]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/header: Remove leftover, obsolete comment
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7
PZ
515 struct sched_entity *curr = cfs_rq->curr;
516
1af5f730
PZ
517 u64 vruntime = cfs_rq->min_vruntime;
518
b60205c7
PZ
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
1af5f730
PZ
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
549{
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bf0f6f24
IM
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
1af5f730 577 if (leftmost)
57cb499d 578 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
582}
583
0702e3eb 584static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 585{
3fe69747
PZ
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
3fe69747
PZ
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
3fe69747 591 }
e9acbff6 592
bf0f6f24 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
f4b6755f
PZ
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
7eee3e67 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67
IM
623
624 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
acb4a848 631int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 632 void __user *buffer, size_t *lenp,
b2be5e96
PZ
633 loff_t *ppos)
634{
8d65af78 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 636 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0a582440 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 691
0a582440 692 for_each_sched_entity(se) {
6272d68c 693 struct load_weight *load;
3104bf03 694 struct load_weight lw;
6272d68c
LM
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
f9c0b095 698
0a582440 699 if (unlikely(!se->on_rq)) {
3104bf03 700 lw = cfs_rq->load;
0a582440
MG
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
9dbdb155 705 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
706 }
707 return slice;
bf0f6f24
IM
708}
709
647e7cac 710/*
660cc00f 711 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 712 *
f9c0b095 713 * vs = s/w
647e7cac 714 */
f9c0b095 715static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 716{
f9c0b095 717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
718}
719
a75cdaa9 720#ifdef CONFIG_SMP
283e2ed3
PZ
721
722#include "sched-pelt.h"
723
772bd008 724static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
725static unsigned long task_h_load(struct task_struct *p);
726
540247fb
YD
727/* Give new sched_entity start runnable values to heavy its load in infant time */
728void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 729{
540247fb 730 struct sched_avg *sa = &se->avg;
a75cdaa9 731
9d89c257
YD
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
b5a9b340
VG
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
7dc603c9 756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 757static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 758
2b8c41da
YD
759/*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784void post_init_entity_util_avg(struct sched_entity *se)
785{
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
172895e6 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
7dc603c9
PZ
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
809 update_cfs_rq_load_avg(now, cfs_rq, false);
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
df217913 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
817 return;
818 }
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
2b8c41da
YD
828void post_init_entity_util_avg(struct sched_entity *se)
829{
830}
3d30544f
PZ
831static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 867 cpuacct_charge(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
4fa8d299 894 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
4fa8d299 916 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
4fa8d299
JP
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 927}
3ea94de1 928
4fa8d299 929static inline void
1a3d027c
JP
930update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931{
932 struct task_struct *tsk = NULL;
4fa8d299
JP
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
4fa8d299
JP
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
946
947 if ((s64)delta < 0)
948 delta = 0;
949
4fa8d299
JP
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 952
4fa8d299
JP
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
4fa8d299
JP
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
963
964 if ((s64)delta < 0)
965 delta = 0;
966
4fa8d299
JP
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
1a3d027c 969
4fa8d299
JP
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
972
973 if (tsk) {
974 if (tsk->in_iowait) {
4fa8d299
JP
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
3ea94de1 995}
3ea94de1 996
bf0f6f24
IM
997/*
998 * Task is being enqueued - update stats:
999 */
cb251765 1000static inline void
1a3d027c 1001update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1002{
4fa8d299
JP
1003 if (!schedstat_enabled())
1004 return;
1005
bf0f6f24
IM
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
429d43bc 1010 if (se != cfs_rq->curr)
5870db5b 1011 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1015}
1016
bf0f6f24 1017static inline void
cb251765 1018update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
4fa8d299
JP
1020
1021 if (!schedstat_enabled())
1022 return;
1023
bf0f6f24
IM
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
429d43bc 1028 if (se != cfs_rq->curr)
9ef0a961 1029 update_stats_wait_end(cfs_rq, se);
cb251765 1030
4fa8d299
JP
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
cb251765 1033
4fa8d299
JP
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
cb251765 1040 }
cb251765
MG
1041}
1042
bf0f6f24
IM
1043/*
1044 * We are picking a new current task - update its stats:
1045 */
1046static inline void
79303e9e 1047update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1048{
1049 /*
1050 * We are starting a new run period:
1051 */
78becc27 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1053}
1054
bf0f6f24
IM
1055/**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
cbee9f88
PZ
1059#ifdef CONFIG_NUMA_BALANCING
1060/*
598f0ec0
MG
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
cbee9f88 1064 */
598f0ec0
MG
1065unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1067
1068/* Portion of address space to scan in MB */
1069unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1070
4b96a29b
PZ
1071/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
598f0ec0
MG
1074static unsigned int task_nr_scan_windows(struct task_struct *p)
1075{
1076 unsigned long rss = 0;
1077 unsigned long nr_scan_pages;
1078
1079 /*
1080 * Calculations based on RSS as non-present and empty pages are skipped
1081 * by the PTE scanner and NUMA hinting faults should be trapped based
1082 * on resident pages
1083 */
1084 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1085 rss = get_mm_rss(p->mm);
1086 if (!rss)
1087 rss = nr_scan_pages;
1088
1089 rss = round_up(rss, nr_scan_pages);
1090 return rss / nr_scan_pages;
1091}
1092
1093/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1094#define MAX_SCAN_WINDOW 2560
1095
1096static unsigned int task_scan_min(struct task_struct *p)
1097{
316c1608 1098 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1099 unsigned int scan, floor;
1100 unsigned int windows = 1;
1101
64192658
KT
1102 if (scan_size < MAX_SCAN_WINDOW)
1103 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1104 floor = 1000 / windows;
1105
1106 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1107 return max_t(unsigned int, floor, scan);
1108}
1109
1110static unsigned int task_scan_max(struct task_struct *p)
1111{
1112 unsigned int smin = task_scan_min(p);
1113 unsigned int smax;
1114
1115 /* Watch for min being lower than max due to floor calculations */
1116 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1117 return max(smin, smax);
1118}
1119
0ec8aa00
PZ
1120static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1121{
1122 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1123 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1124}
1125
1126static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1127{
1128 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1129 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1130}
1131
8c8a743c
PZ
1132struct numa_group {
1133 atomic_t refcount;
1134
1135 spinlock_t lock; /* nr_tasks, tasks */
1136 int nr_tasks;
e29cf08b 1137 pid_t gid;
4142c3eb 1138 int active_nodes;
8c8a743c
PZ
1139
1140 struct rcu_head rcu;
989348b5 1141 unsigned long total_faults;
4142c3eb 1142 unsigned long max_faults_cpu;
7e2703e6
RR
1143 /*
1144 * Faults_cpu is used to decide whether memory should move
1145 * towards the CPU. As a consequence, these stats are weighted
1146 * more by CPU use than by memory faults.
1147 */
50ec8a40 1148 unsigned long *faults_cpu;
989348b5 1149 unsigned long faults[0];
8c8a743c
PZ
1150};
1151
be1e4e76
RR
1152/* Shared or private faults. */
1153#define NR_NUMA_HINT_FAULT_TYPES 2
1154
1155/* Memory and CPU locality */
1156#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1157
1158/* Averaged statistics, and temporary buffers. */
1159#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1160
e29cf08b
MG
1161pid_t task_numa_group_id(struct task_struct *p)
1162{
1163 return p->numa_group ? p->numa_group->gid : 0;
1164}
1165
44dba3d5
IM
1166/*
1167 * The averaged statistics, shared & private, memory & cpu,
1168 * occupy the first half of the array. The second half of the
1169 * array is for current counters, which are averaged into the
1170 * first set by task_numa_placement.
1171 */
1172static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1173{
44dba3d5 1174 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1175}
1176
1177static inline unsigned long task_faults(struct task_struct *p, int nid)
1178{
44dba3d5 1179 if (!p->numa_faults)
ac8e895b
MG
1180 return 0;
1181
44dba3d5
IM
1182 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1183 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1184}
1185
83e1d2cd
MG
1186static inline unsigned long group_faults(struct task_struct *p, int nid)
1187{
1188 if (!p->numa_group)
1189 return 0;
1190
44dba3d5
IM
1191 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1192 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1193}
1194
20e07dea
RR
1195static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1196{
44dba3d5
IM
1197 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1199}
1200
4142c3eb
RR
1201/*
1202 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1203 * considered part of a numa group's pseudo-interleaving set. Migrations
1204 * between these nodes are slowed down, to allow things to settle down.
1205 */
1206#define ACTIVE_NODE_FRACTION 3
1207
1208static bool numa_is_active_node(int nid, struct numa_group *ng)
1209{
1210 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1211}
1212
6c6b1193
RR
1213/* Handle placement on systems where not all nodes are directly connected. */
1214static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1215 int maxdist, bool task)
1216{
1217 unsigned long score = 0;
1218 int node;
1219
1220 /*
1221 * All nodes are directly connected, and the same distance
1222 * from each other. No need for fancy placement algorithms.
1223 */
1224 if (sched_numa_topology_type == NUMA_DIRECT)
1225 return 0;
1226
1227 /*
1228 * This code is called for each node, introducing N^2 complexity,
1229 * which should be ok given the number of nodes rarely exceeds 8.
1230 */
1231 for_each_online_node(node) {
1232 unsigned long faults;
1233 int dist = node_distance(nid, node);
1234
1235 /*
1236 * The furthest away nodes in the system are not interesting
1237 * for placement; nid was already counted.
1238 */
1239 if (dist == sched_max_numa_distance || node == nid)
1240 continue;
1241
1242 /*
1243 * On systems with a backplane NUMA topology, compare groups
1244 * of nodes, and move tasks towards the group with the most
1245 * memory accesses. When comparing two nodes at distance
1246 * "hoplimit", only nodes closer by than "hoplimit" are part
1247 * of each group. Skip other nodes.
1248 */
1249 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1250 dist > maxdist)
1251 continue;
1252
1253 /* Add up the faults from nearby nodes. */
1254 if (task)
1255 faults = task_faults(p, node);
1256 else
1257 faults = group_faults(p, node);
1258
1259 /*
1260 * On systems with a glueless mesh NUMA topology, there are
1261 * no fixed "groups of nodes". Instead, nodes that are not
1262 * directly connected bounce traffic through intermediate
1263 * nodes; a numa_group can occupy any set of nodes.
1264 * The further away a node is, the less the faults count.
1265 * This seems to result in good task placement.
1266 */
1267 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1268 faults *= (sched_max_numa_distance - dist);
1269 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1270 }
1271
1272 score += faults;
1273 }
1274
1275 return score;
1276}
1277
83e1d2cd
MG
1278/*
1279 * These return the fraction of accesses done by a particular task, or
1280 * task group, on a particular numa node. The group weight is given a
1281 * larger multiplier, in order to group tasks together that are almost
1282 * evenly spread out between numa nodes.
1283 */
7bd95320
RR
1284static inline unsigned long task_weight(struct task_struct *p, int nid,
1285 int dist)
83e1d2cd 1286{
7bd95320 1287 unsigned long faults, total_faults;
83e1d2cd 1288
44dba3d5 1289 if (!p->numa_faults)
83e1d2cd
MG
1290 return 0;
1291
1292 total_faults = p->total_numa_faults;
1293
1294 if (!total_faults)
1295 return 0;
1296
7bd95320 1297 faults = task_faults(p, nid);
6c6b1193
RR
1298 faults += score_nearby_nodes(p, nid, dist, true);
1299
7bd95320 1300 return 1000 * faults / total_faults;
83e1d2cd
MG
1301}
1302
7bd95320
RR
1303static inline unsigned long group_weight(struct task_struct *p, int nid,
1304 int dist)
83e1d2cd 1305{
7bd95320
RR
1306 unsigned long faults, total_faults;
1307
1308 if (!p->numa_group)
1309 return 0;
1310
1311 total_faults = p->numa_group->total_faults;
1312
1313 if (!total_faults)
83e1d2cd
MG
1314 return 0;
1315
7bd95320 1316 faults = group_faults(p, nid);
6c6b1193
RR
1317 faults += score_nearby_nodes(p, nid, dist, false);
1318
7bd95320 1319 return 1000 * faults / total_faults;
83e1d2cd
MG
1320}
1321
10f39042
RR
1322bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1323 int src_nid, int dst_cpu)
1324{
1325 struct numa_group *ng = p->numa_group;
1326 int dst_nid = cpu_to_node(dst_cpu);
1327 int last_cpupid, this_cpupid;
1328
1329 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1330
1331 /*
1332 * Multi-stage node selection is used in conjunction with a periodic
1333 * migration fault to build a temporal task<->page relation. By using
1334 * a two-stage filter we remove short/unlikely relations.
1335 *
1336 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1337 * a task's usage of a particular page (n_p) per total usage of this
1338 * page (n_t) (in a given time-span) to a probability.
1339 *
1340 * Our periodic faults will sample this probability and getting the
1341 * same result twice in a row, given these samples are fully
1342 * independent, is then given by P(n)^2, provided our sample period
1343 * is sufficiently short compared to the usage pattern.
1344 *
1345 * This quadric squishes small probabilities, making it less likely we
1346 * act on an unlikely task<->page relation.
1347 */
1348 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1349 if (!cpupid_pid_unset(last_cpupid) &&
1350 cpupid_to_nid(last_cpupid) != dst_nid)
1351 return false;
1352
1353 /* Always allow migrate on private faults */
1354 if (cpupid_match_pid(p, last_cpupid))
1355 return true;
1356
1357 /* A shared fault, but p->numa_group has not been set up yet. */
1358 if (!ng)
1359 return true;
1360
1361 /*
4142c3eb
RR
1362 * Destination node is much more heavily used than the source
1363 * node? Allow migration.
10f39042 1364 */
4142c3eb
RR
1365 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1366 ACTIVE_NODE_FRACTION)
10f39042
RR
1367 return true;
1368
1369 /*
4142c3eb
RR
1370 * Distribute memory according to CPU & memory use on each node,
1371 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1372 *
1373 * faults_cpu(dst) 3 faults_cpu(src)
1374 * --------------- * - > ---------------
1375 * faults_mem(dst) 4 faults_mem(src)
10f39042 1376 */
4142c3eb
RR
1377 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1378 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1379}
1380
e6628d5b 1381static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1382static unsigned long source_load(int cpu, int type);
1383static unsigned long target_load(int cpu, int type);
ced549fa 1384static unsigned long capacity_of(int cpu);
58d081b5
MG
1385static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1386
fb13c7ee 1387/* Cached statistics for all CPUs within a node */
58d081b5 1388struct numa_stats {
fb13c7ee 1389 unsigned long nr_running;
58d081b5 1390 unsigned long load;
fb13c7ee
MG
1391
1392 /* Total compute capacity of CPUs on a node */
5ef20ca1 1393 unsigned long compute_capacity;
fb13c7ee
MG
1394
1395 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1396 unsigned long task_capacity;
1b6a7495 1397 int has_free_capacity;
58d081b5 1398};
e6628d5b 1399
fb13c7ee
MG
1400/*
1401 * XXX borrowed from update_sg_lb_stats
1402 */
1403static void update_numa_stats(struct numa_stats *ns, int nid)
1404{
83d7f242
RR
1405 int smt, cpu, cpus = 0;
1406 unsigned long capacity;
fb13c7ee
MG
1407
1408 memset(ns, 0, sizeof(*ns));
1409 for_each_cpu(cpu, cpumask_of_node(nid)) {
1410 struct rq *rq = cpu_rq(cpu);
1411
1412 ns->nr_running += rq->nr_running;
1413 ns->load += weighted_cpuload(cpu);
ced549fa 1414 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1415
1416 cpus++;
fb13c7ee
MG
1417 }
1418
5eca82a9
PZ
1419 /*
1420 * If we raced with hotplug and there are no CPUs left in our mask
1421 * the @ns structure is NULL'ed and task_numa_compare() will
1422 * not find this node attractive.
1423 *
1b6a7495
NP
1424 * We'll either bail at !has_free_capacity, or we'll detect a huge
1425 * imbalance and bail there.
5eca82a9
PZ
1426 */
1427 if (!cpus)
1428 return;
1429
83d7f242
RR
1430 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1431 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1432 capacity = cpus / smt; /* cores */
1433
1434 ns->task_capacity = min_t(unsigned, capacity,
1435 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1436 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1437}
1438
58d081b5
MG
1439struct task_numa_env {
1440 struct task_struct *p;
e6628d5b 1441
58d081b5
MG
1442 int src_cpu, src_nid;
1443 int dst_cpu, dst_nid;
e6628d5b 1444
58d081b5 1445 struct numa_stats src_stats, dst_stats;
e6628d5b 1446
40ea2b42 1447 int imbalance_pct;
7bd95320 1448 int dist;
fb13c7ee
MG
1449
1450 struct task_struct *best_task;
1451 long best_imp;
58d081b5
MG
1452 int best_cpu;
1453};
1454
fb13c7ee
MG
1455static void task_numa_assign(struct task_numa_env *env,
1456 struct task_struct *p, long imp)
1457{
1458 if (env->best_task)
1459 put_task_struct(env->best_task);
bac78573
ON
1460 if (p)
1461 get_task_struct(p);
fb13c7ee
MG
1462
1463 env->best_task = p;
1464 env->best_imp = imp;
1465 env->best_cpu = env->dst_cpu;
1466}
1467
28a21745 1468static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1469 struct task_numa_env *env)
1470{
e4991b24
RR
1471 long imb, old_imb;
1472 long orig_src_load, orig_dst_load;
28a21745
RR
1473 long src_capacity, dst_capacity;
1474
1475 /*
1476 * The load is corrected for the CPU capacity available on each node.
1477 *
1478 * src_load dst_load
1479 * ------------ vs ---------
1480 * src_capacity dst_capacity
1481 */
1482 src_capacity = env->src_stats.compute_capacity;
1483 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1484
1485 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1486 if (dst_load < src_load)
1487 swap(dst_load, src_load);
e63da036
RR
1488
1489 /* Is the difference below the threshold? */
e4991b24
RR
1490 imb = dst_load * src_capacity * 100 -
1491 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1492 if (imb <= 0)
1493 return false;
1494
1495 /*
1496 * The imbalance is above the allowed threshold.
e4991b24 1497 * Compare it with the old imbalance.
e63da036 1498 */
28a21745 1499 orig_src_load = env->src_stats.load;
e4991b24 1500 orig_dst_load = env->dst_stats.load;
28a21745 1501
e4991b24
RR
1502 if (orig_dst_load < orig_src_load)
1503 swap(orig_dst_load, orig_src_load);
e63da036 1504
e4991b24
RR
1505 old_imb = orig_dst_load * src_capacity * 100 -
1506 orig_src_load * dst_capacity * env->imbalance_pct;
1507
1508 /* Would this change make things worse? */
1509 return (imb > old_imb);
e63da036
RR
1510}
1511
fb13c7ee
MG
1512/*
1513 * This checks if the overall compute and NUMA accesses of the system would
1514 * be improved if the source tasks was migrated to the target dst_cpu taking
1515 * into account that it might be best if task running on the dst_cpu should
1516 * be exchanged with the source task
1517 */
887c290e
RR
1518static void task_numa_compare(struct task_numa_env *env,
1519 long taskimp, long groupimp)
fb13c7ee
MG
1520{
1521 struct rq *src_rq = cpu_rq(env->src_cpu);
1522 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1523 struct task_struct *cur;
28a21745 1524 long src_load, dst_load;
fb13c7ee 1525 long load;
1c5d3eb3 1526 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1527 long moveimp = imp;
7bd95320 1528 int dist = env->dist;
fb13c7ee
MG
1529
1530 rcu_read_lock();
bac78573
ON
1531 cur = task_rcu_dereference(&dst_rq->curr);
1532 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1533 cur = NULL;
1534
7af68335
PZ
1535 /*
1536 * Because we have preemption enabled we can get migrated around and
1537 * end try selecting ourselves (current == env->p) as a swap candidate.
1538 */
1539 if (cur == env->p)
1540 goto unlock;
1541
fb13c7ee
MG
1542 /*
1543 * "imp" is the fault differential for the source task between the
1544 * source and destination node. Calculate the total differential for
1545 * the source task and potential destination task. The more negative
1546 * the value is, the more rmeote accesses that would be expected to
1547 * be incurred if the tasks were swapped.
1548 */
1549 if (cur) {
1550 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1551 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1552 goto unlock;
1553
887c290e
RR
1554 /*
1555 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1556 * in any group then look only at task weights.
887c290e 1557 */
ca28aa53 1558 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1559 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1560 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1561 /*
1562 * Add some hysteresis to prevent swapping the
1563 * tasks within a group over tiny differences.
1564 */
1565 if (cur->numa_group)
1566 imp -= imp/16;
887c290e 1567 } else {
ca28aa53
RR
1568 /*
1569 * Compare the group weights. If a task is all by
1570 * itself (not part of a group), use the task weight
1571 * instead.
1572 */
ca28aa53 1573 if (cur->numa_group)
7bd95320
RR
1574 imp += group_weight(cur, env->src_nid, dist) -
1575 group_weight(cur, env->dst_nid, dist);
ca28aa53 1576 else
7bd95320
RR
1577 imp += task_weight(cur, env->src_nid, dist) -
1578 task_weight(cur, env->dst_nid, dist);
887c290e 1579 }
fb13c7ee
MG
1580 }
1581
0132c3e1 1582 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1583 goto unlock;
1584
1585 if (!cur) {
1586 /* Is there capacity at our destination? */
b932c03c 1587 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1588 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1589 goto unlock;
1590
1591 goto balance;
1592 }
1593
1594 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1595 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1596 dst_rq->nr_running == 1)
fb13c7ee
MG
1597 goto assign;
1598
1599 /*
1600 * In the overloaded case, try and keep the load balanced.
1601 */
1602balance:
e720fff6
PZ
1603 load = task_h_load(env->p);
1604 dst_load = env->dst_stats.load + load;
1605 src_load = env->src_stats.load - load;
fb13c7ee 1606
0132c3e1
RR
1607 if (moveimp > imp && moveimp > env->best_imp) {
1608 /*
1609 * If the improvement from just moving env->p direction is
1610 * better than swapping tasks around, check if a move is
1611 * possible. Store a slightly smaller score than moveimp,
1612 * so an actually idle CPU will win.
1613 */
1614 if (!load_too_imbalanced(src_load, dst_load, env)) {
1615 imp = moveimp - 1;
1616 cur = NULL;
1617 goto assign;
1618 }
1619 }
1620
1621 if (imp <= env->best_imp)
1622 goto unlock;
1623
fb13c7ee 1624 if (cur) {
e720fff6
PZ
1625 load = task_h_load(cur);
1626 dst_load -= load;
1627 src_load += load;
fb13c7ee
MG
1628 }
1629
28a21745 1630 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1631 goto unlock;
1632
ba7e5a27
RR
1633 /*
1634 * One idle CPU per node is evaluated for a task numa move.
1635 * Call select_idle_sibling to maybe find a better one.
1636 */
10e2f1ac
PZ
1637 if (!cur) {
1638 /*
1639 * select_idle_siblings() uses an per-cpu cpumask that
1640 * can be used from IRQ context.
1641 */
1642 local_irq_disable();
772bd008
MR
1643 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1644 env->dst_cpu);
10e2f1ac
PZ
1645 local_irq_enable();
1646 }
ba7e5a27 1647
fb13c7ee
MG
1648assign:
1649 task_numa_assign(env, cur, imp);
1650unlock:
1651 rcu_read_unlock();
1652}
1653
887c290e
RR
1654static void task_numa_find_cpu(struct task_numa_env *env,
1655 long taskimp, long groupimp)
2c8a50aa
MG
1656{
1657 int cpu;
1658
1659 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1660 /* Skip this CPU if the source task cannot migrate */
0c98d344 1661 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1662 continue;
1663
1664 env->dst_cpu = cpu;
887c290e 1665 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1666 }
1667}
1668
6f9aad0b
RR
1669/* Only move tasks to a NUMA node less busy than the current node. */
1670static bool numa_has_capacity(struct task_numa_env *env)
1671{
1672 struct numa_stats *src = &env->src_stats;
1673 struct numa_stats *dst = &env->dst_stats;
1674
1675 if (src->has_free_capacity && !dst->has_free_capacity)
1676 return false;
1677
1678 /*
1679 * Only consider a task move if the source has a higher load
1680 * than the destination, corrected for CPU capacity on each node.
1681 *
1682 * src->load dst->load
1683 * --------------------- vs ---------------------
1684 * src->compute_capacity dst->compute_capacity
1685 */
44dcb04f
SD
1686 if (src->load * dst->compute_capacity * env->imbalance_pct >
1687
1688 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1689 return true;
1690
1691 return false;
1692}
1693
58d081b5
MG
1694static int task_numa_migrate(struct task_struct *p)
1695{
58d081b5
MG
1696 struct task_numa_env env = {
1697 .p = p,
fb13c7ee 1698
58d081b5 1699 .src_cpu = task_cpu(p),
b32e86b4 1700 .src_nid = task_node(p),
fb13c7ee
MG
1701
1702 .imbalance_pct = 112,
1703
1704 .best_task = NULL,
1705 .best_imp = 0,
4142c3eb 1706 .best_cpu = -1,
58d081b5
MG
1707 };
1708 struct sched_domain *sd;
887c290e 1709 unsigned long taskweight, groupweight;
7bd95320 1710 int nid, ret, dist;
887c290e 1711 long taskimp, groupimp;
e6628d5b 1712
58d081b5 1713 /*
fb13c7ee
MG
1714 * Pick the lowest SD_NUMA domain, as that would have the smallest
1715 * imbalance and would be the first to start moving tasks about.
1716 *
1717 * And we want to avoid any moving of tasks about, as that would create
1718 * random movement of tasks -- counter the numa conditions we're trying
1719 * to satisfy here.
58d081b5
MG
1720 */
1721 rcu_read_lock();
fb13c7ee 1722 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1723 if (sd)
1724 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1725 rcu_read_unlock();
1726
46a73e8a
RR
1727 /*
1728 * Cpusets can break the scheduler domain tree into smaller
1729 * balance domains, some of which do not cross NUMA boundaries.
1730 * Tasks that are "trapped" in such domains cannot be migrated
1731 * elsewhere, so there is no point in (re)trying.
1732 */
1733 if (unlikely(!sd)) {
de1b301a 1734 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1735 return -EINVAL;
1736 }
1737
2c8a50aa 1738 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1739 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1740 taskweight = task_weight(p, env.src_nid, dist);
1741 groupweight = group_weight(p, env.src_nid, dist);
1742 update_numa_stats(&env.src_stats, env.src_nid);
1743 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1744 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1745 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1746
a43455a1 1747 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1748 if (numa_has_capacity(&env))
1749 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1750
9de05d48
RR
1751 /*
1752 * Look at other nodes in these cases:
1753 * - there is no space available on the preferred_nid
1754 * - the task is part of a numa_group that is interleaved across
1755 * multiple NUMA nodes; in order to better consolidate the group,
1756 * we need to check other locations.
1757 */
4142c3eb 1758 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1759 for_each_online_node(nid) {
1760 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1761 continue;
58d081b5 1762
7bd95320 1763 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1764 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1765 dist != env.dist) {
1766 taskweight = task_weight(p, env.src_nid, dist);
1767 groupweight = group_weight(p, env.src_nid, dist);
1768 }
7bd95320 1769
83e1d2cd 1770 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1771 taskimp = task_weight(p, nid, dist) - taskweight;
1772 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1773 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1774 continue;
1775
7bd95320 1776 env.dist = dist;
2c8a50aa
MG
1777 env.dst_nid = nid;
1778 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1779 if (numa_has_capacity(&env))
1780 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1781 }
1782 }
1783
68d1b02a
RR
1784 /*
1785 * If the task is part of a workload that spans multiple NUMA nodes,
1786 * and is migrating into one of the workload's active nodes, remember
1787 * this node as the task's preferred numa node, so the workload can
1788 * settle down.
1789 * A task that migrated to a second choice node will be better off
1790 * trying for a better one later. Do not set the preferred node here.
1791 */
db015dae 1792 if (p->numa_group) {
4142c3eb
RR
1793 struct numa_group *ng = p->numa_group;
1794
db015dae
RR
1795 if (env.best_cpu == -1)
1796 nid = env.src_nid;
1797 else
1798 nid = env.dst_nid;
1799
4142c3eb 1800 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1801 sched_setnuma(p, env.dst_nid);
1802 }
1803
1804 /* No better CPU than the current one was found. */
1805 if (env.best_cpu == -1)
1806 return -EAGAIN;
0ec8aa00 1807
04bb2f94
RR
1808 /*
1809 * Reset the scan period if the task is being rescheduled on an
1810 * alternative node to recheck if the tasks is now properly placed.
1811 */
1812 p->numa_scan_period = task_scan_min(p);
1813
fb13c7ee 1814 if (env.best_task == NULL) {
286549dc
MG
1815 ret = migrate_task_to(p, env.best_cpu);
1816 if (ret != 0)
1817 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1818 return ret;
1819 }
1820
1821 ret = migrate_swap(p, env.best_task);
286549dc
MG
1822 if (ret != 0)
1823 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1824 put_task_struct(env.best_task);
1825 return ret;
e6628d5b
MG
1826}
1827
6b9a7460
MG
1828/* Attempt to migrate a task to a CPU on the preferred node. */
1829static void numa_migrate_preferred(struct task_struct *p)
1830{
5085e2a3
RR
1831 unsigned long interval = HZ;
1832
2739d3ee 1833 /* This task has no NUMA fault statistics yet */
44dba3d5 1834 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1835 return;
1836
2739d3ee 1837 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1838 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1839 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1840
1841 /* Success if task is already running on preferred CPU */
de1b301a 1842 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1843 return;
1844
1845 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1846 task_numa_migrate(p);
6b9a7460
MG
1847}
1848
20e07dea 1849/*
4142c3eb 1850 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1851 * tracking the nodes from which NUMA hinting faults are triggered. This can
1852 * be different from the set of nodes where the workload's memory is currently
1853 * located.
20e07dea 1854 */
4142c3eb 1855static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1856{
1857 unsigned long faults, max_faults = 0;
4142c3eb 1858 int nid, active_nodes = 0;
20e07dea
RR
1859
1860 for_each_online_node(nid) {
1861 faults = group_faults_cpu(numa_group, nid);
1862 if (faults > max_faults)
1863 max_faults = faults;
1864 }
1865
1866 for_each_online_node(nid) {
1867 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1868 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1869 active_nodes++;
20e07dea 1870 }
4142c3eb
RR
1871
1872 numa_group->max_faults_cpu = max_faults;
1873 numa_group->active_nodes = active_nodes;
20e07dea
RR
1874}
1875
04bb2f94
RR
1876/*
1877 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1878 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1879 * period will be for the next scan window. If local/(local+remote) ratio is
1880 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1881 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1882 */
1883#define NUMA_PERIOD_SLOTS 10
a22b4b01 1884#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1885
1886/*
1887 * Increase the scan period (slow down scanning) if the majority of
1888 * our memory is already on our local node, or if the majority of
1889 * the page accesses are shared with other processes.
1890 * Otherwise, decrease the scan period.
1891 */
1892static void update_task_scan_period(struct task_struct *p,
1893 unsigned long shared, unsigned long private)
1894{
1895 unsigned int period_slot;
1896 int ratio;
1897 int diff;
1898
1899 unsigned long remote = p->numa_faults_locality[0];
1900 unsigned long local = p->numa_faults_locality[1];
1901
1902 /*
1903 * If there were no record hinting faults then either the task is
1904 * completely idle or all activity is areas that are not of interest
074c2381
MG
1905 * to automatic numa balancing. Related to that, if there were failed
1906 * migration then it implies we are migrating too quickly or the local
1907 * node is overloaded. In either case, scan slower
04bb2f94 1908 */
074c2381 1909 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1910 p->numa_scan_period = min(p->numa_scan_period_max,
1911 p->numa_scan_period << 1);
1912
1913 p->mm->numa_next_scan = jiffies +
1914 msecs_to_jiffies(p->numa_scan_period);
1915
1916 return;
1917 }
1918
1919 /*
1920 * Prepare to scale scan period relative to the current period.
1921 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1922 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1923 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1924 */
1925 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1926 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1927 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1928 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1929 if (!slot)
1930 slot = 1;
1931 diff = slot * period_slot;
1932 } else {
1933 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1934
1935 /*
1936 * Scale scan rate increases based on sharing. There is an
1937 * inverse relationship between the degree of sharing and
1938 * the adjustment made to the scanning period. Broadly
1939 * speaking the intent is that there is little point
1940 * scanning faster if shared accesses dominate as it may
1941 * simply bounce migrations uselessly
1942 */
2847c90e 1943 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1944 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1945 }
1946
1947 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1948 task_scan_min(p), task_scan_max(p));
1949 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1950}
1951
7e2703e6
RR
1952/*
1953 * Get the fraction of time the task has been running since the last
1954 * NUMA placement cycle. The scheduler keeps similar statistics, but
1955 * decays those on a 32ms period, which is orders of magnitude off
1956 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1957 * stats only if the task is so new there are no NUMA statistics yet.
1958 */
1959static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1960{
1961 u64 runtime, delta, now;
1962 /* Use the start of this time slice to avoid calculations. */
1963 now = p->se.exec_start;
1964 runtime = p->se.sum_exec_runtime;
1965
1966 if (p->last_task_numa_placement) {
1967 delta = runtime - p->last_sum_exec_runtime;
1968 *period = now - p->last_task_numa_placement;
1969 } else {
9d89c257
YD
1970 delta = p->se.avg.load_sum / p->se.load.weight;
1971 *period = LOAD_AVG_MAX;
7e2703e6
RR
1972 }
1973
1974 p->last_sum_exec_runtime = runtime;
1975 p->last_task_numa_placement = now;
1976
1977 return delta;
1978}
1979
54009416
RR
1980/*
1981 * Determine the preferred nid for a task in a numa_group. This needs to
1982 * be done in a way that produces consistent results with group_weight,
1983 * otherwise workloads might not converge.
1984 */
1985static int preferred_group_nid(struct task_struct *p, int nid)
1986{
1987 nodemask_t nodes;
1988 int dist;
1989
1990 /* Direct connections between all NUMA nodes. */
1991 if (sched_numa_topology_type == NUMA_DIRECT)
1992 return nid;
1993
1994 /*
1995 * On a system with glueless mesh NUMA topology, group_weight
1996 * scores nodes according to the number of NUMA hinting faults on
1997 * both the node itself, and on nearby nodes.
1998 */
1999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2000 unsigned long score, max_score = 0;
2001 int node, max_node = nid;
2002
2003 dist = sched_max_numa_distance;
2004
2005 for_each_online_node(node) {
2006 score = group_weight(p, node, dist);
2007 if (score > max_score) {
2008 max_score = score;
2009 max_node = node;
2010 }
2011 }
2012 return max_node;
2013 }
2014
2015 /*
2016 * Finding the preferred nid in a system with NUMA backplane
2017 * interconnect topology is more involved. The goal is to locate
2018 * tasks from numa_groups near each other in the system, and
2019 * untangle workloads from different sides of the system. This requires
2020 * searching down the hierarchy of node groups, recursively searching
2021 * inside the highest scoring group of nodes. The nodemask tricks
2022 * keep the complexity of the search down.
2023 */
2024 nodes = node_online_map;
2025 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2026 unsigned long max_faults = 0;
81907478 2027 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2028 int a, b;
2029
2030 /* Are there nodes at this distance from each other? */
2031 if (!find_numa_distance(dist))
2032 continue;
2033
2034 for_each_node_mask(a, nodes) {
2035 unsigned long faults = 0;
2036 nodemask_t this_group;
2037 nodes_clear(this_group);
2038
2039 /* Sum group's NUMA faults; includes a==b case. */
2040 for_each_node_mask(b, nodes) {
2041 if (node_distance(a, b) < dist) {
2042 faults += group_faults(p, b);
2043 node_set(b, this_group);
2044 node_clear(b, nodes);
2045 }
2046 }
2047
2048 /* Remember the top group. */
2049 if (faults > max_faults) {
2050 max_faults = faults;
2051 max_group = this_group;
2052 /*
2053 * subtle: at the smallest distance there is
2054 * just one node left in each "group", the
2055 * winner is the preferred nid.
2056 */
2057 nid = a;
2058 }
2059 }
2060 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2061 if (!max_faults)
2062 break;
54009416
RR
2063 nodes = max_group;
2064 }
2065 return nid;
2066}
2067
cbee9f88
PZ
2068static void task_numa_placement(struct task_struct *p)
2069{
83e1d2cd
MG
2070 int seq, nid, max_nid = -1, max_group_nid = -1;
2071 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2072 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2073 unsigned long total_faults;
2074 u64 runtime, period;
7dbd13ed 2075 spinlock_t *group_lock = NULL;
cbee9f88 2076
7e5a2c17
JL
2077 /*
2078 * The p->mm->numa_scan_seq field gets updated without
2079 * exclusive access. Use READ_ONCE() here to ensure
2080 * that the field is read in a single access:
2081 */
316c1608 2082 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2083 if (p->numa_scan_seq == seq)
2084 return;
2085 p->numa_scan_seq = seq;
598f0ec0 2086 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2087
7e2703e6
RR
2088 total_faults = p->numa_faults_locality[0] +
2089 p->numa_faults_locality[1];
2090 runtime = numa_get_avg_runtime(p, &period);
2091
7dbd13ed
MG
2092 /* If the task is part of a group prevent parallel updates to group stats */
2093 if (p->numa_group) {
2094 group_lock = &p->numa_group->lock;
60e69eed 2095 spin_lock_irq(group_lock);
7dbd13ed
MG
2096 }
2097
688b7585
MG
2098 /* Find the node with the highest number of faults */
2099 for_each_online_node(nid) {
44dba3d5
IM
2100 /* Keep track of the offsets in numa_faults array */
2101 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2102 unsigned long faults = 0, group_faults = 0;
44dba3d5 2103 int priv;
745d6147 2104
be1e4e76 2105 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2106 long diff, f_diff, f_weight;
8c8a743c 2107
44dba3d5
IM
2108 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2109 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2110 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2111 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2112
ac8e895b 2113 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2114 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2115 fault_types[priv] += p->numa_faults[membuf_idx];
2116 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2117
7e2703e6
RR
2118 /*
2119 * Normalize the faults_from, so all tasks in a group
2120 * count according to CPU use, instead of by the raw
2121 * number of faults. Tasks with little runtime have
2122 * little over-all impact on throughput, and thus their
2123 * faults are less important.
2124 */
2125 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2126 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2127 (total_faults + 1);
44dba3d5
IM
2128 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2129 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2130
44dba3d5
IM
2131 p->numa_faults[mem_idx] += diff;
2132 p->numa_faults[cpu_idx] += f_diff;
2133 faults += p->numa_faults[mem_idx];
83e1d2cd 2134 p->total_numa_faults += diff;
8c8a743c 2135 if (p->numa_group) {
44dba3d5
IM
2136 /*
2137 * safe because we can only change our own group
2138 *
2139 * mem_idx represents the offset for a given
2140 * nid and priv in a specific region because it
2141 * is at the beginning of the numa_faults array.
2142 */
2143 p->numa_group->faults[mem_idx] += diff;
2144 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2145 p->numa_group->total_faults += diff;
44dba3d5 2146 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2147 }
ac8e895b
MG
2148 }
2149
688b7585
MG
2150 if (faults > max_faults) {
2151 max_faults = faults;
2152 max_nid = nid;
2153 }
83e1d2cd
MG
2154
2155 if (group_faults > max_group_faults) {
2156 max_group_faults = group_faults;
2157 max_group_nid = nid;
2158 }
2159 }
2160
04bb2f94
RR
2161 update_task_scan_period(p, fault_types[0], fault_types[1]);
2162
7dbd13ed 2163 if (p->numa_group) {
4142c3eb 2164 numa_group_count_active_nodes(p->numa_group);
60e69eed 2165 spin_unlock_irq(group_lock);
54009416 2166 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2167 }
2168
bb97fc31
RR
2169 if (max_faults) {
2170 /* Set the new preferred node */
2171 if (max_nid != p->numa_preferred_nid)
2172 sched_setnuma(p, max_nid);
2173
2174 if (task_node(p) != p->numa_preferred_nid)
2175 numa_migrate_preferred(p);
3a7053b3 2176 }
cbee9f88
PZ
2177}
2178
8c8a743c
PZ
2179static inline int get_numa_group(struct numa_group *grp)
2180{
2181 return atomic_inc_not_zero(&grp->refcount);
2182}
2183
2184static inline void put_numa_group(struct numa_group *grp)
2185{
2186 if (atomic_dec_and_test(&grp->refcount))
2187 kfree_rcu(grp, rcu);
2188}
2189
3e6a9418
MG
2190static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2191 int *priv)
8c8a743c
PZ
2192{
2193 struct numa_group *grp, *my_grp;
2194 struct task_struct *tsk;
2195 bool join = false;
2196 int cpu = cpupid_to_cpu(cpupid);
2197 int i;
2198
2199 if (unlikely(!p->numa_group)) {
2200 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2201 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2202
2203 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2204 if (!grp)
2205 return;
2206
2207 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2208 grp->active_nodes = 1;
2209 grp->max_faults_cpu = 0;
8c8a743c 2210 spin_lock_init(&grp->lock);
e29cf08b 2211 grp->gid = p->pid;
50ec8a40 2212 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2213 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2214 nr_node_ids;
8c8a743c 2215
be1e4e76 2216 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2217 grp->faults[i] = p->numa_faults[i];
8c8a743c 2218
989348b5 2219 grp->total_faults = p->total_numa_faults;
83e1d2cd 2220
8c8a743c
PZ
2221 grp->nr_tasks++;
2222 rcu_assign_pointer(p->numa_group, grp);
2223 }
2224
2225 rcu_read_lock();
316c1608 2226 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2227
2228 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2229 goto no_join;
8c8a743c
PZ
2230
2231 grp = rcu_dereference(tsk->numa_group);
2232 if (!grp)
3354781a 2233 goto no_join;
8c8a743c
PZ
2234
2235 my_grp = p->numa_group;
2236 if (grp == my_grp)
3354781a 2237 goto no_join;
8c8a743c
PZ
2238
2239 /*
2240 * Only join the other group if its bigger; if we're the bigger group,
2241 * the other task will join us.
2242 */
2243 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2244 goto no_join;
8c8a743c
PZ
2245
2246 /*
2247 * Tie-break on the grp address.
2248 */
2249 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2250 goto no_join;
8c8a743c 2251
dabe1d99
RR
2252 /* Always join threads in the same process. */
2253 if (tsk->mm == current->mm)
2254 join = true;
2255
2256 /* Simple filter to avoid false positives due to PID collisions */
2257 if (flags & TNF_SHARED)
2258 join = true;
8c8a743c 2259
3e6a9418
MG
2260 /* Update priv based on whether false sharing was detected */
2261 *priv = !join;
2262
dabe1d99 2263 if (join && !get_numa_group(grp))
3354781a 2264 goto no_join;
8c8a743c 2265
8c8a743c
PZ
2266 rcu_read_unlock();
2267
2268 if (!join)
2269 return;
2270
60e69eed
MG
2271 BUG_ON(irqs_disabled());
2272 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2273
be1e4e76 2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2275 my_grp->faults[i] -= p->numa_faults[i];
2276 grp->faults[i] += p->numa_faults[i];
8c8a743c 2277 }
989348b5
MG
2278 my_grp->total_faults -= p->total_numa_faults;
2279 grp->total_faults += p->total_numa_faults;
8c8a743c 2280
8c8a743c
PZ
2281 my_grp->nr_tasks--;
2282 grp->nr_tasks++;
2283
2284 spin_unlock(&my_grp->lock);
60e69eed 2285 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2286
2287 rcu_assign_pointer(p->numa_group, grp);
2288
2289 put_numa_group(my_grp);
3354781a
PZ
2290 return;
2291
2292no_join:
2293 rcu_read_unlock();
2294 return;
8c8a743c
PZ
2295}
2296
2297void task_numa_free(struct task_struct *p)
2298{
2299 struct numa_group *grp = p->numa_group;
44dba3d5 2300 void *numa_faults = p->numa_faults;
e9dd685c
SR
2301 unsigned long flags;
2302 int i;
8c8a743c
PZ
2303
2304 if (grp) {
e9dd685c 2305 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2306 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2307 grp->faults[i] -= p->numa_faults[i];
989348b5 2308 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2309
8c8a743c 2310 grp->nr_tasks--;
e9dd685c 2311 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2312 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2313 put_numa_group(grp);
2314 }
2315
44dba3d5 2316 p->numa_faults = NULL;
82727018 2317 kfree(numa_faults);
8c8a743c
PZ
2318}
2319
cbee9f88
PZ
2320/*
2321 * Got a PROT_NONE fault for a page on @node.
2322 */
58b46da3 2323void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2324{
2325 struct task_struct *p = current;
6688cc05 2326 bool migrated = flags & TNF_MIGRATED;
58b46da3 2327 int cpu_node = task_node(current);
792568ec 2328 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2329 struct numa_group *ng;
ac8e895b 2330 int priv;
cbee9f88 2331
2a595721 2332 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2333 return;
2334
9ff1d9ff
MG
2335 /* for example, ksmd faulting in a user's mm */
2336 if (!p->mm)
2337 return;
2338
f809ca9a 2339 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2340 if (unlikely(!p->numa_faults)) {
2341 int size = sizeof(*p->numa_faults) *
be1e4e76 2342 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2343
44dba3d5
IM
2344 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2345 if (!p->numa_faults)
f809ca9a 2346 return;
745d6147 2347
83e1d2cd 2348 p->total_numa_faults = 0;
04bb2f94 2349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2350 }
cbee9f88 2351
8c8a743c
PZ
2352 /*
2353 * First accesses are treated as private, otherwise consider accesses
2354 * to be private if the accessing pid has not changed
2355 */
2356 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2357 priv = 1;
2358 } else {
2359 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2360 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2361 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2362 }
2363
792568ec
RR
2364 /*
2365 * If a workload spans multiple NUMA nodes, a shared fault that
2366 * occurs wholly within the set of nodes that the workload is
2367 * actively using should be counted as local. This allows the
2368 * scan rate to slow down when a workload has settled down.
2369 */
4142c3eb
RR
2370 ng = p->numa_group;
2371 if (!priv && !local && ng && ng->active_nodes > 1 &&
2372 numa_is_active_node(cpu_node, ng) &&
2373 numa_is_active_node(mem_node, ng))
792568ec
RR
2374 local = 1;
2375
cbee9f88 2376 task_numa_placement(p);
f809ca9a 2377
2739d3ee
RR
2378 /*
2379 * Retry task to preferred node migration periodically, in case it
2380 * case it previously failed, or the scheduler moved us.
2381 */
2382 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2383 numa_migrate_preferred(p);
2384
b32e86b4
IM
2385 if (migrated)
2386 p->numa_pages_migrated += pages;
074c2381
MG
2387 if (flags & TNF_MIGRATE_FAIL)
2388 p->numa_faults_locality[2] += pages;
b32e86b4 2389
44dba3d5
IM
2390 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2391 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2392 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2393}
2394
6e5fb223
PZ
2395static void reset_ptenuma_scan(struct task_struct *p)
2396{
7e5a2c17
JL
2397 /*
2398 * We only did a read acquisition of the mmap sem, so
2399 * p->mm->numa_scan_seq is written to without exclusive access
2400 * and the update is not guaranteed to be atomic. That's not
2401 * much of an issue though, since this is just used for
2402 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2403 * expensive, to avoid any form of compiler optimizations:
2404 */
316c1608 2405 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2406 p->mm->numa_scan_offset = 0;
2407}
2408
cbee9f88
PZ
2409/*
2410 * The expensive part of numa migration is done from task_work context.
2411 * Triggered from task_tick_numa().
2412 */
2413void task_numa_work(struct callback_head *work)
2414{
2415 unsigned long migrate, next_scan, now = jiffies;
2416 struct task_struct *p = current;
2417 struct mm_struct *mm = p->mm;
51170840 2418 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2419 struct vm_area_struct *vma;
9f40604c 2420 unsigned long start, end;
598f0ec0 2421 unsigned long nr_pte_updates = 0;
4620f8c1 2422 long pages, virtpages;
cbee9f88 2423
9148a3a1 2424 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2425
2426 work->next = work; /* protect against double add */
2427 /*
2428 * Who cares about NUMA placement when they're dying.
2429 *
2430 * NOTE: make sure not to dereference p->mm before this check,
2431 * exit_task_work() happens _after_ exit_mm() so we could be called
2432 * without p->mm even though we still had it when we enqueued this
2433 * work.
2434 */
2435 if (p->flags & PF_EXITING)
2436 return;
2437
930aa174 2438 if (!mm->numa_next_scan) {
7e8d16b6
MG
2439 mm->numa_next_scan = now +
2440 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2441 }
2442
cbee9f88
PZ
2443 /*
2444 * Enforce maximal scan/migration frequency..
2445 */
2446 migrate = mm->numa_next_scan;
2447 if (time_before(now, migrate))
2448 return;
2449
598f0ec0
MG
2450 if (p->numa_scan_period == 0) {
2451 p->numa_scan_period_max = task_scan_max(p);
2452 p->numa_scan_period = task_scan_min(p);
2453 }
cbee9f88 2454
fb003b80 2455 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2456 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2457 return;
2458
19a78d11
PZ
2459 /*
2460 * Delay this task enough that another task of this mm will likely win
2461 * the next time around.
2462 */
2463 p->node_stamp += 2 * TICK_NSEC;
2464
9f40604c
MG
2465 start = mm->numa_scan_offset;
2466 pages = sysctl_numa_balancing_scan_size;
2467 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2468 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2469 if (!pages)
2470 return;
cbee9f88 2471
4620f8c1 2472
8655d549
VB
2473 if (!down_read_trylock(&mm->mmap_sem))
2474 return;
9f40604c 2475 vma = find_vma(mm, start);
6e5fb223
PZ
2476 if (!vma) {
2477 reset_ptenuma_scan(p);
9f40604c 2478 start = 0;
6e5fb223
PZ
2479 vma = mm->mmap;
2480 }
9f40604c 2481 for (; vma; vma = vma->vm_next) {
6b79c57b 2482 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2483 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2484 continue;
6b79c57b 2485 }
6e5fb223 2486
4591ce4f
MG
2487 /*
2488 * Shared library pages mapped by multiple processes are not
2489 * migrated as it is expected they are cache replicated. Avoid
2490 * hinting faults in read-only file-backed mappings or the vdso
2491 * as migrating the pages will be of marginal benefit.
2492 */
2493 if (!vma->vm_mm ||
2494 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2495 continue;
2496
3c67f474
MG
2497 /*
2498 * Skip inaccessible VMAs to avoid any confusion between
2499 * PROT_NONE and NUMA hinting ptes
2500 */
2501 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2502 continue;
4591ce4f 2503
9f40604c
MG
2504 do {
2505 start = max(start, vma->vm_start);
2506 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2507 end = min(end, vma->vm_end);
4620f8c1 2508 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2509
2510 /*
4620f8c1
RR
2511 * Try to scan sysctl_numa_balancing_size worth of
2512 * hpages that have at least one present PTE that
2513 * is not already pte-numa. If the VMA contains
2514 * areas that are unused or already full of prot_numa
2515 * PTEs, scan up to virtpages, to skip through those
2516 * areas faster.
598f0ec0
MG
2517 */
2518 if (nr_pte_updates)
2519 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2520 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2521
9f40604c 2522 start = end;
4620f8c1 2523 if (pages <= 0 || virtpages <= 0)
9f40604c 2524 goto out;
3cf1962c
RR
2525
2526 cond_resched();
9f40604c 2527 } while (end != vma->vm_end);
cbee9f88 2528 }
6e5fb223 2529
9f40604c 2530out:
6e5fb223 2531 /*
c69307d5
PZ
2532 * It is possible to reach the end of the VMA list but the last few
2533 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2534 * would find the !migratable VMA on the next scan but not reset the
2535 * scanner to the start so check it now.
6e5fb223
PZ
2536 */
2537 if (vma)
9f40604c 2538 mm->numa_scan_offset = start;
6e5fb223
PZ
2539 else
2540 reset_ptenuma_scan(p);
2541 up_read(&mm->mmap_sem);
51170840
RR
2542
2543 /*
2544 * Make sure tasks use at least 32x as much time to run other code
2545 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2546 * Usually update_task_scan_period slows down scanning enough; on an
2547 * overloaded system we need to limit overhead on a per task basis.
2548 */
2549 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2550 u64 diff = p->se.sum_exec_runtime - runtime;
2551 p->node_stamp += 32 * diff;
2552 }
cbee9f88
PZ
2553}
2554
2555/*
2556 * Drive the periodic memory faults..
2557 */
2558void task_tick_numa(struct rq *rq, struct task_struct *curr)
2559{
2560 struct callback_head *work = &curr->numa_work;
2561 u64 period, now;
2562
2563 /*
2564 * We don't care about NUMA placement if we don't have memory.
2565 */
2566 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2567 return;
2568
2569 /*
2570 * Using runtime rather than walltime has the dual advantage that
2571 * we (mostly) drive the selection from busy threads and that the
2572 * task needs to have done some actual work before we bother with
2573 * NUMA placement.
2574 */
2575 now = curr->se.sum_exec_runtime;
2576 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2577
25b3e5a3 2578 if (now > curr->node_stamp + period) {
4b96a29b 2579 if (!curr->node_stamp)
598f0ec0 2580 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2581 curr->node_stamp += period;
cbee9f88
PZ
2582
2583 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2584 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2585 task_work_add(curr, work, true);
2586 }
2587 }
2588}
2589#else
2590static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2591{
2592}
0ec8aa00
PZ
2593
2594static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2595{
2596}
2597
2598static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2599{
2600}
cbee9f88
PZ
2601#endif /* CONFIG_NUMA_BALANCING */
2602
30cfdcfc
DA
2603static void
2604account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2605{
2606 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2607 if (!parent_entity(se))
029632fb 2608 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2609#ifdef CONFIG_SMP
0ec8aa00
PZ
2610 if (entity_is_task(se)) {
2611 struct rq *rq = rq_of(cfs_rq);
2612
2613 account_numa_enqueue(rq, task_of(se));
2614 list_add(&se->group_node, &rq->cfs_tasks);
2615 }
367456c7 2616#endif
30cfdcfc 2617 cfs_rq->nr_running++;
30cfdcfc
DA
2618}
2619
2620static void
2621account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2622{
2623 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2624 if (!parent_entity(se))
029632fb 2625 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2626#ifdef CONFIG_SMP
0ec8aa00
PZ
2627 if (entity_is_task(se)) {
2628 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2629 list_del_init(&se->group_node);
0ec8aa00 2630 }
bfdb198c 2631#endif
30cfdcfc 2632 cfs_rq->nr_running--;
30cfdcfc
DA
2633}
2634
3ff6dcac
YZ
2635#ifdef CONFIG_FAIR_GROUP_SCHED
2636# ifdef CONFIG_SMP
ea1dc6fc 2637static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2638{
ea1dc6fc 2639 long tg_weight, load, shares;
cf5f0acf
PZ
2640
2641 /*
ea1dc6fc
PZ
2642 * This really should be: cfs_rq->avg.load_avg, but instead we use
2643 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2644 * the shares for small weight interactive tasks.
cf5f0acf 2645 */
ea1dc6fc 2646 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2647
ea1dc6fc 2648 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2649
ea1dc6fc
PZ
2650 /* Ensure tg_weight >= load */
2651 tg_weight -= cfs_rq->tg_load_avg_contrib;
2652 tg_weight += load;
3ff6dcac 2653
3ff6dcac 2654 shares = (tg->shares * load);
cf5f0acf
PZ
2655 if (tg_weight)
2656 shares /= tg_weight;
3ff6dcac 2657
b8fd8423
DE
2658 /*
2659 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2660 * of a group with small tg->shares value. It is a floor value which is
2661 * assigned as a minimum load.weight to the sched_entity representing
2662 * the group on a CPU.
2663 *
2664 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2665 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2666 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2667 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2668 * instead of 0.
2669 */
3ff6dcac
YZ
2670 if (shares < MIN_SHARES)
2671 shares = MIN_SHARES;
2672 if (shares > tg->shares)
2673 shares = tg->shares;
2674
2675 return shares;
2676}
3ff6dcac 2677# else /* CONFIG_SMP */
6d5ab293 2678static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2679{
2680 return tg->shares;
2681}
3ff6dcac 2682# endif /* CONFIG_SMP */
ea1dc6fc 2683
2069dd75
PZ
2684static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2685 unsigned long weight)
2686{
19e5eebb
PT
2687 if (se->on_rq) {
2688 /* commit outstanding execution time */
2689 if (cfs_rq->curr == se)
2690 update_curr(cfs_rq);
2069dd75 2691 account_entity_dequeue(cfs_rq, se);
19e5eebb 2692 }
2069dd75
PZ
2693
2694 update_load_set(&se->load, weight);
2695
2696 if (se->on_rq)
2697 account_entity_enqueue(cfs_rq, se);
2698}
2699
82958366
PT
2700static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2701
89ee048f 2702static void update_cfs_shares(struct sched_entity *se)
2069dd75 2703{
89ee048f 2704 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2705 struct task_group *tg;
3ff6dcac 2706 long shares;
2069dd75 2707
89ee048f
VG
2708 if (!cfs_rq)
2709 return;
2710
2711 if (throttled_hierarchy(cfs_rq))
2069dd75 2712 return;
89ee048f
VG
2713
2714 tg = cfs_rq->tg;
2715
3ff6dcac
YZ
2716#ifndef CONFIG_SMP
2717 if (likely(se->load.weight == tg->shares))
2718 return;
2719#endif
6d5ab293 2720 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2721
2722 reweight_entity(cfs_rq_of(se), se, shares);
2723}
89ee048f 2724
2069dd75 2725#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2726static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2727{
2728}
2729#endif /* CONFIG_FAIR_GROUP_SCHED */
2730
141965c7 2731#ifdef CONFIG_SMP
9d85f21c
PT
2732/*
2733 * Approximate:
2734 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2735 */
a481db34 2736static u64 decay_load(u64 val, u64 n)
9d85f21c 2737{
5b51f2f8
PT
2738 unsigned int local_n;
2739
05296e75 2740 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2741 return 0;
2742
2743 /* after bounds checking we can collapse to 32-bit */
2744 local_n = n;
2745
2746 /*
2747 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2748 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2749 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2750 *
2751 * To achieve constant time decay_load.
2752 */
2753 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2754 val >>= local_n / LOAD_AVG_PERIOD;
2755 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2756 }
2757
9d89c257
YD
2758 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2759 return val;
5b51f2f8
PT
2760}
2761
05296e75 2762static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2763{
05296e75 2764 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2765
a481db34 2766 /*
3841cdc3 2767 * c1 = d1 y^p
a481db34 2768 */
05296e75 2769 c1 = decay_load((u64)d1, periods);
a481db34 2770
a481db34 2771 /*
3841cdc3 2772 * p-1
05296e75
PZ
2773 * c2 = 1024 \Sum y^n
2774 * n=1
a481db34 2775 *
05296e75
PZ
2776 * inf inf
2777 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2778 * n=0 n=p
a481db34 2779 */
05296e75 2780 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2781
2782 return c1 + c2 + c3;
9d85f21c
PT
2783}
2784
54a21385 2785#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2786
a481db34
YD
2787/*
2788 * Accumulate the three separate parts of the sum; d1 the remainder
2789 * of the last (incomplete) period, d2 the span of full periods and d3
2790 * the remainder of the (incomplete) current period.
2791 *
2792 * d1 d2 d3
2793 * ^ ^ ^
2794 * | | |
2795 * |<->|<----------------->|<--->|
2796 * ... |---x---|------| ... |------|-----x (now)
2797 *
3841cdc3
PZ
2798 * p-1
2799 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2800 * n=1
a481db34 2801 *
3841cdc3 2802 * = u y^p + (Step 1)
a481db34 2803 *
3841cdc3
PZ
2804 * p-1
2805 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2806 * n=1
a481db34
YD
2807 */
2808static __always_inline u32
2809accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2810 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2811{
2812 unsigned long scale_freq, scale_cpu;
05296e75 2813 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2814 u64 periods;
a481db34
YD
2815
2816 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2817 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2818
2819 delta += sa->period_contrib;
2820 periods = delta / 1024; /* A period is 1024us (~1ms) */
2821
2822 /*
2823 * Step 1: decay old *_sum if we crossed period boundaries.
2824 */
2825 if (periods) {
2826 sa->load_sum = decay_load(sa->load_sum, periods);
2827 if (cfs_rq) {
2828 cfs_rq->runnable_load_sum =
2829 decay_load(cfs_rq->runnable_load_sum, periods);
2830 }
2831 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2832
05296e75
PZ
2833 /*
2834 * Step 2
2835 */
2836 delta %= 1024;
2837 contrib = __accumulate_pelt_segments(periods,
2838 1024 - sa->period_contrib, delta);
2839 }
a481db34
YD
2840 sa->period_contrib = delta;
2841
2842 contrib = cap_scale(contrib, scale_freq);
2843 if (weight) {
2844 sa->load_sum += weight * contrib;
2845 if (cfs_rq)
2846 cfs_rq->runnable_load_sum += weight * contrib;
2847 }
2848 if (running)
2849 sa->util_sum += contrib * scale_cpu;
2850
2851 return periods;
2852}
2853
9d85f21c
PT
2854/*
2855 * We can represent the historical contribution to runnable average as the
2856 * coefficients of a geometric series. To do this we sub-divide our runnable
2857 * history into segments of approximately 1ms (1024us); label the segment that
2858 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2859 *
2860 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2861 * p0 p1 p2
2862 * (now) (~1ms ago) (~2ms ago)
2863 *
2864 * Let u_i denote the fraction of p_i that the entity was runnable.
2865 *
2866 * We then designate the fractions u_i as our co-efficients, yielding the
2867 * following representation of historical load:
2868 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2869 *
2870 * We choose y based on the with of a reasonably scheduling period, fixing:
2871 * y^32 = 0.5
2872 *
2873 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2874 * approximately half as much as the contribution to load within the last ms
2875 * (u_0).
2876 *
2877 * When a period "rolls over" and we have new u_0`, multiplying the previous
2878 * sum again by y is sufficient to update:
2879 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2880 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2881 */
9d89c257 2882static __always_inline int
0ccb977f 2883___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2884 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2885{
a481db34 2886 u64 delta;
9d85f21c 2887
9d89c257 2888 delta = now - sa->last_update_time;
9d85f21c
PT
2889 /*
2890 * This should only happen when time goes backwards, which it
2891 * unfortunately does during sched clock init when we swap over to TSC.
2892 */
2893 if ((s64)delta < 0) {
9d89c257 2894 sa->last_update_time = now;
9d85f21c
PT
2895 return 0;
2896 }
2897
2898 /*
2899 * Use 1024ns as the unit of measurement since it's a reasonable
2900 * approximation of 1us and fast to compute.
2901 */
2902 delta >>= 10;
2903 if (!delta)
2904 return 0;
bb0bd044
PZ
2905
2906 sa->last_update_time += delta << 10;
9d85f21c 2907
a481db34
YD
2908 /*
2909 * Now we know we crossed measurement unit boundaries. The *_avg
2910 * accrues by two steps:
2911 *
2912 * Step 1: accumulate *_sum since last_update_time. If we haven't
2913 * crossed period boundaries, finish.
2914 */
2915 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2916 return 0;
9ee474f5 2917
a481db34
YD
2918 /*
2919 * Step 2: update *_avg.
2920 */
625ed2bf 2921 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
2922 if (cfs_rq) {
2923 cfs_rq->runnable_load_avg =
625ed2bf 2924 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 2925 }
625ed2bf 2926 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 2927
a481db34 2928 return 1;
9ee474f5
PT
2929}
2930
0ccb977f
PZ
2931static int
2932__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2933{
2934 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2935}
2936
2937static int
2938__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2939{
2940 return ___update_load_avg(now, cpu, &se->avg,
2941 se->on_rq * scale_load_down(se->load.weight),
2942 cfs_rq->curr == se, NULL);
2943}
2944
2945static int
2946__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2947{
2948 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2949 scale_load_down(cfs_rq->load.weight),
2950 cfs_rq->curr != NULL, cfs_rq);
2951}
2952
09a43ace
VG
2953/*
2954 * Signed add and clamp on underflow.
2955 *
2956 * Explicitly do a load-store to ensure the intermediate value never hits
2957 * memory. This allows lockless observations without ever seeing the negative
2958 * values.
2959 */
2960#define add_positive(_ptr, _val) do { \
2961 typeof(_ptr) ptr = (_ptr); \
2962 typeof(_val) val = (_val); \
2963 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2964 \
2965 res = var + val; \
2966 \
2967 if (val < 0 && res > var) \
2968 res = 0; \
2969 \
2970 WRITE_ONCE(*ptr, res); \
2971} while (0)
2972
c566e8e9 2973#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2974/**
2975 * update_tg_load_avg - update the tg's load avg
2976 * @cfs_rq: the cfs_rq whose avg changed
2977 * @force: update regardless of how small the difference
2978 *
2979 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2980 * However, because tg->load_avg is a global value there are performance
2981 * considerations.
2982 *
2983 * In order to avoid having to look at the other cfs_rq's, we use a
2984 * differential update where we store the last value we propagated. This in
2985 * turn allows skipping updates if the differential is 'small'.
2986 *
2987 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2988 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2989 */
9d89c257 2990static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2991{
9d89c257 2992 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2993
aa0b7ae0
WL
2994 /*
2995 * No need to update load_avg for root_task_group as it is not used.
2996 */
2997 if (cfs_rq->tg == &root_task_group)
2998 return;
2999
9d89c257
YD
3000 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3001 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3002 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3003 }
8165e145 3004}
f5f9739d 3005
ad936d86
BP
3006/*
3007 * Called within set_task_rq() right before setting a task's cpu. The
3008 * caller only guarantees p->pi_lock is held; no other assumptions,
3009 * including the state of rq->lock, should be made.
3010 */
3011void set_task_rq_fair(struct sched_entity *se,
3012 struct cfs_rq *prev, struct cfs_rq *next)
3013{
0ccb977f
PZ
3014 u64 p_last_update_time;
3015 u64 n_last_update_time;
3016
ad936d86
BP
3017 if (!sched_feat(ATTACH_AGE_LOAD))
3018 return;
3019
3020 /*
3021 * We are supposed to update the task to "current" time, then its up to
3022 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3023 * getting what current time is, so simply throw away the out-of-date
3024 * time. This will result in the wakee task is less decayed, but giving
3025 * the wakee more load sounds not bad.
3026 */
0ccb977f
PZ
3027 if (!(se->avg.last_update_time && prev))
3028 return;
ad936d86
BP
3029
3030#ifndef CONFIG_64BIT
0ccb977f 3031 {
ad936d86
BP
3032 u64 p_last_update_time_copy;
3033 u64 n_last_update_time_copy;
3034
3035 do {
3036 p_last_update_time_copy = prev->load_last_update_time_copy;
3037 n_last_update_time_copy = next->load_last_update_time_copy;
3038
3039 smp_rmb();
3040
3041 p_last_update_time = prev->avg.last_update_time;
3042 n_last_update_time = next->avg.last_update_time;
3043
3044 } while (p_last_update_time != p_last_update_time_copy ||
3045 n_last_update_time != n_last_update_time_copy);
0ccb977f 3046 }
ad936d86 3047#else
0ccb977f
PZ
3048 p_last_update_time = prev->avg.last_update_time;
3049 n_last_update_time = next->avg.last_update_time;
ad936d86 3050#endif
0ccb977f
PZ
3051 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3052 se->avg.last_update_time = n_last_update_time;
ad936d86 3053}
09a43ace
VG
3054
3055/* Take into account change of utilization of a child task group */
3056static inline void
3057update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3058{
3059 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3060 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3061
3062 /* Nothing to update */
3063 if (!delta)
3064 return;
3065
3066 /* Set new sched_entity's utilization */
3067 se->avg.util_avg = gcfs_rq->avg.util_avg;
3068 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3069
3070 /* Update parent cfs_rq utilization */
3071 add_positive(&cfs_rq->avg.util_avg, delta);
3072 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3073}
3074
3075/* Take into account change of load of a child task group */
3076static inline void
3077update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
3079 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3080 long delta, load = gcfs_rq->avg.load_avg;
3081
3082 /*
3083 * If the load of group cfs_rq is null, the load of the
3084 * sched_entity will also be null so we can skip the formula
3085 */
3086 if (load) {
3087 long tg_load;
3088
3089 /* Get tg's load and ensure tg_load > 0 */
3090 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3091
3092 /* Ensure tg_load >= load and updated with current load*/
3093 tg_load -= gcfs_rq->tg_load_avg_contrib;
3094 tg_load += load;
3095
3096 /*
3097 * We need to compute a correction term in the case that the
3098 * task group is consuming more CPU than a task of equal
3099 * weight. A task with a weight equals to tg->shares will have
3100 * a load less or equal to scale_load_down(tg->shares).
3101 * Similarly, the sched_entities that represent the task group
3102 * at parent level, can't have a load higher than
3103 * scale_load_down(tg->shares). And the Sum of sched_entities'
3104 * load must be <= scale_load_down(tg->shares).
3105 */
3106 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3107 /* scale gcfs_rq's load into tg's shares*/
3108 load *= scale_load_down(gcfs_rq->tg->shares);
3109 load /= tg_load;
3110 }
3111 }
3112
3113 delta = load - se->avg.load_avg;
3114
3115 /* Nothing to update */
3116 if (!delta)
3117 return;
3118
3119 /* Set new sched_entity's load */
3120 se->avg.load_avg = load;
3121 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3122
3123 /* Update parent cfs_rq load */
3124 add_positive(&cfs_rq->avg.load_avg, delta);
3125 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3126
3127 /*
3128 * If the sched_entity is already enqueued, we also have to update the
3129 * runnable load avg.
3130 */
3131 if (se->on_rq) {
3132 /* Update parent cfs_rq runnable_load_avg */
3133 add_positive(&cfs_rq->runnable_load_avg, delta);
3134 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3135 }
3136}
3137
3138static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3139{
3140 cfs_rq->propagate_avg = 1;
3141}
3142
3143static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3144{
3145 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3146
3147 if (!cfs_rq->propagate_avg)
3148 return 0;
3149
3150 cfs_rq->propagate_avg = 0;
3151 return 1;
3152}
3153
3154/* Update task and its cfs_rq load average */
3155static inline int propagate_entity_load_avg(struct sched_entity *se)
3156{
3157 struct cfs_rq *cfs_rq;
3158
3159 if (entity_is_task(se))
3160 return 0;
3161
3162 if (!test_and_clear_tg_cfs_propagate(se))
3163 return 0;
3164
3165 cfs_rq = cfs_rq_of(se);
3166
3167 set_tg_cfs_propagate(cfs_rq);
3168
3169 update_tg_cfs_util(cfs_rq, se);
3170 update_tg_cfs_load(cfs_rq, se);
3171
3172 return 1;
3173}
3174
bc427898
VG
3175/*
3176 * Check if we need to update the load and the utilization of a blocked
3177 * group_entity:
3178 */
3179static inline bool skip_blocked_update(struct sched_entity *se)
3180{
3181 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3182
3183 /*
3184 * If sched_entity still have not zero load or utilization, we have to
3185 * decay it:
3186 */
3187 if (se->avg.load_avg || se->avg.util_avg)
3188 return false;
3189
3190 /*
3191 * If there is a pending propagation, we have to update the load and
3192 * the utilization of the sched_entity:
3193 */
3194 if (gcfs_rq->propagate_avg)
3195 return false;
3196
3197 /*
3198 * Otherwise, the load and the utilization of the sched_entity is
3199 * already zero and there is no pending propagation, so it will be a
3200 * waste of time to try to decay it:
3201 */
3202 return true;
3203}
3204
6e83125c 3205#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3206
9d89c257 3207static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3208
3209static inline int propagate_entity_load_avg(struct sched_entity *se)
3210{
3211 return 0;
3212}
3213
3214static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3215
6e83125c 3216#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3217
a2c6c91f
SM
3218static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3219{
58919e83 3220 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3221 /*
3222 * There are a few boundary cases this might miss but it should
3223 * get called often enough that that should (hopefully) not be
3224 * a real problem -- added to that it only calls on the local
3225 * CPU, so if we enqueue remotely we'll miss an update, but
3226 * the next tick/schedule should update.
3227 *
3228 * It will not get called when we go idle, because the idle
3229 * thread is a different class (!fair), nor will the utilization
3230 * number include things like RT tasks.
3231 *
3232 * As is, the util number is not freq-invariant (we'd have to
3233 * implement arch_scale_freq_capacity() for that).
3234 *
3235 * See cpu_util().
3236 */
12bde33d 3237 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3238 }
3239}
3240
89741892
PZ
3241/*
3242 * Unsigned subtract and clamp on underflow.
3243 *
3244 * Explicitly do a load-store to ensure the intermediate value never hits
3245 * memory. This allows lockless observations without ever seeing the negative
3246 * values.
3247 */
3248#define sub_positive(_ptr, _val) do { \
3249 typeof(_ptr) ptr = (_ptr); \
3250 typeof(*ptr) val = (_val); \
3251 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3252 res = var - val; \
3253 if (res > var) \
3254 res = 0; \
3255 WRITE_ONCE(*ptr, res); \
3256} while (0)
3257
3d30544f
PZ
3258/**
3259 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3260 * @now: current time, as per cfs_rq_clock_task()
3261 * @cfs_rq: cfs_rq to update
3262 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3263 *
3264 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3265 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3266 * post_init_entity_util_avg().
3267 *
3268 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3269 *
7c3edd2c
PZ
3270 * Returns true if the load decayed or we removed load.
3271 *
3272 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3273 * call update_tg_load_avg() when this function returns true.
3d30544f 3274 */
a2c6c91f
SM
3275static inline int
3276update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3277{
9d89c257 3278 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3279 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3280
9d89c257 3281 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3282 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3283 sub_positive(&sa->load_avg, r);
3284 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3285 removed_load = 1;
4e516076 3286 set_tg_cfs_propagate(cfs_rq);
8165e145 3287 }
2dac754e 3288
9d89c257
YD
3289 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3290 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3291 sub_positive(&sa->util_avg, r);
3292 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3293 removed_util = 1;
4e516076 3294 set_tg_cfs_propagate(cfs_rq);
9d89c257 3295 }
36ee28e4 3296
0ccb977f 3297 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3298
9d89c257
YD
3299#ifndef CONFIG_64BIT
3300 smp_wmb();
3301 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3302#endif
36ee28e4 3303
a2c6c91f
SM
3304 if (update_freq && (decayed || removed_util))
3305 cfs_rq_util_change(cfs_rq);
21e96f88 3306
41e0d37f 3307 return decayed || removed_load;
21e96f88
SM
3308}
3309
d31b1a66
VG
3310/*
3311 * Optional action to be done while updating the load average
3312 */
3313#define UPDATE_TG 0x1
3314#define SKIP_AGE_LOAD 0x2
3315
21e96f88 3316/* Update task and its cfs_rq load average */
d31b1a66 3317static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3318{
3319 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3320 u64 now = cfs_rq_clock_task(cfs_rq);
3321 struct rq *rq = rq_of(cfs_rq);
3322 int cpu = cpu_of(rq);
09a43ace 3323 int decayed;
21e96f88
SM
3324
3325 /*
3326 * Track task load average for carrying it to new CPU after migrated, and
3327 * track group sched_entity load average for task_h_load calc in migration
3328 */
0ccb977f
PZ
3329 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3330 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3331
09a43ace
VG
3332 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3333 decayed |= propagate_entity_load_avg(se);
3334
3335 if (decayed && (flags & UPDATE_TG))
21e96f88 3336 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3337}
3338
3d30544f
PZ
3339/**
3340 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3341 * @cfs_rq: cfs_rq to attach to
3342 * @se: sched_entity to attach
3343 *
3344 * Must call update_cfs_rq_load_avg() before this, since we rely on
3345 * cfs_rq->avg.last_update_time being current.
3346 */
a05e8c51
BP
3347static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3348{
3349 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3350 cfs_rq->avg.load_avg += se->avg.load_avg;
3351 cfs_rq->avg.load_sum += se->avg.load_sum;
3352 cfs_rq->avg.util_avg += se->avg.util_avg;
3353 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3354 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3355
3356 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3357}
3358
3d30544f
PZ
3359/**
3360 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3361 * @cfs_rq: cfs_rq to detach from
3362 * @se: sched_entity to detach
3363 *
3364 * Must call update_cfs_rq_load_avg() before this, since we rely on
3365 * cfs_rq->avg.last_update_time being current.
3366 */
a05e8c51
BP
3367static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3368{
a05e8c51 3369
89741892
PZ
3370 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3371 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3372 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3373 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3374 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3375
3376 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3377}
3378
9d89c257
YD
3379/* Add the load generated by se into cfs_rq's load average */
3380static inline void
3381enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3382{
9d89c257 3383 struct sched_avg *sa = &se->avg;
18bf2805 3384
13962234
YD
3385 cfs_rq->runnable_load_avg += sa->load_avg;
3386 cfs_rq->runnable_load_sum += sa->load_sum;
3387
d31b1a66 3388 if (!sa->last_update_time) {
a05e8c51 3389 attach_entity_load_avg(cfs_rq, se);
9d89c257 3390 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3391 }
2dac754e
PT
3392}
3393
13962234
YD
3394/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3395static inline void
3396dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3397{
13962234
YD
3398 cfs_rq->runnable_load_avg =
3399 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3400 cfs_rq->runnable_load_sum =
a05e8c51 3401 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3402}
3403
9d89c257 3404#ifndef CONFIG_64BIT
0905f04e
YD
3405static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3406{
9d89c257 3407 u64 last_update_time_copy;
0905f04e 3408 u64 last_update_time;
9ee474f5 3409
9d89c257
YD
3410 do {
3411 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3412 smp_rmb();
3413 last_update_time = cfs_rq->avg.last_update_time;
3414 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3415
3416 return last_update_time;
3417}
9d89c257 3418#else
0905f04e
YD
3419static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3420{
3421 return cfs_rq->avg.last_update_time;
3422}
9d89c257
YD
3423#endif
3424
104cb16d
MR
3425/*
3426 * Synchronize entity load avg of dequeued entity without locking
3427 * the previous rq.
3428 */
3429void sync_entity_load_avg(struct sched_entity *se)
3430{
3431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3432 u64 last_update_time;
3433
3434 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3435 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3436}
3437
0905f04e
YD
3438/*
3439 * Task first catches up with cfs_rq, and then subtract
3440 * itself from the cfs_rq (task must be off the queue now).
3441 */
3442void remove_entity_load_avg(struct sched_entity *se)
3443{
3444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3445
3446 /*
7dc603c9
PZ
3447 * tasks cannot exit without having gone through wake_up_new_task() ->
3448 * post_init_entity_util_avg() which will have added things to the
3449 * cfs_rq, so we can remove unconditionally.
3450 *
3451 * Similarly for groups, they will have passed through
3452 * post_init_entity_util_avg() before unregister_sched_fair_group()
3453 * calls this.
0905f04e 3454 */
0905f04e 3455
104cb16d 3456 sync_entity_load_avg(se);
9d89c257
YD
3457 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3458 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3459}
642dbc39 3460
7ea241af
YD
3461static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3462{
3463 return cfs_rq->runnable_load_avg;
3464}
3465
3466static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3467{
3468 return cfs_rq->avg.load_avg;
3469}
3470
46f69fa3 3471static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3472
38033c37
PZ
3473#else /* CONFIG_SMP */
3474
01011473
PZ
3475static inline int
3476update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3477{
3478 return 0;
3479}
3480
d31b1a66
VG
3481#define UPDATE_TG 0x0
3482#define SKIP_AGE_LOAD 0x0
3483
3484static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3485{
12bde33d 3486 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3487}
3488
9d89c257
YD
3489static inline void
3490enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3491static inline void
3492dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3493static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3494
a05e8c51
BP
3495static inline void
3496attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3497static inline void
3498detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3499
46f69fa3 3500static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3501{
3502 return 0;
3503}
3504
38033c37 3505#endif /* CONFIG_SMP */
9d85f21c 3506
ddc97297
PZ
3507static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3508{
3509#ifdef CONFIG_SCHED_DEBUG
3510 s64 d = se->vruntime - cfs_rq->min_vruntime;
3511
3512 if (d < 0)
3513 d = -d;
3514
3515 if (d > 3*sysctl_sched_latency)
ae92882e 3516 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3517#endif
3518}
3519
aeb73b04
PZ
3520static void
3521place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3522{
1af5f730 3523 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3524
2cb8600e
PZ
3525 /*
3526 * The 'current' period is already promised to the current tasks,
3527 * however the extra weight of the new task will slow them down a
3528 * little, place the new task so that it fits in the slot that
3529 * stays open at the end.
3530 */
94dfb5e7 3531 if (initial && sched_feat(START_DEBIT))
f9c0b095 3532 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3533
a2e7a7eb 3534 /* sleeps up to a single latency don't count. */
5ca9880c 3535 if (!initial) {
a2e7a7eb 3536 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3537
a2e7a7eb
MG
3538 /*
3539 * Halve their sleep time's effect, to allow
3540 * for a gentler effect of sleepers:
3541 */
3542 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3543 thresh >>= 1;
51e0304c 3544
a2e7a7eb 3545 vruntime -= thresh;
aeb73b04
PZ
3546 }
3547
b5d9d734 3548 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3549 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3550}
3551
d3d9dc33
PT
3552static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3553
cb251765
MG
3554static inline void check_schedstat_required(void)
3555{
3556#ifdef CONFIG_SCHEDSTATS
3557 if (schedstat_enabled())
3558 return;
3559
3560 /* Force schedstat enabled if a dependent tracepoint is active */
3561 if (trace_sched_stat_wait_enabled() ||
3562 trace_sched_stat_sleep_enabled() ||
3563 trace_sched_stat_iowait_enabled() ||
3564 trace_sched_stat_blocked_enabled() ||
3565 trace_sched_stat_runtime_enabled()) {
eda8dca5 3566 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3567 "stat_blocked and stat_runtime require the "
3568 "kernel parameter schedstats=enabled or "
3569 "kernel.sched_schedstats=1\n");
3570 }
3571#endif
3572}
3573
b5179ac7
PZ
3574
3575/*
3576 * MIGRATION
3577 *
3578 * dequeue
3579 * update_curr()
3580 * update_min_vruntime()
3581 * vruntime -= min_vruntime
3582 *
3583 * enqueue
3584 * update_curr()
3585 * update_min_vruntime()
3586 * vruntime += min_vruntime
3587 *
3588 * this way the vruntime transition between RQs is done when both
3589 * min_vruntime are up-to-date.
3590 *
3591 * WAKEUP (remote)
3592 *
59efa0ba 3593 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3594 * vruntime -= min_vruntime
3595 *
3596 * enqueue
3597 * update_curr()
3598 * update_min_vruntime()
3599 * vruntime += min_vruntime
3600 *
3601 * this way we don't have the most up-to-date min_vruntime on the originating
3602 * CPU and an up-to-date min_vruntime on the destination CPU.
3603 */
3604
bf0f6f24 3605static void
88ec22d3 3606enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3607{
2f950354
PZ
3608 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3609 bool curr = cfs_rq->curr == se;
3610
88ec22d3 3611 /*
2f950354
PZ
3612 * If we're the current task, we must renormalise before calling
3613 * update_curr().
88ec22d3 3614 */
2f950354 3615 if (renorm && curr)
88ec22d3
PZ
3616 se->vruntime += cfs_rq->min_vruntime;
3617
2f950354
PZ
3618 update_curr(cfs_rq);
3619
bf0f6f24 3620 /*
2f950354
PZ
3621 * Otherwise, renormalise after, such that we're placed at the current
3622 * moment in time, instead of some random moment in the past. Being
3623 * placed in the past could significantly boost this task to the
3624 * fairness detriment of existing tasks.
bf0f6f24 3625 */
2f950354
PZ
3626 if (renorm && !curr)
3627 se->vruntime += cfs_rq->min_vruntime;
3628
89ee048f
VG
3629 /*
3630 * When enqueuing a sched_entity, we must:
3631 * - Update loads to have both entity and cfs_rq synced with now.
3632 * - Add its load to cfs_rq->runnable_avg
3633 * - For group_entity, update its weight to reflect the new share of
3634 * its group cfs_rq
3635 * - Add its new weight to cfs_rq->load.weight
3636 */
d31b1a66 3637 update_load_avg(se, UPDATE_TG);
9d89c257 3638 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3639 update_cfs_shares(se);
17bc14b7 3640 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3641
1a3d027c 3642 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3643 place_entity(cfs_rq, se, 0);
bf0f6f24 3644
cb251765 3645 check_schedstat_required();
4fa8d299
JP
3646 update_stats_enqueue(cfs_rq, se, flags);
3647 check_spread(cfs_rq, se);
2f950354 3648 if (!curr)
83b699ed 3649 __enqueue_entity(cfs_rq, se);
2069dd75 3650 se->on_rq = 1;
3d4b47b4 3651
d3d9dc33 3652 if (cfs_rq->nr_running == 1) {
3d4b47b4 3653 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3654 check_enqueue_throttle(cfs_rq);
3655 }
bf0f6f24
IM
3656}
3657
2c13c919 3658static void __clear_buddies_last(struct sched_entity *se)
2002c695 3659{
2c13c919
RR
3660 for_each_sched_entity(se) {
3661 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3662 if (cfs_rq->last != se)
2c13c919 3663 break;
f1044799
PZ
3664
3665 cfs_rq->last = NULL;
2c13c919
RR
3666 }
3667}
2002c695 3668
2c13c919
RR
3669static void __clear_buddies_next(struct sched_entity *se)
3670{
3671 for_each_sched_entity(se) {
3672 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3673 if (cfs_rq->next != se)
2c13c919 3674 break;
f1044799
PZ
3675
3676 cfs_rq->next = NULL;
2c13c919 3677 }
2002c695
PZ
3678}
3679
ac53db59
RR
3680static void __clear_buddies_skip(struct sched_entity *se)
3681{
3682 for_each_sched_entity(se) {
3683 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3684 if (cfs_rq->skip != se)
ac53db59 3685 break;
f1044799
PZ
3686
3687 cfs_rq->skip = NULL;
ac53db59
RR
3688 }
3689}
3690
a571bbea
PZ
3691static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3692{
2c13c919
RR
3693 if (cfs_rq->last == se)
3694 __clear_buddies_last(se);
3695
3696 if (cfs_rq->next == se)
3697 __clear_buddies_next(se);
ac53db59
RR
3698
3699 if (cfs_rq->skip == se)
3700 __clear_buddies_skip(se);
a571bbea
PZ
3701}
3702
6c16a6dc 3703static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3704
bf0f6f24 3705static void
371fd7e7 3706dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3707{
a2a2d680
DA
3708 /*
3709 * Update run-time statistics of the 'current'.
3710 */
3711 update_curr(cfs_rq);
89ee048f
VG
3712
3713 /*
3714 * When dequeuing a sched_entity, we must:
3715 * - Update loads to have both entity and cfs_rq synced with now.
3716 * - Substract its load from the cfs_rq->runnable_avg.
3717 * - Substract its previous weight from cfs_rq->load.weight.
3718 * - For group entity, update its weight to reflect the new share
3719 * of its group cfs_rq.
3720 */
d31b1a66 3721 update_load_avg(se, UPDATE_TG);
13962234 3722 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3723
4fa8d299 3724 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3725
2002c695 3726 clear_buddies(cfs_rq, se);
4793241b 3727
83b699ed 3728 if (se != cfs_rq->curr)
30cfdcfc 3729 __dequeue_entity(cfs_rq, se);
17bc14b7 3730 se->on_rq = 0;
30cfdcfc 3731 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3732
3733 /*
b60205c7
PZ
3734 * Normalize after update_curr(); which will also have moved
3735 * min_vruntime if @se is the one holding it back. But before doing
3736 * update_min_vruntime() again, which will discount @se's position and
3737 * can move min_vruntime forward still more.
88ec22d3 3738 */
371fd7e7 3739 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3740 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3741
d8b4986d
PT
3742 /* return excess runtime on last dequeue */
3743 return_cfs_rq_runtime(cfs_rq);
3744
89ee048f 3745 update_cfs_shares(se);
b60205c7
PZ
3746
3747 /*
3748 * Now advance min_vruntime if @se was the entity holding it back,
3749 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3750 * put back on, and if we advance min_vruntime, we'll be placed back
3751 * further than we started -- ie. we'll be penalized.
3752 */
3753 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3754 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3755}
3756
3757/*
3758 * Preempt the current task with a newly woken task if needed:
3759 */
7c92e54f 3760static void
2e09bf55 3761check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3762{
11697830 3763 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3764 struct sched_entity *se;
3765 s64 delta;
11697830 3766
6d0f0ebd 3767 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3768 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3769 if (delta_exec > ideal_runtime) {
8875125e 3770 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3771 /*
3772 * The current task ran long enough, ensure it doesn't get
3773 * re-elected due to buddy favours.
3774 */
3775 clear_buddies(cfs_rq, curr);
f685ceac
MG
3776 return;
3777 }
3778
3779 /*
3780 * Ensure that a task that missed wakeup preemption by a
3781 * narrow margin doesn't have to wait for a full slice.
3782 * This also mitigates buddy induced latencies under load.
3783 */
f685ceac
MG
3784 if (delta_exec < sysctl_sched_min_granularity)
3785 return;
3786
f4cfb33e
WX
3787 se = __pick_first_entity(cfs_rq);
3788 delta = curr->vruntime - se->vruntime;
f685ceac 3789
f4cfb33e
WX
3790 if (delta < 0)
3791 return;
d7d82944 3792
f4cfb33e 3793 if (delta > ideal_runtime)
8875125e 3794 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3795}
3796
83b699ed 3797static void
8494f412 3798set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3799{
83b699ed
SV
3800 /* 'current' is not kept within the tree. */
3801 if (se->on_rq) {
3802 /*
3803 * Any task has to be enqueued before it get to execute on
3804 * a CPU. So account for the time it spent waiting on the
3805 * runqueue.
3806 */
4fa8d299 3807 update_stats_wait_end(cfs_rq, se);
83b699ed 3808 __dequeue_entity(cfs_rq, se);
d31b1a66 3809 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3810 }
3811
79303e9e 3812 update_stats_curr_start(cfs_rq, se);
429d43bc 3813 cfs_rq->curr = se;
4fa8d299 3814
eba1ed4b
IM
3815 /*
3816 * Track our maximum slice length, if the CPU's load is at
3817 * least twice that of our own weight (i.e. dont track it
3818 * when there are only lesser-weight tasks around):
3819 */
cb251765 3820 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3821 schedstat_set(se->statistics.slice_max,
3822 max((u64)schedstat_val(se->statistics.slice_max),
3823 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3824 }
4fa8d299 3825
4a55b450 3826 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3827}
3828
3f3a4904
PZ
3829static int
3830wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3831
ac53db59
RR
3832/*
3833 * Pick the next process, keeping these things in mind, in this order:
3834 * 1) keep things fair between processes/task groups
3835 * 2) pick the "next" process, since someone really wants that to run
3836 * 3) pick the "last" process, for cache locality
3837 * 4) do not run the "skip" process, if something else is available
3838 */
678d5718
PZ
3839static struct sched_entity *
3840pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3841{
678d5718
PZ
3842 struct sched_entity *left = __pick_first_entity(cfs_rq);
3843 struct sched_entity *se;
3844
3845 /*
3846 * If curr is set we have to see if its left of the leftmost entity
3847 * still in the tree, provided there was anything in the tree at all.
3848 */
3849 if (!left || (curr && entity_before(curr, left)))
3850 left = curr;
3851
3852 se = left; /* ideally we run the leftmost entity */
f4b6755f 3853
ac53db59
RR
3854 /*
3855 * Avoid running the skip buddy, if running something else can
3856 * be done without getting too unfair.
3857 */
3858 if (cfs_rq->skip == se) {
678d5718
PZ
3859 struct sched_entity *second;
3860
3861 if (se == curr) {
3862 second = __pick_first_entity(cfs_rq);
3863 } else {
3864 second = __pick_next_entity(se);
3865 if (!second || (curr && entity_before(curr, second)))
3866 second = curr;
3867 }
3868
ac53db59
RR
3869 if (second && wakeup_preempt_entity(second, left) < 1)
3870 se = second;
3871 }
aa2ac252 3872
f685ceac
MG
3873 /*
3874 * Prefer last buddy, try to return the CPU to a preempted task.
3875 */
3876 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3877 se = cfs_rq->last;
3878
ac53db59
RR
3879 /*
3880 * Someone really wants this to run. If it's not unfair, run it.
3881 */
3882 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3883 se = cfs_rq->next;
3884
f685ceac 3885 clear_buddies(cfs_rq, se);
4793241b
PZ
3886
3887 return se;
aa2ac252
PZ
3888}
3889
678d5718 3890static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3891
ab6cde26 3892static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3893{
3894 /*
3895 * If still on the runqueue then deactivate_task()
3896 * was not called and update_curr() has to be done:
3897 */
3898 if (prev->on_rq)
b7cc0896 3899 update_curr(cfs_rq);
bf0f6f24 3900
d3d9dc33
PT
3901 /* throttle cfs_rqs exceeding runtime */
3902 check_cfs_rq_runtime(cfs_rq);
3903
4fa8d299 3904 check_spread(cfs_rq, prev);
cb251765 3905
30cfdcfc 3906 if (prev->on_rq) {
4fa8d299 3907 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3908 /* Put 'current' back into the tree. */
3909 __enqueue_entity(cfs_rq, prev);
9d85f21c 3910 /* in !on_rq case, update occurred at dequeue */
9d89c257 3911 update_load_avg(prev, 0);
30cfdcfc 3912 }
429d43bc 3913 cfs_rq->curr = NULL;
bf0f6f24
IM
3914}
3915
8f4d37ec
PZ
3916static void
3917entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3918{
bf0f6f24 3919 /*
30cfdcfc 3920 * Update run-time statistics of the 'current'.
bf0f6f24 3921 */
30cfdcfc 3922 update_curr(cfs_rq);
bf0f6f24 3923
9d85f21c
PT
3924 /*
3925 * Ensure that runnable average is periodically updated.
3926 */
d31b1a66 3927 update_load_avg(curr, UPDATE_TG);
89ee048f 3928 update_cfs_shares(curr);
9d85f21c 3929
8f4d37ec
PZ
3930#ifdef CONFIG_SCHED_HRTICK
3931 /*
3932 * queued ticks are scheduled to match the slice, so don't bother
3933 * validating it and just reschedule.
3934 */
983ed7a6 3935 if (queued) {
8875125e 3936 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3937 return;
3938 }
8f4d37ec
PZ
3939 /*
3940 * don't let the period tick interfere with the hrtick preemption
3941 */
3942 if (!sched_feat(DOUBLE_TICK) &&
3943 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3944 return;
3945#endif
3946
2c2efaed 3947 if (cfs_rq->nr_running > 1)
2e09bf55 3948 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3949}
3950
ab84d31e
PT
3951
3952/**************************************************
3953 * CFS bandwidth control machinery
3954 */
3955
3956#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3957
3958#ifdef HAVE_JUMP_LABEL
c5905afb 3959static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3960
3961static inline bool cfs_bandwidth_used(void)
3962{
c5905afb 3963 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3964}
3965
1ee14e6c 3966void cfs_bandwidth_usage_inc(void)
029632fb 3967{
1ee14e6c
BS
3968 static_key_slow_inc(&__cfs_bandwidth_used);
3969}
3970
3971void cfs_bandwidth_usage_dec(void)
3972{
3973 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3974}
3975#else /* HAVE_JUMP_LABEL */
3976static bool cfs_bandwidth_used(void)
3977{
3978 return true;
3979}
3980
1ee14e6c
BS
3981void cfs_bandwidth_usage_inc(void) {}
3982void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3983#endif /* HAVE_JUMP_LABEL */
3984
ab84d31e
PT
3985/*
3986 * default period for cfs group bandwidth.
3987 * default: 0.1s, units: nanoseconds
3988 */
3989static inline u64 default_cfs_period(void)
3990{
3991 return 100000000ULL;
3992}
ec12cb7f
PT
3993
3994static inline u64 sched_cfs_bandwidth_slice(void)
3995{
3996 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3997}
3998
a9cf55b2
PT
3999/*
4000 * Replenish runtime according to assigned quota and update expiration time.
4001 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4002 * additional synchronization around rq->lock.
4003 *
4004 * requires cfs_b->lock
4005 */
029632fb 4006void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4007{
4008 u64 now;
4009
4010 if (cfs_b->quota == RUNTIME_INF)
4011 return;
4012
4013 now = sched_clock_cpu(smp_processor_id());
4014 cfs_b->runtime = cfs_b->quota;
4015 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4016}
4017
029632fb
PZ
4018static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4019{
4020 return &tg->cfs_bandwidth;
4021}
4022
f1b17280
PT
4023/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4024static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4025{
4026 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4027 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4028
78becc27 4029 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4030}
4031
85dac906
PT
4032/* returns 0 on failure to allocate runtime */
4033static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4034{
4035 struct task_group *tg = cfs_rq->tg;
4036 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4037 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4038
4039 /* note: this is a positive sum as runtime_remaining <= 0 */
4040 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4041
4042 raw_spin_lock(&cfs_b->lock);
4043 if (cfs_b->quota == RUNTIME_INF)
4044 amount = min_amount;
58088ad0 4045 else {
77a4d1a1 4046 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4047
4048 if (cfs_b->runtime > 0) {
4049 amount = min(cfs_b->runtime, min_amount);
4050 cfs_b->runtime -= amount;
4051 cfs_b->idle = 0;
4052 }
ec12cb7f 4053 }
a9cf55b2 4054 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4055 raw_spin_unlock(&cfs_b->lock);
4056
4057 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4058 /*
4059 * we may have advanced our local expiration to account for allowed
4060 * spread between our sched_clock and the one on which runtime was
4061 * issued.
4062 */
4063 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4064 cfs_rq->runtime_expires = expires;
85dac906
PT
4065
4066 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4067}
4068
a9cf55b2
PT
4069/*
4070 * Note: This depends on the synchronization provided by sched_clock and the
4071 * fact that rq->clock snapshots this value.
4072 */
4073static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4074{
a9cf55b2 4075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4076
4077 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4078 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4079 return;
4080
a9cf55b2
PT
4081 if (cfs_rq->runtime_remaining < 0)
4082 return;
4083
4084 /*
4085 * If the local deadline has passed we have to consider the
4086 * possibility that our sched_clock is 'fast' and the global deadline
4087 * has not truly expired.
4088 *
4089 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4090 * whether the global deadline has advanced. It is valid to compare
4091 * cfs_b->runtime_expires without any locks since we only care about
4092 * exact equality, so a partial write will still work.
a9cf55b2
PT
4093 */
4094
51f2176d 4095 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4096 /* extend local deadline, drift is bounded above by 2 ticks */
4097 cfs_rq->runtime_expires += TICK_NSEC;
4098 } else {
4099 /* global deadline is ahead, expiration has passed */
4100 cfs_rq->runtime_remaining = 0;
4101 }
4102}
4103
9dbdb155 4104static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4105{
4106 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4107 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4108 expire_cfs_rq_runtime(cfs_rq);
4109
4110 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4111 return;
4112
85dac906
PT
4113 /*
4114 * if we're unable to extend our runtime we resched so that the active
4115 * hierarchy can be throttled
4116 */
4117 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4118 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4119}
4120
6c16a6dc 4121static __always_inline
9dbdb155 4122void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4123{
56f570e5 4124 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4125 return;
4126
4127 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4128}
4129
85dac906
PT
4130static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4131{
56f570e5 4132 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4133}
4134
64660c86
PT
4135/* check whether cfs_rq, or any parent, is throttled */
4136static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4137{
56f570e5 4138 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4139}
4140
4141/*
4142 * Ensure that neither of the group entities corresponding to src_cpu or
4143 * dest_cpu are members of a throttled hierarchy when performing group
4144 * load-balance operations.
4145 */
4146static inline int throttled_lb_pair(struct task_group *tg,
4147 int src_cpu, int dest_cpu)
4148{
4149 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4150
4151 src_cfs_rq = tg->cfs_rq[src_cpu];
4152 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4153
4154 return throttled_hierarchy(src_cfs_rq) ||
4155 throttled_hierarchy(dest_cfs_rq);
4156}
4157
4158/* updated child weight may affect parent so we have to do this bottom up */
4159static int tg_unthrottle_up(struct task_group *tg, void *data)
4160{
4161 struct rq *rq = data;
4162 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4163
4164 cfs_rq->throttle_count--;
64660c86 4165 if (!cfs_rq->throttle_count) {
f1b17280 4166 /* adjust cfs_rq_clock_task() */
78becc27 4167 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4168 cfs_rq->throttled_clock_task;
64660c86 4169 }
64660c86
PT
4170
4171 return 0;
4172}
4173
4174static int tg_throttle_down(struct task_group *tg, void *data)
4175{
4176 struct rq *rq = data;
4177 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4178
82958366
PT
4179 /* group is entering throttled state, stop time */
4180 if (!cfs_rq->throttle_count)
78becc27 4181 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4182 cfs_rq->throttle_count++;
4183
4184 return 0;
4185}
4186
d3d9dc33 4187static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4188{
4189 struct rq *rq = rq_of(cfs_rq);
4190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4191 struct sched_entity *se;
4192 long task_delta, dequeue = 1;
77a4d1a1 4193 bool empty;
85dac906
PT
4194
4195 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4196
f1b17280 4197 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4198 rcu_read_lock();
4199 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4200 rcu_read_unlock();
85dac906
PT
4201
4202 task_delta = cfs_rq->h_nr_running;
4203 for_each_sched_entity(se) {
4204 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4205 /* throttled entity or throttle-on-deactivate */
4206 if (!se->on_rq)
4207 break;
4208
4209 if (dequeue)
4210 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4211 qcfs_rq->h_nr_running -= task_delta;
4212
4213 if (qcfs_rq->load.weight)
4214 dequeue = 0;
4215 }
4216
4217 if (!se)
72465447 4218 sub_nr_running(rq, task_delta);
85dac906
PT
4219
4220 cfs_rq->throttled = 1;
78becc27 4221 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4222 raw_spin_lock(&cfs_b->lock);
d49db342 4223 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4224
c06f04c7
BS
4225 /*
4226 * Add to the _head_ of the list, so that an already-started
4227 * distribute_cfs_runtime will not see us
4228 */
4229 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4230
4231 /*
4232 * If we're the first throttled task, make sure the bandwidth
4233 * timer is running.
4234 */
4235 if (empty)
4236 start_cfs_bandwidth(cfs_b);
4237
85dac906
PT
4238 raw_spin_unlock(&cfs_b->lock);
4239}
4240
029632fb 4241void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4242{
4243 struct rq *rq = rq_of(cfs_rq);
4244 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4245 struct sched_entity *se;
4246 int enqueue = 1;
4247 long task_delta;
4248
22b958d8 4249 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4250
4251 cfs_rq->throttled = 0;
1a55af2e
FW
4252
4253 update_rq_clock(rq);
4254
671fd9da 4255 raw_spin_lock(&cfs_b->lock);
78becc27 4256 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4257 list_del_rcu(&cfs_rq->throttled_list);
4258 raw_spin_unlock(&cfs_b->lock);
4259
64660c86
PT
4260 /* update hierarchical throttle state */
4261 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4262
671fd9da
PT
4263 if (!cfs_rq->load.weight)
4264 return;
4265
4266 task_delta = cfs_rq->h_nr_running;
4267 for_each_sched_entity(se) {
4268 if (se->on_rq)
4269 enqueue = 0;
4270
4271 cfs_rq = cfs_rq_of(se);
4272 if (enqueue)
4273 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4274 cfs_rq->h_nr_running += task_delta;
4275
4276 if (cfs_rq_throttled(cfs_rq))
4277 break;
4278 }
4279
4280 if (!se)
72465447 4281 add_nr_running(rq, task_delta);
671fd9da
PT
4282
4283 /* determine whether we need to wake up potentially idle cpu */
4284 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4285 resched_curr(rq);
671fd9da
PT
4286}
4287
4288static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4289 u64 remaining, u64 expires)
4290{
4291 struct cfs_rq *cfs_rq;
c06f04c7
BS
4292 u64 runtime;
4293 u64 starting_runtime = remaining;
671fd9da
PT
4294
4295 rcu_read_lock();
4296 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4297 throttled_list) {
4298 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4299 struct rq_flags rf;
671fd9da 4300
8a8c69c3 4301 rq_lock(rq, &rf);
671fd9da
PT
4302 if (!cfs_rq_throttled(cfs_rq))
4303 goto next;
4304
4305 runtime = -cfs_rq->runtime_remaining + 1;
4306 if (runtime > remaining)
4307 runtime = remaining;
4308 remaining -= runtime;
4309
4310 cfs_rq->runtime_remaining += runtime;
4311 cfs_rq->runtime_expires = expires;
4312
4313 /* we check whether we're throttled above */
4314 if (cfs_rq->runtime_remaining > 0)
4315 unthrottle_cfs_rq(cfs_rq);
4316
4317next:
8a8c69c3 4318 rq_unlock(rq, &rf);
671fd9da
PT
4319
4320 if (!remaining)
4321 break;
4322 }
4323 rcu_read_unlock();
4324
c06f04c7 4325 return starting_runtime - remaining;
671fd9da
PT
4326}
4327
58088ad0
PT
4328/*
4329 * Responsible for refilling a task_group's bandwidth and unthrottling its
4330 * cfs_rqs as appropriate. If there has been no activity within the last
4331 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4332 * used to track this state.
4333 */
4334static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4335{
671fd9da 4336 u64 runtime, runtime_expires;
51f2176d 4337 int throttled;
58088ad0 4338
58088ad0
PT
4339 /* no need to continue the timer with no bandwidth constraint */
4340 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4341 goto out_deactivate;
58088ad0 4342
671fd9da 4343 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4344 cfs_b->nr_periods += overrun;
671fd9da 4345
51f2176d
BS
4346 /*
4347 * idle depends on !throttled (for the case of a large deficit), and if
4348 * we're going inactive then everything else can be deferred
4349 */
4350 if (cfs_b->idle && !throttled)
4351 goto out_deactivate;
a9cf55b2
PT
4352
4353 __refill_cfs_bandwidth_runtime(cfs_b);
4354
671fd9da
PT
4355 if (!throttled) {
4356 /* mark as potentially idle for the upcoming period */
4357 cfs_b->idle = 1;
51f2176d 4358 return 0;
671fd9da
PT
4359 }
4360
e8da1b18
NR
4361 /* account preceding periods in which throttling occurred */
4362 cfs_b->nr_throttled += overrun;
4363
671fd9da 4364 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4365
4366 /*
c06f04c7
BS
4367 * This check is repeated as we are holding onto the new bandwidth while
4368 * we unthrottle. This can potentially race with an unthrottled group
4369 * trying to acquire new bandwidth from the global pool. This can result
4370 * in us over-using our runtime if it is all used during this loop, but
4371 * only by limited amounts in that extreme case.
671fd9da 4372 */
c06f04c7
BS
4373 while (throttled && cfs_b->runtime > 0) {
4374 runtime = cfs_b->runtime;
671fd9da
PT
4375 raw_spin_unlock(&cfs_b->lock);
4376 /* we can't nest cfs_b->lock while distributing bandwidth */
4377 runtime = distribute_cfs_runtime(cfs_b, runtime,
4378 runtime_expires);
4379 raw_spin_lock(&cfs_b->lock);
4380
4381 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4382
4383 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4384 }
58088ad0 4385
671fd9da
PT
4386 /*
4387 * While we are ensured activity in the period following an
4388 * unthrottle, this also covers the case in which the new bandwidth is
4389 * insufficient to cover the existing bandwidth deficit. (Forcing the
4390 * timer to remain active while there are any throttled entities.)
4391 */
4392 cfs_b->idle = 0;
58088ad0 4393
51f2176d
BS
4394 return 0;
4395
4396out_deactivate:
51f2176d 4397 return 1;
58088ad0 4398}
d3d9dc33 4399
d8b4986d
PT
4400/* a cfs_rq won't donate quota below this amount */
4401static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4402/* minimum remaining period time to redistribute slack quota */
4403static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4404/* how long we wait to gather additional slack before distributing */
4405static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4406
db06e78c
BS
4407/*
4408 * Are we near the end of the current quota period?
4409 *
4410 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4411 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4412 * migrate_hrtimers, base is never cleared, so we are fine.
4413 */
d8b4986d
PT
4414static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4415{
4416 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4417 u64 remaining;
4418
4419 /* if the call-back is running a quota refresh is already occurring */
4420 if (hrtimer_callback_running(refresh_timer))
4421 return 1;
4422
4423 /* is a quota refresh about to occur? */
4424 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4425 if (remaining < min_expire)
4426 return 1;
4427
4428 return 0;
4429}
4430
4431static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4432{
4433 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4434
4435 /* if there's a quota refresh soon don't bother with slack */
4436 if (runtime_refresh_within(cfs_b, min_left))
4437 return;
4438
4cfafd30
PZ
4439 hrtimer_start(&cfs_b->slack_timer,
4440 ns_to_ktime(cfs_bandwidth_slack_period),
4441 HRTIMER_MODE_REL);
d8b4986d
PT
4442}
4443
4444/* we know any runtime found here is valid as update_curr() precedes return */
4445static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4446{
4447 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4448 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4449
4450 if (slack_runtime <= 0)
4451 return;
4452
4453 raw_spin_lock(&cfs_b->lock);
4454 if (cfs_b->quota != RUNTIME_INF &&
4455 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4456 cfs_b->runtime += slack_runtime;
4457
4458 /* we are under rq->lock, defer unthrottling using a timer */
4459 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4460 !list_empty(&cfs_b->throttled_cfs_rq))
4461 start_cfs_slack_bandwidth(cfs_b);
4462 }
4463 raw_spin_unlock(&cfs_b->lock);
4464
4465 /* even if it's not valid for return we don't want to try again */
4466 cfs_rq->runtime_remaining -= slack_runtime;
4467}
4468
4469static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470{
56f570e5
PT
4471 if (!cfs_bandwidth_used())
4472 return;
4473
fccfdc6f 4474 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4475 return;
4476
4477 __return_cfs_rq_runtime(cfs_rq);
4478}
4479
4480/*
4481 * This is done with a timer (instead of inline with bandwidth return) since
4482 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4483 */
4484static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4485{
4486 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4487 u64 expires;
4488
4489 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4490 raw_spin_lock(&cfs_b->lock);
4491 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4492 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4493 return;
db06e78c 4494 }
d8b4986d 4495
c06f04c7 4496 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4497 runtime = cfs_b->runtime;
c06f04c7 4498
d8b4986d
PT
4499 expires = cfs_b->runtime_expires;
4500 raw_spin_unlock(&cfs_b->lock);
4501
4502 if (!runtime)
4503 return;
4504
4505 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4506
4507 raw_spin_lock(&cfs_b->lock);
4508 if (expires == cfs_b->runtime_expires)
c06f04c7 4509 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4510 raw_spin_unlock(&cfs_b->lock);
4511}
4512
d3d9dc33
PT
4513/*
4514 * When a group wakes up we want to make sure that its quota is not already
4515 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4516 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4517 */
4518static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4519{
56f570e5
PT
4520 if (!cfs_bandwidth_used())
4521 return;
4522
d3d9dc33
PT
4523 /* an active group must be handled by the update_curr()->put() path */
4524 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4525 return;
4526
4527 /* ensure the group is not already throttled */
4528 if (cfs_rq_throttled(cfs_rq))
4529 return;
4530
4531 /* update runtime allocation */
4532 account_cfs_rq_runtime(cfs_rq, 0);
4533 if (cfs_rq->runtime_remaining <= 0)
4534 throttle_cfs_rq(cfs_rq);
4535}
4536
55e16d30
PZ
4537static void sync_throttle(struct task_group *tg, int cpu)
4538{
4539 struct cfs_rq *pcfs_rq, *cfs_rq;
4540
4541 if (!cfs_bandwidth_used())
4542 return;
4543
4544 if (!tg->parent)
4545 return;
4546
4547 cfs_rq = tg->cfs_rq[cpu];
4548 pcfs_rq = tg->parent->cfs_rq[cpu];
4549
4550 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4551 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4552}
4553
d3d9dc33 4554/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4555static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4556{
56f570e5 4557 if (!cfs_bandwidth_used())
678d5718 4558 return false;
56f570e5 4559
d3d9dc33 4560 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4561 return false;
d3d9dc33
PT
4562
4563 /*
4564 * it's possible for a throttled entity to be forced into a running
4565 * state (e.g. set_curr_task), in this case we're finished.
4566 */
4567 if (cfs_rq_throttled(cfs_rq))
678d5718 4568 return true;
d3d9dc33
PT
4569
4570 throttle_cfs_rq(cfs_rq);
678d5718 4571 return true;
d3d9dc33 4572}
029632fb 4573
029632fb
PZ
4574static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4575{
4576 struct cfs_bandwidth *cfs_b =
4577 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4578
029632fb
PZ
4579 do_sched_cfs_slack_timer(cfs_b);
4580
4581 return HRTIMER_NORESTART;
4582}
4583
4584static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4585{
4586 struct cfs_bandwidth *cfs_b =
4587 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4588 int overrun;
4589 int idle = 0;
4590
51f2176d 4591 raw_spin_lock(&cfs_b->lock);
029632fb 4592 for (;;) {
77a4d1a1 4593 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4594 if (!overrun)
4595 break;
4596
4597 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4598 }
4cfafd30
PZ
4599 if (idle)
4600 cfs_b->period_active = 0;
51f2176d 4601 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4602
4603 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4604}
4605
4606void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4607{
4608 raw_spin_lock_init(&cfs_b->lock);
4609 cfs_b->runtime = 0;
4610 cfs_b->quota = RUNTIME_INF;
4611 cfs_b->period = ns_to_ktime(default_cfs_period());
4612
4613 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4614 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4615 cfs_b->period_timer.function = sched_cfs_period_timer;
4616 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4617 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4618}
4619
4620static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4621{
4622 cfs_rq->runtime_enabled = 0;
4623 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4624}
4625
77a4d1a1 4626void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4627{
4cfafd30 4628 lockdep_assert_held(&cfs_b->lock);
029632fb 4629
4cfafd30
PZ
4630 if (!cfs_b->period_active) {
4631 cfs_b->period_active = 1;
4632 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4633 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4634 }
029632fb
PZ
4635}
4636
4637static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4638{
7f1a169b
TH
4639 /* init_cfs_bandwidth() was not called */
4640 if (!cfs_b->throttled_cfs_rq.next)
4641 return;
4642
029632fb
PZ
4643 hrtimer_cancel(&cfs_b->period_timer);
4644 hrtimer_cancel(&cfs_b->slack_timer);
4645}
4646
502ce005
PZ
4647/*
4648 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4649 *
4650 * The race is harmless, since modifying bandwidth settings of unhooked group
4651 * bits doesn't do much.
4652 */
4653
4654/* cpu online calback */
0e59bdae
KT
4655static void __maybe_unused update_runtime_enabled(struct rq *rq)
4656{
502ce005 4657 struct task_group *tg;
0e59bdae 4658
502ce005
PZ
4659 lockdep_assert_held(&rq->lock);
4660
4661 rcu_read_lock();
4662 list_for_each_entry_rcu(tg, &task_groups, list) {
4663 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4664 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4665
4666 raw_spin_lock(&cfs_b->lock);
4667 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4668 raw_spin_unlock(&cfs_b->lock);
4669 }
502ce005 4670 rcu_read_unlock();
0e59bdae
KT
4671}
4672
502ce005 4673/* cpu offline callback */
38dc3348 4674static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4675{
502ce005
PZ
4676 struct task_group *tg;
4677
4678 lockdep_assert_held(&rq->lock);
4679
4680 rcu_read_lock();
4681 list_for_each_entry_rcu(tg, &task_groups, list) {
4682 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4683
029632fb
PZ
4684 if (!cfs_rq->runtime_enabled)
4685 continue;
4686
4687 /*
4688 * clock_task is not advancing so we just need to make sure
4689 * there's some valid quota amount
4690 */
51f2176d 4691 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4692 /*
4693 * Offline rq is schedulable till cpu is completely disabled
4694 * in take_cpu_down(), so we prevent new cfs throttling here.
4695 */
4696 cfs_rq->runtime_enabled = 0;
4697
029632fb
PZ
4698 if (cfs_rq_throttled(cfs_rq))
4699 unthrottle_cfs_rq(cfs_rq);
4700 }
502ce005 4701 rcu_read_unlock();
029632fb
PZ
4702}
4703
4704#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4705static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4706{
78becc27 4707 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4708}
4709
9dbdb155 4710static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4711static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4712static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4713static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4714static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4715
4716static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4717{
4718 return 0;
4719}
64660c86
PT
4720
4721static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4722{
4723 return 0;
4724}
4725
4726static inline int throttled_lb_pair(struct task_group *tg,
4727 int src_cpu, int dest_cpu)
4728{
4729 return 0;
4730}
029632fb
PZ
4731
4732void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4733
4734#ifdef CONFIG_FAIR_GROUP_SCHED
4735static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4736#endif
4737
029632fb
PZ
4738static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4739{
4740 return NULL;
4741}
4742static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4743static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4744static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4745
4746#endif /* CONFIG_CFS_BANDWIDTH */
4747
bf0f6f24
IM
4748/**************************************************
4749 * CFS operations on tasks:
4750 */
4751
8f4d37ec
PZ
4752#ifdef CONFIG_SCHED_HRTICK
4753static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4754{
8f4d37ec
PZ
4755 struct sched_entity *se = &p->se;
4756 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4757
9148a3a1 4758 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4759
8bf46a39 4760 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4761 u64 slice = sched_slice(cfs_rq, se);
4762 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4763 s64 delta = slice - ran;
4764
4765 if (delta < 0) {
4766 if (rq->curr == p)
8875125e 4767 resched_curr(rq);
8f4d37ec
PZ
4768 return;
4769 }
31656519 4770 hrtick_start(rq, delta);
8f4d37ec
PZ
4771 }
4772}
a4c2f00f
PZ
4773
4774/*
4775 * called from enqueue/dequeue and updates the hrtick when the
4776 * current task is from our class and nr_running is low enough
4777 * to matter.
4778 */
4779static void hrtick_update(struct rq *rq)
4780{
4781 struct task_struct *curr = rq->curr;
4782
b39e66ea 4783 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4784 return;
4785
4786 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4787 hrtick_start_fair(rq, curr);
4788}
55e12e5e 4789#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4790static inline void
4791hrtick_start_fair(struct rq *rq, struct task_struct *p)
4792{
4793}
a4c2f00f
PZ
4794
4795static inline void hrtick_update(struct rq *rq)
4796{
4797}
8f4d37ec
PZ
4798#endif
4799
bf0f6f24
IM
4800/*
4801 * The enqueue_task method is called before nr_running is
4802 * increased. Here we update the fair scheduling stats and
4803 * then put the task into the rbtree:
4804 */
ea87bb78 4805static void
371fd7e7 4806enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4807{
4808 struct cfs_rq *cfs_rq;
62fb1851 4809 struct sched_entity *se = &p->se;
bf0f6f24 4810
8c34ab19
RW
4811 /*
4812 * If in_iowait is set, the code below may not trigger any cpufreq
4813 * utilization updates, so do it here explicitly with the IOWAIT flag
4814 * passed.
4815 */
4816 if (p->in_iowait)
4817 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4818
bf0f6f24 4819 for_each_sched_entity(se) {
62fb1851 4820 if (se->on_rq)
bf0f6f24
IM
4821 break;
4822 cfs_rq = cfs_rq_of(se);
88ec22d3 4823 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4824
4825 /*
4826 * end evaluation on encountering a throttled cfs_rq
4827 *
4828 * note: in the case of encountering a throttled cfs_rq we will
4829 * post the final h_nr_running increment below.
e210bffd 4830 */
85dac906
PT
4831 if (cfs_rq_throttled(cfs_rq))
4832 break;
953bfcd1 4833 cfs_rq->h_nr_running++;
85dac906 4834
88ec22d3 4835 flags = ENQUEUE_WAKEUP;
bf0f6f24 4836 }
8f4d37ec 4837
2069dd75 4838 for_each_sched_entity(se) {
0f317143 4839 cfs_rq = cfs_rq_of(se);
953bfcd1 4840 cfs_rq->h_nr_running++;
2069dd75 4841
85dac906
PT
4842 if (cfs_rq_throttled(cfs_rq))
4843 break;
4844
d31b1a66 4845 update_load_avg(se, UPDATE_TG);
89ee048f 4846 update_cfs_shares(se);
2069dd75
PZ
4847 }
4848
cd126afe 4849 if (!se)
72465447 4850 add_nr_running(rq, 1);
cd126afe 4851
a4c2f00f 4852 hrtick_update(rq);
bf0f6f24
IM
4853}
4854
2f36825b
VP
4855static void set_next_buddy(struct sched_entity *se);
4856
bf0f6f24
IM
4857/*
4858 * The dequeue_task method is called before nr_running is
4859 * decreased. We remove the task from the rbtree and
4860 * update the fair scheduling stats:
4861 */
371fd7e7 4862static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4863{
4864 struct cfs_rq *cfs_rq;
62fb1851 4865 struct sched_entity *se = &p->se;
2f36825b 4866 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4867
4868 for_each_sched_entity(se) {
4869 cfs_rq = cfs_rq_of(se);
371fd7e7 4870 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4871
4872 /*
4873 * end evaluation on encountering a throttled cfs_rq
4874 *
4875 * note: in the case of encountering a throttled cfs_rq we will
4876 * post the final h_nr_running decrement below.
4877 */
4878 if (cfs_rq_throttled(cfs_rq))
4879 break;
953bfcd1 4880 cfs_rq->h_nr_running--;
2069dd75 4881
bf0f6f24 4882 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4883 if (cfs_rq->load.weight) {
754bd598
KK
4884 /* Avoid re-evaluating load for this entity: */
4885 se = parent_entity(se);
2f36825b
VP
4886 /*
4887 * Bias pick_next to pick a task from this cfs_rq, as
4888 * p is sleeping when it is within its sched_slice.
4889 */
754bd598
KK
4890 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4891 set_next_buddy(se);
bf0f6f24 4892 break;
2f36825b 4893 }
371fd7e7 4894 flags |= DEQUEUE_SLEEP;
bf0f6f24 4895 }
8f4d37ec 4896
2069dd75 4897 for_each_sched_entity(se) {
0f317143 4898 cfs_rq = cfs_rq_of(se);
953bfcd1 4899 cfs_rq->h_nr_running--;
2069dd75 4900
85dac906
PT
4901 if (cfs_rq_throttled(cfs_rq))
4902 break;
4903
d31b1a66 4904 update_load_avg(se, UPDATE_TG);
89ee048f 4905 update_cfs_shares(se);
2069dd75
PZ
4906 }
4907
cd126afe 4908 if (!se)
72465447 4909 sub_nr_running(rq, 1);
cd126afe 4910
a4c2f00f 4911 hrtick_update(rq);
bf0f6f24
IM
4912}
4913
e7693a36 4914#ifdef CONFIG_SMP
10e2f1ac
PZ
4915
4916/* Working cpumask for: load_balance, load_balance_newidle. */
4917DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4918DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4919
9fd81dd5 4920#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4921/*
4922 * per rq 'load' arrray crap; XXX kill this.
4923 */
4924
4925/*
d937cdc5 4926 * The exact cpuload calculated at every tick would be:
3289bdb4 4927 *
d937cdc5
PZ
4928 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4929 *
4930 * If a cpu misses updates for n ticks (as it was idle) and update gets
4931 * called on the n+1-th tick when cpu may be busy, then we have:
4932 *
4933 * load_n = (1 - 1/2^i)^n * load_0
4934 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4935 *
4936 * decay_load_missed() below does efficient calculation of
3289bdb4 4937 *
d937cdc5
PZ
4938 * load' = (1 - 1/2^i)^n * load
4939 *
4940 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4941 * This allows us to precompute the above in said factors, thereby allowing the
4942 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4943 * fixed_power_int())
3289bdb4 4944 *
d937cdc5 4945 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4946 */
4947#define DEGRADE_SHIFT 7
d937cdc5
PZ
4948
4949static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4950static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4951 { 0, 0, 0, 0, 0, 0, 0, 0 },
4952 { 64, 32, 8, 0, 0, 0, 0, 0 },
4953 { 96, 72, 40, 12, 1, 0, 0, 0 },
4954 { 112, 98, 75, 43, 15, 1, 0, 0 },
4955 { 120, 112, 98, 76, 45, 16, 2, 0 }
4956};
3289bdb4
PZ
4957
4958/*
4959 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4960 * would be when CPU is idle and so we just decay the old load without
4961 * adding any new load.
4962 */
4963static unsigned long
4964decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4965{
4966 int j = 0;
4967
4968 if (!missed_updates)
4969 return load;
4970
4971 if (missed_updates >= degrade_zero_ticks[idx])
4972 return 0;
4973
4974 if (idx == 1)
4975 return load >> missed_updates;
4976
4977 while (missed_updates) {
4978 if (missed_updates % 2)
4979 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4980
4981 missed_updates >>= 1;
4982 j++;
4983 }
4984 return load;
4985}
9fd81dd5 4986#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4987
59543275 4988/**
cee1afce 4989 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4990 * @this_rq: The rq to update statistics for
4991 * @this_load: The current load
4992 * @pending_updates: The number of missed updates
59543275 4993 *
3289bdb4 4994 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4995 * scheduler tick (TICK_NSEC).
4996 *
4997 * This function computes a decaying average:
4998 *
4999 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5000 *
5001 * Because of NOHZ it might not get called on every tick which gives need for
5002 * the @pending_updates argument.
5003 *
5004 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5005 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5006 * = A * (A * load[i]_n-2 + B) + B
5007 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5008 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5009 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5010 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5011 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5012 *
5013 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5014 * any change in load would have resulted in the tick being turned back on.
5015 *
5016 * For regular NOHZ, this reduces to:
5017 *
5018 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5019 *
5020 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5021 * term.
3289bdb4 5022 */
1f41906a
FW
5023static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5024 unsigned long pending_updates)
3289bdb4 5025{
9fd81dd5 5026 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5027 int i, scale;
5028
5029 this_rq->nr_load_updates++;
5030
5031 /* Update our load: */
5032 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5033 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5034 unsigned long old_load, new_load;
5035
5036 /* scale is effectively 1 << i now, and >> i divides by scale */
5037
7400d3bb 5038 old_load = this_rq->cpu_load[i];
9fd81dd5 5039#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5040 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5041 if (tickless_load) {
5042 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5043 /*
5044 * old_load can never be a negative value because a
5045 * decayed tickless_load cannot be greater than the
5046 * original tickless_load.
5047 */
5048 old_load += tickless_load;
5049 }
9fd81dd5 5050#endif
3289bdb4
PZ
5051 new_load = this_load;
5052 /*
5053 * Round up the averaging division if load is increasing. This
5054 * prevents us from getting stuck on 9 if the load is 10, for
5055 * example.
5056 */
5057 if (new_load > old_load)
5058 new_load += scale - 1;
5059
5060 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5061 }
5062
5063 sched_avg_update(this_rq);
5064}
5065
7ea241af
YD
5066/* Used instead of source_load when we know the type == 0 */
5067static unsigned long weighted_cpuload(const int cpu)
5068{
5069 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5070}
5071
3289bdb4 5072#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5073/*
5074 * There is no sane way to deal with nohz on smp when using jiffies because the
5075 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5076 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5077 *
5078 * Therefore we need to avoid the delta approach from the regular tick when
5079 * possible since that would seriously skew the load calculation. This is why we
5080 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5081 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5082 * loop exit, nohz_idle_balance, nohz full exit...)
5083 *
5084 * This means we might still be one tick off for nohz periods.
5085 */
5086
5087static void cpu_load_update_nohz(struct rq *this_rq,
5088 unsigned long curr_jiffies,
5089 unsigned long load)
be68a682
FW
5090{
5091 unsigned long pending_updates;
5092
5093 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5094 if (pending_updates) {
5095 this_rq->last_load_update_tick = curr_jiffies;
5096 /*
5097 * In the regular NOHZ case, we were idle, this means load 0.
5098 * In the NOHZ_FULL case, we were non-idle, we should consider
5099 * its weighted load.
5100 */
1f41906a 5101 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5102 }
5103}
5104
3289bdb4
PZ
5105/*
5106 * Called from nohz_idle_balance() to update the load ratings before doing the
5107 * idle balance.
5108 */
cee1afce 5109static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5110{
3289bdb4
PZ
5111 /*
5112 * bail if there's load or we're actually up-to-date.
5113 */
be68a682 5114 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5115 return;
5116
1f41906a 5117 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5118}
5119
5120/*
1f41906a
FW
5121 * Record CPU load on nohz entry so we know the tickless load to account
5122 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5123 * than other cpu_load[idx] but it should be fine as cpu_load readers
5124 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5125 */
1f41906a 5126void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5127{
5128 struct rq *this_rq = this_rq();
1f41906a
FW
5129
5130 /*
5131 * This is all lockless but should be fine. If weighted_cpuload changes
5132 * concurrently we'll exit nohz. And cpu_load write can race with
5133 * cpu_load_update_idle() but both updater would be writing the same.
5134 */
5135 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5136}
5137
5138/*
5139 * Account the tickless load in the end of a nohz frame.
5140 */
5141void cpu_load_update_nohz_stop(void)
5142{
316c1608 5143 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5144 struct rq *this_rq = this_rq();
5145 unsigned long load;
8a8c69c3 5146 struct rq_flags rf;
3289bdb4
PZ
5147
5148 if (curr_jiffies == this_rq->last_load_update_tick)
5149 return;
5150
1f41906a 5151 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5152 rq_lock(this_rq, &rf);
b52fad2d 5153 update_rq_clock(this_rq);
1f41906a 5154 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5155 rq_unlock(this_rq, &rf);
3289bdb4 5156}
1f41906a
FW
5157#else /* !CONFIG_NO_HZ_COMMON */
5158static inline void cpu_load_update_nohz(struct rq *this_rq,
5159 unsigned long curr_jiffies,
5160 unsigned long load) { }
5161#endif /* CONFIG_NO_HZ_COMMON */
5162
5163static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5164{
9fd81dd5 5165#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5166 /* See the mess around cpu_load_update_nohz(). */
5167 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5168#endif
1f41906a
FW
5169 cpu_load_update(this_rq, load, 1);
5170}
3289bdb4
PZ
5171
5172/*
5173 * Called from scheduler_tick()
5174 */
cee1afce 5175void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5176{
7ea241af 5177 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5178
5179 if (tick_nohz_tick_stopped())
5180 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5181 else
5182 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5183}
5184
029632fb
PZ
5185/*
5186 * Return a low guess at the load of a migration-source cpu weighted
5187 * according to the scheduling class and "nice" value.
5188 *
5189 * We want to under-estimate the load of migration sources, to
5190 * balance conservatively.
5191 */
5192static unsigned long source_load(int cpu, int type)
5193{
5194 struct rq *rq = cpu_rq(cpu);
5195 unsigned long total = weighted_cpuload(cpu);
5196
5197 if (type == 0 || !sched_feat(LB_BIAS))
5198 return total;
5199
5200 return min(rq->cpu_load[type-1], total);
5201}
5202
5203/*
5204 * Return a high guess at the load of a migration-target cpu weighted
5205 * according to the scheduling class and "nice" value.
5206 */
5207static unsigned long target_load(int cpu, int type)
5208{
5209 struct rq *rq = cpu_rq(cpu);
5210 unsigned long total = weighted_cpuload(cpu);
5211
5212 if (type == 0 || !sched_feat(LB_BIAS))
5213 return total;
5214
5215 return max(rq->cpu_load[type-1], total);
5216}
5217
ced549fa 5218static unsigned long capacity_of(int cpu)
029632fb 5219{
ced549fa 5220 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5221}
5222
ca6d75e6
VG
5223static unsigned long capacity_orig_of(int cpu)
5224{
5225 return cpu_rq(cpu)->cpu_capacity_orig;
5226}
5227
029632fb
PZ
5228static unsigned long cpu_avg_load_per_task(int cpu)
5229{
5230 struct rq *rq = cpu_rq(cpu);
316c1608 5231 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5232 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5233
5234 if (nr_running)
b92486cb 5235 return load_avg / nr_running;
029632fb
PZ
5236
5237 return 0;
5238}
5239
bb3469ac 5240#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5241/*
5242 * effective_load() calculates the load change as seen from the root_task_group
5243 *
5244 * Adding load to a group doesn't make a group heavier, but can cause movement
5245 * of group shares between cpus. Assuming the shares were perfectly aligned one
5246 * can calculate the shift in shares.
cf5f0acf
PZ
5247 *
5248 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5249 * on this @cpu and results in a total addition (subtraction) of @wg to the
5250 * total group weight.
5251 *
5252 * Given a runqueue weight distribution (rw_i) we can compute a shares
5253 * distribution (s_i) using:
5254 *
5255 * s_i = rw_i / \Sum rw_j (1)
5256 *
5257 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5258 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5259 * shares distribution (s_i):
5260 *
5261 * rw_i = { 2, 4, 1, 0 }
5262 * s_i = { 2/7, 4/7, 1/7, 0 }
5263 *
5264 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5265 * task used to run on and the CPU the waker is running on), we need to
5266 * compute the effect of waking a task on either CPU and, in case of a sync
5267 * wakeup, compute the effect of the current task going to sleep.
5268 *
5269 * So for a change of @wl to the local @cpu with an overall group weight change
5270 * of @wl we can compute the new shares distribution (s'_i) using:
5271 *
5272 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5273 *
5274 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5275 * differences in waking a task to CPU 0. The additional task changes the
5276 * weight and shares distributions like:
5277 *
5278 * rw'_i = { 3, 4, 1, 0 }
5279 * s'_i = { 3/8, 4/8, 1/8, 0 }
5280 *
5281 * We can then compute the difference in effective weight by using:
5282 *
5283 * dw_i = S * (s'_i - s_i) (3)
5284 *
5285 * Where 'S' is the group weight as seen by its parent.
5286 *
5287 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5288 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5289 * 4/7) times the weight of the group.
f5bfb7d9 5290 */
2069dd75 5291static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5292{
4be9daaa 5293 struct sched_entity *se = tg->se[cpu];
f1d239f7 5294
9722c2da 5295 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5296 return wl;
5297
4be9daaa 5298 for_each_sched_entity(se) {
7dd49125
PZ
5299 struct cfs_rq *cfs_rq = se->my_q;
5300 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5301
7dd49125 5302 tg = cfs_rq->tg;
bb3469ac 5303
cf5f0acf
PZ
5304 /*
5305 * W = @wg + \Sum rw_j
5306 */
7dd49125
PZ
5307 W = wg + atomic_long_read(&tg->load_avg);
5308
5309 /* Ensure \Sum rw_j >= rw_i */
5310 W -= cfs_rq->tg_load_avg_contrib;
5311 W += w;
4be9daaa 5312
cf5f0acf
PZ
5313 /*
5314 * w = rw_i + @wl
5315 */
7dd49125 5316 w += wl;
940959e9 5317
cf5f0acf
PZ
5318 /*
5319 * wl = S * s'_i; see (2)
5320 */
5321 if (W > 0 && w < W)
ab522e33 5322 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5323 else
ab522e33 5324 wl = scale_load_down(tg->shares);
940959e9 5325
cf5f0acf
PZ
5326 /*
5327 * Per the above, wl is the new se->load.weight value; since
5328 * those are clipped to [MIN_SHARES, ...) do so now. See
5329 * calc_cfs_shares().
5330 */
977dda7c
PT
5331 if (wl < MIN_SHARES)
5332 wl = MIN_SHARES;
cf5f0acf
PZ
5333
5334 /*
5335 * wl = dw_i = S * (s'_i - s_i); see (3)
5336 */
9d89c257 5337 wl -= se->avg.load_avg;
cf5f0acf
PZ
5338
5339 /*
5340 * Recursively apply this logic to all parent groups to compute
5341 * the final effective load change on the root group. Since
5342 * only the @tg group gets extra weight, all parent groups can
5343 * only redistribute existing shares. @wl is the shift in shares
5344 * resulting from this level per the above.
5345 */
4be9daaa 5346 wg = 0;
4be9daaa 5347 }
bb3469ac 5348
4be9daaa 5349 return wl;
bb3469ac
PZ
5350}
5351#else
4be9daaa 5352
58d081b5 5353static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5354{
83378269 5355 return wl;
bb3469ac 5356}
4be9daaa 5357
bb3469ac
PZ
5358#endif
5359
c58d25f3
PZ
5360static void record_wakee(struct task_struct *p)
5361{
5362 /*
5363 * Only decay a single time; tasks that have less then 1 wakeup per
5364 * jiffy will not have built up many flips.
5365 */
5366 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5367 current->wakee_flips >>= 1;
5368 current->wakee_flip_decay_ts = jiffies;
5369 }
5370
5371 if (current->last_wakee != p) {
5372 current->last_wakee = p;
5373 current->wakee_flips++;
5374 }
5375}
5376
63b0e9ed
MG
5377/*
5378 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5379 *
63b0e9ed 5380 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5381 * at a frequency roughly N times higher than one of its wakees.
5382 *
5383 * In order to determine whether we should let the load spread vs consolidating
5384 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5385 * partner, and a factor of lls_size higher frequency in the other.
5386 *
5387 * With both conditions met, we can be relatively sure that the relationship is
5388 * non-monogamous, with partner count exceeding socket size.
5389 *
5390 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5391 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5392 * socket size.
63b0e9ed 5393 */
62470419
MW
5394static int wake_wide(struct task_struct *p)
5395{
63b0e9ed
MG
5396 unsigned int master = current->wakee_flips;
5397 unsigned int slave = p->wakee_flips;
7d9ffa89 5398 int factor = this_cpu_read(sd_llc_size);
62470419 5399
63b0e9ed
MG
5400 if (master < slave)
5401 swap(master, slave);
5402 if (slave < factor || master < slave * factor)
5403 return 0;
5404 return 1;
62470419
MW
5405}
5406
772bd008
MR
5407static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5408 int prev_cpu, int sync)
098fb9db 5409{
e37b6a7b 5410 s64 this_load, load;
bd61c98f 5411 s64 this_eff_load, prev_eff_load;
772bd008 5412 int idx, this_cpu;
c88d5910 5413 struct task_group *tg;
83378269 5414 unsigned long weight;
b3137bc8 5415 int balanced;
098fb9db 5416
c88d5910
PZ
5417 idx = sd->wake_idx;
5418 this_cpu = smp_processor_id();
c88d5910
PZ
5419 load = source_load(prev_cpu, idx);
5420 this_load = target_load(this_cpu, idx);
098fb9db 5421
b3137bc8
MG
5422 /*
5423 * If sync wakeup then subtract the (maximum possible)
5424 * effect of the currently running task from the load
5425 * of the current CPU:
5426 */
83378269
PZ
5427 if (sync) {
5428 tg = task_group(current);
9d89c257 5429 weight = current->se.avg.load_avg;
83378269 5430
c88d5910 5431 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5432 load += effective_load(tg, prev_cpu, 0, -weight);
5433 }
b3137bc8 5434
83378269 5435 tg = task_group(p);
9d89c257 5436 weight = p->se.avg.load_avg;
b3137bc8 5437
71a29aa7
PZ
5438 /*
5439 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5440 * due to the sync cause above having dropped this_load to 0, we'll
5441 * always have an imbalance, but there's really nothing you can do
5442 * about that, so that's good too.
71a29aa7
PZ
5443 *
5444 * Otherwise check if either cpus are near enough in load to allow this
5445 * task to be woken on this_cpu.
5446 */
bd61c98f
VG
5447 this_eff_load = 100;
5448 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5449
bd61c98f
VG
5450 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5451 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5452
bd61c98f 5453 if (this_load > 0) {
e51fd5e2
PZ
5454 this_eff_load *= this_load +
5455 effective_load(tg, this_cpu, weight, weight);
5456
e51fd5e2 5457 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5458 }
e51fd5e2 5459
bd61c98f 5460 balanced = this_eff_load <= prev_eff_load;
098fb9db 5461
ae92882e 5462 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5463
05bfb65f
VG
5464 if (!balanced)
5465 return 0;
098fb9db 5466
ae92882e
JP
5467 schedstat_inc(sd->ttwu_move_affine);
5468 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5469
5470 return 1;
098fb9db
IM
5471}
5472
6a0b19c0
MR
5473static inline int task_util(struct task_struct *p);
5474static int cpu_util_wake(int cpu, struct task_struct *p);
5475
5476static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5477{
5478 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5479}
5480
aaee1203
PZ
5481/*
5482 * find_idlest_group finds and returns the least busy CPU group within the
5483 * domain.
5484 */
5485static struct sched_group *
78e7ed53 5486find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5487 int this_cpu, int sd_flag)
e7693a36 5488{
b3bd3de6 5489 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5490 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5491 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5492 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5493 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5494 int load_idx = sd->forkexec_idx;
6b94780e
VG
5495 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5496 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5497 (sd->imbalance_pct-100) / 100;
e7693a36 5498
c44f2a02
VG
5499 if (sd_flag & SD_BALANCE_WAKE)
5500 load_idx = sd->wake_idx;
5501
aaee1203 5502 do {
6b94780e
VG
5503 unsigned long load, avg_load, runnable_load;
5504 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5505 int local_group;
5506 int i;
e7693a36 5507
aaee1203 5508 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5509 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5510 &p->cpus_allowed))
aaee1203
PZ
5511 continue;
5512
5513 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5514 sched_group_span(group));
aaee1203 5515
6a0b19c0
MR
5516 /*
5517 * Tally up the load of all CPUs in the group and find
5518 * the group containing the CPU with most spare capacity.
5519 */
aaee1203 5520 avg_load = 0;
6b94780e 5521 runnable_load = 0;
6a0b19c0 5522 max_spare_cap = 0;
aaee1203 5523
ae4df9d6 5524 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5525 /* Bias balancing toward cpus of our domain */
5526 if (local_group)
5527 load = source_load(i, load_idx);
5528 else
5529 load = target_load(i, load_idx);
5530
6b94780e
VG
5531 runnable_load += load;
5532
5533 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5534
5535 spare_cap = capacity_spare_wake(i, p);
5536
5537 if (spare_cap > max_spare_cap)
5538 max_spare_cap = spare_cap;
aaee1203
PZ
5539 }
5540
63b2ca30 5541 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5542 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5543 group->sgc->capacity;
5544 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5545 group->sgc->capacity;
aaee1203
PZ
5546
5547 if (local_group) {
6b94780e
VG
5548 this_runnable_load = runnable_load;
5549 this_avg_load = avg_load;
6a0b19c0
MR
5550 this_spare = max_spare_cap;
5551 } else {
6b94780e
VG
5552 if (min_runnable_load > (runnable_load + imbalance)) {
5553 /*
5554 * The runnable load is significantly smaller
5555 * so we can pick this new cpu
5556 */
5557 min_runnable_load = runnable_load;
5558 min_avg_load = avg_load;
5559 idlest = group;
5560 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5561 (100*min_avg_load > imbalance_scale*avg_load)) {
5562 /*
5563 * The runnable loads are close so take the
5564 * blocked load into account through avg_load.
5565 */
5566 min_avg_load = avg_load;
6a0b19c0
MR
5567 idlest = group;
5568 }
5569
5570 if (most_spare < max_spare_cap) {
5571 most_spare = max_spare_cap;
5572 most_spare_sg = group;
5573 }
aaee1203
PZ
5574 }
5575 } while (group = group->next, group != sd->groups);
5576
6a0b19c0
MR
5577 /*
5578 * The cross-over point between using spare capacity or least load
5579 * is too conservative for high utilization tasks on partially
5580 * utilized systems if we require spare_capacity > task_util(p),
5581 * so we allow for some task stuffing by using
5582 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5583 *
5584 * Spare capacity can't be used for fork because the utilization has
5585 * not been set yet, we must first select a rq to compute the initial
5586 * utilization.
6a0b19c0 5587 */
f519a3f1
VG
5588 if (sd_flag & SD_BALANCE_FORK)
5589 goto skip_spare;
5590
6a0b19c0 5591 if (this_spare > task_util(p) / 2 &&
6b94780e 5592 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5593 return NULL;
6b94780e
VG
5594
5595 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5596 return most_spare_sg;
5597
f519a3f1 5598skip_spare:
6b94780e
VG
5599 if (!idlest)
5600 return NULL;
5601
5602 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5603 return NULL;
6b94780e
VG
5604
5605 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5606 (100*this_avg_load < imbalance_scale*min_avg_load))
5607 return NULL;
5608
aaee1203
PZ
5609 return idlest;
5610}
5611
5612/*
5613 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5614 */
5615static int
5616find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5617{
5618 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5619 unsigned int min_exit_latency = UINT_MAX;
5620 u64 latest_idle_timestamp = 0;
5621 int least_loaded_cpu = this_cpu;
5622 int shallowest_idle_cpu = -1;
aaee1203
PZ
5623 int i;
5624
eaecf41f
MR
5625 /* Check if we have any choice: */
5626 if (group->group_weight == 1)
ae4df9d6 5627 return cpumask_first(sched_group_span(group));
eaecf41f 5628
aaee1203 5629 /* Traverse only the allowed CPUs */
ae4df9d6 5630 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5631 if (idle_cpu(i)) {
5632 struct rq *rq = cpu_rq(i);
5633 struct cpuidle_state *idle = idle_get_state(rq);
5634 if (idle && idle->exit_latency < min_exit_latency) {
5635 /*
5636 * We give priority to a CPU whose idle state
5637 * has the smallest exit latency irrespective
5638 * of any idle timestamp.
5639 */
5640 min_exit_latency = idle->exit_latency;
5641 latest_idle_timestamp = rq->idle_stamp;
5642 shallowest_idle_cpu = i;
5643 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5644 rq->idle_stamp > latest_idle_timestamp) {
5645 /*
5646 * If equal or no active idle state, then
5647 * the most recently idled CPU might have
5648 * a warmer cache.
5649 */
5650 latest_idle_timestamp = rq->idle_stamp;
5651 shallowest_idle_cpu = i;
5652 }
9f96742a 5653 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5654 load = weighted_cpuload(i);
5655 if (load < min_load || (load == min_load && i == this_cpu)) {
5656 min_load = load;
5657 least_loaded_cpu = i;
5658 }
e7693a36
GH
5659 }
5660 }
5661
83a0a96a 5662 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5663}
e7693a36 5664
10e2f1ac
PZ
5665#ifdef CONFIG_SCHED_SMT
5666
5667static inline void set_idle_cores(int cpu, int val)
5668{
5669 struct sched_domain_shared *sds;
5670
5671 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5672 if (sds)
5673 WRITE_ONCE(sds->has_idle_cores, val);
5674}
5675
5676static inline bool test_idle_cores(int cpu, bool def)
5677{
5678 struct sched_domain_shared *sds;
5679
5680 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5681 if (sds)
5682 return READ_ONCE(sds->has_idle_cores);
5683
5684 return def;
5685}
5686
5687/*
5688 * Scans the local SMT mask to see if the entire core is idle, and records this
5689 * information in sd_llc_shared->has_idle_cores.
5690 *
5691 * Since SMT siblings share all cache levels, inspecting this limited remote
5692 * state should be fairly cheap.
5693 */
1b568f0a 5694void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5695{
5696 int core = cpu_of(rq);
5697 int cpu;
5698
5699 rcu_read_lock();
5700 if (test_idle_cores(core, true))
5701 goto unlock;
5702
5703 for_each_cpu(cpu, cpu_smt_mask(core)) {
5704 if (cpu == core)
5705 continue;
5706
5707 if (!idle_cpu(cpu))
5708 goto unlock;
5709 }
5710
5711 set_idle_cores(core, 1);
5712unlock:
5713 rcu_read_unlock();
5714}
5715
5716/*
5717 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5718 * there are no idle cores left in the system; tracked through
5719 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5720 */
5721static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5722{
5723 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5724 int core, cpu;
10e2f1ac 5725
1b568f0a
PZ
5726 if (!static_branch_likely(&sched_smt_present))
5727 return -1;
5728
10e2f1ac
PZ
5729 if (!test_idle_cores(target, false))
5730 return -1;
5731
0c98d344 5732 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5733
c743f0a5 5734 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5735 bool idle = true;
5736
5737 for_each_cpu(cpu, cpu_smt_mask(core)) {
5738 cpumask_clear_cpu(cpu, cpus);
5739 if (!idle_cpu(cpu))
5740 idle = false;
5741 }
5742
5743 if (idle)
5744 return core;
5745 }
5746
5747 /*
5748 * Failed to find an idle core; stop looking for one.
5749 */
5750 set_idle_cores(target, 0);
5751
5752 return -1;
5753}
5754
5755/*
5756 * Scan the local SMT mask for idle CPUs.
5757 */
5758static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5759{
5760 int cpu;
5761
1b568f0a
PZ
5762 if (!static_branch_likely(&sched_smt_present))
5763 return -1;
5764
10e2f1ac 5765 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5766 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5767 continue;
5768 if (idle_cpu(cpu))
5769 return cpu;
5770 }
5771
5772 return -1;
5773}
5774
5775#else /* CONFIG_SCHED_SMT */
5776
5777static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5778{
5779 return -1;
5780}
5781
5782static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5783{
5784 return -1;
5785}
5786
5787#endif /* CONFIG_SCHED_SMT */
5788
5789/*
5790 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5791 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5792 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5793 */
10e2f1ac
PZ
5794static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5795{
9cfb38a7
WL
5796 struct sched_domain *this_sd;
5797 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5798 u64 time, cost;
5799 s64 delta;
c743f0a5 5800 int cpu;
10e2f1ac 5801
9cfb38a7
WL
5802 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5803 if (!this_sd)
5804 return -1;
5805
5806 avg_cost = this_sd->avg_scan_cost;
5807
10e2f1ac
PZ
5808 /*
5809 * Due to large variance we need a large fuzz factor; hackbench in
5810 * particularly is sensitive here.
5811 */
4c77b18c 5812 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5813 return -1;
5814
5815 time = local_clock();
5816
c743f0a5 5817 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
0c98d344 5818 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5819 continue;
5820 if (idle_cpu(cpu))
5821 break;
5822 }
5823
5824 time = local_clock() - time;
5825 cost = this_sd->avg_scan_cost;
5826 delta = (s64)(time - cost) / 8;
5827 this_sd->avg_scan_cost += delta;
5828
5829 return cpu;
5830}
5831
5832/*
5833 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5834 */
772bd008 5835static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5836{
99bd5e2f 5837 struct sched_domain *sd;
10e2f1ac 5838 int i;
a50bde51 5839
e0a79f52
MG
5840 if (idle_cpu(target))
5841 return target;
99bd5e2f
SS
5842
5843 /*
10e2f1ac 5844 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5845 */
772bd008
MR
5846 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5847 return prev;
a50bde51 5848
518cd623 5849 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5850 if (!sd)
5851 return target;
772bd008 5852
10e2f1ac
PZ
5853 i = select_idle_core(p, sd, target);
5854 if ((unsigned)i < nr_cpumask_bits)
5855 return i;
37407ea7 5856
10e2f1ac
PZ
5857 i = select_idle_cpu(p, sd, target);
5858 if ((unsigned)i < nr_cpumask_bits)
5859 return i;
5860
5861 i = select_idle_smt(p, sd, target);
5862 if ((unsigned)i < nr_cpumask_bits)
5863 return i;
970e1789 5864
a50bde51
PZ
5865 return target;
5866}
231678b7 5867
8bb5b00c 5868/*
9e91d61d 5869 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5870 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5871 * compare the utilization with the capacity of the CPU that is available for
5872 * CFS task (ie cpu_capacity).
231678b7
DE
5873 *
5874 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5875 * recent utilization of currently non-runnable tasks on a CPU. It represents
5876 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5877 * capacity_orig is the cpu_capacity available at the highest frequency
5878 * (arch_scale_freq_capacity()).
5879 * The utilization of a CPU converges towards a sum equal to or less than the
5880 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5881 * the running time on this CPU scaled by capacity_curr.
5882 *
5883 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5884 * higher than capacity_orig because of unfortunate rounding in
5885 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5886 * the average stabilizes with the new running time. We need to check that the
5887 * utilization stays within the range of [0..capacity_orig] and cap it if
5888 * necessary. Without utilization capping, a group could be seen as overloaded
5889 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5890 * available capacity. We allow utilization to overshoot capacity_curr (but not
5891 * capacity_orig) as it useful for predicting the capacity required after task
5892 * migrations (scheduler-driven DVFS).
8bb5b00c 5893 */
9e91d61d 5894static int cpu_util(int cpu)
8bb5b00c 5895{
9e91d61d 5896 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5897 unsigned long capacity = capacity_orig_of(cpu);
5898
231678b7 5899 return (util >= capacity) ? capacity : util;
8bb5b00c 5900}
a50bde51 5901
3273163c
MR
5902static inline int task_util(struct task_struct *p)
5903{
5904 return p->se.avg.util_avg;
5905}
5906
104cb16d
MR
5907/*
5908 * cpu_util_wake: Compute cpu utilization with any contributions from
5909 * the waking task p removed.
5910 */
5911static int cpu_util_wake(int cpu, struct task_struct *p)
5912{
5913 unsigned long util, capacity;
5914
5915 /* Task has no contribution or is new */
5916 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5917 return cpu_util(cpu);
5918
5919 capacity = capacity_orig_of(cpu);
5920 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5921
5922 return (util >= capacity) ? capacity : util;
5923}
5924
3273163c
MR
5925/*
5926 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5927 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5928 *
5929 * In that case WAKE_AFFINE doesn't make sense and we'll let
5930 * BALANCE_WAKE sort things out.
5931 */
5932static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5933{
5934 long min_cap, max_cap;
5935
5936 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5937 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5938
5939 /* Minimum capacity is close to max, no need to abort wake_affine */
5940 if (max_cap - min_cap < max_cap >> 3)
5941 return 0;
5942
104cb16d
MR
5943 /* Bring task utilization in sync with prev_cpu */
5944 sync_entity_load_avg(&p->se);
5945
3273163c
MR
5946 return min_cap * 1024 < task_util(p) * capacity_margin;
5947}
5948
aaee1203 5949/*
de91b9cb
MR
5950 * select_task_rq_fair: Select target runqueue for the waking task in domains
5951 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5952 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5953 *
de91b9cb
MR
5954 * Balances load by selecting the idlest cpu in the idlest group, or under
5955 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5956 *
de91b9cb 5957 * Returns the target cpu number.
aaee1203
PZ
5958 *
5959 * preempt must be disabled.
5960 */
0017d735 5961static int
ac66f547 5962select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5963{
29cd8bae 5964 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5965 int cpu = smp_processor_id();
63b0e9ed 5966 int new_cpu = prev_cpu;
99bd5e2f 5967 int want_affine = 0;
5158f4e4 5968 int sync = wake_flags & WF_SYNC;
c88d5910 5969
c58d25f3
PZ
5970 if (sd_flag & SD_BALANCE_WAKE) {
5971 record_wakee(p);
3273163c 5972 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 5973 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 5974 }
aaee1203 5975
dce840a0 5976 rcu_read_lock();
aaee1203 5977 for_each_domain(cpu, tmp) {
e4f42888 5978 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5979 break;
e4f42888 5980
fe3bcfe1 5981 /*
99bd5e2f
SS
5982 * If both cpu and prev_cpu are part of this domain,
5983 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5984 */
99bd5e2f
SS
5985 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5986 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5987 affine_sd = tmp;
29cd8bae 5988 break;
f03542a7 5989 }
29cd8bae 5990
f03542a7 5991 if (tmp->flags & sd_flag)
29cd8bae 5992 sd = tmp;
63b0e9ed
MG
5993 else if (!want_affine)
5994 break;
29cd8bae
PZ
5995 }
5996
63b0e9ed
MG
5997 if (affine_sd) {
5998 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5999 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6000 new_cpu = cpu;
8b911acd 6001 }
e7693a36 6002
63b0e9ed
MG
6003 if (!sd) {
6004 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6005 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6006
6007 } else while (sd) {
aaee1203 6008 struct sched_group *group;
c88d5910 6009 int weight;
098fb9db 6010
0763a660 6011 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6012 sd = sd->child;
6013 continue;
6014 }
098fb9db 6015
c44f2a02 6016 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6017 if (!group) {
6018 sd = sd->child;
6019 continue;
6020 }
4ae7d5ce 6021
d7c33c49 6022 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6023 if (new_cpu == -1 || new_cpu == cpu) {
6024 /* Now try balancing at a lower domain level of cpu */
6025 sd = sd->child;
6026 continue;
e7693a36 6027 }
aaee1203
PZ
6028
6029 /* Now try balancing at a lower domain level of new_cpu */
6030 cpu = new_cpu;
669c55e9 6031 weight = sd->span_weight;
aaee1203
PZ
6032 sd = NULL;
6033 for_each_domain(cpu, tmp) {
669c55e9 6034 if (weight <= tmp->span_weight)
aaee1203 6035 break;
0763a660 6036 if (tmp->flags & sd_flag)
aaee1203
PZ
6037 sd = tmp;
6038 }
6039 /* while loop will break here if sd == NULL */
e7693a36 6040 }
dce840a0 6041 rcu_read_unlock();
e7693a36 6042
c88d5910 6043 return new_cpu;
e7693a36 6044}
0a74bef8
PT
6045
6046/*
6047 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6048 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6049 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6050 */
5a4fd036 6051static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6052{
59efa0ba
PZ
6053 /*
6054 * As blocked tasks retain absolute vruntime the migration needs to
6055 * deal with this by subtracting the old and adding the new
6056 * min_vruntime -- the latter is done by enqueue_entity() when placing
6057 * the task on the new runqueue.
6058 */
6059 if (p->state == TASK_WAKING) {
6060 struct sched_entity *se = &p->se;
6061 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6062 u64 min_vruntime;
6063
6064#ifndef CONFIG_64BIT
6065 u64 min_vruntime_copy;
6066
6067 do {
6068 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6069 smp_rmb();
6070 min_vruntime = cfs_rq->min_vruntime;
6071 } while (min_vruntime != min_vruntime_copy);
6072#else
6073 min_vruntime = cfs_rq->min_vruntime;
6074#endif
6075
6076 se->vruntime -= min_vruntime;
6077 }
6078
aff3e498 6079 /*
9d89c257
YD
6080 * We are supposed to update the task to "current" time, then its up to date
6081 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6082 * what current time is, so simply throw away the out-of-date time. This
6083 * will result in the wakee task is less decayed, but giving the wakee more
6084 * load sounds not bad.
aff3e498 6085 */
9d89c257
YD
6086 remove_entity_load_avg(&p->se);
6087
6088 /* Tell new CPU we are migrated */
6089 p->se.avg.last_update_time = 0;
3944a927
BS
6090
6091 /* We have migrated, no longer consider this task hot */
9d89c257 6092 p->se.exec_start = 0;
0a74bef8 6093}
12695578
YD
6094
6095static void task_dead_fair(struct task_struct *p)
6096{
6097 remove_entity_load_avg(&p->se);
6098}
e7693a36
GH
6099#endif /* CONFIG_SMP */
6100
e52fb7c0
PZ
6101static unsigned long
6102wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6103{
6104 unsigned long gran = sysctl_sched_wakeup_granularity;
6105
6106 /*
e52fb7c0
PZ
6107 * Since its curr running now, convert the gran from real-time
6108 * to virtual-time in his units.
13814d42
MG
6109 *
6110 * By using 'se' instead of 'curr' we penalize light tasks, so
6111 * they get preempted easier. That is, if 'se' < 'curr' then
6112 * the resulting gran will be larger, therefore penalizing the
6113 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6114 * be smaller, again penalizing the lighter task.
6115 *
6116 * This is especially important for buddies when the leftmost
6117 * task is higher priority than the buddy.
0bbd3336 6118 */
f4ad9bd2 6119 return calc_delta_fair(gran, se);
0bbd3336
PZ
6120}
6121
464b7527
PZ
6122/*
6123 * Should 'se' preempt 'curr'.
6124 *
6125 * |s1
6126 * |s2
6127 * |s3
6128 * g
6129 * |<--->|c
6130 *
6131 * w(c, s1) = -1
6132 * w(c, s2) = 0
6133 * w(c, s3) = 1
6134 *
6135 */
6136static int
6137wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6138{
6139 s64 gran, vdiff = curr->vruntime - se->vruntime;
6140
6141 if (vdiff <= 0)
6142 return -1;
6143
e52fb7c0 6144 gran = wakeup_gran(curr, se);
464b7527
PZ
6145 if (vdiff > gran)
6146 return 1;
6147
6148 return 0;
6149}
6150
02479099
PZ
6151static void set_last_buddy(struct sched_entity *se)
6152{
69c80f3e
VP
6153 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6154 return;
6155
6156 for_each_sched_entity(se)
6157 cfs_rq_of(se)->last = se;
02479099
PZ
6158}
6159
6160static void set_next_buddy(struct sched_entity *se)
6161{
69c80f3e
VP
6162 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6163 return;
6164
6165 for_each_sched_entity(se)
6166 cfs_rq_of(se)->next = se;
02479099
PZ
6167}
6168
ac53db59
RR
6169static void set_skip_buddy(struct sched_entity *se)
6170{
69c80f3e
VP
6171 for_each_sched_entity(se)
6172 cfs_rq_of(se)->skip = se;
ac53db59
RR
6173}
6174
bf0f6f24
IM
6175/*
6176 * Preempt the current task with a newly woken task if needed:
6177 */
5a9b86f6 6178static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6179{
6180 struct task_struct *curr = rq->curr;
8651a86c 6181 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6182 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6183 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6184 int next_buddy_marked = 0;
bf0f6f24 6185
4ae7d5ce
IM
6186 if (unlikely(se == pse))
6187 return;
6188
5238cdd3 6189 /*
163122b7 6190 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6191 * unconditionally check_prempt_curr() after an enqueue (which may have
6192 * lead to a throttle). This both saves work and prevents false
6193 * next-buddy nomination below.
6194 */
6195 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6196 return;
6197
2f36825b 6198 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6199 set_next_buddy(pse);
2f36825b
VP
6200 next_buddy_marked = 1;
6201 }
57fdc26d 6202
aec0a514
BR
6203 /*
6204 * We can come here with TIF_NEED_RESCHED already set from new task
6205 * wake up path.
5238cdd3
PT
6206 *
6207 * Note: this also catches the edge-case of curr being in a throttled
6208 * group (e.g. via set_curr_task), since update_curr() (in the
6209 * enqueue of curr) will have resulted in resched being set. This
6210 * prevents us from potentially nominating it as a false LAST_BUDDY
6211 * below.
aec0a514
BR
6212 */
6213 if (test_tsk_need_resched(curr))
6214 return;
6215
a2f5c9ab
DH
6216 /* Idle tasks are by definition preempted by non-idle tasks. */
6217 if (unlikely(curr->policy == SCHED_IDLE) &&
6218 likely(p->policy != SCHED_IDLE))
6219 goto preempt;
6220
91c234b4 6221 /*
a2f5c9ab
DH
6222 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6223 * is driven by the tick):
91c234b4 6224 */
8ed92e51 6225 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6226 return;
bf0f6f24 6227
464b7527 6228 find_matching_se(&se, &pse);
9bbd7374 6229 update_curr(cfs_rq_of(se));
002f128b 6230 BUG_ON(!pse);
2f36825b
VP
6231 if (wakeup_preempt_entity(se, pse) == 1) {
6232 /*
6233 * Bias pick_next to pick the sched entity that is
6234 * triggering this preemption.
6235 */
6236 if (!next_buddy_marked)
6237 set_next_buddy(pse);
3a7e73a2 6238 goto preempt;
2f36825b 6239 }
464b7527 6240
3a7e73a2 6241 return;
a65ac745 6242
3a7e73a2 6243preempt:
8875125e 6244 resched_curr(rq);
3a7e73a2
PZ
6245 /*
6246 * Only set the backward buddy when the current task is still
6247 * on the rq. This can happen when a wakeup gets interleaved
6248 * with schedule on the ->pre_schedule() or idle_balance()
6249 * point, either of which can * drop the rq lock.
6250 *
6251 * Also, during early boot the idle thread is in the fair class,
6252 * for obvious reasons its a bad idea to schedule back to it.
6253 */
6254 if (unlikely(!se->on_rq || curr == rq->idle))
6255 return;
6256
6257 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6258 set_last_buddy(se);
bf0f6f24
IM
6259}
6260
606dba2e 6261static struct task_struct *
d8ac8971 6262pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6263{
6264 struct cfs_rq *cfs_rq = &rq->cfs;
6265 struct sched_entity *se;
678d5718 6266 struct task_struct *p;
37e117c0 6267 int new_tasks;
678d5718 6268
6e83125c 6269again:
678d5718
PZ
6270#ifdef CONFIG_FAIR_GROUP_SCHED
6271 if (!cfs_rq->nr_running)
38033c37 6272 goto idle;
678d5718 6273
3f1d2a31 6274 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6275 goto simple;
6276
6277 /*
6278 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6279 * likely that a next task is from the same cgroup as the current.
6280 *
6281 * Therefore attempt to avoid putting and setting the entire cgroup
6282 * hierarchy, only change the part that actually changes.
6283 */
6284
6285 do {
6286 struct sched_entity *curr = cfs_rq->curr;
6287
6288 /*
6289 * Since we got here without doing put_prev_entity() we also
6290 * have to consider cfs_rq->curr. If it is still a runnable
6291 * entity, update_curr() will update its vruntime, otherwise
6292 * forget we've ever seen it.
6293 */
54d27365
BS
6294 if (curr) {
6295 if (curr->on_rq)
6296 update_curr(cfs_rq);
6297 else
6298 curr = NULL;
678d5718 6299
54d27365
BS
6300 /*
6301 * This call to check_cfs_rq_runtime() will do the
6302 * throttle and dequeue its entity in the parent(s).
6303 * Therefore the 'simple' nr_running test will indeed
6304 * be correct.
6305 */
6306 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6307 goto simple;
6308 }
678d5718
PZ
6309
6310 se = pick_next_entity(cfs_rq, curr);
6311 cfs_rq = group_cfs_rq(se);
6312 } while (cfs_rq);
6313
6314 p = task_of(se);
6315
6316 /*
6317 * Since we haven't yet done put_prev_entity and if the selected task
6318 * is a different task than we started out with, try and touch the
6319 * least amount of cfs_rqs.
6320 */
6321 if (prev != p) {
6322 struct sched_entity *pse = &prev->se;
6323
6324 while (!(cfs_rq = is_same_group(se, pse))) {
6325 int se_depth = se->depth;
6326 int pse_depth = pse->depth;
6327
6328 if (se_depth <= pse_depth) {
6329 put_prev_entity(cfs_rq_of(pse), pse);
6330 pse = parent_entity(pse);
6331 }
6332 if (se_depth >= pse_depth) {
6333 set_next_entity(cfs_rq_of(se), se);
6334 se = parent_entity(se);
6335 }
6336 }
6337
6338 put_prev_entity(cfs_rq, pse);
6339 set_next_entity(cfs_rq, se);
6340 }
6341
6342 if (hrtick_enabled(rq))
6343 hrtick_start_fair(rq, p);
6344
6345 return p;
6346simple:
6347 cfs_rq = &rq->cfs;
6348#endif
bf0f6f24 6349
36ace27e 6350 if (!cfs_rq->nr_running)
38033c37 6351 goto idle;
bf0f6f24 6352
3f1d2a31 6353 put_prev_task(rq, prev);
606dba2e 6354
bf0f6f24 6355 do {
678d5718 6356 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6357 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6358 cfs_rq = group_cfs_rq(se);
6359 } while (cfs_rq);
6360
8f4d37ec 6361 p = task_of(se);
678d5718 6362
b39e66ea
MG
6363 if (hrtick_enabled(rq))
6364 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6365
6366 return p;
38033c37
PZ
6367
6368idle:
46f69fa3
MF
6369 new_tasks = idle_balance(rq, rf);
6370
37e117c0
PZ
6371 /*
6372 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6373 * possible for any higher priority task to appear. In that case we
6374 * must re-start the pick_next_entity() loop.
6375 */
e4aa358b 6376 if (new_tasks < 0)
37e117c0
PZ
6377 return RETRY_TASK;
6378
e4aa358b 6379 if (new_tasks > 0)
38033c37 6380 goto again;
38033c37
PZ
6381
6382 return NULL;
bf0f6f24
IM
6383}
6384
6385/*
6386 * Account for a descheduled task:
6387 */
31ee529c 6388static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6389{
6390 struct sched_entity *se = &prev->se;
6391 struct cfs_rq *cfs_rq;
6392
6393 for_each_sched_entity(se) {
6394 cfs_rq = cfs_rq_of(se);
ab6cde26 6395 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6396 }
6397}
6398
ac53db59
RR
6399/*
6400 * sched_yield() is very simple
6401 *
6402 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6403 */
6404static void yield_task_fair(struct rq *rq)
6405{
6406 struct task_struct *curr = rq->curr;
6407 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6408 struct sched_entity *se = &curr->se;
6409
6410 /*
6411 * Are we the only task in the tree?
6412 */
6413 if (unlikely(rq->nr_running == 1))
6414 return;
6415
6416 clear_buddies(cfs_rq, se);
6417
6418 if (curr->policy != SCHED_BATCH) {
6419 update_rq_clock(rq);
6420 /*
6421 * Update run-time statistics of the 'current'.
6422 */
6423 update_curr(cfs_rq);
916671c0
MG
6424 /*
6425 * Tell update_rq_clock() that we've just updated,
6426 * so we don't do microscopic update in schedule()
6427 * and double the fastpath cost.
6428 */
9edfbfed 6429 rq_clock_skip_update(rq, true);
ac53db59
RR
6430 }
6431
6432 set_skip_buddy(se);
6433}
6434
d95f4122
MG
6435static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6436{
6437 struct sched_entity *se = &p->se;
6438
5238cdd3
PT
6439 /* throttled hierarchies are not runnable */
6440 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6441 return false;
6442
6443 /* Tell the scheduler that we'd really like pse to run next. */
6444 set_next_buddy(se);
6445
d95f4122
MG
6446 yield_task_fair(rq);
6447
6448 return true;
6449}
6450
681f3e68 6451#ifdef CONFIG_SMP
bf0f6f24 6452/**************************************************
e9c84cb8
PZ
6453 * Fair scheduling class load-balancing methods.
6454 *
6455 * BASICS
6456 *
6457 * The purpose of load-balancing is to achieve the same basic fairness the
6458 * per-cpu scheduler provides, namely provide a proportional amount of compute
6459 * time to each task. This is expressed in the following equation:
6460 *
6461 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6462 *
6463 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6464 * W_i,0 is defined as:
6465 *
6466 * W_i,0 = \Sum_j w_i,j (2)
6467 *
6468 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6469 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6470 *
6471 * The weight average is an exponential decay average of the instantaneous
6472 * weight:
6473 *
6474 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6475 *
ced549fa 6476 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6477 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6478 * can also include other factors [XXX].
6479 *
6480 * To achieve this balance we define a measure of imbalance which follows
6481 * directly from (1):
6482 *
ced549fa 6483 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6484 *
6485 * We them move tasks around to minimize the imbalance. In the continuous
6486 * function space it is obvious this converges, in the discrete case we get
6487 * a few fun cases generally called infeasible weight scenarios.
6488 *
6489 * [XXX expand on:
6490 * - infeasible weights;
6491 * - local vs global optima in the discrete case. ]
6492 *
6493 *
6494 * SCHED DOMAINS
6495 *
6496 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6497 * for all i,j solution, we create a tree of cpus that follows the hardware
6498 * topology where each level pairs two lower groups (or better). This results
6499 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6500 * tree to only the first of the previous level and we decrease the frequency
6501 * of load-balance at each level inv. proportional to the number of cpus in
6502 * the groups.
6503 *
6504 * This yields:
6505 *
6506 * log_2 n 1 n
6507 * \Sum { --- * --- * 2^i } = O(n) (5)
6508 * i = 0 2^i 2^i
6509 * `- size of each group
6510 * | | `- number of cpus doing load-balance
6511 * | `- freq
6512 * `- sum over all levels
6513 *
6514 * Coupled with a limit on how many tasks we can migrate every balance pass,
6515 * this makes (5) the runtime complexity of the balancer.
6516 *
6517 * An important property here is that each CPU is still (indirectly) connected
6518 * to every other cpu in at most O(log n) steps:
6519 *
6520 * The adjacency matrix of the resulting graph is given by:
6521 *
97a7142f 6522 * log_2 n
e9c84cb8
PZ
6523 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6524 * k = 0
6525 *
6526 * And you'll find that:
6527 *
6528 * A^(log_2 n)_i,j != 0 for all i,j (7)
6529 *
6530 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6531 * The task movement gives a factor of O(m), giving a convergence complexity
6532 * of:
6533 *
6534 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6535 *
6536 *
6537 * WORK CONSERVING
6538 *
6539 * In order to avoid CPUs going idle while there's still work to do, new idle
6540 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6541 * tree itself instead of relying on other CPUs to bring it work.
6542 *
6543 * This adds some complexity to both (5) and (8) but it reduces the total idle
6544 * time.
6545 *
6546 * [XXX more?]
6547 *
6548 *
6549 * CGROUPS
6550 *
6551 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6552 *
6553 * s_k,i
6554 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6555 * S_k
6556 *
6557 * Where
6558 *
6559 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6560 *
6561 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6562 *
6563 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6564 * property.
6565 *
6566 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6567 * rewrite all of this once again.]
97a7142f 6568 */
bf0f6f24 6569
ed387b78
HS
6570static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6571
0ec8aa00
PZ
6572enum fbq_type { regular, remote, all };
6573
ddcdf6e7 6574#define LBF_ALL_PINNED 0x01
367456c7 6575#define LBF_NEED_BREAK 0x02
6263322c
PZ
6576#define LBF_DST_PINNED 0x04
6577#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6578
6579struct lb_env {
6580 struct sched_domain *sd;
6581
ddcdf6e7 6582 struct rq *src_rq;
85c1e7da 6583 int src_cpu;
ddcdf6e7
PZ
6584
6585 int dst_cpu;
6586 struct rq *dst_rq;
6587
88b8dac0
SV
6588 struct cpumask *dst_grpmask;
6589 int new_dst_cpu;
ddcdf6e7 6590 enum cpu_idle_type idle;
bd939f45 6591 long imbalance;
b9403130
MW
6592 /* The set of CPUs under consideration for load-balancing */
6593 struct cpumask *cpus;
6594
ddcdf6e7 6595 unsigned int flags;
367456c7
PZ
6596
6597 unsigned int loop;
6598 unsigned int loop_break;
6599 unsigned int loop_max;
0ec8aa00
PZ
6600
6601 enum fbq_type fbq_type;
163122b7 6602 struct list_head tasks;
ddcdf6e7
PZ
6603};
6604
029632fb
PZ
6605/*
6606 * Is this task likely cache-hot:
6607 */
5d5e2b1b 6608static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6609{
6610 s64 delta;
6611
e5673f28
KT
6612 lockdep_assert_held(&env->src_rq->lock);
6613
029632fb
PZ
6614 if (p->sched_class != &fair_sched_class)
6615 return 0;
6616
6617 if (unlikely(p->policy == SCHED_IDLE))
6618 return 0;
6619
6620 /*
6621 * Buddy candidates are cache hot:
6622 */
5d5e2b1b 6623 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6624 (&p->se == cfs_rq_of(&p->se)->next ||
6625 &p->se == cfs_rq_of(&p->se)->last))
6626 return 1;
6627
6628 if (sysctl_sched_migration_cost == -1)
6629 return 1;
6630 if (sysctl_sched_migration_cost == 0)
6631 return 0;
6632
5d5e2b1b 6633 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6634
6635 return delta < (s64)sysctl_sched_migration_cost;
6636}
6637
3a7053b3 6638#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6639/*
2a1ed24c
SD
6640 * Returns 1, if task migration degrades locality
6641 * Returns 0, if task migration improves locality i.e migration preferred.
6642 * Returns -1, if task migration is not affected by locality.
c1ceac62 6643 */
2a1ed24c 6644static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6645{
b1ad065e 6646 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6647 unsigned long src_faults, dst_faults;
3a7053b3
MG
6648 int src_nid, dst_nid;
6649
2a595721 6650 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6651 return -1;
6652
c3b9bc5b 6653 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6654 return -1;
7a0f3083
MG
6655
6656 src_nid = cpu_to_node(env->src_cpu);
6657 dst_nid = cpu_to_node(env->dst_cpu);
6658
83e1d2cd 6659 if (src_nid == dst_nid)
2a1ed24c 6660 return -1;
7a0f3083 6661
2a1ed24c
SD
6662 /* Migrating away from the preferred node is always bad. */
6663 if (src_nid == p->numa_preferred_nid) {
6664 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6665 return 1;
6666 else
6667 return -1;
6668 }
b1ad065e 6669
c1ceac62
RR
6670 /* Encourage migration to the preferred node. */
6671 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6672 return 0;
b1ad065e 6673
c1ceac62
RR
6674 if (numa_group) {
6675 src_faults = group_faults(p, src_nid);
6676 dst_faults = group_faults(p, dst_nid);
6677 } else {
6678 src_faults = task_faults(p, src_nid);
6679 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6680 }
6681
c1ceac62 6682 return dst_faults < src_faults;
7a0f3083
MG
6683}
6684
3a7053b3 6685#else
2a1ed24c 6686static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6687 struct lb_env *env)
6688{
2a1ed24c 6689 return -1;
7a0f3083 6690}
3a7053b3
MG
6691#endif
6692
1e3c88bd
PZ
6693/*
6694 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6695 */
6696static
8e45cb54 6697int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6698{
2a1ed24c 6699 int tsk_cache_hot;
e5673f28
KT
6700
6701 lockdep_assert_held(&env->src_rq->lock);
6702
1e3c88bd
PZ
6703 /*
6704 * We do not migrate tasks that are:
d3198084 6705 * 1) throttled_lb_pair, or
1e3c88bd 6706 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6707 * 3) running (obviously), or
6708 * 4) are cache-hot on their current CPU.
1e3c88bd 6709 */
d3198084
JK
6710 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6711 return 0;
6712
0c98d344 6713 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6714 int cpu;
88b8dac0 6715
ae92882e 6716 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6717
6263322c
PZ
6718 env->flags |= LBF_SOME_PINNED;
6719
88b8dac0
SV
6720 /*
6721 * Remember if this task can be migrated to any other cpu in
6722 * our sched_group. We may want to revisit it if we couldn't
6723 * meet load balance goals by pulling other tasks on src_cpu.
6724 *
6725 * Also avoid computing new_dst_cpu if we have already computed
6726 * one in current iteration.
6727 */
6263322c 6728 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6729 return 0;
6730
e02e60c1
JK
6731 /* Prevent to re-select dst_cpu via env's cpus */
6732 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6733 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6734 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6735 env->new_dst_cpu = cpu;
6736 break;
6737 }
88b8dac0 6738 }
e02e60c1 6739
1e3c88bd
PZ
6740 return 0;
6741 }
88b8dac0
SV
6742
6743 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6744 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6745
ddcdf6e7 6746 if (task_running(env->src_rq, p)) {
ae92882e 6747 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6748 return 0;
6749 }
6750
6751 /*
6752 * Aggressive migration if:
3a7053b3
MG
6753 * 1) destination numa is preferred
6754 * 2) task is cache cold, or
6755 * 3) too many balance attempts have failed.
1e3c88bd 6756 */
2a1ed24c
SD
6757 tsk_cache_hot = migrate_degrades_locality(p, env);
6758 if (tsk_cache_hot == -1)
6759 tsk_cache_hot = task_hot(p, env);
3a7053b3 6760
2a1ed24c 6761 if (tsk_cache_hot <= 0 ||
7a96c231 6762 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6763 if (tsk_cache_hot == 1) {
ae92882e
JP
6764 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6765 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6766 }
1e3c88bd
PZ
6767 return 1;
6768 }
6769
ae92882e 6770 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6771 return 0;
1e3c88bd
PZ
6772}
6773
897c395f 6774/*
163122b7
KT
6775 * detach_task() -- detach the task for the migration specified in env
6776 */
6777static void detach_task(struct task_struct *p, struct lb_env *env)
6778{
6779 lockdep_assert_held(&env->src_rq->lock);
6780
163122b7 6781 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6782 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6783 set_task_cpu(p, env->dst_cpu);
6784}
6785
897c395f 6786/*
e5673f28 6787 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6788 * part of active balancing operations within "domain".
897c395f 6789 *
e5673f28 6790 * Returns a task if successful and NULL otherwise.
897c395f 6791 */
e5673f28 6792static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6793{
6794 struct task_struct *p, *n;
897c395f 6795
e5673f28
KT
6796 lockdep_assert_held(&env->src_rq->lock);
6797
367456c7 6798 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6799 if (!can_migrate_task(p, env))
6800 continue;
897c395f 6801
163122b7 6802 detach_task(p, env);
e5673f28 6803
367456c7 6804 /*
e5673f28 6805 * Right now, this is only the second place where
163122b7 6806 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6807 * so we can safely collect stats here rather than
163122b7 6808 * inside detach_tasks().
367456c7 6809 */
ae92882e 6810 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6811 return p;
897c395f 6812 }
e5673f28 6813 return NULL;
897c395f
PZ
6814}
6815
eb95308e
PZ
6816static const unsigned int sched_nr_migrate_break = 32;
6817
5d6523eb 6818/*
163122b7
KT
6819 * detach_tasks() -- tries to detach up to imbalance weighted load from
6820 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6821 *
163122b7 6822 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6823 */
163122b7 6824static int detach_tasks(struct lb_env *env)
1e3c88bd 6825{
5d6523eb
PZ
6826 struct list_head *tasks = &env->src_rq->cfs_tasks;
6827 struct task_struct *p;
367456c7 6828 unsigned long load;
163122b7
KT
6829 int detached = 0;
6830
6831 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6832
bd939f45 6833 if (env->imbalance <= 0)
5d6523eb 6834 return 0;
1e3c88bd 6835
5d6523eb 6836 while (!list_empty(tasks)) {
985d3a4c
YD
6837 /*
6838 * We don't want to steal all, otherwise we may be treated likewise,
6839 * which could at worst lead to a livelock crash.
6840 */
6841 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6842 break;
6843
5d6523eb 6844 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6845
367456c7
PZ
6846 env->loop++;
6847 /* We've more or less seen every task there is, call it quits */
5d6523eb 6848 if (env->loop > env->loop_max)
367456c7 6849 break;
5d6523eb
PZ
6850
6851 /* take a breather every nr_migrate tasks */
367456c7 6852 if (env->loop > env->loop_break) {
eb95308e 6853 env->loop_break += sched_nr_migrate_break;
8e45cb54 6854 env->flags |= LBF_NEED_BREAK;
ee00e66f 6855 break;
a195f004 6856 }
1e3c88bd 6857
d3198084 6858 if (!can_migrate_task(p, env))
367456c7
PZ
6859 goto next;
6860
6861 load = task_h_load(p);
5d6523eb 6862
eb95308e 6863 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6864 goto next;
6865
bd939f45 6866 if ((load / 2) > env->imbalance)
367456c7 6867 goto next;
1e3c88bd 6868
163122b7
KT
6869 detach_task(p, env);
6870 list_add(&p->se.group_node, &env->tasks);
6871
6872 detached++;
bd939f45 6873 env->imbalance -= load;
1e3c88bd
PZ
6874
6875#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6876 /*
6877 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6878 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6879 * the critical section.
6880 */
5d6523eb 6881 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6882 break;
1e3c88bd
PZ
6883#endif
6884
ee00e66f
PZ
6885 /*
6886 * We only want to steal up to the prescribed amount of
6887 * weighted load.
6888 */
bd939f45 6889 if (env->imbalance <= 0)
ee00e66f 6890 break;
367456c7
PZ
6891
6892 continue;
6893next:
5d6523eb 6894 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6895 }
5d6523eb 6896
1e3c88bd 6897 /*
163122b7
KT
6898 * Right now, this is one of only two places we collect this stat
6899 * so we can safely collect detach_one_task() stats here rather
6900 * than inside detach_one_task().
1e3c88bd 6901 */
ae92882e 6902 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6903
163122b7
KT
6904 return detached;
6905}
6906
6907/*
6908 * attach_task() -- attach the task detached by detach_task() to its new rq.
6909 */
6910static void attach_task(struct rq *rq, struct task_struct *p)
6911{
6912 lockdep_assert_held(&rq->lock);
6913
6914 BUG_ON(task_rq(p) != rq);
5704ac0a 6915 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6916 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6917 check_preempt_curr(rq, p, 0);
6918}
6919
6920/*
6921 * attach_one_task() -- attaches the task returned from detach_one_task() to
6922 * its new rq.
6923 */
6924static void attach_one_task(struct rq *rq, struct task_struct *p)
6925{
8a8c69c3
PZ
6926 struct rq_flags rf;
6927
6928 rq_lock(rq, &rf);
5704ac0a 6929 update_rq_clock(rq);
163122b7 6930 attach_task(rq, p);
8a8c69c3 6931 rq_unlock(rq, &rf);
163122b7
KT
6932}
6933
6934/*
6935 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6936 * new rq.
6937 */
6938static void attach_tasks(struct lb_env *env)
6939{
6940 struct list_head *tasks = &env->tasks;
6941 struct task_struct *p;
8a8c69c3 6942 struct rq_flags rf;
163122b7 6943
8a8c69c3 6944 rq_lock(env->dst_rq, &rf);
5704ac0a 6945 update_rq_clock(env->dst_rq);
163122b7
KT
6946
6947 while (!list_empty(tasks)) {
6948 p = list_first_entry(tasks, struct task_struct, se.group_node);
6949 list_del_init(&p->se.group_node);
1e3c88bd 6950
163122b7
KT
6951 attach_task(env->dst_rq, p);
6952 }
6953
8a8c69c3 6954 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6955}
6956
230059de 6957#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
6958
6959static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6960{
6961 if (cfs_rq->load.weight)
6962 return false;
6963
6964 if (cfs_rq->avg.load_sum)
6965 return false;
6966
6967 if (cfs_rq->avg.util_sum)
6968 return false;
6969
6970 if (cfs_rq->runnable_load_sum)
6971 return false;
6972
6973 return true;
6974}
6975
48a16753 6976static void update_blocked_averages(int cpu)
9e3081ca 6977{
9e3081ca 6978 struct rq *rq = cpu_rq(cpu);
a9e7f654 6979 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 6980 struct rq_flags rf;
9e3081ca 6981
8a8c69c3 6982 rq_lock_irqsave(rq, &rf);
48a16753 6983 update_rq_clock(rq);
9d89c257 6984
9763b67f
PZ
6985 /*
6986 * Iterates the task_group tree in a bottom up fashion, see
6987 * list_add_leaf_cfs_rq() for details.
6988 */
a9e7f654 6989 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
6990 struct sched_entity *se;
6991
9d89c257
YD
6992 /* throttled entities do not contribute to load */
6993 if (throttled_hierarchy(cfs_rq))
6994 continue;
48a16753 6995
a2c6c91f 6996 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 6997 update_tg_load_avg(cfs_rq, 0);
4e516076 6998
bc427898
VG
6999 /* Propagate pending load changes to the parent, if any: */
7000 se = cfs_rq->tg->se[cpu];
7001 if (se && !skip_blocked_update(se))
7002 update_load_avg(se, 0);
a9e7f654
TH
7003
7004 /*
7005 * There can be a lot of idle CPU cgroups. Don't let fully
7006 * decayed cfs_rqs linger on the list.
7007 */
7008 if (cfs_rq_is_decayed(cfs_rq))
7009 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7010 }
8a8c69c3 7011 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7012}
7013
9763b67f 7014/*
68520796 7015 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7016 * This needs to be done in a top-down fashion because the load of a child
7017 * group is a fraction of its parents load.
7018 */
68520796 7019static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7020{
68520796
VD
7021 struct rq *rq = rq_of(cfs_rq);
7022 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7023 unsigned long now = jiffies;
68520796 7024 unsigned long load;
a35b6466 7025
68520796 7026 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7027 return;
7028
68520796
VD
7029 cfs_rq->h_load_next = NULL;
7030 for_each_sched_entity(se) {
7031 cfs_rq = cfs_rq_of(se);
7032 cfs_rq->h_load_next = se;
7033 if (cfs_rq->last_h_load_update == now)
7034 break;
7035 }
a35b6466 7036
68520796 7037 if (!se) {
7ea241af 7038 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7039 cfs_rq->last_h_load_update = now;
7040 }
7041
7042 while ((se = cfs_rq->h_load_next) != NULL) {
7043 load = cfs_rq->h_load;
7ea241af
YD
7044 load = div64_ul(load * se->avg.load_avg,
7045 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7046 cfs_rq = group_cfs_rq(se);
7047 cfs_rq->h_load = load;
7048 cfs_rq->last_h_load_update = now;
7049 }
9763b67f
PZ
7050}
7051
367456c7 7052static unsigned long task_h_load(struct task_struct *p)
230059de 7053{
367456c7 7054 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7055
68520796 7056 update_cfs_rq_h_load(cfs_rq);
9d89c257 7057 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7058 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7059}
7060#else
48a16753 7061static inline void update_blocked_averages(int cpu)
9e3081ca 7062{
6c1d47c0
VG
7063 struct rq *rq = cpu_rq(cpu);
7064 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7065 struct rq_flags rf;
6c1d47c0 7066
8a8c69c3 7067 rq_lock_irqsave(rq, &rf);
6c1d47c0 7068 update_rq_clock(rq);
a2c6c91f 7069 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 7070 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7071}
7072
367456c7 7073static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7074{
9d89c257 7075 return p->se.avg.load_avg;
1e3c88bd 7076}
230059de 7077#endif
1e3c88bd 7078
1e3c88bd 7079/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7080
7081enum group_type {
7082 group_other = 0,
7083 group_imbalanced,
7084 group_overloaded,
7085};
7086
1e3c88bd
PZ
7087/*
7088 * sg_lb_stats - stats of a sched_group required for load_balancing
7089 */
7090struct sg_lb_stats {
7091 unsigned long avg_load; /*Avg load across the CPUs of the group */
7092 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7093 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7094 unsigned long load_per_task;
63b2ca30 7095 unsigned long group_capacity;
9e91d61d 7096 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7097 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7098 unsigned int idle_cpus;
7099 unsigned int group_weight;
caeb178c 7100 enum group_type group_type;
ea67821b 7101 int group_no_capacity;
0ec8aa00
PZ
7102#ifdef CONFIG_NUMA_BALANCING
7103 unsigned int nr_numa_running;
7104 unsigned int nr_preferred_running;
7105#endif
1e3c88bd
PZ
7106};
7107
56cf515b
JK
7108/*
7109 * sd_lb_stats - Structure to store the statistics of a sched_domain
7110 * during load balancing.
7111 */
7112struct sd_lb_stats {
7113 struct sched_group *busiest; /* Busiest group in this sd */
7114 struct sched_group *local; /* Local group in this sd */
7115 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7116 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7117 unsigned long avg_load; /* Average load across all groups in sd */
7118
56cf515b 7119 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7120 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7121};
7122
147c5fc2
PZ
7123static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7124{
7125 /*
7126 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7127 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7128 * We must however clear busiest_stat::avg_load because
7129 * update_sd_pick_busiest() reads this before assignment.
7130 */
7131 *sds = (struct sd_lb_stats){
7132 .busiest = NULL,
7133 .local = NULL,
7134 .total_load = 0UL,
63b2ca30 7135 .total_capacity = 0UL,
147c5fc2
PZ
7136 .busiest_stat = {
7137 .avg_load = 0UL,
caeb178c
RR
7138 .sum_nr_running = 0,
7139 .group_type = group_other,
147c5fc2
PZ
7140 },
7141 };
7142}
7143
1e3c88bd
PZ
7144/**
7145 * get_sd_load_idx - Obtain the load index for a given sched domain.
7146 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7147 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7148 *
7149 * Return: The load index.
1e3c88bd
PZ
7150 */
7151static inline int get_sd_load_idx(struct sched_domain *sd,
7152 enum cpu_idle_type idle)
7153{
7154 int load_idx;
7155
7156 switch (idle) {
7157 case CPU_NOT_IDLE:
7158 load_idx = sd->busy_idx;
7159 break;
7160
7161 case CPU_NEWLY_IDLE:
7162 load_idx = sd->newidle_idx;
7163 break;
7164 default:
7165 load_idx = sd->idle_idx;
7166 break;
7167 }
7168
7169 return load_idx;
7170}
7171
ced549fa 7172static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7173{
7174 struct rq *rq = cpu_rq(cpu);
b5b4860d 7175 u64 total, used, age_stamp, avg;
cadefd3d 7176 s64 delta;
1e3c88bd 7177
b654f7de
PZ
7178 /*
7179 * Since we're reading these variables without serialization make sure
7180 * we read them once before doing sanity checks on them.
7181 */
316c1608
JL
7182 age_stamp = READ_ONCE(rq->age_stamp);
7183 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7184 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7185
cadefd3d
PZ
7186 if (unlikely(delta < 0))
7187 delta = 0;
7188
7189 total = sched_avg_period() + delta;
aa483808 7190
b5b4860d 7191 used = div_u64(avg, total);
1e3c88bd 7192
b5b4860d
VG
7193 if (likely(used < SCHED_CAPACITY_SCALE))
7194 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7195
b5b4860d 7196 return 1;
1e3c88bd
PZ
7197}
7198
ced549fa 7199static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7200{
8cd5601c 7201 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7202 struct sched_group *sdg = sd->groups;
7203
ca6d75e6 7204 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7205
ced549fa 7206 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7207 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7208
ced549fa
NP
7209 if (!capacity)
7210 capacity = 1;
1e3c88bd 7211
ced549fa
NP
7212 cpu_rq(cpu)->cpu_capacity = capacity;
7213 sdg->sgc->capacity = capacity;
bf475ce0 7214 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7215}
7216
63b2ca30 7217void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7218{
7219 struct sched_domain *child = sd->child;
7220 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7221 unsigned long capacity, min_capacity;
4ec4412e
VG
7222 unsigned long interval;
7223
7224 interval = msecs_to_jiffies(sd->balance_interval);
7225 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7226 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7227
7228 if (!child) {
ced549fa 7229 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7230 return;
7231 }
7232
dc7ff76e 7233 capacity = 0;
bf475ce0 7234 min_capacity = ULONG_MAX;
1e3c88bd 7235
74a5ce20
PZ
7236 if (child->flags & SD_OVERLAP) {
7237 /*
7238 * SD_OVERLAP domains cannot assume that child groups
7239 * span the current group.
7240 */
7241
ae4df9d6 7242 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7243 struct sched_group_capacity *sgc;
9abf24d4 7244 struct rq *rq = cpu_rq(cpu);
863bffc8 7245
9abf24d4 7246 /*
63b2ca30 7247 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7248 * gets here before we've attached the domains to the
7249 * runqueues.
7250 *
ced549fa
NP
7251 * Use capacity_of(), which is set irrespective of domains
7252 * in update_cpu_capacity().
9abf24d4 7253 *
dc7ff76e 7254 * This avoids capacity from being 0 and
9abf24d4 7255 * causing divide-by-zero issues on boot.
9abf24d4
SD
7256 */
7257 if (unlikely(!rq->sd)) {
ced549fa 7258 capacity += capacity_of(cpu);
bf475ce0
MR
7259 } else {
7260 sgc = rq->sd->groups->sgc;
7261 capacity += sgc->capacity;
9abf24d4 7262 }
863bffc8 7263
bf475ce0 7264 min_capacity = min(capacity, min_capacity);
863bffc8 7265 }
74a5ce20
PZ
7266 } else {
7267 /*
7268 * !SD_OVERLAP domains can assume that child groups
7269 * span the current group.
97a7142f 7270 */
74a5ce20
PZ
7271
7272 group = child->groups;
7273 do {
bf475ce0
MR
7274 struct sched_group_capacity *sgc = group->sgc;
7275
7276 capacity += sgc->capacity;
7277 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7278 group = group->next;
7279 } while (group != child->groups);
7280 }
1e3c88bd 7281
63b2ca30 7282 sdg->sgc->capacity = capacity;
bf475ce0 7283 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7284}
7285
9d5efe05 7286/*
ea67821b
VG
7287 * Check whether the capacity of the rq has been noticeably reduced by side
7288 * activity. The imbalance_pct is used for the threshold.
7289 * Return true is the capacity is reduced
9d5efe05
SV
7290 */
7291static inline int
ea67821b 7292check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7293{
ea67821b
VG
7294 return ((rq->cpu_capacity * sd->imbalance_pct) <
7295 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7296}
7297
30ce5dab
PZ
7298/*
7299 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7300 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7301 *
7302 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7303 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7304 * Something like:
7305 *
2b4d5b25
IM
7306 * { 0 1 2 3 } { 4 5 6 7 }
7307 * * * * *
30ce5dab
PZ
7308 *
7309 * If we were to balance group-wise we'd place two tasks in the first group and
7310 * two tasks in the second group. Clearly this is undesired as it will overload
7311 * cpu 3 and leave one of the cpus in the second group unused.
7312 *
7313 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7314 * by noticing the lower domain failed to reach balance and had difficulty
7315 * moving tasks due to affinity constraints.
30ce5dab
PZ
7316 *
7317 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7318 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7319 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7320 * to create an effective group imbalance.
7321 *
7322 * This is a somewhat tricky proposition since the next run might not find the
7323 * group imbalance and decide the groups need to be balanced again. A most
7324 * subtle and fragile situation.
7325 */
7326
6263322c 7327static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7328{
63b2ca30 7329 return group->sgc->imbalance;
30ce5dab
PZ
7330}
7331
b37d9316 7332/*
ea67821b
VG
7333 * group_has_capacity returns true if the group has spare capacity that could
7334 * be used by some tasks.
7335 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7336 * smaller than the number of CPUs or if the utilization is lower than the
7337 * available capacity for CFS tasks.
ea67821b
VG
7338 * For the latter, we use a threshold to stabilize the state, to take into
7339 * account the variance of the tasks' load and to return true if the available
7340 * capacity in meaningful for the load balancer.
7341 * As an example, an available capacity of 1% can appear but it doesn't make
7342 * any benefit for the load balance.
b37d9316 7343 */
ea67821b
VG
7344static inline bool
7345group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7346{
ea67821b
VG
7347 if (sgs->sum_nr_running < sgs->group_weight)
7348 return true;
c61037e9 7349
ea67821b 7350 if ((sgs->group_capacity * 100) >
9e91d61d 7351 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7352 return true;
b37d9316 7353
ea67821b
VG
7354 return false;
7355}
7356
7357/*
7358 * group_is_overloaded returns true if the group has more tasks than it can
7359 * handle.
7360 * group_is_overloaded is not equals to !group_has_capacity because a group
7361 * with the exact right number of tasks, has no more spare capacity but is not
7362 * overloaded so both group_has_capacity and group_is_overloaded return
7363 * false.
7364 */
7365static inline bool
7366group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7367{
7368 if (sgs->sum_nr_running <= sgs->group_weight)
7369 return false;
b37d9316 7370
ea67821b 7371 if ((sgs->group_capacity * 100) <
9e91d61d 7372 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7373 return true;
b37d9316 7374
ea67821b 7375 return false;
b37d9316
PZ
7376}
7377
9e0994c0
MR
7378/*
7379 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7380 * per-CPU capacity than sched_group ref.
7381 */
7382static inline bool
7383group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7384{
7385 return sg->sgc->min_capacity * capacity_margin <
7386 ref->sgc->min_capacity * 1024;
7387}
7388
79a89f92
LY
7389static inline enum
7390group_type group_classify(struct sched_group *group,
7391 struct sg_lb_stats *sgs)
caeb178c 7392{
ea67821b 7393 if (sgs->group_no_capacity)
caeb178c
RR
7394 return group_overloaded;
7395
7396 if (sg_imbalanced(group))
7397 return group_imbalanced;
7398
7399 return group_other;
7400}
7401
1e3c88bd
PZ
7402/**
7403 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7404 * @env: The load balancing environment.
1e3c88bd 7405 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7406 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7407 * @local_group: Does group contain this_cpu.
1e3c88bd 7408 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7409 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7410 */
bd939f45
PZ
7411static inline void update_sg_lb_stats(struct lb_env *env,
7412 struct sched_group *group, int load_idx,
4486edd1
TC
7413 int local_group, struct sg_lb_stats *sgs,
7414 bool *overload)
1e3c88bd 7415{
30ce5dab 7416 unsigned long load;
a426f99c 7417 int i, nr_running;
1e3c88bd 7418
b72ff13c
PZ
7419 memset(sgs, 0, sizeof(*sgs));
7420
ae4df9d6 7421 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7422 struct rq *rq = cpu_rq(i);
7423
1e3c88bd 7424 /* Bias balancing toward cpus of our domain */
6263322c 7425 if (local_group)
04f733b4 7426 load = target_load(i, load_idx);
6263322c 7427 else
1e3c88bd 7428 load = source_load(i, load_idx);
1e3c88bd
PZ
7429
7430 sgs->group_load += load;
9e91d61d 7431 sgs->group_util += cpu_util(i);
65fdac08 7432 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7433
a426f99c
WL
7434 nr_running = rq->nr_running;
7435 if (nr_running > 1)
4486edd1
TC
7436 *overload = true;
7437
0ec8aa00
PZ
7438#ifdef CONFIG_NUMA_BALANCING
7439 sgs->nr_numa_running += rq->nr_numa_running;
7440 sgs->nr_preferred_running += rq->nr_preferred_running;
7441#endif
1e3c88bd 7442 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7443 /*
7444 * No need to call idle_cpu() if nr_running is not 0
7445 */
7446 if (!nr_running && idle_cpu(i))
aae6d3dd 7447 sgs->idle_cpus++;
1e3c88bd
PZ
7448 }
7449
63b2ca30
NP
7450 /* Adjust by relative CPU capacity of the group */
7451 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7452 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7453
dd5feea1 7454 if (sgs->sum_nr_running)
38d0f770 7455 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7456
aae6d3dd 7457 sgs->group_weight = group->group_weight;
b37d9316 7458
ea67821b 7459 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7460 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7461}
7462
532cb4c4
MN
7463/**
7464 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7465 * @env: The load balancing environment.
532cb4c4
MN
7466 * @sds: sched_domain statistics
7467 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7468 * @sgs: sched_group statistics
532cb4c4
MN
7469 *
7470 * Determine if @sg is a busier group than the previously selected
7471 * busiest group.
e69f6186
YB
7472 *
7473 * Return: %true if @sg is a busier group than the previously selected
7474 * busiest group. %false otherwise.
532cb4c4 7475 */
bd939f45 7476static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7477 struct sd_lb_stats *sds,
7478 struct sched_group *sg,
bd939f45 7479 struct sg_lb_stats *sgs)
532cb4c4 7480{
caeb178c 7481 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7482
caeb178c 7483 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7484 return true;
7485
caeb178c
RR
7486 if (sgs->group_type < busiest->group_type)
7487 return false;
7488
7489 if (sgs->avg_load <= busiest->avg_load)
7490 return false;
7491
9e0994c0
MR
7492 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7493 goto asym_packing;
7494
7495 /*
7496 * Candidate sg has no more than one task per CPU and
7497 * has higher per-CPU capacity. Migrating tasks to less
7498 * capable CPUs may harm throughput. Maximize throughput,
7499 * power/energy consequences are not considered.
7500 */
7501 if (sgs->sum_nr_running <= sgs->group_weight &&
7502 group_smaller_cpu_capacity(sds->local, sg))
7503 return false;
7504
7505asym_packing:
caeb178c
RR
7506 /* This is the busiest node in its class. */
7507 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7508 return true;
7509
1f621e02
SD
7510 /* No ASYM_PACKING if target cpu is already busy */
7511 if (env->idle == CPU_NOT_IDLE)
7512 return true;
532cb4c4 7513 /*
afe06efd
TC
7514 * ASYM_PACKING needs to move all the work to the highest
7515 * prority CPUs in the group, therefore mark all groups
7516 * of lower priority than ourself as busy.
532cb4c4 7517 */
afe06efd
TC
7518 if (sgs->sum_nr_running &&
7519 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7520 if (!sds->busiest)
7521 return true;
7522
afe06efd
TC
7523 /* Prefer to move from lowest priority cpu's work */
7524 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7525 sg->asym_prefer_cpu))
532cb4c4
MN
7526 return true;
7527 }
7528
7529 return false;
7530}
7531
0ec8aa00
PZ
7532#ifdef CONFIG_NUMA_BALANCING
7533static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7534{
7535 if (sgs->sum_nr_running > sgs->nr_numa_running)
7536 return regular;
7537 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7538 return remote;
7539 return all;
7540}
7541
7542static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7543{
7544 if (rq->nr_running > rq->nr_numa_running)
7545 return regular;
7546 if (rq->nr_running > rq->nr_preferred_running)
7547 return remote;
7548 return all;
7549}
7550#else
7551static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7552{
7553 return all;
7554}
7555
7556static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7557{
7558 return regular;
7559}
7560#endif /* CONFIG_NUMA_BALANCING */
7561
1e3c88bd 7562/**
461819ac 7563 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7564 * @env: The load balancing environment.
1e3c88bd
PZ
7565 * @sds: variable to hold the statistics for this sched_domain.
7566 */
0ec8aa00 7567static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7568{
bd939f45
PZ
7569 struct sched_domain *child = env->sd->child;
7570 struct sched_group *sg = env->sd->groups;
05b40e05 7571 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7572 struct sg_lb_stats tmp_sgs;
1e3c88bd 7573 int load_idx, prefer_sibling = 0;
4486edd1 7574 bool overload = false;
1e3c88bd
PZ
7575
7576 if (child && child->flags & SD_PREFER_SIBLING)
7577 prefer_sibling = 1;
7578
bd939f45 7579 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7580
7581 do {
56cf515b 7582 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7583 int local_group;
7584
ae4df9d6 7585 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7586 if (local_group) {
7587 sds->local = sg;
05b40e05 7588 sgs = local;
b72ff13c
PZ
7589
7590 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7591 time_after_eq(jiffies, sg->sgc->next_update))
7592 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7593 }
1e3c88bd 7594
4486edd1
TC
7595 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7596 &overload);
1e3c88bd 7597
b72ff13c
PZ
7598 if (local_group)
7599 goto next_group;
7600
1e3c88bd
PZ
7601 /*
7602 * In case the child domain prefers tasks go to siblings
ea67821b 7603 * first, lower the sg capacity so that we'll try
75dd321d
NR
7604 * and move all the excess tasks away. We lower the capacity
7605 * of a group only if the local group has the capacity to fit
ea67821b
VG
7606 * these excess tasks. The extra check prevents the case where
7607 * you always pull from the heaviest group when it is already
7608 * under-utilized (possible with a large weight task outweighs
7609 * the tasks on the system).
1e3c88bd 7610 */
b72ff13c 7611 if (prefer_sibling && sds->local &&
05b40e05
SD
7612 group_has_capacity(env, local) &&
7613 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7614 sgs->group_no_capacity = 1;
79a89f92 7615 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7616 }
1e3c88bd 7617
b72ff13c 7618 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7619 sds->busiest = sg;
56cf515b 7620 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7621 }
7622
b72ff13c
PZ
7623next_group:
7624 /* Now, start updating sd_lb_stats */
7625 sds->total_load += sgs->group_load;
63b2ca30 7626 sds->total_capacity += sgs->group_capacity;
b72ff13c 7627
532cb4c4 7628 sg = sg->next;
bd939f45 7629 } while (sg != env->sd->groups);
0ec8aa00
PZ
7630
7631 if (env->sd->flags & SD_NUMA)
7632 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7633
7634 if (!env->sd->parent) {
7635 /* update overload indicator if we are at root domain */
7636 if (env->dst_rq->rd->overload != overload)
7637 env->dst_rq->rd->overload = overload;
7638 }
7639
532cb4c4
MN
7640}
7641
532cb4c4
MN
7642/**
7643 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7644 * sched domain.
532cb4c4
MN
7645 *
7646 * This is primarily intended to used at the sibling level. Some
7647 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7648 * case of POWER7, it can move to lower SMT modes only when higher
7649 * threads are idle. When in lower SMT modes, the threads will
7650 * perform better since they share less core resources. Hence when we
7651 * have idle threads, we want them to be the higher ones.
7652 *
7653 * This packing function is run on idle threads. It checks to see if
7654 * the busiest CPU in this domain (core in the P7 case) has a higher
7655 * CPU number than the packing function is being run on. Here we are
7656 * assuming lower CPU number will be equivalent to lower a SMT thread
7657 * number.
7658 *
e69f6186 7659 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7660 * this CPU. The amount of the imbalance is returned in *imbalance.
7661 *
cd96891d 7662 * @env: The load balancing environment.
532cb4c4 7663 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7664 */
bd939f45 7665static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7666{
7667 int busiest_cpu;
7668
bd939f45 7669 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7670 return 0;
7671
1f621e02
SD
7672 if (env->idle == CPU_NOT_IDLE)
7673 return 0;
7674
532cb4c4
MN
7675 if (!sds->busiest)
7676 return 0;
7677
afe06efd
TC
7678 busiest_cpu = sds->busiest->asym_prefer_cpu;
7679 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7680 return 0;
7681
bd939f45 7682 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7683 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7684 SCHED_CAPACITY_SCALE);
bd939f45 7685
532cb4c4 7686 return 1;
1e3c88bd
PZ
7687}
7688
7689/**
7690 * fix_small_imbalance - Calculate the minor imbalance that exists
7691 * amongst the groups of a sched_domain, during
7692 * load balancing.
cd96891d 7693 * @env: The load balancing environment.
1e3c88bd 7694 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7695 */
bd939f45
PZ
7696static inline
7697void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7698{
63b2ca30 7699 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7700 unsigned int imbn = 2;
dd5feea1 7701 unsigned long scaled_busy_load_per_task;
56cf515b 7702 struct sg_lb_stats *local, *busiest;
1e3c88bd 7703
56cf515b
JK
7704 local = &sds->local_stat;
7705 busiest = &sds->busiest_stat;
1e3c88bd 7706
56cf515b
JK
7707 if (!local->sum_nr_running)
7708 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7709 else if (busiest->load_per_task > local->load_per_task)
7710 imbn = 1;
dd5feea1 7711
56cf515b 7712 scaled_busy_load_per_task =
ca8ce3d0 7713 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7714 busiest->group_capacity;
56cf515b 7715
3029ede3
VD
7716 if (busiest->avg_load + scaled_busy_load_per_task >=
7717 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7718 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7719 return;
7720 }
7721
7722 /*
7723 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7724 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7725 * moving them.
7726 */
7727
63b2ca30 7728 capa_now += busiest->group_capacity *
56cf515b 7729 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7730 capa_now += local->group_capacity *
56cf515b 7731 min(local->load_per_task, local->avg_load);
ca8ce3d0 7732 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7733
7734 /* Amount of load we'd subtract */
a2cd4260 7735 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7736 capa_move += busiest->group_capacity *
56cf515b 7737 min(busiest->load_per_task,
a2cd4260 7738 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7739 }
1e3c88bd
PZ
7740
7741 /* Amount of load we'd add */
63b2ca30 7742 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7743 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7744 tmp = (busiest->avg_load * busiest->group_capacity) /
7745 local->group_capacity;
56cf515b 7746 } else {
ca8ce3d0 7747 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7748 local->group_capacity;
56cf515b 7749 }
63b2ca30 7750 capa_move += local->group_capacity *
3ae11c90 7751 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7752 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7753
7754 /* Move if we gain throughput */
63b2ca30 7755 if (capa_move > capa_now)
56cf515b 7756 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7757}
7758
7759/**
7760 * calculate_imbalance - Calculate the amount of imbalance present within the
7761 * groups of a given sched_domain during load balance.
bd939f45 7762 * @env: load balance environment
1e3c88bd 7763 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7764 */
bd939f45 7765static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7766{
dd5feea1 7767 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7768 struct sg_lb_stats *local, *busiest;
7769
7770 local = &sds->local_stat;
56cf515b 7771 busiest = &sds->busiest_stat;
dd5feea1 7772
caeb178c 7773 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7774 /*
7775 * In the group_imb case we cannot rely on group-wide averages
7776 * to ensure cpu-load equilibrium, look at wider averages. XXX
7777 */
56cf515b
JK
7778 busiest->load_per_task =
7779 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7780 }
7781
1e3c88bd 7782 /*
885e542c
DE
7783 * Avg load of busiest sg can be less and avg load of local sg can
7784 * be greater than avg load across all sgs of sd because avg load
7785 * factors in sg capacity and sgs with smaller group_type are
7786 * skipped when updating the busiest sg:
1e3c88bd 7787 */
b1885550
VD
7788 if (busiest->avg_load <= sds->avg_load ||
7789 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7790 env->imbalance = 0;
7791 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7792 }
7793
9a5d9ba6
PZ
7794 /*
7795 * If there aren't any idle cpus, avoid creating some.
7796 */
7797 if (busiest->group_type == group_overloaded &&
7798 local->group_type == group_overloaded) {
1be0eb2a 7799 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7800 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7801 load_above_capacity -= busiest->group_capacity;
26656215 7802 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7803 load_above_capacity /= busiest->group_capacity;
7804 } else
ea67821b 7805 load_above_capacity = ~0UL;
dd5feea1
SS
7806 }
7807
7808 /*
7809 * We're trying to get all the cpus to the average_load, so we don't
7810 * want to push ourselves above the average load, nor do we wish to
7811 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7812 * we also don't want to reduce the group load below the group
7813 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7814 */
30ce5dab 7815 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7816
7817 /* How much load to actually move to equalise the imbalance */
56cf515b 7818 env->imbalance = min(
63b2ca30
NP
7819 max_pull * busiest->group_capacity,
7820 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7821 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7822
7823 /*
7824 * if *imbalance is less than the average load per runnable task
25985edc 7825 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7826 * a think about bumping its value to force at least one task to be
7827 * moved
7828 */
56cf515b 7829 if (env->imbalance < busiest->load_per_task)
bd939f45 7830 return fix_small_imbalance(env, sds);
1e3c88bd 7831}
fab47622 7832
1e3c88bd
PZ
7833/******* find_busiest_group() helpers end here *********************/
7834
7835/**
7836 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7837 * if there is an imbalance.
1e3c88bd
PZ
7838 *
7839 * Also calculates the amount of weighted load which should be moved
7840 * to restore balance.
7841 *
cd96891d 7842 * @env: The load balancing environment.
1e3c88bd 7843 *
e69f6186 7844 * Return: - The busiest group if imbalance exists.
1e3c88bd 7845 */
56cf515b 7846static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7847{
56cf515b 7848 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7849 struct sd_lb_stats sds;
7850
147c5fc2 7851 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7852
7853 /*
7854 * Compute the various statistics relavent for load balancing at
7855 * this level.
7856 */
23f0d209 7857 update_sd_lb_stats(env, &sds);
56cf515b
JK
7858 local = &sds.local_stat;
7859 busiest = &sds.busiest_stat;
1e3c88bd 7860
ea67821b 7861 /* ASYM feature bypasses nice load balance check */
1f621e02 7862 if (check_asym_packing(env, &sds))
532cb4c4
MN
7863 return sds.busiest;
7864
cc57aa8f 7865 /* There is no busy sibling group to pull tasks from */
56cf515b 7866 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7867 goto out_balanced;
7868
ca8ce3d0
NP
7869 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7870 / sds.total_capacity;
b0432d8f 7871
866ab43e
PZ
7872 /*
7873 * If the busiest group is imbalanced the below checks don't
30ce5dab 7874 * work because they assume all things are equal, which typically
866ab43e
PZ
7875 * isn't true due to cpus_allowed constraints and the like.
7876 */
caeb178c 7877 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7878 goto force_balance;
7879
cc57aa8f 7880 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7881 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7882 busiest->group_no_capacity)
fab47622
NR
7883 goto force_balance;
7884
cc57aa8f 7885 /*
9c58c79a 7886 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7887 * don't try and pull any tasks.
7888 */
56cf515b 7889 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7890 goto out_balanced;
7891
cc57aa8f
PZ
7892 /*
7893 * Don't pull any tasks if this group is already above the domain
7894 * average load.
7895 */
56cf515b 7896 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7897 goto out_balanced;
7898
bd939f45 7899 if (env->idle == CPU_IDLE) {
aae6d3dd 7900 /*
43f4d666
VG
7901 * This cpu is idle. If the busiest group is not overloaded
7902 * and there is no imbalance between this and busiest group
7903 * wrt idle cpus, it is balanced. The imbalance becomes
7904 * significant if the diff is greater than 1 otherwise we
7905 * might end up to just move the imbalance on another group
aae6d3dd 7906 */
43f4d666
VG
7907 if ((busiest->group_type != group_overloaded) &&
7908 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7909 goto out_balanced;
c186fafe
PZ
7910 } else {
7911 /*
7912 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7913 * imbalance_pct to be conservative.
7914 */
56cf515b
JK
7915 if (100 * busiest->avg_load <=
7916 env->sd->imbalance_pct * local->avg_load)
c186fafe 7917 goto out_balanced;
aae6d3dd 7918 }
1e3c88bd 7919
fab47622 7920force_balance:
1e3c88bd 7921 /* Looks like there is an imbalance. Compute it */
bd939f45 7922 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7923 return sds.busiest;
7924
7925out_balanced:
bd939f45 7926 env->imbalance = 0;
1e3c88bd
PZ
7927 return NULL;
7928}
7929
7930/*
7931 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7932 */
bd939f45 7933static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7934 struct sched_group *group)
1e3c88bd
PZ
7935{
7936 struct rq *busiest = NULL, *rq;
ced549fa 7937 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7938 int i;
7939
ae4df9d6 7940 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 7941 unsigned long capacity, wl;
0ec8aa00
PZ
7942 enum fbq_type rt;
7943
7944 rq = cpu_rq(i);
7945 rt = fbq_classify_rq(rq);
1e3c88bd 7946
0ec8aa00
PZ
7947 /*
7948 * We classify groups/runqueues into three groups:
7949 * - regular: there are !numa tasks
7950 * - remote: there are numa tasks that run on the 'wrong' node
7951 * - all: there is no distinction
7952 *
7953 * In order to avoid migrating ideally placed numa tasks,
7954 * ignore those when there's better options.
7955 *
7956 * If we ignore the actual busiest queue to migrate another
7957 * task, the next balance pass can still reduce the busiest
7958 * queue by moving tasks around inside the node.
7959 *
7960 * If we cannot move enough load due to this classification
7961 * the next pass will adjust the group classification and
7962 * allow migration of more tasks.
7963 *
7964 * Both cases only affect the total convergence complexity.
7965 */
7966 if (rt > env->fbq_type)
7967 continue;
7968
ced549fa 7969 capacity = capacity_of(i);
9d5efe05 7970
6e40f5bb 7971 wl = weighted_cpuload(i);
1e3c88bd 7972
6e40f5bb
TG
7973 /*
7974 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7975 * which is not scaled with the cpu capacity.
6e40f5bb 7976 */
ea67821b
VG
7977
7978 if (rq->nr_running == 1 && wl > env->imbalance &&
7979 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7980 continue;
7981
6e40f5bb
TG
7982 /*
7983 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7984 * the weighted_cpuload() scaled with the cpu capacity, so
7985 * that the load can be moved away from the cpu that is
7986 * potentially running at a lower capacity.
95a79b80 7987 *
ced549fa 7988 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7989 * multiplication to rid ourselves of the division works out
ced549fa
NP
7990 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7991 * our previous maximum.
6e40f5bb 7992 */
ced549fa 7993 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7994 busiest_load = wl;
ced549fa 7995 busiest_capacity = capacity;
1e3c88bd
PZ
7996 busiest = rq;
7997 }
7998 }
7999
8000 return busiest;
8001}
8002
8003/*
8004 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8005 * so long as it is large enough.
8006 */
8007#define MAX_PINNED_INTERVAL 512
8008
bd939f45 8009static int need_active_balance(struct lb_env *env)
1af3ed3d 8010{
bd939f45
PZ
8011 struct sched_domain *sd = env->sd;
8012
8013 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8014
8015 /*
8016 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8017 * lower priority CPUs in order to pack all tasks in the
8018 * highest priority CPUs.
532cb4c4 8019 */
afe06efd
TC
8020 if ((sd->flags & SD_ASYM_PACKING) &&
8021 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8022 return 1;
1af3ed3d
PZ
8023 }
8024
1aaf90a4
VG
8025 /*
8026 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8027 * It's worth migrating the task if the src_cpu's capacity is reduced
8028 * because of other sched_class or IRQs if more capacity stays
8029 * available on dst_cpu.
8030 */
8031 if ((env->idle != CPU_NOT_IDLE) &&
8032 (env->src_rq->cfs.h_nr_running == 1)) {
8033 if ((check_cpu_capacity(env->src_rq, sd)) &&
8034 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8035 return 1;
8036 }
8037
1af3ed3d
PZ
8038 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8039}
8040
969c7921
TH
8041static int active_load_balance_cpu_stop(void *data);
8042
23f0d209
JK
8043static int should_we_balance(struct lb_env *env)
8044{
8045 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8046 int cpu, balance_cpu = -1;
8047
8048 /*
8049 * In the newly idle case, we will allow all the cpu's
8050 * to do the newly idle load balance.
8051 */
8052 if (env->idle == CPU_NEWLY_IDLE)
8053 return 1;
8054
23f0d209 8055 /* Try to find first idle cpu */
e5c14b1f 8056 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8057 if (!idle_cpu(cpu))
23f0d209
JK
8058 continue;
8059
8060 balance_cpu = cpu;
8061 break;
8062 }
8063
8064 if (balance_cpu == -1)
8065 balance_cpu = group_balance_cpu(sg);
8066
8067 /*
8068 * First idle cpu or the first cpu(busiest) in this sched group
8069 * is eligible for doing load balancing at this and above domains.
8070 */
b0cff9d8 8071 return balance_cpu == env->dst_cpu;
23f0d209
JK
8072}
8073
1e3c88bd
PZ
8074/*
8075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8076 * tasks if there is an imbalance.
8077 */
8078static int load_balance(int this_cpu, struct rq *this_rq,
8079 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8080 int *continue_balancing)
1e3c88bd 8081{
88b8dac0 8082 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8083 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8084 struct sched_group *group;
1e3c88bd 8085 struct rq *busiest;
8a8c69c3 8086 struct rq_flags rf;
4ba29684 8087 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8088
8e45cb54
PZ
8089 struct lb_env env = {
8090 .sd = sd,
ddcdf6e7
PZ
8091 .dst_cpu = this_cpu,
8092 .dst_rq = this_rq,
ae4df9d6 8093 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8094 .idle = idle,
eb95308e 8095 .loop_break = sched_nr_migrate_break,
b9403130 8096 .cpus = cpus,
0ec8aa00 8097 .fbq_type = all,
163122b7 8098 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8099 };
8100
cfc03118
JK
8101 /*
8102 * For NEWLY_IDLE load_balancing, we don't need to consider
8103 * other cpus in our group
8104 */
e02e60c1 8105 if (idle == CPU_NEWLY_IDLE)
cfc03118 8106 env.dst_grpmask = NULL;
cfc03118 8107
1e3c88bd
PZ
8108 cpumask_copy(cpus, cpu_active_mask);
8109
ae92882e 8110 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8111
8112redo:
23f0d209
JK
8113 if (!should_we_balance(&env)) {
8114 *continue_balancing = 0;
1e3c88bd 8115 goto out_balanced;
23f0d209 8116 }
1e3c88bd 8117
23f0d209 8118 group = find_busiest_group(&env);
1e3c88bd 8119 if (!group) {
ae92882e 8120 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8121 goto out_balanced;
8122 }
8123
b9403130 8124 busiest = find_busiest_queue(&env, group);
1e3c88bd 8125 if (!busiest) {
ae92882e 8126 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8127 goto out_balanced;
8128 }
8129
78feefc5 8130 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8131
ae92882e 8132 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8133
1aaf90a4
VG
8134 env.src_cpu = busiest->cpu;
8135 env.src_rq = busiest;
8136
1e3c88bd
PZ
8137 ld_moved = 0;
8138 if (busiest->nr_running > 1) {
8139 /*
8140 * Attempt to move tasks. If find_busiest_group has found
8141 * an imbalance but busiest->nr_running <= 1, the group is
8142 * still unbalanced. ld_moved simply stays zero, so it is
8143 * correctly treated as an imbalance.
8144 */
8e45cb54 8145 env.flags |= LBF_ALL_PINNED;
c82513e5 8146 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8147
5d6523eb 8148more_balance:
8a8c69c3 8149 rq_lock_irqsave(busiest, &rf);
3bed5e21 8150 update_rq_clock(busiest);
88b8dac0
SV
8151
8152 /*
8153 * cur_ld_moved - load moved in current iteration
8154 * ld_moved - cumulative load moved across iterations
8155 */
163122b7 8156 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8157
8158 /*
163122b7
KT
8159 * We've detached some tasks from busiest_rq. Every
8160 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8161 * unlock busiest->lock, and we are able to be sure
8162 * that nobody can manipulate the tasks in parallel.
8163 * See task_rq_lock() family for the details.
1e3c88bd 8164 */
163122b7 8165
8a8c69c3 8166 rq_unlock(busiest, &rf);
163122b7
KT
8167
8168 if (cur_ld_moved) {
8169 attach_tasks(&env);
8170 ld_moved += cur_ld_moved;
8171 }
8172
8a8c69c3 8173 local_irq_restore(rf.flags);
88b8dac0 8174
f1cd0858
JK
8175 if (env.flags & LBF_NEED_BREAK) {
8176 env.flags &= ~LBF_NEED_BREAK;
8177 goto more_balance;
8178 }
8179
88b8dac0
SV
8180 /*
8181 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8182 * us and move them to an alternate dst_cpu in our sched_group
8183 * where they can run. The upper limit on how many times we
8184 * iterate on same src_cpu is dependent on number of cpus in our
8185 * sched_group.
8186 *
8187 * This changes load balance semantics a bit on who can move
8188 * load to a given_cpu. In addition to the given_cpu itself
8189 * (or a ilb_cpu acting on its behalf where given_cpu is
8190 * nohz-idle), we now have balance_cpu in a position to move
8191 * load to given_cpu. In rare situations, this may cause
8192 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8193 * _independently_ and at _same_ time to move some load to
8194 * given_cpu) causing exceess load to be moved to given_cpu.
8195 * This however should not happen so much in practice and
8196 * moreover subsequent load balance cycles should correct the
8197 * excess load moved.
8198 */
6263322c 8199 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8200
7aff2e3a
VD
8201 /* Prevent to re-select dst_cpu via env's cpus */
8202 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8203
78feefc5 8204 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8205 env.dst_cpu = env.new_dst_cpu;
6263322c 8206 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8207 env.loop = 0;
8208 env.loop_break = sched_nr_migrate_break;
e02e60c1 8209
88b8dac0
SV
8210 /*
8211 * Go back to "more_balance" rather than "redo" since we
8212 * need to continue with same src_cpu.
8213 */
8214 goto more_balance;
8215 }
1e3c88bd 8216
6263322c
PZ
8217 /*
8218 * We failed to reach balance because of affinity.
8219 */
8220 if (sd_parent) {
63b2ca30 8221 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8222
afdeee05 8223 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8224 *group_imbalance = 1;
6263322c
PZ
8225 }
8226
1e3c88bd 8227 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8228 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8229 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8230 if (!cpumask_empty(cpus)) {
8231 env.loop = 0;
8232 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8233 goto redo;
bbf18b19 8234 }
afdeee05 8235 goto out_all_pinned;
1e3c88bd
PZ
8236 }
8237 }
8238
8239 if (!ld_moved) {
ae92882e 8240 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8241 /*
8242 * Increment the failure counter only on periodic balance.
8243 * We do not want newidle balance, which can be very
8244 * frequent, pollute the failure counter causing
8245 * excessive cache_hot migrations and active balances.
8246 */
8247 if (idle != CPU_NEWLY_IDLE)
8248 sd->nr_balance_failed++;
1e3c88bd 8249
bd939f45 8250 if (need_active_balance(&env)) {
8a8c69c3
PZ
8251 unsigned long flags;
8252
1e3c88bd
PZ
8253 raw_spin_lock_irqsave(&busiest->lock, flags);
8254
969c7921
TH
8255 /* don't kick the active_load_balance_cpu_stop,
8256 * if the curr task on busiest cpu can't be
8257 * moved to this_cpu
1e3c88bd 8258 */
0c98d344 8259 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8260 raw_spin_unlock_irqrestore(&busiest->lock,
8261 flags);
8e45cb54 8262 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8263 goto out_one_pinned;
8264 }
8265
969c7921
TH
8266 /*
8267 * ->active_balance synchronizes accesses to
8268 * ->active_balance_work. Once set, it's cleared
8269 * only after active load balance is finished.
8270 */
1e3c88bd
PZ
8271 if (!busiest->active_balance) {
8272 busiest->active_balance = 1;
8273 busiest->push_cpu = this_cpu;
8274 active_balance = 1;
8275 }
8276 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8277
bd939f45 8278 if (active_balance) {
969c7921
TH
8279 stop_one_cpu_nowait(cpu_of(busiest),
8280 active_load_balance_cpu_stop, busiest,
8281 &busiest->active_balance_work);
bd939f45 8282 }
1e3c88bd 8283
d02c0711 8284 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8285 sd->nr_balance_failed = sd->cache_nice_tries+1;
8286 }
8287 } else
8288 sd->nr_balance_failed = 0;
8289
8290 if (likely(!active_balance)) {
8291 /* We were unbalanced, so reset the balancing interval */
8292 sd->balance_interval = sd->min_interval;
8293 } else {
8294 /*
8295 * If we've begun active balancing, start to back off. This
8296 * case may not be covered by the all_pinned logic if there
8297 * is only 1 task on the busy runqueue (because we don't call
163122b7 8298 * detach_tasks).
1e3c88bd
PZ
8299 */
8300 if (sd->balance_interval < sd->max_interval)
8301 sd->balance_interval *= 2;
8302 }
8303
1e3c88bd
PZ
8304 goto out;
8305
8306out_balanced:
afdeee05
VG
8307 /*
8308 * We reach balance although we may have faced some affinity
8309 * constraints. Clear the imbalance flag if it was set.
8310 */
8311 if (sd_parent) {
8312 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8313
8314 if (*group_imbalance)
8315 *group_imbalance = 0;
8316 }
8317
8318out_all_pinned:
8319 /*
8320 * We reach balance because all tasks are pinned at this level so
8321 * we can't migrate them. Let the imbalance flag set so parent level
8322 * can try to migrate them.
8323 */
ae92882e 8324 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8325
8326 sd->nr_balance_failed = 0;
8327
8328out_one_pinned:
8329 /* tune up the balancing interval */
8e45cb54 8330 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8331 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8332 (sd->balance_interval < sd->max_interval))
8333 sd->balance_interval *= 2;
8334
46e49b38 8335 ld_moved = 0;
1e3c88bd 8336out:
1e3c88bd
PZ
8337 return ld_moved;
8338}
8339
52a08ef1
JL
8340static inline unsigned long
8341get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8342{
8343 unsigned long interval = sd->balance_interval;
8344
8345 if (cpu_busy)
8346 interval *= sd->busy_factor;
8347
8348 /* scale ms to jiffies */
8349 interval = msecs_to_jiffies(interval);
8350 interval = clamp(interval, 1UL, max_load_balance_interval);
8351
8352 return interval;
8353}
8354
8355static inline void
31851a98 8356update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8357{
8358 unsigned long interval, next;
8359
31851a98
LY
8360 /* used by idle balance, so cpu_busy = 0 */
8361 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8362 next = sd->last_balance + interval;
8363
8364 if (time_after(*next_balance, next))
8365 *next_balance = next;
8366}
8367
1e3c88bd
PZ
8368/*
8369 * idle_balance is called by schedule() if this_cpu is about to become
8370 * idle. Attempts to pull tasks from other CPUs.
8371 */
46f69fa3 8372static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8373{
52a08ef1
JL
8374 unsigned long next_balance = jiffies + HZ;
8375 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8376 struct sched_domain *sd;
8377 int pulled_task = 0;
9bd721c5 8378 u64 curr_cost = 0;
1e3c88bd 8379
6e83125c
PZ
8380 /*
8381 * We must set idle_stamp _before_ calling idle_balance(), such that we
8382 * measure the duration of idle_balance() as idle time.
8383 */
8384 this_rq->idle_stamp = rq_clock(this_rq);
8385
46f69fa3
MF
8386 /*
8387 * This is OK, because current is on_cpu, which avoids it being picked
8388 * for load-balance and preemption/IRQs are still disabled avoiding
8389 * further scheduler activity on it and we're being very careful to
8390 * re-start the picking loop.
8391 */
8392 rq_unpin_lock(this_rq, rf);
8393
4486edd1
TC
8394 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8395 !this_rq->rd->overload) {
52a08ef1
JL
8396 rcu_read_lock();
8397 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8398 if (sd)
31851a98 8399 update_next_balance(sd, &next_balance);
52a08ef1
JL
8400 rcu_read_unlock();
8401
6e83125c 8402 goto out;
52a08ef1 8403 }
1e3c88bd 8404
f492e12e
PZ
8405 raw_spin_unlock(&this_rq->lock);
8406
48a16753 8407 update_blocked_averages(this_cpu);
dce840a0 8408 rcu_read_lock();
1e3c88bd 8409 for_each_domain(this_cpu, sd) {
23f0d209 8410 int continue_balancing = 1;
9bd721c5 8411 u64 t0, domain_cost;
1e3c88bd
PZ
8412
8413 if (!(sd->flags & SD_LOAD_BALANCE))
8414 continue;
8415
52a08ef1 8416 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8417 update_next_balance(sd, &next_balance);
9bd721c5 8418 break;
52a08ef1 8419 }
9bd721c5 8420
f492e12e 8421 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8422 t0 = sched_clock_cpu(this_cpu);
8423
f492e12e 8424 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8425 sd, CPU_NEWLY_IDLE,
8426 &continue_balancing);
9bd721c5
JL
8427
8428 domain_cost = sched_clock_cpu(this_cpu) - t0;
8429 if (domain_cost > sd->max_newidle_lb_cost)
8430 sd->max_newidle_lb_cost = domain_cost;
8431
8432 curr_cost += domain_cost;
f492e12e 8433 }
1e3c88bd 8434
31851a98 8435 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8436
8437 /*
8438 * Stop searching for tasks to pull if there are
8439 * now runnable tasks on this rq.
8440 */
8441 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8442 break;
1e3c88bd 8443 }
dce840a0 8444 rcu_read_unlock();
f492e12e
PZ
8445
8446 raw_spin_lock(&this_rq->lock);
8447
0e5b5337
JL
8448 if (curr_cost > this_rq->max_idle_balance_cost)
8449 this_rq->max_idle_balance_cost = curr_cost;
8450
e5fc6611 8451 /*
0e5b5337
JL
8452 * While browsing the domains, we released the rq lock, a task could
8453 * have been enqueued in the meantime. Since we're not going idle,
8454 * pretend we pulled a task.
e5fc6611 8455 */
0e5b5337 8456 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8457 pulled_task = 1;
e5fc6611 8458
52a08ef1
JL
8459out:
8460 /* Move the next balance forward */
8461 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8462 this_rq->next_balance = next_balance;
9bd721c5 8463
e4aa358b 8464 /* Is there a task of a high priority class? */
46383648 8465 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8466 pulled_task = -1;
8467
38c6ade2 8468 if (pulled_task)
6e83125c
PZ
8469 this_rq->idle_stamp = 0;
8470
46f69fa3
MF
8471 rq_repin_lock(this_rq, rf);
8472
3c4017c1 8473 return pulled_task;
1e3c88bd
PZ
8474}
8475
8476/*
969c7921
TH
8477 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8478 * running tasks off the busiest CPU onto idle CPUs. It requires at
8479 * least 1 task to be running on each physical CPU where possible, and
8480 * avoids physical / logical imbalances.
1e3c88bd 8481 */
969c7921 8482static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8483{
969c7921
TH
8484 struct rq *busiest_rq = data;
8485 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8486 int target_cpu = busiest_rq->push_cpu;
969c7921 8487 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8488 struct sched_domain *sd;
e5673f28 8489 struct task_struct *p = NULL;
8a8c69c3 8490 struct rq_flags rf;
969c7921 8491
8a8c69c3 8492 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8493
8494 /* make sure the requested cpu hasn't gone down in the meantime */
8495 if (unlikely(busiest_cpu != smp_processor_id() ||
8496 !busiest_rq->active_balance))
8497 goto out_unlock;
1e3c88bd
PZ
8498
8499 /* Is there any task to move? */
8500 if (busiest_rq->nr_running <= 1)
969c7921 8501 goto out_unlock;
1e3c88bd
PZ
8502
8503 /*
8504 * This condition is "impossible", if it occurs
8505 * we need to fix it. Originally reported by
8506 * Bjorn Helgaas on a 128-cpu setup.
8507 */
8508 BUG_ON(busiest_rq == target_rq);
8509
1e3c88bd 8510 /* Search for an sd spanning us and the target CPU. */
dce840a0 8511 rcu_read_lock();
1e3c88bd
PZ
8512 for_each_domain(target_cpu, sd) {
8513 if ((sd->flags & SD_LOAD_BALANCE) &&
8514 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8515 break;
8516 }
8517
8518 if (likely(sd)) {
8e45cb54
PZ
8519 struct lb_env env = {
8520 .sd = sd,
ddcdf6e7
PZ
8521 .dst_cpu = target_cpu,
8522 .dst_rq = target_rq,
8523 .src_cpu = busiest_rq->cpu,
8524 .src_rq = busiest_rq,
8e45cb54
PZ
8525 .idle = CPU_IDLE,
8526 };
8527
ae92882e 8528 schedstat_inc(sd->alb_count);
3bed5e21 8529 update_rq_clock(busiest_rq);
1e3c88bd 8530
e5673f28 8531 p = detach_one_task(&env);
d02c0711 8532 if (p) {
ae92882e 8533 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8534 /* Active balancing done, reset the failure counter. */
8535 sd->nr_balance_failed = 0;
8536 } else {
ae92882e 8537 schedstat_inc(sd->alb_failed);
d02c0711 8538 }
1e3c88bd 8539 }
dce840a0 8540 rcu_read_unlock();
969c7921
TH
8541out_unlock:
8542 busiest_rq->active_balance = 0;
8a8c69c3 8543 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8544
8545 if (p)
8546 attach_one_task(target_rq, p);
8547
8548 local_irq_enable();
8549
969c7921 8550 return 0;
1e3c88bd
PZ
8551}
8552
d987fc7f
MG
8553static inline int on_null_domain(struct rq *rq)
8554{
8555 return unlikely(!rcu_dereference_sched(rq->sd));
8556}
8557
3451d024 8558#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8559/*
8560 * idle load balancing details
83cd4fe2
VP
8561 * - When one of the busy CPUs notice that there may be an idle rebalancing
8562 * needed, they will kick the idle load balancer, which then does idle
8563 * load balancing for all the idle CPUs.
8564 */
1e3c88bd 8565static struct {
83cd4fe2 8566 cpumask_var_t idle_cpus_mask;
0b005cf5 8567 atomic_t nr_cpus;
83cd4fe2
VP
8568 unsigned long next_balance; /* in jiffy units */
8569} nohz ____cacheline_aligned;
1e3c88bd 8570
3dd0337d 8571static inline int find_new_ilb(void)
1e3c88bd 8572{
0b005cf5 8573 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8574
786d6dc7
SS
8575 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8576 return ilb;
8577
8578 return nr_cpu_ids;
1e3c88bd 8579}
1e3c88bd 8580
83cd4fe2
VP
8581/*
8582 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8583 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8584 * CPU (if there is one).
8585 */
0aeeeeba 8586static void nohz_balancer_kick(void)
83cd4fe2
VP
8587{
8588 int ilb_cpu;
8589
8590 nohz.next_balance++;
8591
3dd0337d 8592 ilb_cpu = find_new_ilb();
83cd4fe2 8593
0b005cf5
SS
8594 if (ilb_cpu >= nr_cpu_ids)
8595 return;
83cd4fe2 8596
cd490c5b 8597 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8598 return;
8599 /*
8600 * Use smp_send_reschedule() instead of resched_cpu().
8601 * This way we generate a sched IPI on the target cpu which
8602 * is idle. And the softirq performing nohz idle load balance
8603 * will be run before returning from the IPI.
8604 */
8605 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8606 return;
8607}
8608
20a5c8cc 8609void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8610{
8611 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8612 /*
8613 * Completely isolated CPUs don't ever set, so we must test.
8614 */
8615 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8616 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8617 atomic_dec(&nohz.nr_cpus);
8618 }
71325960
SS
8619 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8620 }
8621}
8622
69e1e811
SS
8623static inline void set_cpu_sd_state_busy(void)
8624{
8625 struct sched_domain *sd;
37dc6b50 8626 int cpu = smp_processor_id();
69e1e811 8627
69e1e811 8628 rcu_read_lock();
0e369d75 8629 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8630
8631 if (!sd || !sd->nohz_idle)
8632 goto unlock;
8633 sd->nohz_idle = 0;
8634
0e369d75 8635 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8636unlock:
69e1e811
SS
8637 rcu_read_unlock();
8638}
8639
8640void set_cpu_sd_state_idle(void)
8641{
8642 struct sched_domain *sd;
37dc6b50 8643 int cpu = smp_processor_id();
69e1e811 8644
69e1e811 8645 rcu_read_lock();
0e369d75 8646 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8647
8648 if (!sd || sd->nohz_idle)
8649 goto unlock;
8650 sd->nohz_idle = 1;
8651
0e369d75 8652 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8653unlock:
69e1e811
SS
8654 rcu_read_unlock();
8655}
8656
1e3c88bd 8657/*
c1cc017c 8658 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8659 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8660 */
c1cc017c 8661void nohz_balance_enter_idle(int cpu)
1e3c88bd 8662{
71325960
SS
8663 /*
8664 * If this cpu is going down, then nothing needs to be done.
8665 */
8666 if (!cpu_active(cpu))
8667 return;
8668
c1cc017c
AS
8669 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8670 return;
1e3c88bd 8671
d987fc7f
MG
8672 /*
8673 * If we're a completely isolated CPU, we don't play.
8674 */
8675 if (on_null_domain(cpu_rq(cpu)))
8676 return;
8677
c1cc017c
AS
8678 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8679 atomic_inc(&nohz.nr_cpus);
8680 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8681}
8682#endif
8683
8684static DEFINE_SPINLOCK(balancing);
8685
49c022e6
PZ
8686/*
8687 * Scale the max load_balance interval with the number of CPUs in the system.
8688 * This trades load-balance latency on larger machines for less cross talk.
8689 */
029632fb 8690void update_max_interval(void)
49c022e6
PZ
8691{
8692 max_load_balance_interval = HZ*num_online_cpus()/10;
8693}
8694
1e3c88bd
PZ
8695/*
8696 * It checks each scheduling domain to see if it is due to be balanced,
8697 * and initiates a balancing operation if so.
8698 *
b9b0853a 8699 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8700 */
f7ed0a89 8701static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8702{
23f0d209 8703 int continue_balancing = 1;
f7ed0a89 8704 int cpu = rq->cpu;
1e3c88bd 8705 unsigned long interval;
04f733b4 8706 struct sched_domain *sd;
1e3c88bd
PZ
8707 /* Earliest time when we have to do rebalance again */
8708 unsigned long next_balance = jiffies + 60*HZ;
8709 int update_next_balance = 0;
f48627e6
JL
8710 int need_serialize, need_decay = 0;
8711 u64 max_cost = 0;
1e3c88bd 8712
48a16753 8713 update_blocked_averages(cpu);
2069dd75 8714
dce840a0 8715 rcu_read_lock();
1e3c88bd 8716 for_each_domain(cpu, sd) {
f48627e6
JL
8717 /*
8718 * Decay the newidle max times here because this is a regular
8719 * visit to all the domains. Decay ~1% per second.
8720 */
8721 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8722 sd->max_newidle_lb_cost =
8723 (sd->max_newidle_lb_cost * 253) / 256;
8724 sd->next_decay_max_lb_cost = jiffies + HZ;
8725 need_decay = 1;
8726 }
8727 max_cost += sd->max_newidle_lb_cost;
8728
1e3c88bd
PZ
8729 if (!(sd->flags & SD_LOAD_BALANCE))
8730 continue;
8731
f48627e6
JL
8732 /*
8733 * Stop the load balance at this level. There is another
8734 * CPU in our sched group which is doing load balancing more
8735 * actively.
8736 */
8737 if (!continue_balancing) {
8738 if (need_decay)
8739 continue;
8740 break;
8741 }
8742
52a08ef1 8743 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8744
8745 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8746 if (need_serialize) {
8747 if (!spin_trylock(&balancing))
8748 goto out;
8749 }
8750
8751 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8752 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8753 /*
6263322c 8754 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8755 * env->dst_cpu, so we can't know our idle
8756 * state even if we migrated tasks. Update it.
1e3c88bd 8757 */
de5eb2dd 8758 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8759 }
8760 sd->last_balance = jiffies;
52a08ef1 8761 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8762 }
8763 if (need_serialize)
8764 spin_unlock(&balancing);
8765out:
8766 if (time_after(next_balance, sd->last_balance + interval)) {
8767 next_balance = sd->last_balance + interval;
8768 update_next_balance = 1;
8769 }
f48627e6
JL
8770 }
8771 if (need_decay) {
1e3c88bd 8772 /*
f48627e6
JL
8773 * Ensure the rq-wide value also decays but keep it at a
8774 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8775 */
f48627e6
JL
8776 rq->max_idle_balance_cost =
8777 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8778 }
dce840a0 8779 rcu_read_unlock();
1e3c88bd
PZ
8780
8781 /*
8782 * next_balance will be updated only when there is a need.
8783 * When the cpu is attached to null domain for ex, it will not be
8784 * updated.
8785 */
c5afb6a8 8786 if (likely(update_next_balance)) {
1e3c88bd 8787 rq->next_balance = next_balance;
c5afb6a8
VG
8788
8789#ifdef CONFIG_NO_HZ_COMMON
8790 /*
8791 * If this CPU has been elected to perform the nohz idle
8792 * balance. Other idle CPUs have already rebalanced with
8793 * nohz_idle_balance() and nohz.next_balance has been
8794 * updated accordingly. This CPU is now running the idle load
8795 * balance for itself and we need to update the
8796 * nohz.next_balance accordingly.
8797 */
8798 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8799 nohz.next_balance = rq->next_balance;
8800#endif
8801 }
1e3c88bd
PZ
8802}
8803
3451d024 8804#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8805/*
3451d024 8806 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8807 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8808 */
208cb16b 8809static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8810{
208cb16b 8811 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8812 struct rq *rq;
8813 int balance_cpu;
c5afb6a8
VG
8814 /* Earliest time when we have to do rebalance again */
8815 unsigned long next_balance = jiffies + 60*HZ;
8816 int update_next_balance = 0;
83cd4fe2 8817
1c792db7
SS
8818 if (idle != CPU_IDLE ||
8819 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8820 goto end;
83cd4fe2
VP
8821
8822 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8823 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8824 continue;
8825
8826 /*
8827 * If this cpu gets work to do, stop the load balancing
8828 * work being done for other cpus. Next load
8829 * balancing owner will pick it up.
8830 */
1c792db7 8831 if (need_resched())
83cd4fe2 8832 break;
83cd4fe2 8833
5ed4f1d9
VG
8834 rq = cpu_rq(balance_cpu);
8835
ed61bbc6
TC
8836 /*
8837 * If time for next balance is due,
8838 * do the balance.
8839 */
8840 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8841 struct rq_flags rf;
8842
8843 rq_lock_irq(rq, &rf);
ed61bbc6 8844 update_rq_clock(rq);
cee1afce 8845 cpu_load_update_idle(rq);
8a8c69c3
PZ
8846 rq_unlock_irq(rq, &rf);
8847
ed61bbc6
TC
8848 rebalance_domains(rq, CPU_IDLE);
8849 }
83cd4fe2 8850
c5afb6a8
VG
8851 if (time_after(next_balance, rq->next_balance)) {
8852 next_balance = rq->next_balance;
8853 update_next_balance = 1;
8854 }
83cd4fe2 8855 }
c5afb6a8
VG
8856
8857 /*
8858 * next_balance will be updated only when there is a need.
8859 * When the CPU is attached to null domain for ex, it will not be
8860 * updated.
8861 */
8862 if (likely(update_next_balance))
8863 nohz.next_balance = next_balance;
1c792db7
SS
8864end:
8865 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8866}
8867
8868/*
0b005cf5 8869 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8870 * of an idle cpu in the system.
0b005cf5 8871 * - This rq has more than one task.
1aaf90a4
VG
8872 * - This rq has at least one CFS task and the capacity of the CPU is
8873 * significantly reduced because of RT tasks or IRQs.
8874 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8875 * multiple busy cpu.
0b005cf5
SS
8876 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8877 * domain span are idle.
83cd4fe2 8878 */
1aaf90a4 8879static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8880{
8881 unsigned long now = jiffies;
0e369d75 8882 struct sched_domain_shared *sds;
0b005cf5 8883 struct sched_domain *sd;
afe06efd 8884 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8885 bool kick = false;
83cd4fe2 8886
4a725627 8887 if (unlikely(rq->idle_balance))
1aaf90a4 8888 return false;
83cd4fe2 8889
1c792db7
SS
8890 /*
8891 * We may be recently in ticked or tickless idle mode. At the first
8892 * busy tick after returning from idle, we will update the busy stats.
8893 */
69e1e811 8894 set_cpu_sd_state_busy();
c1cc017c 8895 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8896
8897 /*
8898 * None are in tickless mode and hence no need for NOHZ idle load
8899 * balancing.
8900 */
8901 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8902 return false;
1c792db7
SS
8903
8904 if (time_before(now, nohz.next_balance))
1aaf90a4 8905 return false;
83cd4fe2 8906
0b005cf5 8907 if (rq->nr_running >= 2)
1aaf90a4 8908 return true;
83cd4fe2 8909
067491b7 8910 rcu_read_lock();
0e369d75
PZ
8911 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8912 if (sds) {
8913 /*
8914 * XXX: write a coherent comment on why we do this.
8915 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8916 */
8917 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8918 if (nr_busy > 1) {
8919 kick = true;
8920 goto unlock;
8921 }
8922
83cd4fe2 8923 }
37dc6b50 8924
1aaf90a4
VG
8925 sd = rcu_dereference(rq->sd);
8926 if (sd) {
8927 if ((rq->cfs.h_nr_running >= 1) &&
8928 check_cpu_capacity(rq, sd)) {
8929 kick = true;
8930 goto unlock;
8931 }
8932 }
37dc6b50 8933
1aaf90a4 8934 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8935 if (sd) {
8936 for_each_cpu(i, sched_domain_span(sd)) {
8937 if (i == cpu ||
8938 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8939 continue;
067491b7 8940
afe06efd
TC
8941 if (sched_asym_prefer(i, cpu)) {
8942 kick = true;
8943 goto unlock;
8944 }
8945 }
8946 }
1aaf90a4 8947unlock:
067491b7 8948 rcu_read_unlock();
1aaf90a4 8949 return kick;
83cd4fe2
VP
8950}
8951#else
208cb16b 8952static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8953#endif
8954
8955/*
8956 * run_rebalance_domains is triggered when needed from the scheduler tick.
8957 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8958 */
0766f788 8959static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8960{
208cb16b 8961 struct rq *this_rq = this_rq();
6eb57e0d 8962 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8963 CPU_IDLE : CPU_NOT_IDLE;
8964
1e3c88bd 8965 /*
83cd4fe2 8966 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8967 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8968 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8969 * give the idle cpus a chance to load balance. Else we may
8970 * load balance only within the local sched_domain hierarchy
8971 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8972 */
208cb16b 8973 nohz_idle_balance(this_rq, idle);
d4573c3e 8974 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8975}
8976
1e3c88bd
PZ
8977/*
8978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8979 */
7caff66f 8980void trigger_load_balance(struct rq *rq)
1e3c88bd 8981{
1e3c88bd 8982 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8983 if (unlikely(on_null_domain(rq)))
8984 return;
8985
8986 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8987 raise_softirq(SCHED_SOFTIRQ);
3451d024 8988#ifdef CONFIG_NO_HZ_COMMON
c726099e 8989 if (nohz_kick_needed(rq))
0aeeeeba 8990 nohz_balancer_kick();
83cd4fe2 8991#endif
1e3c88bd
PZ
8992}
8993
0bcdcf28
CE
8994static void rq_online_fair(struct rq *rq)
8995{
8996 update_sysctl();
0e59bdae
KT
8997
8998 update_runtime_enabled(rq);
0bcdcf28
CE
8999}
9000
9001static void rq_offline_fair(struct rq *rq)
9002{
9003 update_sysctl();
a4c96ae3
PB
9004
9005 /* Ensure any throttled groups are reachable by pick_next_task */
9006 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9007}
9008
55e12e5e 9009#endif /* CONFIG_SMP */
e1d1484f 9010
bf0f6f24
IM
9011/*
9012 * scheduler tick hitting a task of our scheduling class:
9013 */
8f4d37ec 9014static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9015{
9016 struct cfs_rq *cfs_rq;
9017 struct sched_entity *se = &curr->se;
9018
9019 for_each_sched_entity(se) {
9020 cfs_rq = cfs_rq_of(se);
8f4d37ec 9021 entity_tick(cfs_rq, se, queued);
bf0f6f24 9022 }
18bf2805 9023
b52da86e 9024 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9025 task_tick_numa(rq, curr);
bf0f6f24
IM
9026}
9027
9028/*
cd29fe6f
PZ
9029 * called on fork with the child task as argument from the parent's context
9030 * - child not yet on the tasklist
9031 * - preemption disabled
bf0f6f24 9032 */
cd29fe6f 9033static void task_fork_fair(struct task_struct *p)
bf0f6f24 9034{
4fc420c9
DN
9035 struct cfs_rq *cfs_rq;
9036 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9037 struct rq *rq = this_rq();
8a8c69c3 9038 struct rq_flags rf;
bf0f6f24 9039
8a8c69c3 9040 rq_lock(rq, &rf);
861d034e
PZ
9041 update_rq_clock(rq);
9042
4fc420c9
DN
9043 cfs_rq = task_cfs_rq(current);
9044 curr = cfs_rq->curr;
e210bffd
PZ
9045 if (curr) {
9046 update_curr(cfs_rq);
b5d9d734 9047 se->vruntime = curr->vruntime;
e210bffd 9048 }
aeb73b04 9049 place_entity(cfs_rq, se, 1);
4d78e7b6 9050
cd29fe6f 9051 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9052 /*
edcb60a3
IM
9053 * Upon rescheduling, sched_class::put_prev_task() will place
9054 * 'current' within the tree based on its new key value.
9055 */
4d78e7b6 9056 swap(curr->vruntime, se->vruntime);
8875125e 9057 resched_curr(rq);
4d78e7b6 9058 }
bf0f6f24 9059
88ec22d3 9060 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9061 rq_unlock(rq, &rf);
bf0f6f24
IM
9062}
9063
cb469845
SR
9064/*
9065 * Priority of the task has changed. Check to see if we preempt
9066 * the current task.
9067 */
da7a735e
PZ
9068static void
9069prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9070{
da0c1e65 9071 if (!task_on_rq_queued(p))
da7a735e
PZ
9072 return;
9073
cb469845
SR
9074 /*
9075 * Reschedule if we are currently running on this runqueue and
9076 * our priority decreased, or if we are not currently running on
9077 * this runqueue and our priority is higher than the current's
9078 */
da7a735e 9079 if (rq->curr == p) {
cb469845 9080 if (p->prio > oldprio)
8875125e 9081 resched_curr(rq);
cb469845 9082 } else
15afe09b 9083 check_preempt_curr(rq, p, 0);
cb469845
SR
9084}
9085
daa59407 9086static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9087{
9088 struct sched_entity *se = &p->se;
da7a735e
PZ
9089
9090 /*
daa59407
BP
9091 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9092 * the dequeue_entity(.flags=0) will already have normalized the
9093 * vruntime.
9094 */
9095 if (p->on_rq)
9096 return true;
9097
9098 /*
9099 * When !on_rq, vruntime of the task has usually NOT been normalized.
9100 * But there are some cases where it has already been normalized:
da7a735e 9101 *
daa59407
BP
9102 * - A forked child which is waiting for being woken up by
9103 * wake_up_new_task().
9104 * - A task which has been woken up by try_to_wake_up() and
9105 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9106 */
daa59407
BP
9107 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9108 return true;
9109
9110 return false;
9111}
9112
09a43ace
VG
9113#ifdef CONFIG_FAIR_GROUP_SCHED
9114/*
9115 * Propagate the changes of the sched_entity across the tg tree to make it
9116 * visible to the root
9117 */
9118static void propagate_entity_cfs_rq(struct sched_entity *se)
9119{
9120 struct cfs_rq *cfs_rq;
9121
9122 /* Start to propagate at parent */
9123 se = se->parent;
9124
9125 for_each_sched_entity(se) {
9126 cfs_rq = cfs_rq_of(se);
9127
9128 if (cfs_rq_throttled(cfs_rq))
9129 break;
9130
9131 update_load_avg(se, UPDATE_TG);
9132 }
9133}
9134#else
9135static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9136#endif
9137
df217913 9138static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9139{
daa59407
BP
9140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141
9d89c257 9142 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9143 update_load_avg(se, 0);
a05e8c51 9144 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9145 update_tg_load_avg(cfs_rq, false);
09a43ace 9146 propagate_entity_cfs_rq(se);
da7a735e
PZ
9147}
9148
df217913 9149static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9150{
daa59407 9151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9152
9153#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9154 /*
9155 * Since the real-depth could have been changed (only FAIR
9156 * class maintain depth value), reset depth properly.
9157 */
9158 se->depth = se->parent ? se->parent->depth + 1 : 0;
9159#endif
7855a35a 9160
df217913 9161 /* Synchronize entity with its cfs_rq */
d31b1a66 9162 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9163 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9164 update_tg_load_avg(cfs_rq, false);
09a43ace 9165 propagate_entity_cfs_rq(se);
df217913
VG
9166}
9167
9168static void detach_task_cfs_rq(struct task_struct *p)
9169{
9170 struct sched_entity *se = &p->se;
9171 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9172
9173 if (!vruntime_normalized(p)) {
9174 /*
9175 * Fix up our vruntime so that the current sleep doesn't
9176 * cause 'unlimited' sleep bonus.
9177 */
9178 place_entity(cfs_rq, se, 0);
9179 se->vruntime -= cfs_rq->min_vruntime;
9180 }
9181
9182 detach_entity_cfs_rq(se);
9183}
9184
9185static void attach_task_cfs_rq(struct task_struct *p)
9186{
9187 struct sched_entity *se = &p->se;
9188 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9189
9190 attach_entity_cfs_rq(se);
daa59407
BP
9191
9192 if (!vruntime_normalized(p))
9193 se->vruntime += cfs_rq->min_vruntime;
9194}
6efdb105 9195
daa59407
BP
9196static void switched_from_fair(struct rq *rq, struct task_struct *p)
9197{
9198 detach_task_cfs_rq(p);
9199}
9200
9201static void switched_to_fair(struct rq *rq, struct task_struct *p)
9202{
9203 attach_task_cfs_rq(p);
7855a35a 9204
daa59407 9205 if (task_on_rq_queued(p)) {
7855a35a 9206 /*
daa59407
BP
9207 * We were most likely switched from sched_rt, so
9208 * kick off the schedule if running, otherwise just see
9209 * if we can still preempt the current task.
7855a35a 9210 */
daa59407
BP
9211 if (rq->curr == p)
9212 resched_curr(rq);
9213 else
9214 check_preempt_curr(rq, p, 0);
7855a35a 9215 }
cb469845
SR
9216}
9217
83b699ed
SV
9218/* Account for a task changing its policy or group.
9219 *
9220 * This routine is mostly called to set cfs_rq->curr field when a task
9221 * migrates between groups/classes.
9222 */
9223static void set_curr_task_fair(struct rq *rq)
9224{
9225 struct sched_entity *se = &rq->curr->se;
9226
ec12cb7f
PT
9227 for_each_sched_entity(se) {
9228 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9229
9230 set_next_entity(cfs_rq, se);
9231 /* ensure bandwidth has been allocated on our new cfs_rq */
9232 account_cfs_rq_runtime(cfs_rq, 0);
9233 }
83b699ed
SV
9234}
9235
029632fb
PZ
9236void init_cfs_rq(struct cfs_rq *cfs_rq)
9237{
9238 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9239 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9240#ifndef CONFIG_64BIT
9241 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9242#endif
141965c7 9243#ifdef CONFIG_SMP
09a43ace
VG
9244#ifdef CONFIG_FAIR_GROUP_SCHED
9245 cfs_rq->propagate_avg = 0;
9246#endif
9d89c257
YD
9247 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9248 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9249#endif
029632fb
PZ
9250}
9251
810b3817 9252#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9253static void task_set_group_fair(struct task_struct *p)
9254{
9255 struct sched_entity *se = &p->se;
9256
9257 set_task_rq(p, task_cpu(p));
9258 se->depth = se->parent ? se->parent->depth + 1 : 0;
9259}
9260
bc54da21 9261static void task_move_group_fair(struct task_struct *p)
810b3817 9262{
daa59407 9263 detach_task_cfs_rq(p);
b2b5ce02 9264 set_task_rq(p, task_cpu(p));
6efdb105
BP
9265
9266#ifdef CONFIG_SMP
9267 /* Tell se's cfs_rq has been changed -- migrated */
9268 p->se.avg.last_update_time = 0;
9269#endif
daa59407 9270 attach_task_cfs_rq(p);
810b3817 9271}
029632fb 9272
ea86cb4b
VG
9273static void task_change_group_fair(struct task_struct *p, int type)
9274{
9275 switch (type) {
9276 case TASK_SET_GROUP:
9277 task_set_group_fair(p);
9278 break;
9279
9280 case TASK_MOVE_GROUP:
9281 task_move_group_fair(p);
9282 break;
9283 }
9284}
9285
029632fb
PZ
9286void free_fair_sched_group(struct task_group *tg)
9287{
9288 int i;
9289
9290 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9291
9292 for_each_possible_cpu(i) {
9293 if (tg->cfs_rq)
9294 kfree(tg->cfs_rq[i]);
6fe1f348 9295 if (tg->se)
029632fb
PZ
9296 kfree(tg->se[i]);
9297 }
9298
9299 kfree(tg->cfs_rq);
9300 kfree(tg->se);
9301}
9302
9303int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9304{
029632fb 9305 struct sched_entity *se;
b7fa30c9 9306 struct cfs_rq *cfs_rq;
029632fb
PZ
9307 int i;
9308
9309 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9310 if (!tg->cfs_rq)
9311 goto err;
9312 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9313 if (!tg->se)
9314 goto err;
9315
9316 tg->shares = NICE_0_LOAD;
9317
9318 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9319
9320 for_each_possible_cpu(i) {
9321 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9322 GFP_KERNEL, cpu_to_node(i));
9323 if (!cfs_rq)
9324 goto err;
9325
9326 se = kzalloc_node(sizeof(struct sched_entity),
9327 GFP_KERNEL, cpu_to_node(i));
9328 if (!se)
9329 goto err_free_rq;
9330
9331 init_cfs_rq(cfs_rq);
9332 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9333 init_entity_runnable_average(se);
029632fb
PZ
9334 }
9335
9336 return 1;
9337
9338err_free_rq:
9339 kfree(cfs_rq);
9340err:
9341 return 0;
9342}
9343
8663e24d
PZ
9344void online_fair_sched_group(struct task_group *tg)
9345{
9346 struct sched_entity *se;
9347 struct rq *rq;
9348 int i;
9349
9350 for_each_possible_cpu(i) {
9351 rq = cpu_rq(i);
9352 se = tg->se[i];
9353
9354 raw_spin_lock_irq(&rq->lock);
4126bad6 9355 update_rq_clock(rq);
d0326691 9356 attach_entity_cfs_rq(se);
55e16d30 9357 sync_throttle(tg, i);
8663e24d
PZ
9358 raw_spin_unlock_irq(&rq->lock);
9359 }
9360}
9361
6fe1f348 9362void unregister_fair_sched_group(struct task_group *tg)
029632fb 9363{
029632fb 9364 unsigned long flags;
6fe1f348
PZ
9365 struct rq *rq;
9366 int cpu;
029632fb 9367
6fe1f348
PZ
9368 for_each_possible_cpu(cpu) {
9369 if (tg->se[cpu])
9370 remove_entity_load_avg(tg->se[cpu]);
029632fb 9371
6fe1f348
PZ
9372 /*
9373 * Only empty task groups can be destroyed; so we can speculatively
9374 * check on_list without danger of it being re-added.
9375 */
9376 if (!tg->cfs_rq[cpu]->on_list)
9377 continue;
9378
9379 rq = cpu_rq(cpu);
9380
9381 raw_spin_lock_irqsave(&rq->lock, flags);
9382 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9383 raw_spin_unlock_irqrestore(&rq->lock, flags);
9384 }
029632fb
PZ
9385}
9386
9387void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9388 struct sched_entity *se, int cpu,
9389 struct sched_entity *parent)
9390{
9391 struct rq *rq = cpu_rq(cpu);
9392
9393 cfs_rq->tg = tg;
9394 cfs_rq->rq = rq;
029632fb
PZ
9395 init_cfs_rq_runtime(cfs_rq);
9396
9397 tg->cfs_rq[cpu] = cfs_rq;
9398 tg->se[cpu] = se;
9399
9400 /* se could be NULL for root_task_group */
9401 if (!se)
9402 return;
9403
fed14d45 9404 if (!parent) {
029632fb 9405 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9406 se->depth = 0;
9407 } else {
029632fb 9408 se->cfs_rq = parent->my_q;
fed14d45
PZ
9409 se->depth = parent->depth + 1;
9410 }
029632fb
PZ
9411
9412 se->my_q = cfs_rq;
0ac9b1c2
PT
9413 /* guarantee group entities always have weight */
9414 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9415 se->parent = parent;
9416}
9417
9418static DEFINE_MUTEX(shares_mutex);
9419
9420int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9421{
9422 int i;
029632fb
PZ
9423
9424 /*
9425 * We can't change the weight of the root cgroup.
9426 */
9427 if (!tg->se[0])
9428 return -EINVAL;
9429
9430 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9431
9432 mutex_lock(&shares_mutex);
9433 if (tg->shares == shares)
9434 goto done;
9435
9436 tg->shares = shares;
9437 for_each_possible_cpu(i) {
9438 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9439 struct sched_entity *se = tg->se[i];
9440 struct rq_flags rf;
029632fb 9441
029632fb 9442 /* Propagate contribution to hierarchy */
8a8c69c3 9443 rq_lock_irqsave(rq, &rf);
71b1da46 9444 update_rq_clock(rq);
89ee048f
VG
9445 for_each_sched_entity(se) {
9446 update_load_avg(se, UPDATE_TG);
9447 update_cfs_shares(se);
9448 }
8a8c69c3 9449 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9450 }
9451
9452done:
9453 mutex_unlock(&shares_mutex);
9454 return 0;
9455}
9456#else /* CONFIG_FAIR_GROUP_SCHED */
9457
9458void free_fair_sched_group(struct task_group *tg) { }
9459
9460int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9461{
9462 return 1;
9463}
9464
8663e24d
PZ
9465void online_fair_sched_group(struct task_group *tg) { }
9466
6fe1f348 9467void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9468
9469#endif /* CONFIG_FAIR_GROUP_SCHED */
9470
810b3817 9471
6d686f45 9472static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9473{
9474 struct sched_entity *se = &task->se;
0d721cea
PW
9475 unsigned int rr_interval = 0;
9476
9477 /*
9478 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9479 * idle runqueue:
9480 */
0d721cea 9481 if (rq->cfs.load.weight)
a59f4e07 9482 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9483
9484 return rr_interval;
9485}
9486
bf0f6f24
IM
9487/*
9488 * All the scheduling class methods:
9489 */
029632fb 9490const struct sched_class fair_sched_class = {
5522d5d5 9491 .next = &idle_sched_class,
bf0f6f24
IM
9492 .enqueue_task = enqueue_task_fair,
9493 .dequeue_task = dequeue_task_fair,
9494 .yield_task = yield_task_fair,
d95f4122 9495 .yield_to_task = yield_to_task_fair,
bf0f6f24 9496
2e09bf55 9497 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9498
9499 .pick_next_task = pick_next_task_fair,
9500 .put_prev_task = put_prev_task_fair,
9501
681f3e68 9502#ifdef CONFIG_SMP
4ce72a2c 9503 .select_task_rq = select_task_rq_fair,
0a74bef8 9504 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9505
0bcdcf28
CE
9506 .rq_online = rq_online_fair,
9507 .rq_offline = rq_offline_fair,
88ec22d3 9508
12695578 9509 .task_dead = task_dead_fair,
c5b28038 9510 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9511#endif
bf0f6f24 9512
83b699ed 9513 .set_curr_task = set_curr_task_fair,
bf0f6f24 9514 .task_tick = task_tick_fair,
cd29fe6f 9515 .task_fork = task_fork_fair,
cb469845
SR
9516
9517 .prio_changed = prio_changed_fair,
da7a735e 9518 .switched_from = switched_from_fair,
cb469845 9519 .switched_to = switched_to_fair,
810b3817 9520
0d721cea
PW
9521 .get_rr_interval = get_rr_interval_fair,
9522
6e998916
SG
9523 .update_curr = update_curr_fair,
9524
810b3817 9525#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9526 .task_change_group = task_change_group_fair,
810b3817 9527#endif
bf0f6f24
IM
9528};
9529
9530#ifdef CONFIG_SCHED_DEBUG
029632fb 9531void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9532{
a9e7f654 9533 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9534
5973e5b9 9535 rcu_read_lock();
a9e7f654 9536 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9537 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9538 rcu_read_unlock();
bf0f6f24 9539}
397f2378
SD
9540
9541#ifdef CONFIG_NUMA_BALANCING
9542void show_numa_stats(struct task_struct *p, struct seq_file *m)
9543{
9544 int node;
9545 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9546
9547 for_each_online_node(node) {
9548 if (p->numa_faults) {
9549 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9550 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9551 }
9552 if (p->numa_group) {
9553 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9554 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9555 }
9556 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9557 }
9558}
9559#endif /* CONFIG_NUMA_BALANCING */
9560#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9561
9562__init void init_sched_fair_class(void)
9563{
9564#ifdef CONFIG_SMP
9565 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9566
3451d024 9567#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9568 nohz.next_balance = jiffies;
029632fb 9569 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9570#endif
9571#endif /* SMP */
9572
9573}