]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/numa: Add debugging
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
8c8a743c
PZ
891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
e29cf08b 896 pid_t gid;
8c8a743c
PZ
897 struct list_head task_list;
898
899 struct rcu_head rcu;
83e1d2cd 900 atomic_long_t total_faults;
8c8a743c
PZ
901 atomic_long_t faults[0];
902};
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
ac8e895b
MG
909static inline int task_faults_idx(int nid, int priv)
910{
911 return 2 * nid + priv;
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
916 if (!p->numa_faults)
917 return 0;
918
919 return p->numa_faults[task_faults_idx(nid, 0)] +
920 p->numa_faults[task_faults_idx(nid, 1)];
921}
922
83e1d2cd
MG
923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
928 return atomic_long_read(&p->numa_group->faults[2*nid]) +
929 atomic_long_read(&p->numa_group->faults[2*nid+1]);
930}
931
932/*
933 * These return the fraction of accesses done by a particular task, or
934 * task group, on a particular numa node. The group weight is given a
935 * larger multiplier, in order to group tasks together that are almost
936 * evenly spread out between numa nodes.
937 */
938static inline unsigned long task_weight(struct task_struct *p, int nid)
939{
940 unsigned long total_faults;
941
942 if (!p->numa_faults)
943 return 0;
944
945 total_faults = p->total_numa_faults;
946
947 if (!total_faults)
948 return 0;
949
950 return 1000 * task_faults(p, nid) / total_faults;
951}
952
953static inline unsigned long group_weight(struct task_struct *p, int nid)
954{
955 unsigned long total_faults;
956
957 if (!p->numa_group)
958 return 0;
959
960 total_faults = atomic_long_read(&p->numa_group->total_faults);
961
962 if (!total_faults)
963 return 0;
964
965 return 1200 * group_faults(p, nid) / total_faults;
966}
967
e6628d5b 968static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
969static unsigned long source_load(int cpu, int type);
970static unsigned long target_load(int cpu, int type);
971static unsigned long power_of(int cpu);
972static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
973
fb13c7ee 974/* Cached statistics for all CPUs within a node */
58d081b5 975struct numa_stats {
fb13c7ee 976 unsigned long nr_running;
58d081b5 977 unsigned long load;
fb13c7ee
MG
978
979 /* Total compute capacity of CPUs on a node */
980 unsigned long power;
981
982 /* Approximate capacity in terms of runnable tasks on a node */
983 unsigned long capacity;
984 int has_capacity;
58d081b5 985};
e6628d5b 986
fb13c7ee
MG
987/*
988 * XXX borrowed from update_sg_lb_stats
989 */
990static void update_numa_stats(struct numa_stats *ns, int nid)
991{
992 int cpu;
993
994 memset(ns, 0, sizeof(*ns));
995 for_each_cpu(cpu, cpumask_of_node(nid)) {
996 struct rq *rq = cpu_rq(cpu);
997
998 ns->nr_running += rq->nr_running;
999 ns->load += weighted_cpuload(cpu);
1000 ns->power += power_of(cpu);
1001 }
1002
1003 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1004 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1005 ns->has_capacity = (ns->nr_running < ns->capacity);
1006}
1007
58d081b5
MG
1008struct task_numa_env {
1009 struct task_struct *p;
e6628d5b 1010
58d081b5
MG
1011 int src_cpu, src_nid;
1012 int dst_cpu, dst_nid;
e6628d5b 1013
58d081b5 1014 struct numa_stats src_stats, dst_stats;
e6628d5b 1015
fb13c7ee
MG
1016 int imbalance_pct, idx;
1017
1018 struct task_struct *best_task;
1019 long best_imp;
58d081b5
MG
1020 int best_cpu;
1021};
1022
fb13c7ee
MG
1023static void task_numa_assign(struct task_numa_env *env,
1024 struct task_struct *p, long imp)
1025{
1026 if (env->best_task)
1027 put_task_struct(env->best_task);
1028 if (p)
1029 get_task_struct(p);
1030
1031 env->best_task = p;
1032 env->best_imp = imp;
1033 env->best_cpu = env->dst_cpu;
1034}
1035
1036/*
1037 * This checks if the overall compute and NUMA accesses of the system would
1038 * be improved if the source tasks was migrated to the target dst_cpu taking
1039 * into account that it might be best if task running on the dst_cpu should
1040 * be exchanged with the source task
1041 */
1042static void task_numa_compare(struct task_numa_env *env, long imp)
1043{
1044 struct rq *src_rq = cpu_rq(env->src_cpu);
1045 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1046 struct task_struct *cur;
1047 long dst_load, src_load;
1048 long load;
1049
1050 rcu_read_lock();
1051 cur = ACCESS_ONCE(dst_rq->curr);
1052 if (cur->pid == 0) /* idle */
1053 cur = NULL;
1054
1055 /*
1056 * "imp" is the fault differential for the source task between the
1057 * source and destination node. Calculate the total differential for
1058 * the source task and potential destination task. The more negative
1059 * the value is, the more rmeote accesses that would be expected to
1060 * be incurred if the tasks were swapped.
1061 */
1062 if (cur) {
1063 /* Skip this swap candidate if cannot move to the source cpu */
1064 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1065 goto unlock;
1066
83e1d2cd
MG
1067 imp += task_weight(cur, env->src_nid) +
1068 group_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid) -
1070 group_weight(cur, env->dst_nid);
fb13c7ee
MG
1071 }
1072
1073 if (imp < env->best_imp)
1074 goto unlock;
1075
1076 if (!cur) {
1077 /* Is there capacity at our destination? */
1078 if (env->src_stats.has_capacity &&
1079 !env->dst_stats.has_capacity)
1080 goto unlock;
1081
1082 goto balance;
1083 }
1084
1085 /* Balance doesn't matter much if we're running a task per cpu */
1086 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1087 goto assign;
1088
1089 /*
1090 * In the overloaded case, try and keep the load balanced.
1091 */
1092balance:
1093 dst_load = env->dst_stats.load;
1094 src_load = env->src_stats.load;
1095
1096 /* XXX missing power terms */
1097 load = task_h_load(env->p);
1098 dst_load += load;
1099 src_load -= load;
1100
1101 if (cur) {
1102 load = task_h_load(cur);
1103 dst_load -= load;
1104 src_load += load;
1105 }
1106
1107 /* make src_load the smaller */
1108 if (dst_load < src_load)
1109 swap(dst_load, src_load);
1110
1111 if (src_load * env->imbalance_pct < dst_load * 100)
1112 goto unlock;
1113
1114assign:
1115 task_numa_assign(env, cur, imp);
1116unlock:
1117 rcu_read_unlock();
1118}
1119
2c8a50aa
MG
1120static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1121{
1122 int cpu;
1123
1124 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1125 /* Skip this CPU if the source task cannot migrate */
1126 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1127 continue;
1128
1129 env->dst_cpu = cpu;
1130 task_numa_compare(env, imp);
1131 }
1132}
1133
58d081b5
MG
1134static int task_numa_migrate(struct task_struct *p)
1135{
58d081b5
MG
1136 struct task_numa_env env = {
1137 .p = p,
fb13c7ee 1138
58d081b5 1139 .src_cpu = task_cpu(p),
b32e86b4 1140 .src_nid = task_node(p),
fb13c7ee
MG
1141
1142 .imbalance_pct = 112,
1143
1144 .best_task = NULL,
1145 .best_imp = 0,
1146 .best_cpu = -1
58d081b5
MG
1147 };
1148 struct sched_domain *sd;
83e1d2cd 1149 unsigned long weight;
2c8a50aa
MG
1150 int nid, ret;
1151 long imp;
e6628d5b 1152
58d081b5 1153 /*
fb13c7ee
MG
1154 * Pick the lowest SD_NUMA domain, as that would have the smallest
1155 * imbalance and would be the first to start moving tasks about.
1156 *
1157 * And we want to avoid any moving of tasks about, as that would create
1158 * random movement of tasks -- counter the numa conditions we're trying
1159 * to satisfy here.
58d081b5
MG
1160 */
1161 rcu_read_lock();
fb13c7ee
MG
1162 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1163 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1164 rcu_read_unlock();
1165
83e1d2cd 1166 weight = task_weight(p, env.src_nid) + group_weight(p, env.src_nid);
fb13c7ee 1167 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1168 env.dst_nid = p->numa_preferred_nid;
83e1d2cd 1169 imp = task_weight(p, env.dst_nid) + group_weight(p, env.dst_nid) - weight;
2c8a50aa 1170 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1171
e1dda8a7
RR
1172 /* If the preferred nid has capacity, try to use it. */
1173 if (env.dst_stats.has_capacity)
2c8a50aa 1174 task_numa_find_cpu(&env, imp);
e1dda8a7
RR
1175
1176 /* No space available on the preferred nid. Look elsewhere. */
1177 if (env.best_cpu == -1) {
2c8a50aa
MG
1178 for_each_online_node(nid) {
1179 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1180 continue;
58d081b5 1181
83e1d2cd
MG
1182 /* Only consider nodes where both task and groups benefit */
1183 imp = task_weight(p, nid) + group_weight(p, nid) - weight;
2c8a50aa 1184 if (imp < 0)
fb13c7ee
MG
1185 continue;
1186
2c8a50aa
MG
1187 env.dst_nid = nid;
1188 update_numa_stats(&env.dst_stats, env.dst_nid);
1189 task_numa_find_cpu(&env, imp);
58d081b5
MG
1190 }
1191 }
1192
fb13c7ee
MG
1193 /* No better CPU than the current one was found. */
1194 if (env.best_cpu == -1)
1195 return -EAGAIN;
1196
1197 if (env.best_task == NULL) {
1198 int ret = migrate_task_to(p, env.best_cpu);
1199 return ret;
1200 }
1201
1202 ret = migrate_swap(p, env.best_task);
1203 put_task_struct(env.best_task);
1204 return ret;
e6628d5b
MG
1205}
1206
6b9a7460
MG
1207/* Attempt to migrate a task to a CPU on the preferred node. */
1208static void numa_migrate_preferred(struct task_struct *p)
1209{
1210 /* Success if task is already running on preferred CPU */
1211 p->numa_migrate_retry = 0;
06ea5e03
RR
1212 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1213 /*
1214 * If migration is temporarily disabled due to a task migration
1215 * then re-enable it now as the task is running on its
1216 * preferred node and memory should migrate locally
1217 */
1218 if (!p->numa_migrate_seq)
1219 p->numa_migrate_seq++;
6b9a7460 1220 return;
06ea5e03 1221 }
6b9a7460
MG
1222
1223 /* This task has no NUMA fault statistics yet */
1224 if (unlikely(p->numa_preferred_nid == -1))
1225 return;
1226
1227 /* Otherwise, try migrate to a CPU on the preferred node */
1228 if (task_numa_migrate(p) != 0)
1229 p->numa_migrate_retry = jiffies + HZ*5;
1230}
1231
cbee9f88
PZ
1232static void task_numa_placement(struct task_struct *p)
1233{
83e1d2cd
MG
1234 int seq, nid, max_nid = -1, max_group_nid = -1;
1235 unsigned long max_faults = 0, max_group_faults = 0;
7dbd13ed 1236 spinlock_t *group_lock = NULL;
cbee9f88 1237
2832bc19 1238 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1239 if (p->numa_scan_seq == seq)
1240 return;
1241 p->numa_scan_seq = seq;
3a7053b3 1242 p->numa_migrate_seq++;
598f0ec0 1243 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1244
7dbd13ed
MG
1245 /* If the task is part of a group prevent parallel updates to group stats */
1246 if (p->numa_group) {
1247 group_lock = &p->numa_group->lock;
1248 spin_lock(group_lock);
1249 }
1250
688b7585
MG
1251 /* Find the node with the highest number of faults */
1252 for_each_online_node(nid) {
83e1d2cd 1253 unsigned long faults = 0, group_faults = 0;
ac8e895b 1254 int priv, i;
745d6147 1255
ac8e895b 1256 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1257 long diff;
1258
ac8e895b 1259 i = task_faults_idx(nid, priv);
8c8a743c 1260 diff = -p->numa_faults[i];
745d6147 1261
ac8e895b
MG
1262 /* Decay existing window, copy faults since last scan */
1263 p->numa_faults[i] >>= 1;
1264 p->numa_faults[i] += p->numa_faults_buffer[i];
1265 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1266
1267 faults += p->numa_faults[i];
8c8a743c 1268 diff += p->numa_faults[i];
83e1d2cd 1269 p->total_numa_faults += diff;
8c8a743c
PZ
1270 if (p->numa_group) {
1271 /* safe because we can only change our own group */
1272 atomic_long_add(diff, &p->numa_group->faults[i]);
83e1d2cd
MG
1273 atomic_long_add(diff, &p->numa_group->total_faults);
1274 group_faults += atomic_long_read(&p->numa_group->faults[i]);
8c8a743c 1275 }
ac8e895b
MG
1276 }
1277
688b7585
MG
1278 if (faults > max_faults) {
1279 max_faults = faults;
1280 max_nid = nid;
1281 }
83e1d2cd
MG
1282
1283 if (group_faults > max_group_faults) {
1284 max_group_faults = group_faults;
1285 max_group_nid = nid;
1286 }
1287 }
1288
7dbd13ed
MG
1289 if (p->numa_group) {
1290 /*
1291 * If the preferred task and group nids are different,
1292 * iterate over the nodes again to find the best place.
1293 */
1294 if (max_nid != max_group_nid) {
1295 unsigned long weight, max_weight = 0;
1296
1297 for_each_online_node(nid) {
1298 weight = task_weight(p, nid) + group_weight(p, nid);
1299 if (weight > max_weight) {
1300 max_weight = weight;
1301 max_nid = nid;
1302 }
83e1d2cd
MG
1303 }
1304 }
7dbd13ed
MG
1305
1306 spin_unlock(group_lock);
688b7585
MG
1307 }
1308
6b9a7460 1309 /* Preferred node as the node with the most faults */
3a7053b3 1310 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1311 /* Update the preferred nid and migrate task if possible */
688b7585 1312 p->numa_preferred_nid = max_nid;
6fe6b2d6 1313 p->numa_migrate_seq = 1;
6b9a7460 1314 numa_migrate_preferred(p);
3a7053b3 1315 }
cbee9f88
PZ
1316}
1317
8c8a743c
PZ
1318static inline int get_numa_group(struct numa_group *grp)
1319{
1320 return atomic_inc_not_zero(&grp->refcount);
1321}
1322
1323static inline void put_numa_group(struct numa_group *grp)
1324{
1325 if (atomic_dec_and_test(&grp->refcount))
1326 kfree_rcu(grp, rcu);
1327}
1328
1329static void double_lock(spinlock_t *l1, spinlock_t *l2)
1330{
1331 if (l1 > l2)
1332 swap(l1, l2);
1333
1334 spin_lock(l1);
1335 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1336}
1337
1338static void task_numa_group(struct task_struct *p, int cpupid)
1339{
1340 struct numa_group *grp, *my_grp;
1341 struct task_struct *tsk;
1342 bool join = false;
1343 int cpu = cpupid_to_cpu(cpupid);
1344 int i;
1345
1346 if (unlikely(!p->numa_group)) {
1347 unsigned int size = sizeof(struct numa_group) +
1348 2*nr_node_ids*sizeof(atomic_long_t);
1349
1350 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1351 if (!grp)
1352 return;
1353
1354 atomic_set(&grp->refcount, 1);
1355 spin_lock_init(&grp->lock);
1356 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1357 grp->gid = p->pid;
8c8a743c
PZ
1358
1359 for (i = 0; i < 2*nr_node_ids; i++)
1360 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1361
83e1d2cd
MG
1362 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1363
8c8a743c
PZ
1364 list_add(&p->numa_entry, &grp->task_list);
1365 grp->nr_tasks++;
1366 rcu_assign_pointer(p->numa_group, grp);
1367 }
1368
1369 rcu_read_lock();
1370 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1371
1372 if (!cpupid_match_pid(tsk, cpupid))
1373 goto unlock;
1374
1375 grp = rcu_dereference(tsk->numa_group);
1376 if (!grp)
1377 goto unlock;
1378
1379 my_grp = p->numa_group;
1380 if (grp == my_grp)
1381 goto unlock;
1382
1383 /*
1384 * Only join the other group if its bigger; if we're the bigger group,
1385 * the other task will join us.
1386 */
1387 if (my_grp->nr_tasks > grp->nr_tasks)
1388 goto unlock;
1389
1390 /*
1391 * Tie-break on the grp address.
1392 */
1393 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1394 goto unlock;
1395
1396 if (!get_numa_group(grp))
1397 goto unlock;
1398
1399 join = true;
1400
1401unlock:
1402 rcu_read_unlock();
1403
1404 if (!join)
1405 return;
1406
1407 for (i = 0; i < 2*nr_node_ids; i++) {
1408 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1409 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1410 }
83e1d2cd
MG
1411 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1412 atomic_long_add(p->total_numa_faults, &grp->total_faults);
8c8a743c
PZ
1413
1414 double_lock(&my_grp->lock, &grp->lock);
1415
1416 list_move(&p->numa_entry, &grp->task_list);
1417 my_grp->nr_tasks--;
1418 grp->nr_tasks++;
1419
1420 spin_unlock(&my_grp->lock);
1421 spin_unlock(&grp->lock);
1422
1423 rcu_assign_pointer(p->numa_group, grp);
1424
1425 put_numa_group(my_grp);
1426}
1427
1428void task_numa_free(struct task_struct *p)
1429{
1430 struct numa_group *grp = p->numa_group;
1431 int i;
82727018 1432 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1433
1434 if (grp) {
1435 for (i = 0; i < 2*nr_node_ids; i++)
1436 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1437
83e1d2cd
MG
1438 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1439
8c8a743c
PZ
1440 spin_lock(&grp->lock);
1441 list_del(&p->numa_entry);
1442 grp->nr_tasks--;
1443 spin_unlock(&grp->lock);
1444 rcu_assign_pointer(p->numa_group, NULL);
1445 put_numa_group(grp);
1446 }
1447
82727018
RR
1448 p->numa_faults = NULL;
1449 p->numa_faults_buffer = NULL;
1450 kfree(numa_faults);
8c8a743c
PZ
1451}
1452
cbee9f88
PZ
1453/*
1454 * Got a PROT_NONE fault for a page on @node.
1455 */
6688cc05 1456void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1457{
1458 struct task_struct *p = current;
6688cc05 1459 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1460 int priv;
cbee9f88 1461
10e84b97 1462 if (!numabalancing_enabled)
1a687c2e
MG
1463 return;
1464
9ff1d9ff
MG
1465 /* for example, ksmd faulting in a user's mm */
1466 if (!p->mm)
1467 return;
1468
82727018
RR
1469 /* Do not worry about placement if exiting */
1470 if (p->state == TASK_DEAD)
1471 return;
1472
f809ca9a
MG
1473 /* Allocate buffer to track faults on a per-node basis */
1474 if (unlikely(!p->numa_faults)) {
ac8e895b 1475 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1476
745d6147
MG
1477 /* numa_faults and numa_faults_buffer share the allocation */
1478 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1479 if (!p->numa_faults)
1480 return;
745d6147
MG
1481
1482 BUG_ON(p->numa_faults_buffer);
ac8e895b 1483 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1484 p->total_numa_faults = 0;
f809ca9a 1485 }
cbee9f88 1486
8c8a743c
PZ
1487 /*
1488 * First accesses are treated as private, otherwise consider accesses
1489 * to be private if the accessing pid has not changed
1490 */
1491 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1492 priv = 1;
1493 } else {
1494 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1495 if (!priv && !(flags & TNF_NO_GROUP))
8c8a743c
PZ
1496 task_numa_group(p, last_cpupid);
1497 }
1498
fb003b80 1499 /*
b8593bfd
MG
1500 * If pages are properly placed (did not migrate) then scan slower.
1501 * This is reset periodically in case of phase changes
fb003b80 1502 */
598f0ec0
MG
1503 if (!migrated) {
1504 /* Initialise if necessary */
1505 if (!p->numa_scan_period_max)
1506 p->numa_scan_period_max = task_scan_max(p);
1507
1508 p->numa_scan_period = min(p->numa_scan_period_max,
1509 p->numa_scan_period + 10);
1510 }
fb003b80 1511
cbee9f88 1512 task_numa_placement(p);
f809ca9a 1513
6b9a7460
MG
1514 /* Retry task to preferred node migration if it previously failed */
1515 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1516 numa_migrate_preferred(p);
1517
b32e86b4
IM
1518 if (migrated)
1519 p->numa_pages_migrated += pages;
1520
ac8e895b 1521 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1522}
1523
6e5fb223
PZ
1524static void reset_ptenuma_scan(struct task_struct *p)
1525{
1526 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1527 p->mm->numa_scan_offset = 0;
1528}
1529
cbee9f88
PZ
1530/*
1531 * The expensive part of numa migration is done from task_work context.
1532 * Triggered from task_tick_numa().
1533 */
1534void task_numa_work(struct callback_head *work)
1535{
1536 unsigned long migrate, next_scan, now = jiffies;
1537 struct task_struct *p = current;
1538 struct mm_struct *mm = p->mm;
6e5fb223 1539 struct vm_area_struct *vma;
9f40604c 1540 unsigned long start, end;
598f0ec0 1541 unsigned long nr_pte_updates = 0;
9f40604c 1542 long pages;
cbee9f88
PZ
1543
1544 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1545
1546 work->next = work; /* protect against double add */
1547 /*
1548 * Who cares about NUMA placement when they're dying.
1549 *
1550 * NOTE: make sure not to dereference p->mm before this check,
1551 * exit_task_work() happens _after_ exit_mm() so we could be called
1552 * without p->mm even though we still had it when we enqueued this
1553 * work.
1554 */
1555 if (p->flags & PF_EXITING)
1556 return;
1557
7e8d16b6
MG
1558 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1559 mm->numa_next_scan = now +
1560 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1561 mm->numa_next_reset = now +
1562 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1563 }
1564
b8593bfd
MG
1565 /*
1566 * Reset the scan period if enough time has gone by. Objective is that
1567 * scanning will be reduced if pages are properly placed. As tasks
1568 * can enter different phases this needs to be re-examined. Lacking
1569 * proper tracking of reference behaviour, this blunt hammer is used.
1570 */
1571 migrate = mm->numa_next_reset;
1572 if (time_after(now, migrate)) {
598f0ec0 1573 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1574 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1575 xchg(&mm->numa_next_reset, next_scan);
1576 }
1577
cbee9f88
PZ
1578 /*
1579 * Enforce maximal scan/migration frequency..
1580 */
1581 migrate = mm->numa_next_scan;
1582 if (time_before(now, migrate))
1583 return;
1584
598f0ec0
MG
1585 if (p->numa_scan_period == 0) {
1586 p->numa_scan_period_max = task_scan_max(p);
1587 p->numa_scan_period = task_scan_min(p);
1588 }
cbee9f88 1589
fb003b80 1590 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1591 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1592 return;
1593
19a78d11
PZ
1594 /*
1595 * Delay this task enough that another task of this mm will likely win
1596 * the next time around.
1597 */
1598 p->node_stamp += 2 * TICK_NSEC;
1599
9f40604c
MG
1600 start = mm->numa_scan_offset;
1601 pages = sysctl_numa_balancing_scan_size;
1602 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1603 if (!pages)
1604 return;
cbee9f88 1605
6e5fb223 1606 down_read(&mm->mmap_sem);
9f40604c 1607 vma = find_vma(mm, start);
6e5fb223
PZ
1608 if (!vma) {
1609 reset_ptenuma_scan(p);
9f40604c 1610 start = 0;
6e5fb223
PZ
1611 vma = mm->mmap;
1612 }
9f40604c 1613 for (; vma; vma = vma->vm_next) {
fc314724 1614 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1615 continue;
1616
4591ce4f
MG
1617 /*
1618 * Shared library pages mapped by multiple processes are not
1619 * migrated as it is expected they are cache replicated. Avoid
1620 * hinting faults in read-only file-backed mappings or the vdso
1621 * as migrating the pages will be of marginal benefit.
1622 */
1623 if (!vma->vm_mm ||
1624 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1625 continue;
1626
9f40604c
MG
1627 do {
1628 start = max(start, vma->vm_start);
1629 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1630 end = min(end, vma->vm_end);
598f0ec0
MG
1631 nr_pte_updates += change_prot_numa(vma, start, end);
1632
1633 /*
1634 * Scan sysctl_numa_balancing_scan_size but ensure that
1635 * at least one PTE is updated so that unused virtual
1636 * address space is quickly skipped.
1637 */
1638 if (nr_pte_updates)
1639 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1640
9f40604c
MG
1641 start = end;
1642 if (pages <= 0)
1643 goto out;
1644 } while (end != vma->vm_end);
cbee9f88 1645 }
6e5fb223 1646
9f40604c 1647out:
f307cd1a
MG
1648 /*
1649 * If the whole process was scanned without updates then no NUMA
1650 * hinting faults are being recorded and scan rate should be lower.
1651 */
1652 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1653 p->numa_scan_period = min(p->numa_scan_period_max,
1654 p->numa_scan_period << 1);
1655
1656 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1657 mm->numa_next_scan = next_scan;
1658 }
1659
6e5fb223 1660 /*
c69307d5
PZ
1661 * It is possible to reach the end of the VMA list but the last few
1662 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1663 * would find the !migratable VMA on the next scan but not reset the
1664 * scanner to the start so check it now.
6e5fb223
PZ
1665 */
1666 if (vma)
9f40604c 1667 mm->numa_scan_offset = start;
6e5fb223
PZ
1668 else
1669 reset_ptenuma_scan(p);
1670 up_read(&mm->mmap_sem);
cbee9f88
PZ
1671}
1672
1673/*
1674 * Drive the periodic memory faults..
1675 */
1676void task_tick_numa(struct rq *rq, struct task_struct *curr)
1677{
1678 struct callback_head *work = &curr->numa_work;
1679 u64 period, now;
1680
1681 /*
1682 * We don't care about NUMA placement if we don't have memory.
1683 */
1684 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1685 return;
1686
1687 /*
1688 * Using runtime rather than walltime has the dual advantage that
1689 * we (mostly) drive the selection from busy threads and that the
1690 * task needs to have done some actual work before we bother with
1691 * NUMA placement.
1692 */
1693 now = curr->se.sum_exec_runtime;
1694 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1695
1696 if (now - curr->node_stamp > period) {
4b96a29b 1697 if (!curr->node_stamp)
598f0ec0 1698 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1699 curr->node_stamp += period;
cbee9f88
PZ
1700
1701 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1702 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1703 task_work_add(curr, work, true);
1704 }
1705 }
1706}
1707#else
1708static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1709{
1710}
1711#endif /* CONFIG_NUMA_BALANCING */
1712
30cfdcfc
DA
1713static void
1714account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1715{
1716 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1717 if (!parent_entity(se))
029632fb 1718 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1719#ifdef CONFIG_SMP
1720 if (entity_is_task(se))
eb95308e 1721 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1722#endif
30cfdcfc 1723 cfs_rq->nr_running++;
30cfdcfc
DA
1724}
1725
1726static void
1727account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1728{
1729 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1730 if (!parent_entity(se))
029632fb 1731 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1732 if (entity_is_task(se))
b87f1724 1733 list_del_init(&se->group_node);
30cfdcfc 1734 cfs_rq->nr_running--;
30cfdcfc
DA
1735}
1736
3ff6dcac
YZ
1737#ifdef CONFIG_FAIR_GROUP_SCHED
1738# ifdef CONFIG_SMP
cf5f0acf
PZ
1739static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1740{
1741 long tg_weight;
1742
1743 /*
1744 * Use this CPU's actual weight instead of the last load_contribution
1745 * to gain a more accurate current total weight. See
1746 * update_cfs_rq_load_contribution().
1747 */
bf5b986e 1748 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1749 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1750 tg_weight += cfs_rq->load.weight;
1751
1752 return tg_weight;
1753}
1754
6d5ab293 1755static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1756{
cf5f0acf 1757 long tg_weight, load, shares;
3ff6dcac 1758
cf5f0acf 1759 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1760 load = cfs_rq->load.weight;
3ff6dcac 1761
3ff6dcac 1762 shares = (tg->shares * load);
cf5f0acf
PZ
1763 if (tg_weight)
1764 shares /= tg_weight;
3ff6dcac
YZ
1765
1766 if (shares < MIN_SHARES)
1767 shares = MIN_SHARES;
1768 if (shares > tg->shares)
1769 shares = tg->shares;
1770
1771 return shares;
1772}
3ff6dcac 1773# else /* CONFIG_SMP */
6d5ab293 1774static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1775{
1776 return tg->shares;
1777}
3ff6dcac 1778# endif /* CONFIG_SMP */
2069dd75
PZ
1779static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1780 unsigned long weight)
1781{
19e5eebb
PT
1782 if (se->on_rq) {
1783 /* commit outstanding execution time */
1784 if (cfs_rq->curr == se)
1785 update_curr(cfs_rq);
2069dd75 1786 account_entity_dequeue(cfs_rq, se);
19e5eebb 1787 }
2069dd75
PZ
1788
1789 update_load_set(&se->load, weight);
1790
1791 if (se->on_rq)
1792 account_entity_enqueue(cfs_rq, se);
1793}
1794
82958366
PT
1795static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1796
6d5ab293 1797static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1798{
1799 struct task_group *tg;
1800 struct sched_entity *se;
3ff6dcac 1801 long shares;
2069dd75 1802
2069dd75
PZ
1803 tg = cfs_rq->tg;
1804 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1805 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1806 return;
3ff6dcac
YZ
1807#ifndef CONFIG_SMP
1808 if (likely(se->load.weight == tg->shares))
1809 return;
1810#endif
6d5ab293 1811 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1812
1813 reweight_entity(cfs_rq_of(se), se, shares);
1814}
1815#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1816static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1817{
1818}
1819#endif /* CONFIG_FAIR_GROUP_SCHED */
1820
141965c7 1821#ifdef CONFIG_SMP
5b51f2f8
PT
1822/*
1823 * We choose a half-life close to 1 scheduling period.
1824 * Note: The tables below are dependent on this value.
1825 */
1826#define LOAD_AVG_PERIOD 32
1827#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1828#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1829
1830/* Precomputed fixed inverse multiplies for multiplication by y^n */
1831static const u32 runnable_avg_yN_inv[] = {
1832 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1833 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1834 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1835 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1836 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1837 0x85aac367, 0x82cd8698,
1838};
1839
1840/*
1841 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1842 * over-estimates when re-combining.
1843 */
1844static const u32 runnable_avg_yN_sum[] = {
1845 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1846 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1847 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1848};
1849
9d85f21c
PT
1850/*
1851 * Approximate:
1852 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1853 */
1854static __always_inline u64 decay_load(u64 val, u64 n)
1855{
5b51f2f8
PT
1856 unsigned int local_n;
1857
1858 if (!n)
1859 return val;
1860 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1861 return 0;
1862
1863 /* after bounds checking we can collapse to 32-bit */
1864 local_n = n;
1865
1866 /*
1867 * As y^PERIOD = 1/2, we can combine
1868 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1869 * With a look-up table which covers k^n (n<PERIOD)
1870 *
1871 * To achieve constant time decay_load.
1872 */
1873 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1874 val >>= local_n / LOAD_AVG_PERIOD;
1875 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1876 }
1877
5b51f2f8
PT
1878 val *= runnable_avg_yN_inv[local_n];
1879 /* We don't use SRR here since we always want to round down. */
1880 return val >> 32;
1881}
1882
1883/*
1884 * For updates fully spanning n periods, the contribution to runnable
1885 * average will be: \Sum 1024*y^n
1886 *
1887 * We can compute this reasonably efficiently by combining:
1888 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1889 */
1890static u32 __compute_runnable_contrib(u64 n)
1891{
1892 u32 contrib = 0;
1893
1894 if (likely(n <= LOAD_AVG_PERIOD))
1895 return runnable_avg_yN_sum[n];
1896 else if (unlikely(n >= LOAD_AVG_MAX_N))
1897 return LOAD_AVG_MAX;
1898
1899 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1900 do {
1901 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1902 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1903
1904 n -= LOAD_AVG_PERIOD;
1905 } while (n > LOAD_AVG_PERIOD);
1906
1907 contrib = decay_load(contrib, n);
1908 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1909}
1910
1911/*
1912 * We can represent the historical contribution to runnable average as the
1913 * coefficients of a geometric series. To do this we sub-divide our runnable
1914 * history into segments of approximately 1ms (1024us); label the segment that
1915 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1916 *
1917 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1918 * p0 p1 p2
1919 * (now) (~1ms ago) (~2ms ago)
1920 *
1921 * Let u_i denote the fraction of p_i that the entity was runnable.
1922 *
1923 * We then designate the fractions u_i as our co-efficients, yielding the
1924 * following representation of historical load:
1925 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1926 *
1927 * We choose y based on the with of a reasonably scheduling period, fixing:
1928 * y^32 = 0.5
1929 *
1930 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1931 * approximately half as much as the contribution to load within the last ms
1932 * (u_0).
1933 *
1934 * When a period "rolls over" and we have new u_0`, multiplying the previous
1935 * sum again by y is sufficient to update:
1936 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1937 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1938 */
1939static __always_inline int __update_entity_runnable_avg(u64 now,
1940 struct sched_avg *sa,
1941 int runnable)
1942{
5b51f2f8
PT
1943 u64 delta, periods;
1944 u32 runnable_contrib;
9d85f21c
PT
1945 int delta_w, decayed = 0;
1946
1947 delta = now - sa->last_runnable_update;
1948 /*
1949 * This should only happen when time goes backwards, which it
1950 * unfortunately does during sched clock init when we swap over to TSC.
1951 */
1952 if ((s64)delta < 0) {
1953 sa->last_runnable_update = now;
1954 return 0;
1955 }
1956
1957 /*
1958 * Use 1024ns as the unit of measurement since it's a reasonable
1959 * approximation of 1us and fast to compute.
1960 */
1961 delta >>= 10;
1962 if (!delta)
1963 return 0;
1964 sa->last_runnable_update = now;
1965
1966 /* delta_w is the amount already accumulated against our next period */
1967 delta_w = sa->runnable_avg_period % 1024;
1968 if (delta + delta_w >= 1024) {
1969 /* period roll-over */
1970 decayed = 1;
1971
1972 /*
1973 * Now that we know we're crossing a period boundary, figure
1974 * out how much from delta we need to complete the current
1975 * period and accrue it.
1976 */
1977 delta_w = 1024 - delta_w;
5b51f2f8
PT
1978 if (runnable)
1979 sa->runnable_avg_sum += delta_w;
1980 sa->runnable_avg_period += delta_w;
1981
1982 delta -= delta_w;
1983
1984 /* Figure out how many additional periods this update spans */
1985 periods = delta / 1024;
1986 delta %= 1024;
1987
1988 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1989 periods + 1);
1990 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1991 periods + 1);
1992
1993 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1994 runnable_contrib = __compute_runnable_contrib(periods);
1995 if (runnable)
1996 sa->runnable_avg_sum += runnable_contrib;
1997 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1998 }
1999
2000 /* Remainder of delta accrued against u_0` */
2001 if (runnable)
2002 sa->runnable_avg_sum += delta;
2003 sa->runnable_avg_period += delta;
2004
2005 return decayed;
2006}
2007
9ee474f5 2008/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2009static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2010{
2011 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2012 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2013
2014 decays -= se->avg.decay_count;
2015 if (!decays)
aff3e498 2016 return 0;
9ee474f5
PT
2017
2018 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2019 se->avg.decay_count = 0;
aff3e498
PT
2020
2021 return decays;
9ee474f5
PT
2022}
2023
c566e8e9
PT
2024#ifdef CONFIG_FAIR_GROUP_SCHED
2025static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2026 int force_update)
2027{
2028 struct task_group *tg = cfs_rq->tg;
bf5b986e 2029 long tg_contrib;
c566e8e9
PT
2030
2031 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2032 tg_contrib -= cfs_rq->tg_load_contrib;
2033
bf5b986e
AS
2034 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2035 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2036 cfs_rq->tg_load_contrib += tg_contrib;
2037 }
2038}
8165e145 2039
bb17f655
PT
2040/*
2041 * Aggregate cfs_rq runnable averages into an equivalent task_group
2042 * representation for computing load contributions.
2043 */
2044static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2045 struct cfs_rq *cfs_rq)
2046{
2047 struct task_group *tg = cfs_rq->tg;
2048 long contrib;
2049
2050 /* The fraction of a cpu used by this cfs_rq */
2051 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2052 sa->runnable_avg_period + 1);
2053 contrib -= cfs_rq->tg_runnable_contrib;
2054
2055 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2056 atomic_add(contrib, &tg->runnable_avg);
2057 cfs_rq->tg_runnable_contrib += contrib;
2058 }
2059}
2060
8165e145
PT
2061static inline void __update_group_entity_contrib(struct sched_entity *se)
2062{
2063 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2064 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2065 int runnable_avg;
2066
8165e145
PT
2067 u64 contrib;
2068
2069 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2070 se->avg.load_avg_contrib = div_u64(contrib,
2071 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2072
2073 /*
2074 * For group entities we need to compute a correction term in the case
2075 * that they are consuming <1 cpu so that we would contribute the same
2076 * load as a task of equal weight.
2077 *
2078 * Explicitly co-ordinating this measurement would be expensive, but
2079 * fortunately the sum of each cpus contribution forms a usable
2080 * lower-bound on the true value.
2081 *
2082 * Consider the aggregate of 2 contributions. Either they are disjoint
2083 * (and the sum represents true value) or they are disjoint and we are
2084 * understating by the aggregate of their overlap.
2085 *
2086 * Extending this to N cpus, for a given overlap, the maximum amount we
2087 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2088 * cpus that overlap for this interval and w_i is the interval width.
2089 *
2090 * On a small machine; the first term is well-bounded which bounds the
2091 * total error since w_i is a subset of the period. Whereas on a
2092 * larger machine, while this first term can be larger, if w_i is the
2093 * of consequential size guaranteed to see n_i*w_i quickly converge to
2094 * our upper bound of 1-cpu.
2095 */
2096 runnable_avg = atomic_read(&tg->runnable_avg);
2097 if (runnable_avg < NICE_0_LOAD) {
2098 se->avg.load_avg_contrib *= runnable_avg;
2099 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2100 }
8165e145 2101}
c566e8e9
PT
2102#else
2103static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2104 int force_update) {}
bb17f655
PT
2105static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2106 struct cfs_rq *cfs_rq) {}
8165e145 2107static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2108#endif
2109
8165e145
PT
2110static inline void __update_task_entity_contrib(struct sched_entity *se)
2111{
2112 u32 contrib;
2113
2114 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2115 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2116 contrib /= (se->avg.runnable_avg_period + 1);
2117 se->avg.load_avg_contrib = scale_load(contrib);
2118}
2119
2dac754e
PT
2120/* Compute the current contribution to load_avg by se, return any delta */
2121static long __update_entity_load_avg_contrib(struct sched_entity *se)
2122{
2123 long old_contrib = se->avg.load_avg_contrib;
2124
8165e145
PT
2125 if (entity_is_task(se)) {
2126 __update_task_entity_contrib(se);
2127 } else {
bb17f655 2128 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2129 __update_group_entity_contrib(se);
2130 }
2dac754e
PT
2131
2132 return se->avg.load_avg_contrib - old_contrib;
2133}
2134
9ee474f5
PT
2135static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2136 long load_contrib)
2137{
2138 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2139 cfs_rq->blocked_load_avg -= load_contrib;
2140 else
2141 cfs_rq->blocked_load_avg = 0;
2142}
2143
f1b17280
PT
2144static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2145
9d85f21c 2146/* Update a sched_entity's runnable average */
9ee474f5
PT
2147static inline void update_entity_load_avg(struct sched_entity *se,
2148 int update_cfs_rq)
9d85f21c 2149{
2dac754e
PT
2150 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2151 long contrib_delta;
f1b17280 2152 u64 now;
2dac754e 2153
f1b17280
PT
2154 /*
2155 * For a group entity we need to use their owned cfs_rq_clock_task() in
2156 * case they are the parent of a throttled hierarchy.
2157 */
2158 if (entity_is_task(se))
2159 now = cfs_rq_clock_task(cfs_rq);
2160 else
2161 now = cfs_rq_clock_task(group_cfs_rq(se));
2162
2163 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2164 return;
2165
2166 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2167
2168 if (!update_cfs_rq)
2169 return;
2170
2dac754e
PT
2171 if (se->on_rq)
2172 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2173 else
2174 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2175}
2176
2177/*
2178 * Decay the load contributed by all blocked children and account this so that
2179 * their contribution may appropriately discounted when they wake up.
2180 */
aff3e498 2181static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2182{
f1b17280 2183 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2184 u64 decays;
2185
2186 decays = now - cfs_rq->last_decay;
aff3e498 2187 if (!decays && !force_update)
9ee474f5
PT
2188 return;
2189
2509940f
AS
2190 if (atomic_long_read(&cfs_rq->removed_load)) {
2191 unsigned long removed_load;
2192 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2193 subtract_blocked_load_contrib(cfs_rq, removed_load);
2194 }
9ee474f5 2195
aff3e498
PT
2196 if (decays) {
2197 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2198 decays);
2199 atomic64_add(decays, &cfs_rq->decay_counter);
2200 cfs_rq->last_decay = now;
2201 }
c566e8e9
PT
2202
2203 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2204}
18bf2805
BS
2205
2206static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2207{
78becc27 2208 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2209 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2210}
2dac754e
PT
2211
2212/* Add the load generated by se into cfs_rq's child load-average */
2213static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2214 struct sched_entity *se,
2215 int wakeup)
2dac754e 2216{
aff3e498
PT
2217 /*
2218 * We track migrations using entity decay_count <= 0, on a wake-up
2219 * migration we use a negative decay count to track the remote decays
2220 * accumulated while sleeping.
a75cdaa9
AS
2221 *
2222 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2223 * are seen by enqueue_entity_load_avg() as a migration with an already
2224 * constructed load_avg_contrib.
aff3e498
PT
2225 */
2226 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2227 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2228 if (se->avg.decay_count) {
2229 /*
2230 * In a wake-up migration we have to approximate the
2231 * time sleeping. This is because we can't synchronize
2232 * clock_task between the two cpus, and it is not
2233 * guaranteed to be read-safe. Instead, we can
2234 * approximate this using our carried decays, which are
2235 * explicitly atomically readable.
2236 */
2237 se->avg.last_runnable_update -= (-se->avg.decay_count)
2238 << 20;
2239 update_entity_load_avg(se, 0);
2240 /* Indicate that we're now synchronized and on-rq */
2241 se->avg.decay_count = 0;
2242 }
9ee474f5
PT
2243 wakeup = 0;
2244 } else {
282cf499
AS
2245 /*
2246 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2247 * would have made count negative); we must be careful to avoid
2248 * double-accounting blocked time after synchronizing decays.
2249 */
2250 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2251 << 20;
9ee474f5
PT
2252 }
2253
aff3e498
PT
2254 /* migrated tasks did not contribute to our blocked load */
2255 if (wakeup) {
9ee474f5 2256 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2257 update_entity_load_avg(se, 0);
2258 }
9ee474f5 2259
2dac754e 2260 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2261 /* we force update consideration on load-balancer moves */
2262 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2263}
2264
9ee474f5
PT
2265/*
2266 * Remove se's load from this cfs_rq child load-average, if the entity is
2267 * transitioning to a blocked state we track its projected decay using
2268 * blocked_load_avg.
2269 */
2dac754e 2270static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2271 struct sched_entity *se,
2272 int sleep)
2dac754e 2273{
9ee474f5 2274 update_entity_load_avg(se, 1);
aff3e498
PT
2275 /* we force update consideration on load-balancer moves */
2276 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2277
2dac754e 2278 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2279 if (sleep) {
2280 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2281 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2282 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2283}
642dbc39
VG
2284
2285/*
2286 * Update the rq's load with the elapsed running time before entering
2287 * idle. if the last scheduled task is not a CFS task, idle_enter will
2288 * be the only way to update the runnable statistic.
2289 */
2290void idle_enter_fair(struct rq *this_rq)
2291{
2292 update_rq_runnable_avg(this_rq, 1);
2293}
2294
2295/*
2296 * Update the rq's load with the elapsed idle time before a task is
2297 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2298 * be the only way to update the runnable statistic.
2299 */
2300void idle_exit_fair(struct rq *this_rq)
2301{
2302 update_rq_runnable_avg(this_rq, 0);
2303}
2304
9d85f21c 2305#else
9ee474f5
PT
2306static inline void update_entity_load_avg(struct sched_entity *se,
2307 int update_cfs_rq) {}
18bf2805 2308static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2309static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2310 struct sched_entity *se,
2311 int wakeup) {}
2dac754e 2312static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2313 struct sched_entity *se,
2314 int sleep) {}
aff3e498
PT
2315static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2316 int force_update) {}
9d85f21c
PT
2317#endif
2318
2396af69 2319static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2320{
bf0f6f24 2321#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2322 struct task_struct *tsk = NULL;
2323
2324 if (entity_is_task(se))
2325 tsk = task_of(se);
2326
41acab88 2327 if (se->statistics.sleep_start) {
78becc27 2328 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2329
2330 if ((s64)delta < 0)
2331 delta = 0;
2332
41acab88
LDM
2333 if (unlikely(delta > se->statistics.sleep_max))
2334 se->statistics.sleep_max = delta;
bf0f6f24 2335
8c79a045 2336 se->statistics.sleep_start = 0;
41acab88 2337 se->statistics.sum_sleep_runtime += delta;
9745512c 2338
768d0c27 2339 if (tsk) {
e414314c 2340 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2341 trace_sched_stat_sleep(tsk, delta);
2342 }
bf0f6f24 2343 }
41acab88 2344 if (se->statistics.block_start) {
78becc27 2345 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2346
2347 if ((s64)delta < 0)
2348 delta = 0;
2349
41acab88
LDM
2350 if (unlikely(delta > se->statistics.block_max))
2351 se->statistics.block_max = delta;
bf0f6f24 2352
8c79a045 2353 se->statistics.block_start = 0;
41acab88 2354 se->statistics.sum_sleep_runtime += delta;
30084fbd 2355
e414314c 2356 if (tsk) {
8f0dfc34 2357 if (tsk->in_iowait) {
41acab88
LDM
2358 se->statistics.iowait_sum += delta;
2359 se->statistics.iowait_count++;
768d0c27 2360 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2361 }
2362
b781a602
AV
2363 trace_sched_stat_blocked(tsk, delta);
2364
e414314c
PZ
2365 /*
2366 * Blocking time is in units of nanosecs, so shift by
2367 * 20 to get a milliseconds-range estimation of the
2368 * amount of time that the task spent sleeping:
2369 */
2370 if (unlikely(prof_on == SLEEP_PROFILING)) {
2371 profile_hits(SLEEP_PROFILING,
2372 (void *)get_wchan(tsk),
2373 delta >> 20);
2374 }
2375 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2376 }
bf0f6f24
IM
2377 }
2378#endif
2379}
2380
ddc97297
PZ
2381static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2382{
2383#ifdef CONFIG_SCHED_DEBUG
2384 s64 d = se->vruntime - cfs_rq->min_vruntime;
2385
2386 if (d < 0)
2387 d = -d;
2388
2389 if (d > 3*sysctl_sched_latency)
2390 schedstat_inc(cfs_rq, nr_spread_over);
2391#endif
2392}
2393
aeb73b04
PZ
2394static void
2395place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2396{
1af5f730 2397 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2398
2cb8600e
PZ
2399 /*
2400 * The 'current' period is already promised to the current tasks,
2401 * however the extra weight of the new task will slow them down a
2402 * little, place the new task so that it fits in the slot that
2403 * stays open at the end.
2404 */
94dfb5e7 2405 if (initial && sched_feat(START_DEBIT))
f9c0b095 2406 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2407
a2e7a7eb 2408 /* sleeps up to a single latency don't count. */
5ca9880c 2409 if (!initial) {
a2e7a7eb 2410 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2411
a2e7a7eb
MG
2412 /*
2413 * Halve their sleep time's effect, to allow
2414 * for a gentler effect of sleepers:
2415 */
2416 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2417 thresh >>= 1;
51e0304c 2418
a2e7a7eb 2419 vruntime -= thresh;
aeb73b04
PZ
2420 }
2421
b5d9d734 2422 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2423 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2424}
2425
d3d9dc33
PT
2426static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2427
bf0f6f24 2428static void
88ec22d3 2429enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2430{
88ec22d3
PZ
2431 /*
2432 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2433 * through calling update_curr().
88ec22d3 2434 */
371fd7e7 2435 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2436 se->vruntime += cfs_rq->min_vruntime;
2437
bf0f6f24 2438 /*
a2a2d680 2439 * Update run-time statistics of the 'current'.
bf0f6f24 2440 */
b7cc0896 2441 update_curr(cfs_rq);
f269ae04 2442 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2443 account_entity_enqueue(cfs_rq, se);
2444 update_cfs_shares(cfs_rq);
bf0f6f24 2445
88ec22d3 2446 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2447 place_entity(cfs_rq, se, 0);
2396af69 2448 enqueue_sleeper(cfs_rq, se);
e9acbff6 2449 }
bf0f6f24 2450
d2417e5a 2451 update_stats_enqueue(cfs_rq, se);
ddc97297 2452 check_spread(cfs_rq, se);
83b699ed
SV
2453 if (se != cfs_rq->curr)
2454 __enqueue_entity(cfs_rq, se);
2069dd75 2455 se->on_rq = 1;
3d4b47b4 2456
d3d9dc33 2457 if (cfs_rq->nr_running == 1) {
3d4b47b4 2458 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2459 check_enqueue_throttle(cfs_rq);
2460 }
bf0f6f24
IM
2461}
2462
2c13c919 2463static void __clear_buddies_last(struct sched_entity *se)
2002c695 2464{
2c13c919
RR
2465 for_each_sched_entity(se) {
2466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2467 if (cfs_rq->last == se)
2468 cfs_rq->last = NULL;
2469 else
2470 break;
2471 }
2472}
2002c695 2473
2c13c919
RR
2474static void __clear_buddies_next(struct sched_entity *se)
2475{
2476 for_each_sched_entity(se) {
2477 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2478 if (cfs_rq->next == se)
2479 cfs_rq->next = NULL;
2480 else
2481 break;
2482 }
2002c695
PZ
2483}
2484
ac53db59
RR
2485static void __clear_buddies_skip(struct sched_entity *se)
2486{
2487 for_each_sched_entity(se) {
2488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2489 if (cfs_rq->skip == se)
2490 cfs_rq->skip = NULL;
2491 else
2492 break;
2493 }
2494}
2495
a571bbea
PZ
2496static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497{
2c13c919
RR
2498 if (cfs_rq->last == se)
2499 __clear_buddies_last(se);
2500
2501 if (cfs_rq->next == se)
2502 __clear_buddies_next(se);
ac53db59
RR
2503
2504 if (cfs_rq->skip == se)
2505 __clear_buddies_skip(se);
a571bbea
PZ
2506}
2507
6c16a6dc 2508static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2509
bf0f6f24 2510static void
371fd7e7 2511dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2512{
a2a2d680
DA
2513 /*
2514 * Update run-time statistics of the 'current'.
2515 */
2516 update_curr(cfs_rq);
17bc14b7 2517 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2518
19b6a2e3 2519 update_stats_dequeue(cfs_rq, se);
371fd7e7 2520 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2521#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2522 if (entity_is_task(se)) {
2523 struct task_struct *tsk = task_of(se);
2524
2525 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2526 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2527 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2528 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2529 }
db36cc7d 2530#endif
67e9fb2a
PZ
2531 }
2532
2002c695 2533 clear_buddies(cfs_rq, se);
4793241b 2534
83b699ed 2535 if (se != cfs_rq->curr)
30cfdcfc 2536 __dequeue_entity(cfs_rq, se);
17bc14b7 2537 se->on_rq = 0;
30cfdcfc 2538 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2539
2540 /*
2541 * Normalize the entity after updating the min_vruntime because the
2542 * update can refer to the ->curr item and we need to reflect this
2543 * movement in our normalized position.
2544 */
371fd7e7 2545 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2546 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2547
d8b4986d
PT
2548 /* return excess runtime on last dequeue */
2549 return_cfs_rq_runtime(cfs_rq);
2550
1e876231 2551 update_min_vruntime(cfs_rq);
17bc14b7 2552 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2553}
2554
2555/*
2556 * Preempt the current task with a newly woken task if needed:
2557 */
7c92e54f 2558static void
2e09bf55 2559check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2560{
11697830 2561 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2562 struct sched_entity *se;
2563 s64 delta;
11697830 2564
6d0f0ebd 2565 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2566 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2567 if (delta_exec > ideal_runtime) {
bf0f6f24 2568 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2569 /*
2570 * The current task ran long enough, ensure it doesn't get
2571 * re-elected due to buddy favours.
2572 */
2573 clear_buddies(cfs_rq, curr);
f685ceac
MG
2574 return;
2575 }
2576
2577 /*
2578 * Ensure that a task that missed wakeup preemption by a
2579 * narrow margin doesn't have to wait for a full slice.
2580 * This also mitigates buddy induced latencies under load.
2581 */
f685ceac
MG
2582 if (delta_exec < sysctl_sched_min_granularity)
2583 return;
2584
f4cfb33e
WX
2585 se = __pick_first_entity(cfs_rq);
2586 delta = curr->vruntime - se->vruntime;
f685ceac 2587
f4cfb33e
WX
2588 if (delta < 0)
2589 return;
d7d82944 2590
f4cfb33e
WX
2591 if (delta > ideal_runtime)
2592 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2593}
2594
83b699ed 2595static void
8494f412 2596set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2597{
83b699ed
SV
2598 /* 'current' is not kept within the tree. */
2599 if (se->on_rq) {
2600 /*
2601 * Any task has to be enqueued before it get to execute on
2602 * a CPU. So account for the time it spent waiting on the
2603 * runqueue.
2604 */
2605 update_stats_wait_end(cfs_rq, se);
2606 __dequeue_entity(cfs_rq, se);
2607 }
2608
79303e9e 2609 update_stats_curr_start(cfs_rq, se);
429d43bc 2610 cfs_rq->curr = se;
eba1ed4b
IM
2611#ifdef CONFIG_SCHEDSTATS
2612 /*
2613 * Track our maximum slice length, if the CPU's load is at
2614 * least twice that of our own weight (i.e. dont track it
2615 * when there are only lesser-weight tasks around):
2616 */
495eca49 2617 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2618 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2619 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2620 }
2621#endif
4a55b450 2622 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2623}
2624
3f3a4904
PZ
2625static int
2626wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2627
ac53db59
RR
2628/*
2629 * Pick the next process, keeping these things in mind, in this order:
2630 * 1) keep things fair between processes/task groups
2631 * 2) pick the "next" process, since someone really wants that to run
2632 * 3) pick the "last" process, for cache locality
2633 * 4) do not run the "skip" process, if something else is available
2634 */
f4b6755f 2635static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2636{
ac53db59 2637 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2638 struct sched_entity *left = se;
f4b6755f 2639
ac53db59
RR
2640 /*
2641 * Avoid running the skip buddy, if running something else can
2642 * be done without getting too unfair.
2643 */
2644 if (cfs_rq->skip == se) {
2645 struct sched_entity *second = __pick_next_entity(se);
2646 if (second && wakeup_preempt_entity(second, left) < 1)
2647 se = second;
2648 }
aa2ac252 2649
f685ceac
MG
2650 /*
2651 * Prefer last buddy, try to return the CPU to a preempted task.
2652 */
2653 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2654 se = cfs_rq->last;
2655
ac53db59
RR
2656 /*
2657 * Someone really wants this to run. If it's not unfair, run it.
2658 */
2659 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2660 se = cfs_rq->next;
2661
f685ceac 2662 clear_buddies(cfs_rq, se);
4793241b
PZ
2663
2664 return se;
aa2ac252
PZ
2665}
2666
d3d9dc33
PT
2667static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2668
ab6cde26 2669static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2670{
2671 /*
2672 * If still on the runqueue then deactivate_task()
2673 * was not called and update_curr() has to be done:
2674 */
2675 if (prev->on_rq)
b7cc0896 2676 update_curr(cfs_rq);
bf0f6f24 2677
d3d9dc33
PT
2678 /* throttle cfs_rqs exceeding runtime */
2679 check_cfs_rq_runtime(cfs_rq);
2680
ddc97297 2681 check_spread(cfs_rq, prev);
30cfdcfc 2682 if (prev->on_rq) {
5870db5b 2683 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2684 /* Put 'current' back into the tree. */
2685 __enqueue_entity(cfs_rq, prev);
9d85f21c 2686 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2687 update_entity_load_avg(prev, 1);
30cfdcfc 2688 }
429d43bc 2689 cfs_rq->curr = NULL;
bf0f6f24
IM
2690}
2691
8f4d37ec
PZ
2692static void
2693entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2694{
bf0f6f24 2695 /*
30cfdcfc 2696 * Update run-time statistics of the 'current'.
bf0f6f24 2697 */
30cfdcfc 2698 update_curr(cfs_rq);
bf0f6f24 2699
9d85f21c
PT
2700 /*
2701 * Ensure that runnable average is periodically updated.
2702 */
9ee474f5 2703 update_entity_load_avg(curr, 1);
aff3e498 2704 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2705 update_cfs_shares(cfs_rq);
9d85f21c 2706
8f4d37ec
PZ
2707#ifdef CONFIG_SCHED_HRTICK
2708 /*
2709 * queued ticks are scheduled to match the slice, so don't bother
2710 * validating it and just reschedule.
2711 */
983ed7a6
HH
2712 if (queued) {
2713 resched_task(rq_of(cfs_rq)->curr);
2714 return;
2715 }
8f4d37ec
PZ
2716 /*
2717 * don't let the period tick interfere with the hrtick preemption
2718 */
2719 if (!sched_feat(DOUBLE_TICK) &&
2720 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2721 return;
2722#endif
2723
2c2efaed 2724 if (cfs_rq->nr_running > 1)
2e09bf55 2725 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2726}
2727
ab84d31e
PT
2728
2729/**************************************************
2730 * CFS bandwidth control machinery
2731 */
2732
2733#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2734
2735#ifdef HAVE_JUMP_LABEL
c5905afb 2736static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2737
2738static inline bool cfs_bandwidth_used(void)
2739{
c5905afb 2740 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2741}
2742
2743void account_cfs_bandwidth_used(int enabled, int was_enabled)
2744{
2745 /* only need to count groups transitioning between enabled/!enabled */
2746 if (enabled && !was_enabled)
c5905afb 2747 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2748 else if (!enabled && was_enabled)
c5905afb 2749 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2750}
2751#else /* HAVE_JUMP_LABEL */
2752static bool cfs_bandwidth_used(void)
2753{
2754 return true;
2755}
2756
2757void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2758#endif /* HAVE_JUMP_LABEL */
2759
ab84d31e
PT
2760/*
2761 * default period for cfs group bandwidth.
2762 * default: 0.1s, units: nanoseconds
2763 */
2764static inline u64 default_cfs_period(void)
2765{
2766 return 100000000ULL;
2767}
ec12cb7f
PT
2768
2769static inline u64 sched_cfs_bandwidth_slice(void)
2770{
2771 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2772}
2773
a9cf55b2
PT
2774/*
2775 * Replenish runtime according to assigned quota and update expiration time.
2776 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2777 * additional synchronization around rq->lock.
2778 *
2779 * requires cfs_b->lock
2780 */
029632fb 2781void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2782{
2783 u64 now;
2784
2785 if (cfs_b->quota == RUNTIME_INF)
2786 return;
2787
2788 now = sched_clock_cpu(smp_processor_id());
2789 cfs_b->runtime = cfs_b->quota;
2790 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2791}
2792
029632fb
PZ
2793static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2794{
2795 return &tg->cfs_bandwidth;
2796}
2797
f1b17280
PT
2798/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2799static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2800{
2801 if (unlikely(cfs_rq->throttle_count))
2802 return cfs_rq->throttled_clock_task;
2803
78becc27 2804 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2805}
2806
85dac906
PT
2807/* returns 0 on failure to allocate runtime */
2808static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2809{
2810 struct task_group *tg = cfs_rq->tg;
2811 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2812 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2813
2814 /* note: this is a positive sum as runtime_remaining <= 0 */
2815 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2816
2817 raw_spin_lock(&cfs_b->lock);
2818 if (cfs_b->quota == RUNTIME_INF)
2819 amount = min_amount;
58088ad0 2820 else {
a9cf55b2
PT
2821 /*
2822 * If the bandwidth pool has become inactive, then at least one
2823 * period must have elapsed since the last consumption.
2824 * Refresh the global state and ensure bandwidth timer becomes
2825 * active.
2826 */
2827 if (!cfs_b->timer_active) {
2828 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2829 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2830 }
58088ad0
PT
2831
2832 if (cfs_b->runtime > 0) {
2833 amount = min(cfs_b->runtime, min_amount);
2834 cfs_b->runtime -= amount;
2835 cfs_b->idle = 0;
2836 }
ec12cb7f 2837 }
a9cf55b2 2838 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2839 raw_spin_unlock(&cfs_b->lock);
2840
2841 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2842 /*
2843 * we may have advanced our local expiration to account for allowed
2844 * spread between our sched_clock and the one on which runtime was
2845 * issued.
2846 */
2847 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2848 cfs_rq->runtime_expires = expires;
85dac906
PT
2849
2850 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2851}
2852
a9cf55b2
PT
2853/*
2854 * Note: This depends on the synchronization provided by sched_clock and the
2855 * fact that rq->clock snapshots this value.
2856 */
2857static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2858{
a9cf55b2 2859 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2860
2861 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2862 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2863 return;
2864
a9cf55b2
PT
2865 if (cfs_rq->runtime_remaining < 0)
2866 return;
2867
2868 /*
2869 * If the local deadline has passed we have to consider the
2870 * possibility that our sched_clock is 'fast' and the global deadline
2871 * has not truly expired.
2872 *
2873 * Fortunately we can check determine whether this the case by checking
2874 * whether the global deadline has advanced.
2875 */
2876
2877 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2878 /* extend local deadline, drift is bounded above by 2 ticks */
2879 cfs_rq->runtime_expires += TICK_NSEC;
2880 } else {
2881 /* global deadline is ahead, expiration has passed */
2882 cfs_rq->runtime_remaining = 0;
2883 }
2884}
2885
2886static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2887 unsigned long delta_exec)
2888{
2889 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2890 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2891 expire_cfs_rq_runtime(cfs_rq);
2892
2893 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2894 return;
2895
85dac906
PT
2896 /*
2897 * if we're unable to extend our runtime we resched so that the active
2898 * hierarchy can be throttled
2899 */
2900 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2901 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2902}
2903
6c16a6dc
PZ
2904static __always_inline
2905void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2906{
56f570e5 2907 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2908 return;
2909
2910 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2911}
2912
85dac906
PT
2913static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2914{
56f570e5 2915 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2916}
2917
64660c86
PT
2918/* check whether cfs_rq, or any parent, is throttled */
2919static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2920{
56f570e5 2921 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2922}
2923
2924/*
2925 * Ensure that neither of the group entities corresponding to src_cpu or
2926 * dest_cpu are members of a throttled hierarchy when performing group
2927 * load-balance operations.
2928 */
2929static inline int throttled_lb_pair(struct task_group *tg,
2930 int src_cpu, int dest_cpu)
2931{
2932 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2933
2934 src_cfs_rq = tg->cfs_rq[src_cpu];
2935 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2936
2937 return throttled_hierarchy(src_cfs_rq) ||
2938 throttled_hierarchy(dest_cfs_rq);
2939}
2940
2941/* updated child weight may affect parent so we have to do this bottom up */
2942static int tg_unthrottle_up(struct task_group *tg, void *data)
2943{
2944 struct rq *rq = data;
2945 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2946
2947 cfs_rq->throttle_count--;
2948#ifdef CONFIG_SMP
2949 if (!cfs_rq->throttle_count) {
f1b17280 2950 /* adjust cfs_rq_clock_task() */
78becc27 2951 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2952 cfs_rq->throttled_clock_task;
64660c86
PT
2953 }
2954#endif
2955
2956 return 0;
2957}
2958
2959static int tg_throttle_down(struct task_group *tg, void *data)
2960{
2961 struct rq *rq = data;
2962 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2963
82958366
PT
2964 /* group is entering throttled state, stop time */
2965 if (!cfs_rq->throttle_count)
78becc27 2966 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2967 cfs_rq->throttle_count++;
2968
2969 return 0;
2970}
2971
d3d9dc33 2972static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2973{
2974 struct rq *rq = rq_of(cfs_rq);
2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2976 struct sched_entity *se;
2977 long task_delta, dequeue = 1;
2978
2979 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2980
f1b17280 2981 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2982 rcu_read_lock();
2983 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2984 rcu_read_unlock();
85dac906
PT
2985
2986 task_delta = cfs_rq->h_nr_running;
2987 for_each_sched_entity(se) {
2988 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2989 /* throttled entity or throttle-on-deactivate */
2990 if (!se->on_rq)
2991 break;
2992
2993 if (dequeue)
2994 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2995 qcfs_rq->h_nr_running -= task_delta;
2996
2997 if (qcfs_rq->load.weight)
2998 dequeue = 0;
2999 }
3000
3001 if (!se)
3002 rq->nr_running -= task_delta;
3003
3004 cfs_rq->throttled = 1;
78becc27 3005 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3006 raw_spin_lock(&cfs_b->lock);
3007 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3008 raw_spin_unlock(&cfs_b->lock);
3009}
3010
029632fb 3011void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3012{
3013 struct rq *rq = rq_of(cfs_rq);
3014 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3015 struct sched_entity *se;
3016 int enqueue = 1;
3017 long task_delta;
3018
22b958d8 3019 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3020
3021 cfs_rq->throttled = 0;
1a55af2e
FW
3022
3023 update_rq_clock(rq);
3024
671fd9da 3025 raw_spin_lock(&cfs_b->lock);
78becc27 3026 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3027 list_del_rcu(&cfs_rq->throttled_list);
3028 raw_spin_unlock(&cfs_b->lock);
3029
64660c86
PT
3030 /* update hierarchical throttle state */
3031 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3032
671fd9da
PT
3033 if (!cfs_rq->load.weight)
3034 return;
3035
3036 task_delta = cfs_rq->h_nr_running;
3037 for_each_sched_entity(se) {
3038 if (se->on_rq)
3039 enqueue = 0;
3040
3041 cfs_rq = cfs_rq_of(se);
3042 if (enqueue)
3043 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3044 cfs_rq->h_nr_running += task_delta;
3045
3046 if (cfs_rq_throttled(cfs_rq))
3047 break;
3048 }
3049
3050 if (!se)
3051 rq->nr_running += task_delta;
3052
3053 /* determine whether we need to wake up potentially idle cpu */
3054 if (rq->curr == rq->idle && rq->cfs.nr_running)
3055 resched_task(rq->curr);
3056}
3057
3058static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3059 u64 remaining, u64 expires)
3060{
3061 struct cfs_rq *cfs_rq;
3062 u64 runtime = remaining;
3063
3064 rcu_read_lock();
3065 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3066 throttled_list) {
3067 struct rq *rq = rq_of(cfs_rq);
3068
3069 raw_spin_lock(&rq->lock);
3070 if (!cfs_rq_throttled(cfs_rq))
3071 goto next;
3072
3073 runtime = -cfs_rq->runtime_remaining + 1;
3074 if (runtime > remaining)
3075 runtime = remaining;
3076 remaining -= runtime;
3077
3078 cfs_rq->runtime_remaining += runtime;
3079 cfs_rq->runtime_expires = expires;
3080
3081 /* we check whether we're throttled above */
3082 if (cfs_rq->runtime_remaining > 0)
3083 unthrottle_cfs_rq(cfs_rq);
3084
3085next:
3086 raw_spin_unlock(&rq->lock);
3087
3088 if (!remaining)
3089 break;
3090 }
3091 rcu_read_unlock();
3092
3093 return remaining;
3094}
3095
58088ad0
PT
3096/*
3097 * Responsible for refilling a task_group's bandwidth and unthrottling its
3098 * cfs_rqs as appropriate. If there has been no activity within the last
3099 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3100 * used to track this state.
3101 */
3102static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3103{
671fd9da
PT
3104 u64 runtime, runtime_expires;
3105 int idle = 1, throttled;
58088ad0
PT
3106
3107 raw_spin_lock(&cfs_b->lock);
3108 /* no need to continue the timer with no bandwidth constraint */
3109 if (cfs_b->quota == RUNTIME_INF)
3110 goto out_unlock;
3111
671fd9da
PT
3112 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3113 /* idle depends on !throttled (for the case of a large deficit) */
3114 idle = cfs_b->idle && !throttled;
e8da1b18 3115 cfs_b->nr_periods += overrun;
671fd9da 3116
a9cf55b2
PT
3117 /* if we're going inactive then everything else can be deferred */
3118 if (idle)
3119 goto out_unlock;
3120
3121 __refill_cfs_bandwidth_runtime(cfs_b);
3122
671fd9da
PT
3123 if (!throttled) {
3124 /* mark as potentially idle for the upcoming period */
3125 cfs_b->idle = 1;
3126 goto out_unlock;
3127 }
3128
e8da1b18
NR
3129 /* account preceding periods in which throttling occurred */
3130 cfs_b->nr_throttled += overrun;
3131
671fd9da
PT
3132 /*
3133 * There are throttled entities so we must first use the new bandwidth
3134 * to unthrottle them before making it generally available. This
3135 * ensures that all existing debts will be paid before a new cfs_rq is
3136 * allowed to run.
3137 */
3138 runtime = cfs_b->runtime;
3139 runtime_expires = cfs_b->runtime_expires;
3140 cfs_b->runtime = 0;
3141
3142 /*
3143 * This check is repeated as we are holding onto the new bandwidth
3144 * while we unthrottle. This can potentially race with an unthrottled
3145 * group trying to acquire new bandwidth from the global pool.
3146 */
3147 while (throttled && runtime > 0) {
3148 raw_spin_unlock(&cfs_b->lock);
3149 /* we can't nest cfs_b->lock while distributing bandwidth */
3150 runtime = distribute_cfs_runtime(cfs_b, runtime,
3151 runtime_expires);
3152 raw_spin_lock(&cfs_b->lock);
3153
3154 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3155 }
58088ad0 3156
671fd9da
PT
3157 /* return (any) remaining runtime */
3158 cfs_b->runtime = runtime;
3159 /*
3160 * While we are ensured activity in the period following an
3161 * unthrottle, this also covers the case in which the new bandwidth is
3162 * insufficient to cover the existing bandwidth deficit. (Forcing the
3163 * timer to remain active while there are any throttled entities.)
3164 */
3165 cfs_b->idle = 0;
58088ad0
PT
3166out_unlock:
3167 if (idle)
3168 cfs_b->timer_active = 0;
3169 raw_spin_unlock(&cfs_b->lock);
3170
3171 return idle;
3172}
d3d9dc33 3173
d8b4986d
PT
3174/* a cfs_rq won't donate quota below this amount */
3175static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3176/* minimum remaining period time to redistribute slack quota */
3177static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3178/* how long we wait to gather additional slack before distributing */
3179static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3180
3181/* are we near the end of the current quota period? */
3182static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3183{
3184 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3185 u64 remaining;
3186
3187 /* if the call-back is running a quota refresh is already occurring */
3188 if (hrtimer_callback_running(refresh_timer))
3189 return 1;
3190
3191 /* is a quota refresh about to occur? */
3192 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3193 if (remaining < min_expire)
3194 return 1;
3195
3196 return 0;
3197}
3198
3199static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3200{
3201 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3202
3203 /* if there's a quota refresh soon don't bother with slack */
3204 if (runtime_refresh_within(cfs_b, min_left))
3205 return;
3206
3207 start_bandwidth_timer(&cfs_b->slack_timer,
3208 ns_to_ktime(cfs_bandwidth_slack_period));
3209}
3210
3211/* we know any runtime found here is valid as update_curr() precedes return */
3212static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3213{
3214 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3215 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3216
3217 if (slack_runtime <= 0)
3218 return;
3219
3220 raw_spin_lock(&cfs_b->lock);
3221 if (cfs_b->quota != RUNTIME_INF &&
3222 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3223 cfs_b->runtime += slack_runtime;
3224
3225 /* we are under rq->lock, defer unthrottling using a timer */
3226 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3227 !list_empty(&cfs_b->throttled_cfs_rq))
3228 start_cfs_slack_bandwidth(cfs_b);
3229 }
3230 raw_spin_unlock(&cfs_b->lock);
3231
3232 /* even if it's not valid for return we don't want to try again */
3233 cfs_rq->runtime_remaining -= slack_runtime;
3234}
3235
3236static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3237{
56f570e5
PT
3238 if (!cfs_bandwidth_used())
3239 return;
3240
fccfdc6f 3241 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3242 return;
3243
3244 __return_cfs_rq_runtime(cfs_rq);
3245}
3246
3247/*
3248 * This is done with a timer (instead of inline with bandwidth return) since
3249 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3250 */
3251static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3252{
3253 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3254 u64 expires;
3255
3256 /* confirm we're still not at a refresh boundary */
3257 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3258 return;
3259
3260 raw_spin_lock(&cfs_b->lock);
3261 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3262 runtime = cfs_b->runtime;
3263 cfs_b->runtime = 0;
3264 }
3265 expires = cfs_b->runtime_expires;
3266 raw_spin_unlock(&cfs_b->lock);
3267
3268 if (!runtime)
3269 return;
3270
3271 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3272
3273 raw_spin_lock(&cfs_b->lock);
3274 if (expires == cfs_b->runtime_expires)
3275 cfs_b->runtime = runtime;
3276 raw_spin_unlock(&cfs_b->lock);
3277}
3278
d3d9dc33
PT
3279/*
3280 * When a group wakes up we want to make sure that its quota is not already
3281 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3282 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3283 */
3284static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3285{
56f570e5
PT
3286 if (!cfs_bandwidth_used())
3287 return;
3288
d3d9dc33
PT
3289 /* an active group must be handled by the update_curr()->put() path */
3290 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3291 return;
3292
3293 /* ensure the group is not already throttled */
3294 if (cfs_rq_throttled(cfs_rq))
3295 return;
3296
3297 /* update runtime allocation */
3298 account_cfs_rq_runtime(cfs_rq, 0);
3299 if (cfs_rq->runtime_remaining <= 0)
3300 throttle_cfs_rq(cfs_rq);
3301}
3302
3303/* conditionally throttle active cfs_rq's from put_prev_entity() */
3304static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3305{
56f570e5
PT
3306 if (!cfs_bandwidth_used())
3307 return;
3308
d3d9dc33
PT
3309 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3310 return;
3311
3312 /*
3313 * it's possible for a throttled entity to be forced into a running
3314 * state (e.g. set_curr_task), in this case we're finished.
3315 */
3316 if (cfs_rq_throttled(cfs_rq))
3317 return;
3318
3319 throttle_cfs_rq(cfs_rq);
3320}
029632fb 3321
029632fb
PZ
3322static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3323{
3324 struct cfs_bandwidth *cfs_b =
3325 container_of(timer, struct cfs_bandwidth, slack_timer);
3326 do_sched_cfs_slack_timer(cfs_b);
3327
3328 return HRTIMER_NORESTART;
3329}
3330
3331static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3332{
3333 struct cfs_bandwidth *cfs_b =
3334 container_of(timer, struct cfs_bandwidth, period_timer);
3335 ktime_t now;
3336 int overrun;
3337 int idle = 0;
3338
3339 for (;;) {
3340 now = hrtimer_cb_get_time(timer);
3341 overrun = hrtimer_forward(timer, now, cfs_b->period);
3342
3343 if (!overrun)
3344 break;
3345
3346 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3347 }
3348
3349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3350}
3351
3352void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3353{
3354 raw_spin_lock_init(&cfs_b->lock);
3355 cfs_b->runtime = 0;
3356 cfs_b->quota = RUNTIME_INF;
3357 cfs_b->period = ns_to_ktime(default_cfs_period());
3358
3359 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3360 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3361 cfs_b->period_timer.function = sched_cfs_period_timer;
3362 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3363 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3364}
3365
3366static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3367{
3368 cfs_rq->runtime_enabled = 0;
3369 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3370}
3371
3372/* requires cfs_b->lock, may release to reprogram timer */
3373void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3374{
3375 /*
3376 * The timer may be active because we're trying to set a new bandwidth
3377 * period or because we're racing with the tear-down path
3378 * (timer_active==0 becomes visible before the hrtimer call-back
3379 * terminates). In either case we ensure that it's re-programmed
3380 */
3381 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3382 raw_spin_unlock(&cfs_b->lock);
3383 /* ensure cfs_b->lock is available while we wait */
3384 hrtimer_cancel(&cfs_b->period_timer);
3385
3386 raw_spin_lock(&cfs_b->lock);
3387 /* if someone else restarted the timer then we're done */
3388 if (cfs_b->timer_active)
3389 return;
3390 }
3391
3392 cfs_b->timer_active = 1;
3393 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3394}
3395
3396static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3397{
3398 hrtimer_cancel(&cfs_b->period_timer);
3399 hrtimer_cancel(&cfs_b->slack_timer);
3400}
3401
38dc3348 3402static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3403{
3404 struct cfs_rq *cfs_rq;
3405
3406 for_each_leaf_cfs_rq(rq, cfs_rq) {
3407 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3408
3409 if (!cfs_rq->runtime_enabled)
3410 continue;
3411
3412 /*
3413 * clock_task is not advancing so we just need to make sure
3414 * there's some valid quota amount
3415 */
3416 cfs_rq->runtime_remaining = cfs_b->quota;
3417 if (cfs_rq_throttled(cfs_rq))
3418 unthrottle_cfs_rq(cfs_rq);
3419 }
3420}
3421
3422#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3423static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3424{
78becc27 3425 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3426}
3427
3428static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3429 unsigned long delta_exec) {}
d3d9dc33
PT
3430static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3431static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3432static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3433
3434static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3435{
3436 return 0;
3437}
64660c86
PT
3438
3439static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3440{
3441 return 0;
3442}
3443
3444static inline int throttled_lb_pair(struct task_group *tg,
3445 int src_cpu, int dest_cpu)
3446{
3447 return 0;
3448}
029632fb
PZ
3449
3450void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3451
3452#ifdef CONFIG_FAIR_GROUP_SCHED
3453static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3454#endif
3455
029632fb
PZ
3456static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3457{
3458 return NULL;
3459}
3460static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3461static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3462
3463#endif /* CONFIG_CFS_BANDWIDTH */
3464
bf0f6f24
IM
3465/**************************************************
3466 * CFS operations on tasks:
3467 */
3468
8f4d37ec
PZ
3469#ifdef CONFIG_SCHED_HRTICK
3470static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3471{
8f4d37ec
PZ
3472 struct sched_entity *se = &p->se;
3473 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3474
3475 WARN_ON(task_rq(p) != rq);
3476
b39e66ea 3477 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3478 u64 slice = sched_slice(cfs_rq, se);
3479 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3480 s64 delta = slice - ran;
3481
3482 if (delta < 0) {
3483 if (rq->curr == p)
3484 resched_task(p);
3485 return;
3486 }
3487
3488 /*
3489 * Don't schedule slices shorter than 10000ns, that just
3490 * doesn't make sense. Rely on vruntime for fairness.
3491 */
31656519 3492 if (rq->curr != p)
157124c1 3493 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3494
31656519 3495 hrtick_start(rq, delta);
8f4d37ec
PZ
3496 }
3497}
a4c2f00f
PZ
3498
3499/*
3500 * called from enqueue/dequeue and updates the hrtick when the
3501 * current task is from our class and nr_running is low enough
3502 * to matter.
3503 */
3504static void hrtick_update(struct rq *rq)
3505{
3506 struct task_struct *curr = rq->curr;
3507
b39e66ea 3508 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3509 return;
3510
3511 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3512 hrtick_start_fair(rq, curr);
3513}
55e12e5e 3514#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3515static inline void
3516hrtick_start_fair(struct rq *rq, struct task_struct *p)
3517{
3518}
a4c2f00f
PZ
3519
3520static inline void hrtick_update(struct rq *rq)
3521{
3522}
8f4d37ec
PZ
3523#endif
3524
bf0f6f24
IM
3525/*
3526 * The enqueue_task method is called before nr_running is
3527 * increased. Here we update the fair scheduling stats and
3528 * then put the task into the rbtree:
3529 */
ea87bb78 3530static void
371fd7e7 3531enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3532{
3533 struct cfs_rq *cfs_rq;
62fb1851 3534 struct sched_entity *se = &p->se;
bf0f6f24
IM
3535
3536 for_each_sched_entity(se) {
62fb1851 3537 if (se->on_rq)
bf0f6f24
IM
3538 break;
3539 cfs_rq = cfs_rq_of(se);
88ec22d3 3540 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3541
3542 /*
3543 * end evaluation on encountering a throttled cfs_rq
3544 *
3545 * note: in the case of encountering a throttled cfs_rq we will
3546 * post the final h_nr_running increment below.
3547 */
3548 if (cfs_rq_throttled(cfs_rq))
3549 break;
953bfcd1 3550 cfs_rq->h_nr_running++;
85dac906 3551
88ec22d3 3552 flags = ENQUEUE_WAKEUP;
bf0f6f24 3553 }
8f4d37ec 3554
2069dd75 3555 for_each_sched_entity(se) {
0f317143 3556 cfs_rq = cfs_rq_of(se);
953bfcd1 3557 cfs_rq->h_nr_running++;
2069dd75 3558
85dac906
PT
3559 if (cfs_rq_throttled(cfs_rq))
3560 break;
3561
17bc14b7 3562 update_cfs_shares(cfs_rq);
9ee474f5 3563 update_entity_load_avg(se, 1);
2069dd75
PZ
3564 }
3565
18bf2805
BS
3566 if (!se) {
3567 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3568 inc_nr_running(rq);
18bf2805 3569 }
a4c2f00f 3570 hrtick_update(rq);
bf0f6f24
IM
3571}
3572
2f36825b
VP
3573static void set_next_buddy(struct sched_entity *se);
3574
bf0f6f24
IM
3575/*
3576 * The dequeue_task method is called before nr_running is
3577 * decreased. We remove the task from the rbtree and
3578 * update the fair scheduling stats:
3579 */
371fd7e7 3580static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3581{
3582 struct cfs_rq *cfs_rq;
62fb1851 3583 struct sched_entity *se = &p->se;
2f36825b 3584 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3585
3586 for_each_sched_entity(se) {
3587 cfs_rq = cfs_rq_of(se);
371fd7e7 3588 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3589
3590 /*
3591 * end evaluation on encountering a throttled cfs_rq
3592 *
3593 * note: in the case of encountering a throttled cfs_rq we will
3594 * post the final h_nr_running decrement below.
3595 */
3596 if (cfs_rq_throttled(cfs_rq))
3597 break;
953bfcd1 3598 cfs_rq->h_nr_running--;
2069dd75 3599
bf0f6f24 3600 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3601 if (cfs_rq->load.weight) {
3602 /*
3603 * Bias pick_next to pick a task from this cfs_rq, as
3604 * p is sleeping when it is within its sched_slice.
3605 */
3606 if (task_sleep && parent_entity(se))
3607 set_next_buddy(parent_entity(se));
9598c82d
PT
3608
3609 /* avoid re-evaluating load for this entity */
3610 se = parent_entity(se);
bf0f6f24 3611 break;
2f36825b 3612 }
371fd7e7 3613 flags |= DEQUEUE_SLEEP;
bf0f6f24 3614 }
8f4d37ec 3615
2069dd75 3616 for_each_sched_entity(se) {
0f317143 3617 cfs_rq = cfs_rq_of(se);
953bfcd1 3618 cfs_rq->h_nr_running--;
2069dd75 3619
85dac906
PT
3620 if (cfs_rq_throttled(cfs_rq))
3621 break;
3622
17bc14b7 3623 update_cfs_shares(cfs_rq);
9ee474f5 3624 update_entity_load_avg(se, 1);
2069dd75
PZ
3625 }
3626
18bf2805 3627 if (!se) {
85dac906 3628 dec_nr_running(rq);
18bf2805
BS
3629 update_rq_runnable_avg(rq, 1);
3630 }
a4c2f00f 3631 hrtick_update(rq);
bf0f6f24
IM
3632}
3633
e7693a36 3634#ifdef CONFIG_SMP
029632fb
PZ
3635/* Used instead of source_load when we know the type == 0 */
3636static unsigned long weighted_cpuload(const int cpu)
3637{
b92486cb 3638 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3639}
3640
3641/*
3642 * Return a low guess at the load of a migration-source cpu weighted
3643 * according to the scheduling class and "nice" value.
3644 *
3645 * We want to under-estimate the load of migration sources, to
3646 * balance conservatively.
3647 */
3648static unsigned long source_load(int cpu, int type)
3649{
3650 struct rq *rq = cpu_rq(cpu);
3651 unsigned long total = weighted_cpuload(cpu);
3652
3653 if (type == 0 || !sched_feat(LB_BIAS))
3654 return total;
3655
3656 return min(rq->cpu_load[type-1], total);
3657}
3658
3659/*
3660 * Return a high guess at the load of a migration-target cpu weighted
3661 * according to the scheduling class and "nice" value.
3662 */
3663static unsigned long target_load(int cpu, int type)
3664{
3665 struct rq *rq = cpu_rq(cpu);
3666 unsigned long total = weighted_cpuload(cpu);
3667
3668 if (type == 0 || !sched_feat(LB_BIAS))
3669 return total;
3670
3671 return max(rq->cpu_load[type-1], total);
3672}
3673
3674static unsigned long power_of(int cpu)
3675{
3676 return cpu_rq(cpu)->cpu_power;
3677}
3678
3679static unsigned long cpu_avg_load_per_task(int cpu)
3680{
3681 struct rq *rq = cpu_rq(cpu);
3682 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3683 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3684
3685 if (nr_running)
b92486cb 3686 return load_avg / nr_running;
029632fb
PZ
3687
3688 return 0;
3689}
3690
62470419
MW
3691static void record_wakee(struct task_struct *p)
3692{
3693 /*
3694 * Rough decay (wiping) for cost saving, don't worry
3695 * about the boundary, really active task won't care
3696 * about the loss.
3697 */
3698 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3699 current->wakee_flips = 0;
3700 current->wakee_flip_decay_ts = jiffies;
3701 }
3702
3703 if (current->last_wakee != p) {
3704 current->last_wakee = p;
3705 current->wakee_flips++;
3706 }
3707}
098fb9db 3708
74f8e4b2 3709static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3710{
3711 struct sched_entity *se = &p->se;
3712 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3713 u64 min_vruntime;
3714
3715#ifndef CONFIG_64BIT
3716 u64 min_vruntime_copy;
88ec22d3 3717
3fe1698b
PZ
3718 do {
3719 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3720 smp_rmb();
3721 min_vruntime = cfs_rq->min_vruntime;
3722 } while (min_vruntime != min_vruntime_copy);
3723#else
3724 min_vruntime = cfs_rq->min_vruntime;
3725#endif
88ec22d3 3726
3fe1698b 3727 se->vruntime -= min_vruntime;
62470419 3728 record_wakee(p);
88ec22d3
PZ
3729}
3730
bb3469ac 3731#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3732/*
3733 * effective_load() calculates the load change as seen from the root_task_group
3734 *
3735 * Adding load to a group doesn't make a group heavier, but can cause movement
3736 * of group shares between cpus. Assuming the shares were perfectly aligned one
3737 * can calculate the shift in shares.
cf5f0acf
PZ
3738 *
3739 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3740 * on this @cpu and results in a total addition (subtraction) of @wg to the
3741 * total group weight.
3742 *
3743 * Given a runqueue weight distribution (rw_i) we can compute a shares
3744 * distribution (s_i) using:
3745 *
3746 * s_i = rw_i / \Sum rw_j (1)
3747 *
3748 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3749 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3750 * shares distribution (s_i):
3751 *
3752 * rw_i = { 2, 4, 1, 0 }
3753 * s_i = { 2/7, 4/7, 1/7, 0 }
3754 *
3755 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3756 * task used to run on and the CPU the waker is running on), we need to
3757 * compute the effect of waking a task on either CPU and, in case of a sync
3758 * wakeup, compute the effect of the current task going to sleep.
3759 *
3760 * So for a change of @wl to the local @cpu with an overall group weight change
3761 * of @wl we can compute the new shares distribution (s'_i) using:
3762 *
3763 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3764 *
3765 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3766 * differences in waking a task to CPU 0. The additional task changes the
3767 * weight and shares distributions like:
3768 *
3769 * rw'_i = { 3, 4, 1, 0 }
3770 * s'_i = { 3/8, 4/8, 1/8, 0 }
3771 *
3772 * We can then compute the difference in effective weight by using:
3773 *
3774 * dw_i = S * (s'_i - s_i) (3)
3775 *
3776 * Where 'S' is the group weight as seen by its parent.
3777 *
3778 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3779 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3780 * 4/7) times the weight of the group.
f5bfb7d9 3781 */
2069dd75 3782static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3783{
4be9daaa 3784 struct sched_entity *se = tg->se[cpu];
f1d239f7 3785
58d081b5 3786 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3787 return wl;
3788
4be9daaa 3789 for_each_sched_entity(se) {
cf5f0acf 3790 long w, W;
4be9daaa 3791
977dda7c 3792 tg = se->my_q->tg;
bb3469ac 3793
cf5f0acf
PZ
3794 /*
3795 * W = @wg + \Sum rw_j
3796 */
3797 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3798
cf5f0acf
PZ
3799 /*
3800 * w = rw_i + @wl
3801 */
3802 w = se->my_q->load.weight + wl;
940959e9 3803
cf5f0acf
PZ
3804 /*
3805 * wl = S * s'_i; see (2)
3806 */
3807 if (W > 0 && w < W)
3808 wl = (w * tg->shares) / W;
977dda7c
PT
3809 else
3810 wl = tg->shares;
940959e9 3811
cf5f0acf
PZ
3812 /*
3813 * Per the above, wl is the new se->load.weight value; since
3814 * those are clipped to [MIN_SHARES, ...) do so now. See
3815 * calc_cfs_shares().
3816 */
977dda7c
PT
3817 if (wl < MIN_SHARES)
3818 wl = MIN_SHARES;
cf5f0acf
PZ
3819
3820 /*
3821 * wl = dw_i = S * (s'_i - s_i); see (3)
3822 */
977dda7c 3823 wl -= se->load.weight;
cf5f0acf
PZ
3824
3825 /*
3826 * Recursively apply this logic to all parent groups to compute
3827 * the final effective load change on the root group. Since
3828 * only the @tg group gets extra weight, all parent groups can
3829 * only redistribute existing shares. @wl is the shift in shares
3830 * resulting from this level per the above.
3831 */
4be9daaa 3832 wg = 0;
4be9daaa 3833 }
bb3469ac 3834
4be9daaa 3835 return wl;
bb3469ac
PZ
3836}
3837#else
4be9daaa 3838
58d081b5 3839static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3840{
83378269 3841 return wl;
bb3469ac 3842}
4be9daaa 3843
bb3469ac
PZ
3844#endif
3845
62470419
MW
3846static int wake_wide(struct task_struct *p)
3847{
7d9ffa89 3848 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3849
3850 /*
3851 * Yeah, it's the switching-frequency, could means many wakee or
3852 * rapidly switch, use factor here will just help to automatically
3853 * adjust the loose-degree, so bigger node will lead to more pull.
3854 */
3855 if (p->wakee_flips > factor) {
3856 /*
3857 * wakee is somewhat hot, it needs certain amount of cpu
3858 * resource, so if waker is far more hot, prefer to leave
3859 * it alone.
3860 */
3861 if (current->wakee_flips > (factor * p->wakee_flips))
3862 return 1;
3863 }
3864
3865 return 0;
3866}
3867
c88d5910 3868static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3869{
e37b6a7b 3870 s64 this_load, load;
c88d5910 3871 int idx, this_cpu, prev_cpu;
098fb9db 3872 unsigned long tl_per_task;
c88d5910 3873 struct task_group *tg;
83378269 3874 unsigned long weight;
b3137bc8 3875 int balanced;
098fb9db 3876
62470419
MW
3877 /*
3878 * If we wake multiple tasks be careful to not bounce
3879 * ourselves around too much.
3880 */
3881 if (wake_wide(p))
3882 return 0;
3883
c88d5910
PZ
3884 idx = sd->wake_idx;
3885 this_cpu = smp_processor_id();
3886 prev_cpu = task_cpu(p);
3887 load = source_load(prev_cpu, idx);
3888 this_load = target_load(this_cpu, idx);
098fb9db 3889
b3137bc8
MG
3890 /*
3891 * If sync wakeup then subtract the (maximum possible)
3892 * effect of the currently running task from the load
3893 * of the current CPU:
3894 */
83378269
PZ
3895 if (sync) {
3896 tg = task_group(current);
3897 weight = current->se.load.weight;
3898
c88d5910 3899 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3900 load += effective_load(tg, prev_cpu, 0, -weight);
3901 }
b3137bc8 3902
83378269
PZ
3903 tg = task_group(p);
3904 weight = p->se.load.weight;
b3137bc8 3905
71a29aa7
PZ
3906 /*
3907 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3908 * due to the sync cause above having dropped this_load to 0, we'll
3909 * always have an imbalance, but there's really nothing you can do
3910 * about that, so that's good too.
71a29aa7
PZ
3911 *
3912 * Otherwise check if either cpus are near enough in load to allow this
3913 * task to be woken on this_cpu.
3914 */
e37b6a7b
PT
3915 if (this_load > 0) {
3916 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3917
3918 this_eff_load = 100;
3919 this_eff_load *= power_of(prev_cpu);
3920 this_eff_load *= this_load +
3921 effective_load(tg, this_cpu, weight, weight);
3922
3923 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3924 prev_eff_load *= power_of(this_cpu);
3925 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3926
3927 balanced = this_eff_load <= prev_eff_load;
3928 } else
3929 balanced = true;
b3137bc8 3930
098fb9db 3931 /*
4ae7d5ce
IM
3932 * If the currently running task will sleep within
3933 * a reasonable amount of time then attract this newly
3934 * woken task:
098fb9db 3935 */
2fb7635c
PZ
3936 if (sync && balanced)
3937 return 1;
098fb9db 3938
41acab88 3939 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3940 tl_per_task = cpu_avg_load_per_task(this_cpu);
3941
c88d5910
PZ
3942 if (balanced ||
3943 (this_load <= load &&
3944 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3945 /*
3946 * This domain has SD_WAKE_AFFINE and
3947 * p is cache cold in this domain, and
3948 * there is no bad imbalance.
3949 */
c88d5910 3950 schedstat_inc(sd, ttwu_move_affine);
41acab88 3951 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3952
3953 return 1;
3954 }
3955 return 0;
3956}
3957
aaee1203
PZ
3958/*
3959 * find_idlest_group finds and returns the least busy CPU group within the
3960 * domain.
3961 */
3962static struct sched_group *
78e7ed53 3963find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3964 int this_cpu, int load_idx)
e7693a36 3965{
b3bd3de6 3966 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3967 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3968 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3969
aaee1203
PZ
3970 do {
3971 unsigned long load, avg_load;
3972 int local_group;
3973 int i;
e7693a36 3974
aaee1203
PZ
3975 /* Skip over this group if it has no CPUs allowed */
3976 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3977 tsk_cpus_allowed(p)))
aaee1203
PZ
3978 continue;
3979
3980 local_group = cpumask_test_cpu(this_cpu,
3981 sched_group_cpus(group));
3982
3983 /* Tally up the load of all CPUs in the group */
3984 avg_load = 0;
3985
3986 for_each_cpu(i, sched_group_cpus(group)) {
3987 /* Bias balancing toward cpus of our domain */
3988 if (local_group)
3989 load = source_load(i, load_idx);
3990 else
3991 load = target_load(i, load_idx);
3992
3993 avg_load += load;
3994 }
3995
3996 /* Adjust by relative CPU power of the group */
9c3f75cb 3997 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3998
3999 if (local_group) {
4000 this_load = avg_load;
aaee1203
PZ
4001 } else if (avg_load < min_load) {
4002 min_load = avg_load;
4003 idlest = group;
4004 }
4005 } while (group = group->next, group != sd->groups);
4006
4007 if (!idlest || 100*this_load < imbalance*min_load)
4008 return NULL;
4009 return idlest;
4010}
4011
4012/*
4013 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4014 */
4015static int
4016find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4017{
4018 unsigned long load, min_load = ULONG_MAX;
4019 int idlest = -1;
4020 int i;
4021
4022 /* Traverse only the allowed CPUs */
fa17b507 4023 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4024 load = weighted_cpuload(i);
4025
4026 if (load < min_load || (load == min_load && i == this_cpu)) {
4027 min_load = load;
4028 idlest = i;
e7693a36
GH
4029 }
4030 }
4031
aaee1203
PZ
4032 return idlest;
4033}
e7693a36 4034
a50bde51
PZ
4035/*
4036 * Try and locate an idle CPU in the sched_domain.
4037 */
99bd5e2f 4038static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4039{
99bd5e2f 4040 struct sched_domain *sd;
37407ea7 4041 struct sched_group *sg;
e0a79f52 4042 int i = task_cpu(p);
a50bde51 4043
e0a79f52
MG
4044 if (idle_cpu(target))
4045 return target;
99bd5e2f
SS
4046
4047 /*
e0a79f52 4048 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4049 */
e0a79f52
MG
4050 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4051 return i;
a50bde51
PZ
4052
4053 /*
37407ea7 4054 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4055 */
518cd623 4056 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4057 for_each_lower_domain(sd) {
37407ea7
LT
4058 sg = sd->groups;
4059 do {
4060 if (!cpumask_intersects(sched_group_cpus(sg),
4061 tsk_cpus_allowed(p)))
4062 goto next;
4063
4064 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4065 if (i == target || !idle_cpu(i))
37407ea7
LT
4066 goto next;
4067 }
970e1789 4068
37407ea7
LT
4069 target = cpumask_first_and(sched_group_cpus(sg),
4070 tsk_cpus_allowed(p));
4071 goto done;
4072next:
4073 sg = sg->next;
4074 } while (sg != sd->groups);
4075 }
4076done:
a50bde51
PZ
4077 return target;
4078}
4079
aaee1203
PZ
4080/*
4081 * sched_balance_self: balance the current task (running on cpu) in domains
4082 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4083 * SD_BALANCE_EXEC.
4084 *
4085 * Balance, ie. select the least loaded group.
4086 *
4087 * Returns the target CPU number, or the same CPU if no balancing is needed.
4088 *
4089 * preempt must be disabled.
4090 */
0017d735 4091static int
ac66f547 4092select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4093{
29cd8bae 4094 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4095 int cpu = smp_processor_id();
c88d5910 4096 int new_cpu = cpu;
99bd5e2f 4097 int want_affine = 0;
5158f4e4 4098 int sync = wake_flags & WF_SYNC;
c88d5910 4099
29baa747 4100 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4101 return prev_cpu;
4102
0763a660 4103 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4104 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4105 want_affine = 1;
4106 new_cpu = prev_cpu;
4107 }
aaee1203 4108
dce840a0 4109 rcu_read_lock();
aaee1203 4110 for_each_domain(cpu, tmp) {
e4f42888
PZ
4111 if (!(tmp->flags & SD_LOAD_BALANCE))
4112 continue;
4113
fe3bcfe1 4114 /*
99bd5e2f
SS
4115 * If both cpu and prev_cpu are part of this domain,
4116 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4117 */
99bd5e2f
SS
4118 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4119 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4120 affine_sd = tmp;
29cd8bae 4121 break;
f03542a7 4122 }
29cd8bae 4123
f03542a7 4124 if (tmp->flags & sd_flag)
29cd8bae
PZ
4125 sd = tmp;
4126 }
4127
8b911acd 4128 if (affine_sd) {
f03542a7 4129 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4130 prev_cpu = cpu;
4131
4132 new_cpu = select_idle_sibling(p, prev_cpu);
4133 goto unlock;
8b911acd 4134 }
e7693a36 4135
aaee1203 4136 while (sd) {
5158f4e4 4137 int load_idx = sd->forkexec_idx;
aaee1203 4138 struct sched_group *group;
c88d5910 4139 int weight;
098fb9db 4140
0763a660 4141 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4142 sd = sd->child;
4143 continue;
4144 }
098fb9db 4145
5158f4e4
PZ
4146 if (sd_flag & SD_BALANCE_WAKE)
4147 load_idx = sd->wake_idx;
098fb9db 4148
5158f4e4 4149 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4150 if (!group) {
4151 sd = sd->child;
4152 continue;
4153 }
4ae7d5ce 4154
d7c33c49 4155 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4156 if (new_cpu == -1 || new_cpu == cpu) {
4157 /* Now try balancing at a lower domain level of cpu */
4158 sd = sd->child;
4159 continue;
e7693a36 4160 }
aaee1203
PZ
4161
4162 /* Now try balancing at a lower domain level of new_cpu */
4163 cpu = new_cpu;
669c55e9 4164 weight = sd->span_weight;
aaee1203
PZ
4165 sd = NULL;
4166 for_each_domain(cpu, tmp) {
669c55e9 4167 if (weight <= tmp->span_weight)
aaee1203 4168 break;
0763a660 4169 if (tmp->flags & sd_flag)
aaee1203
PZ
4170 sd = tmp;
4171 }
4172 /* while loop will break here if sd == NULL */
e7693a36 4173 }
dce840a0
PZ
4174unlock:
4175 rcu_read_unlock();
e7693a36 4176
c88d5910 4177 return new_cpu;
e7693a36 4178}
0a74bef8
PT
4179
4180/*
4181 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4182 * cfs_rq_of(p) references at time of call are still valid and identify the
4183 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4184 * other assumptions, including the state of rq->lock, should be made.
4185 */
4186static void
4187migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4188{
aff3e498
PT
4189 struct sched_entity *se = &p->se;
4190 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4191
4192 /*
4193 * Load tracking: accumulate removed load so that it can be processed
4194 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4195 * to blocked load iff they have a positive decay-count. It can never
4196 * be negative here since on-rq tasks have decay-count == 0.
4197 */
4198 if (se->avg.decay_count) {
4199 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4200 atomic_long_add(se->avg.load_avg_contrib,
4201 &cfs_rq->removed_load);
aff3e498 4202 }
0a74bef8 4203}
e7693a36
GH
4204#endif /* CONFIG_SMP */
4205
e52fb7c0
PZ
4206static unsigned long
4207wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4208{
4209 unsigned long gran = sysctl_sched_wakeup_granularity;
4210
4211 /*
e52fb7c0
PZ
4212 * Since its curr running now, convert the gran from real-time
4213 * to virtual-time in his units.
13814d42
MG
4214 *
4215 * By using 'se' instead of 'curr' we penalize light tasks, so
4216 * they get preempted easier. That is, if 'se' < 'curr' then
4217 * the resulting gran will be larger, therefore penalizing the
4218 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4219 * be smaller, again penalizing the lighter task.
4220 *
4221 * This is especially important for buddies when the leftmost
4222 * task is higher priority than the buddy.
0bbd3336 4223 */
f4ad9bd2 4224 return calc_delta_fair(gran, se);
0bbd3336
PZ
4225}
4226
464b7527
PZ
4227/*
4228 * Should 'se' preempt 'curr'.
4229 *
4230 * |s1
4231 * |s2
4232 * |s3
4233 * g
4234 * |<--->|c
4235 *
4236 * w(c, s1) = -1
4237 * w(c, s2) = 0
4238 * w(c, s3) = 1
4239 *
4240 */
4241static int
4242wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4243{
4244 s64 gran, vdiff = curr->vruntime - se->vruntime;
4245
4246 if (vdiff <= 0)
4247 return -1;
4248
e52fb7c0 4249 gran = wakeup_gran(curr, se);
464b7527
PZ
4250 if (vdiff > gran)
4251 return 1;
4252
4253 return 0;
4254}
4255
02479099
PZ
4256static void set_last_buddy(struct sched_entity *se)
4257{
69c80f3e
VP
4258 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4259 return;
4260
4261 for_each_sched_entity(se)
4262 cfs_rq_of(se)->last = se;
02479099
PZ
4263}
4264
4265static void set_next_buddy(struct sched_entity *se)
4266{
69c80f3e
VP
4267 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4268 return;
4269
4270 for_each_sched_entity(se)
4271 cfs_rq_of(se)->next = se;
02479099
PZ
4272}
4273
ac53db59
RR
4274static void set_skip_buddy(struct sched_entity *se)
4275{
69c80f3e
VP
4276 for_each_sched_entity(se)
4277 cfs_rq_of(se)->skip = se;
ac53db59
RR
4278}
4279
bf0f6f24
IM
4280/*
4281 * Preempt the current task with a newly woken task if needed:
4282 */
5a9b86f6 4283static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4284{
4285 struct task_struct *curr = rq->curr;
8651a86c 4286 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4287 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4288 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4289 int next_buddy_marked = 0;
bf0f6f24 4290
4ae7d5ce
IM
4291 if (unlikely(se == pse))
4292 return;
4293
5238cdd3 4294 /*
ddcdf6e7 4295 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4296 * unconditionally check_prempt_curr() after an enqueue (which may have
4297 * lead to a throttle). This both saves work and prevents false
4298 * next-buddy nomination below.
4299 */
4300 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4301 return;
4302
2f36825b 4303 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4304 set_next_buddy(pse);
2f36825b
VP
4305 next_buddy_marked = 1;
4306 }
57fdc26d 4307
aec0a514
BR
4308 /*
4309 * We can come here with TIF_NEED_RESCHED already set from new task
4310 * wake up path.
5238cdd3
PT
4311 *
4312 * Note: this also catches the edge-case of curr being in a throttled
4313 * group (e.g. via set_curr_task), since update_curr() (in the
4314 * enqueue of curr) will have resulted in resched being set. This
4315 * prevents us from potentially nominating it as a false LAST_BUDDY
4316 * below.
aec0a514
BR
4317 */
4318 if (test_tsk_need_resched(curr))
4319 return;
4320
a2f5c9ab
DH
4321 /* Idle tasks are by definition preempted by non-idle tasks. */
4322 if (unlikely(curr->policy == SCHED_IDLE) &&
4323 likely(p->policy != SCHED_IDLE))
4324 goto preempt;
4325
91c234b4 4326 /*
a2f5c9ab
DH
4327 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4328 * is driven by the tick):
91c234b4 4329 */
8ed92e51 4330 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4331 return;
bf0f6f24 4332
464b7527 4333 find_matching_se(&se, &pse);
9bbd7374 4334 update_curr(cfs_rq_of(se));
002f128b 4335 BUG_ON(!pse);
2f36825b
VP
4336 if (wakeup_preempt_entity(se, pse) == 1) {
4337 /*
4338 * Bias pick_next to pick the sched entity that is
4339 * triggering this preemption.
4340 */
4341 if (!next_buddy_marked)
4342 set_next_buddy(pse);
3a7e73a2 4343 goto preempt;
2f36825b 4344 }
464b7527 4345
3a7e73a2 4346 return;
a65ac745 4347
3a7e73a2
PZ
4348preempt:
4349 resched_task(curr);
4350 /*
4351 * Only set the backward buddy when the current task is still
4352 * on the rq. This can happen when a wakeup gets interleaved
4353 * with schedule on the ->pre_schedule() or idle_balance()
4354 * point, either of which can * drop the rq lock.
4355 *
4356 * Also, during early boot the idle thread is in the fair class,
4357 * for obvious reasons its a bad idea to schedule back to it.
4358 */
4359 if (unlikely(!se->on_rq || curr == rq->idle))
4360 return;
4361
4362 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4363 set_last_buddy(se);
bf0f6f24
IM
4364}
4365
fb8d4724 4366static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4367{
8f4d37ec 4368 struct task_struct *p;
bf0f6f24
IM
4369 struct cfs_rq *cfs_rq = &rq->cfs;
4370 struct sched_entity *se;
4371
36ace27e 4372 if (!cfs_rq->nr_running)
bf0f6f24
IM
4373 return NULL;
4374
4375 do {
9948f4b2 4376 se = pick_next_entity(cfs_rq);
f4b6755f 4377 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4378 cfs_rq = group_cfs_rq(se);
4379 } while (cfs_rq);
4380
8f4d37ec 4381 p = task_of(se);
b39e66ea
MG
4382 if (hrtick_enabled(rq))
4383 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4384
4385 return p;
bf0f6f24
IM
4386}
4387
4388/*
4389 * Account for a descheduled task:
4390 */
31ee529c 4391static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4392{
4393 struct sched_entity *se = &prev->se;
4394 struct cfs_rq *cfs_rq;
4395
4396 for_each_sched_entity(se) {
4397 cfs_rq = cfs_rq_of(se);
ab6cde26 4398 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4399 }
4400}
4401
ac53db59
RR
4402/*
4403 * sched_yield() is very simple
4404 *
4405 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4406 */
4407static void yield_task_fair(struct rq *rq)
4408{
4409 struct task_struct *curr = rq->curr;
4410 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4411 struct sched_entity *se = &curr->se;
4412
4413 /*
4414 * Are we the only task in the tree?
4415 */
4416 if (unlikely(rq->nr_running == 1))
4417 return;
4418
4419 clear_buddies(cfs_rq, se);
4420
4421 if (curr->policy != SCHED_BATCH) {
4422 update_rq_clock(rq);
4423 /*
4424 * Update run-time statistics of the 'current'.
4425 */
4426 update_curr(cfs_rq);
916671c0
MG
4427 /*
4428 * Tell update_rq_clock() that we've just updated,
4429 * so we don't do microscopic update in schedule()
4430 * and double the fastpath cost.
4431 */
4432 rq->skip_clock_update = 1;
ac53db59
RR
4433 }
4434
4435 set_skip_buddy(se);
4436}
4437
d95f4122
MG
4438static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4439{
4440 struct sched_entity *se = &p->se;
4441
5238cdd3
PT
4442 /* throttled hierarchies are not runnable */
4443 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4444 return false;
4445
4446 /* Tell the scheduler that we'd really like pse to run next. */
4447 set_next_buddy(se);
4448
d95f4122
MG
4449 yield_task_fair(rq);
4450
4451 return true;
4452}
4453
681f3e68 4454#ifdef CONFIG_SMP
bf0f6f24 4455/**************************************************
e9c84cb8
PZ
4456 * Fair scheduling class load-balancing methods.
4457 *
4458 * BASICS
4459 *
4460 * The purpose of load-balancing is to achieve the same basic fairness the
4461 * per-cpu scheduler provides, namely provide a proportional amount of compute
4462 * time to each task. This is expressed in the following equation:
4463 *
4464 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4465 *
4466 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4467 * W_i,0 is defined as:
4468 *
4469 * W_i,0 = \Sum_j w_i,j (2)
4470 *
4471 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4472 * is derived from the nice value as per prio_to_weight[].
4473 *
4474 * The weight average is an exponential decay average of the instantaneous
4475 * weight:
4476 *
4477 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4478 *
4479 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4480 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4481 * can also include other factors [XXX].
4482 *
4483 * To achieve this balance we define a measure of imbalance which follows
4484 * directly from (1):
4485 *
4486 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4487 *
4488 * We them move tasks around to minimize the imbalance. In the continuous
4489 * function space it is obvious this converges, in the discrete case we get
4490 * a few fun cases generally called infeasible weight scenarios.
4491 *
4492 * [XXX expand on:
4493 * - infeasible weights;
4494 * - local vs global optima in the discrete case. ]
4495 *
4496 *
4497 * SCHED DOMAINS
4498 *
4499 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4500 * for all i,j solution, we create a tree of cpus that follows the hardware
4501 * topology where each level pairs two lower groups (or better). This results
4502 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4503 * tree to only the first of the previous level and we decrease the frequency
4504 * of load-balance at each level inv. proportional to the number of cpus in
4505 * the groups.
4506 *
4507 * This yields:
4508 *
4509 * log_2 n 1 n
4510 * \Sum { --- * --- * 2^i } = O(n) (5)
4511 * i = 0 2^i 2^i
4512 * `- size of each group
4513 * | | `- number of cpus doing load-balance
4514 * | `- freq
4515 * `- sum over all levels
4516 *
4517 * Coupled with a limit on how many tasks we can migrate every balance pass,
4518 * this makes (5) the runtime complexity of the balancer.
4519 *
4520 * An important property here is that each CPU is still (indirectly) connected
4521 * to every other cpu in at most O(log n) steps:
4522 *
4523 * The adjacency matrix of the resulting graph is given by:
4524 *
4525 * log_2 n
4526 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4527 * k = 0
4528 *
4529 * And you'll find that:
4530 *
4531 * A^(log_2 n)_i,j != 0 for all i,j (7)
4532 *
4533 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4534 * The task movement gives a factor of O(m), giving a convergence complexity
4535 * of:
4536 *
4537 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4538 *
4539 *
4540 * WORK CONSERVING
4541 *
4542 * In order to avoid CPUs going idle while there's still work to do, new idle
4543 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4544 * tree itself instead of relying on other CPUs to bring it work.
4545 *
4546 * This adds some complexity to both (5) and (8) but it reduces the total idle
4547 * time.
4548 *
4549 * [XXX more?]
4550 *
4551 *
4552 * CGROUPS
4553 *
4554 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4555 *
4556 * s_k,i
4557 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4558 * S_k
4559 *
4560 * Where
4561 *
4562 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4563 *
4564 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4565 *
4566 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4567 * property.
4568 *
4569 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4570 * rewrite all of this once again.]
4571 */
bf0f6f24 4572
ed387b78
HS
4573static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4574
ddcdf6e7 4575#define LBF_ALL_PINNED 0x01
367456c7 4576#define LBF_NEED_BREAK 0x02
6263322c
PZ
4577#define LBF_DST_PINNED 0x04
4578#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4579
4580struct lb_env {
4581 struct sched_domain *sd;
4582
ddcdf6e7 4583 struct rq *src_rq;
85c1e7da 4584 int src_cpu;
ddcdf6e7
PZ
4585
4586 int dst_cpu;
4587 struct rq *dst_rq;
4588
88b8dac0
SV
4589 struct cpumask *dst_grpmask;
4590 int new_dst_cpu;
ddcdf6e7 4591 enum cpu_idle_type idle;
bd939f45 4592 long imbalance;
b9403130
MW
4593 /* The set of CPUs under consideration for load-balancing */
4594 struct cpumask *cpus;
4595
ddcdf6e7 4596 unsigned int flags;
367456c7
PZ
4597
4598 unsigned int loop;
4599 unsigned int loop_break;
4600 unsigned int loop_max;
ddcdf6e7
PZ
4601};
4602
1e3c88bd 4603/*
ddcdf6e7 4604 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4605 * Both runqueues must be locked.
4606 */
ddcdf6e7 4607static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4608{
ddcdf6e7
PZ
4609 deactivate_task(env->src_rq, p, 0);
4610 set_task_cpu(p, env->dst_cpu);
4611 activate_task(env->dst_rq, p, 0);
4612 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4613#ifdef CONFIG_NUMA_BALANCING
4614 if (p->numa_preferred_nid != -1) {
4615 int src_nid = cpu_to_node(env->src_cpu);
4616 int dst_nid = cpu_to_node(env->dst_cpu);
4617
4618 /*
4619 * If the load balancer has moved the task then limit
4620 * migrations from taking place in the short term in
4621 * case this is a short-lived migration.
4622 */
4623 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4624 p->numa_migrate_seq = 0;
4625 }
4626#endif
1e3c88bd
PZ
4627}
4628
029632fb
PZ
4629/*
4630 * Is this task likely cache-hot:
4631 */
4632static int
4633task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4634{
4635 s64 delta;
4636
4637 if (p->sched_class != &fair_sched_class)
4638 return 0;
4639
4640 if (unlikely(p->policy == SCHED_IDLE))
4641 return 0;
4642
4643 /*
4644 * Buddy candidates are cache hot:
4645 */
4646 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4647 (&p->se == cfs_rq_of(&p->se)->next ||
4648 &p->se == cfs_rq_of(&p->se)->last))
4649 return 1;
4650
4651 if (sysctl_sched_migration_cost == -1)
4652 return 1;
4653 if (sysctl_sched_migration_cost == 0)
4654 return 0;
4655
4656 delta = now - p->se.exec_start;
4657
4658 return delta < (s64)sysctl_sched_migration_cost;
4659}
4660
3a7053b3
MG
4661#ifdef CONFIG_NUMA_BALANCING
4662/* Returns true if the destination node has incurred more faults */
4663static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4664{
4665 int src_nid, dst_nid;
4666
4667 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4668 !(env->sd->flags & SD_NUMA)) {
4669 return false;
4670 }
4671
4672 src_nid = cpu_to_node(env->src_cpu);
4673 dst_nid = cpu_to_node(env->dst_cpu);
4674
83e1d2cd 4675 if (src_nid == dst_nid)
3a7053b3
MG
4676 return false;
4677
83e1d2cd
MG
4678 /* Always encourage migration to the preferred node. */
4679 if (dst_nid == p->numa_preferred_nid)
4680 return true;
4681
4682 /* After the task has settled, check if the new node is better. */
4683 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4684 task_weight(p, dst_nid) + group_weight(p, dst_nid) >
4685 task_weight(p, src_nid) + group_weight(p, src_nid))
3a7053b3
MG
4686 return true;
4687
4688 return false;
4689}
7a0f3083
MG
4690
4691
4692static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4693{
4694 int src_nid, dst_nid;
4695
4696 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4697 return false;
4698
4699 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4700 return false;
4701
4702 src_nid = cpu_to_node(env->src_cpu);
4703 dst_nid = cpu_to_node(env->dst_cpu);
4704
83e1d2cd 4705 if (src_nid == dst_nid)
7a0f3083
MG
4706 return false;
4707
83e1d2cd
MG
4708 /* Migrating away from the preferred node is always bad. */
4709 if (src_nid == p->numa_preferred_nid)
4710 return true;
4711
4712 /* After the task has settled, check if the new node is worse. */
4713 if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
4714 task_weight(p, dst_nid) + group_weight(p, dst_nid) <
4715 task_weight(p, src_nid) + group_weight(p, src_nid))
7a0f3083
MG
4716 return true;
4717
4718 return false;
4719}
4720
3a7053b3
MG
4721#else
4722static inline bool migrate_improves_locality(struct task_struct *p,
4723 struct lb_env *env)
4724{
4725 return false;
4726}
7a0f3083
MG
4727
4728static inline bool migrate_degrades_locality(struct task_struct *p,
4729 struct lb_env *env)
4730{
4731 return false;
4732}
3a7053b3
MG
4733#endif
4734
1e3c88bd
PZ
4735/*
4736 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4737 */
4738static
8e45cb54 4739int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4740{
4741 int tsk_cache_hot = 0;
4742 /*
4743 * We do not migrate tasks that are:
d3198084 4744 * 1) throttled_lb_pair, or
1e3c88bd 4745 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4746 * 3) running (obviously), or
4747 * 4) are cache-hot on their current CPU.
1e3c88bd 4748 */
d3198084
JK
4749 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4750 return 0;
4751
ddcdf6e7 4752 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4753 int cpu;
88b8dac0 4754
41acab88 4755 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4756
6263322c
PZ
4757 env->flags |= LBF_SOME_PINNED;
4758
88b8dac0
SV
4759 /*
4760 * Remember if this task can be migrated to any other cpu in
4761 * our sched_group. We may want to revisit it if we couldn't
4762 * meet load balance goals by pulling other tasks on src_cpu.
4763 *
4764 * Also avoid computing new_dst_cpu if we have already computed
4765 * one in current iteration.
4766 */
6263322c 4767 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4768 return 0;
4769
e02e60c1
JK
4770 /* Prevent to re-select dst_cpu via env's cpus */
4771 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4772 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4773 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4774 env->new_dst_cpu = cpu;
4775 break;
4776 }
88b8dac0 4777 }
e02e60c1 4778
1e3c88bd
PZ
4779 return 0;
4780 }
88b8dac0
SV
4781
4782 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4783 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4784
ddcdf6e7 4785 if (task_running(env->src_rq, p)) {
41acab88 4786 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4787 return 0;
4788 }
4789
4790 /*
4791 * Aggressive migration if:
3a7053b3
MG
4792 * 1) destination numa is preferred
4793 * 2) task is cache cold, or
4794 * 3) too many balance attempts have failed.
1e3c88bd 4795 */
78becc27 4796 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4797 if (!tsk_cache_hot)
4798 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4799
4800 if (migrate_improves_locality(p, env)) {
4801#ifdef CONFIG_SCHEDSTATS
4802 if (tsk_cache_hot) {
4803 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4804 schedstat_inc(p, se.statistics.nr_forced_migrations);
4805 }
4806#endif
4807 return 1;
4808 }
4809
1e3c88bd 4810 if (!tsk_cache_hot ||
8e45cb54 4811 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4812
1e3c88bd 4813 if (tsk_cache_hot) {
8e45cb54 4814 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4815 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4816 }
4e2dcb73 4817
1e3c88bd
PZ
4818 return 1;
4819 }
4820
4e2dcb73
ZH
4821 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4822 return 0;
1e3c88bd
PZ
4823}
4824
897c395f
PZ
4825/*
4826 * move_one_task tries to move exactly one task from busiest to this_rq, as
4827 * part of active balancing operations within "domain".
4828 * Returns 1 if successful and 0 otherwise.
4829 *
4830 * Called with both runqueues locked.
4831 */
8e45cb54 4832static int move_one_task(struct lb_env *env)
897c395f
PZ
4833{
4834 struct task_struct *p, *n;
897c395f 4835
367456c7 4836 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4837 if (!can_migrate_task(p, env))
4838 continue;
897c395f 4839
367456c7
PZ
4840 move_task(p, env);
4841 /*
4842 * Right now, this is only the second place move_task()
4843 * is called, so we can safely collect move_task()
4844 * stats here rather than inside move_task().
4845 */
4846 schedstat_inc(env->sd, lb_gained[env->idle]);
4847 return 1;
897c395f 4848 }
897c395f
PZ
4849 return 0;
4850}
4851
eb95308e
PZ
4852static const unsigned int sched_nr_migrate_break = 32;
4853
5d6523eb 4854/*
bd939f45 4855 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4856 * this_rq, as part of a balancing operation within domain "sd".
4857 * Returns 1 if successful and 0 otherwise.
4858 *
4859 * Called with both runqueues locked.
4860 */
4861static int move_tasks(struct lb_env *env)
1e3c88bd 4862{
5d6523eb
PZ
4863 struct list_head *tasks = &env->src_rq->cfs_tasks;
4864 struct task_struct *p;
367456c7
PZ
4865 unsigned long load;
4866 int pulled = 0;
1e3c88bd 4867
bd939f45 4868 if (env->imbalance <= 0)
5d6523eb 4869 return 0;
1e3c88bd 4870
5d6523eb
PZ
4871 while (!list_empty(tasks)) {
4872 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4873
367456c7
PZ
4874 env->loop++;
4875 /* We've more or less seen every task there is, call it quits */
5d6523eb 4876 if (env->loop > env->loop_max)
367456c7 4877 break;
5d6523eb
PZ
4878
4879 /* take a breather every nr_migrate tasks */
367456c7 4880 if (env->loop > env->loop_break) {
eb95308e 4881 env->loop_break += sched_nr_migrate_break;
8e45cb54 4882 env->flags |= LBF_NEED_BREAK;
ee00e66f 4883 break;
a195f004 4884 }
1e3c88bd 4885
d3198084 4886 if (!can_migrate_task(p, env))
367456c7
PZ
4887 goto next;
4888
4889 load = task_h_load(p);
5d6523eb 4890
eb95308e 4891 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4892 goto next;
4893
bd939f45 4894 if ((load / 2) > env->imbalance)
367456c7 4895 goto next;
1e3c88bd 4896
ddcdf6e7 4897 move_task(p, env);
ee00e66f 4898 pulled++;
bd939f45 4899 env->imbalance -= load;
1e3c88bd
PZ
4900
4901#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4902 /*
4903 * NEWIDLE balancing is a source of latency, so preemptible
4904 * kernels will stop after the first task is pulled to minimize
4905 * the critical section.
4906 */
5d6523eb 4907 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4908 break;
1e3c88bd
PZ
4909#endif
4910
ee00e66f
PZ
4911 /*
4912 * We only want to steal up to the prescribed amount of
4913 * weighted load.
4914 */
bd939f45 4915 if (env->imbalance <= 0)
ee00e66f 4916 break;
367456c7
PZ
4917
4918 continue;
4919next:
5d6523eb 4920 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4921 }
5d6523eb 4922
1e3c88bd 4923 /*
ddcdf6e7
PZ
4924 * Right now, this is one of only two places move_task() is called,
4925 * so we can safely collect move_task() stats here rather than
4926 * inside move_task().
1e3c88bd 4927 */
8e45cb54 4928 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4929
5d6523eb 4930 return pulled;
1e3c88bd
PZ
4931}
4932
230059de 4933#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4934/*
4935 * update tg->load_weight by folding this cpu's load_avg
4936 */
48a16753 4937static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4938{
48a16753
PT
4939 struct sched_entity *se = tg->se[cpu];
4940 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4941
48a16753
PT
4942 /* throttled entities do not contribute to load */
4943 if (throttled_hierarchy(cfs_rq))
4944 return;
9e3081ca 4945
aff3e498 4946 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4947
82958366
PT
4948 if (se) {
4949 update_entity_load_avg(se, 1);
4950 /*
4951 * We pivot on our runnable average having decayed to zero for
4952 * list removal. This generally implies that all our children
4953 * have also been removed (modulo rounding error or bandwidth
4954 * control); however, such cases are rare and we can fix these
4955 * at enqueue.
4956 *
4957 * TODO: fix up out-of-order children on enqueue.
4958 */
4959 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4960 list_del_leaf_cfs_rq(cfs_rq);
4961 } else {
48a16753 4962 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4963 update_rq_runnable_avg(rq, rq->nr_running);
4964 }
9e3081ca
PZ
4965}
4966
48a16753 4967static void update_blocked_averages(int cpu)
9e3081ca 4968{
9e3081ca 4969 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4970 struct cfs_rq *cfs_rq;
4971 unsigned long flags;
9e3081ca 4972
48a16753
PT
4973 raw_spin_lock_irqsave(&rq->lock, flags);
4974 update_rq_clock(rq);
9763b67f
PZ
4975 /*
4976 * Iterates the task_group tree in a bottom up fashion, see
4977 * list_add_leaf_cfs_rq() for details.
4978 */
64660c86 4979 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4980 /*
4981 * Note: We may want to consider periodically releasing
4982 * rq->lock about these updates so that creating many task
4983 * groups does not result in continually extending hold time.
4984 */
4985 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4986 }
48a16753
PT
4987
4988 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4989}
4990
9763b67f 4991/*
68520796 4992 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4993 * This needs to be done in a top-down fashion because the load of a child
4994 * group is a fraction of its parents load.
4995 */
68520796 4996static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4997{
68520796
VD
4998 struct rq *rq = rq_of(cfs_rq);
4999 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5000 unsigned long now = jiffies;
68520796 5001 unsigned long load;
a35b6466 5002
68520796 5003 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5004 return;
5005
68520796
VD
5006 cfs_rq->h_load_next = NULL;
5007 for_each_sched_entity(se) {
5008 cfs_rq = cfs_rq_of(se);
5009 cfs_rq->h_load_next = se;
5010 if (cfs_rq->last_h_load_update == now)
5011 break;
5012 }
a35b6466 5013
68520796 5014 if (!se) {
7e3115ef 5015 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5016 cfs_rq->last_h_load_update = now;
5017 }
5018
5019 while ((se = cfs_rq->h_load_next) != NULL) {
5020 load = cfs_rq->h_load;
5021 load = div64_ul(load * se->avg.load_avg_contrib,
5022 cfs_rq->runnable_load_avg + 1);
5023 cfs_rq = group_cfs_rq(se);
5024 cfs_rq->h_load = load;
5025 cfs_rq->last_h_load_update = now;
5026 }
9763b67f
PZ
5027}
5028
367456c7 5029static unsigned long task_h_load(struct task_struct *p)
230059de 5030{
367456c7 5031 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5032
68520796 5033 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5034 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5035 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5036}
5037#else
48a16753 5038static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5039{
5040}
5041
367456c7 5042static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5043{
a003a25b 5044 return p->se.avg.load_avg_contrib;
1e3c88bd 5045}
230059de 5046#endif
1e3c88bd 5047
1e3c88bd 5048/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5049/*
5050 * sg_lb_stats - stats of a sched_group required for load_balancing
5051 */
5052struct sg_lb_stats {
5053 unsigned long avg_load; /*Avg load across the CPUs of the group */
5054 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5055 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5056 unsigned long load_per_task;
3ae11c90 5057 unsigned long group_power;
147c5fc2
PZ
5058 unsigned int sum_nr_running; /* Nr tasks running in the group */
5059 unsigned int group_capacity;
5060 unsigned int idle_cpus;
5061 unsigned int group_weight;
1e3c88bd 5062 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5063 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
5064};
5065
56cf515b
JK
5066/*
5067 * sd_lb_stats - Structure to store the statistics of a sched_domain
5068 * during load balancing.
5069 */
5070struct sd_lb_stats {
5071 struct sched_group *busiest; /* Busiest group in this sd */
5072 struct sched_group *local; /* Local group in this sd */
5073 unsigned long total_load; /* Total load of all groups in sd */
5074 unsigned long total_pwr; /* Total power of all groups in sd */
5075 unsigned long avg_load; /* Average load across all groups in sd */
5076
56cf515b 5077 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5078 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5079};
5080
147c5fc2
PZ
5081static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5082{
5083 /*
5084 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5085 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5086 * We must however clear busiest_stat::avg_load because
5087 * update_sd_pick_busiest() reads this before assignment.
5088 */
5089 *sds = (struct sd_lb_stats){
5090 .busiest = NULL,
5091 .local = NULL,
5092 .total_load = 0UL,
5093 .total_pwr = 0UL,
5094 .busiest_stat = {
5095 .avg_load = 0UL,
5096 },
5097 };
5098}
5099
1e3c88bd
PZ
5100/**
5101 * get_sd_load_idx - Obtain the load index for a given sched domain.
5102 * @sd: The sched_domain whose load_idx is to be obtained.
5103 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5104 *
5105 * Return: The load index.
1e3c88bd
PZ
5106 */
5107static inline int get_sd_load_idx(struct sched_domain *sd,
5108 enum cpu_idle_type idle)
5109{
5110 int load_idx;
5111
5112 switch (idle) {
5113 case CPU_NOT_IDLE:
5114 load_idx = sd->busy_idx;
5115 break;
5116
5117 case CPU_NEWLY_IDLE:
5118 load_idx = sd->newidle_idx;
5119 break;
5120 default:
5121 load_idx = sd->idle_idx;
5122 break;
5123 }
5124
5125 return load_idx;
5126}
5127
15f803c9 5128static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5129{
1399fa78 5130 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5131}
5132
5133unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5134{
5135 return default_scale_freq_power(sd, cpu);
5136}
5137
15f803c9 5138static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5139{
669c55e9 5140 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5141 unsigned long smt_gain = sd->smt_gain;
5142
5143 smt_gain /= weight;
5144
5145 return smt_gain;
5146}
5147
5148unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5149{
5150 return default_scale_smt_power(sd, cpu);
5151}
5152
15f803c9 5153static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5154{
5155 struct rq *rq = cpu_rq(cpu);
b654f7de 5156 u64 total, available, age_stamp, avg;
1e3c88bd 5157
b654f7de
PZ
5158 /*
5159 * Since we're reading these variables without serialization make sure
5160 * we read them once before doing sanity checks on them.
5161 */
5162 age_stamp = ACCESS_ONCE(rq->age_stamp);
5163 avg = ACCESS_ONCE(rq->rt_avg);
5164
78becc27 5165 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5166
b654f7de 5167 if (unlikely(total < avg)) {
aa483808
VP
5168 /* Ensures that power won't end up being negative */
5169 available = 0;
5170 } else {
b654f7de 5171 available = total - avg;
aa483808 5172 }
1e3c88bd 5173
1399fa78
NR
5174 if (unlikely((s64)total < SCHED_POWER_SCALE))
5175 total = SCHED_POWER_SCALE;
1e3c88bd 5176
1399fa78 5177 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5178
5179 return div_u64(available, total);
5180}
5181
5182static void update_cpu_power(struct sched_domain *sd, int cpu)
5183{
669c55e9 5184 unsigned long weight = sd->span_weight;
1399fa78 5185 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5186 struct sched_group *sdg = sd->groups;
5187
1e3c88bd
PZ
5188 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5189 if (sched_feat(ARCH_POWER))
5190 power *= arch_scale_smt_power(sd, cpu);
5191 else
5192 power *= default_scale_smt_power(sd, cpu);
5193
1399fa78 5194 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5195 }
5196
9c3f75cb 5197 sdg->sgp->power_orig = power;
9d5efe05
SV
5198
5199 if (sched_feat(ARCH_POWER))
5200 power *= arch_scale_freq_power(sd, cpu);
5201 else
5202 power *= default_scale_freq_power(sd, cpu);
5203
1399fa78 5204 power >>= SCHED_POWER_SHIFT;
9d5efe05 5205
1e3c88bd 5206 power *= scale_rt_power(cpu);
1399fa78 5207 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5208
5209 if (!power)
5210 power = 1;
5211
e51fd5e2 5212 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5213 sdg->sgp->power = power;
1e3c88bd
PZ
5214}
5215
029632fb 5216void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5217{
5218 struct sched_domain *child = sd->child;
5219 struct sched_group *group, *sdg = sd->groups;
863bffc8 5220 unsigned long power, power_orig;
4ec4412e
VG
5221 unsigned long interval;
5222
5223 interval = msecs_to_jiffies(sd->balance_interval);
5224 interval = clamp(interval, 1UL, max_load_balance_interval);
5225 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5226
5227 if (!child) {
5228 update_cpu_power(sd, cpu);
5229 return;
5230 }
5231
863bffc8 5232 power_orig = power = 0;
1e3c88bd 5233
74a5ce20
PZ
5234 if (child->flags & SD_OVERLAP) {
5235 /*
5236 * SD_OVERLAP domains cannot assume that child groups
5237 * span the current group.
5238 */
5239
863bffc8
PZ
5240 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5241 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5242
5243 power_orig += sg->sgp->power_orig;
5244 power += sg->sgp->power;
5245 }
74a5ce20
PZ
5246 } else {
5247 /*
5248 * !SD_OVERLAP domains can assume that child groups
5249 * span the current group.
5250 */
5251
5252 group = child->groups;
5253 do {
863bffc8 5254 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5255 power += group->sgp->power;
5256 group = group->next;
5257 } while (group != child->groups);
5258 }
1e3c88bd 5259
863bffc8
PZ
5260 sdg->sgp->power_orig = power_orig;
5261 sdg->sgp->power = power;
1e3c88bd
PZ
5262}
5263
9d5efe05
SV
5264/*
5265 * Try and fix up capacity for tiny siblings, this is needed when
5266 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5267 * which on its own isn't powerful enough.
5268 *
5269 * See update_sd_pick_busiest() and check_asym_packing().
5270 */
5271static inline int
5272fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5273{
5274 /*
1399fa78 5275 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5276 */
a6c75f2f 5277 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5278 return 0;
5279
5280 /*
5281 * If ~90% of the cpu_power is still there, we're good.
5282 */
9c3f75cb 5283 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5284 return 1;
5285
5286 return 0;
5287}
5288
30ce5dab
PZ
5289/*
5290 * Group imbalance indicates (and tries to solve) the problem where balancing
5291 * groups is inadequate due to tsk_cpus_allowed() constraints.
5292 *
5293 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5294 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5295 * Something like:
5296 *
5297 * { 0 1 2 3 } { 4 5 6 7 }
5298 * * * * *
5299 *
5300 * If we were to balance group-wise we'd place two tasks in the first group and
5301 * two tasks in the second group. Clearly this is undesired as it will overload
5302 * cpu 3 and leave one of the cpus in the second group unused.
5303 *
5304 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5305 * by noticing the lower domain failed to reach balance and had difficulty
5306 * moving tasks due to affinity constraints.
30ce5dab
PZ
5307 *
5308 * When this is so detected; this group becomes a candidate for busiest; see
5309 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5310 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5311 * to create an effective group imbalance.
5312 *
5313 * This is a somewhat tricky proposition since the next run might not find the
5314 * group imbalance and decide the groups need to be balanced again. A most
5315 * subtle and fragile situation.
5316 */
5317
6263322c 5318static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5319{
6263322c 5320 return group->sgp->imbalance;
30ce5dab
PZ
5321}
5322
b37d9316
PZ
5323/*
5324 * Compute the group capacity.
5325 *
c61037e9
PZ
5326 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5327 * first dividing out the smt factor and computing the actual number of cores
5328 * and limit power unit capacity with that.
b37d9316
PZ
5329 */
5330static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5331{
c61037e9
PZ
5332 unsigned int capacity, smt, cpus;
5333 unsigned int power, power_orig;
5334
5335 power = group->sgp->power;
5336 power_orig = group->sgp->power_orig;
5337 cpus = group->group_weight;
b37d9316 5338
c61037e9
PZ
5339 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5340 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5341 capacity = cpus / smt; /* cores */
b37d9316 5342
c61037e9 5343 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5344 if (!capacity)
5345 capacity = fix_small_capacity(env->sd, group);
5346
5347 return capacity;
5348}
5349
1e3c88bd
PZ
5350/**
5351 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5352 * @env: The load balancing environment.
1e3c88bd 5353 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5354 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5355 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5356 * @sgs: variable to hold the statistics for this group.
5357 */
bd939f45
PZ
5358static inline void update_sg_lb_stats(struct lb_env *env,
5359 struct sched_group *group, int load_idx,
23f0d209 5360 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5361{
30ce5dab
PZ
5362 unsigned long nr_running;
5363 unsigned long load;
bd939f45 5364 int i;
1e3c88bd 5365
b72ff13c
PZ
5366 memset(sgs, 0, sizeof(*sgs));
5367
b9403130 5368 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5369 struct rq *rq = cpu_rq(i);
5370
e44bc5c5
PZ
5371 nr_running = rq->nr_running;
5372
1e3c88bd 5373 /* Bias balancing toward cpus of our domain */
6263322c 5374 if (local_group)
04f733b4 5375 load = target_load(i, load_idx);
6263322c 5376 else
1e3c88bd 5377 load = source_load(i, load_idx);
1e3c88bd
PZ
5378
5379 sgs->group_load += load;
e44bc5c5 5380 sgs->sum_nr_running += nr_running;
1e3c88bd 5381 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5382 if (idle_cpu(i))
5383 sgs->idle_cpus++;
1e3c88bd
PZ
5384 }
5385
1e3c88bd 5386 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5387 sgs->group_power = group->sgp->power;
5388 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5389
dd5feea1 5390 if (sgs->sum_nr_running)
38d0f770 5391 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5392
aae6d3dd 5393 sgs->group_weight = group->group_weight;
fab47622 5394
b37d9316
PZ
5395 sgs->group_imb = sg_imbalanced(group);
5396 sgs->group_capacity = sg_capacity(env, group);
5397
fab47622
NR
5398 if (sgs->group_capacity > sgs->sum_nr_running)
5399 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5400}
5401
532cb4c4
MN
5402/**
5403 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5404 * @env: The load balancing environment.
532cb4c4
MN
5405 * @sds: sched_domain statistics
5406 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5407 * @sgs: sched_group statistics
532cb4c4
MN
5408 *
5409 * Determine if @sg is a busier group than the previously selected
5410 * busiest group.
e69f6186
YB
5411 *
5412 * Return: %true if @sg is a busier group than the previously selected
5413 * busiest group. %false otherwise.
532cb4c4 5414 */
bd939f45 5415static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5416 struct sd_lb_stats *sds,
5417 struct sched_group *sg,
bd939f45 5418 struct sg_lb_stats *sgs)
532cb4c4 5419{
56cf515b 5420 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5421 return false;
5422
5423 if (sgs->sum_nr_running > sgs->group_capacity)
5424 return true;
5425
5426 if (sgs->group_imb)
5427 return true;
5428
5429 /*
5430 * ASYM_PACKING needs to move all the work to the lowest
5431 * numbered CPUs in the group, therefore mark all groups
5432 * higher than ourself as busy.
5433 */
bd939f45
PZ
5434 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5435 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5436 if (!sds->busiest)
5437 return true;
5438
5439 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5440 return true;
5441 }
5442
5443 return false;
5444}
5445
1e3c88bd 5446/**
461819ac 5447 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5448 * @env: The load balancing environment.
1e3c88bd
PZ
5449 * @balance: Should we balance.
5450 * @sds: variable to hold the statistics for this sched_domain.
5451 */
bd939f45 5452static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5453 struct sd_lb_stats *sds)
1e3c88bd 5454{
bd939f45
PZ
5455 struct sched_domain *child = env->sd->child;
5456 struct sched_group *sg = env->sd->groups;
56cf515b 5457 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5458 int load_idx, prefer_sibling = 0;
5459
5460 if (child && child->flags & SD_PREFER_SIBLING)
5461 prefer_sibling = 1;
5462
bd939f45 5463 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5464
5465 do {
56cf515b 5466 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5467 int local_group;
5468
bd939f45 5469 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5470 if (local_group) {
5471 sds->local = sg;
5472 sgs = &sds->local_stat;
b72ff13c
PZ
5473
5474 if (env->idle != CPU_NEWLY_IDLE ||
5475 time_after_eq(jiffies, sg->sgp->next_update))
5476 update_group_power(env->sd, env->dst_cpu);
56cf515b 5477 }
1e3c88bd 5478
56cf515b 5479 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5480
b72ff13c
PZ
5481 if (local_group)
5482 goto next_group;
5483
1e3c88bd
PZ
5484 /*
5485 * In case the child domain prefers tasks go to siblings
532cb4c4 5486 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5487 * and move all the excess tasks away. We lower the capacity
5488 * of a group only if the local group has the capacity to fit
5489 * these excess tasks, i.e. nr_running < group_capacity. The
5490 * extra check prevents the case where you always pull from the
5491 * heaviest group when it is already under-utilized (possible
5492 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5493 */
b72ff13c
PZ
5494 if (prefer_sibling && sds->local &&
5495 sds->local_stat.group_has_capacity)
147c5fc2 5496 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5497
b72ff13c 5498 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5499 sds->busiest = sg;
56cf515b 5500 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5501 }
5502
b72ff13c
PZ
5503next_group:
5504 /* Now, start updating sd_lb_stats */
5505 sds->total_load += sgs->group_load;
5506 sds->total_pwr += sgs->group_power;
5507
532cb4c4 5508 sg = sg->next;
bd939f45 5509 } while (sg != env->sd->groups);
532cb4c4
MN
5510}
5511
532cb4c4
MN
5512/**
5513 * check_asym_packing - Check to see if the group is packed into the
5514 * sched doman.
5515 *
5516 * This is primarily intended to used at the sibling level. Some
5517 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5518 * case of POWER7, it can move to lower SMT modes only when higher
5519 * threads are idle. When in lower SMT modes, the threads will
5520 * perform better since they share less core resources. Hence when we
5521 * have idle threads, we want them to be the higher ones.
5522 *
5523 * This packing function is run on idle threads. It checks to see if
5524 * the busiest CPU in this domain (core in the P7 case) has a higher
5525 * CPU number than the packing function is being run on. Here we are
5526 * assuming lower CPU number will be equivalent to lower a SMT thread
5527 * number.
5528 *
e69f6186 5529 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5530 * this CPU. The amount of the imbalance is returned in *imbalance.
5531 *
cd96891d 5532 * @env: The load balancing environment.
532cb4c4 5533 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5534 */
bd939f45 5535static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5536{
5537 int busiest_cpu;
5538
bd939f45 5539 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5540 return 0;
5541
5542 if (!sds->busiest)
5543 return 0;
5544
5545 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5546 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5547 return 0;
5548
bd939f45 5549 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5550 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5551 SCHED_POWER_SCALE);
bd939f45 5552
532cb4c4 5553 return 1;
1e3c88bd
PZ
5554}
5555
5556/**
5557 * fix_small_imbalance - Calculate the minor imbalance that exists
5558 * amongst the groups of a sched_domain, during
5559 * load balancing.
cd96891d 5560 * @env: The load balancing environment.
1e3c88bd 5561 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5562 */
bd939f45
PZ
5563static inline
5564void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5565{
5566 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5567 unsigned int imbn = 2;
dd5feea1 5568 unsigned long scaled_busy_load_per_task;
56cf515b 5569 struct sg_lb_stats *local, *busiest;
1e3c88bd 5570
56cf515b
JK
5571 local = &sds->local_stat;
5572 busiest = &sds->busiest_stat;
1e3c88bd 5573
56cf515b
JK
5574 if (!local->sum_nr_running)
5575 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5576 else if (busiest->load_per_task > local->load_per_task)
5577 imbn = 1;
dd5feea1 5578
56cf515b
JK
5579 scaled_busy_load_per_task =
5580 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5581 busiest->group_power;
56cf515b 5582
3029ede3
VD
5583 if (busiest->avg_load + scaled_busy_load_per_task >=
5584 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5585 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5586 return;
5587 }
5588
5589 /*
5590 * OK, we don't have enough imbalance to justify moving tasks,
5591 * however we may be able to increase total CPU power used by
5592 * moving them.
5593 */
5594
3ae11c90 5595 pwr_now += busiest->group_power *
56cf515b 5596 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5597 pwr_now += local->group_power *
56cf515b 5598 min(local->load_per_task, local->avg_load);
1399fa78 5599 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5600
5601 /* Amount of load we'd subtract */
56cf515b 5602 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5603 busiest->group_power;
56cf515b 5604 if (busiest->avg_load > tmp) {
3ae11c90 5605 pwr_move += busiest->group_power *
56cf515b
JK
5606 min(busiest->load_per_task,
5607 busiest->avg_load - tmp);
5608 }
1e3c88bd
PZ
5609
5610 /* Amount of load we'd add */
3ae11c90 5611 if (busiest->avg_load * busiest->group_power <
56cf515b 5612 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5613 tmp = (busiest->avg_load * busiest->group_power) /
5614 local->group_power;
56cf515b
JK
5615 } else {
5616 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5617 local->group_power;
56cf515b 5618 }
3ae11c90
PZ
5619 pwr_move += local->group_power *
5620 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5621 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5622
5623 /* Move if we gain throughput */
5624 if (pwr_move > pwr_now)
56cf515b 5625 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5626}
5627
5628/**
5629 * calculate_imbalance - Calculate the amount of imbalance present within the
5630 * groups of a given sched_domain during load balance.
bd939f45 5631 * @env: load balance environment
1e3c88bd 5632 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5633 */
bd939f45 5634static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5635{
dd5feea1 5636 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5637 struct sg_lb_stats *local, *busiest;
5638
5639 local = &sds->local_stat;
56cf515b 5640 busiest = &sds->busiest_stat;
dd5feea1 5641
56cf515b 5642 if (busiest->group_imb) {
30ce5dab
PZ
5643 /*
5644 * In the group_imb case we cannot rely on group-wide averages
5645 * to ensure cpu-load equilibrium, look at wider averages. XXX
5646 */
56cf515b
JK
5647 busiest->load_per_task =
5648 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5649 }
5650
1e3c88bd
PZ
5651 /*
5652 * In the presence of smp nice balancing, certain scenarios can have
5653 * max load less than avg load(as we skip the groups at or below
5654 * its cpu_power, while calculating max_load..)
5655 */
b1885550
VD
5656 if (busiest->avg_load <= sds->avg_load ||
5657 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5658 env->imbalance = 0;
5659 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5660 }
5661
56cf515b 5662 if (!busiest->group_imb) {
dd5feea1
SS
5663 /*
5664 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5665 * Except of course for the group_imb case, since then we might
5666 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5667 */
56cf515b
JK
5668 load_above_capacity =
5669 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5670
1399fa78 5671 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5672 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5673 }
5674
5675 /*
5676 * We're trying to get all the cpus to the average_load, so we don't
5677 * want to push ourselves above the average load, nor do we wish to
5678 * reduce the max loaded cpu below the average load. At the same time,
5679 * we also don't want to reduce the group load below the group capacity
5680 * (so that we can implement power-savings policies etc). Thus we look
5681 * for the minimum possible imbalance.
dd5feea1 5682 */
30ce5dab 5683 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5684
5685 /* How much load to actually move to equalise the imbalance */
56cf515b 5686 env->imbalance = min(
3ae11c90
PZ
5687 max_pull * busiest->group_power,
5688 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5689 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5690
5691 /*
5692 * if *imbalance is less than the average load per runnable task
25985edc 5693 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5694 * a think about bumping its value to force at least one task to be
5695 * moved
5696 */
56cf515b 5697 if (env->imbalance < busiest->load_per_task)
bd939f45 5698 return fix_small_imbalance(env, sds);
1e3c88bd 5699}
fab47622 5700
1e3c88bd
PZ
5701/******* find_busiest_group() helpers end here *********************/
5702
5703/**
5704 * find_busiest_group - Returns the busiest group within the sched_domain
5705 * if there is an imbalance. If there isn't an imbalance, and
5706 * the user has opted for power-savings, it returns a group whose
5707 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5708 * such a group exists.
5709 *
5710 * Also calculates the amount of weighted load which should be moved
5711 * to restore balance.
5712 *
cd96891d 5713 * @env: The load balancing environment.
1e3c88bd 5714 *
e69f6186 5715 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5716 * - If no imbalance and user has opted for power-savings balance,
5717 * return the least loaded group whose CPUs can be
5718 * put to idle by rebalancing its tasks onto our group.
5719 */
56cf515b 5720static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5721{
56cf515b 5722 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5723 struct sd_lb_stats sds;
5724
147c5fc2 5725 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5726
5727 /*
5728 * Compute the various statistics relavent for load balancing at
5729 * this level.
5730 */
23f0d209 5731 update_sd_lb_stats(env, &sds);
56cf515b
JK
5732 local = &sds.local_stat;
5733 busiest = &sds.busiest_stat;
1e3c88bd 5734
bd939f45
PZ
5735 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5736 check_asym_packing(env, &sds))
532cb4c4
MN
5737 return sds.busiest;
5738
cc57aa8f 5739 /* There is no busy sibling group to pull tasks from */
56cf515b 5740 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5741 goto out_balanced;
5742
1399fa78 5743 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5744
866ab43e
PZ
5745 /*
5746 * If the busiest group is imbalanced the below checks don't
30ce5dab 5747 * work because they assume all things are equal, which typically
866ab43e
PZ
5748 * isn't true due to cpus_allowed constraints and the like.
5749 */
56cf515b 5750 if (busiest->group_imb)
866ab43e
PZ
5751 goto force_balance;
5752
cc57aa8f 5753 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5754 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5755 !busiest->group_has_capacity)
fab47622
NR
5756 goto force_balance;
5757
cc57aa8f
PZ
5758 /*
5759 * If the local group is more busy than the selected busiest group
5760 * don't try and pull any tasks.
5761 */
56cf515b 5762 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5763 goto out_balanced;
5764
cc57aa8f
PZ
5765 /*
5766 * Don't pull any tasks if this group is already above the domain
5767 * average load.
5768 */
56cf515b 5769 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5770 goto out_balanced;
5771
bd939f45 5772 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5773 /*
5774 * This cpu is idle. If the busiest group load doesn't
5775 * have more tasks than the number of available cpu's and
5776 * there is no imbalance between this and busiest group
5777 * wrt to idle cpu's, it is balanced.
5778 */
56cf515b
JK
5779 if ((local->idle_cpus < busiest->idle_cpus) &&
5780 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5781 goto out_balanced;
c186fafe
PZ
5782 } else {
5783 /*
5784 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5785 * imbalance_pct to be conservative.
5786 */
56cf515b
JK
5787 if (100 * busiest->avg_load <=
5788 env->sd->imbalance_pct * local->avg_load)
c186fafe 5789 goto out_balanced;
aae6d3dd 5790 }
1e3c88bd 5791
fab47622 5792force_balance:
1e3c88bd 5793 /* Looks like there is an imbalance. Compute it */
bd939f45 5794 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5795 return sds.busiest;
5796
5797out_balanced:
bd939f45 5798 env->imbalance = 0;
1e3c88bd
PZ
5799 return NULL;
5800}
5801
5802/*
5803 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5804 */
bd939f45 5805static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5806 struct sched_group *group)
1e3c88bd
PZ
5807{
5808 struct rq *busiest = NULL, *rq;
95a79b80 5809 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5810 int i;
5811
6906a408 5812 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5813 unsigned long power = power_of(i);
1399fa78
NR
5814 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5815 SCHED_POWER_SCALE);
1e3c88bd
PZ
5816 unsigned long wl;
5817
9d5efe05 5818 if (!capacity)
bd939f45 5819 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5820
1e3c88bd 5821 rq = cpu_rq(i);
6e40f5bb 5822 wl = weighted_cpuload(i);
1e3c88bd 5823
6e40f5bb
TG
5824 /*
5825 * When comparing with imbalance, use weighted_cpuload()
5826 * which is not scaled with the cpu power.
5827 */
bd939f45 5828 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5829 continue;
5830
6e40f5bb
TG
5831 /*
5832 * For the load comparisons with the other cpu's, consider
5833 * the weighted_cpuload() scaled with the cpu power, so that
5834 * the load can be moved away from the cpu that is potentially
5835 * running at a lower capacity.
95a79b80
JK
5836 *
5837 * Thus we're looking for max(wl_i / power_i), crosswise
5838 * multiplication to rid ourselves of the division works out
5839 * to: wl_i * power_j > wl_j * power_i; where j is our
5840 * previous maximum.
6e40f5bb 5841 */
95a79b80
JK
5842 if (wl * busiest_power > busiest_load * power) {
5843 busiest_load = wl;
5844 busiest_power = power;
1e3c88bd
PZ
5845 busiest = rq;
5846 }
5847 }
5848
5849 return busiest;
5850}
5851
5852/*
5853 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5854 * so long as it is large enough.
5855 */
5856#define MAX_PINNED_INTERVAL 512
5857
5858/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5859DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5860
bd939f45 5861static int need_active_balance(struct lb_env *env)
1af3ed3d 5862{
bd939f45
PZ
5863 struct sched_domain *sd = env->sd;
5864
5865 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5866
5867 /*
5868 * ASYM_PACKING needs to force migrate tasks from busy but
5869 * higher numbered CPUs in order to pack all tasks in the
5870 * lowest numbered CPUs.
5871 */
bd939f45 5872 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5873 return 1;
1af3ed3d
PZ
5874 }
5875
5876 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5877}
5878
969c7921
TH
5879static int active_load_balance_cpu_stop(void *data);
5880
23f0d209
JK
5881static int should_we_balance(struct lb_env *env)
5882{
5883 struct sched_group *sg = env->sd->groups;
5884 struct cpumask *sg_cpus, *sg_mask;
5885 int cpu, balance_cpu = -1;
5886
5887 /*
5888 * In the newly idle case, we will allow all the cpu's
5889 * to do the newly idle load balance.
5890 */
5891 if (env->idle == CPU_NEWLY_IDLE)
5892 return 1;
5893
5894 sg_cpus = sched_group_cpus(sg);
5895 sg_mask = sched_group_mask(sg);
5896 /* Try to find first idle cpu */
5897 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5898 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5899 continue;
5900
5901 balance_cpu = cpu;
5902 break;
5903 }
5904
5905 if (balance_cpu == -1)
5906 balance_cpu = group_balance_cpu(sg);
5907
5908 /*
5909 * First idle cpu or the first cpu(busiest) in this sched group
5910 * is eligible for doing load balancing at this and above domains.
5911 */
b0cff9d8 5912 return balance_cpu == env->dst_cpu;
23f0d209
JK
5913}
5914
1e3c88bd
PZ
5915/*
5916 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5917 * tasks if there is an imbalance.
5918 */
5919static int load_balance(int this_cpu, struct rq *this_rq,
5920 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5921 int *continue_balancing)
1e3c88bd 5922{
88b8dac0 5923 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5924 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5925 struct sched_group *group;
1e3c88bd
PZ
5926 struct rq *busiest;
5927 unsigned long flags;
e6252c3e 5928 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5929
8e45cb54
PZ
5930 struct lb_env env = {
5931 .sd = sd,
ddcdf6e7
PZ
5932 .dst_cpu = this_cpu,
5933 .dst_rq = this_rq,
88b8dac0 5934 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5935 .idle = idle,
eb95308e 5936 .loop_break = sched_nr_migrate_break,
b9403130 5937 .cpus = cpus,
8e45cb54
PZ
5938 };
5939
cfc03118
JK
5940 /*
5941 * For NEWLY_IDLE load_balancing, we don't need to consider
5942 * other cpus in our group
5943 */
e02e60c1 5944 if (idle == CPU_NEWLY_IDLE)
cfc03118 5945 env.dst_grpmask = NULL;
cfc03118 5946
1e3c88bd
PZ
5947 cpumask_copy(cpus, cpu_active_mask);
5948
1e3c88bd
PZ
5949 schedstat_inc(sd, lb_count[idle]);
5950
5951redo:
23f0d209
JK
5952 if (!should_we_balance(&env)) {
5953 *continue_balancing = 0;
1e3c88bd 5954 goto out_balanced;
23f0d209 5955 }
1e3c88bd 5956
23f0d209 5957 group = find_busiest_group(&env);
1e3c88bd
PZ
5958 if (!group) {
5959 schedstat_inc(sd, lb_nobusyg[idle]);
5960 goto out_balanced;
5961 }
5962
b9403130 5963 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5964 if (!busiest) {
5965 schedstat_inc(sd, lb_nobusyq[idle]);
5966 goto out_balanced;
5967 }
5968
78feefc5 5969 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5970
bd939f45 5971 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5972
5973 ld_moved = 0;
5974 if (busiest->nr_running > 1) {
5975 /*
5976 * Attempt to move tasks. If find_busiest_group has found
5977 * an imbalance but busiest->nr_running <= 1, the group is
5978 * still unbalanced. ld_moved simply stays zero, so it is
5979 * correctly treated as an imbalance.
5980 */
8e45cb54 5981 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5982 env.src_cpu = busiest->cpu;
5983 env.src_rq = busiest;
5984 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5985
5d6523eb 5986more_balance:
1e3c88bd 5987 local_irq_save(flags);
78feefc5 5988 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5989
5990 /*
5991 * cur_ld_moved - load moved in current iteration
5992 * ld_moved - cumulative load moved across iterations
5993 */
5994 cur_ld_moved = move_tasks(&env);
5995 ld_moved += cur_ld_moved;
78feefc5 5996 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5997 local_irq_restore(flags);
5998
5999 /*
6000 * some other cpu did the load balance for us.
6001 */
88b8dac0
SV
6002 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6003 resched_cpu(env.dst_cpu);
6004
f1cd0858
JK
6005 if (env.flags & LBF_NEED_BREAK) {
6006 env.flags &= ~LBF_NEED_BREAK;
6007 goto more_balance;
6008 }
6009
88b8dac0
SV
6010 /*
6011 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6012 * us and move them to an alternate dst_cpu in our sched_group
6013 * where they can run. The upper limit on how many times we
6014 * iterate on same src_cpu is dependent on number of cpus in our
6015 * sched_group.
6016 *
6017 * This changes load balance semantics a bit on who can move
6018 * load to a given_cpu. In addition to the given_cpu itself
6019 * (or a ilb_cpu acting on its behalf where given_cpu is
6020 * nohz-idle), we now have balance_cpu in a position to move
6021 * load to given_cpu. In rare situations, this may cause
6022 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6023 * _independently_ and at _same_ time to move some load to
6024 * given_cpu) causing exceess load to be moved to given_cpu.
6025 * This however should not happen so much in practice and
6026 * moreover subsequent load balance cycles should correct the
6027 * excess load moved.
6028 */
6263322c 6029 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6030
7aff2e3a
VD
6031 /* Prevent to re-select dst_cpu via env's cpus */
6032 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6033
78feefc5 6034 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6035 env.dst_cpu = env.new_dst_cpu;
6263322c 6036 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6037 env.loop = 0;
6038 env.loop_break = sched_nr_migrate_break;
e02e60c1 6039
88b8dac0
SV
6040 /*
6041 * Go back to "more_balance" rather than "redo" since we
6042 * need to continue with same src_cpu.
6043 */
6044 goto more_balance;
6045 }
1e3c88bd 6046
6263322c
PZ
6047 /*
6048 * We failed to reach balance because of affinity.
6049 */
6050 if (sd_parent) {
6051 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6052
6053 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6054 *group_imbalance = 1;
6055 } else if (*group_imbalance)
6056 *group_imbalance = 0;
6057 }
6058
1e3c88bd 6059 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6060 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6061 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6062 if (!cpumask_empty(cpus)) {
6063 env.loop = 0;
6064 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6065 goto redo;
bbf18b19 6066 }
1e3c88bd
PZ
6067 goto out_balanced;
6068 }
6069 }
6070
6071 if (!ld_moved) {
6072 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6073 /*
6074 * Increment the failure counter only on periodic balance.
6075 * We do not want newidle balance, which can be very
6076 * frequent, pollute the failure counter causing
6077 * excessive cache_hot migrations and active balances.
6078 */
6079 if (idle != CPU_NEWLY_IDLE)
6080 sd->nr_balance_failed++;
1e3c88bd 6081
bd939f45 6082 if (need_active_balance(&env)) {
1e3c88bd
PZ
6083 raw_spin_lock_irqsave(&busiest->lock, flags);
6084
969c7921
TH
6085 /* don't kick the active_load_balance_cpu_stop,
6086 * if the curr task on busiest cpu can't be
6087 * moved to this_cpu
1e3c88bd
PZ
6088 */
6089 if (!cpumask_test_cpu(this_cpu,
fa17b507 6090 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6091 raw_spin_unlock_irqrestore(&busiest->lock,
6092 flags);
8e45cb54 6093 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6094 goto out_one_pinned;
6095 }
6096
969c7921
TH
6097 /*
6098 * ->active_balance synchronizes accesses to
6099 * ->active_balance_work. Once set, it's cleared
6100 * only after active load balance is finished.
6101 */
1e3c88bd
PZ
6102 if (!busiest->active_balance) {
6103 busiest->active_balance = 1;
6104 busiest->push_cpu = this_cpu;
6105 active_balance = 1;
6106 }
6107 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6108
bd939f45 6109 if (active_balance) {
969c7921
TH
6110 stop_one_cpu_nowait(cpu_of(busiest),
6111 active_load_balance_cpu_stop, busiest,
6112 &busiest->active_balance_work);
bd939f45 6113 }
1e3c88bd
PZ
6114
6115 /*
6116 * We've kicked active balancing, reset the failure
6117 * counter.
6118 */
6119 sd->nr_balance_failed = sd->cache_nice_tries+1;
6120 }
6121 } else
6122 sd->nr_balance_failed = 0;
6123
6124 if (likely(!active_balance)) {
6125 /* We were unbalanced, so reset the balancing interval */
6126 sd->balance_interval = sd->min_interval;
6127 } else {
6128 /*
6129 * If we've begun active balancing, start to back off. This
6130 * case may not be covered by the all_pinned logic if there
6131 * is only 1 task on the busy runqueue (because we don't call
6132 * move_tasks).
6133 */
6134 if (sd->balance_interval < sd->max_interval)
6135 sd->balance_interval *= 2;
6136 }
6137
1e3c88bd
PZ
6138 goto out;
6139
6140out_balanced:
6141 schedstat_inc(sd, lb_balanced[idle]);
6142
6143 sd->nr_balance_failed = 0;
6144
6145out_one_pinned:
6146 /* tune up the balancing interval */
8e45cb54 6147 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6148 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6149 (sd->balance_interval < sd->max_interval))
6150 sd->balance_interval *= 2;
6151
46e49b38 6152 ld_moved = 0;
1e3c88bd 6153out:
1e3c88bd
PZ
6154 return ld_moved;
6155}
6156
1e3c88bd
PZ
6157/*
6158 * idle_balance is called by schedule() if this_cpu is about to become
6159 * idle. Attempts to pull tasks from other CPUs.
6160 */
029632fb 6161void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6162{
6163 struct sched_domain *sd;
6164 int pulled_task = 0;
6165 unsigned long next_balance = jiffies + HZ;
9bd721c5 6166 u64 curr_cost = 0;
1e3c88bd 6167
78becc27 6168 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6169
6170 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6171 return;
6172
f492e12e
PZ
6173 /*
6174 * Drop the rq->lock, but keep IRQ/preempt disabled.
6175 */
6176 raw_spin_unlock(&this_rq->lock);
6177
48a16753 6178 update_blocked_averages(this_cpu);
dce840a0 6179 rcu_read_lock();
1e3c88bd
PZ
6180 for_each_domain(this_cpu, sd) {
6181 unsigned long interval;
23f0d209 6182 int continue_balancing = 1;
9bd721c5 6183 u64 t0, domain_cost;
1e3c88bd
PZ
6184
6185 if (!(sd->flags & SD_LOAD_BALANCE))
6186 continue;
6187
9bd721c5
JL
6188 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6189 break;
6190
f492e12e 6191 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6192 t0 = sched_clock_cpu(this_cpu);
6193
1e3c88bd 6194 /* If we've pulled tasks over stop searching: */
f492e12e 6195 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6196 sd, CPU_NEWLY_IDLE,
6197 &continue_balancing);
9bd721c5
JL
6198
6199 domain_cost = sched_clock_cpu(this_cpu) - t0;
6200 if (domain_cost > sd->max_newidle_lb_cost)
6201 sd->max_newidle_lb_cost = domain_cost;
6202
6203 curr_cost += domain_cost;
f492e12e 6204 }
1e3c88bd
PZ
6205
6206 interval = msecs_to_jiffies(sd->balance_interval);
6207 if (time_after(next_balance, sd->last_balance + interval))
6208 next_balance = sd->last_balance + interval;
d5ad140b
NR
6209 if (pulled_task) {
6210 this_rq->idle_stamp = 0;
1e3c88bd 6211 break;
d5ad140b 6212 }
1e3c88bd 6213 }
dce840a0 6214 rcu_read_unlock();
f492e12e
PZ
6215
6216 raw_spin_lock(&this_rq->lock);
6217
1e3c88bd
PZ
6218 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6219 /*
6220 * We are going idle. next_balance may be set based on
6221 * a busy processor. So reset next_balance.
6222 */
6223 this_rq->next_balance = next_balance;
6224 }
9bd721c5
JL
6225
6226 if (curr_cost > this_rq->max_idle_balance_cost)
6227 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6228}
6229
6230/*
969c7921
TH
6231 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6232 * running tasks off the busiest CPU onto idle CPUs. It requires at
6233 * least 1 task to be running on each physical CPU where possible, and
6234 * avoids physical / logical imbalances.
1e3c88bd 6235 */
969c7921 6236static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6237{
969c7921
TH
6238 struct rq *busiest_rq = data;
6239 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6240 int target_cpu = busiest_rq->push_cpu;
969c7921 6241 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6242 struct sched_domain *sd;
969c7921
TH
6243
6244 raw_spin_lock_irq(&busiest_rq->lock);
6245
6246 /* make sure the requested cpu hasn't gone down in the meantime */
6247 if (unlikely(busiest_cpu != smp_processor_id() ||
6248 !busiest_rq->active_balance))
6249 goto out_unlock;
1e3c88bd
PZ
6250
6251 /* Is there any task to move? */
6252 if (busiest_rq->nr_running <= 1)
969c7921 6253 goto out_unlock;
1e3c88bd
PZ
6254
6255 /*
6256 * This condition is "impossible", if it occurs
6257 * we need to fix it. Originally reported by
6258 * Bjorn Helgaas on a 128-cpu setup.
6259 */
6260 BUG_ON(busiest_rq == target_rq);
6261
6262 /* move a task from busiest_rq to target_rq */
6263 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6264
6265 /* Search for an sd spanning us and the target CPU. */
dce840a0 6266 rcu_read_lock();
1e3c88bd
PZ
6267 for_each_domain(target_cpu, sd) {
6268 if ((sd->flags & SD_LOAD_BALANCE) &&
6269 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6270 break;
6271 }
6272
6273 if (likely(sd)) {
8e45cb54
PZ
6274 struct lb_env env = {
6275 .sd = sd,
ddcdf6e7
PZ
6276 .dst_cpu = target_cpu,
6277 .dst_rq = target_rq,
6278 .src_cpu = busiest_rq->cpu,
6279 .src_rq = busiest_rq,
8e45cb54
PZ
6280 .idle = CPU_IDLE,
6281 };
6282
1e3c88bd
PZ
6283 schedstat_inc(sd, alb_count);
6284
8e45cb54 6285 if (move_one_task(&env))
1e3c88bd
PZ
6286 schedstat_inc(sd, alb_pushed);
6287 else
6288 schedstat_inc(sd, alb_failed);
6289 }
dce840a0 6290 rcu_read_unlock();
1e3c88bd 6291 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6292out_unlock:
6293 busiest_rq->active_balance = 0;
6294 raw_spin_unlock_irq(&busiest_rq->lock);
6295 return 0;
1e3c88bd
PZ
6296}
6297
3451d024 6298#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6299/*
6300 * idle load balancing details
83cd4fe2
VP
6301 * - When one of the busy CPUs notice that there may be an idle rebalancing
6302 * needed, they will kick the idle load balancer, which then does idle
6303 * load balancing for all the idle CPUs.
6304 */
1e3c88bd 6305static struct {
83cd4fe2 6306 cpumask_var_t idle_cpus_mask;
0b005cf5 6307 atomic_t nr_cpus;
83cd4fe2
VP
6308 unsigned long next_balance; /* in jiffy units */
6309} nohz ____cacheline_aligned;
1e3c88bd 6310
8e7fbcbc 6311static inline int find_new_ilb(int call_cpu)
1e3c88bd 6312{
0b005cf5 6313 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6314
786d6dc7
SS
6315 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6316 return ilb;
6317
6318 return nr_cpu_ids;
1e3c88bd 6319}
1e3c88bd 6320
83cd4fe2
VP
6321/*
6322 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6323 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6324 * CPU (if there is one).
6325 */
6326static void nohz_balancer_kick(int cpu)
6327{
6328 int ilb_cpu;
6329
6330 nohz.next_balance++;
6331
0b005cf5 6332 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6333
0b005cf5
SS
6334 if (ilb_cpu >= nr_cpu_ids)
6335 return;
83cd4fe2 6336
cd490c5b 6337 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6338 return;
6339 /*
6340 * Use smp_send_reschedule() instead of resched_cpu().
6341 * This way we generate a sched IPI on the target cpu which
6342 * is idle. And the softirq performing nohz idle load balance
6343 * will be run before returning from the IPI.
6344 */
6345 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6346 return;
6347}
6348
c1cc017c 6349static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6350{
6351 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6352 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6353 atomic_dec(&nohz.nr_cpus);
6354 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6355 }
6356}
6357
69e1e811
SS
6358static inline void set_cpu_sd_state_busy(void)
6359{
6360 struct sched_domain *sd;
69e1e811 6361
69e1e811 6362 rcu_read_lock();
424c93fe 6363 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6364
6365 if (!sd || !sd->nohz_idle)
6366 goto unlock;
6367 sd->nohz_idle = 0;
6368
6369 for (; sd; sd = sd->parent)
69e1e811 6370 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6371unlock:
69e1e811
SS
6372 rcu_read_unlock();
6373}
6374
6375void set_cpu_sd_state_idle(void)
6376{
6377 struct sched_domain *sd;
69e1e811 6378
69e1e811 6379 rcu_read_lock();
424c93fe 6380 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6381
6382 if (!sd || sd->nohz_idle)
6383 goto unlock;
6384 sd->nohz_idle = 1;
6385
6386 for (; sd; sd = sd->parent)
69e1e811 6387 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6388unlock:
69e1e811
SS
6389 rcu_read_unlock();
6390}
6391
1e3c88bd 6392/*
c1cc017c 6393 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6394 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6395 */
c1cc017c 6396void nohz_balance_enter_idle(int cpu)
1e3c88bd 6397{
71325960
SS
6398 /*
6399 * If this cpu is going down, then nothing needs to be done.
6400 */
6401 if (!cpu_active(cpu))
6402 return;
6403
c1cc017c
AS
6404 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6405 return;
1e3c88bd 6406
c1cc017c
AS
6407 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6408 atomic_inc(&nohz.nr_cpus);
6409 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6410}
71325960 6411
0db0628d 6412static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6413 unsigned long action, void *hcpu)
6414{
6415 switch (action & ~CPU_TASKS_FROZEN) {
6416 case CPU_DYING:
c1cc017c 6417 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6418 return NOTIFY_OK;
6419 default:
6420 return NOTIFY_DONE;
6421 }
6422}
1e3c88bd
PZ
6423#endif
6424
6425static DEFINE_SPINLOCK(balancing);
6426
49c022e6
PZ
6427/*
6428 * Scale the max load_balance interval with the number of CPUs in the system.
6429 * This trades load-balance latency on larger machines for less cross talk.
6430 */
029632fb 6431void update_max_interval(void)
49c022e6
PZ
6432{
6433 max_load_balance_interval = HZ*num_online_cpus()/10;
6434}
6435
1e3c88bd
PZ
6436/*
6437 * It checks each scheduling domain to see if it is due to be balanced,
6438 * and initiates a balancing operation if so.
6439 *
b9b0853a 6440 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6441 */
6442static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6443{
23f0d209 6444 int continue_balancing = 1;
1e3c88bd
PZ
6445 struct rq *rq = cpu_rq(cpu);
6446 unsigned long interval;
04f733b4 6447 struct sched_domain *sd;
1e3c88bd
PZ
6448 /* Earliest time when we have to do rebalance again */
6449 unsigned long next_balance = jiffies + 60*HZ;
6450 int update_next_balance = 0;
f48627e6
JL
6451 int need_serialize, need_decay = 0;
6452 u64 max_cost = 0;
1e3c88bd 6453
48a16753 6454 update_blocked_averages(cpu);
2069dd75 6455
dce840a0 6456 rcu_read_lock();
1e3c88bd 6457 for_each_domain(cpu, sd) {
f48627e6
JL
6458 /*
6459 * Decay the newidle max times here because this is a regular
6460 * visit to all the domains. Decay ~1% per second.
6461 */
6462 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6463 sd->max_newidle_lb_cost =
6464 (sd->max_newidle_lb_cost * 253) / 256;
6465 sd->next_decay_max_lb_cost = jiffies + HZ;
6466 need_decay = 1;
6467 }
6468 max_cost += sd->max_newidle_lb_cost;
6469
1e3c88bd
PZ
6470 if (!(sd->flags & SD_LOAD_BALANCE))
6471 continue;
6472
f48627e6
JL
6473 /*
6474 * Stop the load balance at this level. There is another
6475 * CPU in our sched group which is doing load balancing more
6476 * actively.
6477 */
6478 if (!continue_balancing) {
6479 if (need_decay)
6480 continue;
6481 break;
6482 }
6483
1e3c88bd
PZ
6484 interval = sd->balance_interval;
6485 if (idle != CPU_IDLE)
6486 interval *= sd->busy_factor;
6487
6488 /* scale ms to jiffies */
6489 interval = msecs_to_jiffies(interval);
49c022e6 6490 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6491
6492 need_serialize = sd->flags & SD_SERIALIZE;
6493
6494 if (need_serialize) {
6495 if (!spin_trylock(&balancing))
6496 goto out;
6497 }
6498
6499 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6500 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6501 /*
6263322c 6502 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6503 * env->dst_cpu, so we can't know our idle
6504 * state even if we migrated tasks. Update it.
1e3c88bd 6505 */
de5eb2dd 6506 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6507 }
6508 sd->last_balance = jiffies;
6509 }
6510 if (need_serialize)
6511 spin_unlock(&balancing);
6512out:
6513 if (time_after(next_balance, sd->last_balance + interval)) {
6514 next_balance = sd->last_balance + interval;
6515 update_next_balance = 1;
6516 }
f48627e6
JL
6517 }
6518 if (need_decay) {
1e3c88bd 6519 /*
f48627e6
JL
6520 * Ensure the rq-wide value also decays but keep it at a
6521 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6522 */
f48627e6
JL
6523 rq->max_idle_balance_cost =
6524 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6525 }
dce840a0 6526 rcu_read_unlock();
1e3c88bd
PZ
6527
6528 /*
6529 * next_balance will be updated only when there is a need.
6530 * When the cpu is attached to null domain for ex, it will not be
6531 * updated.
6532 */
6533 if (likely(update_next_balance))
6534 rq->next_balance = next_balance;
6535}
6536
3451d024 6537#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6538/*
3451d024 6539 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6540 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6541 */
83cd4fe2
VP
6542static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6543{
6544 struct rq *this_rq = cpu_rq(this_cpu);
6545 struct rq *rq;
6546 int balance_cpu;
6547
1c792db7
SS
6548 if (idle != CPU_IDLE ||
6549 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6550 goto end;
83cd4fe2
VP
6551
6552 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6553 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6554 continue;
6555
6556 /*
6557 * If this cpu gets work to do, stop the load balancing
6558 * work being done for other cpus. Next load
6559 * balancing owner will pick it up.
6560 */
1c792db7 6561 if (need_resched())
83cd4fe2 6562 break;
83cd4fe2 6563
5ed4f1d9
VG
6564 rq = cpu_rq(balance_cpu);
6565
6566 raw_spin_lock_irq(&rq->lock);
6567 update_rq_clock(rq);
6568 update_idle_cpu_load(rq);
6569 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6570
6571 rebalance_domains(balance_cpu, CPU_IDLE);
6572
83cd4fe2
VP
6573 if (time_after(this_rq->next_balance, rq->next_balance))
6574 this_rq->next_balance = rq->next_balance;
6575 }
6576 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6577end:
6578 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6579}
6580
6581/*
0b005cf5
SS
6582 * Current heuristic for kicking the idle load balancer in the presence
6583 * of an idle cpu is the system.
6584 * - This rq has more than one task.
6585 * - At any scheduler domain level, this cpu's scheduler group has multiple
6586 * busy cpu's exceeding the group's power.
6587 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6588 * domain span are idle.
83cd4fe2
VP
6589 */
6590static inline int nohz_kick_needed(struct rq *rq, int cpu)
6591{
6592 unsigned long now = jiffies;
0b005cf5 6593 struct sched_domain *sd;
83cd4fe2 6594
1c792db7 6595 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6596 return 0;
6597
1c792db7
SS
6598 /*
6599 * We may be recently in ticked or tickless idle mode. At the first
6600 * busy tick after returning from idle, we will update the busy stats.
6601 */
69e1e811 6602 set_cpu_sd_state_busy();
c1cc017c 6603 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6604
6605 /*
6606 * None are in tickless mode and hence no need for NOHZ idle load
6607 * balancing.
6608 */
6609 if (likely(!atomic_read(&nohz.nr_cpus)))
6610 return 0;
1c792db7
SS
6611
6612 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6613 return 0;
6614
0b005cf5
SS
6615 if (rq->nr_running >= 2)
6616 goto need_kick;
83cd4fe2 6617
067491b7 6618 rcu_read_lock();
0b005cf5
SS
6619 for_each_domain(cpu, sd) {
6620 struct sched_group *sg = sd->groups;
6621 struct sched_group_power *sgp = sg->sgp;
6622 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6623
0b005cf5 6624 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6625 goto need_kick_unlock;
0b005cf5
SS
6626
6627 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6628 && (cpumask_first_and(nohz.idle_cpus_mask,
6629 sched_domain_span(sd)) < cpu))
067491b7 6630 goto need_kick_unlock;
0b005cf5
SS
6631
6632 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6633 break;
83cd4fe2 6634 }
067491b7 6635 rcu_read_unlock();
83cd4fe2 6636 return 0;
067491b7
PZ
6637
6638need_kick_unlock:
6639 rcu_read_unlock();
0b005cf5
SS
6640need_kick:
6641 return 1;
83cd4fe2
VP
6642}
6643#else
6644static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6645#endif
6646
6647/*
6648 * run_rebalance_domains is triggered when needed from the scheduler tick.
6649 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6650 */
1e3c88bd
PZ
6651static void run_rebalance_domains(struct softirq_action *h)
6652{
6653 int this_cpu = smp_processor_id();
6654 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6655 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6656 CPU_IDLE : CPU_NOT_IDLE;
6657
6658 rebalance_domains(this_cpu, idle);
6659
1e3c88bd 6660 /*
83cd4fe2 6661 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6662 * balancing on behalf of the other idle cpus whose ticks are
6663 * stopped.
6664 */
83cd4fe2 6665 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6666}
6667
6668static inline int on_null_domain(int cpu)
6669{
90a6501f 6670 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6671}
6672
6673/*
6674 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6675 */
029632fb 6676void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6677{
1e3c88bd
PZ
6678 /* Don't need to rebalance while attached to NULL domain */
6679 if (time_after_eq(jiffies, rq->next_balance) &&
6680 likely(!on_null_domain(cpu)))
6681 raise_softirq(SCHED_SOFTIRQ);
3451d024 6682#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6683 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6684 nohz_balancer_kick(cpu);
6685#endif
1e3c88bd
PZ
6686}
6687
0bcdcf28
CE
6688static void rq_online_fair(struct rq *rq)
6689{
6690 update_sysctl();
6691}
6692
6693static void rq_offline_fair(struct rq *rq)
6694{
6695 update_sysctl();
a4c96ae3
PB
6696
6697 /* Ensure any throttled groups are reachable by pick_next_task */
6698 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6699}
6700
55e12e5e 6701#endif /* CONFIG_SMP */
e1d1484f 6702
bf0f6f24
IM
6703/*
6704 * scheduler tick hitting a task of our scheduling class:
6705 */
8f4d37ec 6706static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6707{
6708 struct cfs_rq *cfs_rq;
6709 struct sched_entity *se = &curr->se;
6710
6711 for_each_sched_entity(se) {
6712 cfs_rq = cfs_rq_of(se);
8f4d37ec 6713 entity_tick(cfs_rq, se, queued);
bf0f6f24 6714 }
18bf2805 6715
10e84b97 6716 if (numabalancing_enabled)
cbee9f88 6717 task_tick_numa(rq, curr);
3d59eebc 6718
18bf2805 6719 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6720}
6721
6722/*
cd29fe6f
PZ
6723 * called on fork with the child task as argument from the parent's context
6724 * - child not yet on the tasklist
6725 * - preemption disabled
bf0f6f24 6726 */
cd29fe6f 6727static void task_fork_fair(struct task_struct *p)
bf0f6f24 6728{
4fc420c9
DN
6729 struct cfs_rq *cfs_rq;
6730 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6731 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6732 struct rq *rq = this_rq();
6733 unsigned long flags;
6734
05fa785c 6735 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6736
861d034e
PZ
6737 update_rq_clock(rq);
6738
4fc420c9
DN
6739 cfs_rq = task_cfs_rq(current);
6740 curr = cfs_rq->curr;
6741
6c9a27f5
DN
6742 /*
6743 * Not only the cpu but also the task_group of the parent might have
6744 * been changed after parent->se.parent,cfs_rq were copied to
6745 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6746 * of child point to valid ones.
6747 */
6748 rcu_read_lock();
6749 __set_task_cpu(p, this_cpu);
6750 rcu_read_unlock();
bf0f6f24 6751
7109c442 6752 update_curr(cfs_rq);
cd29fe6f 6753
b5d9d734
MG
6754 if (curr)
6755 se->vruntime = curr->vruntime;
aeb73b04 6756 place_entity(cfs_rq, se, 1);
4d78e7b6 6757
cd29fe6f 6758 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6759 /*
edcb60a3
IM
6760 * Upon rescheduling, sched_class::put_prev_task() will place
6761 * 'current' within the tree based on its new key value.
6762 */
4d78e7b6 6763 swap(curr->vruntime, se->vruntime);
aec0a514 6764 resched_task(rq->curr);
4d78e7b6 6765 }
bf0f6f24 6766
88ec22d3
PZ
6767 se->vruntime -= cfs_rq->min_vruntime;
6768
05fa785c 6769 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6770}
6771
cb469845
SR
6772/*
6773 * Priority of the task has changed. Check to see if we preempt
6774 * the current task.
6775 */
da7a735e
PZ
6776static void
6777prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6778{
da7a735e
PZ
6779 if (!p->se.on_rq)
6780 return;
6781
cb469845
SR
6782 /*
6783 * Reschedule if we are currently running on this runqueue and
6784 * our priority decreased, or if we are not currently running on
6785 * this runqueue and our priority is higher than the current's
6786 */
da7a735e 6787 if (rq->curr == p) {
cb469845
SR
6788 if (p->prio > oldprio)
6789 resched_task(rq->curr);
6790 } else
15afe09b 6791 check_preempt_curr(rq, p, 0);
cb469845
SR
6792}
6793
da7a735e
PZ
6794static void switched_from_fair(struct rq *rq, struct task_struct *p)
6795{
6796 struct sched_entity *se = &p->se;
6797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6798
6799 /*
6800 * Ensure the task's vruntime is normalized, so that when its
6801 * switched back to the fair class the enqueue_entity(.flags=0) will
6802 * do the right thing.
6803 *
6804 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6805 * have normalized the vruntime, if it was !on_rq, then only when
6806 * the task is sleeping will it still have non-normalized vruntime.
6807 */
6808 if (!se->on_rq && p->state != TASK_RUNNING) {
6809 /*
6810 * Fix up our vruntime so that the current sleep doesn't
6811 * cause 'unlimited' sleep bonus.
6812 */
6813 place_entity(cfs_rq, se, 0);
6814 se->vruntime -= cfs_rq->min_vruntime;
6815 }
9ee474f5 6816
141965c7 6817#ifdef CONFIG_SMP
9ee474f5
PT
6818 /*
6819 * Remove our load from contribution when we leave sched_fair
6820 * and ensure we don't carry in an old decay_count if we
6821 * switch back.
6822 */
87e3c8ae
KT
6823 if (se->avg.decay_count) {
6824 __synchronize_entity_decay(se);
6825 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6826 }
6827#endif
da7a735e
PZ
6828}
6829
cb469845
SR
6830/*
6831 * We switched to the sched_fair class.
6832 */
da7a735e 6833static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6834{
da7a735e
PZ
6835 if (!p->se.on_rq)
6836 return;
6837
cb469845
SR
6838 /*
6839 * We were most likely switched from sched_rt, so
6840 * kick off the schedule if running, otherwise just see
6841 * if we can still preempt the current task.
6842 */
da7a735e 6843 if (rq->curr == p)
cb469845
SR
6844 resched_task(rq->curr);
6845 else
15afe09b 6846 check_preempt_curr(rq, p, 0);
cb469845
SR
6847}
6848
83b699ed
SV
6849/* Account for a task changing its policy or group.
6850 *
6851 * This routine is mostly called to set cfs_rq->curr field when a task
6852 * migrates between groups/classes.
6853 */
6854static void set_curr_task_fair(struct rq *rq)
6855{
6856 struct sched_entity *se = &rq->curr->se;
6857
ec12cb7f
PT
6858 for_each_sched_entity(se) {
6859 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6860
6861 set_next_entity(cfs_rq, se);
6862 /* ensure bandwidth has been allocated on our new cfs_rq */
6863 account_cfs_rq_runtime(cfs_rq, 0);
6864 }
83b699ed
SV
6865}
6866
029632fb
PZ
6867void init_cfs_rq(struct cfs_rq *cfs_rq)
6868{
6869 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6870 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6871#ifndef CONFIG_64BIT
6872 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6873#endif
141965c7 6874#ifdef CONFIG_SMP
9ee474f5 6875 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6876 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6877#endif
029632fb
PZ
6878}
6879
810b3817 6880#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6881static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6882{
aff3e498 6883 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6884 /*
6885 * If the task was not on the rq at the time of this cgroup movement
6886 * it must have been asleep, sleeping tasks keep their ->vruntime
6887 * absolute on their old rq until wakeup (needed for the fair sleeper
6888 * bonus in place_entity()).
6889 *
6890 * If it was on the rq, we've just 'preempted' it, which does convert
6891 * ->vruntime to a relative base.
6892 *
6893 * Make sure both cases convert their relative position when migrating
6894 * to another cgroup's rq. This does somewhat interfere with the
6895 * fair sleeper stuff for the first placement, but who cares.
6896 */
7ceff013
DN
6897 /*
6898 * When !on_rq, vruntime of the task has usually NOT been normalized.
6899 * But there are some cases where it has already been normalized:
6900 *
6901 * - Moving a forked child which is waiting for being woken up by
6902 * wake_up_new_task().
62af3783
DN
6903 * - Moving a task which has been woken up by try_to_wake_up() and
6904 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6905 *
6906 * To prevent boost or penalty in the new cfs_rq caused by delta
6907 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6908 */
62af3783 6909 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6910 on_rq = 1;
6911
b2b5ce02
PZ
6912 if (!on_rq)
6913 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6914 set_task_rq(p, task_cpu(p));
aff3e498
PT
6915 if (!on_rq) {
6916 cfs_rq = cfs_rq_of(&p->se);
6917 p->se.vruntime += cfs_rq->min_vruntime;
6918#ifdef CONFIG_SMP
6919 /*
6920 * migrate_task_rq_fair() will have removed our previous
6921 * contribution, but we must synchronize for ongoing future
6922 * decay.
6923 */
6924 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6925 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6926#endif
6927 }
810b3817 6928}
029632fb
PZ
6929
6930void free_fair_sched_group(struct task_group *tg)
6931{
6932 int i;
6933
6934 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6935
6936 for_each_possible_cpu(i) {
6937 if (tg->cfs_rq)
6938 kfree(tg->cfs_rq[i]);
6939 if (tg->se)
6940 kfree(tg->se[i]);
6941 }
6942
6943 kfree(tg->cfs_rq);
6944 kfree(tg->se);
6945}
6946
6947int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6948{
6949 struct cfs_rq *cfs_rq;
6950 struct sched_entity *se;
6951 int i;
6952
6953 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6954 if (!tg->cfs_rq)
6955 goto err;
6956 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6957 if (!tg->se)
6958 goto err;
6959
6960 tg->shares = NICE_0_LOAD;
6961
6962 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6963
6964 for_each_possible_cpu(i) {
6965 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6966 GFP_KERNEL, cpu_to_node(i));
6967 if (!cfs_rq)
6968 goto err;
6969
6970 se = kzalloc_node(sizeof(struct sched_entity),
6971 GFP_KERNEL, cpu_to_node(i));
6972 if (!se)
6973 goto err_free_rq;
6974
6975 init_cfs_rq(cfs_rq);
6976 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6977 }
6978
6979 return 1;
6980
6981err_free_rq:
6982 kfree(cfs_rq);
6983err:
6984 return 0;
6985}
6986
6987void unregister_fair_sched_group(struct task_group *tg, int cpu)
6988{
6989 struct rq *rq = cpu_rq(cpu);
6990 unsigned long flags;
6991
6992 /*
6993 * Only empty task groups can be destroyed; so we can speculatively
6994 * check on_list without danger of it being re-added.
6995 */
6996 if (!tg->cfs_rq[cpu]->on_list)
6997 return;
6998
6999 raw_spin_lock_irqsave(&rq->lock, flags);
7000 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7001 raw_spin_unlock_irqrestore(&rq->lock, flags);
7002}
7003
7004void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7005 struct sched_entity *se, int cpu,
7006 struct sched_entity *parent)
7007{
7008 struct rq *rq = cpu_rq(cpu);
7009
7010 cfs_rq->tg = tg;
7011 cfs_rq->rq = rq;
029632fb
PZ
7012 init_cfs_rq_runtime(cfs_rq);
7013
7014 tg->cfs_rq[cpu] = cfs_rq;
7015 tg->se[cpu] = se;
7016
7017 /* se could be NULL for root_task_group */
7018 if (!se)
7019 return;
7020
7021 if (!parent)
7022 se->cfs_rq = &rq->cfs;
7023 else
7024 se->cfs_rq = parent->my_q;
7025
7026 se->my_q = cfs_rq;
7027 update_load_set(&se->load, 0);
7028 se->parent = parent;
7029}
7030
7031static DEFINE_MUTEX(shares_mutex);
7032
7033int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7034{
7035 int i;
7036 unsigned long flags;
7037
7038 /*
7039 * We can't change the weight of the root cgroup.
7040 */
7041 if (!tg->se[0])
7042 return -EINVAL;
7043
7044 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7045
7046 mutex_lock(&shares_mutex);
7047 if (tg->shares == shares)
7048 goto done;
7049
7050 tg->shares = shares;
7051 for_each_possible_cpu(i) {
7052 struct rq *rq = cpu_rq(i);
7053 struct sched_entity *se;
7054
7055 se = tg->se[i];
7056 /* Propagate contribution to hierarchy */
7057 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7058
7059 /* Possible calls to update_curr() need rq clock */
7060 update_rq_clock(rq);
17bc14b7 7061 for_each_sched_entity(se)
029632fb
PZ
7062 update_cfs_shares(group_cfs_rq(se));
7063 raw_spin_unlock_irqrestore(&rq->lock, flags);
7064 }
7065
7066done:
7067 mutex_unlock(&shares_mutex);
7068 return 0;
7069}
7070#else /* CONFIG_FAIR_GROUP_SCHED */
7071
7072void free_fair_sched_group(struct task_group *tg) { }
7073
7074int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7075{
7076 return 1;
7077}
7078
7079void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7080
7081#endif /* CONFIG_FAIR_GROUP_SCHED */
7082
810b3817 7083
6d686f45 7084static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7085{
7086 struct sched_entity *se = &task->se;
0d721cea
PW
7087 unsigned int rr_interval = 0;
7088
7089 /*
7090 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7091 * idle runqueue:
7092 */
0d721cea 7093 if (rq->cfs.load.weight)
a59f4e07 7094 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7095
7096 return rr_interval;
7097}
7098
bf0f6f24
IM
7099/*
7100 * All the scheduling class methods:
7101 */
029632fb 7102const struct sched_class fair_sched_class = {
5522d5d5 7103 .next = &idle_sched_class,
bf0f6f24
IM
7104 .enqueue_task = enqueue_task_fair,
7105 .dequeue_task = dequeue_task_fair,
7106 .yield_task = yield_task_fair,
d95f4122 7107 .yield_to_task = yield_to_task_fair,
bf0f6f24 7108
2e09bf55 7109 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7110
7111 .pick_next_task = pick_next_task_fair,
7112 .put_prev_task = put_prev_task_fair,
7113
681f3e68 7114#ifdef CONFIG_SMP
4ce72a2c 7115 .select_task_rq = select_task_rq_fair,
0a74bef8 7116 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7117
0bcdcf28
CE
7118 .rq_online = rq_online_fair,
7119 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7120
7121 .task_waking = task_waking_fair,
681f3e68 7122#endif
bf0f6f24 7123
83b699ed 7124 .set_curr_task = set_curr_task_fair,
bf0f6f24 7125 .task_tick = task_tick_fair,
cd29fe6f 7126 .task_fork = task_fork_fair,
cb469845
SR
7127
7128 .prio_changed = prio_changed_fair,
da7a735e 7129 .switched_from = switched_from_fair,
cb469845 7130 .switched_to = switched_to_fair,
810b3817 7131
0d721cea
PW
7132 .get_rr_interval = get_rr_interval_fair,
7133
810b3817 7134#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7135 .task_move_group = task_move_group_fair,
810b3817 7136#endif
bf0f6f24
IM
7137};
7138
7139#ifdef CONFIG_SCHED_DEBUG
029632fb 7140void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7141{
bf0f6f24
IM
7142 struct cfs_rq *cfs_rq;
7143
5973e5b9 7144 rcu_read_lock();
c3b64f1e 7145 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7146 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7147 rcu_read_unlock();
bf0f6f24
IM
7148}
7149#endif
029632fb
PZ
7150
7151__init void init_sched_fair_class(void)
7152{
7153#ifdef CONFIG_SMP
7154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7155
3451d024 7156#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7157 nohz.next_balance = jiffies;
029632fb 7158 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7159 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7160#endif
7161#endif /* SMP */
7162
7163}