]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Micro optimization in pick_next_task() and in check_preempt_curr()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
05289b90
TG
89int sched_thermal_decay_shift;
90static int __init setup_sched_thermal_decay_shift(char *str)
91{
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99}
100__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
97fb7a0a 104 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
6d101ba6
OJ
110
111/*
60e17f5c 112 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
113 *
114 * (default: ~20%)
115 */
60e17f5c
VK
116#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
afe06efd
TC
118#endif
119
ec12cb7f
PT
120#ifdef CONFIG_CFS_BANDWIDTH
121/*
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
124 *
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
128 *
2b4d5b25
IM
129 * (default: 5 msec, units: microseconds)
130 */
131unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
132#endif
133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
f38f12d1 194void __init sched_init_granularity(void)
029632fb
PZ
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
2eeb01a2 245 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 246
9dbdb155
PZ
247 while (fact >> 32) {
248 fact >>= 1;
249 shift--;
250 }
029632fb 251
9dbdb155 252 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
253}
254
255
256const struct sched_class fair_sched_class;
a4c2f00f 257
bf0f6f24
IM
258/**************************************************************
259 * CFS operations on generic schedulable entities:
260 */
261
62160e3f 262#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
9148a3a1 265 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
266 return container_of(se, struct task_struct, se);
267}
268
b758149c
PZ
269/* Walk up scheduling entities hierarchy */
270#define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274{
275 return p->se.cfs_rq;
276}
277
278/* runqueue on which this entity is (to be) queued */
279static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280{
281 return se->cfs_rq;
282}
283
284/* runqueue "owned" by this group */
285static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286{
287 return grp->my_q;
288}
289
3c93a0c0
QY
290static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291{
292 if (!path)
293 return;
294
295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 autogroup_path(cfs_rq->tg, path, len);
297 else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 else
300 strlcpy(path, "(null)", len);
301}
302
f6783319 303static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 304{
5d299eab
PZ
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307
308 if (cfs_rq->on_list)
f6783319 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
310
311 cfs_rq->on_list = 1;
312
313 /*
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
321 */
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 324 /*
5d299eab
PZ
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
67e86250 329 */
5d299eab
PZ
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 /*
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
336 */
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 338 return true;
5d299eab 339 }
3d4b47b4 340
5d299eab
PZ
341 if (!cfs_rq->tg->parent) {
342 /*
343 * cfs rq without parent should be put
344 * at the tail of the list.
345 */
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
348 /*
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
351 */
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 353 return true;
3d4b47b4 354 }
5d299eab
PZ
355
356 /*
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
361 */
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 /*
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
366 */
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 368 return false;
3d4b47b4
PZ
369}
370
371static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372{
373 if (cfs_rq->on_list) {
31bc6aea
VG
374 struct rq *rq = rq_of(cfs_rq);
375
376 /*
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
382 */
383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385
3d4b47b4
PZ
386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 cfs_rq->on_list = 0;
388 }
389}
390
5d299eab
PZ
391static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392{
393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394}
395
039ae8bc
VG
396/* Iterate thr' all leaf cfs_rq's on a runqueue */
397#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 leaf_cfs_rq_list)
b758149c
PZ
400
401/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 402static inline struct cfs_rq *
b758149c
PZ
403is_same_group(struct sched_entity *se, struct sched_entity *pse)
404{
405 if (se->cfs_rq == pse->cfs_rq)
fed14d45 406 return se->cfs_rq;
b758149c 407
fed14d45 408 return NULL;
b758149c
PZ
409}
410
411static inline struct sched_entity *parent_entity(struct sched_entity *se)
412{
413 return se->parent;
414}
415
464b7527
PZ
416static void
417find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418{
419 int se_depth, pse_depth;
420
421 /*
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
425 * parent.
426 */
427
428 /* First walk up until both entities are at same depth */
fed14d45
PZ
429 se_depth = (*se)->depth;
430 pse_depth = (*pse)->depth;
464b7527
PZ
431
432 while (se_depth > pse_depth) {
433 se_depth--;
434 *se = parent_entity(*se);
435 }
436
437 while (pse_depth > se_depth) {
438 pse_depth--;
439 *pse = parent_entity(*pse);
440 }
441
442 while (!is_same_group(*se, *pse)) {
443 *se = parent_entity(*se);
444 *pse = parent_entity(*pse);
445 }
446}
447
8f48894f
PZ
448#else /* !CONFIG_FAIR_GROUP_SCHED */
449
450static inline struct task_struct *task_of(struct sched_entity *se)
451{
452 return container_of(se, struct task_struct, se);
453}
bf0f6f24 454
b758149c
PZ
455#define for_each_sched_entity(se) \
456 for (; se; se = NULL)
bf0f6f24 457
b758149c 458static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 459{
b758149c 460 return &task_rq(p)->cfs;
bf0f6f24
IM
461}
462
b758149c
PZ
463static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464{
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
467
468 return &rq->cfs;
469}
470
471/* runqueue "owned" by this group */
472static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473{
474 return NULL;
475}
476
3c93a0c0
QY
477static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478{
479 if (path)
480 strlcpy(path, "(null)", len);
481}
482
f6783319 483static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 484{
f6783319 485 return true;
3d4b47b4
PZ
486}
487
488static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489{
490}
491
5d299eab
PZ
492static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493{
494}
495
039ae8bc
VG
496#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 498
b758149c
PZ
499static inline struct sched_entity *parent_entity(struct sched_entity *se)
500{
501 return NULL;
502}
503
464b7527
PZ
504static inline void
505find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506{
507}
508
b758149c
PZ
509#endif /* CONFIG_FAIR_GROUP_SCHED */
510
6c16a6dc 511static __always_inline
9dbdb155 512void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
513
514/**************************************************************
515 * Scheduling class tree data structure manipulation methods:
516 */
517
1bf08230 518static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 519{
1bf08230 520 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 521 if (delta > 0)
1bf08230 522 max_vruntime = vruntime;
02e0431a 523
1bf08230 524 return max_vruntime;
02e0431a
PZ
525}
526
0702e3eb 527static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
528{
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
532
533 return min_vruntime;
534}
535
54fdc581
FC
536static inline int entity_before(struct sched_entity *a,
537 struct sched_entity *b)
538{
539 return (s64)(a->vruntime - b->vruntime) < 0;
540}
541
1af5f730
PZ
542static void update_min_vruntime(struct cfs_rq *cfs_rq)
543{
b60205c7 544 struct sched_entity *curr = cfs_rq->curr;
bfb06889 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 546
1af5f730
PZ
547 u64 vruntime = cfs_rq->min_vruntime;
548
b60205c7
PZ
549 if (curr) {
550 if (curr->on_rq)
551 vruntime = curr->vruntime;
552 else
553 curr = NULL;
554 }
1af5f730 555
bfb06889
DB
556 if (leftmost) { /* non-empty tree */
557 struct sched_entity *se;
558 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 559
b60205c7 560 if (!curr)
1af5f730
PZ
561 vruntime = se->vruntime;
562 else
563 vruntime = min_vruntime(vruntime, se->vruntime);
564 }
565
1bf08230 566 /* ensure we never gain time by being placed backwards. */
1af5f730 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
568#ifndef CONFIG_64BIT
569 smp_wmb();
570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571#endif
1af5f730
PZ
572}
573
bf0f6f24
IM
574/*
575 * Enqueue an entity into the rb-tree:
576 */
0702e3eb 577static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 578{
bfb06889 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
580 struct rb_node *parent = NULL;
581 struct sched_entity *entry;
bfb06889 582 bool leftmost = true;
bf0f6f24
IM
583
584 /*
585 * Find the right place in the rbtree:
586 */
587 while (*link) {
588 parent = *link;
589 entry = rb_entry(parent, struct sched_entity, run_node);
590 /*
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
593 */
2bd2d6f2 594 if (entity_before(se, entry)) {
bf0f6f24
IM
595 link = &parent->rb_left;
596 } else {
597 link = &parent->rb_right;
bfb06889 598 leftmost = false;
bf0f6f24
IM
599 }
600 }
601
bf0f6f24 602 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
603 rb_insert_color_cached(&se->run_node,
604 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
605}
606
0702e3eb 607static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
bfb06889 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
610}
611
029632fb 612struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 613{
bfb06889 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
615
616 if (!left)
617 return NULL;
618
619 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
620}
621
ac53db59
RR
622static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623{
624 struct rb_node *next = rb_next(&se->run_node);
625
626 if (!next)
627 return NULL;
628
629 return rb_entry(next, struct sched_entity, run_node);
630}
631
632#ifdef CONFIG_SCHED_DEBUG
029632fb 633struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 634{
bfb06889 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 636
70eee74b
BS
637 if (!last)
638 return NULL;
7eee3e67
IM
639
640 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
641}
642
bf0f6f24
IM
643/**************************************************************
644 * Scheduling class statistics methods:
645 */
646
acb4a848 647int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 648 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 649{
8d65af78 650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 651 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
652
653 if (ret || !write)
654 return ret;
655
656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
657 sysctl_sched_min_granularity);
658
acb4a848
CE
659#define WRT_SYSCTL(name) \
660 (normalized_sysctl_##name = sysctl_##name / (factor))
661 WRT_SYSCTL(sched_min_granularity);
662 WRT_SYSCTL(sched_latency);
663 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
664#undef WRT_SYSCTL
665
b2be5e96
PZ
666 return 0;
667}
668#endif
647e7cac 669
a7be37ac 670/*
f9c0b095 671 * delta /= w
a7be37ac 672 */
9dbdb155 673static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 674{
f9c0b095 675 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
677
678 return delta;
679}
680
647e7cac
IM
681/*
682 * The idea is to set a period in which each task runs once.
683 *
532b1858 684 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
685 * this period because otherwise the slices get too small.
686 *
687 * p = (nr <= nl) ? l : l*nr/nl
688 */
4d78e7b6
PZ
689static u64 __sched_period(unsigned long nr_running)
690{
8e2b0bf3
BF
691 if (unlikely(nr_running > sched_nr_latency))
692 return nr_running * sysctl_sched_min_granularity;
693 else
694 return sysctl_sched_latency;
4d78e7b6
PZ
695}
696
647e7cac
IM
697/*
698 * We calculate the wall-time slice from the period by taking a part
699 * proportional to the weight.
700 *
f9c0b095 701 * s = p*P[w/rw]
647e7cac 702 */
6d0f0ebd 703static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 704{
0a582440 705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 706
0a582440 707 for_each_sched_entity(se) {
6272d68c 708 struct load_weight *load;
3104bf03 709 struct load_weight lw;
6272d68c
LM
710
711 cfs_rq = cfs_rq_of(se);
712 load = &cfs_rq->load;
f9c0b095 713
0a582440 714 if (unlikely(!se->on_rq)) {
3104bf03 715 lw = cfs_rq->load;
0a582440
MG
716
717 update_load_add(&lw, se->load.weight);
718 load = &lw;
719 }
9dbdb155 720 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
721 }
722 return slice;
bf0f6f24
IM
723}
724
647e7cac 725/*
660cc00f 726 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 727 *
f9c0b095 728 * vs = s/w
647e7cac 729 */
f9c0b095 730static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 731{
f9c0b095 732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
733}
734
c0796298 735#include "pelt.h"
23127296 736#ifdef CONFIG_SMP
283e2ed3 737
772bd008 738static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 739static unsigned long task_h_load(struct task_struct *p);
3b1baa64 740static unsigned long capacity_of(int cpu);
fb13c7ee 741
540247fb
YD
742/* Give new sched_entity start runnable values to heavy its load in infant time */
743void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 744{
540247fb 745 struct sched_avg *sa = &se->avg;
a75cdaa9 746
f207934f
PZ
747 memset(sa, 0, sizeof(*sa));
748
b5a9b340 749 /*
dfcb245e 750 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 751 * they get a chance to stabilize to their real load level.
dfcb245e 752 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
753 * nothing has been attached to the task group yet.
754 */
755 if (entity_is_task(se))
0dacee1b 756 sa->load_avg = scale_load_down(se->load.weight);
f207934f 757
9d89c257 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 759}
7ea241af 760
df217913 761static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 762
2b8c41da
YD
763/*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
8fe5c5a9 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 777 *
8fe5c5a9 778 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 779 *
8fe5c5a9
QP
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
2b8c41da
YD
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
d0fe0b9c 789void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 790{
d0fe0b9c 791 struct sched_entity *se = &p->se;
2b8c41da
YD
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
8ec59c0f 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
2b8c41da 807 }
7dc603c9 808
9f683953
VG
809 sa->runnable_avg = cpu_scale;
810
d0fe0b9c
DE
811 if (p->sched_class != &fair_sched_class) {
812 /*
813 * For !fair tasks do:
814 *
815 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 816 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
817 switched_from_fair(rq, p);
818 *
819 * such that the next switched_to_fair() has the
820 * expected state.
821 */
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
7dc603c9
PZ
824 }
825
df217913 826 attach_entity_cfs_rq(se);
2b8c41da
YD
827}
828
7dc603c9 829#else /* !CONFIG_SMP */
540247fb 830void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
831{
832}
d0fe0b9c 833void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
834{
835}
3d30544f
PZ
836static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837{
838}
7dc603c9 839#endif /* CONFIG_SMP */
a75cdaa9 840
bf0f6f24 841/*
9dbdb155 842 * Update the current task's runtime statistics.
bf0f6f24 843 */
b7cc0896 844static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 845{
429d43bc 846 struct sched_entity *curr = cfs_rq->curr;
78becc27 847 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 848 u64 delta_exec;
bf0f6f24
IM
849
850 if (unlikely(!curr))
851 return;
852
9dbdb155
PZ
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
34f28ecd 855 return;
bf0f6f24 856
8ebc91d9 857 curr->exec_start = now;
d842de87 858
9dbdb155
PZ
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
861
862 curr->sum_exec_runtime += delta_exec;
ae92882e 863 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
864
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
867
d842de87
SV
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
870
f977bb49 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 872 cgroup_account_cputime(curtask, delta_exec);
f06febc9 873 account_group_exec_runtime(curtask, delta_exec);
d842de87 874 }
ec12cb7f
PT
875
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
877}
878
6e998916
SG
879static void update_curr_fair(struct rq *rq)
880{
881 update_curr(cfs_rq_of(&rq->curr->se));
882}
883
bf0f6f24 884static inline void
5870db5b 885update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 886{
4fa8d299
JP
887 u64 wait_start, prev_wait_start;
888
889 if (!schedstat_enabled())
890 return;
891
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
894
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
3ea94de1 898
2ed41a55 899 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
900}
901
4fa8d299 902static inline void
3ea94de1
JP
903update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904{
905 struct task_struct *p;
cb251765
MG
906 u64 delta;
907
4fa8d299
JP
908 if (!schedstat_enabled())
909 return;
910
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
912
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
916 /*
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
920 */
2ed41a55 921 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
922 return;
923 }
924 trace_sched_stat_wait(p, delta);
925 }
926
2ed41a55 927 __schedstat_set(se->statistics.wait_max,
4fa8d299 928 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
929 __schedstat_inc(se->statistics.wait_count);
930 __schedstat_add(se->statistics.wait_sum, delta);
931 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 932}
3ea94de1 933
4fa8d299 934static inline void
1a3d027c
JP
935update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936{
937 struct task_struct *tsk = NULL;
4fa8d299
JP
938 u64 sleep_start, block_start;
939
940 if (!schedstat_enabled())
941 return;
942
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
945
946 if (entity_is_task(se))
947 tsk = task_of(se);
948
4fa8d299
JP
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
951
952 if ((s64)delta < 0)
953 delta = 0;
954
4fa8d299 955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 956 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 957
2ed41a55
PZ
958 __schedstat_set(se->statistics.sleep_start, 0);
959 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
960
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
964 }
965 }
4fa8d299
JP
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
968
969 if ((s64)delta < 0)
970 delta = 0;
971
4fa8d299 972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 973 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 974
2ed41a55
PZ
975 __schedstat_set(se->statistics.block_start, 0);
976 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
977
978 if (tsk) {
979 if (tsk->in_iowait) {
2ed41a55
PZ
980 __schedstat_add(se->statistics.iowait_sum, delta);
981 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
982 trace_sched_stat_iowait(tsk, delta);
983 }
984
985 trace_sched_stat_blocked(tsk, delta);
986
987 /*
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
991 */
992 if (unlikely(prof_on == SLEEP_PROFILING)) {
993 profile_hits(SLEEP_PROFILING,
994 (void *)get_wchan(tsk),
995 delta >> 20);
996 }
997 account_scheduler_latency(tsk, delta >> 10, 0);
998 }
999 }
3ea94de1 1000}
3ea94de1 1001
bf0f6f24
IM
1002/*
1003 * Task is being enqueued - update stats:
1004 */
cb251765 1005static inline void
1a3d027c 1006update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1007{
4fa8d299
JP
1008 if (!schedstat_enabled())
1009 return;
1010
bf0f6f24
IM
1011 /*
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1014 */
429d43bc 1015 if (se != cfs_rq->curr)
5870db5b 1016 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1017
1018 if (flags & ENQUEUE_WAKEUP)
1019 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1020}
1021
bf0f6f24 1022static inline void
cb251765 1023update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1024{
4fa8d299
JP
1025
1026 if (!schedstat_enabled())
1027 return;
1028
bf0f6f24
IM
1029 /*
1030 * Mark the end of the wait period if dequeueing a
1031 * waiting task:
1032 */
429d43bc 1033 if (se != cfs_rq->curr)
9ef0a961 1034 update_stats_wait_end(cfs_rq, se);
cb251765 1035
4fa8d299
JP
1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 struct task_struct *tsk = task_of(se);
cb251765 1038
4fa8d299 1039 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1040 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1041 rq_clock(rq_of(cfs_rq)));
1042 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1043 __schedstat_set(se->statistics.block_start,
4fa8d299 1044 rq_clock(rq_of(cfs_rq)));
cb251765 1045 }
cb251765
MG
1046}
1047
bf0f6f24
IM
1048/*
1049 * We are picking a new current task - update its stats:
1050 */
1051static inline void
79303e9e 1052update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1053{
1054 /*
1055 * We are starting a new run period:
1056 */
78becc27 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1058}
1059
bf0f6f24
IM
1060/**************************************************
1061 * Scheduling class queueing methods:
1062 */
1063
cbee9f88
PZ
1064#ifdef CONFIG_NUMA_BALANCING
1065/*
598f0ec0
MG
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
cbee9f88 1069 */
598f0ec0
MG
1070unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1072
1073/* Portion of address space to scan in MB */
1074unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1075
4b96a29b
PZ
1076/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078
b5dd77c8 1079struct numa_group {
c45a7795 1080 refcount_t refcount;
b5dd77c8
RR
1081
1082 spinlock_t lock; /* nr_tasks, tasks */
1083 int nr_tasks;
1084 pid_t gid;
1085 int active_nodes;
1086
1087 struct rcu_head rcu;
1088 unsigned long total_faults;
1089 unsigned long max_faults_cpu;
1090 /*
1091 * Faults_cpu is used to decide whether memory should move
1092 * towards the CPU. As a consequence, these stats are weighted
1093 * more by CPU use than by memory faults.
1094 */
1095 unsigned long *faults_cpu;
04f5c362 1096 unsigned long faults[];
b5dd77c8
RR
1097};
1098
cb361d8c
JH
1099/*
1100 * For functions that can be called in multiple contexts that permit reading
1101 * ->numa_group (see struct task_struct for locking rules).
1102 */
1103static struct numa_group *deref_task_numa_group(struct task_struct *p)
1104{
1105 return rcu_dereference_check(p->numa_group, p == current ||
1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1107}
1108
1109static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1110{
1111 return rcu_dereference_protected(p->numa_group, p == current);
1112}
1113
b5dd77c8
RR
1114static inline unsigned long group_faults_priv(struct numa_group *ng);
1115static inline unsigned long group_faults_shared(struct numa_group *ng);
1116
598f0ec0
MG
1117static unsigned int task_nr_scan_windows(struct task_struct *p)
1118{
1119 unsigned long rss = 0;
1120 unsigned long nr_scan_pages;
1121
1122 /*
1123 * Calculations based on RSS as non-present and empty pages are skipped
1124 * by the PTE scanner and NUMA hinting faults should be trapped based
1125 * on resident pages
1126 */
1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1128 rss = get_mm_rss(p->mm);
1129 if (!rss)
1130 rss = nr_scan_pages;
1131
1132 rss = round_up(rss, nr_scan_pages);
1133 return rss / nr_scan_pages;
1134}
1135
1136/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137#define MAX_SCAN_WINDOW 2560
1138
1139static unsigned int task_scan_min(struct task_struct *p)
1140{
316c1608 1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1142 unsigned int scan, floor;
1143 unsigned int windows = 1;
1144
64192658
KT
1145 if (scan_size < MAX_SCAN_WINDOW)
1146 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1147 floor = 1000 / windows;
1148
1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1150 return max_t(unsigned int, floor, scan);
1151}
1152
b5dd77c8
RR
1153static unsigned int task_scan_start(struct task_struct *p)
1154{
1155 unsigned long smin = task_scan_min(p);
1156 unsigned long period = smin;
cb361d8c 1157 struct numa_group *ng;
b5dd77c8
RR
1158
1159 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1160 rcu_read_lock();
1161 ng = rcu_dereference(p->numa_group);
1162 if (ng) {
b5dd77c8
RR
1163 unsigned long shared = group_faults_shared(ng);
1164 unsigned long private = group_faults_priv(ng);
1165
c45a7795 1166 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1167 period *= shared + 1;
1168 period /= private + shared + 1;
1169 }
cb361d8c 1170 rcu_read_unlock();
b5dd77c8
RR
1171
1172 return max(smin, period);
1173}
1174
598f0ec0
MG
1175static unsigned int task_scan_max(struct task_struct *p)
1176{
b5dd77c8
RR
1177 unsigned long smin = task_scan_min(p);
1178 unsigned long smax;
cb361d8c 1179 struct numa_group *ng;
598f0ec0
MG
1180
1181 /* Watch for min being lower than max due to floor calculations */
1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1183
1184 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1185 ng = deref_curr_numa_group(p);
1186 if (ng) {
b5dd77c8
RR
1187 unsigned long shared = group_faults_shared(ng);
1188 unsigned long private = group_faults_priv(ng);
1189 unsigned long period = smax;
1190
c45a7795 1191 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1192 period *= shared + 1;
1193 period /= private + shared + 1;
1194
1195 smax = max(smax, period);
1196 }
1197
598f0ec0
MG
1198 return max(smin, smax);
1199}
1200
0ec8aa00
PZ
1201static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1202{
98fa15f3 1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1205}
1206
1207static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1208{
98fa15f3 1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1211}
1212
be1e4e76
RR
1213/* Shared or private faults. */
1214#define NR_NUMA_HINT_FAULT_TYPES 2
1215
1216/* Memory and CPU locality */
1217#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1218
1219/* Averaged statistics, and temporary buffers. */
1220#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1221
e29cf08b
MG
1222pid_t task_numa_group_id(struct task_struct *p)
1223{
cb361d8c
JH
1224 struct numa_group *ng;
1225 pid_t gid = 0;
1226
1227 rcu_read_lock();
1228 ng = rcu_dereference(p->numa_group);
1229 if (ng)
1230 gid = ng->gid;
1231 rcu_read_unlock();
1232
1233 return gid;
e29cf08b
MG
1234}
1235
44dba3d5 1236/*
97fb7a0a 1237 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1238 * occupy the first half of the array. The second half of the
1239 * array is for current counters, which are averaged into the
1240 * first set by task_numa_placement.
1241 */
1242static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1243{
44dba3d5 1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1245}
1246
1247static inline unsigned long task_faults(struct task_struct *p, int nid)
1248{
44dba3d5 1249 if (!p->numa_faults)
ac8e895b
MG
1250 return 0;
1251
44dba3d5
IM
1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1254}
1255
83e1d2cd
MG
1256static inline unsigned long group_faults(struct task_struct *p, int nid)
1257{
cb361d8c
JH
1258 struct numa_group *ng = deref_task_numa_group(p);
1259
1260 if (!ng)
83e1d2cd
MG
1261 return 0;
1262
cb361d8c
JH
1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1265}
1266
20e07dea
RR
1267static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1268{
44dba3d5
IM
1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1271}
1272
b5dd77c8
RR
1273static inline unsigned long group_faults_priv(struct numa_group *ng)
1274{
1275 unsigned long faults = 0;
1276 int node;
1277
1278 for_each_online_node(node) {
1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1280 }
1281
1282 return faults;
1283}
1284
1285static inline unsigned long group_faults_shared(struct numa_group *ng)
1286{
1287 unsigned long faults = 0;
1288 int node;
1289
1290 for_each_online_node(node) {
1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1292 }
1293
1294 return faults;
1295}
1296
4142c3eb
RR
1297/*
1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299 * considered part of a numa group's pseudo-interleaving set. Migrations
1300 * between these nodes are slowed down, to allow things to settle down.
1301 */
1302#define ACTIVE_NODE_FRACTION 3
1303
1304static bool numa_is_active_node(int nid, struct numa_group *ng)
1305{
1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1307}
1308
6c6b1193
RR
1309/* Handle placement on systems where not all nodes are directly connected. */
1310static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1311 int maxdist, bool task)
1312{
1313 unsigned long score = 0;
1314 int node;
1315
1316 /*
1317 * All nodes are directly connected, and the same distance
1318 * from each other. No need for fancy placement algorithms.
1319 */
1320 if (sched_numa_topology_type == NUMA_DIRECT)
1321 return 0;
1322
1323 /*
1324 * This code is called for each node, introducing N^2 complexity,
1325 * which should be ok given the number of nodes rarely exceeds 8.
1326 */
1327 for_each_online_node(node) {
1328 unsigned long faults;
1329 int dist = node_distance(nid, node);
1330
1331 /*
1332 * The furthest away nodes in the system are not interesting
1333 * for placement; nid was already counted.
1334 */
1335 if (dist == sched_max_numa_distance || node == nid)
1336 continue;
1337
1338 /*
1339 * On systems with a backplane NUMA topology, compare groups
1340 * of nodes, and move tasks towards the group with the most
1341 * memory accesses. When comparing two nodes at distance
1342 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 * of each group. Skip other nodes.
1344 */
1345 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1346 dist >= maxdist)
6c6b1193
RR
1347 continue;
1348
1349 /* Add up the faults from nearby nodes. */
1350 if (task)
1351 faults = task_faults(p, node);
1352 else
1353 faults = group_faults(p, node);
1354
1355 /*
1356 * On systems with a glueless mesh NUMA topology, there are
1357 * no fixed "groups of nodes". Instead, nodes that are not
1358 * directly connected bounce traffic through intermediate
1359 * nodes; a numa_group can occupy any set of nodes.
1360 * The further away a node is, the less the faults count.
1361 * This seems to result in good task placement.
1362 */
1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1364 faults *= (sched_max_numa_distance - dist);
1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1366 }
1367
1368 score += faults;
1369 }
1370
1371 return score;
1372}
1373
83e1d2cd
MG
1374/*
1375 * These return the fraction of accesses done by a particular task, or
1376 * task group, on a particular numa node. The group weight is given a
1377 * larger multiplier, in order to group tasks together that are almost
1378 * evenly spread out between numa nodes.
1379 */
7bd95320
RR
1380static inline unsigned long task_weight(struct task_struct *p, int nid,
1381 int dist)
83e1d2cd 1382{
7bd95320 1383 unsigned long faults, total_faults;
83e1d2cd 1384
44dba3d5 1385 if (!p->numa_faults)
83e1d2cd
MG
1386 return 0;
1387
1388 total_faults = p->total_numa_faults;
1389
1390 if (!total_faults)
1391 return 0;
1392
7bd95320 1393 faults = task_faults(p, nid);
6c6b1193
RR
1394 faults += score_nearby_nodes(p, nid, dist, true);
1395
7bd95320 1396 return 1000 * faults / total_faults;
83e1d2cd
MG
1397}
1398
7bd95320
RR
1399static inline unsigned long group_weight(struct task_struct *p, int nid,
1400 int dist)
83e1d2cd 1401{
cb361d8c 1402 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1403 unsigned long faults, total_faults;
1404
cb361d8c 1405 if (!ng)
7bd95320
RR
1406 return 0;
1407
cb361d8c 1408 total_faults = ng->total_faults;
7bd95320
RR
1409
1410 if (!total_faults)
83e1d2cd
MG
1411 return 0;
1412
7bd95320 1413 faults = group_faults(p, nid);
6c6b1193
RR
1414 faults += score_nearby_nodes(p, nid, dist, false);
1415
7bd95320 1416 return 1000 * faults / total_faults;
83e1d2cd
MG
1417}
1418
10f39042
RR
1419bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 int src_nid, int dst_cpu)
1421{
cb361d8c 1422 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1423 int dst_nid = cpu_to_node(dst_cpu);
1424 int last_cpupid, this_cpupid;
1425
1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428
1429 /*
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1433 * executed below.
1434 */
98fa15f3 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 return true;
10f39042
RR
1438
1439 /*
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1443 *
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1447 *
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1452 *
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1455 */
10f39042
RR
1456 if (!cpupid_pid_unset(last_cpupid) &&
1457 cpupid_to_nid(last_cpupid) != dst_nid)
1458 return false;
1459
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p, last_cpupid))
1462 return true;
1463
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1465 if (!ng)
1466 return true;
1467
1468 /*
4142c3eb
RR
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
10f39042 1471 */
4142c3eb
RR
1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 ACTIVE_NODE_FRACTION)
10f39042
RR
1474 return true;
1475
1476 /*
4142c3eb
RR
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 *
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
10f39042 1483 */
4142c3eb
RR
1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1486}
1487
6499b1b2
VG
1488/*
1489 * 'numa_type' describes the node at the moment of load balancing.
1490 */
1491enum numa_type {
1492 /* The node has spare capacity that can be used to run more tasks. */
1493 node_has_spare = 0,
1494 /*
1495 * The node is fully used and the tasks don't compete for more CPU
1496 * cycles. Nevertheless, some tasks might wait before running.
1497 */
1498 node_fully_busy,
1499 /*
1500 * The node is overloaded and can't provide expected CPU cycles to all
1501 * tasks.
1502 */
1503 node_overloaded
1504};
58d081b5 1505
fb13c7ee 1506/* Cached statistics for all CPUs within a node */
58d081b5
MG
1507struct numa_stats {
1508 unsigned long load;
6499b1b2 1509 unsigned long util;
fb13c7ee 1510 /* Total compute capacity of CPUs on a node */
5ef20ca1 1511 unsigned long compute_capacity;
6499b1b2
VG
1512 unsigned int nr_running;
1513 unsigned int weight;
1514 enum numa_type node_type;
ff7db0bf 1515 int idle_cpu;
58d081b5 1516};
e6628d5b 1517
ff7db0bf
MG
1518static inline bool is_core_idle(int cpu)
1519{
1520#ifdef CONFIG_SCHED_SMT
1521 int sibling;
1522
1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1524 if (cpu == sibling)
1525 continue;
1526
1527 if (!idle_cpu(cpu))
1528 return false;
1529 }
1530#endif
1531
1532 return true;
1533}
1534
58d081b5
MG
1535struct task_numa_env {
1536 struct task_struct *p;
e6628d5b 1537
58d081b5
MG
1538 int src_cpu, src_nid;
1539 int dst_cpu, dst_nid;
e6628d5b 1540
58d081b5 1541 struct numa_stats src_stats, dst_stats;
e6628d5b 1542
40ea2b42 1543 int imbalance_pct;
7bd95320 1544 int dist;
fb13c7ee
MG
1545
1546 struct task_struct *best_task;
1547 long best_imp;
58d081b5
MG
1548 int best_cpu;
1549};
1550
6499b1b2
VG
1551static unsigned long cpu_load(struct rq *rq);
1552static unsigned long cpu_util(int cpu);
fb86f5b2 1553static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
6499b1b2
VG
1554
1555static inline enum
1556numa_type numa_classify(unsigned int imbalance_pct,
1557 struct numa_stats *ns)
1558{
1559 if ((ns->nr_running > ns->weight) &&
1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1561 return node_overloaded;
1562
1563 if ((ns->nr_running < ns->weight) ||
1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1565 return node_has_spare;
1566
1567 return node_fully_busy;
1568}
1569
76c389ab
VS
1570#ifdef CONFIG_SCHED_SMT
1571/* Forward declarations of select_idle_sibling helpers */
1572static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1573static inline int numa_idle_core(int idle_core, int cpu)
1574{
ff7db0bf
MG
1575 if (!static_branch_likely(&sched_smt_present) ||
1576 idle_core >= 0 || !test_idle_cores(cpu, false))
1577 return idle_core;
1578
1579 /*
1580 * Prefer cores instead of packing HT siblings
1581 * and triggering future load balancing.
1582 */
1583 if (is_core_idle(cpu))
1584 idle_core = cpu;
ff7db0bf
MG
1585
1586 return idle_core;
1587}
76c389ab
VS
1588#else
1589static inline int numa_idle_core(int idle_core, int cpu)
1590{
1591 return idle_core;
1592}
1593#endif
ff7db0bf 1594
6499b1b2 1595/*
ff7db0bf
MG
1596 * Gather all necessary information to make NUMA balancing placement
1597 * decisions that are compatible with standard load balancer. This
1598 * borrows code and logic from update_sg_lb_stats but sharing a
1599 * common implementation is impractical.
6499b1b2
VG
1600 */
1601static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1602 struct numa_stats *ns, int nid,
1603 bool find_idle)
6499b1b2 1604{
ff7db0bf 1605 int cpu, idle_core = -1;
6499b1b2
VG
1606
1607 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1608 ns->idle_cpu = -1;
1609
0621df31 1610 rcu_read_lock();
6499b1b2
VG
1611 for_each_cpu(cpu, cpumask_of_node(nid)) {
1612 struct rq *rq = cpu_rq(cpu);
1613
1614 ns->load += cpu_load(rq);
1615 ns->util += cpu_util(cpu);
1616 ns->nr_running += rq->cfs.h_nr_running;
1617 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1618
1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1620 if (READ_ONCE(rq->numa_migrate_on) ||
1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1622 continue;
1623
1624 if (ns->idle_cpu == -1)
1625 ns->idle_cpu = cpu;
1626
1627 idle_core = numa_idle_core(idle_core, cpu);
1628 }
6499b1b2 1629 }
0621df31 1630 rcu_read_unlock();
6499b1b2
VG
1631
1632 ns->weight = cpumask_weight(cpumask_of_node(nid));
1633
1634 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1635
1636 if (idle_core >= 0)
1637 ns->idle_cpu = idle_core;
6499b1b2
VG
1638}
1639
fb13c7ee
MG
1640static void task_numa_assign(struct task_numa_env *env,
1641 struct task_struct *p, long imp)
1642{
a4739eca
SD
1643 struct rq *rq = cpu_rq(env->dst_cpu);
1644
5fb52dd9
MG
1645 /* Check if run-queue part of active NUMA balance. */
1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 int cpu;
1648 int start = env->dst_cpu;
1649
1650 /* Find alternative idle CPU. */
1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1652 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1654 continue;
1655 }
1656
1657 env->dst_cpu = cpu;
1658 rq = cpu_rq(env->dst_cpu);
1659 if (!xchg(&rq->numa_migrate_on, 1))
1660 goto assign;
1661 }
1662
1663 /* Failed to find an alternative idle CPU */
a4739eca 1664 return;
5fb52dd9 1665 }
a4739eca 1666
5fb52dd9 1667assign:
a4739eca
SD
1668 /*
1669 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 * found a better CPU to move/swap.
1671 */
5fb52dd9 1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1673 rq = cpu_rq(env->best_cpu);
1674 WRITE_ONCE(rq->numa_migrate_on, 0);
1675 }
1676
fb13c7ee
MG
1677 if (env->best_task)
1678 put_task_struct(env->best_task);
bac78573
ON
1679 if (p)
1680 get_task_struct(p);
fb13c7ee
MG
1681
1682 env->best_task = p;
1683 env->best_imp = imp;
1684 env->best_cpu = env->dst_cpu;
1685}
1686
28a21745 1687static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1688 struct task_numa_env *env)
1689{
e4991b24
RR
1690 long imb, old_imb;
1691 long orig_src_load, orig_dst_load;
28a21745
RR
1692 long src_capacity, dst_capacity;
1693
1694 /*
1695 * The load is corrected for the CPU capacity available on each node.
1696 *
1697 * src_load dst_load
1698 * ------------ vs ---------
1699 * src_capacity dst_capacity
1700 */
1701 src_capacity = env->src_stats.compute_capacity;
1702 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1703
5f95ba7a 1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1705
28a21745 1706 orig_src_load = env->src_stats.load;
e4991b24 1707 orig_dst_load = env->dst_stats.load;
28a21745 1708
5f95ba7a 1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1710
1711 /* Would this change make things worse? */
1712 return (imb > old_imb);
e63da036
RR
1713}
1714
6fd98e77
SD
1715/*
1716 * Maximum NUMA importance can be 1998 (2*999);
1717 * SMALLIMP @ 30 would be close to 1998/64.
1718 * Used to deter task migration.
1719 */
1720#define SMALLIMP 30
1721
fb13c7ee
MG
1722/*
1723 * This checks if the overall compute and NUMA accesses of the system would
1724 * be improved if the source tasks was migrated to the target dst_cpu taking
1725 * into account that it might be best if task running on the dst_cpu should
1726 * be exchanged with the source task
1727 */
a0f03b61 1728static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1729 long taskimp, long groupimp, bool maymove)
fb13c7ee 1730{
cb361d8c 1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1732 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1733 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1734 struct task_struct *cur;
28a21745 1735 long src_load, dst_load;
7bd95320 1736 int dist = env->dist;
cb361d8c
JH
1737 long moveimp = imp;
1738 long load;
a0f03b61 1739 bool stopsearch = false;
fb13c7ee 1740
a4739eca 1741 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1742 return false;
a4739eca 1743
fb13c7ee 1744 rcu_read_lock();
154abafc 1745 cur = rcu_dereference(dst_rq->curr);
bac78573 1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1747 cur = NULL;
1748
7af68335
PZ
1749 /*
1750 * Because we have preemption enabled we can get migrated around and
1751 * end try selecting ourselves (current == env->p) as a swap candidate.
1752 */
a0f03b61
MG
1753 if (cur == env->p) {
1754 stopsearch = true;
7af68335 1755 goto unlock;
a0f03b61 1756 }
7af68335 1757
305c1fac 1758 if (!cur) {
6fd98e77 1759 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1760 goto assign;
1761 else
1762 goto unlock;
1763 }
1764
88cca72c
MG
1765 /* Skip this swap candidate if cannot move to the source cpu. */
1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1767 goto unlock;
1768
1769 /*
1770 * Skip this swap candidate if it is not moving to its preferred
1771 * node and the best task is.
1772 */
1773 if (env->best_task &&
1774 env->best_task->numa_preferred_nid == env->src_nid &&
1775 cur->numa_preferred_nid != env->src_nid) {
1776 goto unlock;
1777 }
1778
fb13c7ee
MG
1779 /*
1780 * "imp" is the fault differential for the source task between the
1781 * source and destination node. Calculate the total differential for
1782 * the source task and potential destination task. The more negative
305c1fac 1783 * the value is, the more remote accesses that would be expected to
fb13c7ee 1784 * be incurred if the tasks were swapped.
88cca72c 1785 *
305c1fac
SD
1786 * If dst and source tasks are in the same NUMA group, or not
1787 * in any group then look only at task weights.
1788 */
cb361d8c
JH
1789 cur_ng = rcu_dereference(cur->numa_group);
1790 if (cur_ng == p_ng) {
305c1fac
SD
1791 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1792 task_weight(cur, env->dst_nid, dist);
887c290e 1793 /*
305c1fac
SD
1794 * Add some hysteresis to prevent swapping the
1795 * tasks within a group over tiny differences.
887c290e 1796 */
cb361d8c 1797 if (cur_ng)
305c1fac
SD
1798 imp -= imp / 16;
1799 } else {
1800 /*
1801 * Compare the group weights. If a task is all by itself
1802 * (not part of a group), use the task weight instead.
1803 */
cb361d8c 1804 if (cur_ng && p_ng)
305c1fac
SD
1805 imp += group_weight(cur, env->src_nid, dist) -
1806 group_weight(cur, env->dst_nid, dist);
1807 else
1808 imp += task_weight(cur, env->src_nid, dist) -
1809 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1810 }
1811
88cca72c
MG
1812 /* Discourage picking a task already on its preferred node */
1813 if (cur->numa_preferred_nid == env->dst_nid)
1814 imp -= imp / 16;
1815
1816 /*
1817 * Encourage picking a task that moves to its preferred node.
1818 * This potentially makes imp larger than it's maximum of
1819 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 * case, it does not matter.
1821 */
1822 if (cur->numa_preferred_nid == env->src_nid)
1823 imp += imp / 8;
1824
305c1fac 1825 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1826 imp = moveimp;
305c1fac 1827 cur = NULL;
fb13c7ee 1828 goto assign;
305c1fac 1829 }
fb13c7ee 1830
88cca72c
MG
1831 /*
1832 * Prefer swapping with a task moving to its preferred node over a
1833 * task that is not.
1834 */
1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1836 env->best_task->numa_preferred_nid != env->src_nid) {
1837 goto assign;
1838 }
1839
6fd98e77
SD
1840 /*
1841 * If the NUMA importance is less than SMALLIMP,
1842 * task migration might only result in ping pong
1843 * of tasks and also hurt performance due to cache
1844 * misses.
1845 */
1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1847 goto unlock;
1848
fb13c7ee
MG
1849 /*
1850 * In the overloaded case, try and keep the load balanced.
1851 */
305c1fac
SD
1852 load = task_h_load(env->p) - task_h_load(cur);
1853 if (!load)
1854 goto assign;
1855
e720fff6
PZ
1856 dst_load = env->dst_stats.load + load;
1857 src_load = env->src_stats.load - load;
fb13c7ee 1858
28a21745 1859 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1860 goto unlock;
1861
305c1fac 1862assign:
ff7db0bf 1863 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1864 if (!cur) {
ff7db0bf
MG
1865 int cpu = env->dst_stats.idle_cpu;
1866
1867 /* Nothing cached so current CPU went idle since the search. */
1868 if (cpu < 0)
1869 cpu = env->dst_cpu;
1870
10e2f1ac 1871 /*
ff7db0bf
MG
1872 * If the CPU is no longer truly idle and the previous best CPU
1873 * is, keep using it.
10e2f1ac 1874 */
ff7db0bf
MG
1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1876 idle_cpu(env->best_cpu)) {
1877 cpu = env->best_cpu;
1878 }
1879
ff7db0bf 1880 env->dst_cpu = cpu;
10e2f1ac 1881 }
ba7e5a27 1882
fb13c7ee 1883 task_numa_assign(env, cur, imp);
a0f03b61
MG
1884
1885 /*
1886 * If a move to idle is allowed because there is capacity or load
1887 * balance improves then stop the search. While a better swap
1888 * candidate may exist, a search is not free.
1889 */
1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1891 stopsearch = true;
1892
1893 /*
1894 * If a swap candidate must be identified and the current best task
1895 * moves its preferred node then stop the search.
1896 */
1897 if (!maymove && env->best_task &&
1898 env->best_task->numa_preferred_nid == env->src_nid) {
1899 stopsearch = true;
1900 }
fb13c7ee
MG
1901unlock:
1902 rcu_read_unlock();
a0f03b61
MG
1903
1904 return stopsearch;
fb13c7ee
MG
1905}
1906
887c290e
RR
1907static void task_numa_find_cpu(struct task_numa_env *env,
1908 long taskimp, long groupimp)
2c8a50aa 1909{
305c1fac 1910 bool maymove = false;
2c8a50aa
MG
1911 int cpu;
1912
305c1fac 1913 /*
fb86f5b2
MG
1914 * If dst node has spare capacity, then check if there is an
1915 * imbalance that would be overruled by the load balancer.
305c1fac 1916 */
fb86f5b2
MG
1917 if (env->dst_stats.node_type == node_has_spare) {
1918 unsigned int imbalance;
1919 int src_running, dst_running;
1920
1921 /*
1922 * Would movement cause an imbalance? Note that if src has
1923 * more running tasks that the imbalance is ignored as the
1924 * move improves the imbalance from the perspective of the
1925 * CPU load balancer.
1926 * */
1927 src_running = env->src_stats.nr_running - 1;
1928 dst_running = env->dst_stats.nr_running + 1;
1929 imbalance = max(0, dst_running - src_running);
1930 imbalance = adjust_numa_imbalance(imbalance, src_running);
1931
1932 /* Use idle CPU if there is no imbalance */
ff7db0bf 1933 if (!imbalance) {
fb86f5b2 1934 maymove = true;
ff7db0bf
MG
1935 if (env->dst_stats.idle_cpu >= 0) {
1936 env->dst_cpu = env->dst_stats.idle_cpu;
1937 task_numa_assign(env, NULL, 0);
1938 return;
1939 }
1940 }
fb86f5b2
MG
1941 } else {
1942 long src_load, dst_load, load;
1943 /*
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1946 */
1947 load = task_h_load(env->p);
1948 dst_load = env->dst_stats.load + load;
1949 src_load = env->src_stats.load - load;
1950 maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 }
305c1fac 1952
2c8a50aa
MG
1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 /* Skip this CPU if the source task cannot migrate */
3bd37062 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1956 continue;
1957
1958 env->dst_cpu = cpu;
a0f03b61
MG
1959 if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 break;
2c8a50aa
MG
1961 }
1962}
1963
58d081b5
MG
1964static int task_numa_migrate(struct task_struct *p)
1965{
58d081b5
MG
1966 struct task_numa_env env = {
1967 .p = p,
fb13c7ee 1968
58d081b5 1969 .src_cpu = task_cpu(p),
b32e86b4 1970 .src_nid = task_node(p),
fb13c7ee
MG
1971
1972 .imbalance_pct = 112,
1973
1974 .best_task = NULL,
1975 .best_imp = 0,
4142c3eb 1976 .best_cpu = -1,
58d081b5 1977 };
cb361d8c 1978 unsigned long taskweight, groupweight;
58d081b5 1979 struct sched_domain *sd;
cb361d8c
JH
1980 long taskimp, groupimp;
1981 struct numa_group *ng;
a4739eca 1982 struct rq *best_rq;
7bd95320 1983 int nid, ret, dist;
e6628d5b 1984
58d081b5 1985 /*
fb13c7ee
MG
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1988 *
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1991 * to satisfy here.
58d081b5
MG
1992 */
1993 rcu_read_lock();
fb13c7ee 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1995 if (sd)
1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1997 rcu_read_unlock();
1998
46a73e8a
RR
1999 /*
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2004 */
2005 if (unlikely(!sd)) {
8cd45eee 2006 sched_setnuma(p, task_node(p));
46a73e8a
RR
2007 return -EINVAL;
2008 }
2009
2c8a50aa 2010 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 taskweight = task_weight(p, env.src_nid, dist);
2013 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2018
a43455a1 2019 /* Try to find a spot on the preferred nid. */
2d4056fa 2020 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2021
9de05d48
RR
2022 /*
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2028 */
cb361d8c
JH
2029 ng = deref_curr_numa_group(p);
2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2031 for_each_online_node(nid) {
2032 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 continue;
58d081b5 2034
7bd95320 2035 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2036 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 dist != env.dist) {
2038 taskweight = task_weight(p, env.src_nid, dist);
2039 groupweight = group_weight(p, env.src_nid, dist);
2040 }
7bd95320 2041
83e1d2cd 2042 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2043 taskimp = task_weight(p, nid, dist) - taskweight;
2044 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2045 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2046 continue;
2047
7bd95320 2048 env.dist = dist;
2c8a50aa 2049 env.dst_nid = nid;
ff7db0bf 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2051 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2052 }
2053 }
2054
68d1b02a
RR
2055 /*
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2059 * settle down.
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2062 */
cb361d8c 2063 if (ng) {
db015dae
RR
2064 if (env.best_cpu == -1)
2065 nid = env.src_nid;
2066 else
8cd45eee 2067 nid = cpu_to_node(env.best_cpu);
db015dae 2068
8cd45eee
SD
2069 if (nid != p->numa_preferred_nid)
2070 sched_setnuma(p, nid);
db015dae
RR
2071 }
2072
2073 /* No better CPU than the current one was found. */
f22aef4a 2074 if (env.best_cpu == -1) {
b2b2042b 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2076 return -EAGAIN;
f22aef4a 2077 }
0ec8aa00 2078
a4739eca 2079 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2080 if (env.best_task == NULL) {
286549dc 2081 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2083 if (ret != 0)
b2b2042b 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2085 return ret;
2086 }
2087
0ad4e3df 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2090
286549dc 2091 if (ret != 0)
b2b2042b 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2093 put_task_struct(env.best_task);
2094 return ret;
e6628d5b
MG
2095}
2096
6b9a7460
MG
2097/* Attempt to migrate a task to a CPU on the preferred node. */
2098static void numa_migrate_preferred(struct task_struct *p)
2099{
5085e2a3
RR
2100 unsigned long interval = HZ;
2101
2739d3ee 2102 /* This task has no NUMA fault statistics yet */
98fa15f3 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2104 return;
2105
2739d3ee 2106 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2108 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2109
2110 /* Success if task is already running on preferred CPU */
de1b301a 2111 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2112 return;
2113
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2115 task_numa_migrate(p);
6b9a7460
MG
2116}
2117
20e07dea 2118/*
4142c3eb 2119 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2122 * located.
20e07dea 2123 */
4142c3eb 2124static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2125{
2126 unsigned long faults, max_faults = 0;
4142c3eb 2127 int nid, active_nodes = 0;
20e07dea
RR
2128
2129 for_each_online_node(nid) {
2130 faults = group_faults_cpu(numa_group, nid);
2131 if (faults > max_faults)
2132 max_faults = faults;
2133 }
2134
2135 for_each_online_node(nid) {
2136 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2137 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 active_nodes++;
20e07dea 2139 }
4142c3eb
RR
2140
2141 numa_group->max_faults_cpu = max_faults;
2142 numa_group->active_nodes = active_nodes;
20e07dea
RR
2143}
2144
04bb2f94
RR
2145/*
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2151 */
2152#define NUMA_PERIOD_SLOTS 10
a22b4b01 2153#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2154
2155/*
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2160 */
2161static void update_task_scan_period(struct task_struct *p,
2162 unsigned long shared, unsigned long private)
2163{
2164 unsigned int period_slot;
37ec97de 2165 int lr_ratio, ps_ratio;
04bb2f94
RR
2166 int diff;
2167
2168 unsigned long remote = p->numa_faults_locality[0];
2169 unsigned long local = p->numa_faults_locality[1];
2170
2171 /*
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
074c2381
MG
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
04bb2f94 2177 */
074c2381 2178 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2179 p->numa_scan_period = min(p->numa_scan_period_max,
2180 p->numa_scan_period << 1);
2181
2182 p->mm->numa_next_scan = jiffies +
2183 msecs_to_jiffies(p->numa_scan_period);
2184
2185 return;
2186 }
2187
2188 /*
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 */
2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197
2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 /*
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2202 */
2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 if (!slot)
2205 slot = 1;
2206 diff = slot * period_slot;
2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 /*
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2212 */
2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2214 if (!slot)
2215 slot = 1;
2216 diff = slot * period_slot;
2217 } else {
04bb2f94 2218 /*
37ec97de
RR
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
04bb2f94 2222 */
37ec97de
RR
2223 int ratio = max(lr_ratio, ps_ratio);
2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2225 }
2226
2227 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 task_scan_min(p), task_scan_max(p));
2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230}
2231
7e2703e6
RR
2232/*
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2238 */
2239static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240{
2241 u64 runtime, delta, now;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now = p->se.exec_start;
2244 runtime = p->se.sum_exec_runtime;
2245
2246 if (p->last_task_numa_placement) {
2247 delta = runtime - p->last_sum_exec_runtime;
2248 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2249
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64)*period < 0))
2252 *period = 0;
7e2703e6 2253 } else {
c7b50216 2254 delta = p->se.avg.load_sum;
9d89c257 2255 *period = LOAD_AVG_MAX;
7e2703e6
RR
2256 }
2257
2258 p->last_sum_exec_runtime = runtime;
2259 p->last_task_numa_placement = now;
2260
2261 return delta;
2262}
2263
54009416
RR
2264/*
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2268 */
2269static int preferred_group_nid(struct task_struct *p, int nid)
2270{
2271 nodemask_t nodes;
2272 int dist;
2273
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type == NUMA_DIRECT)
2276 return nid;
2277
2278 /*
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2282 */
2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 unsigned long score, max_score = 0;
2285 int node, max_node = nid;
2286
2287 dist = sched_max_numa_distance;
2288
2289 for_each_online_node(node) {
2290 score = group_weight(p, node, dist);
2291 if (score > max_score) {
2292 max_score = score;
2293 max_node = node;
2294 }
2295 }
2296 return max_node;
2297 }
2298
2299 /*
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2307 */
2308 nodes = node_online_map;
2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 unsigned long max_faults = 0;
81907478 2311 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2312 int a, b;
2313
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist))
2316 continue;
2317
2318 for_each_node_mask(a, nodes) {
2319 unsigned long faults = 0;
2320 nodemask_t this_group;
2321 nodes_clear(this_group);
2322
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b, nodes) {
2325 if (node_distance(a, b) < dist) {
2326 faults += group_faults(p, b);
2327 node_set(b, this_group);
2328 node_clear(b, nodes);
2329 }
2330 }
2331
2332 /* Remember the top group. */
2333 if (faults > max_faults) {
2334 max_faults = faults;
2335 max_group = this_group;
2336 /*
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2340 */
2341 nid = a;
2342 }
2343 }
2344 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2345 if (!max_faults)
2346 break;
54009416
RR
2347 nodes = max_group;
2348 }
2349 return nid;
2350}
2351
cbee9f88
PZ
2352static void task_numa_placement(struct task_struct *p)
2353{
98fa15f3 2354 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2355 unsigned long max_faults = 0;
04bb2f94 2356 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2357 unsigned long total_faults;
2358 u64 runtime, period;
7dbd13ed 2359 spinlock_t *group_lock = NULL;
cb361d8c 2360 struct numa_group *ng;
cbee9f88 2361
7e5a2c17
JL
2362 /*
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2366 */
316c1608 2367 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2368 if (p->numa_scan_seq == seq)
2369 return;
2370 p->numa_scan_seq = seq;
598f0ec0 2371 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2372
7e2703e6
RR
2373 total_faults = p->numa_faults_locality[0] +
2374 p->numa_faults_locality[1];
2375 runtime = numa_get_avg_runtime(p, &period);
2376
7dbd13ed 2377 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2378 ng = deref_curr_numa_group(p);
2379 if (ng) {
2380 group_lock = &ng->lock;
60e69eed 2381 spin_lock_irq(group_lock);
7dbd13ed
MG
2382 }
2383
688b7585
MG
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid) {
44dba3d5
IM
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2388 unsigned long faults = 0, group_faults = 0;
44dba3d5 2389 int priv;
745d6147 2390
be1e4e76 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2392 long diff, f_diff, f_weight;
8c8a743c 2393
44dba3d5
IM
2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2398
ac8e895b 2399 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 fault_types[priv] += p->numa_faults[membuf_idx];
2402 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2403
7e2703e6
RR
2404 /*
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2410 */
2411 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2413 (total_faults + 1);
44dba3d5
IM
2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2416
44dba3d5
IM
2417 p->numa_faults[mem_idx] += diff;
2418 p->numa_faults[cpu_idx] += f_diff;
2419 faults += p->numa_faults[mem_idx];
83e1d2cd 2420 p->total_numa_faults += diff;
cb361d8c 2421 if (ng) {
44dba3d5
IM
2422 /*
2423 * safe because we can only change our own group
2424 *
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2428 */
cb361d8c
JH
2429 ng->faults[mem_idx] += diff;
2430 ng->faults_cpu[mem_idx] += f_diff;
2431 ng->total_faults += diff;
2432 group_faults += ng->faults[mem_idx];
8c8a743c 2433 }
ac8e895b
MG
2434 }
2435
cb361d8c 2436 if (!ng) {
f03bb676
SD
2437 if (faults > max_faults) {
2438 max_faults = faults;
2439 max_nid = nid;
2440 }
2441 } else if (group_faults > max_faults) {
2442 max_faults = group_faults;
688b7585
MG
2443 max_nid = nid;
2444 }
83e1d2cd
MG
2445 }
2446
cb361d8c
JH
2447 if (ng) {
2448 numa_group_count_active_nodes(ng);
60e69eed 2449 spin_unlock_irq(group_lock);
f03bb676 2450 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2451 }
2452
bb97fc31
RR
2453 if (max_faults) {
2454 /* Set the new preferred node */
2455 if (max_nid != p->numa_preferred_nid)
2456 sched_setnuma(p, max_nid);
3a7053b3 2457 }
30619c89
SD
2458
2459 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2460}
2461
8c8a743c
PZ
2462static inline int get_numa_group(struct numa_group *grp)
2463{
c45a7795 2464 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2465}
2466
2467static inline void put_numa_group(struct numa_group *grp)
2468{
c45a7795 2469 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2470 kfree_rcu(grp, rcu);
2471}
2472
3e6a9418
MG
2473static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 int *priv)
8c8a743c
PZ
2475{
2476 struct numa_group *grp, *my_grp;
2477 struct task_struct *tsk;
2478 bool join = false;
2479 int cpu = cpupid_to_cpu(cpupid);
2480 int i;
2481
cb361d8c 2482 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2483 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2484 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2485
2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 if (!grp)
2488 return;
2489
c45a7795 2490 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2491 grp->active_nodes = 1;
2492 grp->max_faults_cpu = 0;
8c8a743c 2493 spin_lock_init(&grp->lock);
e29cf08b 2494 grp->gid = p->pid;
50ec8a40 2495 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 nr_node_ids;
8c8a743c 2498
be1e4e76 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2500 grp->faults[i] = p->numa_faults[i];
8c8a743c 2501
989348b5 2502 grp->total_faults = p->total_numa_faults;
83e1d2cd 2503
8c8a743c
PZ
2504 grp->nr_tasks++;
2505 rcu_assign_pointer(p->numa_group, grp);
2506 }
2507
2508 rcu_read_lock();
316c1608 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2510
2511 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2512 goto no_join;
8c8a743c
PZ
2513
2514 grp = rcu_dereference(tsk->numa_group);
2515 if (!grp)
3354781a 2516 goto no_join;
8c8a743c 2517
cb361d8c 2518 my_grp = deref_curr_numa_group(p);
8c8a743c 2519 if (grp == my_grp)
3354781a 2520 goto no_join;
8c8a743c
PZ
2521
2522 /*
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2525 */
2526 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2527 goto no_join;
8c8a743c
PZ
2528
2529 /*
2530 * Tie-break on the grp address.
2531 */
2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2533 goto no_join;
8c8a743c 2534
dabe1d99
RR
2535 /* Always join threads in the same process. */
2536 if (tsk->mm == current->mm)
2537 join = true;
2538
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags & TNF_SHARED)
2541 join = true;
8c8a743c 2542
3e6a9418
MG
2543 /* Update priv based on whether false sharing was detected */
2544 *priv = !join;
2545
dabe1d99 2546 if (join && !get_numa_group(grp))
3354781a 2547 goto no_join;
8c8a743c 2548
8c8a743c
PZ
2549 rcu_read_unlock();
2550
2551 if (!join)
2552 return;
2553
60e69eed
MG
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2556
be1e4e76 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2558 my_grp->faults[i] -= p->numa_faults[i];
2559 grp->faults[i] += p->numa_faults[i];
8c8a743c 2560 }
989348b5
MG
2561 my_grp->total_faults -= p->total_numa_faults;
2562 grp->total_faults += p->total_numa_faults;
8c8a743c 2563
8c8a743c
PZ
2564 my_grp->nr_tasks--;
2565 grp->nr_tasks++;
2566
2567 spin_unlock(&my_grp->lock);
60e69eed 2568 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2569
2570 rcu_assign_pointer(p->numa_group, grp);
2571
2572 put_numa_group(my_grp);
3354781a
PZ
2573 return;
2574
2575no_join:
2576 rcu_read_unlock();
2577 return;
8c8a743c
PZ
2578}
2579
16d51a59
JH
2580/*
2581 * Get rid of NUMA staticstics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2586 */
2587void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2588{
cb361d8c
JH
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2591 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2592 unsigned long flags;
2593 int i;
8c8a743c 2594
16d51a59
JH
2595 if (!numa_faults)
2596 return;
2597
8c8a743c 2598 if (grp) {
e9dd685c 2599 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2601 grp->faults[i] -= p->numa_faults[i];
989348b5 2602 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2603
8c8a743c 2604 grp->nr_tasks--;
e9dd685c 2605 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2606 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2607 put_numa_group(grp);
2608 }
2609
16d51a59
JH
2610 if (final) {
2611 p->numa_faults = NULL;
2612 kfree(numa_faults);
2613 } else {
2614 p->total_numa_faults = 0;
2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 numa_faults[i] = 0;
2617 }
8c8a743c
PZ
2618}
2619
cbee9f88
PZ
2620/*
2621 * Got a PROT_NONE fault for a page on @node.
2622 */
58b46da3 2623void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2624{
2625 struct task_struct *p = current;
6688cc05 2626 bool migrated = flags & TNF_MIGRATED;
58b46da3 2627 int cpu_node = task_node(current);
792568ec 2628 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2629 struct numa_group *ng;
ac8e895b 2630 int priv;
cbee9f88 2631
2a595721 2632 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2633 return;
2634
9ff1d9ff
MG
2635 /* for example, ksmd faulting in a user's mm */
2636 if (!p->mm)
2637 return;
2638
f809ca9a 2639 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2640 if (unlikely(!p->numa_faults)) {
2641 int size = sizeof(*p->numa_faults) *
be1e4e76 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2643
44dba3d5
IM
2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 if (!p->numa_faults)
f809ca9a 2646 return;
745d6147 2647
83e1d2cd 2648 p->total_numa_faults = 0;
04bb2f94 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2650 }
cbee9f88 2651
8c8a743c
PZ
2652 /*
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2655 */
2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 priv = 1;
2658 } else {
2659 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2660 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2661 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2662 }
2663
792568ec
RR
2664 /*
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2669 */
cb361d8c 2670 ng = deref_curr_numa_group(p);
4142c3eb
RR
2671 if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 numa_is_active_node(cpu_node, ng) &&
2673 numa_is_active_node(mem_node, ng))
792568ec
RR
2674 local = 1;
2675
2739d3ee 2676 /*
e1ff516a
YW
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2739d3ee 2679 */
b6a60cf3
SD
2680 if (time_after(jiffies, p->numa_migrate_retry)) {
2681 task_numa_placement(p);
6b9a7460 2682 numa_migrate_preferred(p);
b6a60cf3 2683 }
6b9a7460 2684
b32e86b4
IM
2685 if (migrated)
2686 p->numa_pages_migrated += pages;
074c2381
MG
2687 if (flags & TNF_MIGRATE_FAIL)
2688 p->numa_faults_locality[2] += pages;
b32e86b4 2689
44dba3d5
IM
2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2692 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2693}
2694
6e5fb223
PZ
2695static void reset_ptenuma_scan(struct task_struct *p)
2696{
7e5a2c17
JL
2697 /*
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2704 */
316c1608 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2706 p->mm->numa_scan_offset = 0;
2707}
2708
cbee9f88
PZ
2709/*
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2712 */
9434f9f5 2713static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2714{
2715 unsigned long migrate, next_scan, now = jiffies;
2716 struct task_struct *p = current;
2717 struct mm_struct *mm = p->mm;
51170840 2718 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2719 struct vm_area_struct *vma;
9f40604c 2720 unsigned long start, end;
598f0ec0 2721 unsigned long nr_pte_updates = 0;
4620f8c1 2722 long pages, virtpages;
cbee9f88 2723
9148a3a1 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2725
b34920d4 2726 work->next = work;
cbee9f88
PZ
2727 /*
2728 * Who cares about NUMA placement when they're dying.
2729 *
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2733 * work.
2734 */
2735 if (p->flags & PF_EXITING)
2736 return;
2737
930aa174 2738 if (!mm->numa_next_scan) {
7e8d16b6
MG
2739 mm->numa_next_scan = now +
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2741 }
2742
cbee9f88
PZ
2743 /*
2744 * Enforce maximal scan/migration frequency..
2745 */
2746 migrate = mm->numa_next_scan;
2747 if (time_before(now, migrate))
2748 return;
2749
598f0ec0
MG
2750 if (p->numa_scan_period == 0) {
2751 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2752 p->numa_scan_period = task_scan_start(p);
598f0ec0 2753 }
cbee9f88 2754
fb003b80 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 return;
2758
19a78d11
PZ
2759 /*
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2762 */
2763 p->node_stamp += 2 * TICK_NSEC;
2764
9f40604c
MG
2765 start = mm->numa_scan_offset;
2766 pages = sysctl_numa_balancing_scan_size;
2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2768 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2769 if (!pages)
2770 return;
cbee9f88 2771
4620f8c1 2772
d8ed45c5 2773 if (!mmap_read_trylock(mm))
8655d549 2774 return;
9f40604c 2775 vma = find_vma(mm, start);
6e5fb223
PZ
2776 if (!vma) {
2777 reset_ptenuma_scan(p);
9f40604c 2778 start = 0;
6e5fb223
PZ
2779 vma = mm->mmap;
2780 }
9f40604c 2781 for (; vma; vma = vma->vm_next) {
6b79c57b 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2784 continue;
6b79c57b 2785 }
6e5fb223 2786
4591ce4f
MG
2787 /*
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2792 */
2793 if (!vma->vm_mm ||
2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 continue;
2796
3c67f474
MG
2797 /*
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2800 */
3122e80e 2801 if (!vma_is_accessible(vma))
3c67f474 2802 continue;
4591ce4f 2803
9f40604c
MG
2804 do {
2805 start = max(start, vma->vm_start);
2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 end = min(end, vma->vm_end);
4620f8c1 2808 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2809
2810 /*
4620f8c1
RR
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2816 * areas faster.
598f0ec0
MG
2817 */
2818 if (nr_pte_updates)
2819 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2820 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2821
9f40604c 2822 start = end;
4620f8c1 2823 if (pages <= 0 || virtpages <= 0)
9f40604c 2824 goto out;
3cf1962c
RR
2825
2826 cond_resched();
9f40604c 2827 } while (end != vma->vm_end);
cbee9f88 2828 }
6e5fb223 2829
9f40604c 2830out:
6e5fb223 2831 /*
c69307d5
PZ
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
6e5fb223
PZ
2836 */
2837 if (vma)
9f40604c 2838 mm->numa_scan_offset = start;
6e5fb223
PZ
2839 else
2840 reset_ptenuma_scan(p);
d8ed45c5 2841 mmap_read_unlock(mm);
51170840
RR
2842
2843 /*
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2848 */
2849 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 u64 diff = p->se.sum_exec_runtime - runtime;
2851 p->node_stamp += 32 * diff;
2852 }
cbee9f88
PZ
2853}
2854
d35927a1
VS
2855void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856{
2857 int mm_users = 0;
2858 struct mm_struct *mm = p->mm;
2859
2860 if (mm) {
2861 mm_users = atomic_read(&mm->mm_users);
2862 if (mm_users == 1) {
2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 mm->numa_scan_seq = 0;
2865 }
2866 }
2867 p->node_stamp = 0;
2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2870 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2871 p->numa_work.next = &p->numa_work;
2872 p->numa_faults = NULL;
2873 RCU_INIT_POINTER(p->numa_group, NULL);
2874 p->last_task_numa_placement = 0;
2875 p->last_sum_exec_runtime = 0;
2876
b34920d4
VS
2877 init_task_work(&p->numa_work, task_numa_work);
2878
d35927a1
VS
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags & CLONE_VM)) {
2881 p->numa_preferred_nid = NUMA_NO_NODE;
2882 return;
2883 }
2884
2885 /*
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2888 */
2889 if (mm) {
2890 unsigned int delay;
2891
2892 delay = min_t(unsigned int, task_scan_max(current),
2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 delay += 2 * TICK_NSEC;
2895 p->node_stamp = delay;
2896 }
2897}
2898
cbee9f88
PZ
2899/*
2900 * Drive the periodic memory faults..
2901 */
b1546edc 2902static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2903{
2904 struct callback_head *work = &curr->numa_work;
2905 u64 period, now;
2906
2907 /*
2908 * We don't care about NUMA placement if we don't have memory.
2909 */
18f855e5 2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2911 return;
2912
2913 /*
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2917 * NUMA placement.
2918 */
2919 now = curr->se.sum_exec_runtime;
2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921
25b3e5a3 2922 if (now > curr->node_stamp + period) {
4b96a29b 2923 if (!curr->node_stamp)
b5dd77c8 2924 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2925 curr->node_stamp += period;
cbee9f88 2926
b34920d4 2927 if (!time_before(jiffies, curr->mm->numa_next_scan))
cbee9f88 2928 task_work_add(curr, work, true);
cbee9f88
PZ
2929 }
2930}
3fed382b 2931
3f9672ba
SD
2932static void update_scan_period(struct task_struct *p, int new_cpu)
2933{
2934 int src_nid = cpu_to_node(task_cpu(p));
2935 int dst_nid = cpu_to_node(new_cpu);
2936
05cbdf4f
MG
2937 if (!static_branch_likely(&sched_numa_balancing))
2938 return;
2939
3f9672ba
SD
2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 return;
2942
05cbdf4f
MG
2943 if (src_nid == dst_nid)
2944 return;
2945
2946 /*
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2950 */
2951 if (p->numa_scan_seq) {
2952 /*
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2956 */
2957 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2958 (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2960 return;
2961 }
2962
2963 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2964}
2965
cbee9f88
PZ
2966#else
2967static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968{
2969}
0ec8aa00
PZ
2970
2971static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972{
2973}
2974
2975static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976{
2977}
3fed382b 2978
3f9672ba
SD
2979static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980{
2981}
2982
cbee9f88
PZ
2983#endif /* CONFIG_NUMA_BALANCING */
2984
30cfdcfc
DA
2985static void
2986account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987{
2988 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2989#ifdef CONFIG_SMP
0ec8aa00
PZ
2990 if (entity_is_task(se)) {
2991 struct rq *rq = rq_of(cfs_rq);
2992
2993 account_numa_enqueue(rq, task_of(se));
2994 list_add(&se->group_node, &rq->cfs_tasks);
2995 }
367456c7 2996#endif
30cfdcfc 2997 cfs_rq->nr_running++;
30cfdcfc
DA
2998}
2999
3000static void
3001account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
3003 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3004#ifdef CONFIG_SMP
0ec8aa00
PZ
3005 if (entity_is_task(se)) {
3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3007 list_del_init(&se->group_node);
0ec8aa00 3008 }
bfdb198c 3009#endif
30cfdcfc 3010 cfs_rq->nr_running--;
30cfdcfc
DA
3011}
3012
8d5b9025
PZ
3013/*
3014 * Signed add and clamp on underflow.
3015 *
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3018 * values.
3019 */
3020#define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3024 \
3025 res = var + val; \
3026 \
3027 if (val < 0 && res > var) \
3028 res = 0; \
3029 \
3030 WRITE_ONCE(*ptr, res); \
3031} while (0)
3032
3033/*
3034 * Unsigned subtract and clamp on underflow.
3035 *
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3038 * values.
3039 */
3040#define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3044 res = var - val; \
3045 if (res > var) \
3046 res = 0; \
3047 WRITE_ONCE(*ptr, res); \
3048} while (0)
3049
b5c0ce7b
PB
3050/*
3051 * Remove and clamp on negative, from a local variable.
3052 *
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3055 */
3056#define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3059} while (0)
3060
8d5b9025 3061#ifdef CONFIG_SMP
8d5b9025
PZ
3062static inline void
3063enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064{
3065 cfs_rq->avg.load_avg += se->avg.load_avg;
3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067}
3068
3069static inline void
3070dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071{
3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3074}
3075#else
3076static inline void
8d5b9025
PZ
3077enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078static inline void
3079dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080#endif
3081
9059393e 3082static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3083 unsigned long weight)
9059393e
VG
3084{
3085 if (se->on_rq) {
3086 /* commit outstanding execution time */
3087 if (cfs_rq->curr == se)
3088 update_curr(cfs_rq);
3089 account_entity_dequeue(cfs_rq, se);
9059393e
VG
3090 }
3091 dequeue_load_avg(cfs_rq, se);
3092
3093 update_load_set(&se->load, weight);
3094
3095#ifdef CONFIG_SMP
1ea6c46a 3096 do {
87e867b4 3097 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3098
3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3100 } while (0);
9059393e
VG
3101#endif
3102
3103 enqueue_load_avg(cfs_rq, se);
0dacee1b 3104 if (se->on_rq)
9059393e 3105 account_entity_enqueue(cfs_rq, se);
0dacee1b 3106
9059393e
VG
3107}
3108
3109void reweight_task(struct task_struct *p, int prio)
3110{
3111 struct sched_entity *se = &p->se;
3112 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3113 struct load_weight *load = &se->load;
3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3115
0dacee1b 3116 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3117 load->inv_weight = sched_prio_to_wmult[prio];
3118}
3119
3ff6dcac 3120#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3121#ifdef CONFIG_SMP
cef27403
PZ
3122/*
3123 * All this does is approximate the hierarchical proportion which includes that
3124 * global sum we all love to hate.
3125 *
3126 * That is, the weight of a group entity, is the proportional share of the
3127 * group weight based on the group runqueue weights. That is:
3128 *
3129 * tg->weight * grq->load.weight
3130 * ge->load.weight = ----------------------------- (1)
3131 * \Sum grq->load.weight
3132 *
3133 * Now, because computing that sum is prohibitively expensive to compute (been
3134 * there, done that) we approximate it with this average stuff. The average
3135 * moves slower and therefore the approximation is cheaper and more stable.
3136 *
3137 * So instead of the above, we substitute:
3138 *
3139 * grq->load.weight -> grq->avg.load_avg (2)
3140 *
3141 * which yields the following:
3142 *
3143 * tg->weight * grq->avg.load_avg
3144 * ge->load.weight = ------------------------------ (3)
3145 * tg->load_avg
3146 *
3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3148 *
3149 * That is shares_avg, and it is right (given the approximation (2)).
3150 *
3151 * The problem with it is that because the average is slow -- it was designed
3152 * to be exactly that of course -- this leads to transients in boundary
3153 * conditions. In specific, the case where the group was idle and we start the
3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155 * yielding bad latency etc..
3156 *
3157 * Now, in that special case (1) reduces to:
3158 *
3159 * tg->weight * grq->load.weight
17de4ee0 3160 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3161 * grp->load.weight
3162 *
3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3164 *
3165 * So what we do is modify our approximation (3) to approach (4) in the (near)
3166 * UP case, like:
3167 *
3168 * ge->load.weight =
3169 *
3170 * tg->weight * grq->load.weight
3171 * --------------------------------------------------- (5)
3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3173 *
17de4ee0
PZ
3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3176 *
3177 *
3178 * tg->weight * grq->load.weight
3179 * ge->load.weight = ----------------------------- (6)
3180 * tg_load_avg'
3181 *
3182 * Where:
3183 *
3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3186 *
3187 * And that is shares_weight and is icky. In the (near) UP case it approaches
3188 * (4) while in the normal case it approaches (3). It consistently
3189 * overestimates the ge->load.weight and therefore:
3190 *
3191 * \Sum ge->load.weight >= tg->weight
3192 *
3193 * hence icky!
3194 */
2c8e4dce 3195static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3196{
7c80cfc9
PZ
3197 long tg_weight, tg_shares, load, shares;
3198 struct task_group *tg = cfs_rq->tg;
3199
3200 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3201
3d4b60d3 3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3203
ea1dc6fc 3204 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3205
ea1dc6fc
PZ
3206 /* Ensure tg_weight >= load */
3207 tg_weight -= cfs_rq->tg_load_avg_contrib;
3208 tg_weight += load;
3ff6dcac 3209
7c80cfc9 3210 shares = (tg_shares * load);
cf5f0acf
PZ
3211 if (tg_weight)
3212 shares /= tg_weight;
3ff6dcac 3213
b8fd8423
DE
3214 /*
3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 * of a group with small tg->shares value. It is a floor value which is
3217 * assigned as a minimum load.weight to the sched_entity representing
3218 * the group on a CPU.
3219 *
3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3224 * instead of 0.
3225 */
7c80cfc9 3226 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3227}
387f77cc 3228#endif /* CONFIG_SMP */
ea1dc6fc 3229
82958366
PT
3230static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3231
1ea6c46a
PZ
3232/*
3233 * Recomputes the group entity based on the current state of its group
3234 * runqueue.
3235 */
3236static void update_cfs_group(struct sched_entity *se)
2069dd75 3237{
1ea6c46a 3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3239 long shares;
2069dd75 3240
1ea6c46a 3241 if (!gcfs_rq)
89ee048f
VG
3242 return;
3243
1ea6c46a 3244 if (throttled_hierarchy(gcfs_rq))
2069dd75 3245 return;
89ee048f 3246
3ff6dcac 3247#ifndef CONFIG_SMP
0dacee1b 3248 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3249
3250 if (likely(se->load.weight == shares))
3ff6dcac 3251 return;
7c80cfc9 3252#else
2c8e4dce 3253 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3254#endif
2069dd75 3255
0dacee1b 3256 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3257}
89ee048f 3258
2069dd75 3259#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3260static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3261{
3262}
3263#endif /* CONFIG_FAIR_GROUP_SCHED */
3264
ea14b57e 3265static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3266{
43964409
LT
3267 struct rq *rq = rq_of(cfs_rq);
3268
a4f9a0e5 3269 if (&rq->cfs == cfs_rq) {
a030d738
VK
3270 /*
3271 * There are a few boundary cases this might miss but it should
3272 * get called often enough that that should (hopefully) not be
9783be2c 3273 * a real problem.
a030d738
VK
3274 *
3275 * It will not get called when we go idle, because the idle
3276 * thread is a different class (!fair), nor will the utilization
3277 * number include things like RT tasks.
3278 *
3279 * As is, the util number is not freq-invariant (we'd have to
3280 * implement arch_scale_freq_capacity() for that).
3281 *
3282 * See cpu_util().
3283 */
ea14b57e 3284 cpufreq_update_util(rq, flags);
a030d738
VK
3285 }
3286}
3287
141965c7 3288#ifdef CONFIG_SMP
c566e8e9 3289#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3290/**
3291 * update_tg_load_avg - update the tg's load avg
3292 * @cfs_rq: the cfs_rq whose avg changed
3293 * @force: update regardless of how small the difference
3294 *
3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296 * However, because tg->load_avg is a global value there are performance
3297 * considerations.
3298 *
3299 * In order to avoid having to look at the other cfs_rq's, we use a
3300 * differential update where we store the last value we propagated. This in
3301 * turn allows skipping updates if the differential is 'small'.
3302 *
815abf5a 3303 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3304 */
9d89c257 3305static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3306{
9d89c257 3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3308
aa0b7ae0
WL
3309 /*
3310 * No need to update load_avg for root_task_group as it is not used.
3311 */
3312 if (cfs_rq->tg == &root_task_group)
3313 return;
3314
9d89c257
YD
3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3316 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3318 }
8165e145 3319}
f5f9739d 3320
ad936d86 3321/*
97fb7a0a 3322 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3323 * caller only guarantees p->pi_lock is held; no other assumptions,
3324 * including the state of rq->lock, should be made.
3325 */
3326void set_task_rq_fair(struct sched_entity *se,
3327 struct cfs_rq *prev, struct cfs_rq *next)
3328{
0ccb977f
PZ
3329 u64 p_last_update_time;
3330 u64 n_last_update_time;
3331
ad936d86
BP
3332 if (!sched_feat(ATTACH_AGE_LOAD))
3333 return;
3334
3335 /*
3336 * We are supposed to update the task to "current" time, then its up to
3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 * getting what current time is, so simply throw away the out-of-date
3339 * time. This will result in the wakee task is less decayed, but giving
3340 * the wakee more load sounds not bad.
3341 */
0ccb977f
PZ
3342 if (!(se->avg.last_update_time && prev))
3343 return;
ad936d86
BP
3344
3345#ifndef CONFIG_64BIT
0ccb977f 3346 {
ad936d86
BP
3347 u64 p_last_update_time_copy;
3348 u64 n_last_update_time_copy;
3349
3350 do {
3351 p_last_update_time_copy = prev->load_last_update_time_copy;
3352 n_last_update_time_copy = next->load_last_update_time_copy;
3353
3354 smp_rmb();
3355
3356 p_last_update_time = prev->avg.last_update_time;
3357 n_last_update_time = next->avg.last_update_time;
3358
3359 } while (p_last_update_time != p_last_update_time_copy ||
3360 n_last_update_time != n_last_update_time_copy);
0ccb977f 3361 }
ad936d86 3362#else
0ccb977f
PZ
3363 p_last_update_time = prev->avg.last_update_time;
3364 n_last_update_time = next->avg.last_update_time;
ad936d86 3365#endif
23127296 3366 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3367 se->avg.last_update_time = n_last_update_time;
ad936d86 3368}
09a43ace 3369
0e2d2aaa
PZ
3370
3371/*
3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373 * propagate its contribution. The key to this propagation is the invariant
3374 * that for each group:
3375 *
3376 * ge->avg == grq->avg (1)
3377 *
3378 * _IFF_ we look at the pure running and runnable sums. Because they
3379 * represent the very same entity, just at different points in the hierarchy.
3380 *
9f683953
VG
3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382 * and simply copies the running/runnable sum over (but still wrong, because
3383 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3384 *
0dacee1b 3385 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3386 *
3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3388 *
3389 * And since, like util, the runnable part should be directly transferable,
3390 * the following would _appear_ to be the straight forward approach:
3391 *
a4c3c049 3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3393 *
3394 * And per (1) we have:
3395 *
a4c3c049 3396 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3397 *
3398 * Which gives:
3399 *
3400 * ge->load.weight * grq->avg.load_avg
3401 * ge->avg.load_avg = ----------------------------------- (4)
3402 * grq->load.weight
3403 *
3404 * Except that is wrong!
3405 *
3406 * Because while for entities historical weight is not important and we
3407 * really only care about our future and therefore can consider a pure
3408 * runnable sum, runqueues can NOT do this.
3409 *
3410 * We specifically want runqueues to have a load_avg that includes
3411 * historical weights. Those represent the blocked load, the load we expect
3412 * to (shortly) return to us. This only works by keeping the weights as
3413 * integral part of the sum. We therefore cannot decompose as per (3).
3414 *
a4c3c049
VG
3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418 * runnable section of these tasks overlap (or not). If they were to perfectly
3419 * align the rq as a whole would be runnable 2/3 of the time. If however we
3420 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3421 *
a4c3c049 3422 * So we'll have to approximate.. :/
0e2d2aaa 3423 *
a4c3c049 3424 * Given the constraint:
0e2d2aaa 3425 *
a4c3c049 3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3427 *
a4c3c049
VG
3428 * We can construct a rule that adds runnable to a rq by assuming minimal
3429 * overlap.
0e2d2aaa 3430 *
a4c3c049 3431 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3432 *
a4c3c049 3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3434 *
a4c3c049 3435 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3436 *
0e2d2aaa
PZ
3437 */
3438
09a43ace 3439static inline void
0e2d2aaa 3440update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3441{
09a43ace 3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3443 u32 divider;
09a43ace
VG
3444
3445 /* Nothing to update */
3446 if (!delta)
3447 return;
3448
87e867b4
VG
3449 /*
3450 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3451 * See ___update_load_avg() for details.
3452 */
3453 divider = get_pelt_divider(&cfs_rq->avg);
3454
09a43ace
VG
3455 /* Set new sched_entity's utilization */
3456 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3457 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3458
3459 /* Update parent cfs_rq utilization */
3460 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3461 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3462}
3463
9f683953
VG
3464static inline void
3465update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3466{
3467 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3468 u32 divider;
9f683953
VG
3469
3470 /* Nothing to update */
3471 if (!delta)
3472 return;
3473
87e867b4
VG
3474 /*
3475 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3476 * See ___update_load_avg() for details.
3477 */
3478 divider = get_pelt_divider(&cfs_rq->avg);
3479
9f683953
VG
3480 /* Set new sched_entity's runnable */
3481 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3482 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3483
3484 /* Update parent cfs_rq runnable */
3485 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3486 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3487}
3488
09a43ace 3489static inline void
0dacee1b 3490update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3491{
a4c3c049 3492 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3493 unsigned long load_avg;
3494 u64 load_sum = 0;
a4c3c049 3495 s64 delta_sum;
95d68593 3496 u32 divider;
09a43ace 3497
0e2d2aaa
PZ
3498 if (!runnable_sum)
3499 return;
09a43ace 3500
0e2d2aaa 3501 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3502
95d68593
VG
3503 /*
3504 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3505 * See ___update_load_avg() for details.
3506 */
87e867b4 3507 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3508
a4c3c049
VG
3509 if (runnable_sum >= 0) {
3510 /*
3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3512 * the CPU is saturated running == runnable.
3513 */
3514 runnable_sum += se->avg.load_sum;
95d68593 3515 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3516 } else {
3517 /*
3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3519 * assuming all tasks are equally runnable.
3520 */
3521 if (scale_load_down(gcfs_rq->load.weight)) {
3522 load_sum = div_s64(gcfs_rq->avg.load_sum,
3523 scale_load_down(gcfs_rq->load.weight));
3524 }
3525
3526 /* But make sure to not inflate se's runnable */
3527 runnable_sum = min(se->avg.load_sum, load_sum);
3528 }
3529
3530 /*
3531 * runnable_sum can't be lower than running_sum
23127296
VG
3532 * Rescale running sum to be in the same range as runnable sum
3533 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3534 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3535 */
23127296 3536 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3537 runnable_sum = max(runnable_sum, running_sum);
3538
0e2d2aaa 3539 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3540 load_avg = div_s64(load_sum, divider);
09a43ace 3541
a4c3c049
VG
3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3543 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3544
a4c3c049
VG
3545 se->avg.load_sum = runnable_sum;
3546 se->avg.load_avg = load_avg;
3547 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3548 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3549}
3550
0e2d2aaa 3551static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3552{
0e2d2aaa
PZ
3553 cfs_rq->propagate = 1;
3554 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3555}
3556
3557/* Update task and its cfs_rq load average */
3558static inline int propagate_entity_load_avg(struct sched_entity *se)
3559{
0e2d2aaa 3560 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3561
3562 if (entity_is_task(se))
3563 return 0;
3564
0e2d2aaa
PZ
3565 gcfs_rq = group_cfs_rq(se);
3566 if (!gcfs_rq->propagate)
09a43ace
VG
3567 return 0;
3568
0e2d2aaa
PZ
3569 gcfs_rq->propagate = 0;
3570
09a43ace
VG
3571 cfs_rq = cfs_rq_of(se);
3572
0e2d2aaa 3573 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3574
0e2d2aaa 3575 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3576 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3577 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3578
ba19f51f 3579 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3580 trace_pelt_se_tp(se);
ba19f51f 3581
09a43ace
VG
3582 return 1;
3583}
3584
bc427898
VG
3585/*
3586 * Check if we need to update the load and the utilization of a blocked
3587 * group_entity:
3588 */
3589static inline bool skip_blocked_update(struct sched_entity *se)
3590{
3591 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3592
3593 /*
3594 * If sched_entity still have not zero load or utilization, we have to
3595 * decay it:
3596 */
3597 if (se->avg.load_avg || se->avg.util_avg)
3598 return false;
3599
3600 /*
3601 * If there is a pending propagation, we have to update the load and
3602 * the utilization of the sched_entity:
3603 */
0e2d2aaa 3604 if (gcfs_rq->propagate)
bc427898
VG
3605 return false;
3606
3607 /*
3608 * Otherwise, the load and the utilization of the sched_entity is
3609 * already zero and there is no pending propagation, so it will be a
3610 * waste of time to try to decay it:
3611 */
3612 return true;
3613}
3614
6e83125c 3615#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3616
9d89c257 3617static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3618
3619static inline int propagate_entity_load_avg(struct sched_entity *se)
3620{
3621 return 0;
3622}
3623
0e2d2aaa 3624static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3625
6e83125c 3626#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3627
3d30544f
PZ
3628/**
3629 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3630 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3631 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3632 *
3633 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3634 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3635 * post_init_entity_util_avg().
3636 *
3637 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3638 *
7c3edd2c
PZ
3639 * Returns true if the load decayed or we removed load.
3640 *
3641 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3642 * call update_tg_load_avg() when this function returns true.
3d30544f 3643 */
a2c6c91f 3644static inline int
3a123bbb 3645update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3646{
9f683953 3647 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3648 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3649 int decayed = 0;
2dac754e 3650
2a2f5d4e
PZ
3651 if (cfs_rq->removed.nr) {
3652 unsigned long r;
87e867b4 3653 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3654
3655 raw_spin_lock(&cfs_rq->removed.lock);
3656 swap(cfs_rq->removed.util_avg, removed_util);
3657 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3658 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3659 cfs_rq->removed.nr = 0;
3660 raw_spin_unlock(&cfs_rq->removed.lock);
3661
2a2f5d4e 3662 r = removed_load;
89741892 3663 sub_positive(&sa->load_avg, r);
9a2dd585 3664 sub_positive(&sa->load_sum, r * divider);
2dac754e 3665
2a2f5d4e 3666 r = removed_util;
89741892 3667 sub_positive(&sa->util_avg, r);
9a2dd585 3668 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3669
9f683953
VG
3670 r = removed_runnable;
3671 sub_positive(&sa->runnable_avg, r);
3672 sub_positive(&sa->runnable_sum, r * divider);
3673
3674 /*
3675 * removed_runnable is the unweighted version of removed_load so we
3676 * can use it to estimate removed_load_sum.
3677 */
3678 add_tg_cfs_propagate(cfs_rq,
3679 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3680
3681 decayed = 1;
9d89c257 3682 }
36ee28e4 3683
23127296 3684 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3685
9d89c257
YD
3686#ifndef CONFIG_64BIT
3687 smp_wmb();
3688 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3689#endif
36ee28e4 3690
2a2f5d4e 3691 return decayed;
21e96f88
SM
3692}
3693
3d30544f
PZ
3694/**
3695 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3696 * @cfs_rq: cfs_rq to attach to
3697 * @se: sched_entity to attach
3698 *
3699 * Must call update_cfs_rq_load_avg() before this, since we rely on
3700 * cfs_rq->avg.last_update_time being current.
3701 */
a4f9a0e5 3702static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3703{
95d68593
VG
3704 /*
3705 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3706 * See ___update_load_avg() for details.
3707 */
87e867b4 3708 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3709
3710 /*
3711 * When we attach the @se to the @cfs_rq, we must align the decay
3712 * window because without that, really weird and wonderful things can
3713 * happen.
3714 *
3715 * XXX illustrate
3716 */
a05e8c51 3717 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3718 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3719
3720 /*
3721 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3722 * period_contrib. This isn't strictly correct, but since we're
3723 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3724 * _sum a little.
3725 */
3726 se->avg.util_sum = se->avg.util_avg * divider;
3727
9f683953
VG
3728 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3729
f207934f
PZ
3730 se->avg.load_sum = divider;
3731 if (se_weight(se)) {
3732 se->avg.load_sum =
3733 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3734 }
3735
8d5b9025 3736 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3737 cfs_rq->avg.util_avg += se->avg.util_avg;
3738 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3739 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3740 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3741
3742 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3743
a4f9a0e5 3744 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3745
3746 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3747}
3748
3d30544f
PZ
3749/**
3750 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3751 * @cfs_rq: cfs_rq to detach from
3752 * @se: sched_entity to detach
3753 *
3754 * Must call update_cfs_rq_load_avg() before this, since we rely on
3755 * cfs_rq->avg.last_update_time being current.
3756 */
a05e8c51
BP
3757static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3758{
8d5b9025 3759 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3760 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3761 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3762 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3763 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3764
3765 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3766
ea14b57e 3767 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3768
3769 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3770}
3771
b382a531
PZ
3772/*
3773 * Optional action to be done while updating the load average
3774 */
3775#define UPDATE_TG 0x1
3776#define SKIP_AGE_LOAD 0x2
3777#define DO_ATTACH 0x4
3778
3779/* Update task and its cfs_rq load average */
3780static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3781{
23127296 3782 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3783 int decayed;
3784
3785 /*
3786 * Track task load average for carrying it to new CPU after migrated, and
3787 * track group sched_entity load average for task_h_load calc in migration
3788 */
3789 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3790 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3791
3792 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3793 decayed |= propagate_entity_load_avg(se);
3794
3795 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3796
ea14b57e
PZ
3797 /*
3798 * DO_ATTACH means we're here from enqueue_entity().
3799 * !last_update_time means we've passed through
3800 * migrate_task_rq_fair() indicating we migrated.
3801 *
3802 * IOW we're enqueueing a task on a new CPU.
3803 */
a4f9a0e5 3804 attach_entity_load_avg(cfs_rq, se);
b382a531
PZ
3805 update_tg_load_avg(cfs_rq, 0);
3806
bef69dd8
VG
3807 } else if (decayed) {
3808 cfs_rq_util_change(cfs_rq, 0);
3809
3810 if (flags & UPDATE_TG)
3811 update_tg_load_avg(cfs_rq, 0);
3812 }
b382a531
PZ
3813}
3814
9d89c257 3815#ifndef CONFIG_64BIT
0905f04e
YD
3816static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3817{
9d89c257 3818 u64 last_update_time_copy;
0905f04e 3819 u64 last_update_time;
9ee474f5 3820
9d89c257
YD
3821 do {
3822 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3823 smp_rmb();
3824 last_update_time = cfs_rq->avg.last_update_time;
3825 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3826
3827 return last_update_time;
3828}
9d89c257 3829#else
0905f04e
YD
3830static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3831{
3832 return cfs_rq->avg.last_update_time;
3833}
9d89c257
YD
3834#endif
3835
104cb16d
MR
3836/*
3837 * Synchronize entity load avg of dequeued entity without locking
3838 * the previous rq.
3839 */
71b47eaf 3840static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3841{
3842 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3843 u64 last_update_time;
3844
3845 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3846 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3847}
3848
0905f04e
YD
3849/*
3850 * Task first catches up with cfs_rq, and then subtract
3851 * itself from the cfs_rq (task must be off the queue now).
3852 */
71b47eaf 3853static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3854{
3855 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3856 unsigned long flags;
0905f04e
YD
3857
3858 /*
7dc603c9
PZ
3859 * tasks cannot exit without having gone through wake_up_new_task() ->
3860 * post_init_entity_util_avg() which will have added things to the
3861 * cfs_rq, so we can remove unconditionally.
0905f04e 3862 */
0905f04e 3863
104cb16d 3864 sync_entity_load_avg(se);
2a2f5d4e
PZ
3865
3866 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3867 ++cfs_rq->removed.nr;
3868 cfs_rq->removed.util_avg += se->avg.util_avg;
3869 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3870 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3871 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3872}
642dbc39 3873
9f683953
VG
3874static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3875{
3876 return cfs_rq->avg.runnable_avg;
3877}
3878
7ea241af
YD
3879static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3880{
3881 return cfs_rq->avg.load_avg;
3882}
3883
d91cecc1
CY
3884static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3885
7f65ea42
PB
3886static inline unsigned long task_util(struct task_struct *p)
3887{
3888 return READ_ONCE(p->se.avg.util_avg);
3889}
3890
3891static inline unsigned long _task_util_est(struct task_struct *p)
3892{
3893 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3894
92a801e5 3895 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3896}
3897
3898static inline unsigned long task_util_est(struct task_struct *p)
3899{
3900 return max(task_util(p), _task_util_est(p));
3901}
3902
a7008c07
VS
3903#ifdef CONFIG_UCLAMP_TASK
3904static inline unsigned long uclamp_task_util(struct task_struct *p)
3905{
3906 return clamp(task_util_est(p),
3907 uclamp_eff_value(p, UCLAMP_MIN),
3908 uclamp_eff_value(p, UCLAMP_MAX));
3909}
3910#else
3911static inline unsigned long uclamp_task_util(struct task_struct *p)
3912{
3913 return task_util_est(p);
3914}
3915#endif
3916
7f65ea42
PB
3917static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3918 struct task_struct *p)
3919{
3920 unsigned int enqueued;
3921
3922 if (!sched_feat(UTIL_EST))
3923 return;
3924
3925 /* Update root cfs_rq's estimated utilization */
3926 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3927 enqueued += _task_util_est(p);
7f65ea42 3928 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3929
3930 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3931}
3932
3933/*
3934 * Check if a (signed) value is within a specified (unsigned) margin,
3935 * based on the observation that:
3936 *
3937 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3938 *
3939 * NOTE: this only works when value + maring < INT_MAX.
3940 */
3941static inline bool within_margin(int value, int margin)
3942{
3943 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3944}
3945
3946static void
3947util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3948{
3949 long last_ewma_diff;
3950 struct util_est ue;
10a35e68 3951 int cpu;
7f65ea42
PB
3952
3953 if (!sched_feat(UTIL_EST))
3954 return;
3955
3482d98b
VG
3956 /* Update root cfs_rq's estimated utilization */
3957 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3958 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3959 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3960
4581bea8
VD
3961 trace_sched_util_est_cfs_tp(cfs_rq);
3962
7f65ea42
PB
3963 /*
3964 * Skip update of task's estimated utilization when the task has not
3965 * yet completed an activation, e.g. being migrated.
3966 */
3967 if (!task_sleep)
3968 return;
3969
d519329f
PB
3970 /*
3971 * If the PELT values haven't changed since enqueue time,
3972 * skip the util_est update.
3973 */
3974 ue = p->se.avg.util_est;
3975 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3976 return;
3977
b8c96361
PB
3978 /*
3979 * Reset EWMA on utilization increases, the moving average is used only
3980 * to smooth utilization decreases.
3981 */
3982 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3983 if (sched_feat(UTIL_EST_FASTUP)) {
3984 if (ue.ewma < ue.enqueued) {
3985 ue.ewma = ue.enqueued;
3986 goto done;
3987 }
3988 }
3989
7f65ea42
PB
3990 /*
3991 * Skip update of task's estimated utilization when its EWMA is
3992 * already ~1% close to its last activation value.
3993 */
7f65ea42
PB
3994 last_ewma_diff = ue.enqueued - ue.ewma;
3995 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3996 return;
3997
10a35e68
VG
3998 /*
3999 * To avoid overestimation of actual task utilization, skip updates if
4000 * we cannot grant there is idle time in this CPU.
4001 */
4002 cpu = cpu_of(rq_of(cfs_rq));
4003 if (task_util(p) > capacity_orig_of(cpu))
4004 return;
4005
7f65ea42
PB
4006 /*
4007 * Update Task's estimated utilization
4008 *
4009 * When *p completes an activation we can consolidate another sample
4010 * of the task size. This is done by storing the current PELT value
4011 * as ue.enqueued and by using this value to update the Exponential
4012 * Weighted Moving Average (EWMA):
4013 *
4014 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4015 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4016 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4017 * = w * ( last_ewma_diff ) + ewma(t-1)
4018 * = w * (last_ewma_diff + ewma(t-1) / w)
4019 *
4020 * Where 'w' is the weight of new samples, which is configured to be
4021 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4022 */
4023 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4024 ue.ewma += last_ewma_diff;
4025 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4026done:
7f65ea42 4027 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4028
4029 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4030}
4031
3b1baa64
MR
4032static inline int task_fits_capacity(struct task_struct *p, long capacity)
4033{
a7008c07 4034 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4035}
4036
4037static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4038{
4039 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4040 return;
4041
4042 if (!p) {
4043 rq->misfit_task_load = 0;
4044 return;
4045 }
4046
4047 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4048 rq->misfit_task_load = 0;
4049 return;
4050 }
4051
4052 rq->misfit_task_load = task_h_load(p);
4053}
4054
38033c37
PZ
4055#else /* CONFIG_SMP */
4056
d31b1a66
VG
4057#define UPDATE_TG 0x0
4058#define SKIP_AGE_LOAD 0x0
b382a531 4059#define DO_ATTACH 0x0
d31b1a66 4060
88c0616e 4061static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4062{
ea14b57e 4063 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4064}
4065
9d89c257 4066static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4067
a05e8c51 4068static inline void
a4f9a0e5 4069attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4070static inline void
4071detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4072
d91cecc1 4073static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4074{
4075 return 0;
4076}
4077
7f65ea42
PB
4078static inline void
4079util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4080
4081static inline void
4082util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4083 bool task_sleep) {}
3b1baa64 4084static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4085
38033c37 4086#endif /* CONFIG_SMP */
9d85f21c 4087
ddc97297
PZ
4088static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4089{
4090#ifdef CONFIG_SCHED_DEBUG
4091 s64 d = se->vruntime - cfs_rq->min_vruntime;
4092
4093 if (d < 0)
4094 d = -d;
4095
4096 if (d > 3*sysctl_sched_latency)
ae92882e 4097 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4098#endif
4099}
4100
aeb73b04
PZ
4101static void
4102place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4103{
1af5f730 4104 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4105
2cb8600e
PZ
4106 /*
4107 * The 'current' period is already promised to the current tasks,
4108 * however the extra weight of the new task will slow them down a
4109 * little, place the new task so that it fits in the slot that
4110 * stays open at the end.
4111 */
94dfb5e7 4112 if (initial && sched_feat(START_DEBIT))
f9c0b095 4113 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4114
a2e7a7eb 4115 /* sleeps up to a single latency don't count. */
5ca9880c 4116 if (!initial) {
a2e7a7eb 4117 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4118
a2e7a7eb
MG
4119 /*
4120 * Halve their sleep time's effect, to allow
4121 * for a gentler effect of sleepers:
4122 */
4123 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4124 thresh >>= 1;
51e0304c 4125
a2e7a7eb 4126 vruntime -= thresh;
aeb73b04
PZ
4127 }
4128
b5d9d734 4129 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4130 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4131}
4132
d3d9dc33
PT
4133static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4134
cb251765
MG
4135static inline void check_schedstat_required(void)
4136{
4137#ifdef CONFIG_SCHEDSTATS
4138 if (schedstat_enabled())
4139 return;
4140
4141 /* Force schedstat enabled if a dependent tracepoint is active */
4142 if (trace_sched_stat_wait_enabled() ||
4143 trace_sched_stat_sleep_enabled() ||
4144 trace_sched_stat_iowait_enabled() ||
4145 trace_sched_stat_blocked_enabled() ||
4146 trace_sched_stat_runtime_enabled()) {
eda8dca5 4147 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4148 "stat_blocked and stat_runtime require the "
f67abed5 4149 "kernel parameter schedstats=enable or "
cb251765
MG
4150 "kernel.sched_schedstats=1\n");
4151 }
4152#endif
4153}
4154
fe61468b 4155static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4156
4157/*
4158 * MIGRATION
4159 *
4160 * dequeue
4161 * update_curr()
4162 * update_min_vruntime()
4163 * vruntime -= min_vruntime
4164 *
4165 * enqueue
4166 * update_curr()
4167 * update_min_vruntime()
4168 * vruntime += min_vruntime
4169 *
4170 * this way the vruntime transition between RQs is done when both
4171 * min_vruntime are up-to-date.
4172 *
4173 * WAKEUP (remote)
4174 *
59efa0ba 4175 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4176 * vruntime -= min_vruntime
4177 *
4178 * enqueue
4179 * update_curr()
4180 * update_min_vruntime()
4181 * vruntime += min_vruntime
4182 *
4183 * this way we don't have the most up-to-date min_vruntime on the originating
4184 * CPU and an up-to-date min_vruntime on the destination CPU.
4185 */
4186
bf0f6f24 4187static void
88ec22d3 4188enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4189{
2f950354
PZ
4190 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4191 bool curr = cfs_rq->curr == se;
4192
88ec22d3 4193 /*
2f950354
PZ
4194 * If we're the current task, we must renormalise before calling
4195 * update_curr().
88ec22d3 4196 */
2f950354 4197 if (renorm && curr)
88ec22d3
PZ
4198 se->vruntime += cfs_rq->min_vruntime;
4199
2f950354
PZ
4200 update_curr(cfs_rq);
4201
bf0f6f24 4202 /*
2f950354
PZ
4203 * Otherwise, renormalise after, such that we're placed at the current
4204 * moment in time, instead of some random moment in the past. Being
4205 * placed in the past could significantly boost this task to the
4206 * fairness detriment of existing tasks.
bf0f6f24 4207 */
2f950354
PZ
4208 if (renorm && !curr)
4209 se->vruntime += cfs_rq->min_vruntime;
4210
89ee048f
VG
4211 /*
4212 * When enqueuing a sched_entity, we must:
4213 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4214 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4215 * - For group_entity, update its weight to reflect the new share of
4216 * its group cfs_rq
4217 * - Add its new weight to cfs_rq->load.weight
4218 */
b382a531 4219 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4220 se_update_runnable(se);
1ea6c46a 4221 update_cfs_group(se);
17bc14b7 4222 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4223
1a3d027c 4224 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4225 place_entity(cfs_rq, se, 0);
bf0f6f24 4226
cb251765 4227 check_schedstat_required();
4fa8d299
JP
4228 update_stats_enqueue(cfs_rq, se, flags);
4229 check_spread(cfs_rq, se);
2f950354 4230 if (!curr)
83b699ed 4231 __enqueue_entity(cfs_rq, se);
2069dd75 4232 se->on_rq = 1;
3d4b47b4 4233
fe61468b
VG
4234 /*
4235 * When bandwidth control is enabled, cfs might have been removed
4236 * because of a parent been throttled but cfs->nr_running > 1. Try to
4237 * add it unconditionnally.
4238 */
4239 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4240 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4241
4242 if (cfs_rq->nr_running == 1)
d3d9dc33 4243 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4244}
4245
2c13c919 4246static void __clear_buddies_last(struct sched_entity *se)
2002c695 4247{
2c13c919
RR
4248 for_each_sched_entity(se) {
4249 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4250 if (cfs_rq->last != se)
2c13c919 4251 break;
f1044799
PZ
4252
4253 cfs_rq->last = NULL;
2c13c919
RR
4254 }
4255}
2002c695 4256
2c13c919
RR
4257static void __clear_buddies_next(struct sched_entity *se)
4258{
4259 for_each_sched_entity(se) {
4260 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4261 if (cfs_rq->next != se)
2c13c919 4262 break;
f1044799
PZ
4263
4264 cfs_rq->next = NULL;
2c13c919 4265 }
2002c695
PZ
4266}
4267
ac53db59
RR
4268static void __clear_buddies_skip(struct sched_entity *se)
4269{
4270 for_each_sched_entity(se) {
4271 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4272 if (cfs_rq->skip != se)
ac53db59 4273 break;
f1044799
PZ
4274
4275 cfs_rq->skip = NULL;
ac53db59
RR
4276 }
4277}
4278
a571bbea
PZ
4279static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4280{
2c13c919
RR
4281 if (cfs_rq->last == se)
4282 __clear_buddies_last(se);
4283
4284 if (cfs_rq->next == se)
4285 __clear_buddies_next(se);
ac53db59
RR
4286
4287 if (cfs_rq->skip == se)
4288 __clear_buddies_skip(se);
a571bbea
PZ
4289}
4290
6c16a6dc 4291static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4292
bf0f6f24 4293static void
371fd7e7 4294dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4295{
a2a2d680
DA
4296 /*
4297 * Update run-time statistics of the 'current'.
4298 */
4299 update_curr(cfs_rq);
89ee048f
VG
4300
4301 /*
4302 * When dequeuing a sched_entity, we must:
4303 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4304 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4305 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4306 * - For group entity, update its weight to reflect the new share
4307 * of its group cfs_rq.
4308 */
88c0616e 4309 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4310 se_update_runnable(se);
a2a2d680 4311
4fa8d299 4312 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4313
2002c695 4314 clear_buddies(cfs_rq, se);
4793241b 4315
83b699ed 4316 if (se != cfs_rq->curr)
30cfdcfc 4317 __dequeue_entity(cfs_rq, se);
17bc14b7 4318 se->on_rq = 0;
30cfdcfc 4319 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4320
4321 /*
b60205c7
PZ
4322 * Normalize after update_curr(); which will also have moved
4323 * min_vruntime if @se is the one holding it back. But before doing
4324 * update_min_vruntime() again, which will discount @se's position and
4325 * can move min_vruntime forward still more.
88ec22d3 4326 */
371fd7e7 4327 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4328 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4329
d8b4986d
PT
4330 /* return excess runtime on last dequeue */
4331 return_cfs_rq_runtime(cfs_rq);
4332
1ea6c46a 4333 update_cfs_group(se);
b60205c7
PZ
4334
4335 /*
4336 * Now advance min_vruntime if @se was the entity holding it back,
4337 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4338 * put back on, and if we advance min_vruntime, we'll be placed back
4339 * further than we started -- ie. we'll be penalized.
4340 */
9845c49c 4341 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4342 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4343}
4344
4345/*
4346 * Preempt the current task with a newly woken task if needed:
4347 */
7c92e54f 4348static void
2e09bf55 4349check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4350{
11697830 4351 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4352 struct sched_entity *se;
4353 s64 delta;
11697830 4354
6d0f0ebd 4355 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4356 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4357 if (delta_exec > ideal_runtime) {
8875125e 4358 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4359 /*
4360 * The current task ran long enough, ensure it doesn't get
4361 * re-elected due to buddy favours.
4362 */
4363 clear_buddies(cfs_rq, curr);
f685ceac
MG
4364 return;
4365 }
4366
4367 /*
4368 * Ensure that a task that missed wakeup preemption by a
4369 * narrow margin doesn't have to wait for a full slice.
4370 * This also mitigates buddy induced latencies under load.
4371 */
f685ceac
MG
4372 if (delta_exec < sysctl_sched_min_granularity)
4373 return;
4374
f4cfb33e
WX
4375 se = __pick_first_entity(cfs_rq);
4376 delta = curr->vruntime - se->vruntime;
f685ceac 4377
f4cfb33e
WX
4378 if (delta < 0)
4379 return;
d7d82944 4380
f4cfb33e 4381 if (delta > ideal_runtime)
8875125e 4382 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4383}
4384
83b699ed 4385static void
8494f412 4386set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4387{
83b699ed
SV
4388 /* 'current' is not kept within the tree. */
4389 if (se->on_rq) {
4390 /*
4391 * Any task has to be enqueued before it get to execute on
4392 * a CPU. So account for the time it spent waiting on the
4393 * runqueue.
4394 */
4fa8d299 4395 update_stats_wait_end(cfs_rq, se);
83b699ed 4396 __dequeue_entity(cfs_rq, se);
88c0616e 4397 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4398 }
4399
79303e9e 4400 update_stats_curr_start(cfs_rq, se);
429d43bc 4401 cfs_rq->curr = se;
4fa8d299 4402
eba1ed4b
IM
4403 /*
4404 * Track our maximum slice length, if the CPU's load is at
4405 * least twice that of our own weight (i.e. dont track it
4406 * when there are only lesser-weight tasks around):
4407 */
f2bedc47
DE
4408 if (schedstat_enabled() &&
4409 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4410 schedstat_set(se->statistics.slice_max,
4411 max((u64)schedstat_val(se->statistics.slice_max),
4412 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4413 }
4fa8d299 4414
4a55b450 4415 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4416}
4417
3f3a4904
PZ
4418static int
4419wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4420
ac53db59
RR
4421/*
4422 * Pick the next process, keeping these things in mind, in this order:
4423 * 1) keep things fair between processes/task groups
4424 * 2) pick the "next" process, since someone really wants that to run
4425 * 3) pick the "last" process, for cache locality
4426 * 4) do not run the "skip" process, if something else is available
4427 */
678d5718
PZ
4428static struct sched_entity *
4429pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4430{
678d5718
PZ
4431 struct sched_entity *left = __pick_first_entity(cfs_rq);
4432 struct sched_entity *se;
4433
4434 /*
4435 * If curr is set we have to see if its left of the leftmost entity
4436 * still in the tree, provided there was anything in the tree at all.
4437 */
4438 if (!left || (curr && entity_before(curr, left)))
4439 left = curr;
4440
4441 se = left; /* ideally we run the leftmost entity */
f4b6755f 4442
ac53db59
RR
4443 /*
4444 * Avoid running the skip buddy, if running something else can
4445 * be done without getting too unfair.
4446 */
4447 if (cfs_rq->skip == se) {
678d5718
PZ
4448 struct sched_entity *second;
4449
4450 if (se == curr) {
4451 second = __pick_first_entity(cfs_rq);
4452 } else {
4453 second = __pick_next_entity(se);
4454 if (!second || (curr && entity_before(curr, second)))
4455 second = curr;
4456 }
4457
ac53db59
RR
4458 if (second && wakeup_preempt_entity(second, left) < 1)
4459 se = second;
4460 }
aa2ac252 4461
f685ceac
MG
4462 /*
4463 * Prefer last buddy, try to return the CPU to a preempted task.
4464 */
4465 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4466 se = cfs_rq->last;
4467
ac53db59
RR
4468 /*
4469 * Someone really wants this to run. If it's not unfair, run it.
4470 */
4471 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4472 se = cfs_rq->next;
4473
f685ceac 4474 clear_buddies(cfs_rq, se);
4793241b
PZ
4475
4476 return se;
aa2ac252
PZ
4477}
4478
678d5718 4479static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4480
ab6cde26 4481static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4482{
4483 /*
4484 * If still on the runqueue then deactivate_task()
4485 * was not called and update_curr() has to be done:
4486 */
4487 if (prev->on_rq)
b7cc0896 4488 update_curr(cfs_rq);
bf0f6f24 4489
d3d9dc33
PT
4490 /* throttle cfs_rqs exceeding runtime */
4491 check_cfs_rq_runtime(cfs_rq);
4492
4fa8d299 4493 check_spread(cfs_rq, prev);
cb251765 4494
30cfdcfc 4495 if (prev->on_rq) {
4fa8d299 4496 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4497 /* Put 'current' back into the tree. */
4498 __enqueue_entity(cfs_rq, prev);
9d85f21c 4499 /* in !on_rq case, update occurred at dequeue */
88c0616e 4500 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4501 }
429d43bc 4502 cfs_rq->curr = NULL;
bf0f6f24
IM
4503}
4504
8f4d37ec
PZ
4505static void
4506entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4507{
bf0f6f24 4508 /*
30cfdcfc 4509 * Update run-time statistics of the 'current'.
bf0f6f24 4510 */
30cfdcfc 4511 update_curr(cfs_rq);
bf0f6f24 4512
9d85f21c
PT
4513 /*
4514 * Ensure that runnable average is periodically updated.
4515 */
88c0616e 4516 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4517 update_cfs_group(curr);
9d85f21c 4518
8f4d37ec
PZ
4519#ifdef CONFIG_SCHED_HRTICK
4520 /*
4521 * queued ticks are scheduled to match the slice, so don't bother
4522 * validating it and just reschedule.
4523 */
983ed7a6 4524 if (queued) {
8875125e 4525 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4526 return;
4527 }
8f4d37ec
PZ
4528 /*
4529 * don't let the period tick interfere with the hrtick preemption
4530 */
4531 if (!sched_feat(DOUBLE_TICK) &&
4532 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4533 return;
4534#endif
4535
2c2efaed 4536 if (cfs_rq->nr_running > 1)
2e09bf55 4537 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4538}
4539
ab84d31e
PT
4540
4541/**************************************************
4542 * CFS bandwidth control machinery
4543 */
4544
4545#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4546
e9666d10 4547#ifdef CONFIG_JUMP_LABEL
c5905afb 4548static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4549
4550static inline bool cfs_bandwidth_used(void)
4551{
c5905afb 4552 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4553}
4554
1ee14e6c 4555void cfs_bandwidth_usage_inc(void)
029632fb 4556{
ce48c146 4557 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4558}
4559
4560void cfs_bandwidth_usage_dec(void)
4561{
ce48c146 4562 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4563}
e9666d10 4564#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4565static bool cfs_bandwidth_used(void)
4566{
4567 return true;
4568}
4569
1ee14e6c
BS
4570void cfs_bandwidth_usage_inc(void) {}
4571void cfs_bandwidth_usage_dec(void) {}
e9666d10 4572#endif /* CONFIG_JUMP_LABEL */
029632fb 4573
ab84d31e
PT
4574/*
4575 * default period for cfs group bandwidth.
4576 * default: 0.1s, units: nanoseconds
4577 */
4578static inline u64 default_cfs_period(void)
4579{
4580 return 100000000ULL;
4581}
ec12cb7f
PT
4582
4583static inline u64 sched_cfs_bandwidth_slice(void)
4584{
4585 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4586}
4587
a9cf55b2 4588/*
763a9ec0
QC
4589 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4590 * directly instead of rq->clock to avoid adding additional synchronization
4591 * around rq->lock.
a9cf55b2
PT
4592 *
4593 * requires cfs_b->lock
4594 */
029632fb 4595void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4596{
763a9ec0
QC
4597 if (cfs_b->quota != RUNTIME_INF)
4598 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4599}
4600
029632fb
PZ
4601static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4602{
4603 return &tg->cfs_bandwidth;
4604}
4605
85dac906 4606/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4607static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4608 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4609{
e98fa02c
PT
4610 u64 min_amount, amount = 0;
4611
4612 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4613
4614 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4615 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4616
ec12cb7f
PT
4617 if (cfs_b->quota == RUNTIME_INF)
4618 amount = min_amount;
58088ad0 4619 else {
77a4d1a1 4620 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4621
4622 if (cfs_b->runtime > 0) {
4623 amount = min(cfs_b->runtime, min_amount);
4624 cfs_b->runtime -= amount;
4625 cfs_b->idle = 0;
4626 }
ec12cb7f 4627 }
ec12cb7f
PT
4628
4629 cfs_rq->runtime_remaining += amount;
85dac906
PT
4630
4631 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4632}
4633
e98fa02c
PT
4634/* returns 0 on failure to allocate runtime */
4635static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4636{
4637 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4638 int ret;
4639
4640 raw_spin_lock(&cfs_b->lock);
4641 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4642 raw_spin_unlock(&cfs_b->lock);
4643
4644 return ret;
4645}
4646
9dbdb155 4647static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4648{
4649 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4650 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4651
4652 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4653 return;
4654
5e2d2cc2
L
4655 if (cfs_rq->throttled)
4656 return;
85dac906
PT
4657 /*
4658 * if we're unable to extend our runtime we resched so that the active
4659 * hierarchy can be throttled
4660 */
4661 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4662 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4663}
4664
6c16a6dc 4665static __always_inline
9dbdb155 4666void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4667{
56f570e5 4668 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4669 return;
4670
4671 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4672}
4673
85dac906
PT
4674static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4675{
56f570e5 4676 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4677}
4678
64660c86
PT
4679/* check whether cfs_rq, or any parent, is throttled */
4680static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4681{
56f570e5 4682 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4683}
4684
4685/*
4686 * Ensure that neither of the group entities corresponding to src_cpu or
4687 * dest_cpu are members of a throttled hierarchy when performing group
4688 * load-balance operations.
4689 */
4690static inline int throttled_lb_pair(struct task_group *tg,
4691 int src_cpu, int dest_cpu)
4692{
4693 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4694
4695 src_cfs_rq = tg->cfs_rq[src_cpu];
4696 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4697
4698 return throttled_hierarchy(src_cfs_rq) ||
4699 throttled_hierarchy(dest_cfs_rq);
4700}
4701
64660c86
PT
4702static int tg_unthrottle_up(struct task_group *tg, void *data)
4703{
4704 struct rq *rq = data;
4705 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4706
4707 cfs_rq->throttle_count--;
64660c86 4708 if (!cfs_rq->throttle_count) {
78becc27 4709 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4710 cfs_rq->throttled_clock_task;
31bc6aea
VG
4711
4712 /* Add cfs_rq with already running entity in the list */
4713 if (cfs_rq->nr_running >= 1)
4714 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4715 }
64660c86
PT
4716
4717 return 0;
4718}
4719
4720static int tg_throttle_down(struct task_group *tg, void *data)
4721{
4722 struct rq *rq = data;
4723 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4724
82958366 4725 /* group is entering throttled state, stop time */
31bc6aea 4726 if (!cfs_rq->throttle_count) {
78becc27 4727 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4728 list_del_leaf_cfs_rq(cfs_rq);
4729 }
64660c86
PT
4730 cfs_rq->throttle_count++;
4731
4732 return 0;
4733}
4734
e98fa02c 4735static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4736{
4737 struct rq *rq = rq_of(cfs_rq);
4738 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4739 struct sched_entity *se;
43e9f7f2 4740 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4741
4742 raw_spin_lock(&cfs_b->lock);
4743 /* This will start the period timer if necessary */
4744 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4745 /*
4746 * We have raced with bandwidth becoming available, and if we
4747 * actually throttled the timer might not unthrottle us for an
4748 * entire period. We additionally needed to make sure that any
4749 * subsequent check_cfs_rq_runtime calls agree not to throttle
4750 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4751 * for 1ns of runtime rather than just check cfs_b.
4752 */
4753 dequeue = 0;
4754 } else {
4755 list_add_tail_rcu(&cfs_rq->throttled_list,
4756 &cfs_b->throttled_cfs_rq);
4757 }
4758 raw_spin_unlock(&cfs_b->lock);
4759
4760 if (!dequeue)
4761 return false; /* Throttle no longer required. */
85dac906
PT
4762
4763 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4764
f1b17280 4765 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4766 rcu_read_lock();
4767 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4768 rcu_read_unlock();
85dac906
PT
4769
4770 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4771 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4772 for_each_sched_entity(se) {
4773 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4774 /* throttled entity or throttle-on-deactivate */
4775 if (!se->on_rq)
4776 break;
4777
6212437f 4778 if (dequeue) {
85dac906 4779 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f
VG
4780 } else {
4781 update_load_avg(qcfs_rq, se, 0);
4782 se_update_runnable(se);
4783 }
4784
85dac906 4785 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4786 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4787
4788 if (qcfs_rq->load.weight)
4789 dequeue = 0;
4790 }
4791
4792 if (!se)
72465447 4793 sub_nr_running(rq, task_delta);
85dac906 4794
c06f04c7 4795 /*
e98fa02c
PT
4796 * Note: distribution will already see us throttled via the
4797 * throttled-list. rq->lock protects completion.
c06f04c7 4798 */
e98fa02c
PT
4799 cfs_rq->throttled = 1;
4800 cfs_rq->throttled_clock = rq_clock(rq);
4801 return true;
85dac906
PT
4802}
4803
029632fb 4804void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4805{
4806 struct rq *rq = rq_of(cfs_rq);
4807 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4808 struct sched_entity *se;
43e9f7f2 4809 long task_delta, idle_task_delta;
671fd9da 4810
22b958d8 4811 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4812
4813 cfs_rq->throttled = 0;
1a55af2e
FW
4814
4815 update_rq_clock(rq);
4816
671fd9da 4817 raw_spin_lock(&cfs_b->lock);
78becc27 4818 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4819 list_del_rcu(&cfs_rq->throttled_list);
4820 raw_spin_unlock(&cfs_b->lock);
4821
64660c86
PT
4822 /* update hierarchical throttle state */
4823 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4824
671fd9da
PT
4825 if (!cfs_rq->load.weight)
4826 return;
4827
4828 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4829 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4830 for_each_sched_entity(se) {
4831 if (se->on_rq)
39f23ce0
VG
4832 break;
4833 cfs_rq = cfs_rq_of(se);
4834 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4835
4836 cfs_rq->h_nr_running += task_delta;
4837 cfs_rq->idle_h_nr_running += idle_task_delta;
4838
4839 /* end evaluation on encountering a throttled cfs_rq */
4840 if (cfs_rq_throttled(cfs_rq))
4841 goto unthrottle_throttle;
4842 }
671fd9da 4843
39f23ce0 4844 for_each_sched_entity(se) {
671fd9da 4845 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4846
4847 update_load_avg(cfs_rq, se, UPDATE_TG);
4848 se_update_runnable(se);
6212437f 4849
671fd9da 4850 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4851 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4852
39f23ce0
VG
4853
4854 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4855 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4856 goto unthrottle_throttle;
4857
4858 /*
4859 * One parent has been throttled and cfs_rq removed from the
4860 * list. Add it back to not break the leaf list.
4861 */
4862 if (throttled_hierarchy(cfs_rq))
4863 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4864 }
4865
39f23ce0
VG
4866 /* At this point se is NULL and we are at root level*/
4867 add_nr_running(rq, task_delta);
671fd9da 4868
39f23ce0 4869unthrottle_throttle:
fe61468b
VG
4870 /*
4871 * The cfs_rq_throttled() breaks in the above iteration can result in
4872 * incomplete leaf list maintenance, resulting in triggering the
4873 * assertion below.
4874 */
4875 for_each_sched_entity(se) {
4876 cfs_rq = cfs_rq_of(se);
4877
39f23ce0
VG
4878 if (list_add_leaf_cfs_rq(cfs_rq))
4879 break;
fe61468b
VG
4880 }
4881
4882 assert_list_leaf_cfs_rq(rq);
4883
97fb7a0a 4884 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4885 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4886 resched_curr(rq);
671fd9da
PT
4887}
4888
26a8b127 4889static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4890{
4891 struct cfs_rq *cfs_rq;
26a8b127 4892 u64 runtime, remaining = 1;
671fd9da
PT
4893
4894 rcu_read_lock();
4895 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4896 throttled_list) {
4897 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4898 struct rq_flags rf;
671fd9da 4899
c0ad4aa4 4900 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4901 if (!cfs_rq_throttled(cfs_rq))
4902 goto next;
4903
5e2d2cc2
L
4904 /* By the above check, this should never be true */
4905 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4906
26a8b127 4907 raw_spin_lock(&cfs_b->lock);
671fd9da 4908 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4909 if (runtime > cfs_b->runtime)
4910 runtime = cfs_b->runtime;
4911 cfs_b->runtime -= runtime;
4912 remaining = cfs_b->runtime;
4913 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4914
4915 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4916
4917 /* we check whether we're throttled above */
4918 if (cfs_rq->runtime_remaining > 0)
4919 unthrottle_cfs_rq(cfs_rq);
4920
4921next:
c0ad4aa4 4922 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4923
4924 if (!remaining)
4925 break;
4926 }
4927 rcu_read_unlock();
671fd9da
PT
4928}
4929
58088ad0
PT
4930/*
4931 * Responsible for refilling a task_group's bandwidth and unthrottling its
4932 * cfs_rqs as appropriate. If there has been no activity within the last
4933 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4934 * used to track this state.
4935 */
c0ad4aa4 4936static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4937{
51f2176d 4938 int throttled;
58088ad0 4939
58088ad0
PT
4940 /* no need to continue the timer with no bandwidth constraint */
4941 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4942 goto out_deactivate;
58088ad0 4943
671fd9da 4944 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4945 cfs_b->nr_periods += overrun;
671fd9da 4946
51f2176d
BS
4947 /*
4948 * idle depends on !throttled (for the case of a large deficit), and if
4949 * we're going inactive then everything else can be deferred
4950 */
4951 if (cfs_b->idle && !throttled)
4952 goto out_deactivate;
a9cf55b2
PT
4953
4954 __refill_cfs_bandwidth_runtime(cfs_b);
4955
671fd9da
PT
4956 if (!throttled) {
4957 /* mark as potentially idle for the upcoming period */
4958 cfs_b->idle = 1;
51f2176d 4959 return 0;
671fd9da
PT
4960 }
4961
e8da1b18
NR
4962 /* account preceding periods in which throttling occurred */
4963 cfs_b->nr_throttled += overrun;
4964
671fd9da 4965 /*
26a8b127 4966 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4967 */
ab93a4bc 4968 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 4969 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4970 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 4971 distribute_cfs_runtime(cfs_b);
c0ad4aa4 4972 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
4973
4974 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4975 }
58088ad0 4976
671fd9da
PT
4977 /*
4978 * While we are ensured activity in the period following an
4979 * unthrottle, this also covers the case in which the new bandwidth is
4980 * insufficient to cover the existing bandwidth deficit. (Forcing the
4981 * timer to remain active while there are any throttled entities.)
4982 */
4983 cfs_b->idle = 0;
58088ad0 4984
51f2176d
BS
4985 return 0;
4986
4987out_deactivate:
51f2176d 4988 return 1;
58088ad0 4989}
d3d9dc33 4990
d8b4986d
PT
4991/* a cfs_rq won't donate quota below this amount */
4992static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4993/* minimum remaining period time to redistribute slack quota */
4994static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4995/* how long we wait to gather additional slack before distributing */
4996static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4997
db06e78c
BS
4998/*
4999 * Are we near the end of the current quota period?
5000 *
5001 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5002 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5003 * migrate_hrtimers, base is never cleared, so we are fine.
5004 */
d8b4986d
PT
5005static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5006{
5007 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5008 u64 remaining;
5009
5010 /* if the call-back is running a quota refresh is already occurring */
5011 if (hrtimer_callback_running(refresh_timer))
5012 return 1;
5013
5014 /* is a quota refresh about to occur? */
5015 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5016 if (remaining < min_expire)
5017 return 1;
5018
5019 return 0;
5020}
5021
5022static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5023{
5024 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5025
5026 /* if there's a quota refresh soon don't bother with slack */
5027 if (runtime_refresh_within(cfs_b, min_left))
5028 return;
5029
66567fcb 5030 /* don't push forwards an existing deferred unthrottle */
5031 if (cfs_b->slack_started)
5032 return;
5033 cfs_b->slack_started = true;
5034
4cfafd30
PZ
5035 hrtimer_start(&cfs_b->slack_timer,
5036 ns_to_ktime(cfs_bandwidth_slack_period),
5037 HRTIMER_MODE_REL);
d8b4986d
PT
5038}
5039
5040/* we know any runtime found here is valid as update_curr() precedes return */
5041static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5042{
5043 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5044 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5045
5046 if (slack_runtime <= 0)
5047 return;
5048
5049 raw_spin_lock(&cfs_b->lock);
de53fd7a 5050 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5051 cfs_b->runtime += slack_runtime;
5052
5053 /* we are under rq->lock, defer unthrottling using a timer */
5054 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5055 !list_empty(&cfs_b->throttled_cfs_rq))
5056 start_cfs_slack_bandwidth(cfs_b);
5057 }
5058 raw_spin_unlock(&cfs_b->lock);
5059
5060 /* even if it's not valid for return we don't want to try again */
5061 cfs_rq->runtime_remaining -= slack_runtime;
5062}
5063
5064static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5065{
56f570e5
PT
5066 if (!cfs_bandwidth_used())
5067 return;
5068
fccfdc6f 5069 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5070 return;
5071
5072 __return_cfs_rq_runtime(cfs_rq);
5073}
5074
5075/*
5076 * This is done with a timer (instead of inline with bandwidth return) since
5077 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5078 */
5079static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5080{
5081 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5082 unsigned long flags;
d8b4986d
PT
5083
5084 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5085 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5086 cfs_b->slack_started = false;
baa9be4f 5087
db06e78c 5088 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5089 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5090 return;
db06e78c 5091 }
d8b4986d 5092
c06f04c7 5093 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5094 runtime = cfs_b->runtime;
c06f04c7 5095
c0ad4aa4 5096 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5097
5098 if (!runtime)
5099 return;
5100
26a8b127 5101 distribute_cfs_runtime(cfs_b);
d8b4986d 5102
c0ad4aa4 5103 raw_spin_lock_irqsave(&cfs_b->lock, flags);
c0ad4aa4 5104 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5105}
5106
d3d9dc33
PT
5107/*
5108 * When a group wakes up we want to make sure that its quota is not already
5109 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5110 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5111 */
5112static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5113{
56f570e5
PT
5114 if (!cfs_bandwidth_used())
5115 return;
5116
d3d9dc33
PT
5117 /* an active group must be handled by the update_curr()->put() path */
5118 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5119 return;
5120
5121 /* ensure the group is not already throttled */
5122 if (cfs_rq_throttled(cfs_rq))
5123 return;
5124
5125 /* update runtime allocation */
5126 account_cfs_rq_runtime(cfs_rq, 0);
5127 if (cfs_rq->runtime_remaining <= 0)
5128 throttle_cfs_rq(cfs_rq);
5129}
5130
55e16d30
PZ
5131static void sync_throttle(struct task_group *tg, int cpu)
5132{
5133 struct cfs_rq *pcfs_rq, *cfs_rq;
5134
5135 if (!cfs_bandwidth_used())
5136 return;
5137
5138 if (!tg->parent)
5139 return;
5140
5141 cfs_rq = tg->cfs_rq[cpu];
5142 pcfs_rq = tg->parent->cfs_rq[cpu];
5143
5144 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5145 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5146}
5147
d3d9dc33 5148/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5149static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5150{
56f570e5 5151 if (!cfs_bandwidth_used())
678d5718 5152 return false;
56f570e5 5153
d3d9dc33 5154 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5155 return false;
d3d9dc33
PT
5156
5157 /*
5158 * it's possible for a throttled entity to be forced into a running
5159 * state (e.g. set_curr_task), in this case we're finished.
5160 */
5161 if (cfs_rq_throttled(cfs_rq))
678d5718 5162 return true;
d3d9dc33 5163
e98fa02c 5164 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5165}
029632fb 5166
029632fb
PZ
5167static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5168{
5169 struct cfs_bandwidth *cfs_b =
5170 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5171
029632fb
PZ
5172 do_sched_cfs_slack_timer(cfs_b);
5173
5174 return HRTIMER_NORESTART;
5175}
5176
2e8e1922
PA
5177extern const u64 max_cfs_quota_period;
5178
029632fb
PZ
5179static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5180{
5181 struct cfs_bandwidth *cfs_b =
5182 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5183 unsigned long flags;
029632fb
PZ
5184 int overrun;
5185 int idle = 0;
2e8e1922 5186 int count = 0;
029632fb 5187
c0ad4aa4 5188 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5189 for (;;) {
77a4d1a1 5190 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5191 if (!overrun)
5192 break;
5193
5a6d6a6c
HC
5194 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5195
2e8e1922
PA
5196 if (++count > 3) {
5197 u64 new, old = ktime_to_ns(cfs_b->period);
5198
4929a4e6
XZ
5199 /*
5200 * Grow period by a factor of 2 to avoid losing precision.
5201 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5202 * to fail.
5203 */
5204 new = old * 2;
5205 if (new < max_cfs_quota_period) {
5206 cfs_b->period = ns_to_ktime(new);
5207 cfs_b->quota *= 2;
5208
5209 pr_warn_ratelimited(
5210 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5211 smp_processor_id(),
5212 div_u64(new, NSEC_PER_USEC),
5213 div_u64(cfs_b->quota, NSEC_PER_USEC));
5214 } else {
5215 pr_warn_ratelimited(
5216 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5217 smp_processor_id(),
5218 div_u64(old, NSEC_PER_USEC),
5219 div_u64(cfs_b->quota, NSEC_PER_USEC));
5220 }
2e8e1922
PA
5221
5222 /* reset count so we don't come right back in here */
5223 count = 0;
5224 }
029632fb 5225 }
4cfafd30
PZ
5226 if (idle)
5227 cfs_b->period_active = 0;
c0ad4aa4 5228 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5229
5230 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5231}
5232
5233void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5234{
5235 raw_spin_lock_init(&cfs_b->lock);
5236 cfs_b->runtime = 0;
5237 cfs_b->quota = RUNTIME_INF;
5238 cfs_b->period = ns_to_ktime(default_cfs_period());
5239
5240 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5241 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5242 cfs_b->period_timer.function = sched_cfs_period_timer;
5243 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5244 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5245 cfs_b->slack_started = false;
029632fb
PZ
5246}
5247
5248static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5249{
5250 cfs_rq->runtime_enabled = 0;
5251 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5252}
5253
77a4d1a1 5254void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5255{
4cfafd30 5256 lockdep_assert_held(&cfs_b->lock);
029632fb 5257
f1d1be8a
XP
5258 if (cfs_b->period_active)
5259 return;
5260
5261 cfs_b->period_active = 1;
763a9ec0 5262 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5263 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5264}
5265
5266static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5267{
7f1a169b
TH
5268 /* init_cfs_bandwidth() was not called */
5269 if (!cfs_b->throttled_cfs_rq.next)
5270 return;
5271
029632fb
PZ
5272 hrtimer_cancel(&cfs_b->period_timer);
5273 hrtimer_cancel(&cfs_b->slack_timer);
5274}
5275
502ce005 5276/*
97fb7a0a 5277 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5278 *
5279 * The race is harmless, since modifying bandwidth settings of unhooked group
5280 * bits doesn't do much.
5281 */
5282
5283/* cpu online calback */
0e59bdae
KT
5284static void __maybe_unused update_runtime_enabled(struct rq *rq)
5285{
502ce005 5286 struct task_group *tg;
0e59bdae 5287
502ce005
PZ
5288 lockdep_assert_held(&rq->lock);
5289
5290 rcu_read_lock();
5291 list_for_each_entry_rcu(tg, &task_groups, list) {
5292 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5293 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5294
5295 raw_spin_lock(&cfs_b->lock);
5296 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5297 raw_spin_unlock(&cfs_b->lock);
5298 }
502ce005 5299 rcu_read_unlock();
0e59bdae
KT
5300}
5301
502ce005 5302/* cpu offline callback */
38dc3348 5303static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5304{
502ce005
PZ
5305 struct task_group *tg;
5306
5307 lockdep_assert_held(&rq->lock);
5308
5309 rcu_read_lock();
5310 list_for_each_entry_rcu(tg, &task_groups, list) {
5311 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5312
029632fb
PZ
5313 if (!cfs_rq->runtime_enabled)
5314 continue;
5315
5316 /*
5317 * clock_task is not advancing so we just need to make sure
5318 * there's some valid quota amount
5319 */
51f2176d 5320 cfs_rq->runtime_remaining = 1;
0e59bdae 5321 /*
97fb7a0a 5322 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5323 * in take_cpu_down(), so we prevent new cfs throttling here.
5324 */
5325 cfs_rq->runtime_enabled = 0;
5326
029632fb
PZ
5327 if (cfs_rq_throttled(cfs_rq))
5328 unthrottle_cfs_rq(cfs_rq);
5329 }
502ce005 5330 rcu_read_unlock();
029632fb
PZ
5331}
5332
5333#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5334
5335static inline bool cfs_bandwidth_used(void)
5336{
5337 return false;
5338}
5339
9dbdb155 5340static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5341static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5342static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5343static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5344static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5345
5346static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5347{
5348 return 0;
5349}
64660c86
PT
5350
5351static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5352{
5353 return 0;
5354}
5355
5356static inline int throttled_lb_pair(struct task_group *tg,
5357 int src_cpu, int dest_cpu)
5358{
5359 return 0;
5360}
029632fb
PZ
5361
5362void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5363
5364#ifdef CONFIG_FAIR_GROUP_SCHED
5365static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5366#endif
5367
029632fb
PZ
5368static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5369{
5370 return NULL;
5371}
5372static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5373static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5374static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5375
5376#endif /* CONFIG_CFS_BANDWIDTH */
5377
bf0f6f24
IM
5378/**************************************************
5379 * CFS operations on tasks:
5380 */
5381
8f4d37ec
PZ
5382#ifdef CONFIG_SCHED_HRTICK
5383static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5384{
8f4d37ec
PZ
5385 struct sched_entity *se = &p->se;
5386 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5387
9148a3a1 5388 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5389
8bf46a39 5390 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5391 u64 slice = sched_slice(cfs_rq, se);
5392 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5393 s64 delta = slice - ran;
5394
5395 if (delta < 0) {
5396 if (rq->curr == p)
8875125e 5397 resched_curr(rq);
8f4d37ec
PZ
5398 return;
5399 }
31656519 5400 hrtick_start(rq, delta);
8f4d37ec
PZ
5401 }
5402}
a4c2f00f
PZ
5403
5404/*
5405 * called from enqueue/dequeue and updates the hrtick when the
5406 * current task is from our class and nr_running is low enough
5407 * to matter.
5408 */
5409static void hrtick_update(struct rq *rq)
5410{
5411 struct task_struct *curr = rq->curr;
5412
b39e66ea 5413 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5414 return;
5415
5416 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5417 hrtick_start_fair(rq, curr);
5418}
55e12e5e 5419#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5420static inline void
5421hrtick_start_fair(struct rq *rq, struct task_struct *p)
5422{
5423}
a4c2f00f
PZ
5424
5425static inline void hrtick_update(struct rq *rq)
5426{
5427}
8f4d37ec
PZ
5428#endif
5429
2802bf3c
MR
5430#ifdef CONFIG_SMP
5431static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5432
5433static inline bool cpu_overutilized(int cpu)
5434{
60e17f5c 5435 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5436}
5437
5438static inline void update_overutilized_status(struct rq *rq)
5439{
f9f240f9 5440 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5441 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5442 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5443 }
2802bf3c
MR
5444}
5445#else
5446static inline void update_overutilized_status(struct rq *rq) { }
5447#endif
5448
323af6de
VK
5449/* Runqueue only has SCHED_IDLE tasks enqueued */
5450static int sched_idle_rq(struct rq *rq)
5451{
5452 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5453 rq->nr_running);
5454}
5455
afa70d94 5456#ifdef CONFIG_SMP
323af6de
VK
5457static int sched_idle_cpu(int cpu)
5458{
5459 return sched_idle_rq(cpu_rq(cpu));
5460}
afa70d94 5461#endif
323af6de 5462
bf0f6f24
IM
5463/*
5464 * The enqueue_task method is called before nr_running is
5465 * increased. Here we update the fair scheduling stats and
5466 * then put the task into the rbtree:
5467 */
ea87bb78 5468static void
371fd7e7 5469enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5470{
5471 struct cfs_rq *cfs_rq;
62fb1851 5472 struct sched_entity *se = &p->se;
43e9f7f2 5473 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5474
2539fc82
PB
5475 /*
5476 * The code below (indirectly) updates schedutil which looks at
5477 * the cfs_rq utilization to select a frequency.
5478 * Let's add the task's estimated utilization to the cfs_rq's
5479 * estimated utilization, before we update schedutil.
5480 */
5481 util_est_enqueue(&rq->cfs, p);
5482
8c34ab19
RW
5483 /*
5484 * If in_iowait is set, the code below may not trigger any cpufreq
5485 * utilization updates, so do it here explicitly with the IOWAIT flag
5486 * passed.
5487 */
5488 if (p->in_iowait)
674e7541 5489 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5490
bf0f6f24 5491 for_each_sched_entity(se) {
62fb1851 5492 if (se->on_rq)
bf0f6f24
IM
5493 break;
5494 cfs_rq = cfs_rq_of(se);
88ec22d3 5495 enqueue_entity(cfs_rq, se, flags);
85dac906 5496
953bfcd1 5497 cfs_rq->h_nr_running++;
43e9f7f2 5498 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5499
6d4d2246
VG
5500 /* end evaluation on encountering a throttled cfs_rq */
5501 if (cfs_rq_throttled(cfs_rq))
5502 goto enqueue_throttle;
5503
88ec22d3 5504 flags = ENQUEUE_WAKEUP;
bf0f6f24 5505 }
8f4d37ec 5506
2069dd75 5507 for_each_sched_entity(se) {
0f317143 5508 cfs_rq = cfs_rq_of(se);
2069dd75 5509
88c0616e 5510 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5511 se_update_runnable(se);
1ea6c46a 5512 update_cfs_group(se);
6d4d2246
VG
5513
5514 cfs_rq->h_nr_running++;
5515 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5516
5517 /* end evaluation on encountering a throttled cfs_rq */
5518 if (cfs_rq_throttled(cfs_rq))
5519 goto enqueue_throttle;
b34cb07d
PA
5520
5521 /*
5522 * One parent has been throttled and cfs_rq removed from the
5523 * list. Add it back to not break the leaf list.
5524 */
5525 if (throttled_hierarchy(cfs_rq))
5526 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5527 }
5528
7d148be6
VG
5529 /* At this point se is NULL and we are at root level*/
5530 add_nr_running(rq, 1);
2802bf3c 5531
7d148be6
VG
5532 /*
5533 * Since new tasks are assigned an initial util_avg equal to
5534 * half of the spare capacity of their CPU, tiny tasks have the
5535 * ability to cross the overutilized threshold, which will
5536 * result in the load balancer ruining all the task placement
5537 * done by EAS. As a way to mitigate that effect, do not account
5538 * for the first enqueue operation of new tasks during the
5539 * overutilized flag detection.
5540 *
5541 * A better way of solving this problem would be to wait for
5542 * the PELT signals of tasks to converge before taking them
5543 * into account, but that is not straightforward to implement,
5544 * and the following generally works well enough in practice.
5545 */
5546 if (flags & ENQUEUE_WAKEUP)
5547 update_overutilized_status(rq);
cd126afe 5548
7d148be6 5549enqueue_throttle:
f6783319
VG
5550 if (cfs_bandwidth_used()) {
5551 /*
5552 * When bandwidth control is enabled; the cfs_rq_throttled()
5553 * breaks in the above iteration can result in incomplete
5554 * leaf list maintenance, resulting in triggering the assertion
5555 * below.
5556 */
5557 for_each_sched_entity(se) {
5558 cfs_rq = cfs_rq_of(se);
5559
5560 if (list_add_leaf_cfs_rq(cfs_rq))
5561 break;
5562 }
5563 }
5564
5d299eab
PZ
5565 assert_list_leaf_cfs_rq(rq);
5566
a4c2f00f 5567 hrtick_update(rq);
bf0f6f24
IM
5568}
5569
2f36825b
VP
5570static void set_next_buddy(struct sched_entity *se);
5571
bf0f6f24
IM
5572/*
5573 * The dequeue_task method is called before nr_running is
5574 * decreased. We remove the task from the rbtree and
5575 * update the fair scheduling stats:
5576 */
371fd7e7 5577static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5578{
5579 struct cfs_rq *cfs_rq;
62fb1851 5580 struct sched_entity *se = &p->se;
2f36825b 5581 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5582 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5583 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5584
5585 for_each_sched_entity(se) {
5586 cfs_rq = cfs_rq_of(se);
371fd7e7 5587 dequeue_entity(cfs_rq, se, flags);
85dac906 5588
953bfcd1 5589 cfs_rq->h_nr_running--;
43e9f7f2 5590 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5591
6d4d2246
VG
5592 /* end evaluation on encountering a throttled cfs_rq */
5593 if (cfs_rq_throttled(cfs_rq))
5594 goto dequeue_throttle;
5595
bf0f6f24 5596 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5597 if (cfs_rq->load.weight) {
754bd598
KK
5598 /* Avoid re-evaluating load for this entity: */
5599 se = parent_entity(se);
2f36825b
VP
5600 /*
5601 * Bias pick_next to pick a task from this cfs_rq, as
5602 * p is sleeping when it is within its sched_slice.
5603 */
754bd598
KK
5604 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5605 set_next_buddy(se);
bf0f6f24 5606 break;
2f36825b 5607 }
371fd7e7 5608 flags |= DEQUEUE_SLEEP;
bf0f6f24 5609 }
8f4d37ec 5610
2069dd75 5611 for_each_sched_entity(se) {
0f317143 5612 cfs_rq = cfs_rq_of(se);
2069dd75 5613
88c0616e 5614 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5615 se_update_runnable(se);
1ea6c46a 5616 update_cfs_group(se);
6d4d2246
VG
5617
5618 cfs_rq->h_nr_running--;
5619 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5620
5621 /* end evaluation on encountering a throttled cfs_rq */
5622 if (cfs_rq_throttled(cfs_rq))
5623 goto dequeue_throttle;
5624
2069dd75
PZ
5625 }
5626
6d4d2246 5627dequeue_throttle:
cd126afe 5628 if (!se)
72465447 5629 sub_nr_running(rq, 1);
cd126afe 5630
323af6de
VK
5631 /* balance early to pull high priority tasks */
5632 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5633 rq->next_balance = jiffies;
5634
7f65ea42 5635 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5636 hrtick_update(rq);
bf0f6f24
IM
5637}
5638
e7693a36 5639#ifdef CONFIG_SMP
10e2f1ac
PZ
5640
5641/* Working cpumask for: load_balance, load_balance_newidle. */
5642DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5643DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5644
9fd81dd5 5645#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5646
5647static struct {
5648 cpumask_var_t idle_cpus_mask;
5649 atomic_t nr_cpus;
f643ea22 5650 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5651 unsigned long next_balance; /* in jiffy units */
f643ea22 5652 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5653} nohz ____cacheline_aligned;
5654
9fd81dd5 5655#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5656
b0fb1eb4
VG
5657static unsigned long cpu_load(struct rq *rq)
5658{
5659 return cfs_rq_load_avg(&rq->cfs);
5660}
5661
3318544b
VG
5662/*
5663 * cpu_load_without - compute CPU load without any contributions from *p
5664 * @cpu: the CPU which load is requested
5665 * @p: the task which load should be discounted
5666 *
5667 * The load of a CPU is defined by the load of tasks currently enqueued on that
5668 * CPU as well as tasks which are currently sleeping after an execution on that
5669 * CPU.
5670 *
5671 * This method returns the load of the specified CPU by discounting the load of
5672 * the specified task, whenever the task is currently contributing to the CPU
5673 * load.
5674 */
5675static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5676{
5677 struct cfs_rq *cfs_rq;
5678 unsigned int load;
5679
5680 /* Task has no contribution or is new */
5681 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5682 return cpu_load(rq);
5683
5684 cfs_rq = &rq->cfs;
5685 load = READ_ONCE(cfs_rq->avg.load_avg);
5686
5687 /* Discount task's util from CPU's util */
5688 lsub_positive(&load, task_h_load(p));
5689
5690 return load;
5691}
5692
9f683953
VG
5693static unsigned long cpu_runnable(struct rq *rq)
5694{
5695 return cfs_rq_runnable_avg(&rq->cfs);
5696}
5697
070f5e86
VG
5698static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5699{
5700 struct cfs_rq *cfs_rq;
5701 unsigned int runnable;
5702
5703 /* Task has no contribution or is new */
5704 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5705 return cpu_runnable(rq);
5706
5707 cfs_rq = &rq->cfs;
5708 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5709
5710 /* Discount task's runnable from CPU's runnable */
5711 lsub_positive(&runnable, p->se.avg.runnable_avg);
5712
5713 return runnable;
5714}
5715
ced549fa 5716static unsigned long capacity_of(int cpu)
029632fb 5717{
ced549fa 5718 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5719}
5720
c58d25f3
PZ
5721static void record_wakee(struct task_struct *p)
5722{
5723 /*
5724 * Only decay a single time; tasks that have less then 1 wakeup per
5725 * jiffy will not have built up many flips.
5726 */
5727 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5728 current->wakee_flips >>= 1;
5729 current->wakee_flip_decay_ts = jiffies;
5730 }
5731
5732 if (current->last_wakee != p) {
5733 current->last_wakee = p;
5734 current->wakee_flips++;
5735 }
5736}
5737
63b0e9ed
MG
5738/*
5739 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5740 *
63b0e9ed 5741 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5742 * at a frequency roughly N times higher than one of its wakees.
5743 *
5744 * In order to determine whether we should let the load spread vs consolidating
5745 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5746 * partner, and a factor of lls_size higher frequency in the other.
5747 *
5748 * With both conditions met, we can be relatively sure that the relationship is
5749 * non-monogamous, with partner count exceeding socket size.
5750 *
5751 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5752 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5753 * socket size.
63b0e9ed 5754 */
62470419
MW
5755static int wake_wide(struct task_struct *p)
5756{
63b0e9ed
MG
5757 unsigned int master = current->wakee_flips;
5758 unsigned int slave = p->wakee_flips;
17c891ab 5759 int factor = __this_cpu_read(sd_llc_size);
62470419 5760
63b0e9ed
MG
5761 if (master < slave)
5762 swap(master, slave);
5763 if (slave < factor || master < slave * factor)
5764 return 0;
5765 return 1;
62470419
MW
5766}
5767
90001d67 5768/*
d153b153
PZ
5769 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5770 * soonest. For the purpose of speed we only consider the waking and previous
5771 * CPU.
90001d67 5772 *
7332dec0
MG
5773 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5774 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5775 *
5776 * wake_affine_weight() - considers the weight to reflect the average
5777 * scheduling latency of the CPUs. This seems to work
5778 * for the overloaded case.
90001d67 5779 */
3b76c4a3 5780static int
89a55f56 5781wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5782{
7332dec0
MG
5783 /*
5784 * If this_cpu is idle, it implies the wakeup is from interrupt
5785 * context. Only allow the move if cache is shared. Otherwise an
5786 * interrupt intensive workload could force all tasks onto one
5787 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5788 *
5789 * If the prev_cpu is idle and cache affine then avoid a migration.
5790 * There is no guarantee that the cache hot data from an interrupt
5791 * is more important than cache hot data on the prev_cpu and from
5792 * a cpufreq perspective, it's better to have higher utilisation
5793 * on one CPU.
7332dec0 5794 */
943d355d
RJ
5795 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5796 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5797
d153b153 5798 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5799 return this_cpu;
90001d67 5800
3b76c4a3 5801 return nr_cpumask_bits;
90001d67
PZ
5802}
5803
3b76c4a3 5804static int
f2cdd9cc
PZ
5805wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5806 int this_cpu, int prev_cpu, int sync)
90001d67 5807{
90001d67
PZ
5808 s64 this_eff_load, prev_eff_load;
5809 unsigned long task_load;
5810
11f10e54 5811 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5812
90001d67
PZ
5813 if (sync) {
5814 unsigned long current_load = task_h_load(current);
5815
f2cdd9cc 5816 if (current_load > this_eff_load)
3b76c4a3 5817 return this_cpu;
90001d67 5818
f2cdd9cc 5819 this_eff_load -= current_load;
90001d67
PZ
5820 }
5821
90001d67
PZ
5822 task_load = task_h_load(p);
5823
f2cdd9cc
PZ
5824 this_eff_load += task_load;
5825 if (sched_feat(WA_BIAS))
5826 this_eff_load *= 100;
5827 this_eff_load *= capacity_of(prev_cpu);
90001d67 5828
11f10e54 5829 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5830 prev_eff_load -= task_load;
5831 if (sched_feat(WA_BIAS))
5832 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5833 prev_eff_load *= capacity_of(this_cpu);
90001d67 5834
082f764a
MG
5835 /*
5836 * If sync, adjust the weight of prev_eff_load such that if
5837 * prev_eff == this_eff that select_idle_sibling() will consider
5838 * stacking the wakee on top of the waker if no other CPU is
5839 * idle.
5840 */
5841 if (sync)
5842 prev_eff_load += 1;
5843
5844 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5845}
5846
772bd008 5847static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5848 int this_cpu, int prev_cpu, int sync)
098fb9db 5849{
3b76c4a3 5850 int target = nr_cpumask_bits;
098fb9db 5851
89a55f56 5852 if (sched_feat(WA_IDLE))
3b76c4a3 5853 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5854
3b76c4a3
MG
5855 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5856 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5857
ae92882e 5858 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5859 if (target == nr_cpumask_bits)
5860 return prev_cpu;
098fb9db 5861
3b76c4a3
MG
5862 schedstat_inc(sd->ttwu_move_affine);
5863 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5864 return target;
098fb9db
IM
5865}
5866
aaee1203 5867static struct sched_group *
45da2773 5868find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5869
5870/*
97fb7a0a 5871 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5872 */
5873static int
18bd1b4b 5874find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5875{
5876 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5877 unsigned int min_exit_latency = UINT_MAX;
5878 u64 latest_idle_timestamp = 0;
5879 int least_loaded_cpu = this_cpu;
17346452 5880 int shallowest_idle_cpu = -1;
aaee1203
PZ
5881 int i;
5882
eaecf41f
MR
5883 /* Check if we have any choice: */
5884 if (group->group_weight == 1)
ae4df9d6 5885 return cpumask_first(sched_group_span(group));
eaecf41f 5886
aaee1203 5887 /* Traverse only the allowed CPUs */
3bd37062 5888 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5889 if (sched_idle_cpu(i))
5890 return i;
5891
943d355d 5892 if (available_idle_cpu(i)) {
83a0a96a
NP
5893 struct rq *rq = cpu_rq(i);
5894 struct cpuidle_state *idle = idle_get_state(rq);
5895 if (idle && idle->exit_latency < min_exit_latency) {
5896 /*
5897 * We give priority to a CPU whose idle state
5898 * has the smallest exit latency irrespective
5899 * of any idle timestamp.
5900 */
5901 min_exit_latency = idle->exit_latency;
5902 latest_idle_timestamp = rq->idle_stamp;
5903 shallowest_idle_cpu = i;
5904 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5905 rq->idle_stamp > latest_idle_timestamp) {
5906 /*
5907 * If equal or no active idle state, then
5908 * the most recently idled CPU might have
5909 * a warmer cache.
5910 */
5911 latest_idle_timestamp = rq->idle_stamp;
5912 shallowest_idle_cpu = i;
5913 }
17346452 5914 } else if (shallowest_idle_cpu == -1) {
11f10e54 5915 load = cpu_load(cpu_rq(i));
18cec7e0 5916 if (load < min_load) {
83a0a96a
NP
5917 min_load = load;
5918 least_loaded_cpu = i;
5919 }
e7693a36
GH
5920 }
5921 }
5922
17346452 5923 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5924}
e7693a36 5925
18bd1b4b
BJ
5926static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5927 int cpu, int prev_cpu, int sd_flag)
5928{
93f50f90 5929 int new_cpu = cpu;
18bd1b4b 5930
3bd37062 5931 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5932 return prev_cpu;
5933
c976a862 5934 /*
57abff06 5935 * We need task's util for cpu_util_without, sync it up to
c469933e 5936 * prev_cpu's last_update_time.
c976a862
VK
5937 */
5938 if (!(sd_flag & SD_BALANCE_FORK))
5939 sync_entity_load_avg(&p->se);
5940
18bd1b4b
BJ
5941 while (sd) {
5942 struct sched_group *group;
5943 struct sched_domain *tmp;
5944 int weight;
5945
5946 if (!(sd->flags & sd_flag)) {
5947 sd = sd->child;
5948 continue;
5949 }
5950
45da2773 5951 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5952 if (!group) {
5953 sd = sd->child;
5954 continue;
5955 }
5956
5957 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5958 if (new_cpu == cpu) {
97fb7a0a 5959 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5960 sd = sd->child;
5961 continue;
5962 }
5963
97fb7a0a 5964 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5965 cpu = new_cpu;
5966 weight = sd->span_weight;
5967 sd = NULL;
5968 for_each_domain(cpu, tmp) {
5969 if (weight <= tmp->span_weight)
5970 break;
5971 if (tmp->flags & sd_flag)
5972 sd = tmp;
5973 }
18bd1b4b
BJ
5974 }
5975
5976 return new_cpu;
5977}
5978
10e2f1ac 5979#ifdef CONFIG_SCHED_SMT
ba2591a5 5980DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5981EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5982
5983static inline void set_idle_cores(int cpu, int val)
5984{
5985 struct sched_domain_shared *sds;
5986
5987 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5988 if (sds)
5989 WRITE_ONCE(sds->has_idle_cores, val);
5990}
5991
5992static inline bool test_idle_cores(int cpu, bool def)
5993{
5994 struct sched_domain_shared *sds;
5995
5996 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5997 if (sds)
5998 return READ_ONCE(sds->has_idle_cores);
5999
6000 return def;
6001}
6002
6003/*
6004 * Scans the local SMT mask to see if the entire core is idle, and records this
6005 * information in sd_llc_shared->has_idle_cores.
6006 *
6007 * Since SMT siblings share all cache levels, inspecting this limited remote
6008 * state should be fairly cheap.
6009 */
1b568f0a 6010void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6011{
6012 int core = cpu_of(rq);
6013 int cpu;
6014
6015 rcu_read_lock();
6016 if (test_idle_cores(core, true))
6017 goto unlock;
6018
6019 for_each_cpu(cpu, cpu_smt_mask(core)) {
6020 if (cpu == core)
6021 continue;
6022
943d355d 6023 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6024 goto unlock;
6025 }
6026
6027 set_idle_cores(core, 1);
6028unlock:
6029 rcu_read_unlock();
6030}
6031
6032/*
6033 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6034 * there are no idle cores left in the system; tracked through
6035 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6036 */
6037static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6038{
6039 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6040 int core, cpu;
10e2f1ac 6041
1b568f0a
PZ
6042 if (!static_branch_likely(&sched_smt_present))
6043 return -1;
6044
10e2f1ac
PZ
6045 if (!test_idle_cores(target, false))
6046 return -1;
6047
3bd37062 6048 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6049
c743f0a5 6050 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6051 bool idle = true;
6052
6053 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6054 if (!available_idle_cpu(cpu)) {
10e2f1ac 6055 idle = false;
bec2860a
SD
6056 break;
6057 }
10e2f1ac 6058 }
bec2860a 6059 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6060
6061 if (idle)
6062 return core;
6063 }
6064
6065 /*
6066 * Failed to find an idle core; stop looking for one.
6067 */
6068 set_idle_cores(target, 0);
6069
6070 return -1;
6071}
6072
6073/*
6074 * Scan the local SMT mask for idle CPUs.
6075 */
1b5500d7 6076static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac 6077{
17346452 6078 int cpu;
10e2f1ac 6079
1b568f0a
PZ
6080 if (!static_branch_likely(&sched_smt_present))
6081 return -1;
6082
10e2f1ac 6083 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 6084 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 6085 continue;
17346452 6086 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6087 return cpu;
6088 }
6089
17346452 6090 return -1;
10e2f1ac
PZ
6091}
6092
6093#else /* CONFIG_SCHED_SMT */
6094
6095static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6096{
6097 return -1;
6098}
6099
1b5500d7 6100static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
6101{
6102 return -1;
6103}
6104
6105#endif /* CONFIG_SCHED_SMT */
6106
6107/*
6108 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6109 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6110 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6111 */
10e2f1ac
PZ
6112static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6113{
60588bfa 6114 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6115 struct sched_domain *this_sd;
1ad3aaf3 6116 u64 avg_cost, avg_idle;
d76343c6 6117 u64 time;
8dc2d993 6118 int this = smp_processor_id();
17346452 6119 int cpu, nr = INT_MAX;
10e2f1ac 6120
9cfb38a7
WL
6121 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6122 if (!this_sd)
6123 return -1;
6124
10e2f1ac
PZ
6125 /*
6126 * Due to large variance we need a large fuzz factor; hackbench in
6127 * particularly is sensitive here.
6128 */
1ad3aaf3
PZ
6129 avg_idle = this_rq()->avg_idle / 512;
6130 avg_cost = this_sd->avg_scan_cost + 1;
6131
6132 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6133 return -1;
6134
1ad3aaf3
PZ
6135 if (sched_feat(SIS_PROP)) {
6136 u64 span_avg = sd->span_weight * avg_idle;
6137 if (span_avg > 4*avg_cost)
6138 nr = div_u64(span_avg, avg_cost);
6139 else
6140 nr = 4;
6141 }
6142
8dc2d993 6143 time = cpu_clock(this);
10e2f1ac 6144
60588bfa
CJ
6145 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6146
6147 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6148 if (!--nr)
17346452
VK
6149 return -1;
6150 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6151 break;
6152 }
6153
8dc2d993 6154 time = cpu_clock(this) - time;
d76343c6 6155 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6156
6157 return cpu;
6158}
6159
b7a33161
MR
6160/*
6161 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6162 * the task fits. If no CPU is big enough, but there are idle ones, try to
6163 * maximize capacity.
6164 */
6165static int
6166select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6167{
6168 unsigned long best_cap = 0;
6169 int cpu, best_cpu = -1;
6170 struct cpumask *cpus;
6171
6172 sync_entity_load_avg(&p->se);
6173
6174 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6175 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6176
6177 for_each_cpu_wrap(cpu, cpus, target) {
6178 unsigned long cpu_cap = capacity_of(cpu);
6179
6180 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6181 continue;
6182 if (task_fits_capacity(p, cpu_cap))
6183 return cpu;
6184
6185 if (cpu_cap > best_cap) {
6186 best_cap = cpu_cap;
6187 best_cpu = cpu;
6188 }
6189 }
6190
6191 return best_cpu;
6192}
6193
10e2f1ac
PZ
6194/*
6195 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6196 */
772bd008 6197static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6198{
99bd5e2f 6199 struct sched_domain *sd;
32e839dd 6200 int i, recent_used_cpu;
a50bde51 6201
b7a33161
MR
6202 /*
6203 * For asymmetric CPU capacity systems, our domain of interest is
6204 * sd_asym_cpucapacity rather than sd_llc.
6205 */
6206 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6207 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6208 /*
6209 * On an asymmetric CPU capacity system where an exclusive
6210 * cpuset defines a symmetric island (i.e. one unique
6211 * capacity_orig value through the cpuset), the key will be set
6212 * but the CPUs within that cpuset will not have a domain with
6213 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6214 * capacity path.
6215 */
6216 if (!sd)
6217 goto symmetric;
6218
6219 i = select_idle_capacity(p, sd, target);
6220 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6221 }
6222
6223symmetric:
3c29e651 6224 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 6225 return target;
99bd5e2f
SS
6226
6227 /*
97fb7a0a 6228 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6229 */
3c29e651
VK
6230 if (prev != target && cpus_share_cache(prev, target) &&
6231 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6232 return prev;
a50bde51 6233
52262ee5
MG
6234 /*
6235 * Allow a per-cpu kthread to stack with the wakee if the
6236 * kworker thread and the tasks previous CPUs are the same.
6237 * The assumption is that the wakee queued work for the
6238 * per-cpu kthread that is now complete and the wakeup is
6239 * essentially a sync wakeup. An obvious example of this
6240 * pattern is IO completions.
6241 */
6242 if (is_per_cpu_kthread(current) &&
6243 prev == smp_processor_id() &&
6244 this_rq()->nr_running <= 1) {
6245 return prev;
6246 }
6247
97fb7a0a 6248 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6249 recent_used_cpu = p->recent_used_cpu;
6250 if (recent_used_cpu != prev &&
6251 recent_used_cpu != target &&
6252 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6253 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6254 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6255 /*
6256 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6257 * candidate for the next wake:
32e839dd
MG
6258 */
6259 p->recent_used_cpu = prev;
6260 return recent_used_cpu;
6261 }
6262
518cd623 6263 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6264 if (!sd)
6265 return target;
772bd008 6266
10e2f1ac
PZ
6267 i = select_idle_core(p, sd, target);
6268 if ((unsigned)i < nr_cpumask_bits)
6269 return i;
37407ea7 6270
10e2f1ac
PZ
6271 i = select_idle_cpu(p, sd, target);
6272 if ((unsigned)i < nr_cpumask_bits)
6273 return i;
6274
1b5500d7 6275 i = select_idle_smt(p, target);
10e2f1ac
PZ
6276 if ((unsigned)i < nr_cpumask_bits)
6277 return i;
970e1789 6278
a50bde51
PZ
6279 return target;
6280}
231678b7 6281
f9be3e59
PB
6282/**
6283 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6284 * @cpu: the CPU to get the utilization of
6285 *
6286 * The unit of the return value must be the one of capacity so we can compare
6287 * the utilization with the capacity of the CPU that is available for CFS task
6288 * (ie cpu_capacity).
231678b7
DE
6289 *
6290 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6291 * recent utilization of currently non-runnable tasks on a CPU. It represents
6292 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6293 * capacity_orig is the cpu_capacity available at the highest frequency
6294 * (arch_scale_freq_capacity()).
6295 * The utilization of a CPU converges towards a sum equal to or less than the
6296 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6297 * the running time on this CPU scaled by capacity_curr.
6298 *
f9be3e59
PB
6299 * The estimated utilization of a CPU is defined to be the maximum between its
6300 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6301 * currently RUNNABLE on that CPU.
6302 * This allows to properly represent the expected utilization of a CPU which
6303 * has just got a big task running since a long sleep period. At the same time
6304 * however it preserves the benefits of the "blocked utilization" in
6305 * describing the potential for other tasks waking up on the same CPU.
6306 *
231678b7
DE
6307 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6308 * higher than capacity_orig because of unfortunate rounding in
6309 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6310 * the average stabilizes with the new running time. We need to check that the
6311 * utilization stays within the range of [0..capacity_orig] and cap it if
6312 * necessary. Without utilization capping, a group could be seen as overloaded
6313 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6314 * available capacity. We allow utilization to overshoot capacity_curr (but not
6315 * capacity_orig) as it useful for predicting the capacity required after task
6316 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6317 *
6318 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6319 */
f9be3e59 6320static inline unsigned long cpu_util(int cpu)
8bb5b00c 6321{
f9be3e59
PB
6322 struct cfs_rq *cfs_rq;
6323 unsigned int util;
6324
6325 cfs_rq = &cpu_rq(cpu)->cfs;
6326 util = READ_ONCE(cfs_rq->avg.util_avg);
6327
6328 if (sched_feat(UTIL_EST))
6329 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6330
f9be3e59 6331 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6332}
a50bde51 6333
104cb16d 6334/*
c469933e
PB
6335 * cpu_util_without: compute cpu utilization without any contributions from *p
6336 * @cpu: the CPU which utilization is requested
6337 * @p: the task which utilization should be discounted
6338 *
6339 * The utilization of a CPU is defined by the utilization of tasks currently
6340 * enqueued on that CPU as well as tasks which are currently sleeping after an
6341 * execution on that CPU.
6342 *
6343 * This method returns the utilization of the specified CPU by discounting the
6344 * utilization of the specified task, whenever the task is currently
6345 * contributing to the CPU utilization.
104cb16d 6346 */
c469933e 6347static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6348{
f9be3e59
PB
6349 struct cfs_rq *cfs_rq;
6350 unsigned int util;
104cb16d
MR
6351
6352 /* Task has no contribution or is new */
f9be3e59 6353 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6354 return cpu_util(cpu);
6355
f9be3e59
PB
6356 cfs_rq = &cpu_rq(cpu)->cfs;
6357 util = READ_ONCE(cfs_rq->avg.util_avg);
6358
c469933e 6359 /* Discount task's util from CPU's util */
b5c0ce7b 6360 lsub_positive(&util, task_util(p));
104cb16d 6361
f9be3e59
PB
6362 /*
6363 * Covered cases:
6364 *
6365 * a) if *p is the only task sleeping on this CPU, then:
6366 * cpu_util (== task_util) > util_est (== 0)
6367 * and thus we return:
c469933e 6368 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6369 *
6370 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6371 * IDLE, then:
6372 * cpu_util >= task_util
6373 * cpu_util > util_est (== 0)
6374 * and thus we discount *p's blocked utilization to return:
c469933e 6375 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6376 *
6377 * c) if other tasks are RUNNABLE on that CPU and
6378 * util_est > cpu_util
6379 * then we use util_est since it returns a more restrictive
6380 * estimation of the spare capacity on that CPU, by just
6381 * considering the expected utilization of tasks already
6382 * runnable on that CPU.
6383 *
6384 * Cases a) and b) are covered by the above code, while case c) is
6385 * covered by the following code when estimated utilization is
6386 * enabled.
6387 */
c469933e
PB
6388 if (sched_feat(UTIL_EST)) {
6389 unsigned int estimated =
6390 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6391
6392 /*
6393 * Despite the following checks we still have a small window
6394 * for a possible race, when an execl's select_task_rq_fair()
6395 * races with LB's detach_task():
6396 *
6397 * detach_task()
6398 * p->on_rq = TASK_ON_RQ_MIGRATING;
6399 * ---------------------------------- A
6400 * deactivate_task() \
6401 * dequeue_task() + RaceTime
6402 * util_est_dequeue() /
6403 * ---------------------------------- B
6404 *
6405 * The additional check on "current == p" it's required to
6406 * properly fix the execl regression and it helps in further
6407 * reducing the chances for the above race.
6408 */
b5c0ce7b
PB
6409 if (unlikely(task_on_rq_queued(p) || current == p))
6410 lsub_positive(&estimated, _task_util_est(p));
6411
c469933e
PB
6412 util = max(util, estimated);
6413 }
f9be3e59
PB
6414
6415 /*
6416 * Utilization (estimated) can exceed the CPU capacity, thus let's
6417 * clamp to the maximum CPU capacity to ensure consistency with
6418 * the cpu_util call.
6419 */
6420 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6421}
6422
390031e4
QP
6423/*
6424 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6425 * to @dst_cpu.
6426 */
6427static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6428{
6429 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6430 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6431
6432 /*
6433 * If @p migrates from @cpu to another, remove its contribution. Or,
6434 * if @p migrates from another CPU to @cpu, add its contribution. In
6435 * the other cases, @cpu is not impacted by the migration, so the
6436 * util_avg should already be correct.
6437 */
6438 if (task_cpu(p) == cpu && dst_cpu != cpu)
6439 sub_positive(&util, task_util(p));
6440 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6441 util += task_util(p);
6442
6443 if (sched_feat(UTIL_EST)) {
6444 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6445
6446 /*
6447 * During wake-up, the task isn't enqueued yet and doesn't
6448 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6449 * so just add it (if needed) to "simulate" what will be
6450 * cpu_util() after the task has been enqueued.
6451 */
6452 if (dst_cpu == cpu)
6453 util_est += _task_util_est(p);
6454
6455 util = max(util, util_est);
6456 }
6457
6458 return min(util, capacity_orig_of(cpu));
6459}
6460
6461/*
eb92692b 6462 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6463 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6464 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6465 * to compute what would be the energy if we decided to actually migrate that
6466 * task.
6467 */
6468static long
6469compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6470{
eb92692b
QP
6471 struct cpumask *pd_mask = perf_domain_span(pd);
6472 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6473 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6474 int cpu;
6475
eb92692b
QP
6476 /*
6477 * The capacity state of CPUs of the current rd can be driven by CPUs
6478 * of another rd if they belong to the same pd. So, account for the
6479 * utilization of these CPUs too by masking pd with cpu_online_mask
6480 * instead of the rd span.
6481 *
6482 * If an entire pd is outside of the current rd, it will not appear in
6483 * its pd list and will not be accounted by compute_energy().
6484 */
6485 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6486 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6487 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6488
6489 /*
eb92692b
QP
6490 * Busy time computation: utilization clamping is not
6491 * required since the ratio (sum_util / cpu_capacity)
6492 * is already enough to scale the EM reported power
6493 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6494 */
eb92692b
QP
6495 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6496 ENERGY_UTIL, NULL);
af24bde8 6497
390031e4 6498 /*
eb92692b
QP
6499 * Performance domain frequency: utilization clamping
6500 * must be considered since it affects the selection
6501 * of the performance domain frequency.
6502 * NOTE: in case RT tasks are running, by default the
6503 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6504 */
eb92692b
QP
6505 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6506 FREQUENCY_UTIL, tsk);
6507 max_util = max(max_util, cpu_util);
390031e4
QP
6508 }
6509
eb92692b 6510 return em_pd_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6511}
6512
732cd75b
QP
6513/*
6514 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6515 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6516 * spare capacity in each performance domain and uses it as a potential
6517 * candidate to execute the task. Then, it uses the Energy Model to figure
6518 * out which of the CPU candidates is the most energy-efficient.
6519 *
6520 * The rationale for this heuristic is as follows. In a performance domain,
6521 * all the most energy efficient CPU candidates (according to the Energy
6522 * Model) are those for which we'll request a low frequency. When there are
6523 * several CPUs for which the frequency request will be the same, we don't
6524 * have enough data to break the tie between them, because the Energy Model
6525 * only includes active power costs. With this model, if we assume that
6526 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6527 * the maximum spare capacity in a performance domain is guaranteed to be among
6528 * the best candidates of the performance domain.
6529 *
6530 * In practice, it could be preferable from an energy standpoint to pack
6531 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6532 * but that could also hurt our chances to go cluster idle, and we have no
6533 * ways to tell with the current Energy Model if this is actually a good
6534 * idea or not. So, find_energy_efficient_cpu() basically favors
6535 * cluster-packing, and spreading inside a cluster. That should at least be
6536 * a good thing for latency, and this is consistent with the idea that most
6537 * of the energy savings of EAS come from the asymmetry of the system, and
6538 * not so much from breaking the tie between identical CPUs. That's also the
6539 * reason why EAS is enabled in the topology code only for systems where
6540 * SD_ASYM_CPUCAPACITY is set.
6541 *
6542 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6543 * they don't have any useful utilization data yet and it's not possible to
6544 * forecast their impact on energy consumption. Consequently, they will be
6545 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6546 * to be energy-inefficient in some use-cases. The alternative would be to
6547 * bias new tasks towards specific types of CPUs first, or to try to infer
6548 * their util_avg from the parent task, but those heuristics could hurt
6549 * other use-cases too. So, until someone finds a better way to solve this,
6550 * let's keep things simple by re-using the existing slow path.
6551 */
732cd75b
QP
6552static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6553{
eb92692b 6554 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6555 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6556 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6557 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6558 struct sched_domain *sd;
eb92692b 6559 struct perf_domain *pd;
732cd75b
QP
6560
6561 rcu_read_lock();
6562 pd = rcu_dereference(rd->pd);
6563 if (!pd || READ_ONCE(rd->overutilized))
6564 goto fail;
732cd75b
QP
6565
6566 /*
6567 * Energy-aware wake-up happens on the lowest sched_domain starting
6568 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6569 */
6570 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6571 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6572 sd = sd->parent;
6573 if (!sd)
6574 goto fail;
6575
6576 sync_entity_load_avg(&p->se);
6577 if (!task_util_est(p))
6578 goto unlock;
6579
6580 for (; pd; pd = pd->next) {
eb92692b
QP
6581 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6582 unsigned long base_energy_pd;
732cd75b
QP
6583 int max_spare_cap_cpu = -1;
6584
eb92692b
QP
6585 /* Compute the 'base' energy of the pd, without @p */
6586 base_energy_pd = compute_energy(p, -1, pd);
6587 base_energy += base_energy_pd;
6588
732cd75b 6589 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6590 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6591 continue;
6592
732cd75b
QP
6593 util = cpu_util_next(cpu, p, cpu);
6594 cpu_cap = capacity_of(cpu);
1d42509e
VS
6595 spare_cap = cpu_cap - util;
6596
6597 /*
6598 * Skip CPUs that cannot satisfy the capacity request.
6599 * IOW, placing the task there would make the CPU
6600 * overutilized. Take uclamp into account to see how
6601 * much capacity we can get out of the CPU; this is
6602 * aligned with schedutil_cpu_util().
6603 */
6604 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6605 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6606 continue;
6607
6608 /* Always use prev_cpu as a candidate. */
6609 if (cpu == prev_cpu) {
eb92692b
QP
6610 prev_delta = compute_energy(p, prev_cpu, pd);
6611 prev_delta -= base_energy_pd;
6612 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6613 }
6614
6615 /*
6616 * Find the CPU with the maximum spare capacity in
6617 * the performance domain
6618 */
732cd75b
QP
6619 if (spare_cap > max_spare_cap) {
6620 max_spare_cap = spare_cap;
6621 max_spare_cap_cpu = cpu;
6622 }
6623 }
6624
6625 /* Evaluate the energy impact of using this CPU. */
4892f51a 6626 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6627 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6628 cur_delta -= base_energy_pd;
6629 if (cur_delta < best_delta) {
6630 best_delta = cur_delta;
732cd75b
QP
6631 best_energy_cpu = max_spare_cap_cpu;
6632 }
6633 }
6634 }
6635unlock:
6636 rcu_read_unlock();
6637
6638 /*
6639 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6640 * least 6% of the energy used by prev_cpu.
6641 */
eb92692b 6642 if (prev_delta == ULONG_MAX)
732cd75b
QP
6643 return best_energy_cpu;
6644
eb92692b 6645 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6646 return best_energy_cpu;
6647
6648 return prev_cpu;
6649
6650fail:
6651 rcu_read_unlock();
6652
6653 return -1;
6654}
6655
aaee1203 6656/*
de91b9cb
MR
6657 * select_task_rq_fair: Select target runqueue for the waking task in domains
6658 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6659 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6660 *
97fb7a0a
IM
6661 * Balances load by selecting the idlest CPU in the idlest group, or under
6662 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6663 *
97fb7a0a 6664 * Returns the target CPU number.
aaee1203
PZ
6665 *
6666 * preempt must be disabled.
6667 */
0017d735 6668static int
ac66f547 6669select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6670{
f1d88b44 6671 struct sched_domain *tmp, *sd = NULL;
c88d5910 6672 int cpu = smp_processor_id();
63b0e9ed 6673 int new_cpu = prev_cpu;
99bd5e2f 6674 int want_affine = 0;
24d0c1d6 6675 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6676
c58d25f3
PZ
6677 if (sd_flag & SD_BALANCE_WAKE) {
6678 record_wakee(p);
732cd75b 6679
f8a696f2 6680 if (sched_energy_enabled()) {
732cd75b
QP
6681 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6682 if (new_cpu >= 0)
6683 return new_cpu;
6684 new_cpu = prev_cpu;
6685 }
6686
00061968 6687 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6688 }
aaee1203 6689
dce840a0 6690 rcu_read_lock();
aaee1203 6691 for_each_domain(cpu, tmp) {
fe3bcfe1 6692 /*
97fb7a0a 6693 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6694 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6695 */
99bd5e2f
SS
6696 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6697 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6698 if (cpu != prev_cpu)
6699 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6700
6701 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6702 break;
f03542a7 6703 }
29cd8bae 6704
f03542a7 6705 if (tmp->flags & sd_flag)
29cd8bae 6706 sd = tmp;
63b0e9ed
MG
6707 else if (!want_affine)
6708 break;
29cd8bae
PZ
6709 }
6710
f1d88b44
VK
6711 if (unlikely(sd)) {
6712 /* Slow path */
18bd1b4b 6713 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6714 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6715 /* Fast path */
6716
6717 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6718
6719 if (want_affine)
6720 current->recent_used_cpu = cpu;
e7693a36 6721 }
dce840a0 6722 rcu_read_unlock();
e7693a36 6723
c88d5910 6724 return new_cpu;
e7693a36 6725}
0a74bef8 6726
144d8487
PZ
6727static void detach_entity_cfs_rq(struct sched_entity *se);
6728
0a74bef8 6729/*
97fb7a0a 6730 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6731 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6732 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6733 */
3f9672ba 6734static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6735{
59efa0ba
PZ
6736 /*
6737 * As blocked tasks retain absolute vruntime the migration needs to
6738 * deal with this by subtracting the old and adding the new
6739 * min_vruntime -- the latter is done by enqueue_entity() when placing
6740 * the task on the new runqueue.
6741 */
6742 if (p->state == TASK_WAKING) {
6743 struct sched_entity *se = &p->se;
6744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6745 u64 min_vruntime;
6746
6747#ifndef CONFIG_64BIT
6748 u64 min_vruntime_copy;
6749
6750 do {
6751 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6752 smp_rmb();
6753 min_vruntime = cfs_rq->min_vruntime;
6754 } while (min_vruntime != min_vruntime_copy);
6755#else
6756 min_vruntime = cfs_rq->min_vruntime;
6757#endif
6758
6759 se->vruntime -= min_vruntime;
6760 }
6761
144d8487
PZ
6762 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6763 /*
6764 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6765 * rq->lock and can modify state directly.
6766 */
6767 lockdep_assert_held(&task_rq(p)->lock);
6768 detach_entity_cfs_rq(&p->se);
6769
6770 } else {
6771 /*
6772 * We are supposed to update the task to "current" time, then
6773 * its up to date and ready to go to new CPU/cfs_rq. But we
6774 * have difficulty in getting what current time is, so simply
6775 * throw away the out-of-date time. This will result in the
6776 * wakee task is less decayed, but giving the wakee more load
6777 * sounds not bad.
6778 */
6779 remove_entity_load_avg(&p->se);
6780 }
9d89c257
YD
6781
6782 /* Tell new CPU we are migrated */
6783 p->se.avg.last_update_time = 0;
3944a927
BS
6784
6785 /* We have migrated, no longer consider this task hot */
9d89c257 6786 p->se.exec_start = 0;
3f9672ba
SD
6787
6788 update_scan_period(p, new_cpu);
0a74bef8 6789}
12695578
YD
6790
6791static void task_dead_fair(struct task_struct *p)
6792{
6793 remove_entity_load_avg(&p->se);
6794}
6e2df058
PZ
6795
6796static int
6797balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6798{
6799 if (rq->nr_running)
6800 return 1;
6801
6802 return newidle_balance(rq, rf) != 0;
6803}
e7693a36
GH
6804#endif /* CONFIG_SMP */
6805
a555e9d8 6806static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6807{
6808 unsigned long gran = sysctl_sched_wakeup_granularity;
6809
6810 /*
e52fb7c0
PZ
6811 * Since its curr running now, convert the gran from real-time
6812 * to virtual-time in his units.
13814d42
MG
6813 *
6814 * By using 'se' instead of 'curr' we penalize light tasks, so
6815 * they get preempted easier. That is, if 'se' < 'curr' then
6816 * the resulting gran will be larger, therefore penalizing the
6817 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6818 * be smaller, again penalizing the lighter task.
6819 *
6820 * This is especially important for buddies when the leftmost
6821 * task is higher priority than the buddy.
0bbd3336 6822 */
f4ad9bd2 6823 return calc_delta_fair(gran, se);
0bbd3336
PZ
6824}
6825
464b7527
PZ
6826/*
6827 * Should 'se' preempt 'curr'.
6828 *
6829 * |s1
6830 * |s2
6831 * |s3
6832 * g
6833 * |<--->|c
6834 *
6835 * w(c, s1) = -1
6836 * w(c, s2) = 0
6837 * w(c, s3) = 1
6838 *
6839 */
6840static int
6841wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6842{
6843 s64 gran, vdiff = curr->vruntime - se->vruntime;
6844
6845 if (vdiff <= 0)
6846 return -1;
6847
a555e9d8 6848 gran = wakeup_gran(se);
464b7527
PZ
6849 if (vdiff > gran)
6850 return 1;
6851
6852 return 0;
6853}
6854
02479099
PZ
6855static void set_last_buddy(struct sched_entity *se)
6856{
1da1843f 6857 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6858 return;
6859
c5ae366e
DA
6860 for_each_sched_entity(se) {
6861 if (SCHED_WARN_ON(!se->on_rq))
6862 return;
69c80f3e 6863 cfs_rq_of(se)->last = se;
c5ae366e 6864 }
02479099
PZ
6865}
6866
6867static void set_next_buddy(struct sched_entity *se)
6868{
1da1843f 6869 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6870 return;
6871
c5ae366e
DA
6872 for_each_sched_entity(se) {
6873 if (SCHED_WARN_ON(!se->on_rq))
6874 return;
69c80f3e 6875 cfs_rq_of(se)->next = se;
c5ae366e 6876 }
02479099
PZ
6877}
6878
ac53db59
RR
6879static void set_skip_buddy(struct sched_entity *se)
6880{
69c80f3e
VP
6881 for_each_sched_entity(se)
6882 cfs_rq_of(se)->skip = se;
ac53db59
RR
6883}
6884
bf0f6f24
IM
6885/*
6886 * Preempt the current task with a newly woken task if needed:
6887 */
5a9b86f6 6888static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6889{
6890 struct task_struct *curr = rq->curr;
8651a86c 6891 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6892 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6893 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6894 int next_buddy_marked = 0;
bf0f6f24 6895
4ae7d5ce
IM
6896 if (unlikely(se == pse))
6897 return;
6898
5238cdd3 6899 /*
163122b7 6900 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6901 * unconditionally check_prempt_curr() after an enqueue (which may have
6902 * lead to a throttle). This both saves work and prevents false
6903 * next-buddy nomination below.
6904 */
6905 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6906 return;
6907
2f36825b 6908 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6909 set_next_buddy(pse);
2f36825b
VP
6910 next_buddy_marked = 1;
6911 }
57fdc26d 6912
aec0a514
BR
6913 /*
6914 * We can come here with TIF_NEED_RESCHED already set from new task
6915 * wake up path.
5238cdd3
PT
6916 *
6917 * Note: this also catches the edge-case of curr being in a throttled
6918 * group (e.g. via set_curr_task), since update_curr() (in the
6919 * enqueue of curr) will have resulted in resched being set. This
6920 * prevents us from potentially nominating it as a false LAST_BUDDY
6921 * below.
aec0a514
BR
6922 */
6923 if (test_tsk_need_resched(curr))
6924 return;
6925
a2f5c9ab 6926 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6927 if (unlikely(task_has_idle_policy(curr)) &&
6928 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6929 goto preempt;
6930
91c234b4 6931 /*
a2f5c9ab
DH
6932 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6933 * is driven by the tick):
91c234b4 6934 */
8ed92e51 6935 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6936 return;
bf0f6f24 6937
464b7527 6938 find_matching_se(&se, &pse);
9bbd7374 6939 update_curr(cfs_rq_of(se));
002f128b 6940 BUG_ON(!pse);
2f36825b
VP
6941 if (wakeup_preempt_entity(se, pse) == 1) {
6942 /*
6943 * Bias pick_next to pick the sched entity that is
6944 * triggering this preemption.
6945 */
6946 if (!next_buddy_marked)
6947 set_next_buddy(pse);
3a7e73a2 6948 goto preempt;
2f36825b 6949 }
464b7527 6950
3a7e73a2 6951 return;
a65ac745 6952
3a7e73a2 6953preempt:
8875125e 6954 resched_curr(rq);
3a7e73a2
PZ
6955 /*
6956 * Only set the backward buddy when the current task is still
6957 * on the rq. This can happen when a wakeup gets interleaved
6958 * with schedule on the ->pre_schedule() or idle_balance()
6959 * point, either of which can * drop the rq lock.
6960 *
6961 * Also, during early boot the idle thread is in the fair class,
6962 * for obvious reasons its a bad idea to schedule back to it.
6963 */
6964 if (unlikely(!se->on_rq || curr == rq->idle))
6965 return;
6966
6967 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6968 set_last_buddy(se);
bf0f6f24
IM
6969}
6970
5d7d6056 6971struct task_struct *
d8ac8971 6972pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6973{
6974 struct cfs_rq *cfs_rq = &rq->cfs;
6975 struct sched_entity *se;
678d5718 6976 struct task_struct *p;
37e117c0 6977 int new_tasks;
678d5718 6978
6e83125c 6979again:
6e2df058 6980 if (!sched_fair_runnable(rq))
38033c37 6981 goto idle;
678d5718 6982
9674f5ca 6983#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 6984 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
6985 goto simple;
6986
6987 /*
6988 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6989 * likely that a next task is from the same cgroup as the current.
6990 *
6991 * Therefore attempt to avoid putting and setting the entire cgroup
6992 * hierarchy, only change the part that actually changes.
6993 */
6994
6995 do {
6996 struct sched_entity *curr = cfs_rq->curr;
6997
6998 /*
6999 * Since we got here without doing put_prev_entity() we also
7000 * have to consider cfs_rq->curr. If it is still a runnable
7001 * entity, update_curr() will update its vruntime, otherwise
7002 * forget we've ever seen it.
7003 */
54d27365
BS
7004 if (curr) {
7005 if (curr->on_rq)
7006 update_curr(cfs_rq);
7007 else
7008 curr = NULL;
678d5718 7009
54d27365
BS
7010 /*
7011 * This call to check_cfs_rq_runtime() will do the
7012 * throttle and dequeue its entity in the parent(s).
9674f5ca 7013 * Therefore the nr_running test will indeed
54d27365
BS
7014 * be correct.
7015 */
9674f5ca
VK
7016 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7017 cfs_rq = &rq->cfs;
7018
7019 if (!cfs_rq->nr_running)
7020 goto idle;
7021
54d27365 7022 goto simple;
9674f5ca 7023 }
54d27365 7024 }
678d5718
PZ
7025
7026 se = pick_next_entity(cfs_rq, curr);
7027 cfs_rq = group_cfs_rq(se);
7028 } while (cfs_rq);
7029
7030 p = task_of(se);
7031
7032 /*
7033 * Since we haven't yet done put_prev_entity and if the selected task
7034 * is a different task than we started out with, try and touch the
7035 * least amount of cfs_rqs.
7036 */
7037 if (prev != p) {
7038 struct sched_entity *pse = &prev->se;
7039
7040 while (!(cfs_rq = is_same_group(se, pse))) {
7041 int se_depth = se->depth;
7042 int pse_depth = pse->depth;
7043
7044 if (se_depth <= pse_depth) {
7045 put_prev_entity(cfs_rq_of(pse), pse);
7046 pse = parent_entity(pse);
7047 }
7048 if (se_depth >= pse_depth) {
7049 set_next_entity(cfs_rq_of(se), se);
7050 se = parent_entity(se);
7051 }
7052 }
7053
7054 put_prev_entity(cfs_rq, pse);
7055 set_next_entity(cfs_rq, se);
7056 }
7057
93824900 7058 goto done;
678d5718 7059simple:
678d5718 7060#endif
67692435
PZ
7061 if (prev)
7062 put_prev_task(rq, prev);
606dba2e 7063
bf0f6f24 7064 do {
678d5718 7065 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7066 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7067 cfs_rq = group_cfs_rq(se);
7068 } while (cfs_rq);
7069
8f4d37ec 7070 p = task_of(se);
678d5718 7071
13a453c2 7072done: __maybe_unused;
93824900
UR
7073#ifdef CONFIG_SMP
7074 /*
7075 * Move the next running task to the front of
7076 * the list, so our cfs_tasks list becomes MRU
7077 * one.
7078 */
7079 list_move(&p->se.group_node, &rq->cfs_tasks);
7080#endif
7081
b39e66ea
MG
7082 if (hrtick_enabled(rq))
7083 hrtick_start_fair(rq, p);
8f4d37ec 7084
3b1baa64
MR
7085 update_misfit_status(p, rq);
7086
8f4d37ec 7087 return p;
38033c37
PZ
7088
7089idle:
67692435
PZ
7090 if (!rf)
7091 return NULL;
7092
5ba553ef 7093 new_tasks = newidle_balance(rq, rf);
46f69fa3 7094
37e117c0 7095 /*
5ba553ef 7096 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7097 * possible for any higher priority task to appear. In that case we
7098 * must re-start the pick_next_entity() loop.
7099 */
e4aa358b 7100 if (new_tasks < 0)
37e117c0
PZ
7101 return RETRY_TASK;
7102
e4aa358b 7103 if (new_tasks > 0)
38033c37 7104 goto again;
38033c37 7105
23127296
VG
7106 /*
7107 * rq is about to be idle, check if we need to update the
7108 * lost_idle_time of clock_pelt
7109 */
7110 update_idle_rq_clock_pelt(rq);
7111
38033c37 7112 return NULL;
bf0f6f24
IM
7113}
7114
98c2f700
PZ
7115static struct task_struct *__pick_next_task_fair(struct rq *rq)
7116{
7117 return pick_next_task_fair(rq, NULL, NULL);
7118}
7119
bf0f6f24
IM
7120/*
7121 * Account for a descheduled task:
7122 */
6e2df058 7123static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7124{
7125 struct sched_entity *se = &prev->se;
7126 struct cfs_rq *cfs_rq;
7127
7128 for_each_sched_entity(se) {
7129 cfs_rq = cfs_rq_of(se);
ab6cde26 7130 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7131 }
7132}
7133
ac53db59
RR
7134/*
7135 * sched_yield() is very simple
7136 *
7137 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7138 */
7139static void yield_task_fair(struct rq *rq)
7140{
7141 struct task_struct *curr = rq->curr;
7142 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7143 struct sched_entity *se = &curr->se;
7144
7145 /*
7146 * Are we the only task in the tree?
7147 */
7148 if (unlikely(rq->nr_running == 1))
7149 return;
7150
7151 clear_buddies(cfs_rq, se);
7152
7153 if (curr->policy != SCHED_BATCH) {
7154 update_rq_clock(rq);
7155 /*
7156 * Update run-time statistics of the 'current'.
7157 */
7158 update_curr(cfs_rq);
916671c0
MG
7159 /*
7160 * Tell update_rq_clock() that we've just updated,
7161 * so we don't do microscopic update in schedule()
7162 * and double the fastpath cost.
7163 */
adcc8da8 7164 rq_clock_skip_update(rq);
ac53db59
RR
7165 }
7166
7167 set_skip_buddy(se);
7168}
7169
0900acf2 7170static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7171{
7172 struct sched_entity *se = &p->se;
7173
5238cdd3
PT
7174 /* throttled hierarchies are not runnable */
7175 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7176 return false;
7177
7178 /* Tell the scheduler that we'd really like pse to run next. */
7179 set_next_buddy(se);
7180
d95f4122
MG
7181 yield_task_fair(rq);
7182
7183 return true;
7184}
7185
681f3e68 7186#ifdef CONFIG_SMP
bf0f6f24 7187/**************************************************
e9c84cb8
PZ
7188 * Fair scheduling class load-balancing methods.
7189 *
7190 * BASICS
7191 *
7192 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7193 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7194 * time to each task. This is expressed in the following equation:
7195 *
7196 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7197 *
97fb7a0a 7198 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7199 * W_i,0 is defined as:
7200 *
7201 * W_i,0 = \Sum_j w_i,j (2)
7202 *
97fb7a0a 7203 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7204 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7205 *
7206 * The weight average is an exponential decay average of the instantaneous
7207 * weight:
7208 *
7209 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7210 *
97fb7a0a 7211 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7212 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7213 * can also include other factors [XXX].
7214 *
7215 * To achieve this balance we define a measure of imbalance which follows
7216 * directly from (1):
7217 *
ced549fa 7218 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7219 *
7220 * We them move tasks around to minimize the imbalance. In the continuous
7221 * function space it is obvious this converges, in the discrete case we get
7222 * a few fun cases generally called infeasible weight scenarios.
7223 *
7224 * [XXX expand on:
7225 * - infeasible weights;
7226 * - local vs global optima in the discrete case. ]
7227 *
7228 *
7229 * SCHED DOMAINS
7230 *
7231 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7232 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7233 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7234 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7235 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7236 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7237 * the groups.
7238 *
7239 * This yields:
7240 *
7241 * log_2 n 1 n
7242 * \Sum { --- * --- * 2^i } = O(n) (5)
7243 * i = 0 2^i 2^i
7244 * `- size of each group
97fb7a0a 7245 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7246 * | `- freq
7247 * `- sum over all levels
7248 *
7249 * Coupled with a limit on how many tasks we can migrate every balance pass,
7250 * this makes (5) the runtime complexity of the balancer.
7251 *
7252 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7253 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7254 *
7255 * The adjacency matrix of the resulting graph is given by:
7256 *
97a7142f 7257 * log_2 n
e9c84cb8
PZ
7258 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7259 * k = 0
7260 *
7261 * And you'll find that:
7262 *
7263 * A^(log_2 n)_i,j != 0 for all i,j (7)
7264 *
97fb7a0a 7265 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7266 * The task movement gives a factor of O(m), giving a convergence complexity
7267 * of:
7268 *
7269 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7270 *
7271 *
7272 * WORK CONSERVING
7273 *
7274 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7275 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7276 * tree itself instead of relying on other CPUs to bring it work.
7277 *
7278 * This adds some complexity to both (5) and (8) but it reduces the total idle
7279 * time.
7280 *
7281 * [XXX more?]
7282 *
7283 *
7284 * CGROUPS
7285 *
7286 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7287 *
7288 * s_k,i
7289 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7290 * S_k
7291 *
7292 * Where
7293 *
7294 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7295 *
97fb7a0a 7296 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7297 *
7298 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7299 * property.
7300 *
7301 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7302 * rewrite all of this once again.]
97a7142f 7303 */
bf0f6f24 7304
ed387b78
HS
7305static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7306
0ec8aa00
PZ
7307enum fbq_type { regular, remote, all };
7308
0b0695f2 7309/*
a9723389
VG
7310 * 'group_type' describes the group of CPUs at the moment of load balancing.
7311 *
0b0695f2 7312 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7313 * first so the group_type can simply be compared when selecting the busiest
7314 * group. See update_sd_pick_busiest().
0b0695f2 7315 */
3b1baa64 7316enum group_type {
a9723389 7317 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7318 group_has_spare = 0,
a9723389
VG
7319 /*
7320 * The group is fully used and the tasks don't compete for more CPU
7321 * cycles. Nevertheless, some tasks might wait before running.
7322 */
0b0695f2 7323 group_fully_busy,
a9723389
VG
7324 /*
7325 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7326 * and must be migrated to a more powerful CPU.
7327 */
3b1baa64 7328 group_misfit_task,
a9723389
VG
7329 /*
7330 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7331 * and the task should be migrated to it instead of running on the
7332 * current CPU.
7333 */
0b0695f2 7334 group_asym_packing,
a9723389
VG
7335 /*
7336 * The tasks' affinity constraints previously prevented the scheduler
7337 * from balancing the load across the system.
7338 */
3b1baa64 7339 group_imbalanced,
a9723389
VG
7340 /*
7341 * The CPU is overloaded and can't provide expected CPU cycles to all
7342 * tasks.
7343 */
0b0695f2
VG
7344 group_overloaded
7345};
7346
7347enum migration_type {
7348 migrate_load = 0,
7349 migrate_util,
7350 migrate_task,
7351 migrate_misfit
3b1baa64
MR
7352};
7353
ddcdf6e7 7354#define LBF_ALL_PINNED 0x01
367456c7 7355#define LBF_NEED_BREAK 0x02
6263322c
PZ
7356#define LBF_DST_PINNED 0x04
7357#define LBF_SOME_PINNED 0x08
e022e0d3 7358#define LBF_NOHZ_STATS 0x10
f643ea22 7359#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7360
7361struct lb_env {
7362 struct sched_domain *sd;
7363
ddcdf6e7 7364 struct rq *src_rq;
85c1e7da 7365 int src_cpu;
ddcdf6e7
PZ
7366
7367 int dst_cpu;
7368 struct rq *dst_rq;
7369
88b8dac0
SV
7370 struct cpumask *dst_grpmask;
7371 int new_dst_cpu;
ddcdf6e7 7372 enum cpu_idle_type idle;
bd939f45 7373 long imbalance;
b9403130
MW
7374 /* The set of CPUs under consideration for load-balancing */
7375 struct cpumask *cpus;
7376
ddcdf6e7 7377 unsigned int flags;
367456c7
PZ
7378
7379 unsigned int loop;
7380 unsigned int loop_break;
7381 unsigned int loop_max;
0ec8aa00
PZ
7382
7383 enum fbq_type fbq_type;
0b0695f2 7384 enum migration_type migration_type;
163122b7 7385 struct list_head tasks;
ddcdf6e7
PZ
7386};
7387
029632fb
PZ
7388/*
7389 * Is this task likely cache-hot:
7390 */
5d5e2b1b 7391static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7392{
7393 s64 delta;
7394
e5673f28
KT
7395 lockdep_assert_held(&env->src_rq->lock);
7396
029632fb
PZ
7397 if (p->sched_class != &fair_sched_class)
7398 return 0;
7399
1da1843f 7400 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7401 return 0;
7402
7403 /*
7404 * Buddy candidates are cache hot:
7405 */
5d5e2b1b 7406 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7407 (&p->se == cfs_rq_of(&p->se)->next ||
7408 &p->se == cfs_rq_of(&p->se)->last))
7409 return 1;
7410
7411 if (sysctl_sched_migration_cost == -1)
7412 return 1;
7413 if (sysctl_sched_migration_cost == 0)
7414 return 0;
7415
5d5e2b1b 7416 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7417
7418 return delta < (s64)sysctl_sched_migration_cost;
7419}
7420
3a7053b3 7421#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7422/*
2a1ed24c
SD
7423 * Returns 1, if task migration degrades locality
7424 * Returns 0, if task migration improves locality i.e migration preferred.
7425 * Returns -1, if task migration is not affected by locality.
c1ceac62 7426 */
2a1ed24c 7427static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7428{
b1ad065e 7429 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7430 unsigned long src_weight, dst_weight;
7431 int src_nid, dst_nid, dist;
3a7053b3 7432
2a595721 7433 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7434 return -1;
7435
c3b9bc5b 7436 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7437 return -1;
7a0f3083
MG
7438
7439 src_nid = cpu_to_node(env->src_cpu);
7440 dst_nid = cpu_to_node(env->dst_cpu);
7441
83e1d2cd 7442 if (src_nid == dst_nid)
2a1ed24c 7443 return -1;
7a0f3083 7444
2a1ed24c
SD
7445 /* Migrating away from the preferred node is always bad. */
7446 if (src_nid == p->numa_preferred_nid) {
7447 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7448 return 1;
7449 else
7450 return -1;
7451 }
b1ad065e 7452
c1ceac62
RR
7453 /* Encourage migration to the preferred node. */
7454 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7455 return 0;
b1ad065e 7456
739294fb 7457 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7458 if (env->idle == CPU_IDLE)
739294fb
RR
7459 return -1;
7460
f35678b6 7461 dist = node_distance(src_nid, dst_nid);
c1ceac62 7462 if (numa_group) {
f35678b6
SD
7463 src_weight = group_weight(p, src_nid, dist);
7464 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7465 } else {
f35678b6
SD
7466 src_weight = task_weight(p, src_nid, dist);
7467 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7468 }
7469
f35678b6 7470 return dst_weight < src_weight;
7a0f3083
MG
7471}
7472
3a7053b3 7473#else
2a1ed24c 7474static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7475 struct lb_env *env)
7476{
2a1ed24c 7477 return -1;
7a0f3083 7478}
3a7053b3
MG
7479#endif
7480
1e3c88bd
PZ
7481/*
7482 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7483 */
7484static
8e45cb54 7485int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7486{
2a1ed24c 7487 int tsk_cache_hot;
e5673f28
KT
7488
7489 lockdep_assert_held(&env->src_rq->lock);
7490
1e3c88bd
PZ
7491 /*
7492 * We do not migrate tasks that are:
d3198084 7493 * 1) throttled_lb_pair, or
3bd37062 7494 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7495 * 3) running (obviously), or
7496 * 4) are cache-hot on their current CPU.
1e3c88bd 7497 */
d3198084
JK
7498 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7499 return 0;
7500
3bd37062 7501 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7502 int cpu;
88b8dac0 7503
ae92882e 7504 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7505
6263322c
PZ
7506 env->flags |= LBF_SOME_PINNED;
7507
88b8dac0 7508 /*
97fb7a0a 7509 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7510 * our sched_group. We may want to revisit it if we couldn't
7511 * meet load balance goals by pulling other tasks on src_cpu.
7512 *
65a4433a
JH
7513 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7514 * already computed one in current iteration.
88b8dac0 7515 */
65a4433a 7516 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7517 return 0;
7518
97fb7a0a 7519 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7520 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7521 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7522 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7523 env->new_dst_cpu = cpu;
7524 break;
7525 }
88b8dac0 7526 }
e02e60c1 7527
1e3c88bd
PZ
7528 return 0;
7529 }
88b8dac0
SV
7530
7531 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7532 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7533
ddcdf6e7 7534 if (task_running(env->src_rq, p)) {
ae92882e 7535 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7536 return 0;
7537 }
7538
7539 /*
7540 * Aggressive migration if:
3a7053b3
MG
7541 * 1) destination numa is preferred
7542 * 2) task is cache cold, or
7543 * 3) too many balance attempts have failed.
1e3c88bd 7544 */
2a1ed24c
SD
7545 tsk_cache_hot = migrate_degrades_locality(p, env);
7546 if (tsk_cache_hot == -1)
7547 tsk_cache_hot = task_hot(p, env);
3a7053b3 7548
2a1ed24c 7549 if (tsk_cache_hot <= 0 ||
7a96c231 7550 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7551 if (tsk_cache_hot == 1) {
ae92882e
JP
7552 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7553 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7554 }
1e3c88bd
PZ
7555 return 1;
7556 }
7557
ae92882e 7558 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7559 return 0;
1e3c88bd
PZ
7560}
7561
897c395f 7562/*
163122b7
KT
7563 * detach_task() -- detach the task for the migration specified in env
7564 */
7565static void detach_task(struct task_struct *p, struct lb_env *env)
7566{
7567 lockdep_assert_held(&env->src_rq->lock);
7568
5704ac0a 7569 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7570 set_task_cpu(p, env->dst_cpu);
7571}
7572
897c395f 7573/*
e5673f28 7574 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7575 * part of active balancing operations within "domain".
897c395f 7576 *
e5673f28 7577 * Returns a task if successful and NULL otherwise.
897c395f 7578 */
e5673f28 7579static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7580{
93824900 7581 struct task_struct *p;
897c395f 7582
e5673f28
KT
7583 lockdep_assert_held(&env->src_rq->lock);
7584
93824900
UR
7585 list_for_each_entry_reverse(p,
7586 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7587 if (!can_migrate_task(p, env))
7588 continue;
897c395f 7589
163122b7 7590 detach_task(p, env);
e5673f28 7591
367456c7 7592 /*
e5673f28 7593 * Right now, this is only the second place where
163122b7 7594 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7595 * so we can safely collect stats here rather than
163122b7 7596 * inside detach_tasks().
367456c7 7597 */
ae92882e 7598 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7599 return p;
897c395f 7600 }
e5673f28 7601 return NULL;
897c395f
PZ
7602}
7603
eb95308e
PZ
7604static const unsigned int sched_nr_migrate_break = 32;
7605
5d6523eb 7606/*
0b0695f2 7607 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7608 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7609 *
163122b7 7610 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7611 */
163122b7 7612static int detach_tasks(struct lb_env *env)
1e3c88bd 7613{
5d6523eb 7614 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7615 unsigned long util, load;
5d6523eb 7616 struct task_struct *p;
163122b7
KT
7617 int detached = 0;
7618
7619 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7620
bd939f45 7621 if (env->imbalance <= 0)
5d6523eb 7622 return 0;
1e3c88bd 7623
5d6523eb 7624 while (!list_empty(tasks)) {
985d3a4c
YD
7625 /*
7626 * We don't want to steal all, otherwise we may be treated likewise,
7627 * which could at worst lead to a livelock crash.
7628 */
7629 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7630 break;
7631
93824900 7632 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7633
367456c7
PZ
7634 env->loop++;
7635 /* We've more or less seen every task there is, call it quits */
5d6523eb 7636 if (env->loop > env->loop_max)
367456c7 7637 break;
5d6523eb
PZ
7638
7639 /* take a breather every nr_migrate tasks */
367456c7 7640 if (env->loop > env->loop_break) {
eb95308e 7641 env->loop_break += sched_nr_migrate_break;
8e45cb54 7642 env->flags |= LBF_NEED_BREAK;
ee00e66f 7643 break;
a195f004 7644 }
1e3c88bd 7645
d3198084 7646 if (!can_migrate_task(p, env))
367456c7
PZ
7647 goto next;
7648
0b0695f2
VG
7649 switch (env->migration_type) {
7650 case migrate_load:
7651 load = task_h_load(p);
5d6523eb 7652
0b0695f2
VG
7653 if (sched_feat(LB_MIN) &&
7654 load < 16 && !env->sd->nr_balance_failed)
7655 goto next;
367456c7 7656
6cf82d55
VG
7657 /*
7658 * Make sure that we don't migrate too much load.
7659 * Nevertheless, let relax the constraint if
7660 * scheduler fails to find a good waiting task to
7661 * migrate.
7662 */
7663 if (load/2 > env->imbalance &&
7664 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
0b0695f2
VG
7665 goto next;
7666
7667 env->imbalance -= load;
7668 break;
7669
7670 case migrate_util:
7671 util = task_util_est(p);
7672
7673 if (util > env->imbalance)
7674 goto next;
7675
7676 env->imbalance -= util;
7677 break;
7678
7679 case migrate_task:
7680 env->imbalance--;
7681 break;
7682
7683 case migrate_misfit:
c63be7be
VG
7684 /* This is not a misfit task */
7685 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7686 goto next;
7687
7688 env->imbalance = 0;
7689 break;
7690 }
1e3c88bd 7691
163122b7
KT
7692 detach_task(p, env);
7693 list_add(&p->se.group_node, &env->tasks);
7694
7695 detached++;
1e3c88bd 7696
c1a280b6 7697#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7698 /*
7699 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7700 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7701 * the critical section.
7702 */
5d6523eb 7703 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7704 break;
1e3c88bd
PZ
7705#endif
7706
ee00e66f
PZ
7707 /*
7708 * We only want to steal up to the prescribed amount of
0b0695f2 7709 * load/util/tasks.
ee00e66f 7710 */
bd939f45 7711 if (env->imbalance <= 0)
ee00e66f 7712 break;
367456c7
PZ
7713
7714 continue;
7715next:
93824900 7716 list_move(&p->se.group_node, tasks);
1e3c88bd 7717 }
5d6523eb 7718
1e3c88bd 7719 /*
163122b7
KT
7720 * Right now, this is one of only two places we collect this stat
7721 * so we can safely collect detach_one_task() stats here rather
7722 * than inside detach_one_task().
1e3c88bd 7723 */
ae92882e 7724 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7725
163122b7
KT
7726 return detached;
7727}
7728
7729/*
7730 * attach_task() -- attach the task detached by detach_task() to its new rq.
7731 */
7732static void attach_task(struct rq *rq, struct task_struct *p)
7733{
7734 lockdep_assert_held(&rq->lock);
7735
7736 BUG_ON(task_rq(p) != rq);
5704ac0a 7737 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7738 check_preempt_curr(rq, p, 0);
7739}
7740
7741/*
7742 * attach_one_task() -- attaches the task returned from detach_one_task() to
7743 * its new rq.
7744 */
7745static void attach_one_task(struct rq *rq, struct task_struct *p)
7746{
8a8c69c3
PZ
7747 struct rq_flags rf;
7748
7749 rq_lock(rq, &rf);
5704ac0a 7750 update_rq_clock(rq);
163122b7 7751 attach_task(rq, p);
8a8c69c3 7752 rq_unlock(rq, &rf);
163122b7
KT
7753}
7754
7755/*
7756 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7757 * new rq.
7758 */
7759static void attach_tasks(struct lb_env *env)
7760{
7761 struct list_head *tasks = &env->tasks;
7762 struct task_struct *p;
8a8c69c3 7763 struct rq_flags rf;
163122b7 7764
8a8c69c3 7765 rq_lock(env->dst_rq, &rf);
5704ac0a 7766 update_rq_clock(env->dst_rq);
163122b7
KT
7767
7768 while (!list_empty(tasks)) {
7769 p = list_first_entry(tasks, struct task_struct, se.group_node);
7770 list_del_init(&p->se.group_node);
1e3c88bd 7771
163122b7
KT
7772 attach_task(env->dst_rq, p);
7773 }
7774
8a8c69c3 7775 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7776}
7777
b0c79224 7778#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7779static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7780{
7781 if (cfs_rq->avg.load_avg)
7782 return true;
7783
7784 if (cfs_rq->avg.util_avg)
7785 return true;
7786
7787 return false;
7788}
7789
91c27493 7790static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7791{
7792 if (READ_ONCE(rq->avg_rt.util_avg))
7793 return true;
7794
3727e0e1
VG
7795 if (READ_ONCE(rq->avg_dl.util_avg))
7796 return true;
7797
b4eccf5f
TG
7798 if (thermal_load_avg(rq))
7799 return true;
7800
11d4afd4 7801#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7802 if (READ_ONCE(rq->avg_irq.util_avg))
7803 return true;
7804#endif
7805
371bf427
VG
7806 return false;
7807}
7808
b0c79224
VS
7809static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7810{
7811 rq->last_blocked_load_update_tick = jiffies;
7812
7813 if (!has_blocked)
7814 rq->has_blocked_load = 0;
7815}
7816#else
7817static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7818static inline bool others_have_blocked(struct rq *rq) { return false; }
7819static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7820#endif
7821
bef69dd8
VG
7822static bool __update_blocked_others(struct rq *rq, bool *done)
7823{
7824 const struct sched_class *curr_class;
7825 u64 now = rq_clock_pelt(rq);
b4eccf5f 7826 unsigned long thermal_pressure;
bef69dd8
VG
7827 bool decayed;
7828
7829 /*
7830 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7831 * DL and IRQ signals have been updated before updating CFS.
7832 */
7833 curr_class = rq->curr->sched_class;
7834
b4eccf5f
TG
7835 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7836
bef69dd8
VG
7837 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7838 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7839 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7840 update_irq_load_avg(rq, 0);
7841
7842 if (others_have_blocked(rq))
7843 *done = false;
7844
7845 return decayed;
7846}
7847
1936c53c
VG
7848#ifdef CONFIG_FAIR_GROUP_SCHED
7849
039ae8bc
VG
7850static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7851{
7852 if (cfs_rq->load.weight)
7853 return false;
7854
7855 if (cfs_rq->avg.load_sum)
7856 return false;
7857
7858 if (cfs_rq->avg.util_sum)
7859 return false;
7860
9f683953
VG
7861 if (cfs_rq->avg.runnable_sum)
7862 return false;
7863
039ae8bc
VG
7864 return true;
7865}
7866
bef69dd8 7867static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7868{
039ae8bc 7869 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7870 bool decayed = false;
7871 int cpu = cpu_of(rq);
b90f7c9d 7872
9763b67f
PZ
7873 /*
7874 * Iterates the task_group tree in a bottom up fashion, see
7875 * list_add_leaf_cfs_rq() for details.
7876 */
039ae8bc 7877 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7878 struct sched_entity *se;
7879
bef69dd8 7880 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9d89c257 7881 update_tg_load_avg(cfs_rq, 0);
4e516076 7882
bef69dd8
VG
7883 if (cfs_rq == &rq->cfs)
7884 decayed = true;
7885 }
7886
bc427898
VG
7887 /* Propagate pending load changes to the parent, if any: */
7888 se = cfs_rq->tg->se[cpu];
7889 if (se && !skip_blocked_update(se))
88c0616e 7890 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7891
039ae8bc
VG
7892 /*
7893 * There can be a lot of idle CPU cgroups. Don't let fully
7894 * decayed cfs_rqs linger on the list.
7895 */
7896 if (cfs_rq_is_decayed(cfs_rq))
7897 list_del_leaf_cfs_rq(cfs_rq);
7898
1936c53c
VG
7899 /* Don't need periodic decay once load/util_avg are null */
7900 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7901 *done = false;
9d89c257 7902 }
12b04875 7903
bef69dd8 7904 return decayed;
9e3081ca
PZ
7905}
7906
9763b67f 7907/*
68520796 7908 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7909 * This needs to be done in a top-down fashion because the load of a child
7910 * group is a fraction of its parents load.
7911 */
68520796 7912static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7913{
68520796
VD
7914 struct rq *rq = rq_of(cfs_rq);
7915 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7916 unsigned long now = jiffies;
68520796 7917 unsigned long load;
a35b6466 7918
68520796 7919 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7920 return;
7921
0e9f0245 7922 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7923 for_each_sched_entity(se) {
7924 cfs_rq = cfs_rq_of(se);
0e9f0245 7925 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7926 if (cfs_rq->last_h_load_update == now)
7927 break;
7928 }
a35b6466 7929
68520796 7930 if (!se) {
7ea241af 7931 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7932 cfs_rq->last_h_load_update = now;
7933 }
7934
0e9f0245 7935 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7936 load = cfs_rq->h_load;
7ea241af
YD
7937 load = div64_ul(load * se->avg.load_avg,
7938 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7939 cfs_rq = group_cfs_rq(se);
7940 cfs_rq->h_load = load;
7941 cfs_rq->last_h_load_update = now;
7942 }
9763b67f
PZ
7943}
7944
367456c7 7945static unsigned long task_h_load(struct task_struct *p)
230059de 7946{
367456c7 7947 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7948
68520796 7949 update_cfs_rq_h_load(cfs_rq);
9d89c257 7950 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7951 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7952}
7953#else
bef69dd8 7954static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7955{
6c1d47c0 7956 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7957 bool decayed;
b90f7c9d 7958
bef69dd8
VG
7959 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7960 if (cfs_rq_has_blocked(cfs_rq))
7961 *done = false;
b90f7c9d 7962
bef69dd8 7963 return decayed;
9e3081ca
PZ
7964}
7965
367456c7 7966static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7967{
9d89c257 7968 return p->se.avg.load_avg;
1e3c88bd 7969}
230059de 7970#endif
1e3c88bd 7971
bef69dd8
VG
7972static void update_blocked_averages(int cpu)
7973{
7974 bool decayed = false, done = true;
7975 struct rq *rq = cpu_rq(cpu);
7976 struct rq_flags rf;
7977
7978 rq_lock_irqsave(rq, &rf);
7979 update_rq_clock(rq);
7980
7981 decayed |= __update_blocked_others(rq, &done);
7982 decayed |= __update_blocked_fair(rq, &done);
7983
7984 update_blocked_load_status(rq, !done);
7985 if (decayed)
7986 cpufreq_update_util(rq, 0);
7987 rq_unlock_irqrestore(rq, &rf);
7988}
7989
1e3c88bd 7990/********** Helpers for find_busiest_group ************************/
caeb178c 7991
1e3c88bd
PZ
7992/*
7993 * sg_lb_stats - stats of a sched_group required for load_balancing
7994 */
7995struct sg_lb_stats {
7996 unsigned long avg_load; /*Avg load across the CPUs of the group */
7997 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 7998 unsigned long group_capacity;
070f5e86
VG
7999 unsigned long group_util; /* Total utilization over the CPUs of the group */
8000 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8001 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8002 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8003 unsigned int idle_cpus;
8004 unsigned int group_weight;
caeb178c 8005 enum group_type group_type;
490ba971 8006 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8007 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8008#ifdef CONFIG_NUMA_BALANCING
8009 unsigned int nr_numa_running;
8010 unsigned int nr_preferred_running;
8011#endif
1e3c88bd
PZ
8012};
8013
56cf515b
JK
8014/*
8015 * sd_lb_stats - Structure to store the statistics of a sched_domain
8016 * during load balancing.
8017 */
8018struct sd_lb_stats {
8019 struct sched_group *busiest; /* Busiest group in this sd */
8020 struct sched_group *local; /* Local group in this sd */
8021 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8022 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8023 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8024 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8025
56cf515b 8026 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8027 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8028};
8029
147c5fc2
PZ
8030static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8031{
8032 /*
8033 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8034 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8035 * We must however set busiest_stat::group_type and
8036 * busiest_stat::idle_cpus to the worst busiest group because
8037 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8038 */
8039 *sds = (struct sd_lb_stats){
8040 .busiest = NULL,
8041 .local = NULL,
8042 .total_load = 0UL,
63b2ca30 8043 .total_capacity = 0UL,
147c5fc2 8044 .busiest_stat = {
0b0695f2
VG
8045 .idle_cpus = UINT_MAX,
8046 .group_type = group_has_spare,
147c5fc2
PZ
8047 },
8048 };
8049}
8050
1ca2034e 8051static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8052{
8053 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8054 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8055 unsigned long used, free;
523e979d 8056 unsigned long irq;
b654f7de 8057
2e62c474 8058 irq = cpu_util_irq(rq);
cadefd3d 8059
523e979d
VG
8060 if (unlikely(irq >= max))
8061 return 1;
aa483808 8062
467b7d01
TG
8063 /*
8064 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8065 * (running and not running) with weights 0 and 1024 respectively.
8066 * avg_thermal.load_avg tracks thermal pressure and the weighted
8067 * average uses the actual delta max capacity(load).
8068 */
523e979d
VG
8069 used = READ_ONCE(rq->avg_rt.util_avg);
8070 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8071 used += thermal_load_avg(rq);
1e3c88bd 8072
523e979d
VG
8073 if (unlikely(used >= max))
8074 return 1;
1e3c88bd 8075
523e979d 8076 free = max - used;
2e62c474
VG
8077
8078 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8079}
8080
ced549fa 8081static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8082{
1ca2034e 8083 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8084 struct sched_group *sdg = sd->groups;
8085
8ec59c0f 8086 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8087
ced549fa
NP
8088 if (!capacity)
8089 capacity = 1;
1e3c88bd 8090
ced549fa
NP
8091 cpu_rq(cpu)->cpu_capacity = capacity;
8092 sdg->sgc->capacity = capacity;
bf475ce0 8093 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8094 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8095}
8096
63b2ca30 8097void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8098{
8099 struct sched_domain *child = sd->child;
8100 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8101 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8102 unsigned long interval;
8103
8104 interval = msecs_to_jiffies(sd->balance_interval);
8105 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8106 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8107
8108 if (!child) {
ced549fa 8109 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8110 return;
8111 }
8112
dc7ff76e 8113 capacity = 0;
bf475ce0 8114 min_capacity = ULONG_MAX;
e3d6d0cb 8115 max_capacity = 0;
1e3c88bd 8116
74a5ce20
PZ
8117 if (child->flags & SD_OVERLAP) {
8118 /*
8119 * SD_OVERLAP domains cannot assume that child groups
8120 * span the current group.
8121 */
8122
ae4df9d6 8123 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8124 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8125
4c58f57f
PL
8126 capacity += cpu_cap;
8127 min_capacity = min(cpu_cap, min_capacity);
8128 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8129 }
74a5ce20
PZ
8130 } else {
8131 /*
8132 * !SD_OVERLAP domains can assume that child groups
8133 * span the current group.
97a7142f 8134 */
74a5ce20
PZ
8135
8136 group = child->groups;
8137 do {
bf475ce0
MR
8138 struct sched_group_capacity *sgc = group->sgc;
8139
8140 capacity += sgc->capacity;
8141 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8142 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8143 group = group->next;
8144 } while (group != child->groups);
8145 }
1e3c88bd 8146
63b2ca30 8147 sdg->sgc->capacity = capacity;
bf475ce0 8148 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8149 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8150}
8151
9d5efe05 8152/*
ea67821b
VG
8153 * Check whether the capacity of the rq has been noticeably reduced by side
8154 * activity. The imbalance_pct is used for the threshold.
8155 * Return true is the capacity is reduced
9d5efe05
SV
8156 */
8157static inline int
ea67821b 8158check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8159{
ea67821b
VG
8160 return ((rq->cpu_capacity * sd->imbalance_pct) <
8161 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8162}
8163
a0fe2cf0
VS
8164/*
8165 * Check whether a rq has a misfit task and if it looks like we can actually
8166 * help that task: we can migrate the task to a CPU of higher capacity, or
8167 * the task's current CPU is heavily pressured.
8168 */
8169static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8170{
8171 return rq->misfit_task_load &&
8172 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8173 check_cpu_capacity(rq, sd));
8174}
8175
30ce5dab
PZ
8176/*
8177 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8178 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8179 *
97fb7a0a
IM
8180 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8181 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8182 * Something like:
8183 *
2b4d5b25
IM
8184 * { 0 1 2 3 } { 4 5 6 7 }
8185 * * * * *
30ce5dab
PZ
8186 *
8187 * If we were to balance group-wise we'd place two tasks in the first group and
8188 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8189 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8190 *
8191 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8192 * by noticing the lower domain failed to reach balance and had difficulty
8193 * moving tasks due to affinity constraints.
30ce5dab
PZ
8194 *
8195 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8196 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8197 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8198 * to create an effective group imbalance.
8199 *
8200 * This is a somewhat tricky proposition since the next run might not find the
8201 * group imbalance and decide the groups need to be balanced again. A most
8202 * subtle and fragile situation.
8203 */
8204
6263322c 8205static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8206{
63b2ca30 8207 return group->sgc->imbalance;
30ce5dab
PZ
8208}
8209
b37d9316 8210/*
ea67821b
VG
8211 * group_has_capacity returns true if the group has spare capacity that could
8212 * be used by some tasks.
8213 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8214 * smaller than the number of CPUs or if the utilization is lower than the
8215 * available capacity for CFS tasks.
ea67821b
VG
8216 * For the latter, we use a threshold to stabilize the state, to take into
8217 * account the variance of the tasks' load and to return true if the available
8218 * capacity in meaningful for the load balancer.
8219 * As an example, an available capacity of 1% can appear but it doesn't make
8220 * any benefit for the load balance.
b37d9316 8221 */
ea67821b 8222static inline bool
57abff06 8223group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8224{
5e23e474 8225 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8226 return true;
c61037e9 8227
070f5e86
VG
8228 if ((sgs->group_capacity * imbalance_pct) <
8229 (sgs->group_runnable * 100))
8230 return false;
8231
ea67821b 8232 if ((sgs->group_capacity * 100) >
57abff06 8233 (sgs->group_util * imbalance_pct))
ea67821b 8234 return true;
b37d9316 8235
ea67821b
VG
8236 return false;
8237}
8238
8239/*
8240 * group_is_overloaded returns true if the group has more tasks than it can
8241 * handle.
8242 * group_is_overloaded is not equals to !group_has_capacity because a group
8243 * with the exact right number of tasks, has no more spare capacity but is not
8244 * overloaded so both group_has_capacity and group_is_overloaded return
8245 * false.
8246 */
8247static inline bool
57abff06 8248group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8249{
5e23e474 8250 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8251 return false;
b37d9316 8252
ea67821b 8253 if ((sgs->group_capacity * 100) <
57abff06 8254 (sgs->group_util * imbalance_pct))
ea67821b 8255 return true;
b37d9316 8256
070f5e86
VG
8257 if ((sgs->group_capacity * imbalance_pct) <
8258 (sgs->group_runnable * 100))
8259 return true;
8260
ea67821b 8261 return false;
b37d9316
PZ
8262}
8263
9e0994c0 8264/*
e3d6d0cb 8265 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8266 * per-CPU capacity than sched_group ref.
8267 */
8268static inline bool
e3d6d0cb 8269group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8270{
60e17f5c 8271 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8272}
8273
e3d6d0cb
MR
8274/*
8275 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8276 * per-CPU capacity_orig than sched_group ref.
8277 */
8278static inline bool
8279group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8280{
60e17f5c 8281 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8282}
8283
79a89f92 8284static inline enum
57abff06 8285group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8286 struct sched_group *group,
79a89f92 8287 struct sg_lb_stats *sgs)
caeb178c 8288{
57abff06 8289 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8290 return group_overloaded;
8291
8292 if (sg_imbalanced(group))
8293 return group_imbalanced;
8294
0b0695f2
VG
8295 if (sgs->group_asym_packing)
8296 return group_asym_packing;
8297
3b1baa64
MR
8298 if (sgs->group_misfit_task_load)
8299 return group_misfit_task;
8300
57abff06 8301 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8302 return group_fully_busy;
8303
8304 return group_has_spare;
caeb178c
RR
8305}
8306
63928384 8307static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8308{
8309#ifdef CONFIG_NO_HZ_COMMON
8310 unsigned int cpu = rq->cpu;
8311
f643ea22
VG
8312 if (!rq->has_blocked_load)
8313 return false;
8314
e022e0d3 8315 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8316 return false;
e022e0d3 8317
63928384 8318 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8319 return true;
e022e0d3
PZ
8320
8321 update_blocked_averages(cpu);
f643ea22
VG
8322
8323 return rq->has_blocked_load;
8324#else
8325 return false;
e022e0d3
PZ
8326#endif
8327}
8328
1e3c88bd
PZ
8329/**
8330 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8331 * @env: The load balancing environment.
1e3c88bd 8332 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8333 * @sgs: variable to hold the statistics for this group.
630246a0 8334 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8335 */
bd939f45 8336static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8337 struct sched_group *group,
8338 struct sg_lb_stats *sgs,
8339 int *sg_status)
1e3c88bd 8340{
0b0695f2 8341 int i, nr_running, local_group;
1e3c88bd 8342
b72ff13c
PZ
8343 memset(sgs, 0, sizeof(*sgs));
8344
0b0695f2
VG
8345 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8346
ae4df9d6 8347 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8348 struct rq *rq = cpu_rq(i);
8349
63928384 8350 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8351 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8352
b0fb1eb4 8353 sgs->group_load += cpu_load(rq);
9e91d61d 8354 sgs->group_util += cpu_util(i);
070f5e86 8355 sgs->group_runnable += cpu_runnable(rq);
a3498347 8356 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8357
a426f99c 8358 nr_running = rq->nr_running;
5e23e474
VG
8359 sgs->sum_nr_running += nr_running;
8360
a426f99c 8361 if (nr_running > 1)
630246a0 8362 *sg_status |= SG_OVERLOAD;
4486edd1 8363
2802bf3c
MR
8364 if (cpu_overutilized(i))
8365 *sg_status |= SG_OVERUTILIZED;
4486edd1 8366
0ec8aa00
PZ
8367#ifdef CONFIG_NUMA_BALANCING
8368 sgs->nr_numa_running += rq->nr_numa_running;
8369 sgs->nr_preferred_running += rq->nr_preferred_running;
8370#endif
a426f99c
WL
8371 /*
8372 * No need to call idle_cpu() if nr_running is not 0
8373 */
0b0695f2 8374 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8375 sgs->idle_cpus++;
0b0695f2
VG
8376 /* Idle cpu can't have misfit task */
8377 continue;
8378 }
8379
8380 if (local_group)
8381 continue;
3b1baa64 8382
0b0695f2 8383 /* Check for a misfit task on the cpu */
3b1baa64 8384 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8385 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8386 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8387 *sg_status |= SG_OVERLOAD;
757ffdd7 8388 }
1e3c88bd
PZ
8389 }
8390
0b0695f2
VG
8391 /* Check if dst CPU is idle and preferred to this group */
8392 if (env->sd->flags & SD_ASYM_PACKING &&
8393 env->idle != CPU_NOT_IDLE &&
8394 sgs->sum_h_nr_running &&
8395 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8396 sgs->group_asym_packing = 1;
8397 }
8398
63b2ca30 8399 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8400
aae6d3dd 8401 sgs->group_weight = group->group_weight;
b37d9316 8402
57abff06 8403 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8404
8405 /* Computing avg_load makes sense only when group is overloaded */
8406 if (sgs->group_type == group_overloaded)
8407 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8408 sgs->group_capacity;
1e3c88bd
PZ
8409}
8410
532cb4c4
MN
8411/**
8412 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8413 * @env: The load balancing environment.
532cb4c4
MN
8414 * @sds: sched_domain statistics
8415 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8416 * @sgs: sched_group statistics
532cb4c4
MN
8417 *
8418 * Determine if @sg is a busier group than the previously selected
8419 * busiest group.
e69f6186
YB
8420 *
8421 * Return: %true if @sg is a busier group than the previously selected
8422 * busiest group. %false otherwise.
532cb4c4 8423 */
bd939f45 8424static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8425 struct sd_lb_stats *sds,
8426 struct sched_group *sg,
bd939f45 8427 struct sg_lb_stats *sgs)
532cb4c4 8428{
caeb178c 8429 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8430
0b0695f2
VG
8431 /* Make sure that there is at least one task to pull */
8432 if (!sgs->sum_h_nr_running)
8433 return false;
8434
cad68e55
MR
8435 /*
8436 * Don't try to pull misfit tasks we can't help.
8437 * We can use max_capacity here as reduction in capacity on some
8438 * CPUs in the group should either be possible to resolve
8439 * internally or be covered by avg_load imbalance (eventually).
8440 */
8441 if (sgs->group_type == group_misfit_task &&
8442 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8443 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8444 return false;
8445
caeb178c 8446 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8447 return true;
8448
caeb178c
RR
8449 if (sgs->group_type < busiest->group_type)
8450 return false;
8451
9e0994c0 8452 /*
0b0695f2
VG
8453 * The candidate and the current busiest group are the same type of
8454 * group. Let check which one is the busiest according to the type.
9e0994c0 8455 */
9e0994c0 8456
0b0695f2
VG
8457 switch (sgs->group_type) {
8458 case group_overloaded:
8459 /* Select the overloaded group with highest avg_load. */
8460 if (sgs->avg_load <= busiest->avg_load)
8461 return false;
8462 break;
8463
8464 case group_imbalanced:
8465 /*
8466 * Select the 1st imbalanced group as we don't have any way to
8467 * choose one more than another.
8468 */
9e0994c0
MR
8469 return false;
8470
0b0695f2
VG
8471 case group_asym_packing:
8472 /* Prefer to move from lowest priority CPU's work */
8473 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8474 return false;
8475 break;
532cb4c4 8476
0b0695f2
VG
8477 case group_misfit_task:
8478 /*
8479 * If we have more than one misfit sg go with the biggest
8480 * misfit.
8481 */
8482 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8483 return false;
8484 break;
532cb4c4 8485
0b0695f2
VG
8486 case group_fully_busy:
8487 /*
8488 * Select the fully busy group with highest avg_load. In
8489 * theory, there is no need to pull task from such kind of
8490 * group because tasks have all compute capacity that they need
8491 * but we can still improve the overall throughput by reducing
8492 * contention when accessing shared HW resources.
8493 *
8494 * XXX for now avg_load is not computed and always 0 so we
8495 * select the 1st one.
8496 */
8497 if (sgs->avg_load <= busiest->avg_load)
8498 return false;
8499 break;
8500
8501 case group_has_spare:
8502 /*
5f68eb19
VG
8503 * Select not overloaded group with lowest number of idle cpus
8504 * and highest number of running tasks. We could also compare
8505 * the spare capacity which is more stable but it can end up
8506 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8507 * CPUs which means less opportunity to pull tasks.
8508 */
5f68eb19 8509 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8510 return false;
5f68eb19
VG
8511 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8512 (sgs->sum_nr_running <= busiest->sum_nr_running))
8513 return false;
8514
0b0695f2 8515 break;
532cb4c4
MN
8516 }
8517
0b0695f2
VG
8518 /*
8519 * Candidate sg has no more than one task per CPU and has higher
8520 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8521 * throughput. Maximize throughput, power/energy consequences are not
8522 * considered.
8523 */
8524 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8525 (sgs->group_type <= group_fully_busy) &&
8526 (group_smaller_min_cpu_capacity(sds->local, sg)))
8527 return false;
8528
8529 return true;
532cb4c4
MN
8530}
8531
0ec8aa00
PZ
8532#ifdef CONFIG_NUMA_BALANCING
8533static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8534{
a3498347 8535 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8536 return regular;
a3498347 8537 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8538 return remote;
8539 return all;
8540}
8541
8542static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8543{
8544 if (rq->nr_running > rq->nr_numa_running)
8545 return regular;
8546 if (rq->nr_running > rq->nr_preferred_running)
8547 return remote;
8548 return all;
8549}
8550#else
8551static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8552{
8553 return all;
8554}
8555
8556static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8557{
8558 return regular;
8559}
8560#endif /* CONFIG_NUMA_BALANCING */
8561
57abff06
VG
8562
8563struct sg_lb_stats;
8564
3318544b
VG
8565/*
8566 * task_running_on_cpu - return 1 if @p is running on @cpu.
8567 */
8568
8569static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8570{
8571 /* Task has no contribution or is new */
8572 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8573 return 0;
8574
8575 if (task_on_rq_queued(p))
8576 return 1;
8577
8578 return 0;
8579}
8580
8581/**
8582 * idle_cpu_without - would a given CPU be idle without p ?
8583 * @cpu: the processor on which idleness is tested.
8584 * @p: task which should be ignored.
8585 *
8586 * Return: 1 if the CPU would be idle. 0 otherwise.
8587 */
8588static int idle_cpu_without(int cpu, struct task_struct *p)
8589{
8590 struct rq *rq = cpu_rq(cpu);
8591
8592 if (rq->curr != rq->idle && rq->curr != p)
8593 return 0;
8594
8595 /*
8596 * rq->nr_running can't be used but an updated version without the
8597 * impact of p on cpu must be used instead. The updated nr_running
8598 * be computed and tested before calling idle_cpu_without().
8599 */
8600
8601#ifdef CONFIG_SMP
126c2092 8602 if (rq->ttwu_pending)
3318544b
VG
8603 return 0;
8604#endif
8605
8606 return 1;
8607}
8608
57abff06
VG
8609/*
8610 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8611 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8612 * @group: sched_group whose statistics are to be updated.
8613 * @sgs: variable to hold the statistics for this group.
3318544b 8614 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8615 */
8616static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8617 struct sched_group *group,
8618 struct sg_lb_stats *sgs,
8619 struct task_struct *p)
8620{
8621 int i, nr_running;
8622
8623 memset(sgs, 0, sizeof(*sgs));
8624
8625 for_each_cpu(i, sched_group_span(group)) {
8626 struct rq *rq = cpu_rq(i);
3318544b 8627 unsigned int local;
57abff06 8628
3318544b 8629 sgs->group_load += cpu_load_without(rq, p);
57abff06 8630 sgs->group_util += cpu_util_without(i, p);
070f5e86 8631 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8632 local = task_running_on_cpu(i, p);
8633 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8634
3318544b 8635 nr_running = rq->nr_running - local;
57abff06
VG
8636 sgs->sum_nr_running += nr_running;
8637
8638 /*
3318544b 8639 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8640 */
3318544b 8641 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8642 sgs->idle_cpus++;
8643
57abff06
VG
8644 }
8645
8646 /* Check if task fits in the group */
8647 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8648 !task_fits_capacity(p, group->sgc->max_capacity)) {
8649 sgs->group_misfit_task_load = 1;
8650 }
8651
8652 sgs->group_capacity = group->sgc->capacity;
8653
289de359
VG
8654 sgs->group_weight = group->group_weight;
8655
57abff06
VG
8656 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8657
8658 /*
8659 * Computing avg_load makes sense only when group is fully busy or
8660 * overloaded
8661 */
6c8116c9
TZ
8662 if (sgs->group_type == group_fully_busy ||
8663 sgs->group_type == group_overloaded)
57abff06
VG
8664 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8665 sgs->group_capacity;
8666}
8667
8668static bool update_pick_idlest(struct sched_group *idlest,
8669 struct sg_lb_stats *idlest_sgs,
8670 struct sched_group *group,
8671 struct sg_lb_stats *sgs)
8672{
8673 if (sgs->group_type < idlest_sgs->group_type)
8674 return true;
8675
8676 if (sgs->group_type > idlest_sgs->group_type)
8677 return false;
8678
8679 /*
8680 * The candidate and the current idlest group are the same type of
8681 * group. Let check which one is the idlest according to the type.
8682 */
8683
8684 switch (sgs->group_type) {
8685 case group_overloaded:
8686 case group_fully_busy:
8687 /* Select the group with lowest avg_load. */
8688 if (idlest_sgs->avg_load <= sgs->avg_load)
8689 return false;
8690 break;
8691
8692 case group_imbalanced:
8693 case group_asym_packing:
8694 /* Those types are not used in the slow wakeup path */
8695 return false;
8696
8697 case group_misfit_task:
8698 /* Select group with the highest max capacity */
8699 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8700 return false;
8701 break;
8702
8703 case group_has_spare:
8704 /* Select group with most idle CPUs */
8705 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8706 return false;
8707 break;
8708 }
8709
8710 return true;
8711}
8712
8713/*
8714 * find_idlest_group() finds and returns the least busy CPU group within the
8715 * domain.
8716 *
8717 * Assumes p is allowed on at least one CPU in sd.
8718 */
8719static struct sched_group *
45da2773 8720find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8721{
8722 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8723 struct sg_lb_stats local_sgs, tmp_sgs;
8724 struct sg_lb_stats *sgs;
8725 unsigned long imbalance;
8726 struct sg_lb_stats idlest_sgs = {
8727 .avg_load = UINT_MAX,
8728 .group_type = group_overloaded,
8729 };
8730
8731 imbalance = scale_load_down(NICE_0_LOAD) *
8732 (sd->imbalance_pct-100) / 100;
8733
8734 do {
8735 int local_group;
8736
8737 /* Skip over this group if it has no CPUs allowed */
8738 if (!cpumask_intersects(sched_group_span(group),
8739 p->cpus_ptr))
8740 continue;
8741
8742 local_group = cpumask_test_cpu(this_cpu,
8743 sched_group_span(group));
8744
8745 if (local_group) {
8746 sgs = &local_sgs;
8747 local = group;
8748 } else {
8749 sgs = &tmp_sgs;
8750 }
8751
8752 update_sg_wakeup_stats(sd, group, sgs, p);
8753
8754 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8755 idlest = group;
8756 idlest_sgs = *sgs;
8757 }
8758
8759 } while (group = group->next, group != sd->groups);
8760
8761
8762 /* There is no idlest group to push tasks to */
8763 if (!idlest)
8764 return NULL;
8765
7ed735c3
VG
8766 /* The local group has been skipped because of CPU affinity */
8767 if (!local)
8768 return idlest;
8769
57abff06
VG
8770 /*
8771 * If the local group is idler than the selected idlest group
8772 * don't try and push the task.
8773 */
8774 if (local_sgs.group_type < idlest_sgs.group_type)
8775 return NULL;
8776
8777 /*
8778 * If the local group is busier than the selected idlest group
8779 * try and push the task.
8780 */
8781 if (local_sgs.group_type > idlest_sgs.group_type)
8782 return idlest;
8783
8784 switch (local_sgs.group_type) {
8785 case group_overloaded:
8786 case group_fully_busy:
8787 /*
8788 * When comparing groups across NUMA domains, it's possible for
8789 * the local domain to be very lightly loaded relative to the
8790 * remote domains but "imbalance" skews the comparison making
8791 * remote CPUs look much more favourable. When considering
8792 * cross-domain, add imbalance to the load on the remote node
8793 * and consider staying local.
8794 */
8795
8796 if ((sd->flags & SD_NUMA) &&
8797 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8798 return NULL;
8799
8800 /*
8801 * If the local group is less loaded than the selected
8802 * idlest group don't try and push any tasks.
8803 */
8804 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8805 return NULL;
8806
8807 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8808 return NULL;
8809 break;
8810
8811 case group_imbalanced:
8812 case group_asym_packing:
8813 /* Those type are not used in the slow wakeup path */
8814 return NULL;
8815
8816 case group_misfit_task:
8817 /* Select group with the highest max capacity */
8818 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8819 return NULL;
8820 break;
8821
8822 case group_has_spare:
8823 if (sd->flags & SD_NUMA) {
8824#ifdef CONFIG_NUMA_BALANCING
8825 int idlest_cpu;
8826 /*
8827 * If there is spare capacity at NUMA, try to select
8828 * the preferred node
8829 */
8830 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8831 return NULL;
8832
8833 idlest_cpu = cpumask_first(sched_group_span(idlest));
8834 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8835 return idlest;
8836#endif
8837 /*
8838 * Otherwise, keep the task on this node to stay close
8839 * its wakeup source and improve locality. If there is
8840 * a real need of migration, periodic load balance will
8841 * take care of it.
8842 */
8843 if (local_sgs.idle_cpus)
8844 return NULL;
8845 }
8846
8847 /*
8848 * Select group with highest number of idle CPUs. We could also
8849 * compare the utilization which is more stable but it can end
8850 * up that the group has less spare capacity but finally more
8851 * idle CPUs which means more opportunity to run task.
8852 */
8853 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8854 return NULL;
8855 break;
8856 }
8857
8858 return idlest;
8859}
8860
1e3c88bd 8861/**
461819ac 8862 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8863 * @env: The load balancing environment.
1e3c88bd
PZ
8864 * @sds: variable to hold the statistics for this sched_domain.
8865 */
0b0695f2 8866
0ec8aa00 8867static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8868{
bd939f45
PZ
8869 struct sched_domain *child = env->sd->child;
8870 struct sched_group *sg = env->sd->groups;
05b40e05 8871 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8872 struct sg_lb_stats tmp_sgs;
630246a0 8873 int sg_status = 0;
1e3c88bd 8874
e022e0d3 8875#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8876 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8877 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8878#endif
8879
1e3c88bd 8880 do {
56cf515b 8881 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8882 int local_group;
8883
ae4df9d6 8884 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8885 if (local_group) {
8886 sds->local = sg;
05b40e05 8887 sgs = local;
b72ff13c
PZ
8888
8889 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8890 time_after_eq(jiffies, sg->sgc->next_update))
8891 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8892 }
1e3c88bd 8893
630246a0 8894 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8895
b72ff13c
PZ
8896 if (local_group)
8897 goto next_group;
8898
1e3c88bd 8899
b72ff13c 8900 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8901 sds->busiest = sg;
56cf515b 8902 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8903 }
8904
b72ff13c
PZ
8905next_group:
8906 /* Now, start updating sd_lb_stats */
8907 sds->total_load += sgs->group_load;
63b2ca30 8908 sds->total_capacity += sgs->group_capacity;
b72ff13c 8909
532cb4c4 8910 sg = sg->next;
bd939f45 8911 } while (sg != env->sd->groups);
0ec8aa00 8912
0b0695f2
VG
8913 /* Tag domain that child domain prefers tasks go to siblings first */
8914 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8915
f643ea22
VG
8916#ifdef CONFIG_NO_HZ_COMMON
8917 if ((env->flags & LBF_NOHZ_AGAIN) &&
8918 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8919
8920 WRITE_ONCE(nohz.next_blocked,
8921 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8922 }
8923#endif
8924
0ec8aa00
PZ
8925 if (env->sd->flags & SD_NUMA)
8926 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8927
8928 if (!env->sd->parent) {
2802bf3c
MR
8929 struct root_domain *rd = env->dst_rq->rd;
8930
4486edd1 8931 /* update overload indicator if we are at root domain */
2802bf3c
MR
8932 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8933
8934 /* Update over-utilization (tipping point, U >= 0) indicator */
8935 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8936 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8937 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8938 struct root_domain *rd = env->dst_rq->rd;
8939
8940 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8941 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8942 }
532cb4c4
MN
8943}
8944
fb86f5b2
MG
8945static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8946{
8947 unsigned int imbalance_min;
8948
8949 /*
8950 * Allow a small imbalance based on a simple pair of communicating
8951 * tasks that remain local when the source domain is almost idle.
8952 */
8953 imbalance_min = 2;
8954 if (src_nr_running <= imbalance_min)
8955 return 0;
8956
8957 return imbalance;
8958}
8959
1e3c88bd
PZ
8960/**
8961 * calculate_imbalance - Calculate the amount of imbalance present within the
8962 * groups of a given sched_domain during load balance.
bd939f45 8963 * @env: load balance environment
1e3c88bd 8964 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8965 */
bd939f45 8966static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8967{
56cf515b
JK
8968 struct sg_lb_stats *local, *busiest;
8969
8970 local = &sds->local_stat;
56cf515b 8971 busiest = &sds->busiest_stat;
dd5feea1 8972
0b0695f2
VG
8973 if (busiest->group_type == group_misfit_task) {
8974 /* Set imbalance to allow misfit tasks to be balanced. */
8975 env->migration_type = migrate_misfit;
c63be7be 8976 env->imbalance = 1;
0b0695f2
VG
8977 return;
8978 }
8979
8980 if (busiest->group_type == group_asym_packing) {
8981 /*
8982 * In case of asym capacity, we will try to migrate all load to
8983 * the preferred CPU.
8984 */
8985 env->migration_type = migrate_task;
8986 env->imbalance = busiest->sum_h_nr_running;
8987 return;
8988 }
8989
8990 if (busiest->group_type == group_imbalanced) {
8991 /*
8992 * In the group_imb case we cannot rely on group-wide averages
8993 * to ensure CPU-load equilibrium, try to move any task to fix
8994 * the imbalance. The next load balance will take care of
8995 * balancing back the system.
8996 */
8997 env->migration_type = migrate_task;
8998 env->imbalance = 1;
490ba971
VG
8999 return;
9000 }
9001
1e3c88bd 9002 /*
0b0695f2 9003 * Try to use spare capacity of local group without overloading it or
a9723389 9004 * emptying busiest.
1e3c88bd 9005 */
0b0695f2
VG
9006 if (local->group_type == group_has_spare) {
9007 if (busiest->group_type > group_fully_busy) {
9008 /*
9009 * If busiest is overloaded, try to fill spare
9010 * capacity. This might end up creating spare capacity
9011 * in busiest or busiest still being overloaded but
9012 * there is no simple way to directly compute the
9013 * amount of load to migrate in order to balance the
9014 * system.
9015 */
9016 env->migration_type = migrate_util;
9017 env->imbalance = max(local->group_capacity, local->group_util) -
9018 local->group_util;
9019
9020 /*
9021 * In some cases, the group's utilization is max or even
9022 * higher than capacity because of migrations but the
9023 * local CPU is (newly) idle. There is at least one
9024 * waiting task in this overloaded busiest group. Let's
9025 * try to pull it.
9026 */
9027 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9028 env->migration_type = migrate_task;
9029 env->imbalance = 1;
9030 }
9031
9032 return;
9033 }
9034
9035 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9036 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9037 /*
9038 * When prefer sibling, evenly spread running tasks on
9039 * groups.
9040 */
9041 env->migration_type = migrate_task;
5e23e474 9042 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9043 env->imbalance = nr_diff >> 1;
b396f523 9044 } else {
0b0695f2 9045
b396f523
MG
9046 /*
9047 * If there is no overload, we just want to even the number of
9048 * idle cpus.
9049 */
9050 env->migration_type = migrate_task;
9051 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9052 busiest->idle_cpus) >> 1);
b396f523
MG
9053 }
9054
9055 /* Consider allowing a small imbalance between NUMA groups */
fb86f5b2
MG
9056 if (env->sd->flags & SD_NUMA)
9057 env->imbalance = adjust_numa_imbalance(env->imbalance,
9058 busiest->sum_nr_running);
b396f523 9059
fcf0553d 9060 return;
1e3c88bd
PZ
9061 }
9062
9a5d9ba6 9063 /*
0b0695f2
VG
9064 * Local is fully busy but has to take more load to relieve the
9065 * busiest group
9a5d9ba6 9066 */
0b0695f2
VG
9067 if (local->group_type < group_overloaded) {
9068 /*
9069 * Local will become overloaded so the avg_load metrics are
9070 * finally needed.
9071 */
9072
9073 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9074 local->group_capacity;
9075
9076 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9077 sds->total_capacity;
111688ca
AL
9078 /*
9079 * If the local group is more loaded than the selected
9080 * busiest group don't try to pull any tasks.
9081 */
9082 if (local->avg_load >= busiest->avg_load) {
9083 env->imbalance = 0;
9084 return;
9085 }
dd5feea1
SS
9086 }
9087
9088 /*
0b0695f2
VG
9089 * Both group are or will become overloaded and we're trying to get all
9090 * the CPUs to the average_load, so we don't want to push ourselves
9091 * above the average load, nor do we wish to reduce the max loaded CPU
9092 * below the average load. At the same time, we also don't want to
9093 * reduce the group load below the group capacity. Thus we look for
9094 * the minimum possible imbalance.
dd5feea1 9095 */
0b0695f2 9096 env->migration_type = migrate_load;
56cf515b 9097 env->imbalance = min(
0b0695f2 9098 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9099 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9100 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9101}
fab47622 9102
1e3c88bd
PZ
9103/******* find_busiest_group() helpers end here *********************/
9104
0b0695f2
VG
9105/*
9106 * Decision matrix according to the local and busiest group type:
9107 *
9108 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9109 * has_spare nr_idle balanced N/A N/A balanced balanced
9110 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9111 * misfit_task force N/A N/A N/A force force
9112 * asym_packing force force N/A N/A force force
9113 * imbalanced force force N/A N/A force force
9114 * overloaded force force N/A N/A force avg_load
9115 *
9116 * N/A : Not Applicable because already filtered while updating
9117 * statistics.
9118 * balanced : The system is balanced for these 2 groups.
9119 * force : Calculate the imbalance as load migration is probably needed.
9120 * avg_load : Only if imbalance is significant enough.
9121 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9122 * different in groups.
9123 */
9124
1e3c88bd
PZ
9125/**
9126 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9127 * if there is an imbalance.
1e3c88bd 9128 *
a3df0679 9129 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9130 * to restore balance.
9131 *
cd96891d 9132 * @env: The load balancing environment.
1e3c88bd 9133 *
e69f6186 9134 * Return: - The busiest group if imbalance exists.
1e3c88bd 9135 */
56cf515b 9136static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9137{
56cf515b 9138 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9139 struct sd_lb_stats sds;
9140
147c5fc2 9141 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9142
9143 /*
b0fb1eb4 9144 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9145 * this level.
9146 */
23f0d209 9147 update_sd_lb_stats(env, &sds);
2802bf3c 9148
f8a696f2 9149 if (sched_energy_enabled()) {
2802bf3c
MR
9150 struct root_domain *rd = env->dst_rq->rd;
9151
9152 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9153 goto out_balanced;
9154 }
9155
56cf515b
JK
9156 local = &sds.local_stat;
9157 busiest = &sds.busiest_stat;
1e3c88bd 9158
cc57aa8f 9159 /* There is no busy sibling group to pull tasks from */
0b0695f2 9160 if (!sds.busiest)
1e3c88bd
PZ
9161 goto out_balanced;
9162
0b0695f2
VG
9163 /* Misfit tasks should be dealt with regardless of the avg load */
9164 if (busiest->group_type == group_misfit_task)
9165 goto force_balance;
9166
9167 /* ASYM feature bypasses nice load balance check */
9168 if (busiest->group_type == group_asym_packing)
9169 goto force_balance;
b0432d8f 9170
866ab43e
PZ
9171 /*
9172 * If the busiest group is imbalanced the below checks don't
30ce5dab 9173 * work because they assume all things are equal, which typically
3bd37062 9174 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9175 */
caeb178c 9176 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9177 goto force_balance;
9178
cc57aa8f 9179 /*
9c58c79a 9180 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9181 * don't try and pull any tasks.
9182 */
0b0695f2 9183 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9184 goto out_balanced;
9185
cc57aa8f 9186 /*
0b0695f2
VG
9187 * When groups are overloaded, use the avg_load to ensure fairness
9188 * between tasks.
cc57aa8f 9189 */
0b0695f2
VG
9190 if (local->group_type == group_overloaded) {
9191 /*
9192 * If the local group is more loaded than the selected
9193 * busiest group don't try to pull any tasks.
9194 */
9195 if (local->avg_load >= busiest->avg_load)
9196 goto out_balanced;
9197
9198 /* XXX broken for overlapping NUMA groups */
9199 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9200 sds.total_capacity;
1e3c88bd 9201
aae6d3dd 9202 /*
0b0695f2
VG
9203 * Don't pull any tasks if this group is already above the
9204 * domain average load.
aae6d3dd 9205 */
0b0695f2 9206 if (local->avg_load >= sds.avg_load)
aae6d3dd 9207 goto out_balanced;
0b0695f2 9208
c186fafe 9209 /*
0b0695f2
VG
9210 * If the busiest group is more loaded, use imbalance_pct to be
9211 * conservative.
c186fafe 9212 */
56cf515b
JK
9213 if (100 * busiest->avg_load <=
9214 env->sd->imbalance_pct * local->avg_load)
c186fafe 9215 goto out_balanced;
aae6d3dd 9216 }
1e3c88bd 9217
0b0695f2
VG
9218 /* Try to move all excess tasks to child's sibling domain */
9219 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9220 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9221 goto force_balance;
9222
2ab4092f
VG
9223 if (busiest->group_type != group_overloaded) {
9224 if (env->idle == CPU_NOT_IDLE)
9225 /*
9226 * If the busiest group is not overloaded (and as a
9227 * result the local one too) but this CPU is already
9228 * busy, let another idle CPU try to pull task.
9229 */
9230 goto out_balanced;
9231
9232 if (busiest->group_weight > 1 &&
9233 local->idle_cpus <= (busiest->idle_cpus + 1))
9234 /*
9235 * If the busiest group is not overloaded
9236 * and there is no imbalance between this and busiest
9237 * group wrt idle CPUs, it is balanced. The imbalance
9238 * becomes significant if the diff is greater than 1
9239 * otherwise we might end up to just move the imbalance
9240 * on another group. Of course this applies only if
9241 * there is more than 1 CPU per group.
9242 */
9243 goto out_balanced;
9244
9245 if (busiest->sum_h_nr_running == 1)
9246 /*
9247 * busiest doesn't have any tasks waiting to run
9248 */
9249 goto out_balanced;
9250 }
0b0695f2 9251
fab47622 9252force_balance:
1e3c88bd 9253 /* Looks like there is an imbalance. Compute it */
bd939f45 9254 calculate_imbalance(env, &sds);
bb3485c8 9255 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9256
9257out_balanced:
bd939f45 9258 env->imbalance = 0;
1e3c88bd
PZ
9259 return NULL;
9260}
9261
9262/*
97fb7a0a 9263 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9264 */
bd939f45 9265static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9266 struct sched_group *group)
1e3c88bd
PZ
9267{
9268 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9269 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9270 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9271 int i;
9272
ae4df9d6 9273 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9274 unsigned long capacity, load, util;
9275 unsigned int nr_running;
0ec8aa00
PZ
9276 enum fbq_type rt;
9277
9278 rq = cpu_rq(i);
9279 rt = fbq_classify_rq(rq);
1e3c88bd 9280
0ec8aa00
PZ
9281 /*
9282 * We classify groups/runqueues into three groups:
9283 * - regular: there are !numa tasks
9284 * - remote: there are numa tasks that run on the 'wrong' node
9285 * - all: there is no distinction
9286 *
9287 * In order to avoid migrating ideally placed numa tasks,
9288 * ignore those when there's better options.
9289 *
9290 * If we ignore the actual busiest queue to migrate another
9291 * task, the next balance pass can still reduce the busiest
9292 * queue by moving tasks around inside the node.
9293 *
9294 * If we cannot move enough load due to this classification
9295 * the next pass will adjust the group classification and
9296 * allow migration of more tasks.
9297 *
9298 * Both cases only affect the total convergence complexity.
9299 */
9300 if (rt > env->fbq_type)
9301 continue;
9302
ced549fa 9303 capacity = capacity_of(i);
0b0695f2 9304 nr_running = rq->cfs.h_nr_running;
9d5efe05 9305
4ad3831a
CR
9306 /*
9307 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9308 * eventually lead to active_balancing high->low capacity.
9309 * Higher per-CPU capacity is considered better than balancing
9310 * average load.
9311 */
9312 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9313 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9314 nr_running == 1)
4ad3831a
CR
9315 continue;
9316
0b0695f2
VG
9317 switch (env->migration_type) {
9318 case migrate_load:
9319 /*
b0fb1eb4
VG
9320 * When comparing with load imbalance, use cpu_load()
9321 * which is not scaled with the CPU capacity.
0b0695f2 9322 */
b0fb1eb4 9323 load = cpu_load(rq);
1e3c88bd 9324
0b0695f2
VG
9325 if (nr_running == 1 && load > env->imbalance &&
9326 !check_cpu_capacity(rq, env->sd))
9327 break;
ea67821b 9328
0b0695f2
VG
9329 /*
9330 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9331 * consider the cpu_load() scaled with the CPU
9332 * capacity, so that the load can be moved away
9333 * from the CPU that is potentially running at a
9334 * lower capacity.
0b0695f2
VG
9335 *
9336 * Thus we're looking for max(load_i / capacity_i),
9337 * crosswise multiplication to rid ourselves of the
9338 * division works out to:
9339 * load_i * capacity_j > load_j * capacity_i;
9340 * where j is our previous maximum.
9341 */
9342 if (load * busiest_capacity > busiest_load * capacity) {
9343 busiest_load = load;
9344 busiest_capacity = capacity;
9345 busiest = rq;
9346 }
9347 break;
9348
9349 case migrate_util:
9350 util = cpu_util(cpu_of(rq));
9351
c32b4308
VG
9352 /*
9353 * Don't try to pull utilization from a CPU with one
9354 * running task. Whatever its utilization, we will fail
9355 * detach the task.
9356 */
9357 if (nr_running <= 1)
9358 continue;
9359
0b0695f2
VG
9360 if (busiest_util < util) {
9361 busiest_util = util;
9362 busiest = rq;
9363 }
9364 break;
9365
9366 case migrate_task:
9367 if (busiest_nr < nr_running) {
9368 busiest_nr = nr_running;
9369 busiest = rq;
9370 }
9371 break;
9372
9373 case migrate_misfit:
9374 /*
9375 * For ASYM_CPUCAPACITY domains with misfit tasks we
9376 * simply seek the "biggest" misfit task.
9377 */
9378 if (rq->misfit_task_load > busiest_load) {
9379 busiest_load = rq->misfit_task_load;
9380 busiest = rq;
9381 }
9382
9383 break;
1e3c88bd 9384
1e3c88bd
PZ
9385 }
9386 }
9387
9388 return busiest;
9389}
9390
9391/*
9392 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9393 * so long as it is large enough.
9394 */
9395#define MAX_PINNED_INTERVAL 512
9396
46a745d9
VG
9397static inline bool
9398asym_active_balance(struct lb_env *env)
1af3ed3d 9399{
46a745d9
VG
9400 /*
9401 * ASYM_PACKING needs to force migrate tasks from busy but
9402 * lower priority CPUs in order to pack all tasks in the
9403 * highest priority CPUs.
9404 */
9405 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9406 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9407}
bd939f45 9408
46a745d9
VG
9409static inline bool
9410voluntary_active_balance(struct lb_env *env)
9411{
9412 struct sched_domain *sd = env->sd;
532cb4c4 9413
46a745d9
VG
9414 if (asym_active_balance(env))
9415 return 1;
1af3ed3d 9416
1aaf90a4
VG
9417 /*
9418 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9419 * It's worth migrating the task if the src_cpu's capacity is reduced
9420 * because of other sched_class or IRQs if more capacity stays
9421 * available on dst_cpu.
9422 */
9423 if ((env->idle != CPU_NOT_IDLE) &&
9424 (env->src_rq->cfs.h_nr_running == 1)) {
9425 if ((check_cpu_capacity(env->src_rq, sd)) &&
9426 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9427 return 1;
9428 }
9429
0b0695f2 9430 if (env->migration_type == migrate_misfit)
cad68e55
MR
9431 return 1;
9432
46a745d9
VG
9433 return 0;
9434}
9435
9436static int need_active_balance(struct lb_env *env)
9437{
9438 struct sched_domain *sd = env->sd;
9439
9440 if (voluntary_active_balance(env))
9441 return 1;
9442
1af3ed3d
PZ
9443 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9444}
9445
969c7921
TH
9446static int active_load_balance_cpu_stop(void *data);
9447
23f0d209
JK
9448static int should_we_balance(struct lb_env *env)
9449{
9450 struct sched_group *sg = env->sd->groups;
64297f2b 9451 int cpu;
23f0d209 9452
024c9d2f
PZ
9453 /*
9454 * Ensure the balancing environment is consistent; can happen
9455 * when the softirq triggers 'during' hotplug.
9456 */
9457 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9458 return 0;
9459
23f0d209 9460 /*
97fb7a0a 9461 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9462 * to do the newly idle load balance.
9463 */
9464 if (env->idle == CPU_NEWLY_IDLE)
9465 return 1;
9466
97fb7a0a 9467 /* Try to find first idle CPU */
e5c14b1f 9468 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9469 if (!idle_cpu(cpu))
23f0d209
JK
9470 continue;
9471
64297f2b
PW
9472 /* Are we the first idle CPU? */
9473 return cpu == env->dst_cpu;
23f0d209
JK
9474 }
9475
64297f2b
PW
9476 /* Are we the first CPU of this group ? */
9477 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9478}
9479
1e3c88bd
PZ
9480/*
9481 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9482 * tasks if there is an imbalance.
9483 */
9484static int load_balance(int this_cpu, struct rq *this_rq,
9485 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9486 int *continue_balancing)
1e3c88bd 9487{
88b8dac0 9488 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9489 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9490 struct sched_group *group;
1e3c88bd 9491 struct rq *busiest;
8a8c69c3 9492 struct rq_flags rf;
4ba29684 9493 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9494
8e45cb54
PZ
9495 struct lb_env env = {
9496 .sd = sd,
ddcdf6e7
PZ
9497 .dst_cpu = this_cpu,
9498 .dst_rq = this_rq,
ae4df9d6 9499 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9500 .idle = idle,
eb95308e 9501 .loop_break = sched_nr_migrate_break,
b9403130 9502 .cpus = cpus,
0ec8aa00 9503 .fbq_type = all,
163122b7 9504 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9505 };
9506
65a4433a 9507 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9508
ae92882e 9509 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9510
9511redo:
23f0d209
JK
9512 if (!should_we_balance(&env)) {
9513 *continue_balancing = 0;
1e3c88bd 9514 goto out_balanced;
23f0d209 9515 }
1e3c88bd 9516
23f0d209 9517 group = find_busiest_group(&env);
1e3c88bd 9518 if (!group) {
ae92882e 9519 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9520 goto out_balanced;
9521 }
9522
b9403130 9523 busiest = find_busiest_queue(&env, group);
1e3c88bd 9524 if (!busiest) {
ae92882e 9525 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9526 goto out_balanced;
9527 }
9528
78feefc5 9529 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9530
ae92882e 9531 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9532
1aaf90a4
VG
9533 env.src_cpu = busiest->cpu;
9534 env.src_rq = busiest;
9535
1e3c88bd
PZ
9536 ld_moved = 0;
9537 if (busiest->nr_running > 1) {
9538 /*
9539 * Attempt to move tasks. If find_busiest_group has found
9540 * an imbalance but busiest->nr_running <= 1, the group is
9541 * still unbalanced. ld_moved simply stays zero, so it is
9542 * correctly treated as an imbalance.
9543 */
8e45cb54 9544 env.flags |= LBF_ALL_PINNED;
c82513e5 9545 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9546
5d6523eb 9547more_balance:
8a8c69c3 9548 rq_lock_irqsave(busiest, &rf);
3bed5e21 9549 update_rq_clock(busiest);
88b8dac0
SV
9550
9551 /*
9552 * cur_ld_moved - load moved in current iteration
9553 * ld_moved - cumulative load moved across iterations
9554 */
163122b7 9555 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9556
9557 /*
163122b7
KT
9558 * We've detached some tasks from busiest_rq. Every
9559 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9560 * unlock busiest->lock, and we are able to be sure
9561 * that nobody can manipulate the tasks in parallel.
9562 * See task_rq_lock() family for the details.
1e3c88bd 9563 */
163122b7 9564
8a8c69c3 9565 rq_unlock(busiest, &rf);
163122b7
KT
9566
9567 if (cur_ld_moved) {
9568 attach_tasks(&env);
9569 ld_moved += cur_ld_moved;
9570 }
9571
8a8c69c3 9572 local_irq_restore(rf.flags);
88b8dac0 9573
f1cd0858
JK
9574 if (env.flags & LBF_NEED_BREAK) {
9575 env.flags &= ~LBF_NEED_BREAK;
9576 goto more_balance;
9577 }
9578
88b8dac0
SV
9579 /*
9580 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9581 * us and move them to an alternate dst_cpu in our sched_group
9582 * where they can run. The upper limit on how many times we
97fb7a0a 9583 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9584 * sched_group.
9585 *
9586 * This changes load balance semantics a bit on who can move
9587 * load to a given_cpu. In addition to the given_cpu itself
9588 * (or a ilb_cpu acting on its behalf where given_cpu is
9589 * nohz-idle), we now have balance_cpu in a position to move
9590 * load to given_cpu. In rare situations, this may cause
9591 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9592 * _independently_ and at _same_ time to move some load to
9593 * given_cpu) causing exceess load to be moved to given_cpu.
9594 * This however should not happen so much in practice and
9595 * moreover subsequent load balance cycles should correct the
9596 * excess load moved.
9597 */
6263322c 9598 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9599
97fb7a0a 9600 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9601 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9602
78feefc5 9603 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9604 env.dst_cpu = env.new_dst_cpu;
6263322c 9605 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9606 env.loop = 0;
9607 env.loop_break = sched_nr_migrate_break;
e02e60c1 9608
88b8dac0
SV
9609 /*
9610 * Go back to "more_balance" rather than "redo" since we
9611 * need to continue with same src_cpu.
9612 */
9613 goto more_balance;
9614 }
1e3c88bd 9615
6263322c
PZ
9616 /*
9617 * We failed to reach balance because of affinity.
9618 */
9619 if (sd_parent) {
63b2ca30 9620 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9621
afdeee05 9622 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9623 *group_imbalance = 1;
6263322c
PZ
9624 }
9625
1e3c88bd 9626 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9627 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9628 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9629 /*
9630 * Attempting to continue load balancing at the current
9631 * sched_domain level only makes sense if there are
9632 * active CPUs remaining as possible busiest CPUs to
9633 * pull load from which are not contained within the
9634 * destination group that is receiving any migrated
9635 * load.
9636 */
9637 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9638 env.loop = 0;
9639 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9640 goto redo;
bbf18b19 9641 }
afdeee05 9642 goto out_all_pinned;
1e3c88bd
PZ
9643 }
9644 }
9645
9646 if (!ld_moved) {
ae92882e 9647 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9648 /*
9649 * Increment the failure counter only on periodic balance.
9650 * We do not want newidle balance, which can be very
9651 * frequent, pollute the failure counter causing
9652 * excessive cache_hot migrations and active balances.
9653 */
9654 if (idle != CPU_NEWLY_IDLE)
9655 sd->nr_balance_failed++;
1e3c88bd 9656
bd939f45 9657 if (need_active_balance(&env)) {
8a8c69c3
PZ
9658 unsigned long flags;
9659
1e3c88bd
PZ
9660 raw_spin_lock_irqsave(&busiest->lock, flags);
9661
97fb7a0a
IM
9662 /*
9663 * Don't kick the active_load_balance_cpu_stop,
9664 * if the curr task on busiest CPU can't be
9665 * moved to this_cpu:
1e3c88bd 9666 */
3bd37062 9667 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9668 raw_spin_unlock_irqrestore(&busiest->lock,
9669 flags);
8e45cb54 9670 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9671 goto out_one_pinned;
9672 }
9673
969c7921
TH
9674 /*
9675 * ->active_balance synchronizes accesses to
9676 * ->active_balance_work. Once set, it's cleared
9677 * only after active load balance is finished.
9678 */
1e3c88bd
PZ
9679 if (!busiest->active_balance) {
9680 busiest->active_balance = 1;
9681 busiest->push_cpu = this_cpu;
9682 active_balance = 1;
9683 }
9684 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9685
bd939f45 9686 if (active_balance) {
969c7921
TH
9687 stop_one_cpu_nowait(cpu_of(busiest),
9688 active_load_balance_cpu_stop, busiest,
9689 &busiest->active_balance_work);
bd939f45 9690 }
1e3c88bd 9691
d02c0711 9692 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9693 sd->nr_balance_failed = sd->cache_nice_tries+1;
9694 }
9695 } else
9696 sd->nr_balance_failed = 0;
9697
46a745d9 9698 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9699 /* We were unbalanced, so reset the balancing interval */
9700 sd->balance_interval = sd->min_interval;
9701 } else {
9702 /*
9703 * If we've begun active balancing, start to back off. This
9704 * case may not be covered by the all_pinned logic if there
9705 * is only 1 task on the busy runqueue (because we don't call
163122b7 9706 * detach_tasks).
1e3c88bd
PZ
9707 */
9708 if (sd->balance_interval < sd->max_interval)
9709 sd->balance_interval *= 2;
9710 }
9711
1e3c88bd
PZ
9712 goto out;
9713
9714out_balanced:
afdeee05
VG
9715 /*
9716 * We reach balance although we may have faced some affinity
f6cad8df
VG
9717 * constraints. Clear the imbalance flag only if other tasks got
9718 * a chance to move and fix the imbalance.
afdeee05 9719 */
f6cad8df 9720 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9721 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9722
9723 if (*group_imbalance)
9724 *group_imbalance = 0;
9725 }
9726
9727out_all_pinned:
9728 /*
9729 * We reach balance because all tasks are pinned at this level so
9730 * we can't migrate them. Let the imbalance flag set so parent level
9731 * can try to migrate them.
9732 */
ae92882e 9733 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9734
9735 sd->nr_balance_failed = 0;
9736
9737out_one_pinned:
3f130a37
VS
9738 ld_moved = 0;
9739
9740 /*
5ba553ef
PZ
9741 * newidle_balance() disregards balance intervals, so we could
9742 * repeatedly reach this code, which would lead to balance_interval
9743 * skyrocketting in a short amount of time. Skip the balance_interval
9744 * increase logic to avoid that.
3f130a37
VS
9745 */
9746 if (env.idle == CPU_NEWLY_IDLE)
9747 goto out;
9748
1e3c88bd 9749 /* tune up the balancing interval */
47b7aee1
VS
9750 if ((env.flags & LBF_ALL_PINNED &&
9751 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9752 sd->balance_interval < sd->max_interval)
1e3c88bd 9753 sd->balance_interval *= 2;
1e3c88bd 9754out:
1e3c88bd
PZ
9755 return ld_moved;
9756}
9757
52a08ef1
JL
9758static inline unsigned long
9759get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9760{
9761 unsigned long interval = sd->balance_interval;
9762
9763 if (cpu_busy)
9764 interval *= sd->busy_factor;
9765
9766 /* scale ms to jiffies */
9767 interval = msecs_to_jiffies(interval);
9768 interval = clamp(interval, 1UL, max_load_balance_interval);
9769
9770 return interval;
9771}
9772
9773static inline void
31851a98 9774update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9775{
9776 unsigned long interval, next;
9777
31851a98
LY
9778 /* used by idle balance, so cpu_busy = 0 */
9779 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9780 next = sd->last_balance + interval;
9781
9782 if (time_after(*next_balance, next))
9783 *next_balance = next;
9784}
9785
1e3c88bd 9786/*
97fb7a0a 9787 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9788 * running tasks off the busiest CPU onto idle CPUs. It requires at
9789 * least 1 task to be running on each physical CPU where possible, and
9790 * avoids physical / logical imbalances.
1e3c88bd 9791 */
969c7921 9792static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9793{
969c7921
TH
9794 struct rq *busiest_rq = data;
9795 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9796 int target_cpu = busiest_rq->push_cpu;
969c7921 9797 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9798 struct sched_domain *sd;
e5673f28 9799 struct task_struct *p = NULL;
8a8c69c3 9800 struct rq_flags rf;
969c7921 9801
8a8c69c3 9802 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9803 /*
9804 * Between queueing the stop-work and running it is a hole in which
9805 * CPUs can become inactive. We should not move tasks from or to
9806 * inactive CPUs.
9807 */
9808 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9809 goto out_unlock;
969c7921 9810
97fb7a0a 9811 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9812 if (unlikely(busiest_cpu != smp_processor_id() ||
9813 !busiest_rq->active_balance))
9814 goto out_unlock;
1e3c88bd
PZ
9815
9816 /* Is there any task to move? */
9817 if (busiest_rq->nr_running <= 1)
969c7921 9818 goto out_unlock;
1e3c88bd
PZ
9819
9820 /*
9821 * This condition is "impossible", if it occurs
9822 * we need to fix it. Originally reported by
97fb7a0a 9823 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9824 */
9825 BUG_ON(busiest_rq == target_rq);
9826
1e3c88bd 9827 /* Search for an sd spanning us and the target CPU. */
dce840a0 9828 rcu_read_lock();
1e3c88bd 9829 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9830 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9831 break;
1e3c88bd
PZ
9832 }
9833
9834 if (likely(sd)) {
8e45cb54
PZ
9835 struct lb_env env = {
9836 .sd = sd,
ddcdf6e7
PZ
9837 .dst_cpu = target_cpu,
9838 .dst_rq = target_rq,
9839 .src_cpu = busiest_rq->cpu,
9840 .src_rq = busiest_rq,
8e45cb54 9841 .idle = CPU_IDLE,
65a4433a
JH
9842 /*
9843 * can_migrate_task() doesn't need to compute new_dst_cpu
9844 * for active balancing. Since we have CPU_IDLE, but no
9845 * @dst_grpmask we need to make that test go away with lying
9846 * about DST_PINNED.
9847 */
9848 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9849 };
9850
ae92882e 9851 schedstat_inc(sd->alb_count);
3bed5e21 9852 update_rq_clock(busiest_rq);
1e3c88bd 9853
e5673f28 9854 p = detach_one_task(&env);
d02c0711 9855 if (p) {
ae92882e 9856 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9857 /* Active balancing done, reset the failure counter. */
9858 sd->nr_balance_failed = 0;
9859 } else {
ae92882e 9860 schedstat_inc(sd->alb_failed);
d02c0711 9861 }
1e3c88bd 9862 }
dce840a0 9863 rcu_read_unlock();
969c7921
TH
9864out_unlock:
9865 busiest_rq->active_balance = 0;
8a8c69c3 9866 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9867
9868 if (p)
9869 attach_one_task(target_rq, p);
9870
9871 local_irq_enable();
9872
969c7921 9873 return 0;
1e3c88bd
PZ
9874}
9875
af3fe03c
PZ
9876static DEFINE_SPINLOCK(balancing);
9877
9878/*
9879 * Scale the max load_balance interval with the number of CPUs in the system.
9880 * This trades load-balance latency on larger machines for less cross talk.
9881 */
9882void update_max_interval(void)
9883{
9884 max_load_balance_interval = HZ*num_online_cpus()/10;
9885}
9886
9887/*
9888 * It checks each scheduling domain to see if it is due to be balanced,
9889 * and initiates a balancing operation if so.
9890 *
9891 * Balancing parameters are set up in init_sched_domains.
9892 */
9893static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9894{
9895 int continue_balancing = 1;
9896 int cpu = rq->cpu;
323af6de 9897 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9898 unsigned long interval;
9899 struct sched_domain *sd;
9900 /* Earliest time when we have to do rebalance again */
9901 unsigned long next_balance = jiffies + 60*HZ;
9902 int update_next_balance = 0;
9903 int need_serialize, need_decay = 0;
9904 u64 max_cost = 0;
9905
9906 rcu_read_lock();
9907 for_each_domain(cpu, sd) {
9908 /*
9909 * Decay the newidle max times here because this is a regular
9910 * visit to all the domains. Decay ~1% per second.
9911 */
9912 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9913 sd->max_newidle_lb_cost =
9914 (sd->max_newidle_lb_cost * 253) / 256;
9915 sd->next_decay_max_lb_cost = jiffies + HZ;
9916 need_decay = 1;
9917 }
9918 max_cost += sd->max_newidle_lb_cost;
9919
af3fe03c
PZ
9920 /*
9921 * Stop the load balance at this level. There is another
9922 * CPU in our sched group which is doing load balancing more
9923 * actively.
9924 */
9925 if (!continue_balancing) {
9926 if (need_decay)
9927 continue;
9928 break;
9929 }
9930
323af6de 9931 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9932
9933 need_serialize = sd->flags & SD_SERIALIZE;
9934 if (need_serialize) {
9935 if (!spin_trylock(&balancing))
9936 goto out;
9937 }
9938
9939 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9940 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9941 /*
9942 * The LBF_DST_PINNED logic could have changed
9943 * env->dst_cpu, so we can't know our idle
9944 * state even if we migrated tasks. Update it.
9945 */
9946 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 9947 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9948 }
9949 sd->last_balance = jiffies;
323af6de 9950 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9951 }
9952 if (need_serialize)
9953 spin_unlock(&balancing);
9954out:
9955 if (time_after(next_balance, sd->last_balance + interval)) {
9956 next_balance = sd->last_balance + interval;
9957 update_next_balance = 1;
9958 }
9959 }
9960 if (need_decay) {
9961 /*
9962 * Ensure the rq-wide value also decays but keep it at a
9963 * reasonable floor to avoid funnies with rq->avg_idle.
9964 */
9965 rq->max_idle_balance_cost =
9966 max((u64)sysctl_sched_migration_cost, max_cost);
9967 }
9968 rcu_read_unlock();
9969
9970 /*
9971 * next_balance will be updated only when there is a need.
9972 * When the cpu is attached to null domain for ex, it will not be
9973 * updated.
9974 */
9975 if (likely(update_next_balance)) {
9976 rq->next_balance = next_balance;
9977
9978#ifdef CONFIG_NO_HZ_COMMON
9979 /*
9980 * If this CPU has been elected to perform the nohz idle
9981 * balance. Other idle CPUs have already rebalanced with
9982 * nohz_idle_balance() and nohz.next_balance has been
9983 * updated accordingly. This CPU is now running the idle load
9984 * balance for itself and we need to update the
9985 * nohz.next_balance accordingly.
9986 */
9987 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9988 nohz.next_balance = rq->next_balance;
9989#endif
9990 }
9991}
9992
d987fc7f
MG
9993static inline int on_null_domain(struct rq *rq)
9994{
9995 return unlikely(!rcu_dereference_sched(rq->sd));
9996}
9997
3451d024 9998#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9999/*
10000 * idle load balancing details
83cd4fe2
VP
10001 * - When one of the busy CPUs notice that there may be an idle rebalancing
10002 * needed, they will kick the idle load balancer, which then does idle
10003 * load balancing for all the idle CPUs.
9b019acb
NP
10004 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10005 * anywhere yet.
83cd4fe2 10006 */
1e3c88bd 10007
3dd0337d 10008static inline int find_new_ilb(void)
1e3c88bd 10009{
9b019acb 10010 int ilb;
1e3c88bd 10011
9b019acb
NP
10012 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10013 housekeeping_cpumask(HK_FLAG_MISC)) {
10014 if (idle_cpu(ilb))
10015 return ilb;
10016 }
786d6dc7
SS
10017
10018 return nr_cpu_ids;
1e3c88bd 10019}
1e3c88bd 10020
83cd4fe2 10021/*
9b019acb
NP
10022 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10023 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10024 */
a4064fb6 10025static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10026{
10027 int ilb_cpu;
10028
3ea2f097
VG
10029 /*
10030 * Increase nohz.next_balance only when if full ilb is triggered but
10031 * not if we only update stats.
10032 */
10033 if (flags & NOHZ_BALANCE_KICK)
10034 nohz.next_balance = jiffies+1;
83cd4fe2 10035
3dd0337d 10036 ilb_cpu = find_new_ilb();
83cd4fe2 10037
0b005cf5
SS
10038 if (ilb_cpu >= nr_cpu_ids)
10039 return;
83cd4fe2 10040
19a1f5ec
PZ
10041 /*
10042 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10043 * the first flag owns it; cleared by nohz_csd_func().
10044 */
a4064fb6 10045 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10046 if (flags & NOHZ_KICK_MASK)
1c792db7 10047 return;
4550487a 10048
1c792db7 10049 /*
90b5363a 10050 * This way we generate an IPI on the target CPU which
1c792db7
SS
10051 * is idle. And the softirq performing nohz idle load balance
10052 * will be run before returning from the IPI.
10053 */
90b5363a 10054 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10055}
10056
10057/*
9f132742
VS
10058 * Current decision point for kicking the idle load balancer in the presence
10059 * of idle CPUs in the system.
4550487a
PZ
10060 */
10061static void nohz_balancer_kick(struct rq *rq)
10062{
10063 unsigned long now = jiffies;
10064 struct sched_domain_shared *sds;
10065 struct sched_domain *sd;
10066 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10067 unsigned int flags = 0;
4550487a
PZ
10068
10069 if (unlikely(rq->idle_balance))
10070 return;
10071
10072 /*
10073 * We may be recently in ticked or tickless idle mode. At the first
10074 * busy tick after returning from idle, we will update the busy stats.
10075 */
00357f5e 10076 nohz_balance_exit_idle(rq);
4550487a
PZ
10077
10078 /*
10079 * None are in tickless mode and hence no need for NOHZ idle load
10080 * balancing.
10081 */
10082 if (likely(!atomic_read(&nohz.nr_cpus)))
10083 return;
10084
f643ea22
VG
10085 if (READ_ONCE(nohz.has_blocked) &&
10086 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10087 flags = NOHZ_STATS_KICK;
10088
4550487a 10089 if (time_before(now, nohz.next_balance))
a4064fb6 10090 goto out;
4550487a 10091
a0fe2cf0 10092 if (rq->nr_running >= 2) {
a4064fb6 10093 flags = NOHZ_KICK_MASK;
4550487a
PZ
10094 goto out;
10095 }
10096
10097 rcu_read_lock();
4550487a
PZ
10098
10099 sd = rcu_dereference(rq->sd);
10100 if (sd) {
e25a7a94
VS
10101 /*
10102 * If there's a CFS task and the current CPU has reduced
10103 * capacity; kick the ILB to see if there's a better CPU to run
10104 * on.
10105 */
10106 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10107 flags = NOHZ_KICK_MASK;
4550487a
PZ
10108 goto unlock;
10109 }
10110 }
10111
011b27bb 10112 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10113 if (sd) {
b9a7b883
VS
10114 /*
10115 * When ASYM_PACKING; see if there's a more preferred CPU
10116 * currently idle; in which case, kick the ILB to move tasks
10117 * around.
10118 */
7edab78d 10119 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10120 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10121 flags = NOHZ_KICK_MASK;
4550487a
PZ
10122 goto unlock;
10123 }
10124 }
10125 }
b9a7b883 10126
a0fe2cf0
VS
10127 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10128 if (sd) {
10129 /*
10130 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10131 * to run the misfit task on.
10132 */
10133 if (check_misfit_status(rq, sd)) {
10134 flags = NOHZ_KICK_MASK;
10135 goto unlock;
10136 }
b9a7b883
VS
10137
10138 /*
10139 * For asymmetric systems, we do not want to nicely balance
10140 * cache use, instead we want to embrace asymmetry and only
10141 * ensure tasks have enough CPU capacity.
10142 *
10143 * Skip the LLC logic because it's not relevant in that case.
10144 */
10145 goto unlock;
a0fe2cf0
VS
10146 }
10147
b9a7b883
VS
10148 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10149 if (sds) {
e25a7a94 10150 /*
b9a7b883
VS
10151 * If there is an imbalance between LLC domains (IOW we could
10152 * increase the overall cache use), we need some less-loaded LLC
10153 * domain to pull some load. Likewise, we may need to spread
10154 * load within the current LLC domain (e.g. packed SMT cores but
10155 * other CPUs are idle). We can't really know from here how busy
10156 * the others are - so just get a nohz balance going if it looks
10157 * like this LLC domain has tasks we could move.
e25a7a94 10158 */
b9a7b883
VS
10159 nr_busy = atomic_read(&sds->nr_busy_cpus);
10160 if (nr_busy > 1) {
10161 flags = NOHZ_KICK_MASK;
10162 goto unlock;
4550487a
PZ
10163 }
10164 }
10165unlock:
10166 rcu_read_unlock();
10167out:
a4064fb6
PZ
10168 if (flags)
10169 kick_ilb(flags);
83cd4fe2
VP
10170}
10171
00357f5e 10172static void set_cpu_sd_state_busy(int cpu)
71325960 10173{
00357f5e 10174 struct sched_domain *sd;
a22e47a4 10175
00357f5e
PZ
10176 rcu_read_lock();
10177 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10178
00357f5e
PZ
10179 if (!sd || !sd->nohz_idle)
10180 goto unlock;
10181 sd->nohz_idle = 0;
10182
10183 atomic_inc(&sd->shared->nr_busy_cpus);
10184unlock:
10185 rcu_read_unlock();
71325960
SS
10186}
10187
00357f5e
PZ
10188void nohz_balance_exit_idle(struct rq *rq)
10189{
10190 SCHED_WARN_ON(rq != this_rq());
10191
10192 if (likely(!rq->nohz_tick_stopped))
10193 return;
10194
10195 rq->nohz_tick_stopped = 0;
10196 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10197 atomic_dec(&nohz.nr_cpus);
10198
10199 set_cpu_sd_state_busy(rq->cpu);
10200}
10201
10202static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10203{
10204 struct sched_domain *sd;
69e1e811 10205
69e1e811 10206 rcu_read_lock();
0e369d75 10207 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10208
10209 if (!sd || sd->nohz_idle)
10210 goto unlock;
10211 sd->nohz_idle = 1;
10212
0e369d75 10213 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10214unlock:
69e1e811
SS
10215 rcu_read_unlock();
10216}
10217
1e3c88bd 10218/*
97fb7a0a 10219 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10220 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10221 */
c1cc017c 10222void nohz_balance_enter_idle(int cpu)
1e3c88bd 10223{
00357f5e
PZ
10224 struct rq *rq = cpu_rq(cpu);
10225
10226 SCHED_WARN_ON(cpu != smp_processor_id());
10227
97fb7a0a 10228 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10229 if (!cpu_active(cpu))
10230 return;
10231
387bc8b5 10232 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10233 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10234 return;
10235
f643ea22
VG
10236 /*
10237 * Can be set safely without rq->lock held
10238 * If a clear happens, it will have evaluated last additions because
10239 * rq->lock is held during the check and the clear
10240 */
10241 rq->has_blocked_load = 1;
10242
10243 /*
10244 * The tick is still stopped but load could have been added in the
10245 * meantime. We set the nohz.has_blocked flag to trig a check of the
10246 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10247 * of nohz.has_blocked can only happen after checking the new load
10248 */
00357f5e 10249 if (rq->nohz_tick_stopped)
f643ea22 10250 goto out;
1e3c88bd 10251
97fb7a0a 10252 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10253 if (on_null_domain(rq))
d987fc7f
MG
10254 return;
10255
00357f5e
PZ
10256 rq->nohz_tick_stopped = 1;
10257
c1cc017c
AS
10258 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10259 atomic_inc(&nohz.nr_cpus);
00357f5e 10260
f643ea22
VG
10261 /*
10262 * Ensures that if nohz_idle_balance() fails to observe our
10263 * @idle_cpus_mask store, it must observe the @has_blocked
10264 * store.
10265 */
10266 smp_mb__after_atomic();
10267
00357f5e 10268 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10269
10270out:
10271 /*
10272 * Each time a cpu enter idle, we assume that it has blocked load and
10273 * enable the periodic update of the load of idle cpus
10274 */
10275 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10276}
1e3c88bd 10277
1e3c88bd 10278/*
31e77c93
VG
10279 * Internal function that runs load balance for all idle cpus. The load balance
10280 * can be a simple update of blocked load or a complete load balance with
10281 * tasks movement depending of flags.
10282 * The function returns false if the loop has stopped before running
10283 * through all idle CPUs.
1e3c88bd 10284 */
31e77c93
VG
10285static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10286 enum cpu_idle_type idle)
83cd4fe2 10287{
c5afb6a8 10288 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10289 unsigned long now = jiffies;
10290 unsigned long next_balance = now + 60*HZ;
f643ea22 10291 bool has_blocked_load = false;
c5afb6a8 10292 int update_next_balance = 0;
b7031a02 10293 int this_cpu = this_rq->cpu;
b7031a02 10294 int balance_cpu;
31e77c93 10295 int ret = false;
b7031a02 10296 struct rq *rq;
83cd4fe2 10297
b7031a02 10298 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10299
f643ea22
VG
10300 /*
10301 * We assume there will be no idle load after this update and clear
10302 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10303 * set the has_blocked flag and trig another update of idle load.
10304 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10305 * setting the flag, we are sure to not clear the state and not
10306 * check the load of an idle cpu.
10307 */
10308 WRITE_ONCE(nohz.has_blocked, 0);
10309
10310 /*
10311 * Ensures that if we miss the CPU, we must see the has_blocked
10312 * store from nohz_balance_enter_idle().
10313 */
10314 smp_mb();
10315
83cd4fe2 10316 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10317 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10318 continue;
10319
10320 /*
97fb7a0a
IM
10321 * If this CPU gets work to do, stop the load balancing
10322 * work being done for other CPUs. Next load
83cd4fe2
VP
10323 * balancing owner will pick it up.
10324 */
f643ea22
VG
10325 if (need_resched()) {
10326 has_blocked_load = true;
10327 goto abort;
10328 }
83cd4fe2 10329
5ed4f1d9
VG
10330 rq = cpu_rq(balance_cpu);
10331
63928384 10332 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10333
ed61bbc6
TC
10334 /*
10335 * If time for next balance is due,
10336 * do the balance.
10337 */
10338 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10339 struct rq_flags rf;
10340
31e77c93 10341 rq_lock_irqsave(rq, &rf);
ed61bbc6 10342 update_rq_clock(rq);
31e77c93 10343 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10344
b7031a02
PZ
10345 if (flags & NOHZ_BALANCE_KICK)
10346 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10347 }
83cd4fe2 10348
c5afb6a8
VG
10349 if (time_after(next_balance, rq->next_balance)) {
10350 next_balance = rq->next_balance;
10351 update_next_balance = 1;
10352 }
83cd4fe2 10353 }
c5afb6a8 10354
3ea2f097
VG
10355 /*
10356 * next_balance will be updated only when there is a need.
10357 * When the CPU is attached to null domain for ex, it will not be
10358 * updated.
10359 */
10360 if (likely(update_next_balance))
10361 nohz.next_balance = next_balance;
10362
31e77c93
VG
10363 /* Newly idle CPU doesn't need an update */
10364 if (idle != CPU_NEWLY_IDLE) {
10365 update_blocked_averages(this_cpu);
10366 has_blocked_load |= this_rq->has_blocked_load;
10367 }
10368
b7031a02
PZ
10369 if (flags & NOHZ_BALANCE_KICK)
10370 rebalance_domains(this_rq, CPU_IDLE);
10371
f643ea22
VG
10372 WRITE_ONCE(nohz.next_blocked,
10373 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10374
31e77c93
VG
10375 /* The full idle balance loop has been done */
10376 ret = true;
10377
f643ea22
VG
10378abort:
10379 /* There is still blocked load, enable periodic update */
10380 if (has_blocked_load)
10381 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10382
31e77c93
VG
10383 return ret;
10384}
10385
10386/*
10387 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10388 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10389 */
10390static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10391{
19a1f5ec 10392 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10393
19a1f5ec 10394 if (!flags)
31e77c93
VG
10395 return false;
10396
19a1f5ec 10397 this_rq->nohz_idle_balance = 0;
31e77c93 10398
19a1f5ec 10399 if (idle != CPU_IDLE)
31e77c93
VG
10400 return false;
10401
10402 _nohz_idle_balance(this_rq, flags, idle);
10403
b7031a02 10404 return true;
83cd4fe2 10405}
31e77c93
VG
10406
10407static void nohz_newidle_balance(struct rq *this_rq)
10408{
10409 int this_cpu = this_rq->cpu;
10410
10411 /*
10412 * This CPU doesn't want to be disturbed by scheduler
10413 * housekeeping
10414 */
10415 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10416 return;
10417
10418 /* Will wake up very soon. No time for doing anything else*/
10419 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10420 return;
10421
10422 /* Don't need to update blocked load of idle CPUs*/
10423 if (!READ_ONCE(nohz.has_blocked) ||
10424 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10425 return;
10426
10427 raw_spin_unlock(&this_rq->lock);
10428 /*
10429 * This CPU is going to be idle and blocked load of idle CPUs
10430 * need to be updated. Run the ilb locally as it is a good
10431 * candidate for ilb instead of waking up another idle CPU.
10432 * Kick an normal ilb if we failed to do the update.
10433 */
10434 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10435 kick_ilb(NOHZ_STATS_KICK);
10436 raw_spin_lock(&this_rq->lock);
10437}
10438
dd707247
PZ
10439#else /* !CONFIG_NO_HZ_COMMON */
10440static inline void nohz_balancer_kick(struct rq *rq) { }
10441
31e77c93 10442static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10443{
10444 return false;
10445}
31e77c93
VG
10446
10447static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10448#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10449
47ea5412
PZ
10450/*
10451 * idle_balance is called by schedule() if this_cpu is about to become
10452 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10453 *
10454 * Returns:
10455 * < 0 - we released the lock and there are !fair tasks present
10456 * 0 - failed, no new tasks
10457 * > 0 - success, new (fair) tasks present
47ea5412 10458 */
d91cecc1 10459static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10460{
10461 unsigned long next_balance = jiffies + HZ;
10462 int this_cpu = this_rq->cpu;
10463 struct sched_domain *sd;
10464 int pulled_task = 0;
10465 u64 curr_cost = 0;
10466
5ba553ef 10467 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10468 /*
10469 * We must set idle_stamp _before_ calling idle_balance(), such that we
10470 * measure the duration of idle_balance() as idle time.
10471 */
10472 this_rq->idle_stamp = rq_clock(this_rq);
10473
10474 /*
10475 * Do not pull tasks towards !active CPUs...
10476 */
10477 if (!cpu_active(this_cpu))
10478 return 0;
10479
10480 /*
10481 * This is OK, because current is on_cpu, which avoids it being picked
10482 * for load-balance and preemption/IRQs are still disabled avoiding
10483 * further scheduler activity on it and we're being very careful to
10484 * re-start the picking loop.
10485 */
10486 rq_unpin_lock(this_rq, rf);
10487
10488 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10489 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10490
47ea5412
PZ
10491 rcu_read_lock();
10492 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10493 if (sd)
10494 update_next_balance(sd, &next_balance);
10495 rcu_read_unlock();
10496
31e77c93
VG
10497 nohz_newidle_balance(this_rq);
10498
47ea5412
PZ
10499 goto out;
10500 }
10501
10502 raw_spin_unlock(&this_rq->lock);
10503
10504 update_blocked_averages(this_cpu);
10505 rcu_read_lock();
10506 for_each_domain(this_cpu, sd) {
10507 int continue_balancing = 1;
10508 u64 t0, domain_cost;
10509
47ea5412
PZ
10510 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10511 update_next_balance(sd, &next_balance);
10512 break;
10513 }
10514
10515 if (sd->flags & SD_BALANCE_NEWIDLE) {
10516 t0 = sched_clock_cpu(this_cpu);
10517
10518 pulled_task = load_balance(this_cpu, this_rq,
10519 sd, CPU_NEWLY_IDLE,
10520 &continue_balancing);
10521
10522 domain_cost = sched_clock_cpu(this_cpu) - t0;
10523 if (domain_cost > sd->max_newidle_lb_cost)
10524 sd->max_newidle_lb_cost = domain_cost;
10525
10526 curr_cost += domain_cost;
10527 }
10528
10529 update_next_balance(sd, &next_balance);
10530
10531 /*
10532 * Stop searching for tasks to pull if there are
10533 * now runnable tasks on this rq.
10534 */
10535 if (pulled_task || this_rq->nr_running > 0)
10536 break;
10537 }
10538 rcu_read_unlock();
10539
10540 raw_spin_lock(&this_rq->lock);
10541
10542 if (curr_cost > this_rq->max_idle_balance_cost)
10543 this_rq->max_idle_balance_cost = curr_cost;
10544
457be908 10545out:
47ea5412
PZ
10546 /*
10547 * While browsing the domains, we released the rq lock, a task could
10548 * have been enqueued in the meantime. Since we're not going idle,
10549 * pretend we pulled a task.
10550 */
10551 if (this_rq->cfs.h_nr_running && !pulled_task)
10552 pulled_task = 1;
10553
47ea5412
PZ
10554 /* Move the next balance forward */
10555 if (time_after(this_rq->next_balance, next_balance))
10556 this_rq->next_balance = next_balance;
10557
10558 /* Is there a task of a high priority class? */
10559 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10560 pulled_task = -1;
10561
10562 if (pulled_task)
10563 this_rq->idle_stamp = 0;
10564
10565 rq_repin_lock(this_rq, rf);
10566
10567 return pulled_task;
10568}
10569
83cd4fe2
VP
10570/*
10571 * run_rebalance_domains is triggered when needed from the scheduler tick.
10572 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10573 */
0766f788 10574static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10575{
208cb16b 10576 struct rq *this_rq = this_rq();
6eb57e0d 10577 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10578 CPU_IDLE : CPU_NOT_IDLE;
10579
1e3c88bd 10580 /*
97fb7a0a
IM
10581 * If this CPU has a pending nohz_balance_kick, then do the
10582 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10583 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10584 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10585 * load balance only within the local sched_domain hierarchy
10586 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10587 */
b7031a02
PZ
10588 if (nohz_idle_balance(this_rq, idle))
10589 return;
10590
10591 /* normal load balance */
10592 update_blocked_averages(this_rq->cpu);
d4573c3e 10593 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10594}
10595
1e3c88bd
PZ
10596/*
10597 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10598 */
7caff66f 10599void trigger_load_balance(struct rq *rq)
1e3c88bd 10600{
1e3c88bd 10601 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10602 if (unlikely(on_null_domain(rq)))
10603 return;
10604
10605 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10606 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10607
10608 nohz_balancer_kick(rq);
1e3c88bd
PZ
10609}
10610
0bcdcf28
CE
10611static void rq_online_fair(struct rq *rq)
10612{
10613 update_sysctl();
0e59bdae
KT
10614
10615 update_runtime_enabled(rq);
0bcdcf28
CE
10616}
10617
10618static void rq_offline_fair(struct rq *rq)
10619{
10620 update_sysctl();
a4c96ae3
PB
10621
10622 /* Ensure any throttled groups are reachable by pick_next_task */
10623 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10624}
10625
55e12e5e 10626#endif /* CONFIG_SMP */
e1d1484f 10627
bf0f6f24 10628/*
d84b3131
FW
10629 * scheduler tick hitting a task of our scheduling class.
10630 *
10631 * NOTE: This function can be called remotely by the tick offload that
10632 * goes along full dynticks. Therefore no local assumption can be made
10633 * and everything must be accessed through the @rq and @curr passed in
10634 * parameters.
bf0f6f24 10635 */
8f4d37ec 10636static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10637{
10638 struct cfs_rq *cfs_rq;
10639 struct sched_entity *se = &curr->se;
10640
10641 for_each_sched_entity(se) {
10642 cfs_rq = cfs_rq_of(se);
8f4d37ec 10643 entity_tick(cfs_rq, se, queued);
bf0f6f24 10644 }
18bf2805 10645
b52da86e 10646 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10647 task_tick_numa(rq, curr);
3b1baa64
MR
10648
10649 update_misfit_status(curr, rq);
2802bf3c 10650 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10651}
10652
10653/*
cd29fe6f
PZ
10654 * called on fork with the child task as argument from the parent's context
10655 * - child not yet on the tasklist
10656 * - preemption disabled
bf0f6f24 10657 */
cd29fe6f 10658static void task_fork_fair(struct task_struct *p)
bf0f6f24 10659{
4fc420c9
DN
10660 struct cfs_rq *cfs_rq;
10661 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10662 struct rq *rq = this_rq();
8a8c69c3 10663 struct rq_flags rf;
bf0f6f24 10664
8a8c69c3 10665 rq_lock(rq, &rf);
861d034e
PZ
10666 update_rq_clock(rq);
10667
4fc420c9
DN
10668 cfs_rq = task_cfs_rq(current);
10669 curr = cfs_rq->curr;
e210bffd
PZ
10670 if (curr) {
10671 update_curr(cfs_rq);
b5d9d734 10672 se->vruntime = curr->vruntime;
e210bffd 10673 }
aeb73b04 10674 place_entity(cfs_rq, se, 1);
4d78e7b6 10675
cd29fe6f 10676 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10677 /*
edcb60a3
IM
10678 * Upon rescheduling, sched_class::put_prev_task() will place
10679 * 'current' within the tree based on its new key value.
10680 */
4d78e7b6 10681 swap(curr->vruntime, se->vruntime);
8875125e 10682 resched_curr(rq);
4d78e7b6 10683 }
bf0f6f24 10684
88ec22d3 10685 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10686 rq_unlock(rq, &rf);
bf0f6f24
IM
10687}
10688
cb469845
SR
10689/*
10690 * Priority of the task has changed. Check to see if we preempt
10691 * the current task.
10692 */
da7a735e
PZ
10693static void
10694prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10695{
da0c1e65 10696 if (!task_on_rq_queued(p))
da7a735e
PZ
10697 return;
10698
7c2e8bbd
FW
10699 if (rq->cfs.nr_running == 1)
10700 return;
10701
cb469845
SR
10702 /*
10703 * Reschedule if we are currently running on this runqueue and
10704 * our priority decreased, or if we are not currently running on
10705 * this runqueue and our priority is higher than the current's
10706 */
da7a735e 10707 if (rq->curr == p) {
cb469845 10708 if (p->prio > oldprio)
8875125e 10709 resched_curr(rq);
cb469845 10710 } else
15afe09b 10711 check_preempt_curr(rq, p, 0);
cb469845
SR
10712}
10713
daa59407 10714static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10715{
10716 struct sched_entity *se = &p->se;
da7a735e
PZ
10717
10718 /*
daa59407
BP
10719 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10720 * the dequeue_entity(.flags=0) will already have normalized the
10721 * vruntime.
10722 */
10723 if (p->on_rq)
10724 return true;
10725
10726 /*
10727 * When !on_rq, vruntime of the task has usually NOT been normalized.
10728 * But there are some cases where it has already been normalized:
da7a735e 10729 *
daa59407
BP
10730 * - A forked child which is waiting for being woken up by
10731 * wake_up_new_task().
10732 * - A task which has been woken up by try_to_wake_up() and
10733 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10734 */
d0cdb3ce
SM
10735 if (!se->sum_exec_runtime ||
10736 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10737 return true;
10738
10739 return false;
10740}
10741
09a43ace
VG
10742#ifdef CONFIG_FAIR_GROUP_SCHED
10743/*
10744 * Propagate the changes of the sched_entity across the tg tree to make it
10745 * visible to the root
10746 */
10747static void propagate_entity_cfs_rq(struct sched_entity *se)
10748{
10749 struct cfs_rq *cfs_rq;
10750
10751 /* Start to propagate at parent */
10752 se = se->parent;
10753
10754 for_each_sched_entity(se) {
10755 cfs_rq = cfs_rq_of(se);
10756
10757 if (cfs_rq_throttled(cfs_rq))
10758 break;
10759
88c0616e 10760 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10761 }
10762}
10763#else
10764static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10765#endif
10766
df217913 10767static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10768{
daa59407
BP
10769 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10770
9d89c257 10771 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10772 update_load_avg(cfs_rq, se, 0);
a05e8c51 10773 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10774 update_tg_load_avg(cfs_rq, false);
09a43ace 10775 propagate_entity_cfs_rq(se);
da7a735e
PZ
10776}
10777
df217913 10778static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10779{
daa59407 10780 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10781
10782#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10783 /*
10784 * Since the real-depth could have been changed (only FAIR
10785 * class maintain depth value), reset depth properly.
10786 */
10787 se->depth = se->parent ? se->parent->depth + 1 : 0;
10788#endif
7855a35a 10789
df217913 10790 /* Synchronize entity with its cfs_rq */
88c0616e 10791 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10792 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 10793 update_tg_load_avg(cfs_rq, false);
09a43ace 10794 propagate_entity_cfs_rq(se);
df217913
VG
10795}
10796
10797static void detach_task_cfs_rq(struct task_struct *p)
10798{
10799 struct sched_entity *se = &p->se;
10800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10801
10802 if (!vruntime_normalized(p)) {
10803 /*
10804 * Fix up our vruntime so that the current sleep doesn't
10805 * cause 'unlimited' sleep bonus.
10806 */
10807 place_entity(cfs_rq, se, 0);
10808 se->vruntime -= cfs_rq->min_vruntime;
10809 }
10810
10811 detach_entity_cfs_rq(se);
10812}
10813
10814static void attach_task_cfs_rq(struct task_struct *p)
10815{
10816 struct sched_entity *se = &p->se;
10817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10818
10819 attach_entity_cfs_rq(se);
daa59407
BP
10820
10821 if (!vruntime_normalized(p))
10822 se->vruntime += cfs_rq->min_vruntime;
10823}
6efdb105 10824
daa59407
BP
10825static void switched_from_fair(struct rq *rq, struct task_struct *p)
10826{
10827 detach_task_cfs_rq(p);
10828}
10829
10830static void switched_to_fair(struct rq *rq, struct task_struct *p)
10831{
10832 attach_task_cfs_rq(p);
7855a35a 10833
daa59407 10834 if (task_on_rq_queued(p)) {
7855a35a 10835 /*
daa59407
BP
10836 * We were most likely switched from sched_rt, so
10837 * kick off the schedule if running, otherwise just see
10838 * if we can still preempt the current task.
7855a35a 10839 */
daa59407
BP
10840 if (rq->curr == p)
10841 resched_curr(rq);
10842 else
10843 check_preempt_curr(rq, p, 0);
7855a35a 10844 }
cb469845
SR
10845}
10846
83b699ed
SV
10847/* Account for a task changing its policy or group.
10848 *
10849 * This routine is mostly called to set cfs_rq->curr field when a task
10850 * migrates between groups/classes.
10851 */
a0e813f2 10852static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10853{
03b7fad1
PZ
10854 struct sched_entity *se = &p->se;
10855
10856#ifdef CONFIG_SMP
10857 if (task_on_rq_queued(p)) {
10858 /*
10859 * Move the next running task to the front of the list, so our
10860 * cfs_tasks list becomes MRU one.
10861 */
10862 list_move(&se->group_node, &rq->cfs_tasks);
10863 }
10864#endif
83b699ed 10865
ec12cb7f
PT
10866 for_each_sched_entity(se) {
10867 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10868
10869 set_next_entity(cfs_rq, se);
10870 /* ensure bandwidth has been allocated on our new cfs_rq */
10871 account_cfs_rq_runtime(cfs_rq, 0);
10872 }
83b699ed
SV
10873}
10874
029632fb
PZ
10875void init_cfs_rq(struct cfs_rq *cfs_rq)
10876{
bfb06889 10877 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10878 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10879#ifndef CONFIG_64BIT
10880 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10881#endif
141965c7 10882#ifdef CONFIG_SMP
2a2f5d4e 10883 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10884#endif
029632fb
PZ
10885}
10886
810b3817 10887#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10888static void task_set_group_fair(struct task_struct *p)
10889{
10890 struct sched_entity *se = &p->se;
10891
10892 set_task_rq(p, task_cpu(p));
10893 se->depth = se->parent ? se->parent->depth + 1 : 0;
10894}
10895
bc54da21 10896static void task_move_group_fair(struct task_struct *p)
810b3817 10897{
daa59407 10898 detach_task_cfs_rq(p);
b2b5ce02 10899 set_task_rq(p, task_cpu(p));
6efdb105
BP
10900
10901#ifdef CONFIG_SMP
10902 /* Tell se's cfs_rq has been changed -- migrated */
10903 p->se.avg.last_update_time = 0;
10904#endif
daa59407 10905 attach_task_cfs_rq(p);
810b3817 10906}
029632fb 10907
ea86cb4b
VG
10908static void task_change_group_fair(struct task_struct *p, int type)
10909{
10910 switch (type) {
10911 case TASK_SET_GROUP:
10912 task_set_group_fair(p);
10913 break;
10914
10915 case TASK_MOVE_GROUP:
10916 task_move_group_fair(p);
10917 break;
10918 }
10919}
10920
029632fb
PZ
10921void free_fair_sched_group(struct task_group *tg)
10922{
10923 int i;
10924
10925 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10926
10927 for_each_possible_cpu(i) {
10928 if (tg->cfs_rq)
10929 kfree(tg->cfs_rq[i]);
6fe1f348 10930 if (tg->se)
029632fb
PZ
10931 kfree(tg->se[i]);
10932 }
10933
10934 kfree(tg->cfs_rq);
10935 kfree(tg->se);
10936}
10937
10938int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10939{
029632fb 10940 struct sched_entity *se;
b7fa30c9 10941 struct cfs_rq *cfs_rq;
029632fb
PZ
10942 int i;
10943
6396bb22 10944 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10945 if (!tg->cfs_rq)
10946 goto err;
6396bb22 10947 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10948 if (!tg->se)
10949 goto err;
10950
10951 tg->shares = NICE_0_LOAD;
10952
10953 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10954
10955 for_each_possible_cpu(i) {
10956 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10957 GFP_KERNEL, cpu_to_node(i));
10958 if (!cfs_rq)
10959 goto err;
10960
10961 se = kzalloc_node(sizeof(struct sched_entity),
10962 GFP_KERNEL, cpu_to_node(i));
10963 if (!se)
10964 goto err_free_rq;
10965
10966 init_cfs_rq(cfs_rq);
10967 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10968 init_entity_runnable_average(se);
029632fb
PZ
10969 }
10970
10971 return 1;
10972
10973err_free_rq:
10974 kfree(cfs_rq);
10975err:
10976 return 0;
10977}
10978
8663e24d
PZ
10979void online_fair_sched_group(struct task_group *tg)
10980{
10981 struct sched_entity *se;
a46d14ec 10982 struct rq_flags rf;
8663e24d
PZ
10983 struct rq *rq;
10984 int i;
10985
10986 for_each_possible_cpu(i) {
10987 rq = cpu_rq(i);
10988 se = tg->se[i];
a46d14ec 10989 rq_lock_irq(rq, &rf);
4126bad6 10990 update_rq_clock(rq);
d0326691 10991 attach_entity_cfs_rq(se);
55e16d30 10992 sync_throttle(tg, i);
a46d14ec 10993 rq_unlock_irq(rq, &rf);
8663e24d
PZ
10994 }
10995}
10996
6fe1f348 10997void unregister_fair_sched_group(struct task_group *tg)
029632fb 10998{
029632fb 10999 unsigned long flags;
6fe1f348
PZ
11000 struct rq *rq;
11001 int cpu;
029632fb 11002
6fe1f348
PZ
11003 for_each_possible_cpu(cpu) {
11004 if (tg->se[cpu])
11005 remove_entity_load_avg(tg->se[cpu]);
029632fb 11006
6fe1f348
PZ
11007 /*
11008 * Only empty task groups can be destroyed; so we can speculatively
11009 * check on_list without danger of it being re-added.
11010 */
11011 if (!tg->cfs_rq[cpu]->on_list)
11012 continue;
11013
11014 rq = cpu_rq(cpu);
11015
11016 raw_spin_lock_irqsave(&rq->lock, flags);
11017 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11018 raw_spin_unlock_irqrestore(&rq->lock, flags);
11019 }
029632fb
PZ
11020}
11021
11022void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11023 struct sched_entity *se, int cpu,
11024 struct sched_entity *parent)
11025{
11026 struct rq *rq = cpu_rq(cpu);
11027
11028 cfs_rq->tg = tg;
11029 cfs_rq->rq = rq;
029632fb
PZ
11030 init_cfs_rq_runtime(cfs_rq);
11031
11032 tg->cfs_rq[cpu] = cfs_rq;
11033 tg->se[cpu] = se;
11034
11035 /* se could be NULL for root_task_group */
11036 if (!se)
11037 return;
11038
fed14d45 11039 if (!parent) {
029632fb 11040 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11041 se->depth = 0;
11042 } else {
029632fb 11043 se->cfs_rq = parent->my_q;
fed14d45
PZ
11044 se->depth = parent->depth + 1;
11045 }
029632fb
PZ
11046
11047 se->my_q = cfs_rq;
0ac9b1c2
PT
11048 /* guarantee group entities always have weight */
11049 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11050 se->parent = parent;
11051}
11052
11053static DEFINE_MUTEX(shares_mutex);
11054
11055int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11056{
11057 int i;
029632fb
PZ
11058
11059 /*
11060 * We can't change the weight of the root cgroup.
11061 */
11062 if (!tg->se[0])
11063 return -EINVAL;
11064
11065 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11066
11067 mutex_lock(&shares_mutex);
11068 if (tg->shares == shares)
11069 goto done;
11070
11071 tg->shares = shares;
11072 for_each_possible_cpu(i) {
11073 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11074 struct sched_entity *se = tg->se[i];
11075 struct rq_flags rf;
029632fb 11076
029632fb 11077 /* Propagate contribution to hierarchy */
8a8c69c3 11078 rq_lock_irqsave(rq, &rf);
71b1da46 11079 update_rq_clock(rq);
89ee048f 11080 for_each_sched_entity(se) {
88c0616e 11081 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11082 update_cfs_group(se);
89ee048f 11083 }
8a8c69c3 11084 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11085 }
11086
11087done:
11088 mutex_unlock(&shares_mutex);
11089 return 0;
11090}
11091#else /* CONFIG_FAIR_GROUP_SCHED */
11092
11093void free_fair_sched_group(struct task_group *tg) { }
11094
11095int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11096{
11097 return 1;
11098}
11099
8663e24d
PZ
11100void online_fair_sched_group(struct task_group *tg) { }
11101
6fe1f348 11102void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11103
11104#endif /* CONFIG_FAIR_GROUP_SCHED */
11105
810b3817 11106
6d686f45 11107static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11108{
11109 struct sched_entity *se = &task->se;
0d721cea
PW
11110 unsigned int rr_interval = 0;
11111
11112 /*
11113 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11114 * idle runqueue:
11115 */
0d721cea 11116 if (rq->cfs.load.weight)
a59f4e07 11117 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11118
11119 return rr_interval;
11120}
11121
bf0f6f24
IM
11122/*
11123 * All the scheduling class methods:
11124 */
590d6979
SRV
11125const struct sched_class fair_sched_class
11126 __attribute__((section("__fair_sched_class"))) = {
bf0f6f24
IM
11127 .enqueue_task = enqueue_task_fair,
11128 .dequeue_task = dequeue_task_fair,
11129 .yield_task = yield_task_fair,
d95f4122 11130 .yield_to_task = yield_to_task_fair,
bf0f6f24 11131
2e09bf55 11132 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11133
98c2f700 11134 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11135 .put_prev_task = put_prev_task_fair,
03b7fad1 11136 .set_next_task = set_next_task_fair,
bf0f6f24 11137
681f3e68 11138#ifdef CONFIG_SMP
6e2df058 11139 .balance = balance_fair,
4ce72a2c 11140 .select_task_rq = select_task_rq_fair,
0a74bef8 11141 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11142
0bcdcf28
CE
11143 .rq_online = rq_online_fair,
11144 .rq_offline = rq_offline_fair,
88ec22d3 11145
12695578 11146 .task_dead = task_dead_fair,
c5b28038 11147 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11148#endif
bf0f6f24 11149
bf0f6f24 11150 .task_tick = task_tick_fair,
cd29fe6f 11151 .task_fork = task_fork_fair,
cb469845
SR
11152
11153 .prio_changed = prio_changed_fair,
da7a735e 11154 .switched_from = switched_from_fair,
cb469845 11155 .switched_to = switched_to_fair,
810b3817 11156
0d721cea
PW
11157 .get_rr_interval = get_rr_interval_fair,
11158
6e998916
SG
11159 .update_curr = update_curr_fair,
11160
810b3817 11161#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11162 .task_change_group = task_change_group_fair,
810b3817 11163#endif
982d9cdc
PB
11164
11165#ifdef CONFIG_UCLAMP_TASK
11166 .uclamp_enabled = 1,
11167#endif
bf0f6f24
IM
11168};
11169
11170#ifdef CONFIG_SCHED_DEBUG
029632fb 11171void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11172{
039ae8bc 11173 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11174
5973e5b9 11175 rcu_read_lock();
039ae8bc 11176 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11177 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11178 rcu_read_unlock();
bf0f6f24 11179}
397f2378
SD
11180
11181#ifdef CONFIG_NUMA_BALANCING
11182void show_numa_stats(struct task_struct *p, struct seq_file *m)
11183{
11184 int node;
11185 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11186 struct numa_group *ng;
397f2378 11187
cb361d8c
JH
11188 rcu_read_lock();
11189 ng = rcu_dereference(p->numa_group);
397f2378
SD
11190 for_each_online_node(node) {
11191 if (p->numa_faults) {
11192 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11193 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11194 }
cb361d8c
JH
11195 if (ng) {
11196 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11197 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11198 }
11199 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11200 }
cb361d8c 11201 rcu_read_unlock();
397f2378
SD
11202}
11203#endif /* CONFIG_NUMA_BALANCING */
11204#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11205
11206__init void init_sched_fair_class(void)
11207{
11208#ifdef CONFIG_SMP
11209 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11210
3451d024 11211#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11212 nohz.next_balance = jiffies;
f643ea22 11213 nohz.next_blocked = jiffies;
029632fb 11214 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11215#endif
11216#endif /* SMP */
11217
11218}
3c93a0c0
QY
11219
11220/*
11221 * Helper functions to facilitate extracting info from tracepoints.
11222 */
11223
11224const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11225{
11226#ifdef CONFIG_SMP
11227 return cfs_rq ? &cfs_rq->avg : NULL;
11228#else
11229 return NULL;
11230#endif
11231}
11232EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11233
11234char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11235{
11236 if (!cfs_rq) {
11237 if (str)
11238 strlcpy(str, "(null)", len);
11239 else
11240 return NULL;
11241 }
11242
11243 cfs_rq_tg_path(cfs_rq, str, len);
11244 return str;
11245}
11246EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11247
11248int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11249{
11250 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11251}
11252EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11253
11254const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11255{
11256#ifdef CONFIG_SMP
11257 return rq ? &rq->avg_rt : NULL;
11258#else
11259 return NULL;
11260#endif
11261}
11262EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11263
11264const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11265{
11266#ifdef CONFIG_SMP
11267 return rq ? &rq->avg_dl : NULL;
11268#else
11269 return NULL;
11270#endif
11271}
11272EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11273
11274const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11275{
11276#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11277 return rq ? &rq->avg_irq : NULL;
11278#else
11279 return NULL;
11280#endif
11281}
11282EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11283
11284int sched_trace_rq_cpu(struct rq *rq)
11285{
11286 return rq ? cpu_of(rq) : -1;
11287}
11288EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11289
11290const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11291{
11292#ifdef CONFIG_SMP
11293 return rd ? rd->span : NULL;
11294#else
11295 return NULL;
11296#endif
11297}
11298EXPORT_SYMBOL_GPL(sched_trace_rd_span);