]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/fair.c
sched/fair: Make the entity load aging on attaching tunable
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
10e84b97 2072 if (!numabalancing_enabled)
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
2518/*
2519 * We can represent the historical contribution to runnable average as the
2520 * coefficients of a geometric series. To do this we sub-divide our runnable
2521 * history into segments of approximately 1ms (1024us); label the segment that
2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523 *
2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525 * p0 p1 p2
2526 * (now) (~1ms ago) (~2ms ago)
2527 *
2528 * Let u_i denote the fraction of p_i that the entity was runnable.
2529 *
2530 * We then designate the fractions u_i as our co-efficients, yielding the
2531 * following representation of historical load:
2532 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533 *
2534 * We choose y based on the with of a reasonably scheduling period, fixing:
2535 * y^32 = 0.5
2536 *
2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538 * approximately half as much as the contribution to load within the last ms
2539 * (u_0).
2540 *
2541 * When a period "rolls over" and we have new u_0`, multiplying the previous
2542 * sum again by y is sufficient to update:
2543 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545 */
9d89c257
YD
2546static __always_inline int
2547__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2548 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2549{
5b51f2f8 2550 u64 delta, periods;
9d89c257 2551 u32 contrib;
9d85f21c 2552 int delta_w, decayed = 0;
0c1dc6b2 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2554
9d89c257 2555 delta = now - sa->last_update_time;
9d85f21c
PT
2556 /*
2557 * This should only happen when time goes backwards, which it
2558 * unfortunately does during sched clock init when we swap over to TSC.
2559 */
2560 if ((s64)delta < 0) {
9d89c257 2561 sa->last_update_time = now;
9d85f21c
PT
2562 return 0;
2563 }
2564
2565 /*
2566 * Use 1024ns as the unit of measurement since it's a reasonable
2567 * approximation of 1us and fast to compute.
2568 */
2569 delta >>= 10;
2570 if (!delta)
2571 return 0;
9d89c257 2572 sa->last_update_time = now;
9d85f21c
PT
2573
2574 /* delta_w is the amount already accumulated against our next period */
9d89c257 2575 delta_w = sa->period_contrib;
9d85f21c 2576 if (delta + delta_w >= 1024) {
9d85f21c
PT
2577 decayed = 1;
2578
9d89c257
YD
2579 /* how much left for next period will start over, we don't know yet */
2580 sa->period_contrib = 0;
2581
9d85f21c
PT
2582 /*
2583 * Now that we know we're crossing a period boundary, figure
2584 * out how much from delta we need to complete the current
2585 * period and accrue it.
2586 */
2587 delta_w = 1024 - delta_w;
13962234 2588 if (weight) {
9d89c257 2589 sa->load_sum += weight * delta_w;
13962234
YD
2590 if (cfs_rq)
2591 cfs_rq->runnable_load_sum += weight * delta_w;
2592 }
36ee28e4 2593 if (running)
9d89c257 2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
5b51f2f8
PT
2595
2596 delta -= delta_w;
2597
2598 /* Figure out how many additional periods this update spans */
2599 periods = delta / 1024;
2600 delta %= 1024;
2601
9d89c257 2602 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2603 if (cfs_rq) {
2604 cfs_rq->runnable_load_sum =
2605 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 }
9d89c257 2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2608
2609 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2610 contrib = __compute_runnable_contrib(periods);
13962234 2611 if (weight) {
9d89c257 2612 sa->load_sum += weight * contrib;
13962234
YD
2613 if (cfs_rq)
2614 cfs_rq->runnable_load_sum += weight * contrib;
2615 }
36ee28e4 2616 if (running)
9d89c257 2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
9d85f21c
PT
2618 }
2619
2620 /* Remainder of delta accrued against u_0` */
13962234 2621 if (weight) {
9d89c257 2622 sa->load_sum += weight * delta;
13962234
YD
2623 if (cfs_rq)
2624 cfs_rq->runnable_load_sum += weight * delta;
2625 }
36ee28e4 2626 if (running)
9d89c257 2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
9ee474f5 2628
9d89c257 2629 sa->period_contrib += delta;
9ee474f5 2630
9d89c257
YD
2631 if (decayed) {
2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2633 if (cfs_rq) {
2634 cfs_rq->runnable_load_avg =
2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 }
9d89c257
YD
2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 }
aff3e498 2639
9d89c257 2640 return decayed;
9ee474f5
PT
2641}
2642
c566e8e9 2643#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2644/*
9d89c257
YD
2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646 * and effective_load (which is not done because it is too costly).
bb17f655 2647 */
9d89c257 2648static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2649{
9d89c257 2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2651
9d89c257
YD
2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2655 }
8165e145 2656}
f5f9739d 2657
6e83125c 2658#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2659static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2660#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2661
9d89c257 2662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2663
9d89c257
YD
2664/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2666{
9d89c257 2667 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2668 int decayed;
2dac754e 2669
9d89c257
YD
2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2674 }
2dac754e 2675
9d89c257
YD
2676 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2677 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2678 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2679 sa->util_sum = max_t(s32, sa->util_sum -
2680 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2681 }
36ee28e4 2682
9d89c257 2683 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2684 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2685
9d89c257
YD
2686#ifndef CONFIG_64BIT
2687 smp_wmb();
2688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2689#endif
36ee28e4 2690
9d89c257 2691 return decayed;
9ee474f5
PT
2692}
2693
9d89c257
YD
2694/* Update task and its cfs_rq load average */
2695static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2696{
2dac754e 2697 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2698 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2699 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2700
f1b17280 2701 /*
9d89c257
YD
2702 * Track task load average for carrying it to new CPU after migrated, and
2703 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2704 */
9d89c257 2705 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2706 se->on_rq * scale_load_down(se->load.weight),
2707 cfs_rq->curr == se, NULL);
f1b17280 2708
9d89c257
YD
2709 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2710 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2711}
2712
a05e8c51
BP
2713static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2714{
a9280514
PZ
2715 if (!sched_feat(ATTACH_AGE_LOAD))
2716 goto skip_aging;
2717
6efdb105
BP
2718 /*
2719 * If we got migrated (either between CPUs or between cgroups) we'll
2720 * have aged the average right before clearing @last_update_time.
2721 */
2722 if (se->avg.last_update_time) {
2723 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2724 &se->avg, 0, 0, NULL);
2725
2726 /*
2727 * XXX: we could have just aged the entire load away if we've been
2728 * absent from the fair class for too long.
2729 */
2730 }
2731
a9280514 2732skip_aging:
a05e8c51
BP
2733 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2734 cfs_rq->avg.load_avg += se->avg.load_avg;
2735 cfs_rq->avg.load_sum += se->avg.load_sum;
2736 cfs_rq->avg.util_avg += se->avg.util_avg;
2737 cfs_rq->avg.util_sum += se->avg.util_sum;
2738}
2739
2740static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2741{
2742 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2743 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2744 cfs_rq->curr == se, NULL);
2745
2746 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2747 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2748 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2749 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2750}
2751
9d89c257
YD
2752/* Add the load generated by se into cfs_rq's load average */
2753static inline void
2754enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2755{
9d89c257
YD
2756 struct sched_avg *sa = &se->avg;
2757 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2758 int migrated, decayed;
9ee474f5 2759
a05e8c51
BP
2760 migrated = !sa->last_update_time;
2761 if (!migrated) {
9d89c257 2762 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2763 se->on_rq * scale_load_down(se->load.weight),
2764 cfs_rq->curr == se, NULL);
aff3e498 2765 }
c566e8e9 2766
9d89c257 2767 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2768
13962234
YD
2769 cfs_rq->runnable_load_avg += sa->load_avg;
2770 cfs_rq->runnable_load_sum += sa->load_sum;
2771
a05e8c51
BP
2772 if (migrated)
2773 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2774
9d89c257
YD
2775 if (decayed || migrated)
2776 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2777}
2778
13962234
YD
2779/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2780static inline void
2781dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2782{
2783 update_load_avg(se, 1);
2784
2785 cfs_rq->runnable_load_avg =
2786 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2787 cfs_rq->runnable_load_sum =
a05e8c51 2788 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2789}
2790
9ee474f5 2791/*
9d89c257
YD
2792 * Task first catches up with cfs_rq, and then subtract
2793 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2794 */
9d89c257 2795void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2796{
9d89c257
YD
2797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2798 u64 last_update_time;
2799
2800#ifndef CONFIG_64BIT
2801 u64 last_update_time_copy;
9ee474f5 2802
9d89c257
YD
2803 do {
2804 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2805 smp_rmb();
2806 last_update_time = cfs_rq->avg.last_update_time;
2807 } while (last_update_time != last_update_time_copy);
2808#else
2809 last_update_time = cfs_rq->avg.last_update_time;
2810#endif
2811
13962234 2812 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2813 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2814 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2815}
642dbc39
VG
2816
2817/*
2818 * Update the rq's load with the elapsed running time before entering
2819 * idle. if the last scheduled task is not a CFS task, idle_enter will
2820 * be the only way to update the runnable statistic.
2821 */
2822void idle_enter_fair(struct rq *this_rq)
2823{
642dbc39
VG
2824}
2825
2826/*
2827 * Update the rq's load with the elapsed idle time before a task is
2828 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2829 * be the only way to update the runnable statistic.
2830 */
2831void idle_exit_fair(struct rq *this_rq)
2832{
642dbc39
VG
2833}
2834
7ea241af
YD
2835static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2836{
2837 return cfs_rq->runnable_load_avg;
2838}
2839
2840static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2841{
2842 return cfs_rq->avg.load_avg;
2843}
2844
6e83125c
PZ
2845static int idle_balance(struct rq *this_rq);
2846
38033c37
PZ
2847#else /* CONFIG_SMP */
2848
9d89c257
YD
2849static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2850static inline void
2851enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2852static inline void
2853dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2854static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2855
a05e8c51
BP
2856static inline void
2857attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2858static inline void
2859detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2860
6e83125c
PZ
2861static inline int idle_balance(struct rq *rq)
2862{
2863 return 0;
2864}
2865
38033c37 2866#endif /* CONFIG_SMP */
9d85f21c 2867
2396af69 2868static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2869{
bf0f6f24 2870#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2871 struct task_struct *tsk = NULL;
2872
2873 if (entity_is_task(se))
2874 tsk = task_of(se);
2875
41acab88 2876 if (se->statistics.sleep_start) {
78becc27 2877 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2878
2879 if ((s64)delta < 0)
2880 delta = 0;
2881
41acab88
LDM
2882 if (unlikely(delta > se->statistics.sleep_max))
2883 se->statistics.sleep_max = delta;
bf0f6f24 2884
8c79a045 2885 se->statistics.sleep_start = 0;
41acab88 2886 se->statistics.sum_sleep_runtime += delta;
9745512c 2887
768d0c27 2888 if (tsk) {
e414314c 2889 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2890 trace_sched_stat_sleep(tsk, delta);
2891 }
bf0f6f24 2892 }
41acab88 2893 if (se->statistics.block_start) {
78becc27 2894 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2895
2896 if ((s64)delta < 0)
2897 delta = 0;
2898
41acab88
LDM
2899 if (unlikely(delta > se->statistics.block_max))
2900 se->statistics.block_max = delta;
bf0f6f24 2901
8c79a045 2902 se->statistics.block_start = 0;
41acab88 2903 se->statistics.sum_sleep_runtime += delta;
30084fbd 2904
e414314c 2905 if (tsk) {
8f0dfc34 2906 if (tsk->in_iowait) {
41acab88
LDM
2907 se->statistics.iowait_sum += delta;
2908 se->statistics.iowait_count++;
768d0c27 2909 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2910 }
2911
b781a602
AV
2912 trace_sched_stat_blocked(tsk, delta);
2913
e414314c
PZ
2914 /*
2915 * Blocking time is in units of nanosecs, so shift by
2916 * 20 to get a milliseconds-range estimation of the
2917 * amount of time that the task spent sleeping:
2918 */
2919 if (unlikely(prof_on == SLEEP_PROFILING)) {
2920 profile_hits(SLEEP_PROFILING,
2921 (void *)get_wchan(tsk),
2922 delta >> 20);
2923 }
2924 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2925 }
bf0f6f24
IM
2926 }
2927#endif
2928}
2929
ddc97297
PZ
2930static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2931{
2932#ifdef CONFIG_SCHED_DEBUG
2933 s64 d = se->vruntime - cfs_rq->min_vruntime;
2934
2935 if (d < 0)
2936 d = -d;
2937
2938 if (d > 3*sysctl_sched_latency)
2939 schedstat_inc(cfs_rq, nr_spread_over);
2940#endif
2941}
2942
aeb73b04
PZ
2943static void
2944place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2945{
1af5f730 2946 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2947
2cb8600e
PZ
2948 /*
2949 * The 'current' period is already promised to the current tasks,
2950 * however the extra weight of the new task will slow them down a
2951 * little, place the new task so that it fits in the slot that
2952 * stays open at the end.
2953 */
94dfb5e7 2954 if (initial && sched_feat(START_DEBIT))
f9c0b095 2955 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2956
a2e7a7eb 2957 /* sleeps up to a single latency don't count. */
5ca9880c 2958 if (!initial) {
a2e7a7eb 2959 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2960
a2e7a7eb
MG
2961 /*
2962 * Halve their sleep time's effect, to allow
2963 * for a gentler effect of sleepers:
2964 */
2965 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2966 thresh >>= 1;
51e0304c 2967
a2e7a7eb 2968 vruntime -= thresh;
aeb73b04
PZ
2969 }
2970
b5d9d734 2971 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2972 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2973}
2974
d3d9dc33
PT
2975static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2976
bf0f6f24 2977static void
88ec22d3 2978enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2979{
88ec22d3
PZ
2980 /*
2981 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2982 * through calling update_curr().
88ec22d3 2983 */
371fd7e7 2984 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2985 se->vruntime += cfs_rq->min_vruntime;
2986
bf0f6f24 2987 /*
a2a2d680 2988 * Update run-time statistics of the 'current'.
bf0f6f24 2989 */
b7cc0896 2990 update_curr(cfs_rq);
9d89c257 2991 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2992 account_entity_enqueue(cfs_rq, se);
2993 update_cfs_shares(cfs_rq);
bf0f6f24 2994
88ec22d3 2995 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2996 place_entity(cfs_rq, se, 0);
2396af69 2997 enqueue_sleeper(cfs_rq, se);
e9acbff6 2998 }
bf0f6f24 2999
d2417e5a 3000 update_stats_enqueue(cfs_rq, se);
ddc97297 3001 check_spread(cfs_rq, se);
83b699ed
SV
3002 if (se != cfs_rq->curr)
3003 __enqueue_entity(cfs_rq, se);
2069dd75 3004 se->on_rq = 1;
3d4b47b4 3005
d3d9dc33 3006 if (cfs_rq->nr_running == 1) {
3d4b47b4 3007 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3008 check_enqueue_throttle(cfs_rq);
3009 }
bf0f6f24
IM
3010}
3011
2c13c919 3012static void __clear_buddies_last(struct sched_entity *se)
2002c695 3013{
2c13c919
RR
3014 for_each_sched_entity(se) {
3015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3016 if (cfs_rq->last != se)
2c13c919 3017 break;
f1044799
PZ
3018
3019 cfs_rq->last = NULL;
2c13c919
RR
3020 }
3021}
2002c695 3022
2c13c919
RR
3023static void __clear_buddies_next(struct sched_entity *se)
3024{
3025 for_each_sched_entity(se) {
3026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3027 if (cfs_rq->next != se)
2c13c919 3028 break;
f1044799
PZ
3029
3030 cfs_rq->next = NULL;
2c13c919 3031 }
2002c695
PZ
3032}
3033
ac53db59
RR
3034static void __clear_buddies_skip(struct sched_entity *se)
3035{
3036 for_each_sched_entity(se) {
3037 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3038 if (cfs_rq->skip != se)
ac53db59 3039 break;
f1044799
PZ
3040
3041 cfs_rq->skip = NULL;
ac53db59
RR
3042 }
3043}
3044
a571bbea
PZ
3045static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3046{
2c13c919
RR
3047 if (cfs_rq->last == se)
3048 __clear_buddies_last(se);
3049
3050 if (cfs_rq->next == se)
3051 __clear_buddies_next(se);
ac53db59
RR
3052
3053 if (cfs_rq->skip == se)
3054 __clear_buddies_skip(se);
a571bbea
PZ
3055}
3056
6c16a6dc 3057static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3058
bf0f6f24 3059static void
371fd7e7 3060dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3061{
a2a2d680
DA
3062 /*
3063 * Update run-time statistics of the 'current'.
3064 */
3065 update_curr(cfs_rq);
13962234 3066 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3067
19b6a2e3 3068 update_stats_dequeue(cfs_rq, se);
371fd7e7 3069 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3070#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3071 if (entity_is_task(se)) {
3072 struct task_struct *tsk = task_of(se);
3073
3074 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3075 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3076 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3077 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3078 }
db36cc7d 3079#endif
67e9fb2a
PZ
3080 }
3081
2002c695 3082 clear_buddies(cfs_rq, se);
4793241b 3083
83b699ed 3084 if (se != cfs_rq->curr)
30cfdcfc 3085 __dequeue_entity(cfs_rq, se);
17bc14b7 3086 se->on_rq = 0;
30cfdcfc 3087 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3088
3089 /*
3090 * Normalize the entity after updating the min_vruntime because the
3091 * update can refer to the ->curr item and we need to reflect this
3092 * movement in our normalized position.
3093 */
371fd7e7 3094 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3095 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3096
d8b4986d
PT
3097 /* return excess runtime on last dequeue */
3098 return_cfs_rq_runtime(cfs_rq);
3099
1e876231 3100 update_min_vruntime(cfs_rq);
17bc14b7 3101 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3102}
3103
3104/*
3105 * Preempt the current task with a newly woken task if needed:
3106 */
7c92e54f 3107static void
2e09bf55 3108check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3109{
11697830 3110 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3111 struct sched_entity *se;
3112 s64 delta;
11697830 3113
6d0f0ebd 3114 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3115 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3116 if (delta_exec > ideal_runtime) {
8875125e 3117 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3118 /*
3119 * The current task ran long enough, ensure it doesn't get
3120 * re-elected due to buddy favours.
3121 */
3122 clear_buddies(cfs_rq, curr);
f685ceac
MG
3123 return;
3124 }
3125
3126 /*
3127 * Ensure that a task that missed wakeup preemption by a
3128 * narrow margin doesn't have to wait for a full slice.
3129 * This also mitigates buddy induced latencies under load.
3130 */
f685ceac
MG
3131 if (delta_exec < sysctl_sched_min_granularity)
3132 return;
3133
f4cfb33e
WX
3134 se = __pick_first_entity(cfs_rq);
3135 delta = curr->vruntime - se->vruntime;
f685ceac 3136
f4cfb33e
WX
3137 if (delta < 0)
3138 return;
d7d82944 3139
f4cfb33e 3140 if (delta > ideal_runtime)
8875125e 3141 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3142}
3143
83b699ed 3144static void
8494f412 3145set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3146{
83b699ed
SV
3147 /* 'current' is not kept within the tree. */
3148 if (se->on_rq) {
3149 /*
3150 * Any task has to be enqueued before it get to execute on
3151 * a CPU. So account for the time it spent waiting on the
3152 * runqueue.
3153 */
3154 update_stats_wait_end(cfs_rq, se);
3155 __dequeue_entity(cfs_rq, se);
9d89c257 3156 update_load_avg(se, 1);
83b699ed
SV
3157 }
3158
79303e9e 3159 update_stats_curr_start(cfs_rq, se);
429d43bc 3160 cfs_rq->curr = se;
eba1ed4b
IM
3161#ifdef CONFIG_SCHEDSTATS
3162 /*
3163 * Track our maximum slice length, if the CPU's load is at
3164 * least twice that of our own weight (i.e. dont track it
3165 * when there are only lesser-weight tasks around):
3166 */
495eca49 3167 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3168 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3169 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3170 }
3171#endif
4a55b450 3172 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3173}
3174
3f3a4904
PZ
3175static int
3176wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3177
ac53db59
RR
3178/*
3179 * Pick the next process, keeping these things in mind, in this order:
3180 * 1) keep things fair between processes/task groups
3181 * 2) pick the "next" process, since someone really wants that to run
3182 * 3) pick the "last" process, for cache locality
3183 * 4) do not run the "skip" process, if something else is available
3184 */
678d5718
PZ
3185static struct sched_entity *
3186pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3187{
678d5718
PZ
3188 struct sched_entity *left = __pick_first_entity(cfs_rq);
3189 struct sched_entity *se;
3190
3191 /*
3192 * If curr is set we have to see if its left of the leftmost entity
3193 * still in the tree, provided there was anything in the tree at all.
3194 */
3195 if (!left || (curr && entity_before(curr, left)))
3196 left = curr;
3197
3198 se = left; /* ideally we run the leftmost entity */
f4b6755f 3199
ac53db59
RR
3200 /*
3201 * Avoid running the skip buddy, if running something else can
3202 * be done without getting too unfair.
3203 */
3204 if (cfs_rq->skip == se) {
678d5718
PZ
3205 struct sched_entity *second;
3206
3207 if (se == curr) {
3208 second = __pick_first_entity(cfs_rq);
3209 } else {
3210 second = __pick_next_entity(se);
3211 if (!second || (curr && entity_before(curr, second)))
3212 second = curr;
3213 }
3214
ac53db59
RR
3215 if (second && wakeup_preempt_entity(second, left) < 1)
3216 se = second;
3217 }
aa2ac252 3218
f685ceac
MG
3219 /*
3220 * Prefer last buddy, try to return the CPU to a preempted task.
3221 */
3222 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3223 se = cfs_rq->last;
3224
ac53db59
RR
3225 /*
3226 * Someone really wants this to run. If it's not unfair, run it.
3227 */
3228 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3229 se = cfs_rq->next;
3230
f685ceac 3231 clear_buddies(cfs_rq, se);
4793241b
PZ
3232
3233 return se;
aa2ac252
PZ
3234}
3235
678d5718 3236static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3237
ab6cde26 3238static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3239{
3240 /*
3241 * If still on the runqueue then deactivate_task()
3242 * was not called and update_curr() has to be done:
3243 */
3244 if (prev->on_rq)
b7cc0896 3245 update_curr(cfs_rq);
bf0f6f24 3246
d3d9dc33
PT
3247 /* throttle cfs_rqs exceeding runtime */
3248 check_cfs_rq_runtime(cfs_rq);
3249
ddc97297 3250 check_spread(cfs_rq, prev);
30cfdcfc 3251 if (prev->on_rq) {
5870db5b 3252 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3253 /* Put 'current' back into the tree. */
3254 __enqueue_entity(cfs_rq, prev);
9d85f21c 3255 /* in !on_rq case, update occurred at dequeue */
9d89c257 3256 update_load_avg(prev, 0);
30cfdcfc 3257 }
429d43bc 3258 cfs_rq->curr = NULL;
bf0f6f24
IM
3259}
3260
8f4d37ec
PZ
3261static void
3262entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3263{
bf0f6f24 3264 /*
30cfdcfc 3265 * Update run-time statistics of the 'current'.
bf0f6f24 3266 */
30cfdcfc 3267 update_curr(cfs_rq);
bf0f6f24 3268
9d85f21c
PT
3269 /*
3270 * Ensure that runnable average is periodically updated.
3271 */
9d89c257 3272 update_load_avg(curr, 1);
bf0bd948 3273 update_cfs_shares(cfs_rq);
9d85f21c 3274
8f4d37ec
PZ
3275#ifdef CONFIG_SCHED_HRTICK
3276 /*
3277 * queued ticks are scheduled to match the slice, so don't bother
3278 * validating it and just reschedule.
3279 */
983ed7a6 3280 if (queued) {
8875125e 3281 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3282 return;
3283 }
8f4d37ec
PZ
3284 /*
3285 * don't let the period tick interfere with the hrtick preemption
3286 */
3287 if (!sched_feat(DOUBLE_TICK) &&
3288 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3289 return;
3290#endif
3291
2c2efaed 3292 if (cfs_rq->nr_running > 1)
2e09bf55 3293 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3294}
3295
ab84d31e
PT
3296
3297/**************************************************
3298 * CFS bandwidth control machinery
3299 */
3300
3301#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3302
3303#ifdef HAVE_JUMP_LABEL
c5905afb 3304static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3305
3306static inline bool cfs_bandwidth_used(void)
3307{
c5905afb 3308 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3309}
3310
1ee14e6c 3311void cfs_bandwidth_usage_inc(void)
029632fb 3312{
1ee14e6c
BS
3313 static_key_slow_inc(&__cfs_bandwidth_used);
3314}
3315
3316void cfs_bandwidth_usage_dec(void)
3317{
3318 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3319}
3320#else /* HAVE_JUMP_LABEL */
3321static bool cfs_bandwidth_used(void)
3322{
3323 return true;
3324}
3325
1ee14e6c
BS
3326void cfs_bandwidth_usage_inc(void) {}
3327void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3328#endif /* HAVE_JUMP_LABEL */
3329
ab84d31e
PT
3330/*
3331 * default period for cfs group bandwidth.
3332 * default: 0.1s, units: nanoseconds
3333 */
3334static inline u64 default_cfs_period(void)
3335{
3336 return 100000000ULL;
3337}
ec12cb7f
PT
3338
3339static inline u64 sched_cfs_bandwidth_slice(void)
3340{
3341 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3342}
3343
a9cf55b2
PT
3344/*
3345 * Replenish runtime according to assigned quota and update expiration time.
3346 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3347 * additional synchronization around rq->lock.
3348 *
3349 * requires cfs_b->lock
3350 */
029632fb 3351void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3352{
3353 u64 now;
3354
3355 if (cfs_b->quota == RUNTIME_INF)
3356 return;
3357
3358 now = sched_clock_cpu(smp_processor_id());
3359 cfs_b->runtime = cfs_b->quota;
3360 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3361}
3362
029632fb
PZ
3363static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3364{
3365 return &tg->cfs_bandwidth;
3366}
3367
f1b17280
PT
3368/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3369static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3370{
3371 if (unlikely(cfs_rq->throttle_count))
3372 return cfs_rq->throttled_clock_task;
3373
78becc27 3374 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3375}
3376
85dac906
PT
3377/* returns 0 on failure to allocate runtime */
3378static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3379{
3380 struct task_group *tg = cfs_rq->tg;
3381 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3382 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3383
3384 /* note: this is a positive sum as runtime_remaining <= 0 */
3385 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3386
3387 raw_spin_lock(&cfs_b->lock);
3388 if (cfs_b->quota == RUNTIME_INF)
3389 amount = min_amount;
58088ad0 3390 else {
77a4d1a1 3391 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3392
3393 if (cfs_b->runtime > 0) {
3394 amount = min(cfs_b->runtime, min_amount);
3395 cfs_b->runtime -= amount;
3396 cfs_b->idle = 0;
3397 }
ec12cb7f 3398 }
a9cf55b2 3399 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3400 raw_spin_unlock(&cfs_b->lock);
3401
3402 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3403 /*
3404 * we may have advanced our local expiration to account for allowed
3405 * spread between our sched_clock and the one on which runtime was
3406 * issued.
3407 */
3408 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3409 cfs_rq->runtime_expires = expires;
85dac906
PT
3410
3411 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3412}
3413
a9cf55b2
PT
3414/*
3415 * Note: This depends on the synchronization provided by sched_clock and the
3416 * fact that rq->clock snapshots this value.
3417 */
3418static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3419{
a9cf55b2 3420 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3421
3422 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3423 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3424 return;
3425
a9cf55b2
PT
3426 if (cfs_rq->runtime_remaining < 0)
3427 return;
3428
3429 /*
3430 * If the local deadline has passed we have to consider the
3431 * possibility that our sched_clock is 'fast' and the global deadline
3432 * has not truly expired.
3433 *
3434 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3435 * whether the global deadline has advanced. It is valid to compare
3436 * cfs_b->runtime_expires without any locks since we only care about
3437 * exact equality, so a partial write will still work.
a9cf55b2
PT
3438 */
3439
51f2176d 3440 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3441 /* extend local deadline, drift is bounded above by 2 ticks */
3442 cfs_rq->runtime_expires += TICK_NSEC;
3443 } else {
3444 /* global deadline is ahead, expiration has passed */
3445 cfs_rq->runtime_remaining = 0;
3446 }
3447}
3448
9dbdb155 3449static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3450{
3451 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3452 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3453 expire_cfs_rq_runtime(cfs_rq);
3454
3455 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3456 return;
3457
85dac906
PT
3458 /*
3459 * if we're unable to extend our runtime we resched so that the active
3460 * hierarchy can be throttled
3461 */
3462 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3463 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3464}
3465
6c16a6dc 3466static __always_inline
9dbdb155 3467void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3468{
56f570e5 3469 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3470 return;
3471
3472 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3473}
3474
85dac906
PT
3475static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3476{
56f570e5 3477 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3478}
3479
64660c86
PT
3480/* check whether cfs_rq, or any parent, is throttled */
3481static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3482{
56f570e5 3483 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3484}
3485
3486/*
3487 * Ensure that neither of the group entities corresponding to src_cpu or
3488 * dest_cpu are members of a throttled hierarchy when performing group
3489 * load-balance operations.
3490 */
3491static inline int throttled_lb_pair(struct task_group *tg,
3492 int src_cpu, int dest_cpu)
3493{
3494 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3495
3496 src_cfs_rq = tg->cfs_rq[src_cpu];
3497 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3498
3499 return throttled_hierarchy(src_cfs_rq) ||
3500 throttled_hierarchy(dest_cfs_rq);
3501}
3502
3503/* updated child weight may affect parent so we have to do this bottom up */
3504static int tg_unthrottle_up(struct task_group *tg, void *data)
3505{
3506 struct rq *rq = data;
3507 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3508
3509 cfs_rq->throttle_count--;
3510#ifdef CONFIG_SMP
3511 if (!cfs_rq->throttle_count) {
f1b17280 3512 /* adjust cfs_rq_clock_task() */
78becc27 3513 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3514 cfs_rq->throttled_clock_task;
64660c86
PT
3515 }
3516#endif
3517
3518 return 0;
3519}
3520
3521static int tg_throttle_down(struct task_group *tg, void *data)
3522{
3523 struct rq *rq = data;
3524 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3525
82958366
PT
3526 /* group is entering throttled state, stop time */
3527 if (!cfs_rq->throttle_count)
78becc27 3528 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3529 cfs_rq->throttle_count++;
3530
3531 return 0;
3532}
3533
d3d9dc33 3534static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3535{
3536 struct rq *rq = rq_of(cfs_rq);
3537 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3538 struct sched_entity *se;
3539 long task_delta, dequeue = 1;
77a4d1a1 3540 bool empty;
85dac906
PT
3541
3542 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3543
f1b17280 3544 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3545 rcu_read_lock();
3546 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3547 rcu_read_unlock();
85dac906
PT
3548
3549 task_delta = cfs_rq->h_nr_running;
3550 for_each_sched_entity(se) {
3551 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3552 /* throttled entity or throttle-on-deactivate */
3553 if (!se->on_rq)
3554 break;
3555
3556 if (dequeue)
3557 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3558 qcfs_rq->h_nr_running -= task_delta;
3559
3560 if (qcfs_rq->load.weight)
3561 dequeue = 0;
3562 }
3563
3564 if (!se)
72465447 3565 sub_nr_running(rq, task_delta);
85dac906
PT
3566
3567 cfs_rq->throttled = 1;
78becc27 3568 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3569 raw_spin_lock(&cfs_b->lock);
d49db342 3570 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3571
c06f04c7
BS
3572 /*
3573 * Add to the _head_ of the list, so that an already-started
3574 * distribute_cfs_runtime will not see us
3575 */
3576 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3577
3578 /*
3579 * If we're the first throttled task, make sure the bandwidth
3580 * timer is running.
3581 */
3582 if (empty)
3583 start_cfs_bandwidth(cfs_b);
3584
85dac906
PT
3585 raw_spin_unlock(&cfs_b->lock);
3586}
3587
029632fb 3588void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3589{
3590 struct rq *rq = rq_of(cfs_rq);
3591 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3592 struct sched_entity *se;
3593 int enqueue = 1;
3594 long task_delta;
3595
22b958d8 3596 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3597
3598 cfs_rq->throttled = 0;
1a55af2e
FW
3599
3600 update_rq_clock(rq);
3601
671fd9da 3602 raw_spin_lock(&cfs_b->lock);
78becc27 3603 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3604 list_del_rcu(&cfs_rq->throttled_list);
3605 raw_spin_unlock(&cfs_b->lock);
3606
64660c86
PT
3607 /* update hierarchical throttle state */
3608 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3609
671fd9da
PT
3610 if (!cfs_rq->load.weight)
3611 return;
3612
3613 task_delta = cfs_rq->h_nr_running;
3614 for_each_sched_entity(se) {
3615 if (se->on_rq)
3616 enqueue = 0;
3617
3618 cfs_rq = cfs_rq_of(se);
3619 if (enqueue)
3620 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3621 cfs_rq->h_nr_running += task_delta;
3622
3623 if (cfs_rq_throttled(cfs_rq))
3624 break;
3625 }
3626
3627 if (!se)
72465447 3628 add_nr_running(rq, task_delta);
671fd9da
PT
3629
3630 /* determine whether we need to wake up potentially idle cpu */
3631 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3632 resched_curr(rq);
671fd9da
PT
3633}
3634
3635static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3636 u64 remaining, u64 expires)
3637{
3638 struct cfs_rq *cfs_rq;
c06f04c7
BS
3639 u64 runtime;
3640 u64 starting_runtime = remaining;
671fd9da
PT
3641
3642 rcu_read_lock();
3643 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3644 throttled_list) {
3645 struct rq *rq = rq_of(cfs_rq);
3646
3647 raw_spin_lock(&rq->lock);
3648 if (!cfs_rq_throttled(cfs_rq))
3649 goto next;
3650
3651 runtime = -cfs_rq->runtime_remaining + 1;
3652 if (runtime > remaining)
3653 runtime = remaining;
3654 remaining -= runtime;
3655
3656 cfs_rq->runtime_remaining += runtime;
3657 cfs_rq->runtime_expires = expires;
3658
3659 /* we check whether we're throttled above */
3660 if (cfs_rq->runtime_remaining > 0)
3661 unthrottle_cfs_rq(cfs_rq);
3662
3663next:
3664 raw_spin_unlock(&rq->lock);
3665
3666 if (!remaining)
3667 break;
3668 }
3669 rcu_read_unlock();
3670
c06f04c7 3671 return starting_runtime - remaining;
671fd9da
PT
3672}
3673
58088ad0
PT
3674/*
3675 * Responsible for refilling a task_group's bandwidth and unthrottling its
3676 * cfs_rqs as appropriate. If there has been no activity within the last
3677 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3678 * used to track this state.
3679 */
3680static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3681{
671fd9da 3682 u64 runtime, runtime_expires;
51f2176d 3683 int throttled;
58088ad0 3684
58088ad0
PT
3685 /* no need to continue the timer with no bandwidth constraint */
3686 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3687 goto out_deactivate;
58088ad0 3688
671fd9da 3689 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3690 cfs_b->nr_periods += overrun;
671fd9da 3691
51f2176d
BS
3692 /*
3693 * idle depends on !throttled (for the case of a large deficit), and if
3694 * we're going inactive then everything else can be deferred
3695 */
3696 if (cfs_b->idle && !throttled)
3697 goto out_deactivate;
a9cf55b2
PT
3698
3699 __refill_cfs_bandwidth_runtime(cfs_b);
3700
671fd9da
PT
3701 if (!throttled) {
3702 /* mark as potentially idle for the upcoming period */
3703 cfs_b->idle = 1;
51f2176d 3704 return 0;
671fd9da
PT
3705 }
3706
e8da1b18
NR
3707 /* account preceding periods in which throttling occurred */
3708 cfs_b->nr_throttled += overrun;
3709
671fd9da 3710 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3711
3712 /*
c06f04c7
BS
3713 * This check is repeated as we are holding onto the new bandwidth while
3714 * we unthrottle. This can potentially race with an unthrottled group
3715 * trying to acquire new bandwidth from the global pool. This can result
3716 * in us over-using our runtime if it is all used during this loop, but
3717 * only by limited amounts in that extreme case.
671fd9da 3718 */
c06f04c7
BS
3719 while (throttled && cfs_b->runtime > 0) {
3720 runtime = cfs_b->runtime;
671fd9da
PT
3721 raw_spin_unlock(&cfs_b->lock);
3722 /* we can't nest cfs_b->lock while distributing bandwidth */
3723 runtime = distribute_cfs_runtime(cfs_b, runtime,
3724 runtime_expires);
3725 raw_spin_lock(&cfs_b->lock);
3726
3727 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3728
3729 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3730 }
58088ad0 3731
671fd9da
PT
3732 /*
3733 * While we are ensured activity in the period following an
3734 * unthrottle, this also covers the case in which the new bandwidth is
3735 * insufficient to cover the existing bandwidth deficit. (Forcing the
3736 * timer to remain active while there are any throttled entities.)
3737 */
3738 cfs_b->idle = 0;
58088ad0 3739
51f2176d
BS
3740 return 0;
3741
3742out_deactivate:
51f2176d 3743 return 1;
58088ad0 3744}
d3d9dc33 3745
d8b4986d
PT
3746/* a cfs_rq won't donate quota below this amount */
3747static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3748/* minimum remaining period time to redistribute slack quota */
3749static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3750/* how long we wait to gather additional slack before distributing */
3751static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3752
db06e78c
BS
3753/*
3754 * Are we near the end of the current quota period?
3755 *
3756 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3757 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3758 * migrate_hrtimers, base is never cleared, so we are fine.
3759 */
d8b4986d
PT
3760static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3761{
3762 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3763 u64 remaining;
3764
3765 /* if the call-back is running a quota refresh is already occurring */
3766 if (hrtimer_callback_running(refresh_timer))
3767 return 1;
3768
3769 /* is a quota refresh about to occur? */
3770 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3771 if (remaining < min_expire)
3772 return 1;
3773
3774 return 0;
3775}
3776
3777static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3778{
3779 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3780
3781 /* if there's a quota refresh soon don't bother with slack */
3782 if (runtime_refresh_within(cfs_b, min_left))
3783 return;
3784
4cfafd30
PZ
3785 hrtimer_start(&cfs_b->slack_timer,
3786 ns_to_ktime(cfs_bandwidth_slack_period),
3787 HRTIMER_MODE_REL);
d8b4986d
PT
3788}
3789
3790/* we know any runtime found here is valid as update_curr() precedes return */
3791static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3792{
3793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3794 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3795
3796 if (slack_runtime <= 0)
3797 return;
3798
3799 raw_spin_lock(&cfs_b->lock);
3800 if (cfs_b->quota != RUNTIME_INF &&
3801 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3802 cfs_b->runtime += slack_runtime;
3803
3804 /* we are under rq->lock, defer unthrottling using a timer */
3805 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3806 !list_empty(&cfs_b->throttled_cfs_rq))
3807 start_cfs_slack_bandwidth(cfs_b);
3808 }
3809 raw_spin_unlock(&cfs_b->lock);
3810
3811 /* even if it's not valid for return we don't want to try again */
3812 cfs_rq->runtime_remaining -= slack_runtime;
3813}
3814
3815static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3816{
56f570e5
PT
3817 if (!cfs_bandwidth_used())
3818 return;
3819
fccfdc6f 3820 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3821 return;
3822
3823 __return_cfs_rq_runtime(cfs_rq);
3824}
3825
3826/*
3827 * This is done with a timer (instead of inline with bandwidth return) since
3828 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3829 */
3830static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3831{
3832 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3833 u64 expires;
3834
3835 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3836 raw_spin_lock(&cfs_b->lock);
3837 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3838 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3839 return;
db06e78c 3840 }
d8b4986d 3841
c06f04c7 3842 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3843 runtime = cfs_b->runtime;
c06f04c7 3844
d8b4986d
PT
3845 expires = cfs_b->runtime_expires;
3846 raw_spin_unlock(&cfs_b->lock);
3847
3848 if (!runtime)
3849 return;
3850
3851 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3852
3853 raw_spin_lock(&cfs_b->lock);
3854 if (expires == cfs_b->runtime_expires)
c06f04c7 3855 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3856 raw_spin_unlock(&cfs_b->lock);
3857}
3858
d3d9dc33
PT
3859/*
3860 * When a group wakes up we want to make sure that its quota is not already
3861 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3862 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3863 */
3864static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3865{
56f570e5
PT
3866 if (!cfs_bandwidth_used())
3867 return;
3868
d3d9dc33
PT
3869 /* an active group must be handled by the update_curr()->put() path */
3870 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3871 return;
3872
3873 /* ensure the group is not already throttled */
3874 if (cfs_rq_throttled(cfs_rq))
3875 return;
3876
3877 /* update runtime allocation */
3878 account_cfs_rq_runtime(cfs_rq, 0);
3879 if (cfs_rq->runtime_remaining <= 0)
3880 throttle_cfs_rq(cfs_rq);
3881}
3882
3883/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3884static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3885{
56f570e5 3886 if (!cfs_bandwidth_used())
678d5718 3887 return false;
56f570e5 3888
d3d9dc33 3889 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3890 return false;
d3d9dc33
PT
3891
3892 /*
3893 * it's possible for a throttled entity to be forced into a running
3894 * state (e.g. set_curr_task), in this case we're finished.
3895 */
3896 if (cfs_rq_throttled(cfs_rq))
678d5718 3897 return true;
d3d9dc33
PT
3898
3899 throttle_cfs_rq(cfs_rq);
678d5718 3900 return true;
d3d9dc33 3901}
029632fb 3902
029632fb
PZ
3903static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3904{
3905 struct cfs_bandwidth *cfs_b =
3906 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3907
029632fb
PZ
3908 do_sched_cfs_slack_timer(cfs_b);
3909
3910 return HRTIMER_NORESTART;
3911}
3912
3913static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3914{
3915 struct cfs_bandwidth *cfs_b =
3916 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3917 int overrun;
3918 int idle = 0;
3919
51f2176d 3920 raw_spin_lock(&cfs_b->lock);
029632fb 3921 for (;;) {
77a4d1a1 3922 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3923 if (!overrun)
3924 break;
3925
3926 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3927 }
4cfafd30
PZ
3928 if (idle)
3929 cfs_b->period_active = 0;
51f2176d 3930 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3931
3932 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3933}
3934
3935void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3936{
3937 raw_spin_lock_init(&cfs_b->lock);
3938 cfs_b->runtime = 0;
3939 cfs_b->quota = RUNTIME_INF;
3940 cfs_b->period = ns_to_ktime(default_cfs_period());
3941
3942 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3943 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3944 cfs_b->period_timer.function = sched_cfs_period_timer;
3945 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3946 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3947}
3948
3949static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3950{
3951 cfs_rq->runtime_enabled = 0;
3952 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3953}
3954
77a4d1a1 3955void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3956{
4cfafd30 3957 lockdep_assert_held(&cfs_b->lock);
029632fb 3958
4cfafd30
PZ
3959 if (!cfs_b->period_active) {
3960 cfs_b->period_active = 1;
3961 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3962 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3963 }
029632fb
PZ
3964}
3965
3966static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3967{
7f1a169b
TH
3968 /* init_cfs_bandwidth() was not called */
3969 if (!cfs_b->throttled_cfs_rq.next)
3970 return;
3971
029632fb
PZ
3972 hrtimer_cancel(&cfs_b->period_timer);
3973 hrtimer_cancel(&cfs_b->slack_timer);
3974}
3975
0e59bdae
KT
3976static void __maybe_unused update_runtime_enabled(struct rq *rq)
3977{
3978 struct cfs_rq *cfs_rq;
3979
3980 for_each_leaf_cfs_rq(rq, cfs_rq) {
3981 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3982
3983 raw_spin_lock(&cfs_b->lock);
3984 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3985 raw_spin_unlock(&cfs_b->lock);
3986 }
3987}
3988
38dc3348 3989static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3990{
3991 struct cfs_rq *cfs_rq;
3992
3993 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3994 if (!cfs_rq->runtime_enabled)
3995 continue;
3996
3997 /*
3998 * clock_task is not advancing so we just need to make sure
3999 * there's some valid quota amount
4000 */
51f2176d 4001 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4002 /*
4003 * Offline rq is schedulable till cpu is completely disabled
4004 * in take_cpu_down(), so we prevent new cfs throttling here.
4005 */
4006 cfs_rq->runtime_enabled = 0;
4007
029632fb
PZ
4008 if (cfs_rq_throttled(cfs_rq))
4009 unthrottle_cfs_rq(cfs_rq);
4010 }
4011}
4012
4013#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4014static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4015{
78becc27 4016 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4017}
4018
9dbdb155 4019static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4020static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4021static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4022static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4023
4024static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4025{
4026 return 0;
4027}
64660c86
PT
4028
4029static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4030{
4031 return 0;
4032}
4033
4034static inline int throttled_lb_pair(struct task_group *tg,
4035 int src_cpu, int dest_cpu)
4036{
4037 return 0;
4038}
029632fb
PZ
4039
4040void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4041
4042#ifdef CONFIG_FAIR_GROUP_SCHED
4043static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4044#endif
4045
029632fb
PZ
4046static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4047{
4048 return NULL;
4049}
4050static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4051static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4052static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4053
4054#endif /* CONFIG_CFS_BANDWIDTH */
4055
bf0f6f24
IM
4056/**************************************************
4057 * CFS operations on tasks:
4058 */
4059
8f4d37ec
PZ
4060#ifdef CONFIG_SCHED_HRTICK
4061static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4062{
8f4d37ec
PZ
4063 struct sched_entity *se = &p->se;
4064 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4065
4066 WARN_ON(task_rq(p) != rq);
4067
b39e66ea 4068 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4069 u64 slice = sched_slice(cfs_rq, se);
4070 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4071 s64 delta = slice - ran;
4072
4073 if (delta < 0) {
4074 if (rq->curr == p)
8875125e 4075 resched_curr(rq);
8f4d37ec
PZ
4076 return;
4077 }
31656519 4078 hrtick_start(rq, delta);
8f4d37ec
PZ
4079 }
4080}
a4c2f00f
PZ
4081
4082/*
4083 * called from enqueue/dequeue and updates the hrtick when the
4084 * current task is from our class and nr_running is low enough
4085 * to matter.
4086 */
4087static void hrtick_update(struct rq *rq)
4088{
4089 struct task_struct *curr = rq->curr;
4090
b39e66ea 4091 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4092 return;
4093
4094 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4095 hrtick_start_fair(rq, curr);
4096}
55e12e5e 4097#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4098static inline void
4099hrtick_start_fair(struct rq *rq, struct task_struct *p)
4100{
4101}
a4c2f00f
PZ
4102
4103static inline void hrtick_update(struct rq *rq)
4104{
4105}
8f4d37ec
PZ
4106#endif
4107
bf0f6f24
IM
4108/*
4109 * The enqueue_task method is called before nr_running is
4110 * increased. Here we update the fair scheduling stats and
4111 * then put the task into the rbtree:
4112 */
ea87bb78 4113static void
371fd7e7 4114enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4115{
4116 struct cfs_rq *cfs_rq;
62fb1851 4117 struct sched_entity *se = &p->se;
bf0f6f24
IM
4118
4119 for_each_sched_entity(se) {
62fb1851 4120 if (se->on_rq)
bf0f6f24
IM
4121 break;
4122 cfs_rq = cfs_rq_of(se);
88ec22d3 4123 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4124
4125 /*
4126 * end evaluation on encountering a throttled cfs_rq
4127 *
4128 * note: in the case of encountering a throttled cfs_rq we will
4129 * post the final h_nr_running increment below.
4130 */
4131 if (cfs_rq_throttled(cfs_rq))
4132 break;
953bfcd1 4133 cfs_rq->h_nr_running++;
85dac906 4134
88ec22d3 4135 flags = ENQUEUE_WAKEUP;
bf0f6f24 4136 }
8f4d37ec 4137
2069dd75 4138 for_each_sched_entity(se) {
0f317143 4139 cfs_rq = cfs_rq_of(se);
953bfcd1 4140 cfs_rq->h_nr_running++;
2069dd75 4141
85dac906
PT
4142 if (cfs_rq_throttled(cfs_rq))
4143 break;
4144
9d89c257 4145 update_load_avg(se, 1);
17bc14b7 4146 update_cfs_shares(cfs_rq);
2069dd75
PZ
4147 }
4148
cd126afe 4149 if (!se)
72465447 4150 add_nr_running(rq, 1);
cd126afe 4151
a4c2f00f 4152 hrtick_update(rq);
bf0f6f24
IM
4153}
4154
2f36825b
VP
4155static void set_next_buddy(struct sched_entity *se);
4156
bf0f6f24
IM
4157/*
4158 * The dequeue_task method is called before nr_running is
4159 * decreased. We remove the task from the rbtree and
4160 * update the fair scheduling stats:
4161 */
371fd7e7 4162static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4163{
4164 struct cfs_rq *cfs_rq;
62fb1851 4165 struct sched_entity *se = &p->se;
2f36825b 4166 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4167
4168 for_each_sched_entity(se) {
4169 cfs_rq = cfs_rq_of(se);
371fd7e7 4170 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4171
4172 /*
4173 * end evaluation on encountering a throttled cfs_rq
4174 *
4175 * note: in the case of encountering a throttled cfs_rq we will
4176 * post the final h_nr_running decrement below.
4177 */
4178 if (cfs_rq_throttled(cfs_rq))
4179 break;
953bfcd1 4180 cfs_rq->h_nr_running--;
2069dd75 4181
bf0f6f24 4182 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4183 if (cfs_rq->load.weight) {
4184 /*
4185 * Bias pick_next to pick a task from this cfs_rq, as
4186 * p is sleeping when it is within its sched_slice.
4187 */
4188 if (task_sleep && parent_entity(se))
4189 set_next_buddy(parent_entity(se));
9598c82d
PT
4190
4191 /* avoid re-evaluating load for this entity */
4192 se = parent_entity(se);
bf0f6f24 4193 break;
2f36825b 4194 }
371fd7e7 4195 flags |= DEQUEUE_SLEEP;
bf0f6f24 4196 }
8f4d37ec 4197
2069dd75 4198 for_each_sched_entity(se) {
0f317143 4199 cfs_rq = cfs_rq_of(se);
953bfcd1 4200 cfs_rq->h_nr_running--;
2069dd75 4201
85dac906
PT
4202 if (cfs_rq_throttled(cfs_rq))
4203 break;
4204
9d89c257 4205 update_load_avg(se, 1);
17bc14b7 4206 update_cfs_shares(cfs_rq);
2069dd75
PZ
4207 }
4208
cd126afe 4209 if (!se)
72465447 4210 sub_nr_running(rq, 1);
cd126afe 4211
a4c2f00f 4212 hrtick_update(rq);
bf0f6f24
IM
4213}
4214
e7693a36 4215#ifdef CONFIG_SMP
3289bdb4
PZ
4216
4217/*
4218 * per rq 'load' arrray crap; XXX kill this.
4219 */
4220
4221/*
4222 * The exact cpuload at various idx values, calculated at every tick would be
4223 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4224 *
4225 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4226 * on nth tick when cpu may be busy, then we have:
4227 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4228 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4229 *
4230 * decay_load_missed() below does efficient calculation of
4231 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4232 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4233 *
4234 * The calculation is approximated on a 128 point scale.
4235 * degrade_zero_ticks is the number of ticks after which load at any
4236 * particular idx is approximated to be zero.
4237 * degrade_factor is a precomputed table, a row for each load idx.
4238 * Each column corresponds to degradation factor for a power of two ticks,
4239 * based on 128 point scale.
4240 * Example:
4241 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4242 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4243 *
4244 * With this power of 2 load factors, we can degrade the load n times
4245 * by looking at 1 bits in n and doing as many mult/shift instead of
4246 * n mult/shifts needed by the exact degradation.
4247 */
4248#define DEGRADE_SHIFT 7
4249static const unsigned char
4250 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4251static const unsigned char
4252 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4253 {0, 0, 0, 0, 0, 0, 0, 0},
4254 {64, 32, 8, 0, 0, 0, 0, 0},
4255 {96, 72, 40, 12, 1, 0, 0},
4256 {112, 98, 75, 43, 15, 1, 0},
4257 {120, 112, 98, 76, 45, 16, 2} };
4258
4259/*
4260 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4261 * would be when CPU is idle and so we just decay the old load without
4262 * adding any new load.
4263 */
4264static unsigned long
4265decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4266{
4267 int j = 0;
4268
4269 if (!missed_updates)
4270 return load;
4271
4272 if (missed_updates >= degrade_zero_ticks[idx])
4273 return 0;
4274
4275 if (idx == 1)
4276 return load >> missed_updates;
4277
4278 while (missed_updates) {
4279 if (missed_updates % 2)
4280 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4281
4282 missed_updates >>= 1;
4283 j++;
4284 }
4285 return load;
4286}
4287
4288/*
4289 * Update rq->cpu_load[] statistics. This function is usually called every
4290 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4291 * every tick. We fix it up based on jiffies.
4292 */
4293static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4294 unsigned long pending_updates)
4295{
4296 int i, scale;
4297
4298 this_rq->nr_load_updates++;
4299
4300 /* Update our load: */
4301 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4302 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4303 unsigned long old_load, new_load;
4304
4305 /* scale is effectively 1 << i now, and >> i divides by scale */
4306
4307 old_load = this_rq->cpu_load[i];
4308 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4309 new_load = this_load;
4310 /*
4311 * Round up the averaging division if load is increasing. This
4312 * prevents us from getting stuck on 9 if the load is 10, for
4313 * example.
4314 */
4315 if (new_load > old_load)
4316 new_load += scale - 1;
4317
4318 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4319 }
4320
4321 sched_avg_update(this_rq);
4322}
4323
7ea241af
YD
4324/* Used instead of source_load when we know the type == 0 */
4325static unsigned long weighted_cpuload(const int cpu)
4326{
4327 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4328}
4329
3289bdb4
PZ
4330#ifdef CONFIG_NO_HZ_COMMON
4331/*
4332 * There is no sane way to deal with nohz on smp when using jiffies because the
4333 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4334 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4335 *
4336 * Therefore we cannot use the delta approach from the regular tick since that
4337 * would seriously skew the load calculation. However we'll make do for those
4338 * updates happening while idle (nohz_idle_balance) or coming out of idle
4339 * (tick_nohz_idle_exit).
4340 *
4341 * This means we might still be one tick off for nohz periods.
4342 */
4343
4344/*
4345 * Called from nohz_idle_balance() to update the load ratings before doing the
4346 * idle balance.
4347 */
4348static void update_idle_cpu_load(struct rq *this_rq)
4349{
316c1608 4350 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4351 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4352 unsigned long pending_updates;
4353
4354 /*
4355 * bail if there's load or we're actually up-to-date.
4356 */
4357 if (load || curr_jiffies == this_rq->last_load_update_tick)
4358 return;
4359
4360 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4361 this_rq->last_load_update_tick = curr_jiffies;
4362
4363 __update_cpu_load(this_rq, load, pending_updates);
4364}
4365
4366/*
4367 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4368 */
4369void update_cpu_load_nohz(void)
4370{
4371 struct rq *this_rq = this_rq();
316c1608 4372 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4373 unsigned long pending_updates;
4374
4375 if (curr_jiffies == this_rq->last_load_update_tick)
4376 return;
4377
4378 raw_spin_lock(&this_rq->lock);
4379 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4380 if (pending_updates) {
4381 this_rq->last_load_update_tick = curr_jiffies;
4382 /*
4383 * We were idle, this means load 0, the current load might be
4384 * !0 due to remote wakeups and the sort.
4385 */
4386 __update_cpu_load(this_rq, 0, pending_updates);
4387 }
4388 raw_spin_unlock(&this_rq->lock);
4389}
4390#endif /* CONFIG_NO_HZ */
4391
4392/*
4393 * Called from scheduler_tick()
4394 */
4395void update_cpu_load_active(struct rq *this_rq)
4396{
7ea241af 4397 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4398 /*
4399 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4400 */
4401 this_rq->last_load_update_tick = jiffies;
4402 __update_cpu_load(this_rq, load, 1);
4403}
4404
029632fb
PZ
4405/*
4406 * Return a low guess at the load of a migration-source cpu weighted
4407 * according to the scheduling class and "nice" value.
4408 *
4409 * We want to under-estimate the load of migration sources, to
4410 * balance conservatively.
4411 */
4412static unsigned long source_load(int cpu, int type)
4413{
4414 struct rq *rq = cpu_rq(cpu);
4415 unsigned long total = weighted_cpuload(cpu);
4416
4417 if (type == 0 || !sched_feat(LB_BIAS))
4418 return total;
4419
4420 return min(rq->cpu_load[type-1], total);
4421}
4422
4423/*
4424 * Return a high guess at the load of a migration-target cpu weighted
4425 * according to the scheduling class and "nice" value.
4426 */
4427static unsigned long target_load(int cpu, int type)
4428{
4429 struct rq *rq = cpu_rq(cpu);
4430 unsigned long total = weighted_cpuload(cpu);
4431
4432 if (type == 0 || !sched_feat(LB_BIAS))
4433 return total;
4434
4435 return max(rq->cpu_load[type-1], total);
4436}
4437
ced549fa 4438static unsigned long capacity_of(int cpu)
029632fb 4439{
ced549fa 4440 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4441}
4442
ca6d75e6
VG
4443static unsigned long capacity_orig_of(int cpu)
4444{
4445 return cpu_rq(cpu)->cpu_capacity_orig;
4446}
4447
029632fb
PZ
4448static unsigned long cpu_avg_load_per_task(int cpu)
4449{
4450 struct rq *rq = cpu_rq(cpu);
316c1608 4451 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4452 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4453
4454 if (nr_running)
b92486cb 4455 return load_avg / nr_running;
029632fb
PZ
4456
4457 return 0;
4458}
4459
62470419
MW
4460static void record_wakee(struct task_struct *p)
4461{
4462 /*
4463 * Rough decay (wiping) for cost saving, don't worry
4464 * about the boundary, really active task won't care
4465 * about the loss.
4466 */
2538d960 4467 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4468 current->wakee_flips >>= 1;
62470419
MW
4469 current->wakee_flip_decay_ts = jiffies;
4470 }
4471
4472 if (current->last_wakee != p) {
4473 current->last_wakee = p;
4474 current->wakee_flips++;
4475 }
4476}
098fb9db 4477
74f8e4b2 4478static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4479{
4480 struct sched_entity *se = &p->se;
4481 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4482 u64 min_vruntime;
4483
4484#ifndef CONFIG_64BIT
4485 u64 min_vruntime_copy;
88ec22d3 4486
3fe1698b
PZ
4487 do {
4488 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4489 smp_rmb();
4490 min_vruntime = cfs_rq->min_vruntime;
4491 } while (min_vruntime != min_vruntime_copy);
4492#else
4493 min_vruntime = cfs_rq->min_vruntime;
4494#endif
88ec22d3 4495
3fe1698b 4496 se->vruntime -= min_vruntime;
62470419 4497 record_wakee(p);
88ec22d3
PZ
4498}
4499
bb3469ac 4500#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4501/*
4502 * effective_load() calculates the load change as seen from the root_task_group
4503 *
4504 * Adding load to a group doesn't make a group heavier, but can cause movement
4505 * of group shares between cpus. Assuming the shares were perfectly aligned one
4506 * can calculate the shift in shares.
cf5f0acf
PZ
4507 *
4508 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4509 * on this @cpu and results in a total addition (subtraction) of @wg to the
4510 * total group weight.
4511 *
4512 * Given a runqueue weight distribution (rw_i) we can compute a shares
4513 * distribution (s_i) using:
4514 *
4515 * s_i = rw_i / \Sum rw_j (1)
4516 *
4517 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4518 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4519 * shares distribution (s_i):
4520 *
4521 * rw_i = { 2, 4, 1, 0 }
4522 * s_i = { 2/7, 4/7, 1/7, 0 }
4523 *
4524 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4525 * task used to run on and the CPU the waker is running on), we need to
4526 * compute the effect of waking a task on either CPU and, in case of a sync
4527 * wakeup, compute the effect of the current task going to sleep.
4528 *
4529 * So for a change of @wl to the local @cpu with an overall group weight change
4530 * of @wl we can compute the new shares distribution (s'_i) using:
4531 *
4532 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4533 *
4534 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4535 * differences in waking a task to CPU 0. The additional task changes the
4536 * weight and shares distributions like:
4537 *
4538 * rw'_i = { 3, 4, 1, 0 }
4539 * s'_i = { 3/8, 4/8, 1/8, 0 }
4540 *
4541 * We can then compute the difference in effective weight by using:
4542 *
4543 * dw_i = S * (s'_i - s_i) (3)
4544 *
4545 * Where 'S' is the group weight as seen by its parent.
4546 *
4547 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4548 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4549 * 4/7) times the weight of the group.
f5bfb7d9 4550 */
2069dd75 4551static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4552{
4be9daaa 4553 struct sched_entity *se = tg->se[cpu];
f1d239f7 4554
9722c2da 4555 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4556 return wl;
4557
4be9daaa 4558 for_each_sched_entity(se) {
cf5f0acf 4559 long w, W;
4be9daaa 4560
977dda7c 4561 tg = se->my_q->tg;
bb3469ac 4562
cf5f0acf
PZ
4563 /*
4564 * W = @wg + \Sum rw_j
4565 */
4566 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4567
cf5f0acf
PZ
4568 /*
4569 * w = rw_i + @wl
4570 */
7ea241af 4571 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4572
cf5f0acf
PZ
4573 /*
4574 * wl = S * s'_i; see (2)
4575 */
4576 if (W > 0 && w < W)
32a8df4e 4577 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4578 else
4579 wl = tg->shares;
940959e9 4580
cf5f0acf
PZ
4581 /*
4582 * Per the above, wl is the new se->load.weight value; since
4583 * those are clipped to [MIN_SHARES, ...) do so now. See
4584 * calc_cfs_shares().
4585 */
977dda7c
PT
4586 if (wl < MIN_SHARES)
4587 wl = MIN_SHARES;
cf5f0acf
PZ
4588
4589 /*
4590 * wl = dw_i = S * (s'_i - s_i); see (3)
4591 */
9d89c257 4592 wl -= se->avg.load_avg;
cf5f0acf
PZ
4593
4594 /*
4595 * Recursively apply this logic to all parent groups to compute
4596 * the final effective load change on the root group. Since
4597 * only the @tg group gets extra weight, all parent groups can
4598 * only redistribute existing shares. @wl is the shift in shares
4599 * resulting from this level per the above.
4600 */
4be9daaa 4601 wg = 0;
4be9daaa 4602 }
bb3469ac 4603
4be9daaa 4604 return wl;
bb3469ac
PZ
4605}
4606#else
4be9daaa 4607
58d081b5 4608static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4609{
83378269 4610 return wl;
bb3469ac 4611}
4be9daaa 4612
bb3469ac
PZ
4613#endif
4614
63b0e9ed
MG
4615/*
4616 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4617 * A waker of many should wake a different task than the one last awakened
4618 * at a frequency roughly N times higher than one of its wakees. In order
4619 * to determine whether we should let the load spread vs consolodating to
4620 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4621 * partner, and a factor of lls_size higher frequency in the other. With
4622 * both conditions met, we can be relatively sure that the relationship is
4623 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4624 * being client/server, worker/dispatcher, interrupt source or whatever is
4625 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4626 */
62470419
MW
4627static int wake_wide(struct task_struct *p)
4628{
63b0e9ed
MG
4629 unsigned int master = current->wakee_flips;
4630 unsigned int slave = p->wakee_flips;
7d9ffa89 4631 int factor = this_cpu_read(sd_llc_size);
62470419 4632
63b0e9ed
MG
4633 if (master < slave)
4634 swap(master, slave);
4635 if (slave < factor || master < slave * factor)
4636 return 0;
4637 return 1;
62470419
MW
4638}
4639
c88d5910 4640static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4641{
e37b6a7b 4642 s64 this_load, load;
bd61c98f 4643 s64 this_eff_load, prev_eff_load;
c88d5910 4644 int idx, this_cpu, prev_cpu;
c88d5910 4645 struct task_group *tg;
83378269 4646 unsigned long weight;
b3137bc8 4647 int balanced;
098fb9db 4648
c88d5910
PZ
4649 idx = sd->wake_idx;
4650 this_cpu = smp_processor_id();
4651 prev_cpu = task_cpu(p);
4652 load = source_load(prev_cpu, idx);
4653 this_load = target_load(this_cpu, idx);
098fb9db 4654
b3137bc8
MG
4655 /*
4656 * If sync wakeup then subtract the (maximum possible)
4657 * effect of the currently running task from the load
4658 * of the current CPU:
4659 */
83378269
PZ
4660 if (sync) {
4661 tg = task_group(current);
9d89c257 4662 weight = current->se.avg.load_avg;
83378269 4663
c88d5910 4664 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4665 load += effective_load(tg, prev_cpu, 0, -weight);
4666 }
b3137bc8 4667
83378269 4668 tg = task_group(p);
9d89c257 4669 weight = p->se.avg.load_avg;
b3137bc8 4670
71a29aa7
PZ
4671 /*
4672 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4673 * due to the sync cause above having dropped this_load to 0, we'll
4674 * always have an imbalance, but there's really nothing you can do
4675 * about that, so that's good too.
71a29aa7
PZ
4676 *
4677 * Otherwise check if either cpus are near enough in load to allow this
4678 * task to be woken on this_cpu.
4679 */
bd61c98f
VG
4680 this_eff_load = 100;
4681 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4682
bd61c98f
VG
4683 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4684 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4685
bd61c98f 4686 if (this_load > 0) {
e51fd5e2
PZ
4687 this_eff_load *= this_load +
4688 effective_load(tg, this_cpu, weight, weight);
4689
e51fd5e2 4690 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4691 }
e51fd5e2 4692
bd61c98f 4693 balanced = this_eff_load <= prev_eff_load;
098fb9db 4694
41acab88 4695 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4696
05bfb65f
VG
4697 if (!balanced)
4698 return 0;
098fb9db 4699
05bfb65f
VG
4700 schedstat_inc(sd, ttwu_move_affine);
4701 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4702
4703 return 1;
098fb9db
IM
4704}
4705
aaee1203
PZ
4706/*
4707 * find_idlest_group finds and returns the least busy CPU group within the
4708 * domain.
4709 */
4710static struct sched_group *
78e7ed53 4711find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4712 int this_cpu, int sd_flag)
e7693a36 4713{
b3bd3de6 4714 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4715 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4716 int load_idx = sd->forkexec_idx;
aaee1203 4717 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4718
c44f2a02
VG
4719 if (sd_flag & SD_BALANCE_WAKE)
4720 load_idx = sd->wake_idx;
4721
aaee1203
PZ
4722 do {
4723 unsigned long load, avg_load;
4724 int local_group;
4725 int i;
e7693a36 4726
aaee1203
PZ
4727 /* Skip over this group if it has no CPUs allowed */
4728 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4729 tsk_cpus_allowed(p)))
aaee1203
PZ
4730 continue;
4731
4732 local_group = cpumask_test_cpu(this_cpu,
4733 sched_group_cpus(group));
4734
4735 /* Tally up the load of all CPUs in the group */
4736 avg_load = 0;
4737
4738 for_each_cpu(i, sched_group_cpus(group)) {
4739 /* Bias balancing toward cpus of our domain */
4740 if (local_group)
4741 load = source_load(i, load_idx);
4742 else
4743 load = target_load(i, load_idx);
4744
4745 avg_load += load;
4746 }
4747
63b2ca30 4748 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4749 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4750
4751 if (local_group) {
4752 this_load = avg_load;
aaee1203
PZ
4753 } else if (avg_load < min_load) {
4754 min_load = avg_load;
4755 idlest = group;
4756 }
4757 } while (group = group->next, group != sd->groups);
4758
4759 if (!idlest || 100*this_load < imbalance*min_load)
4760 return NULL;
4761 return idlest;
4762}
4763
4764/*
4765 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4766 */
4767static int
4768find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4769{
4770 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4771 unsigned int min_exit_latency = UINT_MAX;
4772 u64 latest_idle_timestamp = 0;
4773 int least_loaded_cpu = this_cpu;
4774 int shallowest_idle_cpu = -1;
aaee1203
PZ
4775 int i;
4776
4777 /* Traverse only the allowed CPUs */
fa17b507 4778 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4779 if (idle_cpu(i)) {
4780 struct rq *rq = cpu_rq(i);
4781 struct cpuidle_state *idle = idle_get_state(rq);
4782 if (idle && idle->exit_latency < min_exit_latency) {
4783 /*
4784 * We give priority to a CPU whose idle state
4785 * has the smallest exit latency irrespective
4786 * of any idle timestamp.
4787 */
4788 min_exit_latency = idle->exit_latency;
4789 latest_idle_timestamp = rq->idle_stamp;
4790 shallowest_idle_cpu = i;
4791 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4792 rq->idle_stamp > latest_idle_timestamp) {
4793 /*
4794 * If equal or no active idle state, then
4795 * the most recently idled CPU might have
4796 * a warmer cache.
4797 */
4798 latest_idle_timestamp = rq->idle_stamp;
4799 shallowest_idle_cpu = i;
4800 }
9f96742a 4801 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4802 load = weighted_cpuload(i);
4803 if (load < min_load || (load == min_load && i == this_cpu)) {
4804 min_load = load;
4805 least_loaded_cpu = i;
4806 }
e7693a36
GH
4807 }
4808 }
4809
83a0a96a 4810 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4811}
e7693a36 4812
a50bde51
PZ
4813/*
4814 * Try and locate an idle CPU in the sched_domain.
4815 */
99bd5e2f 4816static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4817{
99bd5e2f 4818 struct sched_domain *sd;
37407ea7 4819 struct sched_group *sg;
e0a79f52 4820 int i = task_cpu(p);
a50bde51 4821
e0a79f52
MG
4822 if (idle_cpu(target))
4823 return target;
99bd5e2f
SS
4824
4825 /*
e0a79f52 4826 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4827 */
e0a79f52
MG
4828 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4829 return i;
a50bde51
PZ
4830
4831 /*
37407ea7 4832 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4833 */
518cd623 4834 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4835 for_each_lower_domain(sd) {
37407ea7
LT
4836 sg = sd->groups;
4837 do {
4838 if (!cpumask_intersects(sched_group_cpus(sg),
4839 tsk_cpus_allowed(p)))
4840 goto next;
4841
4842 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4843 if (i == target || !idle_cpu(i))
37407ea7
LT
4844 goto next;
4845 }
970e1789 4846
37407ea7
LT
4847 target = cpumask_first_and(sched_group_cpus(sg),
4848 tsk_cpus_allowed(p));
4849 goto done;
4850next:
4851 sg = sg->next;
4852 } while (sg != sd->groups);
4853 }
4854done:
a50bde51
PZ
4855 return target;
4856}
8bb5b00c
VG
4857/*
4858 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4859 * tasks. The unit of the return value must be the one of capacity so we can
4860 * compare the usage with the capacity of the CPU that is available for CFS
4861 * task (ie cpu_capacity).
9d89c257 4862 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4863 * CPU. It represents the amount of utilization of a CPU in the range
4864 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4865 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4866 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4867 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4868 * after migrating tasks until the average stabilizes with the new running
4869 * time. So we need to check that the usage stays into the range
4870 * [0..cpu_capacity_orig] and cap if necessary.
4871 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4872 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4873 */
4874static int get_cpu_usage(int cpu)
4875{
9d89c257 4876 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4877 unsigned long capacity = capacity_orig_of(cpu);
4878
4879 if (usage >= SCHED_LOAD_SCALE)
4880 return capacity;
4881
4882 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4883}
a50bde51 4884
aaee1203 4885/*
de91b9cb
MR
4886 * select_task_rq_fair: Select target runqueue for the waking task in domains
4887 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4888 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4889 *
de91b9cb
MR
4890 * Balances load by selecting the idlest cpu in the idlest group, or under
4891 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4892 *
de91b9cb 4893 * Returns the target cpu number.
aaee1203
PZ
4894 *
4895 * preempt must be disabled.
4896 */
0017d735 4897static int
ac66f547 4898select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4899{
29cd8bae 4900 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4901 int cpu = smp_processor_id();
63b0e9ed 4902 int new_cpu = prev_cpu;
99bd5e2f 4903 int want_affine = 0;
5158f4e4 4904 int sync = wake_flags & WF_SYNC;
c88d5910 4905
a8edd075 4906 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4907 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4908
dce840a0 4909 rcu_read_lock();
aaee1203 4910 for_each_domain(cpu, tmp) {
e4f42888 4911 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4912 break;
e4f42888 4913
fe3bcfe1 4914 /*
99bd5e2f
SS
4915 * If both cpu and prev_cpu are part of this domain,
4916 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4917 */
99bd5e2f
SS
4918 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4919 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4920 affine_sd = tmp;
29cd8bae 4921 break;
f03542a7 4922 }
29cd8bae 4923
f03542a7 4924 if (tmp->flags & sd_flag)
29cd8bae 4925 sd = tmp;
63b0e9ed
MG
4926 else if (!want_affine)
4927 break;
29cd8bae
PZ
4928 }
4929
63b0e9ed
MG
4930 if (affine_sd) {
4931 sd = NULL; /* Prefer wake_affine over balance flags */
4932 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4933 new_cpu = cpu;
8b911acd 4934 }
e7693a36 4935
63b0e9ed
MG
4936 if (!sd) {
4937 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4938 new_cpu = select_idle_sibling(p, new_cpu);
4939
4940 } else while (sd) {
aaee1203 4941 struct sched_group *group;
c88d5910 4942 int weight;
098fb9db 4943
0763a660 4944 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4945 sd = sd->child;
4946 continue;
4947 }
098fb9db 4948
c44f2a02 4949 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4950 if (!group) {
4951 sd = sd->child;
4952 continue;
4953 }
4ae7d5ce 4954
d7c33c49 4955 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4956 if (new_cpu == -1 || new_cpu == cpu) {
4957 /* Now try balancing at a lower domain level of cpu */
4958 sd = sd->child;
4959 continue;
e7693a36 4960 }
aaee1203
PZ
4961
4962 /* Now try balancing at a lower domain level of new_cpu */
4963 cpu = new_cpu;
669c55e9 4964 weight = sd->span_weight;
aaee1203
PZ
4965 sd = NULL;
4966 for_each_domain(cpu, tmp) {
669c55e9 4967 if (weight <= tmp->span_weight)
aaee1203 4968 break;
0763a660 4969 if (tmp->flags & sd_flag)
aaee1203
PZ
4970 sd = tmp;
4971 }
4972 /* while loop will break here if sd == NULL */
e7693a36 4973 }
dce840a0 4974 rcu_read_unlock();
e7693a36 4975
c88d5910 4976 return new_cpu;
e7693a36 4977}
0a74bef8
PT
4978
4979/*
4980 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4981 * cfs_rq_of(p) references at time of call are still valid and identify the
4982 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4983 * other assumptions, including the state of rq->lock, should be made.
4984 */
9d89c257 4985static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4986{
aff3e498 4987 /*
9d89c257
YD
4988 * We are supposed to update the task to "current" time, then its up to date
4989 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4990 * what current time is, so simply throw away the out-of-date time. This
4991 * will result in the wakee task is less decayed, but giving the wakee more
4992 * load sounds not bad.
aff3e498 4993 */
9d89c257
YD
4994 remove_entity_load_avg(&p->se);
4995
4996 /* Tell new CPU we are migrated */
4997 p->se.avg.last_update_time = 0;
3944a927
BS
4998
4999 /* We have migrated, no longer consider this task hot */
9d89c257 5000 p->se.exec_start = 0;
0a74bef8 5001}
12695578
YD
5002
5003static void task_dead_fair(struct task_struct *p)
5004{
5005 remove_entity_load_avg(&p->se);
5006}
e7693a36
GH
5007#endif /* CONFIG_SMP */
5008
e52fb7c0
PZ
5009static unsigned long
5010wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5011{
5012 unsigned long gran = sysctl_sched_wakeup_granularity;
5013
5014 /*
e52fb7c0
PZ
5015 * Since its curr running now, convert the gran from real-time
5016 * to virtual-time in his units.
13814d42
MG
5017 *
5018 * By using 'se' instead of 'curr' we penalize light tasks, so
5019 * they get preempted easier. That is, if 'se' < 'curr' then
5020 * the resulting gran will be larger, therefore penalizing the
5021 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5022 * be smaller, again penalizing the lighter task.
5023 *
5024 * This is especially important for buddies when the leftmost
5025 * task is higher priority than the buddy.
0bbd3336 5026 */
f4ad9bd2 5027 return calc_delta_fair(gran, se);
0bbd3336
PZ
5028}
5029
464b7527
PZ
5030/*
5031 * Should 'se' preempt 'curr'.
5032 *
5033 * |s1
5034 * |s2
5035 * |s3
5036 * g
5037 * |<--->|c
5038 *
5039 * w(c, s1) = -1
5040 * w(c, s2) = 0
5041 * w(c, s3) = 1
5042 *
5043 */
5044static int
5045wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5046{
5047 s64 gran, vdiff = curr->vruntime - se->vruntime;
5048
5049 if (vdiff <= 0)
5050 return -1;
5051
e52fb7c0 5052 gran = wakeup_gran(curr, se);
464b7527
PZ
5053 if (vdiff > gran)
5054 return 1;
5055
5056 return 0;
5057}
5058
02479099
PZ
5059static void set_last_buddy(struct sched_entity *se)
5060{
69c80f3e
VP
5061 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5062 return;
5063
5064 for_each_sched_entity(se)
5065 cfs_rq_of(se)->last = se;
02479099
PZ
5066}
5067
5068static void set_next_buddy(struct sched_entity *se)
5069{
69c80f3e
VP
5070 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5071 return;
5072
5073 for_each_sched_entity(se)
5074 cfs_rq_of(se)->next = se;
02479099
PZ
5075}
5076
ac53db59
RR
5077static void set_skip_buddy(struct sched_entity *se)
5078{
69c80f3e
VP
5079 for_each_sched_entity(se)
5080 cfs_rq_of(se)->skip = se;
ac53db59
RR
5081}
5082
bf0f6f24
IM
5083/*
5084 * Preempt the current task with a newly woken task if needed:
5085 */
5a9b86f6 5086static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5087{
5088 struct task_struct *curr = rq->curr;
8651a86c 5089 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5090 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5091 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5092 int next_buddy_marked = 0;
bf0f6f24 5093
4ae7d5ce
IM
5094 if (unlikely(se == pse))
5095 return;
5096
5238cdd3 5097 /*
163122b7 5098 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5099 * unconditionally check_prempt_curr() after an enqueue (which may have
5100 * lead to a throttle). This both saves work and prevents false
5101 * next-buddy nomination below.
5102 */
5103 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5104 return;
5105
2f36825b 5106 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5107 set_next_buddy(pse);
2f36825b
VP
5108 next_buddy_marked = 1;
5109 }
57fdc26d 5110
aec0a514
BR
5111 /*
5112 * We can come here with TIF_NEED_RESCHED already set from new task
5113 * wake up path.
5238cdd3
PT
5114 *
5115 * Note: this also catches the edge-case of curr being in a throttled
5116 * group (e.g. via set_curr_task), since update_curr() (in the
5117 * enqueue of curr) will have resulted in resched being set. This
5118 * prevents us from potentially nominating it as a false LAST_BUDDY
5119 * below.
aec0a514
BR
5120 */
5121 if (test_tsk_need_resched(curr))
5122 return;
5123
a2f5c9ab
DH
5124 /* Idle tasks are by definition preempted by non-idle tasks. */
5125 if (unlikely(curr->policy == SCHED_IDLE) &&
5126 likely(p->policy != SCHED_IDLE))
5127 goto preempt;
5128
91c234b4 5129 /*
a2f5c9ab
DH
5130 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5131 * is driven by the tick):
91c234b4 5132 */
8ed92e51 5133 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5134 return;
bf0f6f24 5135
464b7527 5136 find_matching_se(&se, &pse);
9bbd7374 5137 update_curr(cfs_rq_of(se));
002f128b 5138 BUG_ON(!pse);
2f36825b
VP
5139 if (wakeup_preempt_entity(se, pse) == 1) {
5140 /*
5141 * Bias pick_next to pick the sched entity that is
5142 * triggering this preemption.
5143 */
5144 if (!next_buddy_marked)
5145 set_next_buddy(pse);
3a7e73a2 5146 goto preempt;
2f36825b 5147 }
464b7527 5148
3a7e73a2 5149 return;
a65ac745 5150
3a7e73a2 5151preempt:
8875125e 5152 resched_curr(rq);
3a7e73a2
PZ
5153 /*
5154 * Only set the backward buddy when the current task is still
5155 * on the rq. This can happen when a wakeup gets interleaved
5156 * with schedule on the ->pre_schedule() or idle_balance()
5157 * point, either of which can * drop the rq lock.
5158 *
5159 * Also, during early boot the idle thread is in the fair class,
5160 * for obvious reasons its a bad idea to schedule back to it.
5161 */
5162 if (unlikely(!se->on_rq || curr == rq->idle))
5163 return;
5164
5165 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5166 set_last_buddy(se);
bf0f6f24
IM
5167}
5168
606dba2e
PZ
5169static struct task_struct *
5170pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5171{
5172 struct cfs_rq *cfs_rq = &rq->cfs;
5173 struct sched_entity *se;
678d5718 5174 struct task_struct *p;
37e117c0 5175 int new_tasks;
678d5718 5176
6e83125c 5177again:
678d5718
PZ
5178#ifdef CONFIG_FAIR_GROUP_SCHED
5179 if (!cfs_rq->nr_running)
38033c37 5180 goto idle;
678d5718 5181
3f1d2a31 5182 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5183 goto simple;
5184
5185 /*
5186 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5187 * likely that a next task is from the same cgroup as the current.
5188 *
5189 * Therefore attempt to avoid putting and setting the entire cgroup
5190 * hierarchy, only change the part that actually changes.
5191 */
5192
5193 do {
5194 struct sched_entity *curr = cfs_rq->curr;
5195
5196 /*
5197 * Since we got here without doing put_prev_entity() we also
5198 * have to consider cfs_rq->curr. If it is still a runnable
5199 * entity, update_curr() will update its vruntime, otherwise
5200 * forget we've ever seen it.
5201 */
54d27365
BS
5202 if (curr) {
5203 if (curr->on_rq)
5204 update_curr(cfs_rq);
5205 else
5206 curr = NULL;
678d5718 5207
54d27365
BS
5208 /*
5209 * This call to check_cfs_rq_runtime() will do the
5210 * throttle and dequeue its entity in the parent(s).
5211 * Therefore the 'simple' nr_running test will indeed
5212 * be correct.
5213 */
5214 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5215 goto simple;
5216 }
678d5718
PZ
5217
5218 se = pick_next_entity(cfs_rq, curr);
5219 cfs_rq = group_cfs_rq(se);
5220 } while (cfs_rq);
5221
5222 p = task_of(se);
5223
5224 /*
5225 * Since we haven't yet done put_prev_entity and if the selected task
5226 * is a different task than we started out with, try and touch the
5227 * least amount of cfs_rqs.
5228 */
5229 if (prev != p) {
5230 struct sched_entity *pse = &prev->se;
5231
5232 while (!(cfs_rq = is_same_group(se, pse))) {
5233 int se_depth = se->depth;
5234 int pse_depth = pse->depth;
5235
5236 if (se_depth <= pse_depth) {
5237 put_prev_entity(cfs_rq_of(pse), pse);
5238 pse = parent_entity(pse);
5239 }
5240 if (se_depth >= pse_depth) {
5241 set_next_entity(cfs_rq_of(se), se);
5242 se = parent_entity(se);
5243 }
5244 }
5245
5246 put_prev_entity(cfs_rq, pse);
5247 set_next_entity(cfs_rq, se);
5248 }
5249
5250 if (hrtick_enabled(rq))
5251 hrtick_start_fair(rq, p);
5252
5253 return p;
5254simple:
5255 cfs_rq = &rq->cfs;
5256#endif
bf0f6f24 5257
36ace27e 5258 if (!cfs_rq->nr_running)
38033c37 5259 goto idle;
bf0f6f24 5260
3f1d2a31 5261 put_prev_task(rq, prev);
606dba2e 5262
bf0f6f24 5263 do {
678d5718 5264 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5265 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5266 cfs_rq = group_cfs_rq(se);
5267 } while (cfs_rq);
5268
8f4d37ec 5269 p = task_of(se);
678d5718 5270
b39e66ea
MG
5271 if (hrtick_enabled(rq))
5272 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5273
5274 return p;
38033c37
PZ
5275
5276idle:
cbce1a68
PZ
5277 /*
5278 * This is OK, because current is on_cpu, which avoids it being picked
5279 * for load-balance and preemption/IRQs are still disabled avoiding
5280 * further scheduler activity on it and we're being very careful to
5281 * re-start the picking loop.
5282 */
5283 lockdep_unpin_lock(&rq->lock);
e4aa358b 5284 new_tasks = idle_balance(rq);
cbce1a68 5285 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5286 /*
5287 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5288 * possible for any higher priority task to appear. In that case we
5289 * must re-start the pick_next_entity() loop.
5290 */
e4aa358b 5291 if (new_tasks < 0)
37e117c0
PZ
5292 return RETRY_TASK;
5293
e4aa358b 5294 if (new_tasks > 0)
38033c37 5295 goto again;
38033c37
PZ
5296
5297 return NULL;
bf0f6f24
IM
5298}
5299
5300/*
5301 * Account for a descheduled task:
5302 */
31ee529c 5303static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5304{
5305 struct sched_entity *se = &prev->se;
5306 struct cfs_rq *cfs_rq;
5307
5308 for_each_sched_entity(se) {
5309 cfs_rq = cfs_rq_of(se);
ab6cde26 5310 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5311 }
5312}
5313
ac53db59
RR
5314/*
5315 * sched_yield() is very simple
5316 *
5317 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5318 */
5319static void yield_task_fair(struct rq *rq)
5320{
5321 struct task_struct *curr = rq->curr;
5322 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5323 struct sched_entity *se = &curr->se;
5324
5325 /*
5326 * Are we the only task in the tree?
5327 */
5328 if (unlikely(rq->nr_running == 1))
5329 return;
5330
5331 clear_buddies(cfs_rq, se);
5332
5333 if (curr->policy != SCHED_BATCH) {
5334 update_rq_clock(rq);
5335 /*
5336 * Update run-time statistics of the 'current'.
5337 */
5338 update_curr(cfs_rq);
916671c0
MG
5339 /*
5340 * Tell update_rq_clock() that we've just updated,
5341 * so we don't do microscopic update in schedule()
5342 * and double the fastpath cost.
5343 */
9edfbfed 5344 rq_clock_skip_update(rq, true);
ac53db59
RR
5345 }
5346
5347 set_skip_buddy(se);
5348}
5349
d95f4122
MG
5350static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5351{
5352 struct sched_entity *se = &p->se;
5353
5238cdd3
PT
5354 /* throttled hierarchies are not runnable */
5355 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5356 return false;
5357
5358 /* Tell the scheduler that we'd really like pse to run next. */
5359 set_next_buddy(se);
5360
d95f4122
MG
5361 yield_task_fair(rq);
5362
5363 return true;
5364}
5365
681f3e68 5366#ifdef CONFIG_SMP
bf0f6f24 5367/**************************************************
e9c84cb8
PZ
5368 * Fair scheduling class load-balancing methods.
5369 *
5370 * BASICS
5371 *
5372 * The purpose of load-balancing is to achieve the same basic fairness the
5373 * per-cpu scheduler provides, namely provide a proportional amount of compute
5374 * time to each task. This is expressed in the following equation:
5375 *
5376 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5377 *
5378 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5379 * W_i,0 is defined as:
5380 *
5381 * W_i,0 = \Sum_j w_i,j (2)
5382 *
5383 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5384 * is derived from the nice value as per prio_to_weight[].
5385 *
5386 * The weight average is an exponential decay average of the instantaneous
5387 * weight:
5388 *
5389 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5390 *
ced549fa 5391 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5392 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5393 * can also include other factors [XXX].
5394 *
5395 * To achieve this balance we define a measure of imbalance which follows
5396 * directly from (1):
5397 *
ced549fa 5398 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5399 *
5400 * We them move tasks around to minimize the imbalance. In the continuous
5401 * function space it is obvious this converges, in the discrete case we get
5402 * a few fun cases generally called infeasible weight scenarios.
5403 *
5404 * [XXX expand on:
5405 * - infeasible weights;
5406 * - local vs global optima in the discrete case. ]
5407 *
5408 *
5409 * SCHED DOMAINS
5410 *
5411 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5412 * for all i,j solution, we create a tree of cpus that follows the hardware
5413 * topology where each level pairs two lower groups (or better). This results
5414 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5415 * tree to only the first of the previous level and we decrease the frequency
5416 * of load-balance at each level inv. proportional to the number of cpus in
5417 * the groups.
5418 *
5419 * This yields:
5420 *
5421 * log_2 n 1 n
5422 * \Sum { --- * --- * 2^i } = O(n) (5)
5423 * i = 0 2^i 2^i
5424 * `- size of each group
5425 * | | `- number of cpus doing load-balance
5426 * | `- freq
5427 * `- sum over all levels
5428 *
5429 * Coupled with a limit on how many tasks we can migrate every balance pass,
5430 * this makes (5) the runtime complexity of the balancer.
5431 *
5432 * An important property here is that each CPU is still (indirectly) connected
5433 * to every other cpu in at most O(log n) steps:
5434 *
5435 * The adjacency matrix of the resulting graph is given by:
5436 *
5437 * log_2 n
5438 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5439 * k = 0
5440 *
5441 * And you'll find that:
5442 *
5443 * A^(log_2 n)_i,j != 0 for all i,j (7)
5444 *
5445 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5446 * The task movement gives a factor of O(m), giving a convergence complexity
5447 * of:
5448 *
5449 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5450 *
5451 *
5452 * WORK CONSERVING
5453 *
5454 * In order to avoid CPUs going idle while there's still work to do, new idle
5455 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5456 * tree itself instead of relying on other CPUs to bring it work.
5457 *
5458 * This adds some complexity to both (5) and (8) but it reduces the total idle
5459 * time.
5460 *
5461 * [XXX more?]
5462 *
5463 *
5464 * CGROUPS
5465 *
5466 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5467 *
5468 * s_k,i
5469 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5470 * S_k
5471 *
5472 * Where
5473 *
5474 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5475 *
5476 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5477 *
5478 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5479 * property.
5480 *
5481 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5482 * rewrite all of this once again.]
5483 */
bf0f6f24 5484
ed387b78
HS
5485static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5486
0ec8aa00
PZ
5487enum fbq_type { regular, remote, all };
5488
ddcdf6e7 5489#define LBF_ALL_PINNED 0x01
367456c7 5490#define LBF_NEED_BREAK 0x02
6263322c
PZ
5491#define LBF_DST_PINNED 0x04
5492#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5493
5494struct lb_env {
5495 struct sched_domain *sd;
5496
ddcdf6e7 5497 struct rq *src_rq;
85c1e7da 5498 int src_cpu;
ddcdf6e7
PZ
5499
5500 int dst_cpu;
5501 struct rq *dst_rq;
5502
88b8dac0
SV
5503 struct cpumask *dst_grpmask;
5504 int new_dst_cpu;
ddcdf6e7 5505 enum cpu_idle_type idle;
bd939f45 5506 long imbalance;
b9403130
MW
5507 /* The set of CPUs under consideration for load-balancing */
5508 struct cpumask *cpus;
5509
ddcdf6e7 5510 unsigned int flags;
367456c7
PZ
5511
5512 unsigned int loop;
5513 unsigned int loop_break;
5514 unsigned int loop_max;
0ec8aa00
PZ
5515
5516 enum fbq_type fbq_type;
163122b7 5517 struct list_head tasks;
ddcdf6e7
PZ
5518};
5519
029632fb
PZ
5520/*
5521 * Is this task likely cache-hot:
5522 */
5d5e2b1b 5523static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5524{
5525 s64 delta;
5526
e5673f28
KT
5527 lockdep_assert_held(&env->src_rq->lock);
5528
029632fb
PZ
5529 if (p->sched_class != &fair_sched_class)
5530 return 0;
5531
5532 if (unlikely(p->policy == SCHED_IDLE))
5533 return 0;
5534
5535 /*
5536 * Buddy candidates are cache hot:
5537 */
5d5e2b1b 5538 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5539 (&p->se == cfs_rq_of(&p->se)->next ||
5540 &p->se == cfs_rq_of(&p->se)->last))
5541 return 1;
5542
5543 if (sysctl_sched_migration_cost == -1)
5544 return 1;
5545 if (sysctl_sched_migration_cost == 0)
5546 return 0;
5547
5d5e2b1b 5548 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5549
5550 return delta < (s64)sysctl_sched_migration_cost;
5551}
5552
3a7053b3 5553#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5554/*
2a1ed24c
SD
5555 * Returns 1, if task migration degrades locality
5556 * Returns 0, if task migration improves locality i.e migration preferred.
5557 * Returns -1, if task migration is not affected by locality.
c1ceac62 5558 */
2a1ed24c 5559static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5560{
b1ad065e 5561 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5562 unsigned long src_faults, dst_faults;
3a7053b3
MG
5563 int src_nid, dst_nid;
5564
44dba3d5 5565 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5566 return -1;
5567
5568 if (!sched_feat(NUMA))
5569 return -1;
7a0f3083
MG
5570
5571 src_nid = cpu_to_node(env->src_cpu);
5572 dst_nid = cpu_to_node(env->dst_cpu);
5573
83e1d2cd 5574 if (src_nid == dst_nid)
2a1ed24c 5575 return -1;
7a0f3083 5576
2a1ed24c
SD
5577 /* Migrating away from the preferred node is always bad. */
5578 if (src_nid == p->numa_preferred_nid) {
5579 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5580 return 1;
5581 else
5582 return -1;
5583 }
b1ad065e 5584
c1ceac62
RR
5585 /* Encourage migration to the preferred node. */
5586 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5587 return 0;
b1ad065e 5588
c1ceac62
RR
5589 if (numa_group) {
5590 src_faults = group_faults(p, src_nid);
5591 dst_faults = group_faults(p, dst_nid);
5592 } else {
5593 src_faults = task_faults(p, src_nid);
5594 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5595 }
5596
c1ceac62 5597 return dst_faults < src_faults;
7a0f3083
MG
5598}
5599
3a7053b3 5600#else
2a1ed24c 5601static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5602 struct lb_env *env)
5603{
2a1ed24c 5604 return -1;
7a0f3083 5605}
3a7053b3
MG
5606#endif
5607
1e3c88bd
PZ
5608/*
5609 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5610 */
5611static
8e45cb54 5612int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5613{
2a1ed24c 5614 int tsk_cache_hot;
e5673f28
KT
5615
5616 lockdep_assert_held(&env->src_rq->lock);
5617
1e3c88bd
PZ
5618 /*
5619 * We do not migrate tasks that are:
d3198084 5620 * 1) throttled_lb_pair, or
1e3c88bd 5621 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5622 * 3) running (obviously), or
5623 * 4) are cache-hot on their current CPU.
1e3c88bd 5624 */
d3198084
JK
5625 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5626 return 0;
5627
ddcdf6e7 5628 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5629 int cpu;
88b8dac0 5630
41acab88 5631 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5632
6263322c
PZ
5633 env->flags |= LBF_SOME_PINNED;
5634
88b8dac0
SV
5635 /*
5636 * Remember if this task can be migrated to any other cpu in
5637 * our sched_group. We may want to revisit it if we couldn't
5638 * meet load balance goals by pulling other tasks on src_cpu.
5639 *
5640 * Also avoid computing new_dst_cpu if we have already computed
5641 * one in current iteration.
5642 */
6263322c 5643 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5644 return 0;
5645
e02e60c1
JK
5646 /* Prevent to re-select dst_cpu via env's cpus */
5647 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5648 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5649 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5650 env->new_dst_cpu = cpu;
5651 break;
5652 }
88b8dac0 5653 }
e02e60c1 5654
1e3c88bd
PZ
5655 return 0;
5656 }
88b8dac0
SV
5657
5658 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5659 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5660
ddcdf6e7 5661 if (task_running(env->src_rq, p)) {
41acab88 5662 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5663 return 0;
5664 }
5665
5666 /*
5667 * Aggressive migration if:
3a7053b3
MG
5668 * 1) destination numa is preferred
5669 * 2) task is cache cold, or
5670 * 3) too many balance attempts have failed.
1e3c88bd 5671 */
2a1ed24c
SD
5672 tsk_cache_hot = migrate_degrades_locality(p, env);
5673 if (tsk_cache_hot == -1)
5674 tsk_cache_hot = task_hot(p, env);
3a7053b3 5675
2a1ed24c 5676 if (tsk_cache_hot <= 0 ||
7a96c231 5677 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5678 if (tsk_cache_hot == 1) {
3a7053b3
MG
5679 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5680 schedstat_inc(p, se.statistics.nr_forced_migrations);
5681 }
1e3c88bd
PZ
5682 return 1;
5683 }
5684
4e2dcb73
ZH
5685 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5686 return 0;
1e3c88bd
PZ
5687}
5688
897c395f 5689/*
163122b7
KT
5690 * detach_task() -- detach the task for the migration specified in env
5691 */
5692static void detach_task(struct task_struct *p, struct lb_env *env)
5693{
5694 lockdep_assert_held(&env->src_rq->lock);
5695
5696 deactivate_task(env->src_rq, p, 0);
5697 p->on_rq = TASK_ON_RQ_MIGRATING;
5698 set_task_cpu(p, env->dst_cpu);
5699}
5700
897c395f 5701/*
e5673f28 5702 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5703 * part of active balancing operations within "domain".
897c395f 5704 *
e5673f28 5705 * Returns a task if successful and NULL otherwise.
897c395f 5706 */
e5673f28 5707static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5708{
5709 struct task_struct *p, *n;
897c395f 5710
e5673f28
KT
5711 lockdep_assert_held(&env->src_rq->lock);
5712
367456c7 5713 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5714 if (!can_migrate_task(p, env))
5715 continue;
897c395f 5716
163122b7 5717 detach_task(p, env);
e5673f28 5718
367456c7 5719 /*
e5673f28 5720 * Right now, this is only the second place where
163122b7 5721 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5722 * so we can safely collect stats here rather than
163122b7 5723 * inside detach_tasks().
367456c7
PZ
5724 */
5725 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5726 return p;
897c395f 5727 }
e5673f28 5728 return NULL;
897c395f
PZ
5729}
5730
eb95308e
PZ
5731static const unsigned int sched_nr_migrate_break = 32;
5732
5d6523eb 5733/*
163122b7
KT
5734 * detach_tasks() -- tries to detach up to imbalance weighted load from
5735 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5736 *
163122b7 5737 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5738 */
163122b7 5739static int detach_tasks(struct lb_env *env)
1e3c88bd 5740{
5d6523eb
PZ
5741 struct list_head *tasks = &env->src_rq->cfs_tasks;
5742 struct task_struct *p;
367456c7 5743 unsigned long load;
163122b7
KT
5744 int detached = 0;
5745
5746 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5747
bd939f45 5748 if (env->imbalance <= 0)
5d6523eb 5749 return 0;
1e3c88bd 5750
5d6523eb 5751 while (!list_empty(tasks)) {
985d3a4c
YD
5752 /*
5753 * We don't want to steal all, otherwise we may be treated likewise,
5754 * which could at worst lead to a livelock crash.
5755 */
5756 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5757 break;
5758
5d6523eb 5759 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5760
367456c7
PZ
5761 env->loop++;
5762 /* We've more or less seen every task there is, call it quits */
5d6523eb 5763 if (env->loop > env->loop_max)
367456c7 5764 break;
5d6523eb
PZ
5765
5766 /* take a breather every nr_migrate tasks */
367456c7 5767 if (env->loop > env->loop_break) {
eb95308e 5768 env->loop_break += sched_nr_migrate_break;
8e45cb54 5769 env->flags |= LBF_NEED_BREAK;
ee00e66f 5770 break;
a195f004 5771 }
1e3c88bd 5772
d3198084 5773 if (!can_migrate_task(p, env))
367456c7
PZ
5774 goto next;
5775
5776 load = task_h_load(p);
5d6523eb 5777
eb95308e 5778 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5779 goto next;
5780
bd939f45 5781 if ((load / 2) > env->imbalance)
367456c7 5782 goto next;
1e3c88bd 5783
163122b7
KT
5784 detach_task(p, env);
5785 list_add(&p->se.group_node, &env->tasks);
5786
5787 detached++;
bd939f45 5788 env->imbalance -= load;
1e3c88bd
PZ
5789
5790#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5791 /*
5792 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5793 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5794 * the critical section.
5795 */
5d6523eb 5796 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5797 break;
1e3c88bd
PZ
5798#endif
5799
ee00e66f
PZ
5800 /*
5801 * We only want to steal up to the prescribed amount of
5802 * weighted load.
5803 */
bd939f45 5804 if (env->imbalance <= 0)
ee00e66f 5805 break;
367456c7
PZ
5806
5807 continue;
5808next:
5d6523eb 5809 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5810 }
5d6523eb 5811
1e3c88bd 5812 /*
163122b7
KT
5813 * Right now, this is one of only two places we collect this stat
5814 * so we can safely collect detach_one_task() stats here rather
5815 * than inside detach_one_task().
1e3c88bd 5816 */
163122b7 5817 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5818
163122b7
KT
5819 return detached;
5820}
5821
5822/*
5823 * attach_task() -- attach the task detached by detach_task() to its new rq.
5824 */
5825static void attach_task(struct rq *rq, struct task_struct *p)
5826{
5827 lockdep_assert_held(&rq->lock);
5828
5829 BUG_ON(task_rq(p) != rq);
5830 p->on_rq = TASK_ON_RQ_QUEUED;
5831 activate_task(rq, p, 0);
5832 check_preempt_curr(rq, p, 0);
5833}
5834
5835/*
5836 * attach_one_task() -- attaches the task returned from detach_one_task() to
5837 * its new rq.
5838 */
5839static void attach_one_task(struct rq *rq, struct task_struct *p)
5840{
5841 raw_spin_lock(&rq->lock);
5842 attach_task(rq, p);
5843 raw_spin_unlock(&rq->lock);
5844}
5845
5846/*
5847 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5848 * new rq.
5849 */
5850static void attach_tasks(struct lb_env *env)
5851{
5852 struct list_head *tasks = &env->tasks;
5853 struct task_struct *p;
5854
5855 raw_spin_lock(&env->dst_rq->lock);
5856
5857 while (!list_empty(tasks)) {
5858 p = list_first_entry(tasks, struct task_struct, se.group_node);
5859 list_del_init(&p->se.group_node);
1e3c88bd 5860
163122b7
KT
5861 attach_task(env->dst_rq, p);
5862 }
5863
5864 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5865}
5866
230059de 5867#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5868static void update_blocked_averages(int cpu)
9e3081ca 5869{
9e3081ca 5870 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5871 struct cfs_rq *cfs_rq;
5872 unsigned long flags;
9e3081ca 5873
48a16753
PT
5874 raw_spin_lock_irqsave(&rq->lock, flags);
5875 update_rq_clock(rq);
9d89c257 5876
9763b67f
PZ
5877 /*
5878 * Iterates the task_group tree in a bottom up fashion, see
5879 * list_add_leaf_cfs_rq() for details.
5880 */
64660c86 5881 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5882 /* throttled entities do not contribute to load */
5883 if (throttled_hierarchy(cfs_rq))
5884 continue;
48a16753 5885
9d89c257
YD
5886 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5887 update_tg_load_avg(cfs_rq, 0);
5888 }
48a16753 5889 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5890}
5891
9763b67f 5892/*
68520796 5893 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5894 * This needs to be done in a top-down fashion because the load of a child
5895 * group is a fraction of its parents load.
5896 */
68520796 5897static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5898{
68520796
VD
5899 struct rq *rq = rq_of(cfs_rq);
5900 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5901 unsigned long now = jiffies;
68520796 5902 unsigned long load;
a35b6466 5903
68520796 5904 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5905 return;
5906
68520796
VD
5907 cfs_rq->h_load_next = NULL;
5908 for_each_sched_entity(se) {
5909 cfs_rq = cfs_rq_of(se);
5910 cfs_rq->h_load_next = se;
5911 if (cfs_rq->last_h_load_update == now)
5912 break;
5913 }
a35b6466 5914
68520796 5915 if (!se) {
7ea241af 5916 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5917 cfs_rq->last_h_load_update = now;
5918 }
5919
5920 while ((se = cfs_rq->h_load_next) != NULL) {
5921 load = cfs_rq->h_load;
7ea241af
YD
5922 load = div64_ul(load * se->avg.load_avg,
5923 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5924 cfs_rq = group_cfs_rq(se);
5925 cfs_rq->h_load = load;
5926 cfs_rq->last_h_load_update = now;
5927 }
9763b67f
PZ
5928}
5929
367456c7 5930static unsigned long task_h_load(struct task_struct *p)
230059de 5931{
367456c7 5932 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5933
68520796 5934 update_cfs_rq_h_load(cfs_rq);
9d89c257 5935 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5936 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5937}
5938#else
48a16753 5939static inline void update_blocked_averages(int cpu)
9e3081ca 5940{
6c1d47c0
VG
5941 struct rq *rq = cpu_rq(cpu);
5942 struct cfs_rq *cfs_rq = &rq->cfs;
5943 unsigned long flags;
5944
5945 raw_spin_lock_irqsave(&rq->lock, flags);
5946 update_rq_clock(rq);
5947 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5948 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5949}
5950
367456c7 5951static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5952{
9d89c257 5953 return p->se.avg.load_avg;
1e3c88bd 5954}
230059de 5955#endif
1e3c88bd 5956
1e3c88bd 5957/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5958
5959enum group_type {
5960 group_other = 0,
5961 group_imbalanced,
5962 group_overloaded,
5963};
5964
1e3c88bd
PZ
5965/*
5966 * sg_lb_stats - stats of a sched_group required for load_balancing
5967 */
5968struct sg_lb_stats {
5969 unsigned long avg_load; /*Avg load across the CPUs of the group */
5970 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5971 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5972 unsigned long load_per_task;
63b2ca30 5973 unsigned long group_capacity;
8bb5b00c 5974 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5975 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5976 unsigned int idle_cpus;
5977 unsigned int group_weight;
caeb178c 5978 enum group_type group_type;
ea67821b 5979 int group_no_capacity;
0ec8aa00
PZ
5980#ifdef CONFIG_NUMA_BALANCING
5981 unsigned int nr_numa_running;
5982 unsigned int nr_preferred_running;
5983#endif
1e3c88bd
PZ
5984};
5985
56cf515b
JK
5986/*
5987 * sd_lb_stats - Structure to store the statistics of a sched_domain
5988 * during load balancing.
5989 */
5990struct sd_lb_stats {
5991 struct sched_group *busiest; /* Busiest group in this sd */
5992 struct sched_group *local; /* Local group in this sd */
5993 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5994 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5995 unsigned long avg_load; /* Average load across all groups in sd */
5996
56cf515b 5997 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5998 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5999};
6000
147c5fc2
PZ
6001static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6002{
6003 /*
6004 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6005 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6006 * We must however clear busiest_stat::avg_load because
6007 * update_sd_pick_busiest() reads this before assignment.
6008 */
6009 *sds = (struct sd_lb_stats){
6010 .busiest = NULL,
6011 .local = NULL,
6012 .total_load = 0UL,
63b2ca30 6013 .total_capacity = 0UL,
147c5fc2
PZ
6014 .busiest_stat = {
6015 .avg_load = 0UL,
caeb178c
RR
6016 .sum_nr_running = 0,
6017 .group_type = group_other,
147c5fc2
PZ
6018 },
6019 };
6020}
6021
1e3c88bd
PZ
6022/**
6023 * get_sd_load_idx - Obtain the load index for a given sched domain.
6024 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6025 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6026 *
6027 * Return: The load index.
1e3c88bd
PZ
6028 */
6029static inline int get_sd_load_idx(struct sched_domain *sd,
6030 enum cpu_idle_type idle)
6031{
6032 int load_idx;
6033
6034 switch (idle) {
6035 case CPU_NOT_IDLE:
6036 load_idx = sd->busy_idx;
6037 break;
6038
6039 case CPU_NEWLY_IDLE:
6040 load_idx = sd->newidle_idx;
6041 break;
6042 default:
6043 load_idx = sd->idle_idx;
6044 break;
6045 }
6046
6047 return load_idx;
6048}
6049
26bc3c50 6050static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6051{
26bc3c50
VG
6052 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6053 return sd->smt_gain / sd->span_weight;
1e3c88bd 6054
26bc3c50 6055 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6056}
6057
26bc3c50 6058unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6059{
26bc3c50 6060 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6061}
6062
ced549fa 6063static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6064{
6065 struct rq *rq = cpu_rq(cpu);
b5b4860d 6066 u64 total, used, age_stamp, avg;
cadefd3d 6067 s64 delta;
1e3c88bd 6068
b654f7de
PZ
6069 /*
6070 * Since we're reading these variables without serialization make sure
6071 * we read them once before doing sanity checks on them.
6072 */
316c1608
JL
6073 age_stamp = READ_ONCE(rq->age_stamp);
6074 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6075 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6076
cadefd3d
PZ
6077 if (unlikely(delta < 0))
6078 delta = 0;
6079
6080 total = sched_avg_period() + delta;
aa483808 6081
b5b4860d 6082 used = div_u64(avg, total);
1e3c88bd 6083
b5b4860d
VG
6084 if (likely(used < SCHED_CAPACITY_SCALE))
6085 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6086
b5b4860d 6087 return 1;
1e3c88bd
PZ
6088}
6089
ced549fa 6090static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6091{
ca8ce3d0 6092 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6093 struct sched_group *sdg = sd->groups;
6094
26bc3c50
VG
6095 if (sched_feat(ARCH_CAPACITY))
6096 capacity *= arch_scale_cpu_capacity(sd, cpu);
6097 else
6098 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6099
26bc3c50 6100 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6101
ca6d75e6 6102 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6103
ced549fa 6104 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6105 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6106
ced549fa
NP
6107 if (!capacity)
6108 capacity = 1;
1e3c88bd 6109
ced549fa
NP
6110 cpu_rq(cpu)->cpu_capacity = capacity;
6111 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6112}
6113
63b2ca30 6114void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6115{
6116 struct sched_domain *child = sd->child;
6117 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6118 unsigned long capacity;
4ec4412e
VG
6119 unsigned long interval;
6120
6121 interval = msecs_to_jiffies(sd->balance_interval);
6122 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6123 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6124
6125 if (!child) {
ced549fa 6126 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6127 return;
6128 }
6129
dc7ff76e 6130 capacity = 0;
1e3c88bd 6131
74a5ce20
PZ
6132 if (child->flags & SD_OVERLAP) {
6133 /*
6134 * SD_OVERLAP domains cannot assume that child groups
6135 * span the current group.
6136 */
6137
863bffc8 6138 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6139 struct sched_group_capacity *sgc;
9abf24d4 6140 struct rq *rq = cpu_rq(cpu);
863bffc8 6141
9abf24d4 6142 /*
63b2ca30 6143 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6144 * gets here before we've attached the domains to the
6145 * runqueues.
6146 *
ced549fa
NP
6147 * Use capacity_of(), which is set irrespective of domains
6148 * in update_cpu_capacity().
9abf24d4 6149 *
dc7ff76e 6150 * This avoids capacity from being 0 and
9abf24d4 6151 * causing divide-by-zero issues on boot.
9abf24d4
SD
6152 */
6153 if (unlikely(!rq->sd)) {
ced549fa 6154 capacity += capacity_of(cpu);
9abf24d4
SD
6155 continue;
6156 }
863bffc8 6157
63b2ca30 6158 sgc = rq->sd->groups->sgc;
63b2ca30 6159 capacity += sgc->capacity;
863bffc8 6160 }
74a5ce20
PZ
6161 } else {
6162 /*
6163 * !SD_OVERLAP domains can assume that child groups
6164 * span the current group.
6165 */
6166
6167 group = child->groups;
6168 do {
63b2ca30 6169 capacity += group->sgc->capacity;
74a5ce20
PZ
6170 group = group->next;
6171 } while (group != child->groups);
6172 }
1e3c88bd 6173
63b2ca30 6174 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6175}
6176
9d5efe05 6177/*
ea67821b
VG
6178 * Check whether the capacity of the rq has been noticeably reduced by side
6179 * activity. The imbalance_pct is used for the threshold.
6180 * Return true is the capacity is reduced
9d5efe05
SV
6181 */
6182static inline int
ea67821b 6183check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6184{
ea67821b
VG
6185 return ((rq->cpu_capacity * sd->imbalance_pct) <
6186 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6187}
6188
30ce5dab
PZ
6189/*
6190 * Group imbalance indicates (and tries to solve) the problem where balancing
6191 * groups is inadequate due to tsk_cpus_allowed() constraints.
6192 *
6193 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6194 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6195 * Something like:
6196 *
6197 * { 0 1 2 3 } { 4 5 6 7 }
6198 * * * * *
6199 *
6200 * If we were to balance group-wise we'd place two tasks in the first group and
6201 * two tasks in the second group. Clearly this is undesired as it will overload
6202 * cpu 3 and leave one of the cpus in the second group unused.
6203 *
6204 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6205 * by noticing the lower domain failed to reach balance and had difficulty
6206 * moving tasks due to affinity constraints.
30ce5dab
PZ
6207 *
6208 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6209 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6210 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6211 * to create an effective group imbalance.
6212 *
6213 * This is a somewhat tricky proposition since the next run might not find the
6214 * group imbalance and decide the groups need to be balanced again. A most
6215 * subtle and fragile situation.
6216 */
6217
6263322c 6218static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6219{
63b2ca30 6220 return group->sgc->imbalance;
30ce5dab
PZ
6221}
6222
b37d9316 6223/*
ea67821b
VG
6224 * group_has_capacity returns true if the group has spare capacity that could
6225 * be used by some tasks.
6226 * We consider that a group has spare capacity if the * number of task is
6227 * smaller than the number of CPUs or if the usage is lower than the available
6228 * capacity for CFS tasks.
6229 * For the latter, we use a threshold to stabilize the state, to take into
6230 * account the variance of the tasks' load and to return true if the available
6231 * capacity in meaningful for the load balancer.
6232 * As an example, an available capacity of 1% can appear but it doesn't make
6233 * any benefit for the load balance.
b37d9316 6234 */
ea67821b
VG
6235static inline bool
6236group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6237{
ea67821b
VG
6238 if (sgs->sum_nr_running < sgs->group_weight)
6239 return true;
c61037e9 6240
ea67821b
VG
6241 if ((sgs->group_capacity * 100) >
6242 (sgs->group_usage * env->sd->imbalance_pct))
6243 return true;
b37d9316 6244
ea67821b
VG
6245 return false;
6246}
6247
6248/*
6249 * group_is_overloaded returns true if the group has more tasks than it can
6250 * handle.
6251 * group_is_overloaded is not equals to !group_has_capacity because a group
6252 * with the exact right number of tasks, has no more spare capacity but is not
6253 * overloaded so both group_has_capacity and group_is_overloaded return
6254 * false.
6255 */
6256static inline bool
6257group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6258{
6259 if (sgs->sum_nr_running <= sgs->group_weight)
6260 return false;
b37d9316 6261
ea67821b
VG
6262 if ((sgs->group_capacity * 100) <
6263 (sgs->group_usage * env->sd->imbalance_pct))
6264 return true;
b37d9316 6265
ea67821b 6266 return false;
b37d9316
PZ
6267}
6268
ea67821b
VG
6269static enum group_type group_classify(struct lb_env *env,
6270 struct sched_group *group,
6271 struct sg_lb_stats *sgs)
caeb178c 6272{
ea67821b 6273 if (sgs->group_no_capacity)
caeb178c
RR
6274 return group_overloaded;
6275
6276 if (sg_imbalanced(group))
6277 return group_imbalanced;
6278
6279 return group_other;
6280}
6281
1e3c88bd
PZ
6282/**
6283 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6284 * @env: The load balancing environment.
1e3c88bd 6285 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6286 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6287 * @local_group: Does group contain this_cpu.
1e3c88bd 6288 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6289 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6290 */
bd939f45
PZ
6291static inline void update_sg_lb_stats(struct lb_env *env,
6292 struct sched_group *group, int load_idx,
4486edd1
TC
6293 int local_group, struct sg_lb_stats *sgs,
6294 bool *overload)
1e3c88bd 6295{
30ce5dab 6296 unsigned long load;
bd939f45 6297 int i;
1e3c88bd 6298
b72ff13c
PZ
6299 memset(sgs, 0, sizeof(*sgs));
6300
b9403130 6301 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6302 struct rq *rq = cpu_rq(i);
6303
1e3c88bd 6304 /* Bias balancing toward cpus of our domain */
6263322c 6305 if (local_group)
04f733b4 6306 load = target_load(i, load_idx);
6263322c 6307 else
1e3c88bd 6308 load = source_load(i, load_idx);
1e3c88bd
PZ
6309
6310 sgs->group_load += load;
8bb5b00c 6311 sgs->group_usage += get_cpu_usage(i);
65fdac08 6312 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6313
6314 if (rq->nr_running > 1)
6315 *overload = true;
6316
0ec8aa00
PZ
6317#ifdef CONFIG_NUMA_BALANCING
6318 sgs->nr_numa_running += rq->nr_numa_running;
6319 sgs->nr_preferred_running += rq->nr_preferred_running;
6320#endif
1e3c88bd 6321 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6322 if (idle_cpu(i))
6323 sgs->idle_cpus++;
1e3c88bd
PZ
6324 }
6325
63b2ca30
NP
6326 /* Adjust by relative CPU capacity of the group */
6327 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6328 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6329
dd5feea1 6330 if (sgs->sum_nr_running)
38d0f770 6331 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6332
aae6d3dd 6333 sgs->group_weight = group->group_weight;
b37d9316 6334
ea67821b
VG
6335 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6336 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6337}
6338
532cb4c4
MN
6339/**
6340 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6341 * @env: The load balancing environment.
532cb4c4
MN
6342 * @sds: sched_domain statistics
6343 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6344 * @sgs: sched_group statistics
532cb4c4
MN
6345 *
6346 * Determine if @sg is a busier group than the previously selected
6347 * busiest group.
e69f6186
YB
6348 *
6349 * Return: %true if @sg is a busier group than the previously selected
6350 * busiest group. %false otherwise.
532cb4c4 6351 */
bd939f45 6352static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6353 struct sd_lb_stats *sds,
6354 struct sched_group *sg,
bd939f45 6355 struct sg_lb_stats *sgs)
532cb4c4 6356{
caeb178c 6357 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6358
caeb178c 6359 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6360 return true;
6361
caeb178c
RR
6362 if (sgs->group_type < busiest->group_type)
6363 return false;
6364
6365 if (sgs->avg_load <= busiest->avg_load)
6366 return false;
6367
6368 /* This is the busiest node in its class. */
6369 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6370 return true;
6371
6372 /*
6373 * ASYM_PACKING needs to move all the work to the lowest
6374 * numbered CPUs in the group, therefore mark all groups
6375 * higher than ourself as busy.
6376 */
caeb178c 6377 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6378 if (!sds->busiest)
6379 return true;
6380
6381 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6382 return true;
6383 }
6384
6385 return false;
6386}
6387
0ec8aa00
PZ
6388#ifdef CONFIG_NUMA_BALANCING
6389static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6390{
6391 if (sgs->sum_nr_running > sgs->nr_numa_running)
6392 return regular;
6393 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6394 return remote;
6395 return all;
6396}
6397
6398static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6399{
6400 if (rq->nr_running > rq->nr_numa_running)
6401 return regular;
6402 if (rq->nr_running > rq->nr_preferred_running)
6403 return remote;
6404 return all;
6405}
6406#else
6407static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6408{
6409 return all;
6410}
6411
6412static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6413{
6414 return regular;
6415}
6416#endif /* CONFIG_NUMA_BALANCING */
6417
1e3c88bd 6418/**
461819ac 6419 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6420 * @env: The load balancing environment.
1e3c88bd
PZ
6421 * @sds: variable to hold the statistics for this sched_domain.
6422 */
0ec8aa00 6423static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6424{
bd939f45
PZ
6425 struct sched_domain *child = env->sd->child;
6426 struct sched_group *sg = env->sd->groups;
56cf515b 6427 struct sg_lb_stats tmp_sgs;
1e3c88bd 6428 int load_idx, prefer_sibling = 0;
4486edd1 6429 bool overload = false;
1e3c88bd
PZ
6430
6431 if (child && child->flags & SD_PREFER_SIBLING)
6432 prefer_sibling = 1;
6433
bd939f45 6434 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6435
6436 do {
56cf515b 6437 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6438 int local_group;
6439
bd939f45 6440 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6441 if (local_group) {
6442 sds->local = sg;
6443 sgs = &sds->local_stat;
b72ff13c
PZ
6444
6445 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6446 time_after_eq(jiffies, sg->sgc->next_update))
6447 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6448 }
1e3c88bd 6449
4486edd1
TC
6450 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6451 &overload);
1e3c88bd 6452
b72ff13c
PZ
6453 if (local_group)
6454 goto next_group;
6455
1e3c88bd
PZ
6456 /*
6457 * In case the child domain prefers tasks go to siblings
ea67821b 6458 * first, lower the sg capacity so that we'll try
75dd321d
NR
6459 * and move all the excess tasks away. We lower the capacity
6460 * of a group only if the local group has the capacity to fit
ea67821b
VG
6461 * these excess tasks. The extra check prevents the case where
6462 * you always pull from the heaviest group when it is already
6463 * under-utilized (possible with a large weight task outweighs
6464 * the tasks on the system).
1e3c88bd 6465 */
b72ff13c 6466 if (prefer_sibling && sds->local &&
ea67821b
VG
6467 group_has_capacity(env, &sds->local_stat) &&
6468 (sgs->sum_nr_running > 1)) {
6469 sgs->group_no_capacity = 1;
6470 sgs->group_type = group_overloaded;
cb0b9f24 6471 }
1e3c88bd 6472
b72ff13c 6473 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6474 sds->busiest = sg;
56cf515b 6475 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6476 }
6477
b72ff13c
PZ
6478next_group:
6479 /* Now, start updating sd_lb_stats */
6480 sds->total_load += sgs->group_load;
63b2ca30 6481 sds->total_capacity += sgs->group_capacity;
b72ff13c 6482
532cb4c4 6483 sg = sg->next;
bd939f45 6484 } while (sg != env->sd->groups);
0ec8aa00
PZ
6485
6486 if (env->sd->flags & SD_NUMA)
6487 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6488
6489 if (!env->sd->parent) {
6490 /* update overload indicator if we are at root domain */
6491 if (env->dst_rq->rd->overload != overload)
6492 env->dst_rq->rd->overload = overload;
6493 }
6494
532cb4c4
MN
6495}
6496
532cb4c4
MN
6497/**
6498 * check_asym_packing - Check to see if the group is packed into the
6499 * sched doman.
6500 *
6501 * This is primarily intended to used at the sibling level. Some
6502 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6503 * case of POWER7, it can move to lower SMT modes only when higher
6504 * threads are idle. When in lower SMT modes, the threads will
6505 * perform better since they share less core resources. Hence when we
6506 * have idle threads, we want them to be the higher ones.
6507 *
6508 * This packing function is run on idle threads. It checks to see if
6509 * the busiest CPU in this domain (core in the P7 case) has a higher
6510 * CPU number than the packing function is being run on. Here we are
6511 * assuming lower CPU number will be equivalent to lower a SMT thread
6512 * number.
6513 *
e69f6186 6514 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6515 * this CPU. The amount of the imbalance is returned in *imbalance.
6516 *
cd96891d 6517 * @env: The load balancing environment.
532cb4c4 6518 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6519 */
bd939f45 6520static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6521{
6522 int busiest_cpu;
6523
bd939f45 6524 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6525 return 0;
6526
6527 if (!sds->busiest)
6528 return 0;
6529
6530 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6531 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6532 return 0;
6533
bd939f45 6534 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6535 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6536 SCHED_CAPACITY_SCALE);
bd939f45 6537
532cb4c4 6538 return 1;
1e3c88bd
PZ
6539}
6540
6541/**
6542 * fix_small_imbalance - Calculate the minor imbalance that exists
6543 * amongst the groups of a sched_domain, during
6544 * load balancing.
cd96891d 6545 * @env: The load balancing environment.
1e3c88bd 6546 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6547 */
bd939f45
PZ
6548static inline
6549void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6550{
63b2ca30 6551 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6552 unsigned int imbn = 2;
dd5feea1 6553 unsigned long scaled_busy_load_per_task;
56cf515b 6554 struct sg_lb_stats *local, *busiest;
1e3c88bd 6555
56cf515b
JK
6556 local = &sds->local_stat;
6557 busiest = &sds->busiest_stat;
1e3c88bd 6558
56cf515b
JK
6559 if (!local->sum_nr_running)
6560 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6561 else if (busiest->load_per_task > local->load_per_task)
6562 imbn = 1;
dd5feea1 6563
56cf515b 6564 scaled_busy_load_per_task =
ca8ce3d0 6565 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6566 busiest->group_capacity;
56cf515b 6567
3029ede3
VD
6568 if (busiest->avg_load + scaled_busy_load_per_task >=
6569 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6570 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6571 return;
6572 }
6573
6574 /*
6575 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6576 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6577 * moving them.
6578 */
6579
63b2ca30 6580 capa_now += busiest->group_capacity *
56cf515b 6581 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6582 capa_now += local->group_capacity *
56cf515b 6583 min(local->load_per_task, local->avg_load);
ca8ce3d0 6584 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6585
6586 /* Amount of load we'd subtract */
a2cd4260 6587 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6588 capa_move += busiest->group_capacity *
56cf515b 6589 min(busiest->load_per_task,
a2cd4260 6590 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6591 }
1e3c88bd
PZ
6592
6593 /* Amount of load we'd add */
63b2ca30 6594 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6595 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6596 tmp = (busiest->avg_load * busiest->group_capacity) /
6597 local->group_capacity;
56cf515b 6598 } else {
ca8ce3d0 6599 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6600 local->group_capacity;
56cf515b 6601 }
63b2ca30 6602 capa_move += local->group_capacity *
3ae11c90 6603 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6604 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6605
6606 /* Move if we gain throughput */
63b2ca30 6607 if (capa_move > capa_now)
56cf515b 6608 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6609}
6610
6611/**
6612 * calculate_imbalance - Calculate the amount of imbalance present within the
6613 * groups of a given sched_domain during load balance.
bd939f45 6614 * @env: load balance environment
1e3c88bd 6615 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6616 */
bd939f45 6617static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6618{
dd5feea1 6619 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6620 struct sg_lb_stats *local, *busiest;
6621
6622 local = &sds->local_stat;
56cf515b 6623 busiest = &sds->busiest_stat;
dd5feea1 6624
caeb178c 6625 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6626 /*
6627 * In the group_imb case we cannot rely on group-wide averages
6628 * to ensure cpu-load equilibrium, look at wider averages. XXX
6629 */
56cf515b
JK
6630 busiest->load_per_task =
6631 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6632 }
6633
1e3c88bd
PZ
6634 /*
6635 * In the presence of smp nice balancing, certain scenarios can have
6636 * max load less than avg load(as we skip the groups at or below
ced549fa 6637 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6638 */
b1885550
VD
6639 if (busiest->avg_load <= sds->avg_load ||
6640 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6641 env->imbalance = 0;
6642 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6643 }
6644
9a5d9ba6
PZ
6645 /*
6646 * If there aren't any idle cpus, avoid creating some.
6647 */
6648 if (busiest->group_type == group_overloaded &&
6649 local->group_type == group_overloaded) {
ea67821b
VG
6650 load_above_capacity = busiest->sum_nr_running *
6651 SCHED_LOAD_SCALE;
6652 if (load_above_capacity > busiest->group_capacity)
6653 load_above_capacity -= busiest->group_capacity;
6654 else
6655 load_above_capacity = ~0UL;
dd5feea1
SS
6656 }
6657
6658 /*
6659 * We're trying to get all the cpus to the average_load, so we don't
6660 * want to push ourselves above the average load, nor do we wish to
6661 * reduce the max loaded cpu below the average load. At the same time,
6662 * we also don't want to reduce the group load below the group capacity
6663 * (so that we can implement power-savings policies etc). Thus we look
6664 * for the minimum possible imbalance.
dd5feea1 6665 */
30ce5dab 6666 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6667
6668 /* How much load to actually move to equalise the imbalance */
56cf515b 6669 env->imbalance = min(
63b2ca30
NP
6670 max_pull * busiest->group_capacity,
6671 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6672 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6673
6674 /*
6675 * if *imbalance is less than the average load per runnable task
25985edc 6676 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6677 * a think about bumping its value to force at least one task to be
6678 * moved
6679 */
56cf515b 6680 if (env->imbalance < busiest->load_per_task)
bd939f45 6681 return fix_small_imbalance(env, sds);
1e3c88bd 6682}
fab47622 6683
1e3c88bd
PZ
6684/******* find_busiest_group() helpers end here *********************/
6685
6686/**
6687 * find_busiest_group - Returns the busiest group within the sched_domain
6688 * if there is an imbalance. If there isn't an imbalance, and
6689 * the user has opted for power-savings, it returns a group whose
6690 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6691 * such a group exists.
6692 *
6693 * Also calculates the amount of weighted load which should be moved
6694 * to restore balance.
6695 *
cd96891d 6696 * @env: The load balancing environment.
1e3c88bd 6697 *
e69f6186 6698 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6699 * - If no imbalance and user has opted for power-savings balance,
6700 * return the least loaded group whose CPUs can be
6701 * put to idle by rebalancing its tasks onto our group.
6702 */
56cf515b 6703static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6704{
56cf515b 6705 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6706 struct sd_lb_stats sds;
6707
147c5fc2 6708 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6709
6710 /*
6711 * Compute the various statistics relavent for load balancing at
6712 * this level.
6713 */
23f0d209 6714 update_sd_lb_stats(env, &sds);
56cf515b
JK
6715 local = &sds.local_stat;
6716 busiest = &sds.busiest_stat;
1e3c88bd 6717
ea67821b 6718 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6719 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6720 check_asym_packing(env, &sds))
532cb4c4
MN
6721 return sds.busiest;
6722
cc57aa8f 6723 /* There is no busy sibling group to pull tasks from */
56cf515b 6724 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6725 goto out_balanced;
6726
ca8ce3d0
NP
6727 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6728 / sds.total_capacity;
b0432d8f 6729
866ab43e
PZ
6730 /*
6731 * If the busiest group is imbalanced the below checks don't
30ce5dab 6732 * work because they assume all things are equal, which typically
866ab43e
PZ
6733 * isn't true due to cpus_allowed constraints and the like.
6734 */
caeb178c 6735 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6736 goto force_balance;
6737
cc57aa8f 6738 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6739 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6740 busiest->group_no_capacity)
fab47622
NR
6741 goto force_balance;
6742
cc57aa8f 6743 /*
9c58c79a 6744 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6745 * don't try and pull any tasks.
6746 */
56cf515b 6747 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6748 goto out_balanced;
6749
cc57aa8f
PZ
6750 /*
6751 * Don't pull any tasks if this group is already above the domain
6752 * average load.
6753 */
56cf515b 6754 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6755 goto out_balanced;
6756
bd939f45 6757 if (env->idle == CPU_IDLE) {
aae6d3dd 6758 /*
43f4d666
VG
6759 * This cpu is idle. If the busiest group is not overloaded
6760 * and there is no imbalance between this and busiest group
6761 * wrt idle cpus, it is balanced. The imbalance becomes
6762 * significant if the diff is greater than 1 otherwise we
6763 * might end up to just move the imbalance on another group
aae6d3dd 6764 */
43f4d666
VG
6765 if ((busiest->group_type != group_overloaded) &&
6766 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6767 goto out_balanced;
c186fafe
PZ
6768 } else {
6769 /*
6770 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6771 * imbalance_pct to be conservative.
6772 */
56cf515b
JK
6773 if (100 * busiest->avg_load <=
6774 env->sd->imbalance_pct * local->avg_load)
c186fafe 6775 goto out_balanced;
aae6d3dd 6776 }
1e3c88bd 6777
fab47622 6778force_balance:
1e3c88bd 6779 /* Looks like there is an imbalance. Compute it */
bd939f45 6780 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6781 return sds.busiest;
6782
6783out_balanced:
bd939f45 6784 env->imbalance = 0;
1e3c88bd
PZ
6785 return NULL;
6786}
6787
6788/*
6789 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6790 */
bd939f45 6791static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6792 struct sched_group *group)
1e3c88bd
PZ
6793{
6794 struct rq *busiest = NULL, *rq;
ced549fa 6795 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6796 int i;
6797
6906a408 6798 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6799 unsigned long capacity, wl;
0ec8aa00
PZ
6800 enum fbq_type rt;
6801
6802 rq = cpu_rq(i);
6803 rt = fbq_classify_rq(rq);
1e3c88bd 6804
0ec8aa00
PZ
6805 /*
6806 * We classify groups/runqueues into three groups:
6807 * - regular: there are !numa tasks
6808 * - remote: there are numa tasks that run on the 'wrong' node
6809 * - all: there is no distinction
6810 *
6811 * In order to avoid migrating ideally placed numa tasks,
6812 * ignore those when there's better options.
6813 *
6814 * If we ignore the actual busiest queue to migrate another
6815 * task, the next balance pass can still reduce the busiest
6816 * queue by moving tasks around inside the node.
6817 *
6818 * If we cannot move enough load due to this classification
6819 * the next pass will adjust the group classification and
6820 * allow migration of more tasks.
6821 *
6822 * Both cases only affect the total convergence complexity.
6823 */
6824 if (rt > env->fbq_type)
6825 continue;
6826
ced549fa 6827 capacity = capacity_of(i);
9d5efe05 6828
6e40f5bb 6829 wl = weighted_cpuload(i);
1e3c88bd 6830
6e40f5bb
TG
6831 /*
6832 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6833 * which is not scaled with the cpu capacity.
6e40f5bb 6834 */
ea67821b
VG
6835
6836 if (rq->nr_running == 1 && wl > env->imbalance &&
6837 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6838 continue;
6839
6e40f5bb
TG
6840 /*
6841 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6842 * the weighted_cpuload() scaled with the cpu capacity, so
6843 * that the load can be moved away from the cpu that is
6844 * potentially running at a lower capacity.
95a79b80 6845 *
ced549fa 6846 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6847 * multiplication to rid ourselves of the division works out
ced549fa
NP
6848 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6849 * our previous maximum.
6e40f5bb 6850 */
ced549fa 6851 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6852 busiest_load = wl;
ced549fa 6853 busiest_capacity = capacity;
1e3c88bd
PZ
6854 busiest = rq;
6855 }
6856 }
6857
6858 return busiest;
6859}
6860
6861/*
6862 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6863 * so long as it is large enough.
6864 */
6865#define MAX_PINNED_INTERVAL 512
6866
6867/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6868DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6869
bd939f45 6870static int need_active_balance(struct lb_env *env)
1af3ed3d 6871{
bd939f45
PZ
6872 struct sched_domain *sd = env->sd;
6873
6874 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6875
6876 /*
6877 * ASYM_PACKING needs to force migrate tasks from busy but
6878 * higher numbered CPUs in order to pack all tasks in the
6879 * lowest numbered CPUs.
6880 */
bd939f45 6881 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6882 return 1;
1af3ed3d
PZ
6883 }
6884
1aaf90a4
VG
6885 /*
6886 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6887 * It's worth migrating the task if the src_cpu's capacity is reduced
6888 * because of other sched_class or IRQs if more capacity stays
6889 * available on dst_cpu.
6890 */
6891 if ((env->idle != CPU_NOT_IDLE) &&
6892 (env->src_rq->cfs.h_nr_running == 1)) {
6893 if ((check_cpu_capacity(env->src_rq, sd)) &&
6894 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6895 return 1;
6896 }
6897
1af3ed3d
PZ
6898 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6899}
6900
969c7921
TH
6901static int active_load_balance_cpu_stop(void *data);
6902
23f0d209
JK
6903static int should_we_balance(struct lb_env *env)
6904{
6905 struct sched_group *sg = env->sd->groups;
6906 struct cpumask *sg_cpus, *sg_mask;
6907 int cpu, balance_cpu = -1;
6908
6909 /*
6910 * In the newly idle case, we will allow all the cpu's
6911 * to do the newly idle load balance.
6912 */
6913 if (env->idle == CPU_NEWLY_IDLE)
6914 return 1;
6915
6916 sg_cpus = sched_group_cpus(sg);
6917 sg_mask = sched_group_mask(sg);
6918 /* Try to find first idle cpu */
6919 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6920 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6921 continue;
6922
6923 balance_cpu = cpu;
6924 break;
6925 }
6926
6927 if (balance_cpu == -1)
6928 balance_cpu = group_balance_cpu(sg);
6929
6930 /*
6931 * First idle cpu or the first cpu(busiest) in this sched group
6932 * is eligible for doing load balancing at this and above domains.
6933 */
b0cff9d8 6934 return balance_cpu == env->dst_cpu;
23f0d209
JK
6935}
6936
1e3c88bd
PZ
6937/*
6938 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6939 * tasks if there is an imbalance.
6940 */
6941static int load_balance(int this_cpu, struct rq *this_rq,
6942 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6943 int *continue_balancing)
1e3c88bd 6944{
88b8dac0 6945 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6946 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6947 struct sched_group *group;
1e3c88bd
PZ
6948 struct rq *busiest;
6949 unsigned long flags;
4ba29684 6950 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6951
8e45cb54
PZ
6952 struct lb_env env = {
6953 .sd = sd,
ddcdf6e7
PZ
6954 .dst_cpu = this_cpu,
6955 .dst_rq = this_rq,
88b8dac0 6956 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6957 .idle = idle,
eb95308e 6958 .loop_break = sched_nr_migrate_break,
b9403130 6959 .cpus = cpus,
0ec8aa00 6960 .fbq_type = all,
163122b7 6961 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6962 };
6963
cfc03118
JK
6964 /*
6965 * For NEWLY_IDLE load_balancing, we don't need to consider
6966 * other cpus in our group
6967 */
e02e60c1 6968 if (idle == CPU_NEWLY_IDLE)
cfc03118 6969 env.dst_grpmask = NULL;
cfc03118 6970
1e3c88bd
PZ
6971 cpumask_copy(cpus, cpu_active_mask);
6972
1e3c88bd
PZ
6973 schedstat_inc(sd, lb_count[idle]);
6974
6975redo:
23f0d209
JK
6976 if (!should_we_balance(&env)) {
6977 *continue_balancing = 0;
1e3c88bd 6978 goto out_balanced;
23f0d209 6979 }
1e3c88bd 6980
23f0d209 6981 group = find_busiest_group(&env);
1e3c88bd
PZ
6982 if (!group) {
6983 schedstat_inc(sd, lb_nobusyg[idle]);
6984 goto out_balanced;
6985 }
6986
b9403130 6987 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6988 if (!busiest) {
6989 schedstat_inc(sd, lb_nobusyq[idle]);
6990 goto out_balanced;
6991 }
6992
78feefc5 6993 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6994
bd939f45 6995 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6996
1aaf90a4
VG
6997 env.src_cpu = busiest->cpu;
6998 env.src_rq = busiest;
6999
1e3c88bd
PZ
7000 ld_moved = 0;
7001 if (busiest->nr_running > 1) {
7002 /*
7003 * Attempt to move tasks. If find_busiest_group has found
7004 * an imbalance but busiest->nr_running <= 1, the group is
7005 * still unbalanced. ld_moved simply stays zero, so it is
7006 * correctly treated as an imbalance.
7007 */
8e45cb54 7008 env.flags |= LBF_ALL_PINNED;
c82513e5 7009 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7010
5d6523eb 7011more_balance:
163122b7 7012 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7013
7014 /*
7015 * cur_ld_moved - load moved in current iteration
7016 * ld_moved - cumulative load moved across iterations
7017 */
163122b7 7018 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7019
7020 /*
163122b7
KT
7021 * We've detached some tasks from busiest_rq. Every
7022 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7023 * unlock busiest->lock, and we are able to be sure
7024 * that nobody can manipulate the tasks in parallel.
7025 * See task_rq_lock() family for the details.
1e3c88bd 7026 */
163122b7
KT
7027
7028 raw_spin_unlock(&busiest->lock);
7029
7030 if (cur_ld_moved) {
7031 attach_tasks(&env);
7032 ld_moved += cur_ld_moved;
7033 }
7034
1e3c88bd 7035 local_irq_restore(flags);
88b8dac0 7036
f1cd0858
JK
7037 if (env.flags & LBF_NEED_BREAK) {
7038 env.flags &= ~LBF_NEED_BREAK;
7039 goto more_balance;
7040 }
7041
88b8dac0
SV
7042 /*
7043 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7044 * us and move them to an alternate dst_cpu in our sched_group
7045 * where they can run. The upper limit on how many times we
7046 * iterate on same src_cpu is dependent on number of cpus in our
7047 * sched_group.
7048 *
7049 * This changes load balance semantics a bit on who can move
7050 * load to a given_cpu. In addition to the given_cpu itself
7051 * (or a ilb_cpu acting on its behalf where given_cpu is
7052 * nohz-idle), we now have balance_cpu in a position to move
7053 * load to given_cpu. In rare situations, this may cause
7054 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7055 * _independently_ and at _same_ time to move some load to
7056 * given_cpu) causing exceess load to be moved to given_cpu.
7057 * This however should not happen so much in practice and
7058 * moreover subsequent load balance cycles should correct the
7059 * excess load moved.
7060 */
6263322c 7061 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7062
7aff2e3a
VD
7063 /* Prevent to re-select dst_cpu via env's cpus */
7064 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7065
78feefc5 7066 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7067 env.dst_cpu = env.new_dst_cpu;
6263322c 7068 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7069 env.loop = 0;
7070 env.loop_break = sched_nr_migrate_break;
e02e60c1 7071
88b8dac0
SV
7072 /*
7073 * Go back to "more_balance" rather than "redo" since we
7074 * need to continue with same src_cpu.
7075 */
7076 goto more_balance;
7077 }
1e3c88bd 7078
6263322c
PZ
7079 /*
7080 * We failed to reach balance because of affinity.
7081 */
7082 if (sd_parent) {
63b2ca30 7083 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7084
afdeee05 7085 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7086 *group_imbalance = 1;
6263322c
PZ
7087 }
7088
1e3c88bd 7089 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7090 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7091 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7092 if (!cpumask_empty(cpus)) {
7093 env.loop = 0;
7094 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7095 goto redo;
bbf18b19 7096 }
afdeee05 7097 goto out_all_pinned;
1e3c88bd
PZ
7098 }
7099 }
7100
7101 if (!ld_moved) {
7102 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7103 /*
7104 * Increment the failure counter only on periodic balance.
7105 * We do not want newidle balance, which can be very
7106 * frequent, pollute the failure counter causing
7107 * excessive cache_hot migrations and active balances.
7108 */
7109 if (idle != CPU_NEWLY_IDLE)
7110 sd->nr_balance_failed++;
1e3c88bd 7111
bd939f45 7112 if (need_active_balance(&env)) {
1e3c88bd
PZ
7113 raw_spin_lock_irqsave(&busiest->lock, flags);
7114
969c7921
TH
7115 /* don't kick the active_load_balance_cpu_stop,
7116 * if the curr task on busiest cpu can't be
7117 * moved to this_cpu
1e3c88bd
PZ
7118 */
7119 if (!cpumask_test_cpu(this_cpu,
fa17b507 7120 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7121 raw_spin_unlock_irqrestore(&busiest->lock,
7122 flags);
8e45cb54 7123 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7124 goto out_one_pinned;
7125 }
7126
969c7921
TH
7127 /*
7128 * ->active_balance synchronizes accesses to
7129 * ->active_balance_work. Once set, it's cleared
7130 * only after active load balance is finished.
7131 */
1e3c88bd
PZ
7132 if (!busiest->active_balance) {
7133 busiest->active_balance = 1;
7134 busiest->push_cpu = this_cpu;
7135 active_balance = 1;
7136 }
7137 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7138
bd939f45 7139 if (active_balance) {
969c7921
TH
7140 stop_one_cpu_nowait(cpu_of(busiest),
7141 active_load_balance_cpu_stop, busiest,
7142 &busiest->active_balance_work);
bd939f45 7143 }
1e3c88bd
PZ
7144
7145 /*
7146 * We've kicked active balancing, reset the failure
7147 * counter.
7148 */
7149 sd->nr_balance_failed = sd->cache_nice_tries+1;
7150 }
7151 } else
7152 sd->nr_balance_failed = 0;
7153
7154 if (likely(!active_balance)) {
7155 /* We were unbalanced, so reset the balancing interval */
7156 sd->balance_interval = sd->min_interval;
7157 } else {
7158 /*
7159 * If we've begun active balancing, start to back off. This
7160 * case may not be covered by the all_pinned logic if there
7161 * is only 1 task on the busy runqueue (because we don't call
163122b7 7162 * detach_tasks).
1e3c88bd
PZ
7163 */
7164 if (sd->balance_interval < sd->max_interval)
7165 sd->balance_interval *= 2;
7166 }
7167
1e3c88bd
PZ
7168 goto out;
7169
7170out_balanced:
afdeee05
VG
7171 /*
7172 * We reach balance although we may have faced some affinity
7173 * constraints. Clear the imbalance flag if it was set.
7174 */
7175 if (sd_parent) {
7176 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7177
7178 if (*group_imbalance)
7179 *group_imbalance = 0;
7180 }
7181
7182out_all_pinned:
7183 /*
7184 * We reach balance because all tasks are pinned at this level so
7185 * we can't migrate them. Let the imbalance flag set so parent level
7186 * can try to migrate them.
7187 */
1e3c88bd
PZ
7188 schedstat_inc(sd, lb_balanced[idle]);
7189
7190 sd->nr_balance_failed = 0;
7191
7192out_one_pinned:
7193 /* tune up the balancing interval */
8e45cb54 7194 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7195 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7196 (sd->balance_interval < sd->max_interval))
7197 sd->balance_interval *= 2;
7198
46e49b38 7199 ld_moved = 0;
1e3c88bd 7200out:
1e3c88bd
PZ
7201 return ld_moved;
7202}
7203
52a08ef1
JL
7204static inline unsigned long
7205get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7206{
7207 unsigned long interval = sd->balance_interval;
7208
7209 if (cpu_busy)
7210 interval *= sd->busy_factor;
7211
7212 /* scale ms to jiffies */
7213 interval = msecs_to_jiffies(interval);
7214 interval = clamp(interval, 1UL, max_load_balance_interval);
7215
7216 return interval;
7217}
7218
7219static inline void
7220update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7221{
7222 unsigned long interval, next;
7223
7224 interval = get_sd_balance_interval(sd, cpu_busy);
7225 next = sd->last_balance + interval;
7226
7227 if (time_after(*next_balance, next))
7228 *next_balance = next;
7229}
7230
1e3c88bd
PZ
7231/*
7232 * idle_balance is called by schedule() if this_cpu is about to become
7233 * idle. Attempts to pull tasks from other CPUs.
7234 */
6e83125c 7235static int idle_balance(struct rq *this_rq)
1e3c88bd 7236{
52a08ef1
JL
7237 unsigned long next_balance = jiffies + HZ;
7238 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7239 struct sched_domain *sd;
7240 int pulled_task = 0;
9bd721c5 7241 u64 curr_cost = 0;
1e3c88bd 7242
6e83125c 7243 idle_enter_fair(this_rq);
0e5b5337 7244
6e83125c
PZ
7245 /*
7246 * We must set idle_stamp _before_ calling idle_balance(), such that we
7247 * measure the duration of idle_balance() as idle time.
7248 */
7249 this_rq->idle_stamp = rq_clock(this_rq);
7250
4486edd1
TC
7251 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7252 !this_rq->rd->overload) {
52a08ef1
JL
7253 rcu_read_lock();
7254 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7255 if (sd)
7256 update_next_balance(sd, 0, &next_balance);
7257 rcu_read_unlock();
7258
6e83125c 7259 goto out;
52a08ef1 7260 }
1e3c88bd 7261
f492e12e
PZ
7262 raw_spin_unlock(&this_rq->lock);
7263
48a16753 7264 update_blocked_averages(this_cpu);
dce840a0 7265 rcu_read_lock();
1e3c88bd 7266 for_each_domain(this_cpu, sd) {
23f0d209 7267 int continue_balancing = 1;
9bd721c5 7268 u64 t0, domain_cost;
1e3c88bd
PZ
7269
7270 if (!(sd->flags & SD_LOAD_BALANCE))
7271 continue;
7272
52a08ef1
JL
7273 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7274 update_next_balance(sd, 0, &next_balance);
9bd721c5 7275 break;
52a08ef1 7276 }
9bd721c5 7277
f492e12e 7278 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7279 t0 = sched_clock_cpu(this_cpu);
7280
f492e12e 7281 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7282 sd, CPU_NEWLY_IDLE,
7283 &continue_balancing);
9bd721c5
JL
7284
7285 domain_cost = sched_clock_cpu(this_cpu) - t0;
7286 if (domain_cost > sd->max_newidle_lb_cost)
7287 sd->max_newidle_lb_cost = domain_cost;
7288
7289 curr_cost += domain_cost;
f492e12e 7290 }
1e3c88bd 7291
52a08ef1 7292 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7293
7294 /*
7295 * Stop searching for tasks to pull if there are
7296 * now runnable tasks on this rq.
7297 */
7298 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7299 break;
1e3c88bd 7300 }
dce840a0 7301 rcu_read_unlock();
f492e12e
PZ
7302
7303 raw_spin_lock(&this_rq->lock);
7304
0e5b5337
JL
7305 if (curr_cost > this_rq->max_idle_balance_cost)
7306 this_rq->max_idle_balance_cost = curr_cost;
7307
e5fc6611 7308 /*
0e5b5337
JL
7309 * While browsing the domains, we released the rq lock, a task could
7310 * have been enqueued in the meantime. Since we're not going idle,
7311 * pretend we pulled a task.
e5fc6611 7312 */
0e5b5337 7313 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7314 pulled_task = 1;
e5fc6611 7315
52a08ef1
JL
7316out:
7317 /* Move the next balance forward */
7318 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7319 this_rq->next_balance = next_balance;
9bd721c5 7320
e4aa358b 7321 /* Is there a task of a high priority class? */
46383648 7322 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7323 pulled_task = -1;
7324
7325 if (pulled_task) {
7326 idle_exit_fair(this_rq);
6e83125c 7327 this_rq->idle_stamp = 0;
e4aa358b 7328 }
6e83125c 7329
3c4017c1 7330 return pulled_task;
1e3c88bd
PZ
7331}
7332
7333/*
969c7921
TH
7334 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7335 * running tasks off the busiest CPU onto idle CPUs. It requires at
7336 * least 1 task to be running on each physical CPU where possible, and
7337 * avoids physical / logical imbalances.
1e3c88bd 7338 */
969c7921 7339static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7340{
969c7921
TH
7341 struct rq *busiest_rq = data;
7342 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7343 int target_cpu = busiest_rq->push_cpu;
969c7921 7344 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7345 struct sched_domain *sd;
e5673f28 7346 struct task_struct *p = NULL;
969c7921
TH
7347
7348 raw_spin_lock_irq(&busiest_rq->lock);
7349
7350 /* make sure the requested cpu hasn't gone down in the meantime */
7351 if (unlikely(busiest_cpu != smp_processor_id() ||
7352 !busiest_rq->active_balance))
7353 goto out_unlock;
1e3c88bd
PZ
7354
7355 /* Is there any task to move? */
7356 if (busiest_rq->nr_running <= 1)
969c7921 7357 goto out_unlock;
1e3c88bd
PZ
7358
7359 /*
7360 * This condition is "impossible", if it occurs
7361 * we need to fix it. Originally reported by
7362 * Bjorn Helgaas on a 128-cpu setup.
7363 */
7364 BUG_ON(busiest_rq == target_rq);
7365
1e3c88bd 7366 /* Search for an sd spanning us and the target CPU. */
dce840a0 7367 rcu_read_lock();
1e3c88bd
PZ
7368 for_each_domain(target_cpu, sd) {
7369 if ((sd->flags & SD_LOAD_BALANCE) &&
7370 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7371 break;
7372 }
7373
7374 if (likely(sd)) {
8e45cb54
PZ
7375 struct lb_env env = {
7376 .sd = sd,
ddcdf6e7
PZ
7377 .dst_cpu = target_cpu,
7378 .dst_rq = target_rq,
7379 .src_cpu = busiest_rq->cpu,
7380 .src_rq = busiest_rq,
8e45cb54
PZ
7381 .idle = CPU_IDLE,
7382 };
7383
1e3c88bd
PZ
7384 schedstat_inc(sd, alb_count);
7385
e5673f28
KT
7386 p = detach_one_task(&env);
7387 if (p)
1e3c88bd
PZ
7388 schedstat_inc(sd, alb_pushed);
7389 else
7390 schedstat_inc(sd, alb_failed);
7391 }
dce840a0 7392 rcu_read_unlock();
969c7921
TH
7393out_unlock:
7394 busiest_rq->active_balance = 0;
e5673f28
KT
7395 raw_spin_unlock(&busiest_rq->lock);
7396
7397 if (p)
7398 attach_one_task(target_rq, p);
7399
7400 local_irq_enable();
7401
969c7921 7402 return 0;
1e3c88bd
PZ
7403}
7404
d987fc7f
MG
7405static inline int on_null_domain(struct rq *rq)
7406{
7407 return unlikely(!rcu_dereference_sched(rq->sd));
7408}
7409
3451d024 7410#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7411/*
7412 * idle load balancing details
83cd4fe2
VP
7413 * - When one of the busy CPUs notice that there may be an idle rebalancing
7414 * needed, they will kick the idle load balancer, which then does idle
7415 * load balancing for all the idle CPUs.
7416 */
1e3c88bd 7417static struct {
83cd4fe2 7418 cpumask_var_t idle_cpus_mask;
0b005cf5 7419 atomic_t nr_cpus;
83cd4fe2
VP
7420 unsigned long next_balance; /* in jiffy units */
7421} nohz ____cacheline_aligned;
1e3c88bd 7422
3dd0337d 7423static inline int find_new_ilb(void)
1e3c88bd 7424{
0b005cf5 7425 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7426
786d6dc7
SS
7427 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7428 return ilb;
7429
7430 return nr_cpu_ids;
1e3c88bd 7431}
1e3c88bd 7432
83cd4fe2
VP
7433/*
7434 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7435 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7436 * CPU (if there is one).
7437 */
0aeeeeba 7438static void nohz_balancer_kick(void)
83cd4fe2
VP
7439{
7440 int ilb_cpu;
7441
7442 nohz.next_balance++;
7443
3dd0337d 7444 ilb_cpu = find_new_ilb();
83cd4fe2 7445
0b005cf5
SS
7446 if (ilb_cpu >= nr_cpu_ids)
7447 return;
83cd4fe2 7448
cd490c5b 7449 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7450 return;
7451 /*
7452 * Use smp_send_reschedule() instead of resched_cpu().
7453 * This way we generate a sched IPI on the target cpu which
7454 * is idle. And the softirq performing nohz idle load balance
7455 * will be run before returning from the IPI.
7456 */
7457 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7458 return;
7459}
7460
c1cc017c 7461static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7462{
7463 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7464 /*
7465 * Completely isolated CPUs don't ever set, so we must test.
7466 */
7467 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7468 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7469 atomic_dec(&nohz.nr_cpus);
7470 }
71325960
SS
7471 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7472 }
7473}
7474
69e1e811
SS
7475static inline void set_cpu_sd_state_busy(void)
7476{
7477 struct sched_domain *sd;
37dc6b50 7478 int cpu = smp_processor_id();
69e1e811 7479
69e1e811 7480 rcu_read_lock();
37dc6b50 7481 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7482
7483 if (!sd || !sd->nohz_idle)
7484 goto unlock;
7485 sd->nohz_idle = 0;
7486
63b2ca30 7487 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7488unlock:
69e1e811
SS
7489 rcu_read_unlock();
7490}
7491
7492void set_cpu_sd_state_idle(void)
7493{
7494 struct sched_domain *sd;
37dc6b50 7495 int cpu = smp_processor_id();
69e1e811 7496
69e1e811 7497 rcu_read_lock();
37dc6b50 7498 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7499
7500 if (!sd || sd->nohz_idle)
7501 goto unlock;
7502 sd->nohz_idle = 1;
7503
63b2ca30 7504 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7505unlock:
69e1e811
SS
7506 rcu_read_unlock();
7507}
7508
1e3c88bd 7509/*
c1cc017c 7510 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7511 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7512 */
c1cc017c 7513void nohz_balance_enter_idle(int cpu)
1e3c88bd 7514{
71325960
SS
7515 /*
7516 * If this cpu is going down, then nothing needs to be done.
7517 */
7518 if (!cpu_active(cpu))
7519 return;
7520
c1cc017c
AS
7521 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7522 return;
1e3c88bd 7523
d987fc7f
MG
7524 /*
7525 * If we're a completely isolated CPU, we don't play.
7526 */
7527 if (on_null_domain(cpu_rq(cpu)))
7528 return;
7529
c1cc017c
AS
7530 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7531 atomic_inc(&nohz.nr_cpus);
7532 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7533}
71325960 7534
0db0628d 7535static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7536 unsigned long action, void *hcpu)
7537{
7538 switch (action & ~CPU_TASKS_FROZEN) {
7539 case CPU_DYING:
c1cc017c 7540 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7541 return NOTIFY_OK;
7542 default:
7543 return NOTIFY_DONE;
7544 }
7545}
1e3c88bd
PZ
7546#endif
7547
7548static DEFINE_SPINLOCK(balancing);
7549
49c022e6
PZ
7550/*
7551 * Scale the max load_balance interval with the number of CPUs in the system.
7552 * This trades load-balance latency on larger machines for less cross talk.
7553 */
029632fb 7554void update_max_interval(void)
49c022e6
PZ
7555{
7556 max_load_balance_interval = HZ*num_online_cpus()/10;
7557}
7558
1e3c88bd
PZ
7559/*
7560 * It checks each scheduling domain to see if it is due to be balanced,
7561 * and initiates a balancing operation if so.
7562 *
b9b0853a 7563 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7564 */
f7ed0a89 7565static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7566{
23f0d209 7567 int continue_balancing = 1;
f7ed0a89 7568 int cpu = rq->cpu;
1e3c88bd 7569 unsigned long interval;
04f733b4 7570 struct sched_domain *sd;
1e3c88bd
PZ
7571 /* Earliest time when we have to do rebalance again */
7572 unsigned long next_balance = jiffies + 60*HZ;
7573 int update_next_balance = 0;
f48627e6
JL
7574 int need_serialize, need_decay = 0;
7575 u64 max_cost = 0;
1e3c88bd 7576
48a16753 7577 update_blocked_averages(cpu);
2069dd75 7578
dce840a0 7579 rcu_read_lock();
1e3c88bd 7580 for_each_domain(cpu, sd) {
f48627e6
JL
7581 /*
7582 * Decay the newidle max times here because this is a regular
7583 * visit to all the domains. Decay ~1% per second.
7584 */
7585 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7586 sd->max_newidle_lb_cost =
7587 (sd->max_newidle_lb_cost * 253) / 256;
7588 sd->next_decay_max_lb_cost = jiffies + HZ;
7589 need_decay = 1;
7590 }
7591 max_cost += sd->max_newidle_lb_cost;
7592
1e3c88bd
PZ
7593 if (!(sd->flags & SD_LOAD_BALANCE))
7594 continue;
7595
f48627e6
JL
7596 /*
7597 * Stop the load balance at this level. There is another
7598 * CPU in our sched group which is doing load balancing more
7599 * actively.
7600 */
7601 if (!continue_balancing) {
7602 if (need_decay)
7603 continue;
7604 break;
7605 }
7606
52a08ef1 7607 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7608
7609 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7610 if (need_serialize) {
7611 if (!spin_trylock(&balancing))
7612 goto out;
7613 }
7614
7615 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7616 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7617 /*
6263322c 7618 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7619 * env->dst_cpu, so we can't know our idle
7620 * state even if we migrated tasks. Update it.
1e3c88bd 7621 */
de5eb2dd 7622 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7623 }
7624 sd->last_balance = jiffies;
52a08ef1 7625 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7626 }
7627 if (need_serialize)
7628 spin_unlock(&balancing);
7629out:
7630 if (time_after(next_balance, sd->last_balance + interval)) {
7631 next_balance = sd->last_balance + interval;
7632 update_next_balance = 1;
7633 }
f48627e6
JL
7634 }
7635 if (need_decay) {
1e3c88bd 7636 /*
f48627e6
JL
7637 * Ensure the rq-wide value also decays but keep it at a
7638 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7639 */
f48627e6
JL
7640 rq->max_idle_balance_cost =
7641 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7642 }
dce840a0 7643 rcu_read_unlock();
1e3c88bd
PZ
7644
7645 /*
7646 * next_balance will be updated only when there is a need.
7647 * When the cpu is attached to null domain for ex, it will not be
7648 * updated.
7649 */
7650 if (likely(update_next_balance))
7651 rq->next_balance = next_balance;
7652}
7653
3451d024 7654#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7655/*
3451d024 7656 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7657 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7658 */
208cb16b 7659static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7660{
208cb16b 7661 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7662 struct rq *rq;
7663 int balance_cpu;
7664
1c792db7
SS
7665 if (idle != CPU_IDLE ||
7666 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7667 goto end;
83cd4fe2
VP
7668
7669 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7670 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7671 continue;
7672
7673 /*
7674 * If this cpu gets work to do, stop the load balancing
7675 * work being done for other cpus. Next load
7676 * balancing owner will pick it up.
7677 */
1c792db7 7678 if (need_resched())
83cd4fe2 7679 break;
83cd4fe2 7680
5ed4f1d9
VG
7681 rq = cpu_rq(balance_cpu);
7682
ed61bbc6
TC
7683 /*
7684 * If time for next balance is due,
7685 * do the balance.
7686 */
7687 if (time_after_eq(jiffies, rq->next_balance)) {
7688 raw_spin_lock_irq(&rq->lock);
7689 update_rq_clock(rq);
7690 update_idle_cpu_load(rq);
7691 raw_spin_unlock_irq(&rq->lock);
7692 rebalance_domains(rq, CPU_IDLE);
7693 }
83cd4fe2 7694
83cd4fe2
VP
7695 if (time_after(this_rq->next_balance, rq->next_balance))
7696 this_rq->next_balance = rq->next_balance;
7697 }
7698 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7699end:
7700 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7701}
7702
7703/*
0b005cf5 7704 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7705 * of an idle cpu in the system.
0b005cf5 7706 * - This rq has more than one task.
1aaf90a4
VG
7707 * - This rq has at least one CFS task and the capacity of the CPU is
7708 * significantly reduced because of RT tasks or IRQs.
7709 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7710 * multiple busy cpu.
0b005cf5
SS
7711 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7712 * domain span are idle.
83cd4fe2 7713 */
1aaf90a4 7714static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7715{
7716 unsigned long now = jiffies;
0b005cf5 7717 struct sched_domain *sd;
63b2ca30 7718 struct sched_group_capacity *sgc;
4a725627 7719 int nr_busy, cpu = rq->cpu;
1aaf90a4 7720 bool kick = false;
83cd4fe2 7721
4a725627 7722 if (unlikely(rq->idle_balance))
1aaf90a4 7723 return false;
83cd4fe2 7724
1c792db7
SS
7725 /*
7726 * We may be recently in ticked or tickless idle mode. At the first
7727 * busy tick after returning from idle, we will update the busy stats.
7728 */
69e1e811 7729 set_cpu_sd_state_busy();
c1cc017c 7730 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7731
7732 /*
7733 * None are in tickless mode and hence no need for NOHZ idle load
7734 * balancing.
7735 */
7736 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7737 return false;
1c792db7
SS
7738
7739 if (time_before(now, nohz.next_balance))
1aaf90a4 7740 return false;
83cd4fe2 7741
0b005cf5 7742 if (rq->nr_running >= 2)
1aaf90a4 7743 return true;
83cd4fe2 7744
067491b7 7745 rcu_read_lock();
37dc6b50 7746 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7747 if (sd) {
63b2ca30
NP
7748 sgc = sd->groups->sgc;
7749 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7750
1aaf90a4
VG
7751 if (nr_busy > 1) {
7752 kick = true;
7753 goto unlock;
7754 }
7755
83cd4fe2 7756 }
37dc6b50 7757
1aaf90a4
VG
7758 sd = rcu_dereference(rq->sd);
7759 if (sd) {
7760 if ((rq->cfs.h_nr_running >= 1) &&
7761 check_cpu_capacity(rq, sd)) {
7762 kick = true;
7763 goto unlock;
7764 }
7765 }
37dc6b50 7766
1aaf90a4 7767 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7768 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7769 sched_domain_span(sd)) < cpu)) {
7770 kick = true;
7771 goto unlock;
7772 }
067491b7 7773
1aaf90a4 7774unlock:
067491b7 7775 rcu_read_unlock();
1aaf90a4 7776 return kick;
83cd4fe2
VP
7777}
7778#else
208cb16b 7779static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7780#endif
7781
7782/*
7783 * run_rebalance_domains is triggered when needed from the scheduler tick.
7784 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7785 */
1e3c88bd
PZ
7786static void run_rebalance_domains(struct softirq_action *h)
7787{
208cb16b 7788 struct rq *this_rq = this_rq();
6eb57e0d 7789 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7790 CPU_IDLE : CPU_NOT_IDLE;
7791
1e3c88bd 7792 /*
83cd4fe2 7793 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7794 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7795 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7796 * give the idle cpus a chance to load balance. Else we may
7797 * load balance only within the local sched_domain hierarchy
7798 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7799 */
208cb16b 7800 nohz_idle_balance(this_rq, idle);
d4573c3e 7801 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7802}
7803
1e3c88bd
PZ
7804/*
7805 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7806 */
7caff66f 7807void trigger_load_balance(struct rq *rq)
1e3c88bd 7808{
1e3c88bd 7809 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7810 if (unlikely(on_null_domain(rq)))
7811 return;
7812
7813 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7814 raise_softirq(SCHED_SOFTIRQ);
3451d024 7815#ifdef CONFIG_NO_HZ_COMMON
c726099e 7816 if (nohz_kick_needed(rq))
0aeeeeba 7817 nohz_balancer_kick();
83cd4fe2 7818#endif
1e3c88bd
PZ
7819}
7820
0bcdcf28
CE
7821static void rq_online_fair(struct rq *rq)
7822{
7823 update_sysctl();
0e59bdae
KT
7824
7825 update_runtime_enabled(rq);
0bcdcf28
CE
7826}
7827
7828static void rq_offline_fair(struct rq *rq)
7829{
7830 update_sysctl();
a4c96ae3
PB
7831
7832 /* Ensure any throttled groups are reachable by pick_next_task */
7833 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7834}
7835
55e12e5e 7836#endif /* CONFIG_SMP */
e1d1484f 7837
bf0f6f24
IM
7838/*
7839 * scheduler tick hitting a task of our scheduling class:
7840 */
8f4d37ec 7841static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7842{
7843 struct cfs_rq *cfs_rq;
7844 struct sched_entity *se = &curr->se;
7845
7846 for_each_sched_entity(se) {
7847 cfs_rq = cfs_rq_of(se);
8f4d37ec 7848 entity_tick(cfs_rq, se, queued);
bf0f6f24 7849 }
18bf2805 7850
10e84b97 7851 if (numabalancing_enabled)
cbee9f88 7852 task_tick_numa(rq, curr);
bf0f6f24
IM
7853}
7854
7855/*
cd29fe6f
PZ
7856 * called on fork with the child task as argument from the parent's context
7857 * - child not yet on the tasklist
7858 * - preemption disabled
bf0f6f24 7859 */
cd29fe6f 7860static void task_fork_fair(struct task_struct *p)
bf0f6f24 7861{
4fc420c9
DN
7862 struct cfs_rq *cfs_rq;
7863 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7864 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7865 struct rq *rq = this_rq();
7866 unsigned long flags;
7867
05fa785c 7868 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7869
861d034e
PZ
7870 update_rq_clock(rq);
7871
4fc420c9
DN
7872 cfs_rq = task_cfs_rq(current);
7873 curr = cfs_rq->curr;
7874
6c9a27f5
DN
7875 /*
7876 * Not only the cpu but also the task_group of the parent might have
7877 * been changed after parent->se.parent,cfs_rq were copied to
7878 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7879 * of child point to valid ones.
7880 */
7881 rcu_read_lock();
7882 __set_task_cpu(p, this_cpu);
7883 rcu_read_unlock();
bf0f6f24 7884
7109c442 7885 update_curr(cfs_rq);
cd29fe6f 7886
b5d9d734
MG
7887 if (curr)
7888 se->vruntime = curr->vruntime;
aeb73b04 7889 place_entity(cfs_rq, se, 1);
4d78e7b6 7890
cd29fe6f 7891 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7892 /*
edcb60a3
IM
7893 * Upon rescheduling, sched_class::put_prev_task() will place
7894 * 'current' within the tree based on its new key value.
7895 */
4d78e7b6 7896 swap(curr->vruntime, se->vruntime);
8875125e 7897 resched_curr(rq);
4d78e7b6 7898 }
bf0f6f24 7899
88ec22d3
PZ
7900 se->vruntime -= cfs_rq->min_vruntime;
7901
05fa785c 7902 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7903}
7904
cb469845
SR
7905/*
7906 * Priority of the task has changed. Check to see if we preempt
7907 * the current task.
7908 */
da7a735e
PZ
7909static void
7910prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7911{
da0c1e65 7912 if (!task_on_rq_queued(p))
da7a735e
PZ
7913 return;
7914
cb469845
SR
7915 /*
7916 * Reschedule if we are currently running on this runqueue and
7917 * our priority decreased, or if we are not currently running on
7918 * this runqueue and our priority is higher than the current's
7919 */
da7a735e 7920 if (rq->curr == p) {
cb469845 7921 if (p->prio > oldprio)
8875125e 7922 resched_curr(rq);
cb469845 7923 } else
15afe09b 7924 check_preempt_curr(rq, p, 0);
cb469845
SR
7925}
7926
da7a735e
PZ
7927static void switched_from_fair(struct rq *rq, struct task_struct *p)
7928{
7929 struct sched_entity *se = &p->se;
7930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7931
7932 /*
791c9e02 7933 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7934 * switched back to the fair class the enqueue_entity(.flags=0) will
7935 * do the right thing.
7936 *
da0c1e65
KT
7937 * If it's queued, then the dequeue_entity(.flags=0) will already
7938 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7939 * the task is sleeping will it still have non-normalized vruntime.
7940 */
da0c1e65 7941 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7942 /*
7943 * Fix up our vruntime so that the current sleep doesn't
7944 * cause 'unlimited' sleep bonus.
7945 */
7946 place_entity(cfs_rq, se, 0);
7947 se->vruntime -= cfs_rq->min_vruntime;
7948 }
9ee474f5 7949
9d89c257 7950 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 7951 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
7952}
7953
da7a735e 7954static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7955{
f36c019c 7956 struct sched_entity *se = &p->se;
7855a35a
BP
7957
7958#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
7959 /*
7960 * Since the real-depth could have been changed (only FAIR
7961 * class maintain depth value), reset depth properly.
7962 */
7963 se->depth = se->parent ? se->parent->depth + 1 : 0;
7964#endif
7855a35a 7965
6efdb105
BP
7966 /* Synchronize task with its cfs_rq */
7967 attach_entity_load_avg(cfs_rq_of(&p->se), &p->se);
7968
7855a35a
BP
7969 if (!task_on_rq_queued(p)) {
7970
7971 /*
7972 * Ensure the task has a non-normalized vruntime when it is switched
7973 * back to the fair class with !queued, so that enqueue_entity() at
7974 * wake-up time will do the right thing.
7975 *
7976 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7977 * has non-normalized vruntime, if it's !queued, then it still has
7978 * normalized vruntime.
7979 */
7980 if (p->state != TASK_RUNNING)
7981 se->vruntime += cfs_rq_of(se)->min_vruntime;
da7a735e 7982 return;
7855a35a 7983 }
da7a735e 7984
cb469845
SR
7985 /*
7986 * We were most likely switched from sched_rt, so
7987 * kick off the schedule if running, otherwise just see
7988 * if we can still preempt the current task.
7989 */
da7a735e 7990 if (rq->curr == p)
8875125e 7991 resched_curr(rq);
cb469845 7992 else
15afe09b 7993 check_preempt_curr(rq, p, 0);
cb469845
SR
7994}
7995
83b699ed
SV
7996/* Account for a task changing its policy or group.
7997 *
7998 * This routine is mostly called to set cfs_rq->curr field when a task
7999 * migrates between groups/classes.
8000 */
8001static void set_curr_task_fair(struct rq *rq)
8002{
8003 struct sched_entity *se = &rq->curr->se;
8004
ec12cb7f
PT
8005 for_each_sched_entity(se) {
8006 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8007
8008 set_next_entity(cfs_rq, se);
8009 /* ensure bandwidth has been allocated on our new cfs_rq */
8010 account_cfs_rq_runtime(cfs_rq, 0);
8011 }
83b699ed
SV
8012}
8013
029632fb
PZ
8014void init_cfs_rq(struct cfs_rq *cfs_rq)
8015{
8016 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8017 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8018#ifndef CONFIG_64BIT
8019 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8020#endif
141965c7 8021#ifdef CONFIG_SMP
9d89c257
YD
8022 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8023 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8024#endif
029632fb
PZ
8025}
8026
810b3817 8027#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8028static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8029{
fed14d45 8030 struct sched_entity *se = &p->se;
aff3e498 8031 struct cfs_rq *cfs_rq;
fed14d45 8032
b2b5ce02
PZ
8033 /*
8034 * If the task was not on the rq at the time of this cgroup movement
8035 * it must have been asleep, sleeping tasks keep their ->vruntime
8036 * absolute on their old rq until wakeup (needed for the fair sleeper
8037 * bonus in place_entity()).
8038 *
8039 * If it was on the rq, we've just 'preempted' it, which does convert
8040 * ->vruntime to a relative base.
8041 *
8042 * Make sure both cases convert their relative position when migrating
8043 * to another cgroup's rq. This does somewhat interfere with the
8044 * fair sleeper stuff for the first placement, but who cares.
8045 */
7ceff013 8046 /*
da0c1e65 8047 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8048 * But there are some cases where it has already been normalized:
8049 *
8050 * - Moving a forked child which is waiting for being woken up by
8051 * wake_up_new_task().
62af3783
DN
8052 * - Moving a task which has been woken up by try_to_wake_up() and
8053 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8054 *
8055 * To prevent boost or penalty in the new cfs_rq caused by delta
8056 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8057 */
da0c1e65
KT
8058 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8059 queued = 1;
7ceff013 8060
1746babb 8061 cfs_rq = cfs_rq_of(se);
da0c1e65 8062 if (!queued)
1746babb
BP
8063 se->vruntime -= cfs_rq->min_vruntime;
8064
8065 /* Synchronize task with its prev cfs_rq */
8066 detach_entity_load_avg(cfs_rq, se);
b2b5ce02 8067 set_task_rq(p, task_cpu(p));
6efdb105
BP
8068
8069#ifdef CONFIG_SMP
8070 /* Tell se's cfs_rq has been changed -- migrated */
8071 p->se.avg.last_update_time = 0;
8072#endif
8073
fed14d45 8074 se->depth = se->parent ? se->parent->depth + 1 : 0;
50a2a3b2
BP
8075 cfs_rq = cfs_rq_of(se);
8076 if (!queued)
fed14d45 8077 se->vruntime += cfs_rq->min_vruntime;
9d89c257 8078
50a2a3b2
BP
8079 /* Virtually synchronize task with its new cfs_rq */
8080 attach_entity_load_avg(cfs_rq, se);
810b3817 8081}
029632fb
PZ
8082
8083void free_fair_sched_group(struct task_group *tg)
8084{
8085 int i;
8086
8087 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8088
8089 for_each_possible_cpu(i) {
8090 if (tg->cfs_rq)
8091 kfree(tg->cfs_rq[i]);
12695578
YD
8092 if (tg->se) {
8093 if (tg->se[i])
8094 remove_entity_load_avg(tg->se[i]);
029632fb 8095 kfree(tg->se[i]);
12695578 8096 }
029632fb
PZ
8097 }
8098
8099 kfree(tg->cfs_rq);
8100 kfree(tg->se);
8101}
8102
8103int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8104{
8105 struct cfs_rq *cfs_rq;
8106 struct sched_entity *se;
8107 int i;
8108
8109 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8110 if (!tg->cfs_rq)
8111 goto err;
8112 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8113 if (!tg->se)
8114 goto err;
8115
8116 tg->shares = NICE_0_LOAD;
8117
8118 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8119
8120 for_each_possible_cpu(i) {
8121 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8122 GFP_KERNEL, cpu_to_node(i));
8123 if (!cfs_rq)
8124 goto err;
8125
8126 se = kzalloc_node(sizeof(struct sched_entity),
8127 GFP_KERNEL, cpu_to_node(i));
8128 if (!se)
8129 goto err_free_rq;
8130
8131 init_cfs_rq(cfs_rq);
8132 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8133 init_entity_runnable_average(se);
029632fb
PZ
8134 }
8135
8136 return 1;
8137
8138err_free_rq:
8139 kfree(cfs_rq);
8140err:
8141 return 0;
8142}
8143
8144void unregister_fair_sched_group(struct task_group *tg, int cpu)
8145{
8146 struct rq *rq = cpu_rq(cpu);
8147 unsigned long flags;
8148
8149 /*
8150 * Only empty task groups can be destroyed; so we can speculatively
8151 * check on_list without danger of it being re-added.
8152 */
8153 if (!tg->cfs_rq[cpu]->on_list)
8154 return;
8155
8156 raw_spin_lock_irqsave(&rq->lock, flags);
8157 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8158 raw_spin_unlock_irqrestore(&rq->lock, flags);
8159}
8160
8161void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8162 struct sched_entity *se, int cpu,
8163 struct sched_entity *parent)
8164{
8165 struct rq *rq = cpu_rq(cpu);
8166
8167 cfs_rq->tg = tg;
8168 cfs_rq->rq = rq;
029632fb
PZ
8169 init_cfs_rq_runtime(cfs_rq);
8170
8171 tg->cfs_rq[cpu] = cfs_rq;
8172 tg->se[cpu] = se;
8173
8174 /* se could be NULL for root_task_group */
8175 if (!se)
8176 return;
8177
fed14d45 8178 if (!parent) {
029632fb 8179 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8180 se->depth = 0;
8181 } else {
029632fb 8182 se->cfs_rq = parent->my_q;
fed14d45
PZ
8183 se->depth = parent->depth + 1;
8184 }
029632fb
PZ
8185
8186 se->my_q = cfs_rq;
0ac9b1c2
PT
8187 /* guarantee group entities always have weight */
8188 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8189 se->parent = parent;
8190}
8191
8192static DEFINE_MUTEX(shares_mutex);
8193
8194int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8195{
8196 int i;
8197 unsigned long flags;
8198
8199 /*
8200 * We can't change the weight of the root cgroup.
8201 */
8202 if (!tg->se[0])
8203 return -EINVAL;
8204
8205 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8206
8207 mutex_lock(&shares_mutex);
8208 if (tg->shares == shares)
8209 goto done;
8210
8211 tg->shares = shares;
8212 for_each_possible_cpu(i) {
8213 struct rq *rq = cpu_rq(i);
8214 struct sched_entity *se;
8215
8216 se = tg->se[i];
8217 /* Propagate contribution to hierarchy */
8218 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8219
8220 /* Possible calls to update_curr() need rq clock */
8221 update_rq_clock(rq);
17bc14b7 8222 for_each_sched_entity(se)
029632fb
PZ
8223 update_cfs_shares(group_cfs_rq(se));
8224 raw_spin_unlock_irqrestore(&rq->lock, flags);
8225 }
8226
8227done:
8228 mutex_unlock(&shares_mutex);
8229 return 0;
8230}
8231#else /* CONFIG_FAIR_GROUP_SCHED */
8232
8233void free_fair_sched_group(struct task_group *tg) { }
8234
8235int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8236{
8237 return 1;
8238}
8239
8240void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8241
8242#endif /* CONFIG_FAIR_GROUP_SCHED */
8243
810b3817 8244
6d686f45 8245static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8246{
8247 struct sched_entity *se = &task->se;
0d721cea
PW
8248 unsigned int rr_interval = 0;
8249
8250 /*
8251 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8252 * idle runqueue:
8253 */
0d721cea 8254 if (rq->cfs.load.weight)
a59f4e07 8255 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8256
8257 return rr_interval;
8258}
8259
bf0f6f24
IM
8260/*
8261 * All the scheduling class methods:
8262 */
029632fb 8263const struct sched_class fair_sched_class = {
5522d5d5 8264 .next = &idle_sched_class,
bf0f6f24
IM
8265 .enqueue_task = enqueue_task_fair,
8266 .dequeue_task = dequeue_task_fair,
8267 .yield_task = yield_task_fair,
d95f4122 8268 .yield_to_task = yield_to_task_fair,
bf0f6f24 8269
2e09bf55 8270 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8271
8272 .pick_next_task = pick_next_task_fair,
8273 .put_prev_task = put_prev_task_fair,
8274
681f3e68 8275#ifdef CONFIG_SMP
4ce72a2c 8276 .select_task_rq = select_task_rq_fair,
0a74bef8 8277 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8278
0bcdcf28
CE
8279 .rq_online = rq_online_fair,
8280 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8281
8282 .task_waking = task_waking_fair,
12695578 8283 .task_dead = task_dead_fair,
c5b28038 8284 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8285#endif
bf0f6f24 8286
83b699ed 8287 .set_curr_task = set_curr_task_fair,
bf0f6f24 8288 .task_tick = task_tick_fair,
cd29fe6f 8289 .task_fork = task_fork_fair,
cb469845
SR
8290
8291 .prio_changed = prio_changed_fair,
da7a735e 8292 .switched_from = switched_from_fair,
cb469845 8293 .switched_to = switched_to_fair,
810b3817 8294
0d721cea
PW
8295 .get_rr_interval = get_rr_interval_fair,
8296
6e998916
SG
8297 .update_curr = update_curr_fair,
8298
810b3817 8299#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8300 .task_move_group = task_move_group_fair,
810b3817 8301#endif
bf0f6f24
IM
8302};
8303
8304#ifdef CONFIG_SCHED_DEBUG
029632fb 8305void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8306{
bf0f6f24
IM
8307 struct cfs_rq *cfs_rq;
8308
5973e5b9 8309 rcu_read_lock();
c3b64f1e 8310 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8311 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8312 rcu_read_unlock();
bf0f6f24 8313}
397f2378
SD
8314
8315#ifdef CONFIG_NUMA_BALANCING
8316void show_numa_stats(struct task_struct *p, struct seq_file *m)
8317{
8318 int node;
8319 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8320
8321 for_each_online_node(node) {
8322 if (p->numa_faults) {
8323 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8324 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8325 }
8326 if (p->numa_group) {
8327 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8328 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8329 }
8330 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8331 }
8332}
8333#endif /* CONFIG_NUMA_BALANCING */
8334#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8335
8336__init void init_sched_fair_class(void)
8337{
8338#ifdef CONFIG_SMP
8339 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8340
3451d024 8341#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8342 nohz.next_balance = jiffies;
029632fb 8343 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8344 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8345#endif
8346#endif /* SMP */
8347
8348}