11240__init void init_sched_fair_class(void)
11241{
11242#ifdef CONFIG_SMP
11243 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11244
3451d024 11245#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11246 nohz.next_balance = jiffies;
f643ea22 11247 nohz.next_blocked = jiffies;
029632fb 11248 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11249#endif
11250#endif /* SMP */
11251
11252}
3c93a0c0
QY
11253
11254/*
11255 * Helper functions to facilitate extracting info from tracepoints.
11256 */
11257
11258const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11259{
11260#ifdef CONFIG_SMP
11261 return cfs_rq ? &cfs_rq->avg : NULL;
11262#else
11263 return NULL;
11264#endif
11265}
11266EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11267
11268char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11269{
11270 if (!cfs_rq) {
11271 if (str)
11272 strlcpy(str, "(null)", len);
11273 else
11274 return NULL;
11275 }
11276
11277 cfs_rq_tg_path(cfs_rq, str, len);
11278 return str;
11279}
11280EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11281
11282int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11283{
11284 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11285}
11286EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11287
11288const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11289{
11290#ifdef CONFIG_SMP
11291 return rq ? &rq->avg_rt : NULL;
11292#else
11293 return NULL;
11294#endif
11295}
11296EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11297
11298const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11299{
11300#ifdef CONFIG_SMP
11301 return rq ? &rq->avg_dl : NULL;
11302#else
11303 return NULL;
11304#endif
11305}
11306EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11307
11308const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11309{
11310#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11311 return rq ? &rq->avg_irq : NULL;
11312#else
11313 return NULL;
11314#endif
11315}
11316EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11317
11318int sched_trace_rq_cpu(struct rq *rq)
11319{
11320 return rq ? cpu_of(rq) : -1;
11321}
11322EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11323
11324const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11325{
11326#ifdef CONFIG_SMP
11327 return rd ? rd->span : NULL;
11328#else
11329 return NULL;
11330#endif
11331}
11332EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11333
11334int sched_trace_rq_nr_running(struct rq *rq)
11335{
11336 return rq ? rq->nr_running : -1;
11337}
11338EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);