]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched: Remove extra put_online_cpus() inside sched_setaffinity()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
2739d3ee
RR
1262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1264 return;
1265
2739d3ee
RR
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
1269 /* Success if task is already running on preferred CPU */
1270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1271 return;
1272
1273 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1274 task_numa_migrate(p);
6b9a7460
MG
1275}
1276
04bb2f94
RR
1277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
cbee9f88
PZ
1352static void task_numa_placement(struct task_struct *p)
1353{
83e1d2cd
MG
1354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1356 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1357 spinlock_t *group_lock = NULL;
cbee9f88 1358
2832bc19 1359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
598f0ec0 1363 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1364
7dbd13ed
MG
1365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
688b7585
MG
1371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
83e1d2cd 1373 unsigned long faults = 0, group_faults = 0;
ac8e895b 1374 int priv, i;
745d6147 1375
ac8e895b 1376 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1377 long diff;
1378
ac8e895b 1379 i = task_faults_idx(nid, priv);
8c8a743c 1380 diff = -p->numa_faults[i];
745d6147 1381
ac8e895b
MG
1382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1385 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1386 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1387
1388 faults += p->numa_faults[i];
8c8a743c 1389 diff += p->numa_faults[i];
83e1d2cd 1390 p->total_numa_faults += diff;
8c8a743c
PZ
1391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
989348b5
MG
1393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
8c8a743c 1396 }
ac8e895b
MG
1397 }
1398
688b7585
MG
1399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
83e1d2cd
MG
1403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
04bb2f94
RR
1410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
7dbd13ed
MG
1412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
1419
1420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
83e1d2cd
MG
1426 }
1427 }
7dbd13ed
MG
1428
1429 spin_unlock(group_lock);
688b7585
MG
1430 }
1431
6b9a7460 1432 /* Preferred node as the node with the most faults */
3a7053b3 1433 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1434 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1435 sched_setnuma(p, max_nid);
6b9a7460 1436 numa_migrate_preferred(p);
3a7053b3 1437 }
cbee9f88
PZ
1438}
1439
8c8a743c
PZ
1440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
3e6a9418
MG
1451static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1452 int *priv)
8c8a743c
PZ
1453{
1454 struct numa_group *grp, *my_grp;
1455 struct task_struct *tsk;
1456 bool join = false;
1457 int cpu = cpupid_to_cpu(cpupid);
1458 int i;
1459
1460 if (unlikely(!p->numa_group)) {
1461 unsigned int size = sizeof(struct numa_group) +
989348b5 1462 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1463
1464 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1465 if (!grp)
1466 return;
1467
1468 atomic_set(&grp->refcount, 1);
1469 spin_lock_init(&grp->lock);
1470 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1471 grp->gid = p->pid;
8c8a743c
PZ
1472
1473 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1474 grp->faults[i] = p->numa_faults[i];
8c8a743c 1475
989348b5 1476 grp->total_faults = p->total_numa_faults;
83e1d2cd 1477
8c8a743c
PZ
1478 list_add(&p->numa_entry, &grp->task_list);
1479 grp->nr_tasks++;
1480 rcu_assign_pointer(p->numa_group, grp);
1481 }
1482
1483 rcu_read_lock();
1484 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1485
1486 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1487 goto no_join;
8c8a743c
PZ
1488
1489 grp = rcu_dereference(tsk->numa_group);
1490 if (!grp)
3354781a 1491 goto no_join;
8c8a743c
PZ
1492
1493 my_grp = p->numa_group;
1494 if (grp == my_grp)
3354781a 1495 goto no_join;
8c8a743c
PZ
1496
1497 /*
1498 * Only join the other group if its bigger; if we're the bigger group,
1499 * the other task will join us.
1500 */
1501 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1502 goto no_join;
8c8a743c
PZ
1503
1504 /*
1505 * Tie-break on the grp address.
1506 */
1507 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1508 goto no_join;
8c8a743c 1509
dabe1d99
RR
1510 /* Always join threads in the same process. */
1511 if (tsk->mm == current->mm)
1512 join = true;
1513
1514 /* Simple filter to avoid false positives due to PID collisions */
1515 if (flags & TNF_SHARED)
1516 join = true;
8c8a743c 1517
3e6a9418
MG
1518 /* Update priv based on whether false sharing was detected */
1519 *priv = !join;
1520
dabe1d99 1521 if (join && !get_numa_group(grp))
3354781a 1522 goto no_join;
8c8a743c 1523
8c8a743c
PZ
1524 rcu_read_unlock();
1525
1526 if (!join)
1527 return;
1528
989348b5
MG
1529 double_lock(&my_grp->lock, &grp->lock);
1530
8c8a743c 1531 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1532 my_grp->faults[i] -= p->numa_faults[i];
1533 grp->faults[i] += p->numa_faults[i];
8c8a743c 1534 }
989348b5
MG
1535 my_grp->total_faults -= p->total_numa_faults;
1536 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1537
1538 list_move(&p->numa_entry, &grp->task_list);
1539 my_grp->nr_tasks--;
1540 grp->nr_tasks++;
1541
1542 spin_unlock(&my_grp->lock);
1543 spin_unlock(&grp->lock);
1544
1545 rcu_assign_pointer(p->numa_group, grp);
1546
1547 put_numa_group(my_grp);
3354781a
PZ
1548 return;
1549
1550no_join:
1551 rcu_read_unlock();
1552 return;
8c8a743c
PZ
1553}
1554
1555void task_numa_free(struct task_struct *p)
1556{
1557 struct numa_group *grp = p->numa_group;
1558 int i;
82727018 1559 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1560
1561 if (grp) {
989348b5 1562 spin_lock(&grp->lock);
8c8a743c 1563 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1564 grp->faults[i] -= p->numa_faults[i];
1565 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1566
8c8a743c
PZ
1567 list_del(&p->numa_entry);
1568 grp->nr_tasks--;
1569 spin_unlock(&grp->lock);
1570 rcu_assign_pointer(p->numa_group, NULL);
1571 put_numa_group(grp);
1572 }
1573
82727018
RR
1574 p->numa_faults = NULL;
1575 p->numa_faults_buffer = NULL;
1576 kfree(numa_faults);
8c8a743c
PZ
1577}
1578
cbee9f88
PZ
1579/*
1580 * Got a PROT_NONE fault for a page on @node.
1581 */
6688cc05 1582void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1583{
1584 struct task_struct *p = current;
6688cc05 1585 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1586 int priv;
cbee9f88 1587
10e84b97 1588 if (!numabalancing_enabled)
1a687c2e
MG
1589 return;
1590
9ff1d9ff
MG
1591 /* for example, ksmd faulting in a user's mm */
1592 if (!p->mm)
1593 return;
1594
82727018
RR
1595 /* Do not worry about placement if exiting */
1596 if (p->state == TASK_DEAD)
1597 return;
1598
f809ca9a
MG
1599 /* Allocate buffer to track faults on a per-node basis */
1600 if (unlikely(!p->numa_faults)) {
ac8e895b 1601 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1602
745d6147
MG
1603 /* numa_faults and numa_faults_buffer share the allocation */
1604 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1605 if (!p->numa_faults)
1606 return;
745d6147
MG
1607
1608 BUG_ON(p->numa_faults_buffer);
ac8e895b 1609 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1610 p->total_numa_faults = 0;
04bb2f94 1611 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1612 }
cbee9f88 1613
8c8a743c
PZ
1614 /*
1615 * First accesses are treated as private, otherwise consider accesses
1616 * to be private if the accessing pid has not changed
1617 */
1618 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1619 priv = 1;
1620 } else {
1621 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1622 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1623 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1624 }
1625
cbee9f88 1626 task_numa_placement(p);
f809ca9a 1627
2739d3ee
RR
1628 /*
1629 * Retry task to preferred node migration periodically, in case it
1630 * case it previously failed, or the scheduler moved us.
1631 */
1632 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1633 numa_migrate_preferred(p);
1634
b32e86b4
IM
1635 if (migrated)
1636 p->numa_pages_migrated += pages;
1637
ac8e895b 1638 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1639 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1640}
1641
6e5fb223
PZ
1642static void reset_ptenuma_scan(struct task_struct *p)
1643{
1644 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1645 p->mm->numa_scan_offset = 0;
1646}
1647
cbee9f88
PZ
1648/*
1649 * The expensive part of numa migration is done from task_work context.
1650 * Triggered from task_tick_numa().
1651 */
1652void task_numa_work(struct callback_head *work)
1653{
1654 unsigned long migrate, next_scan, now = jiffies;
1655 struct task_struct *p = current;
1656 struct mm_struct *mm = p->mm;
6e5fb223 1657 struct vm_area_struct *vma;
9f40604c 1658 unsigned long start, end;
598f0ec0 1659 unsigned long nr_pte_updates = 0;
9f40604c 1660 long pages;
cbee9f88
PZ
1661
1662 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1663
1664 work->next = work; /* protect against double add */
1665 /*
1666 * Who cares about NUMA placement when they're dying.
1667 *
1668 * NOTE: make sure not to dereference p->mm before this check,
1669 * exit_task_work() happens _after_ exit_mm() so we could be called
1670 * without p->mm even though we still had it when we enqueued this
1671 * work.
1672 */
1673 if (p->flags & PF_EXITING)
1674 return;
1675
930aa174 1676 if (!mm->numa_next_scan) {
7e8d16b6
MG
1677 mm->numa_next_scan = now +
1678 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1679 }
1680
cbee9f88
PZ
1681 /*
1682 * Enforce maximal scan/migration frequency..
1683 */
1684 migrate = mm->numa_next_scan;
1685 if (time_before(now, migrate))
1686 return;
1687
598f0ec0
MG
1688 if (p->numa_scan_period == 0) {
1689 p->numa_scan_period_max = task_scan_max(p);
1690 p->numa_scan_period = task_scan_min(p);
1691 }
cbee9f88 1692
fb003b80 1693 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1694 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1695 return;
1696
19a78d11
PZ
1697 /*
1698 * Delay this task enough that another task of this mm will likely win
1699 * the next time around.
1700 */
1701 p->node_stamp += 2 * TICK_NSEC;
1702
9f40604c
MG
1703 start = mm->numa_scan_offset;
1704 pages = sysctl_numa_balancing_scan_size;
1705 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1706 if (!pages)
1707 return;
cbee9f88 1708
6e5fb223 1709 down_read(&mm->mmap_sem);
9f40604c 1710 vma = find_vma(mm, start);
6e5fb223
PZ
1711 if (!vma) {
1712 reset_ptenuma_scan(p);
9f40604c 1713 start = 0;
6e5fb223
PZ
1714 vma = mm->mmap;
1715 }
9f40604c 1716 for (; vma; vma = vma->vm_next) {
fc314724 1717 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1718 continue;
1719
4591ce4f
MG
1720 /*
1721 * Shared library pages mapped by multiple processes are not
1722 * migrated as it is expected they are cache replicated. Avoid
1723 * hinting faults in read-only file-backed mappings or the vdso
1724 * as migrating the pages will be of marginal benefit.
1725 */
1726 if (!vma->vm_mm ||
1727 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1728 continue;
1729
9f40604c
MG
1730 do {
1731 start = max(start, vma->vm_start);
1732 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1733 end = min(end, vma->vm_end);
598f0ec0
MG
1734 nr_pte_updates += change_prot_numa(vma, start, end);
1735
1736 /*
1737 * Scan sysctl_numa_balancing_scan_size but ensure that
1738 * at least one PTE is updated so that unused virtual
1739 * address space is quickly skipped.
1740 */
1741 if (nr_pte_updates)
1742 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1743
9f40604c
MG
1744 start = end;
1745 if (pages <= 0)
1746 goto out;
1747 } while (end != vma->vm_end);
cbee9f88 1748 }
6e5fb223 1749
9f40604c 1750out:
6e5fb223 1751 /*
c69307d5
PZ
1752 * It is possible to reach the end of the VMA list but the last few
1753 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1754 * would find the !migratable VMA on the next scan but not reset the
1755 * scanner to the start so check it now.
6e5fb223
PZ
1756 */
1757 if (vma)
9f40604c 1758 mm->numa_scan_offset = start;
6e5fb223
PZ
1759 else
1760 reset_ptenuma_scan(p);
1761 up_read(&mm->mmap_sem);
cbee9f88
PZ
1762}
1763
1764/*
1765 * Drive the periodic memory faults..
1766 */
1767void task_tick_numa(struct rq *rq, struct task_struct *curr)
1768{
1769 struct callback_head *work = &curr->numa_work;
1770 u64 period, now;
1771
1772 /*
1773 * We don't care about NUMA placement if we don't have memory.
1774 */
1775 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1776 return;
1777
1778 /*
1779 * Using runtime rather than walltime has the dual advantage that
1780 * we (mostly) drive the selection from busy threads and that the
1781 * task needs to have done some actual work before we bother with
1782 * NUMA placement.
1783 */
1784 now = curr->se.sum_exec_runtime;
1785 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1786
1787 if (now - curr->node_stamp > period) {
4b96a29b 1788 if (!curr->node_stamp)
598f0ec0 1789 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1790 curr->node_stamp += period;
cbee9f88
PZ
1791
1792 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1793 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1794 task_work_add(curr, work, true);
1795 }
1796 }
1797}
1798#else
1799static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1800{
1801}
0ec8aa00
PZ
1802
1803static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1804{
1805}
1806
1807static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1808{
1809}
cbee9f88
PZ
1810#endif /* CONFIG_NUMA_BALANCING */
1811
30cfdcfc
DA
1812static void
1813account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1814{
1815 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1816 if (!parent_entity(se))
029632fb 1817 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1818#ifdef CONFIG_SMP
0ec8aa00
PZ
1819 if (entity_is_task(se)) {
1820 struct rq *rq = rq_of(cfs_rq);
1821
1822 account_numa_enqueue(rq, task_of(se));
1823 list_add(&se->group_node, &rq->cfs_tasks);
1824 }
367456c7 1825#endif
30cfdcfc 1826 cfs_rq->nr_running++;
30cfdcfc
DA
1827}
1828
1829static void
1830account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1831{
1832 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1833 if (!parent_entity(se))
029632fb 1834 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1835 if (entity_is_task(se)) {
1836 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1837 list_del_init(&se->group_node);
0ec8aa00 1838 }
30cfdcfc 1839 cfs_rq->nr_running--;
30cfdcfc
DA
1840}
1841
3ff6dcac
YZ
1842#ifdef CONFIG_FAIR_GROUP_SCHED
1843# ifdef CONFIG_SMP
cf5f0acf
PZ
1844static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1845{
1846 long tg_weight;
1847
1848 /*
1849 * Use this CPU's actual weight instead of the last load_contribution
1850 * to gain a more accurate current total weight. See
1851 * update_cfs_rq_load_contribution().
1852 */
bf5b986e 1853 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1854 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1855 tg_weight += cfs_rq->load.weight;
1856
1857 return tg_weight;
1858}
1859
6d5ab293 1860static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1861{
cf5f0acf 1862 long tg_weight, load, shares;
3ff6dcac 1863
cf5f0acf 1864 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1865 load = cfs_rq->load.weight;
3ff6dcac 1866
3ff6dcac 1867 shares = (tg->shares * load);
cf5f0acf
PZ
1868 if (tg_weight)
1869 shares /= tg_weight;
3ff6dcac
YZ
1870
1871 if (shares < MIN_SHARES)
1872 shares = MIN_SHARES;
1873 if (shares > tg->shares)
1874 shares = tg->shares;
1875
1876 return shares;
1877}
3ff6dcac 1878# else /* CONFIG_SMP */
6d5ab293 1879static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1880{
1881 return tg->shares;
1882}
3ff6dcac 1883# endif /* CONFIG_SMP */
2069dd75
PZ
1884static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1885 unsigned long weight)
1886{
19e5eebb
PT
1887 if (se->on_rq) {
1888 /* commit outstanding execution time */
1889 if (cfs_rq->curr == se)
1890 update_curr(cfs_rq);
2069dd75 1891 account_entity_dequeue(cfs_rq, se);
19e5eebb 1892 }
2069dd75
PZ
1893
1894 update_load_set(&se->load, weight);
1895
1896 if (se->on_rq)
1897 account_entity_enqueue(cfs_rq, se);
1898}
1899
82958366
PT
1900static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1901
6d5ab293 1902static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1903{
1904 struct task_group *tg;
1905 struct sched_entity *se;
3ff6dcac 1906 long shares;
2069dd75 1907
2069dd75
PZ
1908 tg = cfs_rq->tg;
1909 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1910 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1911 return;
3ff6dcac
YZ
1912#ifndef CONFIG_SMP
1913 if (likely(se->load.weight == tg->shares))
1914 return;
1915#endif
6d5ab293 1916 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1917
1918 reweight_entity(cfs_rq_of(se), se, shares);
1919}
1920#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1921static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1922{
1923}
1924#endif /* CONFIG_FAIR_GROUP_SCHED */
1925
141965c7 1926#ifdef CONFIG_SMP
5b51f2f8
PT
1927/*
1928 * We choose a half-life close to 1 scheduling period.
1929 * Note: The tables below are dependent on this value.
1930 */
1931#define LOAD_AVG_PERIOD 32
1932#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1933#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1934
1935/* Precomputed fixed inverse multiplies for multiplication by y^n */
1936static const u32 runnable_avg_yN_inv[] = {
1937 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1938 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1939 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1940 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1941 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1942 0x85aac367, 0x82cd8698,
1943};
1944
1945/*
1946 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1947 * over-estimates when re-combining.
1948 */
1949static const u32 runnable_avg_yN_sum[] = {
1950 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1951 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1952 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1953};
1954
9d85f21c
PT
1955/*
1956 * Approximate:
1957 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1958 */
1959static __always_inline u64 decay_load(u64 val, u64 n)
1960{
5b51f2f8
PT
1961 unsigned int local_n;
1962
1963 if (!n)
1964 return val;
1965 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1966 return 0;
1967
1968 /* after bounds checking we can collapse to 32-bit */
1969 local_n = n;
1970
1971 /*
1972 * As y^PERIOD = 1/2, we can combine
1973 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1974 * With a look-up table which covers k^n (n<PERIOD)
1975 *
1976 * To achieve constant time decay_load.
1977 */
1978 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1979 val >>= local_n / LOAD_AVG_PERIOD;
1980 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1981 }
1982
5b51f2f8
PT
1983 val *= runnable_avg_yN_inv[local_n];
1984 /* We don't use SRR here since we always want to round down. */
1985 return val >> 32;
1986}
1987
1988/*
1989 * For updates fully spanning n periods, the contribution to runnable
1990 * average will be: \Sum 1024*y^n
1991 *
1992 * We can compute this reasonably efficiently by combining:
1993 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1994 */
1995static u32 __compute_runnable_contrib(u64 n)
1996{
1997 u32 contrib = 0;
1998
1999 if (likely(n <= LOAD_AVG_PERIOD))
2000 return runnable_avg_yN_sum[n];
2001 else if (unlikely(n >= LOAD_AVG_MAX_N))
2002 return LOAD_AVG_MAX;
2003
2004 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2005 do {
2006 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2007 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2008
2009 n -= LOAD_AVG_PERIOD;
2010 } while (n > LOAD_AVG_PERIOD);
2011
2012 contrib = decay_load(contrib, n);
2013 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2014}
2015
2016/*
2017 * We can represent the historical contribution to runnable average as the
2018 * coefficients of a geometric series. To do this we sub-divide our runnable
2019 * history into segments of approximately 1ms (1024us); label the segment that
2020 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2021 *
2022 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2023 * p0 p1 p2
2024 * (now) (~1ms ago) (~2ms ago)
2025 *
2026 * Let u_i denote the fraction of p_i that the entity was runnable.
2027 *
2028 * We then designate the fractions u_i as our co-efficients, yielding the
2029 * following representation of historical load:
2030 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2031 *
2032 * We choose y based on the with of a reasonably scheduling period, fixing:
2033 * y^32 = 0.5
2034 *
2035 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2036 * approximately half as much as the contribution to load within the last ms
2037 * (u_0).
2038 *
2039 * When a period "rolls over" and we have new u_0`, multiplying the previous
2040 * sum again by y is sufficient to update:
2041 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2042 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2043 */
2044static __always_inline int __update_entity_runnable_avg(u64 now,
2045 struct sched_avg *sa,
2046 int runnable)
2047{
5b51f2f8
PT
2048 u64 delta, periods;
2049 u32 runnable_contrib;
9d85f21c
PT
2050 int delta_w, decayed = 0;
2051
2052 delta = now - sa->last_runnable_update;
2053 /*
2054 * This should only happen when time goes backwards, which it
2055 * unfortunately does during sched clock init when we swap over to TSC.
2056 */
2057 if ((s64)delta < 0) {
2058 sa->last_runnable_update = now;
2059 return 0;
2060 }
2061
2062 /*
2063 * Use 1024ns as the unit of measurement since it's a reasonable
2064 * approximation of 1us and fast to compute.
2065 */
2066 delta >>= 10;
2067 if (!delta)
2068 return 0;
2069 sa->last_runnable_update = now;
2070
2071 /* delta_w is the amount already accumulated against our next period */
2072 delta_w = sa->runnable_avg_period % 1024;
2073 if (delta + delta_w >= 1024) {
2074 /* period roll-over */
2075 decayed = 1;
2076
2077 /*
2078 * Now that we know we're crossing a period boundary, figure
2079 * out how much from delta we need to complete the current
2080 * period and accrue it.
2081 */
2082 delta_w = 1024 - delta_w;
5b51f2f8
PT
2083 if (runnable)
2084 sa->runnable_avg_sum += delta_w;
2085 sa->runnable_avg_period += delta_w;
2086
2087 delta -= delta_w;
2088
2089 /* Figure out how many additional periods this update spans */
2090 periods = delta / 1024;
2091 delta %= 1024;
2092
2093 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2094 periods + 1);
2095 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2096 periods + 1);
2097
2098 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2099 runnable_contrib = __compute_runnable_contrib(periods);
2100 if (runnable)
2101 sa->runnable_avg_sum += runnable_contrib;
2102 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2103 }
2104
2105 /* Remainder of delta accrued against u_0` */
2106 if (runnable)
2107 sa->runnable_avg_sum += delta;
2108 sa->runnable_avg_period += delta;
2109
2110 return decayed;
2111}
2112
9ee474f5 2113/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2114static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2115{
2116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2117 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2118
2119 decays -= se->avg.decay_count;
2120 if (!decays)
aff3e498 2121 return 0;
9ee474f5
PT
2122
2123 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2124 se->avg.decay_count = 0;
aff3e498
PT
2125
2126 return decays;
9ee474f5
PT
2127}
2128
c566e8e9
PT
2129#ifdef CONFIG_FAIR_GROUP_SCHED
2130static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2131 int force_update)
2132{
2133 struct task_group *tg = cfs_rq->tg;
bf5b986e 2134 long tg_contrib;
c566e8e9
PT
2135
2136 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2137 tg_contrib -= cfs_rq->tg_load_contrib;
2138
bf5b986e
AS
2139 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2140 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2141 cfs_rq->tg_load_contrib += tg_contrib;
2142 }
2143}
8165e145 2144
bb17f655
PT
2145/*
2146 * Aggregate cfs_rq runnable averages into an equivalent task_group
2147 * representation for computing load contributions.
2148 */
2149static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2150 struct cfs_rq *cfs_rq)
2151{
2152 struct task_group *tg = cfs_rq->tg;
2153 long contrib;
2154
2155 /* The fraction of a cpu used by this cfs_rq */
2156 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2157 sa->runnable_avg_period + 1);
2158 contrib -= cfs_rq->tg_runnable_contrib;
2159
2160 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2161 atomic_add(contrib, &tg->runnable_avg);
2162 cfs_rq->tg_runnable_contrib += contrib;
2163 }
2164}
2165
8165e145
PT
2166static inline void __update_group_entity_contrib(struct sched_entity *se)
2167{
2168 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2169 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2170 int runnable_avg;
2171
8165e145
PT
2172 u64 contrib;
2173
2174 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2175 se->avg.load_avg_contrib = div_u64(contrib,
2176 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2177
2178 /*
2179 * For group entities we need to compute a correction term in the case
2180 * that they are consuming <1 cpu so that we would contribute the same
2181 * load as a task of equal weight.
2182 *
2183 * Explicitly co-ordinating this measurement would be expensive, but
2184 * fortunately the sum of each cpus contribution forms a usable
2185 * lower-bound on the true value.
2186 *
2187 * Consider the aggregate of 2 contributions. Either they are disjoint
2188 * (and the sum represents true value) or they are disjoint and we are
2189 * understating by the aggregate of their overlap.
2190 *
2191 * Extending this to N cpus, for a given overlap, the maximum amount we
2192 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2193 * cpus that overlap for this interval and w_i is the interval width.
2194 *
2195 * On a small machine; the first term is well-bounded which bounds the
2196 * total error since w_i is a subset of the period. Whereas on a
2197 * larger machine, while this first term can be larger, if w_i is the
2198 * of consequential size guaranteed to see n_i*w_i quickly converge to
2199 * our upper bound of 1-cpu.
2200 */
2201 runnable_avg = atomic_read(&tg->runnable_avg);
2202 if (runnable_avg < NICE_0_LOAD) {
2203 se->avg.load_avg_contrib *= runnable_avg;
2204 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2205 }
8165e145 2206}
c566e8e9
PT
2207#else
2208static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2209 int force_update) {}
bb17f655
PT
2210static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2211 struct cfs_rq *cfs_rq) {}
8165e145 2212static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2213#endif
2214
8165e145
PT
2215static inline void __update_task_entity_contrib(struct sched_entity *se)
2216{
2217 u32 contrib;
2218
2219 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2220 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2221 contrib /= (se->avg.runnable_avg_period + 1);
2222 se->avg.load_avg_contrib = scale_load(contrib);
2223}
2224
2dac754e
PT
2225/* Compute the current contribution to load_avg by se, return any delta */
2226static long __update_entity_load_avg_contrib(struct sched_entity *se)
2227{
2228 long old_contrib = se->avg.load_avg_contrib;
2229
8165e145
PT
2230 if (entity_is_task(se)) {
2231 __update_task_entity_contrib(se);
2232 } else {
bb17f655 2233 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2234 __update_group_entity_contrib(se);
2235 }
2dac754e
PT
2236
2237 return se->avg.load_avg_contrib - old_contrib;
2238}
2239
9ee474f5
PT
2240static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2241 long load_contrib)
2242{
2243 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2244 cfs_rq->blocked_load_avg -= load_contrib;
2245 else
2246 cfs_rq->blocked_load_avg = 0;
2247}
2248
f1b17280
PT
2249static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2250
9d85f21c 2251/* Update a sched_entity's runnable average */
9ee474f5
PT
2252static inline void update_entity_load_avg(struct sched_entity *se,
2253 int update_cfs_rq)
9d85f21c 2254{
2dac754e
PT
2255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2256 long contrib_delta;
f1b17280 2257 u64 now;
2dac754e 2258
f1b17280
PT
2259 /*
2260 * For a group entity we need to use their owned cfs_rq_clock_task() in
2261 * case they are the parent of a throttled hierarchy.
2262 */
2263 if (entity_is_task(se))
2264 now = cfs_rq_clock_task(cfs_rq);
2265 else
2266 now = cfs_rq_clock_task(group_cfs_rq(se));
2267
2268 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2269 return;
2270
2271 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2272
2273 if (!update_cfs_rq)
2274 return;
2275
2dac754e
PT
2276 if (se->on_rq)
2277 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2278 else
2279 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2280}
2281
2282/*
2283 * Decay the load contributed by all blocked children and account this so that
2284 * their contribution may appropriately discounted when they wake up.
2285 */
aff3e498 2286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2287{
f1b17280 2288 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2289 u64 decays;
2290
2291 decays = now - cfs_rq->last_decay;
aff3e498 2292 if (!decays && !force_update)
9ee474f5
PT
2293 return;
2294
2509940f
AS
2295 if (atomic_long_read(&cfs_rq->removed_load)) {
2296 unsigned long removed_load;
2297 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2298 subtract_blocked_load_contrib(cfs_rq, removed_load);
2299 }
9ee474f5 2300
aff3e498
PT
2301 if (decays) {
2302 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2303 decays);
2304 atomic64_add(decays, &cfs_rq->decay_counter);
2305 cfs_rq->last_decay = now;
2306 }
c566e8e9
PT
2307
2308 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2309}
18bf2805
BS
2310
2311static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2312{
78becc27 2313 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2314 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2315}
2dac754e
PT
2316
2317/* Add the load generated by se into cfs_rq's child load-average */
2318static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2319 struct sched_entity *se,
2320 int wakeup)
2dac754e 2321{
aff3e498
PT
2322 /*
2323 * We track migrations using entity decay_count <= 0, on a wake-up
2324 * migration we use a negative decay count to track the remote decays
2325 * accumulated while sleeping.
a75cdaa9
AS
2326 *
2327 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2328 * are seen by enqueue_entity_load_avg() as a migration with an already
2329 * constructed load_avg_contrib.
aff3e498
PT
2330 */
2331 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2332 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2333 if (se->avg.decay_count) {
2334 /*
2335 * In a wake-up migration we have to approximate the
2336 * time sleeping. This is because we can't synchronize
2337 * clock_task between the two cpus, and it is not
2338 * guaranteed to be read-safe. Instead, we can
2339 * approximate this using our carried decays, which are
2340 * explicitly atomically readable.
2341 */
2342 se->avg.last_runnable_update -= (-se->avg.decay_count)
2343 << 20;
2344 update_entity_load_avg(se, 0);
2345 /* Indicate that we're now synchronized and on-rq */
2346 se->avg.decay_count = 0;
2347 }
9ee474f5
PT
2348 wakeup = 0;
2349 } else {
282cf499
AS
2350 /*
2351 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2352 * would have made count negative); we must be careful to avoid
2353 * double-accounting blocked time after synchronizing decays.
2354 */
2355 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2356 << 20;
9ee474f5
PT
2357 }
2358
aff3e498
PT
2359 /* migrated tasks did not contribute to our blocked load */
2360 if (wakeup) {
9ee474f5 2361 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2362 update_entity_load_avg(se, 0);
2363 }
9ee474f5 2364
2dac754e 2365 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2366 /* we force update consideration on load-balancer moves */
2367 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2368}
2369
9ee474f5
PT
2370/*
2371 * Remove se's load from this cfs_rq child load-average, if the entity is
2372 * transitioning to a blocked state we track its projected decay using
2373 * blocked_load_avg.
2374 */
2dac754e 2375static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2376 struct sched_entity *se,
2377 int sleep)
2dac754e 2378{
9ee474f5 2379 update_entity_load_avg(se, 1);
aff3e498
PT
2380 /* we force update consideration on load-balancer moves */
2381 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2382
2dac754e 2383 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2384 if (sleep) {
2385 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2386 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2387 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2388}
642dbc39
VG
2389
2390/*
2391 * Update the rq's load with the elapsed running time before entering
2392 * idle. if the last scheduled task is not a CFS task, idle_enter will
2393 * be the only way to update the runnable statistic.
2394 */
2395void idle_enter_fair(struct rq *this_rq)
2396{
2397 update_rq_runnable_avg(this_rq, 1);
2398}
2399
2400/*
2401 * Update the rq's load with the elapsed idle time before a task is
2402 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2403 * be the only way to update the runnable statistic.
2404 */
2405void idle_exit_fair(struct rq *this_rq)
2406{
2407 update_rq_runnable_avg(this_rq, 0);
2408}
2409
9d85f21c 2410#else
9ee474f5
PT
2411static inline void update_entity_load_avg(struct sched_entity *se,
2412 int update_cfs_rq) {}
18bf2805 2413static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2414static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2415 struct sched_entity *se,
2416 int wakeup) {}
2dac754e 2417static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2418 struct sched_entity *se,
2419 int sleep) {}
aff3e498
PT
2420static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2421 int force_update) {}
9d85f21c
PT
2422#endif
2423
2396af69 2424static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2425{
bf0f6f24 2426#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2427 struct task_struct *tsk = NULL;
2428
2429 if (entity_is_task(se))
2430 tsk = task_of(se);
2431
41acab88 2432 if (se->statistics.sleep_start) {
78becc27 2433 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2434
2435 if ((s64)delta < 0)
2436 delta = 0;
2437
41acab88
LDM
2438 if (unlikely(delta > se->statistics.sleep_max))
2439 se->statistics.sleep_max = delta;
bf0f6f24 2440
8c79a045 2441 se->statistics.sleep_start = 0;
41acab88 2442 se->statistics.sum_sleep_runtime += delta;
9745512c 2443
768d0c27 2444 if (tsk) {
e414314c 2445 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2446 trace_sched_stat_sleep(tsk, delta);
2447 }
bf0f6f24 2448 }
41acab88 2449 if (se->statistics.block_start) {
78becc27 2450 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2451
2452 if ((s64)delta < 0)
2453 delta = 0;
2454
41acab88
LDM
2455 if (unlikely(delta > se->statistics.block_max))
2456 se->statistics.block_max = delta;
bf0f6f24 2457
8c79a045 2458 se->statistics.block_start = 0;
41acab88 2459 se->statistics.sum_sleep_runtime += delta;
30084fbd 2460
e414314c 2461 if (tsk) {
8f0dfc34 2462 if (tsk->in_iowait) {
41acab88
LDM
2463 se->statistics.iowait_sum += delta;
2464 se->statistics.iowait_count++;
768d0c27 2465 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2466 }
2467
b781a602
AV
2468 trace_sched_stat_blocked(tsk, delta);
2469
e414314c
PZ
2470 /*
2471 * Blocking time is in units of nanosecs, so shift by
2472 * 20 to get a milliseconds-range estimation of the
2473 * amount of time that the task spent sleeping:
2474 */
2475 if (unlikely(prof_on == SLEEP_PROFILING)) {
2476 profile_hits(SLEEP_PROFILING,
2477 (void *)get_wchan(tsk),
2478 delta >> 20);
2479 }
2480 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2481 }
bf0f6f24
IM
2482 }
2483#endif
2484}
2485
ddc97297
PZ
2486static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488#ifdef CONFIG_SCHED_DEBUG
2489 s64 d = se->vruntime - cfs_rq->min_vruntime;
2490
2491 if (d < 0)
2492 d = -d;
2493
2494 if (d > 3*sysctl_sched_latency)
2495 schedstat_inc(cfs_rq, nr_spread_over);
2496#endif
2497}
2498
aeb73b04
PZ
2499static void
2500place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2501{
1af5f730 2502 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2503
2cb8600e
PZ
2504 /*
2505 * The 'current' period is already promised to the current tasks,
2506 * however the extra weight of the new task will slow them down a
2507 * little, place the new task so that it fits in the slot that
2508 * stays open at the end.
2509 */
94dfb5e7 2510 if (initial && sched_feat(START_DEBIT))
f9c0b095 2511 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2512
a2e7a7eb 2513 /* sleeps up to a single latency don't count. */
5ca9880c 2514 if (!initial) {
a2e7a7eb 2515 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2516
a2e7a7eb
MG
2517 /*
2518 * Halve their sleep time's effect, to allow
2519 * for a gentler effect of sleepers:
2520 */
2521 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2522 thresh >>= 1;
51e0304c 2523
a2e7a7eb 2524 vruntime -= thresh;
aeb73b04
PZ
2525 }
2526
b5d9d734 2527 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2528 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2529}
2530
d3d9dc33
PT
2531static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2532
bf0f6f24 2533static void
88ec22d3 2534enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2535{
88ec22d3
PZ
2536 /*
2537 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2538 * through calling update_curr().
88ec22d3 2539 */
371fd7e7 2540 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2541 se->vruntime += cfs_rq->min_vruntime;
2542
bf0f6f24 2543 /*
a2a2d680 2544 * Update run-time statistics of the 'current'.
bf0f6f24 2545 */
b7cc0896 2546 update_curr(cfs_rq);
f269ae04 2547 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2548 account_entity_enqueue(cfs_rq, se);
2549 update_cfs_shares(cfs_rq);
bf0f6f24 2550
88ec22d3 2551 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2552 place_entity(cfs_rq, se, 0);
2396af69 2553 enqueue_sleeper(cfs_rq, se);
e9acbff6 2554 }
bf0f6f24 2555
d2417e5a 2556 update_stats_enqueue(cfs_rq, se);
ddc97297 2557 check_spread(cfs_rq, se);
83b699ed
SV
2558 if (se != cfs_rq->curr)
2559 __enqueue_entity(cfs_rq, se);
2069dd75 2560 se->on_rq = 1;
3d4b47b4 2561
d3d9dc33 2562 if (cfs_rq->nr_running == 1) {
3d4b47b4 2563 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2564 check_enqueue_throttle(cfs_rq);
2565 }
bf0f6f24
IM
2566}
2567
2c13c919 2568static void __clear_buddies_last(struct sched_entity *se)
2002c695 2569{
2c13c919
RR
2570 for_each_sched_entity(se) {
2571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2572 if (cfs_rq->last == se)
2573 cfs_rq->last = NULL;
2574 else
2575 break;
2576 }
2577}
2002c695 2578
2c13c919
RR
2579static void __clear_buddies_next(struct sched_entity *se)
2580{
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->next == se)
2584 cfs_rq->next = NULL;
2585 else
2586 break;
2587 }
2002c695
PZ
2588}
2589
ac53db59
RR
2590static void __clear_buddies_skip(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->skip == se)
2595 cfs_rq->skip = NULL;
2596 else
2597 break;
2598 }
2599}
2600
a571bbea
PZ
2601static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602{
2c13c919
RR
2603 if (cfs_rq->last == se)
2604 __clear_buddies_last(se);
2605
2606 if (cfs_rq->next == se)
2607 __clear_buddies_next(se);
ac53db59
RR
2608
2609 if (cfs_rq->skip == se)
2610 __clear_buddies_skip(se);
a571bbea
PZ
2611}
2612
6c16a6dc 2613static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2614
bf0f6f24 2615static void
371fd7e7 2616dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2617{
a2a2d680
DA
2618 /*
2619 * Update run-time statistics of the 'current'.
2620 */
2621 update_curr(cfs_rq);
17bc14b7 2622 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2623
19b6a2e3 2624 update_stats_dequeue(cfs_rq, se);
371fd7e7 2625 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2626#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2627 if (entity_is_task(se)) {
2628 struct task_struct *tsk = task_of(se);
2629
2630 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2631 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2632 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2633 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2634 }
db36cc7d 2635#endif
67e9fb2a
PZ
2636 }
2637
2002c695 2638 clear_buddies(cfs_rq, se);
4793241b 2639
83b699ed 2640 if (se != cfs_rq->curr)
30cfdcfc 2641 __dequeue_entity(cfs_rq, se);
17bc14b7 2642 se->on_rq = 0;
30cfdcfc 2643 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2644
2645 /*
2646 * Normalize the entity after updating the min_vruntime because the
2647 * update can refer to the ->curr item and we need to reflect this
2648 * movement in our normalized position.
2649 */
371fd7e7 2650 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2651 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2652
d8b4986d
PT
2653 /* return excess runtime on last dequeue */
2654 return_cfs_rq_runtime(cfs_rq);
2655
1e876231 2656 update_min_vruntime(cfs_rq);
17bc14b7 2657 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2658}
2659
2660/*
2661 * Preempt the current task with a newly woken task if needed:
2662 */
7c92e54f 2663static void
2e09bf55 2664check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2665{
11697830 2666 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2667 struct sched_entity *se;
2668 s64 delta;
11697830 2669
6d0f0ebd 2670 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2671 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2672 if (delta_exec > ideal_runtime) {
bf0f6f24 2673 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2674 /*
2675 * The current task ran long enough, ensure it doesn't get
2676 * re-elected due to buddy favours.
2677 */
2678 clear_buddies(cfs_rq, curr);
f685ceac
MG
2679 return;
2680 }
2681
2682 /*
2683 * Ensure that a task that missed wakeup preemption by a
2684 * narrow margin doesn't have to wait for a full slice.
2685 * This also mitigates buddy induced latencies under load.
2686 */
f685ceac
MG
2687 if (delta_exec < sysctl_sched_min_granularity)
2688 return;
2689
f4cfb33e
WX
2690 se = __pick_first_entity(cfs_rq);
2691 delta = curr->vruntime - se->vruntime;
f685ceac 2692
f4cfb33e
WX
2693 if (delta < 0)
2694 return;
d7d82944 2695
f4cfb33e
WX
2696 if (delta > ideal_runtime)
2697 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2698}
2699
83b699ed 2700static void
8494f412 2701set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2702{
83b699ed
SV
2703 /* 'current' is not kept within the tree. */
2704 if (se->on_rq) {
2705 /*
2706 * Any task has to be enqueued before it get to execute on
2707 * a CPU. So account for the time it spent waiting on the
2708 * runqueue.
2709 */
2710 update_stats_wait_end(cfs_rq, se);
2711 __dequeue_entity(cfs_rq, se);
2712 }
2713
79303e9e 2714 update_stats_curr_start(cfs_rq, se);
429d43bc 2715 cfs_rq->curr = se;
eba1ed4b
IM
2716#ifdef CONFIG_SCHEDSTATS
2717 /*
2718 * Track our maximum slice length, if the CPU's load is at
2719 * least twice that of our own weight (i.e. dont track it
2720 * when there are only lesser-weight tasks around):
2721 */
495eca49 2722 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2723 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2724 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2725 }
2726#endif
4a55b450 2727 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2728}
2729
3f3a4904
PZ
2730static int
2731wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2732
ac53db59
RR
2733/*
2734 * Pick the next process, keeping these things in mind, in this order:
2735 * 1) keep things fair between processes/task groups
2736 * 2) pick the "next" process, since someone really wants that to run
2737 * 3) pick the "last" process, for cache locality
2738 * 4) do not run the "skip" process, if something else is available
2739 */
f4b6755f 2740static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2741{
ac53db59 2742 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2743 struct sched_entity *left = se;
f4b6755f 2744
ac53db59
RR
2745 /*
2746 * Avoid running the skip buddy, if running something else can
2747 * be done without getting too unfair.
2748 */
2749 if (cfs_rq->skip == se) {
2750 struct sched_entity *second = __pick_next_entity(se);
2751 if (second && wakeup_preempt_entity(second, left) < 1)
2752 se = second;
2753 }
aa2ac252 2754
f685ceac
MG
2755 /*
2756 * Prefer last buddy, try to return the CPU to a preempted task.
2757 */
2758 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2759 se = cfs_rq->last;
2760
ac53db59
RR
2761 /*
2762 * Someone really wants this to run. If it's not unfair, run it.
2763 */
2764 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2765 se = cfs_rq->next;
2766
f685ceac 2767 clear_buddies(cfs_rq, se);
4793241b
PZ
2768
2769 return se;
aa2ac252
PZ
2770}
2771
d3d9dc33
PT
2772static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2773
ab6cde26 2774static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2775{
2776 /*
2777 * If still on the runqueue then deactivate_task()
2778 * was not called and update_curr() has to be done:
2779 */
2780 if (prev->on_rq)
b7cc0896 2781 update_curr(cfs_rq);
bf0f6f24 2782
d3d9dc33
PT
2783 /* throttle cfs_rqs exceeding runtime */
2784 check_cfs_rq_runtime(cfs_rq);
2785
ddc97297 2786 check_spread(cfs_rq, prev);
30cfdcfc 2787 if (prev->on_rq) {
5870db5b 2788 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2789 /* Put 'current' back into the tree. */
2790 __enqueue_entity(cfs_rq, prev);
9d85f21c 2791 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2792 update_entity_load_avg(prev, 1);
30cfdcfc 2793 }
429d43bc 2794 cfs_rq->curr = NULL;
bf0f6f24
IM
2795}
2796
8f4d37ec
PZ
2797static void
2798entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2799{
bf0f6f24 2800 /*
30cfdcfc 2801 * Update run-time statistics of the 'current'.
bf0f6f24 2802 */
30cfdcfc 2803 update_curr(cfs_rq);
bf0f6f24 2804
9d85f21c
PT
2805 /*
2806 * Ensure that runnable average is periodically updated.
2807 */
9ee474f5 2808 update_entity_load_avg(curr, 1);
aff3e498 2809 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2810 update_cfs_shares(cfs_rq);
9d85f21c 2811
8f4d37ec
PZ
2812#ifdef CONFIG_SCHED_HRTICK
2813 /*
2814 * queued ticks are scheduled to match the slice, so don't bother
2815 * validating it and just reschedule.
2816 */
983ed7a6
HH
2817 if (queued) {
2818 resched_task(rq_of(cfs_rq)->curr);
2819 return;
2820 }
8f4d37ec
PZ
2821 /*
2822 * don't let the period tick interfere with the hrtick preemption
2823 */
2824 if (!sched_feat(DOUBLE_TICK) &&
2825 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2826 return;
2827#endif
2828
2c2efaed 2829 if (cfs_rq->nr_running > 1)
2e09bf55 2830 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2831}
2832
ab84d31e
PT
2833
2834/**************************************************
2835 * CFS bandwidth control machinery
2836 */
2837
2838#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2839
2840#ifdef HAVE_JUMP_LABEL
c5905afb 2841static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2842
2843static inline bool cfs_bandwidth_used(void)
2844{
c5905afb 2845 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2846}
2847
2848void account_cfs_bandwidth_used(int enabled, int was_enabled)
2849{
2850 /* only need to count groups transitioning between enabled/!enabled */
2851 if (enabled && !was_enabled)
c5905afb 2852 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2853 else if (!enabled && was_enabled)
c5905afb 2854 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2855}
2856#else /* HAVE_JUMP_LABEL */
2857static bool cfs_bandwidth_used(void)
2858{
2859 return true;
2860}
2861
2862void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2863#endif /* HAVE_JUMP_LABEL */
2864
ab84d31e
PT
2865/*
2866 * default period for cfs group bandwidth.
2867 * default: 0.1s, units: nanoseconds
2868 */
2869static inline u64 default_cfs_period(void)
2870{
2871 return 100000000ULL;
2872}
ec12cb7f
PT
2873
2874static inline u64 sched_cfs_bandwidth_slice(void)
2875{
2876 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2877}
2878
a9cf55b2
PT
2879/*
2880 * Replenish runtime according to assigned quota and update expiration time.
2881 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2882 * additional synchronization around rq->lock.
2883 *
2884 * requires cfs_b->lock
2885 */
029632fb 2886void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2887{
2888 u64 now;
2889
2890 if (cfs_b->quota == RUNTIME_INF)
2891 return;
2892
2893 now = sched_clock_cpu(smp_processor_id());
2894 cfs_b->runtime = cfs_b->quota;
2895 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2896}
2897
029632fb
PZ
2898static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2899{
2900 return &tg->cfs_bandwidth;
2901}
2902
f1b17280
PT
2903/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2904static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2905{
2906 if (unlikely(cfs_rq->throttle_count))
2907 return cfs_rq->throttled_clock_task;
2908
78becc27 2909 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2910}
2911
85dac906
PT
2912/* returns 0 on failure to allocate runtime */
2913static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2914{
2915 struct task_group *tg = cfs_rq->tg;
2916 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2917 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2918
2919 /* note: this is a positive sum as runtime_remaining <= 0 */
2920 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2921
2922 raw_spin_lock(&cfs_b->lock);
2923 if (cfs_b->quota == RUNTIME_INF)
2924 amount = min_amount;
58088ad0 2925 else {
a9cf55b2
PT
2926 /*
2927 * If the bandwidth pool has become inactive, then at least one
2928 * period must have elapsed since the last consumption.
2929 * Refresh the global state and ensure bandwidth timer becomes
2930 * active.
2931 */
2932 if (!cfs_b->timer_active) {
2933 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2934 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2935 }
58088ad0
PT
2936
2937 if (cfs_b->runtime > 0) {
2938 amount = min(cfs_b->runtime, min_amount);
2939 cfs_b->runtime -= amount;
2940 cfs_b->idle = 0;
2941 }
ec12cb7f 2942 }
a9cf55b2 2943 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2944 raw_spin_unlock(&cfs_b->lock);
2945
2946 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2947 /*
2948 * we may have advanced our local expiration to account for allowed
2949 * spread between our sched_clock and the one on which runtime was
2950 * issued.
2951 */
2952 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2953 cfs_rq->runtime_expires = expires;
85dac906
PT
2954
2955 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2956}
2957
a9cf55b2
PT
2958/*
2959 * Note: This depends on the synchronization provided by sched_clock and the
2960 * fact that rq->clock snapshots this value.
2961 */
2962static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2963{
a9cf55b2 2964 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2965
2966 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2967 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2968 return;
2969
a9cf55b2
PT
2970 if (cfs_rq->runtime_remaining < 0)
2971 return;
2972
2973 /*
2974 * If the local deadline has passed we have to consider the
2975 * possibility that our sched_clock is 'fast' and the global deadline
2976 * has not truly expired.
2977 *
2978 * Fortunately we can check determine whether this the case by checking
2979 * whether the global deadline has advanced.
2980 */
2981
2982 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2983 /* extend local deadline, drift is bounded above by 2 ticks */
2984 cfs_rq->runtime_expires += TICK_NSEC;
2985 } else {
2986 /* global deadline is ahead, expiration has passed */
2987 cfs_rq->runtime_remaining = 0;
2988 }
2989}
2990
2991static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2992 unsigned long delta_exec)
2993{
2994 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2995 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2996 expire_cfs_rq_runtime(cfs_rq);
2997
2998 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2999 return;
3000
85dac906
PT
3001 /*
3002 * if we're unable to extend our runtime we resched so that the active
3003 * hierarchy can be throttled
3004 */
3005 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3006 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3007}
3008
6c16a6dc
PZ
3009static __always_inline
3010void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3011{
56f570e5 3012 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3013 return;
3014
3015 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3016}
3017
85dac906
PT
3018static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3019{
56f570e5 3020 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3021}
3022
64660c86
PT
3023/* check whether cfs_rq, or any parent, is throttled */
3024static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3025{
56f570e5 3026 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3027}
3028
3029/*
3030 * Ensure that neither of the group entities corresponding to src_cpu or
3031 * dest_cpu are members of a throttled hierarchy when performing group
3032 * load-balance operations.
3033 */
3034static inline int throttled_lb_pair(struct task_group *tg,
3035 int src_cpu, int dest_cpu)
3036{
3037 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3038
3039 src_cfs_rq = tg->cfs_rq[src_cpu];
3040 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3041
3042 return throttled_hierarchy(src_cfs_rq) ||
3043 throttled_hierarchy(dest_cfs_rq);
3044}
3045
3046/* updated child weight may affect parent so we have to do this bottom up */
3047static int tg_unthrottle_up(struct task_group *tg, void *data)
3048{
3049 struct rq *rq = data;
3050 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3051
3052 cfs_rq->throttle_count--;
3053#ifdef CONFIG_SMP
3054 if (!cfs_rq->throttle_count) {
f1b17280 3055 /* adjust cfs_rq_clock_task() */
78becc27 3056 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3057 cfs_rq->throttled_clock_task;
64660c86
PT
3058 }
3059#endif
3060
3061 return 0;
3062}
3063
3064static int tg_throttle_down(struct task_group *tg, void *data)
3065{
3066 struct rq *rq = data;
3067 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3068
82958366
PT
3069 /* group is entering throttled state, stop time */
3070 if (!cfs_rq->throttle_count)
78becc27 3071 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3072 cfs_rq->throttle_count++;
3073
3074 return 0;
3075}
3076
d3d9dc33 3077static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3078{
3079 struct rq *rq = rq_of(cfs_rq);
3080 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3081 struct sched_entity *se;
3082 long task_delta, dequeue = 1;
3083
3084 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3085
f1b17280 3086 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3087 rcu_read_lock();
3088 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3089 rcu_read_unlock();
85dac906
PT
3090
3091 task_delta = cfs_rq->h_nr_running;
3092 for_each_sched_entity(se) {
3093 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3094 /* throttled entity or throttle-on-deactivate */
3095 if (!se->on_rq)
3096 break;
3097
3098 if (dequeue)
3099 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3100 qcfs_rq->h_nr_running -= task_delta;
3101
3102 if (qcfs_rq->load.weight)
3103 dequeue = 0;
3104 }
3105
3106 if (!se)
3107 rq->nr_running -= task_delta;
3108
3109 cfs_rq->throttled = 1;
78becc27 3110 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3111 raw_spin_lock(&cfs_b->lock);
3112 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3113 raw_spin_unlock(&cfs_b->lock);
3114}
3115
029632fb 3116void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3117{
3118 struct rq *rq = rq_of(cfs_rq);
3119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3120 struct sched_entity *se;
3121 int enqueue = 1;
3122 long task_delta;
3123
22b958d8 3124 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3125
3126 cfs_rq->throttled = 0;
1a55af2e
FW
3127
3128 update_rq_clock(rq);
3129
671fd9da 3130 raw_spin_lock(&cfs_b->lock);
78becc27 3131 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3132 list_del_rcu(&cfs_rq->throttled_list);
3133 raw_spin_unlock(&cfs_b->lock);
3134
64660c86
PT
3135 /* update hierarchical throttle state */
3136 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3137
671fd9da
PT
3138 if (!cfs_rq->load.weight)
3139 return;
3140
3141 task_delta = cfs_rq->h_nr_running;
3142 for_each_sched_entity(se) {
3143 if (se->on_rq)
3144 enqueue = 0;
3145
3146 cfs_rq = cfs_rq_of(se);
3147 if (enqueue)
3148 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3149 cfs_rq->h_nr_running += task_delta;
3150
3151 if (cfs_rq_throttled(cfs_rq))
3152 break;
3153 }
3154
3155 if (!se)
3156 rq->nr_running += task_delta;
3157
3158 /* determine whether we need to wake up potentially idle cpu */
3159 if (rq->curr == rq->idle && rq->cfs.nr_running)
3160 resched_task(rq->curr);
3161}
3162
3163static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3164 u64 remaining, u64 expires)
3165{
3166 struct cfs_rq *cfs_rq;
3167 u64 runtime = remaining;
3168
3169 rcu_read_lock();
3170 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3171 throttled_list) {
3172 struct rq *rq = rq_of(cfs_rq);
3173
3174 raw_spin_lock(&rq->lock);
3175 if (!cfs_rq_throttled(cfs_rq))
3176 goto next;
3177
3178 runtime = -cfs_rq->runtime_remaining + 1;
3179 if (runtime > remaining)
3180 runtime = remaining;
3181 remaining -= runtime;
3182
3183 cfs_rq->runtime_remaining += runtime;
3184 cfs_rq->runtime_expires = expires;
3185
3186 /* we check whether we're throttled above */
3187 if (cfs_rq->runtime_remaining > 0)
3188 unthrottle_cfs_rq(cfs_rq);
3189
3190next:
3191 raw_spin_unlock(&rq->lock);
3192
3193 if (!remaining)
3194 break;
3195 }
3196 rcu_read_unlock();
3197
3198 return remaining;
3199}
3200
58088ad0
PT
3201/*
3202 * Responsible for refilling a task_group's bandwidth and unthrottling its
3203 * cfs_rqs as appropriate. If there has been no activity within the last
3204 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3205 * used to track this state.
3206 */
3207static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3208{
671fd9da
PT
3209 u64 runtime, runtime_expires;
3210 int idle = 1, throttled;
58088ad0
PT
3211
3212 raw_spin_lock(&cfs_b->lock);
3213 /* no need to continue the timer with no bandwidth constraint */
3214 if (cfs_b->quota == RUNTIME_INF)
3215 goto out_unlock;
3216
671fd9da
PT
3217 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3218 /* idle depends on !throttled (for the case of a large deficit) */
3219 idle = cfs_b->idle && !throttled;
e8da1b18 3220 cfs_b->nr_periods += overrun;
671fd9da 3221
a9cf55b2
PT
3222 /* if we're going inactive then everything else can be deferred */
3223 if (idle)
3224 goto out_unlock;
3225
3226 __refill_cfs_bandwidth_runtime(cfs_b);
3227
671fd9da
PT
3228 if (!throttled) {
3229 /* mark as potentially idle for the upcoming period */
3230 cfs_b->idle = 1;
3231 goto out_unlock;
3232 }
3233
e8da1b18
NR
3234 /* account preceding periods in which throttling occurred */
3235 cfs_b->nr_throttled += overrun;
3236
671fd9da
PT
3237 /*
3238 * There are throttled entities so we must first use the new bandwidth
3239 * to unthrottle them before making it generally available. This
3240 * ensures that all existing debts will be paid before a new cfs_rq is
3241 * allowed to run.
3242 */
3243 runtime = cfs_b->runtime;
3244 runtime_expires = cfs_b->runtime_expires;
3245 cfs_b->runtime = 0;
3246
3247 /*
3248 * This check is repeated as we are holding onto the new bandwidth
3249 * while we unthrottle. This can potentially race with an unthrottled
3250 * group trying to acquire new bandwidth from the global pool.
3251 */
3252 while (throttled && runtime > 0) {
3253 raw_spin_unlock(&cfs_b->lock);
3254 /* we can't nest cfs_b->lock while distributing bandwidth */
3255 runtime = distribute_cfs_runtime(cfs_b, runtime,
3256 runtime_expires);
3257 raw_spin_lock(&cfs_b->lock);
3258
3259 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3260 }
58088ad0 3261
671fd9da
PT
3262 /* return (any) remaining runtime */
3263 cfs_b->runtime = runtime;
3264 /*
3265 * While we are ensured activity in the period following an
3266 * unthrottle, this also covers the case in which the new bandwidth is
3267 * insufficient to cover the existing bandwidth deficit. (Forcing the
3268 * timer to remain active while there are any throttled entities.)
3269 */
3270 cfs_b->idle = 0;
58088ad0
PT
3271out_unlock:
3272 if (idle)
3273 cfs_b->timer_active = 0;
3274 raw_spin_unlock(&cfs_b->lock);
3275
3276 return idle;
3277}
d3d9dc33 3278
d8b4986d
PT
3279/* a cfs_rq won't donate quota below this amount */
3280static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3281/* minimum remaining period time to redistribute slack quota */
3282static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3283/* how long we wait to gather additional slack before distributing */
3284static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3285
3286/* are we near the end of the current quota period? */
3287static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3288{
3289 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3290 u64 remaining;
3291
3292 /* if the call-back is running a quota refresh is already occurring */
3293 if (hrtimer_callback_running(refresh_timer))
3294 return 1;
3295
3296 /* is a quota refresh about to occur? */
3297 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3298 if (remaining < min_expire)
3299 return 1;
3300
3301 return 0;
3302}
3303
3304static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3305{
3306 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3307
3308 /* if there's a quota refresh soon don't bother with slack */
3309 if (runtime_refresh_within(cfs_b, min_left))
3310 return;
3311
3312 start_bandwidth_timer(&cfs_b->slack_timer,
3313 ns_to_ktime(cfs_bandwidth_slack_period));
3314}
3315
3316/* we know any runtime found here is valid as update_curr() precedes return */
3317static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3318{
3319 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3320 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3321
3322 if (slack_runtime <= 0)
3323 return;
3324
3325 raw_spin_lock(&cfs_b->lock);
3326 if (cfs_b->quota != RUNTIME_INF &&
3327 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3328 cfs_b->runtime += slack_runtime;
3329
3330 /* we are under rq->lock, defer unthrottling using a timer */
3331 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3332 !list_empty(&cfs_b->throttled_cfs_rq))
3333 start_cfs_slack_bandwidth(cfs_b);
3334 }
3335 raw_spin_unlock(&cfs_b->lock);
3336
3337 /* even if it's not valid for return we don't want to try again */
3338 cfs_rq->runtime_remaining -= slack_runtime;
3339}
3340
3341static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3342{
56f570e5
PT
3343 if (!cfs_bandwidth_used())
3344 return;
3345
fccfdc6f 3346 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3347 return;
3348
3349 __return_cfs_rq_runtime(cfs_rq);
3350}
3351
3352/*
3353 * This is done with a timer (instead of inline with bandwidth return) since
3354 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3355 */
3356static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3357{
3358 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3359 u64 expires;
3360
3361 /* confirm we're still not at a refresh boundary */
3362 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3363 return;
3364
3365 raw_spin_lock(&cfs_b->lock);
3366 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3367 runtime = cfs_b->runtime;
3368 cfs_b->runtime = 0;
3369 }
3370 expires = cfs_b->runtime_expires;
3371 raw_spin_unlock(&cfs_b->lock);
3372
3373 if (!runtime)
3374 return;
3375
3376 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3377
3378 raw_spin_lock(&cfs_b->lock);
3379 if (expires == cfs_b->runtime_expires)
3380 cfs_b->runtime = runtime;
3381 raw_spin_unlock(&cfs_b->lock);
3382}
3383
d3d9dc33
PT
3384/*
3385 * When a group wakes up we want to make sure that its quota is not already
3386 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3387 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3388 */
3389static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3390{
56f570e5
PT
3391 if (!cfs_bandwidth_used())
3392 return;
3393
d3d9dc33
PT
3394 /* an active group must be handled by the update_curr()->put() path */
3395 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3396 return;
3397
3398 /* ensure the group is not already throttled */
3399 if (cfs_rq_throttled(cfs_rq))
3400 return;
3401
3402 /* update runtime allocation */
3403 account_cfs_rq_runtime(cfs_rq, 0);
3404 if (cfs_rq->runtime_remaining <= 0)
3405 throttle_cfs_rq(cfs_rq);
3406}
3407
3408/* conditionally throttle active cfs_rq's from put_prev_entity() */
3409static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3410{
56f570e5
PT
3411 if (!cfs_bandwidth_used())
3412 return;
3413
d3d9dc33
PT
3414 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3415 return;
3416
3417 /*
3418 * it's possible for a throttled entity to be forced into a running
3419 * state (e.g. set_curr_task), in this case we're finished.
3420 */
3421 if (cfs_rq_throttled(cfs_rq))
3422 return;
3423
3424 throttle_cfs_rq(cfs_rq);
3425}
029632fb 3426
029632fb
PZ
3427static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3428{
3429 struct cfs_bandwidth *cfs_b =
3430 container_of(timer, struct cfs_bandwidth, slack_timer);
3431 do_sched_cfs_slack_timer(cfs_b);
3432
3433 return HRTIMER_NORESTART;
3434}
3435
3436static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3437{
3438 struct cfs_bandwidth *cfs_b =
3439 container_of(timer, struct cfs_bandwidth, period_timer);
3440 ktime_t now;
3441 int overrun;
3442 int idle = 0;
3443
3444 for (;;) {
3445 now = hrtimer_cb_get_time(timer);
3446 overrun = hrtimer_forward(timer, now, cfs_b->period);
3447
3448 if (!overrun)
3449 break;
3450
3451 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3452 }
3453
3454 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3455}
3456
3457void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3458{
3459 raw_spin_lock_init(&cfs_b->lock);
3460 cfs_b->runtime = 0;
3461 cfs_b->quota = RUNTIME_INF;
3462 cfs_b->period = ns_to_ktime(default_cfs_period());
3463
3464 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3465 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3466 cfs_b->period_timer.function = sched_cfs_period_timer;
3467 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3468 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3469}
3470
3471static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3472{
3473 cfs_rq->runtime_enabled = 0;
3474 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3475}
3476
3477/* requires cfs_b->lock, may release to reprogram timer */
3478void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3479{
3480 /*
3481 * The timer may be active because we're trying to set a new bandwidth
3482 * period or because we're racing with the tear-down path
3483 * (timer_active==0 becomes visible before the hrtimer call-back
3484 * terminates). In either case we ensure that it's re-programmed
3485 */
3486 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3487 raw_spin_unlock(&cfs_b->lock);
3488 /* ensure cfs_b->lock is available while we wait */
3489 hrtimer_cancel(&cfs_b->period_timer);
3490
3491 raw_spin_lock(&cfs_b->lock);
3492 /* if someone else restarted the timer then we're done */
3493 if (cfs_b->timer_active)
3494 return;
3495 }
3496
3497 cfs_b->timer_active = 1;
3498 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3499}
3500
3501static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3502{
3503 hrtimer_cancel(&cfs_b->period_timer);
3504 hrtimer_cancel(&cfs_b->slack_timer);
3505}
3506
38dc3348 3507static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3508{
3509 struct cfs_rq *cfs_rq;
3510
3511 for_each_leaf_cfs_rq(rq, cfs_rq) {
3512 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3513
3514 if (!cfs_rq->runtime_enabled)
3515 continue;
3516
3517 /*
3518 * clock_task is not advancing so we just need to make sure
3519 * there's some valid quota amount
3520 */
3521 cfs_rq->runtime_remaining = cfs_b->quota;
3522 if (cfs_rq_throttled(cfs_rq))
3523 unthrottle_cfs_rq(cfs_rq);
3524 }
3525}
3526
3527#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3528static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3529{
78becc27 3530 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3531}
3532
3533static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3534 unsigned long delta_exec) {}
d3d9dc33
PT
3535static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3536static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3537static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3538
3539static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3540{
3541 return 0;
3542}
64660c86
PT
3543
3544static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3545{
3546 return 0;
3547}
3548
3549static inline int throttled_lb_pair(struct task_group *tg,
3550 int src_cpu, int dest_cpu)
3551{
3552 return 0;
3553}
029632fb
PZ
3554
3555void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3556
3557#ifdef CONFIG_FAIR_GROUP_SCHED
3558static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3559#endif
3560
029632fb
PZ
3561static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3562{
3563 return NULL;
3564}
3565static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3566static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3567
3568#endif /* CONFIG_CFS_BANDWIDTH */
3569
bf0f6f24
IM
3570/**************************************************
3571 * CFS operations on tasks:
3572 */
3573
8f4d37ec
PZ
3574#ifdef CONFIG_SCHED_HRTICK
3575static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3576{
8f4d37ec
PZ
3577 struct sched_entity *se = &p->se;
3578 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3579
3580 WARN_ON(task_rq(p) != rq);
3581
b39e66ea 3582 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3583 u64 slice = sched_slice(cfs_rq, se);
3584 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3585 s64 delta = slice - ran;
3586
3587 if (delta < 0) {
3588 if (rq->curr == p)
3589 resched_task(p);
3590 return;
3591 }
3592
3593 /*
3594 * Don't schedule slices shorter than 10000ns, that just
3595 * doesn't make sense. Rely on vruntime for fairness.
3596 */
31656519 3597 if (rq->curr != p)
157124c1 3598 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3599
31656519 3600 hrtick_start(rq, delta);
8f4d37ec
PZ
3601 }
3602}
a4c2f00f
PZ
3603
3604/*
3605 * called from enqueue/dequeue and updates the hrtick when the
3606 * current task is from our class and nr_running is low enough
3607 * to matter.
3608 */
3609static void hrtick_update(struct rq *rq)
3610{
3611 struct task_struct *curr = rq->curr;
3612
b39e66ea 3613 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3614 return;
3615
3616 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3617 hrtick_start_fair(rq, curr);
3618}
55e12e5e 3619#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3620static inline void
3621hrtick_start_fair(struct rq *rq, struct task_struct *p)
3622{
3623}
a4c2f00f
PZ
3624
3625static inline void hrtick_update(struct rq *rq)
3626{
3627}
8f4d37ec
PZ
3628#endif
3629
bf0f6f24
IM
3630/*
3631 * The enqueue_task method is called before nr_running is
3632 * increased. Here we update the fair scheduling stats and
3633 * then put the task into the rbtree:
3634 */
ea87bb78 3635static void
371fd7e7 3636enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3637{
3638 struct cfs_rq *cfs_rq;
62fb1851 3639 struct sched_entity *se = &p->se;
bf0f6f24
IM
3640
3641 for_each_sched_entity(se) {
62fb1851 3642 if (se->on_rq)
bf0f6f24
IM
3643 break;
3644 cfs_rq = cfs_rq_of(se);
88ec22d3 3645 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3646
3647 /*
3648 * end evaluation on encountering a throttled cfs_rq
3649 *
3650 * note: in the case of encountering a throttled cfs_rq we will
3651 * post the final h_nr_running increment below.
3652 */
3653 if (cfs_rq_throttled(cfs_rq))
3654 break;
953bfcd1 3655 cfs_rq->h_nr_running++;
85dac906 3656
88ec22d3 3657 flags = ENQUEUE_WAKEUP;
bf0f6f24 3658 }
8f4d37ec 3659
2069dd75 3660 for_each_sched_entity(se) {
0f317143 3661 cfs_rq = cfs_rq_of(se);
953bfcd1 3662 cfs_rq->h_nr_running++;
2069dd75 3663
85dac906
PT
3664 if (cfs_rq_throttled(cfs_rq))
3665 break;
3666
17bc14b7 3667 update_cfs_shares(cfs_rq);
9ee474f5 3668 update_entity_load_avg(se, 1);
2069dd75
PZ
3669 }
3670
18bf2805
BS
3671 if (!se) {
3672 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3673 inc_nr_running(rq);
18bf2805 3674 }
a4c2f00f 3675 hrtick_update(rq);
bf0f6f24
IM
3676}
3677
2f36825b
VP
3678static void set_next_buddy(struct sched_entity *se);
3679
bf0f6f24
IM
3680/*
3681 * The dequeue_task method is called before nr_running is
3682 * decreased. We remove the task from the rbtree and
3683 * update the fair scheduling stats:
3684 */
371fd7e7 3685static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3686{
3687 struct cfs_rq *cfs_rq;
62fb1851 3688 struct sched_entity *se = &p->se;
2f36825b 3689 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3690
3691 for_each_sched_entity(se) {
3692 cfs_rq = cfs_rq_of(se);
371fd7e7 3693 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3694
3695 /*
3696 * end evaluation on encountering a throttled cfs_rq
3697 *
3698 * note: in the case of encountering a throttled cfs_rq we will
3699 * post the final h_nr_running decrement below.
3700 */
3701 if (cfs_rq_throttled(cfs_rq))
3702 break;
953bfcd1 3703 cfs_rq->h_nr_running--;
2069dd75 3704
bf0f6f24 3705 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3706 if (cfs_rq->load.weight) {
3707 /*
3708 * Bias pick_next to pick a task from this cfs_rq, as
3709 * p is sleeping when it is within its sched_slice.
3710 */
3711 if (task_sleep && parent_entity(se))
3712 set_next_buddy(parent_entity(se));
9598c82d
PT
3713
3714 /* avoid re-evaluating load for this entity */
3715 se = parent_entity(se);
bf0f6f24 3716 break;
2f36825b 3717 }
371fd7e7 3718 flags |= DEQUEUE_SLEEP;
bf0f6f24 3719 }
8f4d37ec 3720
2069dd75 3721 for_each_sched_entity(se) {
0f317143 3722 cfs_rq = cfs_rq_of(se);
953bfcd1 3723 cfs_rq->h_nr_running--;
2069dd75 3724
85dac906
PT
3725 if (cfs_rq_throttled(cfs_rq))
3726 break;
3727
17bc14b7 3728 update_cfs_shares(cfs_rq);
9ee474f5 3729 update_entity_load_avg(se, 1);
2069dd75
PZ
3730 }
3731
18bf2805 3732 if (!se) {
85dac906 3733 dec_nr_running(rq);
18bf2805
BS
3734 update_rq_runnable_avg(rq, 1);
3735 }
a4c2f00f 3736 hrtick_update(rq);
bf0f6f24
IM
3737}
3738
e7693a36 3739#ifdef CONFIG_SMP
029632fb
PZ
3740/* Used instead of source_load when we know the type == 0 */
3741static unsigned long weighted_cpuload(const int cpu)
3742{
b92486cb 3743 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3744}
3745
3746/*
3747 * Return a low guess at the load of a migration-source cpu weighted
3748 * according to the scheduling class and "nice" value.
3749 *
3750 * We want to under-estimate the load of migration sources, to
3751 * balance conservatively.
3752 */
3753static unsigned long source_load(int cpu, int type)
3754{
3755 struct rq *rq = cpu_rq(cpu);
3756 unsigned long total = weighted_cpuload(cpu);
3757
3758 if (type == 0 || !sched_feat(LB_BIAS))
3759 return total;
3760
3761 return min(rq->cpu_load[type-1], total);
3762}
3763
3764/*
3765 * Return a high guess at the load of a migration-target cpu weighted
3766 * according to the scheduling class and "nice" value.
3767 */
3768static unsigned long target_load(int cpu, int type)
3769{
3770 struct rq *rq = cpu_rq(cpu);
3771 unsigned long total = weighted_cpuload(cpu);
3772
3773 if (type == 0 || !sched_feat(LB_BIAS))
3774 return total;
3775
3776 return max(rq->cpu_load[type-1], total);
3777}
3778
3779static unsigned long power_of(int cpu)
3780{
3781 return cpu_rq(cpu)->cpu_power;
3782}
3783
3784static unsigned long cpu_avg_load_per_task(int cpu)
3785{
3786 struct rq *rq = cpu_rq(cpu);
3787 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3788 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3789
3790 if (nr_running)
b92486cb 3791 return load_avg / nr_running;
029632fb
PZ
3792
3793 return 0;
3794}
3795
62470419
MW
3796static void record_wakee(struct task_struct *p)
3797{
3798 /*
3799 * Rough decay (wiping) for cost saving, don't worry
3800 * about the boundary, really active task won't care
3801 * about the loss.
3802 */
3803 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3804 current->wakee_flips = 0;
3805 current->wakee_flip_decay_ts = jiffies;
3806 }
3807
3808 if (current->last_wakee != p) {
3809 current->last_wakee = p;
3810 current->wakee_flips++;
3811 }
3812}
098fb9db 3813
74f8e4b2 3814static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3815{
3816 struct sched_entity *se = &p->se;
3817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3818 u64 min_vruntime;
3819
3820#ifndef CONFIG_64BIT
3821 u64 min_vruntime_copy;
88ec22d3 3822
3fe1698b
PZ
3823 do {
3824 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3825 smp_rmb();
3826 min_vruntime = cfs_rq->min_vruntime;
3827 } while (min_vruntime != min_vruntime_copy);
3828#else
3829 min_vruntime = cfs_rq->min_vruntime;
3830#endif
88ec22d3 3831
3fe1698b 3832 se->vruntime -= min_vruntime;
62470419 3833 record_wakee(p);
88ec22d3
PZ
3834}
3835
bb3469ac 3836#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3837/*
3838 * effective_load() calculates the load change as seen from the root_task_group
3839 *
3840 * Adding load to a group doesn't make a group heavier, but can cause movement
3841 * of group shares between cpus. Assuming the shares were perfectly aligned one
3842 * can calculate the shift in shares.
cf5f0acf
PZ
3843 *
3844 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3845 * on this @cpu and results in a total addition (subtraction) of @wg to the
3846 * total group weight.
3847 *
3848 * Given a runqueue weight distribution (rw_i) we can compute a shares
3849 * distribution (s_i) using:
3850 *
3851 * s_i = rw_i / \Sum rw_j (1)
3852 *
3853 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3854 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3855 * shares distribution (s_i):
3856 *
3857 * rw_i = { 2, 4, 1, 0 }
3858 * s_i = { 2/7, 4/7, 1/7, 0 }
3859 *
3860 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3861 * task used to run on and the CPU the waker is running on), we need to
3862 * compute the effect of waking a task on either CPU and, in case of a sync
3863 * wakeup, compute the effect of the current task going to sleep.
3864 *
3865 * So for a change of @wl to the local @cpu with an overall group weight change
3866 * of @wl we can compute the new shares distribution (s'_i) using:
3867 *
3868 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3869 *
3870 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3871 * differences in waking a task to CPU 0. The additional task changes the
3872 * weight and shares distributions like:
3873 *
3874 * rw'_i = { 3, 4, 1, 0 }
3875 * s'_i = { 3/8, 4/8, 1/8, 0 }
3876 *
3877 * We can then compute the difference in effective weight by using:
3878 *
3879 * dw_i = S * (s'_i - s_i) (3)
3880 *
3881 * Where 'S' is the group weight as seen by its parent.
3882 *
3883 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3884 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3885 * 4/7) times the weight of the group.
f5bfb7d9 3886 */
2069dd75 3887static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3888{
4be9daaa 3889 struct sched_entity *se = tg->se[cpu];
f1d239f7 3890
58d081b5 3891 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3892 return wl;
3893
4be9daaa 3894 for_each_sched_entity(se) {
cf5f0acf 3895 long w, W;
4be9daaa 3896
977dda7c 3897 tg = se->my_q->tg;
bb3469ac 3898
cf5f0acf
PZ
3899 /*
3900 * W = @wg + \Sum rw_j
3901 */
3902 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3903
cf5f0acf
PZ
3904 /*
3905 * w = rw_i + @wl
3906 */
3907 w = se->my_q->load.weight + wl;
940959e9 3908
cf5f0acf
PZ
3909 /*
3910 * wl = S * s'_i; see (2)
3911 */
3912 if (W > 0 && w < W)
3913 wl = (w * tg->shares) / W;
977dda7c
PT
3914 else
3915 wl = tg->shares;
940959e9 3916
cf5f0acf
PZ
3917 /*
3918 * Per the above, wl is the new se->load.weight value; since
3919 * those are clipped to [MIN_SHARES, ...) do so now. See
3920 * calc_cfs_shares().
3921 */
977dda7c
PT
3922 if (wl < MIN_SHARES)
3923 wl = MIN_SHARES;
cf5f0acf
PZ
3924
3925 /*
3926 * wl = dw_i = S * (s'_i - s_i); see (3)
3927 */
977dda7c 3928 wl -= se->load.weight;
cf5f0acf
PZ
3929
3930 /*
3931 * Recursively apply this logic to all parent groups to compute
3932 * the final effective load change on the root group. Since
3933 * only the @tg group gets extra weight, all parent groups can
3934 * only redistribute existing shares. @wl is the shift in shares
3935 * resulting from this level per the above.
3936 */
4be9daaa 3937 wg = 0;
4be9daaa 3938 }
bb3469ac 3939
4be9daaa 3940 return wl;
bb3469ac
PZ
3941}
3942#else
4be9daaa 3943
58d081b5 3944static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3945{
83378269 3946 return wl;
bb3469ac 3947}
4be9daaa 3948
bb3469ac
PZ
3949#endif
3950
62470419
MW
3951static int wake_wide(struct task_struct *p)
3952{
7d9ffa89 3953 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3954
3955 /*
3956 * Yeah, it's the switching-frequency, could means many wakee or
3957 * rapidly switch, use factor here will just help to automatically
3958 * adjust the loose-degree, so bigger node will lead to more pull.
3959 */
3960 if (p->wakee_flips > factor) {
3961 /*
3962 * wakee is somewhat hot, it needs certain amount of cpu
3963 * resource, so if waker is far more hot, prefer to leave
3964 * it alone.
3965 */
3966 if (current->wakee_flips > (factor * p->wakee_flips))
3967 return 1;
3968 }
3969
3970 return 0;
3971}
3972
c88d5910 3973static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3974{
e37b6a7b 3975 s64 this_load, load;
c88d5910 3976 int idx, this_cpu, prev_cpu;
098fb9db 3977 unsigned long tl_per_task;
c88d5910 3978 struct task_group *tg;
83378269 3979 unsigned long weight;
b3137bc8 3980 int balanced;
098fb9db 3981
62470419
MW
3982 /*
3983 * If we wake multiple tasks be careful to not bounce
3984 * ourselves around too much.
3985 */
3986 if (wake_wide(p))
3987 return 0;
3988
c88d5910
PZ
3989 idx = sd->wake_idx;
3990 this_cpu = smp_processor_id();
3991 prev_cpu = task_cpu(p);
3992 load = source_load(prev_cpu, idx);
3993 this_load = target_load(this_cpu, idx);
098fb9db 3994
b3137bc8
MG
3995 /*
3996 * If sync wakeup then subtract the (maximum possible)
3997 * effect of the currently running task from the load
3998 * of the current CPU:
3999 */
83378269
PZ
4000 if (sync) {
4001 tg = task_group(current);
4002 weight = current->se.load.weight;
4003
c88d5910 4004 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4005 load += effective_load(tg, prev_cpu, 0, -weight);
4006 }
b3137bc8 4007
83378269
PZ
4008 tg = task_group(p);
4009 weight = p->se.load.weight;
b3137bc8 4010
71a29aa7
PZ
4011 /*
4012 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4013 * due to the sync cause above having dropped this_load to 0, we'll
4014 * always have an imbalance, but there's really nothing you can do
4015 * about that, so that's good too.
71a29aa7
PZ
4016 *
4017 * Otherwise check if either cpus are near enough in load to allow this
4018 * task to be woken on this_cpu.
4019 */
e37b6a7b
PT
4020 if (this_load > 0) {
4021 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4022
4023 this_eff_load = 100;
4024 this_eff_load *= power_of(prev_cpu);
4025 this_eff_load *= this_load +
4026 effective_load(tg, this_cpu, weight, weight);
4027
4028 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4029 prev_eff_load *= power_of(this_cpu);
4030 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4031
4032 balanced = this_eff_load <= prev_eff_load;
4033 } else
4034 balanced = true;
b3137bc8 4035
098fb9db 4036 /*
4ae7d5ce
IM
4037 * If the currently running task will sleep within
4038 * a reasonable amount of time then attract this newly
4039 * woken task:
098fb9db 4040 */
2fb7635c
PZ
4041 if (sync && balanced)
4042 return 1;
098fb9db 4043
41acab88 4044 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4045 tl_per_task = cpu_avg_load_per_task(this_cpu);
4046
c88d5910
PZ
4047 if (balanced ||
4048 (this_load <= load &&
4049 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4050 /*
4051 * This domain has SD_WAKE_AFFINE and
4052 * p is cache cold in this domain, and
4053 * there is no bad imbalance.
4054 */
c88d5910 4055 schedstat_inc(sd, ttwu_move_affine);
41acab88 4056 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4057
4058 return 1;
4059 }
4060 return 0;
4061}
4062
aaee1203
PZ
4063/*
4064 * find_idlest_group finds and returns the least busy CPU group within the
4065 * domain.
4066 */
4067static struct sched_group *
78e7ed53 4068find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4069 int this_cpu, int load_idx)
e7693a36 4070{
b3bd3de6 4071 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4072 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4073 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4074
aaee1203
PZ
4075 do {
4076 unsigned long load, avg_load;
4077 int local_group;
4078 int i;
e7693a36 4079
aaee1203
PZ
4080 /* Skip over this group if it has no CPUs allowed */
4081 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4082 tsk_cpus_allowed(p)))
aaee1203
PZ
4083 continue;
4084
4085 local_group = cpumask_test_cpu(this_cpu,
4086 sched_group_cpus(group));
4087
4088 /* Tally up the load of all CPUs in the group */
4089 avg_load = 0;
4090
4091 for_each_cpu(i, sched_group_cpus(group)) {
4092 /* Bias balancing toward cpus of our domain */
4093 if (local_group)
4094 load = source_load(i, load_idx);
4095 else
4096 load = target_load(i, load_idx);
4097
4098 avg_load += load;
4099 }
4100
4101 /* Adjust by relative CPU power of the group */
9c3f75cb 4102 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4103
4104 if (local_group) {
4105 this_load = avg_load;
aaee1203
PZ
4106 } else if (avg_load < min_load) {
4107 min_load = avg_load;
4108 idlest = group;
4109 }
4110 } while (group = group->next, group != sd->groups);
4111
4112 if (!idlest || 100*this_load < imbalance*min_load)
4113 return NULL;
4114 return idlest;
4115}
4116
4117/*
4118 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4119 */
4120static int
4121find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4122{
4123 unsigned long load, min_load = ULONG_MAX;
4124 int idlest = -1;
4125 int i;
4126
4127 /* Traverse only the allowed CPUs */
fa17b507 4128 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4129 load = weighted_cpuload(i);
4130
4131 if (load < min_load || (load == min_load && i == this_cpu)) {
4132 min_load = load;
4133 idlest = i;
e7693a36
GH
4134 }
4135 }
4136
aaee1203
PZ
4137 return idlest;
4138}
e7693a36 4139
a50bde51
PZ
4140/*
4141 * Try and locate an idle CPU in the sched_domain.
4142 */
99bd5e2f 4143static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4144{
99bd5e2f 4145 struct sched_domain *sd;
37407ea7 4146 struct sched_group *sg;
e0a79f52 4147 int i = task_cpu(p);
a50bde51 4148
e0a79f52
MG
4149 if (idle_cpu(target))
4150 return target;
99bd5e2f
SS
4151
4152 /*
e0a79f52 4153 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4154 */
e0a79f52
MG
4155 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4156 return i;
a50bde51
PZ
4157
4158 /*
37407ea7 4159 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4160 */
518cd623 4161 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4162 for_each_lower_domain(sd) {
37407ea7
LT
4163 sg = sd->groups;
4164 do {
4165 if (!cpumask_intersects(sched_group_cpus(sg),
4166 tsk_cpus_allowed(p)))
4167 goto next;
4168
4169 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4170 if (i == target || !idle_cpu(i))
37407ea7
LT
4171 goto next;
4172 }
970e1789 4173
37407ea7
LT
4174 target = cpumask_first_and(sched_group_cpus(sg),
4175 tsk_cpus_allowed(p));
4176 goto done;
4177next:
4178 sg = sg->next;
4179 } while (sg != sd->groups);
4180 }
4181done:
a50bde51
PZ
4182 return target;
4183}
4184
aaee1203
PZ
4185/*
4186 * sched_balance_self: balance the current task (running on cpu) in domains
4187 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4188 * SD_BALANCE_EXEC.
4189 *
4190 * Balance, ie. select the least loaded group.
4191 *
4192 * Returns the target CPU number, or the same CPU if no balancing is needed.
4193 *
4194 * preempt must be disabled.
4195 */
0017d735 4196static int
ac66f547 4197select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4198{
29cd8bae 4199 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4200 int cpu = smp_processor_id();
c88d5910 4201 int new_cpu = cpu;
99bd5e2f 4202 int want_affine = 0;
5158f4e4 4203 int sync = wake_flags & WF_SYNC;
c88d5910 4204
29baa747 4205 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4206 return prev_cpu;
4207
0763a660 4208 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4209 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4210 want_affine = 1;
4211 new_cpu = prev_cpu;
4212 }
aaee1203 4213
dce840a0 4214 rcu_read_lock();
aaee1203 4215 for_each_domain(cpu, tmp) {
e4f42888
PZ
4216 if (!(tmp->flags & SD_LOAD_BALANCE))
4217 continue;
4218
fe3bcfe1 4219 /*
99bd5e2f
SS
4220 * If both cpu and prev_cpu are part of this domain,
4221 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4222 */
99bd5e2f
SS
4223 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4224 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4225 affine_sd = tmp;
29cd8bae 4226 break;
f03542a7 4227 }
29cd8bae 4228
f03542a7 4229 if (tmp->flags & sd_flag)
29cd8bae
PZ
4230 sd = tmp;
4231 }
4232
8b911acd 4233 if (affine_sd) {
f03542a7 4234 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4235 prev_cpu = cpu;
4236
4237 new_cpu = select_idle_sibling(p, prev_cpu);
4238 goto unlock;
8b911acd 4239 }
e7693a36 4240
aaee1203 4241 while (sd) {
5158f4e4 4242 int load_idx = sd->forkexec_idx;
aaee1203 4243 struct sched_group *group;
c88d5910 4244 int weight;
098fb9db 4245
0763a660 4246 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4247 sd = sd->child;
4248 continue;
4249 }
098fb9db 4250
5158f4e4
PZ
4251 if (sd_flag & SD_BALANCE_WAKE)
4252 load_idx = sd->wake_idx;
098fb9db 4253
5158f4e4 4254 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4255 if (!group) {
4256 sd = sd->child;
4257 continue;
4258 }
4ae7d5ce 4259
d7c33c49 4260 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4261 if (new_cpu == -1 || new_cpu == cpu) {
4262 /* Now try balancing at a lower domain level of cpu */
4263 sd = sd->child;
4264 continue;
e7693a36 4265 }
aaee1203
PZ
4266
4267 /* Now try balancing at a lower domain level of new_cpu */
4268 cpu = new_cpu;
669c55e9 4269 weight = sd->span_weight;
aaee1203
PZ
4270 sd = NULL;
4271 for_each_domain(cpu, tmp) {
669c55e9 4272 if (weight <= tmp->span_weight)
aaee1203 4273 break;
0763a660 4274 if (tmp->flags & sd_flag)
aaee1203
PZ
4275 sd = tmp;
4276 }
4277 /* while loop will break here if sd == NULL */
e7693a36 4278 }
dce840a0
PZ
4279unlock:
4280 rcu_read_unlock();
e7693a36 4281
c88d5910 4282 return new_cpu;
e7693a36 4283}
0a74bef8
PT
4284
4285/*
4286 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4287 * cfs_rq_of(p) references at time of call are still valid and identify the
4288 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4289 * other assumptions, including the state of rq->lock, should be made.
4290 */
4291static void
4292migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4293{
aff3e498
PT
4294 struct sched_entity *se = &p->se;
4295 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4296
4297 /*
4298 * Load tracking: accumulate removed load so that it can be processed
4299 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4300 * to blocked load iff they have a positive decay-count. It can never
4301 * be negative here since on-rq tasks have decay-count == 0.
4302 */
4303 if (se->avg.decay_count) {
4304 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4305 atomic_long_add(se->avg.load_avg_contrib,
4306 &cfs_rq->removed_load);
aff3e498 4307 }
0a74bef8 4308}
e7693a36
GH
4309#endif /* CONFIG_SMP */
4310
e52fb7c0
PZ
4311static unsigned long
4312wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4313{
4314 unsigned long gran = sysctl_sched_wakeup_granularity;
4315
4316 /*
e52fb7c0
PZ
4317 * Since its curr running now, convert the gran from real-time
4318 * to virtual-time in his units.
13814d42
MG
4319 *
4320 * By using 'se' instead of 'curr' we penalize light tasks, so
4321 * they get preempted easier. That is, if 'se' < 'curr' then
4322 * the resulting gran will be larger, therefore penalizing the
4323 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4324 * be smaller, again penalizing the lighter task.
4325 *
4326 * This is especially important for buddies when the leftmost
4327 * task is higher priority than the buddy.
0bbd3336 4328 */
f4ad9bd2 4329 return calc_delta_fair(gran, se);
0bbd3336
PZ
4330}
4331
464b7527
PZ
4332/*
4333 * Should 'se' preempt 'curr'.
4334 *
4335 * |s1
4336 * |s2
4337 * |s3
4338 * g
4339 * |<--->|c
4340 *
4341 * w(c, s1) = -1
4342 * w(c, s2) = 0
4343 * w(c, s3) = 1
4344 *
4345 */
4346static int
4347wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4348{
4349 s64 gran, vdiff = curr->vruntime - se->vruntime;
4350
4351 if (vdiff <= 0)
4352 return -1;
4353
e52fb7c0 4354 gran = wakeup_gran(curr, se);
464b7527
PZ
4355 if (vdiff > gran)
4356 return 1;
4357
4358 return 0;
4359}
4360
02479099
PZ
4361static void set_last_buddy(struct sched_entity *se)
4362{
69c80f3e
VP
4363 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4364 return;
4365
4366 for_each_sched_entity(se)
4367 cfs_rq_of(se)->last = se;
02479099
PZ
4368}
4369
4370static void set_next_buddy(struct sched_entity *se)
4371{
69c80f3e
VP
4372 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4373 return;
4374
4375 for_each_sched_entity(se)
4376 cfs_rq_of(se)->next = se;
02479099
PZ
4377}
4378
ac53db59
RR
4379static void set_skip_buddy(struct sched_entity *se)
4380{
69c80f3e
VP
4381 for_each_sched_entity(se)
4382 cfs_rq_of(se)->skip = se;
ac53db59
RR
4383}
4384
bf0f6f24
IM
4385/*
4386 * Preempt the current task with a newly woken task if needed:
4387 */
5a9b86f6 4388static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4389{
4390 struct task_struct *curr = rq->curr;
8651a86c 4391 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4392 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4393 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4394 int next_buddy_marked = 0;
bf0f6f24 4395
4ae7d5ce
IM
4396 if (unlikely(se == pse))
4397 return;
4398
5238cdd3 4399 /*
ddcdf6e7 4400 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4401 * unconditionally check_prempt_curr() after an enqueue (which may have
4402 * lead to a throttle). This both saves work and prevents false
4403 * next-buddy nomination below.
4404 */
4405 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4406 return;
4407
2f36825b 4408 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4409 set_next_buddy(pse);
2f36825b
VP
4410 next_buddy_marked = 1;
4411 }
57fdc26d 4412
aec0a514
BR
4413 /*
4414 * We can come here with TIF_NEED_RESCHED already set from new task
4415 * wake up path.
5238cdd3
PT
4416 *
4417 * Note: this also catches the edge-case of curr being in a throttled
4418 * group (e.g. via set_curr_task), since update_curr() (in the
4419 * enqueue of curr) will have resulted in resched being set. This
4420 * prevents us from potentially nominating it as a false LAST_BUDDY
4421 * below.
aec0a514
BR
4422 */
4423 if (test_tsk_need_resched(curr))
4424 return;
4425
a2f5c9ab
DH
4426 /* Idle tasks are by definition preempted by non-idle tasks. */
4427 if (unlikely(curr->policy == SCHED_IDLE) &&
4428 likely(p->policy != SCHED_IDLE))
4429 goto preempt;
4430
91c234b4 4431 /*
a2f5c9ab
DH
4432 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4433 * is driven by the tick):
91c234b4 4434 */
8ed92e51 4435 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4436 return;
bf0f6f24 4437
464b7527 4438 find_matching_se(&se, &pse);
9bbd7374 4439 update_curr(cfs_rq_of(se));
002f128b 4440 BUG_ON(!pse);
2f36825b
VP
4441 if (wakeup_preempt_entity(se, pse) == 1) {
4442 /*
4443 * Bias pick_next to pick the sched entity that is
4444 * triggering this preemption.
4445 */
4446 if (!next_buddy_marked)
4447 set_next_buddy(pse);
3a7e73a2 4448 goto preempt;
2f36825b 4449 }
464b7527 4450
3a7e73a2 4451 return;
a65ac745 4452
3a7e73a2
PZ
4453preempt:
4454 resched_task(curr);
4455 /*
4456 * Only set the backward buddy when the current task is still
4457 * on the rq. This can happen when a wakeup gets interleaved
4458 * with schedule on the ->pre_schedule() or idle_balance()
4459 * point, either of which can * drop the rq lock.
4460 *
4461 * Also, during early boot the idle thread is in the fair class,
4462 * for obvious reasons its a bad idea to schedule back to it.
4463 */
4464 if (unlikely(!se->on_rq || curr == rq->idle))
4465 return;
4466
4467 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4468 set_last_buddy(se);
bf0f6f24
IM
4469}
4470
fb8d4724 4471static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4472{
8f4d37ec 4473 struct task_struct *p;
bf0f6f24
IM
4474 struct cfs_rq *cfs_rq = &rq->cfs;
4475 struct sched_entity *se;
4476
36ace27e 4477 if (!cfs_rq->nr_running)
bf0f6f24
IM
4478 return NULL;
4479
4480 do {
9948f4b2 4481 se = pick_next_entity(cfs_rq);
f4b6755f 4482 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4483 cfs_rq = group_cfs_rq(se);
4484 } while (cfs_rq);
4485
8f4d37ec 4486 p = task_of(se);
b39e66ea
MG
4487 if (hrtick_enabled(rq))
4488 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4489
4490 return p;
bf0f6f24
IM
4491}
4492
4493/*
4494 * Account for a descheduled task:
4495 */
31ee529c 4496static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4497{
4498 struct sched_entity *se = &prev->se;
4499 struct cfs_rq *cfs_rq;
4500
4501 for_each_sched_entity(se) {
4502 cfs_rq = cfs_rq_of(se);
ab6cde26 4503 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4504 }
4505}
4506
ac53db59
RR
4507/*
4508 * sched_yield() is very simple
4509 *
4510 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4511 */
4512static void yield_task_fair(struct rq *rq)
4513{
4514 struct task_struct *curr = rq->curr;
4515 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4516 struct sched_entity *se = &curr->se;
4517
4518 /*
4519 * Are we the only task in the tree?
4520 */
4521 if (unlikely(rq->nr_running == 1))
4522 return;
4523
4524 clear_buddies(cfs_rq, se);
4525
4526 if (curr->policy != SCHED_BATCH) {
4527 update_rq_clock(rq);
4528 /*
4529 * Update run-time statistics of the 'current'.
4530 */
4531 update_curr(cfs_rq);
916671c0
MG
4532 /*
4533 * Tell update_rq_clock() that we've just updated,
4534 * so we don't do microscopic update in schedule()
4535 * and double the fastpath cost.
4536 */
4537 rq->skip_clock_update = 1;
ac53db59
RR
4538 }
4539
4540 set_skip_buddy(se);
4541}
4542
d95f4122
MG
4543static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4544{
4545 struct sched_entity *se = &p->se;
4546
5238cdd3
PT
4547 /* throttled hierarchies are not runnable */
4548 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4549 return false;
4550
4551 /* Tell the scheduler that we'd really like pse to run next. */
4552 set_next_buddy(se);
4553
d95f4122
MG
4554 yield_task_fair(rq);
4555
4556 return true;
4557}
4558
681f3e68 4559#ifdef CONFIG_SMP
bf0f6f24 4560/**************************************************
e9c84cb8
PZ
4561 * Fair scheduling class load-balancing methods.
4562 *
4563 * BASICS
4564 *
4565 * The purpose of load-balancing is to achieve the same basic fairness the
4566 * per-cpu scheduler provides, namely provide a proportional amount of compute
4567 * time to each task. This is expressed in the following equation:
4568 *
4569 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4570 *
4571 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4572 * W_i,0 is defined as:
4573 *
4574 * W_i,0 = \Sum_j w_i,j (2)
4575 *
4576 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4577 * is derived from the nice value as per prio_to_weight[].
4578 *
4579 * The weight average is an exponential decay average of the instantaneous
4580 * weight:
4581 *
4582 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4583 *
4584 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4585 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4586 * can also include other factors [XXX].
4587 *
4588 * To achieve this balance we define a measure of imbalance which follows
4589 * directly from (1):
4590 *
4591 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4592 *
4593 * We them move tasks around to minimize the imbalance. In the continuous
4594 * function space it is obvious this converges, in the discrete case we get
4595 * a few fun cases generally called infeasible weight scenarios.
4596 *
4597 * [XXX expand on:
4598 * - infeasible weights;
4599 * - local vs global optima in the discrete case. ]
4600 *
4601 *
4602 * SCHED DOMAINS
4603 *
4604 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4605 * for all i,j solution, we create a tree of cpus that follows the hardware
4606 * topology where each level pairs two lower groups (or better). This results
4607 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4608 * tree to only the first of the previous level and we decrease the frequency
4609 * of load-balance at each level inv. proportional to the number of cpus in
4610 * the groups.
4611 *
4612 * This yields:
4613 *
4614 * log_2 n 1 n
4615 * \Sum { --- * --- * 2^i } = O(n) (5)
4616 * i = 0 2^i 2^i
4617 * `- size of each group
4618 * | | `- number of cpus doing load-balance
4619 * | `- freq
4620 * `- sum over all levels
4621 *
4622 * Coupled with a limit on how many tasks we can migrate every balance pass,
4623 * this makes (5) the runtime complexity of the balancer.
4624 *
4625 * An important property here is that each CPU is still (indirectly) connected
4626 * to every other cpu in at most O(log n) steps:
4627 *
4628 * The adjacency matrix of the resulting graph is given by:
4629 *
4630 * log_2 n
4631 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4632 * k = 0
4633 *
4634 * And you'll find that:
4635 *
4636 * A^(log_2 n)_i,j != 0 for all i,j (7)
4637 *
4638 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4639 * The task movement gives a factor of O(m), giving a convergence complexity
4640 * of:
4641 *
4642 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4643 *
4644 *
4645 * WORK CONSERVING
4646 *
4647 * In order to avoid CPUs going idle while there's still work to do, new idle
4648 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4649 * tree itself instead of relying on other CPUs to bring it work.
4650 *
4651 * This adds some complexity to both (5) and (8) but it reduces the total idle
4652 * time.
4653 *
4654 * [XXX more?]
4655 *
4656 *
4657 * CGROUPS
4658 *
4659 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4660 *
4661 * s_k,i
4662 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4663 * S_k
4664 *
4665 * Where
4666 *
4667 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4668 *
4669 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4670 *
4671 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4672 * property.
4673 *
4674 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4675 * rewrite all of this once again.]
4676 */
bf0f6f24 4677
ed387b78
HS
4678static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4679
0ec8aa00
PZ
4680enum fbq_type { regular, remote, all };
4681
ddcdf6e7 4682#define LBF_ALL_PINNED 0x01
367456c7 4683#define LBF_NEED_BREAK 0x02
6263322c
PZ
4684#define LBF_DST_PINNED 0x04
4685#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4686
4687struct lb_env {
4688 struct sched_domain *sd;
4689
ddcdf6e7 4690 struct rq *src_rq;
85c1e7da 4691 int src_cpu;
ddcdf6e7
PZ
4692
4693 int dst_cpu;
4694 struct rq *dst_rq;
4695
88b8dac0
SV
4696 struct cpumask *dst_grpmask;
4697 int new_dst_cpu;
ddcdf6e7 4698 enum cpu_idle_type idle;
bd939f45 4699 long imbalance;
b9403130
MW
4700 /* The set of CPUs under consideration for load-balancing */
4701 struct cpumask *cpus;
4702
ddcdf6e7 4703 unsigned int flags;
367456c7
PZ
4704
4705 unsigned int loop;
4706 unsigned int loop_break;
4707 unsigned int loop_max;
0ec8aa00
PZ
4708
4709 enum fbq_type fbq_type;
ddcdf6e7
PZ
4710};
4711
1e3c88bd 4712/*
ddcdf6e7 4713 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4714 * Both runqueues must be locked.
4715 */
ddcdf6e7 4716static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4717{
ddcdf6e7
PZ
4718 deactivate_task(env->src_rq, p, 0);
4719 set_task_cpu(p, env->dst_cpu);
4720 activate_task(env->dst_rq, p, 0);
4721 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4722}
4723
029632fb
PZ
4724/*
4725 * Is this task likely cache-hot:
4726 */
4727static int
4728task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4729{
4730 s64 delta;
4731
4732 if (p->sched_class != &fair_sched_class)
4733 return 0;
4734
4735 if (unlikely(p->policy == SCHED_IDLE))
4736 return 0;
4737
4738 /*
4739 * Buddy candidates are cache hot:
4740 */
4741 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4742 (&p->se == cfs_rq_of(&p->se)->next ||
4743 &p->se == cfs_rq_of(&p->se)->last))
4744 return 1;
4745
4746 if (sysctl_sched_migration_cost == -1)
4747 return 1;
4748 if (sysctl_sched_migration_cost == 0)
4749 return 0;
4750
4751 delta = now - p->se.exec_start;
4752
4753 return delta < (s64)sysctl_sched_migration_cost;
4754}
4755
3a7053b3
MG
4756#ifdef CONFIG_NUMA_BALANCING
4757/* Returns true if the destination node has incurred more faults */
4758static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4759{
4760 int src_nid, dst_nid;
4761
4762 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4763 !(env->sd->flags & SD_NUMA)) {
4764 return false;
4765 }
4766
4767 src_nid = cpu_to_node(env->src_cpu);
4768 dst_nid = cpu_to_node(env->dst_cpu);
4769
83e1d2cd 4770 if (src_nid == dst_nid)
3a7053b3
MG
4771 return false;
4772
83e1d2cd
MG
4773 /* Always encourage migration to the preferred node. */
4774 if (dst_nid == p->numa_preferred_nid)
4775 return true;
4776
887c290e
RR
4777 /* If both task and group weight improve, this move is a winner. */
4778 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4779 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4780 return true;
4781
4782 return false;
4783}
7a0f3083
MG
4784
4785
4786static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4787{
4788 int src_nid, dst_nid;
4789
4790 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4791 return false;
4792
4793 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4794 return false;
4795
4796 src_nid = cpu_to_node(env->src_cpu);
4797 dst_nid = cpu_to_node(env->dst_cpu);
4798
83e1d2cd 4799 if (src_nid == dst_nid)
7a0f3083
MG
4800 return false;
4801
83e1d2cd
MG
4802 /* Migrating away from the preferred node is always bad. */
4803 if (src_nid == p->numa_preferred_nid)
4804 return true;
4805
887c290e
RR
4806 /* If either task or group weight get worse, don't do it. */
4807 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4808 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4809 return true;
4810
4811 return false;
4812}
4813
3a7053b3
MG
4814#else
4815static inline bool migrate_improves_locality(struct task_struct *p,
4816 struct lb_env *env)
4817{
4818 return false;
4819}
7a0f3083
MG
4820
4821static inline bool migrate_degrades_locality(struct task_struct *p,
4822 struct lb_env *env)
4823{
4824 return false;
4825}
3a7053b3
MG
4826#endif
4827
1e3c88bd
PZ
4828/*
4829 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4830 */
4831static
8e45cb54 4832int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4833{
4834 int tsk_cache_hot = 0;
4835 /*
4836 * We do not migrate tasks that are:
d3198084 4837 * 1) throttled_lb_pair, or
1e3c88bd 4838 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4839 * 3) running (obviously), or
4840 * 4) are cache-hot on their current CPU.
1e3c88bd 4841 */
d3198084
JK
4842 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4843 return 0;
4844
ddcdf6e7 4845 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4846 int cpu;
88b8dac0 4847
41acab88 4848 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4849
6263322c
PZ
4850 env->flags |= LBF_SOME_PINNED;
4851
88b8dac0
SV
4852 /*
4853 * Remember if this task can be migrated to any other cpu in
4854 * our sched_group. We may want to revisit it if we couldn't
4855 * meet load balance goals by pulling other tasks on src_cpu.
4856 *
4857 * Also avoid computing new_dst_cpu if we have already computed
4858 * one in current iteration.
4859 */
6263322c 4860 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4861 return 0;
4862
e02e60c1
JK
4863 /* Prevent to re-select dst_cpu via env's cpus */
4864 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4865 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4866 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4867 env->new_dst_cpu = cpu;
4868 break;
4869 }
88b8dac0 4870 }
e02e60c1 4871
1e3c88bd
PZ
4872 return 0;
4873 }
88b8dac0
SV
4874
4875 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4876 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4877
ddcdf6e7 4878 if (task_running(env->src_rq, p)) {
41acab88 4879 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4880 return 0;
4881 }
4882
4883 /*
4884 * Aggressive migration if:
3a7053b3
MG
4885 * 1) destination numa is preferred
4886 * 2) task is cache cold, or
4887 * 3) too many balance attempts have failed.
1e3c88bd 4888 */
78becc27 4889 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4890 if (!tsk_cache_hot)
4891 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4892
4893 if (migrate_improves_locality(p, env)) {
4894#ifdef CONFIG_SCHEDSTATS
4895 if (tsk_cache_hot) {
4896 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4897 schedstat_inc(p, se.statistics.nr_forced_migrations);
4898 }
4899#endif
4900 return 1;
4901 }
4902
1e3c88bd 4903 if (!tsk_cache_hot ||
8e45cb54 4904 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4905
1e3c88bd 4906 if (tsk_cache_hot) {
8e45cb54 4907 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4908 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4909 }
4e2dcb73 4910
1e3c88bd
PZ
4911 return 1;
4912 }
4913
4e2dcb73
ZH
4914 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4915 return 0;
1e3c88bd
PZ
4916}
4917
897c395f
PZ
4918/*
4919 * move_one_task tries to move exactly one task from busiest to this_rq, as
4920 * part of active balancing operations within "domain".
4921 * Returns 1 if successful and 0 otherwise.
4922 *
4923 * Called with both runqueues locked.
4924 */
8e45cb54 4925static int move_one_task(struct lb_env *env)
897c395f
PZ
4926{
4927 struct task_struct *p, *n;
897c395f 4928
367456c7 4929 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4930 if (!can_migrate_task(p, env))
4931 continue;
897c395f 4932
367456c7
PZ
4933 move_task(p, env);
4934 /*
4935 * Right now, this is only the second place move_task()
4936 * is called, so we can safely collect move_task()
4937 * stats here rather than inside move_task().
4938 */
4939 schedstat_inc(env->sd, lb_gained[env->idle]);
4940 return 1;
897c395f 4941 }
897c395f
PZ
4942 return 0;
4943}
4944
eb95308e
PZ
4945static const unsigned int sched_nr_migrate_break = 32;
4946
5d6523eb 4947/*
bd939f45 4948 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4949 * this_rq, as part of a balancing operation within domain "sd".
4950 * Returns 1 if successful and 0 otherwise.
4951 *
4952 * Called with both runqueues locked.
4953 */
4954static int move_tasks(struct lb_env *env)
1e3c88bd 4955{
5d6523eb
PZ
4956 struct list_head *tasks = &env->src_rq->cfs_tasks;
4957 struct task_struct *p;
367456c7
PZ
4958 unsigned long load;
4959 int pulled = 0;
1e3c88bd 4960
bd939f45 4961 if (env->imbalance <= 0)
5d6523eb 4962 return 0;
1e3c88bd 4963
5d6523eb
PZ
4964 while (!list_empty(tasks)) {
4965 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4966
367456c7
PZ
4967 env->loop++;
4968 /* We've more or less seen every task there is, call it quits */
5d6523eb 4969 if (env->loop > env->loop_max)
367456c7 4970 break;
5d6523eb
PZ
4971
4972 /* take a breather every nr_migrate tasks */
367456c7 4973 if (env->loop > env->loop_break) {
eb95308e 4974 env->loop_break += sched_nr_migrate_break;
8e45cb54 4975 env->flags |= LBF_NEED_BREAK;
ee00e66f 4976 break;
a195f004 4977 }
1e3c88bd 4978
d3198084 4979 if (!can_migrate_task(p, env))
367456c7
PZ
4980 goto next;
4981
4982 load = task_h_load(p);
5d6523eb 4983
eb95308e 4984 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4985 goto next;
4986
bd939f45 4987 if ((load / 2) > env->imbalance)
367456c7 4988 goto next;
1e3c88bd 4989
ddcdf6e7 4990 move_task(p, env);
ee00e66f 4991 pulled++;
bd939f45 4992 env->imbalance -= load;
1e3c88bd
PZ
4993
4994#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4995 /*
4996 * NEWIDLE balancing is a source of latency, so preemptible
4997 * kernels will stop after the first task is pulled to minimize
4998 * the critical section.
4999 */
5d6523eb 5000 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5001 break;
1e3c88bd
PZ
5002#endif
5003
ee00e66f
PZ
5004 /*
5005 * We only want to steal up to the prescribed amount of
5006 * weighted load.
5007 */
bd939f45 5008 if (env->imbalance <= 0)
ee00e66f 5009 break;
367456c7
PZ
5010
5011 continue;
5012next:
5d6523eb 5013 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5014 }
5d6523eb 5015
1e3c88bd 5016 /*
ddcdf6e7
PZ
5017 * Right now, this is one of only two places move_task() is called,
5018 * so we can safely collect move_task() stats here rather than
5019 * inside move_task().
1e3c88bd 5020 */
8e45cb54 5021 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5022
5d6523eb 5023 return pulled;
1e3c88bd
PZ
5024}
5025
230059de 5026#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5027/*
5028 * update tg->load_weight by folding this cpu's load_avg
5029 */
48a16753 5030static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5031{
48a16753
PT
5032 struct sched_entity *se = tg->se[cpu];
5033 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5034
48a16753
PT
5035 /* throttled entities do not contribute to load */
5036 if (throttled_hierarchy(cfs_rq))
5037 return;
9e3081ca 5038
aff3e498 5039 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5040
82958366
PT
5041 if (se) {
5042 update_entity_load_avg(se, 1);
5043 /*
5044 * We pivot on our runnable average having decayed to zero for
5045 * list removal. This generally implies that all our children
5046 * have also been removed (modulo rounding error or bandwidth
5047 * control); however, such cases are rare and we can fix these
5048 * at enqueue.
5049 *
5050 * TODO: fix up out-of-order children on enqueue.
5051 */
5052 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5053 list_del_leaf_cfs_rq(cfs_rq);
5054 } else {
48a16753 5055 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5056 update_rq_runnable_avg(rq, rq->nr_running);
5057 }
9e3081ca
PZ
5058}
5059
48a16753 5060static void update_blocked_averages(int cpu)
9e3081ca 5061{
9e3081ca 5062 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5063 struct cfs_rq *cfs_rq;
5064 unsigned long flags;
9e3081ca 5065
48a16753
PT
5066 raw_spin_lock_irqsave(&rq->lock, flags);
5067 update_rq_clock(rq);
9763b67f
PZ
5068 /*
5069 * Iterates the task_group tree in a bottom up fashion, see
5070 * list_add_leaf_cfs_rq() for details.
5071 */
64660c86 5072 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5073 /*
5074 * Note: We may want to consider periodically releasing
5075 * rq->lock about these updates so that creating many task
5076 * groups does not result in continually extending hold time.
5077 */
5078 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5079 }
48a16753
PT
5080
5081 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5082}
5083
9763b67f 5084/*
68520796 5085 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5086 * This needs to be done in a top-down fashion because the load of a child
5087 * group is a fraction of its parents load.
5088 */
68520796 5089static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5090{
68520796
VD
5091 struct rq *rq = rq_of(cfs_rq);
5092 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5093 unsigned long now = jiffies;
68520796 5094 unsigned long load;
a35b6466 5095
68520796 5096 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5097 return;
5098
68520796
VD
5099 cfs_rq->h_load_next = NULL;
5100 for_each_sched_entity(se) {
5101 cfs_rq = cfs_rq_of(se);
5102 cfs_rq->h_load_next = se;
5103 if (cfs_rq->last_h_load_update == now)
5104 break;
5105 }
a35b6466 5106
68520796 5107 if (!se) {
7e3115ef 5108 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5109 cfs_rq->last_h_load_update = now;
5110 }
5111
5112 while ((se = cfs_rq->h_load_next) != NULL) {
5113 load = cfs_rq->h_load;
5114 load = div64_ul(load * se->avg.load_avg_contrib,
5115 cfs_rq->runnable_load_avg + 1);
5116 cfs_rq = group_cfs_rq(se);
5117 cfs_rq->h_load = load;
5118 cfs_rq->last_h_load_update = now;
5119 }
9763b67f
PZ
5120}
5121
367456c7 5122static unsigned long task_h_load(struct task_struct *p)
230059de 5123{
367456c7 5124 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5125
68520796 5126 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5127 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5128 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5129}
5130#else
48a16753 5131static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5132{
5133}
5134
367456c7 5135static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5136{
a003a25b 5137 return p->se.avg.load_avg_contrib;
1e3c88bd 5138}
230059de 5139#endif
1e3c88bd 5140
1e3c88bd 5141/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5142/*
5143 * sg_lb_stats - stats of a sched_group required for load_balancing
5144 */
5145struct sg_lb_stats {
5146 unsigned long avg_load; /*Avg load across the CPUs of the group */
5147 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5148 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5149 unsigned long load_per_task;
3ae11c90 5150 unsigned long group_power;
147c5fc2
PZ
5151 unsigned int sum_nr_running; /* Nr tasks running in the group */
5152 unsigned int group_capacity;
5153 unsigned int idle_cpus;
5154 unsigned int group_weight;
1e3c88bd 5155 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5156 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5157#ifdef CONFIG_NUMA_BALANCING
5158 unsigned int nr_numa_running;
5159 unsigned int nr_preferred_running;
5160#endif
1e3c88bd
PZ
5161};
5162
56cf515b
JK
5163/*
5164 * sd_lb_stats - Structure to store the statistics of a sched_domain
5165 * during load balancing.
5166 */
5167struct sd_lb_stats {
5168 struct sched_group *busiest; /* Busiest group in this sd */
5169 struct sched_group *local; /* Local group in this sd */
5170 unsigned long total_load; /* Total load of all groups in sd */
5171 unsigned long total_pwr; /* Total power of all groups in sd */
5172 unsigned long avg_load; /* Average load across all groups in sd */
5173
56cf515b 5174 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5175 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5176};
5177
147c5fc2
PZ
5178static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5179{
5180 /*
5181 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5182 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5183 * We must however clear busiest_stat::avg_load because
5184 * update_sd_pick_busiest() reads this before assignment.
5185 */
5186 *sds = (struct sd_lb_stats){
5187 .busiest = NULL,
5188 .local = NULL,
5189 .total_load = 0UL,
5190 .total_pwr = 0UL,
5191 .busiest_stat = {
5192 .avg_load = 0UL,
5193 },
5194 };
5195}
5196
1e3c88bd
PZ
5197/**
5198 * get_sd_load_idx - Obtain the load index for a given sched domain.
5199 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5200 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5201 *
5202 * Return: The load index.
1e3c88bd
PZ
5203 */
5204static inline int get_sd_load_idx(struct sched_domain *sd,
5205 enum cpu_idle_type idle)
5206{
5207 int load_idx;
5208
5209 switch (idle) {
5210 case CPU_NOT_IDLE:
5211 load_idx = sd->busy_idx;
5212 break;
5213
5214 case CPU_NEWLY_IDLE:
5215 load_idx = sd->newidle_idx;
5216 break;
5217 default:
5218 load_idx = sd->idle_idx;
5219 break;
5220 }
5221
5222 return load_idx;
5223}
5224
15f803c9 5225static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5226{
1399fa78 5227 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5228}
5229
5230unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5231{
5232 return default_scale_freq_power(sd, cpu);
5233}
5234
15f803c9 5235static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5236{
669c55e9 5237 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5238 unsigned long smt_gain = sd->smt_gain;
5239
5240 smt_gain /= weight;
5241
5242 return smt_gain;
5243}
5244
5245unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5246{
5247 return default_scale_smt_power(sd, cpu);
5248}
5249
15f803c9 5250static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5251{
5252 struct rq *rq = cpu_rq(cpu);
b654f7de 5253 u64 total, available, age_stamp, avg;
1e3c88bd 5254
b654f7de
PZ
5255 /*
5256 * Since we're reading these variables without serialization make sure
5257 * we read them once before doing sanity checks on them.
5258 */
5259 age_stamp = ACCESS_ONCE(rq->age_stamp);
5260 avg = ACCESS_ONCE(rq->rt_avg);
5261
78becc27 5262 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5263
b654f7de 5264 if (unlikely(total < avg)) {
aa483808
VP
5265 /* Ensures that power won't end up being negative */
5266 available = 0;
5267 } else {
b654f7de 5268 available = total - avg;
aa483808 5269 }
1e3c88bd 5270
1399fa78
NR
5271 if (unlikely((s64)total < SCHED_POWER_SCALE))
5272 total = SCHED_POWER_SCALE;
1e3c88bd 5273
1399fa78 5274 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5275
5276 return div_u64(available, total);
5277}
5278
5279static void update_cpu_power(struct sched_domain *sd, int cpu)
5280{
669c55e9 5281 unsigned long weight = sd->span_weight;
1399fa78 5282 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5283 struct sched_group *sdg = sd->groups;
5284
1e3c88bd
PZ
5285 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5286 if (sched_feat(ARCH_POWER))
5287 power *= arch_scale_smt_power(sd, cpu);
5288 else
5289 power *= default_scale_smt_power(sd, cpu);
5290
1399fa78 5291 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5292 }
5293
9c3f75cb 5294 sdg->sgp->power_orig = power;
9d5efe05
SV
5295
5296 if (sched_feat(ARCH_POWER))
5297 power *= arch_scale_freq_power(sd, cpu);
5298 else
5299 power *= default_scale_freq_power(sd, cpu);
5300
1399fa78 5301 power >>= SCHED_POWER_SHIFT;
9d5efe05 5302
1e3c88bd 5303 power *= scale_rt_power(cpu);
1399fa78 5304 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5305
5306 if (!power)
5307 power = 1;
5308
e51fd5e2 5309 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5310 sdg->sgp->power = power;
1e3c88bd
PZ
5311}
5312
029632fb 5313void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5314{
5315 struct sched_domain *child = sd->child;
5316 struct sched_group *group, *sdg = sd->groups;
863bffc8 5317 unsigned long power, power_orig;
4ec4412e
VG
5318 unsigned long interval;
5319
5320 interval = msecs_to_jiffies(sd->balance_interval);
5321 interval = clamp(interval, 1UL, max_load_balance_interval);
5322 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5323
5324 if (!child) {
5325 update_cpu_power(sd, cpu);
5326 return;
5327 }
5328
863bffc8 5329 power_orig = power = 0;
1e3c88bd 5330
74a5ce20
PZ
5331 if (child->flags & SD_OVERLAP) {
5332 /*
5333 * SD_OVERLAP domains cannot assume that child groups
5334 * span the current group.
5335 */
5336
863bffc8
PZ
5337 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5338 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5339
5340 power_orig += sg->sgp->power_orig;
5341 power += sg->sgp->power;
5342 }
74a5ce20
PZ
5343 } else {
5344 /*
5345 * !SD_OVERLAP domains can assume that child groups
5346 * span the current group.
5347 */
5348
5349 group = child->groups;
5350 do {
863bffc8 5351 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5352 power += group->sgp->power;
5353 group = group->next;
5354 } while (group != child->groups);
5355 }
1e3c88bd 5356
863bffc8
PZ
5357 sdg->sgp->power_orig = power_orig;
5358 sdg->sgp->power = power;
1e3c88bd
PZ
5359}
5360
9d5efe05
SV
5361/*
5362 * Try and fix up capacity for tiny siblings, this is needed when
5363 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5364 * which on its own isn't powerful enough.
5365 *
5366 * See update_sd_pick_busiest() and check_asym_packing().
5367 */
5368static inline int
5369fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5370{
5371 /*
1399fa78 5372 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5373 */
a6c75f2f 5374 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5375 return 0;
5376
5377 /*
5378 * If ~90% of the cpu_power is still there, we're good.
5379 */
9c3f75cb 5380 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5381 return 1;
5382
5383 return 0;
5384}
5385
30ce5dab
PZ
5386/*
5387 * Group imbalance indicates (and tries to solve) the problem where balancing
5388 * groups is inadequate due to tsk_cpus_allowed() constraints.
5389 *
5390 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5391 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5392 * Something like:
5393 *
5394 * { 0 1 2 3 } { 4 5 6 7 }
5395 * * * * *
5396 *
5397 * If we were to balance group-wise we'd place two tasks in the first group and
5398 * two tasks in the second group. Clearly this is undesired as it will overload
5399 * cpu 3 and leave one of the cpus in the second group unused.
5400 *
5401 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5402 * by noticing the lower domain failed to reach balance and had difficulty
5403 * moving tasks due to affinity constraints.
30ce5dab
PZ
5404 *
5405 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5406 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5407 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5408 * to create an effective group imbalance.
5409 *
5410 * This is a somewhat tricky proposition since the next run might not find the
5411 * group imbalance and decide the groups need to be balanced again. A most
5412 * subtle and fragile situation.
5413 */
5414
6263322c 5415static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5416{
6263322c 5417 return group->sgp->imbalance;
30ce5dab
PZ
5418}
5419
b37d9316
PZ
5420/*
5421 * Compute the group capacity.
5422 *
c61037e9
PZ
5423 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5424 * first dividing out the smt factor and computing the actual number of cores
5425 * and limit power unit capacity with that.
b37d9316
PZ
5426 */
5427static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5428{
c61037e9
PZ
5429 unsigned int capacity, smt, cpus;
5430 unsigned int power, power_orig;
5431
5432 power = group->sgp->power;
5433 power_orig = group->sgp->power_orig;
5434 cpus = group->group_weight;
b37d9316 5435
c61037e9
PZ
5436 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5437 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5438 capacity = cpus / smt; /* cores */
b37d9316 5439
c61037e9 5440 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5441 if (!capacity)
5442 capacity = fix_small_capacity(env->sd, group);
5443
5444 return capacity;
5445}
5446
1e3c88bd
PZ
5447/**
5448 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5449 * @env: The load balancing environment.
1e3c88bd 5450 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5451 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5452 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5453 * @sgs: variable to hold the statistics for this group.
5454 */
bd939f45
PZ
5455static inline void update_sg_lb_stats(struct lb_env *env,
5456 struct sched_group *group, int load_idx,
23f0d209 5457 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5458{
30ce5dab
PZ
5459 unsigned long nr_running;
5460 unsigned long load;
bd939f45 5461 int i;
1e3c88bd 5462
b72ff13c
PZ
5463 memset(sgs, 0, sizeof(*sgs));
5464
b9403130 5465 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5466 struct rq *rq = cpu_rq(i);
5467
e44bc5c5
PZ
5468 nr_running = rq->nr_running;
5469
1e3c88bd 5470 /* Bias balancing toward cpus of our domain */
6263322c 5471 if (local_group)
04f733b4 5472 load = target_load(i, load_idx);
6263322c 5473 else
1e3c88bd 5474 load = source_load(i, load_idx);
1e3c88bd
PZ
5475
5476 sgs->group_load += load;
e44bc5c5 5477 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5478#ifdef CONFIG_NUMA_BALANCING
5479 sgs->nr_numa_running += rq->nr_numa_running;
5480 sgs->nr_preferred_running += rq->nr_preferred_running;
5481#endif
1e3c88bd 5482 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5483 if (idle_cpu(i))
5484 sgs->idle_cpus++;
1e3c88bd
PZ
5485 }
5486
1e3c88bd 5487 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5488 sgs->group_power = group->sgp->power;
5489 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5490
dd5feea1 5491 if (sgs->sum_nr_running)
38d0f770 5492 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5493
aae6d3dd 5494 sgs->group_weight = group->group_weight;
fab47622 5495
b37d9316
PZ
5496 sgs->group_imb = sg_imbalanced(group);
5497 sgs->group_capacity = sg_capacity(env, group);
5498
fab47622
NR
5499 if (sgs->group_capacity > sgs->sum_nr_running)
5500 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5501}
5502
532cb4c4
MN
5503/**
5504 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5505 * @env: The load balancing environment.
532cb4c4
MN
5506 * @sds: sched_domain statistics
5507 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5508 * @sgs: sched_group statistics
532cb4c4
MN
5509 *
5510 * Determine if @sg is a busier group than the previously selected
5511 * busiest group.
e69f6186
YB
5512 *
5513 * Return: %true if @sg is a busier group than the previously selected
5514 * busiest group. %false otherwise.
532cb4c4 5515 */
bd939f45 5516static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5517 struct sd_lb_stats *sds,
5518 struct sched_group *sg,
bd939f45 5519 struct sg_lb_stats *sgs)
532cb4c4 5520{
56cf515b 5521 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5522 return false;
5523
5524 if (sgs->sum_nr_running > sgs->group_capacity)
5525 return true;
5526
5527 if (sgs->group_imb)
5528 return true;
5529
5530 /*
5531 * ASYM_PACKING needs to move all the work to the lowest
5532 * numbered CPUs in the group, therefore mark all groups
5533 * higher than ourself as busy.
5534 */
bd939f45
PZ
5535 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5536 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5537 if (!sds->busiest)
5538 return true;
5539
5540 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5541 return true;
5542 }
5543
5544 return false;
5545}
5546
0ec8aa00
PZ
5547#ifdef CONFIG_NUMA_BALANCING
5548static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5549{
5550 if (sgs->sum_nr_running > sgs->nr_numa_running)
5551 return regular;
5552 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5553 return remote;
5554 return all;
5555}
5556
5557static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5558{
5559 if (rq->nr_running > rq->nr_numa_running)
5560 return regular;
5561 if (rq->nr_running > rq->nr_preferred_running)
5562 return remote;
5563 return all;
5564}
5565#else
5566static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5567{
5568 return all;
5569}
5570
5571static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5572{
5573 return regular;
5574}
5575#endif /* CONFIG_NUMA_BALANCING */
5576
1e3c88bd 5577/**
461819ac 5578 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5579 * @env: The load balancing environment.
1e3c88bd
PZ
5580 * @sds: variable to hold the statistics for this sched_domain.
5581 */
0ec8aa00 5582static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5583{
bd939f45
PZ
5584 struct sched_domain *child = env->sd->child;
5585 struct sched_group *sg = env->sd->groups;
56cf515b 5586 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5587 int load_idx, prefer_sibling = 0;
5588
5589 if (child && child->flags & SD_PREFER_SIBLING)
5590 prefer_sibling = 1;
5591
bd939f45 5592 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5593
5594 do {
56cf515b 5595 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5596 int local_group;
5597
bd939f45 5598 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5599 if (local_group) {
5600 sds->local = sg;
5601 sgs = &sds->local_stat;
b72ff13c
PZ
5602
5603 if (env->idle != CPU_NEWLY_IDLE ||
5604 time_after_eq(jiffies, sg->sgp->next_update))
5605 update_group_power(env->sd, env->dst_cpu);
56cf515b 5606 }
1e3c88bd 5607
56cf515b 5608 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5609
b72ff13c
PZ
5610 if (local_group)
5611 goto next_group;
5612
1e3c88bd
PZ
5613 /*
5614 * In case the child domain prefers tasks go to siblings
532cb4c4 5615 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5616 * and move all the excess tasks away. We lower the capacity
5617 * of a group only if the local group has the capacity to fit
5618 * these excess tasks, i.e. nr_running < group_capacity. The
5619 * extra check prevents the case where you always pull from the
5620 * heaviest group when it is already under-utilized (possible
5621 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5622 */
b72ff13c
PZ
5623 if (prefer_sibling && sds->local &&
5624 sds->local_stat.group_has_capacity)
147c5fc2 5625 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5626
b72ff13c 5627 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5628 sds->busiest = sg;
56cf515b 5629 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5630 }
5631
b72ff13c
PZ
5632next_group:
5633 /* Now, start updating sd_lb_stats */
5634 sds->total_load += sgs->group_load;
5635 sds->total_pwr += sgs->group_power;
5636
532cb4c4 5637 sg = sg->next;
bd939f45 5638 } while (sg != env->sd->groups);
0ec8aa00
PZ
5639
5640 if (env->sd->flags & SD_NUMA)
5641 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5642}
5643
532cb4c4
MN
5644/**
5645 * check_asym_packing - Check to see if the group is packed into the
5646 * sched doman.
5647 *
5648 * This is primarily intended to used at the sibling level. Some
5649 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5650 * case of POWER7, it can move to lower SMT modes only when higher
5651 * threads are idle. When in lower SMT modes, the threads will
5652 * perform better since they share less core resources. Hence when we
5653 * have idle threads, we want them to be the higher ones.
5654 *
5655 * This packing function is run on idle threads. It checks to see if
5656 * the busiest CPU in this domain (core in the P7 case) has a higher
5657 * CPU number than the packing function is being run on. Here we are
5658 * assuming lower CPU number will be equivalent to lower a SMT thread
5659 * number.
5660 *
e69f6186 5661 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5662 * this CPU. The amount of the imbalance is returned in *imbalance.
5663 *
cd96891d 5664 * @env: The load balancing environment.
532cb4c4 5665 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5666 */
bd939f45 5667static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5668{
5669 int busiest_cpu;
5670
bd939f45 5671 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5672 return 0;
5673
5674 if (!sds->busiest)
5675 return 0;
5676
5677 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5678 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5679 return 0;
5680
bd939f45 5681 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5682 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5683 SCHED_POWER_SCALE);
bd939f45 5684
532cb4c4 5685 return 1;
1e3c88bd
PZ
5686}
5687
5688/**
5689 * fix_small_imbalance - Calculate the minor imbalance that exists
5690 * amongst the groups of a sched_domain, during
5691 * load balancing.
cd96891d 5692 * @env: The load balancing environment.
1e3c88bd 5693 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5694 */
bd939f45
PZ
5695static inline
5696void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5697{
5698 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5699 unsigned int imbn = 2;
dd5feea1 5700 unsigned long scaled_busy_load_per_task;
56cf515b 5701 struct sg_lb_stats *local, *busiest;
1e3c88bd 5702
56cf515b
JK
5703 local = &sds->local_stat;
5704 busiest = &sds->busiest_stat;
1e3c88bd 5705
56cf515b
JK
5706 if (!local->sum_nr_running)
5707 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5708 else if (busiest->load_per_task > local->load_per_task)
5709 imbn = 1;
dd5feea1 5710
56cf515b
JK
5711 scaled_busy_load_per_task =
5712 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5713 busiest->group_power;
56cf515b 5714
3029ede3
VD
5715 if (busiest->avg_load + scaled_busy_load_per_task >=
5716 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5717 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5718 return;
5719 }
5720
5721 /*
5722 * OK, we don't have enough imbalance to justify moving tasks,
5723 * however we may be able to increase total CPU power used by
5724 * moving them.
5725 */
5726
3ae11c90 5727 pwr_now += busiest->group_power *
56cf515b 5728 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5729 pwr_now += local->group_power *
56cf515b 5730 min(local->load_per_task, local->avg_load);
1399fa78 5731 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5732
5733 /* Amount of load we'd subtract */
56cf515b 5734 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5735 busiest->group_power;
56cf515b 5736 if (busiest->avg_load > tmp) {
3ae11c90 5737 pwr_move += busiest->group_power *
56cf515b
JK
5738 min(busiest->load_per_task,
5739 busiest->avg_load - tmp);
5740 }
1e3c88bd
PZ
5741
5742 /* Amount of load we'd add */
3ae11c90 5743 if (busiest->avg_load * busiest->group_power <
56cf515b 5744 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5745 tmp = (busiest->avg_load * busiest->group_power) /
5746 local->group_power;
56cf515b
JK
5747 } else {
5748 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5749 local->group_power;
56cf515b 5750 }
3ae11c90
PZ
5751 pwr_move += local->group_power *
5752 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5753 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5754
5755 /* Move if we gain throughput */
5756 if (pwr_move > pwr_now)
56cf515b 5757 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5758}
5759
5760/**
5761 * calculate_imbalance - Calculate the amount of imbalance present within the
5762 * groups of a given sched_domain during load balance.
bd939f45 5763 * @env: load balance environment
1e3c88bd 5764 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5765 */
bd939f45 5766static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5767{
dd5feea1 5768 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5769 struct sg_lb_stats *local, *busiest;
5770
5771 local = &sds->local_stat;
56cf515b 5772 busiest = &sds->busiest_stat;
dd5feea1 5773
56cf515b 5774 if (busiest->group_imb) {
30ce5dab
PZ
5775 /*
5776 * In the group_imb case we cannot rely on group-wide averages
5777 * to ensure cpu-load equilibrium, look at wider averages. XXX
5778 */
56cf515b
JK
5779 busiest->load_per_task =
5780 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5781 }
5782
1e3c88bd
PZ
5783 /*
5784 * In the presence of smp nice balancing, certain scenarios can have
5785 * max load less than avg load(as we skip the groups at or below
5786 * its cpu_power, while calculating max_load..)
5787 */
b1885550
VD
5788 if (busiest->avg_load <= sds->avg_load ||
5789 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5790 env->imbalance = 0;
5791 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5792 }
5793
56cf515b 5794 if (!busiest->group_imb) {
dd5feea1
SS
5795 /*
5796 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5797 * Except of course for the group_imb case, since then we might
5798 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5799 */
56cf515b
JK
5800 load_above_capacity =
5801 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5802
1399fa78 5803 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5804 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5805 }
5806
5807 /*
5808 * We're trying to get all the cpus to the average_load, so we don't
5809 * want to push ourselves above the average load, nor do we wish to
5810 * reduce the max loaded cpu below the average load. At the same time,
5811 * we also don't want to reduce the group load below the group capacity
5812 * (so that we can implement power-savings policies etc). Thus we look
5813 * for the minimum possible imbalance.
dd5feea1 5814 */
30ce5dab 5815 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5816
5817 /* How much load to actually move to equalise the imbalance */
56cf515b 5818 env->imbalance = min(
3ae11c90
PZ
5819 max_pull * busiest->group_power,
5820 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5821 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5822
5823 /*
5824 * if *imbalance is less than the average load per runnable task
25985edc 5825 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5826 * a think about bumping its value to force at least one task to be
5827 * moved
5828 */
56cf515b 5829 if (env->imbalance < busiest->load_per_task)
bd939f45 5830 return fix_small_imbalance(env, sds);
1e3c88bd 5831}
fab47622 5832
1e3c88bd
PZ
5833/******* find_busiest_group() helpers end here *********************/
5834
5835/**
5836 * find_busiest_group - Returns the busiest group within the sched_domain
5837 * if there is an imbalance. If there isn't an imbalance, and
5838 * the user has opted for power-savings, it returns a group whose
5839 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5840 * such a group exists.
5841 *
5842 * Also calculates the amount of weighted load which should be moved
5843 * to restore balance.
5844 *
cd96891d 5845 * @env: The load balancing environment.
1e3c88bd 5846 *
e69f6186 5847 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5848 * - If no imbalance and user has opted for power-savings balance,
5849 * return the least loaded group whose CPUs can be
5850 * put to idle by rebalancing its tasks onto our group.
5851 */
56cf515b 5852static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5853{
56cf515b 5854 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5855 struct sd_lb_stats sds;
5856
147c5fc2 5857 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5858
5859 /*
5860 * Compute the various statistics relavent for load balancing at
5861 * this level.
5862 */
23f0d209 5863 update_sd_lb_stats(env, &sds);
56cf515b
JK
5864 local = &sds.local_stat;
5865 busiest = &sds.busiest_stat;
1e3c88bd 5866
bd939f45
PZ
5867 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5868 check_asym_packing(env, &sds))
532cb4c4
MN
5869 return sds.busiest;
5870
cc57aa8f 5871 /* There is no busy sibling group to pull tasks from */
56cf515b 5872 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5873 goto out_balanced;
5874
1399fa78 5875 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5876
866ab43e
PZ
5877 /*
5878 * If the busiest group is imbalanced the below checks don't
30ce5dab 5879 * work because they assume all things are equal, which typically
866ab43e
PZ
5880 * isn't true due to cpus_allowed constraints and the like.
5881 */
56cf515b 5882 if (busiest->group_imb)
866ab43e
PZ
5883 goto force_balance;
5884
cc57aa8f 5885 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5886 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5887 !busiest->group_has_capacity)
fab47622
NR
5888 goto force_balance;
5889
cc57aa8f
PZ
5890 /*
5891 * If the local group is more busy than the selected busiest group
5892 * don't try and pull any tasks.
5893 */
56cf515b 5894 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5895 goto out_balanced;
5896
cc57aa8f
PZ
5897 /*
5898 * Don't pull any tasks if this group is already above the domain
5899 * average load.
5900 */
56cf515b 5901 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5902 goto out_balanced;
5903
bd939f45 5904 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5905 /*
5906 * This cpu is idle. If the busiest group load doesn't
5907 * have more tasks than the number of available cpu's and
5908 * there is no imbalance between this and busiest group
5909 * wrt to idle cpu's, it is balanced.
5910 */
56cf515b
JK
5911 if ((local->idle_cpus < busiest->idle_cpus) &&
5912 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5913 goto out_balanced;
c186fafe
PZ
5914 } else {
5915 /*
5916 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5917 * imbalance_pct to be conservative.
5918 */
56cf515b
JK
5919 if (100 * busiest->avg_load <=
5920 env->sd->imbalance_pct * local->avg_load)
c186fafe 5921 goto out_balanced;
aae6d3dd 5922 }
1e3c88bd 5923
fab47622 5924force_balance:
1e3c88bd 5925 /* Looks like there is an imbalance. Compute it */
bd939f45 5926 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5927 return sds.busiest;
5928
5929out_balanced:
bd939f45 5930 env->imbalance = 0;
1e3c88bd
PZ
5931 return NULL;
5932}
5933
5934/*
5935 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5936 */
bd939f45 5937static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5938 struct sched_group *group)
1e3c88bd
PZ
5939{
5940 struct rq *busiest = NULL, *rq;
95a79b80 5941 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5942 int i;
5943
6906a408 5944 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5945 unsigned long power, capacity, wl;
5946 enum fbq_type rt;
5947
5948 rq = cpu_rq(i);
5949 rt = fbq_classify_rq(rq);
1e3c88bd 5950
0ec8aa00
PZ
5951 /*
5952 * We classify groups/runqueues into three groups:
5953 * - regular: there are !numa tasks
5954 * - remote: there are numa tasks that run on the 'wrong' node
5955 * - all: there is no distinction
5956 *
5957 * In order to avoid migrating ideally placed numa tasks,
5958 * ignore those when there's better options.
5959 *
5960 * If we ignore the actual busiest queue to migrate another
5961 * task, the next balance pass can still reduce the busiest
5962 * queue by moving tasks around inside the node.
5963 *
5964 * If we cannot move enough load due to this classification
5965 * the next pass will adjust the group classification and
5966 * allow migration of more tasks.
5967 *
5968 * Both cases only affect the total convergence complexity.
5969 */
5970 if (rt > env->fbq_type)
5971 continue;
5972
5973 power = power_of(i);
5974 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5975 if (!capacity)
bd939f45 5976 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5977
6e40f5bb 5978 wl = weighted_cpuload(i);
1e3c88bd 5979
6e40f5bb
TG
5980 /*
5981 * When comparing with imbalance, use weighted_cpuload()
5982 * which is not scaled with the cpu power.
5983 */
bd939f45 5984 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5985 continue;
5986
6e40f5bb
TG
5987 /*
5988 * For the load comparisons with the other cpu's, consider
5989 * the weighted_cpuload() scaled with the cpu power, so that
5990 * the load can be moved away from the cpu that is potentially
5991 * running at a lower capacity.
95a79b80
JK
5992 *
5993 * Thus we're looking for max(wl_i / power_i), crosswise
5994 * multiplication to rid ourselves of the division works out
5995 * to: wl_i * power_j > wl_j * power_i; where j is our
5996 * previous maximum.
6e40f5bb 5997 */
95a79b80
JK
5998 if (wl * busiest_power > busiest_load * power) {
5999 busiest_load = wl;
6000 busiest_power = power;
1e3c88bd
PZ
6001 busiest = rq;
6002 }
6003 }
6004
6005 return busiest;
6006}
6007
6008/*
6009 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6010 * so long as it is large enough.
6011 */
6012#define MAX_PINNED_INTERVAL 512
6013
6014/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6015DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6016
bd939f45 6017static int need_active_balance(struct lb_env *env)
1af3ed3d 6018{
bd939f45
PZ
6019 struct sched_domain *sd = env->sd;
6020
6021 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6022
6023 /*
6024 * ASYM_PACKING needs to force migrate tasks from busy but
6025 * higher numbered CPUs in order to pack all tasks in the
6026 * lowest numbered CPUs.
6027 */
bd939f45 6028 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6029 return 1;
1af3ed3d
PZ
6030 }
6031
6032 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6033}
6034
969c7921
TH
6035static int active_load_balance_cpu_stop(void *data);
6036
23f0d209
JK
6037static int should_we_balance(struct lb_env *env)
6038{
6039 struct sched_group *sg = env->sd->groups;
6040 struct cpumask *sg_cpus, *sg_mask;
6041 int cpu, balance_cpu = -1;
6042
6043 /*
6044 * In the newly idle case, we will allow all the cpu's
6045 * to do the newly idle load balance.
6046 */
6047 if (env->idle == CPU_NEWLY_IDLE)
6048 return 1;
6049
6050 sg_cpus = sched_group_cpus(sg);
6051 sg_mask = sched_group_mask(sg);
6052 /* Try to find first idle cpu */
6053 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6054 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6055 continue;
6056
6057 balance_cpu = cpu;
6058 break;
6059 }
6060
6061 if (balance_cpu == -1)
6062 balance_cpu = group_balance_cpu(sg);
6063
6064 /*
6065 * First idle cpu or the first cpu(busiest) in this sched group
6066 * is eligible for doing load balancing at this and above domains.
6067 */
b0cff9d8 6068 return balance_cpu == env->dst_cpu;
23f0d209
JK
6069}
6070
1e3c88bd
PZ
6071/*
6072 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6073 * tasks if there is an imbalance.
6074 */
6075static int load_balance(int this_cpu, struct rq *this_rq,
6076 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6077 int *continue_balancing)
1e3c88bd 6078{
88b8dac0 6079 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6080 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6081 struct sched_group *group;
1e3c88bd
PZ
6082 struct rq *busiest;
6083 unsigned long flags;
e6252c3e 6084 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6085
8e45cb54
PZ
6086 struct lb_env env = {
6087 .sd = sd,
ddcdf6e7
PZ
6088 .dst_cpu = this_cpu,
6089 .dst_rq = this_rq,
88b8dac0 6090 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6091 .idle = idle,
eb95308e 6092 .loop_break = sched_nr_migrate_break,
b9403130 6093 .cpus = cpus,
0ec8aa00 6094 .fbq_type = all,
8e45cb54
PZ
6095 };
6096
cfc03118
JK
6097 /*
6098 * For NEWLY_IDLE load_balancing, we don't need to consider
6099 * other cpus in our group
6100 */
e02e60c1 6101 if (idle == CPU_NEWLY_IDLE)
cfc03118 6102 env.dst_grpmask = NULL;
cfc03118 6103
1e3c88bd
PZ
6104 cpumask_copy(cpus, cpu_active_mask);
6105
1e3c88bd
PZ
6106 schedstat_inc(sd, lb_count[idle]);
6107
6108redo:
23f0d209
JK
6109 if (!should_we_balance(&env)) {
6110 *continue_balancing = 0;
1e3c88bd 6111 goto out_balanced;
23f0d209 6112 }
1e3c88bd 6113
23f0d209 6114 group = find_busiest_group(&env);
1e3c88bd
PZ
6115 if (!group) {
6116 schedstat_inc(sd, lb_nobusyg[idle]);
6117 goto out_balanced;
6118 }
6119
b9403130 6120 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6121 if (!busiest) {
6122 schedstat_inc(sd, lb_nobusyq[idle]);
6123 goto out_balanced;
6124 }
6125
78feefc5 6126 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6127
bd939f45 6128 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6129
6130 ld_moved = 0;
6131 if (busiest->nr_running > 1) {
6132 /*
6133 * Attempt to move tasks. If find_busiest_group has found
6134 * an imbalance but busiest->nr_running <= 1, the group is
6135 * still unbalanced. ld_moved simply stays zero, so it is
6136 * correctly treated as an imbalance.
6137 */
8e45cb54 6138 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6139 env.src_cpu = busiest->cpu;
6140 env.src_rq = busiest;
6141 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6142
5d6523eb 6143more_balance:
1e3c88bd 6144 local_irq_save(flags);
78feefc5 6145 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6146
6147 /*
6148 * cur_ld_moved - load moved in current iteration
6149 * ld_moved - cumulative load moved across iterations
6150 */
6151 cur_ld_moved = move_tasks(&env);
6152 ld_moved += cur_ld_moved;
78feefc5 6153 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6154 local_irq_restore(flags);
6155
6156 /*
6157 * some other cpu did the load balance for us.
6158 */
88b8dac0
SV
6159 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6160 resched_cpu(env.dst_cpu);
6161
f1cd0858
JK
6162 if (env.flags & LBF_NEED_BREAK) {
6163 env.flags &= ~LBF_NEED_BREAK;
6164 goto more_balance;
6165 }
6166
88b8dac0
SV
6167 /*
6168 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6169 * us and move them to an alternate dst_cpu in our sched_group
6170 * where they can run. The upper limit on how many times we
6171 * iterate on same src_cpu is dependent on number of cpus in our
6172 * sched_group.
6173 *
6174 * This changes load balance semantics a bit on who can move
6175 * load to a given_cpu. In addition to the given_cpu itself
6176 * (or a ilb_cpu acting on its behalf where given_cpu is
6177 * nohz-idle), we now have balance_cpu in a position to move
6178 * load to given_cpu. In rare situations, this may cause
6179 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6180 * _independently_ and at _same_ time to move some load to
6181 * given_cpu) causing exceess load to be moved to given_cpu.
6182 * This however should not happen so much in practice and
6183 * moreover subsequent load balance cycles should correct the
6184 * excess load moved.
6185 */
6263322c 6186 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6187
7aff2e3a
VD
6188 /* Prevent to re-select dst_cpu via env's cpus */
6189 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6190
78feefc5 6191 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6192 env.dst_cpu = env.new_dst_cpu;
6263322c 6193 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6194 env.loop = 0;
6195 env.loop_break = sched_nr_migrate_break;
e02e60c1 6196
88b8dac0
SV
6197 /*
6198 * Go back to "more_balance" rather than "redo" since we
6199 * need to continue with same src_cpu.
6200 */
6201 goto more_balance;
6202 }
1e3c88bd 6203
6263322c
PZ
6204 /*
6205 * We failed to reach balance because of affinity.
6206 */
6207 if (sd_parent) {
6208 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6209
6210 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6211 *group_imbalance = 1;
6212 } else if (*group_imbalance)
6213 *group_imbalance = 0;
6214 }
6215
1e3c88bd 6216 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6217 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6218 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6219 if (!cpumask_empty(cpus)) {
6220 env.loop = 0;
6221 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6222 goto redo;
bbf18b19 6223 }
1e3c88bd
PZ
6224 goto out_balanced;
6225 }
6226 }
6227
6228 if (!ld_moved) {
6229 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6230 /*
6231 * Increment the failure counter only on periodic balance.
6232 * We do not want newidle balance, which can be very
6233 * frequent, pollute the failure counter causing
6234 * excessive cache_hot migrations and active balances.
6235 */
6236 if (idle != CPU_NEWLY_IDLE)
6237 sd->nr_balance_failed++;
1e3c88bd 6238
bd939f45 6239 if (need_active_balance(&env)) {
1e3c88bd
PZ
6240 raw_spin_lock_irqsave(&busiest->lock, flags);
6241
969c7921
TH
6242 /* don't kick the active_load_balance_cpu_stop,
6243 * if the curr task on busiest cpu can't be
6244 * moved to this_cpu
1e3c88bd
PZ
6245 */
6246 if (!cpumask_test_cpu(this_cpu,
fa17b507 6247 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6248 raw_spin_unlock_irqrestore(&busiest->lock,
6249 flags);
8e45cb54 6250 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6251 goto out_one_pinned;
6252 }
6253
969c7921
TH
6254 /*
6255 * ->active_balance synchronizes accesses to
6256 * ->active_balance_work. Once set, it's cleared
6257 * only after active load balance is finished.
6258 */
1e3c88bd
PZ
6259 if (!busiest->active_balance) {
6260 busiest->active_balance = 1;
6261 busiest->push_cpu = this_cpu;
6262 active_balance = 1;
6263 }
6264 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6265
bd939f45 6266 if (active_balance) {
969c7921
TH
6267 stop_one_cpu_nowait(cpu_of(busiest),
6268 active_load_balance_cpu_stop, busiest,
6269 &busiest->active_balance_work);
bd939f45 6270 }
1e3c88bd
PZ
6271
6272 /*
6273 * We've kicked active balancing, reset the failure
6274 * counter.
6275 */
6276 sd->nr_balance_failed = sd->cache_nice_tries+1;
6277 }
6278 } else
6279 sd->nr_balance_failed = 0;
6280
6281 if (likely(!active_balance)) {
6282 /* We were unbalanced, so reset the balancing interval */
6283 sd->balance_interval = sd->min_interval;
6284 } else {
6285 /*
6286 * If we've begun active balancing, start to back off. This
6287 * case may not be covered by the all_pinned logic if there
6288 * is only 1 task on the busy runqueue (because we don't call
6289 * move_tasks).
6290 */
6291 if (sd->balance_interval < sd->max_interval)
6292 sd->balance_interval *= 2;
6293 }
6294
1e3c88bd
PZ
6295 goto out;
6296
6297out_balanced:
6298 schedstat_inc(sd, lb_balanced[idle]);
6299
6300 sd->nr_balance_failed = 0;
6301
6302out_one_pinned:
6303 /* tune up the balancing interval */
8e45cb54 6304 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6305 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6306 (sd->balance_interval < sd->max_interval))
6307 sd->balance_interval *= 2;
6308
46e49b38 6309 ld_moved = 0;
1e3c88bd 6310out:
1e3c88bd
PZ
6311 return ld_moved;
6312}
6313
1e3c88bd
PZ
6314/*
6315 * idle_balance is called by schedule() if this_cpu is about to become
6316 * idle. Attempts to pull tasks from other CPUs.
6317 */
029632fb 6318void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6319{
6320 struct sched_domain *sd;
6321 int pulled_task = 0;
6322 unsigned long next_balance = jiffies + HZ;
9bd721c5 6323 u64 curr_cost = 0;
1e3c88bd 6324
78becc27 6325 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6326
6327 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6328 return;
6329
f492e12e
PZ
6330 /*
6331 * Drop the rq->lock, but keep IRQ/preempt disabled.
6332 */
6333 raw_spin_unlock(&this_rq->lock);
6334
48a16753 6335 update_blocked_averages(this_cpu);
dce840a0 6336 rcu_read_lock();
1e3c88bd
PZ
6337 for_each_domain(this_cpu, sd) {
6338 unsigned long interval;
23f0d209 6339 int continue_balancing = 1;
9bd721c5 6340 u64 t0, domain_cost;
1e3c88bd
PZ
6341
6342 if (!(sd->flags & SD_LOAD_BALANCE))
6343 continue;
6344
9bd721c5
JL
6345 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6346 break;
6347
f492e12e 6348 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6349 t0 = sched_clock_cpu(this_cpu);
6350
1e3c88bd 6351 /* If we've pulled tasks over stop searching: */
f492e12e 6352 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6353 sd, CPU_NEWLY_IDLE,
6354 &continue_balancing);
9bd721c5
JL
6355
6356 domain_cost = sched_clock_cpu(this_cpu) - t0;
6357 if (domain_cost > sd->max_newidle_lb_cost)
6358 sd->max_newidle_lb_cost = domain_cost;
6359
6360 curr_cost += domain_cost;
f492e12e 6361 }
1e3c88bd
PZ
6362
6363 interval = msecs_to_jiffies(sd->balance_interval);
6364 if (time_after(next_balance, sd->last_balance + interval))
6365 next_balance = sd->last_balance + interval;
d5ad140b
NR
6366 if (pulled_task) {
6367 this_rq->idle_stamp = 0;
1e3c88bd 6368 break;
d5ad140b 6369 }
1e3c88bd 6370 }
dce840a0 6371 rcu_read_unlock();
f492e12e
PZ
6372
6373 raw_spin_lock(&this_rq->lock);
6374
1e3c88bd
PZ
6375 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6376 /*
6377 * We are going idle. next_balance may be set based on
6378 * a busy processor. So reset next_balance.
6379 */
6380 this_rq->next_balance = next_balance;
6381 }
9bd721c5
JL
6382
6383 if (curr_cost > this_rq->max_idle_balance_cost)
6384 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6385}
6386
6387/*
969c7921
TH
6388 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6389 * running tasks off the busiest CPU onto idle CPUs. It requires at
6390 * least 1 task to be running on each physical CPU where possible, and
6391 * avoids physical / logical imbalances.
1e3c88bd 6392 */
969c7921 6393static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6394{
969c7921
TH
6395 struct rq *busiest_rq = data;
6396 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6397 int target_cpu = busiest_rq->push_cpu;
969c7921 6398 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6399 struct sched_domain *sd;
969c7921
TH
6400
6401 raw_spin_lock_irq(&busiest_rq->lock);
6402
6403 /* make sure the requested cpu hasn't gone down in the meantime */
6404 if (unlikely(busiest_cpu != smp_processor_id() ||
6405 !busiest_rq->active_balance))
6406 goto out_unlock;
1e3c88bd
PZ
6407
6408 /* Is there any task to move? */
6409 if (busiest_rq->nr_running <= 1)
969c7921 6410 goto out_unlock;
1e3c88bd
PZ
6411
6412 /*
6413 * This condition is "impossible", if it occurs
6414 * we need to fix it. Originally reported by
6415 * Bjorn Helgaas on a 128-cpu setup.
6416 */
6417 BUG_ON(busiest_rq == target_rq);
6418
6419 /* move a task from busiest_rq to target_rq */
6420 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6421
6422 /* Search for an sd spanning us and the target CPU. */
dce840a0 6423 rcu_read_lock();
1e3c88bd
PZ
6424 for_each_domain(target_cpu, sd) {
6425 if ((sd->flags & SD_LOAD_BALANCE) &&
6426 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6427 break;
6428 }
6429
6430 if (likely(sd)) {
8e45cb54
PZ
6431 struct lb_env env = {
6432 .sd = sd,
ddcdf6e7
PZ
6433 .dst_cpu = target_cpu,
6434 .dst_rq = target_rq,
6435 .src_cpu = busiest_rq->cpu,
6436 .src_rq = busiest_rq,
8e45cb54
PZ
6437 .idle = CPU_IDLE,
6438 };
6439
1e3c88bd
PZ
6440 schedstat_inc(sd, alb_count);
6441
8e45cb54 6442 if (move_one_task(&env))
1e3c88bd
PZ
6443 schedstat_inc(sd, alb_pushed);
6444 else
6445 schedstat_inc(sd, alb_failed);
6446 }
dce840a0 6447 rcu_read_unlock();
1e3c88bd 6448 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6449out_unlock:
6450 busiest_rq->active_balance = 0;
6451 raw_spin_unlock_irq(&busiest_rq->lock);
6452 return 0;
1e3c88bd
PZ
6453}
6454
3451d024 6455#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6456/*
6457 * idle load balancing details
83cd4fe2
VP
6458 * - When one of the busy CPUs notice that there may be an idle rebalancing
6459 * needed, they will kick the idle load balancer, which then does idle
6460 * load balancing for all the idle CPUs.
6461 */
1e3c88bd 6462static struct {
83cd4fe2 6463 cpumask_var_t idle_cpus_mask;
0b005cf5 6464 atomic_t nr_cpus;
83cd4fe2
VP
6465 unsigned long next_balance; /* in jiffy units */
6466} nohz ____cacheline_aligned;
1e3c88bd 6467
8e7fbcbc 6468static inline int find_new_ilb(int call_cpu)
1e3c88bd 6469{
0b005cf5 6470 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6471
786d6dc7
SS
6472 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6473 return ilb;
6474
6475 return nr_cpu_ids;
1e3c88bd 6476}
1e3c88bd 6477
83cd4fe2
VP
6478/*
6479 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6480 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6481 * CPU (if there is one).
6482 */
6483static void nohz_balancer_kick(int cpu)
6484{
6485 int ilb_cpu;
6486
6487 nohz.next_balance++;
6488
0b005cf5 6489 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6490
0b005cf5
SS
6491 if (ilb_cpu >= nr_cpu_ids)
6492 return;
83cd4fe2 6493
cd490c5b 6494 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6495 return;
6496 /*
6497 * Use smp_send_reschedule() instead of resched_cpu().
6498 * This way we generate a sched IPI on the target cpu which
6499 * is idle. And the softirq performing nohz idle load balance
6500 * will be run before returning from the IPI.
6501 */
6502 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6503 return;
6504}
6505
c1cc017c 6506static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6507{
6508 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6509 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6510 atomic_dec(&nohz.nr_cpus);
6511 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6512 }
6513}
6514
69e1e811
SS
6515static inline void set_cpu_sd_state_busy(void)
6516{
6517 struct sched_domain *sd;
69e1e811 6518
69e1e811 6519 rcu_read_lock();
424c93fe 6520 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6521
6522 if (!sd || !sd->nohz_idle)
6523 goto unlock;
6524 sd->nohz_idle = 0;
6525
6526 for (; sd; sd = sd->parent)
69e1e811 6527 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6528unlock:
69e1e811
SS
6529 rcu_read_unlock();
6530}
6531
6532void set_cpu_sd_state_idle(void)
6533{
6534 struct sched_domain *sd;
69e1e811 6535
69e1e811 6536 rcu_read_lock();
424c93fe 6537 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6538
6539 if (!sd || sd->nohz_idle)
6540 goto unlock;
6541 sd->nohz_idle = 1;
6542
6543 for (; sd; sd = sd->parent)
69e1e811 6544 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6545unlock:
69e1e811
SS
6546 rcu_read_unlock();
6547}
6548
1e3c88bd 6549/*
c1cc017c 6550 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6551 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6552 */
c1cc017c 6553void nohz_balance_enter_idle(int cpu)
1e3c88bd 6554{
71325960
SS
6555 /*
6556 * If this cpu is going down, then nothing needs to be done.
6557 */
6558 if (!cpu_active(cpu))
6559 return;
6560
c1cc017c
AS
6561 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6562 return;
1e3c88bd 6563
c1cc017c
AS
6564 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6565 atomic_inc(&nohz.nr_cpus);
6566 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6567}
71325960 6568
0db0628d 6569static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6570 unsigned long action, void *hcpu)
6571{
6572 switch (action & ~CPU_TASKS_FROZEN) {
6573 case CPU_DYING:
c1cc017c 6574 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6575 return NOTIFY_OK;
6576 default:
6577 return NOTIFY_DONE;
6578 }
6579}
1e3c88bd
PZ
6580#endif
6581
6582static DEFINE_SPINLOCK(balancing);
6583
49c022e6
PZ
6584/*
6585 * Scale the max load_balance interval with the number of CPUs in the system.
6586 * This trades load-balance latency on larger machines for less cross talk.
6587 */
029632fb 6588void update_max_interval(void)
49c022e6
PZ
6589{
6590 max_load_balance_interval = HZ*num_online_cpus()/10;
6591}
6592
1e3c88bd
PZ
6593/*
6594 * It checks each scheduling domain to see if it is due to be balanced,
6595 * and initiates a balancing operation if so.
6596 *
b9b0853a 6597 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6598 */
6599static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6600{
23f0d209 6601 int continue_balancing = 1;
1e3c88bd
PZ
6602 struct rq *rq = cpu_rq(cpu);
6603 unsigned long interval;
04f733b4 6604 struct sched_domain *sd;
1e3c88bd
PZ
6605 /* Earliest time when we have to do rebalance again */
6606 unsigned long next_balance = jiffies + 60*HZ;
6607 int update_next_balance = 0;
f48627e6
JL
6608 int need_serialize, need_decay = 0;
6609 u64 max_cost = 0;
1e3c88bd 6610
48a16753 6611 update_blocked_averages(cpu);
2069dd75 6612
dce840a0 6613 rcu_read_lock();
1e3c88bd 6614 for_each_domain(cpu, sd) {
f48627e6
JL
6615 /*
6616 * Decay the newidle max times here because this is a regular
6617 * visit to all the domains. Decay ~1% per second.
6618 */
6619 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6620 sd->max_newidle_lb_cost =
6621 (sd->max_newidle_lb_cost * 253) / 256;
6622 sd->next_decay_max_lb_cost = jiffies + HZ;
6623 need_decay = 1;
6624 }
6625 max_cost += sd->max_newidle_lb_cost;
6626
1e3c88bd
PZ
6627 if (!(sd->flags & SD_LOAD_BALANCE))
6628 continue;
6629
f48627e6
JL
6630 /*
6631 * Stop the load balance at this level. There is another
6632 * CPU in our sched group which is doing load balancing more
6633 * actively.
6634 */
6635 if (!continue_balancing) {
6636 if (need_decay)
6637 continue;
6638 break;
6639 }
6640
1e3c88bd
PZ
6641 interval = sd->balance_interval;
6642 if (idle != CPU_IDLE)
6643 interval *= sd->busy_factor;
6644
6645 /* scale ms to jiffies */
6646 interval = msecs_to_jiffies(interval);
49c022e6 6647 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6648
6649 need_serialize = sd->flags & SD_SERIALIZE;
6650
6651 if (need_serialize) {
6652 if (!spin_trylock(&balancing))
6653 goto out;
6654 }
6655
6656 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6657 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6658 /*
6263322c 6659 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6660 * env->dst_cpu, so we can't know our idle
6661 * state even if we migrated tasks. Update it.
1e3c88bd 6662 */
de5eb2dd 6663 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6664 }
6665 sd->last_balance = jiffies;
6666 }
6667 if (need_serialize)
6668 spin_unlock(&balancing);
6669out:
6670 if (time_after(next_balance, sd->last_balance + interval)) {
6671 next_balance = sd->last_balance + interval;
6672 update_next_balance = 1;
6673 }
f48627e6
JL
6674 }
6675 if (need_decay) {
1e3c88bd 6676 /*
f48627e6
JL
6677 * Ensure the rq-wide value also decays but keep it at a
6678 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6679 */
f48627e6
JL
6680 rq->max_idle_balance_cost =
6681 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6682 }
dce840a0 6683 rcu_read_unlock();
1e3c88bd
PZ
6684
6685 /*
6686 * next_balance will be updated only when there is a need.
6687 * When the cpu is attached to null domain for ex, it will not be
6688 * updated.
6689 */
6690 if (likely(update_next_balance))
6691 rq->next_balance = next_balance;
6692}
6693
3451d024 6694#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6695/*
3451d024 6696 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6697 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6698 */
83cd4fe2
VP
6699static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6700{
6701 struct rq *this_rq = cpu_rq(this_cpu);
6702 struct rq *rq;
6703 int balance_cpu;
6704
1c792db7
SS
6705 if (idle != CPU_IDLE ||
6706 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6707 goto end;
83cd4fe2
VP
6708
6709 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6710 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6711 continue;
6712
6713 /*
6714 * If this cpu gets work to do, stop the load balancing
6715 * work being done for other cpus. Next load
6716 * balancing owner will pick it up.
6717 */
1c792db7 6718 if (need_resched())
83cd4fe2 6719 break;
83cd4fe2 6720
5ed4f1d9
VG
6721 rq = cpu_rq(balance_cpu);
6722
6723 raw_spin_lock_irq(&rq->lock);
6724 update_rq_clock(rq);
6725 update_idle_cpu_load(rq);
6726 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6727
6728 rebalance_domains(balance_cpu, CPU_IDLE);
6729
83cd4fe2
VP
6730 if (time_after(this_rq->next_balance, rq->next_balance))
6731 this_rq->next_balance = rq->next_balance;
6732 }
6733 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6734end:
6735 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6736}
6737
6738/*
0b005cf5
SS
6739 * Current heuristic for kicking the idle load balancer in the presence
6740 * of an idle cpu is the system.
6741 * - This rq has more than one task.
6742 * - At any scheduler domain level, this cpu's scheduler group has multiple
6743 * busy cpu's exceeding the group's power.
6744 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6745 * domain span are idle.
83cd4fe2
VP
6746 */
6747static inline int nohz_kick_needed(struct rq *rq, int cpu)
6748{
6749 unsigned long now = jiffies;
0b005cf5 6750 struct sched_domain *sd;
83cd4fe2 6751
1c792db7 6752 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6753 return 0;
6754
1c792db7
SS
6755 /*
6756 * We may be recently in ticked or tickless idle mode. At the first
6757 * busy tick after returning from idle, we will update the busy stats.
6758 */
69e1e811 6759 set_cpu_sd_state_busy();
c1cc017c 6760 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6761
6762 /*
6763 * None are in tickless mode and hence no need for NOHZ idle load
6764 * balancing.
6765 */
6766 if (likely(!atomic_read(&nohz.nr_cpus)))
6767 return 0;
1c792db7
SS
6768
6769 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6770 return 0;
6771
0b005cf5
SS
6772 if (rq->nr_running >= 2)
6773 goto need_kick;
83cd4fe2 6774
067491b7 6775 rcu_read_lock();
0b005cf5
SS
6776 for_each_domain(cpu, sd) {
6777 struct sched_group *sg = sd->groups;
6778 struct sched_group_power *sgp = sg->sgp;
6779 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6780
0b005cf5 6781 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6782 goto need_kick_unlock;
0b005cf5
SS
6783
6784 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6785 && (cpumask_first_and(nohz.idle_cpus_mask,
6786 sched_domain_span(sd)) < cpu))
067491b7 6787 goto need_kick_unlock;
0b005cf5
SS
6788
6789 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6790 break;
83cd4fe2 6791 }
067491b7 6792 rcu_read_unlock();
83cd4fe2 6793 return 0;
067491b7
PZ
6794
6795need_kick_unlock:
6796 rcu_read_unlock();
0b005cf5
SS
6797need_kick:
6798 return 1;
83cd4fe2
VP
6799}
6800#else
6801static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6802#endif
6803
6804/*
6805 * run_rebalance_domains is triggered when needed from the scheduler tick.
6806 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6807 */
1e3c88bd
PZ
6808static void run_rebalance_domains(struct softirq_action *h)
6809{
6810 int this_cpu = smp_processor_id();
6811 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6812 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6813 CPU_IDLE : CPU_NOT_IDLE;
6814
6815 rebalance_domains(this_cpu, idle);
6816
1e3c88bd 6817 /*
83cd4fe2 6818 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6819 * balancing on behalf of the other idle cpus whose ticks are
6820 * stopped.
6821 */
83cd4fe2 6822 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6823}
6824
6825static inline int on_null_domain(int cpu)
6826{
90a6501f 6827 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6828}
6829
6830/*
6831 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6832 */
029632fb 6833void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6834{
1e3c88bd
PZ
6835 /* Don't need to rebalance while attached to NULL domain */
6836 if (time_after_eq(jiffies, rq->next_balance) &&
6837 likely(!on_null_domain(cpu)))
6838 raise_softirq(SCHED_SOFTIRQ);
3451d024 6839#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6840 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6841 nohz_balancer_kick(cpu);
6842#endif
1e3c88bd
PZ
6843}
6844
0bcdcf28
CE
6845static void rq_online_fair(struct rq *rq)
6846{
6847 update_sysctl();
6848}
6849
6850static void rq_offline_fair(struct rq *rq)
6851{
6852 update_sysctl();
a4c96ae3
PB
6853
6854 /* Ensure any throttled groups are reachable by pick_next_task */
6855 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6856}
6857
55e12e5e 6858#endif /* CONFIG_SMP */
e1d1484f 6859
bf0f6f24
IM
6860/*
6861 * scheduler tick hitting a task of our scheduling class:
6862 */
8f4d37ec 6863static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6864{
6865 struct cfs_rq *cfs_rq;
6866 struct sched_entity *se = &curr->se;
6867
6868 for_each_sched_entity(se) {
6869 cfs_rq = cfs_rq_of(se);
8f4d37ec 6870 entity_tick(cfs_rq, se, queued);
bf0f6f24 6871 }
18bf2805 6872
10e84b97 6873 if (numabalancing_enabled)
cbee9f88 6874 task_tick_numa(rq, curr);
3d59eebc 6875
18bf2805 6876 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6877}
6878
6879/*
cd29fe6f
PZ
6880 * called on fork with the child task as argument from the parent's context
6881 * - child not yet on the tasklist
6882 * - preemption disabled
bf0f6f24 6883 */
cd29fe6f 6884static void task_fork_fair(struct task_struct *p)
bf0f6f24 6885{
4fc420c9
DN
6886 struct cfs_rq *cfs_rq;
6887 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6888 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6889 struct rq *rq = this_rq();
6890 unsigned long flags;
6891
05fa785c 6892 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6893
861d034e
PZ
6894 update_rq_clock(rq);
6895
4fc420c9
DN
6896 cfs_rq = task_cfs_rq(current);
6897 curr = cfs_rq->curr;
6898
6c9a27f5
DN
6899 /*
6900 * Not only the cpu but also the task_group of the parent might have
6901 * been changed after parent->se.parent,cfs_rq were copied to
6902 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6903 * of child point to valid ones.
6904 */
6905 rcu_read_lock();
6906 __set_task_cpu(p, this_cpu);
6907 rcu_read_unlock();
bf0f6f24 6908
7109c442 6909 update_curr(cfs_rq);
cd29fe6f 6910
b5d9d734
MG
6911 if (curr)
6912 se->vruntime = curr->vruntime;
aeb73b04 6913 place_entity(cfs_rq, se, 1);
4d78e7b6 6914
cd29fe6f 6915 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6916 /*
edcb60a3
IM
6917 * Upon rescheduling, sched_class::put_prev_task() will place
6918 * 'current' within the tree based on its new key value.
6919 */
4d78e7b6 6920 swap(curr->vruntime, se->vruntime);
aec0a514 6921 resched_task(rq->curr);
4d78e7b6 6922 }
bf0f6f24 6923
88ec22d3
PZ
6924 se->vruntime -= cfs_rq->min_vruntime;
6925
05fa785c 6926 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6927}
6928
cb469845
SR
6929/*
6930 * Priority of the task has changed. Check to see if we preempt
6931 * the current task.
6932 */
da7a735e
PZ
6933static void
6934prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6935{
da7a735e
PZ
6936 if (!p->se.on_rq)
6937 return;
6938
cb469845
SR
6939 /*
6940 * Reschedule if we are currently running on this runqueue and
6941 * our priority decreased, or if we are not currently running on
6942 * this runqueue and our priority is higher than the current's
6943 */
da7a735e 6944 if (rq->curr == p) {
cb469845
SR
6945 if (p->prio > oldprio)
6946 resched_task(rq->curr);
6947 } else
15afe09b 6948 check_preempt_curr(rq, p, 0);
cb469845
SR
6949}
6950
da7a735e
PZ
6951static void switched_from_fair(struct rq *rq, struct task_struct *p)
6952{
6953 struct sched_entity *se = &p->se;
6954 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6955
6956 /*
6957 * Ensure the task's vruntime is normalized, so that when its
6958 * switched back to the fair class the enqueue_entity(.flags=0) will
6959 * do the right thing.
6960 *
6961 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6962 * have normalized the vruntime, if it was !on_rq, then only when
6963 * the task is sleeping will it still have non-normalized vruntime.
6964 */
6965 if (!se->on_rq && p->state != TASK_RUNNING) {
6966 /*
6967 * Fix up our vruntime so that the current sleep doesn't
6968 * cause 'unlimited' sleep bonus.
6969 */
6970 place_entity(cfs_rq, se, 0);
6971 se->vruntime -= cfs_rq->min_vruntime;
6972 }
9ee474f5 6973
141965c7 6974#ifdef CONFIG_SMP
9ee474f5
PT
6975 /*
6976 * Remove our load from contribution when we leave sched_fair
6977 * and ensure we don't carry in an old decay_count if we
6978 * switch back.
6979 */
87e3c8ae
KT
6980 if (se->avg.decay_count) {
6981 __synchronize_entity_decay(se);
6982 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6983 }
6984#endif
da7a735e
PZ
6985}
6986
cb469845
SR
6987/*
6988 * We switched to the sched_fair class.
6989 */
da7a735e 6990static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6991{
da7a735e
PZ
6992 if (!p->se.on_rq)
6993 return;
6994
cb469845
SR
6995 /*
6996 * We were most likely switched from sched_rt, so
6997 * kick off the schedule if running, otherwise just see
6998 * if we can still preempt the current task.
6999 */
da7a735e 7000 if (rq->curr == p)
cb469845
SR
7001 resched_task(rq->curr);
7002 else
15afe09b 7003 check_preempt_curr(rq, p, 0);
cb469845
SR
7004}
7005
83b699ed
SV
7006/* Account for a task changing its policy or group.
7007 *
7008 * This routine is mostly called to set cfs_rq->curr field when a task
7009 * migrates between groups/classes.
7010 */
7011static void set_curr_task_fair(struct rq *rq)
7012{
7013 struct sched_entity *se = &rq->curr->se;
7014
ec12cb7f
PT
7015 for_each_sched_entity(se) {
7016 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7017
7018 set_next_entity(cfs_rq, se);
7019 /* ensure bandwidth has been allocated on our new cfs_rq */
7020 account_cfs_rq_runtime(cfs_rq, 0);
7021 }
83b699ed
SV
7022}
7023
029632fb
PZ
7024void init_cfs_rq(struct cfs_rq *cfs_rq)
7025{
7026 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7027 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7028#ifndef CONFIG_64BIT
7029 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7030#endif
141965c7 7031#ifdef CONFIG_SMP
9ee474f5 7032 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7033 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7034#endif
029632fb
PZ
7035}
7036
810b3817 7037#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7038static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7039{
aff3e498 7040 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7041 /*
7042 * If the task was not on the rq at the time of this cgroup movement
7043 * it must have been asleep, sleeping tasks keep their ->vruntime
7044 * absolute on their old rq until wakeup (needed for the fair sleeper
7045 * bonus in place_entity()).
7046 *
7047 * If it was on the rq, we've just 'preempted' it, which does convert
7048 * ->vruntime to a relative base.
7049 *
7050 * Make sure both cases convert their relative position when migrating
7051 * to another cgroup's rq. This does somewhat interfere with the
7052 * fair sleeper stuff for the first placement, but who cares.
7053 */
7ceff013
DN
7054 /*
7055 * When !on_rq, vruntime of the task has usually NOT been normalized.
7056 * But there are some cases where it has already been normalized:
7057 *
7058 * - Moving a forked child which is waiting for being woken up by
7059 * wake_up_new_task().
62af3783
DN
7060 * - Moving a task which has been woken up by try_to_wake_up() and
7061 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7062 *
7063 * To prevent boost or penalty in the new cfs_rq caused by delta
7064 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7065 */
62af3783 7066 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7067 on_rq = 1;
7068
b2b5ce02
PZ
7069 if (!on_rq)
7070 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7071 set_task_rq(p, task_cpu(p));
aff3e498
PT
7072 if (!on_rq) {
7073 cfs_rq = cfs_rq_of(&p->se);
7074 p->se.vruntime += cfs_rq->min_vruntime;
7075#ifdef CONFIG_SMP
7076 /*
7077 * migrate_task_rq_fair() will have removed our previous
7078 * contribution, but we must synchronize for ongoing future
7079 * decay.
7080 */
7081 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7082 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7083#endif
7084 }
810b3817 7085}
029632fb
PZ
7086
7087void free_fair_sched_group(struct task_group *tg)
7088{
7089 int i;
7090
7091 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7092
7093 for_each_possible_cpu(i) {
7094 if (tg->cfs_rq)
7095 kfree(tg->cfs_rq[i]);
7096 if (tg->se)
7097 kfree(tg->se[i]);
7098 }
7099
7100 kfree(tg->cfs_rq);
7101 kfree(tg->se);
7102}
7103
7104int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7105{
7106 struct cfs_rq *cfs_rq;
7107 struct sched_entity *se;
7108 int i;
7109
7110 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7111 if (!tg->cfs_rq)
7112 goto err;
7113 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7114 if (!tg->se)
7115 goto err;
7116
7117 tg->shares = NICE_0_LOAD;
7118
7119 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7120
7121 for_each_possible_cpu(i) {
7122 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7123 GFP_KERNEL, cpu_to_node(i));
7124 if (!cfs_rq)
7125 goto err;
7126
7127 se = kzalloc_node(sizeof(struct sched_entity),
7128 GFP_KERNEL, cpu_to_node(i));
7129 if (!se)
7130 goto err_free_rq;
7131
7132 init_cfs_rq(cfs_rq);
7133 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7134 }
7135
7136 return 1;
7137
7138err_free_rq:
7139 kfree(cfs_rq);
7140err:
7141 return 0;
7142}
7143
7144void unregister_fair_sched_group(struct task_group *tg, int cpu)
7145{
7146 struct rq *rq = cpu_rq(cpu);
7147 unsigned long flags;
7148
7149 /*
7150 * Only empty task groups can be destroyed; so we can speculatively
7151 * check on_list without danger of it being re-added.
7152 */
7153 if (!tg->cfs_rq[cpu]->on_list)
7154 return;
7155
7156 raw_spin_lock_irqsave(&rq->lock, flags);
7157 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7158 raw_spin_unlock_irqrestore(&rq->lock, flags);
7159}
7160
7161void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7162 struct sched_entity *se, int cpu,
7163 struct sched_entity *parent)
7164{
7165 struct rq *rq = cpu_rq(cpu);
7166
7167 cfs_rq->tg = tg;
7168 cfs_rq->rq = rq;
029632fb
PZ
7169 init_cfs_rq_runtime(cfs_rq);
7170
7171 tg->cfs_rq[cpu] = cfs_rq;
7172 tg->se[cpu] = se;
7173
7174 /* se could be NULL for root_task_group */
7175 if (!se)
7176 return;
7177
7178 if (!parent)
7179 se->cfs_rq = &rq->cfs;
7180 else
7181 se->cfs_rq = parent->my_q;
7182
7183 se->my_q = cfs_rq;
7184 update_load_set(&se->load, 0);
7185 se->parent = parent;
7186}
7187
7188static DEFINE_MUTEX(shares_mutex);
7189
7190int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7191{
7192 int i;
7193 unsigned long flags;
7194
7195 /*
7196 * We can't change the weight of the root cgroup.
7197 */
7198 if (!tg->se[0])
7199 return -EINVAL;
7200
7201 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7202
7203 mutex_lock(&shares_mutex);
7204 if (tg->shares == shares)
7205 goto done;
7206
7207 tg->shares = shares;
7208 for_each_possible_cpu(i) {
7209 struct rq *rq = cpu_rq(i);
7210 struct sched_entity *se;
7211
7212 se = tg->se[i];
7213 /* Propagate contribution to hierarchy */
7214 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7215
7216 /* Possible calls to update_curr() need rq clock */
7217 update_rq_clock(rq);
17bc14b7 7218 for_each_sched_entity(se)
029632fb
PZ
7219 update_cfs_shares(group_cfs_rq(se));
7220 raw_spin_unlock_irqrestore(&rq->lock, flags);
7221 }
7222
7223done:
7224 mutex_unlock(&shares_mutex);
7225 return 0;
7226}
7227#else /* CONFIG_FAIR_GROUP_SCHED */
7228
7229void free_fair_sched_group(struct task_group *tg) { }
7230
7231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7232{
7233 return 1;
7234}
7235
7236void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7237
7238#endif /* CONFIG_FAIR_GROUP_SCHED */
7239
810b3817 7240
6d686f45 7241static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7242{
7243 struct sched_entity *se = &task->se;
0d721cea
PW
7244 unsigned int rr_interval = 0;
7245
7246 /*
7247 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7248 * idle runqueue:
7249 */
0d721cea 7250 if (rq->cfs.load.weight)
a59f4e07 7251 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7252
7253 return rr_interval;
7254}
7255
bf0f6f24
IM
7256/*
7257 * All the scheduling class methods:
7258 */
029632fb 7259const struct sched_class fair_sched_class = {
5522d5d5 7260 .next = &idle_sched_class,
bf0f6f24
IM
7261 .enqueue_task = enqueue_task_fair,
7262 .dequeue_task = dequeue_task_fair,
7263 .yield_task = yield_task_fair,
d95f4122 7264 .yield_to_task = yield_to_task_fair,
bf0f6f24 7265
2e09bf55 7266 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7267
7268 .pick_next_task = pick_next_task_fair,
7269 .put_prev_task = put_prev_task_fair,
7270
681f3e68 7271#ifdef CONFIG_SMP
4ce72a2c 7272 .select_task_rq = select_task_rq_fair,
0a74bef8 7273 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7274
0bcdcf28
CE
7275 .rq_online = rq_online_fair,
7276 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7277
7278 .task_waking = task_waking_fair,
681f3e68 7279#endif
bf0f6f24 7280
83b699ed 7281 .set_curr_task = set_curr_task_fair,
bf0f6f24 7282 .task_tick = task_tick_fair,
cd29fe6f 7283 .task_fork = task_fork_fair,
cb469845
SR
7284
7285 .prio_changed = prio_changed_fair,
da7a735e 7286 .switched_from = switched_from_fair,
cb469845 7287 .switched_to = switched_to_fair,
810b3817 7288
0d721cea
PW
7289 .get_rr_interval = get_rr_interval_fair,
7290
810b3817 7291#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7292 .task_move_group = task_move_group_fair,
810b3817 7293#endif
bf0f6f24
IM
7294};
7295
7296#ifdef CONFIG_SCHED_DEBUG
029632fb 7297void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7298{
bf0f6f24
IM
7299 struct cfs_rq *cfs_rq;
7300
5973e5b9 7301 rcu_read_lock();
c3b64f1e 7302 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7303 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7304 rcu_read_unlock();
bf0f6f24
IM
7305}
7306#endif
029632fb
PZ
7307
7308__init void init_sched_fair_class(void)
7309{
7310#ifdef CONFIG_SMP
7311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7312
3451d024 7313#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7314 nohz.next_balance = jiffies;
029632fb 7315 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7316 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7317#endif
7318#endif /* SMP */
7319
7320}