]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
mm: numa: preserve PTE write permissions across a NUMA hinting fault
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
a75cdaa9
AS
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683}
684#else
685void init_task_runnable_average(struct task_struct *p)
686{
687}
688#endif
689
bf0f6f24 690/*
9dbdb155 691 * Update the current task's runtime statistics.
bf0f6f24 692 */
b7cc0896 693static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 694{
429d43bc 695 struct sched_entity *curr = cfs_rq->curr;
78becc27 696 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 697 u64 delta_exec;
bf0f6f24
IM
698
699 if (unlikely(!curr))
700 return;
701
9dbdb155
PZ
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
34f28ecd 704 return;
bf0f6f24 705
8ebc91d9 706 curr->exec_start = now;
d842de87 707
9dbdb155
PZ
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
d842de87
SV
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
f977bb49 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 721 cpuacct_charge(curtask, delta_exec);
f06febc9 722 account_group_exec_runtime(curtask, delta_exec);
d842de87 723 }
ec12cb7f
PT
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
726}
727
6e998916
SG
728static void update_curr_fair(struct rq *rq)
729{
730 update_curr(cfs_rq_of(&rq->curr->se));
731}
732
bf0f6f24 733static inline void
5870db5b 734update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
78becc27 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
737}
738
bf0f6f24
IM
739/*
740 * Task is being enqueued - update stats:
741 */
d2417e5a 742static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
bf0f6f24
IM
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
429d43bc 748 if (se != cfs_rq->curr)
5870db5b 749 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
750}
751
bf0f6f24 752static void
9ef0a961 753update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
41acab88 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760#ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764 }
765#endif
41acab88 766 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
767}
768
769static inline void
19b6a2e3 770update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 771{
bf0f6f24
IM
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
429d43bc 776 if (se != cfs_rq->curr)
9ef0a961 777 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
778}
779
780/*
781 * We are picking a new current task - update its stats:
782 */
783static inline void
79303e9e 784update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
785{
786 /*
787 * We are starting a new run period:
788 */
78becc27 789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
790}
791
bf0f6f24
IM
792/**************************************************
793 * Scheduling class queueing methods:
794 */
795
cbee9f88
PZ
796#ifdef CONFIG_NUMA_BALANCING
797/*
598f0ec0
MG
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
cbee9f88 801 */
598f0ec0
MG
802unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
804
805/* Portion of address space to scan in MB */
806unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 807
4b96a29b
PZ
808/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
598f0ec0
MG
811static unsigned int task_nr_scan_windows(struct task_struct *p)
812{
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828}
829
830/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831#define MAX_SCAN_WINDOW 2560
832
833static unsigned int task_scan_min(struct task_struct *p)
834{
64192658 835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
836 unsigned int scan, floor;
837 unsigned int windows = 1;
838
64192658
KT
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
841 floor = 1000 / windows;
842
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
845}
846
847static unsigned int task_scan_max(struct task_struct *p)
848{
849 unsigned int smin = task_scan_min(p);
850 unsigned int smax;
851
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
855}
856
0ec8aa00
PZ
857static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858{
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861}
862
863static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864{
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867}
868
8c8a743c
PZ
869struct numa_group {
870 atomic_t refcount;
871
872 spinlock_t lock; /* nr_tasks, tasks */
873 int nr_tasks;
e29cf08b 874 pid_t gid;
8c8a743c
PZ
875
876 struct rcu_head rcu;
20e07dea 877 nodemask_t active_nodes;
989348b5 878 unsigned long total_faults;
7e2703e6
RR
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
50ec8a40 884 unsigned long *faults_cpu;
989348b5 885 unsigned long faults[0];
8c8a743c
PZ
886};
887
be1e4e76
RR
888/* Shared or private faults. */
889#define NR_NUMA_HINT_FAULT_TYPES 2
890
891/* Memory and CPU locality */
892#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894/* Averaged statistics, and temporary buffers. */
895#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
e29cf08b
MG
897pid_t task_numa_group_id(struct task_struct *p)
898{
899 return p->numa_group ? p->numa_group->gid : 0;
900}
901
44dba3d5
IM
902/*
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
907 */
908static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 909{
44dba3d5 910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
44dba3d5 915 if (!p->numa_faults)
ac8e895b
MG
916 return 0;
917
44dba3d5
IM
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
920}
921
83e1d2cd
MG
922static inline unsigned long group_faults(struct task_struct *p, int nid)
923{
924 if (!p->numa_group)
925 return 0;
926
44dba3d5
IM
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
929}
930
20e07dea
RR
931static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932{
44dba3d5
IM
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
935}
936
6c6b1193
RR
937/* Handle placement on systems where not all nodes are directly connected. */
938static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
940{
941 unsigned long score = 0;
942 int node;
943
944 /*
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
947 */
948 if (sched_numa_topology_type == NUMA_DIRECT)
949 return 0;
950
951 /*
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
954 */
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
958
959 /*
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
962 */
963 if (dist == sched_max_numa_distance || node == nid)
964 continue;
965
966 /*
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
972 */
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 dist > maxdist)
975 continue;
976
977 /* Add up the faults from nearby nodes. */
978 if (task)
979 faults = task_faults(p, node);
980 else
981 faults = group_faults(p, node);
982
983 /*
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
990 */
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 }
995
996 score += faults;
997 }
998
999 return score;
1000}
1001
83e1d2cd
MG
1002/*
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1007 */
7bd95320
RR
1008static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 int dist)
83e1d2cd 1010{
7bd95320 1011 unsigned long faults, total_faults;
83e1d2cd 1012
44dba3d5 1013 if (!p->numa_faults)
83e1d2cd
MG
1014 return 0;
1015
1016 total_faults = p->total_numa_faults;
1017
1018 if (!total_faults)
1019 return 0;
1020
7bd95320 1021 faults = task_faults(p, nid);
6c6b1193
RR
1022 faults += score_nearby_nodes(p, nid, dist, true);
1023
7bd95320 1024 return 1000 * faults / total_faults;
83e1d2cd
MG
1025}
1026
7bd95320
RR
1027static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 int dist)
83e1d2cd 1029{
7bd95320
RR
1030 unsigned long faults, total_faults;
1031
1032 if (!p->numa_group)
1033 return 0;
1034
1035 total_faults = p->numa_group->total_faults;
1036
1037 if (!total_faults)
83e1d2cd
MG
1038 return 0;
1039
7bd95320 1040 faults = group_faults(p, nid);
6c6b1193
RR
1041 faults += score_nearby_nodes(p, nid, dist, false);
1042
7bd95320 1043 return 1000 * faults / total_faults;
83e1d2cd
MG
1044}
1045
10f39042
RR
1046bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1048{
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1052
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054
1055 /*
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1059 *
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1063 *
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1068 *
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1071 */
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1075 return false;
1076
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1079 return true;
1080
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1082 if (!ng)
1083 return true;
1084
1085 /*
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1088 */
1089 if (!node_isset(dst_nid, ng->active_nodes))
1090 return false;
1091
1092 /*
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1095 */
1096 if (!node_isset(src_nid, ng->active_nodes))
1097 return true;
1098
1099 /*
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 */
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107}
1108
e6628d5b 1109static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1110static unsigned long source_load(int cpu, int type);
1111static unsigned long target_load(int cpu, int type);
ced549fa 1112static unsigned long capacity_of(int cpu);
58d081b5
MG
1113static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114
fb13c7ee 1115/* Cached statistics for all CPUs within a node */
58d081b5 1116struct numa_stats {
fb13c7ee 1117 unsigned long nr_running;
58d081b5 1118 unsigned long load;
fb13c7ee
MG
1119
1120 /* Total compute capacity of CPUs on a node */
5ef20ca1 1121 unsigned long compute_capacity;
fb13c7ee
MG
1122
1123 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1124 unsigned long task_capacity;
1b6a7495 1125 int has_free_capacity;
58d081b5 1126};
e6628d5b 1127
fb13c7ee
MG
1128/*
1129 * XXX borrowed from update_sg_lb_stats
1130 */
1131static void update_numa_stats(struct numa_stats *ns, int nid)
1132{
83d7f242
RR
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
fb13c7ee
MG
1135
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
ced549fa 1142 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1143
1144 cpus++;
fb13c7ee
MG
1145 }
1146
5eca82a9
PZ
1147 /*
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1151 *
1b6a7495
NP
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
5eca82a9
PZ
1154 */
1155 if (!cpus)
1156 return;
1157
83d7f242
RR
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1161
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1165}
1166
58d081b5
MG
1167struct task_numa_env {
1168 struct task_struct *p;
e6628d5b 1169
58d081b5
MG
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
e6628d5b 1172
58d081b5 1173 struct numa_stats src_stats, dst_stats;
e6628d5b 1174
40ea2b42 1175 int imbalance_pct;
7bd95320 1176 int dist;
fb13c7ee
MG
1177
1178 struct task_struct *best_task;
1179 long best_imp;
58d081b5
MG
1180 int best_cpu;
1181};
1182
fb13c7ee
MG
1183static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1185{
1186 if (env->best_task)
1187 put_task_struct(env->best_task);
1188 if (p)
1189 get_task_struct(p);
1190
1191 env->best_task = p;
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1194}
1195
28a21745 1196static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1197 struct task_numa_env *env)
1198{
1199 long imb, old_imb;
28a21745
RR
1200 long orig_src_load, orig_dst_load;
1201 long src_capacity, dst_capacity;
1202
1203 /*
1204 * The load is corrected for the CPU capacity available on each node.
1205 *
1206 * src_load dst_load
1207 * ------------ vs ---------
1208 * src_capacity dst_capacity
1209 */
1210 src_capacity = env->src_stats.compute_capacity;
1211 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1212
1213 /* We care about the slope of the imbalance, not the direction. */
1214 if (dst_load < src_load)
1215 swap(dst_load, src_load);
1216
1217 /* Is the difference below the threshold? */
28a21745
RR
1218 imb = dst_load * src_capacity * 100 -
1219 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1220 if (imb <= 0)
1221 return false;
1222
1223 /*
1224 * The imbalance is above the allowed threshold.
1225 * Compare it with the old imbalance.
1226 */
28a21745
RR
1227 orig_src_load = env->src_stats.load;
1228 orig_dst_load = env->dst_stats.load;
1229
e63da036
RR
1230 if (orig_dst_load < orig_src_load)
1231 swap(orig_dst_load, orig_src_load);
1232
28a21745
RR
1233 old_imb = orig_dst_load * src_capacity * 100 -
1234 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1235
1236 /* Would this change make things worse? */
1662867a 1237 return (imb > old_imb);
e63da036
RR
1238}
1239
fb13c7ee
MG
1240/*
1241 * This checks if the overall compute and NUMA accesses of the system would
1242 * be improved if the source tasks was migrated to the target dst_cpu taking
1243 * into account that it might be best if task running on the dst_cpu should
1244 * be exchanged with the source task
1245 */
887c290e
RR
1246static void task_numa_compare(struct task_numa_env *env,
1247 long taskimp, long groupimp)
fb13c7ee
MG
1248{
1249 struct rq *src_rq = cpu_rq(env->src_cpu);
1250 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1251 struct task_struct *cur;
28a21745 1252 long src_load, dst_load;
fb13c7ee 1253 long load;
1c5d3eb3 1254 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1255 long moveimp = imp;
7bd95320 1256 int dist = env->dist;
fb13c7ee
MG
1257
1258 rcu_read_lock();
1effd9f1
KT
1259
1260 raw_spin_lock_irq(&dst_rq->lock);
1261 cur = dst_rq->curr;
1262 /*
1263 * No need to move the exiting task, and this ensures that ->curr
1264 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1265 * is safe under RCU read lock.
1266 * Note that rcu_read_lock() itself can't protect from the final
1267 * put_task_struct() after the last schedule().
1268 */
1269 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1270 cur = NULL;
1effd9f1 1271 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1272
7af68335
PZ
1273 /*
1274 * Because we have preemption enabled we can get migrated around and
1275 * end try selecting ourselves (current == env->p) as a swap candidate.
1276 */
1277 if (cur == env->p)
1278 goto unlock;
1279
fb13c7ee
MG
1280 /*
1281 * "imp" is the fault differential for the source task between the
1282 * source and destination node. Calculate the total differential for
1283 * the source task and potential destination task. The more negative
1284 * the value is, the more rmeote accesses that would be expected to
1285 * be incurred if the tasks were swapped.
1286 */
1287 if (cur) {
1288 /* Skip this swap candidate if cannot move to the source cpu */
1289 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1290 goto unlock;
1291
887c290e
RR
1292 /*
1293 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1294 * in any group then look only at task weights.
887c290e 1295 */
ca28aa53 1296 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1297 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1298 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1299 /*
1300 * Add some hysteresis to prevent swapping the
1301 * tasks within a group over tiny differences.
1302 */
1303 if (cur->numa_group)
1304 imp -= imp/16;
887c290e 1305 } else {
ca28aa53
RR
1306 /*
1307 * Compare the group weights. If a task is all by
1308 * itself (not part of a group), use the task weight
1309 * instead.
1310 */
ca28aa53 1311 if (cur->numa_group)
7bd95320
RR
1312 imp += group_weight(cur, env->src_nid, dist) -
1313 group_weight(cur, env->dst_nid, dist);
ca28aa53 1314 else
7bd95320
RR
1315 imp += task_weight(cur, env->src_nid, dist) -
1316 task_weight(cur, env->dst_nid, dist);
887c290e 1317 }
fb13c7ee
MG
1318 }
1319
0132c3e1 1320 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1321 goto unlock;
1322
1323 if (!cur) {
1324 /* Is there capacity at our destination? */
b932c03c 1325 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1326 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1327 goto unlock;
1328
1329 goto balance;
1330 }
1331
1332 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1333 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1334 dst_rq->nr_running == 1)
fb13c7ee
MG
1335 goto assign;
1336
1337 /*
1338 * In the overloaded case, try and keep the load balanced.
1339 */
1340balance:
e720fff6
PZ
1341 load = task_h_load(env->p);
1342 dst_load = env->dst_stats.load + load;
1343 src_load = env->src_stats.load - load;
fb13c7ee 1344
0132c3e1
RR
1345 if (moveimp > imp && moveimp > env->best_imp) {
1346 /*
1347 * If the improvement from just moving env->p direction is
1348 * better than swapping tasks around, check if a move is
1349 * possible. Store a slightly smaller score than moveimp,
1350 * so an actually idle CPU will win.
1351 */
1352 if (!load_too_imbalanced(src_load, dst_load, env)) {
1353 imp = moveimp - 1;
1354 cur = NULL;
1355 goto assign;
1356 }
1357 }
1358
1359 if (imp <= env->best_imp)
1360 goto unlock;
1361
fb13c7ee 1362 if (cur) {
e720fff6
PZ
1363 load = task_h_load(cur);
1364 dst_load -= load;
1365 src_load += load;
fb13c7ee
MG
1366 }
1367
28a21745 1368 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1369 goto unlock;
1370
ba7e5a27
RR
1371 /*
1372 * One idle CPU per node is evaluated for a task numa move.
1373 * Call select_idle_sibling to maybe find a better one.
1374 */
1375 if (!cur)
1376 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1377
fb13c7ee
MG
1378assign:
1379 task_numa_assign(env, cur, imp);
1380unlock:
1381 rcu_read_unlock();
1382}
1383
887c290e
RR
1384static void task_numa_find_cpu(struct task_numa_env *env,
1385 long taskimp, long groupimp)
2c8a50aa
MG
1386{
1387 int cpu;
1388
1389 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1390 /* Skip this CPU if the source task cannot migrate */
1391 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1392 continue;
1393
1394 env->dst_cpu = cpu;
887c290e 1395 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1396 }
1397}
1398
58d081b5
MG
1399static int task_numa_migrate(struct task_struct *p)
1400{
58d081b5
MG
1401 struct task_numa_env env = {
1402 .p = p,
fb13c7ee 1403
58d081b5 1404 .src_cpu = task_cpu(p),
b32e86b4 1405 .src_nid = task_node(p),
fb13c7ee
MG
1406
1407 .imbalance_pct = 112,
1408
1409 .best_task = NULL,
1410 .best_imp = 0,
1411 .best_cpu = -1
58d081b5
MG
1412 };
1413 struct sched_domain *sd;
887c290e 1414 unsigned long taskweight, groupweight;
7bd95320 1415 int nid, ret, dist;
887c290e 1416 long taskimp, groupimp;
e6628d5b 1417
58d081b5 1418 /*
fb13c7ee
MG
1419 * Pick the lowest SD_NUMA domain, as that would have the smallest
1420 * imbalance and would be the first to start moving tasks about.
1421 *
1422 * And we want to avoid any moving of tasks about, as that would create
1423 * random movement of tasks -- counter the numa conditions we're trying
1424 * to satisfy here.
58d081b5
MG
1425 */
1426 rcu_read_lock();
fb13c7ee 1427 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1428 if (sd)
1429 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1430 rcu_read_unlock();
1431
46a73e8a
RR
1432 /*
1433 * Cpusets can break the scheduler domain tree into smaller
1434 * balance domains, some of which do not cross NUMA boundaries.
1435 * Tasks that are "trapped" in such domains cannot be migrated
1436 * elsewhere, so there is no point in (re)trying.
1437 */
1438 if (unlikely(!sd)) {
de1b301a 1439 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1440 return -EINVAL;
1441 }
1442
2c8a50aa 1443 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1444 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1445 taskweight = task_weight(p, env.src_nid, dist);
1446 groupweight = group_weight(p, env.src_nid, dist);
1447 update_numa_stats(&env.src_stats, env.src_nid);
1448 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1449 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1450 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1451
a43455a1
RR
1452 /* Try to find a spot on the preferred nid. */
1453 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1454
9de05d48
RR
1455 /*
1456 * Look at other nodes in these cases:
1457 * - there is no space available on the preferred_nid
1458 * - the task is part of a numa_group that is interleaved across
1459 * multiple NUMA nodes; in order to better consolidate the group,
1460 * we need to check other locations.
1461 */
1462 if (env.best_cpu == -1 || (p->numa_group &&
1463 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1464 for_each_online_node(nid) {
1465 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1466 continue;
58d081b5 1467
7bd95320 1468 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1469 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1470 dist != env.dist) {
1471 taskweight = task_weight(p, env.src_nid, dist);
1472 groupweight = group_weight(p, env.src_nid, dist);
1473 }
7bd95320 1474
83e1d2cd 1475 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1476 taskimp = task_weight(p, nid, dist) - taskweight;
1477 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1478 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1479 continue;
1480
7bd95320 1481 env.dist = dist;
2c8a50aa
MG
1482 env.dst_nid = nid;
1483 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1484 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1485 }
1486 }
1487
68d1b02a
RR
1488 /*
1489 * If the task is part of a workload that spans multiple NUMA nodes,
1490 * and is migrating into one of the workload's active nodes, remember
1491 * this node as the task's preferred numa node, so the workload can
1492 * settle down.
1493 * A task that migrated to a second choice node will be better off
1494 * trying for a better one later. Do not set the preferred node here.
1495 */
db015dae
RR
1496 if (p->numa_group) {
1497 if (env.best_cpu == -1)
1498 nid = env.src_nid;
1499 else
1500 nid = env.dst_nid;
1501
1502 if (node_isset(nid, p->numa_group->active_nodes))
1503 sched_setnuma(p, env.dst_nid);
1504 }
1505
1506 /* No better CPU than the current one was found. */
1507 if (env.best_cpu == -1)
1508 return -EAGAIN;
0ec8aa00 1509
04bb2f94
RR
1510 /*
1511 * Reset the scan period if the task is being rescheduled on an
1512 * alternative node to recheck if the tasks is now properly placed.
1513 */
1514 p->numa_scan_period = task_scan_min(p);
1515
fb13c7ee 1516 if (env.best_task == NULL) {
286549dc
MG
1517 ret = migrate_task_to(p, env.best_cpu);
1518 if (ret != 0)
1519 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1520 return ret;
1521 }
1522
1523 ret = migrate_swap(p, env.best_task);
286549dc
MG
1524 if (ret != 0)
1525 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1526 put_task_struct(env.best_task);
1527 return ret;
e6628d5b
MG
1528}
1529
6b9a7460
MG
1530/* Attempt to migrate a task to a CPU on the preferred node. */
1531static void numa_migrate_preferred(struct task_struct *p)
1532{
5085e2a3
RR
1533 unsigned long interval = HZ;
1534
2739d3ee 1535 /* This task has no NUMA fault statistics yet */
44dba3d5 1536 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1537 return;
1538
2739d3ee 1539 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1540 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1541 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1542
1543 /* Success if task is already running on preferred CPU */
de1b301a 1544 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1545 return;
1546
1547 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1548 task_numa_migrate(p);
6b9a7460
MG
1549}
1550
20e07dea
RR
1551/*
1552 * Find the nodes on which the workload is actively running. We do this by
1553 * tracking the nodes from which NUMA hinting faults are triggered. This can
1554 * be different from the set of nodes where the workload's memory is currently
1555 * located.
1556 *
1557 * The bitmask is used to make smarter decisions on when to do NUMA page
1558 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1559 * are added when they cause over 6/16 of the maximum number of faults, but
1560 * only removed when they drop below 3/16.
1561 */
1562static void update_numa_active_node_mask(struct numa_group *numa_group)
1563{
1564 unsigned long faults, max_faults = 0;
1565 int nid;
1566
1567 for_each_online_node(nid) {
1568 faults = group_faults_cpu(numa_group, nid);
1569 if (faults > max_faults)
1570 max_faults = faults;
1571 }
1572
1573 for_each_online_node(nid) {
1574 faults = group_faults_cpu(numa_group, nid);
1575 if (!node_isset(nid, numa_group->active_nodes)) {
1576 if (faults > max_faults * 6 / 16)
1577 node_set(nid, numa_group->active_nodes);
1578 } else if (faults < max_faults * 3 / 16)
1579 node_clear(nid, numa_group->active_nodes);
1580 }
1581}
1582
04bb2f94
RR
1583/*
1584 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1585 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1586 * period will be for the next scan window. If local/(local+remote) ratio is
1587 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1588 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1589 */
1590#define NUMA_PERIOD_SLOTS 10
a22b4b01 1591#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1592
1593/*
1594 * Increase the scan period (slow down scanning) if the majority of
1595 * our memory is already on our local node, or if the majority of
1596 * the page accesses are shared with other processes.
1597 * Otherwise, decrease the scan period.
1598 */
1599static void update_task_scan_period(struct task_struct *p,
1600 unsigned long shared, unsigned long private)
1601{
1602 unsigned int period_slot;
1603 int ratio;
1604 int diff;
1605
1606 unsigned long remote = p->numa_faults_locality[0];
1607 unsigned long local = p->numa_faults_locality[1];
1608
1609 /*
1610 * If there were no record hinting faults then either the task is
1611 * completely idle or all activity is areas that are not of interest
1612 * to automatic numa balancing. Scan slower
1613 */
1614 if (local + shared == 0) {
1615 p->numa_scan_period = min(p->numa_scan_period_max,
1616 p->numa_scan_period << 1);
1617
1618 p->mm->numa_next_scan = jiffies +
1619 msecs_to_jiffies(p->numa_scan_period);
1620
1621 return;
1622 }
1623
1624 /*
1625 * Prepare to scale scan period relative to the current period.
1626 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1627 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1628 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1629 */
1630 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1631 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1632 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1633 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1634 if (!slot)
1635 slot = 1;
1636 diff = slot * period_slot;
1637 } else {
1638 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1639
1640 /*
1641 * Scale scan rate increases based on sharing. There is an
1642 * inverse relationship between the degree of sharing and
1643 * the adjustment made to the scanning period. Broadly
1644 * speaking the intent is that there is little point
1645 * scanning faster if shared accesses dominate as it may
1646 * simply bounce migrations uselessly
1647 */
2847c90e 1648 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1649 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1650 }
1651
1652 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1653 task_scan_min(p), task_scan_max(p));
1654 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1655}
1656
7e2703e6
RR
1657/*
1658 * Get the fraction of time the task has been running since the last
1659 * NUMA placement cycle. The scheduler keeps similar statistics, but
1660 * decays those on a 32ms period, which is orders of magnitude off
1661 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1662 * stats only if the task is so new there are no NUMA statistics yet.
1663 */
1664static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1665{
1666 u64 runtime, delta, now;
1667 /* Use the start of this time slice to avoid calculations. */
1668 now = p->se.exec_start;
1669 runtime = p->se.sum_exec_runtime;
1670
1671 if (p->last_task_numa_placement) {
1672 delta = runtime - p->last_sum_exec_runtime;
1673 *period = now - p->last_task_numa_placement;
1674 } else {
1675 delta = p->se.avg.runnable_avg_sum;
1676 *period = p->se.avg.runnable_avg_period;
1677 }
1678
1679 p->last_sum_exec_runtime = runtime;
1680 p->last_task_numa_placement = now;
1681
1682 return delta;
1683}
1684
54009416
RR
1685/*
1686 * Determine the preferred nid for a task in a numa_group. This needs to
1687 * be done in a way that produces consistent results with group_weight,
1688 * otherwise workloads might not converge.
1689 */
1690static int preferred_group_nid(struct task_struct *p, int nid)
1691{
1692 nodemask_t nodes;
1693 int dist;
1694
1695 /* Direct connections between all NUMA nodes. */
1696 if (sched_numa_topology_type == NUMA_DIRECT)
1697 return nid;
1698
1699 /*
1700 * On a system with glueless mesh NUMA topology, group_weight
1701 * scores nodes according to the number of NUMA hinting faults on
1702 * both the node itself, and on nearby nodes.
1703 */
1704 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1705 unsigned long score, max_score = 0;
1706 int node, max_node = nid;
1707
1708 dist = sched_max_numa_distance;
1709
1710 for_each_online_node(node) {
1711 score = group_weight(p, node, dist);
1712 if (score > max_score) {
1713 max_score = score;
1714 max_node = node;
1715 }
1716 }
1717 return max_node;
1718 }
1719
1720 /*
1721 * Finding the preferred nid in a system with NUMA backplane
1722 * interconnect topology is more involved. The goal is to locate
1723 * tasks from numa_groups near each other in the system, and
1724 * untangle workloads from different sides of the system. This requires
1725 * searching down the hierarchy of node groups, recursively searching
1726 * inside the highest scoring group of nodes. The nodemask tricks
1727 * keep the complexity of the search down.
1728 */
1729 nodes = node_online_map;
1730 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1731 unsigned long max_faults = 0;
81907478 1732 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1733 int a, b;
1734
1735 /* Are there nodes at this distance from each other? */
1736 if (!find_numa_distance(dist))
1737 continue;
1738
1739 for_each_node_mask(a, nodes) {
1740 unsigned long faults = 0;
1741 nodemask_t this_group;
1742 nodes_clear(this_group);
1743
1744 /* Sum group's NUMA faults; includes a==b case. */
1745 for_each_node_mask(b, nodes) {
1746 if (node_distance(a, b) < dist) {
1747 faults += group_faults(p, b);
1748 node_set(b, this_group);
1749 node_clear(b, nodes);
1750 }
1751 }
1752
1753 /* Remember the top group. */
1754 if (faults > max_faults) {
1755 max_faults = faults;
1756 max_group = this_group;
1757 /*
1758 * subtle: at the smallest distance there is
1759 * just one node left in each "group", the
1760 * winner is the preferred nid.
1761 */
1762 nid = a;
1763 }
1764 }
1765 /* Next round, evaluate the nodes within max_group. */
1766 nodes = max_group;
1767 }
1768 return nid;
1769}
1770
cbee9f88
PZ
1771static void task_numa_placement(struct task_struct *p)
1772{
83e1d2cd
MG
1773 int seq, nid, max_nid = -1, max_group_nid = -1;
1774 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1775 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1776 unsigned long total_faults;
1777 u64 runtime, period;
7dbd13ed 1778 spinlock_t *group_lock = NULL;
cbee9f88 1779
2832bc19 1780 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1781 if (p->numa_scan_seq == seq)
1782 return;
1783 p->numa_scan_seq = seq;
598f0ec0 1784 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1785
7e2703e6
RR
1786 total_faults = p->numa_faults_locality[0] +
1787 p->numa_faults_locality[1];
1788 runtime = numa_get_avg_runtime(p, &period);
1789
7dbd13ed
MG
1790 /* If the task is part of a group prevent parallel updates to group stats */
1791 if (p->numa_group) {
1792 group_lock = &p->numa_group->lock;
60e69eed 1793 spin_lock_irq(group_lock);
7dbd13ed
MG
1794 }
1795
688b7585
MG
1796 /* Find the node with the highest number of faults */
1797 for_each_online_node(nid) {
44dba3d5
IM
1798 /* Keep track of the offsets in numa_faults array */
1799 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1800 unsigned long faults = 0, group_faults = 0;
44dba3d5 1801 int priv;
745d6147 1802
be1e4e76 1803 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1804 long diff, f_diff, f_weight;
8c8a743c 1805
44dba3d5
IM
1806 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1807 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1808 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1809 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1810
ac8e895b 1811 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1812 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1813 fault_types[priv] += p->numa_faults[membuf_idx];
1814 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1815
7e2703e6
RR
1816 /*
1817 * Normalize the faults_from, so all tasks in a group
1818 * count according to CPU use, instead of by the raw
1819 * number of faults. Tasks with little runtime have
1820 * little over-all impact on throughput, and thus their
1821 * faults are less important.
1822 */
1823 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1824 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1825 (total_faults + 1);
44dba3d5
IM
1826 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1827 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1828
44dba3d5
IM
1829 p->numa_faults[mem_idx] += diff;
1830 p->numa_faults[cpu_idx] += f_diff;
1831 faults += p->numa_faults[mem_idx];
83e1d2cd 1832 p->total_numa_faults += diff;
8c8a743c 1833 if (p->numa_group) {
44dba3d5
IM
1834 /*
1835 * safe because we can only change our own group
1836 *
1837 * mem_idx represents the offset for a given
1838 * nid and priv in a specific region because it
1839 * is at the beginning of the numa_faults array.
1840 */
1841 p->numa_group->faults[mem_idx] += diff;
1842 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1843 p->numa_group->total_faults += diff;
44dba3d5 1844 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1845 }
ac8e895b
MG
1846 }
1847
688b7585
MG
1848 if (faults > max_faults) {
1849 max_faults = faults;
1850 max_nid = nid;
1851 }
83e1d2cd
MG
1852
1853 if (group_faults > max_group_faults) {
1854 max_group_faults = group_faults;
1855 max_group_nid = nid;
1856 }
1857 }
1858
04bb2f94
RR
1859 update_task_scan_period(p, fault_types[0], fault_types[1]);
1860
7dbd13ed 1861 if (p->numa_group) {
20e07dea 1862 update_numa_active_node_mask(p->numa_group);
60e69eed 1863 spin_unlock_irq(group_lock);
54009416 1864 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1865 }
1866
bb97fc31
RR
1867 if (max_faults) {
1868 /* Set the new preferred node */
1869 if (max_nid != p->numa_preferred_nid)
1870 sched_setnuma(p, max_nid);
1871
1872 if (task_node(p) != p->numa_preferred_nid)
1873 numa_migrate_preferred(p);
3a7053b3 1874 }
cbee9f88
PZ
1875}
1876
8c8a743c
PZ
1877static inline int get_numa_group(struct numa_group *grp)
1878{
1879 return atomic_inc_not_zero(&grp->refcount);
1880}
1881
1882static inline void put_numa_group(struct numa_group *grp)
1883{
1884 if (atomic_dec_and_test(&grp->refcount))
1885 kfree_rcu(grp, rcu);
1886}
1887
3e6a9418
MG
1888static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1889 int *priv)
8c8a743c
PZ
1890{
1891 struct numa_group *grp, *my_grp;
1892 struct task_struct *tsk;
1893 bool join = false;
1894 int cpu = cpupid_to_cpu(cpupid);
1895 int i;
1896
1897 if (unlikely(!p->numa_group)) {
1898 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1899 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1900
1901 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1902 if (!grp)
1903 return;
1904
1905 atomic_set(&grp->refcount, 1);
1906 spin_lock_init(&grp->lock);
e29cf08b 1907 grp->gid = p->pid;
50ec8a40 1908 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1909 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1910 nr_node_ids;
8c8a743c 1911
20e07dea
RR
1912 node_set(task_node(current), grp->active_nodes);
1913
be1e4e76 1914 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1915 grp->faults[i] = p->numa_faults[i];
8c8a743c 1916
989348b5 1917 grp->total_faults = p->total_numa_faults;
83e1d2cd 1918
8c8a743c
PZ
1919 grp->nr_tasks++;
1920 rcu_assign_pointer(p->numa_group, grp);
1921 }
1922
1923 rcu_read_lock();
1924 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1925
1926 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1927 goto no_join;
8c8a743c
PZ
1928
1929 grp = rcu_dereference(tsk->numa_group);
1930 if (!grp)
3354781a 1931 goto no_join;
8c8a743c
PZ
1932
1933 my_grp = p->numa_group;
1934 if (grp == my_grp)
3354781a 1935 goto no_join;
8c8a743c
PZ
1936
1937 /*
1938 * Only join the other group if its bigger; if we're the bigger group,
1939 * the other task will join us.
1940 */
1941 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1942 goto no_join;
8c8a743c
PZ
1943
1944 /*
1945 * Tie-break on the grp address.
1946 */
1947 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1948 goto no_join;
8c8a743c 1949
dabe1d99
RR
1950 /* Always join threads in the same process. */
1951 if (tsk->mm == current->mm)
1952 join = true;
1953
1954 /* Simple filter to avoid false positives due to PID collisions */
1955 if (flags & TNF_SHARED)
1956 join = true;
8c8a743c 1957
3e6a9418
MG
1958 /* Update priv based on whether false sharing was detected */
1959 *priv = !join;
1960
dabe1d99 1961 if (join && !get_numa_group(grp))
3354781a 1962 goto no_join;
8c8a743c 1963
8c8a743c
PZ
1964 rcu_read_unlock();
1965
1966 if (!join)
1967 return;
1968
60e69eed
MG
1969 BUG_ON(irqs_disabled());
1970 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1971
be1e4e76 1972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1973 my_grp->faults[i] -= p->numa_faults[i];
1974 grp->faults[i] += p->numa_faults[i];
8c8a743c 1975 }
989348b5
MG
1976 my_grp->total_faults -= p->total_numa_faults;
1977 grp->total_faults += p->total_numa_faults;
8c8a743c 1978
8c8a743c
PZ
1979 my_grp->nr_tasks--;
1980 grp->nr_tasks++;
1981
1982 spin_unlock(&my_grp->lock);
60e69eed 1983 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1984
1985 rcu_assign_pointer(p->numa_group, grp);
1986
1987 put_numa_group(my_grp);
3354781a
PZ
1988 return;
1989
1990no_join:
1991 rcu_read_unlock();
1992 return;
8c8a743c
PZ
1993}
1994
1995void task_numa_free(struct task_struct *p)
1996{
1997 struct numa_group *grp = p->numa_group;
44dba3d5 1998 void *numa_faults = p->numa_faults;
e9dd685c
SR
1999 unsigned long flags;
2000 int i;
8c8a743c
PZ
2001
2002 if (grp) {
e9dd685c 2003 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2004 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2005 grp->faults[i] -= p->numa_faults[i];
989348b5 2006 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2007
8c8a743c 2008 grp->nr_tasks--;
e9dd685c 2009 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2010 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2011 put_numa_group(grp);
2012 }
2013
44dba3d5 2014 p->numa_faults = NULL;
82727018 2015 kfree(numa_faults);
8c8a743c
PZ
2016}
2017
cbee9f88
PZ
2018/*
2019 * Got a PROT_NONE fault for a page on @node.
2020 */
58b46da3 2021void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2022{
2023 struct task_struct *p = current;
6688cc05 2024 bool migrated = flags & TNF_MIGRATED;
58b46da3 2025 int cpu_node = task_node(current);
792568ec 2026 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2027 int priv;
cbee9f88 2028
10e84b97 2029 if (!numabalancing_enabled)
1a687c2e
MG
2030 return;
2031
9ff1d9ff
MG
2032 /* for example, ksmd faulting in a user's mm */
2033 if (!p->mm)
2034 return;
2035
f809ca9a 2036 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2037 if (unlikely(!p->numa_faults)) {
2038 int size = sizeof(*p->numa_faults) *
be1e4e76 2039 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2040
44dba3d5
IM
2041 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2042 if (!p->numa_faults)
f809ca9a 2043 return;
745d6147 2044
83e1d2cd 2045 p->total_numa_faults = 0;
04bb2f94 2046 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2047 }
cbee9f88 2048
8c8a743c
PZ
2049 /*
2050 * First accesses are treated as private, otherwise consider accesses
2051 * to be private if the accessing pid has not changed
2052 */
2053 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2054 priv = 1;
2055 } else {
2056 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2057 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2058 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2059 }
2060
792568ec
RR
2061 /*
2062 * If a workload spans multiple NUMA nodes, a shared fault that
2063 * occurs wholly within the set of nodes that the workload is
2064 * actively using should be counted as local. This allows the
2065 * scan rate to slow down when a workload has settled down.
2066 */
2067 if (!priv && !local && p->numa_group &&
2068 node_isset(cpu_node, p->numa_group->active_nodes) &&
2069 node_isset(mem_node, p->numa_group->active_nodes))
2070 local = 1;
2071
cbee9f88 2072 task_numa_placement(p);
f809ca9a 2073
2739d3ee
RR
2074 /*
2075 * Retry task to preferred node migration periodically, in case it
2076 * case it previously failed, or the scheduler moved us.
2077 */
2078 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2079 numa_migrate_preferred(p);
2080
b32e86b4
IM
2081 if (migrated)
2082 p->numa_pages_migrated += pages;
2083
44dba3d5
IM
2084 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2085 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2086 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2087}
2088
6e5fb223
PZ
2089static void reset_ptenuma_scan(struct task_struct *p)
2090{
2091 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2092 p->mm->numa_scan_offset = 0;
2093}
2094
cbee9f88
PZ
2095/*
2096 * The expensive part of numa migration is done from task_work context.
2097 * Triggered from task_tick_numa().
2098 */
2099void task_numa_work(struct callback_head *work)
2100{
2101 unsigned long migrate, next_scan, now = jiffies;
2102 struct task_struct *p = current;
2103 struct mm_struct *mm = p->mm;
6e5fb223 2104 struct vm_area_struct *vma;
9f40604c 2105 unsigned long start, end;
598f0ec0 2106 unsigned long nr_pte_updates = 0;
9f40604c 2107 long pages;
cbee9f88
PZ
2108
2109 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2110
2111 work->next = work; /* protect against double add */
2112 /*
2113 * Who cares about NUMA placement when they're dying.
2114 *
2115 * NOTE: make sure not to dereference p->mm before this check,
2116 * exit_task_work() happens _after_ exit_mm() so we could be called
2117 * without p->mm even though we still had it when we enqueued this
2118 * work.
2119 */
2120 if (p->flags & PF_EXITING)
2121 return;
2122
930aa174 2123 if (!mm->numa_next_scan) {
7e8d16b6
MG
2124 mm->numa_next_scan = now +
2125 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2126 }
2127
cbee9f88
PZ
2128 /*
2129 * Enforce maximal scan/migration frequency..
2130 */
2131 migrate = mm->numa_next_scan;
2132 if (time_before(now, migrate))
2133 return;
2134
598f0ec0
MG
2135 if (p->numa_scan_period == 0) {
2136 p->numa_scan_period_max = task_scan_max(p);
2137 p->numa_scan_period = task_scan_min(p);
2138 }
cbee9f88 2139
fb003b80 2140 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2141 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2142 return;
2143
19a78d11
PZ
2144 /*
2145 * Delay this task enough that another task of this mm will likely win
2146 * the next time around.
2147 */
2148 p->node_stamp += 2 * TICK_NSEC;
2149
9f40604c
MG
2150 start = mm->numa_scan_offset;
2151 pages = sysctl_numa_balancing_scan_size;
2152 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2153 if (!pages)
2154 return;
cbee9f88 2155
6e5fb223 2156 down_read(&mm->mmap_sem);
9f40604c 2157 vma = find_vma(mm, start);
6e5fb223
PZ
2158 if (!vma) {
2159 reset_ptenuma_scan(p);
9f40604c 2160 start = 0;
6e5fb223
PZ
2161 vma = mm->mmap;
2162 }
9f40604c 2163 for (; vma; vma = vma->vm_next) {
6b6482bb 2164 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2165 continue;
2166
4591ce4f
MG
2167 /*
2168 * Shared library pages mapped by multiple processes are not
2169 * migrated as it is expected they are cache replicated. Avoid
2170 * hinting faults in read-only file-backed mappings or the vdso
2171 * as migrating the pages will be of marginal benefit.
2172 */
2173 if (!vma->vm_mm ||
2174 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2175 continue;
2176
3c67f474
MG
2177 /*
2178 * Skip inaccessible VMAs to avoid any confusion between
2179 * PROT_NONE and NUMA hinting ptes
2180 */
2181 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2182 continue;
4591ce4f 2183
9f40604c
MG
2184 do {
2185 start = max(start, vma->vm_start);
2186 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2187 end = min(end, vma->vm_end);
598f0ec0
MG
2188 nr_pte_updates += change_prot_numa(vma, start, end);
2189
2190 /*
2191 * Scan sysctl_numa_balancing_scan_size but ensure that
2192 * at least one PTE is updated so that unused virtual
2193 * address space is quickly skipped.
2194 */
2195 if (nr_pte_updates)
2196 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2197
9f40604c
MG
2198 start = end;
2199 if (pages <= 0)
2200 goto out;
3cf1962c
RR
2201
2202 cond_resched();
9f40604c 2203 } while (end != vma->vm_end);
cbee9f88 2204 }
6e5fb223 2205
9f40604c 2206out:
6e5fb223 2207 /*
c69307d5
PZ
2208 * It is possible to reach the end of the VMA list but the last few
2209 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2210 * would find the !migratable VMA on the next scan but not reset the
2211 * scanner to the start so check it now.
6e5fb223
PZ
2212 */
2213 if (vma)
9f40604c 2214 mm->numa_scan_offset = start;
6e5fb223
PZ
2215 else
2216 reset_ptenuma_scan(p);
2217 up_read(&mm->mmap_sem);
cbee9f88
PZ
2218}
2219
2220/*
2221 * Drive the periodic memory faults..
2222 */
2223void task_tick_numa(struct rq *rq, struct task_struct *curr)
2224{
2225 struct callback_head *work = &curr->numa_work;
2226 u64 period, now;
2227
2228 /*
2229 * We don't care about NUMA placement if we don't have memory.
2230 */
2231 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2232 return;
2233
2234 /*
2235 * Using runtime rather than walltime has the dual advantage that
2236 * we (mostly) drive the selection from busy threads and that the
2237 * task needs to have done some actual work before we bother with
2238 * NUMA placement.
2239 */
2240 now = curr->se.sum_exec_runtime;
2241 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2242
2243 if (now - curr->node_stamp > period) {
4b96a29b 2244 if (!curr->node_stamp)
598f0ec0 2245 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2246 curr->node_stamp += period;
cbee9f88
PZ
2247
2248 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2249 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2250 task_work_add(curr, work, true);
2251 }
2252 }
2253}
2254#else
2255static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2256{
2257}
0ec8aa00
PZ
2258
2259static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2260{
2261}
2262
2263static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2264{
2265}
cbee9f88
PZ
2266#endif /* CONFIG_NUMA_BALANCING */
2267
30cfdcfc
DA
2268static void
2269account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2270{
2271 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2272 if (!parent_entity(se))
029632fb 2273 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2274#ifdef CONFIG_SMP
0ec8aa00
PZ
2275 if (entity_is_task(se)) {
2276 struct rq *rq = rq_of(cfs_rq);
2277
2278 account_numa_enqueue(rq, task_of(se));
2279 list_add(&se->group_node, &rq->cfs_tasks);
2280 }
367456c7 2281#endif
30cfdcfc 2282 cfs_rq->nr_running++;
30cfdcfc
DA
2283}
2284
2285static void
2286account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2287{
2288 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2289 if (!parent_entity(se))
029632fb 2290 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2291 if (entity_is_task(se)) {
2292 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2293 list_del_init(&se->group_node);
0ec8aa00 2294 }
30cfdcfc 2295 cfs_rq->nr_running--;
30cfdcfc
DA
2296}
2297
3ff6dcac
YZ
2298#ifdef CONFIG_FAIR_GROUP_SCHED
2299# ifdef CONFIG_SMP
cf5f0acf
PZ
2300static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2301{
2302 long tg_weight;
2303
2304 /*
2305 * Use this CPU's actual weight instead of the last load_contribution
2306 * to gain a more accurate current total weight. See
2307 * update_cfs_rq_load_contribution().
2308 */
bf5b986e 2309 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2310 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2311 tg_weight += cfs_rq->load.weight;
2312
2313 return tg_weight;
2314}
2315
6d5ab293 2316static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2317{
cf5f0acf 2318 long tg_weight, load, shares;
3ff6dcac 2319
cf5f0acf 2320 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2321 load = cfs_rq->load.weight;
3ff6dcac 2322
3ff6dcac 2323 shares = (tg->shares * load);
cf5f0acf
PZ
2324 if (tg_weight)
2325 shares /= tg_weight;
3ff6dcac
YZ
2326
2327 if (shares < MIN_SHARES)
2328 shares = MIN_SHARES;
2329 if (shares > tg->shares)
2330 shares = tg->shares;
2331
2332 return shares;
2333}
3ff6dcac 2334# else /* CONFIG_SMP */
6d5ab293 2335static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2336{
2337 return tg->shares;
2338}
3ff6dcac 2339# endif /* CONFIG_SMP */
2069dd75
PZ
2340static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2341 unsigned long weight)
2342{
19e5eebb
PT
2343 if (se->on_rq) {
2344 /* commit outstanding execution time */
2345 if (cfs_rq->curr == se)
2346 update_curr(cfs_rq);
2069dd75 2347 account_entity_dequeue(cfs_rq, se);
19e5eebb 2348 }
2069dd75
PZ
2349
2350 update_load_set(&se->load, weight);
2351
2352 if (se->on_rq)
2353 account_entity_enqueue(cfs_rq, se);
2354}
2355
82958366
PT
2356static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2357
6d5ab293 2358static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2359{
2360 struct task_group *tg;
2361 struct sched_entity *se;
3ff6dcac 2362 long shares;
2069dd75 2363
2069dd75
PZ
2364 tg = cfs_rq->tg;
2365 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2366 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2367 return;
3ff6dcac
YZ
2368#ifndef CONFIG_SMP
2369 if (likely(se->load.weight == tg->shares))
2370 return;
2371#endif
6d5ab293 2372 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2373
2374 reweight_entity(cfs_rq_of(se), se, shares);
2375}
2376#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2377static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2378{
2379}
2380#endif /* CONFIG_FAIR_GROUP_SCHED */
2381
141965c7 2382#ifdef CONFIG_SMP
5b51f2f8
PT
2383/*
2384 * We choose a half-life close to 1 scheduling period.
2385 * Note: The tables below are dependent on this value.
2386 */
2387#define LOAD_AVG_PERIOD 32
2388#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2389#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2390
2391/* Precomputed fixed inverse multiplies for multiplication by y^n */
2392static const u32 runnable_avg_yN_inv[] = {
2393 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2394 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2395 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2396 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2397 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2398 0x85aac367, 0x82cd8698,
2399};
2400
2401/*
2402 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2403 * over-estimates when re-combining.
2404 */
2405static const u32 runnable_avg_yN_sum[] = {
2406 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2407 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2408 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2409};
2410
9d85f21c
PT
2411/*
2412 * Approximate:
2413 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2414 */
2415static __always_inline u64 decay_load(u64 val, u64 n)
2416{
5b51f2f8
PT
2417 unsigned int local_n;
2418
2419 if (!n)
2420 return val;
2421 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2422 return 0;
2423
2424 /* after bounds checking we can collapse to 32-bit */
2425 local_n = n;
2426
2427 /*
2428 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2429 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2430 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2431 *
2432 * To achieve constant time decay_load.
2433 */
2434 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2435 val >>= local_n / LOAD_AVG_PERIOD;
2436 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2437 }
2438
5b51f2f8
PT
2439 val *= runnable_avg_yN_inv[local_n];
2440 /* We don't use SRR here since we always want to round down. */
2441 return val >> 32;
2442}
2443
2444/*
2445 * For updates fully spanning n periods, the contribution to runnable
2446 * average will be: \Sum 1024*y^n
2447 *
2448 * We can compute this reasonably efficiently by combining:
2449 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2450 */
2451static u32 __compute_runnable_contrib(u64 n)
2452{
2453 u32 contrib = 0;
2454
2455 if (likely(n <= LOAD_AVG_PERIOD))
2456 return runnable_avg_yN_sum[n];
2457 else if (unlikely(n >= LOAD_AVG_MAX_N))
2458 return LOAD_AVG_MAX;
2459
2460 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2461 do {
2462 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2463 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2464
2465 n -= LOAD_AVG_PERIOD;
2466 } while (n > LOAD_AVG_PERIOD);
2467
2468 contrib = decay_load(contrib, n);
2469 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2470}
2471
2472/*
2473 * We can represent the historical contribution to runnable average as the
2474 * coefficients of a geometric series. To do this we sub-divide our runnable
2475 * history into segments of approximately 1ms (1024us); label the segment that
2476 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2477 *
2478 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2479 * p0 p1 p2
2480 * (now) (~1ms ago) (~2ms ago)
2481 *
2482 * Let u_i denote the fraction of p_i that the entity was runnable.
2483 *
2484 * We then designate the fractions u_i as our co-efficients, yielding the
2485 * following representation of historical load:
2486 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2487 *
2488 * We choose y based on the with of a reasonably scheduling period, fixing:
2489 * y^32 = 0.5
2490 *
2491 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2492 * approximately half as much as the contribution to load within the last ms
2493 * (u_0).
2494 *
2495 * When a period "rolls over" and we have new u_0`, multiplying the previous
2496 * sum again by y is sufficient to update:
2497 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2498 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2499 */
2500static __always_inline int __update_entity_runnable_avg(u64 now,
2501 struct sched_avg *sa,
2502 int runnable)
2503{
5b51f2f8
PT
2504 u64 delta, periods;
2505 u32 runnable_contrib;
9d85f21c
PT
2506 int delta_w, decayed = 0;
2507
2508 delta = now - sa->last_runnable_update;
2509 /*
2510 * This should only happen when time goes backwards, which it
2511 * unfortunately does during sched clock init when we swap over to TSC.
2512 */
2513 if ((s64)delta < 0) {
2514 sa->last_runnable_update = now;
2515 return 0;
2516 }
2517
2518 /*
2519 * Use 1024ns as the unit of measurement since it's a reasonable
2520 * approximation of 1us and fast to compute.
2521 */
2522 delta >>= 10;
2523 if (!delta)
2524 return 0;
2525 sa->last_runnable_update = now;
2526
2527 /* delta_w is the amount already accumulated against our next period */
2528 delta_w = sa->runnable_avg_period % 1024;
2529 if (delta + delta_w >= 1024) {
2530 /* period roll-over */
2531 decayed = 1;
2532
2533 /*
2534 * Now that we know we're crossing a period boundary, figure
2535 * out how much from delta we need to complete the current
2536 * period and accrue it.
2537 */
2538 delta_w = 1024 - delta_w;
5b51f2f8
PT
2539 if (runnable)
2540 sa->runnable_avg_sum += delta_w;
2541 sa->runnable_avg_period += delta_w;
2542
2543 delta -= delta_w;
2544
2545 /* Figure out how many additional periods this update spans */
2546 periods = delta / 1024;
2547 delta %= 1024;
2548
2549 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2550 periods + 1);
2551 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2552 periods + 1);
2553
2554 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2555 runnable_contrib = __compute_runnable_contrib(periods);
2556 if (runnable)
2557 sa->runnable_avg_sum += runnable_contrib;
2558 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2559 }
2560
2561 /* Remainder of delta accrued against u_0` */
2562 if (runnable)
2563 sa->runnable_avg_sum += delta;
2564 sa->runnable_avg_period += delta;
2565
2566 return decayed;
2567}
2568
9ee474f5 2569/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2570static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2571{
2572 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2573 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2574
2575 decays -= se->avg.decay_count;
63847600 2576 se->avg.decay_count = 0;
9ee474f5 2577 if (!decays)
aff3e498 2578 return 0;
9ee474f5
PT
2579
2580 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
aff3e498
PT
2581
2582 return decays;
9ee474f5
PT
2583}
2584
c566e8e9
PT
2585#ifdef CONFIG_FAIR_GROUP_SCHED
2586static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2587 int force_update)
2588{
2589 struct task_group *tg = cfs_rq->tg;
bf5b986e 2590 long tg_contrib;
c566e8e9
PT
2591
2592 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2593 tg_contrib -= cfs_rq->tg_load_contrib;
2594
8236d907
JL
2595 if (!tg_contrib)
2596 return;
2597
bf5b986e
AS
2598 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2599 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2600 cfs_rq->tg_load_contrib += tg_contrib;
2601 }
2602}
8165e145 2603
bb17f655
PT
2604/*
2605 * Aggregate cfs_rq runnable averages into an equivalent task_group
2606 * representation for computing load contributions.
2607 */
2608static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2609 struct cfs_rq *cfs_rq)
2610{
2611 struct task_group *tg = cfs_rq->tg;
2612 long contrib;
2613
2614 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2615 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2616 sa->runnable_avg_period + 1);
2617 contrib -= cfs_rq->tg_runnable_contrib;
2618
2619 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2620 atomic_add(contrib, &tg->runnable_avg);
2621 cfs_rq->tg_runnable_contrib += contrib;
2622 }
2623}
2624
8165e145
PT
2625static inline void __update_group_entity_contrib(struct sched_entity *se)
2626{
2627 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2628 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2629 int runnable_avg;
2630
8165e145
PT
2631 u64 contrib;
2632
2633 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2634 se->avg.load_avg_contrib = div_u64(contrib,
2635 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2636
2637 /*
2638 * For group entities we need to compute a correction term in the case
2639 * that they are consuming <1 cpu so that we would contribute the same
2640 * load as a task of equal weight.
2641 *
2642 * Explicitly co-ordinating this measurement would be expensive, but
2643 * fortunately the sum of each cpus contribution forms a usable
2644 * lower-bound on the true value.
2645 *
2646 * Consider the aggregate of 2 contributions. Either they are disjoint
2647 * (and the sum represents true value) or they are disjoint and we are
2648 * understating by the aggregate of their overlap.
2649 *
2650 * Extending this to N cpus, for a given overlap, the maximum amount we
2651 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2652 * cpus that overlap for this interval and w_i is the interval width.
2653 *
2654 * On a small machine; the first term is well-bounded which bounds the
2655 * total error since w_i is a subset of the period. Whereas on a
2656 * larger machine, while this first term can be larger, if w_i is the
2657 * of consequential size guaranteed to see n_i*w_i quickly converge to
2658 * our upper bound of 1-cpu.
2659 */
2660 runnable_avg = atomic_read(&tg->runnable_avg);
2661 if (runnable_avg < NICE_0_LOAD) {
2662 se->avg.load_avg_contrib *= runnable_avg;
2663 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2664 }
8165e145 2665}
f5f9739d
DE
2666
2667static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2668{
2669 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2670 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2671}
6e83125c 2672#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2673static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2674 int force_update) {}
bb17f655
PT
2675static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2676 struct cfs_rq *cfs_rq) {}
8165e145 2677static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2678static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2679#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2680
8165e145
PT
2681static inline void __update_task_entity_contrib(struct sched_entity *se)
2682{
2683 u32 contrib;
2684
2685 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2686 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2687 contrib /= (se->avg.runnable_avg_period + 1);
2688 se->avg.load_avg_contrib = scale_load(contrib);
2689}
2690
2dac754e
PT
2691/* Compute the current contribution to load_avg by se, return any delta */
2692static long __update_entity_load_avg_contrib(struct sched_entity *se)
2693{
2694 long old_contrib = se->avg.load_avg_contrib;
2695
8165e145
PT
2696 if (entity_is_task(se)) {
2697 __update_task_entity_contrib(se);
2698 } else {
bb17f655 2699 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2700 __update_group_entity_contrib(se);
2701 }
2dac754e
PT
2702
2703 return se->avg.load_avg_contrib - old_contrib;
2704}
2705
9ee474f5
PT
2706static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2707 long load_contrib)
2708{
2709 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2710 cfs_rq->blocked_load_avg -= load_contrib;
2711 else
2712 cfs_rq->blocked_load_avg = 0;
2713}
2714
f1b17280
PT
2715static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2716
9d85f21c 2717/* Update a sched_entity's runnable average */
9ee474f5
PT
2718static inline void update_entity_load_avg(struct sched_entity *se,
2719 int update_cfs_rq)
9d85f21c 2720{
2dac754e
PT
2721 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2722 long contrib_delta;
f1b17280 2723 u64 now;
2dac754e 2724
f1b17280
PT
2725 /*
2726 * For a group entity we need to use their owned cfs_rq_clock_task() in
2727 * case they are the parent of a throttled hierarchy.
2728 */
2729 if (entity_is_task(se))
2730 now = cfs_rq_clock_task(cfs_rq);
2731 else
2732 now = cfs_rq_clock_task(group_cfs_rq(se));
2733
2734 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2735 return;
2736
2737 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2738
2739 if (!update_cfs_rq)
2740 return;
2741
2dac754e
PT
2742 if (se->on_rq)
2743 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2744 else
2745 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2746}
2747
2748/*
2749 * Decay the load contributed by all blocked children and account this so that
2750 * their contribution may appropriately discounted when they wake up.
2751 */
aff3e498 2752static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2753{
f1b17280 2754 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2755 u64 decays;
2756
2757 decays = now - cfs_rq->last_decay;
aff3e498 2758 if (!decays && !force_update)
9ee474f5
PT
2759 return;
2760
2509940f
AS
2761 if (atomic_long_read(&cfs_rq->removed_load)) {
2762 unsigned long removed_load;
2763 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2764 subtract_blocked_load_contrib(cfs_rq, removed_load);
2765 }
9ee474f5 2766
aff3e498
PT
2767 if (decays) {
2768 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2769 decays);
2770 atomic64_add(decays, &cfs_rq->decay_counter);
2771 cfs_rq->last_decay = now;
2772 }
c566e8e9
PT
2773
2774 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2775}
18bf2805 2776
2dac754e
PT
2777/* Add the load generated by se into cfs_rq's child load-average */
2778static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2779 struct sched_entity *se,
2780 int wakeup)
2dac754e 2781{
aff3e498
PT
2782 /*
2783 * We track migrations using entity decay_count <= 0, on a wake-up
2784 * migration we use a negative decay count to track the remote decays
2785 * accumulated while sleeping.
a75cdaa9
AS
2786 *
2787 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2788 * are seen by enqueue_entity_load_avg() as a migration with an already
2789 * constructed load_avg_contrib.
aff3e498
PT
2790 */
2791 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2792 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2793 if (se->avg.decay_count) {
2794 /*
2795 * In a wake-up migration we have to approximate the
2796 * time sleeping. This is because we can't synchronize
2797 * clock_task between the two cpus, and it is not
2798 * guaranteed to be read-safe. Instead, we can
2799 * approximate this using our carried decays, which are
2800 * explicitly atomically readable.
2801 */
2802 se->avg.last_runnable_update -= (-se->avg.decay_count)
2803 << 20;
2804 update_entity_load_avg(se, 0);
2805 /* Indicate that we're now synchronized and on-rq */
2806 se->avg.decay_count = 0;
2807 }
9ee474f5
PT
2808 wakeup = 0;
2809 } else {
9390675a 2810 __synchronize_entity_decay(se);
9ee474f5
PT
2811 }
2812
aff3e498
PT
2813 /* migrated tasks did not contribute to our blocked load */
2814 if (wakeup) {
9ee474f5 2815 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2816 update_entity_load_avg(se, 0);
2817 }
9ee474f5 2818
2dac754e 2819 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2820 /* we force update consideration on load-balancer moves */
2821 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2822}
2823
9ee474f5
PT
2824/*
2825 * Remove se's load from this cfs_rq child load-average, if the entity is
2826 * transitioning to a blocked state we track its projected decay using
2827 * blocked_load_avg.
2828 */
2dac754e 2829static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2830 struct sched_entity *se,
2831 int sleep)
2dac754e 2832{
9ee474f5 2833 update_entity_load_avg(se, 1);
aff3e498
PT
2834 /* we force update consideration on load-balancer moves */
2835 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2836
2dac754e 2837 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2838 if (sleep) {
2839 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2840 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2841 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2842}
642dbc39
VG
2843
2844/*
2845 * Update the rq's load with the elapsed running time before entering
2846 * idle. if the last scheduled task is not a CFS task, idle_enter will
2847 * be the only way to update the runnable statistic.
2848 */
2849void idle_enter_fair(struct rq *this_rq)
2850{
2851 update_rq_runnable_avg(this_rq, 1);
2852}
2853
2854/*
2855 * Update the rq's load with the elapsed idle time before a task is
2856 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2857 * be the only way to update the runnable statistic.
2858 */
2859void idle_exit_fair(struct rq *this_rq)
2860{
2861 update_rq_runnable_avg(this_rq, 0);
2862}
2863
6e83125c
PZ
2864static int idle_balance(struct rq *this_rq);
2865
38033c37
PZ
2866#else /* CONFIG_SMP */
2867
9ee474f5
PT
2868static inline void update_entity_load_avg(struct sched_entity *se,
2869 int update_cfs_rq) {}
18bf2805 2870static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2871static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2872 struct sched_entity *se,
2873 int wakeup) {}
2dac754e 2874static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2875 struct sched_entity *se,
2876 int sleep) {}
aff3e498
PT
2877static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2878 int force_update) {}
6e83125c
PZ
2879
2880static inline int idle_balance(struct rq *rq)
2881{
2882 return 0;
2883}
2884
38033c37 2885#endif /* CONFIG_SMP */
9d85f21c 2886
2396af69 2887static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2888{
bf0f6f24 2889#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2890 struct task_struct *tsk = NULL;
2891
2892 if (entity_is_task(se))
2893 tsk = task_of(se);
2894
41acab88 2895 if (se->statistics.sleep_start) {
78becc27 2896 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2897
2898 if ((s64)delta < 0)
2899 delta = 0;
2900
41acab88
LDM
2901 if (unlikely(delta > se->statistics.sleep_max))
2902 se->statistics.sleep_max = delta;
bf0f6f24 2903
8c79a045 2904 se->statistics.sleep_start = 0;
41acab88 2905 se->statistics.sum_sleep_runtime += delta;
9745512c 2906
768d0c27 2907 if (tsk) {
e414314c 2908 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2909 trace_sched_stat_sleep(tsk, delta);
2910 }
bf0f6f24 2911 }
41acab88 2912 if (se->statistics.block_start) {
78becc27 2913 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2914
2915 if ((s64)delta < 0)
2916 delta = 0;
2917
41acab88
LDM
2918 if (unlikely(delta > se->statistics.block_max))
2919 se->statistics.block_max = delta;
bf0f6f24 2920
8c79a045 2921 se->statistics.block_start = 0;
41acab88 2922 se->statistics.sum_sleep_runtime += delta;
30084fbd 2923
e414314c 2924 if (tsk) {
8f0dfc34 2925 if (tsk->in_iowait) {
41acab88
LDM
2926 se->statistics.iowait_sum += delta;
2927 se->statistics.iowait_count++;
768d0c27 2928 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2929 }
2930
b781a602
AV
2931 trace_sched_stat_blocked(tsk, delta);
2932
e414314c
PZ
2933 /*
2934 * Blocking time is in units of nanosecs, so shift by
2935 * 20 to get a milliseconds-range estimation of the
2936 * amount of time that the task spent sleeping:
2937 */
2938 if (unlikely(prof_on == SLEEP_PROFILING)) {
2939 profile_hits(SLEEP_PROFILING,
2940 (void *)get_wchan(tsk),
2941 delta >> 20);
2942 }
2943 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2944 }
bf0f6f24
IM
2945 }
2946#endif
2947}
2948
ddc97297
PZ
2949static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2950{
2951#ifdef CONFIG_SCHED_DEBUG
2952 s64 d = se->vruntime - cfs_rq->min_vruntime;
2953
2954 if (d < 0)
2955 d = -d;
2956
2957 if (d > 3*sysctl_sched_latency)
2958 schedstat_inc(cfs_rq, nr_spread_over);
2959#endif
2960}
2961
aeb73b04
PZ
2962static void
2963place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2964{
1af5f730 2965 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2966
2cb8600e
PZ
2967 /*
2968 * The 'current' period is already promised to the current tasks,
2969 * however the extra weight of the new task will slow them down a
2970 * little, place the new task so that it fits in the slot that
2971 * stays open at the end.
2972 */
94dfb5e7 2973 if (initial && sched_feat(START_DEBIT))
f9c0b095 2974 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2975
a2e7a7eb 2976 /* sleeps up to a single latency don't count. */
5ca9880c 2977 if (!initial) {
a2e7a7eb 2978 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2979
a2e7a7eb
MG
2980 /*
2981 * Halve their sleep time's effect, to allow
2982 * for a gentler effect of sleepers:
2983 */
2984 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2985 thresh >>= 1;
51e0304c 2986
a2e7a7eb 2987 vruntime -= thresh;
aeb73b04
PZ
2988 }
2989
b5d9d734 2990 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2991 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2992}
2993
d3d9dc33
PT
2994static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2995
bf0f6f24 2996static void
88ec22d3 2997enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2998{
88ec22d3
PZ
2999 /*
3000 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3001 * through calling update_curr().
88ec22d3 3002 */
371fd7e7 3003 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3004 se->vruntime += cfs_rq->min_vruntime;
3005
bf0f6f24 3006 /*
a2a2d680 3007 * Update run-time statistics of the 'current'.
bf0f6f24 3008 */
b7cc0896 3009 update_curr(cfs_rq);
f269ae04 3010 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3011 account_entity_enqueue(cfs_rq, se);
3012 update_cfs_shares(cfs_rq);
bf0f6f24 3013
88ec22d3 3014 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3015 place_entity(cfs_rq, se, 0);
2396af69 3016 enqueue_sleeper(cfs_rq, se);
e9acbff6 3017 }
bf0f6f24 3018
d2417e5a 3019 update_stats_enqueue(cfs_rq, se);
ddc97297 3020 check_spread(cfs_rq, se);
83b699ed
SV
3021 if (se != cfs_rq->curr)
3022 __enqueue_entity(cfs_rq, se);
2069dd75 3023 se->on_rq = 1;
3d4b47b4 3024
d3d9dc33 3025 if (cfs_rq->nr_running == 1) {
3d4b47b4 3026 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3027 check_enqueue_throttle(cfs_rq);
3028 }
bf0f6f24
IM
3029}
3030
2c13c919 3031static void __clear_buddies_last(struct sched_entity *se)
2002c695 3032{
2c13c919
RR
3033 for_each_sched_entity(se) {
3034 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3035 if (cfs_rq->last != se)
2c13c919 3036 break;
f1044799
PZ
3037
3038 cfs_rq->last = NULL;
2c13c919
RR
3039 }
3040}
2002c695 3041
2c13c919
RR
3042static void __clear_buddies_next(struct sched_entity *se)
3043{
3044 for_each_sched_entity(se) {
3045 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3046 if (cfs_rq->next != se)
2c13c919 3047 break;
f1044799
PZ
3048
3049 cfs_rq->next = NULL;
2c13c919 3050 }
2002c695
PZ
3051}
3052
ac53db59
RR
3053static void __clear_buddies_skip(struct sched_entity *se)
3054{
3055 for_each_sched_entity(se) {
3056 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3057 if (cfs_rq->skip != se)
ac53db59 3058 break;
f1044799
PZ
3059
3060 cfs_rq->skip = NULL;
ac53db59
RR
3061 }
3062}
3063
a571bbea
PZ
3064static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3065{
2c13c919
RR
3066 if (cfs_rq->last == se)
3067 __clear_buddies_last(se);
3068
3069 if (cfs_rq->next == se)
3070 __clear_buddies_next(se);
ac53db59
RR
3071
3072 if (cfs_rq->skip == se)
3073 __clear_buddies_skip(se);
a571bbea
PZ
3074}
3075
6c16a6dc 3076static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3077
bf0f6f24 3078static void
371fd7e7 3079dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3080{
a2a2d680
DA
3081 /*
3082 * Update run-time statistics of the 'current'.
3083 */
3084 update_curr(cfs_rq);
17bc14b7 3085 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3086
19b6a2e3 3087 update_stats_dequeue(cfs_rq, se);
371fd7e7 3088 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3089#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3090 if (entity_is_task(se)) {
3091 struct task_struct *tsk = task_of(se);
3092
3093 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3094 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3095 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3096 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3097 }
db36cc7d 3098#endif
67e9fb2a
PZ
3099 }
3100
2002c695 3101 clear_buddies(cfs_rq, se);
4793241b 3102
83b699ed 3103 if (se != cfs_rq->curr)
30cfdcfc 3104 __dequeue_entity(cfs_rq, se);
17bc14b7 3105 se->on_rq = 0;
30cfdcfc 3106 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3107
3108 /*
3109 * Normalize the entity after updating the min_vruntime because the
3110 * update can refer to the ->curr item and we need to reflect this
3111 * movement in our normalized position.
3112 */
371fd7e7 3113 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3114 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3115
d8b4986d
PT
3116 /* return excess runtime on last dequeue */
3117 return_cfs_rq_runtime(cfs_rq);
3118
1e876231 3119 update_min_vruntime(cfs_rq);
17bc14b7 3120 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3121}
3122
3123/*
3124 * Preempt the current task with a newly woken task if needed:
3125 */
7c92e54f 3126static void
2e09bf55 3127check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3128{
11697830 3129 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3130 struct sched_entity *se;
3131 s64 delta;
11697830 3132
6d0f0ebd 3133 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3134 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3135 if (delta_exec > ideal_runtime) {
8875125e 3136 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3137 /*
3138 * The current task ran long enough, ensure it doesn't get
3139 * re-elected due to buddy favours.
3140 */
3141 clear_buddies(cfs_rq, curr);
f685ceac
MG
3142 return;
3143 }
3144
3145 /*
3146 * Ensure that a task that missed wakeup preemption by a
3147 * narrow margin doesn't have to wait for a full slice.
3148 * This also mitigates buddy induced latencies under load.
3149 */
f685ceac
MG
3150 if (delta_exec < sysctl_sched_min_granularity)
3151 return;
3152
f4cfb33e
WX
3153 se = __pick_first_entity(cfs_rq);
3154 delta = curr->vruntime - se->vruntime;
f685ceac 3155
f4cfb33e
WX
3156 if (delta < 0)
3157 return;
d7d82944 3158
f4cfb33e 3159 if (delta > ideal_runtime)
8875125e 3160 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3161}
3162
83b699ed 3163static void
8494f412 3164set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3165{
83b699ed
SV
3166 /* 'current' is not kept within the tree. */
3167 if (se->on_rq) {
3168 /*
3169 * Any task has to be enqueued before it get to execute on
3170 * a CPU. So account for the time it spent waiting on the
3171 * runqueue.
3172 */
3173 update_stats_wait_end(cfs_rq, se);
3174 __dequeue_entity(cfs_rq, se);
3175 }
3176
79303e9e 3177 update_stats_curr_start(cfs_rq, se);
429d43bc 3178 cfs_rq->curr = se;
eba1ed4b
IM
3179#ifdef CONFIG_SCHEDSTATS
3180 /*
3181 * Track our maximum slice length, if the CPU's load is at
3182 * least twice that of our own weight (i.e. dont track it
3183 * when there are only lesser-weight tasks around):
3184 */
495eca49 3185 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3186 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3187 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3188 }
3189#endif
4a55b450 3190 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3191}
3192
3f3a4904
PZ
3193static int
3194wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3195
ac53db59
RR
3196/*
3197 * Pick the next process, keeping these things in mind, in this order:
3198 * 1) keep things fair between processes/task groups
3199 * 2) pick the "next" process, since someone really wants that to run
3200 * 3) pick the "last" process, for cache locality
3201 * 4) do not run the "skip" process, if something else is available
3202 */
678d5718
PZ
3203static struct sched_entity *
3204pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3205{
678d5718
PZ
3206 struct sched_entity *left = __pick_first_entity(cfs_rq);
3207 struct sched_entity *se;
3208
3209 /*
3210 * If curr is set we have to see if its left of the leftmost entity
3211 * still in the tree, provided there was anything in the tree at all.
3212 */
3213 if (!left || (curr && entity_before(curr, left)))
3214 left = curr;
3215
3216 se = left; /* ideally we run the leftmost entity */
f4b6755f 3217
ac53db59
RR
3218 /*
3219 * Avoid running the skip buddy, if running something else can
3220 * be done without getting too unfair.
3221 */
3222 if (cfs_rq->skip == se) {
678d5718
PZ
3223 struct sched_entity *second;
3224
3225 if (se == curr) {
3226 second = __pick_first_entity(cfs_rq);
3227 } else {
3228 second = __pick_next_entity(se);
3229 if (!second || (curr && entity_before(curr, second)))
3230 second = curr;
3231 }
3232
ac53db59
RR
3233 if (second && wakeup_preempt_entity(second, left) < 1)
3234 se = second;
3235 }
aa2ac252 3236
f685ceac
MG
3237 /*
3238 * Prefer last buddy, try to return the CPU to a preempted task.
3239 */
3240 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3241 se = cfs_rq->last;
3242
ac53db59
RR
3243 /*
3244 * Someone really wants this to run. If it's not unfair, run it.
3245 */
3246 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3247 se = cfs_rq->next;
3248
f685ceac 3249 clear_buddies(cfs_rq, se);
4793241b
PZ
3250
3251 return se;
aa2ac252
PZ
3252}
3253
678d5718 3254static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3255
ab6cde26 3256static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3257{
3258 /*
3259 * If still on the runqueue then deactivate_task()
3260 * was not called and update_curr() has to be done:
3261 */
3262 if (prev->on_rq)
b7cc0896 3263 update_curr(cfs_rq);
bf0f6f24 3264
d3d9dc33
PT
3265 /* throttle cfs_rqs exceeding runtime */
3266 check_cfs_rq_runtime(cfs_rq);
3267
ddc97297 3268 check_spread(cfs_rq, prev);
30cfdcfc 3269 if (prev->on_rq) {
5870db5b 3270 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3271 /* Put 'current' back into the tree. */
3272 __enqueue_entity(cfs_rq, prev);
9d85f21c 3273 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3274 update_entity_load_avg(prev, 1);
30cfdcfc 3275 }
429d43bc 3276 cfs_rq->curr = NULL;
bf0f6f24
IM
3277}
3278
8f4d37ec
PZ
3279static void
3280entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3281{
bf0f6f24 3282 /*
30cfdcfc 3283 * Update run-time statistics of the 'current'.
bf0f6f24 3284 */
30cfdcfc 3285 update_curr(cfs_rq);
bf0f6f24 3286
9d85f21c
PT
3287 /*
3288 * Ensure that runnable average is periodically updated.
3289 */
9ee474f5 3290 update_entity_load_avg(curr, 1);
aff3e498 3291 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3292 update_cfs_shares(cfs_rq);
9d85f21c 3293
8f4d37ec
PZ
3294#ifdef CONFIG_SCHED_HRTICK
3295 /*
3296 * queued ticks are scheduled to match the slice, so don't bother
3297 * validating it and just reschedule.
3298 */
983ed7a6 3299 if (queued) {
8875125e 3300 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3301 return;
3302 }
8f4d37ec
PZ
3303 /*
3304 * don't let the period tick interfere with the hrtick preemption
3305 */
3306 if (!sched_feat(DOUBLE_TICK) &&
3307 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3308 return;
3309#endif
3310
2c2efaed 3311 if (cfs_rq->nr_running > 1)
2e09bf55 3312 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3313}
3314
ab84d31e
PT
3315
3316/**************************************************
3317 * CFS bandwidth control machinery
3318 */
3319
3320#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3321
3322#ifdef HAVE_JUMP_LABEL
c5905afb 3323static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3324
3325static inline bool cfs_bandwidth_used(void)
3326{
c5905afb 3327 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3328}
3329
1ee14e6c 3330void cfs_bandwidth_usage_inc(void)
029632fb 3331{
1ee14e6c
BS
3332 static_key_slow_inc(&__cfs_bandwidth_used);
3333}
3334
3335void cfs_bandwidth_usage_dec(void)
3336{
3337 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3338}
3339#else /* HAVE_JUMP_LABEL */
3340static bool cfs_bandwidth_used(void)
3341{
3342 return true;
3343}
3344
1ee14e6c
BS
3345void cfs_bandwidth_usage_inc(void) {}
3346void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3347#endif /* HAVE_JUMP_LABEL */
3348
ab84d31e
PT
3349/*
3350 * default period for cfs group bandwidth.
3351 * default: 0.1s, units: nanoseconds
3352 */
3353static inline u64 default_cfs_period(void)
3354{
3355 return 100000000ULL;
3356}
ec12cb7f
PT
3357
3358static inline u64 sched_cfs_bandwidth_slice(void)
3359{
3360 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3361}
3362
a9cf55b2
PT
3363/*
3364 * Replenish runtime according to assigned quota and update expiration time.
3365 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3366 * additional synchronization around rq->lock.
3367 *
3368 * requires cfs_b->lock
3369 */
029632fb 3370void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3371{
3372 u64 now;
3373
3374 if (cfs_b->quota == RUNTIME_INF)
3375 return;
3376
3377 now = sched_clock_cpu(smp_processor_id());
3378 cfs_b->runtime = cfs_b->quota;
3379 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3380}
3381
029632fb
PZ
3382static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3383{
3384 return &tg->cfs_bandwidth;
3385}
3386
f1b17280
PT
3387/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3388static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3389{
3390 if (unlikely(cfs_rq->throttle_count))
3391 return cfs_rq->throttled_clock_task;
3392
78becc27 3393 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3394}
3395
85dac906
PT
3396/* returns 0 on failure to allocate runtime */
3397static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3398{
3399 struct task_group *tg = cfs_rq->tg;
3400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3401 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3402
3403 /* note: this is a positive sum as runtime_remaining <= 0 */
3404 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3405
3406 raw_spin_lock(&cfs_b->lock);
3407 if (cfs_b->quota == RUNTIME_INF)
3408 amount = min_amount;
58088ad0 3409 else {
a9cf55b2
PT
3410 /*
3411 * If the bandwidth pool has become inactive, then at least one
3412 * period must have elapsed since the last consumption.
3413 * Refresh the global state and ensure bandwidth timer becomes
3414 * active.
3415 */
3416 if (!cfs_b->timer_active) {
3417 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3418 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3419 }
58088ad0
PT
3420
3421 if (cfs_b->runtime > 0) {
3422 amount = min(cfs_b->runtime, min_amount);
3423 cfs_b->runtime -= amount;
3424 cfs_b->idle = 0;
3425 }
ec12cb7f 3426 }
a9cf55b2 3427 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3428 raw_spin_unlock(&cfs_b->lock);
3429
3430 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3431 /*
3432 * we may have advanced our local expiration to account for allowed
3433 * spread between our sched_clock and the one on which runtime was
3434 * issued.
3435 */
3436 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3437 cfs_rq->runtime_expires = expires;
85dac906
PT
3438
3439 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3440}
3441
a9cf55b2
PT
3442/*
3443 * Note: This depends on the synchronization provided by sched_clock and the
3444 * fact that rq->clock snapshots this value.
3445 */
3446static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3447{
a9cf55b2 3448 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3449
3450 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3451 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3452 return;
3453
a9cf55b2
PT
3454 if (cfs_rq->runtime_remaining < 0)
3455 return;
3456
3457 /*
3458 * If the local deadline has passed we have to consider the
3459 * possibility that our sched_clock is 'fast' and the global deadline
3460 * has not truly expired.
3461 *
3462 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3463 * whether the global deadline has advanced. It is valid to compare
3464 * cfs_b->runtime_expires without any locks since we only care about
3465 * exact equality, so a partial write will still work.
a9cf55b2
PT
3466 */
3467
51f2176d 3468 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3469 /* extend local deadline, drift is bounded above by 2 ticks */
3470 cfs_rq->runtime_expires += TICK_NSEC;
3471 } else {
3472 /* global deadline is ahead, expiration has passed */
3473 cfs_rq->runtime_remaining = 0;
3474 }
3475}
3476
9dbdb155 3477static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3478{
3479 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3480 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3481 expire_cfs_rq_runtime(cfs_rq);
3482
3483 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3484 return;
3485
85dac906
PT
3486 /*
3487 * if we're unable to extend our runtime we resched so that the active
3488 * hierarchy can be throttled
3489 */
3490 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3491 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3492}
3493
6c16a6dc 3494static __always_inline
9dbdb155 3495void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3496{
56f570e5 3497 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3498 return;
3499
3500 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3501}
3502
85dac906
PT
3503static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3504{
56f570e5 3505 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3506}
3507
64660c86
PT
3508/* check whether cfs_rq, or any parent, is throttled */
3509static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3510{
56f570e5 3511 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3512}
3513
3514/*
3515 * Ensure that neither of the group entities corresponding to src_cpu or
3516 * dest_cpu are members of a throttled hierarchy when performing group
3517 * load-balance operations.
3518 */
3519static inline int throttled_lb_pair(struct task_group *tg,
3520 int src_cpu, int dest_cpu)
3521{
3522 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3523
3524 src_cfs_rq = tg->cfs_rq[src_cpu];
3525 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3526
3527 return throttled_hierarchy(src_cfs_rq) ||
3528 throttled_hierarchy(dest_cfs_rq);
3529}
3530
3531/* updated child weight may affect parent so we have to do this bottom up */
3532static int tg_unthrottle_up(struct task_group *tg, void *data)
3533{
3534 struct rq *rq = data;
3535 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3536
3537 cfs_rq->throttle_count--;
3538#ifdef CONFIG_SMP
3539 if (!cfs_rq->throttle_count) {
f1b17280 3540 /* adjust cfs_rq_clock_task() */
78becc27 3541 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3542 cfs_rq->throttled_clock_task;
64660c86
PT
3543 }
3544#endif
3545
3546 return 0;
3547}
3548
3549static int tg_throttle_down(struct task_group *tg, void *data)
3550{
3551 struct rq *rq = data;
3552 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3553
82958366
PT
3554 /* group is entering throttled state, stop time */
3555 if (!cfs_rq->throttle_count)
78becc27 3556 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3557 cfs_rq->throttle_count++;
3558
3559 return 0;
3560}
3561
d3d9dc33 3562static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3563{
3564 struct rq *rq = rq_of(cfs_rq);
3565 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3566 struct sched_entity *se;
3567 long task_delta, dequeue = 1;
3568
3569 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3570
f1b17280 3571 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3572 rcu_read_lock();
3573 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3574 rcu_read_unlock();
85dac906
PT
3575
3576 task_delta = cfs_rq->h_nr_running;
3577 for_each_sched_entity(se) {
3578 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3579 /* throttled entity or throttle-on-deactivate */
3580 if (!se->on_rq)
3581 break;
3582
3583 if (dequeue)
3584 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3585 qcfs_rq->h_nr_running -= task_delta;
3586
3587 if (qcfs_rq->load.weight)
3588 dequeue = 0;
3589 }
3590
3591 if (!se)
72465447 3592 sub_nr_running(rq, task_delta);
85dac906
PT
3593
3594 cfs_rq->throttled = 1;
78becc27 3595 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3596 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3597 /*
3598 * Add to the _head_ of the list, so that an already-started
3599 * distribute_cfs_runtime will not see us
3600 */
3601 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3602 if (!cfs_b->timer_active)
09dc4ab0 3603 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3604 raw_spin_unlock(&cfs_b->lock);
3605}
3606
029632fb 3607void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3608{
3609 struct rq *rq = rq_of(cfs_rq);
3610 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3611 struct sched_entity *se;
3612 int enqueue = 1;
3613 long task_delta;
3614
22b958d8 3615 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3616
3617 cfs_rq->throttled = 0;
1a55af2e
FW
3618
3619 update_rq_clock(rq);
3620
671fd9da 3621 raw_spin_lock(&cfs_b->lock);
78becc27 3622 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3623 list_del_rcu(&cfs_rq->throttled_list);
3624 raw_spin_unlock(&cfs_b->lock);
3625
64660c86
PT
3626 /* update hierarchical throttle state */
3627 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3628
671fd9da
PT
3629 if (!cfs_rq->load.weight)
3630 return;
3631
3632 task_delta = cfs_rq->h_nr_running;
3633 for_each_sched_entity(se) {
3634 if (se->on_rq)
3635 enqueue = 0;
3636
3637 cfs_rq = cfs_rq_of(se);
3638 if (enqueue)
3639 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3640 cfs_rq->h_nr_running += task_delta;
3641
3642 if (cfs_rq_throttled(cfs_rq))
3643 break;
3644 }
3645
3646 if (!se)
72465447 3647 add_nr_running(rq, task_delta);
671fd9da
PT
3648
3649 /* determine whether we need to wake up potentially idle cpu */
3650 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3651 resched_curr(rq);
671fd9da
PT
3652}
3653
3654static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3655 u64 remaining, u64 expires)
3656{
3657 struct cfs_rq *cfs_rq;
c06f04c7
BS
3658 u64 runtime;
3659 u64 starting_runtime = remaining;
671fd9da
PT
3660
3661 rcu_read_lock();
3662 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3663 throttled_list) {
3664 struct rq *rq = rq_of(cfs_rq);
3665
3666 raw_spin_lock(&rq->lock);
3667 if (!cfs_rq_throttled(cfs_rq))
3668 goto next;
3669
3670 runtime = -cfs_rq->runtime_remaining + 1;
3671 if (runtime > remaining)
3672 runtime = remaining;
3673 remaining -= runtime;
3674
3675 cfs_rq->runtime_remaining += runtime;
3676 cfs_rq->runtime_expires = expires;
3677
3678 /* we check whether we're throttled above */
3679 if (cfs_rq->runtime_remaining > 0)
3680 unthrottle_cfs_rq(cfs_rq);
3681
3682next:
3683 raw_spin_unlock(&rq->lock);
3684
3685 if (!remaining)
3686 break;
3687 }
3688 rcu_read_unlock();
3689
c06f04c7 3690 return starting_runtime - remaining;
671fd9da
PT
3691}
3692
58088ad0
PT
3693/*
3694 * Responsible for refilling a task_group's bandwidth and unthrottling its
3695 * cfs_rqs as appropriate. If there has been no activity within the last
3696 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3697 * used to track this state.
3698 */
3699static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3700{
671fd9da 3701 u64 runtime, runtime_expires;
51f2176d 3702 int throttled;
58088ad0 3703
58088ad0
PT
3704 /* no need to continue the timer with no bandwidth constraint */
3705 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3706 goto out_deactivate;
58088ad0 3707
671fd9da 3708 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3709 cfs_b->nr_periods += overrun;
671fd9da 3710
51f2176d
BS
3711 /*
3712 * idle depends on !throttled (for the case of a large deficit), and if
3713 * we're going inactive then everything else can be deferred
3714 */
3715 if (cfs_b->idle && !throttled)
3716 goto out_deactivate;
a9cf55b2 3717
927b54fc
BS
3718 /*
3719 * if we have relooped after returning idle once, we need to update our
3720 * status as actually running, so that other cpus doing
3721 * __start_cfs_bandwidth will stop trying to cancel us.
3722 */
3723 cfs_b->timer_active = 1;
3724
a9cf55b2
PT
3725 __refill_cfs_bandwidth_runtime(cfs_b);
3726
671fd9da
PT
3727 if (!throttled) {
3728 /* mark as potentially idle for the upcoming period */
3729 cfs_b->idle = 1;
51f2176d 3730 return 0;
671fd9da
PT
3731 }
3732
e8da1b18
NR
3733 /* account preceding periods in which throttling occurred */
3734 cfs_b->nr_throttled += overrun;
3735
671fd9da 3736 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3737
3738 /*
c06f04c7
BS
3739 * This check is repeated as we are holding onto the new bandwidth while
3740 * we unthrottle. This can potentially race with an unthrottled group
3741 * trying to acquire new bandwidth from the global pool. This can result
3742 * in us over-using our runtime if it is all used during this loop, but
3743 * only by limited amounts in that extreme case.
671fd9da 3744 */
c06f04c7
BS
3745 while (throttled && cfs_b->runtime > 0) {
3746 runtime = cfs_b->runtime;
671fd9da
PT
3747 raw_spin_unlock(&cfs_b->lock);
3748 /* we can't nest cfs_b->lock while distributing bandwidth */
3749 runtime = distribute_cfs_runtime(cfs_b, runtime,
3750 runtime_expires);
3751 raw_spin_lock(&cfs_b->lock);
3752
3753 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3754
3755 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3756 }
58088ad0 3757
671fd9da
PT
3758 /*
3759 * While we are ensured activity in the period following an
3760 * unthrottle, this also covers the case in which the new bandwidth is
3761 * insufficient to cover the existing bandwidth deficit. (Forcing the
3762 * timer to remain active while there are any throttled entities.)
3763 */
3764 cfs_b->idle = 0;
58088ad0 3765
51f2176d
BS
3766 return 0;
3767
3768out_deactivate:
3769 cfs_b->timer_active = 0;
3770 return 1;
58088ad0 3771}
d3d9dc33 3772
d8b4986d
PT
3773/* a cfs_rq won't donate quota below this amount */
3774static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3775/* minimum remaining period time to redistribute slack quota */
3776static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3777/* how long we wait to gather additional slack before distributing */
3778static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3779
db06e78c
BS
3780/*
3781 * Are we near the end of the current quota period?
3782 *
3783 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3784 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3785 * migrate_hrtimers, base is never cleared, so we are fine.
3786 */
d8b4986d
PT
3787static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3788{
3789 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3790 u64 remaining;
3791
3792 /* if the call-back is running a quota refresh is already occurring */
3793 if (hrtimer_callback_running(refresh_timer))
3794 return 1;
3795
3796 /* is a quota refresh about to occur? */
3797 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3798 if (remaining < min_expire)
3799 return 1;
3800
3801 return 0;
3802}
3803
3804static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3805{
3806 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3807
3808 /* if there's a quota refresh soon don't bother with slack */
3809 if (runtime_refresh_within(cfs_b, min_left))
3810 return;
3811
3812 start_bandwidth_timer(&cfs_b->slack_timer,
3813 ns_to_ktime(cfs_bandwidth_slack_period));
3814}
3815
3816/* we know any runtime found here is valid as update_curr() precedes return */
3817static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3818{
3819 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3820 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3821
3822 if (slack_runtime <= 0)
3823 return;
3824
3825 raw_spin_lock(&cfs_b->lock);
3826 if (cfs_b->quota != RUNTIME_INF &&
3827 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3828 cfs_b->runtime += slack_runtime;
3829
3830 /* we are under rq->lock, defer unthrottling using a timer */
3831 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3832 !list_empty(&cfs_b->throttled_cfs_rq))
3833 start_cfs_slack_bandwidth(cfs_b);
3834 }
3835 raw_spin_unlock(&cfs_b->lock);
3836
3837 /* even if it's not valid for return we don't want to try again */
3838 cfs_rq->runtime_remaining -= slack_runtime;
3839}
3840
3841static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3842{
56f570e5
PT
3843 if (!cfs_bandwidth_used())
3844 return;
3845
fccfdc6f 3846 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3847 return;
3848
3849 __return_cfs_rq_runtime(cfs_rq);
3850}
3851
3852/*
3853 * This is done with a timer (instead of inline with bandwidth return) since
3854 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3855 */
3856static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3857{
3858 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3859 u64 expires;
3860
3861 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3862 raw_spin_lock(&cfs_b->lock);
3863 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3864 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3865 return;
db06e78c 3866 }
d8b4986d 3867
c06f04c7 3868 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3869 runtime = cfs_b->runtime;
c06f04c7 3870
d8b4986d
PT
3871 expires = cfs_b->runtime_expires;
3872 raw_spin_unlock(&cfs_b->lock);
3873
3874 if (!runtime)
3875 return;
3876
3877 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3878
3879 raw_spin_lock(&cfs_b->lock);
3880 if (expires == cfs_b->runtime_expires)
c06f04c7 3881 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3882 raw_spin_unlock(&cfs_b->lock);
3883}
3884
d3d9dc33
PT
3885/*
3886 * When a group wakes up we want to make sure that its quota is not already
3887 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3888 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3889 */
3890static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3891{
56f570e5
PT
3892 if (!cfs_bandwidth_used())
3893 return;
3894
d3d9dc33
PT
3895 /* an active group must be handled by the update_curr()->put() path */
3896 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3897 return;
3898
3899 /* ensure the group is not already throttled */
3900 if (cfs_rq_throttled(cfs_rq))
3901 return;
3902
3903 /* update runtime allocation */
3904 account_cfs_rq_runtime(cfs_rq, 0);
3905 if (cfs_rq->runtime_remaining <= 0)
3906 throttle_cfs_rq(cfs_rq);
3907}
3908
3909/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3910static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3911{
56f570e5 3912 if (!cfs_bandwidth_used())
678d5718 3913 return false;
56f570e5 3914
d3d9dc33 3915 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3916 return false;
d3d9dc33
PT
3917
3918 /*
3919 * it's possible for a throttled entity to be forced into a running
3920 * state (e.g. set_curr_task), in this case we're finished.
3921 */
3922 if (cfs_rq_throttled(cfs_rq))
678d5718 3923 return true;
d3d9dc33
PT
3924
3925 throttle_cfs_rq(cfs_rq);
678d5718 3926 return true;
d3d9dc33 3927}
029632fb 3928
029632fb
PZ
3929static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3930{
3931 struct cfs_bandwidth *cfs_b =
3932 container_of(timer, struct cfs_bandwidth, slack_timer);
3933 do_sched_cfs_slack_timer(cfs_b);
3934
3935 return HRTIMER_NORESTART;
3936}
3937
3938static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3939{
3940 struct cfs_bandwidth *cfs_b =
3941 container_of(timer, struct cfs_bandwidth, period_timer);
3942 ktime_t now;
3943 int overrun;
3944 int idle = 0;
3945
51f2176d 3946 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3947 for (;;) {
3948 now = hrtimer_cb_get_time(timer);
3949 overrun = hrtimer_forward(timer, now, cfs_b->period);
3950
3951 if (!overrun)
3952 break;
3953
3954 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3955 }
51f2176d 3956 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3957
3958 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3959}
3960
3961void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3962{
3963 raw_spin_lock_init(&cfs_b->lock);
3964 cfs_b->runtime = 0;
3965 cfs_b->quota = RUNTIME_INF;
3966 cfs_b->period = ns_to_ktime(default_cfs_period());
3967
3968 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3969 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3970 cfs_b->period_timer.function = sched_cfs_period_timer;
3971 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3972 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3973}
3974
3975static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3976{
3977 cfs_rq->runtime_enabled = 0;
3978 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3979}
3980
3981/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3982void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3983{
3984 /*
3985 * The timer may be active because we're trying to set a new bandwidth
3986 * period or because we're racing with the tear-down path
3987 * (timer_active==0 becomes visible before the hrtimer call-back
3988 * terminates). In either case we ensure that it's re-programmed
3989 */
927b54fc
BS
3990 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3991 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3992 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3993 raw_spin_unlock(&cfs_b->lock);
927b54fc 3994 cpu_relax();
029632fb
PZ
3995 raw_spin_lock(&cfs_b->lock);
3996 /* if someone else restarted the timer then we're done */
09dc4ab0 3997 if (!force && cfs_b->timer_active)
029632fb
PZ
3998 return;
3999 }
4000
4001 cfs_b->timer_active = 1;
4002 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4003}
4004
4005static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4006{
7f1a169b
TH
4007 /* init_cfs_bandwidth() was not called */
4008 if (!cfs_b->throttled_cfs_rq.next)
4009 return;
4010
029632fb
PZ
4011 hrtimer_cancel(&cfs_b->period_timer);
4012 hrtimer_cancel(&cfs_b->slack_timer);
4013}
4014
0e59bdae
KT
4015static void __maybe_unused update_runtime_enabled(struct rq *rq)
4016{
4017 struct cfs_rq *cfs_rq;
4018
4019 for_each_leaf_cfs_rq(rq, cfs_rq) {
4020 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4021
4022 raw_spin_lock(&cfs_b->lock);
4023 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4024 raw_spin_unlock(&cfs_b->lock);
4025 }
4026}
4027
38dc3348 4028static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4029{
4030 struct cfs_rq *cfs_rq;
4031
4032 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4033 if (!cfs_rq->runtime_enabled)
4034 continue;
4035
4036 /*
4037 * clock_task is not advancing so we just need to make sure
4038 * there's some valid quota amount
4039 */
51f2176d 4040 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4041 /*
4042 * Offline rq is schedulable till cpu is completely disabled
4043 * in take_cpu_down(), so we prevent new cfs throttling here.
4044 */
4045 cfs_rq->runtime_enabled = 0;
4046
029632fb
PZ
4047 if (cfs_rq_throttled(cfs_rq))
4048 unthrottle_cfs_rq(cfs_rq);
4049 }
4050}
4051
4052#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4053static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4054{
78becc27 4055 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4056}
4057
9dbdb155 4058static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4059static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4060static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4061static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4062
4063static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4064{
4065 return 0;
4066}
64660c86
PT
4067
4068static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4069{
4070 return 0;
4071}
4072
4073static inline int throttled_lb_pair(struct task_group *tg,
4074 int src_cpu, int dest_cpu)
4075{
4076 return 0;
4077}
029632fb
PZ
4078
4079void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4080
4081#ifdef CONFIG_FAIR_GROUP_SCHED
4082static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4083#endif
4084
029632fb
PZ
4085static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4086{
4087 return NULL;
4088}
4089static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4090static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4091static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4092
4093#endif /* CONFIG_CFS_BANDWIDTH */
4094
bf0f6f24
IM
4095/**************************************************
4096 * CFS operations on tasks:
4097 */
4098
8f4d37ec
PZ
4099#ifdef CONFIG_SCHED_HRTICK
4100static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4101{
8f4d37ec
PZ
4102 struct sched_entity *se = &p->se;
4103 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4104
4105 WARN_ON(task_rq(p) != rq);
4106
b39e66ea 4107 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4108 u64 slice = sched_slice(cfs_rq, se);
4109 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4110 s64 delta = slice - ran;
4111
4112 if (delta < 0) {
4113 if (rq->curr == p)
8875125e 4114 resched_curr(rq);
8f4d37ec
PZ
4115 return;
4116 }
31656519 4117 hrtick_start(rq, delta);
8f4d37ec
PZ
4118 }
4119}
a4c2f00f
PZ
4120
4121/*
4122 * called from enqueue/dequeue and updates the hrtick when the
4123 * current task is from our class and nr_running is low enough
4124 * to matter.
4125 */
4126static void hrtick_update(struct rq *rq)
4127{
4128 struct task_struct *curr = rq->curr;
4129
b39e66ea 4130 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4131 return;
4132
4133 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4134 hrtick_start_fair(rq, curr);
4135}
55e12e5e 4136#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4137static inline void
4138hrtick_start_fair(struct rq *rq, struct task_struct *p)
4139{
4140}
a4c2f00f
PZ
4141
4142static inline void hrtick_update(struct rq *rq)
4143{
4144}
8f4d37ec
PZ
4145#endif
4146
bf0f6f24
IM
4147/*
4148 * The enqueue_task method is called before nr_running is
4149 * increased. Here we update the fair scheduling stats and
4150 * then put the task into the rbtree:
4151 */
ea87bb78 4152static void
371fd7e7 4153enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4154{
4155 struct cfs_rq *cfs_rq;
62fb1851 4156 struct sched_entity *se = &p->se;
bf0f6f24
IM
4157
4158 for_each_sched_entity(se) {
62fb1851 4159 if (se->on_rq)
bf0f6f24
IM
4160 break;
4161 cfs_rq = cfs_rq_of(se);
88ec22d3 4162 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4163
4164 /*
4165 * end evaluation on encountering a throttled cfs_rq
4166 *
4167 * note: in the case of encountering a throttled cfs_rq we will
4168 * post the final h_nr_running increment below.
4169 */
4170 if (cfs_rq_throttled(cfs_rq))
4171 break;
953bfcd1 4172 cfs_rq->h_nr_running++;
85dac906 4173
88ec22d3 4174 flags = ENQUEUE_WAKEUP;
bf0f6f24 4175 }
8f4d37ec 4176
2069dd75 4177 for_each_sched_entity(se) {
0f317143 4178 cfs_rq = cfs_rq_of(se);
953bfcd1 4179 cfs_rq->h_nr_running++;
2069dd75 4180
85dac906
PT
4181 if (cfs_rq_throttled(cfs_rq))
4182 break;
4183
17bc14b7 4184 update_cfs_shares(cfs_rq);
9ee474f5 4185 update_entity_load_avg(se, 1);
2069dd75
PZ
4186 }
4187
18bf2805
BS
4188 if (!se) {
4189 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4190 add_nr_running(rq, 1);
18bf2805 4191 }
a4c2f00f 4192 hrtick_update(rq);
bf0f6f24
IM
4193}
4194
2f36825b
VP
4195static void set_next_buddy(struct sched_entity *se);
4196
bf0f6f24
IM
4197/*
4198 * The dequeue_task method is called before nr_running is
4199 * decreased. We remove the task from the rbtree and
4200 * update the fair scheduling stats:
4201 */
371fd7e7 4202static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4203{
4204 struct cfs_rq *cfs_rq;
62fb1851 4205 struct sched_entity *se = &p->se;
2f36825b 4206 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4207
4208 for_each_sched_entity(se) {
4209 cfs_rq = cfs_rq_of(se);
371fd7e7 4210 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4211
4212 /*
4213 * end evaluation on encountering a throttled cfs_rq
4214 *
4215 * note: in the case of encountering a throttled cfs_rq we will
4216 * post the final h_nr_running decrement below.
4217 */
4218 if (cfs_rq_throttled(cfs_rq))
4219 break;
953bfcd1 4220 cfs_rq->h_nr_running--;
2069dd75 4221
bf0f6f24 4222 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4223 if (cfs_rq->load.weight) {
4224 /*
4225 * Bias pick_next to pick a task from this cfs_rq, as
4226 * p is sleeping when it is within its sched_slice.
4227 */
4228 if (task_sleep && parent_entity(se))
4229 set_next_buddy(parent_entity(se));
9598c82d
PT
4230
4231 /* avoid re-evaluating load for this entity */
4232 se = parent_entity(se);
bf0f6f24 4233 break;
2f36825b 4234 }
371fd7e7 4235 flags |= DEQUEUE_SLEEP;
bf0f6f24 4236 }
8f4d37ec 4237
2069dd75 4238 for_each_sched_entity(se) {
0f317143 4239 cfs_rq = cfs_rq_of(se);
953bfcd1 4240 cfs_rq->h_nr_running--;
2069dd75 4241
85dac906
PT
4242 if (cfs_rq_throttled(cfs_rq))
4243 break;
4244
17bc14b7 4245 update_cfs_shares(cfs_rq);
9ee474f5 4246 update_entity_load_avg(se, 1);
2069dd75
PZ
4247 }
4248
18bf2805 4249 if (!se) {
72465447 4250 sub_nr_running(rq, 1);
18bf2805
BS
4251 update_rq_runnable_avg(rq, 1);
4252 }
a4c2f00f 4253 hrtick_update(rq);
bf0f6f24
IM
4254}
4255
e7693a36 4256#ifdef CONFIG_SMP
029632fb
PZ
4257/* Used instead of source_load when we know the type == 0 */
4258static unsigned long weighted_cpuload(const int cpu)
4259{
b92486cb 4260 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4261}
4262
4263/*
4264 * Return a low guess at the load of a migration-source cpu weighted
4265 * according to the scheduling class and "nice" value.
4266 *
4267 * We want to under-estimate the load of migration sources, to
4268 * balance conservatively.
4269 */
4270static unsigned long source_load(int cpu, int type)
4271{
4272 struct rq *rq = cpu_rq(cpu);
4273 unsigned long total = weighted_cpuload(cpu);
4274
4275 if (type == 0 || !sched_feat(LB_BIAS))
4276 return total;
4277
4278 return min(rq->cpu_load[type-1], total);
4279}
4280
4281/*
4282 * Return a high guess at the load of a migration-target cpu weighted
4283 * according to the scheduling class and "nice" value.
4284 */
4285static unsigned long target_load(int cpu, int type)
4286{
4287 struct rq *rq = cpu_rq(cpu);
4288 unsigned long total = weighted_cpuload(cpu);
4289
4290 if (type == 0 || !sched_feat(LB_BIAS))
4291 return total;
4292
4293 return max(rq->cpu_load[type-1], total);
4294}
4295
ced549fa 4296static unsigned long capacity_of(int cpu)
029632fb 4297{
ced549fa 4298 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4299}
4300
4301static unsigned long cpu_avg_load_per_task(int cpu)
4302{
4303 struct rq *rq = cpu_rq(cpu);
65fdac08 4304 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4305 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4306
4307 if (nr_running)
b92486cb 4308 return load_avg / nr_running;
029632fb
PZ
4309
4310 return 0;
4311}
4312
62470419
MW
4313static void record_wakee(struct task_struct *p)
4314{
4315 /*
4316 * Rough decay (wiping) for cost saving, don't worry
4317 * about the boundary, really active task won't care
4318 * about the loss.
4319 */
2538d960 4320 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4321 current->wakee_flips >>= 1;
62470419
MW
4322 current->wakee_flip_decay_ts = jiffies;
4323 }
4324
4325 if (current->last_wakee != p) {
4326 current->last_wakee = p;
4327 current->wakee_flips++;
4328 }
4329}
098fb9db 4330
74f8e4b2 4331static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4332{
4333 struct sched_entity *se = &p->se;
4334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4335 u64 min_vruntime;
4336
4337#ifndef CONFIG_64BIT
4338 u64 min_vruntime_copy;
88ec22d3 4339
3fe1698b
PZ
4340 do {
4341 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4342 smp_rmb();
4343 min_vruntime = cfs_rq->min_vruntime;
4344 } while (min_vruntime != min_vruntime_copy);
4345#else
4346 min_vruntime = cfs_rq->min_vruntime;
4347#endif
88ec22d3 4348
3fe1698b 4349 se->vruntime -= min_vruntime;
62470419 4350 record_wakee(p);
88ec22d3
PZ
4351}
4352
bb3469ac 4353#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4354/*
4355 * effective_load() calculates the load change as seen from the root_task_group
4356 *
4357 * Adding load to a group doesn't make a group heavier, but can cause movement
4358 * of group shares between cpus. Assuming the shares were perfectly aligned one
4359 * can calculate the shift in shares.
cf5f0acf
PZ
4360 *
4361 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4362 * on this @cpu and results in a total addition (subtraction) of @wg to the
4363 * total group weight.
4364 *
4365 * Given a runqueue weight distribution (rw_i) we can compute a shares
4366 * distribution (s_i) using:
4367 *
4368 * s_i = rw_i / \Sum rw_j (1)
4369 *
4370 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4371 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4372 * shares distribution (s_i):
4373 *
4374 * rw_i = { 2, 4, 1, 0 }
4375 * s_i = { 2/7, 4/7, 1/7, 0 }
4376 *
4377 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4378 * task used to run on and the CPU the waker is running on), we need to
4379 * compute the effect of waking a task on either CPU and, in case of a sync
4380 * wakeup, compute the effect of the current task going to sleep.
4381 *
4382 * So for a change of @wl to the local @cpu with an overall group weight change
4383 * of @wl we can compute the new shares distribution (s'_i) using:
4384 *
4385 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4386 *
4387 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4388 * differences in waking a task to CPU 0. The additional task changes the
4389 * weight and shares distributions like:
4390 *
4391 * rw'_i = { 3, 4, 1, 0 }
4392 * s'_i = { 3/8, 4/8, 1/8, 0 }
4393 *
4394 * We can then compute the difference in effective weight by using:
4395 *
4396 * dw_i = S * (s'_i - s_i) (3)
4397 *
4398 * Where 'S' is the group weight as seen by its parent.
4399 *
4400 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4401 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4402 * 4/7) times the weight of the group.
f5bfb7d9 4403 */
2069dd75 4404static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4405{
4be9daaa 4406 struct sched_entity *se = tg->se[cpu];
f1d239f7 4407
9722c2da 4408 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4409 return wl;
4410
4be9daaa 4411 for_each_sched_entity(se) {
cf5f0acf 4412 long w, W;
4be9daaa 4413
977dda7c 4414 tg = se->my_q->tg;
bb3469ac 4415
cf5f0acf
PZ
4416 /*
4417 * W = @wg + \Sum rw_j
4418 */
4419 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4420
cf5f0acf
PZ
4421 /*
4422 * w = rw_i + @wl
4423 */
4424 w = se->my_q->load.weight + wl;
940959e9 4425
cf5f0acf
PZ
4426 /*
4427 * wl = S * s'_i; see (2)
4428 */
4429 if (W > 0 && w < W)
32a8df4e 4430 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4431 else
4432 wl = tg->shares;
940959e9 4433
cf5f0acf
PZ
4434 /*
4435 * Per the above, wl is the new se->load.weight value; since
4436 * those are clipped to [MIN_SHARES, ...) do so now. See
4437 * calc_cfs_shares().
4438 */
977dda7c
PT
4439 if (wl < MIN_SHARES)
4440 wl = MIN_SHARES;
cf5f0acf
PZ
4441
4442 /*
4443 * wl = dw_i = S * (s'_i - s_i); see (3)
4444 */
977dda7c 4445 wl -= se->load.weight;
cf5f0acf
PZ
4446
4447 /*
4448 * Recursively apply this logic to all parent groups to compute
4449 * the final effective load change on the root group. Since
4450 * only the @tg group gets extra weight, all parent groups can
4451 * only redistribute existing shares. @wl is the shift in shares
4452 * resulting from this level per the above.
4453 */
4be9daaa 4454 wg = 0;
4be9daaa 4455 }
bb3469ac 4456
4be9daaa 4457 return wl;
bb3469ac
PZ
4458}
4459#else
4be9daaa 4460
58d081b5 4461static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4462{
83378269 4463 return wl;
bb3469ac 4464}
4be9daaa 4465
bb3469ac
PZ
4466#endif
4467
62470419
MW
4468static int wake_wide(struct task_struct *p)
4469{
7d9ffa89 4470 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4471
4472 /*
4473 * Yeah, it's the switching-frequency, could means many wakee or
4474 * rapidly switch, use factor here will just help to automatically
4475 * adjust the loose-degree, so bigger node will lead to more pull.
4476 */
4477 if (p->wakee_flips > factor) {
4478 /*
4479 * wakee is somewhat hot, it needs certain amount of cpu
4480 * resource, so if waker is far more hot, prefer to leave
4481 * it alone.
4482 */
4483 if (current->wakee_flips > (factor * p->wakee_flips))
4484 return 1;
4485 }
4486
4487 return 0;
4488}
4489
c88d5910 4490static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4491{
e37b6a7b 4492 s64 this_load, load;
bd61c98f 4493 s64 this_eff_load, prev_eff_load;
c88d5910 4494 int idx, this_cpu, prev_cpu;
c88d5910 4495 struct task_group *tg;
83378269 4496 unsigned long weight;
b3137bc8 4497 int balanced;
098fb9db 4498
62470419
MW
4499 /*
4500 * If we wake multiple tasks be careful to not bounce
4501 * ourselves around too much.
4502 */
4503 if (wake_wide(p))
4504 return 0;
4505
c88d5910
PZ
4506 idx = sd->wake_idx;
4507 this_cpu = smp_processor_id();
4508 prev_cpu = task_cpu(p);
4509 load = source_load(prev_cpu, idx);
4510 this_load = target_load(this_cpu, idx);
098fb9db 4511
b3137bc8
MG
4512 /*
4513 * If sync wakeup then subtract the (maximum possible)
4514 * effect of the currently running task from the load
4515 * of the current CPU:
4516 */
83378269
PZ
4517 if (sync) {
4518 tg = task_group(current);
4519 weight = current->se.load.weight;
4520
c88d5910 4521 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4522 load += effective_load(tg, prev_cpu, 0, -weight);
4523 }
b3137bc8 4524
83378269
PZ
4525 tg = task_group(p);
4526 weight = p->se.load.weight;
b3137bc8 4527
71a29aa7
PZ
4528 /*
4529 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4530 * due to the sync cause above having dropped this_load to 0, we'll
4531 * always have an imbalance, but there's really nothing you can do
4532 * about that, so that's good too.
71a29aa7
PZ
4533 *
4534 * Otherwise check if either cpus are near enough in load to allow this
4535 * task to be woken on this_cpu.
4536 */
bd61c98f
VG
4537 this_eff_load = 100;
4538 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4539
bd61c98f
VG
4540 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4541 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4542
bd61c98f 4543 if (this_load > 0) {
e51fd5e2
PZ
4544 this_eff_load *= this_load +
4545 effective_load(tg, this_cpu, weight, weight);
4546
e51fd5e2 4547 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4548 }
e51fd5e2 4549
bd61c98f 4550 balanced = this_eff_load <= prev_eff_load;
098fb9db 4551
41acab88 4552 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4553
05bfb65f
VG
4554 if (!balanced)
4555 return 0;
098fb9db 4556
05bfb65f
VG
4557 schedstat_inc(sd, ttwu_move_affine);
4558 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4559
4560 return 1;
098fb9db
IM
4561}
4562
aaee1203
PZ
4563/*
4564 * find_idlest_group finds and returns the least busy CPU group within the
4565 * domain.
4566 */
4567static struct sched_group *
78e7ed53 4568find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4569 int this_cpu, int sd_flag)
e7693a36 4570{
b3bd3de6 4571 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4572 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4573 int load_idx = sd->forkexec_idx;
aaee1203 4574 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4575
c44f2a02
VG
4576 if (sd_flag & SD_BALANCE_WAKE)
4577 load_idx = sd->wake_idx;
4578
aaee1203
PZ
4579 do {
4580 unsigned long load, avg_load;
4581 int local_group;
4582 int i;
e7693a36 4583
aaee1203
PZ
4584 /* Skip over this group if it has no CPUs allowed */
4585 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4586 tsk_cpus_allowed(p)))
aaee1203
PZ
4587 continue;
4588
4589 local_group = cpumask_test_cpu(this_cpu,
4590 sched_group_cpus(group));
4591
4592 /* Tally up the load of all CPUs in the group */
4593 avg_load = 0;
4594
4595 for_each_cpu(i, sched_group_cpus(group)) {
4596 /* Bias balancing toward cpus of our domain */
4597 if (local_group)
4598 load = source_load(i, load_idx);
4599 else
4600 load = target_load(i, load_idx);
4601
4602 avg_load += load;
4603 }
4604
63b2ca30 4605 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4606 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4607
4608 if (local_group) {
4609 this_load = avg_load;
aaee1203
PZ
4610 } else if (avg_load < min_load) {
4611 min_load = avg_load;
4612 idlest = group;
4613 }
4614 } while (group = group->next, group != sd->groups);
4615
4616 if (!idlest || 100*this_load < imbalance*min_load)
4617 return NULL;
4618 return idlest;
4619}
4620
4621/*
4622 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4623 */
4624static int
4625find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4626{
4627 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4628 unsigned int min_exit_latency = UINT_MAX;
4629 u64 latest_idle_timestamp = 0;
4630 int least_loaded_cpu = this_cpu;
4631 int shallowest_idle_cpu = -1;
aaee1203
PZ
4632 int i;
4633
4634 /* Traverse only the allowed CPUs */
fa17b507 4635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4636 if (idle_cpu(i)) {
4637 struct rq *rq = cpu_rq(i);
4638 struct cpuidle_state *idle = idle_get_state(rq);
4639 if (idle && idle->exit_latency < min_exit_latency) {
4640 /*
4641 * We give priority to a CPU whose idle state
4642 * has the smallest exit latency irrespective
4643 * of any idle timestamp.
4644 */
4645 min_exit_latency = idle->exit_latency;
4646 latest_idle_timestamp = rq->idle_stamp;
4647 shallowest_idle_cpu = i;
4648 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4649 rq->idle_stamp > latest_idle_timestamp) {
4650 /*
4651 * If equal or no active idle state, then
4652 * the most recently idled CPU might have
4653 * a warmer cache.
4654 */
4655 latest_idle_timestamp = rq->idle_stamp;
4656 shallowest_idle_cpu = i;
4657 }
9f96742a 4658 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4659 load = weighted_cpuload(i);
4660 if (load < min_load || (load == min_load && i == this_cpu)) {
4661 min_load = load;
4662 least_loaded_cpu = i;
4663 }
e7693a36
GH
4664 }
4665 }
4666
83a0a96a 4667 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4668}
e7693a36 4669
a50bde51
PZ
4670/*
4671 * Try and locate an idle CPU in the sched_domain.
4672 */
99bd5e2f 4673static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4674{
99bd5e2f 4675 struct sched_domain *sd;
37407ea7 4676 struct sched_group *sg;
e0a79f52 4677 int i = task_cpu(p);
a50bde51 4678
e0a79f52
MG
4679 if (idle_cpu(target))
4680 return target;
99bd5e2f
SS
4681
4682 /*
e0a79f52 4683 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4684 */
e0a79f52
MG
4685 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4686 return i;
a50bde51
PZ
4687
4688 /*
37407ea7 4689 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4690 */
518cd623 4691 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4692 for_each_lower_domain(sd) {
37407ea7
LT
4693 sg = sd->groups;
4694 do {
4695 if (!cpumask_intersects(sched_group_cpus(sg),
4696 tsk_cpus_allowed(p)))
4697 goto next;
4698
4699 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4700 if (i == target || !idle_cpu(i))
37407ea7
LT
4701 goto next;
4702 }
970e1789 4703
37407ea7
LT
4704 target = cpumask_first_and(sched_group_cpus(sg),
4705 tsk_cpus_allowed(p));
4706 goto done;
4707next:
4708 sg = sg->next;
4709 } while (sg != sd->groups);
4710 }
4711done:
a50bde51
PZ
4712 return target;
4713}
4714
aaee1203 4715/*
de91b9cb
MR
4716 * select_task_rq_fair: Select target runqueue for the waking task in domains
4717 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4718 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4719 *
de91b9cb
MR
4720 * Balances load by selecting the idlest cpu in the idlest group, or under
4721 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4722 *
de91b9cb 4723 * Returns the target cpu number.
aaee1203
PZ
4724 *
4725 * preempt must be disabled.
4726 */
0017d735 4727static int
ac66f547 4728select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4729{
29cd8bae 4730 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4731 int cpu = smp_processor_id();
c88d5910 4732 int new_cpu = cpu;
99bd5e2f 4733 int want_affine = 0;
5158f4e4 4734 int sync = wake_flags & WF_SYNC;
c88d5910 4735
a8edd075
KT
4736 if (sd_flag & SD_BALANCE_WAKE)
4737 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4738
dce840a0 4739 rcu_read_lock();
aaee1203 4740 for_each_domain(cpu, tmp) {
e4f42888
PZ
4741 if (!(tmp->flags & SD_LOAD_BALANCE))
4742 continue;
4743
fe3bcfe1 4744 /*
99bd5e2f
SS
4745 * If both cpu and prev_cpu are part of this domain,
4746 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4747 */
99bd5e2f
SS
4748 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4749 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4750 affine_sd = tmp;
29cd8bae 4751 break;
f03542a7 4752 }
29cd8bae 4753
f03542a7 4754 if (tmp->flags & sd_flag)
29cd8bae
PZ
4755 sd = tmp;
4756 }
4757
8bf21433
RR
4758 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4759 prev_cpu = cpu;
dce840a0 4760
8bf21433 4761 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4762 new_cpu = select_idle_sibling(p, prev_cpu);
4763 goto unlock;
8b911acd 4764 }
e7693a36 4765
aaee1203
PZ
4766 while (sd) {
4767 struct sched_group *group;
c88d5910 4768 int weight;
098fb9db 4769
0763a660 4770 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4771 sd = sd->child;
4772 continue;
4773 }
098fb9db 4774
c44f2a02 4775 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4776 if (!group) {
4777 sd = sd->child;
4778 continue;
4779 }
4ae7d5ce 4780
d7c33c49 4781 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4782 if (new_cpu == -1 || new_cpu == cpu) {
4783 /* Now try balancing at a lower domain level of cpu */
4784 sd = sd->child;
4785 continue;
e7693a36 4786 }
aaee1203
PZ
4787
4788 /* Now try balancing at a lower domain level of new_cpu */
4789 cpu = new_cpu;
669c55e9 4790 weight = sd->span_weight;
aaee1203
PZ
4791 sd = NULL;
4792 for_each_domain(cpu, tmp) {
669c55e9 4793 if (weight <= tmp->span_weight)
aaee1203 4794 break;
0763a660 4795 if (tmp->flags & sd_flag)
aaee1203
PZ
4796 sd = tmp;
4797 }
4798 /* while loop will break here if sd == NULL */
e7693a36 4799 }
dce840a0
PZ
4800unlock:
4801 rcu_read_unlock();
e7693a36 4802
c88d5910 4803 return new_cpu;
e7693a36 4804}
0a74bef8
PT
4805
4806/*
4807 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4808 * cfs_rq_of(p) references at time of call are still valid and identify the
4809 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4810 * other assumptions, including the state of rq->lock, should be made.
4811 */
4812static void
4813migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4814{
aff3e498
PT
4815 struct sched_entity *se = &p->se;
4816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4817
4818 /*
4819 * Load tracking: accumulate removed load so that it can be processed
4820 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4821 * to blocked load iff they have a positive decay-count. It can never
4822 * be negative here since on-rq tasks have decay-count == 0.
4823 */
4824 if (se->avg.decay_count) {
4825 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4826 atomic_long_add(se->avg.load_avg_contrib,
4827 &cfs_rq->removed_load);
aff3e498 4828 }
3944a927
BS
4829
4830 /* We have migrated, no longer consider this task hot */
4831 se->exec_start = 0;
0a74bef8 4832}
e7693a36
GH
4833#endif /* CONFIG_SMP */
4834
e52fb7c0
PZ
4835static unsigned long
4836wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4837{
4838 unsigned long gran = sysctl_sched_wakeup_granularity;
4839
4840 /*
e52fb7c0
PZ
4841 * Since its curr running now, convert the gran from real-time
4842 * to virtual-time in his units.
13814d42
MG
4843 *
4844 * By using 'se' instead of 'curr' we penalize light tasks, so
4845 * they get preempted easier. That is, if 'se' < 'curr' then
4846 * the resulting gran will be larger, therefore penalizing the
4847 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4848 * be smaller, again penalizing the lighter task.
4849 *
4850 * This is especially important for buddies when the leftmost
4851 * task is higher priority than the buddy.
0bbd3336 4852 */
f4ad9bd2 4853 return calc_delta_fair(gran, se);
0bbd3336
PZ
4854}
4855
464b7527
PZ
4856/*
4857 * Should 'se' preempt 'curr'.
4858 *
4859 * |s1
4860 * |s2
4861 * |s3
4862 * g
4863 * |<--->|c
4864 *
4865 * w(c, s1) = -1
4866 * w(c, s2) = 0
4867 * w(c, s3) = 1
4868 *
4869 */
4870static int
4871wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4872{
4873 s64 gran, vdiff = curr->vruntime - se->vruntime;
4874
4875 if (vdiff <= 0)
4876 return -1;
4877
e52fb7c0 4878 gran = wakeup_gran(curr, se);
464b7527
PZ
4879 if (vdiff > gran)
4880 return 1;
4881
4882 return 0;
4883}
4884
02479099
PZ
4885static void set_last_buddy(struct sched_entity *se)
4886{
69c80f3e
VP
4887 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4888 return;
4889
4890 for_each_sched_entity(se)
4891 cfs_rq_of(se)->last = se;
02479099
PZ
4892}
4893
4894static void set_next_buddy(struct sched_entity *se)
4895{
69c80f3e
VP
4896 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4897 return;
4898
4899 for_each_sched_entity(se)
4900 cfs_rq_of(se)->next = se;
02479099
PZ
4901}
4902
ac53db59
RR
4903static void set_skip_buddy(struct sched_entity *se)
4904{
69c80f3e
VP
4905 for_each_sched_entity(se)
4906 cfs_rq_of(se)->skip = se;
ac53db59
RR
4907}
4908
bf0f6f24
IM
4909/*
4910 * Preempt the current task with a newly woken task if needed:
4911 */
5a9b86f6 4912static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4913{
4914 struct task_struct *curr = rq->curr;
8651a86c 4915 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4916 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4917 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4918 int next_buddy_marked = 0;
bf0f6f24 4919
4ae7d5ce
IM
4920 if (unlikely(se == pse))
4921 return;
4922
5238cdd3 4923 /*
163122b7 4924 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4925 * unconditionally check_prempt_curr() after an enqueue (which may have
4926 * lead to a throttle). This both saves work and prevents false
4927 * next-buddy nomination below.
4928 */
4929 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4930 return;
4931
2f36825b 4932 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4933 set_next_buddy(pse);
2f36825b
VP
4934 next_buddy_marked = 1;
4935 }
57fdc26d 4936
aec0a514
BR
4937 /*
4938 * We can come here with TIF_NEED_RESCHED already set from new task
4939 * wake up path.
5238cdd3
PT
4940 *
4941 * Note: this also catches the edge-case of curr being in a throttled
4942 * group (e.g. via set_curr_task), since update_curr() (in the
4943 * enqueue of curr) will have resulted in resched being set. This
4944 * prevents us from potentially nominating it as a false LAST_BUDDY
4945 * below.
aec0a514
BR
4946 */
4947 if (test_tsk_need_resched(curr))
4948 return;
4949
a2f5c9ab
DH
4950 /* Idle tasks are by definition preempted by non-idle tasks. */
4951 if (unlikely(curr->policy == SCHED_IDLE) &&
4952 likely(p->policy != SCHED_IDLE))
4953 goto preempt;
4954
91c234b4 4955 /*
a2f5c9ab
DH
4956 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4957 * is driven by the tick):
91c234b4 4958 */
8ed92e51 4959 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4960 return;
bf0f6f24 4961
464b7527 4962 find_matching_se(&se, &pse);
9bbd7374 4963 update_curr(cfs_rq_of(se));
002f128b 4964 BUG_ON(!pse);
2f36825b
VP
4965 if (wakeup_preempt_entity(se, pse) == 1) {
4966 /*
4967 * Bias pick_next to pick the sched entity that is
4968 * triggering this preemption.
4969 */
4970 if (!next_buddy_marked)
4971 set_next_buddy(pse);
3a7e73a2 4972 goto preempt;
2f36825b 4973 }
464b7527 4974
3a7e73a2 4975 return;
a65ac745 4976
3a7e73a2 4977preempt:
8875125e 4978 resched_curr(rq);
3a7e73a2
PZ
4979 /*
4980 * Only set the backward buddy when the current task is still
4981 * on the rq. This can happen when a wakeup gets interleaved
4982 * with schedule on the ->pre_schedule() or idle_balance()
4983 * point, either of which can * drop the rq lock.
4984 *
4985 * Also, during early boot the idle thread is in the fair class,
4986 * for obvious reasons its a bad idea to schedule back to it.
4987 */
4988 if (unlikely(!se->on_rq || curr == rq->idle))
4989 return;
4990
4991 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4992 set_last_buddy(se);
bf0f6f24
IM
4993}
4994
606dba2e
PZ
4995static struct task_struct *
4996pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4997{
4998 struct cfs_rq *cfs_rq = &rq->cfs;
4999 struct sched_entity *se;
678d5718 5000 struct task_struct *p;
37e117c0 5001 int new_tasks;
678d5718 5002
6e83125c 5003again:
678d5718
PZ
5004#ifdef CONFIG_FAIR_GROUP_SCHED
5005 if (!cfs_rq->nr_running)
38033c37 5006 goto idle;
678d5718 5007
3f1d2a31 5008 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5009 goto simple;
5010
5011 /*
5012 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5013 * likely that a next task is from the same cgroup as the current.
5014 *
5015 * Therefore attempt to avoid putting and setting the entire cgroup
5016 * hierarchy, only change the part that actually changes.
5017 */
5018
5019 do {
5020 struct sched_entity *curr = cfs_rq->curr;
5021
5022 /*
5023 * Since we got here without doing put_prev_entity() we also
5024 * have to consider cfs_rq->curr. If it is still a runnable
5025 * entity, update_curr() will update its vruntime, otherwise
5026 * forget we've ever seen it.
5027 */
5028 if (curr && curr->on_rq)
5029 update_curr(cfs_rq);
5030 else
5031 curr = NULL;
5032
5033 /*
5034 * This call to check_cfs_rq_runtime() will do the throttle and
5035 * dequeue its entity in the parent(s). Therefore the 'simple'
5036 * nr_running test will indeed be correct.
5037 */
5038 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5039 goto simple;
5040
5041 se = pick_next_entity(cfs_rq, curr);
5042 cfs_rq = group_cfs_rq(se);
5043 } while (cfs_rq);
5044
5045 p = task_of(se);
5046
5047 /*
5048 * Since we haven't yet done put_prev_entity and if the selected task
5049 * is a different task than we started out with, try and touch the
5050 * least amount of cfs_rqs.
5051 */
5052 if (prev != p) {
5053 struct sched_entity *pse = &prev->se;
5054
5055 while (!(cfs_rq = is_same_group(se, pse))) {
5056 int se_depth = se->depth;
5057 int pse_depth = pse->depth;
5058
5059 if (se_depth <= pse_depth) {
5060 put_prev_entity(cfs_rq_of(pse), pse);
5061 pse = parent_entity(pse);
5062 }
5063 if (se_depth >= pse_depth) {
5064 set_next_entity(cfs_rq_of(se), se);
5065 se = parent_entity(se);
5066 }
5067 }
5068
5069 put_prev_entity(cfs_rq, pse);
5070 set_next_entity(cfs_rq, se);
5071 }
5072
5073 if (hrtick_enabled(rq))
5074 hrtick_start_fair(rq, p);
5075
5076 return p;
5077simple:
5078 cfs_rq = &rq->cfs;
5079#endif
bf0f6f24 5080
36ace27e 5081 if (!cfs_rq->nr_running)
38033c37 5082 goto idle;
bf0f6f24 5083
3f1d2a31 5084 put_prev_task(rq, prev);
606dba2e 5085
bf0f6f24 5086 do {
678d5718 5087 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5088 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5089 cfs_rq = group_cfs_rq(se);
5090 } while (cfs_rq);
5091
8f4d37ec 5092 p = task_of(se);
678d5718 5093
b39e66ea
MG
5094 if (hrtick_enabled(rq))
5095 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5096
5097 return p;
38033c37
PZ
5098
5099idle:
e4aa358b 5100 new_tasks = idle_balance(rq);
37e117c0
PZ
5101 /*
5102 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5103 * possible for any higher priority task to appear. In that case we
5104 * must re-start the pick_next_entity() loop.
5105 */
e4aa358b 5106 if (new_tasks < 0)
37e117c0
PZ
5107 return RETRY_TASK;
5108
e4aa358b 5109 if (new_tasks > 0)
38033c37 5110 goto again;
38033c37
PZ
5111
5112 return NULL;
bf0f6f24
IM
5113}
5114
5115/*
5116 * Account for a descheduled task:
5117 */
31ee529c 5118static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5119{
5120 struct sched_entity *se = &prev->se;
5121 struct cfs_rq *cfs_rq;
5122
5123 for_each_sched_entity(se) {
5124 cfs_rq = cfs_rq_of(se);
ab6cde26 5125 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5126 }
5127}
5128
ac53db59
RR
5129/*
5130 * sched_yield() is very simple
5131 *
5132 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5133 */
5134static void yield_task_fair(struct rq *rq)
5135{
5136 struct task_struct *curr = rq->curr;
5137 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5138 struct sched_entity *se = &curr->se;
5139
5140 /*
5141 * Are we the only task in the tree?
5142 */
5143 if (unlikely(rq->nr_running == 1))
5144 return;
5145
5146 clear_buddies(cfs_rq, se);
5147
5148 if (curr->policy != SCHED_BATCH) {
5149 update_rq_clock(rq);
5150 /*
5151 * Update run-time statistics of the 'current'.
5152 */
5153 update_curr(cfs_rq);
916671c0
MG
5154 /*
5155 * Tell update_rq_clock() that we've just updated,
5156 * so we don't do microscopic update in schedule()
5157 * and double the fastpath cost.
5158 */
9edfbfed 5159 rq_clock_skip_update(rq, true);
ac53db59
RR
5160 }
5161
5162 set_skip_buddy(se);
5163}
5164
d95f4122
MG
5165static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5166{
5167 struct sched_entity *se = &p->se;
5168
5238cdd3
PT
5169 /* throttled hierarchies are not runnable */
5170 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5171 return false;
5172
5173 /* Tell the scheduler that we'd really like pse to run next. */
5174 set_next_buddy(se);
5175
d95f4122
MG
5176 yield_task_fair(rq);
5177
5178 return true;
5179}
5180
681f3e68 5181#ifdef CONFIG_SMP
bf0f6f24 5182/**************************************************
e9c84cb8
PZ
5183 * Fair scheduling class load-balancing methods.
5184 *
5185 * BASICS
5186 *
5187 * The purpose of load-balancing is to achieve the same basic fairness the
5188 * per-cpu scheduler provides, namely provide a proportional amount of compute
5189 * time to each task. This is expressed in the following equation:
5190 *
5191 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5192 *
5193 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5194 * W_i,0 is defined as:
5195 *
5196 * W_i,0 = \Sum_j w_i,j (2)
5197 *
5198 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5199 * is derived from the nice value as per prio_to_weight[].
5200 *
5201 * The weight average is an exponential decay average of the instantaneous
5202 * weight:
5203 *
5204 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5205 *
ced549fa 5206 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5207 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5208 * can also include other factors [XXX].
5209 *
5210 * To achieve this balance we define a measure of imbalance which follows
5211 * directly from (1):
5212 *
ced549fa 5213 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5214 *
5215 * We them move tasks around to minimize the imbalance. In the continuous
5216 * function space it is obvious this converges, in the discrete case we get
5217 * a few fun cases generally called infeasible weight scenarios.
5218 *
5219 * [XXX expand on:
5220 * - infeasible weights;
5221 * - local vs global optima in the discrete case. ]
5222 *
5223 *
5224 * SCHED DOMAINS
5225 *
5226 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5227 * for all i,j solution, we create a tree of cpus that follows the hardware
5228 * topology where each level pairs two lower groups (or better). This results
5229 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5230 * tree to only the first of the previous level and we decrease the frequency
5231 * of load-balance at each level inv. proportional to the number of cpus in
5232 * the groups.
5233 *
5234 * This yields:
5235 *
5236 * log_2 n 1 n
5237 * \Sum { --- * --- * 2^i } = O(n) (5)
5238 * i = 0 2^i 2^i
5239 * `- size of each group
5240 * | | `- number of cpus doing load-balance
5241 * | `- freq
5242 * `- sum over all levels
5243 *
5244 * Coupled with a limit on how many tasks we can migrate every balance pass,
5245 * this makes (5) the runtime complexity of the balancer.
5246 *
5247 * An important property here is that each CPU is still (indirectly) connected
5248 * to every other cpu in at most O(log n) steps:
5249 *
5250 * The adjacency matrix of the resulting graph is given by:
5251 *
5252 * log_2 n
5253 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5254 * k = 0
5255 *
5256 * And you'll find that:
5257 *
5258 * A^(log_2 n)_i,j != 0 for all i,j (7)
5259 *
5260 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5261 * The task movement gives a factor of O(m), giving a convergence complexity
5262 * of:
5263 *
5264 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5265 *
5266 *
5267 * WORK CONSERVING
5268 *
5269 * In order to avoid CPUs going idle while there's still work to do, new idle
5270 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5271 * tree itself instead of relying on other CPUs to bring it work.
5272 *
5273 * This adds some complexity to both (5) and (8) but it reduces the total idle
5274 * time.
5275 *
5276 * [XXX more?]
5277 *
5278 *
5279 * CGROUPS
5280 *
5281 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5282 *
5283 * s_k,i
5284 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5285 * S_k
5286 *
5287 * Where
5288 *
5289 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5290 *
5291 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5292 *
5293 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5294 * property.
5295 *
5296 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5297 * rewrite all of this once again.]
5298 */
bf0f6f24 5299
ed387b78
HS
5300static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5301
0ec8aa00
PZ
5302enum fbq_type { regular, remote, all };
5303
ddcdf6e7 5304#define LBF_ALL_PINNED 0x01
367456c7 5305#define LBF_NEED_BREAK 0x02
6263322c
PZ
5306#define LBF_DST_PINNED 0x04
5307#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5308
5309struct lb_env {
5310 struct sched_domain *sd;
5311
ddcdf6e7 5312 struct rq *src_rq;
85c1e7da 5313 int src_cpu;
ddcdf6e7
PZ
5314
5315 int dst_cpu;
5316 struct rq *dst_rq;
5317
88b8dac0
SV
5318 struct cpumask *dst_grpmask;
5319 int new_dst_cpu;
ddcdf6e7 5320 enum cpu_idle_type idle;
bd939f45 5321 long imbalance;
b9403130
MW
5322 /* The set of CPUs under consideration for load-balancing */
5323 struct cpumask *cpus;
5324
ddcdf6e7 5325 unsigned int flags;
367456c7
PZ
5326
5327 unsigned int loop;
5328 unsigned int loop_break;
5329 unsigned int loop_max;
0ec8aa00
PZ
5330
5331 enum fbq_type fbq_type;
163122b7 5332 struct list_head tasks;
ddcdf6e7
PZ
5333};
5334
029632fb
PZ
5335/*
5336 * Is this task likely cache-hot:
5337 */
5d5e2b1b 5338static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5339{
5340 s64 delta;
5341
e5673f28
KT
5342 lockdep_assert_held(&env->src_rq->lock);
5343
029632fb
PZ
5344 if (p->sched_class != &fair_sched_class)
5345 return 0;
5346
5347 if (unlikely(p->policy == SCHED_IDLE))
5348 return 0;
5349
5350 /*
5351 * Buddy candidates are cache hot:
5352 */
5d5e2b1b 5353 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5354 (&p->se == cfs_rq_of(&p->se)->next ||
5355 &p->se == cfs_rq_of(&p->se)->last))
5356 return 1;
5357
5358 if (sysctl_sched_migration_cost == -1)
5359 return 1;
5360 if (sysctl_sched_migration_cost == 0)
5361 return 0;
5362
5d5e2b1b 5363 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5364
5365 return delta < (s64)sysctl_sched_migration_cost;
5366}
5367
3a7053b3
MG
5368#ifdef CONFIG_NUMA_BALANCING
5369/* Returns true if the destination node has incurred more faults */
5370static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5371{
b1ad065e 5372 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5373 int src_nid, dst_nid;
5374
44dba3d5 5375 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5376 !(env->sd->flags & SD_NUMA)) {
5377 return false;
5378 }
5379
5380 src_nid = cpu_to_node(env->src_cpu);
5381 dst_nid = cpu_to_node(env->dst_cpu);
5382
83e1d2cd 5383 if (src_nid == dst_nid)
3a7053b3
MG
5384 return false;
5385
b1ad065e
RR
5386 if (numa_group) {
5387 /* Task is already in the group's interleave set. */
5388 if (node_isset(src_nid, numa_group->active_nodes))
5389 return false;
83e1d2cd 5390
b1ad065e
RR
5391 /* Task is moving into the group's interleave set. */
5392 if (node_isset(dst_nid, numa_group->active_nodes))
5393 return true;
83e1d2cd 5394
b1ad065e
RR
5395 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5396 }
5397
5398 /* Encourage migration to the preferred node. */
5399 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5400 return true;
5401
b1ad065e 5402 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5403}
7a0f3083
MG
5404
5405
5406static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5407{
b1ad065e 5408 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5409 int src_nid, dst_nid;
5410
5411 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5412 return false;
5413
44dba3d5 5414 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5415 return false;
5416
5417 src_nid = cpu_to_node(env->src_cpu);
5418 dst_nid = cpu_to_node(env->dst_cpu);
5419
83e1d2cd 5420 if (src_nid == dst_nid)
7a0f3083
MG
5421 return false;
5422
b1ad065e
RR
5423 if (numa_group) {
5424 /* Task is moving within/into the group's interleave set. */
5425 if (node_isset(dst_nid, numa_group->active_nodes))
5426 return false;
5427
5428 /* Task is moving out of the group's interleave set. */
5429 if (node_isset(src_nid, numa_group->active_nodes))
5430 return true;
5431
5432 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5433 }
5434
83e1d2cd
MG
5435 /* Migrating away from the preferred node is always bad. */
5436 if (src_nid == p->numa_preferred_nid)
5437 return true;
5438
b1ad065e 5439 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5440}
5441
3a7053b3
MG
5442#else
5443static inline bool migrate_improves_locality(struct task_struct *p,
5444 struct lb_env *env)
5445{
5446 return false;
5447}
7a0f3083
MG
5448
5449static inline bool migrate_degrades_locality(struct task_struct *p,
5450 struct lb_env *env)
5451{
5452 return false;
5453}
3a7053b3
MG
5454#endif
5455
1e3c88bd
PZ
5456/*
5457 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5458 */
5459static
8e45cb54 5460int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5461{
5462 int tsk_cache_hot = 0;
e5673f28
KT
5463
5464 lockdep_assert_held(&env->src_rq->lock);
5465
1e3c88bd
PZ
5466 /*
5467 * We do not migrate tasks that are:
d3198084 5468 * 1) throttled_lb_pair, or
1e3c88bd 5469 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5470 * 3) running (obviously), or
5471 * 4) are cache-hot on their current CPU.
1e3c88bd 5472 */
d3198084
JK
5473 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5474 return 0;
5475
ddcdf6e7 5476 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5477 int cpu;
88b8dac0 5478
41acab88 5479 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5480
6263322c
PZ
5481 env->flags |= LBF_SOME_PINNED;
5482
88b8dac0
SV
5483 /*
5484 * Remember if this task can be migrated to any other cpu in
5485 * our sched_group. We may want to revisit it if we couldn't
5486 * meet load balance goals by pulling other tasks on src_cpu.
5487 *
5488 * Also avoid computing new_dst_cpu if we have already computed
5489 * one in current iteration.
5490 */
6263322c 5491 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5492 return 0;
5493
e02e60c1
JK
5494 /* Prevent to re-select dst_cpu via env's cpus */
5495 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5496 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5497 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5498 env->new_dst_cpu = cpu;
5499 break;
5500 }
88b8dac0 5501 }
e02e60c1 5502
1e3c88bd
PZ
5503 return 0;
5504 }
88b8dac0
SV
5505
5506 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5507 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5508
ddcdf6e7 5509 if (task_running(env->src_rq, p)) {
41acab88 5510 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5511 return 0;
5512 }
5513
5514 /*
5515 * Aggressive migration if:
3a7053b3
MG
5516 * 1) destination numa is preferred
5517 * 2) task is cache cold, or
5518 * 3) too many balance attempts have failed.
1e3c88bd 5519 */
5d5e2b1b 5520 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5521 if (!tsk_cache_hot)
5522 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5523
7a96c231
KT
5524 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5525 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5526 if (tsk_cache_hot) {
5527 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5528 schedstat_inc(p, se.statistics.nr_forced_migrations);
5529 }
1e3c88bd
PZ
5530 return 1;
5531 }
5532
4e2dcb73
ZH
5533 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5534 return 0;
1e3c88bd
PZ
5535}
5536
897c395f 5537/*
163122b7
KT
5538 * detach_task() -- detach the task for the migration specified in env
5539 */
5540static void detach_task(struct task_struct *p, struct lb_env *env)
5541{
5542 lockdep_assert_held(&env->src_rq->lock);
5543
5544 deactivate_task(env->src_rq, p, 0);
5545 p->on_rq = TASK_ON_RQ_MIGRATING;
5546 set_task_cpu(p, env->dst_cpu);
5547}
5548
897c395f 5549/*
e5673f28 5550 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5551 * part of active balancing operations within "domain".
897c395f 5552 *
e5673f28 5553 * Returns a task if successful and NULL otherwise.
897c395f 5554 */
e5673f28 5555static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5556{
5557 struct task_struct *p, *n;
897c395f 5558
e5673f28
KT
5559 lockdep_assert_held(&env->src_rq->lock);
5560
367456c7 5561 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5562 if (!can_migrate_task(p, env))
5563 continue;
897c395f 5564
163122b7 5565 detach_task(p, env);
e5673f28 5566
367456c7 5567 /*
e5673f28 5568 * Right now, this is only the second place where
163122b7 5569 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5570 * so we can safely collect stats here rather than
163122b7 5571 * inside detach_tasks().
367456c7
PZ
5572 */
5573 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5574 return p;
897c395f 5575 }
e5673f28 5576 return NULL;
897c395f
PZ
5577}
5578
eb95308e
PZ
5579static const unsigned int sched_nr_migrate_break = 32;
5580
5d6523eb 5581/*
163122b7
KT
5582 * detach_tasks() -- tries to detach up to imbalance weighted load from
5583 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5584 *
163122b7 5585 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5586 */
163122b7 5587static int detach_tasks(struct lb_env *env)
1e3c88bd 5588{
5d6523eb
PZ
5589 struct list_head *tasks = &env->src_rq->cfs_tasks;
5590 struct task_struct *p;
367456c7 5591 unsigned long load;
163122b7
KT
5592 int detached = 0;
5593
5594 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5595
bd939f45 5596 if (env->imbalance <= 0)
5d6523eb 5597 return 0;
1e3c88bd 5598
5d6523eb
PZ
5599 while (!list_empty(tasks)) {
5600 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5601
367456c7
PZ
5602 env->loop++;
5603 /* We've more or less seen every task there is, call it quits */
5d6523eb 5604 if (env->loop > env->loop_max)
367456c7 5605 break;
5d6523eb
PZ
5606
5607 /* take a breather every nr_migrate tasks */
367456c7 5608 if (env->loop > env->loop_break) {
eb95308e 5609 env->loop_break += sched_nr_migrate_break;
8e45cb54 5610 env->flags |= LBF_NEED_BREAK;
ee00e66f 5611 break;
a195f004 5612 }
1e3c88bd 5613
d3198084 5614 if (!can_migrate_task(p, env))
367456c7
PZ
5615 goto next;
5616
5617 load = task_h_load(p);
5d6523eb 5618
eb95308e 5619 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5620 goto next;
5621
bd939f45 5622 if ((load / 2) > env->imbalance)
367456c7 5623 goto next;
1e3c88bd 5624
163122b7
KT
5625 detach_task(p, env);
5626 list_add(&p->se.group_node, &env->tasks);
5627
5628 detached++;
bd939f45 5629 env->imbalance -= load;
1e3c88bd
PZ
5630
5631#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5632 /*
5633 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5634 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5635 * the critical section.
5636 */
5d6523eb 5637 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5638 break;
1e3c88bd
PZ
5639#endif
5640
ee00e66f
PZ
5641 /*
5642 * We only want to steal up to the prescribed amount of
5643 * weighted load.
5644 */
bd939f45 5645 if (env->imbalance <= 0)
ee00e66f 5646 break;
367456c7
PZ
5647
5648 continue;
5649next:
5d6523eb 5650 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5651 }
5d6523eb 5652
1e3c88bd 5653 /*
163122b7
KT
5654 * Right now, this is one of only two places we collect this stat
5655 * so we can safely collect detach_one_task() stats here rather
5656 * than inside detach_one_task().
1e3c88bd 5657 */
163122b7 5658 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5659
163122b7
KT
5660 return detached;
5661}
5662
5663/*
5664 * attach_task() -- attach the task detached by detach_task() to its new rq.
5665 */
5666static void attach_task(struct rq *rq, struct task_struct *p)
5667{
5668 lockdep_assert_held(&rq->lock);
5669
5670 BUG_ON(task_rq(p) != rq);
5671 p->on_rq = TASK_ON_RQ_QUEUED;
5672 activate_task(rq, p, 0);
5673 check_preempt_curr(rq, p, 0);
5674}
5675
5676/*
5677 * attach_one_task() -- attaches the task returned from detach_one_task() to
5678 * its new rq.
5679 */
5680static void attach_one_task(struct rq *rq, struct task_struct *p)
5681{
5682 raw_spin_lock(&rq->lock);
5683 attach_task(rq, p);
5684 raw_spin_unlock(&rq->lock);
5685}
5686
5687/*
5688 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5689 * new rq.
5690 */
5691static void attach_tasks(struct lb_env *env)
5692{
5693 struct list_head *tasks = &env->tasks;
5694 struct task_struct *p;
5695
5696 raw_spin_lock(&env->dst_rq->lock);
5697
5698 while (!list_empty(tasks)) {
5699 p = list_first_entry(tasks, struct task_struct, se.group_node);
5700 list_del_init(&p->se.group_node);
1e3c88bd 5701
163122b7
KT
5702 attach_task(env->dst_rq, p);
5703 }
5704
5705 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5706}
5707
230059de 5708#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5709/*
5710 * update tg->load_weight by folding this cpu's load_avg
5711 */
48a16753 5712static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5713{
48a16753
PT
5714 struct sched_entity *se = tg->se[cpu];
5715 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5716
48a16753
PT
5717 /* throttled entities do not contribute to load */
5718 if (throttled_hierarchy(cfs_rq))
5719 return;
9e3081ca 5720
aff3e498 5721 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5722
82958366
PT
5723 if (se) {
5724 update_entity_load_avg(se, 1);
5725 /*
5726 * We pivot on our runnable average having decayed to zero for
5727 * list removal. This generally implies that all our children
5728 * have also been removed (modulo rounding error or bandwidth
5729 * control); however, such cases are rare and we can fix these
5730 * at enqueue.
5731 *
5732 * TODO: fix up out-of-order children on enqueue.
5733 */
5734 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5735 list_del_leaf_cfs_rq(cfs_rq);
5736 } else {
48a16753 5737 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5738 update_rq_runnable_avg(rq, rq->nr_running);
5739 }
9e3081ca
PZ
5740}
5741
48a16753 5742static void update_blocked_averages(int cpu)
9e3081ca 5743{
9e3081ca 5744 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5745 struct cfs_rq *cfs_rq;
5746 unsigned long flags;
9e3081ca 5747
48a16753
PT
5748 raw_spin_lock_irqsave(&rq->lock, flags);
5749 update_rq_clock(rq);
9763b67f
PZ
5750 /*
5751 * Iterates the task_group tree in a bottom up fashion, see
5752 * list_add_leaf_cfs_rq() for details.
5753 */
64660c86 5754 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5755 /*
5756 * Note: We may want to consider periodically releasing
5757 * rq->lock about these updates so that creating many task
5758 * groups does not result in continually extending hold time.
5759 */
5760 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5761 }
48a16753
PT
5762
5763 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5764}
5765
9763b67f 5766/*
68520796 5767 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5768 * This needs to be done in a top-down fashion because the load of a child
5769 * group is a fraction of its parents load.
5770 */
68520796 5771static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5772{
68520796
VD
5773 struct rq *rq = rq_of(cfs_rq);
5774 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5775 unsigned long now = jiffies;
68520796 5776 unsigned long load;
a35b6466 5777
68520796 5778 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5779 return;
5780
68520796
VD
5781 cfs_rq->h_load_next = NULL;
5782 for_each_sched_entity(se) {
5783 cfs_rq = cfs_rq_of(se);
5784 cfs_rq->h_load_next = se;
5785 if (cfs_rq->last_h_load_update == now)
5786 break;
5787 }
a35b6466 5788
68520796 5789 if (!se) {
7e3115ef 5790 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5791 cfs_rq->last_h_load_update = now;
5792 }
5793
5794 while ((se = cfs_rq->h_load_next) != NULL) {
5795 load = cfs_rq->h_load;
5796 load = div64_ul(load * se->avg.load_avg_contrib,
5797 cfs_rq->runnable_load_avg + 1);
5798 cfs_rq = group_cfs_rq(se);
5799 cfs_rq->h_load = load;
5800 cfs_rq->last_h_load_update = now;
5801 }
9763b67f
PZ
5802}
5803
367456c7 5804static unsigned long task_h_load(struct task_struct *p)
230059de 5805{
367456c7 5806 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5807
68520796 5808 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5809 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5810 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5811}
5812#else
48a16753 5813static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5814{
5815}
5816
367456c7 5817static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5818{
a003a25b 5819 return p->se.avg.load_avg_contrib;
1e3c88bd 5820}
230059de 5821#endif
1e3c88bd 5822
1e3c88bd 5823/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5824
5825enum group_type {
5826 group_other = 0,
5827 group_imbalanced,
5828 group_overloaded,
5829};
5830
1e3c88bd
PZ
5831/*
5832 * sg_lb_stats - stats of a sched_group required for load_balancing
5833 */
5834struct sg_lb_stats {
5835 unsigned long avg_load; /*Avg load across the CPUs of the group */
5836 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5837 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5838 unsigned long load_per_task;
63b2ca30 5839 unsigned long group_capacity;
147c5fc2 5840 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5841 unsigned int group_capacity_factor;
147c5fc2
PZ
5842 unsigned int idle_cpus;
5843 unsigned int group_weight;
caeb178c 5844 enum group_type group_type;
1b6a7495 5845 int group_has_free_capacity;
0ec8aa00
PZ
5846#ifdef CONFIG_NUMA_BALANCING
5847 unsigned int nr_numa_running;
5848 unsigned int nr_preferred_running;
5849#endif
1e3c88bd
PZ
5850};
5851
56cf515b
JK
5852/*
5853 * sd_lb_stats - Structure to store the statistics of a sched_domain
5854 * during load balancing.
5855 */
5856struct sd_lb_stats {
5857 struct sched_group *busiest; /* Busiest group in this sd */
5858 struct sched_group *local; /* Local group in this sd */
5859 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5860 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5861 unsigned long avg_load; /* Average load across all groups in sd */
5862
56cf515b 5863 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5864 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5865};
5866
147c5fc2
PZ
5867static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5868{
5869 /*
5870 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5871 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5872 * We must however clear busiest_stat::avg_load because
5873 * update_sd_pick_busiest() reads this before assignment.
5874 */
5875 *sds = (struct sd_lb_stats){
5876 .busiest = NULL,
5877 .local = NULL,
5878 .total_load = 0UL,
63b2ca30 5879 .total_capacity = 0UL,
147c5fc2
PZ
5880 .busiest_stat = {
5881 .avg_load = 0UL,
caeb178c
RR
5882 .sum_nr_running = 0,
5883 .group_type = group_other,
147c5fc2
PZ
5884 },
5885 };
5886}
5887
1e3c88bd
PZ
5888/**
5889 * get_sd_load_idx - Obtain the load index for a given sched domain.
5890 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5891 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5892 *
5893 * Return: The load index.
1e3c88bd
PZ
5894 */
5895static inline int get_sd_load_idx(struct sched_domain *sd,
5896 enum cpu_idle_type idle)
5897{
5898 int load_idx;
5899
5900 switch (idle) {
5901 case CPU_NOT_IDLE:
5902 load_idx = sd->busy_idx;
5903 break;
5904
5905 case CPU_NEWLY_IDLE:
5906 load_idx = sd->newidle_idx;
5907 break;
5908 default:
5909 load_idx = sd->idle_idx;
5910 break;
5911 }
5912
5913 return load_idx;
5914}
5915
ced549fa 5916static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5917{
ca8ce3d0 5918 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5919}
5920
ca8ce3d0 5921unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5922{
ced549fa 5923 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5924}
5925
26bc3c50 5926static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5927{
26bc3c50
VG
5928 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5929 return sd->smt_gain / sd->span_weight;
1e3c88bd 5930
26bc3c50 5931 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5932}
5933
26bc3c50 5934unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5935{
26bc3c50 5936 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5937}
5938
ced549fa 5939static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5940{
5941 struct rq *rq = cpu_rq(cpu);
b654f7de 5942 u64 total, available, age_stamp, avg;
cadefd3d 5943 s64 delta;
1e3c88bd 5944
b654f7de
PZ
5945 /*
5946 * Since we're reading these variables without serialization make sure
5947 * we read them once before doing sanity checks on them.
5948 */
5949 age_stamp = ACCESS_ONCE(rq->age_stamp);
5950 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 5951 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 5952
cadefd3d
PZ
5953 if (unlikely(delta < 0))
5954 delta = 0;
5955
5956 total = sched_avg_period() + delta;
aa483808 5957
b654f7de 5958 if (unlikely(total < avg)) {
ced549fa 5959 /* Ensures that capacity won't end up being negative */
aa483808
VP
5960 available = 0;
5961 } else {
b654f7de 5962 available = total - avg;
aa483808 5963 }
1e3c88bd 5964
ca8ce3d0
NP
5965 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5966 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5967
ca8ce3d0 5968 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5969
5970 return div_u64(available, total);
5971}
5972
ced549fa 5973static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5974{
ca8ce3d0 5975 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5976 struct sched_group *sdg = sd->groups;
5977
26bc3c50
VG
5978 if (sched_feat(ARCH_CAPACITY))
5979 capacity *= arch_scale_cpu_capacity(sd, cpu);
5980 else
5981 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5982
26bc3c50 5983 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5984
ced549fa 5985 sdg->sgc->capacity_orig = capacity;
9d5efe05 5986
5d4dfddd 5987 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5988 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5989 else
ced549fa 5990 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5991
ca8ce3d0 5992 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5993
ced549fa 5994 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5995 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5996
ced549fa
NP
5997 if (!capacity)
5998 capacity = 1;
1e3c88bd 5999
ced549fa
NP
6000 cpu_rq(cpu)->cpu_capacity = capacity;
6001 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6002}
6003
63b2ca30 6004void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6005{
6006 struct sched_domain *child = sd->child;
6007 struct sched_group *group, *sdg = sd->groups;
63b2ca30 6008 unsigned long capacity, capacity_orig;
4ec4412e
VG
6009 unsigned long interval;
6010
6011 interval = msecs_to_jiffies(sd->balance_interval);
6012 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6013 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6014
6015 if (!child) {
ced549fa 6016 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6017 return;
6018 }
6019
63b2ca30 6020 capacity_orig = capacity = 0;
1e3c88bd 6021
74a5ce20
PZ
6022 if (child->flags & SD_OVERLAP) {
6023 /*
6024 * SD_OVERLAP domains cannot assume that child groups
6025 * span the current group.
6026 */
6027
863bffc8 6028 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6029 struct sched_group_capacity *sgc;
9abf24d4 6030 struct rq *rq = cpu_rq(cpu);
863bffc8 6031
9abf24d4 6032 /*
63b2ca30 6033 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6034 * gets here before we've attached the domains to the
6035 * runqueues.
6036 *
ced549fa
NP
6037 * Use capacity_of(), which is set irrespective of domains
6038 * in update_cpu_capacity().
9abf24d4 6039 *
63b2ca30 6040 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
6041 * causing divide-by-zero issues on boot.
6042 *
63b2ca30 6043 * Runtime updates will correct capacity_orig.
9abf24d4
SD
6044 */
6045 if (unlikely(!rq->sd)) {
ced549fa
NP
6046 capacity_orig += capacity_of(cpu);
6047 capacity += capacity_of(cpu);
9abf24d4
SD
6048 continue;
6049 }
863bffc8 6050
63b2ca30
NP
6051 sgc = rq->sd->groups->sgc;
6052 capacity_orig += sgc->capacity_orig;
6053 capacity += sgc->capacity;
863bffc8 6054 }
74a5ce20
PZ
6055 } else {
6056 /*
6057 * !SD_OVERLAP domains can assume that child groups
6058 * span the current group.
6059 */
6060
6061 group = child->groups;
6062 do {
63b2ca30
NP
6063 capacity_orig += group->sgc->capacity_orig;
6064 capacity += group->sgc->capacity;
74a5ce20
PZ
6065 group = group->next;
6066 } while (group != child->groups);
6067 }
1e3c88bd 6068
63b2ca30
NP
6069 sdg->sgc->capacity_orig = capacity_orig;
6070 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6071}
6072
9d5efe05
SV
6073/*
6074 * Try and fix up capacity for tiny siblings, this is needed when
6075 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6076 * which on its own isn't powerful enough.
6077 *
6078 * See update_sd_pick_busiest() and check_asym_packing().
6079 */
6080static inline int
6081fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6082{
6083 /*
ca8ce3d0 6084 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 6085 */
5d4dfddd 6086 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
6087 return 0;
6088
6089 /*
63b2ca30 6090 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 6091 */
63b2ca30 6092 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
6093 return 1;
6094
6095 return 0;
6096}
6097
30ce5dab
PZ
6098/*
6099 * Group imbalance indicates (and tries to solve) the problem where balancing
6100 * groups is inadequate due to tsk_cpus_allowed() constraints.
6101 *
6102 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6103 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6104 * Something like:
6105 *
6106 * { 0 1 2 3 } { 4 5 6 7 }
6107 * * * * *
6108 *
6109 * If we were to balance group-wise we'd place two tasks in the first group and
6110 * two tasks in the second group. Clearly this is undesired as it will overload
6111 * cpu 3 and leave one of the cpus in the second group unused.
6112 *
6113 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6114 * by noticing the lower domain failed to reach balance and had difficulty
6115 * moving tasks due to affinity constraints.
30ce5dab
PZ
6116 *
6117 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6118 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6119 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6120 * to create an effective group imbalance.
6121 *
6122 * This is a somewhat tricky proposition since the next run might not find the
6123 * group imbalance and decide the groups need to be balanced again. A most
6124 * subtle and fragile situation.
6125 */
6126
6263322c 6127static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6128{
63b2ca30 6129 return group->sgc->imbalance;
30ce5dab
PZ
6130}
6131
b37d9316 6132/*
0fedc6c8 6133 * Compute the group capacity factor.
b37d9316 6134 *
ced549fa 6135 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 6136 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 6137 * and limit unit capacity with that.
b37d9316 6138 */
0fedc6c8 6139static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 6140{
0fedc6c8 6141 unsigned int capacity_factor, smt, cpus;
63b2ca30 6142 unsigned int capacity, capacity_orig;
c61037e9 6143
63b2ca30
NP
6144 capacity = group->sgc->capacity;
6145 capacity_orig = group->sgc->capacity_orig;
c61037e9 6146 cpus = group->group_weight;
b37d9316 6147
63b2ca30 6148 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 6149 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 6150 capacity_factor = cpus / smt; /* cores */
b37d9316 6151
63b2ca30 6152 capacity_factor = min_t(unsigned,
ca8ce3d0 6153 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
6154 if (!capacity_factor)
6155 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 6156
0fedc6c8 6157 return capacity_factor;
b37d9316
PZ
6158}
6159
caeb178c
RR
6160static enum group_type
6161group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6162{
6163 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6164 return group_overloaded;
6165
6166 if (sg_imbalanced(group))
6167 return group_imbalanced;
6168
6169 return group_other;
6170}
6171
1e3c88bd
PZ
6172/**
6173 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6174 * @env: The load balancing environment.
1e3c88bd 6175 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6176 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6177 * @local_group: Does group contain this_cpu.
1e3c88bd 6178 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6179 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6180 */
bd939f45
PZ
6181static inline void update_sg_lb_stats(struct lb_env *env,
6182 struct sched_group *group, int load_idx,
4486edd1
TC
6183 int local_group, struct sg_lb_stats *sgs,
6184 bool *overload)
1e3c88bd 6185{
30ce5dab 6186 unsigned long load;
bd939f45 6187 int i;
1e3c88bd 6188
b72ff13c
PZ
6189 memset(sgs, 0, sizeof(*sgs));
6190
b9403130 6191 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6192 struct rq *rq = cpu_rq(i);
6193
1e3c88bd 6194 /* Bias balancing toward cpus of our domain */
6263322c 6195 if (local_group)
04f733b4 6196 load = target_load(i, load_idx);
6263322c 6197 else
1e3c88bd 6198 load = source_load(i, load_idx);
1e3c88bd
PZ
6199
6200 sgs->group_load += load;
65fdac08 6201 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6202
6203 if (rq->nr_running > 1)
6204 *overload = true;
6205
0ec8aa00
PZ
6206#ifdef CONFIG_NUMA_BALANCING
6207 sgs->nr_numa_running += rq->nr_numa_running;
6208 sgs->nr_preferred_running += rq->nr_preferred_running;
6209#endif
1e3c88bd 6210 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6211 if (idle_cpu(i))
6212 sgs->idle_cpus++;
1e3c88bd
PZ
6213 }
6214
63b2ca30
NP
6215 /* Adjust by relative CPU capacity of the group */
6216 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6217 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6218
dd5feea1 6219 if (sgs->sum_nr_running)
38d0f770 6220 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6221
aae6d3dd 6222 sgs->group_weight = group->group_weight;
0fedc6c8 6223 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6224 sgs->group_type = group_classify(group, sgs);
b37d9316 6225
0fedc6c8 6226 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6227 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6228}
6229
532cb4c4
MN
6230/**
6231 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6232 * @env: The load balancing environment.
532cb4c4
MN
6233 * @sds: sched_domain statistics
6234 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6235 * @sgs: sched_group statistics
532cb4c4
MN
6236 *
6237 * Determine if @sg is a busier group than the previously selected
6238 * busiest group.
e69f6186
YB
6239 *
6240 * Return: %true if @sg is a busier group than the previously selected
6241 * busiest group. %false otherwise.
532cb4c4 6242 */
bd939f45 6243static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6244 struct sd_lb_stats *sds,
6245 struct sched_group *sg,
bd939f45 6246 struct sg_lb_stats *sgs)
532cb4c4 6247{
caeb178c 6248 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6249
caeb178c 6250 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6251 return true;
6252
caeb178c
RR
6253 if (sgs->group_type < busiest->group_type)
6254 return false;
6255
6256 if (sgs->avg_load <= busiest->avg_load)
6257 return false;
6258
6259 /* This is the busiest node in its class. */
6260 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6261 return true;
6262
6263 /*
6264 * ASYM_PACKING needs to move all the work to the lowest
6265 * numbered CPUs in the group, therefore mark all groups
6266 * higher than ourself as busy.
6267 */
caeb178c 6268 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6269 if (!sds->busiest)
6270 return true;
6271
6272 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6273 return true;
6274 }
6275
6276 return false;
6277}
6278
0ec8aa00
PZ
6279#ifdef CONFIG_NUMA_BALANCING
6280static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6281{
6282 if (sgs->sum_nr_running > sgs->nr_numa_running)
6283 return regular;
6284 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6285 return remote;
6286 return all;
6287}
6288
6289static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6290{
6291 if (rq->nr_running > rq->nr_numa_running)
6292 return regular;
6293 if (rq->nr_running > rq->nr_preferred_running)
6294 return remote;
6295 return all;
6296}
6297#else
6298static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6299{
6300 return all;
6301}
6302
6303static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6304{
6305 return regular;
6306}
6307#endif /* CONFIG_NUMA_BALANCING */
6308
1e3c88bd 6309/**
461819ac 6310 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6311 * @env: The load balancing environment.
1e3c88bd
PZ
6312 * @sds: variable to hold the statistics for this sched_domain.
6313 */
0ec8aa00 6314static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6315{
bd939f45
PZ
6316 struct sched_domain *child = env->sd->child;
6317 struct sched_group *sg = env->sd->groups;
56cf515b 6318 struct sg_lb_stats tmp_sgs;
1e3c88bd 6319 int load_idx, prefer_sibling = 0;
4486edd1 6320 bool overload = false;
1e3c88bd
PZ
6321
6322 if (child && child->flags & SD_PREFER_SIBLING)
6323 prefer_sibling = 1;
6324
bd939f45 6325 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6326
6327 do {
56cf515b 6328 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6329 int local_group;
6330
bd939f45 6331 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6332 if (local_group) {
6333 sds->local = sg;
6334 sgs = &sds->local_stat;
b72ff13c
PZ
6335
6336 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6337 time_after_eq(jiffies, sg->sgc->next_update))
6338 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6339 }
1e3c88bd 6340
4486edd1
TC
6341 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6342 &overload);
1e3c88bd 6343
b72ff13c
PZ
6344 if (local_group)
6345 goto next_group;
6346
1e3c88bd
PZ
6347 /*
6348 * In case the child domain prefers tasks go to siblings
0fedc6c8 6349 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6350 * and move all the excess tasks away. We lower the capacity
6351 * of a group only if the local group has the capacity to fit
0fedc6c8 6352 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6353 * extra check prevents the case where you always pull from the
6354 * heaviest group when it is already under-utilized (possible
6355 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6356 */
b72ff13c 6357 if (prefer_sibling && sds->local &&
cb0b9f24 6358 sds->local_stat.group_has_free_capacity) {
0fedc6c8 6359 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
cb0b9f24
WL
6360 sgs->group_type = group_classify(sg, sgs);
6361 }
1e3c88bd 6362
b72ff13c 6363 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6364 sds->busiest = sg;
56cf515b 6365 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6366 }
6367
b72ff13c
PZ
6368next_group:
6369 /* Now, start updating sd_lb_stats */
6370 sds->total_load += sgs->group_load;
63b2ca30 6371 sds->total_capacity += sgs->group_capacity;
b72ff13c 6372
532cb4c4 6373 sg = sg->next;
bd939f45 6374 } while (sg != env->sd->groups);
0ec8aa00
PZ
6375
6376 if (env->sd->flags & SD_NUMA)
6377 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6378
6379 if (!env->sd->parent) {
6380 /* update overload indicator if we are at root domain */
6381 if (env->dst_rq->rd->overload != overload)
6382 env->dst_rq->rd->overload = overload;
6383 }
6384
532cb4c4
MN
6385}
6386
532cb4c4
MN
6387/**
6388 * check_asym_packing - Check to see if the group is packed into the
6389 * sched doman.
6390 *
6391 * This is primarily intended to used at the sibling level. Some
6392 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6393 * case of POWER7, it can move to lower SMT modes only when higher
6394 * threads are idle. When in lower SMT modes, the threads will
6395 * perform better since they share less core resources. Hence when we
6396 * have idle threads, we want them to be the higher ones.
6397 *
6398 * This packing function is run on idle threads. It checks to see if
6399 * the busiest CPU in this domain (core in the P7 case) has a higher
6400 * CPU number than the packing function is being run on. Here we are
6401 * assuming lower CPU number will be equivalent to lower a SMT thread
6402 * number.
6403 *
e69f6186 6404 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6405 * this CPU. The amount of the imbalance is returned in *imbalance.
6406 *
cd96891d 6407 * @env: The load balancing environment.
532cb4c4 6408 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6409 */
bd939f45 6410static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6411{
6412 int busiest_cpu;
6413
bd939f45 6414 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6415 return 0;
6416
6417 if (!sds->busiest)
6418 return 0;
6419
6420 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6421 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6422 return 0;
6423
bd939f45 6424 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6425 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6426 SCHED_CAPACITY_SCALE);
bd939f45 6427
532cb4c4 6428 return 1;
1e3c88bd
PZ
6429}
6430
6431/**
6432 * fix_small_imbalance - Calculate the minor imbalance that exists
6433 * amongst the groups of a sched_domain, during
6434 * load balancing.
cd96891d 6435 * @env: The load balancing environment.
1e3c88bd 6436 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6437 */
bd939f45
PZ
6438static inline
6439void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6440{
63b2ca30 6441 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6442 unsigned int imbn = 2;
dd5feea1 6443 unsigned long scaled_busy_load_per_task;
56cf515b 6444 struct sg_lb_stats *local, *busiest;
1e3c88bd 6445
56cf515b
JK
6446 local = &sds->local_stat;
6447 busiest = &sds->busiest_stat;
1e3c88bd 6448
56cf515b
JK
6449 if (!local->sum_nr_running)
6450 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6451 else if (busiest->load_per_task > local->load_per_task)
6452 imbn = 1;
dd5feea1 6453
56cf515b 6454 scaled_busy_load_per_task =
ca8ce3d0 6455 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6456 busiest->group_capacity;
56cf515b 6457
3029ede3
VD
6458 if (busiest->avg_load + scaled_busy_load_per_task >=
6459 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6460 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6461 return;
6462 }
6463
6464 /*
6465 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6466 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6467 * moving them.
6468 */
6469
63b2ca30 6470 capa_now += busiest->group_capacity *
56cf515b 6471 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6472 capa_now += local->group_capacity *
56cf515b 6473 min(local->load_per_task, local->avg_load);
ca8ce3d0 6474 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6475
6476 /* Amount of load we'd subtract */
a2cd4260 6477 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6478 capa_move += busiest->group_capacity *
56cf515b 6479 min(busiest->load_per_task,
a2cd4260 6480 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6481 }
1e3c88bd
PZ
6482
6483 /* Amount of load we'd add */
63b2ca30 6484 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6485 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6486 tmp = (busiest->avg_load * busiest->group_capacity) /
6487 local->group_capacity;
56cf515b 6488 } else {
ca8ce3d0 6489 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6490 local->group_capacity;
56cf515b 6491 }
63b2ca30 6492 capa_move += local->group_capacity *
3ae11c90 6493 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6494 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6495
6496 /* Move if we gain throughput */
63b2ca30 6497 if (capa_move > capa_now)
56cf515b 6498 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6499}
6500
6501/**
6502 * calculate_imbalance - Calculate the amount of imbalance present within the
6503 * groups of a given sched_domain during load balance.
bd939f45 6504 * @env: load balance environment
1e3c88bd 6505 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6506 */
bd939f45 6507static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6508{
dd5feea1 6509 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6510 struct sg_lb_stats *local, *busiest;
6511
6512 local = &sds->local_stat;
56cf515b 6513 busiest = &sds->busiest_stat;
dd5feea1 6514
caeb178c 6515 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6516 /*
6517 * In the group_imb case we cannot rely on group-wide averages
6518 * to ensure cpu-load equilibrium, look at wider averages. XXX
6519 */
56cf515b
JK
6520 busiest->load_per_task =
6521 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6522 }
6523
1e3c88bd
PZ
6524 /*
6525 * In the presence of smp nice balancing, certain scenarios can have
6526 * max load less than avg load(as we skip the groups at or below
ced549fa 6527 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6528 */
b1885550
VD
6529 if (busiest->avg_load <= sds->avg_load ||
6530 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6531 env->imbalance = 0;
6532 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6533 }
6534
9a5d9ba6
PZ
6535 /*
6536 * If there aren't any idle cpus, avoid creating some.
6537 */
6538 if (busiest->group_type == group_overloaded &&
6539 local->group_type == group_overloaded) {
56cf515b 6540 load_above_capacity =
0fedc6c8 6541 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6542
ca8ce3d0 6543 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6544 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6545 }
6546
6547 /*
6548 * We're trying to get all the cpus to the average_load, so we don't
6549 * want to push ourselves above the average load, nor do we wish to
6550 * reduce the max loaded cpu below the average load. At the same time,
6551 * we also don't want to reduce the group load below the group capacity
6552 * (so that we can implement power-savings policies etc). Thus we look
6553 * for the minimum possible imbalance.
dd5feea1 6554 */
30ce5dab 6555 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6556
6557 /* How much load to actually move to equalise the imbalance */
56cf515b 6558 env->imbalance = min(
63b2ca30
NP
6559 max_pull * busiest->group_capacity,
6560 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6561 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6562
6563 /*
6564 * if *imbalance is less than the average load per runnable task
25985edc 6565 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6566 * a think about bumping its value to force at least one task to be
6567 * moved
6568 */
56cf515b 6569 if (env->imbalance < busiest->load_per_task)
bd939f45 6570 return fix_small_imbalance(env, sds);
1e3c88bd 6571}
fab47622 6572
1e3c88bd
PZ
6573/******* find_busiest_group() helpers end here *********************/
6574
6575/**
6576 * find_busiest_group - Returns the busiest group within the sched_domain
6577 * if there is an imbalance. If there isn't an imbalance, and
6578 * the user has opted for power-savings, it returns a group whose
6579 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6580 * such a group exists.
6581 *
6582 * Also calculates the amount of weighted load which should be moved
6583 * to restore balance.
6584 *
cd96891d 6585 * @env: The load balancing environment.
1e3c88bd 6586 *
e69f6186 6587 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6588 * - If no imbalance and user has opted for power-savings balance,
6589 * return the least loaded group whose CPUs can be
6590 * put to idle by rebalancing its tasks onto our group.
6591 */
56cf515b 6592static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6593{
56cf515b 6594 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6595 struct sd_lb_stats sds;
6596
147c5fc2 6597 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6598
6599 /*
6600 * Compute the various statistics relavent for load balancing at
6601 * this level.
6602 */
23f0d209 6603 update_sd_lb_stats(env, &sds);
56cf515b
JK
6604 local = &sds.local_stat;
6605 busiest = &sds.busiest_stat;
1e3c88bd 6606
bd939f45
PZ
6607 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6608 check_asym_packing(env, &sds))
532cb4c4
MN
6609 return sds.busiest;
6610
cc57aa8f 6611 /* There is no busy sibling group to pull tasks from */
56cf515b 6612 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6613 goto out_balanced;
6614
ca8ce3d0
NP
6615 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6616 / sds.total_capacity;
b0432d8f 6617
866ab43e
PZ
6618 /*
6619 * If the busiest group is imbalanced the below checks don't
30ce5dab 6620 * work because they assume all things are equal, which typically
866ab43e
PZ
6621 * isn't true due to cpus_allowed constraints and the like.
6622 */
caeb178c 6623 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6624 goto force_balance;
6625
cc57aa8f 6626 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6627 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6628 !busiest->group_has_free_capacity)
fab47622
NR
6629 goto force_balance;
6630
cc57aa8f 6631 /*
9c58c79a 6632 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6633 * don't try and pull any tasks.
6634 */
56cf515b 6635 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6636 goto out_balanced;
6637
cc57aa8f
PZ
6638 /*
6639 * Don't pull any tasks if this group is already above the domain
6640 * average load.
6641 */
56cf515b 6642 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6643 goto out_balanced;
6644
bd939f45 6645 if (env->idle == CPU_IDLE) {
aae6d3dd 6646 /*
43f4d666
VG
6647 * This cpu is idle. If the busiest group is not overloaded
6648 * and there is no imbalance between this and busiest group
6649 * wrt idle cpus, it is balanced. The imbalance becomes
6650 * significant if the diff is greater than 1 otherwise we
6651 * might end up to just move the imbalance on another group
aae6d3dd 6652 */
43f4d666
VG
6653 if ((busiest->group_type != group_overloaded) &&
6654 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6655 goto out_balanced;
c186fafe
PZ
6656 } else {
6657 /*
6658 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6659 * imbalance_pct to be conservative.
6660 */
56cf515b
JK
6661 if (100 * busiest->avg_load <=
6662 env->sd->imbalance_pct * local->avg_load)
c186fafe 6663 goto out_balanced;
aae6d3dd 6664 }
1e3c88bd 6665
fab47622 6666force_balance:
1e3c88bd 6667 /* Looks like there is an imbalance. Compute it */
bd939f45 6668 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6669 return sds.busiest;
6670
6671out_balanced:
bd939f45 6672 env->imbalance = 0;
1e3c88bd
PZ
6673 return NULL;
6674}
6675
6676/*
6677 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6678 */
bd939f45 6679static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6680 struct sched_group *group)
1e3c88bd
PZ
6681{
6682 struct rq *busiest = NULL, *rq;
ced549fa 6683 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6684 int i;
6685
6906a408 6686 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6687 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6688 enum fbq_type rt;
6689
6690 rq = cpu_rq(i);
6691 rt = fbq_classify_rq(rq);
1e3c88bd 6692
0ec8aa00
PZ
6693 /*
6694 * We classify groups/runqueues into three groups:
6695 * - regular: there are !numa tasks
6696 * - remote: there are numa tasks that run on the 'wrong' node
6697 * - all: there is no distinction
6698 *
6699 * In order to avoid migrating ideally placed numa tasks,
6700 * ignore those when there's better options.
6701 *
6702 * If we ignore the actual busiest queue to migrate another
6703 * task, the next balance pass can still reduce the busiest
6704 * queue by moving tasks around inside the node.
6705 *
6706 * If we cannot move enough load due to this classification
6707 * the next pass will adjust the group classification and
6708 * allow migration of more tasks.
6709 *
6710 * Both cases only affect the total convergence complexity.
6711 */
6712 if (rt > env->fbq_type)
6713 continue;
6714
ced549fa 6715 capacity = capacity_of(i);
ca8ce3d0 6716 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6717 if (!capacity_factor)
6718 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6719
6e40f5bb 6720 wl = weighted_cpuload(i);
1e3c88bd 6721
6e40f5bb
TG
6722 /*
6723 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6724 * which is not scaled with the cpu capacity.
6e40f5bb 6725 */
0fedc6c8 6726 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6727 continue;
6728
6e40f5bb
TG
6729 /*
6730 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6731 * the weighted_cpuload() scaled with the cpu capacity, so
6732 * that the load can be moved away from the cpu that is
6733 * potentially running at a lower capacity.
95a79b80 6734 *
ced549fa 6735 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6736 * multiplication to rid ourselves of the division works out
ced549fa
NP
6737 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6738 * our previous maximum.
6e40f5bb 6739 */
ced549fa 6740 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6741 busiest_load = wl;
ced549fa 6742 busiest_capacity = capacity;
1e3c88bd
PZ
6743 busiest = rq;
6744 }
6745 }
6746
6747 return busiest;
6748}
6749
6750/*
6751 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6752 * so long as it is large enough.
6753 */
6754#define MAX_PINNED_INTERVAL 512
6755
6756/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6757DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6758
bd939f45 6759static int need_active_balance(struct lb_env *env)
1af3ed3d 6760{
bd939f45
PZ
6761 struct sched_domain *sd = env->sd;
6762
6763 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6764
6765 /*
6766 * ASYM_PACKING needs to force migrate tasks from busy but
6767 * higher numbered CPUs in order to pack all tasks in the
6768 * lowest numbered CPUs.
6769 */
bd939f45 6770 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6771 return 1;
1af3ed3d
PZ
6772 }
6773
6774 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6775}
6776
969c7921
TH
6777static int active_load_balance_cpu_stop(void *data);
6778
23f0d209
JK
6779static int should_we_balance(struct lb_env *env)
6780{
6781 struct sched_group *sg = env->sd->groups;
6782 struct cpumask *sg_cpus, *sg_mask;
6783 int cpu, balance_cpu = -1;
6784
6785 /*
6786 * In the newly idle case, we will allow all the cpu's
6787 * to do the newly idle load balance.
6788 */
6789 if (env->idle == CPU_NEWLY_IDLE)
6790 return 1;
6791
6792 sg_cpus = sched_group_cpus(sg);
6793 sg_mask = sched_group_mask(sg);
6794 /* Try to find first idle cpu */
6795 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6796 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6797 continue;
6798
6799 balance_cpu = cpu;
6800 break;
6801 }
6802
6803 if (balance_cpu == -1)
6804 balance_cpu = group_balance_cpu(sg);
6805
6806 /*
6807 * First idle cpu or the first cpu(busiest) in this sched group
6808 * is eligible for doing load balancing at this and above domains.
6809 */
b0cff9d8 6810 return balance_cpu == env->dst_cpu;
23f0d209
JK
6811}
6812
1e3c88bd
PZ
6813/*
6814 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6815 * tasks if there is an imbalance.
6816 */
6817static int load_balance(int this_cpu, struct rq *this_rq,
6818 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6819 int *continue_balancing)
1e3c88bd 6820{
88b8dac0 6821 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6822 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6823 struct sched_group *group;
1e3c88bd
PZ
6824 struct rq *busiest;
6825 unsigned long flags;
4ba29684 6826 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6827
8e45cb54
PZ
6828 struct lb_env env = {
6829 .sd = sd,
ddcdf6e7
PZ
6830 .dst_cpu = this_cpu,
6831 .dst_rq = this_rq,
88b8dac0 6832 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6833 .idle = idle,
eb95308e 6834 .loop_break = sched_nr_migrate_break,
b9403130 6835 .cpus = cpus,
0ec8aa00 6836 .fbq_type = all,
163122b7 6837 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6838 };
6839
cfc03118
JK
6840 /*
6841 * For NEWLY_IDLE load_balancing, we don't need to consider
6842 * other cpus in our group
6843 */
e02e60c1 6844 if (idle == CPU_NEWLY_IDLE)
cfc03118 6845 env.dst_grpmask = NULL;
cfc03118 6846
1e3c88bd
PZ
6847 cpumask_copy(cpus, cpu_active_mask);
6848
1e3c88bd
PZ
6849 schedstat_inc(sd, lb_count[idle]);
6850
6851redo:
23f0d209
JK
6852 if (!should_we_balance(&env)) {
6853 *continue_balancing = 0;
1e3c88bd 6854 goto out_balanced;
23f0d209 6855 }
1e3c88bd 6856
23f0d209 6857 group = find_busiest_group(&env);
1e3c88bd
PZ
6858 if (!group) {
6859 schedstat_inc(sd, lb_nobusyg[idle]);
6860 goto out_balanced;
6861 }
6862
b9403130 6863 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6864 if (!busiest) {
6865 schedstat_inc(sd, lb_nobusyq[idle]);
6866 goto out_balanced;
6867 }
6868
78feefc5 6869 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6870
bd939f45 6871 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6872
6873 ld_moved = 0;
6874 if (busiest->nr_running > 1) {
6875 /*
6876 * Attempt to move tasks. If find_busiest_group has found
6877 * an imbalance but busiest->nr_running <= 1, the group is
6878 * still unbalanced. ld_moved simply stays zero, so it is
6879 * correctly treated as an imbalance.
6880 */
8e45cb54 6881 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6882 env.src_cpu = busiest->cpu;
6883 env.src_rq = busiest;
6884 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6885
5d6523eb 6886more_balance:
163122b7 6887 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6888
6889 /*
6890 * cur_ld_moved - load moved in current iteration
6891 * ld_moved - cumulative load moved across iterations
6892 */
163122b7 6893 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6894
6895 /*
163122b7
KT
6896 * We've detached some tasks from busiest_rq. Every
6897 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6898 * unlock busiest->lock, and we are able to be sure
6899 * that nobody can manipulate the tasks in parallel.
6900 * See task_rq_lock() family for the details.
1e3c88bd 6901 */
163122b7
KT
6902
6903 raw_spin_unlock(&busiest->lock);
6904
6905 if (cur_ld_moved) {
6906 attach_tasks(&env);
6907 ld_moved += cur_ld_moved;
6908 }
6909
1e3c88bd 6910 local_irq_restore(flags);
88b8dac0 6911
f1cd0858
JK
6912 if (env.flags & LBF_NEED_BREAK) {
6913 env.flags &= ~LBF_NEED_BREAK;
6914 goto more_balance;
6915 }
6916
88b8dac0
SV
6917 /*
6918 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6919 * us and move them to an alternate dst_cpu in our sched_group
6920 * where they can run. The upper limit on how many times we
6921 * iterate on same src_cpu is dependent on number of cpus in our
6922 * sched_group.
6923 *
6924 * This changes load balance semantics a bit on who can move
6925 * load to a given_cpu. In addition to the given_cpu itself
6926 * (or a ilb_cpu acting on its behalf where given_cpu is
6927 * nohz-idle), we now have balance_cpu in a position to move
6928 * load to given_cpu. In rare situations, this may cause
6929 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6930 * _independently_ and at _same_ time to move some load to
6931 * given_cpu) causing exceess load to be moved to given_cpu.
6932 * This however should not happen so much in practice and
6933 * moreover subsequent load balance cycles should correct the
6934 * excess load moved.
6935 */
6263322c 6936 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6937
7aff2e3a
VD
6938 /* Prevent to re-select dst_cpu via env's cpus */
6939 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6940
78feefc5 6941 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6942 env.dst_cpu = env.new_dst_cpu;
6263322c 6943 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6944 env.loop = 0;
6945 env.loop_break = sched_nr_migrate_break;
e02e60c1 6946
88b8dac0
SV
6947 /*
6948 * Go back to "more_balance" rather than "redo" since we
6949 * need to continue with same src_cpu.
6950 */
6951 goto more_balance;
6952 }
1e3c88bd 6953
6263322c
PZ
6954 /*
6955 * We failed to reach balance because of affinity.
6956 */
6957 if (sd_parent) {
63b2ca30 6958 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6959
afdeee05 6960 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6961 *group_imbalance = 1;
6263322c
PZ
6962 }
6963
1e3c88bd 6964 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6965 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6966 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6967 if (!cpumask_empty(cpus)) {
6968 env.loop = 0;
6969 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6970 goto redo;
bbf18b19 6971 }
afdeee05 6972 goto out_all_pinned;
1e3c88bd
PZ
6973 }
6974 }
6975
6976 if (!ld_moved) {
6977 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6978 /*
6979 * Increment the failure counter only on periodic balance.
6980 * We do not want newidle balance, which can be very
6981 * frequent, pollute the failure counter causing
6982 * excessive cache_hot migrations and active balances.
6983 */
6984 if (idle != CPU_NEWLY_IDLE)
6985 sd->nr_balance_failed++;
1e3c88bd 6986
bd939f45 6987 if (need_active_balance(&env)) {
1e3c88bd
PZ
6988 raw_spin_lock_irqsave(&busiest->lock, flags);
6989
969c7921
TH
6990 /* don't kick the active_load_balance_cpu_stop,
6991 * if the curr task on busiest cpu can't be
6992 * moved to this_cpu
1e3c88bd
PZ
6993 */
6994 if (!cpumask_test_cpu(this_cpu,
fa17b507 6995 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6996 raw_spin_unlock_irqrestore(&busiest->lock,
6997 flags);
8e45cb54 6998 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6999 goto out_one_pinned;
7000 }
7001
969c7921
TH
7002 /*
7003 * ->active_balance synchronizes accesses to
7004 * ->active_balance_work. Once set, it's cleared
7005 * only after active load balance is finished.
7006 */
1e3c88bd
PZ
7007 if (!busiest->active_balance) {
7008 busiest->active_balance = 1;
7009 busiest->push_cpu = this_cpu;
7010 active_balance = 1;
7011 }
7012 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7013
bd939f45 7014 if (active_balance) {
969c7921
TH
7015 stop_one_cpu_nowait(cpu_of(busiest),
7016 active_load_balance_cpu_stop, busiest,
7017 &busiest->active_balance_work);
bd939f45 7018 }
1e3c88bd
PZ
7019
7020 /*
7021 * We've kicked active balancing, reset the failure
7022 * counter.
7023 */
7024 sd->nr_balance_failed = sd->cache_nice_tries+1;
7025 }
7026 } else
7027 sd->nr_balance_failed = 0;
7028
7029 if (likely(!active_balance)) {
7030 /* We were unbalanced, so reset the balancing interval */
7031 sd->balance_interval = sd->min_interval;
7032 } else {
7033 /*
7034 * If we've begun active balancing, start to back off. This
7035 * case may not be covered by the all_pinned logic if there
7036 * is only 1 task on the busy runqueue (because we don't call
163122b7 7037 * detach_tasks).
1e3c88bd
PZ
7038 */
7039 if (sd->balance_interval < sd->max_interval)
7040 sd->balance_interval *= 2;
7041 }
7042
1e3c88bd
PZ
7043 goto out;
7044
7045out_balanced:
afdeee05
VG
7046 /*
7047 * We reach balance although we may have faced some affinity
7048 * constraints. Clear the imbalance flag if it was set.
7049 */
7050 if (sd_parent) {
7051 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7052
7053 if (*group_imbalance)
7054 *group_imbalance = 0;
7055 }
7056
7057out_all_pinned:
7058 /*
7059 * We reach balance because all tasks are pinned at this level so
7060 * we can't migrate them. Let the imbalance flag set so parent level
7061 * can try to migrate them.
7062 */
1e3c88bd
PZ
7063 schedstat_inc(sd, lb_balanced[idle]);
7064
7065 sd->nr_balance_failed = 0;
7066
7067out_one_pinned:
7068 /* tune up the balancing interval */
8e45cb54 7069 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7070 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7071 (sd->balance_interval < sd->max_interval))
7072 sd->balance_interval *= 2;
7073
46e49b38 7074 ld_moved = 0;
1e3c88bd 7075out:
1e3c88bd
PZ
7076 return ld_moved;
7077}
7078
52a08ef1
JL
7079static inline unsigned long
7080get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7081{
7082 unsigned long interval = sd->balance_interval;
7083
7084 if (cpu_busy)
7085 interval *= sd->busy_factor;
7086
7087 /* scale ms to jiffies */
7088 interval = msecs_to_jiffies(interval);
7089 interval = clamp(interval, 1UL, max_load_balance_interval);
7090
7091 return interval;
7092}
7093
7094static inline void
7095update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7096{
7097 unsigned long interval, next;
7098
7099 interval = get_sd_balance_interval(sd, cpu_busy);
7100 next = sd->last_balance + interval;
7101
7102 if (time_after(*next_balance, next))
7103 *next_balance = next;
7104}
7105
1e3c88bd
PZ
7106/*
7107 * idle_balance is called by schedule() if this_cpu is about to become
7108 * idle. Attempts to pull tasks from other CPUs.
7109 */
6e83125c 7110static int idle_balance(struct rq *this_rq)
1e3c88bd 7111{
52a08ef1
JL
7112 unsigned long next_balance = jiffies + HZ;
7113 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7114 struct sched_domain *sd;
7115 int pulled_task = 0;
9bd721c5 7116 u64 curr_cost = 0;
1e3c88bd 7117
6e83125c 7118 idle_enter_fair(this_rq);
0e5b5337 7119
6e83125c
PZ
7120 /*
7121 * We must set idle_stamp _before_ calling idle_balance(), such that we
7122 * measure the duration of idle_balance() as idle time.
7123 */
7124 this_rq->idle_stamp = rq_clock(this_rq);
7125
4486edd1
TC
7126 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7127 !this_rq->rd->overload) {
52a08ef1
JL
7128 rcu_read_lock();
7129 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7130 if (sd)
7131 update_next_balance(sd, 0, &next_balance);
7132 rcu_read_unlock();
7133
6e83125c 7134 goto out;
52a08ef1 7135 }
1e3c88bd 7136
f492e12e
PZ
7137 /*
7138 * Drop the rq->lock, but keep IRQ/preempt disabled.
7139 */
7140 raw_spin_unlock(&this_rq->lock);
7141
48a16753 7142 update_blocked_averages(this_cpu);
dce840a0 7143 rcu_read_lock();
1e3c88bd 7144 for_each_domain(this_cpu, sd) {
23f0d209 7145 int continue_balancing = 1;
9bd721c5 7146 u64 t0, domain_cost;
1e3c88bd
PZ
7147
7148 if (!(sd->flags & SD_LOAD_BALANCE))
7149 continue;
7150
52a08ef1
JL
7151 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7152 update_next_balance(sd, 0, &next_balance);
9bd721c5 7153 break;
52a08ef1 7154 }
9bd721c5 7155
f492e12e 7156 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7157 t0 = sched_clock_cpu(this_cpu);
7158
f492e12e 7159 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7160 sd, CPU_NEWLY_IDLE,
7161 &continue_balancing);
9bd721c5
JL
7162
7163 domain_cost = sched_clock_cpu(this_cpu) - t0;
7164 if (domain_cost > sd->max_newidle_lb_cost)
7165 sd->max_newidle_lb_cost = domain_cost;
7166
7167 curr_cost += domain_cost;
f492e12e 7168 }
1e3c88bd 7169
52a08ef1 7170 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7171
7172 /*
7173 * Stop searching for tasks to pull if there are
7174 * now runnable tasks on this rq.
7175 */
7176 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7177 break;
1e3c88bd 7178 }
dce840a0 7179 rcu_read_unlock();
f492e12e
PZ
7180
7181 raw_spin_lock(&this_rq->lock);
7182
0e5b5337
JL
7183 if (curr_cost > this_rq->max_idle_balance_cost)
7184 this_rq->max_idle_balance_cost = curr_cost;
7185
e5fc6611 7186 /*
0e5b5337
JL
7187 * While browsing the domains, we released the rq lock, a task could
7188 * have been enqueued in the meantime. Since we're not going idle,
7189 * pretend we pulled a task.
e5fc6611 7190 */
0e5b5337 7191 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7192 pulled_task = 1;
e5fc6611 7193
52a08ef1
JL
7194out:
7195 /* Move the next balance forward */
7196 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7197 this_rq->next_balance = next_balance;
9bd721c5 7198
e4aa358b 7199 /* Is there a task of a high priority class? */
46383648 7200 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7201 pulled_task = -1;
7202
7203 if (pulled_task) {
7204 idle_exit_fair(this_rq);
6e83125c 7205 this_rq->idle_stamp = 0;
e4aa358b 7206 }
6e83125c 7207
3c4017c1 7208 return pulled_task;
1e3c88bd
PZ
7209}
7210
7211/*
969c7921
TH
7212 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7213 * running tasks off the busiest CPU onto idle CPUs. It requires at
7214 * least 1 task to be running on each physical CPU where possible, and
7215 * avoids physical / logical imbalances.
1e3c88bd 7216 */
969c7921 7217static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7218{
969c7921
TH
7219 struct rq *busiest_rq = data;
7220 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7221 int target_cpu = busiest_rq->push_cpu;
969c7921 7222 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7223 struct sched_domain *sd;
e5673f28 7224 struct task_struct *p = NULL;
969c7921
TH
7225
7226 raw_spin_lock_irq(&busiest_rq->lock);
7227
7228 /* make sure the requested cpu hasn't gone down in the meantime */
7229 if (unlikely(busiest_cpu != smp_processor_id() ||
7230 !busiest_rq->active_balance))
7231 goto out_unlock;
1e3c88bd
PZ
7232
7233 /* Is there any task to move? */
7234 if (busiest_rq->nr_running <= 1)
969c7921 7235 goto out_unlock;
1e3c88bd
PZ
7236
7237 /*
7238 * This condition is "impossible", if it occurs
7239 * we need to fix it. Originally reported by
7240 * Bjorn Helgaas on a 128-cpu setup.
7241 */
7242 BUG_ON(busiest_rq == target_rq);
7243
1e3c88bd 7244 /* Search for an sd spanning us and the target CPU. */
dce840a0 7245 rcu_read_lock();
1e3c88bd
PZ
7246 for_each_domain(target_cpu, sd) {
7247 if ((sd->flags & SD_LOAD_BALANCE) &&
7248 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7249 break;
7250 }
7251
7252 if (likely(sd)) {
8e45cb54
PZ
7253 struct lb_env env = {
7254 .sd = sd,
ddcdf6e7
PZ
7255 .dst_cpu = target_cpu,
7256 .dst_rq = target_rq,
7257 .src_cpu = busiest_rq->cpu,
7258 .src_rq = busiest_rq,
8e45cb54
PZ
7259 .idle = CPU_IDLE,
7260 };
7261
1e3c88bd
PZ
7262 schedstat_inc(sd, alb_count);
7263
e5673f28
KT
7264 p = detach_one_task(&env);
7265 if (p)
1e3c88bd
PZ
7266 schedstat_inc(sd, alb_pushed);
7267 else
7268 schedstat_inc(sd, alb_failed);
7269 }
dce840a0 7270 rcu_read_unlock();
969c7921
TH
7271out_unlock:
7272 busiest_rq->active_balance = 0;
e5673f28
KT
7273 raw_spin_unlock(&busiest_rq->lock);
7274
7275 if (p)
7276 attach_one_task(target_rq, p);
7277
7278 local_irq_enable();
7279
969c7921 7280 return 0;
1e3c88bd
PZ
7281}
7282
d987fc7f
MG
7283static inline int on_null_domain(struct rq *rq)
7284{
7285 return unlikely(!rcu_dereference_sched(rq->sd));
7286}
7287
3451d024 7288#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7289/*
7290 * idle load balancing details
83cd4fe2
VP
7291 * - When one of the busy CPUs notice that there may be an idle rebalancing
7292 * needed, they will kick the idle load balancer, which then does idle
7293 * load balancing for all the idle CPUs.
7294 */
1e3c88bd 7295static struct {
83cd4fe2 7296 cpumask_var_t idle_cpus_mask;
0b005cf5 7297 atomic_t nr_cpus;
83cd4fe2
VP
7298 unsigned long next_balance; /* in jiffy units */
7299} nohz ____cacheline_aligned;
1e3c88bd 7300
3dd0337d 7301static inline int find_new_ilb(void)
1e3c88bd 7302{
0b005cf5 7303 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7304
786d6dc7
SS
7305 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7306 return ilb;
7307
7308 return nr_cpu_ids;
1e3c88bd 7309}
1e3c88bd 7310
83cd4fe2
VP
7311/*
7312 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7313 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7314 * CPU (if there is one).
7315 */
0aeeeeba 7316static void nohz_balancer_kick(void)
83cd4fe2
VP
7317{
7318 int ilb_cpu;
7319
7320 nohz.next_balance++;
7321
3dd0337d 7322 ilb_cpu = find_new_ilb();
83cd4fe2 7323
0b005cf5
SS
7324 if (ilb_cpu >= nr_cpu_ids)
7325 return;
83cd4fe2 7326
cd490c5b 7327 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7328 return;
7329 /*
7330 * Use smp_send_reschedule() instead of resched_cpu().
7331 * This way we generate a sched IPI on the target cpu which
7332 * is idle. And the softirq performing nohz idle load balance
7333 * will be run before returning from the IPI.
7334 */
7335 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7336 return;
7337}
7338
c1cc017c 7339static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7340{
7341 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7342 /*
7343 * Completely isolated CPUs don't ever set, so we must test.
7344 */
7345 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7346 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7347 atomic_dec(&nohz.nr_cpus);
7348 }
71325960
SS
7349 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7350 }
7351}
7352
69e1e811
SS
7353static inline void set_cpu_sd_state_busy(void)
7354{
7355 struct sched_domain *sd;
37dc6b50 7356 int cpu = smp_processor_id();
69e1e811 7357
69e1e811 7358 rcu_read_lock();
37dc6b50 7359 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7360
7361 if (!sd || !sd->nohz_idle)
7362 goto unlock;
7363 sd->nohz_idle = 0;
7364
63b2ca30 7365 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7366unlock:
69e1e811
SS
7367 rcu_read_unlock();
7368}
7369
7370void set_cpu_sd_state_idle(void)
7371{
7372 struct sched_domain *sd;
37dc6b50 7373 int cpu = smp_processor_id();
69e1e811 7374
69e1e811 7375 rcu_read_lock();
37dc6b50 7376 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7377
7378 if (!sd || sd->nohz_idle)
7379 goto unlock;
7380 sd->nohz_idle = 1;
7381
63b2ca30 7382 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7383unlock:
69e1e811
SS
7384 rcu_read_unlock();
7385}
7386
1e3c88bd 7387/*
c1cc017c 7388 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7389 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7390 */
c1cc017c 7391void nohz_balance_enter_idle(int cpu)
1e3c88bd 7392{
71325960
SS
7393 /*
7394 * If this cpu is going down, then nothing needs to be done.
7395 */
7396 if (!cpu_active(cpu))
7397 return;
7398
c1cc017c
AS
7399 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7400 return;
1e3c88bd 7401
d987fc7f
MG
7402 /*
7403 * If we're a completely isolated CPU, we don't play.
7404 */
7405 if (on_null_domain(cpu_rq(cpu)))
7406 return;
7407
c1cc017c
AS
7408 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7409 atomic_inc(&nohz.nr_cpus);
7410 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7411}
71325960 7412
0db0628d 7413static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7414 unsigned long action, void *hcpu)
7415{
7416 switch (action & ~CPU_TASKS_FROZEN) {
7417 case CPU_DYING:
c1cc017c 7418 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7419 return NOTIFY_OK;
7420 default:
7421 return NOTIFY_DONE;
7422 }
7423}
1e3c88bd
PZ
7424#endif
7425
7426static DEFINE_SPINLOCK(balancing);
7427
49c022e6
PZ
7428/*
7429 * Scale the max load_balance interval with the number of CPUs in the system.
7430 * This trades load-balance latency on larger machines for less cross talk.
7431 */
029632fb 7432void update_max_interval(void)
49c022e6
PZ
7433{
7434 max_load_balance_interval = HZ*num_online_cpus()/10;
7435}
7436
1e3c88bd
PZ
7437/*
7438 * It checks each scheduling domain to see if it is due to be balanced,
7439 * and initiates a balancing operation if so.
7440 *
b9b0853a 7441 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7442 */
f7ed0a89 7443static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7444{
23f0d209 7445 int continue_balancing = 1;
f7ed0a89 7446 int cpu = rq->cpu;
1e3c88bd 7447 unsigned long interval;
04f733b4 7448 struct sched_domain *sd;
1e3c88bd
PZ
7449 /* Earliest time when we have to do rebalance again */
7450 unsigned long next_balance = jiffies + 60*HZ;
7451 int update_next_balance = 0;
f48627e6
JL
7452 int need_serialize, need_decay = 0;
7453 u64 max_cost = 0;
1e3c88bd 7454
48a16753 7455 update_blocked_averages(cpu);
2069dd75 7456
dce840a0 7457 rcu_read_lock();
1e3c88bd 7458 for_each_domain(cpu, sd) {
f48627e6
JL
7459 /*
7460 * Decay the newidle max times here because this is a regular
7461 * visit to all the domains. Decay ~1% per second.
7462 */
7463 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7464 sd->max_newidle_lb_cost =
7465 (sd->max_newidle_lb_cost * 253) / 256;
7466 sd->next_decay_max_lb_cost = jiffies + HZ;
7467 need_decay = 1;
7468 }
7469 max_cost += sd->max_newidle_lb_cost;
7470
1e3c88bd
PZ
7471 if (!(sd->flags & SD_LOAD_BALANCE))
7472 continue;
7473
f48627e6
JL
7474 /*
7475 * Stop the load balance at this level. There is another
7476 * CPU in our sched group which is doing load balancing more
7477 * actively.
7478 */
7479 if (!continue_balancing) {
7480 if (need_decay)
7481 continue;
7482 break;
7483 }
7484
52a08ef1 7485 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7486
7487 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7488 if (need_serialize) {
7489 if (!spin_trylock(&balancing))
7490 goto out;
7491 }
7492
7493 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7494 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7495 /*
6263322c 7496 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7497 * env->dst_cpu, so we can't know our idle
7498 * state even if we migrated tasks. Update it.
1e3c88bd 7499 */
de5eb2dd 7500 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7501 }
7502 sd->last_balance = jiffies;
52a08ef1 7503 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7504 }
7505 if (need_serialize)
7506 spin_unlock(&balancing);
7507out:
7508 if (time_after(next_balance, sd->last_balance + interval)) {
7509 next_balance = sd->last_balance + interval;
7510 update_next_balance = 1;
7511 }
f48627e6
JL
7512 }
7513 if (need_decay) {
1e3c88bd 7514 /*
f48627e6
JL
7515 * Ensure the rq-wide value also decays but keep it at a
7516 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7517 */
f48627e6
JL
7518 rq->max_idle_balance_cost =
7519 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7520 }
dce840a0 7521 rcu_read_unlock();
1e3c88bd
PZ
7522
7523 /*
7524 * next_balance will be updated only when there is a need.
7525 * When the cpu is attached to null domain for ex, it will not be
7526 * updated.
7527 */
7528 if (likely(update_next_balance))
7529 rq->next_balance = next_balance;
7530}
7531
3451d024 7532#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7533/*
3451d024 7534 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7535 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7536 */
208cb16b 7537static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7538{
208cb16b 7539 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7540 struct rq *rq;
7541 int balance_cpu;
7542
1c792db7
SS
7543 if (idle != CPU_IDLE ||
7544 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7545 goto end;
83cd4fe2
VP
7546
7547 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7548 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7549 continue;
7550
7551 /*
7552 * If this cpu gets work to do, stop the load balancing
7553 * work being done for other cpus. Next load
7554 * balancing owner will pick it up.
7555 */
1c792db7 7556 if (need_resched())
83cd4fe2 7557 break;
83cd4fe2 7558
5ed4f1d9
VG
7559 rq = cpu_rq(balance_cpu);
7560
ed61bbc6
TC
7561 /*
7562 * If time for next balance is due,
7563 * do the balance.
7564 */
7565 if (time_after_eq(jiffies, rq->next_balance)) {
7566 raw_spin_lock_irq(&rq->lock);
7567 update_rq_clock(rq);
7568 update_idle_cpu_load(rq);
7569 raw_spin_unlock_irq(&rq->lock);
7570 rebalance_domains(rq, CPU_IDLE);
7571 }
83cd4fe2 7572
83cd4fe2
VP
7573 if (time_after(this_rq->next_balance, rq->next_balance))
7574 this_rq->next_balance = rq->next_balance;
7575 }
7576 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7577end:
7578 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7579}
7580
7581/*
0b005cf5
SS
7582 * Current heuristic for kicking the idle load balancer in the presence
7583 * of an idle cpu is the system.
7584 * - This rq has more than one task.
7585 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7586 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7587 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7588 * domain span are idle.
83cd4fe2 7589 */
4a725627 7590static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7591{
7592 unsigned long now = jiffies;
0b005cf5 7593 struct sched_domain *sd;
63b2ca30 7594 struct sched_group_capacity *sgc;
4a725627 7595 int nr_busy, cpu = rq->cpu;
83cd4fe2 7596
4a725627 7597 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7598 return 0;
7599
1c792db7
SS
7600 /*
7601 * We may be recently in ticked or tickless idle mode. At the first
7602 * busy tick after returning from idle, we will update the busy stats.
7603 */
69e1e811 7604 set_cpu_sd_state_busy();
c1cc017c 7605 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7606
7607 /*
7608 * None are in tickless mode and hence no need for NOHZ idle load
7609 * balancing.
7610 */
7611 if (likely(!atomic_read(&nohz.nr_cpus)))
7612 return 0;
1c792db7
SS
7613
7614 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7615 return 0;
7616
0b005cf5
SS
7617 if (rq->nr_running >= 2)
7618 goto need_kick;
83cd4fe2 7619
067491b7 7620 rcu_read_lock();
37dc6b50 7621 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7622
37dc6b50 7623 if (sd) {
63b2ca30
NP
7624 sgc = sd->groups->sgc;
7625 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7626
37dc6b50 7627 if (nr_busy > 1)
067491b7 7628 goto need_kick_unlock;
83cd4fe2 7629 }
37dc6b50
PM
7630
7631 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7632
7633 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7634 sched_domain_span(sd)) < cpu))
7635 goto need_kick_unlock;
7636
067491b7 7637 rcu_read_unlock();
83cd4fe2 7638 return 0;
067491b7
PZ
7639
7640need_kick_unlock:
7641 rcu_read_unlock();
0b005cf5
SS
7642need_kick:
7643 return 1;
83cd4fe2
VP
7644}
7645#else
208cb16b 7646static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7647#endif
7648
7649/*
7650 * run_rebalance_domains is triggered when needed from the scheduler tick.
7651 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7652 */
1e3c88bd
PZ
7653static void run_rebalance_domains(struct softirq_action *h)
7654{
208cb16b 7655 struct rq *this_rq = this_rq();
6eb57e0d 7656 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7657 CPU_IDLE : CPU_NOT_IDLE;
7658
f7ed0a89 7659 rebalance_domains(this_rq, idle);
1e3c88bd 7660
1e3c88bd 7661 /*
83cd4fe2 7662 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7663 * balancing on behalf of the other idle cpus whose ticks are
7664 * stopped.
7665 */
208cb16b 7666 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7667}
7668
1e3c88bd
PZ
7669/*
7670 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7671 */
7caff66f 7672void trigger_load_balance(struct rq *rq)
1e3c88bd 7673{
1e3c88bd 7674 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7675 if (unlikely(on_null_domain(rq)))
7676 return;
7677
7678 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7679 raise_softirq(SCHED_SOFTIRQ);
3451d024 7680#ifdef CONFIG_NO_HZ_COMMON
c726099e 7681 if (nohz_kick_needed(rq))
0aeeeeba 7682 nohz_balancer_kick();
83cd4fe2 7683#endif
1e3c88bd
PZ
7684}
7685
0bcdcf28
CE
7686static void rq_online_fair(struct rq *rq)
7687{
7688 update_sysctl();
0e59bdae
KT
7689
7690 update_runtime_enabled(rq);
0bcdcf28
CE
7691}
7692
7693static void rq_offline_fair(struct rq *rq)
7694{
7695 update_sysctl();
a4c96ae3
PB
7696
7697 /* Ensure any throttled groups are reachable by pick_next_task */
7698 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7699}
7700
55e12e5e 7701#endif /* CONFIG_SMP */
e1d1484f 7702
bf0f6f24
IM
7703/*
7704 * scheduler tick hitting a task of our scheduling class:
7705 */
8f4d37ec 7706static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7707{
7708 struct cfs_rq *cfs_rq;
7709 struct sched_entity *se = &curr->se;
7710
7711 for_each_sched_entity(se) {
7712 cfs_rq = cfs_rq_of(se);
8f4d37ec 7713 entity_tick(cfs_rq, se, queued);
bf0f6f24 7714 }
18bf2805 7715
10e84b97 7716 if (numabalancing_enabled)
cbee9f88 7717 task_tick_numa(rq, curr);
3d59eebc 7718
18bf2805 7719 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7720}
7721
7722/*
cd29fe6f
PZ
7723 * called on fork with the child task as argument from the parent's context
7724 * - child not yet on the tasklist
7725 * - preemption disabled
bf0f6f24 7726 */
cd29fe6f 7727static void task_fork_fair(struct task_struct *p)
bf0f6f24 7728{
4fc420c9
DN
7729 struct cfs_rq *cfs_rq;
7730 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7731 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7732 struct rq *rq = this_rq();
7733 unsigned long flags;
7734
05fa785c 7735 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7736
861d034e
PZ
7737 update_rq_clock(rq);
7738
4fc420c9
DN
7739 cfs_rq = task_cfs_rq(current);
7740 curr = cfs_rq->curr;
7741
6c9a27f5
DN
7742 /*
7743 * Not only the cpu but also the task_group of the parent might have
7744 * been changed after parent->se.parent,cfs_rq were copied to
7745 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7746 * of child point to valid ones.
7747 */
7748 rcu_read_lock();
7749 __set_task_cpu(p, this_cpu);
7750 rcu_read_unlock();
bf0f6f24 7751
7109c442 7752 update_curr(cfs_rq);
cd29fe6f 7753
b5d9d734
MG
7754 if (curr)
7755 se->vruntime = curr->vruntime;
aeb73b04 7756 place_entity(cfs_rq, se, 1);
4d78e7b6 7757
cd29fe6f 7758 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7759 /*
edcb60a3
IM
7760 * Upon rescheduling, sched_class::put_prev_task() will place
7761 * 'current' within the tree based on its new key value.
7762 */
4d78e7b6 7763 swap(curr->vruntime, se->vruntime);
8875125e 7764 resched_curr(rq);
4d78e7b6 7765 }
bf0f6f24 7766
88ec22d3
PZ
7767 se->vruntime -= cfs_rq->min_vruntime;
7768
05fa785c 7769 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7770}
7771
cb469845
SR
7772/*
7773 * Priority of the task has changed. Check to see if we preempt
7774 * the current task.
7775 */
da7a735e
PZ
7776static void
7777prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7778{
da0c1e65 7779 if (!task_on_rq_queued(p))
da7a735e
PZ
7780 return;
7781
cb469845
SR
7782 /*
7783 * Reschedule if we are currently running on this runqueue and
7784 * our priority decreased, or if we are not currently running on
7785 * this runqueue and our priority is higher than the current's
7786 */
da7a735e 7787 if (rq->curr == p) {
cb469845 7788 if (p->prio > oldprio)
8875125e 7789 resched_curr(rq);
cb469845 7790 } else
15afe09b 7791 check_preempt_curr(rq, p, 0);
cb469845
SR
7792}
7793
da7a735e
PZ
7794static void switched_from_fair(struct rq *rq, struct task_struct *p)
7795{
7796 struct sched_entity *se = &p->se;
7797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7798
7799 /*
791c9e02 7800 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7801 * switched back to the fair class the enqueue_entity(.flags=0) will
7802 * do the right thing.
7803 *
da0c1e65
KT
7804 * If it's queued, then the dequeue_entity(.flags=0) will already
7805 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7806 * the task is sleeping will it still have non-normalized vruntime.
7807 */
da0c1e65 7808 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7809 /*
7810 * Fix up our vruntime so that the current sleep doesn't
7811 * cause 'unlimited' sleep bonus.
7812 */
7813 place_entity(cfs_rq, se, 0);
7814 se->vruntime -= cfs_rq->min_vruntime;
7815 }
9ee474f5 7816
141965c7 7817#ifdef CONFIG_SMP
9ee474f5
PT
7818 /*
7819 * Remove our load from contribution when we leave sched_fair
7820 * and ensure we don't carry in an old decay_count if we
7821 * switch back.
7822 */
87e3c8ae
KT
7823 if (se->avg.decay_count) {
7824 __synchronize_entity_decay(se);
7825 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7826 }
7827#endif
da7a735e
PZ
7828}
7829
cb469845
SR
7830/*
7831 * We switched to the sched_fair class.
7832 */
da7a735e 7833static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7834{
eb7a59b2 7835#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7836 struct sched_entity *se = &p->se;
eb7a59b2
M
7837 /*
7838 * Since the real-depth could have been changed (only FAIR
7839 * class maintain depth value), reset depth properly.
7840 */
7841 se->depth = se->parent ? se->parent->depth + 1 : 0;
7842#endif
da0c1e65 7843 if (!task_on_rq_queued(p))
da7a735e
PZ
7844 return;
7845
cb469845
SR
7846 /*
7847 * We were most likely switched from sched_rt, so
7848 * kick off the schedule if running, otherwise just see
7849 * if we can still preempt the current task.
7850 */
da7a735e 7851 if (rq->curr == p)
8875125e 7852 resched_curr(rq);
cb469845 7853 else
15afe09b 7854 check_preempt_curr(rq, p, 0);
cb469845
SR
7855}
7856
83b699ed
SV
7857/* Account for a task changing its policy or group.
7858 *
7859 * This routine is mostly called to set cfs_rq->curr field when a task
7860 * migrates between groups/classes.
7861 */
7862static void set_curr_task_fair(struct rq *rq)
7863{
7864 struct sched_entity *se = &rq->curr->se;
7865
ec12cb7f
PT
7866 for_each_sched_entity(se) {
7867 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7868
7869 set_next_entity(cfs_rq, se);
7870 /* ensure bandwidth has been allocated on our new cfs_rq */
7871 account_cfs_rq_runtime(cfs_rq, 0);
7872 }
83b699ed
SV
7873}
7874
029632fb
PZ
7875void init_cfs_rq(struct cfs_rq *cfs_rq)
7876{
7877 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7878 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7879#ifndef CONFIG_64BIT
7880 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7881#endif
141965c7 7882#ifdef CONFIG_SMP
9ee474f5 7883 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7884 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7885#endif
029632fb
PZ
7886}
7887
810b3817 7888#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7889static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7890{
fed14d45 7891 struct sched_entity *se = &p->se;
aff3e498 7892 struct cfs_rq *cfs_rq;
fed14d45 7893
b2b5ce02
PZ
7894 /*
7895 * If the task was not on the rq at the time of this cgroup movement
7896 * it must have been asleep, sleeping tasks keep their ->vruntime
7897 * absolute on their old rq until wakeup (needed for the fair sleeper
7898 * bonus in place_entity()).
7899 *
7900 * If it was on the rq, we've just 'preempted' it, which does convert
7901 * ->vruntime to a relative base.
7902 *
7903 * Make sure both cases convert their relative position when migrating
7904 * to another cgroup's rq. This does somewhat interfere with the
7905 * fair sleeper stuff for the first placement, but who cares.
7906 */
7ceff013 7907 /*
da0c1e65 7908 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7909 * But there are some cases where it has already been normalized:
7910 *
7911 * - Moving a forked child which is waiting for being woken up by
7912 * wake_up_new_task().
62af3783
DN
7913 * - Moving a task which has been woken up by try_to_wake_up() and
7914 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7915 *
7916 * To prevent boost or penalty in the new cfs_rq caused by delta
7917 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7918 */
da0c1e65
KT
7919 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7920 queued = 1;
7ceff013 7921
da0c1e65 7922 if (!queued)
fed14d45 7923 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7924 set_task_rq(p, task_cpu(p));
fed14d45 7925 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7926 if (!queued) {
fed14d45
PZ
7927 cfs_rq = cfs_rq_of(se);
7928 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7929#ifdef CONFIG_SMP
7930 /*
7931 * migrate_task_rq_fair() will have removed our previous
7932 * contribution, but we must synchronize for ongoing future
7933 * decay.
7934 */
fed14d45
PZ
7935 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7936 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7937#endif
7938 }
810b3817 7939}
029632fb
PZ
7940
7941void free_fair_sched_group(struct task_group *tg)
7942{
7943 int i;
7944
7945 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7946
7947 for_each_possible_cpu(i) {
7948 if (tg->cfs_rq)
7949 kfree(tg->cfs_rq[i]);
7950 if (tg->se)
7951 kfree(tg->se[i]);
7952 }
7953
7954 kfree(tg->cfs_rq);
7955 kfree(tg->se);
7956}
7957
7958int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7959{
7960 struct cfs_rq *cfs_rq;
7961 struct sched_entity *se;
7962 int i;
7963
7964 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7965 if (!tg->cfs_rq)
7966 goto err;
7967 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7968 if (!tg->se)
7969 goto err;
7970
7971 tg->shares = NICE_0_LOAD;
7972
7973 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7974
7975 for_each_possible_cpu(i) {
7976 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7977 GFP_KERNEL, cpu_to_node(i));
7978 if (!cfs_rq)
7979 goto err;
7980
7981 se = kzalloc_node(sizeof(struct sched_entity),
7982 GFP_KERNEL, cpu_to_node(i));
7983 if (!se)
7984 goto err_free_rq;
7985
7986 init_cfs_rq(cfs_rq);
7987 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7988 }
7989
7990 return 1;
7991
7992err_free_rq:
7993 kfree(cfs_rq);
7994err:
7995 return 0;
7996}
7997
7998void unregister_fair_sched_group(struct task_group *tg, int cpu)
7999{
8000 struct rq *rq = cpu_rq(cpu);
8001 unsigned long flags;
8002
8003 /*
8004 * Only empty task groups can be destroyed; so we can speculatively
8005 * check on_list without danger of it being re-added.
8006 */
8007 if (!tg->cfs_rq[cpu]->on_list)
8008 return;
8009
8010 raw_spin_lock_irqsave(&rq->lock, flags);
8011 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8012 raw_spin_unlock_irqrestore(&rq->lock, flags);
8013}
8014
8015void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8016 struct sched_entity *se, int cpu,
8017 struct sched_entity *parent)
8018{
8019 struct rq *rq = cpu_rq(cpu);
8020
8021 cfs_rq->tg = tg;
8022 cfs_rq->rq = rq;
029632fb
PZ
8023 init_cfs_rq_runtime(cfs_rq);
8024
8025 tg->cfs_rq[cpu] = cfs_rq;
8026 tg->se[cpu] = se;
8027
8028 /* se could be NULL for root_task_group */
8029 if (!se)
8030 return;
8031
fed14d45 8032 if (!parent) {
029632fb 8033 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8034 se->depth = 0;
8035 } else {
029632fb 8036 se->cfs_rq = parent->my_q;
fed14d45
PZ
8037 se->depth = parent->depth + 1;
8038 }
029632fb
PZ
8039
8040 se->my_q = cfs_rq;
0ac9b1c2
PT
8041 /* guarantee group entities always have weight */
8042 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8043 se->parent = parent;
8044}
8045
8046static DEFINE_MUTEX(shares_mutex);
8047
8048int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8049{
8050 int i;
8051 unsigned long flags;
8052
8053 /*
8054 * We can't change the weight of the root cgroup.
8055 */
8056 if (!tg->se[0])
8057 return -EINVAL;
8058
8059 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8060
8061 mutex_lock(&shares_mutex);
8062 if (tg->shares == shares)
8063 goto done;
8064
8065 tg->shares = shares;
8066 for_each_possible_cpu(i) {
8067 struct rq *rq = cpu_rq(i);
8068 struct sched_entity *se;
8069
8070 se = tg->se[i];
8071 /* Propagate contribution to hierarchy */
8072 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8073
8074 /* Possible calls to update_curr() need rq clock */
8075 update_rq_clock(rq);
17bc14b7 8076 for_each_sched_entity(se)
029632fb
PZ
8077 update_cfs_shares(group_cfs_rq(se));
8078 raw_spin_unlock_irqrestore(&rq->lock, flags);
8079 }
8080
8081done:
8082 mutex_unlock(&shares_mutex);
8083 return 0;
8084}
8085#else /* CONFIG_FAIR_GROUP_SCHED */
8086
8087void free_fair_sched_group(struct task_group *tg) { }
8088
8089int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8090{
8091 return 1;
8092}
8093
8094void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8095
8096#endif /* CONFIG_FAIR_GROUP_SCHED */
8097
810b3817 8098
6d686f45 8099static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8100{
8101 struct sched_entity *se = &task->se;
0d721cea
PW
8102 unsigned int rr_interval = 0;
8103
8104 /*
8105 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8106 * idle runqueue:
8107 */
0d721cea 8108 if (rq->cfs.load.weight)
a59f4e07 8109 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8110
8111 return rr_interval;
8112}
8113
bf0f6f24
IM
8114/*
8115 * All the scheduling class methods:
8116 */
029632fb 8117const struct sched_class fair_sched_class = {
5522d5d5 8118 .next = &idle_sched_class,
bf0f6f24
IM
8119 .enqueue_task = enqueue_task_fair,
8120 .dequeue_task = dequeue_task_fair,
8121 .yield_task = yield_task_fair,
d95f4122 8122 .yield_to_task = yield_to_task_fair,
bf0f6f24 8123
2e09bf55 8124 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8125
8126 .pick_next_task = pick_next_task_fair,
8127 .put_prev_task = put_prev_task_fair,
8128
681f3e68 8129#ifdef CONFIG_SMP
4ce72a2c 8130 .select_task_rq = select_task_rq_fair,
0a74bef8 8131 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8132
0bcdcf28
CE
8133 .rq_online = rq_online_fair,
8134 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8135
8136 .task_waking = task_waking_fair,
681f3e68 8137#endif
bf0f6f24 8138
83b699ed 8139 .set_curr_task = set_curr_task_fair,
bf0f6f24 8140 .task_tick = task_tick_fair,
cd29fe6f 8141 .task_fork = task_fork_fair,
cb469845
SR
8142
8143 .prio_changed = prio_changed_fair,
da7a735e 8144 .switched_from = switched_from_fair,
cb469845 8145 .switched_to = switched_to_fair,
810b3817 8146
0d721cea
PW
8147 .get_rr_interval = get_rr_interval_fair,
8148
6e998916
SG
8149 .update_curr = update_curr_fair,
8150
810b3817 8151#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8152 .task_move_group = task_move_group_fair,
810b3817 8153#endif
bf0f6f24
IM
8154};
8155
8156#ifdef CONFIG_SCHED_DEBUG
029632fb 8157void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8158{
bf0f6f24
IM
8159 struct cfs_rq *cfs_rq;
8160
5973e5b9 8161 rcu_read_lock();
c3b64f1e 8162 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8163 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8164 rcu_read_unlock();
bf0f6f24
IM
8165}
8166#endif
029632fb
PZ
8167
8168__init void init_sched_fair_class(void)
8169{
8170#ifdef CONFIG_SMP
8171 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8172
3451d024 8173#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8174 nohz.next_balance = jiffies;
029632fb 8175 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8176 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8177#endif
8178#endif /* SMP */
8179
8180}