]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
lib/rbtree_test.c: support rb_root_cached
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c 371/* Iterate thr' all leaf cfs_rq's on a runqueue */
a9e7f654
TH
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
62160e3f
IM
430static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431{
432 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
433}
434
435#define entity_is_task(se) 1
436
b758149c
PZ
437#define for_each_sched_entity(se) \
438 for (; se; se = NULL)
bf0f6f24 439
b758149c 440static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 441{
b758149c 442 return &task_rq(p)->cfs;
bf0f6f24
IM
443}
444
b758149c
PZ
445static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446{
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451}
452
453/* runqueue "owned" by this group */
454static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455{
456 return NULL;
457}
458
3d4b47b4
PZ
459static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460{
461}
462
463static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464{
465}
466
a9e7f654
TH
467#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 469
b758149c
PZ
470static inline struct sched_entity *parent_entity(struct sched_entity *se)
471{
472 return NULL;
473}
474
464b7527
PZ
475static inline void
476find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477{
478}
479
b758149c
PZ
480#endif /* CONFIG_FAIR_GROUP_SCHED */
481
6c16a6dc 482static __always_inline
9dbdb155 483void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
484
485/**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
1bf08230 489static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 490{
1bf08230 491 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 492 if (delta > 0)
1bf08230 493 max_vruntime = vruntime;
02e0431a 494
1bf08230 495 return max_vruntime;
02e0431a
PZ
496}
497
0702e3eb 498static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
499{
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505}
506
54fdc581
FC
507static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509{
510 return (s64)(a->vruntime - b->vruntime) < 0;
511}
512
1af5f730
PZ
513static void update_min_vruntime(struct cfs_rq *cfs_rq)
514{
b60205c7
PZ
515 struct sched_entity *curr = cfs_rq->curr;
516
1af5f730
PZ
517 u64 vruntime = cfs_rq->min_vruntime;
518
b60205c7
PZ
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
1af5f730
PZ
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
b60205c7 531 if (!curr)
1af5f730
PZ
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
1bf08230 537 /* ensure we never gain time by being placed backwards. */
1af5f730 538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
539#ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542#endif
1af5f730
PZ
543}
544
bf0f6f24
IM
545/*
546 * Enqueue an entity into the rb-tree:
547 */
0702e3eb 548static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
549{
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
bf0f6f24
IM
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
2bd2d6f2 565 if (entity_before(se, entry)) {
bf0f6f24
IM
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
1af5f730 577 if (leftmost)
57cb499d 578 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
582}
583
0702e3eb 584static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 585{
3fe69747
PZ
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
3fe69747
PZ
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
3fe69747 591 }
e9acbff6 592
bf0f6f24 593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
594}
595
029632fb 596struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 597{
f4b6755f
PZ
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
604}
605
ac53db59
RR
606static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607{
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614}
615
616#ifdef CONFIG_SCHED_DEBUG
029632fb 617struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 618{
7eee3e67 619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 620
70eee74b
BS
621 if (!last)
622 return NULL;
7eee3e67
IM
623
624 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
625}
626
bf0f6f24
IM
627/**************************************************************
628 * Scheduling class statistics methods:
629 */
630
acb4a848 631int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 632 void __user *buffer, size_t *lenp,
b2be5e96
PZ
633 loff_t *ppos)
634{
8d65af78 635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 636 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
acb4a848
CE
644#define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
649#undef WRT_SYSCTL
650
b2be5e96
PZ
651 return 0;
652}
653#endif
647e7cac 654
a7be37ac 655/*
f9c0b095 656 * delta /= w
a7be37ac 657 */
9dbdb155 658static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 659{
f9c0b095 660 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
662
663 return delta;
664}
665
647e7cac
IM
666/*
667 * The idea is to set a period in which each task runs once.
668 *
532b1858 669 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
4d78e7b6
PZ
674static u64 __sched_period(unsigned long nr_running)
675{
8e2b0bf3
BF
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
4d78e7b6
PZ
680}
681
647e7cac
IM
682/*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
f9c0b095 686 * s = p*P[w/rw]
647e7cac 687 */
6d0f0ebd 688static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 689{
0a582440 690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 691
0a582440 692 for_each_sched_entity(se) {
6272d68c 693 struct load_weight *load;
3104bf03 694 struct load_weight lw;
6272d68c
LM
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
f9c0b095 698
0a582440 699 if (unlikely(!se->on_rq)) {
3104bf03 700 lw = cfs_rq->load;
0a582440
MG
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
9dbdb155 705 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
706 }
707 return slice;
bf0f6f24
IM
708}
709
647e7cac 710/*
660cc00f 711 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 712 *
f9c0b095 713 * vs = s/w
647e7cac 714 */
f9c0b095 715static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 716{
f9c0b095 717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
718}
719
a75cdaa9 720#ifdef CONFIG_SMP
283e2ed3
PZ
721
722#include "sched-pelt.h"
723
772bd008 724static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
725static unsigned long task_h_load(struct task_struct *p);
726
540247fb
YD
727/* Give new sched_entity start runnable values to heavy its load in infant time */
728void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 729{
540247fb 730 struct sched_avg *sa = &se->avg;
a75cdaa9 731
9d89c257
YD
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
b5a9b340
VG
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
9d89c257 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 754}
7ea241af 755
7dc603c9 756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 757static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 758
2b8c41da
YD
759/*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784void post_init_entity_util_avg(struct sched_entity *se)
785{
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
172895e6 788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
7dc603c9
PZ
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
3a123bbb 809 update_cfs_rq_load_avg(now, cfs_rq);
7dc603c9
PZ
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
df217913 816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
817 return;
818 }
819 }
820
df217913 821 attach_entity_cfs_rq(se);
2b8c41da
YD
822}
823
7dc603c9 824#else /* !CONFIG_SMP */
540247fb 825void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
826{
827}
2b8c41da
YD
828void post_init_entity_util_avg(struct sched_entity *se)
829{
830}
3d30544f
PZ
831static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832{
833}
7dc603c9 834#endif /* CONFIG_SMP */
a75cdaa9 835
bf0f6f24 836/*
9dbdb155 837 * Update the current task's runtime statistics.
bf0f6f24 838 */
b7cc0896 839static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 840{
429d43bc 841 struct sched_entity *curr = cfs_rq->curr;
78becc27 842 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 843 u64 delta_exec;
bf0f6f24
IM
844
845 if (unlikely(!curr))
846 return;
847
9dbdb155
PZ
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
34f28ecd 850 return;
bf0f6f24 851
8ebc91d9 852 curr->exec_start = now;
d842de87 853
9dbdb155
PZ
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
ae92882e 858 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
d842de87
SV
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
f977bb49 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 867 cpuacct_charge(curtask, delta_exec);
f06febc9 868 account_group_exec_runtime(curtask, delta_exec);
d842de87 869 }
ec12cb7f
PT
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
872}
873
6e998916
SG
874static void update_curr_fair(struct rq *rq)
875{
876 update_curr(cfs_rq_of(&rq->curr->se));
877}
878
bf0f6f24 879static inline void
5870db5b 880update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 881{
4fa8d299
JP
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
3ea94de1 893
4fa8d299 894 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
895}
896
4fa8d299 897static inline void
3ea94de1
JP
898update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899{
900 struct task_struct *p;
cb251765
MG
901 u64 delta;
902
4fa8d299
JP
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
4fa8d299 916 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
4fa8d299
JP
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 927}
3ea94de1 928
4fa8d299 929static inline void
1a3d027c
JP
930update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931{
932 struct task_struct *tsk = NULL;
4fa8d299
JP
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
4fa8d299
JP
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
946
947 if ((s64)delta < 0)
948 delta = 0;
949
4fa8d299
JP
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 952
4fa8d299
JP
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
4fa8d299
JP
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
963
964 if ((s64)delta < 0)
965 delta = 0;
966
4fa8d299
JP
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
1a3d027c 969
4fa8d299
JP
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
972
973 if (tsk) {
974 if (tsk->in_iowait) {
4fa8d299
JP
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
3ea94de1 995}
3ea94de1 996
bf0f6f24
IM
997/*
998 * Task is being enqueued - update stats:
999 */
cb251765 1000static inline void
1a3d027c 1001update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1002{
4fa8d299
JP
1003 if (!schedstat_enabled())
1004 return;
1005
bf0f6f24
IM
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
429d43bc 1010 if (se != cfs_rq->curr)
5870db5b 1011 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1015}
1016
bf0f6f24 1017static inline void
cb251765 1018update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1019{
4fa8d299
JP
1020
1021 if (!schedstat_enabled())
1022 return;
1023
bf0f6f24
IM
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
429d43bc 1028 if (se != cfs_rq->curr)
9ef0a961 1029 update_stats_wait_end(cfs_rq, se);
cb251765 1030
4fa8d299
JP
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
cb251765 1033
4fa8d299
JP
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
cb251765 1040 }
cb251765
MG
1041}
1042
bf0f6f24
IM
1043/*
1044 * We are picking a new current task - update its stats:
1045 */
1046static inline void
79303e9e 1047update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1048{
1049 /*
1050 * We are starting a new run period:
1051 */
78becc27 1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1053}
1054
bf0f6f24
IM
1055/**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
cbee9f88
PZ
1059#ifdef CONFIG_NUMA_BALANCING
1060/*
598f0ec0
MG
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
cbee9f88 1064 */
598f0ec0
MG
1065unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1067
1068/* Portion of address space to scan in MB */
1069unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1070
4b96a29b
PZ
1071/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
b5dd77c8
RR
1074struct numa_group {
1075 atomic_t refcount;
1076
1077 spinlock_t lock; /* nr_tasks, tasks */
1078 int nr_tasks;
1079 pid_t gid;
1080 int active_nodes;
1081
1082 struct rcu_head rcu;
1083 unsigned long total_faults;
1084 unsigned long max_faults_cpu;
1085 /*
1086 * Faults_cpu is used to decide whether memory should move
1087 * towards the CPU. As a consequence, these stats are weighted
1088 * more by CPU use than by memory faults.
1089 */
1090 unsigned long *faults_cpu;
1091 unsigned long faults[0];
1092};
1093
1094static inline unsigned long group_faults_priv(struct numa_group *ng);
1095static inline unsigned long group_faults_shared(struct numa_group *ng);
1096
598f0ec0
MG
1097static unsigned int task_nr_scan_windows(struct task_struct *p)
1098{
1099 unsigned long rss = 0;
1100 unsigned long nr_scan_pages;
1101
1102 /*
1103 * Calculations based on RSS as non-present and empty pages are skipped
1104 * by the PTE scanner and NUMA hinting faults should be trapped based
1105 * on resident pages
1106 */
1107 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1108 rss = get_mm_rss(p->mm);
1109 if (!rss)
1110 rss = nr_scan_pages;
1111
1112 rss = round_up(rss, nr_scan_pages);
1113 return rss / nr_scan_pages;
1114}
1115
1116/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1117#define MAX_SCAN_WINDOW 2560
1118
1119static unsigned int task_scan_min(struct task_struct *p)
1120{
316c1608 1121 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1122 unsigned int scan, floor;
1123 unsigned int windows = 1;
1124
64192658
KT
1125 if (scan_size < MAX_SCAN_WINDOW)
1126 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1127 floor = 1000 / windows;
1128
1129 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1130 return max_t(unsigned int, floor, scan);
1131}
1132
b5dd77c8
RR
1133static unsigned int task_scan_start(struct task_struct *p)
1134{
1135 unsigned long smin = task_scan_min(p);
1136 unsigned long period = smin;
1137
1138 /* Scale the maximum scan period with the amount of shared memory. */
1139 if (p->numa_group) {
1140 struct numa_group *ng = p->numa_group;
1141 unsigned long shared = group_faults_shared(ng);
1142 unsigned long private = group_faults_priv(ng);
1143
1144 period *= atomic_read(&ng->refcount);
1145 period *= shared + 1;
1146 period /= private + shared + 1;
1147 }
1148
1149 return max(smin, period);
1150}
1151
598f0ec0
MG
1152static unsigned int task_scan_max(struct task_struct *p)
1153{
b5dd77c8
RR
1154 unsigned long smin = task_scan_min(p);
1155 unsigned long smax;
598f0ec0
MG
1156
1157 /* Watch for min being lower than max due to floor calculations */
1158 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1159
1160 /* Scale the maximum scan period with the amount of shared memory. */
1161 if (p->numa_group) {
1162 struct numa_group *ng = p->numa_group;
1163 unsigned long shared = group_faults_shared(ng);
1164 unsigned long private = group_faults_priv(ng);
1165 unsigned long period = smax;
1166
1167 period *= atomic_read(&ng->refcount);
1168 period *= shared + 1;
1169 period /= private + shared + 1;
1170
1171 smax = max(smax, period);
1172 }
1173
598f0ec0
MG
1174 return max(smin, smax);
1175}
1176
0ec8aa00
PZ
1177static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1178{
1179 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1180 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1181}
1182
1183static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1184{
1185 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1186 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1187}
1188
be1e4e76
RR
1189/* Shared or private faults. */
1190#define NR_NUMA_HINT_FAULT_TYPES 2
1191
1192/* Memory and CPU locality */
1193#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1194
1195/* Averaged statistics, and temporary buffers. */
1196#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1197
e29cf08b
MG
1198pid_t task_numa_group_id(struct task_struct *p)
1199{
1200 return p->numa_group ? p->numa_group->gid : 0;
1201}
1202
44dba3d5
IM
1203/*
1204 * The averaged statistics, shared & private, memory & cpu,
1205 * occupy the first half of the array. The second half of the
1206 * array is for current counters, which are averaged into the
1207 * first set by task_numa_placement.
1208 */
1209static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1210{
44dba3d5 1211 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1212}
1213
1214static inline unsigned long task_faults(struct task_struct *p, int nid)
1215{
44dba3d5 1216 if (!p->numa_faults)
ac8e895b
MG
1217 return 0;
1218
44dba3d5
IM
1219 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1220 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1221}
1222
83e1d2cd
MG
1223static inline unsigned long group_faults(struct task_struct *p, int nid)
1224{
1225 if (!p->numa_group)
1226 return 0;
1227
44dba3d5
IM
1228 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1229 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1230}
1231
20e07dea
RR
1232static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1233{
44dba3d5
IM
1234 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1236}
1237
b5dd77c8
RR
1238static inline unsigned long group_faults_priv(struct numa_group *ng)
1239{
1240 unsigned long faults = 0;
1241 int node;
1242
1243 for_each_online_node(node) {
1244 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1245 }
1246
1247 return faults;
1248}
1249
1250static inline unsigned long group_faults_shared(struct numa_group *ng)
1251{
1252 unsigned long faults = 0;
1253 int node;
1254
1255 for_each_online_node(node) {
1256 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1257 }
1258
1259 return faults;
1260}
1261
4142c3eb
RR
1262/*
1263 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1264 * considered part of a numa group's pseudo-interleaving set. Migrations
1265 * between these nodes are slowed down, to allow things to settle down.
1266 */
1267#define ACTIVE_NODE_FRACTION 3
1268
1269static bool numa_is_active_node(int nid, struct numa_group *ng)
1270{
1271 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1272}
1273
6c6b1193
RR
1274/* Handle placement on systems where not all nodes are directly connected. */
1275static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1276 int maxdist, bool task)
1277{
1278 unsigned long score = 0;
1279 int node;
1280
1281 /*
1282 * All nodes are directly connected, and the same distance
1283 * from each other. No need for fancy placement algorithms.
1284 */
1285 if (sched_numa_topology_type == NUMA_DIRECT)
1286 return 0;
1287
1288 /*
1289 * This code is called for each node, introducing N^2 complexity,
1290 * which should be ok given the number of nodes rarely exceeds 8.
1291 */
1292 for_each_online_node(node) {
1293 unsigned long faults;
1294 int dist = node_distance(nid, node);
1295
1296 /*
1297 * The furthest away nodes in the system are not interesting
1298 * for placement; nid was already counted.
1299 */
1300 if (dist == sched_max_numa_distance || node == nid)
1301 continue;
1302
1303 /*
1304 * On systems with a backplane NUMA topology, compare groups
1305 * of nodes, and move tasks towards the group with the most
1306 * memory accesses. When comparing two nodes at distance
1307 * "hoplimit", only nodes closer by than "hoplimit" are part
1308 * of each group. Skip other nodes.
1309 */
1310 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1311 dist > maxdist)
1312 continue;
1313
1314 /* Add up the faults from nearby nodes. */
1315 if (task)
1316 faults = task_faults(p, node);
1317 else
1318 faults = group_faults(p, node);
1319
1320 /*
1321 * On systems with a glueless mesh NUMA topology, there are
1322 * no fixed "groups of nodes". Instead, nodes that are not
1323 * directly connected bounce traffic through intermediate
1324 * nodes; a numa_group can occupy any set of nodes.
1325 * The further away a node is, the less the faults count.
1326 * This seems to result in good task placement.
1327 */
1328 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1329 faults *= (sched_max_numa_distance - dist);
1330 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1331 }
1332
1333 score += faults;
1334 }
1335
1336 return score;
1337}
1338
83e1d2cd
MG
1339/*
1340 * These return the fraction of accesses done by a particular task, or
1341 * task group, on a particular numa node. The group weight is given a
1342 * larger multiplier, in order to group tasks together that are almost
1343 * evenly spread out between numa nodes.
1344 */
7bd95320
RR
1345static inline unsigned long task_weight(struct task_struct *p, int nid,
1346 int dist)
83e1d2cd 1347{
7bd95320 1348 unsigned long faults, total_faults;
83e1d2cd 1349
44dba3d5 1350 if (!p->numa_faults)
83e1d2cd
MG
1351 return 0;
1352
1353 total_faults = p->total_numa_faults;
1354
1355 if (!total_faults)
1356 return 0;
1357
7bd95320 1358 faults = task_faults(p, nid);
6c6b1193
RR
1359 faults += score_nearby_nodes(p, nid, dist, true);
1360
7bd95320 1361 return 1000 * faults / total_faults;
83e1d2cd
MG
1362}
1363
7bd95320
RR
1364static inline unsigned long group_weight(struct task_struct *p, int nid,
1365 int dist)
83e1d2cd 1366{
7bd95320
RR
1367 unsigned long faults, total_faults;
1368
1369 if (!p->numa_group)
1370 return 0;
1371
1372 total_faults = p->numa_group->total_faults;
1373
1374 if (!total_faults)
83e1d2cd
MG
1375 return 0;
1376
7bd95320 1377 faults = group_faults(p, nid);
6c6b1193
RR
1378 faults += score_nearby_nodes(p, nid, dist, false);
1379
7bd95320 1380 return 1000 * faults / total_faults;
83e1d2cd
MG
1381}
1382
10f39042
RR
1383bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1384 int src_nid, int dst_cpu)
1385{
1386 struct numa_group *ng = p->numa_group;
1387 int dst_nid = cpu_to_node(dst_cpu);
1388 int last_cpupid, this_cpupid;
1389
1390 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1391
1392 /*
1393 * Multi-stage node selection is used in conjunction with a periodic
1394 * migration fault to build a temporal task<->page relation. By using
1395 * a two-stage filter we remove short/unlikely relations.
1396 *
1397 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1398 * a task's usage of a particular page (n_p) per total usage of this
1399 * page (n_t) (in a given time-span) to a probability.
1400 *
1401 * Our periodic faults will sample this probability and getting the
1402 * same result twice in a row, given these samples are fully
1403 * independent, is then given by P(n)^2, provided our sample period
1404 * is sufficiently short compared to the usage pattern.
1405 *
1406 * This quadric squishes small probabilities, making it less likely we
1407 * act on an unlikely task<->page relation.
1408 */
1409 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1410 if (!cpupid_pid_unset(last_cpupid) &&
1411 cpupid_to_nid(last_cpupid) != dst_nid)
1412 return false;
1413
1414 /* Always allow migrate on private faults */
1415 if (cpupid_match_pid(p, last_cpupid))
1416 return true;
1417
1418 /* A shared fault, but p->numa_group has not been set up yet. */
1419 if (!ng)
1420 return true;
1421
1422 /*
4142c3eb
RR
1423 * Destination node is much more heavily used than the source
1424 * node? Allow migration.
10f39042 1425 */
4142c3eb
RR
1426 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1427 ACTIVE_NODE_FRACTION)
10f39042
RR
1428 return true;
1429
1430 /*
4142c3eb
RR
1431 * Distribute memory according to CPU & memory use on each node,
1432 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1433 *
1434 * faults_cpu(dst) 3 faults_cpu(src)
1435 * --------------- * - > ---------------
1436 * faults_mem(dst) 4 faults_mem(src)
10f39042 1437 */
4142c3eb
RR
1438 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1439 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1440}
1441
c7132dd6 1442static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1443static unsigned long source_load(int cpu, int type);
1444static unsigned long target_load(int cpu, int type);
ced549fa 1445static unsigned long capacity_of(int cpu);
58d081b5 1446
fb13c7ee 1447/* Cached statistics for all CPUs within a node */
58d081b5 1448struct numa_stats {
fb13c7ee 1449 unsigned long nr_running;
58d081b5 1450 unsigned long load;
fb13c7ee
MG
1451
1452 /* Total compute capacity of CPUs on a node */
5ef20ca1 1453 unsigned long compute_capacity;
fb13c7ee
MG
1454
1455 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1456 unsigned long task_capacity;
1b6a7495 1457 int has_free_capacity;
58d081b5 1458};
e6628d5b 1459
fb13c7ee
MG
1460/*
1461 * XXX borrowed from update_sg_lb_stats
1462 */
1463static void update_numa_stats(struct numa_stats *ns, int nid)
1464{
83d7f242
RR
1465 int smt, cpu, cpus = 0;
1466 unsigned long capacity;
fb13c7ee
MG
1467
1468 memset(ns, 0, sizeof(*ns));
1469 for_each_cpu(cpu, cpumask_of_node(nid)) {
1470 struct rq *rq = cpu_rq(cpu);
1471
1472 ns->nr_running += rq->nr_running;
c7132dd6 1473 ns->load += weighted_cpuload(rq);
ced549fa 1474 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1475
1476 cpus++;
fb13c7ee
MG
1477 }
1478
5eca82a9
PZ
1479 /*
1480 * If we raced with hotplug and there are no CPUs left in our mask
1481 * the @ns structure is NULL'ed and task_numa_compare() will
1482 * not find this node attractive.
1483 *
1b6a7495
NP
1484 * We'll either bail at !has_free_capacity, or we'll detect a huge
1485 * imbalance and bail there.
5eca82a9
PZ
1486 */
1487 if (!cpus)
1488 return;
1489
83d7f242
RR
1490 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 capacity = cpus / smt; /* cores */
1493
1494 ns->task_capacity = min_t(unsigned, capacity,
1495 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1496 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1497}
1498
58d081b5
MG
1499struct task_numa_env {
1500 struct task_struct *p;
e6628d5b 1501
58d081b5
MG
1502 int src_cpu, src_nid;
1503 int dst_cpu, dst_nid;
e6628d5b 1504
58d081b5 1505 struct numa_stats src_stats, dst_stats;
e6628d5b 1506
40ea2b42 1507 int imbalance_pct;
7bd95320 1508 int dist;
fb13c7ee
MG
1509
1510 struct task_struct *best_task;
1511 long best_imp;
58d081b5
MG
1512 int best_cpu;
1513};
1514
fb13c7ee
MG
1515static void task_numa_assign(struct task_numa_env *env,
1516 struct task_struct *p, long imp)
1517{
1518 if (env->best_task)
1519 put_task_struct(env->best_task);
bac78573
ON
1520 if (p)
1521 get_task_struct(p);
fb13c7ee
MG
1522
1523 env->best_task = p;
1524 env->best_imp = imp;
1525 env->best_cpu = env->dst_cpu;
1526}
1527
28a21745 1528static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1529 struct task_numa_env *env)
1530{
e4991b24
RR
1531 long imb, old_imb;
1532 long orig_src_load, orig_dst_load;
28a21745
RR
1533 long src_capacity, dst_capacity;
1534
1535 /*
1536 * The load is corrected for the CPU capacity available on each node.
1537 *
1538 * src_load dst_load
1539 * ------------ vs ---------
1540 * src_capacity dst_capacity
1541 */
1542 src_capacity = env->src_stats.compute_capacity;
1543 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1544
1545 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1546 if (dst_load < src_load)
1547 swap(dst_load, src_load);
e63da036
RR
1548
1549 /* Is the difference below the threshold? */
e4991b24
RR
1550 imb = dst_load * src_capacity * 100 -
1551 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1552 if (imb <= 0)
1553 return false;
1554
1555 /*
1556 * The imbalance is above the allowed threshold.
e4991b24 1557 * Compare it with the old imbalance.
e63da036 1558 */
28a21745 1559 orig_src_load = env->src_stats.load;
e4991b24 1560 orig_dst_load = env->dst_stats.load;
28a21745 1561
e4991b24
RR
1562 if (orig_dst_load < orig_src_load)
1563 swap(orig_dst_load, orig_src_load);
e63da036 1564
e4991b24
RR
1565 old_imb = orig_dst_load * src_capacity * 100 -
1566 orig_src_load * dst_capacity * env->imbalance_pct;
1567
1568 /* Would this change make things worse? */
1569 return (imb > old_imb);
e63da036
RR
1570}
1571
fb13c7ee
MG
1572/*
1573 * This checks if the overall compute and NUMA accesses of the system would
1574 * be improved if the source tasks was migrated to the target dst_cpu taking
1575 * into account that it might be best if task running on the dst_cpu should
1576 * be exchanged with the source task
1577 */
887c290e
RR
1578static void task_numa_compare(struct task_numa_env *env,
1579 long taskimp, long groupimp)
fb13c7ee
MG
1580{
1581 struct rq *src_rq = cpu_rq(env->src_cpu);
1582 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1583 struct task_struct *cur;
28a21745 1584 long src_load, dst_load;
fb13c7ee 1585 long load;
1c5d3eb3 1586 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1587 long moveimp = imp;
7bd95320 1588 int dist = env->dist;
fb13c7ee
MG
1589
1590 rcu_read_lock();
bac78573
ON
1591 cur = task_rcu_dereference(&dst_rq->curr);
1592 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1593 cur = NULL;
1594
7af68335
PZ
1595 /*
1596 * Because we have preemption enabled we can get migrated around and
1597 * end try selecting ourselves (current == env->p) as a swap candidate.
1598 */
1599 if (cur == env->p)
1600 goto unlock;
1601
fb13c7ee
MG
1602 /*
1603 * "imp" is the fault differential for the source task between the
1604 * source and destination node. Calculate the total differential for
1605 * the source task and potential destination task. The more negative
1606 * the value is, the more rmeote accesses that would be expected to
1607 * be incurred if the tasks were swapped.
1608 */
1609 if (cur) {
1610 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1611 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1612 goto unlock;
1613
887c290e
RR
1614 /*
1615 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1616 * in any group then look only at task weights.
887c290e 1617 */
ca28aa53 1618 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1619 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1620 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1621 /*
1622 * Add some hysteresis to prevent swapping the
1623 * tasks within a group over tiny differences.
1624 */
1625 if (cur->numa_group)
1626 imp -= imp/16;
887c290e 1627 } else {
ca28aa53
RR
1628 /*
1629 * Compare the group weights. If a task is all by
1630 * itself (not part of a group), use the task weight
1631 * instead.
1632 */
ca28aa53 1633 if (cur->numa_group)
7bd95320
RR
1634 imp += group_weight(cur, env->src_nid, dist) -
1635 group_weight(cur, env->dst_nid, dist);
ca28aa53 1636 else
7bd95320
RR
1637 imp += task_weight(cur, env->src_nid, dist) -
1638 task_weight(cur, env->dst_nid, dist);
887c290e 1639 }
fb13c7ee
MG
1640 }
1641
0132c3e1 1642 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1643 goto unlock;
1644
1645 if (!cur) {
1646 /* Is there capacity at our destination? */
b932c03c 1647 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1648 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1649 goto unlock;
1650
1651 goto balance;
1652 }
1653
1654 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1655 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1656 dst_rq->nr_running == 1)
fb13c7ee
MG
1657 goto assign;
1658
1659 /*
1660 * In the overloaded case, try and keep the load balanced.
1661 */
1662balance:
e720fff6
PZ
1663 load = task_h_load(env->p);
1664 dst_load = env->dst_stats.load + load;
1665 src_load = env->src_stats.load - load;
fb13c7ee 1666
0132c3e1
RR
1667 if (moveimp > imp && moveimp > env->best_imp) {
1668 /*
1669 * If the improvement from just moving env->p direction is
1670 * better than swapping tasks around, check if a move is
1671 * possible. Store a slightly smaller score than moveimp,
1672 * so an actually idle CPU will win.
1673 */
1674 if (!load_too_imbalanced(src_load, dst_load, env)) {
1675 imp = moveimp - 1;
1676 cur = NULL;
1677 goto assign;
1678 }
1679 }
1680
1681 if (imp <= env->best_imp)
1682 goto unlock;
1683
fb13c7ee 1684 if (cur) {
e720fff6
PZ
1685 load = task_h_load(cur);
1686 dst_load -= load;
1687 src_load += load;
fb13c7ee
MG
1688 }
1689
28a21745 1690 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1691 goto unlock;
1692
ba7e5a27
RR
1693 /*
1694 * One idle CPU per node is evaluated for a task numa move.
1695 * Call select_idle_sibling to maybe find a better one.
1696 */
10e2f1ac
PZ
1697 if (!cur) {
1698 /*
1699 * select_idle_siblings() uses an per-cpu cpumask that
1700 * can be used from IRQ context.
1701 */
1702 local_irq_disable();
772bd008
MR
1703 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1704 env->dst_cpu);
10e2f1ac
PZ
1705 local_irq_enable();
1706 }
ba7e5a27 1707
fb13c7ee
MG
1708assign:
1709 task_numa_assign(env, cur, imp);
1710unlock:
1711 rcu_read_unlock();
1712}
1713
887c290e
RR
1714static void task_numa_find_cpu(struct task_numa_env *env,
1715 long taskimp, long groupimp)
2c8a50aa
MG
1716{
1717 int cpu;
1718
1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 /* Skip this CPU if the source task cannot migrate */
0c98d344 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1722 continue;
1723
1724 env->dst_cpu = cpu;
887c290e 1725 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1726 }
1727}
1728
6f9aad0b
RR
1729/* Only move tasks to a NUMA node less busy than the current node. */
1730static bool numa_has_capacity(struct task_numa_env *env)
1731{
1732 struct numa_stats *src = &env->src_stats;
1733 struct numa_stats *dst = &env->dst_stats;
1734
1735 if (src->has_free_capacity && !dst->has_free_capacity)
1736 return false;
1737
1738 /*
1739 * Only consider a task move if the source has a higher load
1740 * than the destination, corrected for CPU capacity on each node.
1741 *
1742 * src->load dst->load
1743 * --------------------- vs ---------------------
1744 * src->compute_capacity dst->compute_capacity
1745 */
44dcb04f
SD
1746 if (src->load * dst->compute_capacity * env->imbalance_pct >
1747
1748 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1749 return true;
1750
1751 return false;
1752}
1753
58d081b5
MG
1754static int task_numa_migrate(struct task_struct *p)
1755{
58d081b5
MG
1756 struct task_numa_env env = {
1757 .p = p,
fb13c7ee 1758
58d081b5 1759 .src_cpu = task_cpu(p),
b32e86b4 1760 .src_nid = task_node(p),
fb13c7ee
MG
1761
1762 .imbalance_pct = 112,
1763
1764 .best_task = NULL,
1765 .best_imp = 0,
4142c3eb 1766 .best_cpu = -1,
58d081b5
MG
1767 };
1768 struct sched_domain *sd;
887c290e 1769 unsigned long taskweight, groupweight;
7bd95320 1770 int nid, ret, dist;
887c290e 1771 long taskimp, groupimp;
e6628d5b 1772
58d081b5 1773 /*
fb13c7ee
MG
1774 * Pick the lowest SD_NUMA domain, as that would have the smallest
1775 * imbalance and would be the first to start moving tasks about.
1776 *
1777 * And we want to avoid any moving of tasks about, as that would create
1778 * random movement of tasks -- counter the numa conditions we're trying
1779 * to satisfy here.
58d081b5
MG
1780 */
1781 rcu_read_lock();
fb13c7ee 1782 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1783 if (sd)
1784 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1785 rcu_read_unlock();
1786
46a73e8a
RR
1787 /*
1788 * Cpusets can break the scheduler domain tree into smaller
1789 * balance domains, some of which do not cross NUMA boundaries.
1790 * Tasks that are "trapped" in such domains cannot be migrated
1791 * elsewhere, so there is no point in (re)trying.
1792 */
1793 if (unlikely(!sd)) {
de1b301a 1794 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1795 return -EINVAL;
1796 }
1797
2c8a50aa 1798 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1799 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1800 taskweight = task_weight(p, env.src_nid, dist);
1801 groupweight = group_weight(p, env.src_nid, dist);
1802 update_numa_stats(&env.src_stats, env.src_nid);
1803 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1804 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1805 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1806
a43455a1 1807 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1808 if (numa_has_capacity(&env))
1809 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1810
9de05d48
RR
1811 /*
1812 * Look at other nodes in these cases:
1813 * - there is no space available on the preferred_nid
1814 * - the task is part of a numa_group that is interleaved across
1815 * multiple NUMA nodes; in order to better consolidate the group,
1816 * we need to check other locations.
1817 */
4142c3eb 1818 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1819 for_each_online_node(nid) {
1820 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1821 continue;
58d081b5 1822
7bd95320 1823 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1824 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1825 dist != env.dist) {
1826 taskweight = task_weight(p, env.src_nid, dist);
1827 groupweight = group_weight(p, env.src_nid, dist);
1828 }
7bd95320 1829
83e1d2cd 1830 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1831 taskimp = task_weight(p, nid, dist) - taskweight;
1832 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1833 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1834 continue;
1835
7bd95320 1836 env.dist = dist;
2c8a50aa
MG
1837 env.dst_nid = nid;
1838 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1839 if (numa_has_capacity(&env))
1840 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1841 }
1842 }
1843
68d1b02a
RR
1844 /*
1845 * If the task is part of a workload that spans multiple NUMA nodes,
1846 * and is migrating into one of the workload's active nodes, remember
1847 * this node as the task's preferred numa node, so the workload can
1848 * settle down.
1849 * A task that migrated to a second choice node will be better off
1850 * trying for a better one later. Do not set the preferred node here.
1851 */
db015dae 1852 if (p->numa_group) {
4142c3eb
RR
1853 struct numa_group *ng = p->numa_group;
1854
db015dae
RR
1855 if (env.best_cpu == -1)
1856 nid = env.src_nid;
1857 else
1858 nid = env.dst_nid;
1859
4142c3eb 1860 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1861 sched_setnuma(p, env.dst_nid);
1862 }
1863
1864 /* No better CPU than the current one was found. */
1865 if (env.best_cpu == -1)
1866 return -EAGAIN;
0ec8aa00 1867
04bb2f94
RR
1868 /*
1869 * Reset the scan period if the task is being rescheduled on an
1870 * alternative node to recheck if the tasks is now properly placed.
1871 */
b5dd77c8 1872 p->numa_scan_period = task_scan_start(p);
04bb2f94 1873
fb13c7ee 1874 if (env.best_task == NULL) {
286549dc
MG
1875 ret = migrate_task_to(p, env.best_cpu);
1876 if (ret != 0)
1877 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1878 return ret;
1879 }
1880
1881 ret = migrate_swap(p, env.best_task);
286549dc
MG
1882 if (ret != 0)
1883 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1884 put_task_struct(env.best_task);
1885 return ret;
e6628d5b
MG
1886}
1887
6b9a7460
MG
1888/* Attempt to migrate a task to a CPU on the preferred node. */
1889static void numa_migrate_preferred(struct task_struct *p)
1890{
5085e2a3
RR
1891 unsigned long interval = HZ;
1892
2739d3ee 1893 /* This task has no NUMA fault statistics yet */
44dba3d5 1894 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1895 return;
1896
2739d3ee 1897 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1898 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1899 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1900
1901 /* Success if task is already running on preferred CPU */
de1b301a 1902 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1903 return;
1904
1905 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1906 task_numa_migrate(p);
6b9a7460
MG
1907}
1908
20e07dea 1909/*
4142c3eb 1910 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1911 * tracking the nodes from which NUMA hinting faults are triggered. This can
1912 * be different from the set of nodes where the workload's memory is currently
1913 * located.
20e07dea 1914 */
4142c3eb 1915static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1916{
1917 unsigned long faults, max_faults = 0;
4142c3eb 1918 int nid, active_nodes = 0;
20e07dea
RR
1919
1920 for_each_online_node(nid) {
1921 faults = group_faults_cpu(numa_group, nid);
1922 if (faults > max_faults)
1923 max_faults = faults;
1924 }
1925
1926 for_each_online_node(nid) {
1927 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1928 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1929 active_nodes++;
20e07dea 1930 }
4142c3eb
RR
1931
1932 numa_group->max_faults_cpu = max_faults;
1933 numa_group->active_nodes = active_nodes;
20e07dea
RR
1934}
1935
04bb2f94
RR
1936/*
1937 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1938 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1939 * period will be for the next scan window. If local/(local+remote) ratio is
1940 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1941 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1942 */
1943#define NUMA_PERIOD_SLOTS 10
a22b4b01 1944#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1945
1946/*
1947 * Increase the scan period (slow down scanning) if the majority of
1948 * our memory is already on our local node, or if the majority of
1949 * the page accesses are shared with other processes.
1950 * Otherwise, decrease the scan period.
1951 */
1952static void update_task_scan_period(struct task_struct *p,
1953 unsigned long shared, unsigned long private)
1954{
1955 unsigned int period_slot;
37ec97de 1956 int lr_ratio, ps_ratio;
04bb2f94
RR
1957 int diff;
1958
1959 unsigned long remote = p->numa_faults_locality[0];
1960 unsigned long local = p->numa_faults_locality[1];
1961
1962 /*
1963 * If there were no record hinting faults then either the task is
1964 * completely idle or all activity is areas that are not of interest
074c2381
MG
1965 * to automatic numa balancing. Related to that, if there were failed
1966 * migration then it implies we are migrating too quickly or the local
1967 * node is overloaded. In either case, scan slower
04bb2f94 1968 */
074c2381 1969 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1970 p->numa_scan_period = min(p->numa_scan_period_max,
1971 p->numa_scan_period << 1);
1972
1973 p->mm->numa_next_scan = jiffies +
1974 msecs_to_jiffies(p->numa_scan_period);
1975
1976 return;
1977 }
1978
1979 /*
1980 * Prepare to scale scan period relative to the current period.
1981 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1982 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1983 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1984 */
1985 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1986 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1987 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1988
1989 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1990 /*
1991 * Most memory accesses are local. There is no need to
1992 * do fast NUMA scanning, since memory is already local.
1993 */
1994 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1995 if (!slot)
1996 slot = 1;
1997 diff = slot * period_slot;
1998 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1999 /*
2000 * Most memory accesses are shared with other tasks.
2001 * There is no point in continuing fast NUMA scanning,
2002 * since other tasks may just move the memory elsewhere.
2003 */
2004 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2005 if (!slot)
2006 slot = 1;
2007 diff = slot * period_slot;
2008 } else {
04bb2f94 2009 /*
37ec97de
RR
2010 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2011 * yet they are not on the local NUMA node. Speed up
2012 * NUMA scanning to get the memory moved over.
04bb2f94 2013 */
37ec97de
RR
2014 int ratio = max(lr_ratio, ps_ratio);
2015 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2016 }
2017
2018 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2019 task_scan_min(p), task_scan_max(p));
2020 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2021}
2022
7e2703e6
RR
2023/*
2024 * Get the fraction of time the task has been running since the last
2025 * NUMA placement cycle. The scheduler keeps similar statistics, but
2026 * decays those on a 32ms period, which is orders of magnitude off
2027 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2028 * stats only if the task is so new there are no NUMA statistics yet.
2029 */
2030static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2031{
2032 u64 runtime, delta, now;
2033 /* Use the start of this time slice to avoid calculations. */
2034 now = p->se.exec_start;
2035 runtime = p->se.sum_exec_runtime;
2036
2037 if (p->last_task_numa_placement) {
2038 delta = runtime - p->last_sum_exec_runtime;
2039 *period = now - p->last_task_numa_placement;
2040 } else {
9d89c257
YD
2041 delta = p->se.avg.load_sum / p->se.load.weight;
2042 *period = LOAD_AVG_MAX;
7e2703e6
RR
2043 }
2044
2045 p->last_sum_exec_runtime = runtime;
2046 p->last_task_numa_placement = now;
2047
2048 return delta;
2049}
2050
54009416
RR
2051/*
2052 * Determine the preferred nid for a task in a numa_group. This needs to
2053 * be done in a way that produces consistent results with group_weight,
2054 * otherwise workloads might not converge.
2055 */
2056static int preferred_group_nid(struct task_struct *p, int nid)
2057{
2058 nodemask_t nodes;
2059 int dist;
2060
2061 /* Direct connections between all NUMA nodes. */
2062 if (sched_numa_topology_type == NUMA_DIRECT)
2063 return nid;
2064
2065 /*
2066 * On a system with glueless mesh NUMA topology, group_weight
2067 * scores nodes according to the number of NUMA hinting faults on
2068 * both the node itself, and on nearby nodes.
2069 */
2070 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2071 unsigned long score, max_score = 0;
2072 int node, max_node = nid;
2073
2074 dist = sched_max_numa_distance;
2075
2076 for_each_online_node(node) {
2077 score = group_weight(p, node, dist);
2078 if (score > max_score) {
2079 max_score = score;
2080 max_node = node;
2081 }
2082 }
2083 return max_node;
2084 }
2085
2086 /*
2087 * Finding the preferred nid in a system with NUMA backplane
2088 * interconnect topology is more involved. The goal is to locate
2089 * tasks from numa_groups near each other in the system, and
2090 * untangle workloads from different sides of the system. This requires
2091 * searching down the hierarchy of node groups, recursively searching
2092 * inside the highest scoring group of nodes. The nodemask tricks
2093 * keep the complexity of the search down.
2094 */
2095 nodes = node_online_map;
2096 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2097 unsigned long max_faults = 0;
81907478 2098 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2099 int a, b;
2100
2101 /* Are there nodes at this distance from each other? */
2102 if (!find_numa_distance(dist))
2103 continue;
2104
2105 for_each_node_mask(a, nodes) {
2106 unsigned long faults = 0;
2107 nodemask_t this_group;
2108 nodes_clear(this_group);
2109
2110 /* Sum group's NUMA faults; includes a==b case. */
2111 for_each_node_mask(b, nodes) {
2112 if (node_distance(a, b) < dist) {
2113 faults += group_faults(p, b);
2114 node_set(b, this_group);
2115 node_clear(b, nodes);
2116 }
2117 }
2118
2119 /* Remember the top group. */
2120 if (faults > max_faults) {
2121 max_faults = faults;
2122 max_group = this_group;
2123 /*
2124 * subtle: at the smallest distance there is
2125 * just one node left in each "group", the
2126 * winner is the preferred nid.
2127 */
2128 nid = a;
2129 }
2130 }
2131 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2132 if (!max_faults)
2133 break;
54009416
RR
2134 nodes = max_group;
2135 }
2136 return nid;
2137}
2138
cbee9f88
PZ
2139static void task_numa_placement(struct task_struct *p)
2140{
83e1d2cd
MG
2141 int seq, nid, max_nid = -1, max_group_nid = -1;
2142 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2143 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2144 unsigned long total_faults;
2145 u64 runtime, period;
7dbd13ed 2146 spinlock_t *group_lock = NULL;
cbee9f88 2147
7e5a2c17
JL
2148 /*
2149 * The p->mm->numa_scan_seq field gets updated without
2150 * exclusive access. Use READ_ONCE() here to ensure
2151 * that the field is read in a single access:
2152 */
316c1608 2153 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2154 if (p->numa_scan_seq == seq)
2155 return;
2156 p->numa_scan_seq = seq;
598f0ec0 2157 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2158
7e2703e6
RR
2159 total_faults = p->numa_faults_locality[0] +
2160 p->numa_faults_locality[1];
2161 runtime = numa_get_avg_runtime(p, &period);
2162
7dbd13ed
MG
2163 /* If the task is part of a group prevent parallel updates to group stats */
2164 if (p->numa_group) {
2165 group_lock = &p->numa_group->lock;
60e69eed 2166 spin_lock_irq(group_lock);
7dbd13ed
MG
2167 }
2168
688b7585
MG
2169 /* Find the node with the highest number of faults */
2170 for_each_online_node(nid) {
44dba3d5
IM
2171 /* Keep track of the offsets in numa_faults array */
2172 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2173 unsigned long faults = 0, group_faults = 0;
44dba3d5 2174 int priv;
745d6147 2175
be1e4e76 2176 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2177 long diff, f_diff, f_weight;
8c8a743c 2178
44dba3d5
IM
2179 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2180 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2181 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2182 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2183
ac8e895b 2184 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2185 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2186 fault_types[priv] += p->numa_faults[membuf_idx];
2187 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2188
7e2703e6
RR
2189 /*
2190 * Normalize the faults_from, so all tasks in a group
2191 * count according to CPU use, instead of by the raw
2192 * number of faults. Tasks with little runtime have
2193 * little over-all impact on throughput, and thus their
2194 * faults are less important.
2195 */
2196 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2197 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2198 (total_faults + 1);
44dba3d5
IM
2199 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2200 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2201
44dba3d5
IM
2202 p->numa_faults[mem_idx] += diff;
2203 p->numa_faults[cpu_idx] += f_diff;
2204 faults += p->numa_faults[mem_idx];
83e1d2cd 2205 p->total_numa_faults += diff;
8c8a743c 2206 if (p->numa_group) {
44dba3d5
IM
2207 /*
2208 * safe because we can only change our own group
2209 *
2210 * mem_idx represents the offset for a given
2211 * nid and priv in a specific region because it
2212 * is at the beginning of the numa_faults array.
2213 */
2214 p->numa_group->faults[mem_idx] += diff;
2215 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2216 p->numa_group->total_faults += diff;
44dba3d5 2217 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2218 }
ac8e895b
MG
2219 }
2220
688b7585
MG
2221 if (faults > max_faults) {
2222 max_faults = faults;
2223 max_nid = nid;
2224 }
83e1d2cd
MG
2225
2226 if (group_faults > max_group_faults) {
2227 max_group_faults = group_faults;
2228 max_group_nid = nid;
2229 }
2230 }
2231
04bb2f94
RR
2232 update_task_scan_period(p, fault_types[0], fault_types[1]);
2233
7dbd13ed 2234 if (p->numa_group) {
4142c3eb 2235 numa_group_count_active_nodes(p->numa_group);
60e69eed 2236 spin_unlock_irq(group_lock);
54009416 2237 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2238 }
2239
bb97fc31
RR
2240 if (max_faults) {
2241 /* Set the new preferred node */
2242 if (max_nid != p->numa_preferred_nid)
2243 sched_setnuma(p, max_nid);
2244
2245 if (task_node(p) != p->numa_preferred_nid)
2246 numa_migrate_preferred(p);
3a7053b3 2247 }
cbee9f88
PZ
2248}
2249
8c8a743c
PZ
2250static inline int get_numa_group(struct numa_group *grp)
2251{
2252 return atomic_inc_not_zero(&grp->refcount);
2253}
2254
2255static inline void put_numa_group(struct numa_group *grp)
2256{
2257 if (atomic_dec_and_test(&grp->refcount))
2258 kfree_rcu(grp, rcu);
2259}
2260
3e6a9418
MG
2261static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2262 int *priv)
8c8a743c
PZ
2263{
2264 struct numa_group *grp, *my_grp;
2265 struct task_struct *tsk;
2266 bool join = false;
2267 int cpu = cpupid_to_cpu(cpupid);
2268 int i;
2269
2270 if (unlikely(!p->numa_group)) {
2271 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2272 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2273
2274 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2275 if (!grp)
2276 return;
2277
2278 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2279 grp->active_nodes = 1;
2280 grp->max_faults_cpu = 0;
8c8a743c 2281 spin_lock_init(&grp->lock);
e29cf08b 2282 grp->gid = p->pid;
50ec8a40 2283 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2284 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2285 nr_node_ids;
8c8a743c 2286
be1e4e76 2287 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2288 grp->faults[i] = p->numa_faults[i];
8c8a743c 2289
989348b5 2290 grp->total_faults = p->total_numa_faults;
83e1d2cd 2291
8c8a743c
PZ
2292 grp->nr_tasks++;
2293 rcu_assign_pointer(p->numa_group, grp);
2294 }
2295
2296 rcu_read_lock();
316c1608 2297 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2298
2299 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2300 goto no_join;
8c8a743c
PZ
2301
2302 grp = rcu_dereference(tsk->numa_group);
2303 if (!grp)
3354781a 2304 goto no_join;
8c8a743c
PZ
2305
2306 my_grp = p->numa_group;
2307 if (grp == my_grp)
3354781a 2308 goto no_join;
8c8a743c
PZ
2309
2310 /*
2311 * Only join the other group if its bigger; if we're the bigger group,
2312 * the other task will join us.
2313 */
2314 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2315 goto no_join;
8c8a743c
PZ
2316
2317 /*
2318 * Tie-break on the grp address.
2319 */
2320 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2321 goto no_join;
8c8a743c 2322
dabe1d99
RR
2323 /* Always join threads in the same process. */
2324 if (tsk->mm == current->mm)
2325 join = true;
2326
2327 /* Simple filter to avoid false positives due to PID collisions */
2328 if (flags & TNF_SHARED)
2329 join = true;
8c8a743c 2330
3e6a9418
MG
2331 /* Update priv based on whether false sharing was detected */
2332 *priv = !join;
2333
dabe1d99 2334 if (join && !get_numa_group(grp))
3354781a 2335 goto no_join;
8c8a743c 2336
8c8a743c
PZ
2337 rcu_read_unlock();
2338
2339 if (!join)
2340 return;
2341
60e69eed
MG
2342 BUG_ON(irqs_disabled());
2343 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2344
be1e4e76 2345 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2346 my_grp->faults[i] -= p->numa_faults[i];
2347 grp->faults[i] += p->numa_faults[i];
8c8a743c 2348 }
989348b5
MG
2349 my_grp->total_faults -= p->total_numa_faults;
2350 grp->total_faults += p->total_numa_faults;
8c8a743c 2351
8c8a743c
PZ
2352 my_grp->nr_tasks--;
2353 grp->nr_tasks++;
2354
2355 spin_unlock(&my_grp->lock);
60e69eed 2356 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2357
2358 rcu_assign_pointer(p->numa_group, grp);
2359
2360 put_numa_group(my_grp);
3354781a
PZ
2361 return;
2362
2363no_join:
2364 rcu_read_unlock();
2365 return;
8c8a743c
PZ
2366}
2367
2368void task_numa_free(struct task_struct *p)
2369{
2370 struct numa_group *grp = p->numa_group;
44dba3d5 2371 void *numa_faults = p->numa_faults;
e9dd685c
SR
2372 unsigned long flags;
2373 int i;
8c8a743c
PZ
2374
2375 if (grp) {
e9dd685c 2376 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2377 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2378 grp->faults[i] -= p->numa_faults[i];
989348b5 2379 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2380
8c8a743c 2381 grp->nr_tasks--;
e9dd685c 2382 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2383 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2384 put_numa_group(grp);
2385 }
2386
44dba3d5 2387 p->numa_faults = NULL;
82727018 2388 kfree(numa_faults);
8c8a743c
PZ
2389}
2390
cbee9f88
PZ
2391/*
2392 * Got a PROT_NONE fault for a page on @node.
2393 */
58b46da3 2394void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2395{
2396 struct task_struct *p = current;
6688cc05 2397 bool migrated = flags & TNF_MIGRATED;
58b46da3 2398 int cpu_node = task_node(current);
792568ec 2399 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2400 struct numa_group *ng;
ac8e895b 2401 int priv;
cbee9f88 2402
2a595721 2403 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2404 return;
2405
9ff1d9ff
MG
2406 /* for example, ksmd faulting in a user's mm */
2407 if (!p->mm)
2408 return;
2409
f809ca9a 2410 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2411 if (unlikely(!p->numa_faults)) {
2412 int size = sizeof(*p->numa_faults) *
be1e4e76 2413 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2414
44dba3d5
IM
2415 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2416 if (!p->numa_faults)
f809ca9a 2417 return;
745d6147 2418
83e1d2cd 2419 p->total_numa_faults = 0;
04bb2f94 2420 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2421 }
cbee9f88 2422
8c8a743c
PZ
2423 /*
2424 * First accesses are treated as private, otherwise consider accesses
2425 * to be private if the accessing pid has not changed
2426 */
2427 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2428 priv = 1;
2429 } else {
2430 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2431 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2432 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2433 }
2434
792568ec
RR
2435 /*
2436 * If a workload spans multiple NUMA nodes, a shared fault that
2437 * occurs wholly within the set of nodes that the workload is
2438 * actively using should be counted as local. This allows the
2439 * scan rate to slow down when a workload has settled down.
2440 */
4142c3eb
RR
2441 ng = p->numa_group;
2442 if (!priv && !local && ng && ng->active_nodes > 1 &&
2443 numa_is_active_node(cpu_node, ng) &&
2444 numa_is_active_node(mem_node, ng))
792568ec
RR
2445 local = 1;
2446
cbee9f88 2447 task_numa_placement(p);
f809ca9a 2448
2739d3ee
RR
2449 /*
2450 * Retry task to preferred node migration periodically, in case it
2451 * case it previously failed, or the scheduler moved us.
2452 */
2453 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2454 numa_migrate_preferred(p);
2455
b32e86b4
IM
2456 if (migrated)
2457 p->numa_pages_migrated += pages;
074c2381
MG
2458 if (flags & TNF_MIGRATE_FAIL)
2459 p->numa_faults_locality[2] += pages;
b32e86b4 2460
44dba3d5
IM
2461 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2462 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2463 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2464}
2465
6e5fb223
PZ
2466static void reset_ptenuma_scan(struct task_struct *p)
2467{
7e5a2c17
JL
2468 /*
2469 * We only did a read acquisition of the mmap sem, so
2470 * p->mm->numa_scan_seq is written to without exclusive access
2471 * and the update is not guaranteed to be atomic. That's not
2472 * much of an issue though, since this is just used for
2473 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2474 * expensive, to avoid any form of compiler optimizations:
2475 */
316c1608 2476 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2477 p->mm->numa_scan_offset = 0;
2478}
2479
cbee9f88
PZ
2480/*
2481 * The expensive part of numa migration is done from task_work context.
2482 * Triggered from task_tick_numa().
2483 */
2484void task_numa_work(struct callback_head *work)
2485{
2486 unsigned long migrate, next_scan, now = jiffies;
2487 struct task_struct *p = current;
2488 struct mm_struct *mm = p->mm;
51170840 2489 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2490 struct vm_area_struct *vma;
9f40604c 2491 unsigned long start, end;
598f0ec0 2492 unsigned long nr_pte_updates = 0;
4620f8c1 2493 long pages, virtpages;
cbee9f88 2494
9148a3a1 2495 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2496
2497 work->next = work; /* protect against double add */
2498 /*
2499 * Who cares about NUMA placement when they're dying.
2500 *
2501 * NOTE: make sure not to dereference p->mm before this check,
2502 * exit_task_work() happens _after_ exit_mm() so we could be called
2503 * without p->mm even though we still had it when we enqueued this
2504 * work.
2505 */
2506 if (p->flags & PF_EXITING)
2507 return;
2508
930aa174 2509 if (!mm->numa_next_scan) {
7e8d16b6
MG
2510 mm->numa_next_scan = now +
2511 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2512 }
2513
cbee9f88
PZ
2514 /*
2515 * Enforce maximal scan/migration frequency..
2516 */
2517 migrate = mm->numa_next_scan;
2518 if (time_before(now, migrate))
2519 return;
2520
598f0ec0
MG
2521 if (p->numa_scan_period == 0) {
2522 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2523 p->numa_scan_period = task_scan_start(p);
598f0ec0 2524 }
cbee9f88 2525
fb003b80 2526 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2527 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2528 return;
2529
19a78d11
PZ
2530 /*
2531 * Delay this task enough that another task of this mm will likely win
2532 * the next time around.
2533 */
2534 p->node_stamp += 2 * TICK_NSEC;
2535
9f40604c
MG
2536 start = mm->numa_scan_offset;
2537 pages = sysctl_numa_balancing_scan_size;
2538 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2539 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2540 if (!pages)
2541 return;
cbee9f88 2542
4620f8c1 2543
8655d549
VB
2544 if (!down_read_trylock(&mm->mmap_sem))
2545 return;
9f40604c 2546 vma = find_vma(mm, start);
6e5fb223
PZ
2547 if (!vma) {
2548 reset_ptenuma_scan(p);
9f40604c 2549 start = 0;
6e5fb223
PZ
2550 vma = mm->mmap;
2551 }
9f40604c 2552 for (; vma; vma = vma->vm_next) {
6b79c57b 2553 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2554 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2555 continue;
6b79c57b 2556 }
6e5fb223 2557
4591ce4f
MG
2558 /*
2559 * Shared library pages mapped by multiple processes are not
2560 * migrated as it is expected they are cache replicated. Avoid
2561 * hinting faults in read-only file-backed mappings or the vdso
2562 * as migrating the pages will be of marginal benefit.
2563 */
2564 if (!vma->vm_mm ||
2565 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2566 continue;
2567
3c67f474
MG
2568 /*
2569 * Skip inaccessible VMAs to avoid any confusion between
2570 * PROT_NONE and NUMA hinting ptes
2571 */
2572 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2573 continue;
4591ce4f 2574
9f40604c
MG
2575 do {
2576 start = max(start, vma->vm_start);
2577 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2578 end = min(end, vma->vm_end);
4620f8c1 2579 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2580
2581 /*
4620f8c1
RR
2582 * Try to scan sysctl_numa_balancing_size worth of
2583 * hpages that have at least one present PTE that
2584 * is not already pte-numa. If the VMA contains
2585 * areas that are unused or already full of prot_numa
2586 * PTEs, scan up to virtpages, to skip through those
2587 * areas faster.
598f0ec0
MG
2588 */
2589 if (nr_pte_updates)
2590 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2591 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2592
9f40604c 2593 start = end;
4620f8c1 2594 if (pages <= 0 || virtpages <= 0)
9f40604c 2595 goto out;
3cf1962c
RR
2596
2597 cond_resched();
9f40604c 2598 } while (end != vma->vm_end);
cbee9f88 2599 }
6e5fb223 2600
9f40604c 2601out:
6e5fb223 2602 /*
c69307d5
PZ
2603 * It is possible to reach the end of the VMA list but the last few
2604 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2605 * would find the !migratable VMA on the next scan but not reset the
2606 * scanner to the start so check it now.
6e5fb223
PZ
2607 */
2608 if (vma)
9f40604c 2609 mm->numa_scan_offset = start;
6e5fb223
PZ
2610 else
2611 reset_ptenuma_scan(p);
2612 up_read(&mm->mmap_sem);
51170840
RR
2613
2614 /*
2615 * Make sure tasks use at least 32x as much time to run other code
2616 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2617 * Usually update_task_scan_period slows down scanning enough; on an
2618 * overloaded system we need to limit overhead on a per task basis.
2619 */
2620 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2621 u64 diff = p->se.sum_exec_runtime - runtime;
2622 p->node_stamp += 32 * diff;
2623 }
cbee9f88
PZ
2624}
2625
2626/*
2627 * Drive the periodic memory faults..
2628 */
2629void task_tick_numa(struct rq *rq, struct task_struct *curr)
2630{
2631 struct callback_head *work = &curr->numa_work;
2632 u64 period, now;
2633
2634 /*
2635 * We don't care about NUMA placement if we don't have memory.
2636 */
2637 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2638 return;
2639
2640 /*
2641 * Using runtime rather than walltime has the dual advantage that
2642 * we (mostly) drive the selection from busy threads and that the
2643 * task needs to have done some actual work before we bother with
2644 * NUMA placement.
2645 */
2646 now = curr->se.sum_exec_runtime;
2647 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2648
25b3e5a3 2649 if (now > curr->node_stamp + period) {
4b96a29b 2650 if (!curr->node_stamp)
b5dd77c8 2651 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2652 curr->node_stamp += period;
cbee9f88
PZ
2653
2654 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2655 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2656 task_work_add(curr, work, true);
2657 }
2658 }
2659}
3fed382b 2660
cbee9f88
PZ
2661#else
2662static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2663{
2664}
0ec8aa00
PZ
2665
2666static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2667{
2668}
2669
2670static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2671{
2672}
3fed382b 2673
cbee9f88
PZ
2674#endif /* CONFIG_NUMA_BALANCING */
2675
30cfdcfc
DA
2676static void
2677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2678{
2679 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2680 if (!parent_entity(se))
029632fb 2681 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2682#ifdef CONFIG_SMP
0ec8aa00
PZ
2683 if (entity_is_task(se)) {
2684 struct rq *rq = rq_of(cfs_rq);
2685
2686 account_numa_enqueue(rq, task_of(se));
2687 list_add(&se->group_node, &rq->cfs_tasks);
2688 }
367456c7 2689#endif
30cfdcfc 2690 cfs_rq->nr_running++;
30cfdcfc
DA
2691}
2692
2693static void
2694account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2695{
2696 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2697 if (!parent_entity(se))
029632fb 2698 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2699#ifdef CONFIG_SMP
0ec8aa00
PZ
2700 if (entity_is_task(se)) {
2701 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2702 list_del_init(&se->group_node);
0ec8aa00 2703 }
bfdb198c 2704#endif
30cfdcfc 2705 cfs_rq->nr_running--;
30cfdcfc
DA
2706}
2707
3ff6dcac
YZ
2708#ifdef CONFIG_FAIR_GROUP_SCHED
2709# ifdef CONFIG_SMP
ea1dc6fc 2710static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2711{
ea1dc6fc 2712 long tg_weight, load, shares;
cf5f0acf
PZ
2713
2714 /*
ea1dc6fc
PZ
2715 * This really should be: cfs_rq->avg.load_avg, but instead we use
2716 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2717 * the shares for small weight interactive tasks.
cf5f0acf 2718 */
ea1dc6fc 2719 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2720
ea1dc6fc 2721 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2722
ea1dc6fc
PZ
2723 /* Ensure tg_weight >= load */
2724 tg_weight -= cfs_rq->tg_load_avg_contrib;
2725 tg_weight += load;
3ff6dcac 2726
3ff6dcac 2727 shares = (tg->shares * load);
cf5f0acf
PZ
2728 if (tg_weight)
2729 shares /= tg_weight;
3ff6dcac 2730
b8fd8423
DE
2731 /*
2732 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2733 * of a group with small tg->shares value. It is a floor value which is
2734 * assigned as a minimum load.weight to the sched_entity representing
2735 * the group on a CPU.
2736 *
2737 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2738 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2739 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2740 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2741 * instead of 0.
2742 */
3ff6dcac
YZ
2743 if (shares < MIN_SHARES)
2744 shares = MIN_SHARES;
2745 if (shares > tg->shares)
2746 shares = tg->shares;
2747
2748 return shares;
2749}
3ff6dcac 2750# else /* CONFIG_SMP */
6d5ab293 2751static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2752{
2753 return tg->shares;
2754}
3ff6dcac 2755# endif /* CONFIG_SMP */
ea1dc6fc 2756
2069dd75
PZ
2757static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2758 unsigned long weight)
2759{
19e5eebb
PT
2760 if (se->on_rq) {
2761 /* commit outstanding execution time */
2762 if (cfs_rq->curr == se)
2763 update_curr(cfs_rq);
2069dd75 2764 account_entity_dequeue(cfs_rq, se);
19e5eebb 2765 }
2069dd75
PZ
2766
2767 update_load_set(&se->load, weight);
2768
2769 if (se->on_rq)
2770 account_entity_enqueue(cfs_rq, se);
2771}
2772
82958366
PT
2773static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2774
89ee048f 2775static void update_cfs_shares(struct sched_entity *se)
2069dd75 2776{
89ee048f 2777 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2778 struct task_group *tg;
3ff6dcac 2779 long shares;
2069dd75 2780
89ee048f
VG
2781 if (!cfs_rq)
2782 return;
2783
2784 if (throttled_hierarchy(cfs_rq))
2069dd75 2785 return;
89ee048f
VG
2786
2787 tg = cfs_rq->tg;
2788
3ff6dcac
YZ
2789#ifndef CONFIG_SMP
2790 if (likely(se->load.weight == tg->shares))
2791 return;
2792#endif
6d5ab293 2793 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2794
2795 reweight_entity(cfs_rq_of(se), se, shares);
2796}
89ee048f 2797
2069dd75 2798#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2799static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2800{
2801}
2802#endif /* CONFIG_FAIR_GROUP_SCHED */
2803
a030d738
VK
2804static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2805{
43964409
LT
2806 struct rq *rq = rq_of(cfs_rq);
2807
2808 if (&rq->cfs == cfs_rq) {
a030d738
VK
2809 /*
2810 * There are a few boundary cases this might miss but it should
2811 * get called often enough that that should (hopefully) not be
2812 * a real problem -- added to that it only calls on the local
2813 * CPU, so if we enqueue remotely we'll miss an update, but
2814 * the next tick/schedule should update.
2815 *
2816 * It will not get called when we go idle, because the idle
2817 * thread is a different class (!fair), nor will the utilization
2818 * number include things like RT tasks.
2819 *
2820 * As is, the util number is not freq-invariant (we'd have to
2821 * implement arch_scale_freq_capacity() for that).
2822 *
2823 * See cpu_util().
2824 */
43964409 2825 cpufreq_update_util(rq, 0);
a030d738
VK
2826 }
2827}
2828
141965c7 2829#ifdef CONFIG_SMP
9d85f21c
PT
2830/*
2831 * Approximate:
2832 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2833 */
a481db34 2834static u64 decay_load(u64 val, u64 n)
9d85f21c 2835{
5b51f2f8
PT
2836 unsigned int local_n;
2837
05296e75 2838 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2839 return 0;
2840
2841 /* after bounds checking we can collapse to 32-bit */
2842 local_n = n;
2843
2844 /*
2845 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2846 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2847 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2848 *
2849 * To achieve constant time decay_load.
2850 */
2851 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2852 val >>= local_n / LOAD_AVG_PERIOD;
2853 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2854 }
2855
9d89c257
YD
2856 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2857 return val;
5b51f2f8
PT
2858}
2859
05296e75 2860static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2861{
05296e75 2862 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2863
a481db34 2864 /*
3841cdc3 2865 * c1 = d1 y^p
a481db34 2866 */
05296e75 2867 c1 = decay_load((u64)d1, periods);
a481db34 2868
a481db34 2869 /*
3841cdc3 2870 * p-1
05296e75
PZ
2871 * c2 = 1024 \Sum y^n
2872 * n=1
a481db34 2873 *
05296e75
PZ
2874 * inf inf
2875 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2876 * n=0 n=p
a481db34 2877 */
05296e75 2878 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2879
2880 return c1 + c2 + c3;
9d85f21c
PT
2881}
2882
54a21385 2883#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2884
a481db34
YD
2885/*
2886 * Accumulate the three separate parts of the sum; d1 the remainder
2887 * of the last (incomplete) period, d2 the span of full periods and d3
2888 * the remainder of the (incomplete) current period.
2889 *
2890 * d1 d2 d3
2891 * ^ ^ ^
2892 * | | |
2893 * |<->|<----------------->|<--->|
2894 * ... |---x---|------| ... |------|-----x (now)
2895 *
3841cdc3
PZ
2896 * p-1
2897 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2898 * n=1
a481db34 2899 *
3841cdc3 2900 * = u y^p + (Step 1)
a481db34 2901 *
3841cdc3
PZ
2902 * p-1
2903 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2904 * n=1
a481db34
YD
2905 */
2906static __always_inline u32
2907accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2908 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2909{
2910 unsigned long scale_freq, scale_cpu;
05296e75 2911 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2912 u64 periods;
a481db34
YD
2913
2914 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2915 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2916
2917 delta += sa->period_contrib;
2918 periods = delta / 1024; /* A period is 1024us (~1ms) */
2919
2920 /*
2921 * Step 1: decay old *_sum if we crossed period boundaries.
2922 */
2923 if (periods) {
2924 sa->load_sum = decay_load(sa->load_sum, periods);
2925 if (cfs_rq) {
2926 cfs_rq->runnable_load_sum =
2927 decay_load(cfs_rq->runnable_load_sum, periods);
2928 }
2929 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2930
05296e75
PZ
2931 /*
2932 * Step 2
2933 */
2934 delta %= 1024;
2935 contrib = __accumulate_pelt_segments(periods,
2936 1024 - sa->period_contrib, delta);
2937 }
a481db34
YD
2938 sa->period_contrib = delta;
2939
2940 contrib = cap_scale(contrib, scale_freq);
2941 if (weight) {
2942 sa->load_sum += weight * contrib;
2943 if (cfs_rq)
2944 cfs_rq->runnable_load_sum += weight * contrib;
2945 }
2946 if (running)
2947 sa->util_sum += contrib * scale_cpu;
2948
2949 return periods;
2950}
2951
9d85f21c
PT
2952/*
2953 * We can represent the historical contribution to runnable average as the
2954 * coefficients of a geometric series. To do this we sub-divide our runnable
2955 * history into segments of approximately 1ms (1024us); label the segment that
2956 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2957 *
2958 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2959 * p0 p1 p2
2960 * (now) (~1ms ago) (~2ms ago)
2961 *
2962 * Let u_i denote the fraction of p_i that the entity was runnable.
2963 *
2964 * We then designate the fractions u_i as our co-efficients, yielding the
2965 * following representation of historical load:
2966 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2967 *
2968 * We choose y based on the with of a reasonably scheduling period, fixing:
2969 * y^32 = 0.5
2970 *
2971 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2972 * approximately half as much as the contribution to load within the last ms
2973 * (u_0).
2974 *
2975 * When a period "rolls over" and we have new u_0`, multiplying the previous
2976 * sum again by y is sufficient to update:
2977 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2978 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2979 */
9d89c257 2980static __always_inline int
0ccb977f 2981___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2982 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2983{
a481db34 2984 u64 delta;
9d85f21c 2985
9d89c257 2986 delta = now - sa->last_update_time;
9d85f21c
PT
2987 /*
2988 * This should only happen when time goes backwards, which it
2989 * unfortunately does during sched clock init when we swap over to TSC.
2990 */
2991 if ((s64)delta < 0) {
9d89c257 2992 sa->last_update_time = now;
9d85f21c
PT
2993 return 0;
2994 }
2995
2996 /*
2997 * Use 1024ns as the unit of measurement since it's a reasonable
2998 * approximation of 1us and fast to compute.
2999 */
3000 delta >>= 10;
3001 if (!delta)
3002 return 0;
bb0bd044
PZ
3003
3004 sa->last_update_time += delta << 10;
9d85f21c 3005
f235a54f
VG
3006 /*
3007 * running is a subset of runnable (weight) so running can't be set if
3008 * runnable is clear. But there are some corner cases where the current
3009 * se has been already dequeued but cfs_rq->curr still points to it.
3010 * This means that weight will be 0 but not running for a sched_entity
3011 * but also for a cfs_rq if the latter becomes idle. As an example,
3012 * this happens during idle_balance() which calls
3013 * update_blocked_averages()
3014 */
3015 if (!weight)
3016 running = 0;
3017
a481db34
YD
3018 /*
3019 * Now we know we crossed measurement unit boundaries. The *_avg
3020 * accrues by two steps:
3021 *
3022 * Step 1: accumulate *_sum since last_update_time. If we haven't
3023 * crossed period boundaries, finish.
3024 */
3025 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3026 return 0;
9ee474f5 3027
a481db34
YD
3028 /*
3029 * Step 2: update *_avg.
3030 */
625ed2bf 3031 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
a481db34
YD
3032 if (cfs_rq) {
3033 cfs_rq->runnable_load_avg =
625ed2bf 3034 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
9d89c257 3035 }
625ed2bf 3036 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
aff3e498 3037
a481db34 3038 return 1;
9ee474f5
PT
3039}
3040
0ccb977f
PZ
3041static int
3042__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3043{
3044 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
3045}
3046
3047static int
3048__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3049{
3050 return ___update_load_avg(now, cpu, &se->avg,
3051 se->on_rq * scale_load_down(se->load.weight),
3052 cfs_rq->curr == se, NULL);
3053}
3054
3055static int
3056__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3057{
3058 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3059 scale_load_down(cfs_rq->load.weight),
3060 cfs_rq->curr != NULL, cfs_rq);
3061}
3062
09a43ace
VG
3063/*
3064 * Signed add and clamp on underflow.
3065 *
3066 * Explicitly do a load-store to ensure the intermediate value never hits
3067 * memory. This allows lockless observations without ever seeing the negative
3068 * values.
3069 */
3070#define add_positive(_ptr, _val) do { \
3071 typeof(_ptr) ptr = (_ptr); \
3072 typeof(_val) val = (_val); \
3073 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3074 \
3075 res = var + val; \
3076 \
3077 if (val < 0 && res > var) \
3078 res = 0; \
3079 \
3080 WRITE_ONCE(*ptr, res); \
3081} while (0)
3082
c566e8e9 3083#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3084/**
3085 * update_tg_load_avg - update the tg's load avg
3086 * @cfs_rq: the cfs_rq whose avg changed
3087 * @force: update regardless of how small the difference
3088 *
3089 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3090 * However, because tg->load_avg is a global value there are performance
3091 * considerations.
3092 *
3093 * In order to avoid having to look at the other cfs_rq's, we use a
3094 * differential update where we store the last value we propagated. This in
3095 * turn allows skipping updates if the differential is 'small'.
3096 *
815abf5a 3097 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3098 */
9d89c257 3099static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3100{
9d89c257 3101 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3102
aa0b7ae0
WL
3103 /*
3104 * No need to update load_avg for root_task_group as it is not used.
3105 */
3106 if (cfs_rq->tg == &root_task_group)
3107 return;
3108
9d89c257
YD
3109 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3110 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3111 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3112 }
8165e145 3113}
f5f9739d 3114
ad936d86
BP
3115/*
3116 * Called within set_task_rq() right before setting a task's cpu. The
3117 * caller only guarantees p->pi_lock is held; no other assumptions,
3118 * including the state of rq->lock, should be made.
3119 */
3120void set_task_rq_fair(struct sched_entity *se,
3121 struct cfs_rq *prev, struct cfs_rq *next)
3122{
0ccb977f
PZ
3123 u64 p_last_update_time;
3124 u64 n_last_update_time;
3125
ad936d86
BP
3126 if (!sched_feat(ATTACH_AGE_LOAD))
3127 return;
3128
3129 /*
3130 * We are supposed to update the task to "current" time, then its up to
3131 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3132 * getting what current time is, so simply throw away the out-of-date
3133 * time. This will result in the wakee task is less decayed, but giving
3134 * the wakee more load sounds not bad.
3135 */
0ccb977f
PZ
3136 if (!(se->avg.last_update_time && prev))
3137 return;
ad936d86
BP
3138
3139#ifndef CONFIG_64BIT
0ccb977f 3140 {
ad936d86
BP
3141 u64 p_last_update_time_copy;
3142 u64 n_last_update_time_copy;
3143
3144 do {
3145 p_last_update_time_copy = prev->load_last_update_time_copy;
3146 n_last_update_time_copy = next->load_last_update_time_copy;
3147
3148 smp_rmb();
3149
3150 p_last_update_time = prev->avg.last_update_time;
3151 n_last_update_time = next->avg.last_update_time;
3152
3153 } while (p_last_update_time != p_last_update_time_copy ||
3154 n_last_update_time != n_last_update_time_copy);
0ccb977f 3155 }
ad936d86 3156#else
0ccb977f
PZ
3157 p_last_update_time = prev->avg.last_update_time;
3158 n_last_update_time = next->avg.last_update_time;
ad936d86 3159#endif
0ccb977f
PZ
3160 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3161 se->avg.last_update_time = n_last_update_time;
ad936d86 3162}
09a43ace
VG
3163
3164/* Take into account change of utilization of a child task group */
3165static inline void
3166update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3167{
3168 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3169 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3170
3171 /* Nothing to update */
3172 if (!delta)
3173 return;
3174
3175 /* Set new sched_entity's utilization */
3176 se->avg.util_avg = gcfs_rq->avg.util_avg;
3177 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3178
3179 /* Update parent cfs_rq utilization */
3180 add_positive(&cfs_rq->avg.util_avg, delta);
3181 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3182}
3183
3184/* Take into account change of load of a child task group */
3185static inline void
3186update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3187{
3188 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3189 long delta, load = gcfs_rq->avg.load_avg;
3190
3191 /*
3192 * If the load of group cfs_rq is null, the load of the
3193 * sched_entity will also be null so we can skip the formula
3194 */
3195 if (load) {
3196 long tg_load;
3197
3198 /* Get tg's load and ensure tg_load > 0 */
3199 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3200
3201 /* Ensure tg_load >= load and updated with current load*/
3202 tg_load -= gcfs_rq->tg_load_avg_contrib;
3203 tg_load += load;
3204
3205 /*
3206 * We need to compute a correction term in the case that the
3207 * task group is consuming more CPU than a task of equal
3208 * weight. A task with a weight equals to tg->shares will have
3209 * a load less or equal to scale_load_down(tg->shares).
3210 * Similarly, the sched_entities that represent the task group
3211 * at parent level, can't have a load higher than
3212 * scale_load_down(tg->shares). And the Sum of sched_entities'
3213 * load must be <= scale_load_down(tg->shares).
3214 */
3215 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3216 /* scale gcfs_rq's load into tg's shares*/
3217 load *= scale_load_down(gcfs_rq->tg->shares);
3218 load /= tg_load;
3219 }
3220 }
3221
3222 delta = load - se->avg.load_avg;
3223
3224 /* Nothing to update */
3225 if (!delta)
3226 return;
3227
3228 /* Set new sched_entity's load */
3229 se->avg.load_avg = load;
3230 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3231
3232 /* Update parent cfs_rq load */
3233 add_positive(&cfs_rq->avg.load_avg, delta);
3234 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3235
3236 /*
3237 * If the sched_entity is already enqueued, we also have to update the
3238 * runnable load avg.
3239 */
3240 if (se->on_rq) {
3241 /* Update parent cfs_rq runnable_load_avg */
3242 add_positive(&cfs_rq->runnable_load_avg, delta);
3243 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3244 }
3245}
3246
3247static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3248{
3249 cfs_rq->propagate_avg = 1;
3250}
3251
3252static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3253{
3254 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3255
3256 if (!cfs_rq->propagate_avg)
3257 return 0;
3258
3259 cfs_rq->propagate_avg = 0;
3260 return 1;
3261}
3262
3263/* Update task and its cfs_rq load average */
3264static inline int propagate_entity_load_avg(struct sched_entity *se)
3265{
3266 struct cfs_rq *cfs_rq;
3267
3268 if (entity_is_task(se))
3269 return 0;
3270
3271 if (!test_and_clear_tg_cfs_propagate(se))
3272 return 0;
3273
3274 cfs_rq = cfs_rq_of(se);
3275
3276 set_tg_cfs_propagate(cfs_rq);
3277
3278 update_tg_cfs_util(cfs_rq, se);
3279 update_tg_cfs_load(cfs_rq, se);
3280
3281 return 1;
3282}
3283
bc427898
VG
3284/*
3285 * Check if we need to update the load and the utilization of a blocked
3286 * group_entity:
3287 */
3288static inline bool skip_blocked_update(struct sched_entity *se)
3289{
3290 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3291
3292 /*
3293 * If sched_entity still have not zero load or utilization, we have to
3294 * decay it:
3295 */
3296 if (se->avg.load_avg || se->avg.util_avg)
3297 return false;
3298
3299 /*
3300 * If there is a pending propagation, we have to update the load and
3301 * the utilization of the sched_entity:
3302 */
3303 if (gcfs_rq->propagate_avg)
3304 return false;
3305
3306 /*
3307 * Otherwise, the load and the utilization of the sched_entity is
3308 * already zero and there is no pending propagation, so it will be a
3309 * waste of time to try to decay it:
3310 */
3311 return true;
3312}
3313
6e83125c 3314#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3315
9d89c257 3316static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3317
3318static inline int propagate_entity_load_avg(struct sched_entity *se)
3319{
3320 return 0;
3321}
3322
3323static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3324
6e83125c 3325#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3326
89741892
PZ
3327/*
3328 * Unsigned subtract and clamp on underflow.
3329 *
3330 * Explicitly do a load-store to ensure the intermediate value never hits
3331 * memory. This allows lockless observations without ever seeing the negative
3332 * values.
3333 */
3334#define sub_positive(_ptr, _val) do { \
3335 typeof(_ptr) ptr = (_ptr); \
3336 typeof(*ptr) val = (_val); \
3337 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3338 res = var - val; \
3339 if (res > var) \
3340 res = 0; \
3341 WRITE_ONCE(*ptr, res); \
3342} while (0)
3343
3d30544f
PZ
3344/**
3345 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3346 * @now: current time, as per cfs_rq_clock_task()
3347 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3348 *
3349 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3350 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3351 * post_init_entity_util_avg().
3352 *
3353 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3354 *
7c3edd2c
PZ
3355 * Returns true if the load decayed or we removed load.
3356 *
3357 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3358 * call update_tg_load_avg() when this function returns true.
3d30544f 3359 */
a2c6c91f 3360static inline int
3a123bbb 3361update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3362{
9d89c257 3363 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3364 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3365
9d89c257 3366 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3367 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3368 sub_positive(&sa->load_avg, r);
3369 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3370 removed_load = 1;
4e516076 3371 set_tg_cfs_propagate(cfs_rq);
8165e145 3372 }
2dac754e 3373
9d89c257
YD
3374 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3375 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3376 sub_positive(&sa->util_avg, r);
3377 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3378 removed_util = 1;
4e516076 3379 set_tg_cfs_propagate(cfs_rq);
9d89c257 3380 }
36ee28e4 3381
0ccb977f 3382 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3383
9d89c257
YD
3384#ifndef CONFIG_64BIT
3385 smp_wmb();
3386 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3387#endif
36ee28e4 3388
3a123bbb 3389 if (decayed || removed_util)
a2c6c91f 3390 cfs_rq_util_change(cfs_rq);
21e96f88 3391
41e0d37f 3392 return decayed || removed_load;
21e96f88
SM
3393}
3394
d31b1a66
VG
3395/*
3396 * Optional action to be done while updating the load average
3397 */
3398#define UPDATE_TG 0x1
3399#define SKIP_AGE_LOAD 0x2
3400
21e96f88 3401/* Update task and its cfs_rq load average */
d31b1a66 3402static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3403{
3404 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3405 u64 now = cfs_rq_clock_task(cfs_rq);
3406 struct rq *rq = rq_of(cfs_rq);
3407 int cpu = cpu_of(rq);
09a43ace 3408 int decayed;
21e96f88
SM
3409
3410 /*
3411 * Track task load average for carrying it to new CPU after migrated, and
3412 * track group sched_entity load average for task_h_load calc in migration
3413 */
0ccb977f
PZ
3414 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3415 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3416
3a123bbb 3417 decayed = update_cfs_rq_load_avg(now, cfs_rq);
09a43ace
VG
3418 decayed |= propagate_entity_load_avg(se);
3419
3420 if (decayed && (flags & UPDATE_TG))
21e96f88 3421 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3422}
3423
3d30544f
PZ
3424/**
3425 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3426 * @cfs_rq: cfs_rq to attach to
3427 * @se: sched_entity to attach
3428 *
3429 * Must call update_cfs_rq_load_avg() before this, since we rely on
3430 * cfs_rq->avg.last_update_time being current.
3431 */
a05e8c51
BP
3432static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3433{
3434 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3435 cfs_rq->avg.load_avg += se->avg.load_avg;
3436 cfs_rq->avg.load_sum += se->avg.load_sum;
3437 cfs_rq->avg.util_avg += se->avg.util_avg;
3438 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3439 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3440
3441 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3442}
3443
3d30544f
PZ
3444/**
3445 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3446 * @cfs_rq: cfs_rq to detach from
3447 * @se: sched_entity to detach
3448 *
3449 * Must call update_cfs_rq_load_avg() before this, since we rely on
3450 * cfs_rq->avg.last_update_time being current.
3451 */
a05e8c51
BP
3452static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3453{
a05e8c51 3454
89741892
PZ
3455 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3456 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3457 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3458 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3459 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3460
3461 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3462}
3463
9d89c257
YD
3464/* Add the load generated by se into cfs_rq's load average */
3465static inline void
3466enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3467{
9d89c257 3468 struct sched_avg *sa = &se->avg;
18bf2805 3469
13962234
YD
3470 cfs_rq->runnable_load_avg += sa->load_avg;
3471 cfs_rq->runnable_load_sum += sa->load_sum;
3472
d31b1a66 3473 if (!sa->last_update_time) {
a05e8c51 3474 attach_entity_load_avg(cfs_rq, se);
9d89c257 3475 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3476 }
2dac754e
PT
3477}
3478
13962234
YD
3479/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3480static inline void
3481dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3482{
13962234
YD
3483 cfs_rq->runnable_load_avg =
3484 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3485 cfs_rq->runnable_load_sum =
a05e8c51 3486 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3487}
3488
9d89c257 3489#ifndef CONFIG_64BIT
0905f04e
YD
3490static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3491{
9d89c257 3492 u64 last_update_time_copy;
0905f04e 3493 u64 last_update_time;
9ee474f5 3494
9d89c257
YD
3495 do {
3496 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3497 smp_rmb();
3498 last_update_time = cfs_rq->avg.last_update_time;
3499 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3500
3501 return last_update_time;
3502}
9d89c257 3503#else
0905f04e
YD
3504static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3505{
3506 return cfs_rq->avg.last_update_time;
3507}
9d89c257
YD
3508#endif
3509
104cb16d
MR
3510/*
3511 * Synchronize entity load avg of dequeued entity without locking
3512 * the previous rq.
3513 */
3514void sync_entity_load_avg(struct sched_entity *se)
3515{
3516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3517 u64 last_update_time;
3518
3519 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3520 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3521}
3522
0905f04e
YD
3523/*
3524 * Task first catches up with cfs_rq, and then subtract
3525 * itself from the cfs_rq (task must be off the queue now).
3526 */
3527void remove_entity_load_avg(struct sched_entity *se)
3528{
3529 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3530
3531 /*
7dc603c9
PZ
3532 * tasks cannot exit without having gone through wake_up_new_task() ->
3533 * post_init_entity_util_avg() which will have added things to the
3534 * cfs_rq, so we can remove unconditionally.
3535 *
3536 * Similarly for groups, they will have passed through
3537 * post_init_entity_util_avg() before unregister_sched_fair_group()
3538 * calls this.
0905f04e 3539 */
0905f04e 3540
104cb16d 3541 sync_entity_load_avg(se);
9d89c257
YD
3542 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3543 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3544}
642dbc39 3545
7ea241af
YD
3546static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3547{
3548 return cfs_rq->runnable_load_avg;
3549}
3550
3551static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3552{
3553 return cfs_rq->avg.load_avg;
3554}
3555
46f69fa3 3556static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3557
38033c37
PZ
3558#else /* CONFIG_SMP */
3559
01011473 3560static inline int
3a123bbb 3561update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
01011473
PZ
3562{
3563 return 0;
3564}
3565
d31b1a66
VG
3566#define UPDATE_TG 0x0
3567#define SKIP_AGE_LOAD 0x0
3568
3569static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3570{
a030d738 3571 cfs_rq_util_change(cfs_rq_of(se));
536bd00c
RW
3572}
3573
9d89c257
YD
3574static inline void
3575enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3576static inline void
3577dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3578static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3579
a05e8c51
BP
3580static inline void
3581attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3582static inline void
3583detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3584
46f69fa3 3585static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3586{
3587 return 0;
3588}
3589
38033c37 3590#endif /* CONFIG_SMP */
9d85f21c 3591
ddc97297
PZ
3592static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3593{
3594#ifdef CONFIG_SCHED_DEBUG
3595 s64 d = se->vruntime - cfs_rq->min_vruntime;
3596
3597 if (d < 0)
3598 d = -d;
3599
3600 if (d > 3*sysctl_sched_latency)
ae92882e 3601 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3602#endif
3603}
3604
aeb73b04
PZ
3605static void
3606place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3607{
1af5f730 3608 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3609
2cb8600e
PZ
3610 /*
3611 * The 'current' period is already promised to the current tasks,
3612 * however the extra weight of the new task will slow them down a
3613 * little, place the new task so that it fits in the slot that
3614 * stays open at the end.
3615 */
94dfb5e7 3616 if (initial && sched_feat(START_DEBIT))
f9c0b095 3617 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3618
a2e7a7eb 3619 /* sleeps up to a single latency don't count. */
5ca9880c 3620 if (!initial) {
a2e7a7eb 3621 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3622
a2e7a7eb
MG
3623 /*
3624 * Halve their sleep time's effect, to allow
3625 * for a gentler effect of sleepers:
3626 */
3627 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3628 thresh >>= 1;
51e0304c 3629
a2e7a7eb 3630 vruntime -= thresh;
aeb73b04
PZ
3631 }
3632
b5d9d734 3633 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3634 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3635}
3636
d3d9dc33
PT
3637static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3638
cb251765
MG
3639static inline void check_schedstat_required(void)
3640{
3641#ifdef CONFIG_SCHEDSTATS
3642 if (schedstat_enabled())
3643 return;
3644
3645 /* Force schedstat enabled if a dependent tracepoint is active */
3646 if (trace_sched_stat_wait_enabled() ||
3647 trace_sched_stat_sleep_enabled() ||
3648 trace_sched_stat_iowait_enabled() ||
3649 trace_sched_stat_blocked_enabled() ||
3650 trace_sched_stat_runtime_enabled()) {
eda8dca5 3651 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3652 "stat_blocked and stat_runtime require the "
f67abed5 3653 "kernel parameter schedstats=enable or "
cb251765
MG
3654 "kernel.sched_schedstats=1\n");
3655 }
3656#endif
3657}
3658
b5179ac7
PZ
3659
3660/*
3661 * MIGRATION
3662 *
3663 * dequeue
3664 * update_curr()
3665 * update_min_vruntime()
3666 * vruntime -= min_vruntime
3667 *
3668 * enqueue
3669 * update_curr()
3670 * update_min_vruntime()
3671 * vruntime += min_vruntime
3672 *
3673 * this way the vruntime transition between RQs is done when both
3674 * min_vruntime are up-to-date.
3675 *
3676 * WAKEUP (remote)
3677 *
59efa0ba 3678 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3679 * vruntime -= min_vruntime
3680 *
3681 * enqueue
3682 * update_curr()
3683 * update_min_vruntime()
3684 * vruntime += min_vruntime
3685 *
3686 * this way we don't have the most up-to-date min_vruntime on the originating
3687 * CPU and an up-to-date min_vruntime on the destination CPU.
3688 */
3689
bf0f6f24 3690static void
88ec22d3 3691enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3692{
2f950354
PZ
3693 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3694 bool curr = cfs_rq->curr == se;
3695
88ec22d3 3696 /*
2f950354
PZ
3697 * If we're the current task, we must renormalise before calling
3698 * update_curr().
88ec22d3 3699 */
2f950354 3700 if (renorm && curr)
88ec22d3
PZ
3701 se->vruntime += cfs_rq->min_vruntime;
3702
2f950354
PZ
3703 update_curr(cfs_rq);
3704
bf0f6f24 3705 /*
2f950354
PZ
3706 * Otherwise, renormalise after, such that we're placed at the current
3707 * moment in time, instead of some random moment in the past. Being
3708 * placed in the past could significantly boost this task to the
3709 * fairness detriment of existing tasks.
bf0f6f24 3710 */
2f950354
PZ
3711 if (renorm && !curr)
3712 se->vruntime += cfs_rq->min_vruntime;
3713
89ee048f
VG
3714 /*
3715 * When enqueuing a sched_entity, we must:
3716 * - Update loads to have both entity and cfs_rq synced with now.
3717 * - Add its load to cfs_rq->runnable_avg
3718 * - For group_entity, update its weight to reflect the new share of
3719 * its group cfs_rq
3720 * - Add its new weight to cfs_rq->load.weight
3721 */
d31b1a66 3722 update_load_avg(se, UPDATE_TG);
9d89c257 3723 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3724 update_cfs_shares(se);
17bc14b7 3725 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3726
1a3d027c 3727 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3728 place_entity(cfs_rq, se, 0);
bf0f6f24 3729
cb251765 3730 check_schedstat_required();
4fa8d299
JP
3731 update_stats_enqueue(cfs_rq, se, flags);
3732 check_spread(cfs_rq, se);
2f950354 3733 if (!curr)
83b699ed 3734 __enqueue_entity(cfs_rq, se);
2069dd75 3735 se->on_rq = 1;
3d4b47b4 3736
d3d9dc33 3737 if (cfs_rq->nr_running == 1) {
3d4b47b4 3738 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3739 check_enqueue_throttle(cfs_rq);
3740 }
bf0f6f24
IM
3741}
3742
2c13c919 3743static void __clear_buddies_last(struct sched_entity *se)
2002c695 3744{
2c13c919
RR
3745 for_each_sched_entity(se) {
3746 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3747 if (cfs_rq->last != se)
2c13c919 3748 break;
f1044799
PZ
3749
3750 cfs_rq->last = NULL;
2c13c919
RR
3751 }
3752}
2002c695 3753
2c13c919
RR
3754static void __clear_buddies_next(struct sched_entity *se)
3755{
3756 for_each_sched_entity(se) {
3757 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3758 if (cfs_rq->next != se)
2c13c919 3759 break;
f1044799
PZ
3760
3761 cfs_rq->next = NULL;
2c13c919 3762 }
2002c695
PZ
3763}
3764
ac53db59
RR
3765static void __clear_buddies_skip(struct sched_entity *se)
3766{
3767 for_each_sched_entity(se) {
3768 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3769 if (cfs_rq->skip != se)
ac53db59 3770 break;
f1044799
PZ
3771
3772 cfs_rq->skip = NULL;
ac53db59
RR
3773 }
3774}
3775
a571bbea
PZ
3776static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3777{
2c13c919
RR
3778 if (cfs_rq->last == se)
3779 __clear_buddies_last(se);
3780
3781 if (cfs_rq->next == se)
3782 __clear_buddies_next(se);
ac53db59
RR
3783
3784 if (cfs_rq->skip == se)
3785 __clear_buddies_skip(se);
a571bbea
PZ
3786}
3787
6c16a6dc 3788static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3789
bf0f6f24 3790static void
371fd7e7 3791dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3792{
a2a2d680
DA
3793 /*
3794 * Update run-time statistics of the 'current'.
3795 */
3796 update_curr(cfs_rq);
89ee048f
VG
3797
3798 /*
3799 * When dequeuing a sched_entity, we must:
3800 * - Update loads to have both entity and cfs_rq synced with now.
3801 * - Substract its load from the cfs_rq->runnable_avg.
3802 * - Substract its previous weight from cfs_rq->load.weight.
3803 * - For group entity, update its weight to reflect the new share
3804 * of its group cfs_rq.
3805 */
d31b1a66 3806 update_load_avg(se, UPDATE_TG);
13962234 3807 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3808
4fa8d299 3809 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3810
2002c695 3811 clear_buddies(cfs_rq, se);
4793241b 3812
83b699ed 3813 if (se != cfs_rq->curr)
30cfdcfc 3814 __dequeue_entity(cfs_rq, se);
17bc14b7 3815 se->on_rq = 0;
30cfdcfc 3816 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3817
3818 /*
b60205c7
PZ
3819 * Normalize after update_curr(); which will also have moved
3820 * min_vruntime if @se is the one holding it back. But before doing
3821 * update_min_vruntime() again, which will discount @se's position and
3822 * can move min_vruntime forward still more.
88ec22d3 3823 */
371fd7e7 3824 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3825 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3826
d8b4986d
PT
3827 /* return excess runtime on last dequeue */
3828 return_cfs_rq_runtime(cfs_rq);
3829
89ee048f 3830 update_cfs_shares(se);
b60205c7
PZ
3831
3832 /*
3833 * Now advance min_vruntime if @se was the entity holding it back,
3834 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3835 * put back on, and if we advance min_vruntime, we'll be placed back
3836 * further than we started -- ie. we'll be penalized.
3837 */
3838 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3839 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3840}
3841
3842/*
3843 * Preempt the current task with a newly woken task if needed:
3844 */
7c92e54f 3845static void
2e09bf55 3846check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3847{
11697830 3848 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3849 struct sched_entity *se;
3850 s64 delta;
11697830 3851
6d0f0ebd 3852 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3853 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3854 if (delta_exec > ideal_runtime) {
8875125e 3855 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3856 /*
3857 * The current task ran long enough, ensure it doesn't get
3858 * re-elected due to buddy favours.
3859 */
3860 clear_buddies(cfs_rq, curr);
f685ceac
MG
3861 return;
3862 }
3863
3864 /*
3865 * Ensure that a task that missed wakeup preemption by a
3866 * narrow margin doesn't have to wait for a full slice.
3867 * This also mitigates buddy induced latencies under load.
3868 */
f685ceac
MG
3869 if (delta_exec < sysctl_sched_min_granularity)
3870 return;
3871
f4cfb33e
WX
3872 se = __pick_first_entity(cfs_rq);
3873 delta = curr->vruntime - se->vruntime;
f685ceac 3874
f4cfb33e
WX
3875 if (delta < 0)
3876 return;
d7d82944 3877
f4cfb33e 3878 if (delta > ideal_runtime)
8875125e 3879 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3880}
3881
83b699ed 3882static void
8494f412 3883set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3884{
83b699ed
SV
3885 /* 'current' is not kept within the tree. */
3886 if (se->on_rq) {
3887 /*
3888 * Any task has to be enqueued before it get to execute on
3889 * a CPU. So account for the time it spent waiting on the
3890 * runqueue.
3891 */
4fa8d299 3892 update_stats_wait_end(cfs_rq, se);
83b699ed 3893 __dequeue_entity(cfs_rq, se);
d31b1a66 3894 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3895 }
3896
79303e9e 3897 update_stats_curr_start(cfs_rq, se);
429d43bc 3898 cfs_rq->curr = se;
4fa8d299 3899
eba1ed4b
IM
3900 /*
3901 * Track our maximum slice length, if the CPU's load is at
3902 * least twice that of our own weight (i.e. dont track it
3903 * when there are only lesser-weight tasks around):
3904 */
cb251765 3905 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3906 schedstat_set(se->statistics.slice_max,
3907 max((u64)schedstat_val(se->statistics.slice_max),
3908 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3909 }
4fa8d299 3910
4a55b450 3911 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3912}
3913
3f3a4904
PZ
3914static int
3915wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3916
ac53db59
RR
3917/*
3918 * Pick the next process, keeping these things in mind, in this order:
3919 * 1) keep things fair between processes/task groups
3920 * 2) pick the "next" process, since someone really wants that to run
3921 * 3) pick the "last" process, for cache locality
3922 * 4) do not run the "skip" process, if something else is available
3923 */
678d5718
PZ
3924static struct sched_entity *
3925pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3926{
678d5718
PZ
3927 struct sched_entity *left = __pick_first_entity(cfs_rq);
3928 struct sched_entity *se;
3929
3930 /*
3931 * If curr is set we have to see if its left of the leftmost entity
3932 * still in the tree, provided there was anything in the tree at all.
3933 */
3934 if (!left || (curr && entity_before(curr, left)))
3935 left = curr;
3936
3937 se = left; /* ideally we run the leftmost entity */
f4b6755f 3938
ac53db59
RR
3939 /*
3940 * Avoid running the skip buddy, if running something else can
3941 * be done without getting too unfair.
3942 */
3943 if (cfs_rq->skip == se) {
678d5718
PZ
3944 struct sched_entity *second;
3945
3946 if (se == curr) {
3947 second = __pick_first_entity(cfs_rq);
3948 } else {
3949 second = __pick_next_entity(se);
3950 if (!second || (curr && entity_before(curr, second)))
3951 second = curr;
3952 }
3953
ac53db59
RR
3954 if (second && wakeup_preempt_entity(second, left) < 1)
3955 se = second;
3956 }
aa2ac252 3957
f685ceac
MG
3958 /*
3959 * Prefer last buddy, try to return the CPU to a preempted task.
3960 */
3961 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3962 se = cfs_rq->last;
3963
ac53db59
RR
3964 /*
3965 * Someone really wants this to run. If it's not unfair, run it.
3966 */
3967 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3968 se = cfs_rq->next;
3969
f685ceac 3970 clear_buddies(cfs_rq, se);
4793241b
PZ
3971
3972 return se;
aa2ac252
PZ
3973}
3974
678d5718 3975static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3976
ab6cde26 3977static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3978{
3979 /*
3980 * If still on the runqueue then deactivate_task()
3981 * was not called and update_curr() has to be done:
3982 */
3983 if (prev->on_rq)
b7cc0896 3984 update_curr(cfs_rq);
bf0f6f24 3985
d3d9dc33
PT
3986 /* throttle cfs_rqs exceeding runtime */
3987 check_cfs_rq_runtime(cfs_rq);
3988
4fa8d299 3989 check_spread(cfs_rq, prev);
cb251765 3990
30cfdcfc 3991 if (prev->on_rq) {
4fa8d299 3992 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3993 /* Put 'current' back into the tree. */
3994 __enqueue_entity(cfs_rq, prev);
9d85f21c 3995 /* in !on_rq case, update occurred at dequeue */
9d89c257 3996 update_load_avg(prev, 0);
30cfdcfc 3997 }
429d43bc 3998 cfs_rq->curr = NULL;
bf0f6f24
IM
3999}
4000
8f4d37ec
PZ
4001static void
4002entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4003{
bf0f6f24 4004 /*
30cfdcfc 4005 * Update run-time statistics of the 'current'.
bf0f6f24 4006 */
30cfdcfc 4007 update_curr(cfs_rq);
bf0f6f24 4008
9d85f21c
PT
4009 /*
4010 * Ensure that runnable average is periodically updated.
4011 */
d31b1a66 4012 update_load_avg(curr, UPDATE_TG);
89ee048f 4013 update_cfs_shares(curr);
9d85f21c 4014
8f4d37ec
PZ
4015#ifdef CONFIG_SCHED_HRTICK
4016 /*
4017 * queued ticks are scheduled to match the slice, so don't bother
4018 * validating it and just reschedule.
4019 */
983ed7a6 4020 if (queued) {
8875125e 4021 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4022 return;
4023 }
8f4d37ec
PZ
4024 /*
4025 * don't let the period tick interfere with the hrtick preemption
4026 */
4027 if (!sched_feat(DOUBLE_TICK) &&
4028 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4029 return;
4030#endif
4031
2c2efaed 4032 if (cfs_rq->nr_running > 1)
2e09bf55 4033 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4034}
4035
ab84d31e
PT
4036
4037/**************************************************
4038 * CFS bandwidth control machinery
4039 */
4040
4041#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
4042
4043#ifdef HAVE_JUMP_LABEL
c5905afb 4044static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4045
4046static inline bool cfs_bandwidth_used(void)
4047{
c5905afb 4048 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4049}
4050
1ee14e6c 4051void cfs_bandwidth_usage_inc(void)
029632fb 4052{
1ee14e6c
BS
4053 static_key_slow_inc(&__cfs_bandwidth_used);
4054}
4055
4056void cfs_bandwidth_usage_dec(void)
4057{
4058 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
4059}
4060#else /* HAVE_JUMP_LABEL */
4061static bool cfs_bandwidth_used(void)
4062{
4063 return true;
4064}
4065
1ee14e6c
BS
4066void cfs_bandwidth_usage_inc(void) {}
4067void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
4068#endif /* HAVE_JUMP_LABEL */
4069
ab84d31e
PT
4070/*
4071 * default period for cfs group bandwidth.
4072 * default: 0.1s, units: nanoseconds
4073 */
4074static inline u64 default_cfs_period(void)
4075{
4076 return 100000000ULL;
4077}
ec12cb7f
PT
4078
4079static inline u64 sched_cfs_bandwidth_slice(void)
4080{
4081 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4082}
4083
a9cf55b2
PT
4084/*
4085 * Replenish runtime according to assigned quota and update expiration time.
4086 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4087 * additional synchronization around rq->lock.
4088 *
4089 * requires cfs_b->lock
4090 */
029632fb 4091void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4092{
4093 u64 now;
4094
4095 if (cfs_b->quota == RUNTIME_INF)
4096 return;
4097
4098 now = sched_clock_cpu(smp_processor_id());
4099 cfs_b->runtime = cfs_b->quota;
4100 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4101}
4102
029632fb
PZ
4103static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4104{
4105 return &tg->cfs_bandwidth;
4106}
4107
f1b17280
PT
4108/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4109static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4110{
4111 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4112 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4113
78becc27 4114 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4115}
4116
85dac906
PT
4117/* returns 0 on failure to allocate runtime */
4118static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4119{
4120 struct task_group *tg = cfs_rq->tg;
4121 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4122 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4123
4124 /* note: this is a positive sum as runtime_remaining <= 0 */
4125 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4126
4127 raw_spin_lock(&cfs_b->lock);
4128 if (cfs_b->quota == RUNTIME_INF)
4129 amount = min_amount;
58088ad0 4130 else {
77a4d1a1 4131 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4132
4133 if (cfs_b->runtime > 0) {
4134 amount = min(cfs_b->runtime, min_amount);
4135 cfs_b->runtime -= amount;
4136 cfs_b->idle = 0;
4137 }
ec12cb7f 4138 }
a9cf55b2 4139 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4140 raw_spin_unlock(&cfs_b->lock);
4141
4142 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4143 /*
4144 * we may have advanced our local expiration to account for allowed
4145 * spread between our sched_clock and the one on which runtime was
4146 * issued.
4147 */
4148 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4149 cfs_rq->runtime_expires = expires;
85dac906
PT
4150
4151 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4152}
4153
a9cf55b2
PT
4154/*
4155 * Note: This depends on the synchronization provided by sched_clock and the
4156 * fact that rq->clock snapshots this value.
4157 */
4158static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4159{
a9cf55b2 4160 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4161
4162 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4163 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4164 return;
4165
a9cf55b2
PT
4166 if (cfs_rq->runtime_remaining < 0)
4167 return;
4168
4169 /*
4170 * If the local deadline has passed we have to consider the
4171 * possibility that our sched_clock is 'fast' and the global deadline
4172 * has not truly expired.
4173 *
4174 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4175 * whether the global deadline has advanced. It is valid to compare
4176 * cfs_b->runtime_expires without any locks since we only care about
4177 * exact equality, so a partial write will still work.
a9cf55b2
PT
4178 */
4179
51f2176d 4180 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4181 /* extend local deadline, drift is bounded above by 2 ticks */
4182 cfs_rq->runtime_expires += TICK_NSEC;
4183 } else {
4184 /* global deadline is ahead, expiration has passed */
4185 cfs_rq->runtime_remaining = 0;
4186 }
4187}
4188
9dbdb155 4189static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4190{
4191 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4192 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4193 expire_cfs_rq_runtime(cfs_rq);
4194
4195 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4196 return;
4197
85dac906
PT
4198 /*
4199 * if we're unable to extend our runtime we resched so that the active
4200 * hierarchy can be throttled
4201 */
4202 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4203 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4204}
4205
6c16a6dc 4206static __always_inline
9dbdb155 4207void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4208{
56f570e5 4209 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4210 return;
4211
4212 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4213}
4214
85dac906
PT
4215static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4216{
56f570e5 4217 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4218}
4219
64660c86
PT
4220/* check whether cfs_rq, or any parent, is throttled */
4221static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4222{
56f570e5 4223 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4224}
4225
4226/*
4227 * Ensure that neither of the group entities corresponding to src_cpu or
4228 * dest_cpu are members of a throttled hierarchy when performing group
4229 * load-balance operations.
4230 */
4231static inline int throttled_lb_pair(struct task_group *tg,
4232 int src_cpu, int dest_cpu)
4233{
4234 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4235
4236 src_cfs_rq = tg->cfs_rq[src_cpu];
4237 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4238
4239 return throttled_hierarchy(src_cfs_rq) ||
4240 throttled_hierarchy(dest_cfs_rq);
4241}
4242
4243/* updated child weight may affect parent so we have to do this bottom up */
4244static int tg_unthrottle_up(struct task_group *tg, void *data)
4245{
4246 struct rq *rq = data;
4247 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4248
4249 cfs_rq->throttle_count--;
64660c86 4250 if (!cfs_rq->throttle_count) {
f1b17280 4251 /* adjust cfs_rq_clock_task() */
78becc27 4252 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4253 cfs_rq->throttled_clock_task;
64660c86 4254 }
64660c86
PT
4255
4256 return 0;
4257}
4258
4259static int tg_throttle_down(struct task_group *tg, void *data)
4260{
4261 struct rq *rq = data;
4262 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4263
82958366
PT
4264 /* group is entering throttled state, stop time */
4265 if (!cfs_rq->throttle_count)
78becc27 4266 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4267 cfs_rq->throttle_count++;
4268
4269 return 0;
4270}
4271
d3d9dc33 4272static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4273{
4274 struct rq *rq = rq_of(cfs_rq);
4275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4276 struct sched_entity *se;
4277 long task_delta, dequeue = 1;
77a4d1a1 4278 bool empty;
85dac906
PT
4279
4280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4281
f1b17280 4282 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4283 rcu_read_lock();
4284 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4285 rcu_read_unlock();
85dac906
PT
4286
4287 task_delta = cfs_rq->h_nr_running;
4288 for_each_sched_entity(se) {
4289 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4290 /* throttled entity or throttle-on-deactivate */
4291 if (!se->on_rq)
4292 break;
4293
4294 if (dequeue)
4295 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4296 qcfs_rq->h_nr_running -= task_delta;
4297
4298 if (qcfs_rq->load.weight)
4299 dequeue = 0;
4300 }
4301
4302 if (!se)
72465447 4303 sub_nr_running(rq, task_delta);
85dac906
PT
4304
4305 cfs_rq->throttled = 1;
78becc27 4306 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4307 raw_spin_lock(&cfs_b->lock);
d49db342 4308 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4309
c06f04c7
BS
4310 /*
4311 * Add to the _head_ of the list, so that an already-started
4312 * distribute_cfs_runtime will not see us
4313 */
4314 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4315
4316 /*
4317 * If we're the first throttled task, make sure the bandwidth
4318 * timer is running.
4319 */
4320 if (empty)
4321 start_cfs_bandwidth(cfs_b);
4322
85dac906
PT
4323 raw_spin_unlock(&cfs_b->lock);
4324}
4325
029632fb 4326void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4327{
4328 struct rq *rq = rq_of(cfs_rq);
4329 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4330 struct sched_entity *se;
4331 int enqueue = 1;
4332 long task_delta;
4333
22b958d8 4334 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4335
4336 cfs_rq->throttled = 0;
1a55af2e
FW
4337
4338 update_rq_clock(rq);
4339
671fd9da 4340 raw_spin_lock(&cfs_b->lock);
78becc27 4341 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4342 list_del_rcu(&cfs_rq->throttled_list);
4343 raw_spin_unlock(&cfs_b->lock);
4344
64660c86
PT
4345 /* update hierarchical throttle state */
4346 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4347
671fd9da
PT
4348 if (!cfs_rq->load.weight)
4349 return;
4350
4351 task_delta = cfs_rq->h_nr_running;
4352 for_each_sched_entity(se) {
4353 if (se->on_rq)
4354 enqueue = 0;
4355
4356 cfs_rq = cfs_rq_of(se);
4357 if (enqueue)
4358 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4359 cfs_rq->h_nr_running += task_delta;
4360
4361 if (cfs_rq_throttled(cfs_rq))
4362 break;
4363 }
4364
4365 if (!se)
72465447 4366 add_nr_running(rq, task_delta);
671fd9da
PT
4367
4368 /* determine whether we need to wake up potentially idle cpu */
4369 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4370 resched_curr(rq);
671fd9da
PT
4371}
4372
4373static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4374 u64 remaining, u64 expires)
4375{
4376 struct cfs_rq *cfs_rq;
c06f04c7
BS
4377 u64 runtime;
4378 u64 starting_runtime = remaining;
671fd9da
PT
4379
4380 rcu_read_lock();
4381 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4382 throttled_list) {
4383 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4384 struct rq_flags rf;
671fd9da 4385
8a8c69c3 4386 rq_lock(rq, &rf);
671fd9da
PT
4387 if (!cfs_rq_throttled(cfs_rq))
4388 goto next;
4389
4390 runtime = -cfs_rq->runtime_remaining + 1;
4391 if (runtime > remaining)
4392 runtime = remaining;
4393 remaining -= runtime;
4394
4395 cfs_rq->runtime_remaining += runtime;
4396 cfs_rq->runtime_expires = expires;
4397
4398 /* we check whether we're throttled above */
4399 if (cfs_rq->runtime_remaining > 0)
4400 unthrottle_cfs_rq(cfs_rq);
4401
4402next:
8a8c69c3 4403 rq_unlock(rq, &rf);
671fd9da
PT
4404
4405 if (!remaining)
4406 break;
4407 }
4408 rcu_read_unlock();
4409
c06f04c7 4410 return starting_runtime - remaining;
671fd9da
PT
4411}
4412
58088ad0
PT
4413/*
4414 * Responsible for refilling a task_group's bandwidth and unthrottling its
4415 * cfs_rqs as appropriate. If there has been no activity within the last
4416 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4417 * used to track this state.
4418 */
4419static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4420{
671fd9da 4421 u64 runtime, runtime_expires;
51f2176d 4422 int throttled;
58088ad0 4423
58088ad0
PT
4424 /* no need to continue the timer with no bandwidth constraint */
4425 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4426 goto out_deactivate;
58088ad0 4427
671fd9da 4428 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4429 cfs_b->nr_periods += overrun;
671fd9da 4430
51f2176d
BS
4431 /*
4432 * idle depends on !throttled (for the case of a large deficit), and if
4433 * we're going inactive then everything else can be deferred
4434 */
4435 if (cfs_b->idle && !throttled)
4436 goto out_deactivate;
a9cf55b2
PT
4437
4438 __refill_cfs_bandwidth_runtime(cfs_b);
4439
671fd9da
PT
4440 if (!throttled) {
4441 /* mark as potentially idle for the upcoming period */
4442 cfs_b->idle = 1;
51f2176d 4443 return 0;
671fd9da
PT
4444 }
4445
e8da1b18
NR
4446 /* account preceding periods in which throttling occurred */
4447 cfs_b->nr_throttled += overrun;
4448
671fd9da 4449 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4450
4451 /*
c06f04c7
BS
4452 * This check is repeated as we are holding onto the new bandwidth while
4453 * we unthrottle. This can potentially race with an unthrottled group
4454 * trying to acquire new bandwidth from the global pool. This can result
4455 * in us over-using our runtime if it is all used during this loop, but
4456 * only by limited amounts in that extreme case.
671fd9da 4457 */
c06f04c7
BS
4458 while (throttled && cfs_b->runtime > 0) {
4459 runtime = cfs_b->runtime;
671fd9da
PT
4460 raw_spin_unlock(&cfs_b->lock);
4461 /* we can't nest cfs_b->lock while distributing bandwidth */
4462 runtime = distribute_cfs_runtime(cfs_b, runtime,
4463 runtime_expires);
4464 raw_spin_lock(&cfs_b->lock);
4465
4466 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4467
4468 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4469 }
58088ad0 4470
671fd9da
PT
4471 /*
4472 * While we are ensured activity in the period following an
4473 * unthrottle, this also covers the case in which the new bandwidth is
4474 * insufficient to cover the existing bandwidth deficit. (Forcing the
4475 * timer to remain active while there are any throttled entities.)
4476 */
4477 cfs_b->idle = 0;
58088ad0 4478
51f2176d
BS
4479 return 0;
4480
4481out_deactivate:
51f2176d 4482 return 1;
58088ad0 4483}
d3d9dc33 4484
d8b4986d
PT
4485/* a cfs_rq won't donate quota below this amount */
4486static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4487/* minimum remaining period time to redistribute slack quota */
4488static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4489/* how long we wait to gather additional slack before distributing */
4490static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4491
db06e78c
BS
4492/*
4493 * Are we near the end of the current quota period?
4494 *
4495 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4496 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4497 * migrate_hrtimers, base is never cleared, so we are fine.
4498 */
d8b4986d
PT
4499static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4500{
4501 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4502 u64 remaining;
4503
4504 /* if the call-back is running a quota refresh is already occurring */
4505 if (hrtimer_callback_running(refresh_timer))
4506 return 1;
4507
4508 /* is a quota refresh about to occur? */
4509 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4510 if (remaining < min_expire)
4511 return 1;
4512
4513 return 0;
4514}
4515
4516static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4517{
4518 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4519
4520 /* if there's a quota refresh soon don't bother with slack */
4521 if (runtime_refresh_within(cfs_b, min_left))
4522 return;
4523
4cfafd30
PZ
4524 hrtimer_start(&cfs_b->slack_timer,
4525 ns_to_ktime(cfs_bandwidth_slack_period),
4526 HRTIMER_MODE_REL);
d8b4986d
PT
4527}
4528
4529/* we know any runtime found here is valid as update_curr() precedes return */
4530static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4531{
4532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4533 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4534
4535 if (slack_runtime <= 0)
4536 return;
4537
4538 raw_spin_lock(&cfs_b->lock);
4539 if (cfs_b->quota != RUNTIME_INF &&
4540 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4541 cfs_b->runtime += slack_runtime;
4542
4543 /* we are under rq->lock, defer unthrottling using a timer */
4544 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4545 !list_empty(&cfs_b->throttled_cfs_rq))
4546 start_cfs_slack_bandwidth(cfs_b);
4547 }
4548 raw_spin_unlock(&cfs_b->lock);
4549
4550 /* even if it's not valid for return we don't want to try again */
4551 cfs_rq->runtime_remaining -= slack_runtime;
4552}
4553
4554static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4555{
56f570e5
PT
4556 if (!cfs_bandwidth_used())
4557 return;
4558
fccfdc6f 4559 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4560 return;
4561
4562 __return_cfs_rq_runtime(cfs_rq);
4563}
4564
4565/*
4566 * This is done with a timer (instead of inline with bandwidth return) since
4567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4568 */
4569static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4570{
4571 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4572 u64 expires;
4573
4574 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4575 raw_spin_lock(&cfs_b->lock);
4576 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4577 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4578 return;
db06e78c 4579 }
d8b4986d 4580
c06f04c7 4581 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4582 runtime = cfs_b->runtime;
c06f04c7 4583
d8b4986d
PT
4584 expires = cfs_b->runtime_expires;
4585 raw_spin_unlock(&cfs_b->lock);
4586
4587 if (!runtime)
4588 return;
4589
4590 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4591
4592 raw_spin_lock(&cfs_b->lock);
4593 if (expires == cfs_b->runtime_expires)
c06f04c7 4594 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4595 raw_spin_unlock(&cfs_b->lock);
4596}
4597
d3d9dc33
PT
4598/*
4599 * When a group wakes up we want to make sure that its quota is not already
4600 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4601 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4602 */
4603static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4604{
56f570e5
PT
4605 if (!cfs_bandwidth_used())
4606 return;
4607
d3d9dc33
PT
4608 /* an active group must be handled by the update_curr()->put() path */
4609 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4610 return;
4611
4612 /* ensure the group is not already throttled */
4613 if (cfs_rq_throttled(cfs_rq))
4614 return;
4615
4616 /* update runtime allocation */
4617 account_cfs_rq_runtime(cfs_rq, 0);
4618 if (cfs_rq->runtime_remaining <= 0)
4619 throttle_cfs_rq(cfs_rq);
4620}
4621
55e16d30
PZ
4622static void sync_throttle(struct task_group *tg, int cpu)
4623{
4624 struct cfs_rq *pcfs_rq, *cfs_rq;
4625
4626 if (!cfs_bandwidth_used())
4627 return;
4628
4629 if (!tg->parent)
4630 return;
4631
4632 cfs_rq = tg->cfs_rq[cpu];
4633 pcfs_rq = tg->parent->cfs_rq[cpu];
4634
4635 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4636 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4637}
4638
d3d9dc33 4639/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4640static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4641{
56f570e5 4642 if (!cfs_bandwidth_used())
678d5718 4643 return false;
56f570e5 4644
d3d9dc33 4645 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4646 return false;
d3d9dc33
PT
4647
4648 /*
4649 * it's possible for a throttled entity to be forced into a running
4650 * state (e.g. set_curr_task), in this case we're finished.
4651 */
4652 if (cfs_rq_throttled(cfs_rq))
678d5718 4653 return true;
d3d9dc33
PT
4654
4655 throttle_cfs_rq(cfs_rq);
678d5718 4656 return true;
d3d9dc33 4657}
029632fb 4658
029632fb
PZ
4659static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4660{
4661 struct cfs_bandwidth *cfs_b =
4662 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4663
029632fb
PZ
4664 do_sched_cfs_slack_timer(cfs_b);
4665
4666 return HRTIMER_NORESTART;
4667}
4668
4669static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4670{
4671 struct cfs_bandwidth *cfs_b =
4672 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4673 int overrun;
4674 int idle = 0;
4675
51f2176d 4676 raw_spin_lock(&cfs_b->lock);
029632fb 4677 for (;;) {
77a4d1a1 4678 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4679 if (!overrun)
4680 break;
4681
4682 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4683 }
4cfafd30
PZ
4684 if (idle)
4685 cfs_b->period_active = 0;
51f2176d 4686 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4687
4688 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4689}
4690
4691void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4692{
4693 raw_spin_lock_init(&cfs_b->lock);
4694 cfs_b->runtime = 0;
4695 cfs_b->quota = RUNTIME_INF;
4696 cfs_b->period = ns_to_ktime(default_cfs_period());
4697
4698 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4699 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4700 cfs_b->period_timer.function = sched_cfs_period_timer;
4701 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4702 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4703}
4704
4705static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4706{
4707 cfs_rq->runtime_enabled = 0;
4708 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4709}
4710
77a4d1a1 4711void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4712{
4cfafd30 4713 lockdep_assert_held(&cfs_b->lock);
029632fb 4714
4cfafd30
PZ
4715 if (!cfs_b->period_active) {
4716 cfs_b->period_active = 1;
4717 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4718 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4719 }
029632fb
PZ
4720}
4721
4722static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4723{
7f1a169b
TH
4724 /* init_cfs_bandwidth() was not called */
4725 if (!cfs_b->throttled_cfs_rq.next)
4726 return;
4727
029632fb
PZ
4728 hrtimer_cancel(&cfs_b->period_timer);
4729 hrtimer_cancel(&cfs_b->slack_timer);
4730}
4731
502ce005
PZ
4732/*
4733 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4734 *
4735 * The race is harmless, since modifying bandwidth settings of unhooked group
4736 * bits doesn't do much.
4737 */
4738
4739/* cpu online calback */
0e59bdae
KT
4740static void __maybe_unused update_runtime_enabled(struct rq *rq)
4741{
502ce005 4742 struct task_group *tg;
0e59bdae 4743
502ce005
PZ
4744 lockdep_assert_held(&rq->lock);
4745
4746 rcu_read_lock();
4747 list_for_each_entry_rcu(tg, &task_groups, list) {
4748 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4749 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4750
4751 raw_spin_lock(&cfs_b->lock);
4752 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4753 raw_spin_unlock(&cfs_b->lock);
4754 }
502ce005 4755 rcu_read_unlock();
0e59bdae
KT
4756}
4757
502ce005 4758/* cpu offline callback */
38dc3348 4759static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4760{
502ce005
PZ
4761 struct task_group *tg;
4762
4763 lockdep_assert_held(&rq->lock);
4764
4765 rcu_read_lock();
4766 list_for_each_entry_rcu(tg, &task_groups, list) {
4767 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4768
029632fb
PZ
4769 if (!cfs_rq->runtime_enabled)
4770 continue;
4771
4772 /*
4773 * clock_task is not advancing so we just need to make sure
4774 * there's some valid quota amount
4775 */
51f2176d 4776 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4777 /*
4778 * Offline rq is schedulable till cpu is completely disabled
4779 * in take_cpu_down(), so we prevent new cfs throttling here.
4780 */
4781 cfs_rq->runtime_enabled = 0;
4782
029632fb
PZ
4783 if (cfs_rq_throttled(cfs_rq))
4784 unthrottle_cfs_rq(cfs_rq);
4785 }
502ce005 4786 rcu_read_unlock();
029632fb
PZ
4787}
4788
4789#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4790static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4791{
78becc27 4792 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4793}
4794
9dbdb155 4795static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4796static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4797static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4798static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4799static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4800
4801static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4802{
4803 return 0;
4804}
64660c86
PT
4805
4806static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4807{
4808 return 0;
4809}
4810
4811static inline int throttled_lb_pair(struct task_group *tg,
4812 int src_cpu, int dest_cpu)
4813{
4814 return 0;
4815}
029632fb
PZ
4816
4817void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4818
4819#ifdef CONFIG_FAIR_GROUP_SCHED
4820static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4821#endif
4822
029632fb
PZ
4823static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4824{
4825 return NULL;
4826}
4827static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4828static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4829static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4830
4831#endif /* CONFIG_CFS_BANDWIDTH */
4832
bf0f6f24
IM
4833/**************************************************
4834 * CFS operations on tasks:
4835 */
4836
8f4d37ec
PZ
4837#ifdef CONFIG_SCHED_HRTICK
4838static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4839{
8f4d37ec
PZ
4840 struct sched_entity *se = &p->se;
4841 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4842
9148a3a1 4843 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4844
8bf46a39 4845 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4846 u64 slice = sched_slice(cfs_rq, se);
4847 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4848 s64 delta = slice - ran;
4849
4850 if (delta < 0) {
4851 if (rq->curr == p)
8875125e 4852 resched_curr(rq);
8f4d37ec
PZ
4853 return;
4854 }
31656519 4855 hrtick_start(rq, delta);
8f4d37ec
PZ
4856 }
4857}
a4c2f00f
PZ
4858
4859/*
4860 * called from enqueue/dequeue and updates the hrtick when the
4861 * current task is from our class and nr_running is low enough
4862 * to matter.
4863 */
4864static void hrtick_update(struct rq *rq)
4865{
4866 struct task_struct *curr = rq->curr;
4867
b39e66ea 4868 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4869 return;
4870
4871 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4872 hrtick_start_fair(rq, curr);
4873}
55e12e5e 4874#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4875static inline void
4876hrtick_start_fair(struct rq *rq, struct task_struct *p)
4877{
4878}
a4c2f00f
PZ
4879
4880static inline void hrtick_update(struct rq *rq)
4881{
4882}
8f4d37ec
PZ
4883#endif
4884
bf0f6f24
IM
4885/*
4886 * The enqueue_task method is called before nr_running is
4887 * increased. Here we update the fair scheduling stats and
4888 * then put the task into the rbtree:
4889 */
ea87bb78 4890static void
371fd7e7 4891enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4892{
4893 struct cfs_rq *cfs_rq;
62fb1851 4894 struct sched_entity *se = &p->se;
bf0f6f24 4895
8c34ab19
RW
4896 /*
4897 * If in_iowait is set, the code below may not trigger any cpufreq
4898 * utilization updates, so do it here explicitly with the IOWAIT flag
4899 * passed.
4900 */
4901 if (p->in_iowait)
674e7541 4902 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 4903
bf0f6f24 4904 for_each_sched_entity(se) {
62fb1851 4905 if (se->on_rq)
bf0f6f24
IM
4906 break;
4907 cfs_rq = cfs_rq_of(se);
88ec22d3 4908 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4909
4910 /*
4911 * end evaluation on encountering a throttled cfs_rq
4912 *
4913 * note: in the case of encountering a throttled cfs_rq we will
4914 * post the final h_nr_running increment below.
e210bffd 4915 */
85dac906
PT
4916 if (cfs_rq_throttled(cfs_rq))
4917 break;
953bfcd1 4918 cfs_rq->h_nr_running++;
85dac906 4919
88ec22d3 4920 flags = ENQUEUE_WAKEUP;
bf0f6f24 4921 }
8f4d37ec 4922
2069dd75 4923 for_each_sched_entity(se) {
0f317143 4924 cfs_rq = cfs_rq_of(se);
953bfcd1 4925 cfs_rq->h_nr_running++;
2069dd75 4926
85dac906
PT
4927 if (cfs_rq_throttled(cfs_rq))
4928 break;
4929
d31b1a66 4930 update_load_avg(se, UPDATE_TG);
89ee048f 4931 update_cfs_shares(se);
2069dd75
PZ
4932 }
4933
cd126afe 4934 if (!se)
72465447 4935 add_nr_running(rq, 1);
cd126afe 4936
a4c2f00f 4937 hrtick_update(rq);
bf0f6f24
IM
4938}
4939
2f36825b
VP
4940static void set_next_buddy(struct sched_entity *se);
4941
bf0f6f24
IM
4942/*
4943 * The dequeue_task method is called before nr_running is
4944 * decreased. We remove the task from the rbtree and
4945 * update the fair scheduling stats:
4946 */
371fd7e7 4947static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4948{
4949 struct cfs_rq *cfs_rq;
62fb1851 4950 struct sched_entity *se = &p->se;
2f36825b 4951 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4952
4953 for_each_sched_entity(se) {
4954 cfs_rq = cfs_rq_of(se);
371fd7e7 4955 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4956
4957 /*
4958 * end evaluation on encountering a throttled cfs_rq
4959 *
4960 * note: in the case of encountering a throttled cfs_rq we will
4961 * post the final h_nr_running decrement below.
4962 */
4963 if (cfs_rq_throttled(cfs_rq))
4964 break;
953bfcd1 4965 cfs_rq->h_nr_running--;
2069dd75 4966
bf0f6f24 4967 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4968 if (cfs_rq->load.weight) {
754bd598
KK
4969 /* Avoid re-evaluating load for this entity: */
4970 se = parent_entity(se);
2f36825b
VP
4971 /*
4972 * Bias pick_next to pick a task from this cfs_rq, as
4973 * p is sleeping when it is within its sched_slice.
4974 */
754bd598
KK
4975 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4976 set_next_buddy(se);
bf0f6f24 4977 break;
2f36825b 4978 }
371fd7e7 4979 flags |= DEQUEUE_SLEEP;
bf0f6f24 4980 }
8f4d37ec 4981
2069dd75 4982 for_each_sched_entity(se) {
0f317143 4983 cfs_rq = cfs_rq_of(se);
953bfcd1 4984 cfs_rq->h_nr_running--;
2069dd75 4985
85dac906
PT
4986 if (cfs_rq_throttled(cfs_rq))
4987 break;
4988
d31b1a66 4989 update_load_avg(se, UPDATE_TG);
89ee048f 4990 update_cfs_shares(se);
2069dd75
PZ
4991 }
4992
cd126afe 4993 if (!se)
72465447 4994 sub_nr_running(rq, 1);
cd126afe 4995
a4c2f00f 4996 hrtick_update(rq);
bf0f6f24
IM
4997}
4998
e7693a36 4999#ifdef CONFIG_SMP
10e2f1ac
PZ
5000
5001/* Working cpumask for: load_balance, load_balance_newidle. */
5002DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5003DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5004
9fd81dd5 5005#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5006/*
5007 * per rq 'load' arrray crap; XXX kill this.
5008 */
5009
5010/*
d937cdc5 5011 * The exact cpuload calculated at every tick would be:
3289bdb4 5012 *
d937cdc5
PZ
5013 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5014 *
5015 * If a cpu misses updates for n ticks (as it was idle) and update gets
5016 * called on the n+1-th tick when cpu may be busy, then we have:
5017 *
5018 * load_n = (1 - 1/2^i)^n * load_0
5019 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5020 *
5021 * decay_load_missed() below does efficient calculation of
3289bdb4 5022 *
d937cdc5
PZ
5023 * load' = (1 - 1/2^i)^n * load
5024 *
5025 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5026 * This allows us to precompute the above in said factors, thereby allowing the
5027 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5028 * fixed_power_int())
3289bdb4 5029 *
d937cdc5 5030 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5031 */
5032#define DEGRADE_SHIFT 7
d937cdc5
PZ
5033
5034static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5035static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5036 { 0, 0, 0, 0, 0, 0, 0, 0 },
5037 { 64, 32, 8, 0, 0, 0, 0, 0 },
5038 { 96, 72, 40, 12, 1, 0, 0, 0 },
5039 { 112, 98, 75, 43, 15, 1, 0, 0 },
5040 { 120, 112, 98, 76, 45, 16, 2, 0 }
5041};
3289bdb4
PZ
5042
5043/*
5044 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5045 * would be when CPU is idle and so we just decay the old load without
5046 * adding any new load.
5047 */
5048static unsigned long
5049decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5050{
5051 int j = 0;
5052
5053 if (!missed_updates)
5054 return load;
5055
5056 if (missed_updates >= degrade_zero_ticks[idx])
5057 return 0;
5058
5059 if (idx == 1)
5060 return load >> missed_updates;
5061
5062 while (missed_updates) {
5063 if (missed_updates % 2)
5064 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5065
5066 missed_updates >>= 1;
5067 j++;
5068 }
5069 return load;
5070}
9fd81dd5 5071#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5072
59543275 5073/**
cee1afce 5074 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5075 * @this_rq: The rq to update statistics for
5076 * @this_load: The current load
5077 * @pending_updates: The number of missed updates
59543275 5078 *
3289bdb4 5079 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5080 * scheduler tick (TICK_NSEC).
5081 *
5082 * This function computes a decaying average:
5083 *
5084 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5085 *
5086 * Because of NOHZ it might not get called on every tick which gives need for
5087 * the @pending_updates argument.
5088 *
5089 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5090 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5091 * = A * (A * load[i]_n-2 + B) + B
5092 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5093 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5094 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5095 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5096 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5097 *
5098 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5099 * any change in load would have resulted in the tick being turned back on.
5100 *
5101 * For regular NOHZ, this reduces to:
5102 *
5103 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5104 *
5105 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5106 * term.
3289bdb4 5107 */
1f41906a
FW
5108static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5109 unsigned long pending_updates)
3289bdb4 5110{
9fd81dd5 5111 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5112 int i, scale;
5113
5114 this_rq->nr_load_updates++;
5115
5116 /* Update our load: */
5117 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5118 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5119 unsigned long old_load, new_load;
5120
5121 /* scale is effectively 1 << i now, and >> i divides by scale */
5122
7400d3bb 5123 old_load = this_rq->cpu_load[i];
9fd81dd5 5124#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5125 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5126 if (tickless_load) {
5127 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5128 /*
5129 * old_load can never be a negative value because a
5130 * decayed tickless_load cannot be greater than the
5131 * original tickless_load.
5132 */
5133 old_load += tickless_load;
5134 }
9fd81dd5 5135#endif
3289bdb4
PZ
5136 new_load = this_load;
5137 /*
5138 * Round up the averaging division if load is increasing. This
5139 * prevents us from getting stuck on 9 if the load is 10, for
5140 * example.
5141 */
5142 if (new_load > old_load)
5143 new_load += scale - 1;
5144
5145 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5146 }
5147
5148 sched_avg_update(this_rq);
5149}
5150
7ea241af 5151/* Used instead of source_load when we know the type == 0 */
c7132dd6 5152static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5153{
c7132dd6 5154 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5155}
5156
3289bdb4 5157#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5158/*
5159 * There is no sane way to deal with nohz on smp when using jiffies because the
5160 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5161 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5162 *
5163 * Therefore we need to avoid the delta approach from the regular tick when
5164 * possible since that would seriously skew the load calculation. This is why we
5165 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5166 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5167 * loop exit, nohz_idle_balance, nohz full exit...)
5168 *
5169 * This means we might still be one tick off for nohz periods.
5170 */
5171
5172static void cpu_load_update_nohz(struct rq *this_rq,
5173 unsigned long curr_jiffies,
5174 unsigned long load)
be68a682
FW
5175{
5176 unsigned long pending_updates;
5177
5178 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5179 if (pending_updates) {
5180 this_rq->last_load_update_tick = curr_jiffies;
5181 /*
5182 * In the regular NOHZ case, we were idle, this means load 0.
5183 * In the NOHZ_FULL case, we were non-idle, we should consider
5184 * its weighted load.
5185 */
1f41906a 5186 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5187 }
5188}
5189
3289bdb4
PZ
5190/*
5191 * Called from nohz_idle_balance() to update the load ratings before doing the
5192 * idle balance.
5193 */
cee1afce 5194static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5195{
3289bdb4
PZ
5196 /*
5197 * bail if there's load or we're actually up-to-date.
5198 */
c7132dd6 5199 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5200 return;
5201
1f41906a 5202 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5203}
5204
5205/*
1f41906a
FW
5206 * Record CPU load on nohz entry so we know the tickless load to account
5207 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5208 * than other cpu_load[idx] but it should be fine as cpu_load readers
5209 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5210 */
1f41906a 5211void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5212{
5213 struct rq *this_rq = this_rq();
1f41906a
FW
5214
5215 /*
5216 * This is all lockless but should be fine. If weighted_cpuload changes
5217 * concurrently we'll exit nohz. And cpu_load write can race with
5218 * cpu_load_update_idle() but both updater would be writing the same.
5219 */
c7132dd6 5220 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5221}
5222
5223/*
5224 * Account the tickless load in the end of a nohz frame.
5225 */
5226void cpu_load_update_nohz_stop(void)
5227{
316c1608 5228 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5229 struct rq *this_rq = this_rq();
5230 unsigned long load;
8a8c69c3 5231 struct rq_flags rf;
3289bdb4
PZ
5232
5233 if (curr_jiffies == this_rq->last_load_update_tick)
5234 return;
5235
c7132dd6 5236 load = weighted_cpuload(this_rq);
8a8c69c3 5237 rq_lock(this_rq, &rf);
b52fad2d 5238 update_rq_clock(this_rq);
1f41906a 5239 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5240 rq_unlock(this_rq, &rf);
3289bdb4 5241}
1f41906a
FW
5242#else /* !CONFIG_NO_HZ_COMMON */
5243static inline void cpu_load_update_nohz(struct rq *this_rq,
5244 unsigned long curr_jiffies,
5245 unsigned long load) { }
5246#endif /* CONFIG_NO_HZ_COMMON */
5247
5248static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5249{
9fd81dd5 5250#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5251 /* See the mess around cpu_load_update_nohz(). */
5252 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5253#endif
1f41906a
FW
5254 cpu_load_update(this_rq, load, 1);
5255}
3289bdb4
PZ
5256
5257/*
5258 * Called from scheduler_tick()
5259 */
cee1afce 5260void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5261{
c7132dd6 5262 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5263
5264 if (tick_nohz_tick_stopped())
5265 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5266 else
5267 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5268}
5269
029632fb
PZ
5270/*
5271 * Return a low guess at the load of a migration-source cpu weighted
5272 * according to the scheduling class and "nice" value.
5273 *
5274 * We want to under-estimate the load of migration sources, to
5275 * balance conservatively.
5276 */
5277static unsigned long source_load(int cpu, int type)
5278{
5279 struct rq *rq = cpu_rq(cpu);
c7132dd6 5280 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5281
5282 if (type == 0 || !sched_feat(LB_BIAS))
5283 return total;
5284
5285 return min(rq->cpu_load[type-1], total);
5286}
5287
5288/*
5289 * Return a high guess at the load of a migration-target cpu weighted
5290 * according to the scheduling class and "nice" value.
5291 */
5292static unsigned long target_load(int cpu, int type)
5293{
5294 struct rq *rq = cpu_rq(cpu);
c7132dd6 5295 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5296
5297 if (type == 0 || !sched_feat(LB_BIAS))
5298 return total;
5299
5300 return max(rq->cpu_load[type-1], total);
5301}
5302
ced549fa 5303static unsigned long capacity_of(int cpu)
029632fb 5304{
ced549fa 5305 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5306}
5307
ca6d75e6
VG
5308static unsigned long capacity_orig_of(int cpu)
5309{
5310 return cpu_rq(cpu)->cpu_capacity_orig;
5311}
5312
029632fb
PZ
5313static unsigned long cpu_avg_load_per_task(int cpu)
5314{
5315 struct rq *rq = cpu_rq(cpu);
316c1608 5316 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5317 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5318
5319 if (nr_running)
b92486cb 5320 return load_avg / nr_running;
029632fb
PZ
5321
5322 return 0;
5323}
5324
c58d25f3
PZ
5325static void record_wakee(struct task_struct *p)
5326{
5327 /*
5328 * Only decay a single time; tasks that have less then 1 wakeup per
5329 * jiffy will not have built up many flips.
5330 */
5331 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5332 current->wakee_flips >>= 1;
5333 current->wakee_flip_decay_ts = jiffies;
5334 }
5335
5336 if (current->last_wakee != p) {
5337 current->last_wakee = p;
5338 current->wakee_flips++;
5339 }
5340}
5341
63b0e9ed
MG
5342/*
5343 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5344 *
63b0e9ed 5345 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5346 * at a frequency roughly N times higher than one of its wakees.
5347 *
5348 * In order to determine whether we should let the load spread vs consolidating
5349 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5350 * partner, and a factor of lls_size higher frequency in the other.
5351 *
5352 * With both conditions met, we can be relatively sure that the relationship is
5353 * non-monogamous, with partner count exceeding socket size.
5354 *
5355 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5356 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5357 * socket size.
63b0e9ed 5358 */
62470419
MW
5359static int wake_wide(struct task_struct *p)
5360{
63b0e9ed
MG
5361 unsigned int master = current->wakee_flips;
5362 unsigned int slave = p->wakee_flips;
7d9ffa89 5363 int factor = this_cpu_read(sd_llc_size);
62470419 5364
63b0e9ed
MG
5365 if (master < slave)
5366 swap(master, slave);
5367 if (slave < factor || master < slave * factor)
5368 return 0;
5369 return 1;
62470419
MW
5370}
5371
90001d67
PZ
5372struct llc_stats {
5373 unsigned long nr_running;
5374 unsigned long load;
5375 unsigned long capacity;
5376 int has_capacity;
5377};
5378
5379static bool get_llc_stats(struct llc_stats *stats, int cpu)
5380{
5381 struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5382
5383 if (!sds)
5384 return false;
5385
5386 stats->nr_running = READ_ONCE(sds->nr_running);
5387 stats->load = READ_ONCE(sds->load);
5388 stats->capacity = READ_ONCE(sds->capacity);
5389 stats->has_capacity = stats->nr_running < per_cpu(sd_llc_size, cpu);
5390
5391 return true;
5392}
5393
5394/*
5395 * Can a task be moved from prev_cpu to this_cpu without causing a load
5396 * imbalance that would trigger the load balancer?
5397 *
5398 * Since we're running on 'stale' values, we might in fact create an imbalance
5399 * but recomputing these values is expensive, as that'd mean iteration 2 cache
5400 * domains worth of CPUs.
5401 */
5402static bool
5403wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
5404 int this_cpu, int prev_cpu, int sync)
5405{
5406 struct llc_stats prev_stats, this_stats;
5407 s64 this_eff_load, prev_eff_load;
5408 unsigned long task_load;
5409
5410 if (!get_llc_stats(&prev_stats, prev_cpu) ||
5411 !get_llc_stats(&this_stats, this_cpu))
5412 return false;
5413
5414 /*
5415 * If sync wakeup then subtract the (maximum possible)
5416 * effect of the currently running task from the load
5417 * of the current LLC.
5418 */
5419 if (sync) {
5420 unsigned long current_load = task_h_load(current);
5421
5422 /* in this case load hits 0 and this LLC is considered 'idle' */
5423 if (current_load > this_stats.load)
5424 return true;
5425
5426 this_stats.load -= current_load;
5427 }
5428
5429 /*
5430 * The has_capacity stuff is not SMT aware, but by trying to balance
5431 * the nr_running on both ends we try and fill the domain at equal
5432 * rates, thereby first consuming cores before siblings.
5433 */
5434
5435 /* if the old cache has capacity, stay there */
5436 if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
5437 return false;
5438
5439 /* if this cache has capacity, come here */
5440 if (this_stats.has_capacity && this_stats.nr_running < prev_stats.nr_running+1)
5441 return true;
5442
5443 /*
5444 * Check to see if we can move the load without causing too much
5445 * imbalance.
5446 */
5447 task_load = task_h_load(p);
5448
5449 this_eff_load = 100;
5450 this_eff_load *= prev_stats.capacity;
5451
5452 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5453 prev_eff_load *= this_stats.capacity;
5454
5455 this_eff_load *= this_stats.load + task_load;
5456 prev_eff_load *= prev_stats.load - task_load;
5457
5458 return this_eff_load <= prev_eff_load;
5459}
5460
772bd008
MR
5461static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5462 int prev_cpu, int sync)
098fb9db 5463{
3fed382b 5464 int this_cpu = smp_processor_id();
90001d67 5465 bool affine;
098fb9db 5466
7d894e6e 5467 /*
90001d67
PZ
5468 * Default to no affine wakeups; wake_affine() should not effect a task
5469 * placement the load-balancer feels inclined to undo. The conservative
5470 * option is therefore to not move tasks when they wake up.
7d894e6e 5471 */
90001d67
PZ
5472 affine = false;
5473
5474 /*
5475 * If the wakeup is across cache domains, try to evaluate if movement
5476 * makes sense, otherwise rely on select_idle_siblings() to do
5477 * placement inside the cache domain.
5478 */
5479 if (!cpus_share_cache(prev_cpu, this_cpu))
5480 affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5481
ae92882e 5482 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3fed382b
RR
5483 if (affine) {
5484 schedstat_inc(sd->ttwu_move_affine);
5485 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5486 }
098fb9db 5487
3fed382b 5488 return affine;
098fb9db
IM
5489}
5490
6a0b19c0
MR
5491static inline int task_util(struct task_struct *p);
5492static int cpu_util_wake(int cpu, struct task_struct *p);
5493
5494static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5495{
5496 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5497}
5498
aaee1203
PZ
5499/*
5500 * find_idlest_group finds and returns the least busy CPU group within the
5501 * domain.
5502 */
5503static struct sched_group *
78e7ed53 5504find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5505 int this_cpu, int sd_flag)
e7693a36 5506{
b3bd3de6 5507 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5508 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5509 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5510 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5511 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5512 int load_idx = sd->forkexec_idx;
6b94780e
VG
5513 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5514 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5515 (sd->imbalance_pct-100) / 100;
e7693a36 5516
c44f2a02
VG
5517 if (sd_flag & SD_BALANCE_WAKE)
5518 load_idx = sd->wake_idx;
5519
aaee1203 5520 do {
6b94780e
VG
5521 unsigned long load, avg_load, runnable_load;
5522 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5523 int local_group;
5524 int i;
e7693a36 5525
aaee1203 5526 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5527 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5528 &p->cpus_allowed))
aaee1203
PZ
5529 continue;
5530
5531 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5532 sched_group_span(group));
aaee1203 5533
6a0b19c0
MR
5534 /*
5535 * Tally up the load of all CPUs in the group and find
5536 * the group containing the CPU with most spare capacity.
5537 */
aaee1203 5538 avg_load = 0;
6b94780e 5539 runnable_load = 0;
6a0b19c0 5540 max_spare_cap = 0;
aaee1203 5541
ae4df9d6 5542 for_each_cpu(i, sched_group_span(group)) {
aaee1203
PZ
5543 /* Bias balancing toward cpus of our domain */
5544 if (local_group)
5545 load = source_load(i, load_idx);
5546 else
5547 load = target_load(i, load_idx);
5548
6b94780e
VG
5549 runnable_load += load;
5550
5551 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5552
5553 spare_cap = capacity_spare_wake(i, p);
5554
5555 if (spare_cap > max_spare_cap)
5556 max_spare_cap = spare_cap;
aaee1203
PZ
5557 }
5558
63b2ca30 5559 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5560 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5561 group->sgc->capacity;
5562 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5563 group->sgc->capacity;
aaee1203
PZ
5564
5565 if (local_group) {
6b94780e
VG
5566 this_runnable_load = runnable_load;
5567 this_avg_load = avg_load;
6a0b19c0
MR
5568 this_spare = max_spare_cap;
5569 } else {
6b94780e
VG
5570 if (min_runnable_load > (runnable_load + imbalance)) {
5571 /*
5572 * The runnable load is significantly smaller
5573 * so we can pick this new cpu
5574 */
5575 min_runnable_load = runnable_load;
5576 min_avg_load = avg_load;
5577 idlest = group;
5578 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5579 (100*min_avg_load > imbalance_scale*avg_load)) {
5580 /*
5581 * The runnable loads are close so take the
5582 * blocked load into account through avg_load.
5583 */
5584 min_avg_load = avg_load;
6a0b19c0
MR
5585 idlest = group;
5586 }
5587
5588 if (most_spare < max_spare_cap) {
5589 most_spare = max_spare_cap;
5590 most_spare_sg = group;
5591 }
aaee1203
PZ
5592 }
5593 } while (group = group->next, group != sd->groups);
5594
6a0b19c0
MR
5595 /*
5596 * The cross-over point between using spare capacity or least load
5597 * is too conservative for high utilization tasks on partially
5598 * utilized systems if we require spare_capacity > task_util(p),
5599 * so we allow for some task stuffing by using
5600 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5601 *
5602 * Spare capacity can't be used for fork because the utilization has
5603 * not been set yet, we must first select a rq to compute the initial
5604 * utilization.
6a0b19c0 5605 */
f519a3f1
VG
5606 if (sd_flag & SD_BALANCE_FORK)
5607 goto skip_spare;
5608
6a0b19c0 5609 if (this_spare > task_util(p) / 2 &&
6b94780e 5610 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5611 return NULL;
6b94780e
VG
5612
5613 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5614 return most_spare_sg;
5615
f519a3f1 5616skip_spare:
6b94780e
VG
5617 if (!idlest)
5618 return NULL;
5619
5620 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5621 return NULL;
6b94780e
VG
5622
5623 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5624 (100*this_avg_load < imbalance_scale*min_avg_load))
5625 return NULL;
5626
aaee1203
PZ
5627 return idlest;
5628}
5629
5630/*
5631 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5632 */
5633static int
5634find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5635{
5636 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5637 unsigned int min_exit_latency = UINT_MAX;
5638 u64 latest_idle_timestamp = 0;
5639 int least_loaded_cpu = this_cpu;
5640 int shallowest_idle_cpu = -1;
aaee1203
PZ
5641 int i;
5642
eaecf41f
MR
5643 /* Check if we have any choice: */
5644 if (group->group_weight == 1)
ae4df9d6 5645 return cpumask_first(sched_group_span(group));
eaecf41f 5646
aaee1203 5647 /* Traverse only the allowed CPUs */
ae4df9d6 5648 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
83a0a96a
NP
5649 if (idle_cpu(i)) {
5650 struct rq *rq = cpu_rq(i);
5651 struct cpuidle_state *idle = idle_get_state(rq);
5652 if (idle && idle->exit_latency < min_exit_latency) {
5653 /*
5654 * We give priority to a CPU whose idle state
5655 * has the smallest exit latency irrespective
5656 * of any idle timestamp.
5657 */
5658 min_exit_latency = idle->exit_latency;
5659 latest_idle_timestamp = rq->idle_stamp;
5660 shallowest_idle_cpu = i;
5661 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5662 rq->idle_stamp > latest_idle_timestamp) {
5663 /*
5664 * If equal or no active idle state, then
5665 * the most recently idled CPU might have
5666 * a warmer cache.
5667 */
5668 latest_idle_timestamp = rq->idle_stamp;
5669 shallowest_idle_cpu = i;
5670 }
9f96742a 5671 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5672 load = weighted_cpuload(cpu_rq(i));
83a0a96a
NP
5673 if (load < min_load || (load == min_load && i == this_cpu)) {
5674 min_load = load;
5675 least_loaded_cpu = i;
5676 }
e7693a36
GH
5677 }
5678 }
5679
83a0a96a 5680 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5681}
e7693a36 5682
10e2f1ac
PZ
5683#ifdef CONFIG_SCHED_SMT
5684
5685static inline void set_idle_cores(int cpu, int val)
5686{
5687 struct sched_domain_shared *sds;
5688
5689 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5690 if (sds)
5691 WRITE_ONCE(sds->has_idle_cores, val);
5692}
5693
5694static inline bool test_idle_cores(int cpu, bool def)
5695{
5696 struct sched_domain_shared *sds;
5697
5698 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5699 if (sds)
5700 return READ_ONCE(sds->has_idle_cores);
5701
5702 return def;
5703}
5704
5705/*
5706 * Scans the local SMT mask to see if the entire core is idle, and records this
5707 * information in sd_llc_shared->has_idle_cores.
5708 *
5709 * Since SMT siblings share all cache levels, inspecting this limited remote
5710 * state should be fairly cheap.
5711 */
1b568f0a 5712void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5713{
5714 int core = cpu_of(rq);
5715 int cpu;
5716
5717 rcu_read_lock();
5718 if (test_idle_cores(core, true))
5719 goto unlock;
5720
5721 for_each_cpu(cpu, cpu_smt_mask(core)) {
5722 if (cpu == core)
5723 continue;
5724
5725 if (!idle_cpu(cpu))
5726 goto unlock;
5727 }
5728
5729 set_idle_cores(core, 1);
5730unlock:
5731 rcu_read_unlock();
5732}
5733
5734/*
5735 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5736 * there are no idle cores left in the system; tracked through
5737 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5738 */
5739static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5740{
5741 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5742 int core, cpu;
10e2f1ac 5743
1b568f0a
PZ
5744 if (!static_branch_likely(&sched_smt_present))
5745 return -1;
5746
10e2f1ac
PZ
5747 if (!test_idle_cores(target, false))
5748 return -1;
5749
0c98d344 5750 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 5751
c743f0a5 5752 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5753 bool idle = true;
5754
5755 for_each_cpu(cpu, cpu_smt_mask(core)) {
5756 cpumask_clear_cpu(cpu, cpus);
5757 if (!idle_cpu(cpu))
5758 idle = false;
5759 }
5760
5761 if (idle)
5762 return core;
5763 }
5764
5765 /*
5766 * Failed to find an idle core; stop looking for one.
5767 */
5768 set_idle_cores(target, 0);
5769
5770 return -1;
5771}
5772
5773/*
5774 * Scan the local SMT mask for idle CPUs.
5775 */
5776static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5777{
5778 int cpu;
5779
1b568f0a
PZ
5780 if (!static_branch_likely(&sched_smt_present))
5781 return -1;
5782
10e2f1ac 5783 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5784 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5785 continue;
5786 if (idle_cpu(cpu))
5787 return cpu;
5788 }
5789
5790 return -1;
5791}
5792
5793#else /* CONFIG_SCHED_SMT */
5794
5795static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5796{
5797 return -1;
5798}
5799
5800static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5801{
5802 return -1;
5803}
5804
5805#endif /* CONFIG_SCHED_SMT */
5806
5807/*
5808 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5809 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5810 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5811 */
10e2f1ac
PZ
5812static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5813{
9cfb38a7 5814 struct sched_domain *this_sd;
1ad3aaf3 5815 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5816 u64 time, cost;
5817 s64 delta;
1ad3aaf3 5818 int cpu, nr = INT_MAX;
10e2f1ac 5819
9cfb38a7
WL
5820 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5821 if (!this_sd)
5822 return -1;
5823
10e2f1ac
PZ
5824 /*
5825 * Due to large variance we need a large fuzz factor; hackbench in
5826 * particularly is sensitive here.
5827 */
1ad3aaf3
PZ
5828 avg_idle = this_rq()->avg_idle / 512;
5829 avg_cost = this_sd->avg_scan_cost + 1;
5830
5831 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5832 return -1;
5833
1ad3aaf3
PZ
5834 if (sched_feat(SIS_PROP)) {
5835 u64 span_avg = sd->span_weight * avg_idle;
5836 if (span_avg > 4*avg_cost)
5837 nr = div_u64(span_avg, avg_cost);
5838 else
5839 nr = 4;
5840 }
5841
10e2f1ac
PZ
5842 time = local_clock();
5843
c743f0a5 5844 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
5845 if (!--nr)
5846 return -1;
0c98d344 5847 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5848 continue;
5849 if (idle_cpu(cpu))
5850 break;
5851 }
5852
5853 time = local_clock() - time;
5854 cost = this_sd->avg_scan_cost;
5855 delta = (s64)(time - cost) / 8;
5856 this_sd->avg_scan_cost += delta;
5857
5858 return cpu;
5859}
5860
5861/*
5862 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5863 */
772bd008 5864static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5865{
99bd5e2f 5866 struct sched_domain *sd;
10e2f1ac 5867 int i;
a50bde51 5868
e0a79f52
MG
5869 if (idle_cpu(target))
5870 return target;
99bd5e2f
SS
5871
5872 /*
10e2f1ac 5873 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5874 */
772bd008
MR
5875 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5876 return prev;
a50bde51 5877
518cd623 5878 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5879 if (!sd)
5880 return target;
772bd008 5881
10e2f1ac
PZ
5882 i = select_idle_core(p, sd, target);
5883 if ((unsigned)i < nr_cpumask_bits)
5884 return i;
37407ea7 5885
10e2f1ac
PZ
5886 i = select_idle_cpu(p, sd, target);
5887 if ((unsigned)i < nr_cpumask_bits)
5888 return i;
5889
5890 i = select_idle_smt(p, sd, target);
5891 if ((unsigned)i < nr_cpumask_bits)
5892 return i;
970e1789 5893
a50bde51
PZ
5894 return target;
5895}
231678b7 5896
8bb5b00c 5897/*
9e91d61d 5898 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5899 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5900 * compare the utilization with the capacity of the CPU that is available for
5901 * CFS task (ie cpu_capacity).
231678b7
DE
5902 *
5903 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5904 * recent utilization of currently non-runnable tasks on a CPU. It represents
5905 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5906 * capacity_orig is the cpu_capacity available at the highest frequency
5907 * (arch_scale_freq_capacity()).
5908 * The utilization of a CPU converges towards a sum equal to or less than the
5909 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5910 * the running time on this CPU scaled by capacity_curr.
5911 *
5912 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5913 * higher than capacity_orig because of unfortunate rounding in
5914 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5915 * the average stabilizes with the new running time. We need to check that the
5916 * utilization stays within the range of [0..capacity_orig] and cap it if
5917 * necessary. Without utilization capping, a group could be seen as overloaded
5918 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5919 * available capacity. We allow utilization to overshoot capacity_curr (but not
5920 * capacity_orig) as it useful for predicting the capacity required after task
5921 * migrations (scheduler-driven DVFS).
8bb5b00c 5922 */
9e91d61d 5923static int cpu_util(int cpu)
8bb5b00c 5924{
9e91d61d 5925 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5926 unsigned long capacity = capacity_orig_of(cpu);
5927
231678b7 5928 return (util >= capacity) ? capacity : util;
8bb5b00c 5929}
a50bde51 5930
3273163c
MR
5931static inline int task_util(struct task_struct *p)
5932{
5933 return p->se.avg.util_avg;
5934}
5935
104cb16d
MR
5936/*
5937 * cpu_util_wake: Compute cpu utilization with any contributions from
5938 * the waking task p removed.
5939 */
5940static int cpu_util_wake(int cpu, struct task_struct *p)
5941{
5942 unsigned long util, capacity;
5943
5944 /* Task has no contribution or is new */
5945 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5946 return cpu_util(cpu);
5947
5948 capacity = capacity_orig_of(cpu);
5949 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5950
5951 return (util >= capacity) ? capacity : util;
5952}
5953
3273163c
MR
5954/*
5955 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5956 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5957 *
5958 * In that case WAKE_AFFINE doesn't make sense and we'll let
5959 * BALANCE_WAKE sort things out.
5960 */
5961static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5962{
5963 long min_cap, max_cap;
5964
5965 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5966 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5967
5968 /* Minimum capacity is close to max, no need to abort wake_affine */
5969 if (max_cap - min_cap < max_cap >> 3)
5970 return 0;
5971
104cb16d
MR
5972 /* Bring task utilization in sync with prev_cpu */
5973 sync_entity_load_avg(&p->se);
5974
3273163c
MR
5975 return min_cap * 1024 < task_util(p) * capacity_margin;
5976}
5977
aaee1203 5978/*
de91b9cb
MR
5979 * select_task_rq_fair: Select target runqueue for the waking task in domains
5980 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5981 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5982 *
de91b9cb
MR
5983 * Balances load by selecting the idlest cpu in the idlest group, or under
5984 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5985 *
de91b9cb 5986 * Returns the target cpu number.
aaee1203
PZ
5987 *
5988 * preempt must be disabled.
5989 */
0017d735 5990static int
ac66f547 5991select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5992{
29cd8bae 5993 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5994 int cpu = smp_processor_id();
63b0e9ed 5995 int new_cpu = prev_cpu;
99bd5e2f 5996 int want_affine = 0;
5158f4e4 5997 int sync = wake_flags & WF_SYNC;
c88d5910 5998
c58d25f3
PZ
5999 if (sd_flag & SD_BALANCE_WAKE) {
6000 record_wakee(p);
3273163c 6001 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6002 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6003 }
aaee1203 6004
dce840a0 6005 rcu_read_lock();
aaee1203 6006 for_each_domain(cpu, tmp) {
e4f42888 6007 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6008 break;
e4f42888 6009
fe3bcfe1 6010 /*
99bd5e2f
SS
6011 * If both cpu and prev_cpu are part of this domain,
6012 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6013 */
99bd5e2f
SS
6014 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6015 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6016 affine_sd = tmp;
29cd8bae 6017 break;
f03542a7 6018 }
29cd8bae 6019
f03542a7 6020 if (tmp->flags & sd_flag)
29cd8bae 6021 sd = tmp;
63b0e9ed
MG
6022 else if (!want_affine)
6023 break;
29cd8bae
PZ
6024 }
6025
63b0e9ed
MG
6026 if (affine_sd) {
6027 sd = NULL; /* Prefer wake_affine over balance flags */
7d894e6e
RR
6028 if (cpu == prev_cpu)
6029 goto pick_cpu;
6030
6031 if (wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6032 new_cpu = cpu;
8b911acd 6033 }
e7693a36 6034
63b0e9ed 6035 if (!sd) {
7d894e6e 6036 pick_cpu:
63b0e9ed 6037 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6038 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6039
6040 } else while (sd) {
aaee1203 6041 struct sched_group *group;
c88d5910 6042 int weight;
098fb9db 6043
0763a660 6044 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6045 sd = sd->child;
6046 continue;
6047 }
098fb9db 6048
c44f2a02 6049 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6050 if (!group) {
6051 sd = sd->child;
6052 continue;
6053 }
4ae7d5ce 6054
d7c33c49 6055 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6056 if (new_cpu == -1 || new_cpu == cpu) {
6057 /* Now try balancing at a lower domain level of cpu */
6058 sd = sd->child;
6059 continue;
e7693a36 6060 }
aaee1203
PZ
6061
6062 /* Now try balancing at a lower domain level of new_cpu */
6063 cpu = new_cpu;
669c55e9 6064 weight = sd->span_weight;
aaee1203
PZ
6065 sd = NULL;
6066 for_each_domain(cpu, tmp) {
669c55e9 6067 if (weight <= tmp->span_weight)
aaee1203 6068 break;
0763a660 6069 if (tmp->flags & sd_flag)
aaee1203
PZ
6070 sd = tmp;
6071 }
6072 /* while loop will break here if sd == NULL */
e7693a36 6073 }
dce840a0 6074 rcu_read_unlock();
e7693a36 6075
c88d5910 6076 return new_cpu;
e7693a36 6077}
0a74bef8
PT
6078
6079/*
6080 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6081 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6082 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6083 */
5a4fd036 6084static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6085{
59efa0ba
PZ
6086 /*
6087 * As blocked tasks retain absolute vruntime the migration needs to
6088 * deal with this by subtracting the old and adding the new
6089 * min_vruntime -- the latter is done by enqueue_entity() when placing
6090 * the task on the new runqueue.
6091 */
6092 if (p->state == TASK_WAKING) {
6093 struct sched_entity *se = &p->se;
6094 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6095 u64 min_vruntime;
6096
6097#ifndef CONFIG_64BIT
6098 u64 min_vruntime_copy;
6099
6100 do {
6101 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6102 smp_rmb();
6103 min_vruntime = cfs_rq->min_vruntime;
6104 } while (min_vruntime != min_vruntime_copy);
6105#else
6106 min_vruntime = cfs_rq->min_vruntime;
6107#endif
6108
6109 se->vruntime -= min_vruntime;
6110 }
6111
aff3e498 6112 /*
9d89c257
YD
6113 * We are supposed to update the task to "current" time, then its up to date
6114 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6115 * what current time is, so simply throw away the out-of-date time. This
6116 * will result in the wakee task is less decayed, but giving the wakee more
6117 * load sounds not bad.
aff3e498 6118 */
9d89c257
YD
6119 remove_entity_load_avg(&p->se);
6120
6121 /* Tell new CPU we are migrated */
6122 p->se.avg.last_update_time = 0;
3944a927
BS
6123
6124 /* We have migrated, no longer consider this task hot */
9d89c257 6125 p->se.exec_start = 0;
0a74bef8 6126}
12695578
YD
6127
6128static void task_dead_fair(struct task_struct *p)
6129{
6130 remove_entity_load_avg(&p->se);
6131}
e7693a36
GH
6132#endif /* CONFIG_SMP */
6133
e52fb7c0
PZ
6134static unsigned long
6135wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6136{
6137 unsigned long gran = sysctl_sched_wakeup_granularity;
6138
6139 /*
e52fb7c0
PZ
6140 * Since its curr running now, convert the gran from real-time
6141 * to virtual-time in his units.
13814d42
MG
6142 *
6143 * By using 'se' instead of 'curr' we penalize light tasks, so
6144 * they get preempted easier. That is, if 'se' < 'curr' then
6145 * the resulting gran will be larger, therefore penalizing the
6146 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6147 * be smaller, again penalizing the lighter task.
6148 *
6149 * This is especially important for buddies when the leftmost
6150 * task is higher priority than the buddy.
0bbd3336 6151 */
f4ad9bd2 6152 return calc_delta_fair(gran, se);
0bbd3336
PZ
6153}
6154
464b7527
PZ
6155/*
6156 * Should 'se' preempt 'curr'.
6157 *
6158 * |s1
6159 * |s2
6160 * |s3
6161 * g
6162 * |<--->|c
6163 *
6164 * w(c, s1) = -1
6165 * w(c, s2) = 0
6166 * w(c, s3) = 1
6167 *
6168 */
6169static int
6170wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6171{
6172 s64 gran, vdiff = curr->vruntime - se->vruntime;
6173
6174 if (vdiff <= 0)
6175 return -1;
6176
e52fb7c0 6177 gran = wakeup_gran(curr, se);
464b7527
PZ
6178 if (vdiff > gran)
6179 return 1;
6180
6181 return 0;
6182}
6183
02479099
PZ
6184static void set_last_buddy(struct sched_entity *se)
6185{
69c80f3e
VP
6186 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6187 return;
6188
c5ae366e
DA
6189 for_each_sched_entity(se) {
6190 if (SCHED_WARN_ON(!se->on_rq))
6191 return;
69c80f3e 6192 cfs_rq_of(se)->last = se;
c5ae366e 6193 }
02479099
PZ
6194}
6195
6196static void set_next_buddy(struct sched_entity *se)
6197{
69c80f3e
VP
6198 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6199 return;
6200
c5ae366e
DA
6201 for_each_sched_entity(se) {
6202 if (SCHED_WARN_ON(!se->on_rq))
6203 return;
69c80f3e 6204 cfs_rq_of(se)->next = se;
c5ae366e 6205 }
02479099
PZ
6206}
6207
ac53db59
RR
6208static void set_skip_buddy(struct sched_entity *se)
6209{
69c80f3e
VP
6210 for_each_sched_entity(se)
6211 cfs_rq_of(se)->skip = se;
ac53db59
RR
6212}
6213
bf0f6f24
IM
6214/*
6215 * Preempt the current task with a newly woken task if needed:
6216 */
5a9b86f6 6217static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6218{
6219 struct task_struct *curr = rq->curr;
8651a86c 6220 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6221 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6222 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6223 int next_buddy_marked = 0;
bf0f6f24 6224
4ae7d5ce
IM
6225 if (unlikely(se == pse))
6226 return;
6227
5238cdd3 6228 /*
163122b7 6229 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6230 * unconditionally check_prempt_curr() after an enqueue (which may have
6231 * lead to a throttle). This both saves work and prevents false
6232 * next-buddy nomination below.
6233 */
6234 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6235 return;
6236
2f36825b 6237 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6238 set_next_buddy(pse);
2f36825b
VP
6239 next_buddy_marked = 1;
6240 }
57fdc26d 6241
aec0a514
BR
6242 /*
6243 * We can come here with TIF_NEED_RESCHED already set from new task
6244 * wake up path.
5238cdd3
PT
6245 *
6246 * Note: this also catches the edge-case of curr being in a throttled
6247 * group (e.g. via set_curr_task), since update_curr() (in the
6248 * enqueue of curr) will have resulted in resched being set. This
6249 * prevents us from potentially nominating it as a false LAST_BUDDY
6250 * below.
aec0a514
BR
6251 */
6252 if (test_tsk_need_resched(curr))
6253 return;
6254
a2f5c9ab
DH
6255 /* Idle tasks are by definition preempted by non-idle tasks. */
6256 if (unlikely(curr->policy == SCHED_IDLE) &&
6257 likely(p->policy != SCHED_IDLE))
6258 goto preempt;
6259
91c234b4 6260 /*
a2f5c9ab
DH
6261 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6262 * is driven by the tick):
91c234b4 6263 */
8ed92e51 6264 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6265 return;
bf0f6f24 6266
464b7527 6267 find_matching_se(&se, &pse);
9bbd7374 6268 update_curr(cfs_rq_of(se));
002f128b 6269 BUG_ON(!pse);
2f36825b
VP
6270 if (wakeup_preempt_entity(se, pse) == 1) {
6271 /*
6272 * Bias pick_next to pick the sched entity that is
6273 * triggering this preemption.
6274 */
6275 if (!next_buddy_marked)
6276 set_next_buddy(pse);
3a7e73a2 6277 goto preempt;
2f36825b 6278 }
464b7527 6279
3a7e73a2 6280 return;
a65ac745 6281
3a7e73a2 6282preempt:
8875125e 6283 resched_curr(rq);
3a7e73a2
PZ
6284 /*
6285 * Only set the backward buddy when the current task is still
6286 * on the rq. This can happen when a wakeup gets interleaved
6287 * with schedule on the ->pre_schedule() or idle_balance()
6288 * point, either of which can * drop the rq lock.
6289 *
6290 * Also, during early boot the idle thread is in the fair class,
6291 * for obvious reasons its a bad idea to schedule back to it.
6292 */
6293 if (unlikely(!se->on_rq || curr == rq->idle))
6294 return;
6295
6296 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6297 set_last_buddy(se);
bf0f6f24
IM
6298}
6299
606dba2e 6300static struct task_struct *
d8ac8971 6301pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6302{
6303 struct cfs_rq *cfs_rq = &rq->cfs;
6304 struct sched_entity *se;
678d5718 6305 struct task_struct *p;
37e117c0 6306 int new_tasks;
678d5718 6307
6e83125c 6308again:
678d5718 6309 if (!cfs_rq->nr_running)
38033c37 6310 goto idle;
678d5718 6311
9674f5ca 6312#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6313 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6314 goto simple;
6315
6316 /*
6317 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6318 * likely that a next task is from the same cgroup as the current.
6319 *
6320 * Therefore attempt to avoid putting and setting the entire cgroup
6321 * hierarchy, only change the part that actually changes.
6322 */
6323
6324 do {
6325 struct sched_entity *curr = cfs_rq->curr;
6326
6327 /*
6328 * Since we got here without doing put_prev_entity() we also
6329 * have to consider cfs_rq->curr. If it is still a runnable
6330 * entity, update_curr() will update its vruntime, otherwise
6331 * forget we've ever seen it.
6332 */
54d27365
BS
6333 if (curr) {
6334 if (curr->on_rq)
6335 update_curr(cfs_rq);
6336 else
6337 curr = NULL;
678d5718 6338
54d27365
BS
6339 /*
6340 * This call to check_cfs_rq_runtime() will do the
6341 * throttle and dequeue its entity in the parent(s).
9674f5ca 6342 * Therefore the nr_running test will indeed
54d27365
BS
6343 * be correct.
6344 */
9674f5ca
VK
6345 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6346 cfs_rq = &rq->cfs;
6347
6348 if (!cfs_rq->nr_running)
6349 goto idle;
6350
54d27365 6351 goto simple;
9674f5ca 6352 }
54d27365 6353 }
678d5718
PZ
6354
6355 se = pick_next_entity(cfs_rq, curr);
6356 cfs_rq = group_cfs_rq(se);
6357 } while (cfs_rq);
6358
6359 p = task_of(se);
6360
6361 /*
6362 * Since we haven't yet done put_prev_entity and if the selected task
6363 * is a different task than we started out with, try and touch the
6364 * least amount of cfs_rqs.
6365 */
6366 if (prev != p) {
6367 struct sched_entity *pse = &prev->se;
6368
6369 while (!(cfs_rq = is_same_group(se, pse))) {
6370 int se_depth = se->depth;
6371 int pse_depth = pse->depth;
6372
6373 if (se_depth <= pse_depth) {
6374 put_prev_entity(cfs_rq_of(pse), pse);
6375 pse = parent_entity(pse);
6376 }
6377 if (se_depth >= pse_depth) {
6378 set_next_entity(cfs_rq_of(se), se);
6379 se = parent_entity(se);
6380 }
6381 }
6382
6383 put_prev_entity(cfs_rq, pse);
6384 set_next_entity(cfs_rq, se);
6385 }
6386
6387 if (hrtick_enabled(rq))
6388 hrtick_start_fair(rq, p);
6389
6390 return p;
6391simple:
678d5718 6392#endif
bf0f6f24 6393
3f1d2a31 6394 put_prev_task(rq, prev);
606dba2e 6395
bf0f6f24 6396 do {
678d5718 6397 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6398 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6399 cfs_rq = group_cfs_rq(se);
6400 } while (cfs_rq);
6401
8f4d37ec 6402 p = task_of(se);
678d5718 6403
b39e66ea
MG
6404 if (hrtick_enabled(rq))
6405 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6406
6407 return p;
38033c37
PZ
6408
6409idle:
46f69fa3
MF
6410 new_tasks = idle_balance(rq, rf);
6411
37e117c0
PZ
6412 /*
6413 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6414 * possible for any higher priority task to appear. In that case we
6415 * must re-start the pick_next_entity() loop.
6416 */
e4aa358b 6417 if (new_tasks < 0)
37e117c0
PZ
6418 return RETRY_TASK;
6419
e4aa358b 6420 if (new_tasks > 0)
38033c37 6421 goto again;
38033c37
PZ
6422
6423 return NULL;
bf0f6f24
IM
6424}
6425
6426/*
6427 * Account for a descheduled task:
6428 */
31ee529c 6429static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6430{
6431 struct sched_entity *se = &prev->se;
6432 struct cfs_rq *cfs_rq;
6433
6434 for_each_sched_entity(se) {
6435 cfs_rq = cfs_rq_of(se);
ab6cde26 6436 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6437 }
6438}
6439
ac53db59
RR
6440/*
6441 * sched_yield() is very simple
6442 *
6443 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6444 */
6445static void yield_task_fair(struct rq *rq)
6446{
6447 struct task_struct *curr = rq->curr;
6448 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6449 struct sched_entity *se = &curr->se;
6450
6451 /*
6452 * Are we the only task in the tree?
6453 */
6454 if (unlikely(rq->nr_running == 1))
6455 return;
6456
6457 clear_buddies(cfs_rq, se);
6458
6459 if (curr->policy != SCHED_BATCH) {
6460 update_rq_clock(rq);
6461 /*
6462 * Update run-time statistics of the 'current'.
6463 */
6464 update_curr(cfs_rq);
916671c0
MG
6465 /*
6466 * Tell update_rq_clock() that we've just updated,
6467 * so we don't do microscopic update in schedule()
6468 * and double the fastpath cost.
6469 */
9edfbfed 6470 rq_clock_skip_update(rq, true);
ac53db59
RR
6471 }
6472
6473 set_skip_buddy(se);
6474}
6475
d95f4122
MG
6476static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6477{
6478 struct sched_entity *se = &p->se;
6479
5238cdd3
PT
6480 /* throttled hierarchies are not runnable */
6481 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6482 return false;
6483
6484 /* Tell the scheduler that we'd really like pse to run next. */
6485 set_next_buddy(se);
6486
d95f4122
MG
6487 yield_task_fair(rq);
6488
6489 return true;
6490}
6491
681f3e68 6492#ifdef CONFIG_SMP
bf0f6f24 6493/**************************************************
e9c84cb8
PZ
6494 * Fair scheduling class load-balancing methods.
6495 *
6496 * BASICS
6497 *
6498 * The purpose of load-balancing is to achieve the same basic fairness the
6499 * per-cpu scheduler provides, namely provide a proportional amount of compute
6500 * time to each task. This is expressed in the following equation:
6501 *
6502 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6503 *
6504 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6505 * W_i,0 is defined as:
6506 *
6507 * W_i,0 = \Sum_j w_i,j (2)
6508 *
6509 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6510 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6511 *
6512 * The weight average is an exponential decay average of the instantaneous
6513 * weight:
6514 *
6515 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6516 *
ced549fa 6517 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6518 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6519 * can also include other factors [XXX].
6520 *
6521 * To achieve this balance we define a measure of imbalance which follows
6522 * directly from (1):
6523 *
ced549fa 6524 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6525 *
6526 * We them move tasks around to minimize the imbalance. In the continuous
6527 * function space it is obvious this converges, in the discrete case we get
6528 * a few fun cases generally called infeasible weight scenarios.
6529 *
6530 * [XXX expand on:
6531 * - infeasible weights;
6532 * - local vs global optima in the discrete case. ]
6533 *
6534 *
6535 * SCHED DOMAINS
6536 *
6537 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6538 * for all i,j solution, we create a tree of cpus that follows the hardware
6539 * topology where each level pairs two lower groups (or better). This results
6540 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6541 * tree to only the first of the previous level and we decrease the frequency
6542 * of load-balance at each level inv. proportional to the number of cpus in
6543 * the groups.
6544 *
6545 * This yields:
6546 *
6547 * log_2 n 1 n
6548 * \Sum { --- * --- * 2^i } = O(n) (5)
6549 * i = 0 2^i 2^i
6550 * `- size of each group
6551 * | | `- number of cpus doing load-balance
6552 * | `- freq
6553 * `- sum over all levels
6554 *
6555 * Coupled with a limit on how many tasks we can migrate every balance pass,
6556 * this makes (5) the runtime complexity of the balancer.
6557 *
6558 * An important property here is that each CPU is still (indirectly) connected
6559 * to every other cpu in at most O(log n) steps:
6560 *
6561 * The adjacency matrix of the resulting graph is given by:
6562 *
97a7142f 6563 * log_2 n
e9c84cb8
PZ
6564 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6565 * k = 0
6566 *
6567 * And you'll find that:
6568 *
6569 * A^(log_2 n)_i,j != 0 for all i,j (7)
6570 *
6571 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6572 * The task movement gives a factor of O(m), giving a convergence complexity
6573 * of:
6574 *
6575 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6576 *
6577 *
6578 * WORK CONSERVING
6579 *
6580 * In order to avoid CPUs going idle while there's still work to do, new idle
6581 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6582 * tree itself instead of relying on other CPUs to bring it work.
6583 *
6584 * This adds some complexity to both (5) and (8) but it reduces the total idle
6585 * time.
6586 *
6587 * [XXX more?]
6588 *
6589 *
6590 * CGROUPS
6591 *
6592 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6593 *
6594 * s_k,i
6595 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6596 * S_k
6597 *
6598 * Where
6599 *
6600 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6601 *
6602 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6603 *
6604 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6605 * property.
6606 *
6607 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6608 * rewrite all of this once again.]
97a7142f 6609 */
bf0f6f24 6610
ed387b78
HS
6611static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6612
0ec8aa00
PZ
6613enum fbq_type { regular, remote, all };
6614
ddcdf6e7 6615#define LBF_ALL_PINNED 0x01
367456c7 6616#define LBF_NEED_BREAK 0x02
6263322c
PZ
6617#define LBF_DST_PINNED 0x04
6618#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6619
6620struct lb_env {
6621 struct sched_domain *sd;
6622
ddcdf6e7 6623 struct rq *src_rq;
85c1e7da 6624 int src_cpu;
ddcdf6e7
PZ
6625
6626 int dst_cpu;
6627 struct rq *dst_rq;
6628
88b8dac0
SV
6629 struct cpumask *dst_grpmask;
6630 int new_dst_cpu;
ddcdf6e7 6631 enum cpu_idle_type idle;
bd939f45 6632 long imbalance;
b9403130
MW
6633 /* The set of CPUs under consideration for load-balancing */
6634 struct cpumask *cpus;
6635
ddcdf6e7 6636 unsigned int flags;
367456c7
PZ
6637
6638 unsigned int loop;
6639 unsigned int loop_break;
6640 unsigned int loop_max;
0ec8aa00
PZ
6641
6642 enum fbq_type fbq_type;
163122b7 6643 struct list_head tasks;
ddcdf6e7
PZ
6644};
6645
029632fb
PZ
6646/*
6647 * Is this task likely cache-hot:
6648 */
5d5e2b1b 6649static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6650{
6651 s64 delta;
6652
e5673f28
KT
6653 lockdep_assert_held(&env->src_rq->lock);
6654
029632fb
PZ
6655 if (p->sched_class != &fair_sched_class)
6656 return 0;
6657
6658 if (unlikely(p->policy == SCHED_IDLE))
6659 return 0;
6660
6661 /*
6662 * Buddy candidates are cache hot:
6663 */
5d5e2b1b 6664 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6665 (&p->se == cfs_rq_of(&p->se)->next ||
6666 &p->se == cfs_rq_of(&p->se)->last))
6667 return 1;
6668
6669 if (sysctl_sched_migration_cost == -1)
6670 return 1;
6671 if (sysctl_sched_migration_cost == 0)
6672 return 0;
6673
5d5e2b1b 6674 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6675
6676 return delta < (s64)sysctl_sched_migration_cost;
6677}
6678
3a7053b3 6679#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6680/*
2a1ed24c
SD
6681 * Returns 1, if task migration degrades locality
6682 * Returns 0, if task migration improves locality i.e migration preferred.
6683 * Returns -1, if task migration is not affected by locality.
c1ceac62 6684 */
2a1ed24c 6685static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6686{
b1ad065e 6687 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6688 unsigned long src_faults, dst_faults;
3a7053b3
MG
6689 int src_nid, dst_nid;
6690
2a595721 6691 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6692 return -1;
6693
c3b9bc5b 6694 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6695 return -1;
7a0f3083
MG
6696
6697 src_nid = cpu_to_node(env->src_cpu);
6698 dst_nid = cpu_to_node(env->dst_cpu);
6699
83e1d2cd 6700 if (src_nid == dst_nid)
2a1ed24c 6701 return -1;
7a0f3083 6702
2a1ed24c
SD
6703 /* Migrating away from the preferred node is always bad. */
6704 if (src_nid == p->numa_preferred_nid) {
6705 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6706 return 1;
6707 else
6708 return -1;
6709 }
b1ad065e 6710
c1ceac62
RR
6711 /* Encourage migration to the preferred node. */
6712 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6713 return 0;
b1ad065e 6714
739294fb
RR
6715 /* Leaving a core idle is often worse than degrading locality. */
6716 if (env->idle != CPU_NOT_IDLE)
6717 return -1;
6718
c1ceac62
RR
6719 if (numa_group) {
6720 src_faults = group_faults(p, src_nid);
6721 dst_faults = group_faults(p, dst_nid);
6722 } else {
6723 src_faults = task_faults(p, src_nid);
6724 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6725 }
6726
c1ceac62 6727 return dst_faults < src_faults;
7a0f3083
MG
6728}
6729
3a7053b3 6730#else
2a1ed24c 6731static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6732 struct lb_env *env)
6733{
2a1ed24c 6734 return -1;
7a0f3083 6735}
3a7053b3
MG
6736#endif
6737
1e3c88bd
PZ
6738/*
6739 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6740 */
6741static
8e45cb54 6742int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6743{
2a1ed24c 6744 int tsk_cache_hot;
e5673f28
KT
6745
6746 lockdep_assert_held(&env->src_rq->lock);
6747
1e3c88bd
PZ
6748 /*
6749 * We do not migrate tasks that are:
d3198084 6750 * 1) throttled_lb_pair, or
1e3c88bd 6751 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6752 * 3) running (obviously), or
6753 * 4) are cache-hot on their current CPU.
1e3c88bd 6754 */
d3198084
JK
6755 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6756 return 0;
6757
0c98d344 6758 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6759 int cpu;
88b8dac0 6760
ae92882e 6761 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6762
6263322c
PZ
6763 env->flags |= LBF_SOME_PINNED;
6764
88b8dac0
SV
6765 /*
6766 * Remember if this task can be migrated to any other cpu in
6767 * our sched_group. We may want to revisit it if we couldn't
6768 * meet load balance goals by pulling other tasks on src_cpu.
6769 *
65a4433a
JH
6770 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6771 * already computed one in current iteration.
88b8dac0 6772 */
65a4433a 6773 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6774 return 0;
6775
e02e60c1
JK
6776 /* Prevent to re-select dst_cpu via env's cpus */
6777 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6778 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6779 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6780 env->new_dst_cpu = cpu;
6781 break;
6782 }
88b8dac0 6783 }
e02e60c1 6784
1e3c88bd
PZ
6785 return 0;
6786 }
88b8dac0
SV
6787
6788 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6789 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6790
ddcdf6e7 6791 if (task_running(env->src_rq, p)) {
ae92882e 6792 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6793 return 0;
6794 }
6795
6796 /*
6797 * Aggressive migration if:
3a7053b3
MG
6798 * 1) destination numa is preferred
6799 * 2) task is cache cold, or
6800 * 3) too many balance attempts have failed.
1e3c88bd 6801 */
2a1ed24c
SD
6802 tsk_cache_hot = migrate_degrades_locality(p, env);
6803 if (tsk_cache_hot == -1)
6804 tsk_cache_hot = task_hot(p, env);
3a7053b3 6805
2a1ed24c 6806 if (tsk_cache_hot <= 0 ||
7a96c231 6807 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6808 if (tsk_cache_hot == 1) {
ae92882e
JP
6809 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6810 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6811 }
1e3c88bd
PZ
6812 return 1;
6813 }
6814
ae92882e 6815 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6816 return 0;
1e3c88bd
PZ
6817}
6818
897c395f 6819/*
163122b7
KT
6820 * detach_task() -- detach the task for the migration specified in env
6821 */
6822static void detach_task(struct task_struct *p, struct lb_env *env)
6823{
6824 lockdep_assert_held(&env->src_rq->lock);
6825
163122b7 6826 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6827 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6828 set_task_cpu(p, env->dst_cpu);
6829}
6830
897c395f 6831/*
e5673f28 6832 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6833 * part of active balancing operations within "domain".
897c395f 6834 *
e5673f28 6835 * Returns a task if successful and NULL otherwise.
897c395f 6836 */
e5673f28 6837static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6838{
6839 struct task_struct *p, *n;
897c395f 6840
e5673f28
KT
6841 lockdep_assert_held(&env->src_rq->lock);
6842
367456c7 6843 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6844 if (!can_migrate_task(p, env))
6845 continue;
897c395f 6846
163122b7 6847 detach_task(p, env);
e5673f28 6848
367456c7 6849 /*
e5673f28 6850 * Right now, this is only the second place where
163122b7 6851 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6852 * so we can safely collect stats here rather than
163122b7 6853 * inside detach_tasks().
367456c7 6854 */
ae92882e 6855 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6856 return p;
897c395f 6857 }
e5673f28 6858 return NULL;
897c395f
PZ
6859}
6860
eb95308e
PZ
6861static const unsigned int sched_nr_migrate_break = 32;
6862
5d6523eb 6863/*
163122b7
KT
6864 * detach_tasks() -- tries to detach up to imbalance weighted load from
6865 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6866 *
163122b7 6867 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6868 */
163122b7 6869static int detach_tasks(struct lb_env *env)
1e3c88bd 6870{
5d6523eb
PZ
6871 struct list_head *tasks = &env->src_rq->cfs_tasks;
6872 struct task_struct *p;
367456c7 6873 unsigned long load;
163122b7
KT
6874 int detached = 0;
6875
6876 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6877
bd939f45 6878 if (env->imbalance <= 0)
5d6523eb 6879 return 0;
1e3c88bd 6880
5d6523eb 6881 while (!list_empty(tasks)) {
985d3a4c
YD
6882 /*
6883 * We don't want to steal all, otherwise we may be treated likewise,
6884 * which could at worst lead to a livelock crash.
6885 */
6886 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6887 break;
6888
5d6523eb 6889 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6890
367456c7
PZ
6891 env->loop++;
6892 /* We've more or less seen every task there is, call it quits */
5d6523eb 6893 if (env->loop > env->loop_max)
367456c7 6894 break;
5d6523eb
PZ
6895
6896 /* take a breather every nr_migrate tasks */
367456c7 6897 if (env->loop > env->loop_break) {
eb95308e 6898 env->loop_break += sched_nr_migrate_break;
8e45cb54 6899 env->flags |= LBF_NEED_BREAK;
ee00e66f 6900 break;
a195f004 6901 }
1e3c88bd 6902
d3198084 6903 if (!can_migrate_task(p, env))
367456c7
PZ
6904 goto next;
6905
6906 load = task_h_load(p);
5d6523eb 6907
eb95308e 6908 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6909 goto next;
6910
bd939f45 6911 if ((load / 2) > env->imbalance)
367456c7 6912 goto next;
1e3c88bd 6913
163122b7
KT
6914 detach_task(p, env);
6915 list_add(&p->se.group_node, &env->tasks);
6916
6917 detached++;
bd939f45 6918 env->imbalance -= load;
1e3c88bd
PZ
6919
6920#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6921 /*
6922 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6923 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6924 * the critical section.
6925 */
5d6523eb 6926 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6927 break;
1e3c88bd
PZ
6928#endif
6929
ee00e66f
PZ
6930 /*
6931 * We only want to steal up to the prescribed amount of
6932 * weighted load.
6933 */
bd939f45 6934 if (env->imbalance <= 0)
ee00e66f 6935 break;
367456c7
PZ
6936
6937 continue;
6938next:
5d6523eb 6939 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6940 }
5d6523eb 6941
1e3c88bd 6942 /*
163122b7
KT
6943 * Right now, this is one of only two places we collect this stat
6944 * so we can safely collect detach_one_task() stats here rather
6945 * than inside detach_one_task().
1e3c88bd 6946 */
ae92882e 6947 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6948
163122b7
KT
6949 return detached;
6950}
6951
6952/*
6953 * attach_task() -- attach the task detached by detach_task() to its new rq.
6954 */
6955static void attach_task(struct rq *rq, struct task_struct *p)
6956{
6957 lockdep_assert_held(&rq->lock);
6958
6959 BUG_ON(task_rq(p) != rq);
5704ac0a 6960 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6961 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6962 check_preempt_curr(rq, p, 0);
6963}
6964
6965/*
6966 * attach_one_task() -- attaches the task returned from detach_one_task() to
6967 * its new rq.
6968 */
6969static void attach_one_task(struct rq *rq, struct task_struct *p)
6970{
8a8c69c3
PZ
6971 struct rq_flags rf;
6972
6973 rq_lock(rq, &rf);
5704ac0a 6974 update_rq_clock(rq);
163122b7 6975 attach_task(rq, p);
8a8c69c3 6976 rq_unlock(rq, &rf);
163122b7
KT
6977}
6978
6979/*
6980 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6981 * new rq.
6982 */
6983static void attach_tasks(struct lb_env *env)
6984{
6985 struct list_head *tasks = &env->tasks;
6986 struct task_struct *p;
8a8c69c3 6987 struct rq_flags rf;
163122b7 6988
8a8c69c3 6989 rq_lock(env->dst_rq, &rf);
5704ac0a 6990 update_rq_clock(env->dst_rq);
163122b7
KT
6991
6992 while (!list_empty(tasks)) {
6993 p = list_first_entry(tasks, struct task_struct, se.group_node);
6994 list_del_init(&p->se.group_node);
1e3c88bd 6995
163122b7
KT
6996 attach_task(env->dst_rq, p);
6997 }
6998
8a8c69c3 6999 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7000}
7001
230059de 7002#ifdef CONFIG_FAIR_GROUP_SCHED
a9e7f654
TH
7003
7004static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7005{
7006 if (cfs_rq->load.weight)
7007 return false;
7008
7009 if (cfs_rq->avg.load_sum)
7010 return false;
7011
7012 if (cfs_rq->avg.util_sum)
7013 return false;
7014
7015 if (cfs_rq->runnable_load_sum)
7016 return false;
7017
7018 return true;
7019}
7020
48a16753 7021static void update_blocked_averages(int cpu)
9e3081ca 7022{
9e3081ca 7023 struct rq *rq = cpu_rq(cpu);
a9e7f654 7024 struct cfs_rq *cfs_rq, *pos;
8a8c69c3 7025 struct rq_flags rf;
9e3081ca 7026
8a8c69c3 7027 rq_lock_irqsave(rq, &rf);
48a16753 7028 update_rq_clock(rq);
9d89c257 7029
9763b67f
PZ
7030 /*
7031 * Iterates the task_group tree in a bottom up fashion, see
7032 * list_add_leaf_cfs_rq() for details.
7033 */
a9e7f654 7034 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7035 struct sched_entity *se;
7036
9d89c257
YD
7037 /* throttled entities do not contribute to load */
7038 if (throttled_hierarchy(cfs_rq))
7039 continue;
48a16753 7040
3a123bbb 7041 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9d89c257 7042 update_tg_load_avg(cfs_rq, 0);
4e516076 7043
bc427898
VG
7044 /* Propagate pending load changes to the parent, if any: */
7045 se = cfs_rq->tg->se[cpu];
7046 if (se && !skip_blocked_update(se))
7047 update_load_avg(se, 0);
a9e7f654
TH
7048
7049 /*
7050 * There can be a lot of idle CPU cgroups. Don't let fully
7051 * decayed cfs_rqs linger on the list.
7052 */
7053 if (cfs_rq_is_decayed(cfs_rq))
7054 list_del_leaf_cfs_rq(cfs_rq);
9d89c257 7055 }
8a8c69c3 7056 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7057}
7058
9763b67f 7059/*
68520796 7060 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7061 * This needs to be done in a top-down fashion because the load of a child
7062 * group is a fraction of its parents load.
7063 */
68520796 7064static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7065{
68520796
VD
7066 struct rq *rq = rq_of(cfs_rq);
7067 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7068 unsigned long now = jiffies;
68520796 7069 unsigned long load;
a35b6466 7070
68520796 7071 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7072 return;
7073
68520796
VD
7074 cfs_rq->h_load_next = NULL;
7075 for_each_sched_entity(se) {
7076 cfs_rq = cfs_rq_of(se);
7077 cfs_rq->h_load_next = se;
7078 if (cfs_rq->last_h_load_update == now)
7079 break;
7080 }
a35b6466 7081
68520796 7082 if (!se) {
7ea241af 7083 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7084 cfs_rq->last_h_load_update = now;
7085 }
7086
7087 while ((se = cfs_rq->h_load_next) != NULL) {
7088 load = cfs_rq->h_load;
7ea241af
YD
7089 load = div64_ul(load * se->avg.load_avg,
7090 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7091 cfs_rq = group_cfs_rq(se);
7092 cfs_rq->h_load = load;
7093 cfs_rq->last_h_load_update = now;
7094 }
9763b67f
PZ
7095}
7096
367456c7 7097static unsigned long task_h_load(struct task_struct *p)
230059de 7098{
367456c7 7099 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7100
68520796 7101 update_cfs_rq_h_load(cfs_rq);
9d89c257 7102 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7103 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7104}
7105#else
48a16753 7106static inline void update_blocked_averages(int cpu)
9e3081ca 7107{
6c1d47c0
VG
7108 struct rq *rq = cpu_rq(cpu);
7109 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7110 struct rq_flags rf;
6c1d47c0 7111
8a8c69c3 7112 rq_lock_irqsave(rq, &rf);
6c1d47c0 7113 update_rq_clock(rq);
3a123bbb 7114 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
8a8c69c3 7115 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7116}
7117
367456c7 7118static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7119{
9d89c257 7120 return p->se.avg.load_avg;
1e3c88bd 7121}
230059de 7122#endif
1e3c88bd 7123
1e3c88bd 7124/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7125
7126enum group_type {
7127 group_other = 0,
7128 group_imbalanced,
7129 group_overloaded,
7130};
7131
1e3c88bd
PZ
7132/*
7133 * sg_lb_stats - stats of a sched_group required for load_balancing
7134 */
7135struct sg_lb_stats {
7136 unsigned long avg_load; /*Avg load across the CPUs of the group */
7137 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7138 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7139 unsigned long load_per_task;
63b2ca30 7140 unsigned long group_capacity;
9e91d61d 7141 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7142 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7143 unsigned int idle_cpus;
7144 unsigned int group_weight;
caeb178c 7145 enum group_type group_type;
ea67821b 7146 int group_no_capacity;
0ec8aa00
PZ
7147#ifdef CONFIG_NUMA_BALANCING
7148 unsigned int nr_numa_running;
7149 unsigned int nr_preferred_running;
7150#endif
1e3c88bd
PZ
7151};
7152
56cf515b
JK
7153/*
7154 * sd_lb_stats - Structure to store the statistics of a sched_domain
7155 * during load balancing.
7156 */
7157struct sd_lb_stats {
7158 struct sched_group *busiest; /* Busiest group in this sd */
7159 struct sched_group *local; /* Local group in this sd */
90001d67 7160 unsigned long total_running;
56cf515b 7161 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7162 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7163 unsigned long avg_load; /* Average load across all groups in sd */
7164
56cf515b 7165 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7166 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7167};
7168
147c5fc2
PZ
7169static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7170{
7171 /*
7172 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7173 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7174 * We must however clear busiest_stat::avg_load because
7175 * update_sd_pick_busiest() reads this before assignment.
7176 */
7177 *sds = (struct sd_lb_stats){
7178 .busiest = NULL,
7179 .local = NULL,
90001d67 7180 .total_running = 0UL,
147c5fc2 7181 .total_load = 0UL,
63b2ca30 7182 .total_capacity = 0UL,
147c5fc2
PZ
7183 .busiest_stat = {
7184 .avg_load = 0UL,
caeb178c
RR
7185 .sum_nr_running = 0,
7186 .group_type = group_other,
147c5fc2
PZ
7187 },
7188 };
7189}
7190
1e3c88bd
PZ
7191/**
7192 * get_sd_load_idx - Obtain the load index for a given sched domain.
7193 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7194 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7195 *
7196 * Return: The load index.
1e3c88bd
PZ
7197 */
7198static inline int get_sd_load_idx(struct sched_domain *sd,
7199 enum cpu_idle_type idle)
7200{
7201 int load_idx;
7202
7203 switch (idle) {
7204 case CPU_NOT_IDLE:
7205 load_idx = sd->busy_idx;
7206 break;
7207
7208 case CPU_NEWLY_IDLE:
7209 load_idx = sd->newidle_idx;
7210 break;
7211 default:
7212 load_idx = sd->idle_idx;
7213 break;
7214 }
7215
7216 return load_idx;
7217}
7218
ced549fa 7219static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7220{
7221 struct rq *rq = cpu_rq(cpu);
b5b4860d 7222 u64 total, used, age_stamp, avg;
cadefd3d 7223 s64 delta;
1e3c88bd 7224
b654f7de
PZ
7225 /*
7226 * Since we're reading these variables without serialization make sure
7227 * we read them once before doing sanity checks on them.
7228 */
316c1608
JL
7229 age_stamp = READ_ONCE(rq->age_stamp);
7230 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7231 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7232
cadefd3d
PZ
7233 if (unlikely(delta < 0))
7234 delta = 0;
7235
7236 total = sched_avg_period() + delta;
aa483808 7237
b5b4860d 7238 used = div_u64(avg, total);
1e3c88bd 7239
b5b4860d
VG
7240 if (likely(used < SCHED_CAPACITY_SCALE))
7241 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7242
b5b4860d 7243 return 1;
1e3c88bd
PZ
7244}
7245
ced549fa 7246static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7247{
8cd5601c 7248 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7249 struct sched_group *sdg = sd->groups;
7250
ca6d75e6 7251 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7252
ced549fa 7253 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7254 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7255
ced549fa
NP
7256 if (!capacity)
7257 capacity = 1;
1e3c88bd 7258
ced549fa
NP
7259 cpu_rq(cpu)->cpu_capacity = capacity;
7260 sdg->sgc->capacity = capacity;
bf475ce0 7261 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7262}
7263
63b2ca30 7264void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7265{
7266 struct sched_domain *child = sd->child;
7267 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7268 unsigned long capacity, min_capacity;
4ec4412e
VG
7269 unsigned long interval;
7270
7271 interval = msecs_to_jiffies(sd->balance_interval);
7272 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7273 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7274
7275 if (!child) {
ced549fa 7276 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7277 return;
7278 }
7279
dc7ff76e 7280 capacity = 0;
bf475ce0 7281 min_capacity = ULONG_MAX;
1e3c88bd 7282
74a5ce20
PZ
7283 if (child->flags & SD_OVERLAP) {
7284 /*
7285 * SD_OVERLAP domains cannot assume that child groups
7286 * span the current group.
7287 */
7288
ae4df9d6 7289 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7290 struct sched_group_capacity *sgc;
9abf24d4 7291 struct rq *rq = cpu_rq(cpu);
863bffc8 7292
9abf24d4 7293 /*
63b2ca30 7294 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7295 * gets here before we've attached the domains to the
7296 * runqueues.
7297 *
ced549fa
NP
7298 * Use capacity_of(), which is set irrespective of domains
7299 * in update_cpu_capacity().
9abf24d4 7300 *
dc7ff76e 7301 * This avoids capacity from being 0 and
9abf24d4 7302 * causing divide-by-zero issues on boot.
9abf24d4
SD
7303 */
7304 if (unlikely(!rq->sd)) {
ced549fa 7305 capacity += capacity_of(cpu);
bf475ce0
MR
7306 } else {
7307 sgc = rq->sd->groups->sgc;
7308 capacity += sgc->capacity;
9abf24d4 7309 }
863bffc8 7310
bf475ce0 7311 min_capacity = min(capacity, min_capacity);
863bffc8 7312 }
74a5ce20
PZ
7313 } else {
7314 /*
7315 * !SD_OVERLAP domains can assume that child groups
7316 * span the current group.
97a7142f 7317 */
74a5ce20
PZ
7318
7319 group = child->groups;
7320 do {
bf475ce0
MR
7321 struct sched_group_capacity *sgc = group->sgc;
7322
7323 capacity += sgc->capacity;
7324 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7325 group = group->next;
7326 } while (group != child->groups);
7327 }
1e3c88bd 7328
63b2ca30 7329 sdg->sgc->capacity = capacity;
bf475ce0 7330 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7331}
7332
9d5efe05 7333/*
ea67821b
VG
7334 * Check whether the capacity of the rq has been noticeably reduced by side
7335 * activity. The imbalance_pct is used for the threshold.
7336 * Return true is the capacity is reduced
9d5efe05
SV
7337 */
7338static inline int
ea67821b 7339check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7340{
ea67821b
VG
7341 return ((rq->cpu_capacity * sd->imbalance_pct) <
7342 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7343}
7344
30ce5dab
PZ
7345/*
7346 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7347 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7348 *
7349 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7350 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7351 * Something like:
7352 *
2b4d5b25
IM
7353 * { 0 1 2 3 } { 4 5 6 7 }
7354 * * * * *
30ce5dab
PZ
7355 *
7356 * If we were to balance group-wise we'd place two tasks in the first group and
7357 * two tasks in the second group. Clearly this is undesired as it will overload
7358 * cpu 3 and leave one of the cpus in the second group unused.
7359 *
7360 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7361 * by noticing the lower domain failed to reach balance and had difficulty
7362 * moving tasks due to affinity constraints.
30ce5dab
PZ
7363 *
7364 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7365 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7366 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7367 * to create an effective group imbalance.
7368 *
7369 * This is a somewhat tricky proposition since the next run might not find the
7370 * group imbalance and decide the groups need to be balanced again. A most
7371 * subtle and fragile situation.
7372 */
7373
6263322c 7374static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7375{
63b2ca30 7376 return group->sgc->imbalance;
30ce5dab
PZ
7377}
7378
b37d9316 7379/*
ea67821b
VG
7380 * group_has_capacity returns true if the group has spare capacity that could
7381 * be used by some tasks.
7382 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7383 * smaller than the number of CPUs or if the utilization is lower than the
7384 * available capacity for CFS tasks.
ea67821b
VG
7385 * For the latter, we use a threshold to stabilize the state, to take into
7386 * account the variance of the tasks' load and to return true if the available
7387 * capacity in meaningful for the load balancer.
7388 * As an example, an available capacity of 1% can appear but it doesn't make
7389 * any benefit for the load balance.
b37d9316 7390 */
ea67821b
VG
7391static inline bool
7392group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7393{
ea67821b
VG
7394 if (sgs->sum_nr_running < sgs->group_weight)
7395 return true;
c61037e9 7396
ea67821b 7397 if ((sgs->group_capacity * 100) >
9e91d61d 7398 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7399 return true;
b37d9316 7400
ea67821b
VG
7401 return false;
7402}
7403
7404/*
7405 * group_is_overloaded returns true if the group has more tasks than it can
7406 * handle.
7407 * group_is_overloaded is not equals to !group_has_capacity because a group
7408 * with the exact right number of tasks, has no more spare capacity but is not
7409 * overloaded so both group_has_capacity and group_is_overloaded return
7410 * false.
7411 */
7412static inline bool
7413group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7414{
7415 if (sgs->sum_nr_running <= sgs->group_weight)
7416 return false;
b37d9316 7417
ea67821b 7418 if ((sgs->group_capacity * 100) <
9e91d61d 7419 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7420 return true;
b37d9316 7421
ea67821b 7422 return false;
b37d9316
PZ
7423}
7424
9e0994c0
MR
7425/*
7426 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7427 * per-CPU capacity than sched_group ref.
7428 */
7429static inline bool
7430group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7431{
7432 return sg->sgc->min_capacity * capacity_margin <
7433 ref->sgc->min_capacity * 1024;
7434}
7435
79a89f92
LY
7436static inline enum
7437group_type group_classify(struct sched_group *group,
7438 struct sg_lb_stats *sgs)
caeb178c 7439{
ea67821b 7440 if (sgs->group_no_capacity)
caeb178c
RR
7441 return group_overloaded;
7442
7443 if (sg_imbalanced(group))
7444 return group_imbalanced;
7445
7446 return group_other;
7447}
7448
1e3c88bd
PZ
7449/**
7450 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7451 * @env: The load balancing environment.
1e3c88bd 7452 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7453 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7454 * @local_group: Does group contain this_cpu.
1e3c88bd 7455 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7456 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7457 */
bd939f45
PZ
7458static inline void update_sg_lb_stats(struct lb_env *env,
7459 struct sched_group *group, int load_idx,
4486edd1
TC
7460 int local_group, struct sg_lb_stats *sgs,
7461 bool *overload)
1e3c88bd 7462{
30ce5dab 7463 unsigned long load;
a426f99c 7464 int i, nr_running;
1e3c88bd 7465
b72ff13c
PZ
7466 memset(sgs, 0, sizeof(*sgs));
7467
ae4df9d6 7468 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
7469 struct rq *rq = cpu_rq(i);
7470
1e3c88bd 7471 /* Bias balancing toward cpus of our domain */
6263322c 7472 if (local_group)
04f733b4 7473 load = target_load(i, load_idx);
6263322c 7474 else
1e3c88bd 7475 load = source_load(i, load_idx);
1e3c88bd
PZ
7476
7477 sgs->group_load += load;
9e91d61d 7478 sgs->group_util += cpu_util(i);
65fdac08 7479 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7480
a426f99c
WL
7481 nr_running = rq->nr_running;
7482 if (nr_running > 1)
4486edd1
TC
7483 *overload = true;
7484
0ec8aa00
PZ
7485#ifdef CONFIG_NUMA_BALANCING
7486 sgs->nr_numa_running += rq->nr_numa_running;
7487 sgs->nr_preferred_running += rq->nr_preferred_running;
7488#endif
c7132dd6 7489 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
7490 /*
7491 * No need to call idle_cpu() if nr_running is not 0
7492 */
7493 if (!nr_running && idle_cpu(i))
aae6d3dd 7494 sgs->idle_cpus++;
1e3c88bd
PZ
7495 }
7496
63b2ca30
NP
7497 /* Adjust by relative CPU capacity of the group */
7498 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7499 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7500
dd5feea1 7501 if (sgs->sum_nr_running)
38d0f770 7502 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7503
aae6d3dd 7504 sgs->group_weight = group->group_weight;
b37d9316 7505
ea67821b 7506 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7507 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7508}
7509
532cb4c4
MN
7510/**
7511 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7512 * @env: The load balancing environment.
532cb4c4
MN
7513 * @sds: sched_domain statistics
7514 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7515 * @sgs: sched_group statistics
532cb4c4
MN
7516 *
7517 * Determine if @sg is a busier group than the previously selected
7518 * busiest group.
e69f6186
YB
7519 *
7520 * Return: %true if @sg is a busier group than the previously selected
7521 * busiest group. %false otherwise.
532cb4c4 7522 */
bd939f45 7523static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7524 struct sd_lb_stats *sds,
7525 struct sched_group *sg,
bd939f45 7526 struct sg_lb_stats *sgs)
532cb4c4 7527{
caeb178c 7528 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7529
caeb178c 7530 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7531 return true;
7532
caeb178c
RR
7533 if (sgs->group_type < busiest->group_type)
7534 return false;
7535
7536 if (sgs->avg_load <= busiest->avg_load)
7537 return false;
7538
9e0994c0
MR
7539 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7540 goto asym_packing;
7541
7542 /*
7543 * Candidate sg has no more than one task per CPU and
7544 * has higher per-CPU capacity. Migrating tasks to less
7545 * capable CPUs may harm throughput. Maximize throughput,
7546 * power/energy consequences are not considered.
7547 */
7548 if (sgs->sum_nr_running <= sgs->group_weight &&
7549 group_smaller_cpu_capacity(sds->local, sg))
7550 return false;
7551
7552asym_packing:
caeb178c
RR
7553 /* This is the busiest node in its class. */
7554 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7555 return true;
7556
1f621e02
SD
7557 /* No ASYM_PACKING if target cpu is already busy */
7558 if (env->idle == CPU_NOT_IDLE)
7559 return true;
532cb4c4 7560 /*
afe06efd
TC
7561 * ASYM_PACKING needs to move all the work to the highest
7562 * prority CPUs in the group, therefore mark all groups
7563 * of lower priority than ourself as busy.
532cb4c4 7564 */
afe06efd
TC
7565 if (sgs->sum_nr_running &&
7566 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7567 if (!sds->busiest)
7568 return true;
7569
afe06efd
TC
7570 /* Prefer to move from lowest priority cpu's work */
7571 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7572 sg->asym_prefer_cpu))
532cb4c4
MN
7573 return true;
7574 }
7575
7576 return false;
7577}
7578
0ec8aa00
PZ
7579#ifdef CONFIG_NUMA_BALANCING
7580static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7581{
7582 if (sgs->sum_nr_running > sgs->nr_numa_running)
7583 return regular;
7584 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7585 return remote;
7586 return all;
7587}
7588
7589static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7590{
7591 if (rq->nr_running > rq->nr_numa_running)
7592 return regular;
7593 if (rq->nr_running > rq->nr_preferred_running)
7594 return remote;
7595 return all;
7596}
7597#else
7598static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7599{
7600 return all;
7601}
7602
7603static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7604{
7605 return regular;
7606}
7607#endif /* CONFIG_NUMA_BALANCING */
7608
1e3c88bd 7609/**
461819ac 7610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7611 * @env: The load balancing environment.
1e3c88bd
PZ
7612 * @sds: variable to hold the statistics for this sched_domain.
7613 */
0ec8aa00 7614static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7615{
90001d67 7616 struct sched_domain_shared *shared = env->sd->shared;
bd939f45
PZ
7617 struct sched_domain *child = env->sd->child;
7618 struct sched_group *sg = env->sd->groups;
05b40e05 7619 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7620 struct sg_lb_stats tmp_sgs;
1e3c88bd 7621 int load_idx, prefer_sibling = 0;
4486edd1 7622 bool overload = false;
1e3c88bd
PZ
7623
7624 if (child && child->flags & SD_PREFER_SIBLING)
7625 prefer_sibling = 1;
7626
bd939f45 7627 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7628
7629 do {
56cf515b 7630 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7631 int local_group;
7632
ae4df9d6 7633 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
7634 if (local_group) {
7635 sds->local = sg;
05b40e05 7636 sgs = local;
b72ff13c
PZ
7637
7638 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7639 time_after_eq(jiffies, sg->sgc->next_update))
7640 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7641 }
1e3c88bd 7642
4486edd1
TC
7643 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7644 &overload);
1e3c88bd 7645
b72ff13c
PZ
7646 if (local_group)
7647 goto next_group;
7648
1e3c88bd
PZ
7649 /*
7650 * In case the child domain prefers tasks go to siblings
ea67821b 7651 * first, lower the sg capacity so that we'll try
75dd321d
NR
7652 * and move all the excess tasks away. We lower the capacity
7653 * of a group only if the local group has the capacity to fit
ea67821b
VG
7654 * these excess tasks. The extra check prevents the case where
7655 * you always pull from the heaviest group when it is already
7656 * under-utilized (possible with a large weight task outweighs
7657 * the tasks on the system).
1e3c88bd 7658 */
b72ff13c 7659 if (prefer_sibling && sds->local &&
05b40e05
SD
7660 group_has_capacity(env, local) &&
7661 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7662 sgs->group_no_capacity = 1;
79a89f92 7663 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7664 }
1e3c88bd 7665
b72ff13c 7666 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7667 sds->busiest = sg;
56cf515b 7668 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7669 }
7670
b72ff13c
PZ
7671next_group:
7672 /* Now, start updating sd_lb_stats */
90001d67 7673 sds->total_running += sgs->sum_nr_running;
b72ff13c 7674 sds->total_load += sgs->group_load;
63b2ca30 7675 sds->total_capacity += sgs->group_capacity;
b72ff13c 7676
532cb4c4 7677 sg = sg->next;
bd939f45 7678 } while (sg != env->sd->groups);
0ec8aa00
PZ
7679
7680 if (env->sd->flags & SD_NUMA)
7681 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7682
7683 if (!env->sd->parent) {
7684 /* update overload indicator if we are at root domain */
7685 if (env->dst_rq->rd->overload != overload)
7686 env->dst_rq->rd->overload = overload;
7687 }
7688
90001d67
PZ
7689 if (!shared)
7690 return;
7691
7692 /*
7693 * Since these are sums over groups they can contain some CPUs
7694 * multiple times for the NUMA domains.
7695 *
7696 * Currently only wake_affine_llc() and find_busiest_group()
7697 * uses these numbers, only the last is affected by this problem.
7698 *
7699 * XXX fix that.
7700 */
7701 WRITE_ONCE(shared->nr_running, sds->total_running);
7702 WRITE_ONCE(shared->load, sds->total_load);
7703 WRITE_ONCE(shared->capacity, sds->total_capacity);
532cb4c4
MN
7704}
7705
532cb4c4
MN
7706/**
7707 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 7708 * sched domain.
532cb4c4
MN
7709 *
7710 * This is primarily intended to used at the sibling level. Some
7711 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7712 * case of POWER7, it can move to lower SMT modes only when higher
7713 * threads are idle. When in lower SMT modes, the threads will
7714 * perform better since they share less core resources. Hence when we
7715 * have idle threads, we want them to be the higher ones.
7716 *
7717 * This packing function is run on idle threads. It checks to see if
7718 * the busiest CPU in this domain (core in the P7 case) has a higher
7719 * CPU number than the packing function is being run on. Here we are
7720 * assuming lower CPU number will be equivalent to lower a SMT thread
7721 * number.
7722 *
e69f6186 7723 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7724 * this CPU. The amount of the imbalance is returned in *imbalance.
7725 *
cd96891d 7726 * @env: The load balancing environment.
532cb4c4 7727 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7728 */
bd939f45 7729static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7730{
7731 int busiest_cpu;
7732
bd939f45 7733 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7734 return 0;
7735
1f621e02
SD
7736 if (env->idle == CPU_NOT_IDLE)
7737 return 0;
7738
532cb4c4
MN
7739 if (!sds->busiest)
7740 return 0;
7741
afe06efd
TC
7742 busiest_cpu = sds->busiest->asym_prefer_cpu;
7743 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7744 return 0;
7745
bd939f45 7746 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7747 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7748 SCHED_CAPACITY_SCALE);
bd939f45 7749
532cb4c4 7750 return 1;
1e3c88bd
PZ
7751}
7752
7753/**
7754 * fix_small_imbalance - Calculate the minor imbalance that exists
7755 * amongst the groups of a sched_domain, during
7756 * load balancing.
cd96891d 7757 * @env: The load balancing environment.
1e3c88bd 7758 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7759 */
bd939f45
PZ
7760static inline
7761void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7762{
63b2ca30 7763 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7764 unsigned int imbn = 2;
dd5feea1 7765 unsigned long scaled_busy_load_per_task;
56cf515b 7766 struct sg_lb_stats *local, *busiest;
1e3c88bd 7767
56cf515b
JK
7768 local = &sds->local_stat;
7769 busiest = &sds->busiest_stat;
1e3c88bd 7770
56cf515b
JK
7771 if (!local->sum_nr_running)
7772 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7773 else if (busiest->load_per_task > local->load_per_task)
7774 imbn = 1;
dd5feea1 7775
56cf515b 7776 scaled_busy_load_per_task =
ca8ce3d0 7777 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7778 busiest->group_capacity;
56cf515b 7779
3029ede3
VD
7780 if (busiest->avg_load + scaled_busy_load_per_task >=
7781 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7782 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7783 return;
7784 }
7785
7786 /*
7787 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7788 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7789 * moving them.
7790 */
7791
63b2ca30 7792 capa_now += busiest->group_capacity *
56cf515b 7793 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7794 capa_now += local->group_capacity *
56cf515b 7795 min(local->load_per_task, local->avg_load);
ca8ce3d0 7796 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7797
7798 /* Amount of load we'd subtract */
a2cd4260 7799 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7800 capa_move += busiest->group_capacity *
56cf515b 7801 min(busiest->load_per_task,
a2cd4260 7802 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7803 }
1e3c88bd
PZ
7804
7805 /* Amount of load we'd add */
63b2ca30 7806 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7807 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7808 tmp = (busiest->avg_load * busiest->group_capacity) /
7809 local->group_capacity;
56cf515b 7810 } else {
ca8ce3d0 7811 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7812 local->group_capacity;
56cf515b 7813 }
63b2ca30 7814 capa_move += local->group_capacity *
3ae11c90 7815 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7816 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7817
7818 /* Move if we gain throughput */
63b2ca30 7819 if (capa_move > capa_now)
56cf515b 7820 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7821}
7822
7823/**
7824 * calculate_imbalance - Calculate the amount of imbalance present within the
7825 * groups of a given sched_domain during load balance.
bd939f45 7826 * @env: load balance environment
1e3c88bd 7827 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7828 */
bd939f45 7829static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7830{
dd5feea1 7831 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7832 struct sg_lb_stats *local, *busiest;
7833
7834 local = &sds->local_stat;
56cf515b 7835 busiest = &sds->busiest_stat;
dd5feea1 7836
caeb178c 7837 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7838 /*
7839 * In the group_imb case we cannot rely on group-wide averages
7840 * to ensure cpu-load equilibrium, look at wider averages. XXX
7841 */
56cf515b
JK
7842 busiest->load_per_task =
7843 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7844 }
7845
1e3c88bd 7846 /*
885e542c
DE
7847 * Avg load of busiest sg can be less and avg load of local sg can
7848 * be greater than avg load across all sgs of sd because avg load
7849 * factors in sg capacity and sgs with smaller group_type are
7850 * skipped when updating the busiest sg:
1e3c88bd 7851 */
b1885550
VD
7852 if (busiest->avg_load <= sds->avg_load ||
7853 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7854 env->imbalance = 0;
7855 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7856 }
7857
9a5d9ba6
PZ
7858 /*
7859 * If there aren't any idle cpus, avoid creating some.
7860 */
7861 if (busiest->group_type == group_overloaded &&
7862 local->group_type == group_overloaded) {
1be0eb2a 7863 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7864 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7865 load_above_capacity -= busiest->group_capacity;
26656215 7866 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7867 load_above_capacity /= busiest->group_capacity;
7868 } else
ea67821b 7869 load_above_capacity = ~0UL;
dd5feea1
SS
7870 }
7871
7872 /*
7873 * We're trying to get all the cpus to the average_load, so we don't
7874 * want to push ourselves above the average load, nor do we wish to
7875 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7876 * we also don't want to reduce the group load below the group
7877 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7878 */
30ce5dab 7879 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7880
7881 /* How much load to actually move to equalise the imbalance */
56cf515b 7882 env->imbalance = min(
63b2ca30
NP
7883 max_pull * busiest->group_capacity,
7884 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7885 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7886
7887 /*
7888 * if *imbalance is less than the average load per runnable task
25985edc 7889 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7890 * a think about bumping its value to force at least one task to be
7891 * moved
7892 */
56cf515b 7893 if (env->imbalance < busiest->load_per_task)
bd939f45 7894 return fix_small_imbalance(env, sds);
1e3c88bd 7895}
fab47622 7896
1e3c88bd
PZ
7897/******* find_busiest_group() helpers end here *********************/
7898
7899/**
7900 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7901 * if there is an imbalance.
1e3c88bd
PZ
7902 *
7903 * Also calculates the amount of weighted load which should be moved
7904 * to restore balance.
7905 *
cd96891d 7906 * @env: The load balancing environment.
1e3c88bd 7907 *
e69f6186 7908 * Return: - The busiest group if imbalance exists.
1e3c88bd 7909 */
56cf515b 7910static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7911{
56cf515b 7912 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7913 struct sd_lb_stats sds;
7914
147c5fc2 7915 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7916
7917 /*
7918 * Compute the various statistics relavent for load balancing at
7919 * this level.
7920 */
23f0d209 7921 update_sd_lb_stats(env, &sds);
56cf515b
JK
7922 local = &sds.local_stat;
7923 busiest = &sds.busiest_stat;
1e3c88bd 7924
ea67821b 7925 /* ASYM feature bypasses nice load balance check */
1f621e02 7926 if (check_asym_packing(env, &sds))
532cb4c4
MN
7927 return sds.busiest;
7928
cc57aa8f 7929 /* There is no busy sibling group to pull tasks from */
56cf515b 7930 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7931 goto out_balanced;
7932
90001d67 7933 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
7934 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7935 / sds.total_capacity;
b0432d8f 7936
866ab43e
PZ
7937 /*
7938 * If the busiest group is imbalanced the below checks don't
30ce5dab 7939 * work because they assume all things are equal, which typically
866ab43e
PZ
7940 * isn't true due to cpus_allowed constraints and the like.
7941 */
caeb178c 7942 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7943 goto force_balance;
7944
cc57aa8f 7945 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7946 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7947 busiest->group_no_capacity)
fab47622
NR
7948 goto force_balance;
7949
cc57aa8f 7950 /*
9c58c79a 7951 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7952 * don't try and pull any tasks.
7953 */
56cf515b 7954 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7955 goto out_balanced;
7956
cc57aa8f
PZ
7957 /*
7958 * Don't pull any tasks if this group is already above the domain
7959 * average load.
7960 */
56cf515b 7961 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7962 goto out_balanced;
7963
bd939f45 7964 if (env->idle == CPU_IDLE) {
aae6d3dd 7965 /*
43f4d666
VG
7966 * This cpu is idle. If the busiest group is not overloaded
7967 * and there is no imbalance between this and busiest group
7968 * wrt idle cpus, it is balanced. The imbalance becomes
7969 * significant if the diff is greater than 1 otherwise we
7970 * might end up to just move the imbalance on another group
aae6d3dd 7971 */
43f4d666
VG
7972 if ((busiest->group_type != group_overloaded) &&
7973 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7974 goto out_balanced;
c186fafe
PZ
7975 } else {
7976 /*
7977 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7978 * imbalance_pct to be conservative.
7979 */
56cf515b
JK
7980 if (100 * busiest->avg_load <=
7981 env->sd->imbalance_pct * local->avg_load)
c186fafe 7982 goto out_balanced;
aae6d3dd 7983 }
1e3c88bd 7984
fab47622 7985force_balance:
1e3c88bd 7986 /* Looks like there is an imbalance. Compute it */
bd939f45 7987 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7988 return sds.busiest;
7989
7990out_balanced:
bd939f45 7991 env->imbalance = 0;
1e3c88bd
PZ
7992 return NULL;
7993}
7994
7995/*
7996 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7997 */
bd939f45 7998static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7999 struct sched_group *group)
1e3c88bd
PZ
8000{
8001 struct rq *busiest = NULL, *rq;
ced549fa 8002 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8003 int i;
8004
ae4df9d6 8005 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8006 unsigned long capacity, wl;
0ec8aa00
PZ
8007 enum fbq_type rt;
8008
8009 rq = cpu_rq(i);
8010 rt = fbq_classify_rq(rq);
1e3c88bd 8011
0ec8aa00
PZ
8012 /*
8013 * We classify groups/runqueues into three groups:
8014 * - regular: there are !numa tasks
8015 * - remote: there are numa tasks that run on the 'wrong' node
8016 * - all: there is no distinction
8017 *
8018 * In order to avoid migrating ideally placed numa tasks,
8019 * ignore those when there's better options.
8020 *
8021 * If we ignore the actual busiest queue to migrate another
8022 * task, the next balance pass can still reduce the busiest
8023 * queue by moving tasks around inside the node.
8024 *
8025 * If we cannot move enough load due to this classification
8026 * the next pass will adjust the group classification and
8027 * allow migration of more tasks.
8028 *
8029 * Both cases only affect the total convergence complexity.
8030 */
8031 if (rt > env->fbq_type)
8032 continue;
8033
ced549fa 8034 capacity = capacity_of(i);
9d5efe05 8035
c7132dd6 8036 wl = weighted_cpuload(rq);
1e3c88bd 8037
6e40f5bb
TG
8038 /*
8039 * When comparing with imbalance, use weighted_cpuload()
ced549fa 8040 * which is not scaled with the cpu capacity.
6e40f5bb 8041 */
ea67821b
VG
8042
8043 if (rq->nr_running == 1 && wl > env->imbalance &&
8044 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8045 continue;
8046
6e40f5bb
TG
8047 /*
8048 * For the load comparisons with the other cpu's, consider
ced549fa
NP
8049 * the weighted_cpuload() scaled with the cpu capacity, so
8050 * that the load can be moved away from the cpu that is
8051 * potentially running at a lower capacity.
95a79b80 8052 *
ced549fa 8053 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8054 * multiplication to rid ourselves of the division works out
ced549fa
NP
8055 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8056 * our previous maximum.
6e40f5bb 8057 */
ced549fa 8058 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8059 busiest_load = wl;
ced549fa 8060 busiest_capacity = capacity;
1e3c88bd
PZ
8061 busiest = rq;
8062 }
8063 }
8064
8065 return busiest;
8066}
8067
8068/*
8069 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8070 * so long as it is large enough.
8071 */
8072#define MAX_PINNED_INTERVAL 512
8073
bd939f45 8074static int need_active_balance(struct lb_env *env)
1af3ed3d 8075{
bd939f45
PZ
8076 struct sched_domain *sd = env->sd;
8077
8078 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8079
8080 /*
8081 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8082 * lower priority CPUs in order to pack all tasks in the
8083 * highest priority CPUs.
532cb4c4 8084 */
afe06efd
TC
8085 if ((sd->flags & SD_ASYM_PACKING) &&
8086 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8087 return 1;
1af3ed3d
PZ
8088 }
8089
1aaf90a4
VG
8090 /*
8091 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8092 * It's worth migrating the task if the src_cpu's capacity is reduced
8093 * because of other sched_class or IRQs if more capacity stays
8094 * available on dst_cpu.
8095 */
8096 if ((env->idle != CPU_NOT_IDLE) &&
8097 (env->src_rq->cfs.h_nr_running == 1)) {
8098 if ((check_cpu_capacity(env->src_rq, sd)) &&
8099 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8100 return 1;
8101 }
8102
1af3ed3d
PZ
8103 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8104}
8105
969c7921
TH
8106static int active_load_balance_cpu_stop(void *data);
8107
23f0d209
JK
8108static int should_we_balance(struct lb_env *env)
8109{
8110 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8111 int cpu, balance_cpu = -1;
8112
8113 /*
8114 * In the newly idle case, we will allow all the cpu's
8115 * to do the newly idle load balance.
8116 */
8117 if (env->idle == CPU_NEWLY_IDLE)
8118 return 1;
8119
23f0d209 8120 /* Try to find first idle cpu */
e5c14b1f 8121 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8122 if (!idle_cpu(cpu))
23f0d209
JK
8123 continue;
8124
8125 balance_cpu = cpu;
8126 break;
8127 }
8128
8129 if (balance_cpu == -1)
8130 balance_cpu = group_balance_cpu(sg);
8131
8132 /*
8133 * First idle cpu or the first cpu(busiest) in this sched group
8134 * is eligible for doing load balancing at this and above domains.
8135 */
b0cff9d8 8136 return balance_cpu == env->dst_cpu;
23f0d209
JK
8137}
8138
1e3c88bd
PZ
8139/*
8140 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8141 * tasks if there is an imbalance.
8142 */
8143static int load_balance(int this_cpu, struct rq *this_rq,
8144 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8145 int *continue_balancing)
1e3c88bd 8146{
88b8dac0 8147 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8148 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8149 struct sched_group *group;
1e3c88bd 8150 struct rq *busiest;
8a8c69c3 8151 struct rq_flags rf;
4ba29684 8152 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8153
8e45cb54
PZ
8154 struct lb_env env = {
8155 .sd = sd,
ddcdf6e7
PZ
8156 .dst_cpu = this_cpu,
8157 .dst_rq = this_rq,
ae4df9d6 8158 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8159 .idle = idle,
eb95308e 8160 .loop_break = sched_nr_migrate_break,
b9403130 8161 .cpus = cpus,
0ec8aa00 8162 .fbq_type = all,
163122b7 8163 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8164 };
8165
65a4433a 8166 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8167
ae92882e 8168 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8169
8170redo:
23f0d209
JK
8171 if (!should_we_balance(&env)) {
8172 *continue_balancing = 0;
1e3c88bd 8173 goto out_balanced;
23f0d209 8174 }
1e3c88bd 8175
23f0d209 8176 group = find_busiest_group(&env);
1e3c88bd 8177 if (!group) {
ae92882e 8178 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8179 goto out_balanced;
8180 }
8181
b9403130 8182 busiest = find_busiest_queue(&env, group);
1e3c88bd 8183 if (!busiest) {
ae92882e 8184 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8185 goto out_balanced;
8186 }
8187
78feefc5 8188 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8189
ae92882e 8190 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8191
1aaf90a4
VG
8192 env.src_cpu = busiest->cpu;
8193 env.src_rq = busiest;
8194
1e3c88bd
PZ
8195 ld_moved = 0;
8196 if (busiest->nr_running > 1) {
8197 /*
8198 * Attempt to move tasks. If find_busiest_group has found
8199 * an imbalance but busiest->nr_running <= 1, the group is
8200 * still unbalanced. ld_moved simply stays zero, so it is
8201 * correctly treated as an imbalance.
8202 */
8e45cb54 8203 env.flags |= LBF_ALL_PINNED;
c82513e5 8204 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8205
5d6523eb 8206more_balance:
8a8c69c3 8207 rq_lock_irqsave(busiest, &rf);
3bed5e21 8208 update_rq_clock(busiest);
88b8dac0
SV
8209
8210 /*
8211 * cur_ld_moved - load moved in current iteration
8212 * ld_moved - cumulative load moved across iterations
8213 */
163122b7 8214 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8215
8216 /*
163122b7
KT
8217 * We've detached some tasks from busiest_rq. Every
8218 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8219 * unlock busiest->lock, and we are able to be sure
8220 * that nobody can manipulate the tasks in parallel.
8221 * See task_rq_lock() family for the details.
1e3c88bd 8222 */
163122b7 8223
8a8c69c3 8224 rq_unlock(busiest, &rf);
163122b7
KT
8225
8226 if (cur_ld_moved) {
8227 attach_tasks(&env);
8228 ld_moved += cur_ld_moved;
8229 }
8230
8a8c69c3 8231 local_irq_restore(rf.flags);
88b8dac0 8232
f1cd0858
JK
8233 if (env.flags & LBF_NEED_BREAK) {
8234 env.flags &= ~LBF_NEED_BREAK;
8235 goto more_balance;
8236 }
8237
88b8dac0
SV
8238 /*
8239 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8240 * us and move them to an alternate dst_cpu in our sched_group
8241 * where they can run. The upper limit on how many times we
8242 * iterate on same src_cpu is dependent on number of cpus in our
8243 * sched_group.
8244 *
8245 * This changes load balance semantics a bit on who can move
8246 * load to a given_cpu. In addition to the given_cpu itself
8247 * (or a ilb_cpu acting on its behalf where given_cpu is
8248 * nohz-idle), we now have balance_cpu in a position to move
8249 * load to given_cpu. In rare situations, this may cause
8250 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8251 * _independently_ and at _same_ time to move some load to
8252 * given_cpu) causing exceess load to be moved to given_cpu.
8253 * This however should not happen so much in practice and
8254 * moreover subsequent load balance cycles should correct the
8255 * excess load moved.
8256 */
6263322c 8257 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8258
7aff2e3a
VD
8259 /* Prevent to re-select dst_cpu via env's cpus */
8260 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8261
78feefc5 8262 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8263 env.dst_cpu = env.new_dst_cpu;
6263322c 8264 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8265 env.loop = 0;
8266 env.loop_break = sched_nr_migrate_break;
e02e60c1 8267
88b8dac0
SV
8268 /*
8269 * Go back to "more_balance" rather than "redo" since we
8270 * need to continue with same src_cpu.
8271 */
8272 goto more_balance;
8273 }
1e3c88bd 8274
6263322c
PZ
8275 /*
8276 * We failed to reach balance because of affinity.
8277 */
8278 if (sd_parent) {
63b2ca30 8279 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8280
afdeee05 8281 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8282 *group_imbalance = 1;
6263322c
PZ
8283 }
8284
1e3c88bd 8285 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8286 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8287 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8288 /*
8289 * Attempting to continue load balancing at the current
8290 * sched_domain level only makes sense if there are
8291 * active CPUs remaining as possible busiest CPUs to
8292 * pull load from which are not contained within the
8293 * destination group that is receiving any migrated
8294 * load.
8295 */
8296 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8297 env.loop = 0;
8298 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8299 goto redo;
bbf18b19 8300 }
afdeee05 8301 goto out_all_pinned;
1e3c88bd
PZ
8302 }
8303 }
8304
8305 if (!ld_moved) {
ae92882e 8306 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8307 /*
8308 * Increment the failure counter only on periodic balance.
8309 * We do not want newidle balance, which can be very
8310 * frequent, pollute the failure counter causing
8311 * excessive cache_hot migrations and active balances.
8312 */
8313 if (idle != CPU_NEWLY_IDLE)
8314 sd->nr_balance_failed++;
1e3c88bd 8315
bd939f45 8316 if (need_active_balance(&env)) {
8a8c69c3
PZ
8317 unsigned long flags;
8318
1e3c88bd
PZ
8319 raw_spin_lock_irqsave(&busiest->lock, flags);
8320
969c7921
TH
8321 /* don't kick the active_load_balance_cpu_stop,
8322 * if the curr task on busiest cpu can't be
8323 * moved to this_cpu
1e3c88bd 8324 */
0c98d344 8325 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8326 raw_spin_unlock_irqrestore(&busiest->lock,
8327 flags);
8e45cb54 8328 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8329 goto out_one_pinned;
8330 }
8331
969c7921
TH
8332 /*
8333 * ->active_balance synchronizes accesses to
8334 * ->active_balance_work. Once set, it's cleared
8335 * only after active load balance is finished.
8336 */
1e3c88bd
PZ
8337 if (!busiest->active_balance) {
8338 busiest->active_balance = 1;
8339 busiest->push_cpu = this_cpu;
8340 active_balance = 1;
8341 }
8342 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8343
bd939f45 8344 if (active_balance) {
969c7921
TH
8345 stop_one_cpu_nowait(cpu_of(busiest),
8346 active_load_balance_cpu_stop, busiest,
8347 &busiest->active_balance_work);
bd939f45 8348 }
1e3c88bd 8349
d02c0711 8350 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8351 sd->nr_balance_failed = sd->cache_nice_tries+1;
8352 }
8353 } else
8354 sd->nr_balance_failed = 0;
8355
8356 if (likely(!active_balance)) {
8357 /* We were unbalanced, so reset the balancing interval */
8358 sd->balance_interval = sd->min_interval;
8359 } else {
8360 /*
8361 * If we've begun active balancing, start to back off. This
8362 * case may not be covered by the all_pinned logic if there
8363 * is only 1 task on the busy runqueue (because we don't call
163122b7 8364 * detach_tasks).
1e3c88bd
PZ
8365 */
8366 if (sd->balance_interval < sd->max_interval)
8367 sd->balance_interval *= 2;
8368 }
8369
1e3c88bd
PZ
8370 goto out;
8371
8372out_balanced:
afdeee05
VG
8373 /*
8374 * We reach balance although we may have faced some affinity
8375 * constraints. Clear the imbalance flag if it was set.
8376 */
8377 if (sd_parent) {
8378 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8379
8380 if (*group_imbalance)
8381 *group_imbalance = 0;
8382 }
8383
8384out_all_pinned:
8385 /*
8386 * We reach balance because all tasks are pinned at this level so
8387 * we can't migrate them. Let the imbalance flag set so parent level
8388 * can try to migrate them.
8389 */
ae92882e 8390 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8391
8392 sd->nr_balance_failed = 0;
8393
8394out_one_pinned:
8395 /* tune up the balancing interval */
8e45cb54 8396 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8397 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8398 (sd->balance_interval < sd->max_interval))
8399 sd->balance_interval *= 2;
8400
46e49b38 8401 ld_moved = 0;
1e3c88bd 8402out:
1e3c88bd
PZ
8403 return ld_moved;
8404}
8405
52a08ef1
JL
8406static inline unsigned long
8407get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8408{
8409 unsigned long interval = sd->balance_interval;
8410
8411 if (cpu_busy)
8412 interval *= sd->busy_factor;
8413
8414 /* scale ms to jiffies */
8415 interval = msecs_to_jiffies(interval);
8416 interval = clamp(interval, 1UL, max_load_balance_interval);
8417
8418 return interval;
8419}
8420
8421static inline void
31851a98 8422update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8423{
8424 unsigned long interval, next;
8425
31851a98
LY
8426 /* used by idle balance, so cpu_busy = 0 */
8427 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8428 next = sd->last_balance + interval;
8429
8430 if (time_after(*next_balance, next))
8431 *next_balance = next;
8432}
8433
1e3c88bd
PZ
8434/*
8435 * idle_balance is called by schedule() if this_cpu is about to become
8436 * idle. Attempts to pull tasks from other CPUs.
8437 */
46f69fa3 8438static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8439{
52a08ef1
JL
8440 unsigned long next_balance = jiffies + HZ;
8441 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8442 struct sched_domain *sd;
8443 int pulled_task = 0;
9bd721c5 8444 u64 curr_cost = 0;
1e3c88bd 8445
6e83125c
PZ
8446 /*
8447 * We must set idle_stamp _before_ calling idle_balance(), such that we
8448 * measure the duration of idle_balance() as idle time.
8449 */
8450 this_rq->idle_stamp = rq_clock(this_rq);
8451
46f69fa3
MF
8452 /*
8453 * This is OK, because current is on_cpu, which avoids it being picked
8454 * for load-balance and preemption/IRQs are still disabled avoiding
8455 * further scheduler activity on it and we're being very careful to
8456 * re-start the picking loop.
8457 */
8458 rq_unpin_lock(this_rq, rf);
8459
4486edd1
TC
8460 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8461 !this_rq->rd->overload) {
52a08ef1
JL
8462 rcu_read_lock();
8463 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8464 if (sd)
31851a98 8465 update_next_balance(sd, &next_balance);
52a08ef1
JL
8466 rcu_read_unlock();
8467
6e83125c 8468 goto out;
52a08ef1 8469 }
1e3c88bd 8470
f492e12e
PZ
8471 raw_spin_unlock(&this_rq->lock);
8472
48a16753 8473 update_blocked_averages(this_cpu);
dce840a0 8474 rcu_read_lock();
1e3c88bd 8475 for_each_domain(this_cpu, sd) {
23f0d209 8476 int continue_balancing = 1;
9bd721c5 8477 u64 t0, domain_cost;
1e3c88bd
PZ
8478
8479 if (!(sd->flags & SD_LOAD_BALANCE))
8480 continue;
8481
52a08ef1 8482 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8483 update_next_balance(sd, &next_balance);
9bd721c5 8484 break;
52a08ef1 8485 }
9bd721c5 8486
f492e12e 8487 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8488 t0 = sched_clock_cpu(this_cpu);
8489
f492e12e 8490 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8491 sd, CPU_NEWLY_IDLE,
8492 &continue_balancing);
9bd721c5
JL
8493
8494 domain_cost = sched_clock_cpu(this_cpu) - t0;
8495 if (domain_cost > sd->max_newidle_lb_cost)
8496 sd->max_newidle_lb_cost = domain_cost;
8497
8498 curr_cost += domain_cost;
f492e12e 8499 }
1e3c88bd 8500
31851a98 8501 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8502
8503 /*
8504 * Stop searching for tasks to pull if there are
8505 * now runnable tasks on this rq.
8506 */
8507 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8508 break;
1e3c88bd 8509 }
dce840a0 8510 rcu_read_unlock();
f492e12e
PZ
8511
8512 raw_spin_lock(&this_rq->lock);
8513
0e5b5337
JL
8514 if (curr_cost > this_rq->max_idle_balance_cost)
8515 this_rq->max_idle_balance_cost = curr_cost;
8516
e5fc6611 8517 /*
0e5b5337
JL
8518 * While browsing the domains, we released the rq lock, a task could
8519 * have been enqueued in the meantime. Since we're not going idle,
8520 * pretend we pulled a task.
e5fc6611 8521 */
0e5b5337 8522 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8523 pulled_task = 1;
e5fc6611 8524
52a08ef1
JL
8525out:
8526 /* Move the next balance forward */
8527 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8528 this_rq->next_balance = next_balance;
9bd721c5 8529
e4aa358b 8530 /* Is there a task of a high priority class? */
46383648 8531 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8532 pulled_task = -1;
8533
38c6ade2 8534 if (pulled_task)
6e83125c
PZ
8535 this_rq->idle_stamp = 0;
8536
46f69fa3
MF
8537 rq_repin_lock(this_rq, rf);
8538
3c4017c1 8539 return pulled_task;
1e3c88bd
PZ
8540}
8541
8542/*
969c7921
TH
8543 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8544 * running tasks off the busiest CPU onto idle CPUs. It requires at
8545 * least 1 task to be running on each physical CPU where possible, and
8546 * avoids physical / logical imbalances.
1e3c88bd 8547 */
969c7921 8548static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8549{
969c7921
TH
8550 struct rq *busiest_rq = data;
8551 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8552 int target_cpu = busiest_rq->push_cpu;
969c7921 8553 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8554 struct sched_domain *sd;
e5673f28 8555 struct task_struct *p = NULL;
8a8c69c3 8556 struct rq_flags rf;
969c7921 8557
8a8c69c3 8558 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8559
8560 /* make sure the requested cpu hasn't gone down in the meantime */
8561 if (unlikely(busiest_cpu != smp_processor_id() ||
8562 !busiest_rq->active_balance))
8563 goto out_unlock;
1e3c88bd
PZ
8564
8565 /* Is there any task to move? */
8566 if (busiest_rq->nr_running <= 1)
969c7921 8567 goto out_unlock;
1e3c88bd
PZ
8568
8569 /*
8570 * This condition is "impossible", if it occurs
8571 * we need to fix it. Originally reported by
8572 * Bjorn Helgaas on a 128-cpu setup.
8573 */
8574 BUG_ON(busiest_rq == target_rq);
8575
1e3c88bd 8576 /* Search for an sd spanning us and the target CPU. */
dce840a0 8577 rcu_read_lock();
1e3c88bd
PZ
8578 for_each_domain(target_cpu, sd) {
8579 if ((sd->flags & SD_LOAD_BALANCE) &&
8580 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8581 break;
8582 }
8583
8584 if (likely(sd)) {
8e45cb54
PZ
8585 struct lb_env env = {
8586 .sd = sd,
ddcdf6e7
PZ
8587 .dst_cpu = target_cpu,
8588 .dst_rq = target_rq,
8589 .src_cpu = busiest_rq->cpu,
8590 .src_rq = busiest_rq,
8e45cb54 8591 .idle = CPU_IDLE,
65a4433a
JH
8592 /*
8593 * can_migrate_task() doesn't need to compute new_dst_cpu
8594 * for active balancing. Since we have CPU_IDLE, but no
8595 * @dst_grpmask we need to make that test go away with lying
8596 * about DST_PINNED.
8597 */
8598 .flags = LBF_DST_PINNED,
8e45cb54
PZ
8599 };
8600
ae92882e 8601 schedstat_inc(sd->alb_count);
3bed5e21 8602 update_rq_clock(busiest_rq);
1e3c88bd 8603
e5673f28 8604 p = detach_one_task(&env);
d02c0711 8605 if (p) {
ae92882e 8606 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8607 /* Active balancing done, reset the failure counter. */
8608 sd->nr_balance_failed = 0;
8609 } else {
ae92882e 8610 schedstat_inc(sd->alb_failed);
d02c0711 8611 }
1e3c88bd 8612 }
dce840a0 8613 rcu_read_unlock();
969c7921
TH
8614out_unlock:
8615 busiest_rq->active_balance = 0;
8a8c69c3 8616 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8617
8618 if (p)
8619 attach_one_task(target_rq, p);
8620
8621 local_irq_enable();
8622
969c7921 8623 return 0;
1e3c88bd
PZ
8624}
8625
d987fc7f
MG
8626static inline int on_null_domain(struct rq *rq)
8627{
8628 return unlikely(!rcu_dereference_sched(rq->sd));
8629}
8630
3451d024 8631#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8632/*
8633 * idle load balancing details
83cd4fe2
VP
8634 * - When one of the busy CPUs notice that there may be an idle rebalancing
8635 * needed, they will kick the idle load balancer, which then does idle
8636 * load balancing for all the idle CPUs.
8637 */
1e3c88bd 8638static struct {
83cd4fe2 8639 cpumask_var_t idle_cpus_mask;
0b005cf5 8640 atomic_t nr_cpus;
83cd4fe2
VP
8641 unsigned long next_balance; /* in jiffy units */
8642} nohz ____cacheline_aligned;
1e3c88bd 8643
3dd0337d 8644static inline int find_new_ilb(void)
1e3c88bd 8645{
0b005cf5 8646 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8647
786d6dc7
SS
8648 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8649 return ilb;
8650
8651 return nr_cpu_ids;
1e3c88bd 8652}
1e3c88bd 8653
83cd4fe2
VP
8654/*
8655 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8656 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8657 * CPU (if there is one).
8658 */
0aeeeeba 8659static void nohz_balancer_kick(void)
83cd4fe2
VP
8660{
8661 int ilb_cpu;
8662
8663 nohz.next_balance++;
8664
3dd0337d 8665 ilb_cpu = find_new_ilb();
83cd4fe2 8666
0b005cf5
SS
8667 if (ilb_cpu >= nr_cpu_ids)
8668 return;
83cd4fe2 8669
cd490c5b 8670 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8671 return;
8672 /*
8673 * Use smp_send_reschedule() instead of resched_cpu().
8674 * This way we generate a sched IPI on the target cpu which
8675 * is idle. And the softirq performing nohz idle load balance
8676 * will be run before returning from the IPI.
8677 */
8678 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8679 return;
8680}
8681
20a5c8cc 8682void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8683{
8684 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8685 /*
8686 * Completely isolated CPUs don't ever set, so we must test.
8687 */
8688 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8689 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8690 atomic_dec(&nohz.nr_cpus);
8691 }
71325960
SS
8692 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8693 }
8694}
8695
69e1e811
SS
8696static inline void set_cpu_sd_state_busy(void)
8697{
8698 struct sched_domain *sd;
37dc6b50 8699 int cpu = smp_processor_id();
69e1e811 8700
69e1e811 8701 rcu_read_lock();
0e369d75 8702 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8703
8704 if (!sd || !sd->nohz_idle)
8705 goto unlock;
8706 sd->nohz_idle = 0;
8707
0e369d75 8708 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8709unlock:
69e1e811
SS
8710 rcu_read_unlock();
8711}
8712
8713void set_cpu_sd_state_idle(void)
8714{
8715 struct sched_domain *sd;
37dc6b50 8716 int cpu = smp_processor_id();
69e1e811 8717
69e1e811 8718 rcu_read_lock();
0e369d75 8719 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8720
8721 if (!sd || sd->nohz_idle)
8722 goto unlock;
8723 sd->nohz_idle = 1;
8724
0e369d75 8725 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8726unlock:
69e1e811
SS
8727 rcu_read_unlock();
8728}
8729
1e3c88bd 8730/*
c1cc017c 8731 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8732 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8733 */
c1cc017c 8734void nohz_balance_enter_idle(int cpu)
1e3c88bd 8735{
71325960
SS
8736 /*
8737 * If this cpu is going down, then nothing needs to be done.
8738 */
8739 if (!cpu_active(cpu))
8740 return;
8741
387bc8b5
FW
8742 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
8743 if (!is_housekeeping_cpu(cpu))
8744 return;
8745
c1cc017c
AS
8746 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8747 return;
1e3c88bd 8748
d987fc7f
MG
8749 /*
8750 * If we're a completely isolated CPU, we don't play.
8751 */
8752 if (on_null_domain(cpu_rq(cpu)))
8753 return;
8754
c1cc017c
AS
8755 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8756 atomic_inc(&nohz.nr_cpus);
8757 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8758}
8759#endif
8760
8761static DEFINE_SPINLOCK(balancing);
8762
49c022e6
PZ
8763/*
8764 * Scale the max load_balance interval with the number of CPUs in the system.
8765 * This trades load-balance latency on larger machines for less cross talk.
8766 */
029632fb 8767void update_max_interval(void)
49c022e6
PZ
8768{
8769 max_load_balance_interval = HZ*num_online_cpus()/10;
8770}
8771
1e3c88bd
PZ
8772/*
8773 * It checks each scheduling domain to see if it is due to be balanced,
8774 * and initiates a balancing operation if so.
8775 *
b9b0853a 8776 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8777 */
f7ed0a89 8778static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8779{
23f0d209 8780 int continue_balancing = 1;
f7ed0a89 8781 int cpu = rq->cpu;
1e3c88bd 8782 unsigned long interval;
04f733b4 8783 struct sched_domain *sd;
1e3c88bd
PZ
8784 /* Earliest time when we have to do rebalance again */
8785 unsigned long next_balance = jiffies + 60*HZ;
8786 int update_next_balance = 0;
f48627e6
JL
8787 int need_serialize, need_decay = 0;
8788 u64 max_cost = 0;
1e3c88bd 8789
48a16753 8790 update_blocked_averages(cpu);
2069dd75 8791
dce840a0 8792 rcu_read_lock();
1e3c88bd 8793 for_each_domain(cpu, sd) {
f48627e6
JL
8794 /*
8795 * Decay the newidle max times here because this is a regular
8796 * visit to all the domains. Decay ~1% per second.
8797 */
8798 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8799 sd->max_newidle_lb_cost =
8800 (sd->max_newidle_lb_cost * 253) / 256;
8801 sd->next_decay_max_lb_cost = jiffies + HZ;
8802 need_decay = 1;
8803 }
8804 max_cost += sd->max_newidle_lb_cost;
8805
1e3c88bd
PZ
8806 if (!(sd->flags & SD_LOAD_BALANCE))
8807 continue;
8808
f48627e6
JL
8809 /*
8810 * Stop the load balance at this level. There is another
8811 * CPU in our sched group which is doing load balancing more
8812 * actively.
8813 */
8814 if (!continue_balancing) {
8815 if (need_decay)
8816 continue;
8817 break;
8818 }
8819
52a08ef1 8820 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8821
8822 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8823 if (need_serialize) {
8824 if (!spin_trylock(&balancing))
8825 goto out;
8826 }
8827
8828 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8829 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8830 /*
6263322c 8831 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8832 * env->dst_cpu, so we can't know our idle
8833 * state even if we migrated tasks. Update it.
1e3c88bd 8834 */
de5eb2dd 8835 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8836 }
8837 sd->last_balance = jiffies;
52a08ef1 8838 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8839 }
8840 if (need_serialize)
8841 spin_unlock(&balancing);
8842out:
8843 if (time_after(next_balance, sd->last_balance + interval)) {
8844 next_balance = sd->last_balance + interval;
8845 update_next_balance = 1;
8846 }
f48627e6
JL
8847 }
8848 if (need_decay) {
1e3c88bd 8849 /*
f48627e6
JL
8850 * Ensure the rq-wide value also decays but keep it at a
8851 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8852 */
f48627e6
JL
8853 rq->max_idle_balance_cost =
8854 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8855 }
dce840a0 8856 rcu_read_unlock();
1e3c88bd
PZ
8857
8858 /*
8859 * next_balance will be updated only when there is a need.
8860 * When the cpu is attached to null domain for ex, it will not be
8861 * updated.
8862 */
c5afb6a8 8863 if (likely(update_next_balance)) {
1e3c88bd 8864 rq->next_balance = next_balance;
c5afb6a8
VG
8865
8866#ifdef CONFIG_NO_HZ_COMMON
8867 /*
8868 * If this CPU has been elected to perform the nohz idle
8869 * balance. Other idle CPUs have already rebalanced with
8870 * nohz_idle_balance() and nohz.next_balance has been
8871 * updated accordingly. This CPU is now running the idle load
8872 * balance for itself and we need to update the
8873 * nohz.next_balance accordingly.
8874 */
8875 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8876 nohz.next_balance = rq->next_balance;
8877#endif
8878 }
1e3c88bd
PZ
8879}
8880
3451d024 8881#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8882/*
3451d024 8883 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8884 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8885 */
208cb16b 8886static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8887{
208cb16b 8888 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8889 struct rq *rq;
8890 int balance_cpu;
c5afb6a8
VG
8891 /* Earliest time when we have to do rebalance again */
8892 unsigned long next_balance = jiffies + 60*HZ;
8893 int update_next_balance = 0;
83cd4fe2 8894
1c792db7
SS
8895 if (idle != CPU_IDLE ||
8896 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8897 goto end;
83cd4fe2
VP
8898
8899 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8900 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8901 continue;
8902
8903 /*
8904 * If this cpu gets work to do, stop the load balancing
8905 * work being done for other cpus. Next load
8906 * balancing owner will pick it up.
8907 */
1c792db7 8908 if (need_resched())
83cd4fe2 8909 break;
83cd4fe2 8910
5ed4f1d9
VG
8911 rq = cpu_rq(balance_cpu);
8912
ed61bbc6
TC
8913 /*
8914 * If time for next balance is due,
8915 * do the balance.
8916 */
8917 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8918 struct rq_flags rf;
8919
8920 rq_lock_irq(rq, &rf);
ed61bbc6 8921 update_rq_clock(rq);
cee1afce 8922 cpu_load_update_idle(rq);
8a8c69c3
PZ
8923 rq_unlock_irq(rq, &rf);
8924
ed61bbc6
TC
8925 rebalance_domains(rq, CPU_IDLE);
8926 }
83cd4fe2 8927
c5afb6a8
VG
8928 if (time_after(next_balance, rq->next_balance)) {
8929 next_balance = rq->next_balance;
8930 update_next_balance = 1;
8931 }
83cd4fe2 8932 }
c5afb6a8
VG
8933
8934 /*
8935 * next_balance will be updated only when there is a need.
8936 * When the CPU is attached to null domain for ex, it will not be
8937 * updated.
8938 */
8939 if (likely(update_next_balance))
8940 nohz.next_balance = next_balance;
1c792db7
SS
8941end:
8942 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8943}
8944
8945/*
0b005cf5 8946 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8947 * of an idle cpu in the system.
0b005cf5 8948 * - This rq has more than one task.
1aaf90a4
VG
8949 * - This rq has at least one CFS task and the capacity of the CPU is
8950 * significantly reduced because of RT tasks or IRQs.
8951 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8952 * multiple busy cpu.
0b005cf5
SS
8953 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8954 * domain span are idle.
83cd4fe2 8955 */
1aaf90a4 8956static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8957{
8958 unsigned long now = jiffies;
0e369d75 8959 struct sched_domain_shared *sds;
0b005cf5 8960 struct sched_domain *sd;
afe06efd 8961 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8962 bool kick = false;
83cd4fe2 8963
4a725627 8964 if (unlikely(rq->idle_balance))
1aaf90a4 8965 return false;
83cd4fe2 8966
1c792db7
SS
8967 /*
8968 * We may be recently in ticked or tickless idle mode. At the first
8969 * busy tick after returning from idle, we will update the busy stats.
8970 */
69e1e811 8971 set_cpu_sd_state_busy();
c1cc017c 8972 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8973
8974 /*
8975 * None are in tickless mode and hence no need for NOHZ idle load
8976 * balancing.
8977 */
8978 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8979 return false;
1c792db7
SS
8980
8981 if (time_before(now, nohz.next_balance))
1aaf90a4 8982 return false;
83cd4fe2 8983
0b005cf5 8984 if (rq->nr_running >= 2)
1aaf90a4 8985 return true;
83cd4fe2 8986
067491b7 8987 rcu_read_lock();
0e369d75
PZ
8988 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8989 if (sds) {
8990 /*
8991 * XXX: write a coherent comment on why we do this.
8992 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8993 */
8994 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8995 if (nr_busy > 1) {
8996 kick = true;
8997 goto unlock;
8998 }
8999
83cd4fe2 9000 }
37dc6b50 9001
1aaf90a4
VG
9002 sd = rcu_dereference(rq->sd);
9003 if (sd) {
9004 if ((rq->cfs.h_nr_running >= 1) &&
9005 check_cpu_capacity(rq, sd)) {
9006 kick = true;
9007 goto unlock;
9008 }
9009 }
37dc6b50 9010
1aaf90a4 9011 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
9012 if (sd) {
9013 for_each_cpu(i, sched_domain_span(sd)) {
9014 if (i == cpu ||
9015 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9016 continue;
067491b7 9017
afe06efd
TC
9018 if (sched_asym_prefer(i, cpu)) {
9019 kick = true;
9020 goto unlock;
9021 }
9022 }
9023 }
1aaf90a4 9024unlock:
067491b7 9025 rcu_read_unlock();
1aaf90a4 9026 return kick;
83cd4fe2
VP
9027}
9028#else
208cb16b 9029static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
9030#endif
9031
9032/*
9033 * run_rebalance_domains is triggered when needed from the scheduler tick.
9034 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9035 */
0766f788 9036static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9037{
208cb16b 9038 struct rq *this_rq = this_rq();
6eb57e0d 9039 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9040 CPU_IDLE : CPU_NOT_IDLE;
9041
1e3c88bd 9042 /*
83cd4fe2 9043 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 9044 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
9045 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9046 * give the idle cpus a chance to load balance. Else we may
9047 * load balance only within the local sched_domain hierarchy
9048 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9049 */
208cb16b 9050 nohz_idle_balance(this_rq, idle);
d4573c3e 9051 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9052}
9053
1e3c88bd
PZ
9054/*
9055 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9056 */
7caff66f 9057void trigger_load_balance(struct rq *rq)
1e3c88bd 9058{
1e3c88bd 9059 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9060 if (unlikely(on_null_domain(rq)))
9061 return;
9062
9063 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9064 raise_softirq(SCHED_SOFTIRQ);
3451d024 9065#ifdef CONFIG_NO_HZ_COMMON
c726099e 9066 if (nohz_kick_needed(rq))
0aeeeeba 9067 nohz_balancer_kick();
83cd4fe2 9068#endif
1e3c88bd
PZ
9069}
9070
0bcdcf28
CE
9071static void rq_online_fair(struct rq *rq)
9072{
9073 update_sysctl();
0e59bdae
KT
9074
9075 update_runtime_enabled(rq);
0bcdcf28
CE
9076}
9077
9078static void rq_offline_fair(struct rq *rq)
9079{
9080 update_sysctl();
a4c96ae3
PB
9081
9082 /* Ensure any throttled groups are reachable by pick_next_task */
9083 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9084}
9085
55e12e5e 9086#endif /* CONFIG_SMP */
e1d1484f 9087
bf0f6f24
IM
9088/*
9089 * scheduler tick hitting a task of our scheduling class:
9090 */
8f4d37ec 9091static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9092{
9093 struct cfs_rq *cfs_rq;
9094 struct sched_entity *se = &curr->se;
9095
9096 for_each_sched_entity(se) {
9097 cfs_rq = cfs_rq_of(se);
8f4d37ec 9098 entity_tick(cfs_rq, se, queued);
bf0f6f24 9099 }
18bf2805 9100
b52da86e 9101 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9102 task_tick_numa(rq, curr);
bf0f6f24
IM
9103}
9104
9105/*
cd29fe6f
PZ
9106 * called on fork with the child task as argument from the parent's context
9107 * - child not yet on the tasklist
9108 * - preemption disabled
bf0f6f24 9109 */
cd29fe6f 9110static void task_fork_fair(struct task_struct *p)
bf0f6f24 9111{
4fc420c9
DN
9112 struct cfs_rq *cfs_rq;
9113 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9114 struct rq *rq = this_rq();
8a8c69c3 9115 struct rq_flags rf;
bf0f6f24 9116
8a8c69c3 9117 rq_lock(rq, &rf);
861d034e
PZ
9118 update_rq_clock(rq);
9119
4fc420c9
DN
9120 cfs_rq = task_cfs_rq(current);
9121 curr = cfs_rq->curr;
e210bffd
PZ
9122 if (curr) {
9123 update_curr(cfs_rq);
b5d9d734 9124 se->vruntime = curr->vruntime;
e210bffd 9125 }
aeb73b04 9126 place_entity(cfs_rq, se, 1);
4d78e7b6 9127
cd29fe6f 9128 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9129 /*
edcb60a3
IM
9130 * Upon rescheduling, sched_class::put_prev_task() will place
9131 * 'current' within the tree based on its new key value.
9132 */
4d78e7b6 9133 swap(curr->vruntime, se->vruntime);
8875125e 9134 resched_curr(rq);
4d78e7b6 9135 }
bf0f6f24 9136
88ec22d3 9137 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9138 rq_unlock(rq, &rf);
bf0f6f24
IM
9139}
9140
cb469845
SR
9141/*
9142 * Priority of the task has changed. Check to see if we preempt
9143 * the current task.
9144 */
da7a735e
PZ
9145static void
9146prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9147{
da0c1e65 9148 if (!task_on_rq_queued(p))
da7a735e
PZ
9149 return;
9150
cb469845
SR
9151 /*
9152 * Reschedule if we are currently running on this runqueue and
9153 * our priority decreased, or if we are not currently running on
9154 * this runqueue and our priority is higher than the current's
9155 */
da7a735e 9156 if (rq->curr == p) {
cb469845 9157 if (p->prio > oldprio)
8875125e 9158 resched_curr(rq);
cb469845 9159 } else
15afe09b 9160 check_preempt_curr(rq, p, 0);
cb469845
SR
9161}
9162
daa59407 9163static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9164{
9165 struct sched_entity *se = &p->se;
da7a735e
PZ
9166
9167 /*
daa59407
BP
9168 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9169 * the dequeue_entity(.flags=0) will already have normalized the
9170 * vruntime.
9171 */
9172 if (p->on_rq)
9173 return true;
9174
9175 /*
9176 * When !on_rq, vruntime of the task has usually NOT been normalized.
9177 * But there are some cases where it has already been normalized:
da7a735e 9178 *
daa59407
BP
9179 * - A forked child which is waiting for being woken up by
9180 * wake_up_new_task().
9181 * - A task which has been woken up by try_to_wake_up() and
9182 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9183 */
daa59407
BP
9184 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9185 return true;
9186
9187 return false;
9188}
9189
09a43ace
VG
9190#ifdef CONFIG_FAIR_GROUP_SCHED
9191/*
9192 * Propagate the changes of the sched_entity across the tg tree to make it
9193 * visible to the root
9194 */
9195static void propagate_entity_cfs_rq(struct sched_entity *se)
9196{
9197 struct cfs_rq *cfs_rq;
9198
9199 /* Start to propagate at parent */
9200 se = se->parent;
9201
9202 for_each_sched_entity(se) {
9203 cfs_rq = cfs_rq_of(se);
9204
9205 if (cfs_rq_throttled(cfs_rq))
9206 break;
9207
9208 update_load_avg(se, UPDATE_TG);
9209 }
9210}
9211#else
9212static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9213#endif
9214
df217913 9215static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9216{
daa59407
BP
9217 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9218
9d89c257 9219 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9220 update_load_avg(se, 0);
a05e8c51 9221 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9222 update_tg_load_avg(cfs_rq, false);
09a43ace 9223 propagate_entity_cfs_rq(se);
da7a735e
PZ
9224}
9225
df217913 9226static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9227{
daa59407 9228 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9229
9230#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9231 /*
9232 * Since the real-depth could have been changed (only FAIR
9233 * class maintain depth value), reset depth properly.
9234 */
9235 se->depth = se->parent ? se->parent->depth + 1 : 0;
9236#endif
7855a35a 9237
df217913 9238 /* Synchronize entity with its cfs_rq */
d31b1a66 9239 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9240 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9241 update_tg_load_avg(cfs_rq, false);
09a43ace 9242 propagate_entity_cfs_rq(se);
df217913
VG
9243}
9244
9245static void detach_task_cfs_rq(struct task_struct *p)
9246{
9247 struct sched_entity *se = &p->se;
9248 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9249
9250 if (!vruntime_normalized(p)) {
9251 /*
9252 * Fix up our vruntime so that the current sleep doesn't
9253 * cause 'unlimited' sleep bonus.
9254 */
9255 place_entity(cfs_rq, se, 0);
9256 se->vruntime -= cfs_rq->min_vruntime;
9257 }
9258
9259 detach_entity_cfs_rq(se);
9260}
9261
9262static void attach_task_cfs_rq(struct task_struct *p)
9263{
9264 struct sched_entity *se = &p->se;
9265 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9266
9267 attach_entity_cfs_rq(se);
daa59407
BP
9268
9269 if (!vruntime_normalized(p))
9270 se->vruntime += cfs_rq->min_vruntime;
9271}
6efdb105 9272
daa59407
BP
9273static void switched_from_fair(struct rq *rq, struct task_struct *p)
9274{
9275 detach_task_cfs_rq(p);
9276}
9277
9278static void switched_to_fair(struct rq *rq, struct task_struct *p)
9279{
9280 attach_task_cfs_rq(p);
7855a35a 9281
daa59407 9282 if (task_on_rq_queued(p)) {
7855a35a 9283 /*
daa59407
BP
9284 * We were most likely switched from sched_rt, so
9285 * kick off the schedule if running, otherwise just see
9286 * if we can still preempt the current task.
7855a35a 9287 */
daa59407
BP
9288 if (rq->curr == p)
9289 resched_curr(rq);
9290 else
9291 check_preempt_curr(rq, p, 0);
7855a35a 9292 }
cb469845
SR
9293}
9294
83b699ed
SV
9295/* Account for a task changing its policy or group.
9296 *
9297 * This routine is mostly called to set cfs_rq->curr field when a task
9298 * migrates between groups/classes.
9299 */
9300static void set_curr_task_fair(struct rq *rq)
9301{
9302 struct sched_entity *se = &rq->curr->se;
9303
ec12cb7f
PT
9304 for_each_sched_entity(se) {
9305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9306
9307 set_next_entity(cfs_rq, se);
9308 /* ensure bandwidth has been allocated on our new cfs_rq */
9309 account_cfs_rq_runtime(cfs_rq, 0);
9310 }
83b699ed
SV
9311}
9312
029632fb
PZ
9313void init_cfs_rq(struct cfs_rq *cfs_rq)
9314{
9315 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9316 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9317#ifndef CONFIG_64BIT
9318 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9319#endif
141965c7 9320#ifdef CONFIG_SMP
09a43ace
VG
9321#ifdef CONFIG_FAIR_GROUP_SCHED
9322 cfs_rq->propagate_avg = 0;
9323#endif
9d89c257
YD
9324 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9325 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9326#endif
029632fb
PZ
9327}
9328
810b3817 9329#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9330static void task_set_group_fair(struct task_struct *p)
9331{
9332 struct sched_entity *se = &p->se;
9333
9334 set_task_rq(p, task_cpu(p));
9335 se->depth = se->parent ? se->parent->depth + 1 : 0;
9336}
9337
bc54da21 9338static void task_move_group_fair(struct task_struct *p)
810b3817 9339{
daa59407 9340 detach_task_cfs_rq(p);
b2b5ce02 9341 set_task_rq(p, task_cpu(p));
6efdb105
BP
9342
9343#ifdef CONFIG_SMP
9344 /* Tell se's cfs_rq has been changed -- migrated */
9345 p->se.avg.last_update_time = 0;
9346#endif
daa59407 9347 attach_task_cfs_rq(p);
810b3817 9348}
029632fb 9349
ea86cb4b
VG
9350static void task_change_group_fair(struct task_struct *p, int type)
9351{
9352 switch (type) {
9353 case TASK_SET_GROUP:
9354 task_set_group_fair(p);
9355 break;
9356
9357 case TASK_MOVE_GROUP:
9358 task_move_group_fair(p);
9359 break;
9360 }
9361}
9362
029632fb
PZ
9363void free_fair_sched_group(struct task_group *tg)
9364{
9365 int i;
9366
9367 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9368
9369 for_each_possible_cpu(i) {
9370 if (tg->cfs_rq)
9371 kfree(tg->cfs_rq[i]);
6fe1f348 9372 if (tg->se)
029632fb
PZ
9373 kfree(tg->se[i]);
9374 }
9375
9376 kfree(tg->cfs_rq);
9377 kfree(tg->se);
9378}
9379
9380int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9381{
029632fb 9382 struct sched_entity *se;
b7fa30c9 9383 struct cfs_rq *cfs_rq;
029632fb
PZ
9384 int i;
9385
9386 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9387 if (!tg->cfs_rq)
9388 goto err;
9389 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9390 if (!tg->se)
9391 goto err;
9392
9393 tg->shares = NICE_0_LOAD;
9394
9395 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9396
9397 for_each_possible_cpu(i) {
9398 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9399 GFP_KERNEL, cpu_to_node(i));
9400 if (!cfs_rq)
9401 goto err;
9402
9403 se = kzalloc_node(sizeof(struct sched_entity),
9404 GFP_KERNEL, cpu_to_node(i));
9405 if (!se)
9406 goto err_free_rq;
9407
9408 init_cfs_rq(cfs_rq);
9409 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9410 init_entity_runnable_average(se);
029632fb
PZ
9411 }
9412
9413 return 1;
9414
9415err_free_rq:
9416 kfree(cfs_rq);
9417err:
9418 return 0;
9419}
9420
8663e24d
PZ
9421void online_fair_sched_group(struct task_group *tg)
9422{
9423 struct sched_entity *se;
9424 struct rq *rq;
9425 int i;
9426
9427 for_each_possible_cpu(i) {
9428 rq = cpu_rq(i);
9429 se = tg->se[i];
9430
9431 raw_spin_lock_irq(&rq->lock);
4126bad6 9432 update_rq_clock(rq);
d0326691 9433 attach_entity_cfs_rq(se);
55e16d30 9434 sync_throttle(tg, i);
8663e24d
PZ
9435 raw_spin_unlock_irq(&rq->lock);
9436 }
9437}
9438
6fe1f348 9439void unregister_fair_sched_group(struct task_group *tg)
029632fb 9440{
029632fb 9441 unsigned long flags;
6fe1f348
PZ
9442 struct rq *rq;
9443 int cpu;
029632fb 9444
6fe1f348
PZ
9445 for_each_possible_cpu(cpu) {
9446 if (tg->se[cpu])
9447 remove_entity_load_avg(tg->se[cpu]);
029632fb 9448
6fe1f348
PZ
9449 /*
9450 * Only empty task groups can be destroyed; so we can speculatively
9451 * check on_list without danger of it being re-added.
9452 */
9453 if (!tg->cfs_rq[cpu]->on_list)
9454 continue;
9455
9456 rq = cpu_rq(cpu);
9457
9458 raw_spin_lock_irqsave(&rq->lock, flags);
9459 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9460 raw_spin_unlock_irqrestore(&rq->lock, flags);
9461 }
029632fb
PZ
9462}
9463
9464void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9465 struct sched_entity *se, int cpu,
9466 struct sched_entity *parent)
9467{
9468 struct rq *rq = cpu_rq(cpu);
9469
9470 cfs_rq->tg = tg;
9471 cfs_rq->rq = rq;
029632fb
PZ
9472 init_cfs_rq_runtime(cfs_rq);
9473
9474 tg->cfs_rq[cpu] = cfs_rq;
9475 tg->se[cpu] = se;
9476
9477 /* se could be NULL for root_task_group */
9478 if (!se)
9479 return;
9480
fed14d45 9481 if (!parent) {
029632fb 9482 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9483 se->depth = 0;
9484 } else {
029632fb 9485 se->cfs_rq = parent->my_q;
fed14d45
PZ
9486 se->depth = parent->depth + 1;
9487 }
029632fb
PZ
9488
9489 se->my_q = cfs_rq;
0ac9b1c2
PT
9490 /* guarantee group entities always have weight */
9491 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9492 se->parent = parent;
9493}
9494
9495static DEFINE_MUTEX(shares_mutex);
9496
9497int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9498{
9499 int i;
029632fb
PZ
9500
9501 /*
9502 * We can't change the weight of the root cgroup.
9503 */
9504 if (!tg->se[0])
9505 return -EINVAL;
9506
9507 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9508
9509 mutex_lock(&shares_mutex);
9510 if (tg->shares == shares)
9511 goto done;
9512
9513 tg->shares = shares;
9514 for_each_possible_cpu(i) {
9515 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9516 struct sched_entity *se = tg->se[i];
9517 struct rq_flags rf;
029632fb 9518
029632fb 9519 /* Propagate contribution to hierarchy */
8a8c69c3 9520 rq_lock_irqsave(rq, &rf);
71b1da46 9521 update_rq_clock(rq);
89ee048f
VG
9522 for_each_sched_entity(se) {
9523 update_load_avg(se, UPDATE_TG);
9524 update_cfs_shares(se);
9525 }
8a8c69c3 9526 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9527 }
9528
9529done:
9530 mutex_unlock(&shares_mutex);
9531 return 0;
9532}
9533#else /* CONFIG_FAIR_GROUP_SCHED */
9534
9535void free_fair_sched_group(struct task_group *tg) { }
9536
9537int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9538{
9539 return 1;
9540}
9541
8663e24d
PZ
9542void online_fair_sched_group(struct task_group *tg) { }
9543
6fe1f348 9544void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9545
9546#endif /* CONFIG_FAIR_GROUP_SCHED */
9547
810b3817 9548
6d686f45 9549static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9550{
9551 struct sched_entity *se = &task->se;
0d721cea
PW
9552 unsigned int rr_interval = 0;
9553
9554 /*
9555 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9556 * idle runqueue:
9557 */
0d721cea 9558 if (rq->cfs.load.weight)
a59f4e07 9559 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9560
9561 return rr_interval;
9562}
9563
bf0f6f24
IM
9564/*
9565 * All the scheduling class methods:
9566 */
029632fb 9567const struct sched_class fair_sched_class = {
5522d5d5 9568 .next = &idle_sched_class,
bf0f6f24
IM
9569 .enqueue_task = enqueue_task_fair,
9570 .dequeue_task = dequeue_task_fair,
9571 .yield_task = yield_task_fair,
d95f4122 9572 .yield_to_task = yield_to_task_fair,
bf0f6f24 9573
2e09bf55 9574 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9575
9576 .pick_next_task = pick_next_task_fair,
9577 .put_prev_task = put_prev_task_fair,
9578
681f3e68 9579#ifdef CONFIG_SMP
4ce72a2c 9580 .select_task_rq = select_task_rq_fair,
0a74bef8 9581 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9582
0bcdcf28
CE
9583 .rq_online = rq_online_fair,
9584 .rq_offline = rq_offline_fair,
88ec22d3 9585
12695578 9586 .task_dead = task_dead_fair,
c5b28038 9587 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9588#endif
bf0f6f24 9589
83b699ed 9590 .set_curr_task = set_curr_task_fair,
bf0f6f24 9591 .task_tick = task_tick_fair,
cd29fe6f 9592 .task_fork = task_fork_fair,
cb469845
SR
9593
9594 .prio_changed = prio_changed_fair,
da7a735e 9595 .switched_from = switched_from_fair,
cb469845 9596 .switched_to = switched_to_fair,
810b3817 9597
0d721cea
PW
9598 .get_rr_interval = get_rr_interval_fair,
9599
6e998916
SG
9600 .update_curr = update_curr_fair,
9601
810b3817 9602#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9603 .task_change_group = task_change_group_fair,
810b3817 9604#endif
bf0f6f24
IM
9605};
9606
9607#ifdef CONFIG_SCHED_DEBUG
029632fb 9608void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9609{
a9e7f654 9610 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 9611
5973e5b9 9612 rcu_read_lock();
a9e7f654 9613 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 9614 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9615 rcu_read_unlock();
bf0f6f24 9616}
397f2378
SD
9617
9618#ifdef CONFIG_NUMA_BALANCING
9619void show_numa_stats(struct task_struct *p, struct seq_file *m)
9620{
9621 int node;
9622 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9623
9624 for_each_online_node(node) {
9625 if (p->numa_faults) {
9626 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9627 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9628 }
9629 if (p->numa_group) {
9630 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9631 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9632 }
9633 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9634 }
9635}
9636#endif /* CONFIG_NUMA_BALANCING */
9637#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9638
9639__init void init_sched_fair_class(void)
9640{
9641#ifdef CONFIG_SMP
9642 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9643
3451d024 9644#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9645 nohz.next_balance = jiffies;
029632fb 9646 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9647#endif
9648#endif /* SMP */
9649
9650}