]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Set an initial value of runnable avg for new forked task
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
6e5fb223 821 * numa task sample period in ms
cbee9f88 822 */
6e5fb223 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 829
4b96a29b
PZ
830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
cbee9f88
PZ
833static void task_numa_placement(struct task_struct *p)
834{
2832bc19 835 int seq;
cbee9f88 836
2832bc19
HD
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
b8593bfd 850void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
851{
852 struct task_struct *p = current;
853
1a687c2e
MG
854 if (!sched_feat_numa(NUMA))
855 return;
856
cbee9f88
PZ
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
fb003b80 859 /*
b8593bfd
MG
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
fb003b80 862 */
b8593bfd
MG
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 866
cbee9f88
PZ
867 task_numa_placement(p);
868}
869
6e5fb223
PZ
870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
cbee9f88
PZ
876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
6e5fb223 885 struct vm_area_struct *vma;
9f40604c
MG
886 unsigned long start, end;
887 long pages;
cbee9f88
PZ
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
5bca2303
MG
903 /*
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
b8593bfd
MG
921 /*
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
cbee9f88
PZ
934 /*
935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
fb003b80 944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
e14808b4
MG
948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
9f40604c
MG
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
cbee9f88 961
6e5fb223 962 down_read(&mm->mmap_sem);
9f40604c 963 vma = find_vma(mm, start);
6e5fb223
PZ
964 if (!vma) {
965 reset_ptenuma_scan(p);
9f40604c 966 start = 0;
6e5fb223
PZ
967 vma = mm->mmap;
968 }
9f40604c 969 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
975 continue;
976
9f40604c
MG
977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
6e5fb223 982
9f40604c
MG
983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
cbee9f88 987 }
6e5fb223 988
9f40604c 989out:
6e5fb223
PZ
990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
9f40604c 997 mm->numa_scan_offset = start;
6e5fb223
PZ
998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
cbee9f88
PZ
1001}
1002
1003/*
1004 * Drive the periodic memory faults..
1005 */
1006void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007{
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036}
1037#else
1038static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039{
1040}
1041#endif /* CONFIG_NUMA_BALANCING */
1042
30cfdcfc
DA
1043static void
1044account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045{
1046 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1047 if (!parent_entity(se))
029632fb 1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1049#ifdef CONFIG_SMP
1050 if (entity_is_task(se))
eb95308e 1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1052#endif
30cfdcfc 1053 cfs_rq->nr_running++;
30cfdcfc
DA
1054}
1055
1056static void
1057account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058{
1059 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1060 if (!parent_entity(se))
029632fb 1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1062 if (entity_is_task(se))
b87f1724 1063 list_del_init(&se->group_node);
30cfdcfc 1064 cfs_rq->nr_running--;
30cfdcfc
DA
1065}
1066
3ff6dcac
YZ
1067#ifdef CONFIG_FAIR_GROUP_SCHED
1068# ifdef CONFIG_SMP
cf5f0acf
PZ
1069static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070{
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
82958366
PT
1078 tg_weight = atomic64_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083}
1084
6d5ab293 1085static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1086{
cf5f0acf 1087 long tg_weight, load, shares;
3ff6dcac 1088
cf5f0acf 1089 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1090 load = cfs_rq->load.weight;
3ff6dcac 1091
3ff6dcac 1092 shares = (tg->shares * load);
cf5f0acf
PZ
1093 if (tg_weight)
1094 shares /= tg_weight;
3ff6dcac
YZ
1095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102}
3ff6dcac 1103# else /* CONFIG_SMP */
6d5ab293 1104static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1105{
1106 return tg->shares;
1107}
3ff6dcac 1108# endif /* CONFIG_SMP */
2069dd75
PZ
1109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111{
19e5eebb
PT
1112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
2069dd75 1116 account_entity_dequeue(cfs_rq, se);
19e5eebb 1117 }
2069dd75
PZ
1118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123}
1124
82958366
PT
1125static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
6d5ab293 1127static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1128{
1129 struct task_group *tg;
1130 struct sched_entity *se;
3ff6dcac 1131 long shares;
2069dd75 1132
2069dd75
PZ
1133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1135 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1136 return;
3ff6dcac
YZ
1137#ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140#endif
6d5ab293 1141 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144}
1145#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1146static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1147{
1148}
1149#endif /* CONFIG_FAIR_GROUP_SCHED */
1150
141965c7 1151#ifdef CONFIG_SMP
5b51f2f8
PT
1152/*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156#define LOAD_AVG_PERIOD 32
1157#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160/* Precomputed fixed inverse multiplies for multiplication by y^n */
1161static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168};
1169
1170/*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178};
1179
9d85f21c
PT
1180/*
1181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184static __always_inline u64 decay_load(u64 val, u64 n)
1185{
5b51f2f8
PT
1186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1206 }
1207
5b51f2f8
PT
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211}
1212
1213/*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220static u32 __compute_runnable_contrib(u64 n)
1221{
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1239}
1240
1241/*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272{
5b51f2f8
PT
1273 u64 delta, periods;
1274 u32 runnable_contrib;
9d85f21c
PT
1275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
5b51f2f8
PT
1308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1311
1312 delta -= delta_w;
1313
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336}
1337
9ee474f5 1338/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1339static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1340{
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
aff3e498 1346 return 0;
9ee474f5
PT
1347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
aff3e498
PT
1350
1351 return decays;
9ee474f5
PT
1352}
1353
c566e8e9
PT
1354#ifdef CONFIG_FAIR_GROUP_SCHED
1355static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 s64 tg_contrib;
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic64_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368}
8165e145 1369
bb17f655
PT
1370/*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376{
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389}
1390
8165e145
PT
1391static inline void __update_group_entity_contrib(struct sched_entity *se)
1392{
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1395 int runnable_avg;
1396
8165e145
PT
1397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div64_u64(contrib,
1401 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
8165e145 1431}
c566e8e9
PT
1432#else
1433static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
bb17f655
PT
1435static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
8165e145 1437static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1438#endif
1439
8165e145
PT
1440static inline void __update_task_entity_contrib(struct sched_entity *se)
1441{
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448}
1449
2dac754e
PT
1450/* Compute the current contribution to load_avg by se, return any delta */
1451static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452{
1453 long old_contrib = se->avg.load_avg_contrib;
1454
8165e145
PT
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
bb17f655 1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1459 __update_group_entity_contrib(se);
1460 }
2dac754e
PT
1461
1462 return se->avg.load_avg_contrib - old_contrib;
1463}
1464
9ee474f5
PT
1465static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467{
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472}
1473
f1b17280
PT
1474static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
9d85f21c 1476/* Update a sched_entity's runnable average */
9ee474f5
PT
1477static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
9d85f21c 1479{
2dac754e
PT
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
f1b17280 1482 u64 now;
2dac754e 1483
f1b17280
PT
1484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1497
1498 if (!update_cfs_rq)
1499 return;
1500
2dac754e
PT
1501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505}
1506
1507/*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
aff3e498 1511static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1512{
f1b17280 1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
aff3e498 1517 if (!decays && !force_update)
9ee474f5
PT
1518 return;
1519
aff3e498
PT
1520 if (atomic64_read(&cfs_rq->removed_load)) {
1521 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1522 subtract_blocked_load_contrib(cfs_rq, removed_load);
1523 }
9ee474f5 1524
aff3e498
PT
1525 if (decays) {
1526 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1527 decays);
1528 atomic64_add(decays, &cfs_rq->decay_counter);
1529 cfs_rq->last_decay = now;
1530 }
c566e8e9
PT
1531
1532 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1533}
18bf2805
BS
1534
1535static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1536{
78becc27 1537 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1538 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1539}
2dac754e
PT
1540
1541/* Add the load generated by se into cfs_rq's child load-average */
1542static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1543 struct sched_entity *se,
1544 int wakeup)
2dac754e 1545{
aff3e498
PT
1546 /*
1547 * We track migrations using entity decay_count <= 0, on a wake-up
1548 * migration we use a negative decay count to track the remote decays
1549 * accumulated while sleeping.
a75cdaa9
AS
1550 *
1551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1552 * are seen by enqueue_entity_load_avg() as a migration with an already
1553 * constructed load_avg_contrib.
aff3e498
PT
1554 */
1555 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1557 if (se->avg.decay_count) {
1558 /*
1559 * In a wake-up migration we have to approximate the
1560 * time sleeping. This is because we can't synchronize
1561 * clock_task between the two cpus, and it is not
1562 * guaranteed to be read-safe. Instead, we can
1563 * approximate this using our carried decays, which are
1564 * explicitly atomically readable.
1565 */
1566 se->avg.last_runnable_update -= (-se->avg.decay_count)
1567 << 20;
1568 update_entity_load_avg(se, 0);
1569 /* Indicate that we're now synchronized and on-rq */
1570 se->avg.decay_count = 0;
1571 }
9ee474f5
PT
1572 wakeup = 0;
1573 } else {
1574 __synchronize_entity_decay(se);
1575 }
1576
aff3e498
PT
1577 /* migrated tasks did not contribute to our blocked load */
1578 if (wakeup) {
9ee474f5 1579 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1580 update_entity_load_avg(se, 0);
1581 }
9ee474f5 1582
2dac754e 1583 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1584 /* we force update consideration on load-balancer moves */
1585 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1586}
1587
9ee474f5
PT
1588/*
1589 * Remove se's load from this cfs_rq child load-average, if the entity is
1590 * transitioning to a blocked state we track its projected decay using
1591 * blocked_load_avg.
1592 */
2dac754e 1593static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1594 struct sched_entity *se,
1595 int sleep)
2dac754e 1596{
9ee474f5 1597 update_entity_load_avg(se, 1);
aff3e498
PT
1598 /* we force update consideration on load-balancer moves */
1599 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1600
2dac754e 1601 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1602 if (sleep) {
1603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1604 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1605 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1606}
642dbc39
VG
1607
1608/*
1609 * Update the rq's load with the elapsed running time before entering
1610 * idle. if the last scheduled task is not a CFS task, idle_enter will
1611 * be the only way to update the runnable statistic.
1612 */
1613void idle_enter_fair(struct rq *this_rq)
1614{
1615 update_rq_runnable_avg(this_rq, 1);
1616}
1617
1618/*
1619 * Update the rq's load with the elapsed idle time before a task is
1620 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1621 * be the only way to update the runnable statistic.
1622 */
1623void idle_exit_fair(struct rq *this_rq)
1624{
1625 update_rq_runnable_avg(this_rq, 0);
1626}
1627
9d85f21c 1628#else
9ee474f5
PT
1629static inline void update_entity_load_avg(struct sched_entity *se,
1630 int update_cfs_rq) {}
18bf2805 1631static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1632static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1633 struct sched_entity *se,
1634 int wakeup) {}
2dac754e 1635static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1636 struct sched_entity *se,
1637 int sleep) {}
aff3e498
PT
1638static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1639 int force_update) {}
9d85f21c
PT
1640#endif
1641
2396af69 1642static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1643{
bf0f6f24 1644#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1645 struct task_struct *tsk = NULL;
1646
1647 if (entity_is_task(se))
1648 tsk = task_of(se);
1649
41acab88 1650 if (se->statistics.sleep_start) {
78becc27 1651 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1652
1653 if ((s64)delta < 0)
1654 delta = 0;
1655
41acab88
LDM
1656 if (unlikely(delta > se->statistics.sleep_max))
1657 se->statistics.sleep_max = delta;
bf0f6f24 1658
8c79a045 1659 se->statistics.sleep_start = 0;
41acab88 1660 se->statistics.sum_sleep_runtime += delta;
9745512c 1661
768d0c27 1662 if (tsk) {
e414314c 1663 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1664 trace_sched_stat_sleep(tsk, delta);
1665 }
bf0f6f24 1666 }
41acab88 1667 if (se->statistics.block_start) {
78becc27 1668 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1669
1670 if ((s64)delta < 0)
1671 delta = 0;
1672
41acab88
LDM
1673 if (unlikely(delta > se->statistics.block_max))
1674 se->statistics.block_max = delta;
bf0f6f24 1675
8c79a045 1676 se->statistics.block_start = 0;
41acab88 1677 se->statistics.sum_sleep_runtime += delta;
30084fbd 1678
e414314c 1679 if (tsk) {
8f0dfc34 1680 if (tsk->in_iowait) {
41acab88
LDM
1681 se->statistics.iowait_sum += delta;
1682 se->statistics.iowait_count++;
768d0c27 1683 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1684 }
1685
b781a602
AV
1686 trace_sched_stat_blocked(tsk, delta);
1687
e414314c
PZ
1688 /*
1689 * Blocking time is in units of nanosecs, so shift by
1690 * 20 to get a milliseconds-range estimation of the
1691 * amount of time that the task spent sleeping:
1692 */
1693 if (unlikely(prof_on == SLEEP_PROFILING)) {
1694 profile_hits(SLEEP_PROFILING,
1695 (void *)get_wchan(tsk),
1696 delta >> 20);
1697 }
1698 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1699 }
bf0f6f24
IM
1700 }
1701#endif
1702}
1703
ddc97297
PZ
1704static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1705{
1706#ifdef CONFIG_SCHED_DEBUG
1707 s64 d = se->vruntime - cfs_rq->min_vruntime;
1708
1709 if (d < 0)
1710 d = -d;
1711
1712 if (d > 3*sysctl_sched_latency)
1713 schedstat_inc(cfs_rq, nr_spread_over);
1714#endif
1715}
1716
aeb73b04
PZ
1717static void
1718place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1719{
1af5f730 1720 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1721
2cb8600e
PZ
1722 /*
1723 * The 'current' period is already promised to the current tasks,
1724 * however the extra weight of the new task will slow them down a
1725 * little, place the new task so that it fits in the slot that
1726 * stays open at the end.
1727 */
94dfb5e7 1728 if (initial && sched_feat(START_DEBIT))
f9c0b095 1729 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1730
a2e7a7eb 1731 /* sleeps up to a single latency don't count. */
5ca9880c 1732 if (!initial) {
a2e7a7eb 1733 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1734
a2e7a7eb
MG
1735 /*
1736 * Halve their sleep time's effect, to allow
1737 * for a gentler effect of sleepers:
1738 */
1739 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1740 thresh >>= 1;
51e0304c 1741
a2e7a7eb 1742 vruntime -= thresh;
aeb73b04
PZ
1743 }
1744
b5d9d734 1745 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1746 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1747}
1748
d3d9dc33
PT
1749static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1750
bf0f6f24 1751static void
88ec22d3 1752enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1753{
88ec22d3
PZ
1754 /*
1755 * Update the normalized vruntime before updating min_vruntime
1756 * through callig update_curr().
1757 */
371fd7e7 1758 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1759 se->vruntime += cfs_rq->min_vruntime;
1760
bf0f6f24 1761 /*
a2a2d680 1762 * Update run-time statistics of the 'current'.
bf0f6f24 1763 */
b7cc0896 1764 update_curr(cfs_rq);
f269ae04 1765 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1766 account_entity_enqueue(cfs_rq, se);
1767 update_cfs_shares(cfs_rq);
bf0f6f24 1768
88ec22d3 1769 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1770 place_entity(cfs_rq, se, 0);
2396af69 1771 enqueue_sleeper(cfs_rq, se);
e9acbff6 1772 }
bf0f6f24 1773
d2417e5a 1774 update_stats_enqueue(cfs_rq, se);
ddc97297 1775 check_spread(cfs_rq, se);
83b699ed
SV
1776 if (se != cfs_rq->curr)
1777 __enqueue_entity(cfs_rq, se);
2069dd75 1778 se->on_rq = 1;
3d4b47b4 1779
d3d9dc33 1780 if (cfs_rq->nr_running == 1) {
3d4b47b4 1781 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1782 check_enqueue_throttle(cfs_rq);
1783 }
bf0f6f24
IM
1784}
1785
2c13c919 1786static void __clear_buddies_last(struct sched_entity *se)
2002c695 1787{
2c13c919
RR
1788 for_each_sched_entity(se) {
1789 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1790 if (cfs_rq->last == se)
1791 cfs_rq->last = NULL;
1792 else
1793 break;
1794 }
1795}
2002c695 1796
2c13c919
RR
1797static void __clear_buddies_next(struct sched_entity *se)
1798{
1799 for_each_sched_entity(se) {
1800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1801 if (cfs_rq->next == se)
1802 cfs_rq->next = NULL;
1803 else
1804 break;
1805 }
2002c695
PZ
1806}
1807
ac53db59
RR
1808static void __clear_buddies_skip(struct sched_entity *se)
1809{
1810 for_each_sched_entity(se) {
1811 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1812 if (cfs_rq->skip == se)
1813 cfs_rq->skip = NULL;
1814 else
1815 break;
1816 }
1817}
1818
a571bbea
PZ
1819static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1820{
2c13c919
RR
1821 if (cfs_rq->last == se)
1822 __clear_buddies_last(se);
1823
1824 if (cfs_rq->next == se)
1825 __clear_buddies_next(se);
ac53db59
RR
1826
1827 if (cfs_rq->skip == se)
1828 __clear_buddies_skip(se);
a571bbea
PZ
1829}
1830
6c16a6dc 1831static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1832
bf0f6f24 1833static void
371fd7e7 1834dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1835{
a2a2d680
DA
1836 /*
1837 * Update run-time statistics of the 'current'.
1838 */
1839 update_curr(cfs_rq);
17bc14b7 1840 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1841
19b6a2e3 1842 update_stats_dequeue(cfs_rq, se);
371fd7e7 1843 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1844#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1845 if (entity_is_task(se)) {
1846 struct task_struct *tsk = task_of(se);
1847
1848 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1849 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1850 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1851 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1852 }
db36cc7d 1853#endif
67e9fb2a
PZ
1854 }
1855
2002c695 1856 clear_buddies(cfs_rq, se);
4793241b 1857
83b699ed 1858 if (se != cfs_rq->curr)
30cfdcfc 1859 __dequeue_entity(cfs_rq, se);
17bc14b7 1860 se->on_rq = 0;
30cfdcfc 1861 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1862
1863 /*
1864 * Normalize the entity after updating the min_vruntime because the
1865 * update can refer to the ->curr item and we need to reflect this
1866 * movement in our normalized position.
1867 */
371fd7e7 1868 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1869 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1870
d8b4986d
PT
1871 /* return excess runtime on last dequeue */
1872 return_cfs_rq_runtime(cfs_rq);
1873
1e876231 1874 update_min_vruntime(cfs_rq);
17bc14b7 1875 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1876}
1877
1878/*
1879 * Preempt the current task with a newly woken task if needed:
1880 */
7c92e54f 1881static void
2e09bf55 1882check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1883{
11697830 1884 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1885 struct sched_entity *se;
1886 s64 delta;
11697830 1887
6d0f0ebd 1888 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1889 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1890 if (delta_exec > ideal_runtime) {
bf0f6f24 1891 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1892 /*
1893 * The current task ran long enough, ensure it doesn't get
1894 * re-elected due to buddy favours.
1895 */
1896 clear_buddies(cfs_rq, curr);
f685ceac
MG
1897 return;
1898 }
1899
1900 /*
1901 * Ensure that a task that missed wakeup preemption by a
1902 * narrow margin doesn't have to wait for a full slice.
1903 * This also mitigates buddy induced latencies under load.
1904 */
f685ceac
MG
1905 if (delta_exec < sysctl_sched_min_granularity)
1906 return;
1907
f4cfb33e
WX
1908 se = __pick_first_entity(cfs_rq);
1909 delta = curr->vruntime - se->vruntime;
f685ceac 1910
f4cfb33e
WX
1911 if (delta < 0)
1912 return;
d7d82944 1913
f4cfb33e
WX
1914 if (delta > ideal_runtime)
1915 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1916}
1917
83b699ed 1918static void
8494f412 1919set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1920{
83b699ed
SV
1921 /* 'current' is not kept within the tree. */
1922 if (se->on_rq) {
1923 /*
1924 * Any task has to be enqueued before it get to execute on
1925 * a CPU. So account for the time it spent waiting on the
1926 * runqueue.
1927 */
1928 update_stats_wait_end(cfs_rq, se);
1929 __dequeue_entity(cfs_rq, se);
1930 }
1931
79303e9e 1932 update_stats_curr_start(cfs_rq, se);
429d43bc 1933 cfs_rq->curr = se;
eba1ed4b
IM
1934#ifdef CONFIG_SCHEDSTATS
1935 /*
1936 * Track our maximum slice length, if the CPU's load is at
1937 * least twice that of our own weight (i.e. dont track it
1938 * when there are only lesser-weight tasks around):
1939 */
495eca49 1940 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1941 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1942 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1943 }
1944#endif
4a55b450 1945 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1946}
1947
3f3a4904
PZ
1948static int
1949wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1950
ac53db59
RR
1951/*
1952 * Pick the next process, keeping these things in mind, in this order:
1953 * 1) keep things fair between processes/task groups
1954 * 2) pick the "next" process, since someone really wants that to run
1955 * 3) pick the "last" process, for cache locality
1956 * 4) do not run the "skip" process, if something else is available
1957 */
f4b6755f 1958static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1959{
ac53db59 1960 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1961 struct sched_entity *left = se;
f4b6755f 1962
ac53db59
RR
1963 /*
1964 * Avoid running the skip buddy, if running something else can
1965 * be done without getting too unfair.
1966 */
1967 if (cfs_rq->skip == se) {
1968 struct sched_entity *second = __pick_next_entity(se);
1969 if (second && wakeup_preempt_entity(second, left) < 1)
1970 se = second;
1971 }
aa2ac252 1972
f685ceac
MG
1973 /*
1974 * Prefer last buddy, try to return the CPU to a preempted task.
1975 */
1976 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1977 se = cfs_rq->last;
1978
ac53db59
RR
1979 /*
1980 * Someone really wants this to run. If it's not unfair, run it.
1981 */
1982 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1983 se = cfs_rq->next;
1984
f685ceac 1985 clear_buddies(cfs_rq, se);
4793241b
PZ
1986
1987 return se;
aa2ac252
PZ
1988}
1989
d3d9dc33
PT
1990static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1991
ab6cde26 1992static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1993{
1994 /*
1995 * If still on the runqueue then deactivate_task()
1996 * was not called and update_curr() has to be done:
1997 */
1998 if (prev->on_rq)
b7cc0896 1999 update_curr(cfs_rq);
bf0f6f24 2000
d3d9dc33
PT
2001 /* throttle cfs_rqs exceeding runtime */
2002 check_cfs_rq_runtime(cfs_rq);
2003
ddc97297 2004 check_spread(cfs_rq, prev);
30cfdcfc 2005 if (prev->on_rq) {
5870db5b 2006 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2007 /* Put 'current' back into the tree. */
2008 __enqueue_entity(cfs_rq, prev);
9d85f21c 2009 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2010 update_entity_load_avg(prev, 1);
30cfdcfc 2011 }
429d43bc 2012 cfs_rq->curr = NULL;
bf0f6f24
IM
2013}
2014
8f4d37ec
PZ
2015static void
2016entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2017{
bf0f6f24 2018 /*
30cfdcfc 2019 * Update run-time statistics of the 'current'.
bf0f6f24 2020 */
30cfdcfc 2021 update_curr(cfs_rq);
bf0f6f24 2022
9d85f21c
PT
2023 /*
2024 * Ensure that runnable average is periodically updated.
2025 */
9ee474f5 2026 update_entity_load_avg(curr, 1);
aff3e498 2027 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2028
8f4d37ec
PZ
2029#ifdef CONFIG_SCHED_HRTICK
2030 /*
2031 * queued ticks are scheduled to match the slice, so don't bother
2032 * validating it and just reschedule.
2033 */
983ed7a6
HH
2034 if (queued) {
2035 resched_task(rq_of(cfs_rq)->curr);
2036 return;
2037 }
8f4d37ec
PZ
2038 /*
2039 * don't let the period tick interfere with the hrtick preemption
2040 */
2041 if (!sched_feat(DOUBLE_TICK) &&
2042 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2043 return;
2044#endif
2045
2c2efaed 2046 if (cfs_rq->nr_running > 1)
2e09bf55 2047 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2048}
2049
ab84d31e
PT
2050
2051/**************************************************
2052 * CFS bandwidth control machinery
2053 */
2054
2055#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2056
2057#ifdef HAVE_JUMP_LABEL
c5905afb 2058static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2059
2060static inline bool cfs_bandwidth_used(void)
2061{
c5905afb 2062 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2063}
2064
2065void account_cfs_bandwidth_used(int enabled, int was_enabled)
2066{
2067 /* only need to count groups transitioning between enabled/!enabled */
2068 if (enabled && !was_enabled)
c5905afb 2069 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2070 else if (!enabled && was_enabled)
c5905afb 2071 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2072}
2073#else /* HAVE_JUMP_LABEL */
2074static bool cfs_bandwidth_used(void)
2075{
2076 return true;
2077}
2078
2079void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2080#endif /* HAVE_JUMP_LABEL */
2081
ab84d31e
PT
2082/*
2083 * default period for cfs group bandwidth.
2084 * default: 0.1s, units: nanoseconds
2085 */
2086static inline u64 default_cfs_period(void)
2087{
2088 return 100000000ULL;
2089}
ec12cb7f
PT
2090
2091static inline u64 sched_cfs_bandwidth_slice(void)
2092{
2093 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2094}
2095
a9cf55b2
PT
2096/*
2097 * Replenish runtime according to assigned quota and update expiration time.
2098 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2099 * additional synchronization around rq->lock.
2100 *
2101 * requires cfs_b->lock
2102 */
029632fb 2103void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2104{
2105 u64 now;
2106
2107 if (cfs_b->quota == RUNTIME_INF)
2108 return;
2109
2110 now = sched_clock_cpu(smp_processor_id());
2111 cfs_b->runtime = cfs_b->quota;
2112 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2113}
2114
029632fb
PZ
2115static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2116{
2117 return &tg->cfs_bandwidth;
2118}
2119
f1b17280
PT
2120/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2121static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2122{
2123 if (unlikely(cfs_rq->throttle_count))
2124 return cfs_rq->throttled_clock_task;
2125
78becc27 2126 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2127}
2128
85dac906
PT
2129/* returns 0 on failure to allocate runtime */
2130static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2131{
2132 struct task_group *tg = cfs_rq->tg;
2133 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2134 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2135
2136 /* note: this is a positive sum as runtime_remaining <= 0 */
2137 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2138
2139 raw_spin_lock(&cfs_b->lock);
2140 if (cfs_b->quota == RUNTIME_INF)
2141 amount = min_amount;
58088ad0 2142 else {
a9cf55b2
PT
2143 /*
2144 * If the bandwidth pool has become inactive, then at least one
2145 * period must have elapsed since the last consumption.
2146 * Refresh the global state and ensure bandwidth timer becomes
2147 * active.
2148 */
2149 if (!cfs_b->timer_active) {
2150 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2151 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2152 }
58088ad0
PT
2153
2154 if (cfs_b->runtime > 0) {
2155 amount = min(cfs_b->runtime, min_amount);
2156 cfs_b->runtime -= amount;
2157 cfs_b->idle = 0;
2158 }
ec12cb7f 2159 }
a9cf55b2 2160 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2161 raw_spin_unlock(&cfs_b->lock);
2162
2163 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2164 /*
2165 * we may have advanced our local expiration to account for allowed
2166 * spread between our sched_clock and the one on which runtime was
2167 * issued.
2168 */
2169 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2170 cfs_rq->runtime_expires = expires;
85dac906
PT
2171
2172 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2173}
2174
a9cf55b2
PT
2175/*
2176 * Note: This depends on the synchronization provided by sched_clock and the
2177 * fact that rq->clock snapshots this value.
2178 */
2179static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2180{
a9cf55b2 2181 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2182
2183 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2184 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2185 return;
2186
a9cf55b2
PT
2187 if (cfs_rq->runtime_remaining < 0)
2188 return;
2189
2190 /*
2191 * If the local deadline has passed we have to consider the
2192 * possibility that our sched_clock is 'fast' and the global deadline
2193 * has not truly expired.
2194 *
2195 * Fortunately we can check determine whether this the case by checking
2196 * whether the global deadline has advanced.
2197 */
2198
2199 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2200 /* extend local deadline, drift is bounded above by 2 ticks */
2201 cfs_rq->runtime_expires += TICK_NSEC;
2202 } else {
2203 /* global deadline is ahead, expiration has passed */
2204 cfs_rq->runtime_remaining = 0;
2205 }
2206}
2207
2208static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2209 unsigned long delta_exec)
2210{
2211 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2212 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2213 expire_cfs_rq_runtime(cfs_rq);
2214
2215 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2216 return;
2217
85dac906
PT
2218 /*
2219 * if we're unable to extend our runtime we resched so that the active
2220 * hierarchy can be throttled
2221 */
2222 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2223 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2224}
2225
6c16a6dc
PZ
2226static __always_inline
2227void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2228{
56f570e5 2229 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2230 return;
2231
2232 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2233}
2234
85dac906
PT
2235static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2236{
56f570e5 2237 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2238}
2239
64660c86
PT
2240/* check whether cfs_rq, or any parent, is throttled */
2241static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2242{
56f570e5 2243 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2244}
2245
2246/*
2247 * Ensure that neither of the group entities corresponding to src_cpu or
2248 * dest_cpu are members of a throttled hierarchy when performing group
2249 * load-balance operations.
2250 */
2251static inline int throttled_lb_pair(struct task_group *tg,
2252 int src_cpu, int dest_cpu)
2253{
2254 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2255
2256 src_cfs_rq = tg->cfs_rq[src_cpu];
2257 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2258
2259 return throttled_hierarchy(src_cfs_rq) ||
2260 throttled_hierarchy(dest_cfs_rq);
2261}
2262
2263/* updated child weight may affect parent so we have to do this bottom up */
2264static int tg_unthrottle_up(struct task_group *tg, void *data)
2265{
2266 struct rq *rq = data;
2267 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2268
2269 cfs_rq->throttle_count--;
2270#ifdef CONFIG_SMP
2271 if (!cfs_rq->throttle_count) {
f1b17280 2272 /* adjust cfs_rq_clock_task() */
78becc27 2273 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2274 cfs_rq->throttled_clock_task;
64660c86
PT
2275 }
2276#endif
2277
2278 return 0;
2279}
2280
2281static int tg_throttle_down(struct task_group *tg, void *data)
2282{
2283 struct rq *rq = data;
2284 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2285
82958366
PT
2286 /* group is entering throttled state, stop time */
2287 if (!cfs_rq->throttle_count)
78becc27 2288 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2289 cfs_rq->throttle_count++;
2290
2291 return 0;
2292}
2293
d3d9dc33 2294static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2295{
2296 struct rq *rq = rq_of(cfs_rq);
2297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2298 struct sched_entity *se;
2299 long task_delta, dequeue = 1;
2300
2301 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
f1b17280 2303 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2304 rcu_read_lock();
2305 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2306 rcu_read_unlock();
85dac906
PT
2307
2308 task_delta = cfs_rq->h_nr_running;
2309 for_each_sched_entity(se) {
2310 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2311 /* throttled entity or throttle-on-deactivate */
2312 if (!se->on_rq)
2313 break;
2314
2315 if (dequeue)
2316 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2317 qcfs_rq->h_nr_running -= task_delta;
2318
2319 if (qcfs_rq->load.weight)
2320 dequeue = 0;
2321 }
2322
2323 if (!se)
2324 rq->nr_running -= task_delta;
2325
2326 cfs_rq->throttled = 1;
78becc27 2327 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2328 raw_spin_lock(&cfs_b->lock);
2329 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2330 raw_spin_unlock(&cfs_b->lock);
2331}
2332
029632fb 2333void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2334{
2335 struct rq *rq = rq_of(cfs_rq);
2336 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2337 struct sched_entity *se;
2338 int enqueue = 1;
2339 long task_delta;
2340
22b958d8 2341 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2342
2343 cfs_rq->throttled = 0;
1a55af2e
FW
2344
2345 update_rq_clock(rq);
2346
671fd9da 2347 raw_spin_lock(&cfs_b->lock);
78becc27 2348 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2349 list_del_rcu(&cfs_rq->throttled_list);
2350 raw_spin_unlock(&cfs_b->lock);
2351
64660c86
PT
2352 /* update hierarchical throttle state */
2353 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2354
671fd9da
PT
2355 if (!cfs_rq->load.weight)
2356 return;
2357
2358 task_delta = cfs_rq->h_nr_running;
2359 for_each_sched_entity(se) {
2360 if (se->on_rq)
2361 enqueue = 0;
2362
2363 cfs_rq = cfs_rq_of(se);
2364 if (enqueue)
2365 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2366 cfs_rq->h_nr_running += task_delta;
2367
2368 if (cfs_rq_throttled(cfs_rq))
2369 break;
2370 }
2371
2372 if (!se)
2373 rq->nr_running += task_delta;
2374
2375 /* determine whether we need to wake up potentially idle cpu */
2376 if (rq->curr == rq->idle && rq->cfs.nr_running)
2377 resched_task(rq->curr);
2378}
2379
2380static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2381 u64 remaining, u64 expires)
2382{
2383 struct cfs_rq *cfs_rq;
2384 u64 runtime = remaining;
2385
2386 rcu_read_lock();
2387 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2388 throttled_list) {
2389 struct rq *rq = rq_of(cfs_rq);
2390
2391 raw_spin_lock(&rq->lock);
2392 if (!cfs_rq_throttled(cfs_rq))
2393 goto next;
2394
2395 runtime = -cfs_rq->runtime_remaining + 1;
2396 if (runtime > remaining)
2397 runtime = remaining;
2398 remaining -= runtime;
2399
2400 cfs_rq->runtime_remaining += runtime;
2401 cfs_rq->runtime_expires = expires;
2402
2403 /* we check whether we're throttled above */
2404 if (cfs_rq->runtime_remaining > 0)
2405 unthrottle_cfs_rq(cfs_rq);
2406
2407next:
2408 raw_spin_unlock(&rq->lock);
2409
2410 if (!remaining)
2411 break;
2412 }
2413 rcu_read_unlock();
2414
2415 return remaining;
2416}
2417
58088ad0
PT
2418/*
2419 * Responsible for refilling a task_group's bandwidth and unthrottling its
2420 * cfs_rqs as appropriate. If there has been no activity within the last
2421 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2422 * used to track this state.
2423 */
2424static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2425{
671fd9da
PT
2426 u64 runtime, runtime_expires;
2427 int idle = 1, throttled;
58088ad0
PT
2428
2429 raw_spin_lock(&cfs_b->lock);
2430 /* no need to continue the timer with no bandwidth constraint */
2431 if (cfs_b->quota == RUNTIME_INF)
2432 goto out_unlock;
2433
671fd9da
PT
2434 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435 /* idle depends on !throttled (for the case of a large deficit) */
2436 idle = cfs_b->idle && !throttled;
e8da1b18 2437 cfs_b->nr_periods += overrun;
671fd9da 2438
a9cf55b2
PT
2439 /* if we're going inactive then everything else can be deferred */
2440 if (idle)
2441 goto out_unlock;
2442
2443 __refill_cfs_bandwidth_runtime(cfs_b);
2444
671fd9da
PT
2445 if (!throttled) {
2446 /* mark as potentially idle for the upcoming period */
2447 cfs_b->idle = 1;
2448 goto out_unlock;
2449 }
2450
e8da1b18
NR
2451 /* account preceding periods in which throttling occurred */
2452 cfs_b->nr_throttled += overrun;
2453
671fd9da
PT
2454 /*
2455 * There are throttled entities so we must first use the new bandwidth
2456 * to unthrottle them before making it generally available. This
2457 * ensures that all existing debts will be paid before a new cfs_rq is
2458 * allowed to run.
2459 */
2460 runtime = cfs_b->runtime;
2461 runtime_expires = cfs_b->runtime_expires;
2462 cfs_b->runtime = 0;
2463
2464 /*
2465 * This check is repeated as we are holding onto the new bandwidth
2466 * while we unthrottle. This can potentially race with an unthrottled
2467 * group trying to acquire new bandwidth from the global pool.
2468 */
2469 while (throttled && runtime > 0) {
2470 raw_spin_unlock(&cfs_b->lock);
2471 /* we can't nest cfs_b->lock while distributing bandwidth */
2472 runtime = distribute_cfs_runtime(cfs_b, runtime,
2473 runtime_expires);
2474 raw_spin_lock(&cfs_b->lock);
2475
2476 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2477 }
58088ad0 2478
671fd9da
PT
2479 /* return (any) remaining runtime */
2480 cfs_b->runtime = runtime;
2481 /*
2482 * While we are ensured activity in the period following an
2483 * unthrottle, this also covers the case in which the new bandwidth is
2484 * insufficient to cover the existing bandwidth deficit. (Forcing the
2485 * timer to remain active while there are any throttled entities.)
2486 */
2487 cfs_b->idle = 0;
58088ad0
PT
2488out_unlock:
2489 if (idle)
2490 cfs_b->timer_active = 0;
2491 raw_spin_unlock(&cfs_b->lock);
2492
2493 return idle;
2494}
d3d9dc33 2495
d8b4986d
PT
2496/* a cfs_rq won't donate quota below this amount */
2497static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2498/* minimum remaining period time to redistribute slack quota */
2499static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2500/* how long we wait to gather additional slack before distributing */
2501static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2502
2503/* are we near the end of the current quota period? */
2504static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2505{
2506 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2507 u64 remaining;
2508
2509 /* if the call-back is running a quota refresh is already occurring */
2510 if (hrtimer_callback_running(refresh_timer))
2511 return 1;
2512
2513 /* is a quota refresh about to occur? */
2514 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2515 if (remaining < min_expire)
2516 return 1;
2517
2518 return 0;
2519}
2520
2521static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2522{
2523 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2524
2525 /* if there's a quota refresh soon don't bother with slack */
2526 if (runtime_refresh_within(cfs_b, min_left))
2527 return;
2528
2529 start_bandwidth_timer(&cfs_b->slack_timer,
2530 ns_to_ktime(cfs_bandwidth_slack_period));
2531}
2532
2533/* we know any runtime found here is valid as update_curr() precedes return */
2534static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2535{
2536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2537 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2538
2539 if (slack_runtime <= 0)
2540 return;
2541
2542 raw_spin_lock(&cfs_b->lock);
2543 if (cfs_b->quota != RUNTIME_INF &&
2544 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2545 cfs_b->runtime += slack_runtime;
2546
2547 /* we are under rq->lock, defer unthrottling using a timer */
2548 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2549 !list_empty(&cfs_b->throttled_cfs_rq))
2550 start_cfs_slack_bandwidth(cfs_b);
2551 }
2552 raw_spin_unlock(&cfs_b->lock);
2553
2554 /* even if it's not valid for return we don't want to try again */
2555 cfs_rq->runtime_remaining -= slack_runtime;
2556}
2557
2558static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2559{
56f570e5
PT
2560 if (!cfs_bandwidth_used())
2561 return;
2562
fccfdc6f 2563 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2564 return;
2565
2566 __return_cfs_rq_runtime(cfs_rq);
2567}
2568
2569/*
2570 * This is done with a timer (instead of inline with bandwidth return) since
2571 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2572 */
2573static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2574{
2575 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2576 u64 expires;
2577
2578 /* confirm we're still not at a refresh boundary */
2579 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2580 return;
2581
2582 raw_spin_lock(&cfs_b->lock);
2583 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2584 runtime = cfs_b->runtime;
2585 cfs_b->runtime = 0;
2586 }
2587 expires = cfs_b->runtime_expires;
2588 raw_spin_unlock(&cfs_b->lock);
2589
2590 if (!runtime)
2591 return;
2592
2593 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2594
2595 raw_spin_lock(&cfs_b->lock);
2596 if (expires == cfs_b->runtime_expires)
2597 cfs_b->runtime = runtime;
2598 raw_spin_unlock(&cfs_b->lock);
2599}
2600
d3d9dc33
PT
2601/*
2602 * When a group wakes up we want to make sure that its quota is not already
2603 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2604 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2605 */
2606static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2607{
56f570e5
PT
2608 if (!cfs_bandwidth_used())
2609 return;
2610
d3d9dc33
PT
2611 /* an active group must be handled by the update_curr()->put() path */
2612 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2613 return;
2614
2615 /* ensure the group is not already throttled */
2616 if (cfs_rq_throttled(cfs_rq))
2617 return;
2618
2619 /* update runtime allocation */
2620 account_cfs_rq_runtime(cfs_rq, 0);
2621 if (cfs_rq->runtime_remaining <= 0)
2622 throttle_cfs_rq(cfs_rq);
2623}
2624
2625/* conditionally throttle active cfs_rq's from put_prev_entity() */
2626static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2627{
56f570e5
PT
2628 if (!cfs_bandwidth_used())
2629 return;
2630
d3d9dc33
PT
2631 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2632 return;
2633
2634 /*
2635 * it's possible for a throttled entity to be forced into a running
2636 * state (e.g. set_curr_task), in this case we're finished.
2637 */
2638 if (cfs_rq_throttled(cfs_rq))
2639 return;
2640
2641 throttle_cfs_rq(cfs_rq);
2642}
029632fb 2643
029632fb
PZ
2644static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2645{
2646 struct cfs_bandwidth *cfs_b =
2647 container_of(timer, struct cfs_bandwidth, slack_timer);
2648 do_sched_cfs_slack_timer(cfs_b);
2649
2650 return HRTIMER_NORESTART;
2651}
2652
2653static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2654{
2655 struct cfs_bandwidth *cfs_b =
2656 container_of(timer, struct cfs_bandwidth, period_timer);
2657 ktime_t now;
2658 int overrun;
2659 int idle = 0;
2660
2661 for (;;) {
2662 now = hrtimer_cb_get_time(timer);
2663 overrun = hrtimer_forward(timer, now, cfs_b->period);
2664
2665 if (!overrun)
2666 break;
2667
2668 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2669 }
2670
2671 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2672}
2673
2674void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2675{
2676 raw_spin_lock_init(&cfs_b->lock);
2677 cfs_b->runtime = 0;
2678 cfs_b->quota = RUNTIME_INF;
2679 cfs_b->period = ns_to_ktime(default_cfs_period());
2680
2681 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2682 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2683 cfs_b->period_timer.function = sched_cfs_period_timer;
2684 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2685 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2686}
2687
2688static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2689{
2690 cfs_rq->runtime_enabled = 0;
2691 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2692}
2693
2694/* requires cfs_b->lock, may release to reprogram timer */
2695void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2696{
2697 /*
2698 * The timer may be active because we're trying to set a new bandwidth
2699 * period or because we're racing with the tear-down path
2700 * (timer_active==0 becomes visible before the hrtimer call-back
2701 * terminates). In either case we ensure that it's re-programmed
2702 */
2703 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2704 raw_spin_unlock(&cfs_b->lock);
2705 /* ensure cfs_b->lock is available while we wait */
2706 hrtimer_cancel(&cfs_b->period_timer);
2707
2708 raw_spin_lock(&cfs_b->lock);
2709 /* if someone else restarted the timer then we're done */
2710 if (cfs_b->timer_active)
2711 return;
2712 }
2713
2714 cfs_b->timer_active = 1;
2715 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2716}
2717
2718static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2719{
2720 hrtimer_cancel(&cfs_b->period_timer);
2721 hrtimer_cancel(&cfs_b->slack_timer);
2722}
2723
38dc3348 2724static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2725{
2726 struct cfs_rq *cfs_rq;
2727
2728 for_each_leaf_cfs_rq(rq, cfs_rq) {
2729 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2730
2731 if (!cfs_rq->runtime_enabled)
2732 continue;
2733
2734 /*
2735 * clock_task is not advancing so we just need to make sure
2736 * there's some valid quota amount
2737 */
2738 cfs_rq->runtime_remaining = cfs_b->quota;
2739 if (cfs_rq_throttled(cfs_rq))
2740 unthrottle_cfs_rq(cfs_rq);
2741 }
2742}
2743
2744#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2745static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2746{
78becc27 2747 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2748}
2749
2750static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2751 unsigned long delta_exec) {}
d3d9dc33
PT
2752static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2753static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2754static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2755
2756static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2757{
2758 return 0;
2759}
64660c86
PT
2760
2761static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2762{
2763 return 0;
2764}
2765
2766static inline int throttled_lb_pair(struct task_group *tg,
2767 int src_cpu, int dest_cpu)
2768{
2769 return 0;
2770}
029632fb
PZ
2771
2772void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2773
2774#ifdef CONFIG_FAIR_GROUP_SCHED
2775static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2776#endif
2777
029632fb
PZ
2778static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2779{
2780 return NULL;
2781}
2782static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2783static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2784
2785#endif /* CONFIG_CFS_BANDWIDTH */
2786
bf0f6f24
IM
2787/**************************************************
2788 * CFS operations on tasks:
2789 */
2790
8f4d37ec
PZ
2791#ifdef CONFIG_SCHED_HRTICK
2792static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2793{
8f4d37ec
PZ
2794 struct sched_entity *se = &p->se;
2795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2796
2797 WARN_ON(task_rq(p) != rq);
2798
b39e66ea 2799 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2800 u64 slice = sched_slice(cfs_rq, se);
2801 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2802 s64 delta = slice - ran;
2803
2804 if (delta < 0) {
2805 if (rq->curr == p)
2806 resched_task(p);
2807 return;
2808 }
2809
2810 /*
2811 * Don't schedule slices shorter than 10000ns, that just
2812 * doesn't make sense. Rely on vruntime for fairness.
2813 */
31656519 2814 if (rq->curr != p)
157124c1 2815 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2816
31656519 2817 hrtick_start(rq, delta);
8f4d37ec
PZ
2818 }
2819}
a4c2f00f
PZ
2820
2821/*
2822 * called from enqueue/dequeue and updates the hrtick when the
2823 * current task is from our class and nr_running is low enough
2824 * to matter.
2825 */
2826static void hrtick_update(struct rq *rq)
2827{
2828 struct task_struct *curr = rq->curr;
2829
b39e66ea 2830 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2831 return;
2832
2833 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2834 hrtick_start_fair(rq, curr);
2835}
55e12e5e 2836#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2837static inline void
2838hrtick_start_fair(struct rq *rq, struct task_struct *p)
2839{
2840}
a4c2f00f
PZ
2841
2842static inline void hrtick_update(struct rq *rq)
2843{
2844}
8f4d37ec
PZ
2845#endif
2846
bf0f6f24
IM
2847/*
2848 * The enqueue_task method is called before nr_running is
2849 * increased. Here we update the fair scheduling stats and
2850 * then put the task into the rbtree:
2851 */
ea87bb78 2852static void
371fd7e7 2853enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2854{
2855 struct cfs_rq *cfs_rq;
62fb1851 2856 struct sched_entity *se = &p->se;
bf0f6f24
IM
2857
2858 for_each_sched_entity(se) {
62fb1851 2859 if (se->on_rq)
bf0f6f24
IM
2860 break;
2861 cfs_rq = cfs_rq_of(se);
88ec22d3 2862 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2863
2864 /*
2865 * end evaluation on encountering a throttled cfs_rq
2866 *
2867 * note: in the case of encountering a throttled cfs_rq we will
2868 * post the final h_nr_running increment below.
2869 */
2870 if (cfs_rq_throttled(cfs_rq))
2871 break;
953bfcd1 2872 cfs_rq->h_nr_running++;
85dac906 2873
88ec22d3 2874 flags = ENQUEUE_WAKEUP;
bf0f6f24 2875 }
8f4d37ec 2876
2069dd75 2877 for_each_sched_entity(se) {
0f317143 2878 cfs_rq = cfs_rq_of(se);
953bfcd1 2879 cfs_rq->h_nr_running++;
2069dd75 2880
85dac906
PT
2881 if (cfs_rq_throttled(cfs_rq))
2882 break;
2883
17bc14b7 2884 update_cfs_shares(cfs_rq);
9ee474f5 2885 update_entity_load_avg(se, 1);
2069dd75
PZ
2886 }
2887
18bf2805
BS
2888 if (!se) {
2889 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2890 inc_nr_running(rq);
18bf2805 2891 }
a4c2f00f 2892 hrtick_update(rq);
bf0f6f24
IM
2893}
2894
2f36825b
VP
2895static void set_next_buddy(struct sched_entity *se);
2896
bf0f6f24
IM
2897/*
2898 * The dequeue_task method is called before nr_running is
2899 * decreased. We remove the task from the rbtree and
2900 * update the fair scheduling stats:
2901 */
371fd7e7 2902static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2903{
2904 struct cfs_rq *cfs_rq;
62fb1851 2905 struct sched_entity *se = &p->se;
2f36825b 2906 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2907
2908 for_each_sched_entity(se) {
2909 cfs_rq = cfs_rq_of(se);
371fd7e7 2910 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2911
2912 /*
2913 * end evaluation on encountering a throttled cfs_rq
2914 *
2915 * note: in the case of encountering a throttled cfs_rq we will
2916 * post the final h_nr_running decrement below.
2917 */
2918 if (cfs_rq_throttled(cfs_rq))
2919 break;
953bfcd1 2920 cfs_rq->h_nr_running--;
2069dd75 2921
bf0f6f24 2922 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2923 if (cfs_rq->load.weight) {
2924 /*
2925 * Bias pick_next to pick a task from this cfs_rq, as
2926 * p is sleeping when it is within its sched_slice.
2927 */
2928 if (task_sleep && parent_entity(se))
2929 set_next_buddy(parent_entity(se));
9598c82d
PT
2930
2931 /* avoid re-evaluating load for this entity */
2932 se = parent_entity(se);
bf0f6f24 2933 break;
2f36825b 2934 }
371fd7e7 2935 flags |= DEQUEUE_SLEEP;
bf0f6f24 2936 }
8f4d37ec 2937
2069dd75 2938 for_each_sched_entity(se) {
0f317143 2939 cfs_rq = cfs_rq_of(se);
953bfcd1 2940 cfs_rq->h_nr_running--;
2069dd75 2941
85dac906
PT
2942 if (cfs_rq_throttled(cfs_rq))
2943 break;
2944
17bc14b7 2945 update_cfs_shares(cfs_rq);
9ee474f5 2946 update_entity_load_avg(se, 1);
2069dd75
PZ
2947 }
2948
18bf2805 2949 if (!se) {
85dac906 2950 dec_nr_running(rq);
18bf2805
BS
2951 update_rq_runnable_avg(rq, 1);
2952 }
a4c2f00f 2953 hrtick_update(rq);
bf0f6f24
IM
2954}
2955
e7693a36 2956#ifdef CONFIG_SMP
029632fb
PZ
2957/* Used instead of source_load when we know the type == 0 */
2958static unsigned long weighted_cpuload(const int cpu)
2959{
2960 return cpu_rq(cpu)->load.weight;
2961}
2962
2963/*
2964 * Return a low guess at the load of a migration-source cpu weighted
2965 * according to the scheduling class and "nice" value.
2966 *
2967 * We want to under-estimate the load of migration sources, to
2968 * balance conservatively.
2969 */
2970static unsigned long source_load(int cpu, int type)
2971{
2972 struct rq *rq = cpu_rq(cpu);
2973 unsigned long total = weighted_cpuload(cpu);
2974
2975 if (type == 0 || !sched_feat(LB_BIAS))
2976 return total;
2977
2978 return min(rq->cpu_load[type-1], total);
2979}
2980
2981/*
2982 * Return a high guess at the load of a migration-target cpu weighted
2983 * according to the scheduling class and "nice" value.
2984 */
2985static unsigned long target_load(int cpu, int type)
2986{
2987 struct rq *rq = cpu_rq(cpu);
2988 unsigned long total = weighted_cpuload(cpu);
2989
2990 if (type == 0 || !sched_feat(LB_BIAS))
2991 return total;
2992
2993 return max(rq->cpu_load[type-1], total);
2994}
2995
2996static unsigned long power_of(int cpu)
2997{
2998 return cpu_rq(cpu)->cpu_power;
2999}
3000
3001static unsigned long cpu_avg_load_per_task(int cpu)
3002{
3003 struct rq *rq = cpu_rq(cpu);
3004 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3005
3006 if (nr_running)
3007 return rq->load.weight / nr_running;
3008
3009 return 0;
3010}
3011
098fb9db 3012
74f8e4b2 3013static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3014{
3015 struct sched_entity *se = &p->se;
3016 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3017 u64 min_vruntime;
3018
3019#ifndef CONFIG_64BIT
3020 u64 min_vruntime_copy;
88ec22d3 3021
3fe1698b
PZ
3022 do {
3023 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3024 smp_rmb();
3025 min_vruntime = cfs_rq->min_vruntime;
3026 } while (min_vruntime != min_vruntime_copy);
3027#else
3028 min_vruntime = cfs_rq->min_vruntime;
3029#endif
88ec22d3 3030
3fe1698b 3031 se->vruntime -= min_vruntime;
88ec22d3
PZ
3032}
3033
bb3469ac 3034#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3035/*
3036 * effective_load() calculates the load change as seen from the root_task_group
3037 *
3038 * Adding load to a group doesn't make a group heavier, but can cause movement
3039 * of group shares between cpus. Assuming the shares were perfectly aligned one
3040 * can calculate the shift in shares.
cf5f0acf
PZ
3041 *
3042 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3043 * on this @cpu and results in a total addition (subtraction) of @wg to the
3044 * total group weight.
3045 *
3046 * Given a runqueue weight distribution (rw_i) we can compute a shares
3047 * distribution (s_i) using:
3048 *
3049 * s_i = rw_i / \Sum rw_j (1)
3050 *
3051 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3052 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3053 * shares distribution (s_i):
3054 *
3055 * rw_i = { 2, 4, 1, 0 }
3056 * s_i = { 2/7, 4/7, 1/7, 0 }
3057 *
3058 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3059 * task used to run on and the CPU the waker is running on), we need to
3060 * compute the effect of waking a task on either CPU and, in case of a sync
3061 * wakeup, compute the effect of the current task going to sleep.
3062 *
3063 * So for a change of @wl to the local @cpu with an overall group weight change
3064 * of @wl we can compute the new shares distribution (s'_i) using:
3065 *
3066 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3067 *
3068 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3069 * differences in waking a task to CPU 0. The additional task changes the
3070 * weight and shares distributions like:
3071 *
3072 * rw'_i = { 3, 4, 1, 0 }
3073 * s'_i = { 3/8, 4/8, 1/8, 0 }
3074 *
3075 * We can then compute the difference in effective weight by using:
3076 *
3077 * dw_i = S * (s'_i - s_i) (3)
3078 *
3079 * Where 'S' is the group weight as seen by its parent.
3080 *
3081 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3082 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3083 * 4/7) times the weight of the group.
f5bfb7d9 3084 */
2069dd75 3085static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3086{
4be9daaa 3087 struct sched_entity *se = tg->se[cpu];
f1d239f7 3088
cf5f0acf 3089 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3090 return wl;
3091
4be9daaa 3092 for_each_sched_entity(se) {
cf5f0acf 3093 long w, W;
4be9daaa 3094
977dda7c 3095 tg = se->my_q->tg;
bb3469ac 3096
cf5f0acf
PZ
3097 /*
3098 * W = @wg + \Sum rw_j
3099 */
3100 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3101
cf5f0acf
PZ
3102 /*
3103 * w = rw_i + @wl
3104 */
3105 w = se->my_q->load.weight + wl;
940959e9 3106
cf5f0acf
PZ
3107 /*
3108 * wl = S * s'_i; see (2)
3109 */
3110 if (W > 0 && w < W)
3111 wl = (w * tg->shares) / W;
977dda7c
PT
3112 else
3113 wl = tg->shares;
940959e9 3114
cf5f0acf
PZ
3115 /*
3116 * Per the above, wl is the new se->load.weight value; since
3117 * those are clipped to [MIN_SHARES, ...) do so now. See
3118 * calc_cfs_shares().
3119 */
977dda7c
PT
3120 if (wl < MIN_SHARES)
3121 wl = MIN_SHARES;
cf5f0acf
PZ
3122
3123 /*
3124 * wl = dw_i = S * (s'_i - s_i); see (3)
3125 */
977dda7c 3126 wl -= se->load.weight;
cf5f0acf
PZ
3127
3128 /*
3129 * Recursively apply this logic to all parent groups to compute
3130 * the final effective load change on the root group. Since
3131 * only the @tg group gets extra weight, all parent groups can
3132 * only redistribute existing shares. @wl is the shift in shares
3133 * resulting from this level per the above.
3134 */
4be9daaa 3135 wg = 0;
4be9daaa 3136 }
bb3469ac 3137
4be9daaa 3138 return wl;
bb3469ac
PZ
3139}
3140#else
4be9daaa 3141
83378269
PZ
3142static inline unsigned long effective_load(struct task_group *tg, int cpu,
3143 unsigned long wl, unsigned long wg)
4be9daaa 3144{
83378269 3145 return wl;
bb3469ac 3146}
4be9daaa 3147
bb3469ac
PZ
3148#endif
3149
c88d5910 3150static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3151{
e37b6a7b 3152 s64 this_load, load;
c88d5910 3153 int idx, this_cpu, prev_cpu;
098fb9db 3154 unsigned long tl_per_task;
c88d5910 3155 struct task_group *tg;
83378269 3156 unsigned long weight;
b3137bc8 3157 int balanced;
098fb9db 3158
c88d5910
PZ
3159 idx = sd->wake_idx;
3160 this_cpu = smp_processor_id();
3161 prev_cpu = task_cpu(p);
3162 load = source_load(prev_cpu, idx);
3163 this_load = target_load(this_cpu, idx);
098fb9db 3164
b3137bc8
MG
3165 /*
3166 * If sync wakeup then subtract the (maximum possible)
3167 * effect of the currently running task from the load
3168 * of the current CPU:
3169 */
83378269
PZ
3170 if (sync) {
3171 tg = task_group(current);
3172 weight = current->se.load.weight;
3173
c88d5910 3174 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3175 load += effective_load(tg, prev_cpu, 0, -weight);
3176 }
b3137bc8 3177
83378269
PZ
3178 tg = task_group(p);
3179 weight = p->se.load.weight;
b3137bc8 3180
71a29aa7
PZ
3181 /*
3182 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3183 * due to the sync cause above having dropped this_load to 0, we'll
3184 * always have an imbalance, but there's really nothing you can do
3185 * about that, so that's good too.
71a29aa7
PZ
3186 *
3187 * Otherwise check if either cpus are near enough in load to allow this
3188 * task to be woken on this_cpu.
3189 */
e37b6a7b
PT
3190 if (this_load > 0) {
3191 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3192
3193 this_eff_load = 100;
3194 this_eff_load *= power_of(prev_cpu);
3195 this_eff_load *= this_load +
3196 effective_load(tg, this_cpu, weight, weight);
3197
3198 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3199 prev_eff_load *= power_of(this_cpu);
3200 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3201
3202 balanced = this_eff_load <= prev_eff_load;
3203 } else
3204 balanced = true;
b3137bc8 3205
098fb9db 3206 /*
4ae7d5ce
IM
3207 * If the currently running task will sleep within
3208 * a reasonable amount of time then attract this newly
3209 * woken task:
098fb9db 3210 */
2fb7635c
PZ
3211 if (sync && balanced)
3212 return 1;
098fb9db 3213
41acab88 3214 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3215 tl_per_task = cpu_avg_load_per_task(this_cpu);
3216
c88d5910
PZ
3217 if (balanced ||
3218 (this_load <= load &&
3219 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3220 /*
3221 * This domain has SD_WAKE_AFFINE and
3222 * p is cache cold in this domain, and
3223 * there is no bad imbalance.
3224 */
c88d5910 3225 schedstat_inc(sd, ttwu_move_affine);
41acab88 3226 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3227
3228 return 1;
3229 }
3230 return 0;
3231}
3232
aaee1203
PZ
3233/*
3234 * find_idlest_group finds and returns the least busy CPU group within the
3235 * domain.
3236 */
3237static struct sched_group *
78e7ed53 3238find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3239 int this_cpu, int load_idx)
e7693a36 3240{
b3bd3de6 3241 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3242 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3243 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3244
aaee1203
PZ
3245 do {
3246 unsigned long load, avg_load;
3247 int local_group;
3248 int i;
e7693a36 3249
aaee1203
PZ
3250 /* Skip over this group if it has no CPUs allowed */
3251 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3252 tsk_cpus_allowed(p)))
aaee1203
PZ
3253 continue;
3254
3255 local_group = cpumask_test_cpu(this_cpu,
3256 sched_group_cpus(group));
3257
3258 /* Tally up the load of all CPUs in the group */
3259 avg_load = 0;
3260
3261 for_each_cpu(i, sched_group_cpus(group)) {
3262 /* Bias balancing toward cpus of our domain */
3263 if (local_group)
3264 load = source_load(i, load_idx);
3265 else
3266 load = target_load(i, load_idx);
3267
3268 avg_load += load;
3269 }
3270
3271 /* Adjust by relative CPU power of the group */
9c3f75cb 3272 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3273
3274 if (local_group) {
3275 this_load = avg_load;
aaee1203
PZ
3276 } else if (avg_load < min_load) {
3277 min_load = avg_load;
3278 idlest = group;
3279 }
3280 } while (group = group->next, group != sd->groups);
3281
3282 if (!idlest || 100*this_load < imbalance*min_load)
3283 return NULL;
3284 return idlest;
3285}
3286
3287/*
3288 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3289 */
3290static int
3291find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3292{
3293 unsigned long load, min_load = ULONG_MAX;
3294 int idlest = -1;
3295 int i;
3296
3297 /* Traverse only the allowed CPUs */
fa17b507 3298 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3299 load = weighted_cpuload(i);
3300
3301 if (load < min_load || (load == min_load && i == this_cpu)) {
3302 min_load = load;
3303 idlest = i;
e7693a36
GH
3304 }
3305 }
3306
aaee1203
PZ
3307 return idlest;
3308}
e7693a36 3309
a50bde51
PZ
3310/*
3311 * Try and locate an idle CPU in the sched_domain.
3312 */
99bd5e2f 3313static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3314{
99bd5e2f 3315 struct sched_domain *sd;
37407ea7 3316 struct sched_group *sg;
e0a79f52 3317 int i = task_cpu(p);
a50bde51 3318
e0a79f52
MG
3319 if (idle_cpu(target))
3320 return target;
99bd5e2f
SS
3321
3322 /*
e0a79f52 3323 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3324 */
e0a79f52
MG
3325 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3326 return i;
a50bde51
PZ
3327
3328 /*
37407ea7 3329 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3330 */
518cd623 3331 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3332 for_each_lower_domain(sd) {
37407ea7
LT
3333 sg = sd->groups;
3334 do {
3335 if (!cpumask_intersects(sched_group_cpus(sg),
3336 tsk_cpus_allowed(p)))
3337 goto next;
3338
3339 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3340 if (i == target || !idle_cpu(i))
37407ea7
LT
3341 goto next;
3342 }
970e1789 3343
37407ea7
LT
3344 target = cpumask_first_and(sched_group_cpus(sg),
3345 tsk_cpus_allowed(p));
3346 goto done;
3347next:
3348 sg = sg->next;
3349 } while (sg != sd->groups);
3350 }
3351done:
a50bde51
PZ
3352 return target;
3353}
3354
aaee1203
PZ
3355/*
3356 * sched_balance_self: balance the current task (running on cpu) in domains
3357 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3358 * SD_BALANCE_EXEC.
3359 *
3360 * Balance, ie. select the least loaded group.
3361 *
3362 * Returns the target CPU number, or the same CPU if no balancing is needed.
3363 *
3364 * preempt must be disabled.
3365 */
0017d735 3366static int
7608dec2 3367select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3368{
29cd8bae 3369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3370 int cpu = smp_processor_id();
3371 int prev_cpu = task_cpu(p);
3372 int new_cpu = cpu;
99bd5e2f 3373 int want_affine = 0;
5158f4e4 3374 int sync = wake_flags & WF_SYNC;
c88d5910 3375
29baa747 3376 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3377 return prev_cpu;
3378
0763a660 3379 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3380 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3381 want_affine = 1;
3382 new_cpu = prev_cpu;
3383 }
aaee1203 3384
dce840a0 3385 rcu_read_lock();
aaee1203 3386 for_each_domain(cpu, tmp) {
e4f42888
PZ
3387 if (!(tmp->flags & SD_LOAD_BALANCE))
3388 continue;
3389
fe3bcfe1 3390 /*
99bd5e2f
SS
3391 * If both cpu and prev_cpu are part of this domain,
3392 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3393 */
99bd5e2f
SS
3394 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3395 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3396 affine_sd = tmp;
29cd8bae 3397 break;
f03542a7 3398 }
29cd8bae 3399
f03542a7 3400 if (tmp->flags & sd_flag)
29cd8bae
PZ
3401 sd = tmp;
3402 }
3403
8b911acd 3404 if (affine_sd) {
f03542a7 3405 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3406 prev_cpu = cpu;
3407
3408 new_cpu = select_idle_sibling(p, prev_cpu);
3409 goto unlock;
8b911acd 3410 }
e7693a36 3411
aaee1203 3412 while (sd) {
5158f4e4 3413 int load_idx = sd->forkexec_idx;
aaee1203 3414 struct sched_group *group;
c88d5910 3415 int weight;
098fb9db 3416
0763a660 3417 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3418 sd = sd->child;
3419 continue;
3420 }
098fb9db 3421
5158f4e4
PZ
3422 if (sd_flag & SD_BALANCE_WAKE)
3423 load_idx = sd->wake_idx;
098fb9db 3424
5158f4e4 3425 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3426 if (!group) {
3427 sd = sd->child;
3428 continue;
3429 }
4ae7d5ce 3430
d7c33c49 3431 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3432 if (new_cpu == -1 || new_cpu == cpu) {
3433 /* Now try balancing at a lower domain level of cpu */
3434 sd = sd->child;
3435 continue;
e7693a36 3436 }
aaee1203
PZ
3437
3438 /* Now try balancing at a lower domain level of new_cpu */
3439 cpu = new_cpu;
669c55e9 3440 weight = sd->span_weight;
aaee1203
PZ
3441 sd = NULL;
3442 for_each_domain(cpu, tmp) {
669c55e9 3443 if (weight <= tmp->span_weight)
aaee1203 3444 break;
0763a660 3445 if (tmp->flags & sd_flag)
aaee1203
PZ
3446 sd = tmp;
3447 }
3448 /* while loop will break here if sd == NULL */
e7693a36 3449 }
dce840a0
PZ
3450unlock:
3451 rcu_read_unlock();
e7693a36 3452
c88d5910 3453 return new_cpu;
e7693a36 3454}
0a74bef8
PT
3455
3456/*
3457 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3458 * cfs_rq_of(p) references at time of call are still valid and identify the
3459 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3460 * other assumptions, including the state of rq->lock, should be made.
3461 */
3462static void
3463migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3464{
aff3e498
PT
3465 struct sched_entity *se = &p->se;
3466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3467
3468 /*
3469 * Load tracking: accumulate removed load so that it can be processed
3470 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3471 * to blocked load iff they have a positive decay-count. It can never
3472 * be negative here since on-rq tasks have decay-count == 0.
3473 */
3474 if (se->avg.decay_count) {
3475 se->avg.decay_count = -__synchronize_entity_decay(se);
3476 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3477 }
0a74bef8 3478}
e7693a36
GH
3479#endif /* CONFIG_SMP */
3480
e52fb7c0
PZ
3481static unsigned long
3482wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3483{
3484 unsigned long gran = sysctl_sched_wakeup_granularity;
3485
3486 /*
e52fb7c0
PZ
3487 * Since its curr running now, convert the gran from real-time
3488 * to virtual-time in his units.
13814d42
MG
3489 *
3490 * By using 'se' instead of 'curr' we penalize light tasks, so
3491 * they get preempted easier. That is, if 'se' < 'curr' then
3492 * the resulting gran will be larger, therefore penalizing the
3493 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3494 * be smaller, again penalizing the lighter task.
3495 *
3496 * This is especially important for buddies when the leftmost
3497 * task is higher priority than the buddy.
0bbd3336 3498 */
f4ad9bd2 3499 return calc_delta_fair(gran, se);
0bbd3336
PZ
3500}
3501
464b7527
PZ
3502/*
3503 * Should 'se' preempt 'curr'.
3504 *
3505 * |s1
3506 * |s2
3507 * |s3
3508 * g
3509 * |<--->|c
3510 *
3511 * w(c, s1) = -1
3512 * w(c, s2) = 0
3513 * w(c, s3) = 1
3514 *
3515 */
3516static int
3517wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3518{
3519 s64 gran, vdiff = curr->vruntime - se->vruntime;
3520
3521 if (vdiff <= 0)
3522 return -1;
3523
e52fb7c0 3524 gran = wakeup_gran(curr, se);
464b7527
PZ
3525 if (vdiff > gran)
3526 return 1;
3527
3528 return 0;
3529}
3530
02479099
PZ
3531static void set_last_buddy(struct sched_entity *se)
3532{
69c80f3e
VP
3533 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3534 return;
3535
3536 for_each_sched_entity(se)
3537 cfs_rq_of(se)->last = se;
02479099
PZ
3538}
3539
3540static void set_next_buddy(struct sched_entity *se)
3541{
69c80f3e
VP
3542 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3543 return;
3544
3545 for_each_sched_entity(se)
3546 cfs_rq_of(se)->next = se;
02479099
PZ
3547}
3548
ac53db59
RR
3549static void set_skip_buddy(struct sched_entity *se)
3550{
69c80f3e
VP
3551 for_each_sched_entity(se)
3552 cfs_rq_of(se)->skip = se;
ac53db59
RR
3553}
3554
bf0f6f24
IM
3555/*
3556 * Preempt the current task with a newly woken task if needed:
3557 */
5a9b86f6 3558static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3559{
3560 struct task_struct *curr = rq->curr;
8651a86c 3561 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3562 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3563 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3564 int next_buddy_marked = 0;
bf0f6f24 3565
4ae7d5ce
IM
3566 if (unlikely(se == pse))
3567 return;
3568
5238cdd3 3569 /*
ddcdf6e7 3570 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3571 * unconditionally check_prempt_curr() after an enqueue (which may have
3572 * lead to a throttle). This both saves work and prevents false
3573 * next-buddy nomination below.
3574 */
3575 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3576 return;
3577
2f36825b 3578 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3579 set_next_buddy(pse);
2f36825b
VP
3580 next_buddy_marked = 1;
3581 }
57fdc26d 3582
aec0a514
BR
3583 /*
3584 * We can come here with TIF_NEED_RESCHED already set from new task
3585 * wake up path.
5238cdd3
PT
3586 *
3587 * Note: this also catches the edge-case of curr being in a throttled
3588 * group (e.g. via set_curr_task), since update_curr() (in the
3589 * enqueue of curr) will have resulted in resched being set. This
3590 * prevents us from potentially nominating it as a false LAST_BUDDY
3591 * below.
aec0a514
BR
3592 */
3593 if (test_tsk_need_resched(curr))
3594 return;
3595
a2f5c9ab
DH
3596 /* Idle tasks are by definition preempted by non-idle tasks. */
3597 if (unlikely(curr->policy == SCHED_IDLE) &&
3598 likely(p->policy != SCHED_IDLE))
3599 goto preempt;
3600
91c234b4 3601 /*
a2f5c9ab
DH
3602 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3603 * is driven by the tick):
91c234b4 3604 */
8ed92e51 3605 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3606 return;
bf0f6f24 3607
464b7527 3608 find_matching_se(&se, &pse);
9bbd7374 3609 update_curr(cfs_rq_of(se));
002f128b 3610 BUG_ON(!pse);
2f36825b
VP
3611 if (wakeup_preempt_entity(se, pse) == 1) {
3612 /*
3613 * Bias pick_next to pick the sched entity that is
3614 * triggering this preemption.
3615 */
3616 if (!next_buddy_marked)
3617 set_next_buddy(pse);
3a7e73a2 3618 goto preempt;
2f36825b 3619 }
464b7527 3620
3a7e73a2 3621 return;
a65ac745 3622
3a7e73a2
PZ
3623preempt:
3624 resched_task(curr);
3625 /*
3626 * Only set the backward buddy when the current task is still
3627 * on the rq. This can happen when a wakeup gets interleaved
3628 * with schedule on the ->pre_schedule() or idle_balance()
3629 * point, either of which can * drop the rq lock.
3630 *
3631 * Also, during early boot the idle thread is in the fair class,
3632 * for obvious reasons its a bad idea to schedule back to it.
3633 */
3634 if (unlikely(!se->on_rq || curr == rq->idle))
3635 return;
3636
3637 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3638 set_last_buddy(se);
bf0f6f24
IM
3639}
3640
fb8d4724 3641static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3642{
8f4d37ec 3643 struct task_struct *p;
bf0f6f24
IM
3644 struct cfs_rq *cfs_rq = &rq->cfs;
3645 struct sched_entity *se;
3646
36ace27e 3647 if (!cfs_rq->nr_running)
bf0f6f24
IM
3648 return NULL;
3649
3650 do {
9948f4b2 3651 se = pick_next_entity(cfs_rq);
f4b6755f 3652 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3653 cfs_rq = group_cfs_rq(se);
3654 } while (cfs_rq);
3655
8f4d37ec 3656 p = task_of(se);
b39e66ea
MG
3657 if (hrtick_enabled(rq))
3658 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3659
3660 return p;
bf0f6f24
IM
3661}
3662
3663/*
3664 * Account for a descheduled task:
3665 */
31ee529c 3666static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3667{
3668 struct sched_entity *se = &prev->se;
3669 struct cfs_rq *cfs_rq;
3670
3671 for_each_sched_entity(se) {
3672 cfs_rq = cfs_rq_of(se);
ab6cde26 3673 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3674 }
3675}
3676
ac53db59
RR
3677/*
3678 * sched_yield() is very simple
3679 *
3680 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3681 */
3682static void yield_task_fair(struct rq *rq)
3683{
3684 struct task_struct *curr = rq->curr;
3685 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3686 struct sched_entity *se = &curr->se;
3687
3688 /*
3689 * Are we the only task in the tree?
3690 */
3691 if (unlikely(rq->nr_running == 1))
3692 return;
3693
3694 clear_buddies(cfs_rq, se);
3695
3696 if (curr->policy != SCHED_BATCH) {
3697 update_rq_clock(rq);
3698 /*
3699 * Update run-time statistics of the 'current'.
3700 */
3701 update_curr(cfs_rq);
916671c0
MG
3702 /*
3703 * Tell update_rq_clock() that we've just updated,
3704 * so we don't do microscopic update in schedule()
3705 * and double the fastpath cost.
3706 */
3707 rq->skip_clock_update = 1;
ac53db59
RR
3708 }
3709
3710 set_skip_buddy(se);
3711}
3712
d95f4122
MG
3713static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3714{
3715 struct sched_entity *se = &p->se;
3716
5238cdd3
PT
3717 /* throttled hierarchies are not runnable */
3718 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3719 return false;
3720
3721 /* Tell the scheduler that we'd really like pse to run next. */
3722 set_next_buddy(se);
3723
d95f4122
MG
3724 yield_task_fair(rq);
3725
3726 return true;
3727}
3728
681f3e68 3729#ifdef CONFIG_SMP
bf0f6f24 3730/**************************************************
e9c84cb8
PZ
3731 * Fair scheduling class load-balancing methods.
3732 *
3733 * BASICS
3734 *
3735 * The purpose of load-balancing is to achieve the same basic fairness the
3736 * per-cpu scheduler provides, namely provide a proportional amount of compute
3737 * time to each task. This is expressed in the following equation:
3738 *
3739 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3740 *
3741 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3742 * W_i,0 is defined as:
3743 *
3744 * W_i,0 = \Sum_j w_i,j (2)
3745 *
3746 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3747 * is derived from the nice value as per prio_to_weight[].
3748 *
3749 * The weight average is an exponential decay average of the instantaneous
3750 * weight:
3751 *
3752 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3753 *
3754 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3755 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3756 * can also include other factors [XXX].
3757 *
3758 * To achieve this balance we define a measure of imbalance which follows
3759 * directly from (1):
3760 *
3761 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3762 *
3763 * We them move tasks around to minimize the imbalance. In the continuous
3764 * function space it is obvious this converges, in the discrete case we get
3765 * a few fun cases generally called infeasible weight scenarios.
3766 *
3767 * [XXX expand on:
3768 * - infeasible weights;
3769 * - local vs global optima in the discrete case. ]
3770 *
3771 *
3772 * SCHED DOMAINS
3773 *
3774 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3775 * for all i,j solution, we create a tree of cpus that follows the hardware
3776 * topology where each level pairs two lower groups (or better). This results
3777 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3778 * tree to only the first of the previous level and we decrease the frequency
3779 * of load-balance at each level inv. proportional to the number of cpus in
3780 * the groups.
3781 *
3782 * This yields:
3783 *
3784 * log_2 n 1 n
3785 * \Sum { --- * --- * 2^i } = O(n) (5)
3786 * i = 0 2^i 2^i
3787 * `- size of each group
3788 * | | `- number of cpus doing load-balance
3789 * | `- freq
3790 * `- sum over all levels
3791 *
3792 * Coupled with a limit on how many tasks we can migrate every balance pass,
3793 * this makes (5) the runtime complexity of the balancer.
3794 *
3795 * An important property here is that each CPU is still (indirectly) connected
3796 * to every other cpu in at most O(log n) steps:
3797 *
3798 * The adjacency matrix of the resulting graph is given by:
3799 *
3800 * log_2 n
3801 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3802 * k = 0
3803 *
3804 * And you'll find that:
3805 *
3806 * A^(log_2 n)_i,j != 0 for all i,j (7)
3807 *
3808 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3809 * The task movement gives a factor of O(m), giving a convergence complexity
3810 * of:
3811 *
3812 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3813 *
3814 *
3815 * WORK CONSERVING
3816 *
3817 * In order to avoid CPUs going idle while there's still work to do, new idle
3818 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3819 * tree itself instead of relying on other CPUs to bring it work.
3820 *
3821 * This adds some complexity to both (5) and (8) but it reduces the total idle
3822 * time.
3823 *
3824 * [XXX more?]
3825 *
3826 *
3827 * CGROUPS
3828 *
3829 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3830 *
3831 * s_k,i
3832 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3833 * S_k
3834 *
3835 * Where
3836 *
3837 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3838 *
3839 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3840 *
3841 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3842 * property.
3843 *
3844 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3845 * rewrite all of this once again.]
3846 */
bf0f6f24 3847
ed387b78
HS
3848static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3849
ddcdf6e7 3850#define LBF_ALL_PINNED 0x01
367456c7 3851#define LBF_NEED_BREAK 0x02
88b8dac0 3852#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3853
3854struct lb_env {
3855 struct sched_domain *sd;
3856
ddcdf6e7 3857 struct rq *src_rq;
85c1e7da 3858 int src_cpu;
ddcdf6e7
PZ
3859
3860 int dst_cpu;
3861 struct rq *dst_rq;
3862
88b8dac0
SV
3863 struct cpumask *dst_grpmask;
3864 int new_dst_cpu;
ddcdf6e7 3865 enum cpu_idle_type idle;
bd939f45 3866 long imbalance;
b9403130
MW
3867 /* The set of CPUs under consideration for load-balancing */
3868 struct cpumask *cpus;
3869
ddcdf6e7 3870 unsigned int flags;
367456c7
PZ
3871
3872 unsigned int loop;
3873 unsigned int loop_break;
3874 unsigned int loop_max;
ddcdf6e7
PZ
3875};
3876
1e3c88bd 3877/*
ddcdf6e7 3878 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3879 * Both runqueues must be locked.
3880 */
ddcdf6e7 3881static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3882{
ddcdf6e7
PZ
3883 deactivate_task(env->src_rq, p, 0);
3884 set_task_cpu(p, env->dst_cpu);
3885 activate_task(env->dst_rq, p, 0);
3886 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3887}
3888
029632fb
PZ
3889/*
3890 * Is this task likely cache-hot:
3891 */
3892static int
3893task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3894{
3895 s64 delta;
3896
3897 if (p->sched_class != &fair_sched_class)
3898 return 0;
3899
3900 if (unlikely(p->policy == SCHED_IDLE))
3901 return 0;
3902
3903 /*
3904 * Buddy candidates are cache hot:
3905 */
3906 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3907 (&p->se == cfs_rq_of(&p->se)->next ||
3908 &p->se == cfs_rq_of(&p->se)->last))
3909 return 1;
3910
3911 if (sysctl_sched_migration_cost == -1)
3912 return 1;
3913 if (sysctl_sched_migration_cost == 0)
3914 return 0;
3915
3916 delta = now - p->se.exec_start;
3917
3918 return delta < (s64)sysctl_sched_migration_cost;
3919}
3920
1e3c88bd
PZ
3921/*
3922 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3923 */
3924static
8e45cb54 3925int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3926{
3927 int tsk_cache_hot = 0;
3928 /*
3929 * We do not migrate tasks that are:
d3198084 3930 * 1) throttled_lb_pair, or
1e3c88bd 3931 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3932 * 3) running (obviously), or
3933 * 4) are cache-hot on their current CPU.
1e3c88bd 3934 */
d3198084
JK
3935 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3936 return 0;
3937
ddcdf6e7 3938 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3939 int cpu;
88b8dac0 3940
41acab88 3941 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3942
3943 /*
3944 * Remember if this task can be migrated to any other cpu in
3945 * our sched_group. We may want to revisit it if we couldn't
3946 * meet load balance goals by pulling other tasks on src_cpu.
3947 *
3948 * Also avoid computing new_dst_cpu if we have already computed
3949 * one in current iteration.
3950 */
3951 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3952 return 0;
3953
e02e60c1
JK
3954 /* Prevent to re-select dst_cpu via env's cpus */
3955 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3956 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3957 env->flags |= LBF_SOME_PINNED;
3958 env->new_dst_cpu = cpu;
3959 break;
3960 }
88b8dac0 3961 }
e02e60c1 3962
1e3c88bd
PZ
3963 return 0;
3964 }
88b8dac0
SV
3965
3966 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3967 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3968
ddcdf6e7 3969 if (task_running(env->src_rq, p)) {
41acab88 3970 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3971 return 0;
3972 }
3973
3974 /*
3975 * Aggressive migration if:
3976 * 1) task is cache cold, or
3977 * 2) too many balance attempts have failed.
3978 */
3979
78becc27 3980 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3981 if (!tsk_cache_hot ||
8e45cb54 3982 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3983
1e3c88bd 3984 if (tsk_cache_hot) {
8e45cb54 3985 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3986 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3987 }
4e2dcb73 3988
1e3c88bd
PZ
3989 return 1;
3990 }
3991
4e2dcb73
ZH
3992 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3993 return 0;
1e3c88bd
PZ
3994}
3995
897c395f
PZ
3996/*
3997 * move_one_task tries to move exactly one task from busiest to this_rq, as
3998 * part of active balancing operations within "domain".
3999 * Returns 1 if successful and 0 otherwise.
4000 *
4001 * Called with both runqueues locked.
4002 */
8e45cb54 4003static int move_one_task(struct lb_env *env)
897c395f
PZ
4004{
4005 struct task_struct *p, *n;
897c395f 4006
367456c7 4007 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4008 if (!can_migrate_task(p, env))
4009 continue;
897c395f 4010
367456c7
PZ
4011 move_task(p, env);
4012 /*
4013 * Right now, this is only the second place move_task()
4014 * is called, so we can safely collect move_task()
4015 * stats here rather than inside move_task().
4016 */
4017 schedstat_inc(env->sd, lb_gained[env->idle]);
4018 return 1;
897c395f 4019 }
897c395f
PZ
4020 return 0;
4021}
4022
367456c7
PZ
4023static unsigned long task_h_load(struct task_struct *p);
4024
eb95308e
PZ
4025static const unsigned int sched_nr_migrate_break = 32;
4026
5d6523eb 4027/*
bd939f45 4028 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4029 * this_rq, as part of a balancing operation within domain "sd".
4030 * Returns 1 if successful and 0 otherwise.
4031 *
4032 * Called with both runqueues locked.
4033 */
4034static int move_tasks(struct lb_env *env)
1e3c88bd 4035{
5d6523eb
PZ
4036 struct list_head *tasks = &env->src_rq->cfs_tasks;
4037 struct task_struct *p;
367456c7
PZ
4038 unsigned long load;
4039 int pulled = 0;
1e3c88bd 4040
bd939f45 4041 if (env->imbalance <= 0)
5d6523eb 4042 return 0;
1e3c88bd 4043
5d6523eb
PZ
4044 while (!list_empty(tasks)) {
4045 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4046
367456c7
PZ
4047 env->loop++;
4048 /* We've more or less seen every task there is, call it quits */
5d6523eb 4049 if (env->loop > env->loop_max)
367456c7 4050 break;
5d6523eb
PZ
4051
4052 /* take a breather every nr_migrate tasks */
367456c7 4053 if (env->loop > env->loop_break) {
eb95308e 4054 env->loop_break += sched_nr_migrate_break;
8e45cb54 4055 env->flags |= LBF_NEED_BREAK;
ee00e66f 4056 break;
a195f004 4057 }
1e3c88bd 4058
d3198084 4059 if (!can_migrate_task(p, env))
367456c7
PZ
4060 goto next;
4061
4062 load = task_h_load(p);
5d6523eb 4063
eb95308e 4064 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4065 goto next;
4066
bd939f45 4067 if ((load / 2) > env->imbalance)
367456c7 4068 goto next;
1e3c88bd 4069
ddcdf6e7 4070 move_task(p, env);
ee00e66f 4071 pulled++;
bd939f45 4072 env->imbalance -= load;
1e3c88bd
PZ
4073
4074#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4075 /*
4076 * NEWIDLE balancing is a source of latency, so preemptible
4077 * kernels will stop after the first task is pulled to minimize
4078 * the critical section.
4079 */
5d6523eb 4080 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4081 break;
1e3c88bd
PZ
4082#endif
4083
ee00e66f
PZ
4084 /*
4085 * We only want to steal up to the prescribed amount of
4086 * weighted load.
4087 */
bd939f45 4088 if (env->imbalance <= 0)
ee00e66f 4089 break;
367456c7
PZ
4090
4091 continue;
4092next:
5d6523eb 4093 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4094 }
5d6523eb 4095
1e3c88bd 4096 /*
ddcdf6e7
PZ
4097 * Right now, this is one of only two places move_task() is called,
4098 * so we can safely collect move_task() stats here rather than
4099 * inside move_task().
1e3c88bd 4100 */
8e45cb54 4101 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4102
5d6523eb 4103 return pulled;
1e3c88bd
PZ
4104}
4105
230059de 4106#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4107/*
4108 * update tg->load_weight by folding this cpu's load_avg
4109 */
48a16753 4110static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4111{
48a16753
PT
4112 struct sched_entity *se = tg->se[cpu];
4113 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4114
48a16753
PT
4115 /* throttled entities do not contribute to load */
4116 if (throttled_hierarchy(cfs_rq))
4117 return;
9e3081ca 4118
aff3e498 4119 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4120
82958366
PT
4121 if (se) {
4122 update_entity_load_avg(se, 1);
4123 /*
4124 * We pivot on our runnable average having decayed to zero for
4125 * list removal. This generally implies that all our children
4126 * have also been removed (modulo rounding error or bandwidth
4127 * control); however, such cases are rare and we can fix these
4128 * at enqueue.
4129 *
4130 * TODO: fix up out-of-order children on enqueue.
4131 */
4132 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4133 list_del_leaf_cfs_rq(cfs_rq);
4134 } else {
48a16753 4135 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4136 update_rq_runnable_avg(rq, rq->nr_running);
4137 }
9e3081ca
PZ
4138}
4139
48a16753 4140static void update_blocked_averages(int cpu)
9e3081ca 4141{
9e3081ca 4142 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4143 struct cfs_rq *cfs_rq;
4144 unsigned long flags;
9e3081ca 4145
48a16753
PT
4146 raw_spin_lock_irqsave(&rq->lock, flags);
4147 update_rq_clock(rq);
9763b67f
PZ
4148 /*
4149 * Iterates the task_group tree in a bottom up fashion, see
4150 * list_add_leaf_cfs_rq() for details.
4151 */
64660c86 4152 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4153 /*
4154 * Note: We may want to consider periodically releasing
4155 * rq->lock about these updates so that creating many task
4156 * groups does not result in continually extending hold time.
4157 */
4158 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4159 }
48a16753
PT
4160
4161 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4162}
4163
9763b67f
PZ
4164/*
4165 * Compute the cpu's hierarchical load factor for each task group.
4166 * This needs to be done in a top-down fashion because the load of a child
4167 * group is a fraction of its parents load.
4168 */
4169static int tg_load_down(struct task_group *tg, void *data)
4170{
4171 unsigned long load;
4172 long cpu = (long)data;
4173
4174 if (!tg->parent) {
4175 load = cpu_rq(cpu)->load.weight;
4176 } else {
4177 load = tg->parent->cfs_rq[cpu]->h_load;
4178 load *= tg->se[cpu]->load.weight;
4179 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4180 }
4181
4182 tg->cfs_rq[cpu]->h_load = load;
4183
4184 return 0;
4185}
4186
4187static void update_h_load(long cpu)
4188{
a35b6466
PZ
4189 struct rq *rq = cpu_rq(cpu);
4190 unsigned long now = jiffies;
4191
4192 if (rq->h_load_throttle == now)
4193 return;
4194
4195 rq->h_load_throttle = now;
4196
367456c7 4197 rcu_read_lock();
9763b67f 4198 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4199 rcu_read_unlock();
9763b67f
PZ
4200}
4201
367456c7 4202static unsigned long task_h_load(struct task_struct *p)
230059de 4203{
367456c7
PZ
4204 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4205 unsigned long load;
230059de 4206
367456c7
PZ
4207 load = p->se.load.weight;
4208 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4209
367456c7 4210 return load;
230059de
PZ
4211}
4212#else
48a16753 4213static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4214{
4215}
4216
367456c7 4217static inline void update_h_load(long cpu)
230059de 4218{
230059de 4219}
230059de 4220
367456c7 4221static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4222{
367456c7 4223 return p->se.load.weight;
1e3c88bd 4224}
230059de 4225#endif
1e3c88bd 4226
1e3c88bd
PZ
4227/********** Helpers for find_busiest_group ************************/
4228/*
4229 * sd_lb_stats - Structure to store the statistics of a sched_domain
4230 * during load balancing.
4231 */
4232struct sd_lb_stats {
4233 struct sched_group *busiest; /* Busiest group in this sd */
4234 struct sched_group *this; /* Local group in this sd */
4235 unsigned long total_load; /* Total load of all groups in sd */
4236 unsigned long total_pwr; /* Total power of all groups in sd */
4237 unsigned long avg_load; /* Average load across all groups in sd */
4238
4239 /** Statistics of this group */
4240 unsigned long this_load;
4241 unsigned long this_load_per_task;
4242 unsigned long this_nr_running;
fab47622 4243 unsigned long this_has_capacity;
aae6d3dd 4244 unsigned int this_idle_cpus;
1e3c88bd
PZ
4245
4246 /* Statistics of the busiest group */
aae6d3dd 4247 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4248 unsigned long max_load;
4249 unsigned long busiest_load_per_task;
4250 unsigned long busiest_nr_running;
dd5feea1 4251 unsigned long busiest_group_capacity;
fab47622 4252 unsigned long busiest_has_capacity;
aae6d3dd 4253 unsigned int busiest_group_weight;
1e3c88bd
PZ
4254
4255 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4256};
4257
4258/*
4259 * sg_lb_stats - stats of a sched_group required for load_balancing
4260 */
4261struct sg_lb_stats {
4262 unsigned long avg_load; /*Avg load across the CPUs of the group */
4263 unsigned long group_load; /* Total load over the CPUs of the group */
4264 unsigned long sum_nr_running; /* Nr tasks running in the group */
4265 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4266 unsigned long group_capacity;
aae6d3dd
SS
4267 unsigned long idle_cpus;
4268 unsigned long group_weight;
1e3c88bd 4269 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4270 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4271};
4272
1e3c88bd
PZ
4273/**
4274 * get_sd_load_idx - Obtain the load index for a given sched domain.
4275 * @sd: The sched_domain whose load_idx is to be obtained.
4276 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4277 */
4278static inline int get_sd_load_idx(struct sched_domain *sd,
4279 enum cpu_idle_type idle)
4280{
4281 int load_idx;
4282
4283 switch (idle) {
4284 case CPU_NOT_IDLE:
4285 load_idx = sd->busy_idx;
4286 break;
4287
4288 case CPU_NEWLY_IDLE:
4289 load_idx = sd->newidle_idx;
4290 break;
4291 default:
4292 load_idx = sd->idle_idx;
4293 break;
4294 }
4295
4296 return load_idx;
4297}
4298
15f803c9 4299static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4300{
1399fa78 4301 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4302}
4303
4304unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4305{
4306 return default_scale_freq_power(sd, cpu);
4307}
4308
15f803c9 4309static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4310{
669c55e9 4311 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4312 unsigned long smt_gain = sd->smt_gain;
4313
4314 smt_gain /= weight;
4315
4316 return smt_gain;
4317}
4318
4319unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4320{
4321 return default_scale_smt_power(sd, cpu);
4322}
4323
15f803c9 4324static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4325{
4326 struct rq *rq = cpu_rq(cpu);
b654f7de 4327 u64 total, available, age_stamp, avg;
1e3c88bd 4328
b654f7de
PZ
4329 /*
4330 * Since we're reading these variables without serialization make sure
4331 * we read them once before doing sanity checks on them.
4332 */
4333 age_stamp = ACCESS_ONCE(rq->age_stamp);
4334 avg = ACCESS_ONCE(rq->rt_avg);
4335
78becc27 4336 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4337
b654f7de 4338 if (unlikely(total < avg)) {
aa483808
VP
4339 /* Ensures that power won't end up being negative */
4340 available = 0;
4341 } else {
b654f7de 4342 available = total - avg;
aa483808 4343 }
1e3c88bd 4344
1399fa78
NR
4345 if (unlikely((s64)total < SCHED_POWER_SCALE))
4346 total = SCHED_POWER_SCALE;
1e3c88bd 4347
1399fa78 4348 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4349
4350 return div_u64(available, total);
4351}
4352
4353static void update_cpu_power(struct sched_domain *sd, int cpu)
4354{
669c55e9 4355 unsigned long weight = sd->span_weight;
1399fa78 4356 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4357 struct sched_group *sdg = sd->groups;
4358
1e3c88bd
PZ
4359 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4360 if (sched_feat(ARCH_POWER))
4361 power *= arch_scale_smt_power(sd, cpu);
4362 else
4363 power *= default_scale_smt_power(sd, cpu);
4364
1399fa78 4365 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4366 }
4367
9c3f75cb 4368 sdg->sgp->power_orig = power;
9d5efe05
SV
4369
4370 if (sched_feat(ARCH_POWER))
4371 power *= arch_scale_freq_power(sd, cpu);
4372 else
4373 power *= default_scale_freq_power(sd, cpu);
4374
1399fa78 4375 power >>= SCHED_POWER_SHIFT;
9d5efe05 4376
1e3c88bd 4377 power *= scale_rt_power(cpu);
1399fa78 4378 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4379
4380 if (!power)
4381 power = 1;
4382
e51fd5e2 4383 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4384 sdg->sgp->power = power;
1e3c88bd
PZ
4385}
4386
029632fb 4387void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4388{
4389 struct sched_domain *child = sd->child;
4390 struct sched_group *group, *sdg = sd->groups;
4391 unsigned long power;
4ec4412e
VG
4392 unsigned long interval;
4393
4394 interval = msecs_to_jiffies(sd->balance_interval);
4395 interval = clamp(interval, 1UL, max_load_balance_interval);
4396 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4397
4398 if (!child) {
4399 update_cpu_power(sd, cpu);
4400 return;
4401 }
4402
4403 power = 0;
4404
74a5ce20
PZ
4405 if (child->flags & SD_OVERLAP) {
4406 /*
4407 * SD_OVERLAP domains cannot assume that child groups
4408 * span the current group.
4409 */
4410
4411 for_each_cpu(cpu, sched_group_cpus(sdg))
4412 power += power_of(cpu);
4413 } else {
4414 /*
4415 * !SD_OVERLAP domains can assume that child groups
4416 * span the current group.
4417 */
4418
4419 group = child->groups;
4420 do {
4421 power += group->sgp->power;
4422 group = group->next;
4423 } while (group != child->groups);
4424 }
1e3c88bd 4425
c3decf0d 4426 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4427}
4428
9d5efe05
SV
4429/*
4430 * Try and fix up capacity for tiny siblings, this is needed when
4431 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4432 * which on its own isn't powerful enough.
4433 *
4434 * See update_sd_pick_busiest() and check_asym_packing().
4435 */
4436static inline int
4437fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4438{
4439 /*
1399fa78 4440 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4441 */
a6c75f2f 4442 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4443 return 0;
4444
4445 /*
4446 * If ~90% of the cpu_power is still there, we're good.
4447 */
9c3f75cb 4448 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4449 return 1;
4450
4451 return 0;
4452}
4453
1e3c88bd
PZ
4454/**
4455 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4456 * @env: The load balancing environment.
1e3c88bd 4457 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4458 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4459 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4460 * @balance: Should we balance.
4461 * @sgs: variable to hold the statistics for this group.
4462 */
bd939f45
PZ
4463static inline void update_sg_lb_stats(struct lb_env *env,
4464 struct sched_group *group, int load_idx,
b9403130 4465 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4466{
e44bc5c5
PZ
4467 unsigned long nr_running, max_nr_running, min_nr_running;
4468 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4469 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4470 unsigned long avg_load_per_task = 0;
bd939f45 4471 int i;
1e3c88bd 4472
871e35bc 4473 if (local_group)
c1174876 4474 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4475
4476 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4477 max_cpu_load = 0;
4478 min_cpu_load = ~0UL;
2582f0eb 4479 max_nr_running = 0;
e44bc5c5 4480 min_nr_running = ~0UL;
1e3c88bd 4481
b9403130 4482 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4483 struct rq *rq = cpu_rq(i);
4484
e44bc5c5
PZ
4485 nr_running = rq->nr_running;
4486
1e3c88bd
PZ
4487 /* Bias balancing toward cpus of our domain */
4488 if (local_group) {
c1174876
PZ
4489 if (idle_cpu(i) && !first_idle_cpu &&
4490 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4491 first_idle_cpu = 1;
1e3c88bd
PZ
4492 balance_cpu = i;
4493 }
04f733b4
PZ
4494
4495 load = target_load(i, load_idx);
1e3c88bd
PZ
4496 } else {
4497 load = source_load(i, load_idx);
e44bc5c5 4498 if (load > max_cpu_load)
1e3c88bd
PZ
4499 max_cpu_load = load;
4500 if (min_cpu_load > load)
4501 min_cpu_load = load;
e44bc5c5
PZ
4502
4503 if (nr_running > max_nr_running)
4504 max_nr_running = nr_running;
4505 if (min_nr_running > nr_running)
4506 min_nr_running = nr_running;
1e3c88bd
PZ
4507 }
4508
4509 sgs->group_load += load;
e44bc5c5 4510 sgs->sum_nr_running += nr_running;
1e3c88bd 4511 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4512 if (idle_cpu(i))
4513 sgs->idle_cpus++;
1e3c88bd
PZ
4514 }
4515
4516 /*
4517 * First idle cpu or the first cpu(busiest) in this sched group
4518 * is eligible for doing load balancing at this and above
4519 * domains. In the newly idle case, we will allow all the cpu's
4520 * to do the newly idle load balance.
4521 */
4ec4412e 4522 if (local_group) {
bd939f45 4523 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4524 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4525 *balance = 0;
4526 return;
4527 }
bd939f45 4528 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4529 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4530 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4531 }
4532
4533 /* Adjust by relative CPU power of the group */
9c3f75cb 4534 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4535
1e3c88bd
PZ
4536 /*
4537 * Consider the group unbalanced when the imbalance is larger
866ab43e 4538 * than the average weight of a task.
1e3c88bd
PZ
4539 *
4540 * APZ: with cgroup the avg task weight can vary wildly and
4541 * might not be a suitable number - should we keep a
4542 * normalized nr_running number somewhere that negates
4543 * the hierarchy?
4544 */
dd5feea1
SS
4545 if (sgs->sum_nr_running)
4546 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4547
e44bc5c5
PZ
4548 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4549 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4550 sgs->group_imb = 1;
4551
9c3f75cb 4552 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4553 SCHED_POWER_SCALE);
9d5efe05 4554 if (!sgs->group_capacity)
bd939f45 4555 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4556 sgs->group_weight = group->group_weight;
fab47622
NR
4557
4558 if (sgs->group_capacity > sgs->sum_nr_running)
4559 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4560}
4561
532cb4c4
MN
4562/**
4563 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4564 * @env: The load balancing environment.
532cb4c4
MN
4565 * @sds: sched_domain statistics
4566 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4567 * @sgs: sched_group statistics
532cb4c4
MN
4568 *
4569 * Determine if @sg is a busier group than the previously selected
4570 * busiest group.
4571 */
bd939f45 4572static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4573 struct sd_lb_stats *sds,
4574 struct sched_group *sg,
bd939f45 4575 struct sg_lb_stats *sgs)
532cb4c4
MN
4576{
4577 if (sgs->avg_load <= sds->max_load)
4578 return false;
4579
4580 if (sgs->sum_nr_running > sgs->group_capacity)
4581 return true;
4582
4583 if (sgs->group_imb)
4584 return true;
4585
4586 /*
4587 * ASYM_PACKING needs to move all the work to the lowest
4588 * numbered CPUs in the group, therefore mark all groups
4589 * higher than ourself as busy.
4590 */
bd939f45
PZ
4591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4592 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4593 if (!sds->busiest)
4594 return true;
4595
4596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4597 return true;
4598 }
4599
4600 return false;
4601}
4602
1e3c88bd 4603/**
461819ac 4604 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4605 * @env: The load balancing environment.
1e3c88bd
PZ
4606 * @balance: Should we balance.
4607 * @sds: variable to hold the statistics for this sched_domain.
4608 */
bd939f45 4609static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4610 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4611{
bd939f45
PZ
4612 struct sched_domain *child = env->sd->child;
4613 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4614 struct sg_lb_stats sgs;
4615 int load_idx, prefer_sibling = 0;
4616
4617 if (child && child->flags & SD_PREFER_SIBLING)
4618 prefer_sibling = 1;
4619
bd939f45 4620 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4621
4622 do {
4623 int local_group;
4624
bd939f45 4625 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4626 memset(&sgs, 0, sizeof(sgs));
b9403130 4627 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4628
8f190fb3 4629 if (local_group && !(*balance))
1e3c88bd
PZ
4630 return;
4631
4632 sds->total_load += sgs.group_load;
9c3f75cb 4633 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4634
4635 /*
4636 * In case the child domain prefers tasks go to siblings
532cb4c4 4637 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4638 * and move all the excess tasks away. We lower the capacity
4639 * of a group only if the local group has the capacity to fit
4640 * these excess tasks, i.e. nr_running < group_capacity. The
4641 * extra check prevents the case where you always pull from the
4642 * heaviest group when it is already under-utilized (possible
4643 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4644 */
75dd321d 4645 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4646 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4647
4648 if (local_group) {
4649 sds->this_load = sgs.avg_load;
532cb4c4 4650 sds->this = sg;
1e3c88bd
PZ
4651 sds->this_nr_running = sgs.sum_nr_running;
4652 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4653 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4654 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4655 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4656 sds->max_load = sgs.avg_load;
532cb4c4 4657 sds->busiest = sg;
1e3c88bd 4658 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4659 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4660 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4661 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4662 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4663 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4664 sds->group_imb = sgs.group_imb;
4665 }
4666
532cb4c4 4667 sg = sg->next;
bd939f45 4668 } while (sg != env->sd->groups);
532cb4c4
MN
4669}
4670
532cb4c4
MN
4671/**
4672 * check_asym_packing - Check to see if the group is packed into the
4673 * sched doman.
4674 *
4675 * This is primarily intended to used at the sibling level. Some
4676 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4677 * case of POWER7, it can move to lower SMT modes only when higher
4678 * threads are idle. When in lower SMT modes, the threads will
4679 * perform better since they share less core resources. Hence when we
4680 * have idle threads, we want them to be the higher ones.
4681 *
4682 * This packing function is run on idle threads. It checks to see if
4683 * the busiest CPU in this domain (core in the P7 case) has a higher
4684 * CPU number than the packing function is being run on. Here we are
4685 * assuming lower CPU number will be equivalent to lower a SMT thread
4686 * number.
4687 *
b6b12294
MN
4688 * Returns 1 when packing is required and a task should be moved to
4689 * this CPU. The amount of the imbalance is returned in *imbalance.
4690 *
cd96891d 4691 * @env: The load balancing environment.
532cb4c4 4692 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4693 */
bd939f45 4694static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4695{
4696 int busiest_cpu;
4697
bd939f45 4698 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4699 return 0;
4700
4701 if (!sds->busiest)
4702 return 0;
4703
4704 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4705 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4706 return 0;
4707
bd939f45
PZ
4708 env->imbalance = DIV_ROUND_CLOSEST(
4709 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4710
532cb4c4 4711 return 1;
1e3c88bd
PZ
4712}
4713
4714/**
4715 * fix_small_imbalance - Calculate the minor imbalance that exists
4716 * amongst the groups of a sched_domain, during
4717 * load balancing.
cd96891d 4718 * @env: The load balancing environment.
1e3c88bd 4719 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4720 */
bd939f45
PZ
4721static inline
4722void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4723{
4724 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4725 unsigned int imbn = 2;
dd5feea1 4726 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4727
4728 if (sds->this_nr_running) {
4729 sds->this_load_per_task /= sds->this_nr_running;
4730 if (sds->busiest_load_per_task >
4731 sds->this_load_per_task)
4732 imbn = 1;
bd939f45 4733 } else {
1e3c88bd 4734 sds->this_load_per_task =
bd939f45
PZ
4735 cpu_avg_load_per_task(env->dst_cpu);
4736 }
1e3c88bd 4737
dd5feea1 4738 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4739 * SCHED_POWER_SCALE;
9c3f75cb 4740 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4741
4742 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4743 (scaled_busy_load_per_task * imbn)) {
bd939f45 4744 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4745 return;
4746 }
4747
4748 /*
4749 * OK, we don't have enough imbalance to justify moving tasks,
4750 * however we may be able to increase total CPU power used by
4751 * moving them.
4752 */
4753
9c3f75cb 4754 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4755 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4756 pwr_now += sds->this->sgp->power *
1e3c88bd 4757 min(sds->this_load_per_task, sds->this_load);
1399fa78 4758 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4759
4760 /* Amount of load we'd subtract */
1399fa78 4761 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4762 sds->busiest->sgp->power;
1e3c88bd 4763 if (sds->max_load > tmp)
9c3f75cb 4764 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4765 min(sds->busiest_load_per_task, sds->max_load - tmp);
4766
4767 /* Amount of load we'd add */
9c3f75cb 4768 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4769 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4770 tmp = (sds->max_load * sds->busiest->sgp->power) /
4771 sds->this->sgp->power;
1e3c88bd 4772 else
1399fa78 4773 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4774 sds->this->sgp->power;
4775 pwr_move += sds->this->sgp->power *
1e3c88bd 4776 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4777 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4778
4779 /* Move if we gain throughput */
4780 if (pwr_move > pwr_now)
bd939f45 4781 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4782}
4783
4784/**
4785 * calculate_imbalance - Calculate the amount of imbalance present within the
4786 * groups of a given sched_domain during load balance.
bd939f45 4787 * @env: load balance environment
1e3c88bd 4788 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4789 */
bd939f45 4790static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4791{
dd5feea1
SS
4792 unsigned long max_pull, load_above_capacity = ~0UL;
4793
4794 sds->busiest_load_per_task /= sds->busiest_nr_running;
4795 if (sds->group_imb) {
4796 sds->busiest_load_per_task =
4797 min(sds->busiest_load_per_task, sds->avg_load);
4798 }
4799
1e3c88bd
PZ
4800 /*
4801 * In the presence of smp nice balancing, certain scenarios can have
4802 * max load less than avg load(as we skip the groups at or below
4803 * its cpu_power, while calculating max_load..)
4804 */
4805 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4806 env->imbalance = 0;
4807 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4808 }
4809
dd5feea1
SS
4810 if (!sds->group_imb) {
4811 /*
4812 * Don't want to pull so many tasks that a group would go idle.
4813 */
4814 load_above_capacity = (sds->busiest_nr_running -
4815 sds->busiest_group_capacity);
4816
1399fa78 4817 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4818
9c3f75cb 4819 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4820 }
4821
4822 /*
4823 * We're trying to get all the cpus to the average_load, so we don't
4824 * want to push ourselves above the average load, nor do we wish to
4825 * reduce the max loaded cpu below the average load. At the same time,
4826 * we also don't want to reduce the group load below the group capacity
4827 * (so that we can implement power-savings policies etc). Thus we look
4828 * for the minimum possible imbalance.
4829 * Be careful of negative numbers as they'll appear as very large values
4830 * with unsigned longs.
4831 */
4832 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4833
4834 /* How much load to actually move to equalise the imbalance */
bd939f45 4835 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4836 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4837 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4838
4839 /*
4840 * if *imbalance is less than the average load per runnable task
25985edc 4841 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4842 * a think about bumping its value to force at least one task to be
4843 * moved
4844 */
bd939f45
PZ
4845 if (env->imbalance < sds->busiest_load_per_task)
4846 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4847
4848}
fab47622 4849
1e3c88bd
PZ
4850/******* find_busiest_group() helpers end here *********************/
4851
4852/**
4853 * find_busiest_group - Returns the busiest group within the sched_domain
4854 * if there is an imbalance. If there isn't an imbalance, and
4855 * the user has opted for power-savings, it returns a group whose
4856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4857 * such a group exists.
4858 *
4859 * Also calculates the amount of weighted load which should be moved
4860 * to restore balance.
4861 *
cd96891d 4862 * @env: The load balancing environment.
1e3c88bd
PZ
4863 * @balance: Pointer to a variable indicating if this_cpu
4864 * is the appropriate cpu to perform load balancing at this_level.
4865 *
4866 * Returns: - the busiest group if imbalance exists.
4867 * - If no imbalance and user has opted for power-savings balance,
4868 * return the least loaded group whose CPUs can be
4869 * put to idle by rebalancing its tasks onto our group.
4870 */
4871static struct sched_group *
b9403130 4872find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4873{
4874 struct sd_lb_stats sds;
4875
4876 memset(&sds, 0, sizeof(sds));
4877
4878 /*
4879 * Compute the various statistics relavent for load balancing at
4880 * this level.
4881 */
b9403130 4882 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4883
cc57aa8f
PZ
4884 /*
4885 * this_cpu is not the appropriate cpu to perform load balancing at
4886 * this level.
1e3c88bd 4887 */
8f190fb3 4888 if (!(*balance))
1e3c88bd
PZ
4889 goto ret;
4890
bd939f45
PZ
4891 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4892 check_asym_packing(env, &sds))
532cb4c4
MN
4893 return sds.busiest;
4894
cc57aa8f 4895 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4896 if (!sds.busiest || sds.busiest_nr_running == 0)
4897 goto out_balanced;
4898
1399fa78 4899 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4900
866ab43e
PZ
4901 /*
4902 * If the busiest group is imbalanced the below checks don't
4903 * work because they assumes all things are equal, which typically
4904 * isn't true due to cpus_allowed constraints and the like.
4905 */
4906 if (sds.group_imb)
4907 goto force_balance;
4908
cc57aa8f 4909 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4910 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4911 !sds.busiest_has_capacity)
4912 goto force_balance;
4913
cc57aa8f
PZ
4914 /*
4915 * If the local group is more busy than the selected busiest group
4916 * don't try and pull any tasks.
4917 */
1e3c88bd
PZ
4918 if (sds.this_load >= sds.max_load)
4919 goto out_balanced;
4920
cc57aa8f
PZ
4921 /*
4922 * Don't pull any tasks if this group is already above the domain
4923 * average load.
4924 */
1e3c88bd
PZ
4925 if (sds.this_load >= sds.avg_load)
4926 goto out_balanced;
4927
bd939f45 4928 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4929 /*
4930 * This cpu is idle. If the busiest group load doesn't
4931 * have more tasks than the number of available cpu's and
4932 * there is no imbalance between this and busiest group
4933 * wrt to idle cpu's, it is balanced.
4934 */
c186fafe 4935 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4936 sds.busiest_nr_running <= sds.busiest_group_weight)
4937 goto out_balanced;
c186fafe
PZ
4938 } else {
4939 /*
4940 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4941 * imbalance_pct to be conservative.
4942 */
bd939f45 4943 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4944 goto out_balanced;
aae6d3dd 4945 }
1e3c88bd 4946
fab47622 4947force_balance:
1e3c88bd 4948 /* Looks like there is an imbalance. Compute it */
bd939f45 4949 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4950 return sds.busiest;
4951
4952out_balanced:
1e3c88bd 4953ret:
bd939f45 4954 env->imbalance = 0;
1e3c88bd
PZ
4955 return NULL;
4956}
4957
4958/*
4959 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4960 */
bd939f45 4961static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4962 struct sched_group *group)
1e3c88bd
PZ
4963{
4964 struct rq *busiest = NULL, *rq;
4965 unsigned long max_load = 0;
4966 int i;
4967
4968 for_each_cpu(i, sched_group_cpus(group)) {
4969 unsigned long power = power_of(i);
1399fa78
NR
4970 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4971 SCHED_POWER_SCALE);
1e3c88bd
PZ
4972 unsigned long wl;
4973
9d5efe05 4974 if (!capacity)
bd939f45 4975 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4976
b9403130 4977 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4978 continue;
4979
4980 rq = cpu_rq(i);
6e40f5bb 4981 wl = weighted_cpuload(i);
1e3c88bd 4982
6e40f5bb
TG
4983 /*
4984 * When comparing with imbalance, use weighted_cpuload()
4985 * which is not scaled with the cpu power.
4986 */
bd939f45 4987 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4988 continue;
4989
6e40f5bb
TG
4990 /*
4991 * For the load comparisons with the other cpu's, consider
4992 * the weighted_cpuload() scaled with the cpu power, so that
4993 * the load can be moved away from the cpu that is potentially
4994 * running at a lower capacity.
4995 */
1399fa78 4996 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4997
1e3c88bd
PZ
4998 if (wl > max_load) {
4999 max_load = wl;
5000 busiest = rq;
5001 }
5002 }
5003
5004 return busiest;
5005}
5006
5007/*
5008 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5009 * so long as it is large enough.
5010 */
5011#define MAX_PINNED_INTERVAL 512
5012
5013/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5014DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5015
bd939f45 5016static int need_active_balance(struct lb_env *env)
1af3ed3d 5017{
bd939f45
PZ
5018 struct sched_domain *sd = env->sd;
5019
5020 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5021
5022 /*
5023 * ASYM_PACKING needs to force migrate tasks from busy but
5024 * higher numbered CPUs in order to pack all tasks in the
5025 * lowest numbered CPUs.
5026 */
bd939f45 5027 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5028 return 1;
1af3ed3d
PZ
5029 }
5030
5031 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5032}
5033
969c7921
TH
5034static int active_load_balance_cpu_stop(void *data);
5035
1e3c88bd
PZ
5036/*
5037 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5038 * tasks if there is an imbalance.
5039 */
5040static int load_balance(int this_cpu, struct rq *this_rq,
5041 struct sched_domain *sd, enum cpu_idle_type idle,
5042 int *balance)
5043{
88b8dac0 5044 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5045 struct sched_group *group;
1e3c88bd
PZ
5046 struct rq *busiest;
5047 unsigned long flags;
e6252c3e 5048 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5049
8e45cb54
PZ
5050 struct lb_env env = {
5051 .sd = sd,
ddcdf6e7
PZ
5052 .dst_cpu = this_cpu,
5053 .dst_rq = this_rq,
88b8dac0 5054 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5055 .idle = idle,
eb95308e 5056 .loop_break = sched_nr_migrate_break,
b9403130 5057 .cpus = cpus,
8e45cb54
PZ
5058 };
5059
cfc03118
JK
5060 /*
5061 * For NEWLY_IDLE load_balancing, we don't need to consider
5062 * other cpus in our group
5063 */
e02e60c1 5064 if (idle == CPU_NEWLY_IDLE)
cfc03118 5065 env.dst_grpmask = NULL;
cfc03118 5066
1e3c88bd
PZ
5067 cpumask_copy(cpus, cpu_active_mask);
5068
1e3c88bd
PZ
5069 schedstat_inc(sd, lb_count[idle]);
5070
5071redo:
b9403130 5072 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5073
5074 if (*balance == 0)
5075 goto out_balanced;
5076
5077 if (!group) {
5078 schedstat_inc(sd, lb_nobusyg[idle]);
5079 goto out_balanced;
5080 }
5081
b9403130 5082 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5083 if (!busiest) {
5084 schedstat_inc(sd, lb_nobusyq[idle]);
5085 goto out_balanced;
5086 }
5087
78feefc5 5088 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5089
bd939f45 5090 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5091
5092 ld_moved = 0;
5093 if (busiest->nr_running > 1) {
5094 /*
5095 * Attempt to move tasks. If find_busiest_group has found
5096 * an imbalance but busiest->nr_running <= 1, the group is
5097 * still unbalanced. ld_moved simply stays zero, so it is
5098 * correctly treated as an imbalance.
5099 */
8e45cb54 5100 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5101 env.src_cpu = busiest->cpu;
5102 env.src_rq = busiest;
5103 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5104
a35b6466 5105 update_h_load(env.src_cpu);
5d6523eb 5106more_balance:
1e3c88bd 5107 local_irq_save(flags);
78feefc5 5108 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5109
5110 /*
5111 * cur_ld_moved - load moved in current iteration
5112 * ld_moved - cumulative load moved across iterations
5113 */
5114 cur_ld_moved = move_tasks(&env);
5115 ld_moved += cur_ld_moved;
78feefc5 5116 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5117 local_irq_restore(flags);
5118
5119 /*
5120 * some other cpu did the load balance for us.
5121 */
88b8dac0
SV
5122 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5123 resched_cpu(env.dst_cpu);
5124
f1cd0858
JK
5125 if (env.flags & LBF_NEED_BREAK) {
5126 env.flags &= ~LBF_NEED_BREAK;
5127 goto more_balance;
5128 }
5129
88b8dac0
SV
5130 /*
5131 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5132 * us and move them to an alternate dst_cpu in our sched_group
5133 * where they can run. The upper limit on how many times we
5134 * iterate on same src_cpu is dependent on number of cpus in our
5135 * sched_group.
5136 *
5137 * This changes load balance semantics a bit on who can move
5138 * load to a given_cpu. In addition to the given_cpu itself
5139 * (or a ilb_cpu acting on its behalf where given_cpu is
5140 * nohz-idle), we now have balance_cpu in a position to move
5141 * load to given_cpu. In rare situations, this may cause
5142 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5143 * _independently_ and at _same_ time to move some load to
5144 * given_cpu) causing exceess load to be moved to given_cpu.
5145 * This however should not happen so much in practice and
5146 * moreover subsequent load balance cycles should correct the
5147 * excess load moved.
5148 */
e02e60c1 5149 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5150
78feefc5 5151 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5152 env.dst_cpu = env.new_dst_cpu;
5153 env.flags &= ~LBF_SOME_PINNED;
5154 env.loop = 0;
5155 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5156
5157 /* Prevent to re-select dst_cpu via env's cpus */
5158 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5159
88b8dac0
SV
5160 /*
5161 * Go back to "more_balance" rather than "redo" since we
5162 * need to continue with same src_cpu.
5163 */
5164 goto more_balance;
5165 }
1e3c88bd
PZ
5166
5167 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5168 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5169 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5170 if (!cpumask_empty(cpus)) {
5171 env.loop = 0;
5172 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5173 goto redo;
bbf18b19 5174 }
1e3c88bd
PZ
5175 goto out_balanced;
5176 }
5177 }
5178
5179 if (!ld_moved) {
5180 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5181 /*
5182 * Increment the failure counter only on periodic balance.
5183 * We do not want newidle balance, which can be very
5184 * frequent, pollute the failure counter causing
5185 * excessive cache_hot migrations and active balances.
5186 */
5187 if (idle != CPU_NEWLY_IDLE)
5188 sd->nr_balance_failed++;
1e3c88bd 5189
bd939f45 5190 if (need_active_balance(&env)) {
1e3c88bd
PZ
5191 raw_spin_lock_irqsave(&busiest->lock, flags);
5192
969c7921
TH
5193 /* don't kick the active_load_balance_cpu_stop,
5194 * if the curr task on busiest cpu can't be
5195 * moved to this_cpu
1e3c88bd
PZ
5196 */
5197 if (!cpumask_test_cpu(this_cpu,
fa17b507 5198 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5199 raw_spin_unlock_irqrestore(&busiest->lock,
5200 flags);
8e45cb54 5201 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5202 goto out_one_pinned;
5203 }
5204
969c7921
TH
5205 /*
5206 * ->active_balance synchronizes accesses to
5207 * ->active_balance_work. Once set, it's cleared
5208 * only after active load balance is finished.
5209 */
1e3c88bd
PZ
5210 if (!busiest->active_balance) {
5211 busiest->active_balance = 1;
5212 busiest->push_cpu = this_cpu;
5213 active_balance = 1;
5214 }
5215 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5216
bd939f45 5217 if (active_balance) {
969c7921
TH
5218 stop_one_cpu_nowait(cpu_of(busiest),
5219 active_load_balance_cpu_stop, busiest,
5220 &busiest->active_balance_work);
bd939f45 5221 }
1e3c88bd
PZ
5222
5223 /*
5224 * We've kicked active balancing, reset the failure
5225 * counter.
5226 */
5227 sd->nr_balance_failed = sd->cache_nice_tries+1;
5228 }
5229 } else
5230 sd->nr_balance_failed = 0;
5231
5232 if (likely(!active_balance)) {
5233 /* We were unbalanced, so reset the balancing interval */
5234 sd->balance_interval = sd->min_interval;
5235 } else {
5236 /*
5237 * If we've begun active balancing, start to back off. This
5238 * case may not be covered by the all_pinned logic if there
5239 * is only 1 task on the busy runqueue (because we don't call
5240 * move_tasks).
5241 */
5242 if (sd->balance_interval < sd->max_interval)
5243 sd->balance_interval *= 2;
5244 }
5245
1e3c88bd
PZ
5246 goto out;
5247
5248out_balanced:
5249 schedstat_inc(sd, lb_balanced[idle]);
5250
5251 sd->nr_balance_failed = 0;
5252
5253out_one_pinned:
5254 /* tune up the balancing interval */
8e45cb54 5255 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5256 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5257 (sd->balance_interval < sd->max_interval))
5258 sd->balance_interval *= 2;
5259
46e49b38 5260 ld_moved = 0;
1e3c88bd 5261out:
1e3c88bd
PZ
5262 return ld_moved;
5263}
5264
1e3c88bd
PZ
5265/*
5266 * idle_balance is called by schedule() if this_cpu is about to become
5267 * idle. Attempts to pull tasks from other CPUs.
5268 */
029632fb 5269void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5270{
5271 struct sched_domain *sd;
5272 int pulled_task = 0;
5273 unsigned long next_balance = jiffies + HZ;
5274
78becc27 5275 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5276
5277 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5278 return;
5279
f492e12e
PZ
5280 /*
5281 * Drop the rq->lock, but keep IRQ/preempt disabled.
5282 */
5283 raw_spin_unlock(&this_rq->lock);
5284
48a16753 5285 update_blocked_averages(this_cpu);
dce840a0 5286 rcu_read_lock();
1e3c88bd
PZ
5287 for_each_domain(this_cpu, sd) {
5288 unsigned long interval;
f492e12e 5289 int balance = 1;
1e3c88bd
PZ
5290
5291 if (!(sd->flags & SD_LOAD_BALANCE))
5292 continue;
5293
f492e12e 5294 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5295 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5296 pulled_task = load_balance(this_cpu, this_rq,
5297 sd, CPU_NEWLY_IDLE, &balance);
5298 }
1e3c88bd
PZ
5299
5300 interval = msecs_to_jiffies(sd->balance_interval);
5301 if (time_after(next_balance, sd->last_balance + interval))
5302 next_balance = sd->last_balance + interval;
d5ad140b
NR
5303 if (pulled_task) {
5304 this_rq->idle_stamp = 0;
1e3c88bd 5305 break;
d5ad140b 5306 }
1e3c88bd 5307 }
dce840a0 5308 rcu_read_unlock();
f492e12e
PZ
5309
5310 raw_spin_lock(&this_rq->lock);
5311
1e3c88bd
PZ
5312 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5313 /*
5314 * We are going idle. next_balance may be set based on
5315 * a busy processor. So reset next_balance.
5316 */
5317 this_rq->next_balance = next_balance;
5318 }
5319}
5320
5321/*
969c7921
TH
5322 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5323 * running tasks off the busiest CPU onto idle CPUs. It requires at
5324 * least 1 task to be running on each physical CPU where possible, and
5325 * avoids physical / logical imbalances.
1e3c88bd 5326 */
969c7921 5327static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5328{
969c7921
TH
5329 struct rq *busiest_rq = data;
5330 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5331 int target_cpu = busiest_rq->push_cpu;
969c7921 5332 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5333 struct sched_domain *sd;
969c7921
TH
5334
5335 raw_spin_lock_irq(&busiest_rq->lock);
5336
5337 /* make sure the requested cpu hasn't gone down in the meantime */
5338 if (unlikely(busiest_cpu != smp_processor_id() ||
5339 !busiest_rq->active_balance))
5340 goto out_unlock;
1e3c88bd
PZ
5341
5342 /* Is there any task to move? */
5343 if (busiest_rq->nr_running <= 1)
969c7921 5344 goto out_unlock;
1e3c88bd
PZ
5345
5346 /*
5347 * This condition is "impossible", if it occurs
5348 * we need to fix it. Originally reported by
5349 * Bjorn Helgaas on a 128-cpu setup.
5350 */
5351 BUG_ON(busiest_rq == target_rq);
5352
5353 /* move a task from busiest_rq to target_rq */
5354 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5355
5356 /* Search for an sd spanning us and the target CPU. */
dce840a0 5357 rcu_read_lock();
1e3c88bd
PZ
5358 for_each_domain(target_cpu, sd) {
5359 if ((sd->flags & SD_LOAD_BALANCE) &&
5360 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5361 break;
5362 }
5363
5364 if (likely(sd)) {
8e45cb54
PZ
5365 struct lb_env env = {
5366 .sd = sd,
ddcdf6e7
PZ
5367 .dst_cpu = target_cpu,
5368 .dst_rq = target_rq,
5369 .src_cpu = busiest_rq->cpu,
5370 .src_rq = busiest_rq,
8e45cb54
PZ
5371 .idle = CPU_IDLE,
5372 };
5373
1e3c88bd
PZ
5374 schedstat_inc(sd, alb_count);
5375
8e45cb54 5376 if (move_one_task(&env))
1e3c88bd
PZ
5377 schedstat_inc(sd, alb_pushed);
5378 else
5379 schedstat_inc(sd, alb_failed);
5380 }
dce840a0 5381 rcu_read_unlock();
1e3c88bd 5382 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5383out_unlock:
5384 busiest_rq->active_balance = 0;
5385 raw_spin_unlock_irq(&busiest_rq->lock);
5386 return 0;
1e3c88bd
PZ
5387}
5388
3451d024 5389#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5390/*
5391 * idle load balancing details
83cd4fe2
VP
5392 * - When one of the busy CPUs notice that there may be an idle rebalancing
5393 * needed, they will kick the idle load balancer, which then does idle
5394 * load balancing for all the idle CPUs.
5395 */
1e3c88bd 5396static struct {
83cd4fe2 5397 cpumask_var_t idle_cpus_mask;
0b005cf5 5398 atomic_t nr_cpus;
83cd4fe2
VP
5399 unsigned long next_balance; /* in jiffy units */
5400} nohz ____cacheline_aligned;
1e3c88bd 5401
8e7fbcbc 5402static inline int find_new_ilb(int call_cpu)
1e3c88bd 5403{
0b005cf5 5404 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5405
786d6dc7
SS
5406 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5407 return ilb;
5408
5409 return nr_cpu_ids;
1e3c88bd 5410}
1e3c88bd 5411
83cd4fe2
VP
5412/*
5413 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5414 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5415 * CPU (if there is one).
5416 */
5417static void nohz_balancer_kick(int cpu)
5418{
5419 int ilb_cpu;
5420
5421 nohz.next_balance++;
5422
0b005cf5 5423 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5424
0b005cf5
SS
5425 if (ilb_cpu >= nr_cpu_ids)
5426 return;
83cd4fe2 5427
cd490c5b 5428 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5429 return;
5430 /*
5431 * Use smp_send_reschedule() instead of resched_cpu().
5432 * This way we generate a sched IPI on the target cpu which
5433 * is idle. And the softirq performing nohz idle load balance
5434 * will be run before returning from the IPI.
5435 */
5436 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5437 return;
5438}
5439
c1cc017c 5440static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5441{
5442 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5443 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5444 atomic_dec(&nohz.nr_cpus);
5445 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5446 }
5447}
5448
69e1e811
SS
5449static inline void set_cpu_sd_state_busy(void)
5450{
5451 struct sched_domain *sd;
69e1e811 5452
69e1e811 5453 rcu_read_lock();
424c93fe 5454 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5455
5456 if (!sd || !sd->nohz_idle)
5457 goto unlock;
5458 sd->nohz_idle = 0;
5459
5460 for (; sd; sd = sd->parent)
69e1e811 5461 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5462unlock:
69e1e811
SS
5463 rcu_read_unlock();
5464}
5465
5466void set_cpu_sd_state_idle(void)
5467{
5468 struct sched_domain *sd;
69e1e811 5469
69e1e811 5470 rcu_read_lock();
424c93fe 5471 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5472
5473 if (!sd || sd->nohz_idle)
5474 goto unlock;
5475 sd->nohz_idle = 1;
5476
5477 for (; sd; sd = sd->parent)
69e1e811 5478 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5479unlock:
69e1e811
SS
5480 rcu_read_unlock();
5481}
5482
1e3c88bd 5483/*
c1cc017c 5484 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5485 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5486 */
c1cc017c 5487void nohz_balance_enter_idle(int cpu)
1e3c88bd 5488{
71325960
SS
5489 /*
5490 * If this cpu is going down, then nothing needs to be done.
5491 */
5492 if (!cpu_active(cpu))
5493 return;
5494
c1cc017c
AS
5495 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5496 return;
1e3c88bd 5497
c1cc017c
AS
5498 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5499 atomic_inc(&nohz.nr_cpus);
5500 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5501}
71325960
SS
5502
5503static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5504 unsigned long action, void *hcpu)
5505{
5506 switch (action & ~CPU_TASKS_FROZEN) {
5507 case CPU_DYING:
c1cc017c 5508 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5509 return NOTIFY_OK;
5510 default:
5511 return NOTIFY_DONE;
5512 }
5513}
1e3c88bd
PZ
5514#endif
5515
5516static DEFINE_SPINLOCK(balancing);
5517
49c022e6
PZ
5518/*
5519 * Scale the max load_balance interval with the number of CPUs in the system.
5520 * This trades load-balance latency on larger machines for less cross talk.
5521 */
029632fb 5522void update_max_interval(void)
49c022e6
PZ
5523{
5524 max_load_balance_interval = HZ*num_online_cpus()/10;
5525}
5526
1e3c88bd
PZ
5527/*
5528 * It checks each scheduling domain to see if it is due to be balanced,
5529 * and initiates a balancing operation if so.
5530 *
b9b0853a 5531 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5532 */
5533static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5534{
5535 int balance = 1;
5536 struct rq *rq = cpu_rq(cpu);
5537 unsigned long interval;
04f733b4 5538 struct sched_domain *sd;
1e3c88bd
PZ
5539 /* Earliest time when we have to do rebalance again */
5540 unsigned long next_balance = jiffies + 60*HZ;
5541 int update_next_balance = 0;
5542 int need_serialize;
5543
48a16753 5544 update_blocked_averages(cpu);
2069dd75 5545
dce840a0 5546 rcu_read_lock();
1e3c88bd
PZ
5547 for_each_domain(cpu, sd) {
5548 if (!(sd->flags & SD_LOAD_BALANCE))
5549 continue;
5550
5551 interval = sd->balance_interval;
5552 if (idle != CPU_IDLE)
5553 interval *= sd->busy_factor;
5554
5555 /* scale ms to jiffies */
5556 interval = msecs_to_jiffies(interval);
49c022e6 5557 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5558
5559 need_serialize = sd->flags & SD_SERIALIZE;
5560
5561 if (need_serialize) {
5562 if (!spin_trylock(&balancing))
5563 goto out;
5564 }
5565
5566 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5567 if (load_balance(cpu, rq, sd, idle, &balance)) {
5568 /*
de5eb2dd
JK
5569 * The LBF_SOME_PINNED logic could have changed
5570 * env->dst_cpu, so we can't know our idle
5571 * state even if we migrated tasks. Update it.
1e3c88bd 5572 */
de5eb2dd 5573 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5574 }
5575 sd->last_balance = jiffies;
5576 }
5577 if (need_serialize)
5578 spin_unlock(&balancing);
5579out:
5580 if (time_after(next_balance, sd->last_balance + interval)) {
5581 next_balance = sd->last_balance + interval;
5582 update_next_balance = 1;
5583 }
5584
5585 /*
5586 * Stop the load balance at this level. There is another
5587 * CPU in our sched group which is doing load balancing more
5588 * actively.
5589 */
5590 if (!balance)
5591 break;
5592 }
dce840a0 5593 rcu_read_unlock();
1e3c88bd
PZ
5594
5595 /*
5596 * next_balance will be updated only when there is a need.
5597 * When the cpu is attached to null domain for ex, it will not be
5598 * updated.
5599 */
5600 if (likely(update_next_balance))
5601 rq->next_balance = next_balance;
5602}
5603
3451d024 5604#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5605/*
3451d024 5606 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5607 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5608 */
83cd4fe2
VP
5609static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5610{
5611 struct rq *this_rq = cpu_rq(this_cpu);
5612 struct rq *rq;
5613 int balance_cpu;
5614
1c792db7
SS
5615 if (idle != CPU_IDLE ||
5616 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5617 goto end;
83cd4fe2
VP
5618
5619 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5620 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5621 continue;
5622
5623 /*
5624 * If this cpu gets work to do, stop the load balancing
5625 * work being done for other cpus. Next load
5626 * balancing owner will pick it up.
5627 */
1c792db7 5628 if (need_resched())
83cd4fe2 5629 break;
83cd4fe2 5630
5ed4f1d9
VG
5631 rq = cpu_rq(balance_cpu);
5632
5633 raw_spin_lock_irq(&rq->lock);
5634 update_rq_clock(rq);
5635 update_idle_cpu_load(rq);
5636 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5637
5638 rebalance_domains(balance_cpu, CPU_IDLE);
5639
83cd4fe2
VP
5640 if (time_after(this_rq->next_balance, rq->next_balance))
5641 this_rq->next_balance = rq->next_balance;
5642 }
5643 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5644end:
5645 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5646}
5647
5648/*
0b005cf5
SS
5649 * Current heuristic for kicking the idle load balancer in the presence
5650 * of an idle cpu is the system.
5651 * - This rq has more than one task.
5652 * - At any scheduler domain level, this cpu's scheduler group has multiple
5653 * busy cpu's exceeding the group's power.
5654 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5655 * domain span are idle.
83cd4fe2
VP
5656 */
5657static inline int nohz_kick_needed(struct rq *rq, int cpu)
5658{
5659 unsigned long now = jiffies;
0b005cf5 5660 struct sched_domain *sd;
83cd4fe2 5661
1c792db7 5662 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5663 return 0;
5664
1c792db7
SS
5665 /*
5666 * We may be recently in ticked or tickless idle mode. At the first
5667 * busy tick after returning from idle, we will update the busy stats.
5668 */
69e1e811 5669 set_cpu_sd_state_busy();
c1cc017c 5670 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5671
5672 /*
5673 * None are in tickless mode and hence no need for NOHZ idle load
5674 * balancing.
5675 */
5676 if (likely(!atomic_read(&nohz.nr_cpus)))
5677 return 0;
1c792db7
SS
5678
5679 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5680 return 0;
5681
0b005cf5
SS
5682 if (rq->nr_running >= 2)
5683 goto need_kick;
83cd4fe2 5684
067491b7 5685 rcu_read_lock();
0b005cf5
SS
5686 for_each_domain(cpu, sd) {
5687 struct sched_group *sg = sd->groups;
5688 struct sched_group_power *sgp = sg->sgp;
5689 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5690
0b005cf5 5691 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5692 goto need_kick_unlock;
0b005cf5
SS
5693
5694 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5695 && (cpumask_first_and(nohz.idle_cpus_mask,
5696 sched_domain_span(sd)) < cpu))
067491b7 5697 goto need_kick_unlock;
0b005cf5
SS
5698
5699 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5700 break;
83cd4fe2 5701 }
067491b7 5702 rcu_read_unlock();
83cd4fe2 5703 return 0;
067491b7
PZ
5704
5705need_kick_unlock:
5706 rcu_read_unlock();
0b005cf5
SS
5707need_kick:
5708 return 1;
83cd4fe2
VP
5709}
5710#else
5711static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5712#endif
5713
5714/*
5715 * run_rebalance_domains is triggered when needed from the scheduler tick.
5716 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5717 */
1e3c88bd
PZ
5718static void run_rebalance_domains(struct softirq_action *h)
5719{
5720 int this_cpu = smp_processor_id();
5721 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5722 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5723 CPU_IDLE : CPU_NOT_IDLE;
5724
5725 rebalance_domains(this_cpu, idle);
5726
1e3c88bd 5727 /*
83cd4fe2 5728 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5729 * balancing on behalf of the other idle cpus whose ticks are
5730 * stopped.
5731 */
83cd4fe2 5732 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5733}
5734
5735static inline int on_null_domain(int cpu)
5736{
90a6501f 5737 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5738}
5739
5740/*
5741 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5742 */
029632fb 5743void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5744{
1e3c88bd
PZ
5745 /* Don't need to rebalance while attached to NULL domain */
5746 if (time_after_eq(jiffies, rq->next_balance) &&
5747 likely(!on_null_domain(cpu)))
5748 raise_softirq(SCHED_SOFTIRQ);
3451d024 5749#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5750 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5751 nohz_balancer_kick(cpu);
5752#endif
1e3c88bd
PZ
5753}
5754
0bcdcf28
CE
5755static void rq_online_fair(struct rq *rq)
5756{
5757 update_sysctl();
5758}
5759
5760static void rq_offline_fair(struct rq *rq)
5761{
5762 update_sysctl();
a4c96ae3
PB
5763
5764 /* Ensure any throttled groups are reachable by pick_next_task */
5765 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5766}
5767
55e12e5e 5768#endif /* CONFIG_SMP */
e1d1484f 5769
bf0f6f24
IM
5770/*
5771 * scheduler tick hitting a task of our scheduling class:
5772 */
8f4d37ec 5773static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5774{
5775 struct cfs_rq *cfs_rq;
5776 struct sched_entity *se = &curr->se;
5777
5778 for_each_sched_entity(se) {
5779 cfs_rq = cfs_rq_of(se);
8f4d37ec 5780 entity_tick(cfs_rq, se, queued);
bf0f6f24 5781 }
18bf2805 5782
cbee9f88
PZ
5783 if (sched_feat_numa(NUMA))
5784 task_tick_numa(rq, curr);
3d59eebc 5785
18bf2805 5786 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5787}
5788
5789/*
cd29fe6f
PZ
5790 * called on fork with the child task as argument from the parent's context
5791 * - child not yet on the tasklist
5792 * - preemption disabled
bf0f6f24 5793 */
cd29fe6f 5794static void task_fork_fair(struct task_struct *p)
bf0f6f24 5795{
4fc420c9
DN
5796 struct cfs_rq *cfs_rq;
5797 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5798 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5799 struct rq *rq = this_rq();
5800 unsigned long flags;
5801
05fa785c 5802 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5803
861d034e
PZ
5804 update_rq_clock(rq);
5805
4fc420c9
DN
5806 cfs_rq = task_cfs_rq(current);
5807 curr = cfs_rq->curr;
5808
b0a0f667
PM
5809 if (unlikely(task_cpu(p) != this_cpu)) {
5810 rcu_read_lock();
cd29fe6f 5811 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5812 rcu_read_unlock();
5813 }
bf0f6f24 5814
7109c442 5815 update_curr(cfs_rq);
cd29fe6f 5816
b5d9d734
MG
5817 if (curr)
5818 se->vruntime = curr->vruntime;
aeb73b04 5819 place_entity(cfs_rq, se, 1);
4d78e7b6 5820
cd29fe6f 5821 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5822 /*
edcb60a3
IM
5823 * Upon rescheduling, sched_class::put_prev_task() will place
5824 * 'current' within the tree based on its new key value.
5825 */
4d78e7b6 5826 swap(curr->vruntime, se->vruntime);
aec0a514 5827 resched_task(rq->curr);
4d78e7b6 5828 }
bf0f6f24 5829
88ec22d3
PZ
5830 se->vruntime -= cfs_rq->min_vruntime;
5831
05fa785c 5832 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5833}
5834
cb469845
SR
5835/*
5836 * Priority of the task has changed. Check to see if we preempt
5837 * the current task.
5838 */
da7a735e
PZ
5839static void
5840prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5841{
da7a735e
PZ
5842 if (!p->se.on_rq)
5843 return;
5844
cb469845
SR
5845 /*
5846 * Reschedule if we are currently running on this runqueue and
5847 * our priority decreased, or if we are not currently running on
5848 * this runqueue and our priority is higher than the current's
5849 */
da7a735e 5850 if (rq->curr == p) {
cb469845
SR
5851 if (p->prio > oldprio)
5852 resched_task(rq->curr);
5853 } else
15afe09b 5854 check_preempt_curr(rq, p, 0);
cb469845
SR
5855}
5856
da7a735e
PZ
5857static void switched_from_fair(struct rq *rq, struct task_struct *p)
5858{
5859 struct sched_entity *se = &p->se;
5860 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5861
5862 /*
5863 * Ensure the task's vruntime is normalized, so that when its
5864 * switched back to the fair class the enqueue_entity(.flags=0) will
5865 * do the right thing.
5866 *
5867 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5868 * have normalized the vruntime, if it was !on_rq, then only when
5869 * the task is sleeping will it still have non-normalized vruntime.
5870 */
5871 if (!se->on_rq && p->state != TASK_RUNNING) {
5872 /*
5873 * Fix up our vruntime so that the current sleep doesn't
5874 * cause 'unlimited' sleep bonus.
5875 */
5876 place_entity(cfs_rq, se, 0);
5877 se->vruntime -= cfs_rq->min_vruntime;
5878 }
9ee474f5 5879
141965c7 5880#ifdef CONFIG_SMP
9ee474f5
PT
5881 /*
5882 * Remove our load from contribution when we leave sched_fair
5883 * and ensure we don't carry in an old decay_count if we
5884 * switch back.
5885 */
5886 if (p->se.avg.decay_count) {
5887 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5888 __synchronize_entity_decay(&p->se);
5889 subtract_blocked_load_contrib(cfs_rq,
5890 p->se.avg.load_avg_contrib);
5891 }
5892#endif
da7a735e
PZ
5893}
5894
cb469845
SR
5895/*
5896 * We switched to the sched_fair class.
5897 */
da7a735e 5898static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5899{
da7a735e
PZ
5900 if (!p->se.on_rq)
5901 return;
5902
cb469845
SR
5903 /*
5904 * We were most likely switched from sched_rt, so
5905 * kick off the schedule if running, otherwise just see
5906 * if we can still preempt the current task.
5907 */
da7a735e 5908 if (rq->curr == p)
cb469845
SR
5909 resched_task(rq->curr);
5910 else
15afe09b 5911 check_preempt_curr(rq, p, 0);
cb469845
SR
5912}
5913
83b699ed
SV
5914/* Account for a task changing its policy or group.
5915 *
5916 * This routine is mostly called to set cfs_rq->curr field when a task
5917 * migrates between groups/classes.
5918 */
5919static void set_curr_task_fair(struct rq *rq)
5920{
5921 struct sched_entity *se = &rq->curr->se;
5922
ec12cb7f
PT
5923 for_each_sched_entity(se) {
5924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5925
5926 set_next_entity(cfs_rq, se);
5927 /* ensure bandwidth has been allocated on our new cfs_rq */
5928 account_cfs_rq_runtime(cfs_rq, 0);
5929 }
83b699ed
SV
5930}
5931
029632fb
PZ
5932void init_cfs_rq(struct cfs_rq *cfs_rq)
5933{
5934 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5935 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5936#ifndef CONFIG_64BIT
5937 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5938#endif
141965c7 5939#ifdef CONFIG_SMP
9ee474f5 5940 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5941 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5942#endif
029632fb
PZ
5943}
5944
810b3817 5945#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5946static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5947{
aff3e498 5948 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5949 /*
5950 * If the task was not on the rq at the time of this cgroup movement
5951 * it must have been asleep, sleeping tasks keep their ->vruntime
5952 * absolute on their old rq until wakeup (needed for the fair sleeper
5953 * bonus in place_entity()).
5954 *
5955 * If it was on the rq, we've just 'preempted' it, which does convert
5956 * ->vruntime to a relative base.
5957 *
5958 * Make sure both cases convert their relative position when migrating
5959 * to another cgroup's rq. This does somewhat interfere with the
5960 * fair sleeper stuff for the first placement, but who cares.
5961 */
7ceff013
DN
5962 /*
5963 * When !on_rq, vruntime of the task has usually NOT been normalized.
5964 * But there are some cases where it has already been normalized:
5965 *
5966 * - Moving a forked child which is waiting for being woken up by
5967 * wake_up_new_task().
62af3783
DN
5968 * - Moving a task which has been woken up by try_to_wake_up() and
5969 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5970 *
5971 * To prevent boost or penalty in the new cfs_rq caused by delta
5972 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5973 */
62af3783 5974 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5975 on_rq = 1;
5976
b2b5ce02
PZ
5977 if (!on_rq)
5978 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5979 set_task_rq(p, task_cpu(p));
aff3e498
PT
5980 if (!on_rq) {
5981 cfs_rq = cfs_rq_of(&p->se);
5982 p->se.vruntime += cfs_rq->min_vruntime;
5983#ifdef CONFIG_SMP
5984 /*
5985 * migrate_task_rq_fair() will have removed our previous
5986 * contribution, but we must synchronize for ongoing future
5987 * decay.
5988 */
5989 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5990 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5991#endif
5992 }
810b3817 5993}
029632fb
PZ
5994
5995void free_fair_sched_group(struct task_group *tg)
5996{
5997 int i;
5998
5999 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6000
6001 for_each_possible_cpu(i) {
6002 if (tg->cfs_rq)
6003 kfree(tg->cfs_rq[i]);
6004 if (tg->se)
6005 kfree(tg->se[i]);
6006 }
6007
6008 kfree(tg->cfs_rq);
6009 kfree(tg->se);
6010}
6011
6012int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6013{
6014 struct cfs_rq *cfs_rq;
6015 struct sched_entity *se;
6016 int i;
6017
6018 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6019 if (!tg->cfs_rq)
6020 goto err;
6021 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6022 if (!tg->se)
6023 goto err;
6024
6025 tg->shares = NICE_0_LOAD;
6026
6027 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6028
6029 for_each_possible_cpu(i) {
6030 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6031 GFP_KERNEL, cpu_to_node(i));
6032 if (!cfs_rq)
6033 goto err;
6034
6035 se = kzalloc_node(sizeof(struct sched_entity),
6036 GFP_KERNEL, cpu_to_node(i));
6037 if (!se)
6038 goto err_free_rq;
6039
6040 init_cfs_rq(cfs_rq);
6041 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6042 }
6043
6044 return 1;
6045
6046err_free_rq:
6047 kfree(cfs_rq);
6048err:
6049 return 0;
6050}
6051
6052void unregister_fair_sched_group(struct task_group *tg, int cpu)
6053{
6054 struct rq *rq = cpu_rq(cpu);
6055 unsigned long flags;
6056
6057 /*
6058 * Only empty task groups can be destroyed; so we can speculatively
6059 * check on_list without danger of it being re-added.
6060 */
6061 if (!tg->cfs_rq[cpu]->on_list)
6062 return;
6063
6064 raw_spin_lock_irqsave(&rq->lock, flags);
6065 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6066 raw_spin_unlock_irqrestore(&rq->lock, flags);
6067}
6068
6069void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6070 struct sched_entity *se, int cpu,
6071 struct sched_entity *parent)
6072{
6073 struct rq *rq = cpu_rq(cpu);
6074
6075 cfs_rq->tg = tg;
6076 cfs_rq->rq = rq;
029632fb
PZ
6077 init_cfs_rq_runtime(cfs_rq);
6078
6079 tg->cfs_rq[cpu] = cfs_rq;
6080 tg->se[cpu] = se;
6081
6082 /* se could be NULL for root_task_group */
6083 if (!se)
6084 return;
6085
6086 if (!parent)
6087 se->cfs_rq = &rq->cfs;
6088 else
6089 se->cfs_rq = parent->my_q;
6090
6091 se->my_q = cfs_rq;
6092 update_load_set(&se->load, 0);
6093 se->parent = parent;
6094}
6095
6096static DEFINE_MUTEX(shares_mutex);
6097
6098int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6099{
6100 int i;
6101 unsigned long flags;
6102
6103 /*
6104 * We can't change the weight of the root cgroup.
6105 */
6106 if (!tg->se[0])
6107 return -EINVAL;
6108
6109 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6110
6111 mutex_lock(&shares_mutex);
6112 if (tg->shares == shares)
6113 goto done;
6114
6115 tg->shares = shares;
6116 for_each_possible_cpu(i) {
6117 struct rq *rq = cpu_rq(i);
6118 struct sched_entity *se;
6119
6120 se = tg->se[i];
6121 /* Propagate contribution to hierarchy */
6122 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6123
6124 /* Possible calls to update_curr() need rq clock */
6125 update_rq_clock(rq);
17bc14b7 6126 for_each_sched_entity(se)
029632fb
PZ
6127 update_cfs_shares(group_cfs_rq(se));
6128 raw_spin_unlock_irqrestore(&rq->lock, flags);
6129 }
6130
6131done:
6132 mutex_unlock(&shares_mutex);
6133 return 0;
6134}
6135#else /* CONFIG_FAIR_GROUP_SCHED */
6136
6137void free_fair_sched_group(struct task_group *tg) { }
6138
6139int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6140{
6141 return 1;
6142}
6143
6144void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6145
6146#endif /* CONFIG_FAIR_GROUP_SCHED */
6147
810b3817 6148
6d686f45 6149static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6150{
6151 struct sched_entity *se = &task->se;
0d721cea
PW
6152 unsigned int rr_interval = 0;
6153
6154 /*
6155 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6156 * idle runqueue:
6157 */
0d721cea 6158 if (rq->cfs.load.weight)
a59f4e07 6159 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6160
6161 return rr_interval;
6162}
6163
bf0f6f24
IM
6164/*
6165 * All the scheduling class methods:
6166 */
029632fb 6167const struct sched_class fair_sched_class = {
5522d5d5 6168 .next = &idle_sched_class,
bf0f6f24
IM
6169 .enqueue_task = enqueue_task_fair,
6170 .dequeue_task = dequeue_task_fair,
6171 .yield_task = yield_task_fair,
d95f4122 6172 .yield_to_task = yield_to_task_fair,
bf0f6f24 6173
2e09bf55 6174 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6175
6176 .pick_next_task = pick_next_task_fair,
6177 .put_prev_task = put_prev_task_fair,
6178
681f3e68 6179#ifdef CONFIG_SMP
4ce72a2c 6180 .select_task_rq = select_task_rq_fair,
0a74bef8 6181 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6182
0bcdcf28
CE
6183 .rq_online = rq_online_fair,
6184 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6185
6186 .task_waking = task_waking_fair,
681f3e68 6187#endif
bf0f6f24 6188
83b699ed 6189 .set_curr_task = set_curr_task_fair,
bf0f6f24 6190 .task_tick = task_tick_fair,
cd29fe6f 6191 .task_fork = task_fork_fair,
cb469845
SR
6192
6193 .prio_changed = prio_changed_fair,
da7a735e 6194 .switched_from = switched_from_fair,
cb469845 6195 .switched_to = switched_to_fair,
810b3817 6196
0d721cea
PW
6197 .get_rr_interval = get_rr_interval_fair,
6198
810b3817 6199#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6200 .task_move_group = task_move_group_fair,
810b3817 6201#endif
bf0f6f24
IM
6202};
6203
6204#ifdef CONFIG_SCHED_DEBUG
029632fb 6205void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6206{
bf0f6f24
IM
6207 struct cfs_rq *cfs_rq;
6208
5973e5b9 6209 rcu_read_lock();
c3b64f1e 6210 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6211 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6212 rcu_read_unlock();
bf0f6f24
IM
6213}
6214#endif
029632fb
PZ
6215
6216__init void init_sched_fair_class(void)
6217{
6218#ifdef CONFIG_SMP
6219 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6220
3451d024 6221#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6222 nohz.next_balance = jiffies;
029632fb 6223 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6224 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6225#endif
6226#endif /* SMP */
6227
6228}