]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
sched/fair: Increase PELT accuracy for small tasks
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
589ee628 23#include <linux/sched/mm.h>
105ab3d8
IM
24#include <linux/sched/topology.h>
25
cb251765 26#include <linux/latencytop.h>
3436ae12 27#include <linux/cpumask.h>
83a0a96a 28#include <linux/cpuidle.h>
029632fb
PZ
29#include <linux/slab.h>
30#include <linux/profile.h>
31#include <linux/interrupt.h>
cbee9f88 32#include <linux/mempolicy.h>
e14808b4 33#include <linux/migrate.h>
cbee9f88 34#include <linux/task_work.h>
029632fb
PZ
35
36#include <trace/events/sched.h>
37
38#include "sched.h"
9745512c 39
bf0f6f24 40/*
21805085 41 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 42 *
21805085 43 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
bf0f6f24 47 *
d274a4ce
IM
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 52 */
2b4d5b25
IM
53unsigned int sysctl_sched_latency = 6000000ULL;
54unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 55
1983a922
CE
56/*
57 * The initial- and re-scaling of tunables is configurable
1983a922
CE
58 *
59 * Options are:
2b4d5b25
IM
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 66 */
2b4d5b25 67enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 68
2bd8e6d4 69/*
b2be5e96 70 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 71 *
864616ee 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 73 */
2b4d5b25
IM
74unsigned int sysctl_sched_min_granularity = 750000ULL;
75unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
76
77/*
2b4d5b25 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 79 */
0bf377bb 80static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
81
82/*
2bba22c5 83 * After fork, child runs first. If set to 0 (default) then
b2be5e96 84 * parent will (try to) run first.
21805085 85 */
2bba22c5 86unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 87
bf0f6f24
IM
88/*
89 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 96 */
2b4d5b25
IM
97unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 99
2b4d5b25 100const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 101
afe06efd
TC
102#ifdef CONFIG_SMP
103/*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106int __weak arch_asym_cpu_priority(int cpu)
107{
108 return -cpu;
109}
110#endif
111
ec12cb7f
PT
112#ifdef CONFIG_CFS_BANDWIDTH
113/*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
2b4d5b25
IM
121 * (default: 5 msec, units: microseconds)
122 */
123unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
124#endif
125
3273163c
MR
126/*
127 * The margin used when comparing utilization with CPU capacity:
893c5d22 128 * util * margin < capacity * 1024
2b4d5b25
IM
129 *
130 * (default: ~20%)
3273163c 131 */
2b4d5b25 132unsigned int capacity_margin = 1280;
3273163c 133
8527632d
PG
134static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135{
136 lw->weight += inc;
137 lw->inv_weight = 0;
138}
139
140static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141{
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144}
145
146static inline void update_load_set(struct load_weight *lw, unsigned long w)
147{
148 lw->weight = w;
149 lw->inv_weight = 0;
150}
151
029632fb
PZ
152/*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
58ac93e4 161static unsigned int get_update_sysctl_factor(void)
029632fb 162{
58ac93e4 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180}
181
182static void update_sysctl(void)
183{
184 unsigned int factor = get_update_sysctl_factor();
185
186#define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191#undef SET_SYSCTL
192}
193
194void sched_init_granularity(void)
195{
196 update_sysctl();
197}
198
9dbdb155 199#define WMULT_CONST (~0U)
029632fb
PZ
200#define WMULT_SHIFT 32
201
9dbdb155
PZ
202static void __update_inv_weight(struct load_weight *lw)
203{
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217}
029632fb
PZ
218
219/*
9dbdb155
PZ
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
1c3de5e1 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 230 */
9dbdb155 231static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 232{
9dbdb155
PZ
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
029632fb 235
9dbdb155 236 __update_inv_weight(lw);
029632fb 237
9dbdb155
PZ
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
029632fb
PZ
243 }
244
9dbdb155
PZ
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 247
9dbdb155
PZ
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
029632fb 252
9dbdb155 253 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
254}
255
256
257const struct sched_class fair_sched_class;
a4c2f00f 258
bf0f6f24
IM
259/**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 264
62160e3f 265/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
266static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267{
62160e3f 268 return cfs_rq->rq;
bf0f6f24
IM
269}
270
62160e3f
IM
271/* An entity is a task if it doesn't "own" a runqueue */
272#define entity_is_task(se) (!se->my_q)
bf0f6f24 273
8f48894f
PZ
274static inline struct task_struct *task_of(struct sched_entity *se)
275{
9148a3a1 276 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
277 return container_of(se, struct task_struct, se);
278}
279
b758149c
PZ
280/* Walk up scheduling entities hierarchy */
281#define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285{
286 return p->se.cfs_rq;
287}
288
289/* runqueue on which this entity is (to be) queued */
290static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291{
292 return se->cfs_rq;
293}
294
295/* runqueue "owned" by this group */
296static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297{
298 return grp->my_q;
299}
300
3d4b47b4
PZ
301static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302{
303 if (!cfs_rq->on_list) {
9c2791f9
VG
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
67e86250
PT
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
9c2791f9
VG
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
67e86250
PT
314 */
315 if (cfs_rq->tg->parent &&
9c2791f9
VG
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
67e86250 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
9c2791f9
VG
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
67e86250 357 }
3d4b47b4
PZ
358
359 cfs_rq->on_list = 1;
360 }
361}
362
363static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364{
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369}
370
b758149c
PZ
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374
375/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 376static inline struct cfs_rq *
b758149c
PZ
377is_same_group(struct sched_entity *se, struct sched_entity *pse)
378{
379 if (se->cfs_rq == pse->cfs_rq)
fed14d45 380 return se->cfs_rq;
b758149c 381
fed14d45 382 return NULL;
b758149c
PZ
383}
384
385static inline struct sched_entity *parent_entity(struct sched_entity *se)
386{
387 return se->parent;
388}
389
464b7527
PZ
390static void
391find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392{
393 int se_depth, pse_depth;
394
395 /*
396 * preemption test can be made between sibling entities who are in the
397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 * both tasks until we find their ancestors who are siblings of common
399 * parent.
400 */
401
402 /* First walk up until both entities are at same depth */
fed14d45
PZ
403 se_depth = (*se)->depth;
404 pse_depth = (*pse)->depth;
464b7527
PZ
405
406 while (se_depth > pse_depth) {
407 se_depth--;
408 *se = parent_entity(*se);
409 }
410
411 while (pse_depth > se_depth) {
412 pse_depth--;
413 *pse = parent_entity(*pse);
414 }
415
416 while (!is_same_group(*se, *pse)) {
417 *se = parent_entity(*se);
418 *pse = parent_entity(*pse);
419 }
420}
421
8f48894f
PZ
422#else /* !CONFIG_FAIR_GROUP_SCHED */
423
424static inline struct task_struct *task_of(struct sched_entity *se)
425{
426 return container_of(se, struct task_struct, se);
427}
bf0f6f24 428
62160e3f
IM
429static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430{
431 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
432}
433
434#define entity_is_task(se) 1
435
b758149c
PZ
436#define for_each_sched_entity(se) \
437 for (; se; se = NULL)
bf0f6f24 438
b758149c 439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 440{
b758149c 441 return &task_rq(p)->cfs;
bf0f6f24
IM
442}
443
b758149c
PZ
444static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445{
446 struct task_struct *p = task_of(se);
447 struct rq *rq = task_rq(p);
448
449 return &rq->cfs;
450}
451
452/* runqueue "owned" by this group */
453static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454{
455 return NULL;
456}
457
3d4b47b4
PZ
458static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459{
460}
461
462static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463{
464}
465
b758149c
PZ
466#define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468
b758149c
PZ
469static inline struct sched_entity *parent_entity(struct sched_entity *se)
470{
471 return NULL;
472}
473
464b7527
PZ
474static inline void
475find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476{
477}
478
b758149c
PZ
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
6c16a6dc 481static __always_inline
9dbdb155 482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
483
484/**************************************************************
485 * Scheduling class tree data structure manipulation methods:
486 */
487
1bf08230 488static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 489{
1bf08230 490 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 491 if (delta > 0)
1bf08230 492 max_vruntime = vruntime;
02e0431a 493
1bf08230 494 return max_vruntime;
02e0431a
PZ
495}
496
0702e3eb 497static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
498{
499 s64 delta = (s64)(vruntime - min_vruntime);
500 if (delta < 0)
501 min_vruntime = vruntime;
502
503 return min_vruntime;
504}
505
54fdc581
FC
506static inline int entity_before(struct sched_entity *a,
507 struct sched_entity *b)
508{
509 return (s64)(a->vruntime - b->vruntime) < 0;
510}
511
1af5f730
PZ
512static void update_min_vruntime(struct cfs_rq *cfs_rq)
513{
b60205c7
PZ
514 struct sched_entity *curr = cfs_rq->curr;
515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730
PZ
524
525 if (cfs_rq->rb_leftmost) {
526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 struct sched_entity,
528 run_node);
529
b60205c7 530 if (!curr)
1af5f730
PZ
531 vruntime = se->vruntime;
532 else
533 vruntime = min_vruntime(vruntime, se->vruntime);
534 }
535
1bf08230 536 /* ensure we never gain time by being placed backwards. */
1af5f730 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
538#ifndef CONFIG_64BIT
539 smp_wmb();
540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541#endif
1af5f730
PZ
542}
543
bf0f6f24
IM
544/*
545 * Enqueue an entity into the rb-tree:
546 */
0702e3eb 547static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 struct rb_node *parent = NULL;
551 struct sched_entity *entry;
bf0f6f24
IM
552 int leftmost = 1;
553
554 /*
555 * Find the right place in the rbtree:
556 */
557 while (*link) {
558 parent = *link;
559 entry = rb_entry(parent, struct sched_entity, run_node);
560 /*
561 * We dont care about collisions. Nodes with
562 * the same key stay together.
563 */
2bd2d6f2 564 if (entity_before(se, entry)) {
bf0f6f24
IM
565 link = &parent->rb_left;
566 } else {
567 link = &parent->rb_right;
568 leftmost = 0;
569 }
570 }
571
572 /*
573 * Maintain a cache of leftmost tree entries (it is frequently
574 * used):
575 */
1af5f730 576 if (leftmost)
57cb499d 577 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
578
579 rb_link_node(&se->run_node, parent, link);
580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
581}
582
0702e3eb 583static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 584{
3fe69747
PZ
585 if (cfs_rq->rb_leftmost == &se->run_node) {
586 struct rb_node *next_node;
3fe69747
PZ
587
588 next_node = rb_next(&se->run_node);
589 cfs_rq->rb_leftmost = next_node;
3fe69747 590 }
e9acbff6 591
bf0f6f24 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
593}
594
029632fb 595struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 596{
f4b6755f
PZ
597 struct rb_node *left = cfs_rq->rb_leftmost;
598
599 if (!left)
600 return NULL;
601
602 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
603}
604
ac53db59
RR
605static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606{
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return rb_entry(next, struct sched_entity, run_node);
613}
614
615#ifdef CONFIG_SCHED_DEBUG
029632fb 616struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 617{
7eee3e67 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 619
70eee74b
BS
620 if (!last)
621 return NULL;
7eee3e67
IM
622
623 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
624}
625
bf0f6f24
IM
626/**************************************************************
627 * Scheduling class statistics methods:
628 */
629
acb4a848 630int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 631 void __user *buffer, size_t *lenp,
b2be5e96
PZ
632 loff_t *ppos)
633{
8d65af78 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 635 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
636
637 if (ret || !write)
638 return ret;
639
640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 sysctl_sched_min_granularity);
642
acb4a848
CE
643#define WRT_SYSCTL(name) \
644 (normalized_sysctl_##name = sysctl_##name / (factor))
645 WRT_SYSCTL(sched_min_granularity);
646 WRT_SYSCTL(sched_latency);
647 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
648#undef WRT_SYSCTL
649
b2be5e96
PZ
650 return 0;
651}
652#endif
647e7cac 653
a7be37ac 654/*
f9c0b095 655 * delta /= w
a7be37ac 656 */
9dbdb155 657static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 658{
f9c0b095 659 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
661
662 return delta;
663}
664
647e7cac
IM
665/*
666 * The idea is to set a period in which each task runs once.
667 *
532b1858 668 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
669 * this period because otherwise the slices get too small.
670 *
671 * p = (nr <= nl) ? l : l*nr/nl
672 */
4d78e7b6
PZ
673static u64 __sched_period(unsigned long nr_running)
674{
8e2b0bf3
BF
675 if (unlikely(nr_running > sched_nr_latency))
676 return nr_running * sysctl_sched_min_granularity;
677 else
678 return sysctl_sched_latency;
4d78e7b6
PZ
679}
680
647e7cac
IM
681/*
682 * We calculate the wall-time slice from the period by taking a part
683 * proportional to the weight.
684 *
f9c0b095 685 * s = p*P[w/rw]
647e7cac 686 */
6d0f0ebd 687static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 688{
0a582440 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 690
0a582440 691 for_each_sched_entity(se) {
6272d68c 692 struct load_weight *load;
3104bf03 693 struct load_weight lw;
6272d68c
LM
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
f9c0b095 697
0a582440 698 if (unlikely(!se->on_rq)) {
3104bf03 699 lw = cfs_rq->load;
0a582440
MG
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
9dbdb155 704 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
705 }
706 return slice;
bf0f6f24
IM
707}
708
647e7cac 709/*
660cc00f 710 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 711 *
f9c0b095 712 * vs = s/w
647e7cac 713 */
f9c0b095 714static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 715{
f9c0b095 716 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
717}
718
a75cdaa9 719#ifdef CONFIG_SMP
772bd008 720static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
721static unsigned long task_h_load(struct task_struct *p);
722
9d89c257
YD
723/*
724 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
725 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
726 * dependent on this value.
9d89c257
YD
727 */
728#define LOAD_AVG_PERIOD 32
729#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
a75cdaa9 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
9d89c257
YD
736 sa->last_update_time = 0;
737 /*
738 * sched_avg's period_contrib should be strictly less then 1024, so
739 * we give it 1023 to make sure it is almost a period (1024us), and
740 * will definitely be update (after enqueue).
741 */
742 sa->period_contrib = 1023;
b5a9b340
VG
743 /*
744 * Tasks are intialized with full load to be seen as heavy tasks until
745 * they get a chance to stabilize to their real load level.
746 * Group entities are intialized with zero load to reflect the fact that
747 * nothing has been attached to the task group yet.
748 */
749 if (entity_is_task(se))
750 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 751 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
752 /*
753 * At this point, util_avg won't be used in select_task_rq_fair anyway
754 */
755 sa->util_avg = 0;
756 sa->util_sum = 0;
9d89c257 757 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 758}
7ea241af 759
7dc603c9 760static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 761static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 762
2b8c41da
YD
763/*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
776 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
777 *
778 * where n denotes the nth task.
779 *
780 * For example, a simplest series from the beginning would be like:
781 *
782 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
783 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 *
785 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
786 * if util_avg > util_avg_cap.
787 */
788void post_init_entity_util_avg(struct sched_entity *se)
789{
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
172895e6 792 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
793
794 if (cap > 0) {
795 if (cfs_rq->avg.util_avg != 0) {
796 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
797 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
798
799 if (sa->util_avg > cap)
800 sa->util_avg = cap;
801 } else {
802 sa->util_avg = cap;
803 }
804 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
805 }
7dc603c9
PZ
806
807 if (entity_is_task(se)) {
808 struct task_struct *p = task_of(se);
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq, false);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
df217913 820 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
7dc603c9
PZ
821 return;
822 }
823 }
824
df217913 825 attach_entity_cfs_rq(se);
2b8c41da
YD
826}
827
7dc603c9 828#else /* !CONFIG_SMP */
540247fb 829void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
830{
831}
2b8c41da
YD
832void post_init_entity_util_avg(struct sched_entity *se)
833{
834}
3d30544f
PZ
835static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
836{
837}
7dc603c9 838#endif /* CONFIG_SMP */
a75cdaa9 839
bf0f6f24 840/*
9dbdb155 841 * Update the current task's runtime statistics.
bf0f6f24 842 */
b7cc0896 843static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 844{
429d43bc 845 struct sched_entity *curr = cfs_rq->curr;
78becc27 846 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 847 u64 delta_exec;
bf0f6f24
IM
848
849 if (unlikely(!curr))
850 return;
851
9dbdb155
PZ
852 delta_exec = now - curr->exec_start;
853 if (unlikely((s64)delta_exec <= 0))
34f28ecd 854 return;
bf0f6f24 855
8ebc91d9 856 curr->exec_start = now;
d842de87 857
9dbdb155
PZ
858 schedstat_set(curr->statistics.exec_max,
859 max(delta_exec, curr->statistics.exec_max));
860
861 curr->sum_exec_runtime += delta_exec;
ae92882e 862 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
863
864 curr->vruntime += calc_delta_fair(delta_exec, curr);
865 update_min_vruntime(cfs_rq);
866
d842de87
SV
867 if (entity_is_task(curr)) {
868 struct task_struct *curtask = task_of(curr);
869
f977bb49 870 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 871 cpuacct_charge(curtask, delta_exec);
f06febc9 872 account_group_exec_runtime(curtask, delta_exec);
d842de87 873 }
ec12cb7f
PT
874
875 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
876}
877
6e998916
SG
878static void update_curr_fair(struct rq *rq)
879{
880 update_curr(cfs_rq_of(&rq->curr->se));
881}
882
bf0f6f24 883static inline void
5870db5b 884update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 885{
4fa8d299
JP
886 u64 wait_start, prev_wait_start;
887
888 if (!schedstat_enabled())
889 return;
890
891 wait_start = rq_clock(rq_of(cfs_rq));
892 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
893
894 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
895 likely(wait_start > prev_wait_start))
896 wait_start -= prev_wait_start;
3ea94de1 897
4fa8d299 898 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
899}
900
4fa8d299 901static inline void
3ea94de1
JP
902update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
903{
904 struct task_struct *p;
cb251765
MG
905 u64 delta;
906
4fa8d299
JP
907 if (!schedstat_enabled())
908 return;
909
910 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
911
912 if (entity_is_task(se)) {
913 p = task_of(se);
914 if (task_on_rq_migrating(p)) {
915 /*
916 * Preserve migrating task's wait time so wait_start
917 * time stamp can be adjusted to accumulate wait time
918 * prior to migration.
919 */
4fa8d299 920 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
921 return;
922 }
923 trace_sched_stat_wait(p, delta);
924 }
925
4fa8d299
JP
926 schedstat_set(se->statistics.wait_max,
927 max(schedstat_val(se->statistics.wait_max), delta));
928 schedstat_inc(se->statistics.wait_count);
929 schedstat_add(se->statistics.wait_sum, delta);
930 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 931}
3ea94de1 932
4fa8d299 933static inline void
1a3d027c
JP
934update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
935{
936 struct task_struct *tsk = NULL;
4fa8d299
JP
937 u64 sleep_start, block_start;
938
939 if (!schedstat_enabled())
940 return;
941
942 sleep_start = schedstat_val(se->statistics.sleep_start);
943 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
944
945 if (entity_is_task(se))
946 tsk = task_of(se);
947
4fa8d299
JP
948 if (sleep_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
950
951 if ((s64)delta < 0)
952 delta = 0;
953
4fa8d299
JP
954 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
955 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 956
4fa8d299
JP
957 schedstat_set(se->statistics.sleep_start, 0);
958 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
959
960 if (tsk) {
961 account_scheduler_latency(tsk, delta >> 10, 1);
962 trace_sched_stat_sleep(tsk, delta);
963 }
964 }
4fa8d299
JP
965 if (block_start) {
966 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
967
968 if ((s64)delta < 0)
969 delta = 0;
970
4fa8d299
JP
971 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
972 schedstat_set(se->statistics.block_max, delta);
1a3d027c 973
4fa8d299
JP
974 schedstat_set(se->statistics.block_start, 0);
975 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
976
977 if (tsk) {
978 if (tsk->in_iowait) {
4fa8d299
JP
979 schedstat_add(se->statistics.iowait_sum, delta);
980 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
981 trace_sched_stat_iowait(tsk, delta);
982 }
983
984 trace_sched_stat_blocked(tsk, delta);
985
986 /*
987 * Blocking time is in units of nanosecs, so shift by
988 * 20 to get a milliseconds-range estimation of the
989 * amount of time that the task spent sleeping:
990 */
991 if (unlikely(prof_on == SLEEP_PROFILING)) {
992 profile_hits(SLEEP_PROFILING,
993 (void *)get_wchan(tsk),
994 delta >> 20);
995 }
996 account_scheduler_latency(tsk, delta >> 10, 0);
997 }
998 }
3ea94de1 999}
3ea94de1 1000
bf0f6f24
IM
1001/*
1002 * Task is being enqueued - update stats:
1003 */
cb251765 1004static inline void
1a3d027c 1005update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1006{
4fa8d299
JP
1007 if (!schedstat_enabled())
1008 return;
1009
bf0f6f24
IM
1010 /*
1011 * Are we enqueueing a waiting task? (for current tasks
1012 * a dequeue/enqueue event is a NOP)
1013 */
429d43bc 1014 if (se != cfs_rq->curr)
5870db5b 1015 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1016
1017 if (flags & ENQUEUE_WAKEUP)
1018 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1019}
1020
bf0f6f24 1021static inline void
cb251765 1022update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1023{
4fa8d299
JP
1024
1025 if (!schedstat_enabled())
1026 return;
1027
bf0f6f24
IM
1028 /*
1029 * Mark the end of the wait period if dequeueing a
1030 * waiting task:
1031 */
429d43bc 1032 if (se != cfs_rq->curr)
9ef0a961 1033 update_stats_wait_end(cfs_rq, se);
cb251765 1034
4fa8d299
JP
1035 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1036 struct task_struct *tsk = task_of(se);
cb251765 1037
4fa8d299
JP
1038 if (tsk->state & TASK_INTERRUPTIBLE)
1039 schedstat_set(se->statistics.sleep_start,
1040 rq_clock(rq_of(cfs_rq)));
1041 if (tsk->state & TASK_UNINTERRUPTIBLE)
1042 schedstat_set(se->statistics.block_start,
1043 rq_clock(rq_of(cfs_rq)));
cb251765 1044 }
cb251765
MG
1045}
1046
bf0f6f24
IM
1047/*
1048 * We are picking a new current task - update its stats:
1049 */
1050static inline void
79303e9e 1051update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1052{
1053 /*
1054 * We are starting a new run period:
1055 */
78becc27 1056 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1057}
1058
bf0f6f24
IM
1059/**************************************************
1060 * Scheduling class queueing methods:
1061 */
1062
cbee9f88
PZ
1063#ifdef CONFIG_NUMA_BALANCING
1064/*
598f0ec0
MG
1065 * Approximate time to scan a full NUMA task in ms. The task scan period is
1066 * calculated based on the tasks virtual memory size and
1067 * numa_balancing_scan_size.
cbee9f88 1068 */
598f0ec0
MG
1069unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1070unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1071
1072/* Portion of address space to scan in MB */
1073unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1074
4b96a29b
PZ
1075/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1076unsigned int sysctl_numa_balancing_scan_delay = 1000;
1077
598f0ec0
MG
1078static unsigned int task_nr_scan_windows(struct task_struct *p)
1079{
1080 unsigned long rss = 0;
1081 unsigned long nr_scan_pages;
1082
1083 /*
1084 * Calculations based on RSS as non-present and empty pages are skipped
1085 * by the PTE scanner and NUMA hinting faults should be trapped based
1086 * on resident pages
1087 */
1088 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 rss = get_mm_rss(p->mm);
1090 if (!rss)
1091 rss = nr_scan_pages;
1092
1093 rss = round_up(rss, nr_scan_pages);
1094 return rss / nr_scan_pages;
1095}
1096
1097/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098#define MAX_SCAN_WINDOW 2560
1099
1100static unsigned int task_scan_min(struct task_struct *p)
1101{
316c1608 1102 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1103 unsigned int scan, floor;
1104 unsigned int windows = 1;
1105
64192658
KT
1106 if (scan_size < MAX_SCAN_WINDOW)
1107 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1108 floor = 1000 / windows;
1109
1110 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 return max_t(unsigned int, floor, scan);
1112}
1113
1114static unsigned int task_scan_max(struct task_struct *p)
1115{
1116 unsigned int smin = task_scan_min(p);
1117 unsigned int smax;
1118
1119 /* Watch for min being lower than max due to floor calculations */
1120 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1121 return max(smin, smax);
1122}
1123
0ec8aa00
PZ
1124static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1125{
1126 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1127 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1128}
1129
1130static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1131{
1132 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1133 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1134}
1135
8c8a743c
PZ
1136struct numa_group {
1137 atomic_t refcount;
1138
1139 spinlock_t lock; /* nr_tasks, tasks */
1140 int nr_tasks;
e29cf08b 1141 pid_t gid;
4142c3eb 1142 int active_nodes;
8c8a743c
PZ
1143
1144 struct rcu_head rcu;
989348b5 1145 unsigned long total_faults;
4142c3eb 1146 unsigned long max_faults_cpu;
7e2703e6
RR
1147 /*
1148 * Faults_cpu is used to decide whether memory should move
1149 * towards the CPU. As a consequence, these stats are weighted
1150 * more by CPU use than by memory faults.
1151 */
50ec8a40 1152 unsigned long *faults_cpu;
989348b5 1153 unsigned long faults[0];
8c8a743c
PZ
1154};
1155
be1e4e76
RR
1156/* Shared or private faults. */
1157#define NR_NUMA_HINT_FAULT_TYPES 2
1158
1159/* Memory and CPU locality */
1160#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1161
1162/* Averaged statistics, and temporary buffers. */
1163#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1164
e29cf08b
MG
1165pid_t task_numa_group_id(struct task_struct *p)
1166{
1167 return p->numa_group ? p->numa_group->gid : 0;
1168}
1169
44dba3d5
IM
1170/*
1171 * The averaged statistics, shared & private, memory & cpu,
1172 * occupy the first half of the array. The second half of the
1173 * array is for current counters, which are averaged into the
1174 * first set by task_numa_placement.
1175 */
1176static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1177{
44dba3d5 1178 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1179}
1180
1181static inline unsigned long task_faults(struct task_struct *p, int nid)
1182{
44dba3d5 1183 if (!p->numa_faults)
ac8e895b
MG
1184 return 0;
1185
44dba3d5
IM
1186 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1187 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1188}
1189
83e1d2cd
MG
1190static inline unsigned long group_faults(struct task_struct *p, int nid)
1191{
1192 if (!p->numa_group)
1193 return 0;
1194
44dba3d5
IM
1195 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1196 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1197}
1198
20e07dea
RR
1199static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1200{
44dba3d5
IM
1201 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1202 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1203}
1204
4142c3eb
RR
1205/*
1206 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1207 * considered part of a numa group's pseudo-interleaving set. Migrations
1208 * between these nodes are slowed down, to allow things to settle down.
1209 */
1210#define ACTIVE_NODE_FRACTION 3
1211
1212static bool numa_is_active_node(int nid, struct numa_group *ng)
1213{
1214 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1215}
1216
6c6b1193
RR
1217/* Handle placement on systems where not all nodes are directly connected. */
1218static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1219 int maxdist, bool task)
1220{
1221 unsigned long score = 0;
1222 int node;
1223
1224 /*
1225 * All nodes are directly connected, and the same distance
1226 * from each other. No need for fancy placement algorithms.
1227 */
1228 if (sched_numa_topology_type == NUMA_DIRECT)
1229 return 0;
1230
1231 /*
1232 * This code is called for each node, introducing N^2 complexity,
1233 * which should be ok given the number of nodes rarely exceeds 8.
1234 */
1235 for_each_online_node(node) {
1236 unsigned long faults;
1237 int dist = node_distance(nid, node);
1238
1239 /*
1240 * The furthest away nodes in the system are not interesting
1241 * for placement; nid was already counted.
1242 */
1243 if (dist == sched_max_numa_distance || node == nid)
1244 continue;
1245
1246 /*
1247 * On systems with a backplane NUMA topology, compare groups
1248 * of nodes, and move tasks towards the group with the most
1249 * memory accesses. When comparing two nodes at distance
1250 * "hoplimit", only nodes closer by than "hoplimit" are part
1251 * of each group. Skip other nodes.
1252 */
1253 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1254 dist > maxdist)
1255 continue;
1256
1257 /* Add up the faults from nearby nodes. */
1258 if (task)
1259 faults = task_faults(p, node);
1260 else
1261 faults = group_faults(p, node);
1262
1263 /*
1264 * On systems with a glueless mesh NUMA topology, there are
1265 * no fixed "groups of nodes". Instead, nodes that are not
1266 * directly connected bounce traffic through intermediate
1267 * nodes; a numa_group can occupy any set of nodes.
1268 * The further away a node is, the less the faults count.
1269 * This seems to result in good task placement.
1270 */
1271 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1272 faults *= (sched_max_numa_distance - dist);
1273 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1274 }
1275
1276 score += faults;
1277 }
1278
1279 return score;
1280}
1281
83e1d2cd
MG
1282/*
1283 * These return the fraction of accesses done by a particular task, or
1284 * task group, on a particular numa node. The group weight is given a
1285 * larger multiplier, in order to group tasks together that are almost
1286 * evenly spread out between numa nodes.
1287 */
7bd95320
RR
1288static inline unsigned long task_weight(struct task_struct *p, int nid,
1289 int dist)
83e1d2cd 1290{
7bd95320 1291 unsigned long faults, total_faults;
83e1d2cd 1292
44dba3d5 1293 if (!p->numa_faults)
83e1d2cd
MG
1294 return 0;
1295
1296 total_faults = p->total_numa_faults;
1297
1298 if (!total_faults)
1299 return 0;
1300
7bd95320 1301 faults = task_faults(p, nid);
6c6b1193
RR
1302 faults += score_nearby_nodes(p, nid, dist, true);
1303
7bd95320 1304 return 1000 * faults / total_faults;
83e1d2cd
MG
1305}
1306
7bd95320
RR
1307static inline unsigned long group_weight(struct task_struct *p, int nid,
1308 int dist)
83e1d2cd 1309{
7bd95320
RR
1310 unsigned long faults, total_faults;
1311
1312 if (!p->numa_group)
1313 return 0;
1314
1315 total_faults = p->numa_group->total_faults;
1316
1317 if (!total_faults)
83e1d2cd
MG
1318 return 0;
1319
7bd95320 1320 faults = group_faults(p, nid);
6c6b1193
RR
1321 faults += score_nearby_nodes(p, nid, dist, false);
1322
7bd95320 1323 return 1000 * faults / total_faults;
83e1d2cd
MG
1324}
1325
10f39042
RR
1326bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1327 int src_nid, int dst_cpu)
1328{
1329 struct numa_group *ng = p->numa_group;
1330 int dst_nid = cpu_to_node(dst_cpu);
1331 int last_cpupid, this_cpupid;
1332
1333 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1334
1335 /*
1336 * Multi-stage node selection is used in conjunction with a periodic
1337 * migration fault to build a temporal task<->page relation. By using
1338 * a two-stage filter we remove short/unlikely relations.
1339 *
1340 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1341 * a task's usage of a particular page (n_p) per total usage of this
1342 * page (n_t) (in a given time-span) to a probability.
1343 *
1344 * Our periodic faults will sample this probability and getting the
1345 * same result twice in a row, given these samples are fully
1346 * independent, is then given by P(n)^2, provided our sample period
1347 * is sufficiently short compared to the usage pattern.
1348 *
1349 * This quadric squishes small probabilities, making it less likely we
1350 * act on an unlikely task<->page relation.
1351 */
1352 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1353 if (!cpupid_pid_unset(last_cpupid) &&
1354 cpupid_to_nid(last_cpupid) != dst_nid)
1355 return false;
1356
1357 /* Always allow migrate on private faults */
1358 if (cpupid_match_pid(p, last_cpupid))
1359 return true;
1360
1361 /* A shared fault, but p->numa_group has not been set up yet. */
1362 if (!ng)
1363 return true;
1364
1365 /*
4142c3eb
RR
1366 * Destination node is much more heavily used than the source
1367 * node? Allow migration.
10f39042 1368 */
4142c3eb
RR
1369 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1370 ACTIVE_NODE_FRACTION)
10f39042
RR
1371 return true;
1372
1373 /*
4142c3eb
RR
1374 * Distribute memory according to CPU & memory use on each node,
1375 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1376 *
1377 * faults_cpu(dst) 3 faults_cpu(src)
1378 * --------------- * - > ---------------
1379 * faults_mem(dst) 4 faults_mem(src)
10f39042 1380 */
4142c3eb
RR
1381 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1382 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1383}
1384
e6628d5b 1385static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1386static unsigned long source_load(int cpu, int type);
1387static unsigned long target_load(int cpu, int type);
ced549fa 1388static unsigned long capacity_of(int cpu);
58d081b5
MG
1389static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1390
fb13c7ee 1391/* Cached statistics for all CPUs within a node */
58d081b5 1392struct numa_stats {
fb13c7ee 1393 unsigned long nr_running;
58d081b5 1394 unsigned long load;
fb13c7ee
MG
1395
1396 /* Total compute capacity of CPUs on a node */
5ef20ca1 1397 unsigned long compute_capacity;
fb13c7ee
MG
1398
1399 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1400 unsigned long task_capacity;
1b6a7495 1401 int has_free_capacity;
58d081b5 1402};
e6628d5b 1403
fb13c7ee
MG
1404/*
1405 * XXX borrowed from update_sg_lb_stats
1406 */
1407static void update_numa_stats(struct numa_stats *ns, int nid)
1408{
83d7f242
RR
1409 int smt, cpu, cpus = 0;
1410 unsigned long capacity;
fb13c7ee
MG
1411
1412 memset(ns, 0, sizeof(*ns));
1413 for_each_cpu(cpu, cpumask_of_node(nid)) {
1414 struct rq *rq = cpu_rq(cpu);
1415
1416 ns->nr_running += rq->nr_running;
1417 ns->load += weighted_cpuload(cpu);
ced549fa 1418 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1419
1420 cpus++;
fb13c7ee
MG
1421 }
1422
5eca82a9
PZ
1423 /*
1424 * If we raced with hotplug and there are no CPUs left in our mask
1425 * the @ns structure is NULL'ed and task_numa_compare() will
1426 * not find this node attractive.
1427 *
1b6a7495
NP
1428 * We'll either bail at !has_free_capacity, or we'll detect a huge
1429 * imbalance and bail there.
5eca82a9
PZ
1430 */
1431 if (!cpus)
1432 return;
1433
83d7f242
RR
1434 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1435 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1436 capacity = cpus / smt; /* cores */
1437
1438 ns->task_capacity = min_t(unsigned, capacity,
1439 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1440 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1441}
1442
58d081b5
MG
1443struct task_numa_env {
1444 struct task_struct *p;
e6628d5b 1445
58d081b5
MG
1446 int src_cpu, src_nid;
1447 int dst_cpu, dst_nid;
e6628d5b 1448
58d081b5 1449 struct numa_stats src_stats, dst_stats;
e6628d5b 1450
40ea2b42 1451 int imbalance_pct;
7bd95320 1452 int dist;
fb13c7ee
MG
1453
1454 struct task_struct *best_task;
1455 long best_imp;
58d081b5
MG
1456 int best_cpu;
1457};
1458
fb13c7ee
MG
1459static void task_numa_assign(struct task_numa_env *env,
1460 struct task_struct *p, long imp)
1461{
1462 if (env->best_task)
1463 put_task_struct(env->best_task);
bac78573
ON
1464 if (p)
1465 get_task_struct(p);
fb13c7ee
MG
1466
1467 env->best_task = p;
1468 env->best_imp = imp;
1469 env->best_cpu = env->dst_cpu;
1470}
1471
28a21745 1472static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1473 struct task_numa_env *env)
1474{
e4991b24
RR
1475 long imb, old_imb;
1476 long orig_src_load, orig_dst_load;
28a21745
RR
1477 long src_capacity, dst_capacity;
1478
1479 /*
1480 * The load is corrected for the CPU capacity available on each node.
1481 *
1482 * src_load dst_load
1483 * ------------ vs ---------
1484 * src_capacity dst_capacity
1485 */
1486 src_capacity = env->src_stats.compute_capacity;
1487 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1488
1489 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1490 if (dst_load < src_load)
1491 swap(dst_load, src_load);
e63da036
RR
1492
1493 /* Is the difference below the threshold? */
e4991b24
RR
1494 imb = dst_load * src_capacity * 100 -
1495 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1496 if (imb <= 0)
1497 return false;
1498
1499 /*
1500 * The imbalance is above the allowed threshold.
e4991b24 1501 * Compare it with the old imbalance.
e63da036 1502 */
28a21745 1503 orig_src_load = env->src_stats.load;
e4991b24 1504 orig_dst_load = env->dst_stats.load;
28a21745 1505
e4991b24
RR
1506 if (orig_dst_load < orig_src_load)
1507 swap(orig_dst_load, orig_src_load);
e63da036 1508
e4991b24
RR
1509 old_imb = orig_dst_load * src_capacity * 100 -
1510 orig_src_load * dst_capacity * env->imbalance_pct;
1511
1512 /* Would this change make things worse? */
1513 return (imb > old_imb);
e63da036
RR
1514}
1515
fb13c7ee
MG
1516/*
1517 * This checks if the overall compute and NUMA accesses of the system would
1518 * be improved if the source tasks was migrated to the target dst_cpu taking
1519 * into account that it might be best if task running on the dst_cpu should
1520 * be exchanged with the source task
1521 */
887c290e
RR
1522static void task_numa_compare(struct task_numa_env *env,
1523 long taskimp, long groupimp)
fb13c7ee
MG
1524{
1525 struct rq *src_rq = cpu_rq(env->src_cpu);
1526 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1527 struct task_struct *cur;
28a21745 1528 long src_load, dst_load;
fb13c7ee 1529 long load;
1c5d3eb3 1530 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1531 long moveimp = imp;
7bd95320 1532 int dist = env->dist;
fb13c7ee
MG
1533
1534 rcu_read_lock();
bac78573
ON
1535 cur = task_rcu_dereference(&dst_rq->curr);
1536 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1537 cur = NULL;
1538
7af68335
PZ
1539 /*
1540 * Because we have preemption enabled we can get migrated around and
1541 * end try selecting ourselves (current == env->p) as a swap candidate.
1542 */
1543 if (cur == env->p)
1544 goto unlock;
1545
fb13c7ee
MG
1546 /*
1547 * "imp" is the fault differential for the source task between the
1548 * source and destination node. Calculate the total differential for
1549 * the source task and potential destination task. The more negative
1550 * the value is, the more rmeote accesses that would be expected to
1551 * be incurred if the tasks were swapped.
1552 */
1553 if (cur) {
1554 /* Skip this swap candidate if cannot move to the source cpu */
0c98d344 1555 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
fb13c7ee
MG
1556 goto unlock;
1557
887c290e
RR
1558 /*
1559 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1560 * in any group then look only at task weights.
887c290e 1561 */
ca28aa53 1562 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1563 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1564 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1565 /*
1566 * Add some hysteresis to prevent swapping the
1567 * tasks within a group over tiny differences.
1568 */
1569 if (cur->numa_group)
1570 imp -= imp/16;
887c290e 1571 } else {
ca28aa53
RR
1572 /*
1573 * Compare the group weights. If a task is all by
1574 * itself (not part of a group), use the task weight
1575 * instead.
1576 */
ca28aa53 1577 if (cur->numa_group)
7bd95320
RR
1578 imp += group_weight(cur, env->src_nid, dist) -
1579 group_weight(cur, env->dst_nid, dist);
ca28aa53 1580 else
7bd95320
RR
1581 imp += task_weight(cur, env->src_nid, dist) -
1582 task_weight(cur, env->dst_nid, dist);
887c290e 1583 }
fb13c7ee
MG
1584 }
1585
0132c3e1 1586 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1587 goto unlock;
1588
1589 if (!cur) {
1590 /* Is there capacity at our destination? */
b932c03c 1591 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1592 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1593 goto unlock;
1594
1595 goto balance;
1596 }
1597
1598 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1599 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1600 dst_rq->nr_running == 1)
fb13c7ee
MG
1601 goto assign;
1602
1603 /*
1604 * In the overloaded case, try and keep the load balanced.
1605 */
1606balance:
e720fff6
PZ
1607 load = task_h_load(env->p);
1608 dst_load = env->dst_stats.load + load;
1609 src_load = env->src_stats.load - load;
fb13c7ee 1610
0132c3e1
RR
1611 if (moveimp > imp && moveimp > env->best_imp) {
1612 /*
1613 * If the improvement from just moving env->p direction is
1614 * better than swapping tasks around, check if a move is
1615 * possible. Store a slightly smaller score than moveimp,
1616 * so an actually idle CPU will win.
1617 */
1618 if (!load_too_imbalanced(src_load, dst_load, env)) {
1619 imp = moveimp - 1;
1620 cur = NULL;
1621 goto assign;
1622 }
1623 }
1624
1625 if (imp <= env->best_imp)
1626 goto unlock;
1627
fb13c7ee 1628 if (cur) {
e720fff6
PZ
1629 load = task_h_load(cur);
1630 dst_load -= load;
1631 src_load += load;
fb13c7ee
MG
1632 }
1633
28a21745 1634 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1635 goto unlock;
1636
ba7e5a27
RR
1637 /*
1638 * One idle CPU per node is evaluated for a task numa move.
1639 * Call select_idle_sibling to maybe find a better one.
1640 */
10e2f1ac
PZ
1641 if (!cur) {
1642 /*
1643 * select_idle_siblings() uses an per-cpu cpumask that
1644 * can be used from IRQ context.
1645 */
1646 local_irq_disable();
772bd008
MR
1647 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1648 env->dst_cpu);
10e2f1ac
PZ
1649 local_irq_enable();
1650 }
ba7e5a27 1651
fb13c7ee
MG
1652assign:
1653 task_numa_assign(env, cur, imp);
1654unlock:
1655 rcu_read_unlock();
1656}
1657
887c290e
RR
1658static void task_numa_find_cpu(struct task_numa_env *env,
1659 long taskimp, long groupimp)
2c8a50aa
MG
1660{
1661 int cpu;
1662
1663 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1664 /* Skip this CPU if the source task cannot migrate */
0c98d344 1665 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1666 continue;
1667
1668 env->dst_cpu = cpu;
887c290e 1669 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1670 }
1671}
1672
6f9aad0b
RR
1673/* Only move tasks to a NUMA node less busy than the current node. */
1674static bool numa_has_capacity(struct task_numa_env *env)
1675{
1676 struct numa_stats *src = &env->src_stats;
1677 struct numa_stats *dst = &env->dst_stats;
1678
1679 if (src->has_free_capacity && !dst->has_free_capacity)
1680 return false;
1681
1682 /*
1683 * Only consider a task move if the source has a higher load
1684 * than the destination, corrected for CPU capacity on each node.
1685 *
1686 * src->load dst->load
1687 * --------------------- vs ---------------------
1688 * src->compute_capacity dst->compute_capacity
1689 */
44dcb04f
SD
1690 if (src->load * dst->compute_capacity * env->imbalance_pct >
1691
1692 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1693 return true;
1694
1695 return false;
1696}
1697
58d081b5
MG
1698static int task_numa_migrate(struct task_struct *p)
1699{
58d081b5
MG
1700 struct task_numa_env env = {
1701 .p = p,
fb13c7ee 1702
58d081b5 1703 .src_cpu = task_cpu(p),
b32e86b4 1704 .src_nid = task_node(p),
fb13c7ee
MG
1705
1706 .imbalance_pct = 112,
1707
1708 .best_task = NULL,
1709 .best_imp = 0,
4142c3eb 1710 .best_cpu = -1,
58d081b5
MG
1711 };
1712 struct sched_domain *sd;
887c290e 1713 unsigned long taskweight, groupweight;
7bd95320 1714 int nid, ret, dist;
887c290e 1715 long taskimp, groupimp;
e6628d5b 1716
58d081b5 1717 /*
fb13c7ee
MG
1718 * Pick the lowest SD_NUMA domain, as that would have the smallest
1719 * imbalance and would be the first to start moving tasks about.
1720 *
1721 * And we want to avoid any moving of tasks about, as that would create
1722 * random movement of tasks -- counter the numa conditions we're trying
1723 * to satisfy here.
58d081b5
MG
1724 */
1725 rcu_read_lock();
fb13c7ee 1726 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1727 if (sd)
1728 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1729 rcu_read_unlock();
1730
46a73e8a
RR
1731 /*
1732 * Cpusets can break the scheduler domain tree into smaller
1733 * balance domains, some of which do not cross NUMA boundaries.
1734 * Tasks that are "trapped" in such domains cannot be migrated
1735 * elsewhere, so there is no point in (re)trying.
1736 */
1737 if (unlikely(!sd)) {
de1b301a 1738 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1739 return -EINVAL;
1740 }
1741
2c8a50aa 1742 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1743 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1744 taskweight = task_weight(p, env.src_nid, dist);
1745 groupweight = group_weight(p, env.src_nid, dist);
1746 update_numa_stats(&env.src_stats, env.src_nid);
1747 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1748 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1749 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1750
a43455a1 1751 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1752 if (numa_has_capacity(&env))
1753 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1754
9de05d48
RR
1755 /*
1756 * Look at other nodes in these cases:
1757 * - there is no space available on the preferred_nid
1758 * - the task is part of a numa_group that is interleaved across
1759 * multiple NUMA nodes; in order to better consolidate the group,
1760 * we need to check other locations.
1761 */
4142c3eb 1762 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1763 for_each_online_node(nid) {
1764 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1765 continue;
58d081b5 1766
7bd95320 1767 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1768 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1769 dist != env.dist) {
1770 taskweight = task_weight(p, env.src_nid, dist);
1771 groupweight = group_weight(p, env.src_nid, dist);
1772 }
7bd95320 1773
83e1d2cd 1774 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1775 taskimp = task_weight(p, nid, dist) - taskweight;
1776 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1777 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1778 continue;
1779
7bd95320 1780 env.dist = dist;
2c8a50aa
MG
1781 env.dst_nid = nid;
1782 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1783 if (numa_has_capacity(&env))
1784 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1785 }
1786 }
1787
68d1b02a
RR
1788 /*
1789 * If the task is part of a workload that spans multiple NUMA nodes,
1790 * and is migrating into one of the workload's active nodes, remember
1791 * this node as the task's preferred numa node, so the workload can
1792 * settle down.
1793 * A task that migrated to a second choice node will be better off
1794 * trying for a better one later. Do not set the preferred node here.
1795 */
db015dae 1796 if (p->numa_group) {
4142c3eb
RR
1797 struct numa_group *ng = p->numa_group;
1798
db015dae
RR
1799 if (env.best_cpu == -1)
1800 nid = env.src_nid;
1801 else
1802 nid = env.dst_nid;
1803
4142c3eb 1804 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1805 sched_setnuma(p, env.dst_nid);
1806 }
1807
1808 /* No better CPU than the current one was found. */
1809 if (env.best_cpu == -1)
1810 return -EAGAIN;
0ec8aa00 1811
04bb2f94
RR
1812 /*
1813 * Reset the scan period if the task is being rescheduled on an
1814 * alternative node to recheck if the tasks is now properly placed.
1815 */
1816 p->numa_scan_period = task_scan_min(p);
1817
fb13c7ee 1818 if (env.best_task == NULL) {
286549dc
MG
1819 ret = migrate_task_to(p, env.best_cpu);
1820 if (ret != 0)
1821 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1822 return ret;
1823 }
1824
1825 ret = migrate_swap(p, env.best_task);
286549dc
MG
1826 if (ret != 0)
1827 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1828 put_task_struct(env.best_task);
1829 return ret;
e6628d5b
MG
1830}
1831
6b9a7460
MG
1832/* Attempt to migrate a task to a CPU on the preferred node. */
1833static void numa_migrate_preferred(struct task_struct *p)
1834{
5085e2a3
RR
1835 unsigned long interval = HZ;
1836
2739d3ee 1837 /* This task has no NUMA fault statistics yet */
44dba3d5 1838 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1839 return;
1840
2739d3ee 1841 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1842 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1843 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1844
1845 /* Success if task is already running on preferred CPU */
de1b301a 1846 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1847 return;
1848
1849 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1850 task_numa_migrate(p);
6b9a7460
MG
1851}
1852
20e07dea 1853/*
4142c3eb 1854 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1855 * tracking the nodes from which NUMA hinting faults are triggered. This can
1856 * be different from the set of nodes where the workload's memory is currently
1857 * located.
20e07dea 1858 */
4142c3eb 1859static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1860{
1861 unsigned long faults, max_faults = 0;
4142c3eb 1862 int nid, active_nodes = 0;
20e07dea
RR
1863
1864 for_each_online_node(nid) {
1865 faults = group_faults_cpu(numa_group, nid);
1866 if (faults > max_faults)
1867 max_faults = faults;
1868 }
1869
1870 for_each_online_node(nid) {
1871 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1872 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1873 active_nodes++;
20e07dea 1874 }
4142c3eb
RR
1875
1876 numa_group->max_faults_cpu = max_faults;
1877 numa_group->active_nodes = active_nodes;
20e07dea
RR
1878}
1879
04bb2f94
RR
1880/*
1881 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1882 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1883 * period will be for the next scan window. If local/(local+remote) ratio is
1884 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1885 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1886 */
1887#define NUMA_PERIOD_SLOTS 10
a22b4b01 1888#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1889
1890/*
1891 * Increase the scan period (slow down scanning) if the majority of
1892 * our memory is already on our local node, or if the majority of
1893 * the page accesses are shared with other processes.
1894 * Otherwise, decrease the scan period.
1895 */
1896static void update_task_scan_period(struct task_struct *p,
1897 unsigned long shared, unsigned long private)
1898{
1899 unsigned int period_slot;
1900 int ratio;
1901 int diff;
1902
1903 unsigned long remote = p->numa_faults_locality[0];
1904 unsigned long local = p->numa_faults_locality[1];
1905
1906 /*
1907 * If there were no record hinting faults then either the task is
1908 * completely idle or all activity is areas that are not of interest
074c2381
MG
1909 * to automatic numa balancing. Related to that, if there were failed
1910 * migration then it implies we are migrating too quickly or the local
1911 * node is overloaded. In either case, scan slower
04bb2f94 1912 */
074c2381 1913 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1914 p->numa_scan_period = min(p->numa_scan_period_max,
1915 p->numa_scan_period << 1);
1916
1917 p->mm->numa_next_scan = jiffies +
1918 msecs_to_jiffies(p->numa_scan_period);
1919
1920 return;
1921 }
1922
1923 /*
1924 * Prepare to scale scan period relative to the current period.
1925 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1926 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1927 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1928 */
1929 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1930 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1931 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1932 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1933 if (!slot)
1934 slot = 1;
1935 diff = slot * period_slot;
1936 } else {
1937 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1938
1939 /*
1940 * Scale scan rate increases based on sharing. There is an
1941 * inverse relationship between the degree of sharing and
1942 * the adjustment made to the scanning period. Broadly
1943 * speaking the intent is that there is little point
1944 * scanning faster if shared accesses dominate as it may
1945 * simply bounce migrations uselessly
1946 */
2847c90e 1947 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1948 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1949 }
1950
1951 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1952 task_scan_min(p), task_scan_max(p));
1953 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1954}
1955
7e2703e6
RR
1956/*
1957 * Get the fraction of time the task has been running since the last
1958 * NUMA placement cycle. The scheduler keeps similar statistics, but
1959 * decays those on a 32ms period, which is orders of magnitude off
1960 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1961 * stats only if the task is so new there are no NUMA statistics yet.
1962 */
1963static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1964{
1965 u64 runtime, delta, now;
1966 /* Use the start of this time slice to avoid calculations. */
1967 now = p->se.exec_start;
1968 runtime = p->se.sum_exec_runtime;
1969
1970 if (p->last_task_numa_placement) {
1971 delta = runtime - p->last_sum_exec_runtime;
1972 *period = now - p->last_task_numa_placement;
1973 } else {
9d89c257
YD
1974 delta = p->se.avg.load_sum / p->se.load.weight;
1975 *period = LOAD_AVG_MAX;
7e2703e6
RR
1976 }
1977
1978 p->last_sum_exec_runtime = runtime;
1979 p->last_task_numa_placement = now;
1980
1981 return delta;
1982}
1983
54009416
RR
1984/*
1985 * Determine the preferred nid for a task in a numa_group. This needs to
1986 * be done in a way that produces consistent results with group_weight,
1987 * otherwise workloads might not converge.
1988 */
1989static int preferred_group_nid(struct task_struct *p, int nid)
1990{
1991 nodemask_t nodes;
1992 int dist;
1993
1994 /* Direct connections between all NUMA nodes. */
1995 if (sched_numa_topology_type == NUMA_DIRECT)
1996 return nid;
1997
1998 /*
1999 * On a system with glueless mesh NUMA topology, group_weight
2000 * scores nodes according to the number of NUMA hinting faults on
2001 * both the node itself, and on nearby nodes.
2002 */
2003 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2004 unsigned long score, max_score = 0;
2005 int node, max_node = nid;
2006
2007 dist = sched_max_numa_distance;
2008
2009 for_each_online_node(node) {
2010 score = group_weight(p, node, dist);
2011 if (score > max_score) {
2012 max_score = score;
2013 max_node = node;
2014 }
2015 }
2016 return max_node;
2017 }
2018
2019 /*
2020 * Finding the preferred nid in a system with NUMA backplane
2021 * interconnect topology is more involved. The goal is to locate
2022 * tasks from numa_groups near each other in the system, and
2023 * untangle workloads from different sides of the system. This requires
2024 * searching down the hierarchy of node groups, recursively searching
2025 * inside the highest scoring group of nodes. The nodemask tricks
2026 * keep the complexity of the search down.
2027 */
2028 nodes = node_online_map;
2029 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2030 unsigned long max_faults = 0;
81907478 2031 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2032 int a, b;
2033
2034 /* Are there nodes at this distance from each other? */
2035 if (!find_numa_distance(dist))
2036 continue;
2037
2038 for_each_node_mask(a, nodes) {
2039 unsigned long faults = 0;
2040 nodemask_t this_group;
2041 nodes_clear(this_group);
2042
2043 /* Sum group's NUMA faults; includes a==b case. */
2044 for_each_node_mask(b, nodes) {
2045 if (node_distance(a, b) < dist) {
2046 faults += group_faults(p, b);
2047 node_set(b, this_group);
2048 node_clear(b, nodes);
2049 }
2050 }
2051
2052 /* Remember the top group. */
2053 if (faults > max_faults) {
2054 max_faults = faults;
2055 max_group = this_group;
2056 /*
2057 * subtle: at the smallest distance there is
2058 * just one node left in each "group", the
2059 * winner is the preferred nid.
2060 */
2061 nid = a;
2062 }
2063 }
2064 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2065 if (!max_faults)
2066 break;
54009416
RR
2067 nodes = max_group;
2068 }
2069 return nid;
2070}
2071
cbee9f88
PZ
2072static void task_numa_placement(struct task_struct *p)
2073{
83e1d2cd
MG
2074 int seq, nid, max_nid = -1, max_group_nid = -1;
2075 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2076 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2077 unsigned long total_faults;
2078 u64 runtime, period;
7dbd13ed 2079 spinlock_t *group_lock = NULL;
cbee9f88 2080
7e5a2c17
JL
2081 /*
2082 * The p->mm->numa_scan_seq field gets updated without
2083 * exclusive access. Use READ_ONCE() here to ensure
2084 * that the field is read in a single access:
2085 */
316c1608 2086 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2087 if (p->numa_scan_seq == seq)
2088 return;
2089 p->numa_scan_seq = seq;
598f0ec0 2090 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2091
7e2703e6
RR
2092 total_faults = p->numa_faults_locality[0] +
2093 p->numa_faults_locality[1];
2094 runtime = numa_get_avg_runtime(p, &period);
2095
7dbd13ed
MG
2096 /* If the task is part of a group prevent parallel updates to group stats */
2097 if (p->numa_group) {
2098 group_lock = &p->numa_group->lock;
60e69eed 2099 spin_lock_irq(group_lock);
7dbd13ed
MG
2100 }
2101
688b7585
MG
2102 /* Find the node with the highest number of faults */
2103 for_each_online_node(nid) {
44dba3d5
IM
2104 /* Keep track of the offsets in numa_faults array */
2105 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2106 unsigned long faults = 0, group_faults = 0;
44dba3d5 2107 int priv;
745d6147 2108
be1e4e76 2109 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2110 long diff, f_diff, f_weight;
8c8a743c 2111
44dba3d5
IM
2112 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2113 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2114 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2115 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2116
ac8e895b 2117 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2118 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2119 fault_types[priv] += p->numa_faults[membuf_idx];
2120 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2121
7e2703e6
RR
2122 /*
2123 * Normalize the faults_from, so all tasks in a group
2124 * count according to CPU use, instead of by the raw
2125 * number of faults. Tasks with little runtime have
2126 * little over-all impact on throughput, and thus their
2127 * faults are less important.
2128 */
2129 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2130 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2131 (total_faults + 1);
44dba3d5
IM
2132 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2133 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2134
44dba3d5
IM
2135 p->numa_faults[mem_idx] += diff;
2136 p->numa_faults[cpu_idx] += f_diff;
2137 faults += p->numa_faults[mem_idx];
83e1d2cd 2138 p->total_numa_faults += diff;
8c8a743c 2139 if (p->numa_group) {
44dba3d5
IM
2140 /*
2141 * safe because we can only change our own group
2142 *
2143 * mem_idx represents the offset for a given
2144 * nid and priv in a specific region because it
2145 * is at the beginning of the numa_faults array.
2146 */
2147 p->numa_group->faults[mem_idx] += diff;
2148 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2149 p->numa_group->total_faults += diff;
44dba3d5 2150 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2151 }
ac8e895b
MG
2152 }
2153
688b7585
MG
2154 if (faults > max_faults) {
2155 max_faults = faults;
2156 max_nid = nid;
2157 }
83e1d2cd
MG
2158
2159 if (group_faults > max_group_faults) {
2160 max_group_faults = group_faults;
2161 max_group_nid = nid;
2162 }
2163 }
2164
04bb2f94
RR
2165 update_task_scan_period(p, fault_types[0], fault_types[1]);
2166
7dbd13ed 2167 if (p->numa_group) {
4142c3eb 2168 numa_group_count_active_nodes(p->numa_group);
60e69eed 2169 spin_unlock_irq(group_lock);
54009416 2170 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2171 }
2172
bb97fc31
RR
2173 if (max_faults) {
2174 /* Set the new preferred node */
2175 if (max_nid != p->numa_preferred_nid)
2176 sched_setnuma(p, max_nid);
2177
2178 if (task_node(p) != p->numa_preferred_nid)
2179 numa_migrate_preferred(p);
3a7053b3 2180 }
cbee9f88
PZ
2181}
2182
8c8a743c
PZ
2183static inline int get_numa_group(struct numa_group *grp)
2184{
2185 return atomic_inc_not_zero(&grp->refcount);
2186}
2187
2188static inline void put_numa_group(struct numa_group *grp)
2189{
2190 if (atomic_dec_and_test(&grp->refcount))
2191 kfree_rcu(grp, rcu);
2192}
2193
3e6a9418
MG
2194static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2195 int *priv)
8c8a743c
PZ
2196{
2197 struct numa_group *grp, *my_grp;
2198 struct task_struct *tsk;
2199 bool join = false;
2200 int cpu = cpupid_to_cpu(cpupid);
2201 int i;
2202
2203 if (unlikely(!p->numa_group)) {
2204 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2205 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2206
2207 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2208 if (!grp)
2209 return;
2210
2211 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2212 grp->active_nodes = 1;
2213 grp->max_faults_cpu = 0;
8c8a743c 2214 spin_lock_init(&grp->lock);
e29cf08b 2215 grp->gid = p->pid;
50ec8a40 2216 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2217 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2218 nr_node_ids;
8c8a743c 2219
be1e4e76 2220 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2221 grp->faults[i] = p->numa_faults[i];
8c8a743c 2222
989348b5 2223 grp->total_faults = p->total_numa_faults;
83e1d2cd 2224
8c8a743c
PZ
2225 grp->nr_tasks++;
2226 rcu_assign_pointer(p->numa_group, grp);
2227 }
2228
2229 rcu_read_lock();
316c1608 2230 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2231
2232 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2233 goto no_join;
8c8a743c
PZ
2234
2235 grp = rcu_dereference(tsk->numa_group);
2236 if (!grp)
3354781a 2237 goto no_join;
8c8a743c
PZ
2238
2239 my_grp = p->numa_group;
2240 if (grp == my_grp)
3354781a 2241 goto no_join;
8c8a743c
PZ
2242
2243 /*
2244 * Only join the other group if its bigger; if we're the bigger group,
2245 * the other task will join us.
2246 */
2247 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2248 goto no_join;
8c8a743c
PZ
2249
2250 /*
2251 * Tie-break on the grp address.
2252 */
2253 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2254 goto no_join;
8c8a743c 2255
dabe1d99
RR
2256 /* Always join threads in the same process. */
2257 if (tsk->mm == current->mm)
2258 join = true;
2259
2260 /* Simple filter to avoid false positives due to PID collisions */
2261 if (flags & TNF_SHARED)
2262 join = true;
8c8a743c 2263
3e6a9418
MG
2264 /* Update priv based on whether false sharing was detected */
2265 *priv = !join;
2266
dabe1d99 2267 if (join && !get_numa_group(grp))
3354781a 2268 goto no_join;
8c8a743c 2269
8c8a743c
PZ
2270 rcu_read_unlock();
2271
2272 if (!join)
2273 return;
2274
60e69eed
MG
2275 BUG_ON(irqs_disabled());
2276 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2277
be1e4e76 2278 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2279 my_grp->faults[i] -= p->numa_faults[i];
2280 grp->faults[i] += p->numa_faults[i];
8c8a743c 2281 }
989348b5
MG
2282 my_grp->total_faults -= p->total_numa_faults;
2283 grp->total_faults += p->total_numa_faults;
8c8a743c 2284
8c8a743c
PZ
2285 my_grp->nr_tasks--;
2286 grp->nr_tasks++;
2287
2288 spin_unlock(&my_grp->lock);
60e69eed 2289 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2290
2291 rcu_assign_pointer(p->numa_group, grp);
2292
2293 put_numa_group(my_grp);
3354781a
PZ
2294 return;
2295
2296no_join:
2297 rcu_read_unlock();
2298 return;
8c8a743c
PZ
2299}
2300
2301void task_numa_free(struct task_struct *p)
2302{
2303 struct numa_group *grp = p->numa_group;
44dba3d5 2304 void *numa_faults = p->numa_faults;
e9dd685c
SR
2305 unsigned long flags;
2306 int i;
8c8a743c
PZ
2307
2308 if (grp) {
e9dd685c 2309 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2310 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2311 grp->faults[i] -= p->numa_faults[i];
989348b5 2312 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2313
8c8a743c 2314 grp->nr_tasks--;
e9dd685c 2315 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2316 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2317 put_numa_group(grp);
2318 }
2319
44dba3d5 2320 p->numa_faults = NULL;
82727018 2321 kfree(numa_faults);
8c8a743c
PZ
2322}
2323
cbee9f88
PZ
2324/*
2325 * Got a PROT_NONE fault for a page on @node.
2326 */
58b46da3 2327void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2328{
2329 struct task_struct *p = current;
6688cc05 2330 bool migrated = flags & TNF_MIGRATED;
58b46da3 2331 int cpu_node = task_node(current);
792568ec 2332 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2333 struct numa_group *ng;
ac8e895b 2334 int priv;
cbee9f88 2335
2a595721 2336 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2337 return;
2338
9ff1d9ff
MG
2339 /* for example, ksmd faulting in a user's mm */
2340 if (!p->mm)
2341 return;
2342
f809ca9a 2343 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2344 if (unlikely(!p->numa_faults)) {
2345 int size = sizeof(*p->numa_faults) *
be1e4e76 2346 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2347
44dba3d5
IM
2348 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2349 if (!p->numa_faults)
f809ca9a 2350 return;
745d6147 2351
83e1d2cd 2352 p->total_numa_faults = 0;
04bb2f94 2353 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2354 }
cbee9f88 2355
8c8a743c
PZ
2356 /*
2357 * First accesses are treated as private, otherwise consider accesses
2358 * to be private if the accessing pid has not changed
2359 */
2360 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2361 priv = 1;
2362 } else {
2363 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2364 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2365 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2366 }
2367
792568ec
RR
2368 /*
2369 * If a workload spans multiple NUMA nodes, a shared fault that
2370 * occurs wholly within the set of nodes that the workload is
2371 * actively using should be counted as local. This allows the
2372 * scan rate to slow down when a workload has settled down.
2373 */
4142c3eb
RR
2374 ng = p->numa_group;
2375 if (!priv && !local && ng && ng->active_nodes > 1 &&
2376 numa_is_active_node(cpu_node, ng) &&
2377 numa_is_active_node(mem_node, ng))
792568ec
RR
2378 local = 1;
2379
cbee9f88 2380 task_numa_placement(p);
f809ca9a 2381
2739d3ee
RR
2382 /*
2383 * Retry task to preferred node migration periodically, in case it
2384 * case it previously failed, or the scheduler moved us.
2385 */
2386 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2387 numa_migrate_preferred(p);
2388
b32e86b4
IM
2389 if (migrated)
2390 p->numa_pages_migrated += pages;
074c2381
MG
2391 if (flags & TNF_MIGRATE_FAIL)
2392 p->numa_faults_locality[2] += pages;
b32e86b4 2393
44dba3d5
IM
2394 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2395 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2396 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2397}
2398
6e5fb223
PZ
2399static void reset_ptenuma_scan(struct task_struct *p)
2400{
7e5a2c17
JL
2401 /*
2402 * We only did a read acquisition of the mmap sem, so
2403 * p->mm->numa_scan_seq is written to without exclusive access
2404 * and the update is not guaranteed to be atomic. That's not
2405 * much of an issue though, since this is just used for
2406 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2407 * expensive, to avoid any form of compiler optimizations:
2408 */
316c1608 2409 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2410 p->mm->numa_scan_offset = 0;
2411}
2412
cbee9f88
PZ
2413/*
2414 * The expensive part of numa migration is done from task_work context.
2415 * Triggered from task_tick_numa().
2416 */
2417void task_numa_work(struct callback_head *work)
2418{
2419 unsigned long migrate, next_scan, now = jiffies;
2420 struct task_struct *p = current;
2421 struct mm_struct *mm = p->mm;
51170840 2422 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2423 struct vm_area_struct *vma;
9f40604c 2424 unsigned long start, end;
598f0ec0 2425 unsigned long nr_pte_updates = 0;
4620f8c1 2426 long pages, virtpages;
cbee9f88 2427
9148a3a1 2428 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2429
2430 work->next = work; /* protect against double add */
2431 /*
2432 * Who cares about NUMA placement when they're dying.
2433 *
2434 * NOTE: make sure not to dereference p->mm before this check,
2435 * exit_task_work() happens _after_ exit_mm() so we could be called
2436 * without p->mm even though we still had it when we enqueued this
2437 * work.
2438 */
2439 if (p->flags & PF_EXITING)
2440 return;
2441
930aa174 2442 if (!mm->numa_next_scan) {
7e8d16b6
MG
2443 mm->numa_next_scan = now +
2444 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2445 }
2446
cbee9f88
PZ
2447 /*
2448 * Enforce maximal scan/migration frequency..
2449 */
2450 migrate = mm->numa_next_scan;
2451 if (time_before(now, migrate))
2452 return;
2453
598f0ec0
MG
2454 if (p->numa_scan_period == 0) {
2455 p->numa_scan_period_max = task_scan_max(p);
2456 p->numa_scan_period = task_scan_min(p);
2457 }
cbee9f88 2458
fb003b80 2459 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2460 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2461 return;
2462
19a78d11
PZ
2463 /*
2464 * Delay this task enough that another task of this mm will likely win
2465 * the next time around.
2466 */
2467 p->node_stamp += 2 * TICK_NSEC;
2468
9f40604c
MG
2469 start = mm->numa_scan_offset;
2470 pages = sysctl_numa_balancing_scan_size;
2471 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2472 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2473 if (!pages)
2474 return;
cbee9f88 2475
4620f8c1 2476
6e5fb223 2477 down_read(&mm->mmap_sem);
9f40604c 2478 vma = find_vma(mm, start);
6e5fb223
PZ
2479 if (!vma) {
2480 reset_ptenuma_scan(p);
9f40604c 2481 start = 0;
6e5fb223
PZ
2482 vma = mm->mmap;
2483 }
9f40604c 2484 for (; vma; vma = vma->vm_next) {
6b79c57b 2485 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2486 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2487 continue;
6b79c57b 2488 }
6e5fb223 2489
4591ce4f
MG
2490 /*
2491 * Shared library pages mapped by multiple processes are not
2492 * migrated as it is expected they are cache replicated. Avoid
2493 * hinting faults in read-only file-backed mappings or the vdso
2494 * as migrating the pages will be of marginal benefit.
2495 */
2496 if (!vma->vm_mm ||
2497 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2498 continue;
2499
3c67f474
MG
2500 /*
2501 * Skip inaccessible VMAs to avoid any confusion between
2502 * PROT_NONE and NUMA hinting ptes
2503 */
2504 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2505 continue;
4591ce4f 2506
9f40604c
MG
2507 do {
2508 start = max(start, vma->vm_start);
2509 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2510 end = min(end, vma->vm_end);
4620f8c1 2511 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2512
2513 /*
4620f8c1
RR
2514 * Try to scan sysctl_numa_balancing_size worth of
2515 * hpages that have at least one present PTE that
2516 * is not already pte-numa. If the VMA contains
2517 * areas that are unused or already full of prot_numa
2518 * PTEs, scan up to virtpages, to skip through those
2519 * areas faster.
598f0ec0
MG
2520 */
2521 if (nr_pte_updates)
2522 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2523 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2524
9f40604c 2525 start = end;
4620f8c1 2526 if (pages <= 0 || virtpages <= 0)
9f40604c 2527 goto out;
3cf1962c
RR
2528
2529 cond_resched();
9f40604c 2530 } while (end != vma->vm_end);
cbee9f88 2531 }
6e5fb223 2532
9f40604c 2533out:
6e5fb223 2534 /*
c69307d5
PZ
2535 * It is possible to reach the end of the VMA list but the last few
2536 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2537 * would find the !migratable VMA on the next scan but not reset the
2538 * scanner to the start so check it now.
6e5fb223
PZ
2539 */
2540 if (vma)
9f40604c 2541 mm->numa_scan_offset = start;
6e5fb223
PZ
2542 else
2543 reset_ptenuma_scan(p);
2544 up_read(&mm->mmap_sem);
51170840
RR
2545
2546 /*
2547 * Make sure tasks use at least 32x as much time to run other code
2548 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2549 * Usually update_task_scan_period slows down scanning enough; on an
2550 * overloaded system we need to limit overhead on a per task basis.
2551 */
2552 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2553 u64 diff = p->se.sum_exec_runtime - runtime;
2554 p->node_stamp += 32 * diff;
2555 }
cbee9f88
PZ
2556}
2557
2558/*
2559 * Drive the periodic memory faults..
2560 */
2561void task_tick_numa(struct rq *rq, struct task_struct *curr)
2562{
2563 struct callback_head *work = &curr->numa_work;
2564 u64 period, now;
2565
2566 /*
2567 * We don't care about NUMA placement if we don't have memory.
2568 */
2569 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2570 return;
2571
2572 /*
2573 * Using runtime rather than walltime has the dual advantage that
2574 * we (mostly) drive the selection from busy threads and that the
2575 * task needs to have done some actual work before we bother with
2576 * NUMA placement.
2577 */
2578 now = curr->se.sum_exec_runtime;
2579 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2580
25b3e5a3 2581 if (now > curr->node_stamp + period) {
4b96a29b 2582 if (!curr->node_stamp)
598f0ec0 2583 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2584 curr->node_stamp += period;
cbee9f88
PZ
2585
2586 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2587 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2588 task_work_add(curr, work, true);
2589 }
2590 }
2591}
2592#else
2593static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2594{
2595}
0ec8aa00
PZ
2596
2597static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2598{
2599}
2600
2601static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2602{
2603}
cbee9f88
PZ
2604#endif /* CONFIG_NUMA_BALANCING */
2605
30cfdcfc
DA
2606static void
2607account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2608{
2609 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2610 if (!parent_entity(se))
029632fb 2611 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2612#ifdef CONFIG_SMP
0ec8aa00
PZ
2613 if (entity_is_task(se)) {
2614 struct rq *rq = rq_of(cfs_rq);
2615
2616 account_numa_enqueue(rq, task_of(se));
2617 list_add(&se->group_node, &rq->cfs_tasks);
2618 }
367456c7 2619#endif
30cfdcfc 2620 cfs_rq->nr_running++;
30cfdcfc
DA
2621}
2622
2623static void
2624account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2625{
2626 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2627 if (!parent_entity(se))
029632fb 2628 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2629#ifdef CONFIG_SMP
0ec8aa00
PZ
2630 if (entity_is_task(se)) {
2631 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2632 list_del_init(&se->group_node);
0ec8aa00 2633 }
bfdb198c 2634#endif
30cfdcfc 2635 cfs_rq->nr_running--;
30cfdcfc
DA
2636}
2637
3ff6dcac
YZ
2638#ifdef CONFIG_FAIR_GROUP_SCHED
2639# ifdef CONFIG_SMP
ea1dc6fc 2640static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2641{
ea1dc6fc 2642 long tg_weight, load, shares;
cf5f0acf
PZ
2643
2644 /*
ea1dc6fc
PZ
2645 * This really should be: cfs_rq->avg.load_avg, but instead we use
2646 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2647 * the shares for small weight interactive tasks.
cf5f0acf 2648 */
ea1dc6fc 2649 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2650
ea1dc6fc 2651 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2652
ea1dc6fc
PZ
2653 /* Ensure tg_weight >= load */
2654 tg_weight -= cfs_rq->tg_load_avg_contrib;
2655 tg_weight += load;
3ff6dcac 2656
3ff6dcac 2657 shares = (tg->shares * load);
cf5f0acf
PZ
2658 if (tg_weight)
2659 shares /= tg_weight;
3ff6dcac 2660
b8fd8423
DE
2661 /*
2662 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2663 * of a group with small tg->shares value. It is a floor value which is
2664 * assigned as a minimum load.weight to the sched_entity representing
2665 * the group on a CPU.
2666 *
2667 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2668 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2669 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2670 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2671 * instead of 0.
2672 */
3ff6dcac
YZ
2673 if (shares < MIN_SHARES)
2674 shares = MIN_SHARES;
2675 if (shares > tg->shares)
2676 shares = tg->shares;
2677
2678 return shares;
2679}
3ff6dcac 2680# else /* CONFIG_SMP */
6d5ab293 2681static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2682{
2683 return tg->shares;
2684}
3ff6dcac 2685# endif /* CONFIG_SMP */
ea1dc6fc 2686
2069dd75
PZ
2687static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2688 unsigned long weight)
2689{
19e5eebb
PT
2690 if (se->on_rq) {
2691 /* commit outstanding execution time */
2692 if (cfs_rq->curr == se)
2693 update_curr(cfs_rq);
2069dd75 2694 account_entity_dequeue(cfs_rq, se);
19e5eebb 2695 }
2069dd75
PZ
2696
2697 update_load_set(&se->load, weight);
2698
2699 if (se->on_rq)
2700 account_entity_enqueue(cfs_rq, se);
2701}
2702
82958366
PT
2703static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2704
89ee048f 2705static void update_cfs_shares(struct sched_entity *se)
2069dd75 2706{
89ee048f 2707 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2069dd75 2708 struct task_group *tg;
3ff6dcac 2709 long shares;
2069dd75 2710
89ee048f
VG
2711 if (!cfs_rq)
2712 return;
2713
2714 if (throttled_hierarchy(cfs_rq))
2069dd75 2715 return;
89ee048f
VG
2716
2717 tg = cfs_rq->tg;
2718
3ff6dcac
YZ
2719#ifndef CONFIG_SMP
2720 if (likely(se->load.weight == tg->shares))
2721 return;
2722#endif
6d5ab293 2723 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2724
2725 reweight_entity(cfs_rq_of(se), se, shares);
2726}
89ee048f 2727
2069dd75 2728#else /* CONFIG_FAIR_GROUP_SCHED */
89ee048f 2729static inline void update_cfs_shares(struct sched_entity *se)
2069dd75
PZ
2730{
2731}
2732#endif /* CONFIG_FAIR_GROUP_SCHED */
2733
141965c7 2734#ifdef CONFIG_SMP
5b51f2f8
PT
2735/* Precomputed fixed inverse multiplies for multiplication by y^n */
2736static const u32 runnable_avg_yN_inv[] = {
2737 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2738 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2739 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2740 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2741 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2742 0x85aac367, 0x82cd8698,
2743};
2744
9d85f21c
PT
2745/*
2746 * Approximate:
2747 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2748 */
a481db34 2749static u64 decay_load(u64 val, u64 n)
9d85f21c 2750{
5b51f2f8
PT
2751 unsigned int local_n;
2752
05296e75 2753 if (unlikely(n > LOAD_AVG_PERIOD * 63))
5b51f2f8
PT
2754 return 0;
2755
2756 /* after bounds checking we can collapse to 32-bit */
2757 local_n = n;
2758
2759 /*
2760 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2761 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2762 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2763 *
2764 * To achieve constant time decay_load.
2765 */
2766 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2767 val >>= local_n / LOAD_AVG_PERIOD;
2768 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2769 }
2770
9d89c257
YD
2771 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2772 return val;
5b51f2f8
PT
2773}
2774
05296e75 2775static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
5b51f2f8 2776{
05296e75 2777 u32 c1, c2, c3 = d3; /* y^0 == 1 */
5b51f2f8 2778
a481db34 2779 /*
3841cdc3 2780 * c1 = d1 y^p
a481db34 2781 */
05296e75 2782 c1 = decay_load((u64)d1, periods);
a481db34 2783
a481db34 2784 /*
3841cdc3 2785 * p-1
05296e75
PZ
2786 * c2 = 1024 \Sum y^n
2787 * n=1
a481db34 2788 *
05296e75
PZ
2789 * inf inf
2790 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3841cdc3 2791 * n=0 n=p
a481db34 2792 */
05296e75 2793 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
a481db34
YD
2794
2795 return c1 + c2 + c3;
9d85f21c
PT
2796}
2797
54a21385 2798#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2799
a481db34
YD
2800/*
2801 * Accumulate the three separate parts of the sum; d1 the remainder
2802 * of the last (incomplete) period, d2 the span of full periods and d3
2803 * the remainder of the (incomplete) current period.
2804 *
2805 * d1 d2 d3
2806 * ^ ^ ^
2807 * | | |
2808 * |<->|<----------------->|<--->|
2809 * ... |---x---|------| ... |------|-----x (now)
2810 *
3841cdc3
PZ
2811 * p-1
2812 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2813 * n=1
a481db34 2814 *
3841cdc3 2815 * = u y^p + (Step 1)
a481db34 2816 *
3841cdc3
PZ
2817 * p-1
2818 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2819 * n=1
a481db34
YD
2820 */
2821static __always_inline u32
2822accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2823 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2824{
2825 unsigned long scale_freq, scale_cpu;
05296e75 2826 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
a481db34 2827 u64 periods;
a481db34
YD
2828
2829 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2830 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2831
2832 delta += sa->period_contrib;
2833 periods = delta / 1024; /* A period is 1024us (~1ms) */
2834
2835 /*
2836 * Step 1: decay old *_sum if we crossed period boundaries.
2837 */
2838 if (periods) {
2839 sa->load_sum = decay_load(sa->load_sum, periods);
2840 if (cfs_rq) {
2841 cfs_rq->runnable_load_sum =
2842 decay_load(cfs_rq->runnable_load_sum, periods);
2843 }
2844 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
a481db34 2845
05296e75
PZ
2846 /*
2847 * Step 2
2848 */
2849 delta %= 1024;
2850 contrib = __accumulate_pelt_segments(periods,
2851 1024 - sa->period_contrib, delta);
2852 }
a481db34
YD
2853 sa->period_contrib = delta;
2854
2855 contrib = cap_scale(contrib, scale_freq);
2856 if (weight) {
2857 sa->load_sum += weight * contrib;
2858 if (cfs_rq)
2859 cfs_rq->runnable_load_sum += weight * contrib;
2860 }
2861 if (running)
2862 sa->util_sum += contrib * scale_cpu;
2863
2864 return periods;
2865}
2866
9d85f21c
PT
2867/*
2868 * We can represent the historical contribution to runnable average as the
2869 * coefficients of a geometric series. To do this we sub-divide our runnable
2870 * history into segments of approximately 1ms (1024us); label the segment that
2871 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2872 *
2873 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2874 * p0 p1 p2
2875 * (now) (~1ms ago) (~2ms ago)
2876 *
2877 * Let u_i denote the fraction of p_i that the entity was runnable.
2878 *
2879 * We then designate the fractions u_i as our co-efficients, yielding the
2880 * following representation of historical load:
2881 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2882 *
2883 * We choose y based on the with of a reasonably scheduling period, fixing:
2884 * y^32 = 0.5
2885 *
2886 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2887 * approximately half as much as the contribution to load within the last ms
2888 * (u_0).
2889 *
2890 * When a period "rolls over" and we have new u_0`, multiplying the previous
2891 * sum again by y is sufficient to update:
2892 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2893 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2894 */
9d89c257 2895static __always_inline int
0ccb977f 2896___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2897 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2898{
a481db34 2899 u64 delta;
9d85f21c 2900
9d89c257 2901 delta = now - sa->last_update_time;
9d85f21c
PT
2902 /*
2903 * This should only happen when time goes backwards, which it
2904 * unfortunately does during sched clock init when we swap over to TSC.
2905 */
2906 if ((s64)delta < 0) {
9d89c257 2907 sa->last_update_time = now;
9d85f21c
PT
2908 return 0;
2909 }
2910
2911 /*
2912 * Use 1024ns as the unit of measurement since it's a reasonable
2913 * approximation of 1us and fast to compute.
2914 */
2915 delta >>= 10;
2916 if (!delta)
2917 return 0;
bb0bd044
PZ
2918
2919 sa->last_update_time += delta << 10;
9d85f21c 2920
a481db34
YD
2921 /*
2922 * Now we know we crossed measurement unit boundaries. The *_avg
2923 * accrues by two steps:
2924 *
2925 * Step 1: accumulate *_sum since last_update_time. If we haven't
2926 * crossed period boundaries, finish.
2927 */
2928 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2929 return 0;
9ee474f5 2930
a481db34
YD
2931 /*
2932 * Step 2: update *_avg.
2933 */
2934 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2935 if (cfs_rq) {
2936 cfs_rq->runnable_load_avg =
2937 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
9d89c257 2938 }
a481db34 2939 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
aff3e498 2940
a481db34 2941 return 1;
9ee474f5
PT
2942}
2943
0ccb977f
PZ
2944static int
2945__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2946{
2947 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2948}
2949
2950static int
2951__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2952{
2953 return ___update_load_avg(now, cpu, &se->avg,
2954 se->on_rq * scale_load_down(se->load.weight),
2955 cfs_rq->curr == se, NULL);
2956}
2957
2958static int
2959__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2960{
2961 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2962 scale_load_down(cfs_rq->load.weight),
2963 cfs_rq->curr != NULL, cfs_rq);
2964}
2965
09a43ace
VG
2966/*
2967 * Signed add and clamp on underflow.
2968 *
2969 * Explicitly do a load-store to ensure the intermediate value never hits
2970 * memory. This allows lockless observations without ever seeing the negative
2971 * values.
2972 */
2973#define add_positive(_ptr, _val) do { \
2974 typeof(_ptr) ptr = (_ptr); \
2975 typeof(_val) val = (_val); \
2976 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2977 \
2978 res = var + val; \
2979 \
2980 if (val < 0 && res > var) \
2981 res = 0; \
2982 \
2983 WRITE_ONCE(*ptr, res); \
2984} while (0)
2985
c566e8e9 2986#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2987/**
2988 * update_tg_load_avg - update the tg's load avg
2989 * @cfs_rq: the cfs_rq whose avg changed
2990 * @force: update regardless of how small the difference
2991 *
2992 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2993 * However, because tg->load_avg is a global value there are performance
2994 * considerations.
2995 *
2996 * In order to avoid having to look at the other cfs_rq's, we use a
2997 * differential update where we store the last value we propagated. This in
2998 * turn allows skipping updates if the differential is 'small'.
2999 *
3000 * Updating tg's load_avg is necessary before update_cfs_share() (which is
3001 * done) and effective_load() (which is not done because it is too costly).
bb17f655 3002 */
9d89c257 3003static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3004{
9d89c257 3005 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3006
aa0b7ae0
WL
3007 /*
3008 * No need to update load_avg for root_task_group as it is not used.
3009 */
3010 if (cfs_rq->tg == &root_task_group)
3011 return;
3012
9d89c257
YD
3013 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3014 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3015 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3016 }
8165e145 3017}
f5f9739d 3018
ad936d86
BP
3019/*
3020 * Called within set_task_rq() right before setting a task's cpu. The
3021 * caller only guarantees p->pi_lock is held; no other assumptions,
3022 * including the state of rq->lock, should be made.
3023 */
3024void set_task_rq_fair(struct sched_entity *se,
3025 struct cfs_rq *prev, struct cfs_rq *next)
3026{
0ccb977f
PZ
3027 u64 p_last_update_time;
3028 u64 n_last_update_time;
3029
ad936d86
BP
3030 if (!sched_feat(ATTACH_AGE_LOAD))
3031 return;
3032
3033 /*
3034 * We are supposed to update the task to "current" time, then its up to
3035 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3036 * getting what current time is, so simply throw away the out-of-date
3037 * time. This will result in the wakee task is less decayed, but giving
3038 * the wakee more load sounds not bad.
3039 */
0ccb977f
PZ
3040 if (!(se->avg.last_update_time && prev))
3041 return;
ad936d86
BP
3042
3043#ifndef CONFIG_64BIT
0ccb977f 3044 {
ad936d86
BP
3045 u64 p_last_update_time_copy;
3046 u64 n_last_update_time_copy;
3047
3048 do {
3049 p_last_update_time_copy = prev->load_last_update_time_copy;
3050 n_last_update_time_copy = next->load_last_update_time_copy;
3051
3052 smp_rmb();
3053
3054 p_last_update_time = prev->avg.last_update_time;
3055 n_last_update_time = next->avg.last_update_time;
3056
3057 } while (p_last_update_time != p_last_update_time_copy ||
3058 n_last_update_time != n_last_update_time_copy);
0ccb977f 3059 }
ad936d86 3060#else
0ccb977f
PZ
3061 p_last_update_time = prev->avg.last_update_time;
3062 n_last_update_time = next->avg.last_update_time;
ad936d86 3063#endif
0ccb977f
PZ
3064 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3065 se->avg.last_update_time = n_last_update_time;
ad936d86 3066}
09a43ace
VG
3067
3068/* Take into account change of utilization of a child task group */
3069static inline void
3070update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071{
3072 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3073 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3074
3075 /* Nothing to update */
3076 if (!delta)
3077 return;
3078
3079 /* Set new sched_entity's utilization */
3080 se->avg.util_avg = gcfs_rq->avg.util_avg;
3081 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3082
3083 /* Update parent cfs_rq utilization */
3084 add_positive(&cfs_rq->avg.util_avg, delta);
3085 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3086}
3087
3088/* Take into account change of load of a child task group */
3089static inline void
3090update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3091{
3092 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3093 long delta, load = gcfs_rq->avg.load_avg;
3094
3095 /*
3096 * If the load of group cfs_rq is null, the load of the
3097 * sched_entity will also be null so we can skip the formula
3098 */
3099 if (load) {
3100 long tg_load;
3101
3102 /* Get tg's load and ensure tg_load > 0 */
3103 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3104
3105 /* Ensure tg_load >= load and updated with current load*/
3106 tg_load -= gcfs_rq->tg_load_avg_contrib;
3107 tg_load += load;
3108
3109 /*
3110 * We need to compute a correction term in the case that the
3111 * task group is consuming more CPU than a task of equal
3112 * weight. A task with a weight equals to tg->shares will have
3113 * a load less or equal to scale_load_down(tg->shares).
3114 * Similarly, the sched_entities that represent the task group
3115 * at parent level, can't have a load higher than
3116 * scale_load_down(tg->shares). And the Sum of sched_entities'
3117 * load must be <= scale_load_down(tg->shares).
3118 */
3119 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3120 /* scale gcfs_rq's load into tg's shares*/
3121 load *= scale_load_down(gcfs_rq->tg->shares);
3122 load /= tg_load;
3123 }
3124 }
3125
3126 delta = load - se->avg.load_avg;
3127
3128 /* Nothing to update */
3129 if (!delta)
3130 return;
3131
3132 /* Set new sched_entity's load */
3133 se->avg.load_avg = load;
3134 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3135
3136 /* Update parent cfs_rq load */
3137 add_positive(&cfs_rq->avg.load_avg, delta);
3138 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3139
3140 /*
3141 * If the sched_entity is already enqueued, we also have to update the
3142 * runnable load avg.
3143 */
3144 if (se->on_rq) {
3145 /* Update parent cfs_rq runnable_load_avg */
3146 add_positive(&cfs_rq->runnable_load_avg, delta);
3147 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3148 }
3149}
3150
3151static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3152{
3153 cfs_rq->propagate_avg = 1;
3154}
3155
3156static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3157{
3158 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3159
3160 if (!cfs_rq->propagate_avg)
3161 return 0;
3162
3163 cfs_rq->propagate_avg = 0;
3164 return 1;
3165}
3166
3167/* Update task and its cfs_rq load average */
3168static inline int propagate_entity_load_avg(struct sched_entity *se)
3169{
3170 struct cfs_rq *cfs_rq;
3171
3172 if (entity_is_task(se))
3173 return 0;
3174
3175 if (!test_and_clear_tg_cfs_propagate(se))
3176 return 0;
3177
3178 cfs_rq = cfs_rq_of(se);
3179
3180 set_tg_cfs_propagate(cfs_rq);
3181
3182 update_tg_cfs_util(cfs_rq, se);
3183 update_tg_cfs_load(cfs_rq, se);
3184
3185 return 1;
3186}
3187
bc427898
VG
3188/*
3189 * Check if we need to update the load and the utilization of a blocked
3190 * group_entity:
3191 */
3192static inline bool skip_blocked_update(struct sched_entity *se)
3193{
3194 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3195
3196 /*
3197 * If sched_entity still have not zero load or utilization, we have to
3198 * decay it:
3199 */
3200 if (se->avg.load_avg || se->avg.util_avg)
3201 return false;
3202
3203 /*
3204 * If there is a pending propagation, we have to update the load and
3205 * the utilization of the sched_entity:
3206 */
3207 if (gcfs_rq->propagate_avg)
3208 return false;
3209
3210 /*
3211 * Otherwise, the load and the utilization of the sched_entity is
3212 * already zero and there is no pending propagation, so it will be a
3213 * waste of time to try to decay it:
3214 */
3215 return true;
3216}
3217
6e83125c 3218#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3219
9d89c257 3220static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3221
3222static inline int propagate_entity_load_avg(struct sched_entity *se)
3223{
3224 return 0;
3225}
3226
3227static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3228
6e83125c 3229#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3230
a2c6c91f
SM
3231static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3232{
58919e83 3233 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
3234 /*
3235 * There are a few boundary cases this might miss but it should
3236 * get called often enough that that should (hopefully) not be
3237 * a real problem -- added to that it only calls on the local
3238 * CPU, so if we enqueue remotely we'll miss an update, but
3239 * the next tick/schedule should update.
3240 *
3241 * It will not get called when we go idle, because the idle
3242 * thread is a different class (!fair), nor will the utilization
3243 * number include things like RT tasks.
3244 *
3245 * As is, the util number is not freq-invariant (we'd have to
3246 * implement arch_scale_freq_capacity() for that).
3247 *
3248 * See cpu_util().
3249 */
12bde33d 3250 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
3251 }
3252}
3253
89741892
PZ
3254/*
3255 * Unsigned subtract and clamp on underflow.
3256 *
3257 * Explicitly do a load-store to ensure the intermediate value never hits
3258 * memory. This allows lockless observations without ever seeing the negative
3259 * values.
3260 */
3261#define sub_positive(_ptr, _val) do { \
3262 typeof(_ptr) ptr = (_ptr); \
3263 typeof(*ptr) val = (_val); \
3264 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3265 res = var - val; \
3266 if (res > var) \
3267 res = 0; \
3268 WRITE_ONCE(*ptr, res); \
3269} while (0)
3270
3d30544f
PZ
3271/**
3272 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3273 * @now: current time, as per cfs_rq_clock_task()
3274 * @cfs_rq: cfs_rq to update
3275 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3276 *
3277 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3278 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3279 * post_init_entity_util_avg().
3280 *
3281 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3282 *
7c3edd2c
PZ
3283 * Returns true if the load decayed or we removed load.
3284 *
3285 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3286 * call update_tg_load_avg() when this function returns true.
3d30544f 3287 */
a2c6c91f
SM
3288static inline int
3289update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3290{
9d89c257 3291 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3292 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3293
9d89c257 3294 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3295 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3296 sub_positive(&sa->load_avg, r);
3297 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3298 removed_load = 1;
4e516076 3299 set_tg_cfs_propagate(cfs_rq);
8165e145 3300 }
2dac754e 3301
9d89c257
YD
3302 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3303 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3304 sub_positive(&sa->util_avg, r);
3305 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3306 removed_util = 1;
4e516076 3307 set_tg_cfs_propagate(cfs_rq);
9d89c257 3308 }
36ee28e4 3309
0ccb977f 3310 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
36ee28e4 3311
9d89c257
YD
3312#ifndef CONFIG_64BIT
3313 smp_wmb();
3314 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3315#endif
36ee28e4 3316
a2c6c91f
SM
3317 if (update_freq && (decayed || removed_util))
3318 cfs_rq_util_change(cfs_rq);
21e96f88 3319
41e0d37f 3320 return decayed || removed_load;
21e96f88
SM
3321}
3322
d31b1a66
VG
3323/*
3324 * Optional action to be done while updating the load average
3325 */
3326#define UPDATE_TG 0x1
3327#define SKIP_AGE_LOAD 0x2
3328
21e96f88 3329/* Update task and its cfs_rq load average */
d31b1a66 3330static inline void update_load_avg(struct sched_entity *se, int flags)
21e96f88
SM
3331{
3332 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3333 u64 now = cfs_rq_clock_task(cfs_rq);
3334 struct rq *rq = rq_of(cfs_rq);
3335 int cpu = cpu_of(rq);
09a43ace 3336 int decayed;
21e96f88
SM
3337
3338 /*
3339 * Track task load average for carrying it to new CPU after migrated, and
3340 * track group sched_entity load average for task_h_load calc in migration
3341 */
0ccb977f
PZ
3342 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3343 __update_load_avg_se(now, cpu, cfs_rq, se);
21e96f88 3344
09a43ace
VG
3345 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3346 decayed |= propagate_entity_load_avg(se);
3347
3348 if (decayed && (flags & UPDATE_TG))
21e96f88 3349 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3350}
3351
3d30544f
PZ
3352/**
3353 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3354 * @cfs_rq: cfs_rq to attach to
3355 * @se: sched_entity to attach
3356 *
3357 * Must call update_cfs_rq_load_avg() before this, since we rely on
3358 * cfs_rq->avg.last_update_time being current.
3359 */
a05e8c51
BP
3360static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3361{
3362 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3363 cfs_rq->avg.load_avg += se->avg.load_avg;
3364 cfs_rq->avg.load_sum += se->avg.load_sum;
3365 cfs_rq->avg.util_avg += se->avg.util_avg;
3366 cfs_rq->avg.util_sum += se->avg.util_sum;
09a43ace 3367 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3368
3369 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3370}
3371
3d30544f
PZ
3372/**
3373 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3374 * @cfs_rq: cfs_rq to detach from
3375 * @se: sched_entity to detach
3376 *
3377 * Must call update_cfs_rq_load_avg() before this, since we rely on
3378 * cfs_rq->avg.last_update_time being current.
3379 */
a05e8c51
BP
3380static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3381{
a05e8c51 3382
89741892
PZ
3383 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3384 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3385 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3386 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
09a43ace 3387 set_tg_cfs_propagate(cfs_rq);
a2c6c91f
SM
3388
3389 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3390}
3391
9d89c257
YD
3392/* Add the load generated by se into cfs_rq's load average */
3393static inline void
3394enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3395{
9d89c257 3396 struct sched_avg *sa = &se->avg;
18bf2805 3397
13962234
YD
3398 cfs_rq->runnable_load_avg += sa->load_avg;
3399 cfs_rq->runnable_load_sum += sa->load_sum;
3400
d31b1a66 3401 if (!sa->last_update_time) {
a05e8c51 3402 attach_entity_load_avg(cfs_rq, se);
9d89c257 3403 update_tg_load_avg(cfs_rq, 0);
d31b1a66 3404 }
2dac754e
PT
3405}
3406
13962234
YD
3407/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3408static inline void
3409dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3410{
13962234
YD
3411 cfs_rq->runnable_load_avg =
3412 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3413 cfs_rq->runnable_load_sum =
a05e8c51 3414 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3415}
3416
9d89c257 3417#ifndef CONFIG_64BIT
0905f04e
YD
3418static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3419{
9d89c257 3420 u64 last_update_time_copy;
0905f04e 3421 u64 last_update_time;
9ee474f5 3422
9d89c257
YD
3423 do {
3424 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3425 smp_rmb();
3426 last_update_time = cfs_rq->avg.last_update_time;
3427 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3428
3429 return last_update_time;
3430}
9d89c257 3431#else
0905f04e
YD
3432static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3433{
3434 return cfs_rq->avg.last_update_time;
3435}
9d89c257
YD
3436#endif
3437
104cb16d
MR
3438/*
3439 * Synchronize entity load avg of dequeued entity without locking
3440 * the previous rq.
3441 */
3442void sync_entity_load_avg(struct sched_entity *se)
3443{
3444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3445 u64 last_update_time;
3446
3447 last_update_time = cfs_rq_last_update_time(cfs_rq);
0ccb977f 3448 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
104cb16d
MR
3449}
3450
0905f04e
YD
3451/*
3452 * Task first catches up with cfs_rq, and then subtract
3453 * itself from the cfs_rq (task must be off the queue now).
3454 */
3455void remove_entity_load_avg(struct sched_entity *se)
3456{
3457 struct cfs_rq *cfs_rq = cfs_rq_of(se);
0905f04e
YD
3458
3459 /*
7dc603c9
PZ
3460 * tasks cannot exit without having gone through wake_up_new_task() ->
3461 * post_init_entity_util_avg() which will have added things to the
3462 * cfs_rq, so we can remove unconditionally.
3463 *
3464 * Similarly for groups, they will have passed through
3465 * post_init_entity_util_avg() before unregister_sched_fair_group()
3466 * calls this.
0905f04e 3467 */
0905f04e 3468
104cb16d 3469 sync_entity_load_avg(se);
9d89c257
YD
3470 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3471 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3472}
642dbc39 3473
7ea241af
YD
3474static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3475{
3476 return cfs_rq->runnable_load_avg;
3477}
3478
3479static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3480{
3481 return cfs_rq->avg.load_avg;
3482}
3483
46f69fa3 3484static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3485
38033c37
PZ
3486#else /* CONFIG_SMP */
3487
01011473
PZ
3488static inline int
3489update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3490{
3491 return 0;
3492}
3493
d31b1a66
VG
3494#define UPDATE_TG 0x0
3495#define SKIP_AGE_LOAD 0x0
3496
3497static inline void update_load_avg(struct sched_entity *se, int not_used1)
536bd00c 3498{
12bde33d 3499 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3500}
3501
9d89c257
YD
3502static inline void
3503enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3504static inline void
3505dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3506static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3507
a05e8c51
BP
3508static inline void
3509attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3510static inline void
3511detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3512
46f69fa3 3513static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3514{
3515 return 0;
3516}
3517
38033c37 3518#endif /* CONFIG_SMP */
9d85f21c 3519
ddc97297
PZ
3520static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3521{
3522#ifdef CONFIG_SCHED_DEBUG
3523 s64 d = se->vruntime - cfs_rq->min_vruntime;
3524
3525 if (d < 0)
3526 d = -d;
3527
3528 if (d > 3*sysctl_sched_latency)
ae92882e 3529 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3530#endif
3531}
3532
aeb73b04
PZ
3533static void
3534place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3535{
1af5f730 3536 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3537
2cb8600e
PZ
3538 /*
3539 * The 'current' period is already promised to the current tasks,
3540 * however the extra weight of the new task will slow them down a
3541 * little, place the new task so that it fits in the slot that
3542 * stays open at the end.
3543 */
94dfb5e7 3544 if (initial && sched_feat(START_DEBIT))
f9c0b095 3545 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3546
a2e7a7eb 3547 /* sleeps up to a single latency don't count. */
5ca9880c 3548 if (!initial) {
a2e7a7eb 3549 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3550
a2e7a7eb
MG
3551 /*
3552 * Halve their sleep time's effect, to allow
3553 * for a gentler effect of sleepers:
3554 */
3555 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3556 thresh >>= 1;
51e0304c 3557
a2e7a7eb 3558 vruntime -= thresh;
aeb73b04
PZ
3559 }
3560
b5d9d734 3561 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3562 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3563}
3564
d3d9dc33
PT
3565static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3566
cb251765
MG
3567static inline void check_schedstat_required(void)
3568{
3569#ifdef CONFIG_SCHEDSTATS
3570 if (schedstat_enabled())
3571 return;
3572
3573 /* Force schedstat enabled if a dependent tracepoint is active */
3574 if (trace_sched_stat_wait_enabled() ||
3575 trace_sched_stat_sleep_enabled() ||
3576 trace_sched_stat_iowait_enabled() ||
3577 trace_sched_stat_blocked_enabled() ||
3578 trace_sched_stat_runtime_enabled()) {
eda8dca5 3579 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3580 "stat_blocked and stat_runtime require the "
3581 "kernel parameter schedstats=enabled or "
3582 "kernel.sched_schedstats=1\n");
3583 }
3584#endif
3585}
3586
b5179ac7
PZ
3587
3588/*
3589 * MIGRATION
3590 *
3591 * dequeue
3592 * update_curr()
3593 * update_min_vruntime()
3594 * vruntime -= min_vruntime
3595 *
3596 * enqueue
3597 * update_curr()
3598 * update_min_vruntime()
3599 * vruntime += min_vruntime
3600 *
3601 * this way the vruntime transition between RQs is done when both
3602 * min_vruntime are up-to-date.
3603 *
3604 * WAKEUP (remote)
3605 *
59efa0ba 3606 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3607 * vruntime -= min_vruntime
3608 *
3609 * enqueue
3610 * update_curr()
3611 * update_min_vruntime()
3612 * vruntime += min_vruntime
3613 *
3614 * this way we don't have the most up-to-date min_vruntime on the originating
3615 * CPU and an up-to-date min_vruntime on the destination CPU.
3616 */
3617
bf0f6f24 3618static void
88ec22d3 3619enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3620{
2f950354
PZ
3621 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3622 bool curr = cfs_rq->curr == se;
3623
88ec22d3 3624 /*
2f950354
PZ
3625 * If we're the current task, we must renormalise before calling
3626 * update_curr().
88ec22d3 3627 */
2f950354 3628 if (renorm && curr)
88ec22d3
PZ
3629 se->vruntime += cfs_rq->min_vruntime;
3630
2f950354
PZ
3631 update_curr(cfs_rq);
3632
bf0f6f24 3633 /*
2f950354
PZ
3634 * Otherwise, renormalise after, such that we're placed at the current
3635 * moment in time, instead of some random moment in the past. Being
3636 * placed in the past could significantly boost this task to the
3637 * fairness detriment of existing tasks.
bf0f6f24 3638 */
2f950354
PZ
3639 if (renorm && !curr)
3640 se->vruntime += cfs_rq->min_vruntime;
3641
89ee048f
VG
3642 /*
3643 * When enqueuing a sched_entity, we must:
3644 * - Update loads to have both entity and cfs_rq synced with now.
3645 * - Add its load to cfs_rq->runnable_avg
3646 * - For group_entity, update its weight to reflect the new share of
3647 * its group cfs_rq
3648 * - Add its new weight to cfs_rq->load.weight
3649 */
d31b1a66 3650 update_load_avg(se, UPDATE_TG);
9d89c257 3651 enqueue_entity_load_avg(cfs_rq, se);
89ee048f 3652 update_cfs_shares(se);
17bc14b7 3653 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3654
1a3d027c 3655 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3656 place_entity(cfs_rq, se, 0);
bf0f6f24 3657
cb251765 3658 check_schedstat_required();
4fa8d299
JP
3659 update_stats_enqueue(cfs_rq, se, flags);
3660 check_spread(cfs_rq, se);
2f950354 3661 if (!curr)
83b699ed 3662 __enqueue_entity(cfs_rq, se);
2069dd75 3663 se->on_rq = 1;
3d4b47b4 3664
d3d9dc33 3665 if (cfs_rq->nr_running == 1) {
3d4b47b4 3666 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3667 check_enqueue_throttle(cfs_rq);
3668 }
bf0f6f24
IM
3669}
3670
2c13c919 3671static void __clear_buddies_last(struct sched_entity *se)
2002c695 3672{
2c13c919
RR
3673 for_each_sched_entity(se) {
3674 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3675 if (cfs_rq->last != se)
2c13c919 3676 break;
f1044799
PZ
3677
3678 cfs_rq->last = NULL;
2c13c919
RR
3679 }
3680}
2002c695 3681
2c13c919
RR
3682static void __clear_buddies_next(struct sched_entity *se)
3683{
3684 for_each_sched_entity(se) {
3685 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3686 if (cfs_rq->next != se)
2c13c919 3687 break;
f1044799
PZ
3688
3689 cfs_rq->next = NULL;
2c13c919 3690 }
2002c695
PZ
3691}
3692
ac53db59
RR
3693static void __clear_buddies_skip(struct sched_entity *se)
3694{
3695 for_each_sched_entity(se) {
3696 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3697 if (cfs_rq->skip != se)
ac53db59 3698 break;
f1044799
PZ
3699
3700 cfs_rq->skip = NULL;
ac53db59
RR
3701 }
3702}
3703
a571bbea
PZ
3704static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3705{
2c13c919
RR
3706 if (cfs_rq->last == se)
3707 __clear_buddies_last(se);
3708
3709 if (cfs_rq->next == se)
3710 __clear_buddies_next(se);
ac53db59
RR
3711
3712 if (cfs_rq->skip == se)
3713 __clear_buddies_skip(se);
a571bbea
PZ
3714}
3715
6c16a6dc 3716static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3717
bf0f6f24 3718static void
371fd7e7 3719dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3720{
a2a2d680
DA
3721 /*
3722 * Update run-time statistics of the 'current'.
3723 */
3724 update_curr(cfs_rq);
89ee048f
VG
3725
3726 /*
3727 * When dequeuing a sched_entity, we must:
3728 * - Update loads to have both entity and cfs_rq synced with now.
3729 * - Substract its load from the cfs_rq->runnable_avg.
3730 * - Substract its previous weight from cfs_rq->load.weight.
3731 * - For group entity, update its weight to reflect the new share
3732 * of its group cfs_rq.
3733 */
d31b1a66 3734 update_load_avg(se, UPDATE_TG);
13962234 3735 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3736
4fa8d299 3737 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3738
2002c695 3739 clear_buddies(cfs_rq, se);
4793241b 3740
83b699ed 3741 if (se != cfs_rq->curr)
30cfdcfc 3742 __dequeue_entity(cfs_rq, se);
17bc14b7 3743 se->on_rq = 0;
30cfdcfc 3744 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3745
3746 /*
b60205c7
PZ
3747 * Normalize after update_curr(); which will also have moved
3748 * min_vruntime if @se is the one holding it back. But before doing
3749 * update_min_vruntime() again, which will discount @se's position and
3750 * can move min_vruntime forward still more.
88ec22d3 3751 */
371fd7e7 3752 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3753 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3754
d8b4986d
PT
3755 /* return excess runtime on last dequeue */
3756 return_cfs_rq_runtime(cfs_rq);
3757
89ee048f 3758 update_cfs_shares(se);
b60205c7
PZ
3759
3760 /*
3761 * Now advance min_vruntime if @se was the entity holding it back,
3762 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3763 * put back on, and if we advance min_vruntime, we'll be placed back
3764 * further than we started -- ie. we'll be penalized.
3765 */
3766 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3767 update_min_vruntime(cfs_rq);
bf0f6f24
IM
3768}
3769
3770/*
3771 * Preempt the current task with a newly woken task if needed:
3772 */
7c92e54f 3773static void
2e09bf55 3774check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3775{
11697830 3776 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3777 struct sched_entity *se;
3778 s64 delta;
11697830 3779
6d0f0ebd 3780 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3781 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3782 if (delta_exec > ideal_runtime) {
8875125e 3783 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3784 /*
3785 * The current task ran long enough, ensure it doesn't get
3786 * re-elected due to buddy favours.
3787 */
3788 clear_buddies(cfs_rq, curr);
f685ceac
MG
3789 return;
3790 }
3791
3792 /*
3793 * Ensure that a task that missed wakeup preemption by a
3794 * narrow margin doesn't have to wait for a full slice.
3795 * This also mitigates buddy induced latencies under load.
3796 */
f685ceac
MG
3797 if (delta_exec < sysctl_sched_min_granularity)
3798 return;
3799
f4cfb33e
WX
3800 se = __pick_first_entity(cfs_rq);
3801 delta = curr->vruntime - se->vruntime;
f685ceac 3802
f4cfb33e
WX
3803 if (delta < 0)
3804 return;
d7d82944 3805
f4cfb33e 3806 if (delta > ideal_runtime)
8875125e 3807 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3808}
3809
83b699ed 3810static void
8494f412 3811set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3812{
83b699ed
SV
3813 /* 'current' is not kept within the tree. */
3814 if (se->on_rq) {
3815 /*
3816 * Any task has to be enqueued before it get to execute on
3817 * a CPU. So account for the time it spent waiting on the
3818 * runqueue.
3819 */
4fa8d299 3820 update_stats_wait_end(cfs_rq, se);
83b699ed 3821 __dequeue_entity(cfs_rq, se);
d31b1a66 3822 update_load_avg(se, UPDATE_TG);
83b699ed
SV
3823 }
3824
79303e9e 3825 update_stats_curr_start(cfs_rq, se);
429d43bc 3826 cfs_rq->curr = se;
4fa8d299 3827
eba1ed4b
IM
3828 /*
3829 * Track our maximum slice length, if the CPU's load is at
3830 * least twice that of our own weight (i.e. dont track it
3831 * when there are only lesser-weight tasks around):
3832 */
cb251765 3833 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3834 schedstat_set(se->statistics.slice_max,
3835 max((u64)schedstat_val(se->statistics.slice_max),
3836 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3837 }
4fa8d299 3838
4a55b450 3839 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3840}
3841
3f3a4904
PZ
3842static int
3843wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3844
ac53db59
RR
3845/*
3846 * Pick the next process, keeping these things in mind, in this order:
3847 * 1) keep things fair between processes/task groups
3848 * 2) pick the "next" process, since someone really wants that to run
3849 * 3) pick the "last" process, for cache locality
3850 * 4) do not run the "skip" process, if something else is available
3851 */
678d5718
PZ
3852static struct sched_entity *
3853pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3854{
678d5718
PZ
3855 struct sched_entity *left = __pick_first_entity(cfs_rq);
3856 struct sched_entity *se;
3857
3858 /*
3859 * If curr is set we have to see if its left of the leftmost entity
3860 * still in the tree, provided there was anything in the tree at all.
3861 */
3862 if (!left || (curr && entity_before(curr, left)))
3863 left = curr;
3864
3865 se = left; /* ideally we run the leftmost entity */
f4b6755f 3866
ac53db59
RR
3867 /*
3868 * Avoid running the skip buddy, if running something else can
3869 * be done without getting too unfair.
3870 */
3871 if (cfs_rq->skip == se) {
678d5718
PZ
3872 struct sched_entity *second;
3873
3874 if (se == curr) {
3875 second = __pick_first_entity(cfs_rq);
3876 } else {
3877 second = __pick_next_entity(se);
3878 if (!second || (curr && entity_before(curr, second)))
3879 second = curr;
3880 }
3881
ac53db59
RR
3882 if (second && wakeup_preempt_entity(second, left) < 1)
3883 se = second;
3884 }
aa2ac252 3885
f685ceac
MG
3886 /*
3887 * Prefer last buddy, try to return the CPU to a preempted task.
3888 */
3889 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3890 se = cfs_rq->last;
3891
ac53db59
RR
3892 /*
3893 * Someone really wants this to run. If it's not unfair, run it.
3894 */
3895 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3896 se = cfs_rq->next;
3897
f685ceac 3898 clear_buddies(cfs_rq, se);
4793241b
PZ
3899
3900 return se;
aa2ac252
PZ
3901}
3902
678d5718 3903static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3904
ab6cde26 3905static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3906{
3907 /*
3908 * If still on the runqueue then deactivate_task()
3909 * was not called and update_curr() has to be done:
3910 */
3911 if (prev->on_rq)
b7cc0896 3912 update_curr(cfs_rq);
bf0f6f24 3913
d3d9dc33
PT
3914 /* throttle cfs_rqs exceeding runtime */
3915 check_cfs_rq_runtime(cfs_rq);
3916
4fa8d299 3917 check_spread(cfs_rq, prev);
cb251765 3918
30cfdcfc 3919 if (prev->on_rq) {
4fa8d299 3920 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3921 /* Put 'current' back into the tree. */
3922 __enqueue_entity(cfs_rq, prev);
9d85f21c 3923 /* in !on_rq case, update occurred at dequeue */
9d89c257 3924 update_load_avg(prev, 0);
30cfdcfc 3925 }
429d43bc 3926 cfs_rq->curr = NULL;
bf0f6f24
IM
3927}
3928
8f4d37ec
PZ
3929static void
3930entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3931{
bf0f6f24 3932 /*
30cfdcfc 3933 * Update run-time statistics of the 'current'.
bf0f6f24 3934 */
30cfdcfc 3935 update_curr(cfs_rq);
bf0f6f24 3936
9d85f21c
PT
3937 /*
3938 * Ensure that runnable average is periodically updated.
3939 */
d31b1a66 3940 update_load_avg(curr, UPDATE_TG);
89ee048f 3941 update_cfs_shares(curr);
9d85f21c 3942
8f4d37ec
PZ
3943#ifdef CONFIG_SCHED_HRTICK
3944 /*
3945 * queued ticks are scheduled to match the slice, so don't bother
3946 * validating it and just reschedule.
3947 */
983ed7a6 3948 if (queued) {
8875125e 3949 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3950 return;
3951 }
8f4d37ec
PZ
3952 /*
3953 * don't let the period tick interfere with the hrtick preemption
3954 */
3955 if (!sched_feat(DOUBLE_TICK) &&
3956 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3957 return;
3958#endif
3959
2c2efaed 3960 if (cfs_rq->nr_running > 1)
2e09bf55 3961 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3962}
3963
ab84d31e
PT
3964
3965/**************************************************
3966 * CFS bandwidth control machinery
3967 */
3968
3969#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3970
3971#ifdef HAVE_JUMP_LABEL
c5905afb 3972static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3973
3974static inline bool cfs_bandwidth_used(void)
3975{
c5905afb 3976 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3977}
3978
1ee14e6c 3979void cfs_bandwidth_usage_inc(void)
029632fb 3980{
1ee14e6c
BS
3981 static_key_slow_inc(&__cfs_bandwidth_used);
3982}
3983
3984void cfs_bandwidth_usage_dec(void)
3985{
3986 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3987}
3988#else /* HAVE_JUMP_LABEL */
3989static bool cfs_bandwidth_used(void)
3990{
3991 return true;
3992}
3993
1ee14e6c
BS
3994void cfs_bandwidth_usage_inc(void) {}
3995void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3996#endif /* HAVE_JUMP_LABEL */
3997
ab84d31e
PT
3998/*
3999 * default period for cfs group bandwidth.
4000 * default: 0.1s, units: nanoseconds
4001 */
4002static inline u64 default_cfs_period(void)
4003{
4004 return 100000000ULL;
4005}
ec12cb7f
PT
4006
4007static inline u64 sched_cfs_bandwidth_slice(void)
4008{
4009 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4010}
4011
a9cf55b2
PT
4012/*
4013 * Replenish runtime according to assigned quota and update expiration time.
4014 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4015 * additional synchronization around rq->lock.
4016 *
4017 * requires cfs_b->lock
4018 */
029632fb 4019void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4020{
4021 u64 now;
4022
4023 if (cfs_b->quota == RUNTIME_INF)
4024 return;
4025
4026 now = sched_clock_cpu(smp_processor_id());
4027 cfs_b->runtime = cfs_b->quota;
4028 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4029}
4030
029632fb
PZ
4031static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4032{
4033 return &tg->cfs_bandwidth;
4034}
4035
f1b17280
PT
4036/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4037static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4038{
4039 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4040 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4041
78becc27 4042 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4043}
4044
85dac906
PT
4045/* returns 0 on failure to allocate runtime */
4046static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4047{
4048 struct task_group *tg = cfs_rq->tg;
4049 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4050 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
4051
4052 /* note: this is a positive sum as runtime_remaining <= 0 */
4053 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4054
4055 raw_spin_lock(&cfs_b->lock);
4056 if (cfs_b->quota == RUNTIME_INF)
4057 amount = min_amount;
58088ad0 4058 else {
77a4d1a1 4059 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4060
4061 if (cfs_b->runtime > 0) {
4062 amount = min(cfs_b->runtime, min_amount);
4063 cfs_b->runtime -= amount;
4064 cfs_b->idle = 0;
4065 }
ec12cb7f 4066 }
a9cf55b2 4067 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4068 raw_spin_unlock(&cfs_b->lock);
4069
4070 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4071 /*
4072 * we may have advanced our local expiration to account for allowed
4073 * spread between our sched_clock and the one on which runtime was
4074 * issued.
4075 */
4076 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4077 cfs_rq->runtime_expires = expires;
85dac906
PT
4078
4079 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4080}
4081
a9cf55b2
PT
4082/*
4083 * Note: This depends on the synchronization provided by sched_clock and the
4084 * fact that rq->clock snapshots this value.
4085 */
4086static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4087{
a9cf55b2 4088 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4089
4090 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4091 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4092 return;
4093
a9cf55b2
PT
4094 if (cfs_rq->runtime_remaining < 0)
4095 return;
4096
4097 /*
4098 * If the local deadline has passed we have to consider the
4099 * possibility that our sched_clock is 'fast' and the global deadline
4100 * has not truly expired.
4101 *
4102 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
4103 * whether the global deadline has advanced. It is valid to compare
4104 * cfs_b->runtime_expires without any locks since we only care about
4105 * exact equality, so a partial write will still work.
a9cf55b2
PT
4106 */
4107
51f2176d 4108 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
4109 /* extend local deadline, drift is bounded above by 2 ticks */
4110 cfs_rq->runtime_expires += TICK_NSEC;
4111 } else {
4112 /* global deadline is ahead, expiration has passed */
4113 cfs_rq->runtime_remaining = 0;
4114 }
4115}
4116
9dbdb155 4117static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4118{
4119 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4120 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4121 expire_cfs_rq_runtime(cfs_rq);
4122
4123 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4124 return;
4125
85dac906
PT
4126 /*
4127 * if we're unable to extend our runtime we resched so that the active
4128 * hierarchy can be throttled
4129 */
4130 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4131 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4132}
4133
6c16a6dc 4134static __always_inline
9dbdb155 4135void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4136{
56f570e5 4137 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4138 return;
4139
4140 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4141}
4142
85dac906
PT
4143static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4144{
56f570e5 4145 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4146}
4147
64660c86
PT
4148/* check whether cfs_rq, or any parent, is throttled */
4149static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4150{
56f570e5 4151 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4152}
4153
4154/*
4155 * Ensure that neither of the group entities corresponding to src_cpu or
4156 * dest_cpu are members of a throttled hierarchy when performing group
4157 * load-balance operations.
4158 */
4159static inline int throttled_lb_pair(struct task_group *tg,
4160 int src_cpu, int dest_cpu)
4161{
4162 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4163
4164 src_cfs_rq = tg->cfs_rq[src_cpu];
4165 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4166
4167 return throttled_hierarchy(src_cfs_rq) ||
4168 throttled_hierarchy(dest_cfs_rq);
4169}
4170
4171/* updated child weight may affect parent so we have to do this bottom up */
4172static int tg_unthrottle_up(struct task_group *tg, void *data)
4173{
4174 struct rq *rq = data;
4175 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4176
4177 cfs_rq->throttle_count--;
64660c86 4178 if (!cfs_rq->throttle_count) {
f1b17280 4179 /* adjust cfs_rq_clock_task() */
78becc27 4180 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4181 cfs_rq->throttled_clock_task;
64660c86 4182 }
64660c86
PT
4183
4184 return 0;
4185}
4186
4187static int tg_throttle_down(struct task_group *tg, void *data)
4188{
4189 struct rq *rq = data;
4190 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4191
82958366
PT
4192 /* group is entering throttled state, stop time */
4193 if (!cfs_rq->throttle_count)
78becc27 4194 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
4195 cfs_rq->throttle_count++;
4196
4197 return 0;
4198}
4199
d3d9dc33 4200static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4201{
4202 struct rq *rq = rq_of(cfs_rq);
4203 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4204 struct sched_entity *se;
4205 long task_delta, dequeue = 1;
77a4d1a1 4206 bool empty;
85dac906
PT
4207
4208 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4209
f1b17280 4210 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4211 rcu_read_lock();
4212 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4213 rcu_read_unlock();
85dac906
PT
4214
4215 task_delta = cfs_rq->h_nr_running;
4216 for_each_sched_entity(se) {
4217 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4218 /* throttled entity or throttle-on-deactivate */
4219 if (!se->on_rq)
4220 break;
4221
4222 if (dequeue)
4223 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4224 qcfs_rq->h_nr_running -= task_delta;
4225
4226 if (qcfs_rq->load.weight)
4227 dequeue = 0;
4228 }
4229
4230 if (!se)
72465447 4231 sub_nr_running(rq, task_delta);
85dac906
PT
4232
4233 cfs_rq->throttled = 1;
78becc27 4234 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4235 raw_spin_lock(&cfs_b->lock);
d49db342 4236 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4237
c06f04c7
BS
4238 /*
4239 * Add to the _head_ of the list, so that an already-started
4240 * distribute_cfs_runtime will not see us
4241 */
4242 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4243
4244 /*
4245 * If we're the first throttled task, make sure the bandwidth
4246 * timer is running.
4247 */
4248 if (empty)
4249 start_cfs_bandwidth(cfs_b);
4250
85dac906
PT
4251 raw_spin_unlock(&cfs_b->lock);
4252}
4253
029632fb 4254void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4255{
4256 struct rq *rq = rq_of(cfs_rq);
4257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4258 struct sched_entity *se;
4259 int enqueue = 1;
4260 long task_delta;
4261
22b958d8 4262 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4263
4264 cfs_rq->throttled = 0;
1a55af2e
FW
4265
4266 update_rq_clock(rq);
4267
671fd9da 4268 raw_spin_lock(&cfs_b->lock);
78becc27 4269 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4270 list_del_rcu(&cfs_rq->throttled_list);
4271 raw_spin_unlock(&cfs_b->lock);
4272
64660c86
PT
4273 /* update hierarchical throttle state */
4274 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4275
671fd9da
PT
4276 if (!cfs_rq->load.weight)
4277 return;
4278
4279 task_delta = cfs_rq->h_nr_running;
4280 for_each_sched_entity(se) {
4281 if (se->on_rq)
4282 enqueue = 0;
4283
4284 cfs_rq = cfs_rq_of(se);
4285 if (enqueue)
4286 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4287 cfs_rq->h_nr_running += task_delta;
4288
4289 if (cfs_rq_throttled(cfs_rq))
4290 break;
4291 }
4292
4293 if (!se)
72465447 4294 add_nr_running(rq, task_delta);
671fd9da
PT
4295
4296 /* determine whether we need to wake up potentially idle cpu */
4297 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4298 resched_curr(rq);
671fd9da
PT
4299}
4300
4301static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4302 u64 remaining, u64 expires)
4303{
4304 struct cfs_rq *cfs_rq;
c06f04c7
BS
4305 u64 runtime;
4306 u64 starting_runtime = remaining;
671fd9da
PT
4307
4308 rcu_read_lock();
4309 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4310 throttled_list) {
4311 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4312 struct rq_flags rf;
671fd9da 4313
8a8c69c3 4314 rq_lock(rq, &rf);
671fd9da
PT
4315 if (!cfs_rq_throttled(cfs_rq))
4316 goto next;
4317
4318 runtime = -cfs_rq->runtime_remaining + 1;
4319 if (runtime > remaining)
4320 runtime = remaining;
4321 remaining -= runtime;
4322
4323 cfs_rq->runtime_remaining += runtime;
4324 cfs_rq->runtime_expires = expires;
4325
4326 /* we check whether we're throttled above */
4327 if (cfs_rq->runtime_remaining > 0)
4328 unthrottle_cfs_rq(cfs_rq);
4329
4330next:
8a8c69c3 4331 rq_unlock(rq, &rf);
671fd9da
PT
4332
4333 if (!remaining)
4334 break;
4335 }
4336 rcu_read_unlock();
4337
c06f04c7 4338 return starting_runtime - remaining;
671fd9da
PT
4339}
4340
58088ad0
PT
4341/*
4342 * Responsible for refilling a task_group's bandwidth and unthrottling its
4343 * cfs_rqs as appropriate. If there has been no activity within the last
4344 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4345 * used to track this state.
4346 */
4347static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4348{
671fd9da 4349 u64 runtime, runtime_expires;
51f2176d 4350 int throttled;
58088ad0 4351
58088ad0
PT
4352 /* no need to continue the timer with no bandwidth constraint */
4353 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4354 goto out_deactivate;
58088ad0 4355
671fd9da 4356 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4357 cfs_b->nr_periods += overrun;
671fd9da 4358
51f2176d
BS
4359 /*
4360 * idle depends on !throttled (for the case of a large deficit), and if
4361 * we're going inactive then everything else can be deferred
4362 */
4363 if (cfs_b->idle && !throttled)
4364 goto out_deactivate;
a9cf55b2
PT
4365
4366 __refill_cfs_bandwidth_runtime(cfs_b);
4367
671fd9da
PT
4368 if (!throttled) {
4369 /* mark as potentially idle for the upcoming period */
4370 cfs_b->idle = 1;
51f2176d 4371 return 0;
671fd9da
PT
4372 }
4373
e8da1b18
NR
4374 /* account preceding periods in which throttling occurred */
4375 cfs_b->nr_throttled += overrun;
4376
671fd9da 4377 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4378
4379 /*
c06f04c7
BS
4380 * This check is repeated as we are holding onto the new bandwidth while
4381 * we unthrottle. This can potentially race with an unthrottled group
4382 * trying to acquire new bandwidth from the global pool. This can result
4383 * in us over-using our runtime if it is all used during this loop, but
4384 * only by limited amounts in that extreme case.
671fd9da 4385 */
c06f04c7
BS
4386 while (throttled && cfs_b->runtime > 0) {
4387 runtime = cfs_b->runtime;
671fd9da
PT
4388 raw_spin_unlock(&cfs_b->lock);
4389 /* we can't nest cfs_b->lock while distributing bandwidth */
4390 runtime = distribute_cfs_runtime(cfs_b, runtime,
4391 runtime_expires);
4392 raw_spin_lock(&cfs_b->lock);
4393
4394 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4395
4396 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4397 }
58088ad0 4398
671fd9da
PT
4399 /*
4400 * While we are ensured activity in the period following an
4401 * unthrottle, this also covers the case in which the new bandwidth is
4402 * insufficient to cover the existing bandwidth deficit. (Forcing the
4403 * timer to remain active while there are any throttled entities.)
4404 */
4405 cfs_b->idle = 0;
58088ad0 4406
51f2176d
BS
4407 return 0;
4408
4409out_deactivate:
51f2176d 4410 return 1;
58088ad0 4411}
d3d9dc33 4412
d8b4986d
PT
4413/* a cfs_rq won't donate quota below this amount */
4414static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4415/* minimum remaining period time to redistribute slack quota */
4416static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4417/* how long we wait to gather additional slack before distributing */
4418static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4419
db06e78c
BS
4420/*
4421 * Are we near the end of the current quota period?
4422 *
4423 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4424 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4425 * migrate_hrtimers, base is never cleared, so we are fine.
4426 */
d8b4986d
PT
4427static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4428{
4429 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4430 u64 remaining;
4431
4432 /* if the call-back is running a quota refresh is already occurring */
4433 if (hrtimer_callback_running(refresh_timer))
4434 return 1;
4435
4436 /* is a quota refresh about to occur? */
4437 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4438 if (remaining < min_expire)
4439 return 1;
4440
4441 return 0;
4442}
4443
4444static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4445{
4446 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4447
4448 /* if there's a quota refresh soon don't bother with slack */
4449 if (runtime_refresh_within(cfs_b, min_left))
4450 return;
4451
4cfafd30
PZ
4452 hrtimer_start(&cfs_b->slack_timer,
4453 ns_to_ktime(cfs_bandwidth_slack_period),
4454 HRTIMER_MODE_REL);
d8b4986d
PT
4455}
4456
4457/* we know any runtime found here is valid as update_curr() precedes return */
4458static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4459{
4460 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4461 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4462
4463 if (slack_runtime <= 0)
4464 return;
4465
4466 raw_spin_lock(&cfs_b->lock);
4467 if (cfs_b->quota != RUNTIME_INF &&
4468 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4469 cfs_b->runtime += slack_runtime;
4470
4471 /* we are under rq->lock, defer unthrottling using a timer */
4472 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4473 !list_empty(&cfs_b->throttled_cfs_rq))
4474 start_cfs_slack_bandwidth(cfs_b);
4475 }
4476 raw_spin_unlock(&cfs_b->lock);
4477
4478 /* even if it's not valid for return we don't want to try again */
4479 cfs_rq->runtime_remaining -= slack_runtime;
4480}
4481
4482static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4483{
56f570e5
PT
4484 if (!cfs_bandwidth_used())
4485 return;
4486
fccfdc6f 4487 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4488 return;
4489
4490 __return_cfs_rq_runtime(cfs_rq);
4491}
4492
4493/*
4494 * This is done with a timer (instead of inline with bandwidth return) since
4495 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4496 */
4497static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4498{
4499 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4500 u64 expires;
4501
4502 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4503 raw_spin_lock(&cfs_b->lock);
4504 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4505 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4506 return;
db06e78c 4507 }
d8b4986d 4508
c06f04c7 4509 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4510 runtime = cfs_b->runtime;
c06f04c7 4511
d8b4986d
PT
4512 expires = cfs_b->runtime_expires;
4513 raw_spin_unlock(&cfs_b->lock);
4514
4515 if (!runtime)
4516 return;
4517
4518 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4519
4520 raw_spin_lock(&cfs_b->lock);
4521 if (expires == cfs_b->runtime_expires)
c06f04c7 4522 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4523 raw_spin_unlock(&cfs_b->lock);
4524}
4525
d3d9dc33
PT
4526/*
4527 * When a group wakes up we want to make sure that its quota is not already
4528 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4529 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4530 */
4531static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4532{
56f570e5
PT
4533 if (!cfs_bandwidth_used())
4534 return;
4535
d3d9dc33
PT
4536 /* an active group must be handled by the update_curr()->put() path */
4537 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4538 return;
4539
4540 /* ensure the group is not already throttled */
4541 if (cfs_rq_throttled(cfs_rq))
4542 return;
4543
4544 /* update runtime allocation */
4545 account_cfs_rq_runtime(cfs_rq, 0);
4546 if (cfs_rq->runtime_remaining <= 0)
4547 throttle_cfs_rq(cfs_rq);
4548}
4549
55e16d30
PZ
4550static void sync_throttle(struct task_group *tg, int cpu)
4551{
4552 struct cfs_rq *pcfs_rq, *cfs_rq;
4553
4554 if (!cfs_bandwidth_used())
4555 return;
4556
4557 if (!tg->parent)
4558 return;
4559
4560 cfs_rq = tg->cfs_rq[cpu];
4561 pcfs_rq = tg->parent->cfs_rq[cpu];
4562
4563 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4564 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4565}
4566
d3d9dc33 4567/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4568static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4569{
56f570e5 4570 if (!cfs_bandwidth_used())
678d5718 4571 return false;
56f570e5 4572
d3d9dc33 4573 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4574 return false;
d3d9dc33
PT
4575
4576 /*
4577 * it's possible for a throttled entity to be forced into a running
4578 * state (e.g. set_curr_task), in this case we're finished.
4579 */
4580 if (cfs_rq_throttled(cfs_rq))
678d5718 4581 return true;
d3d9dc33
PT
4582
4583 throttle_cfs_rq(cfs_rq);
678d5718 4584 return true;
d3d9dc33 4585}
029632fb 4586
029632fb
PZ
4587static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4588{
4589 struct cfs_bandwidth *cfs_b =
4590 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4591
029632fb
PZ
4592 do_sched_cfs_slack_timer(cfs_b);
4593
4594 return HRTIMER_NORESTART;
4595}
4596
4597static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4598{
4599 struct cfs_bandwidth *cfs_b =
4600 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4601 int overrun;
4602 int idle = 0;
4603
51f2176d 4604 raw_spin_lock(&cfs_b->lock);
029632fb 4605 for (;;) {
77a4d1a1 4606 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4607 if (!overrun)
4608 break;
4609
4610 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4611 }
4cfafd30
PZ
4612 if (idle)
4613 cfs_b->period_active = 0;
51f2176d 4614 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4615
4616 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4617}
4618
4619void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4620{
4621 raw_spin_lock_init(&cfs_b->lock);
4622 cfs_b->runtime = 0;
4623 cfs_b->quota = RUNTIME_INF;
4624 cfs_b->period = ns_to_ktime(default_cfs_period());
4625
4626 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4627 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4628 cfs_b->period_timer.function = sched_cfs_period_timer;
4629 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4630 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4631}
4632
4633static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4634{
4635 cfs_rq->runtime_enabled = 0;
4636 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4637}
4638
77a4d1a1 4639void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4640{
4cfafd30 4641 lockdep_assert_held(&cfs_b->lock);
029632fb 4642
4cfafd30
PZ
4643 if (!cfs_b->period_active) {
4644 cfs_b->period_active = 1;
4645 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4646 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4647 }
029632fb
PZ
4648}
4649
4650static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4651{
7f1a169b
TH
4652 /* init_cfs_bandwidth() was not called */
4653 if (!cfs_b->throttled_cfs_rq.next)
4654 return;
4655
029632fb
PZ
4656 hrtimer_cancel(&cfs_b->period_timer);
4657 hrtimer_cancel(&cfs_b->slack_timer);
4658}
4659
0e59bdae
KT
4660static void __maybe_unused update_runtime_enabled(struct rq *rq)
4661{
4662 struct cfs_rq *cfs_rq;
4663
4664 for_each_leaf_cfs_rq(rq, cfs_rq) {
4665 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4666
4667 raw_spin_lock(&cfs_b->lock);
4668 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4669 raw_spin_unlock(&cfs_b->lock);
4670 }
4671}
4672
38dc3348 4673static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4674{
4675 struct cfs_rq *cfs_rq;
4676
4677 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4678 if (!cfs_rq->runtime_enabled)
4679 continue;
4680
4681 /*
4682 * clock_task is not advancing so we just need to make sure
4683 * there's some valid quota amount
4684 */
51f2176d 4685 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4686 /*
4687 * Offline rq is schedulable till cpu is completely disabled
4688 * in take_cpu_down(), so we prevent new cfs throttling here.
4689 */
4690 cfs_rq->runtime_enabled = 0;
4691
029632fb
PZ
4692 if (cfs_rq_throttled(cfs_rq))
4693 unthrottle_cfs_rq(cfs_rq);
4694 }
4695}
4696
4697#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4698static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4699{
78becc27 4700 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4701}
4702
9dbdb155 4703static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4704static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4705static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4706static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4707static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4708
4709static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4710{
4711 return 0;
4712}
64660c86
PT
4713
4714static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4715{
4716 return 0;
4717}
4718
4719static inline int throttled_lb_pair(struct task_group *tg,
4720 int src_cpu, int dest_cpu)
4721{
4722 return 0;
4723}
029632fb
PZ
4724
4725void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4726
4727#ifdef CONFIG_FAIR_GROUP_SCHED
4728static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4729#endif
4730
029632fb
PZ
4731static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4732{
4733 return NULL;
4734}
4735static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4736static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4737static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4738
4739#endif /* CONFIG_CFS_BANDWIDTH */
4740
bf0f6f24
IM
4741/**************************************************
4742 * CFS operations on tasks:
4743 */
4744
8f4d37ec
PZ
4745#ifdef CONFIG_SCHED_HRTICK
4746static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4747{
8f4d37ec
PZ
4748 struct sched_entity *se = &p->se;
4749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4750
9148a3a1 4751 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 4752
8bf46a39 4753 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
4754 u64 slice = sched_slice(cfs_rq, se);
4755 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4756 s64 delta = slice - ran;
4757
4758 if (delta < 0) {
4759 if (rq->curr == p)
8875125e 4760 resched_curr(rq);
8f4d37ec
PZ
4761 return;
4762 }
31656519 4763 hrtick_start(rq, delta);
8f4d37ec
PZ
4764 }
4765}
a4c2f00f
PZ
4766
4767/*
4768 * called from enqueue/dequeue and updates the hrtick when the
4769 * current task is from our class and nr_running is low enough
4770 * to matter.
4771 */
4772static void hrtick_update(struct rq *rq)
4773{
4774 struct task_struct *curr = rq->curr;
4775
b39e66ea 4776 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4777 return;
4778
4779 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4780 hrtick_start_fair(rq, curr);
4781}
55e12e5e 4782#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4783static inline void
4784hrtick_start_fair(struct rq *rq, struct task_struct *p)
4785{
4786}
a4c2f00f
PZ
4787
4788static inline void hrtick_update(struct rq *rq)
4789{
4790}
8f4d37ec
PZ
4791#endif
4792
bf0f6f24
IM
4793/*
4794 * The enqueue_task method is called before nr_running is
4795 * increased. Here we update the fair scheduling stats and
4796 * then put the task into the rbtree:
4797 */
ea87bb78 4798static void
371fd7e7 4799enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4800{
4801 struct cfs_rq *cfs_rq;
62fb1851 4802 struct sched_entity *se = &p->se;
bf0f6f24 4803
8c34ab19
RW
4804 /*
4805 * If in_iowait is set, the code below may not trigger any cpufreq
4806 * utilization updates, so do it here explicitly with the IOWAIT flag
4807 * passed.
4808 */
4809 if (p->in_iowait)
4810 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4811
bf0f6f24 4812 for_each_sched_entity(se) {
62fb1851 4813 if (se->on_rq)
bf0f6f24
IM
4814 break;
4815 cfs_rq = cfs_rq_of(se);
88ec22d3 4816 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4817
4818 /*
4819 * end evaluation on encountering a throttled cfs_rq
4820 *
4821 * note: in the case of encountering a throttled cfs_rq we will
4822 * post the final h_nr_running increment below.
e210bffd 4823 */
85dac906
PT
4824 if (cfs_rq_throttled(cfs_rq))
4825 break;
953bfcd1 4826 cfs_rq->h_nr_running++;
85dac906 4827
88ec22d3 4828 flags = ENQUEUE_WAKEUP;
bf0f6f24 4829 }
8f4d37ec 4830
2069dd75 4831 for_each_sched_entity(se) {
0f317143 4832 cfs_rq = cfs_rq_of(se);
953bfcd1 4833 cfs_rq->h_nr_running++;
2069dd75 4834
85dac906
PT
4835 if (cfs_rq_throttled(cfs_rq))
4836 break;
4837
d31b1a66 4838 update_load_avg(se, UPDATE_TG);
89ee048f 4839 update_cfs_shares(se);
2069dd75
PZ
4840 }
4841
cd126afe 4842 if (!se)
72465447 4843 add_nr_running(rq, 1);
cd126afe 4844
a4c2f00f 4845 hrtick_update(rq);
bf0f6f24
IM
4846}
4847
2f36825b
VP
4848static void set_next_buddy(struct sched_entity *se);
4849
bf0f6f24
IM
4850/*
4851 * The dequeue_task method is called before nr_running is
4852 * decreased. We remove the task from the rbtree and
4853 * update the fair scheduling stats:
4854 */
371fd7e7 4855static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4856{
4857 struct cfs_rq *cfs_rq;
62fb1851 4858 struct sched_entity *se = &p->se;
2f36825b 4859 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4860
4861 for_each_sched_entity(se) {
4862 cfs_rq = cfs_rq_of(se);
371fd7e7 4863 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4864
4865 /*
4866 * end evaluation on encountering a throttled cfs_rq
4867 *
4868 * note: in the case of encountering a throttled cfs_rq we will
4869 * post the final h_nr_running decrement below.
4870 */
4871 if (cfs_rq_throttled(cfs_rq))
4872 break;
953bfcd1 4873 cfs_rq->h_nr_running--;
2069dd75 4874
bf0f6f24 4875 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4876 if (cfs_rq->load.weight) {
754bd598
KK
4877 /* Avoid re-evaluating load for this entity: */
4878 se = parent_entity(se);
2f36825b
VP
4879 /*
4880 * Bias pick_next to pick a task from this cfs_rq, as
4881 * p is sleeping when it is within its sched_slice.
4882 */
754bd598
KK
4883 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4884 set_next_buddy(se);
bf0f6f24 4885 break;
2f36825b 4886 }
371fd7e7 4887 flags |= DEQUEUE_SLEEP;
bf0f6f24 4888 }
8f4d37ec 4889
2069dd75 4890 for_each_sched_entity(se) {
0f317143 4891 cfs_rq = cfs_rq_of(se);
953bfcd1 4892 cfs_rq->h_nr_running--;
2069dd75 4893
85dac906
PT
4894 if (cfs_rq_throttled(cfs_rq))
4895 break;
4896
d31b1a66 4897 update_load_avg(se, UPDATE_TG);
89ee048f 4898 update_cfs_shares(se);
2069dd75
PZ
4899 }
4900
cd126afe 4901 if (!se)
72465447 4902 sub_nr_running(rq, 1);
cd126afe 4903
a4c2f00f 4904 hrtick_update(rq);
bf0f6f24
IM
4905}
4906
e7693a36 4907#ifdef CONFIG_SMP
10e2f1ac
PZ
4908
4909/* Working cpumask for: load_balance, load_balance_newidle. */
4910DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4911DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4912
9fd81dd5 4913#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4914/*
4915 * per rq 'load' arrray crap; XXX kill this.
4916 */
4917
4918/*
d937cdc5 4919 * The exact cpuload calculated at every tick would be:
3289bdb4 4920 *
d937cdc5
PZ
4921 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4922 *
4923 * If a cpu misses updates for n ticks (as it was idle) and update gets
4924 * called on the n+1-th tick when cpu may be busy, then we have:
4925 *
4926 * load_n = (1 - 1/2^i)^n * load_0
4927 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4928 *
4929 * decay_load_missed() below does efficient calculation of
3289bdb4 4930 *
d937cdc5
PZ
4931 * load' = (1 - 1/2^i)^n * load
4932 *
4933 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4934 * This allows us to precompute the above in said factors, thereby allowing the
4935 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4936 * fixed_power_int())
3289bdb4 4937 *
d937cdc5 4938 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4939 */
4940#define DEGRADE_SHIFT 7
d937cdc5
PZ
4941
4942static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4943static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4944 { 0, 0, 0, 0, 0, 0, 0, 0 },
4945 { 64, 32, 8, 0, 0, 0, 0, 0 },
4946 { 96, 72, 40, 12, 1, 0, 0, 0 },
4947 { 112, 98, 75, 43, 15, 1, 0, 0 },
4948 { 120, 112, 98, 76, 45, 16, 2, 0 }
4949};
3289bdb4
PZ
4950
4951/*
4952 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4953 * would be when CPU is idle and so we just decay the old load without
4954 * adding any new load.
4955 */
4956static unsigned long
4957decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4958{
4959 int j = 0;
4960
4961 if (!missed_updates)
4962 return load;
4963
4964 if (missed_updates >= degrade_zero_ticks[idx])
4965 return 0;
4966
4967 if (idx == 1)
4968 return load >> missed_updates;
4969
4970 while (missed_updates) {
4971 if (missed_updates % 2)
4972 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4973
4974 missed_updates >>= 1;
4975 j++;
4976 }
4977 return load;
4978}
9fd81dd5 4979#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4980
59543275 4981/**
cee1afce 4982 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4983 * @this_rq: The rq to update statistics for
4984 * @this_load: The current load
4985 * @pending_updates: The number of missed updates
59543275 4986 *
3289bdb4 4987 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4988 * scheduler tick (TICK_NSEC).
4989 *
4990 * This function computes a decaying average:
4991 *
4992 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4993 *
4994 * Because of NOHZ it might not get called on every tick which gives need for
4995 * the @pending_updates argument.
4996 *
4997 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4998 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4999 * = A * (A * load[i]_n-2 + B) + B
5000 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5001 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5002 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5003 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5004 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5005 *
5006 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5007 * any change in load would have resulted in the tick being turned back on.
5008 *
5009 * For regular NOHZ, this reduces to:
5010 *
5011 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5012 *
5013 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5014 * term.
3289bdb4 5015 */
1f41906a
FW
5016static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5017 unsigned long pending_updates)
3289bdb4 5018{
9fd81dd5 5019 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5020 int i, scale;
5021
5022 this_rq->nr_load_updates++;
5023
5024 /* Update our load: */
5025 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5026 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5027 unsigned long old_load, new_load;
5028
5029 /* scale is effectively 1 << i now, and >> i divides by scale */
5030
7400d3bb 5031 old_load = this_rq->cpu_load[i];
9fd81dd5 5032#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5033 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5034 if (tickless_load) {
5035 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5036 /*
5037 * old_load can never be a negative value because a
5038 * decayed tickless_load cannot be greater than the
5039 * original tickless_load.
5040 */
5041 old_load += tickless_load;
5042 }
9fd81dd5 5043#endif
3289bdb4
PZ
5044 new_load = this_load;
5045 /*
5046 * Round up the averaging division if load is increasing. This
5047 * prevents us from getting stuck on 9 if the load is 10, for
5048 * example.
5049 */
5050 if (new_load > old_load)
5051 new_load += scale - 1;
5052
5053 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5054 }
5055
5056 sched_avg_update(this_rq);
5057}
5058
7ea241af
YD
5059/* Used instead of source_load when we know the type == 0 */
5060static unsigned long weighted_cpuload(const int cpu)
5061{
5062 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5063}
5064
3289bdb4 5065#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5066/*
5067 * There is no sane way to deal with nohz on smp when using jiffies because the
5068 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5069 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5070 *
5071 * Therefore we need to avoid the delta approach from the regular tick when
5072 * possible since that would seriously skew the load calculation. This is why we
5073 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5074 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5075 * loop exit, nohz_idle_balance, nohz full exit...)
5076 *
5077 * This means we might still be one tick off for nohz periods.
5078 */
5079
5080static void cpu_load_update_nohz(struct rq *this_rq,
5081 unsigned long curr_jiffies,
5082 unsigned long load)
be68a682
FW
5083{
5084 unsigned long pending_updates;
5085
5086 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5087 if (pending_updates) {
5088 this_rq->last_load_update_tick = curr_jiffies;
5089 /*
5090 * In the regular NOHZ case, we were idle, this means load 0.
5091 * In the NOHZ_FULL case, we were non-idle, we should consider
5092 * its weighted load.
5093 */
1f41906a 5094 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5095 }
5096}
5097
3289bdb4
PZ
5098/*
5099 * Called from nohz_idle_balance() to update the load ratings before doing the
5100 * idle balance.
5101 */
cee1afce 5102static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5103{
3289bdb4
PZ
5104 /*
5105 * bail if there's load or we're actually up-to-date.
5106 */
be68a682 5107 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
5108 return;
5109
1f41906a 5110 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5111}
5112
5113/*
1f41906a
FW
5114 * Record CPU load on nohz entry so we know the tickless load to account
5115 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5116 * than other cpu_load[idx] but it should be fine as cpu_load readers
5117 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5118 */
1f41906a 5119void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5120{
5121 struct rq *this_rq = this_rq();
1f41906a
FW
5122
5123 /*
5124 * This is all lockless but should be fine. If weighted_cpuload changes
5125 * concurrently we'll exit nohz. And cpu_load write can race with
5126 * cpu_load_update_idle() but both updater would be writing the same.
5127 */
5128 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5129}
5130
5131/*
5132 * Account the tickless load in the end of a nohz frame.
5133 */
5134void cpu_load_update_nohz_stop(void)
5135{
316c1608 5136 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5137 struct rq *this_rq = this_rq();
5138 unsigned long load;
8a8c69c3 5139 struct rq_flags rf;
3289bdb4
PZ
5140
5141 if (curr_jiffies == this_rq->last_load_update_tick)
5142 return;
5143
1f41906a 5144 load = weighted_cpuload(cpu_of(this_rq));
8a8c69c3 5145 rq_lock(this_rq, &rf);
b52fad2d 5146 update_rq_clock(this_rq);
1f41906a 5147 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5148 rq_unlock(this_rq, &rf);
3289bdb4 5149}
1f41906a
FW
5150#else /* !CONFIG_NO_HZ_COMMON */
5151static inline void cpu_load_update_nohz(struct rq *this_rq,
5152 unsigned long curr_jiffies,
5153 unsigned long load) { }
5154#endif /* CONFIG_NO_HZ_COMMON */
5155
5156static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5157{
9fd81dd5 5158#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5159 /* See the mess around cpu_load_update_nohz(). */
5160 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5161#endif
1f41906a
FW
5162 cpu_load_update(this_rq, load, 1);
5163}
3289bdb4
PZ
5164
5165/*
5166 * Called from scheduler_tick()
5167 */
cee1afce 5168void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5169{
7ea241af 5170 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
5171
5172 if (tick_nohz_tick_stopped())
5173 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5174 else
5175 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5176}
5177
029632fb
PZ
5178/*
5179 * Return a low guess at the load of a migration-source cpu weighted
5180 * according to the scheduling class and "nice" value.
5181 *
5182 * We want to under-estimate the load of migration sources, to
5183 * balance conservatively.
5184 */
5185static unsigned long source_load(int cpu, int type)
5186{
5187 struct rq *rq = cpu_rq(cpu);
5188 unsigned long total = weighted_cpuload(cpu);
5189
5190 if (type == 0 || !sched_feat(LB_BIAS))
5191 return total;
5192
5193 return min(rq->cpu_load[type-1], total);
5194}
5195
5196/*
5197 * Return a high guess at the load of a migration-target cpu weighted
5198 * according to the scheduling class and "nice" value.
5199 */
5200static unsigned long target_load(int cpu, int type)
5201{
5202 struct rq *rq = cpu_rq(cpu);
5203 unsigned long total = weighted_cpuload(cpu);
5204
5205 if (type == 0 || !sched_feat(LB_BIAS))
5206 return total;
5207
5208 return max(rq->cpu_load[type-1], total);
5209}
5210
ced549fa 5211static unsigned long capacity_of(int cpu)
029632fb 5212{
ced549fa 5213 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5214}
5215
ca6d75e6
VG
5216static unsigned long capacity_orig_of(int cpu)
5217{
5218 return cpu_rq(cpu)->cpu_capacity_orig;
5219}
5220
029632fb
PZ
5221static unsigned long cpu_avg_load_per_task(int cpu)
5222{
5223 struct rq *rq = cpu_rq(cpu);
316c1608 5224 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 5225 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
5226
5227 if (nr_running)
b92486cb 5228 return load_avg / nr_running;
029632fb
PZ
5229
5230 return 0;
5231}
5232
bb3469ac 5233#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
5234/*
5235 * effective_load() calculates the load change as seen from the root_task_group
5236 *
5237 * Adding load to a group doesn't make a group heavier, but can cause movement
5238 * of group shares between cpus. Assuming the shares were perfectly aligned one
5239 * can calculate the shift in shares.
cf5f0acf
PZ
5240 *
5241 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5242 * on this @cpu and results in a total addition (subtraction) of @wg to the
5243 * total group weight.
5244 *
5245 * Given a runqueue weight distribution (rw_i) we can compute a shares
5246 * distribution (s_i) using:
5247 *
5248 * s_i = rw_i / \Sum rw_j (1)
5249 *
5250 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5251 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5252 * shares distribution (s_i):
5253 *
5254 * rw_i = { 2, 4, 1, 0 }
5255 * s_i = { 2/7, 4/7, 1/7, 0 }
5256 *
5257 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5258 * task used to run on and the CPU the waker is running on), we need to
5259 * compute the effect of waking a task on either CPU and, in case of a sync
5260 * wakeup, compute the effect of the current task going to sleep.
5261 *
5262 * So for a change of @wl to the local @cpu with an overall group weight change
5263 * of @wl we can compute the new shares distribution (s'_i) using:
5264 *
5265 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5266 *
5267 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5268 * differences in waking a task to CPU 0. The additional task changes the
5269 * weight and shares distributions like:
5270 *
5271 * rw'_i = { 3, 4, 1, 0 }
5272 * s'_i = { 3/8, 4/8, 1/8, 0 }
5273 *
5274 * We can then compute the difference in effective weight by using:
5275 *
5276 * dw_i = S * (s'_i - s_i) (3)
5277 *
5278 * Where 'S' is the group weight as seen by its parent.
5279 *
5280 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5281 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5282 * 4/7) times the weight of the group.
f5bfb7d9 5283 */
2069dd75 5284static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 5285{
4be9daaa 5286 struct sched_entity *se = tg->se[cpu];
f1d239f7 5287
9722c2da 5288 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
5289 return wl;
5290
4be9daaa 5291 for_each_sched_entity(se) {
7dd49125
PZ
5292 struct cfs_rq *cfs_rq = se->my_q;
5293 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 5294
7dd49125 5295 tg = cfs_rq->tg;
bb3469ac 5296
cf5f0acf
PZ
5297 /*
5298 * W = @wg + \Sum rw_j
5299 */
7dd49125
PZ
5300 W = wg + atomic_long_read(&tg->load_avg);
5301
5302 /* Ensure \Sum rw_j >= rw_i */
5303 W -= cfs_rq->tg_load_avg_contrib;
5304 W += w;
4be9daaa 5305
cf5f0acf
PZ
5306 /*
5307 * w = rw_i + @wl
5308 */
7dd49125 5309 w += wl;
940959e9 5310
cf5f0acf
PZ
5311 /*
5312 * wl = S * s'_i; see (2)
5313 */
5314 if (W > 0 && w < W)
ab522e33 5315 wl = (w * (long)scale_load_down(tg->shares)) / W;
977dda7c 5316 else
ab522e33 5317 wl = scale_load_down(tg->shares);
940959e9 5318
cf5f0acf
PZ
5319 /*
5320 * Per the above, wl is the new se->load.weight value; since
5321 * those are clipped to [MIN_SHARES, ...) do so now. See
5322 * calc_cfs_shares().
5323 */
977dda7c
PT
5324 if (wl < MIN_SHARES)
5325 wl = MIN_SHARES;
cf5f0acf
PZ
5326
5327 /*
5328 * wl = dw_i = S * (s'_i - s_i); see (3)
5329 */
9d89c257 5330 wl -= se->avg.load_avg;
cf5f0acf
PZ
5331
5332 /*
5333 * Recursively apply this logic to all parent groups to compute
5334 * the final effective load change on the root group. Since
5335 * only the @tg group gets extra weight, all parent groups can
5336 * only redistribute existing shares. @wl is the shift in shares
5337 * resulting from this level per the above.
5338 */
4be9daaa 5339 wg = 0;
4be9daaa 5340 }
bb3469ac 5341
4be9daaa 5342 return wl;
bb3469ac
PZ
5343}
5344#else
4be9daaa 5345
58d081b5 5346static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5347{
83378269 5348 return wl;
bb3469ac 5349}
4be9daaa 5350
bb3469ac
PZ
5351#endif
5352
c58d25f3
PZ
5353static void record_wakee(struct task_struct *p)
5354{
5355 /*
5356 * Only decay a single time; tasks that have less then 1 wakeup per
5357 * jiffy will not have built up many flips.
5358 */
5359 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5360 current->wakee_flips >>= 1;
5361 current->wakee_flip_decay_ts = jiffies;
5362 }
5363
5364 if (current->last_wakee != p) {
5365 current->last_wakee = p;
5366 current->wakee_flips++;
5367 }
5368}
5369
63b0e9ed
MG
5370/*
5371 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5372 *
63b0e9ed 5373 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5374 * at a frequency roughly N times higher than one of its wakees.
5375 *
5376 * In order to determine whether we should let the load spread vs consolidating
5377 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5378 * partner, and a factor of lls_size higher frequency in the other.
5379 *
5380 * With both conditions met, we can be relatively sure that the relationship is
5381 * non-monogamous, with partner count exceeding socket size.
5382 *
5383 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5384 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5385 * socket size.
63b0e9ed 5386 */
62470419
MW
5387static int wake_wide(struct task_struct *p)
5388{
63b0e9ed
MG
5389 unsigned int master = current->wakee_flips;
5390 unsigned int slave = p->wakee_flips;
7d9ffa89 5391 int factor = this_cpu_read(sd_llc_size);
62470419 5392
63b0e9ed
MG
5393 if (master < slave)
5394 swap(master, slave);
5395 if (slave < factor || master < slave * factor)
5396 return 0;
5397 return 1;
62470419
MW
5398}
5399
772bd008
MR
5400static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5401 int prev_cpu, int sync)
098fb9db 5402{
e37b6a7b 5403 s64 this_load, load;
bd61c98f 5404 s64 this_eff_load, prev_eff_load;
772bd008 5405 int idx, this_cpu;
c88d5910 5406 struct task_group *tg;
83378269 5407 unsigned long weight;
b3137bc8 5408 int balanced;
098fb9db 5409
c88d5910
PZ
5410 idx = sd->wake_idx;
5411 this_cpu = smp_processor_id();
c88d5910
PZ
5412 load = source_load(prev_cpu, idx);
5413 this_load = target_load(this_cpu, idx);
098fb9db 5414
b3137bc8
MG
5415 /*
5416 * If sync wakeup then subtract the (maximum possible)
5417 * effect of the currently running task from the load
5418 * of the current CPU:
5419 */
83378269
PZ
5420 if (sync) {
5421 tg = task_group(current);
9d89c257 5422 weight = current->se.avg.load_avg;
83378269 5423
c88d5910 5424 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5425 load += effective_load(tg, prev_cpu, 0, -weight);
5426 }
b3137bc8 5427
83378269 5428 tg = task_group(p);
9d89c257 5429 weight = p->se.avg.load_avg;
b3137bc8 5430
71a29aa7
PZ
5431 /*
5432 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5433 * due to the sync cause above having dropped this_load to 0, we'll
5434 * always have an imbalance, but there's really nothing you can do
5435 * about that, so that's good too.
71a29aa7
PZ
5436 *
5437 * Otherwise check if either cpus are near enough in load to allow this
5438 * task to be woken on this_cpu.
5439 */
bd61c98f
VG
5440 this_eff_load = 100;
5441 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5442
bd61c98f
VG
5443 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5444 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5445
bd61c98f 5446 if (this_load > 0) {
e51fd5e2
PZ
5447 this_eff_load *= this_load +
5448 effective_load(tg, this_cpu, weight, weight);
5449
e51fd5e2 5450 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5451 }
e51fd5e2 5452
bd61c98f 5453 balanced = this_eff_load <= prev_eff_load;
098fb9db 5454
ae92882e 5455 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5456
05bfb65f
VG
5457 if (!balanced)
5458 return 0;
098fb9db 5459
ae92882e
JP
5460 schedstat_inc(sd->ttwu_move_affine);
5461 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5462
5463 return 1;
098fb9db
IM
5464}
5465
6a0b19c0
MR
5466static inline int task_util(struct task_struct *p);
5467static int cpu_util_wake(int cpu, struct task_struct *p);
5468
5469static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5470{
5471 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5472}
5473
aaee1203
PZ
5474/*
5475 * find_idlest_group finds and returns the least busy CPU group within the
5476 * domain.
5477 */
5478static struct sched_group *
78e7ed53 5479find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5480 int this_cpu, int sd_flag)
e7693a36 5481{
b3bd3de6 5482 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5483 struct sched_group *most_spare_sg = NULL;
6b94780e
VG
5484 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5485 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
6a0b19c0 5486 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5487 int load_idx = sd->forkexec_idx;
6b94780e
VG
5488 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5489 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5490 (sd->imbalance_pct-100) / 100;
e7693a36 5491
c44f2a02
VG
5492 if (sd_flag & SD_BALANCE_WAKE)
5493 load_idx = sd->wake_idx;
5494
aaee1203 5495 do {
6b94780e
VG
5496 unsigned long load, avg_load, runnable_load;
5497 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5498 int local_group;
5499 int i;
e7693a36 5500
aaee1203
PZ
5501 /* Skip over this group if it has no CPUs allowed */
5502 if (!cpumask_intersects(sched_group_cpus(group),
0c98d344 5503 &p->cpus_allowed))
aaee1203
PZ
5504 continue;
5505
5506 local_group = cpumask_test_cpu(this_cpu,
5507 sched_group_cpus(group));
5508
6a0b19c0
MR
5509 /*
5510 * Tally up the load of all CPUs in the group and find
5511 * the group containing the CPU with most spare capacity.
5512 */
aaee1203 5513 avg_load = 0;
6b94780e 5514 runnable_load = 0;
6a0b19c0 5515 max_spare_cap = 0;
aaee1203
PZ
5516
5517 for_each_cpu(i, sched_group_cpus(group)) {
5518 /* Bias balancing toward cpus of our domain */
5519 if (local_group)
5520 load = source_load(i, load_idx);
5521 else
5522 load = target_load(i, load_idx);
5523
6b94780e
VG
5524 runnable_load += load;
5525
5526 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0
MR
5527
5528 spare_cap = capacity_spare_wake(i, p);
5529
5530 if (spare_cap > max_spare_cap)
5531 max_spare_cap = spare_cap;
aaee1203
PZ
5532 }
5533
63b2ca30 5534 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5535 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5536 group->sgc->capacity;
5537 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5538 group->sgc->capacity;
aaee1203
PZ
5539
5540 if (local_group) {
6b94780e
VG
5541 this_runnable_load = runnable_load;
5542 this_avg_load = avg_load;
6a0b19c0
MR
5543 this_spare = max_spare_cap;
5544 } else {
6b94780e
VG
5545 if (min_runnable_load > (runnable_load + imbalance)) {
5546 /*
5547 * The runnable load is significantly smaller
5548 * so we can pick this new cpu
5549 */
5550 min_runnable_load = runnable_load;
5551 min_avg_load = avg_load;
5552 idlest = group;
5553 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5554 (100*min_avg_load > imbalance_scale*avg_load)) {
5555 /*
5556 * The runnable loads are close so take the
5557 * blocked load into account through avg_load.
5558 */
5559 min_avg_load = avg_load;
6a0b19c0
MR
5560 idlest = group;
5561 }
5562
5563 if (most_spare < max_spare_cap) {
5564 most_spare = max_spare_cap;
5565 most_spare_sg = group;
5566 }
aaee1203
PZ
5567 }
5568 } while (group = group->next, group != sd->groups);
5569
6a0b19c0
MR
5570 /*
5571 * The cross-over point between using spare capacity or least load
5572 * is too conservative for high utilization tasks on partially
5573 * utilized systems if we require spare_capacity > task_util(p),
5574 * so we allow for some task stuffing by using
5575 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5576 *
5577 * Spare capacity can't be used for fork because the utilization has
5578 * not been set yet, we must first select a rq to compute the initial
5579 * utilization.
6a0b19c0 5580 */
f519a3f1
VG
5581 if (sd_flag & SD_BALANCE_FORK)
5582 goto skip_spare;
5583
6a0b19c0 5584 if (this_spare > task_util(p) / 2 &&
6b94780e 5585 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5586 return NULL;
6b94780e
VG
5587
5588 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5589 return most_spare_sg;
5590
f519a3f1 5591skip_spare:
6b94780e
VG
5592 if (!idlest)
5593 return NULL;
5594
5595 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5596 return NULL;
6b94780e
VG
5597
5598 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5599 (100*this_avg_load < imbalance_scale*min_avg_load))
5600 return NULL;
5601
aaee1203
PZ
5602 return idlest;
5603}
5604
5605/*
5606 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5607 */
5608static int
5609find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5610{
5611 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5612 unsigned int min_exit_latency = UINT_MAX;
5613 u64 latest_idle_timestamp = 0;
5614 int least_loaded_cpu = this_cpu;
5615 int shallowest_idle_cpu = -1;
aaee1203
PZ
5616 int i;
5617
eaecf41f
MR
5618 /* Check if we have any choice: */
5619 if (group->group_weight == 1)
5620 return cpumask_first(sched_group_cpus(group));
5621
aaee1203 5622 /* Traverse only the allowed CPUs */
0c98d344 5623 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
83a0a96a
NP
5624 if (idle_cpu(i)) {
5625 struct rq *rq = cpu_rq(i);
5626 struct cpuidle_state *idle = idle_get_state(rq);
5627 if (idle && idle->exit_latency < min_exit_latency) {
5628 /*
5629 * We give priority to a CPU whose idle state
5630 * has the smallest exit latency irrespective
5631 * of any idle timestamp.
5632 */
5633 min_exit_latency = idle->exit_latency;
5634 latest_idle_timestamp = rq->idle_stamp;
5635 shallowest_idle_cpu = i;
5636 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5637 rq->idle_stamp > latest_idle_timestamp) {
5638 /*
5639 * If equal or no active idle state, then
5640 * the most recently idled CPU might have
5641 * a warmer cache.
5642 */
5643 latest_idle_timestamp = rq->idle_stamp;
5644 shallowest_idle_cpu = i;
5645 }
9f96742a 5646 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5647 load = weighted_cpuload(i);
5648 if (load < min_load || (load == min_load && i == this_cpu)) {
5649 min_load = load;
5650 least_loaded_cpu = i;
5651 }
e7693a36
GH
5652 }
5653 }
5654
83a0a96a 5655 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5656}
e7693a36 5657
a50bde51 5658/*
10e2f1ac
PZ
5659 * Implement a for_each_cpu() variant that starts the scan at a given cpu
5660 * (@start), and wraps around.
5661 *
5662 * This is used to scan for idle CPUs; such that not all CPUs looking for an
5663 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5664 * through the LLC domain.
5665 *
5666 * Especially tbench is found sensitive to this.
5667 */
5668
5669static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5670{
5671 int next;
5672
5673again:
5674 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5675
5676 if (*wrapped) {
5677 if (next >= start)
5678 return nr_cpumask_bits;
5679 } else {
5680 if (next >= nr_cpumask_bits) {
5681 *wrapped = 1;
5682 n = -1;
5683 goto again;
5684 }
5685 }
5686
5687 return next;
5688}
5689
5690#define for_each_cpu_wrap(cpu, mask, start, wrap) \
5691 for ((wrap) = 0, (cpu) = (start)-1; \
5692 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
5693 (cpu) < nr_cpumask_bits; )
5694
5695#ifdef CONFIG_SCHED_SMT
5696
5697static inline void set_idle_cores(int cpu, int val)
5698{
5699 struct sched_domain_shared *sds;
5700
5701 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5702 if (sds)
5703 WRITE_ONCE(sds->has_idle_cores, val);
5704}
5705
5706static inline bool test_idle_cores(int cpu, bool def)
5707{
5708 struct sched_domain_shared *sds;
5709
5710 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5711 if (sds)
5712 return READ_ONCE(sds->has_idle_cores);
5713
5714 return def;
5715}
5716
5717/*
5718 * Scans the local SMT mask to see if the entire core is idle, and records this
5719 * information in sd_llc_shared->has_idle_cores.
5720 *
5721 * Since SMT siblings share all cache levels, inspecting this limited remote
5722 * state should be fairly cheap.
5723 */
1b568f0a 5724void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5725{
5726 int core = cpu_of(rq);
5727 int cpu;
5728
5729 rcu_read_lock();
5730 if (test_idle_cores(core, true))
5731 goto unlock;
5732
5733 for_each_cpu(cpu, cpu_smt_mask(core)) {
5734 if (cpu == core)
5735 continue;
5736
5737 if (!idle_cpu(cpu))
5738 goto unlock;
5739 }
5740
5741 set_idle_cores(core, 1);
5742unlock:
5743 rcu_read_unlock();
5744}
5745
5746/*
5747 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5748 * there are no idle cores left in the system; tracked through
5749 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5750 */
5751static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5752{
5753 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5754 int core, cpu, wrap;
5755
1b568f0a
PZ
5756 if (!static_branch_likely(&sched_smt_present))
5757 return -1;
5758
10e2f1ac
PZ
5759 if (!test_idle_cores(target, false))
5760 return -1;
5761
0c98d344 5762 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac
PZ
5763
5764 for_each_cpu_wrap(core, cpus, target, wrap) {
5765 bool idle = true;
5766
5767 for_each_cpu(cpu, cpu_smt_mask(core)) {
5768 cpumask_clear_cpu(cpu, cpus);
5769 if (!idle_cpu(cpu))
5770 idle = false;
5771 }
5772
5773 if (idle)
5774 return core;
5775 }
5776
5777 /*
5778 * Failed to find an idle core; stop looking for one.
5779 */
5780 set_idle_cores(target, 0);
5781
5782 return -1;
5783}
5784
5785/*
5786 * Scan the local SMT mask for idle CPUs.
5787 */
5788static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5789{
5790 int cpu;
5791
1b568f0a
PZ
5792 if (!static_branch_likely(&sched_smt_present))
5793 return -1;
5794
10e2f1ac 5795 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 5796 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5797 continue;
5798 if (idle_cpu(cpu))
5799 return cpu;
5800 }
5801
5802 return -1;
5803}
5804
5805#else /* CONFIG_SCHED_SMT */
5806
5807static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5808{
5809 return -1;
5810}
5811
5812static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5813{
5814 return -1;
5815}
5816
5817#endif /* CONFIG_SCHED_SMT */
5818
5819/*
5820 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5821 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5822 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5823 */
10e2f1ac
PZ
5824static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5825{
9cfb38a7
WL
5826 struct sched_domain *this_sd;
5827 u64 avg_cost, avg_idle = this_rq()->avg_idle;
10e2f1ac
PZ
5828 u64 time, cost;
5829 s64 delta;
5830 int cpu, wrap;
5831
9cfb38a7
WL
5832 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5833 if (!this_sd)
5834 return -1;
5835
5836 avg_cost = this_sd->avg_scan_cost;
5837
10e2f1ac
PZ
5838 /*
5839 * Due to large variance we need a large fuzz factor; hackbench in
5840 * particularly is sensitive here.
5841 */
4c77b18c 5842 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
10e2f1ac
PZ
5843 return -1;
5844
5845 time = local_clock();
5846
5847 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
0c98d344 5848 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac
PZ
5849 continue;
5850 if (idle_cpu(cpu))
5851 break;
5852 }
5853
5854 time = local_clock() - time;
5855 cost = this_sd->avg_scan_cost;
5856 delta = (s64)(time - cost) / 8;
5857 this_sd->avg_scan_cost += delta;
5858
5859 return cpu;
5860}
5861
5862/*
5863 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 5864 */
772bd008 5865static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5866{
99bd5e2f 5867 struct sched_domain *sd;
10e2f1ac 5868 int i;
a50bde51 5869
e0a79f52
MG
5870 if (idle_cpu(target))
5871 return target;
99bd5e2f
SS
5872
5873 /*
10e2f1ac 5874 * If the previous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5875 */
772bd008
MR
5876 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5877 return prev;
a50bde51 5878
518cd623 5879 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
5880 if (!sd)
5881 return target;
772bd008 5882
10e2f1ac
PZ
5883 i = select_idle_core(p, sd, target);
5884 if ((unsigned)i < nr_cpumask_bits)
5885 return i;
37407ea7 5886
10e2f1ac
PZ
5887 i = select_idle_cpu(p, sd, target);
5888 if ((unsigned)i < nr_cpumask_bits)
5889 return i;
5890
5891 i = select_idle_smt(p, sd, target);
5892 if ((unsigned)i < nr_cpumask_bits)
5893 return i;
970e1789 5894
a50bde51
PZ
5895 return target;
5896}
231678b7 5897
8bb5b00c 5898/*
9e91d61d 5899 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5900 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5901 * compare the utilization with the capacity of the CPU that is available for
5902 * CFS task (ie cpu_capacity).
231678b7
DE
5903 *
5904 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5905 * recent utilization of currently non-runnable tasks on a CPU. It represents
5906 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5907 * capacity_orig is the cpu_capacity available at the highest frequency
5908 * (arch_scale_freq_capacity()).
5909 * The utilization of a CPU converges towards a sum equal to or less than the
5910 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5911 * the running time on this CPU scaled by capacity_curr.
5912 *
5913 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5914 * higher than capacity_orig because of unfortunate rounding in
5915 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5916 * the average stabilizes with the new running time. We need to check that the
5917 * utilization stays within the range of [0..capacity_orig] and cap it if
5918 * necessary. Without utilization capping, a group could be seen as overloaded
5919 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5920 * available capacity. We allow utilization to overshoot capacity_curr (but not
5921 * capacity_orig) as it useful for predicting the capacity required after task
5922 * migrations (scheduler-driven DVFS).
8bb5b00c 5923 */
9e91d61d 5924static int cpu_util(int cpu)
8bb5b00c 5925{
9e91d61d 5926 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5927 unsigned long capacity = capacity_orig_of(cpu);
5928
231678b7 5929 return (util >= capacity) ? capacity : util;
8bb5b00c 5930}
a50bde51 5931
3273163c
MR
5932static inline int task_util(struct task_struct *p)
5933{
5934 return p->se.avg.util_avg;
5935}
5936
104cb16d
MR
5937/*
5938 * cpu_util_wake: Compute cpu utilization with any contributions from
5939 * the waking task p removed.
5940 */
5941static int cpu_util_wake(int cpu, struct task_struct *p)
5942{
5943 unsigned long util, capacity;
5944
5945 /* Task has no contribution or is new */
5946 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5947 return cpu_util(cpu);
5948
5949 capacity = capacity_orig_of(cpu);
5950 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5951
5952 return (util >= capacity) ? capacity : util;
5953}
5954
3273163c
MR
5955/*
5956 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5957 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5958 *
5959 * In that case WAKE_AFFINE doesn't make sense and we'll let
5960 * BALANCE_WAKE sort things out.
5961 */
5962static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5963{
5964 long min_cap, max_cap;
5965
5966 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5967 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5968
5969 /* Minimum capacity is close to max, no need to abort wake_affine */
5970 if (max_cap - min_cap < max_cap >> 3)
5971 return 0;
5972
104cb16d
MR
5973 /* Bring task utilization in sync with prev_cpu */
5974 sync_entity_load_avg(&p->se);
5975
3273163c
MR
5976 return min_cap * 1024 < task_util(p) * capacity_margin;
5977}
5978
aaee1203 5979/*
de91b9cb
MR
5980 * select_task_rq_fair: Select target runqueue for the waking task in domains
5981 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5982 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5983 *
de91b9cb
MR
5984 * Balances load by selecting the idlest cpu in the idlest group, or under
5985 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5986 *
de91b9cb 5987 * Returns the target cpu number.
aaee1203
PZ
5988 *
5989 * preempt must be disabled.
5990 */
0017d735 5991static int
ac66f547 5992select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5993{
29cd8bae 5994 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5995 int cpu = smp_processor_id();
63b0e9ed 5996 int new_cpu = prev_cpu;
99bd5e2f 5997 int want_affine = 0;
5158f4e4 5998 int sync = wake_flags & WF_SYNC;
c88d5910 5999
c58d25f3
PZ
6000 if (sd_flag & SD_BALANCE_WAKE) {
6001 record_wakee(p);
3273163c 6002 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
0c98d344 6003 && cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6004 }
aaee1203 6005
dce840a0 6006 rcu_read_lock();
aaee1203 6007 for_each_domain(cpu, tmp) {
e4f42888 6008 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6009 break;
e4f42888 6010
fe3bcfe1 6011 /*
99bd5e2f
SS
6012 * If both cpu and prev_cpu are part of this domain,
6013 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6014 */
99bd5e2f
SS
6015 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6016 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6017 affine_sd = tmp;
29cd8bae 6018 break;
f03542a7 6019 }
29cd8bae 6020
f03542a7 6021 if (tmp->flags & sd_flag)
29cd8bae 6022 sd = tmp;
63b0e9ed
MG
6023 else if (!want_affine)
6024 break;
29cd8bae
PZ
6025 }
6026
63b0e9ed
MG
6027 if (affine_sd) {
6028 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 6029 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 6030 new_cpu = cpu;
8b911acd 6031 }
e7693a36 6032
63b0e9ed
MG
6033 if (!sd) {
6034 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 6035 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
6036
6037 } else while (sd) {
aaee1203 6038 struct sched_group *group;
c88d5910 6039 int weight;
098fb9db 6040
0763a660 6041 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
6042 sd = sd->child;
6043 continue;
6044 }
098fb9db 6045
c44f2a02 6046 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
6047 if (!group) {
6048 sd = sd->child;
6049 continue;
6050 }
4ae7d5ce 6051
d7c33c49 6052 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
6053 if (new_cpu == -1 || new_cpu == cpu) {
6054 /* Now try balancing at a lower domain level of cpu */
6055 sd = sd->child;
6056 continue;
e7693a36 6057 }
aaee1203
PZ
6058
6059 /* Now try balancing at a lower domain level of new_cpu */
6060 cpu = new_cpu;
669c55e9 6061 weight = sd->span_weight;
aaee1203
PZ
6062 sd = NULL;
6063 for_each_domain(cpu, tmp) {
669c55e9 6064 if (weight <= tmp->span_weight)
aaee1203 6065 break;
0763a660 6066 if (tmp->flags & sd_flag)
aaee1203
PZ
6067 sd = tmp;
6068 }
6069 /* while loop will break here if sd == NULL */
e7693a36 6070 }
dce840a0 6071 rcu_read_unlock();
e7693a36 6072
c88d5910 6073 return new_cpu;
e7693a36 6074}
0a74bef8
PT
6075
6076/*
6077 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6078 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 6079 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6080 */
5a4fd036 6081static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 6082{
59efa0ba
PZ
6083 /*
6084 * As blocked tasks retain absolute vruntime the migration needs to
6085 * deal with this by subtracting the old and adding the new
6086 * min_vruntime -- the latter is done by enqueue_entity() when placing
6087 * the task on the new runqueue.
6088 */
6089 if (p->state == TASK_WAKING) {
6090 struct sched_entity *se = &p->se;
6091 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6092 u64 min_vruntime;
6093
6094#ifndef CONFIG_64BIT
6095 u64 min_vruntime_copy;
6096
6097 do {
6098 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6099 smp_rmb();
6100 min_vruntime = cfs_rq->min_vruntime;
6101 } while (min_vruntime != min_vruntime_copy);
6102#else
6103 min_vruntime = cfs_rq->min_vruntime;
6104#endif
6105
6106 se->vruntime -= min_vruntime;
6107 }
6108
aff3e498 6109 /*
9d89c257
YD
6110 * We are supposed to update the task to "current" time, then its up to date
6111 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6112 * what current time is, so simply throw away the out-of-date time. This
6113 * will result in the wakee task is less decayed, but giving the wakee more
6114 * load sounds not bad.
aff3e498 6115 */
9d89c257
YD
6116 remove_entity_load_avg(&p->se);
6117
6118 /* Tell new CPU we are migrated */
6119 p->se.avg.last_update_time = 0;
3944a927
BS
6120
6121 /* We have migrated, no longer consider this task hot */
9d89c257 6122 p->se.exec_start = 0;
0a74bef8 6123}
12695578
YD
6124
6125static void task_dead_fair(struct task_struct *p)
6126{
6127 remove_entity_load_avg(&p->se);
6128}
e7693a36
GH
6129#endif /* CONFIG_SMP */
6130
e52fb7c0
PZ
6131static unsigned long
6132wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
6133{
6134 unsigned long gran = sysctl_sched_wakeup_granularity;
6135
6136 /*
e52fb7c0
PZ
6137 * Since its curr running now, convert the gran from real-time
6138 * to virtual-time in his units.
13814d42
MG
6139 *
6140 * By using 'se' instead of 'curr' we penalize light tasks, so
6141 * they get preempted easier. That is, if 'se' < 'curr' then
6142 * the resulting gran will be larger, therefore penalizing the
6143 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6144 * be smaller, again penalizing the lighter task.
6145 *
6146 * This is especially important for buddies when the leftmost
6147 * task is higher priority than the buddy.
0bbd3336 6148 */
f4ad9bd2 6149 return calc_delta_fair(gran, se);
0bbd3336
PZ
6150}
6151
464b7527
PZ
6152/*
6153 * Should 'se' preempt 'curr'.
6154 *
6155 * |s1
6156 * |s2
6157 * |s3
6158 * g
6159 * |<--->|c
6160 *
6161 * w(c, s1) = -1
6162 * w(c, s2) = 0
6163 * w(c, s3) = 1
6164 *
6165 */
6166static int
6167wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6168{
6169 s64 gran, vdiff = curr->vruntime - se->vruntime;
6170
6171 if (vdiff <= 0)
6172 return -1;
6173
e52fb7c0 6174 gran = wakeup_gran(curr, se);
464b7527
PZ
6175 if (vdiff > gran)
6176 return 1;
6177
6178 return 0;
6179}
6180
02479099
PZ
6181static void set_last_buddy(struct sched_entity *se)
6182{
69c80f3e
VP
6183 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6184 return;
6185
6186 for_each_sched_entity(se)
6187 cfs_rq_of(se)->last = se;
02479099
PZ
6188}
6189
6190static void set_next_buddy(struct sched_entity *se)
6191{
69c80f3e
VP
6192 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6193 return;
6194
6195 for_each_sched_entity(se)
6196 cfs_rq_of(se)->next = se;
02479099
PZ
6197}
6198
ac53db59
RR
6199static void set_skip_buddy(struct sched_entity *se)
6200{
69c80f3e
VP
6201 for_each_sched_entity(se)
6202 cfs_rq_of(se)->skip = se;
ac53db59
RR
6203}
6204
bf0f6f24
IM
6205/*
6206 * Preempt the current task with a newly woken task if needed:
6207 */
5a9b86f6 6208static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6209{
6210 struct task_struct *curr = rq->curr;
8651a86c 6211 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6212 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6213 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6214 int next_buddy_marked = 0;
bf0f6f24 6215
4ae7d5ce
IM
6216 if (unlikely(se == pse))
6217 return;
6218
5238cdd3 6219 /*
163122b7 6220 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6221 * unconditionally check_prempt_curr() after an enqueue (which may have
6222 * lead to a throttle). This both saves work and prevents false
6223 * next-buddy nomination below.
6224 */
6225 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6226 return;
6227
2f36825b 6228 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6229 set_next_buddy(pse);
2f36825b
VP
6230 next_buddy_marked = 1;
6231 }
57fdc26d 6232
aec0a514
BR
6233 /*
6234 * We can come here with TIF_NEED_RESCHED already set from new task
6235 * wake up path.
5238cdd3
PT
6236 *
6237 * Note: this also catches the edge-case of curr being in a throttled
6238 * group (e.g. via set_curr_task), since update_curr() (in the
6239 * enqueue of curr) will have resulted in resched being set. This
6240 * prevents us from potentially nominating it as a false LAST_BUDDY
6241 * below.
aec0a514
BR
6242 */
6243 if (test_tsk_need_resched(curr))
6244 return;
6245
a2f5c9ab
DH
6246 /* Idle tasks are by definition preempted by non-idle tasks. */
6247 if (unlikely(curr->policy == SCHED_IDLE) &&
6248 likely(p->policy != SCHED_IDLE))
6249 goto preempt;
6250
91c234b4 6251 /*
a2f5c9ab
DH
6252 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6253 * is driven by the tick):
91c234b4 6254 */
8ed92e51 6255 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6256 return;
bf0f6f24 6257
464b7527 6258 find_matching_se(&se, &pse);
9bbd7374 6259 update_curr(cfs_rq_of(se));
002f128b 6260 BUG_ON(!pse);
2f36825b
VP
6261 if (wakeup_preempt_entity(se, pse) == 1) {
6262 /*
6263 * Bias pick_next to pick the sched entity that is
6264 * triggering this preemption.
6265 */
6266 if (!next_buddy_marked)
6267 set_next_buddy(pse);
3a7e73a2 6268 goto preempt;
2f36825b 6269 }
464b7527 6270
3a7e73a2 6271 return;
a65ac745 6272
3a7e73a2 6273preempt:
8875125e 6274 resched_curr(rq);
3a7e73a2
PZ
6275 /*
6276 * Only set the backward buddy when the current task is still
6277 * on the rq. This can happen when a wakeup gets interleaved
6278 * with schedule on the ->pre_schedule() or idle_balance()
6279 * point, either of which can * drop the rq lock.
6280 *
6281 * Also, during early boot the idle thread is in the fair class,
6282 * for obvious reasons its a bad idea to schedule back to it.
6283 */
6284 if (unlikely(!se->on_rq || curr == rq->idle))
6285 return;
6286
6287 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6288 set_last_buddy(se);
bf0f6f24
IM
6289}
6290
606dba2e 6291static struct task_struct *
d8ac8971 6292pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6293{
6294 struct cfs_rq *cfs_rq = &rq->cfs;
6295 struct sched_entity *se;
678d5718 6296 struct task_struct *p;
37e117c0 6297 int new_tasks;
678d5718 6298
6e83125c 6299again:
678d5718
PZ
6300#ifdef CONFIG_FAIR_GROUP_SCHED
6301 if (!cfs_rq->nr_running)
38033c37 6302 goto idle;
678d5718 6303
3f1d2a31 6304 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6305 goto simple;
6306
6307 /*
6308 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6309 * likely that a next task is from the same cgroup as the current.
6310 *
6311 * Therefore attempt to avoid putting and setting the entire cgroup
6312 * hierarchy, only change the part that actually changes.
6313 */
6314
6315 do {
6316 struct sched_entity *curr = cfs_rq->curr;
6317
6318 /*
6319 * Since we got here without doing put_prev_entity() we also
6320 * have to consider cfs_rq->curr. If it is still a runnable
6321 * entity, update_curr() will update its vruntime, otherwise
6322 * forget we've ever seen it.
6323 */
54d27365
BS
6324 if (curr) {
6325 if (curr->on_rq)
6326 update_curr(cfs_rq);
6327 else
6328 curr = NULL;
678d5718 6329
54d27365
BS
6330 /*
6331 * This call to check_cfs_rq_runtime() will do the
6332 * throttle and dequeue its entity in the parent(s).
6333 * Therefore the 'simple' nr_running test will indeed
6334 * be correct.
6335 */
6336 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6337 goto simple;
6338 }
678d5718
PZ
6339
6340 se = pick_next_entity(cfs_rq, curr);
6341 cfs_rq = group_cfs_rq(se);
6342 } while (cfs_rq);
6343
6344 p = task_of(se);
6345
6346 /*
6347 * Since we haven't yet done put_prev_entity and if the selected task
6348 * is a different task than we started out with, try and touch the
6349 * least amount of cfs_rqs.
6350 */
6351 if (prev != p) {
6352 struct sched_entity *pse = &prev->se;
6353
6354 while (!(cfs_rq = is_same_group(se, pse))) {
6355 int se_depth = se->depth;
6356 int pse_depth = pse->depth;
6357
6358 if (se_depth <= pse_depth) {
6359 put_prev_entity(cfs_rq_of(pse), pse);
6360 pse = parent_entity(pse);
6361 }
6362 if (se_depth >= pse_depth) {
6363 set_next_entity(cfs_rq_of(se), se);
6364 se = parent_entity(se);
6365 }
6366 }
6367
6368 put_prev_entity(cfs_rq, pse);
6369 set_next_entity(cfs_rq, se);
6370 }
6371
6372 if (hrtick_enabled(rq))
6373 hrtick_start_fair(rq, p);
6374
6375 return p;
6376simple:
6377 cfs_rq = &rq->cfs;
6378#endif
bf0f6f24 6379
36ace27e 6380 if (!cfs_rq->nr_running)
38033c37 6381 goto idle;
bf0f6f24 6382
3f1d2a31 6383 put_prev_task(rq, prev);
606dba2e 6384
bf0f6f24 6385 do {
678d5718 6386 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6387 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6388 cfs_rq = group_cfs_rq(se);
6389 } while (cfs_rq);
6390
8f4d37ec 6391 p = task_of(se);
678d5718 6392
b39e66ea
MG
6393 if (hrtick_enabled(rq))
6394 hrtick_start_fair(rq, p);
8f4d37ec
PZ
6395
6396 return p;
38033c37
PZ
6397
6398idle:
46f69fa3
MF
6399 new_tasks = idle_balance(rq, rf);
6400
37e117c0
PZ
6401 /*
6402 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6403 * possible for any higher priority task to appear. In that case we
6404 * must re-start the pick_next_entity() loop.
6405 */
e4aa358b 6406 if (new_tasks < 0)
37e117c0
PZ
6407 return RETRY_TASK;
6408
e4aa358b 6409 if (new_tasks > 0)
38033c37 6410 goto again;
38033c37
PZ
6411
6412 return NULL;
bf0f6f24
IM
6413}
6414
6415/*
6416 * Account for a descheduled task:
6417 */
31ee529c 6418static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6419{
6420 struct sched_entity *se = &prev->se;
6421 struct cfs_rq *cfs_rq;
6422
6423 for_each_sched_entity(se) {
6424 cfs_rq = cfs_rq_of(se);
ab6cde26 6425 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6426 }
6427}
6428
ac53db59
RR
6429/*
6430 * sched_yield() is very simple
6431 *
6432 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6433 */
6434static void yield_task_fair(struct rq *rq)
6435{
6436 struct task_struct *curr = rq->curr;
6437 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6438 struct sched_entity *se = &curr->se;
6439
6440 /*
6441 * Are we the only task in the tree?
6442 */
6443 if (unlikely(rq->nr_running == 1))
6444 return;
6445
6446 clear_buddies(cfs_rq, se);
6447
6448 if (curr->policy != SCHED_BATCH) {
6449 update_rq_clock(rq);
6450 /*
6451 * Update run-time statistics of the 'current'.
6452 */
6453 update_curr(cfs_rq);
916671c0
MG
6454 /*
6455 * Tell update_rq_clock() that we've just updated,
6456 * so we don't do microscopic update in schedule()
6457 * and double the fastpath cost.
6458 */
9edfbfed 6459 rq_clock_skip_update(rq, true);
ac53db59
RR
6460 }
6461
6462 set_skip_buddy(se);
6463}
6464
d95f4122
MG
6465static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6466{
6467 struct sched_entity *se = &p->se;
6468
5238cdd3
PT
6469 /* throttled hierarchies are not runnable */
6470 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6471 return false;
6472
6473 /* Tell the scheduler that we'd really like pse to run next. */
6474 set_next_buddy(se);
6475
d95f4122
MG
6476 yield_task_fair(rq);
6477
6478 return true;
6479}
6480
681f3e68 6481#ifdef CONFIG_SMP
bf0f6f24 6482/**************************************************
e9c84cb8
PZ
6483 * Fair scheduling class load-balancing methods.
6484 *
6485 * BASICS
6486 *
6487 * The purpose of load-balancing is to achieve the same basic fairness the
6488 * per-cpu scheduler provides, namely provide a proportional amount of compute
6489 * time to each task. This is expressed in the following equation:
6490 *
6491 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6492 *
6493 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6494 * W_i,0 is defined as:
6495 *
6496 * W_i,0 = \Sum_j w_i,j (2)
6497 *
6498 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 6499 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
6500 *
6501 * The weight average is an exponential decay average of the instantaneous
6502 * weight:
6503 *
6504 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6505 *
ced549fa 6506 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
6507 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6508 * can also include other factors [XXX].
6509 *
6510 * To achieve this balance we define a measure of imbalance which follows
6511 * directly from (1):
6512 *
ced549fa 6513 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
6514 *
6515 * We them move tasks around to minimize the imbalance. In the continuous
6516 * function space it is obvious this converges, in the discrete case we get
6517 * a few fun cases generally called infeasible weight scenarios.
6518 *
6519 * [XXX expand on:
6520 * - infeasible weights;
6521 * - local vs global optima in the discrete case. ]
6522 *
6523 *
6524 * SCHED DOMAINS
6525 *
6526 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6527 * for all i,j solution, we create a tree of cpus that follows the hardware
6528 * topology where each level pairs two lower groups (or better). This results
6529 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6530 * tree to only the first of the previous level and we decrease the frequency
6531 * of load-balance at each level inv. proportional to the number of cpus in
6532 * the groups.
6533 *
6534 * This yields:
6535 *
6536 * log_2 n 1 n
6537 * \Sum { --- * --- * 2^i } = O(n) (5)
6538 * i = 0 2^i 2^i
6539 * `- size of each group
6540 * | | `- number of cpus doing load-balance
6541 * | `- freq
6542 * `- sum over all levels
6543 *
6544 * Coupled with a limit on how many tasks we can migrate every balance pass,
6545 * this makes (5) the runtime complexity of the balancer.
6546 *
6547 * An important property here is that each CPU is still (indirectly) connected
6548 * to every other cpu in at most O(log n) steps:
6549 *
6550 * The adjacency matrix of the resulting graph is given by:
6551 *
97a7142f 6552 * log_2 n
e9c84cb8
PZ
6553 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6554 * k = 0
6555 *
6556 * And you'll find that:
6557 *
6558 * A^(log_2 n)_i,j != 0 for all i,j (7)
6559 *
6560 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6561 * The task movement gives a factor of O(m), giving a convergence complexity
6562 * of:
6563 *
6564 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6565 *
6566 *
6567 * WORK CONSERVING
6568 *
6569 * In order to avoid CPUs going idle while there's still work to do, new idle
6570 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6571 * tree itself instead of relying on other CPUs to bring it work.
6572 *
6573 * This adds some complexity to both (5) and (8) but it reduces the total idle
6574 * time.
6575 *
6576 * [XXX more?]
6577 *
6578 *
6579 * CGROUPS
6580 *
6581 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6582 *
6583 * s_k,i
6584 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6585 * S_k
6586 *
6587 * Where
6588 *
6589 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6590 *
6591 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6592 *
6593 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6594 * property.
6595 *
6596 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6597 * rewrite all of this once again.]
97a7142f 6598 */
bf0f6f24 6599
ed387b78
HS
6600static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6601
0ec8aa00
PZ
6602enum fbq_type { regular, remote, all };
6603
ddcdf6e7 6604#define LBF_ALL_PINNED 0x01
367456c7 6605#define LBF_NEED_BREAK 0x02
6263322c
PZ
6606#define LBF_DST_PINNED 0x04
6607#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6608
6609struct lb_env {
6610 struct sched_domain *sd;
6611
ddcdf6e7 6612 struct rq *src_rq;
85c1e7da 6613 int src_cpu;
ddcdf6e7
PZ
6614
6615 int dst_cpu;
6616 struct rq *dst_rq;
6617
88b8dac0
SV
6618 struct cpumask *dst_grpmask;
6619 int new_dst_cpu;
ddcdf6e7 6620 enum cpu_idle_type idle;
bd939f45 6621 long imbalance;
b9403130
MW
6622 /* The set of CPUs under consideration for load-balancing */
6623 struct cpumask *cpus;
6624
ddcdf6e7 6625 unsigned int flags;
367456c7
PZ
6626
6627 unsigned int loop;
6628 unsigned int loop_break;
6629 unsigned int loop_max;
0ec8aa00
PZ
6630
6631 enum fbq_type fbq_type;
163122b7 6632 struct list_head tasks;
ddcdf6e7
PZ
6633};
6634
029632fb
PZ
6635/*
6636 * Is this task likely cache-hot:
6637 */
5d5e2b1b 6638static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6639{
6640 s64 delta;
6641
e5673f28
KT
6642 lockdep_assert_held(&env->src_rq->lock);
6643
029632fb
PZ
6644 if (p->sched_class != &fair_sched_class)
6645 return 0;
6646
6647 if (unlikely(p->policy == SCHED_IDLE))
6648 return 0;
6649
6650 /*
6651 * Buddy candidates are cache hot:
6652 */
5d5e2b1b 6653 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6654 (&p->se == cfs_rq_of(&p->se)->next ||
6655 &p->se == cfs_rq_of(&p->se)->last))
6656 return 1;
6657
6658 if (sysctl_sched_migration_cost == -1)
6659 return 1;
6660 if (sysctl_sched_migration_cost == 0)
6661 return 0;
6662
5d5e2b1b 6663 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6664
6665 return delta < (s64)sysctl_sched_migration_cost;
6666}
6667
3a7053b3 6668#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6669/*
2a1ed24c
SD
6670 * Returns 1, if task migration degrades locality
6671 * Returns 0, if task migration improves locality i.e migration preferred.
6672 * Returns -1, if task migration is not affected by locality.
c1ceac62 6673 */
2a1ed24c 6674static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6675{
b1ad065e 6676 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6677 unsigned long src_faults, dst_faults;
3a7053b3
MG
6678 int src_nid, dst_nid;
6679
2a595721 6680 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6681 return -1;
6682
c3b9bc5b 6683 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6684 return -1;
7a0f3083
MG
6685
6686 src_nid = cpu_to_node(env->src_cpu);
6687 dst_nid = cpu_to_node(env->dst_cpu);
6688
83e1d2cd 6689 if (src_nid == dst_nid)
2a1ed24c 6690 return -1;
7a0f3083 6691
2a1ed24c
SD
6692 /* Migrating away from the preferred node is always bad. */
6693 if (src_nid == p->numa_preferred_nid) {
6694 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6695 return 1;
6696 else
6697 return -1;
6698 }
b1ad065e 6699
c1ceac62
RR
6700 /* Encourage migration to the preferred node. */
6701 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6702 return 0;
b1ad065e 6703
c1ceac62
RR
6704 if (numa_group) {
6705 src_faults = group_faults(p, src_nid);
6706 dst_faults = group_faults(p, dst_nid);
6707 } else {
6708 src_faults = task_faults(p, src_nid);
6709 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6710 }
6711
c1ceac62 6712 return dst_faults < src_faults;
7a0f3083
MG
6713}
6714
3a7053b3 6715#else
2a1ed24c 6716static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6717 struct lb_env *env)
6718{
2a1ed24c 6719 return -1;
7a0f3083 6720}
3a7053b3
MG
6721#endif
6722
1e3c88bd
PZ
6723/*
6724 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6725 */
6726static
8e45cb54 6727int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6728{
2a1ed24c 6729 int tsk_cache_hot;
e5673f28
KT
6730
6731 lockdep_assert_held(&env->src_rq->lock);
6732
1e3c88bd
PZ
6733 /*
6734 * We do not migrate tasks that are:
d3198084 6735 * 1) throttled_lb_pair, or
1e3c88bd 6736 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6737 * 3) running (obviously), or
6738 * 4) are cache-hot on their current CPU.
1e3c88bd 6739 */
d3198084
JK
6740 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6741 return 0;
6742
0c98d344 6743 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 6744 int cpu;
88b8dac0 6745
ae92882e 6746 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6747
6263322c
PZ
6748 env->flags |= LBF_SOME_PINNED;
6749
88b8dac0
SV
6750 /*
6751 * Remember if this task can be migrated to any other cpu in
6752 * our sched_group. We may want to revisit it if we couldn't
6753 * meet load balance goals by pulling other tasks on src_cpu.
6754 *
6755 * Also avoid computing new_dst_cpu if we have already computed
6756 * one in current iteration.
6757 */
6263322c 6758 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6759 return 0;
6760
e02e60c1
JK
6761 /* Prevent to re-select dst_cpu via env's cpus */
6762 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 6763 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 6764 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6765 env->new_dst_cpu = cpu;
6766 break;
6767 }
88b8dac0 6768 }
e02e60c1 6769
1e3c88bd
PZ
6770 return 0;
6771 }
88b8dac0
SV
6772
6773 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6774 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6775
ddcdf6e7 6776 if (task_running(env->src_rq, p)) {
ae92882e 6777 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6778 return 0;
6779 }
6780
6781 /*
6782 * Aggressive migration if:
3a7053b3
MG
6783 * 1) destination numa is preferred
6784 * 2) task is cache cold, or
6785 * 3) too many balance attempts have failed.
1e3c88bd 6786 */
2a1ed24c
SD
6787 tsk_cache_hot = migrate_degrades_locality(p, env);
6788 if (tsk_cache_hot == -1)
6789 tsk_cache_hot = task_hot(p, env);
3a7053b3 6790
2a1ed24c 6791 if (tsk_cache_hot <= 0 ||
7a96c231 6792 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6793 if (tsk_cache_hot == 1) {
ae92882e
JP
6794 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6795 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6796 }
1e3c88bd
PZ
6797 return 1;
6798 }
6799
ae92882e 6800 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6801 return 0;
1e3c88bd
PZ
6802}
6803
897c395f 6804/*
163122b7
KT
6805 * detach_task() -- detach the task for the migration specified in env
6806 */
6807static void detach_task(struct task_struct *p, struct lb_env *env)
6808{
6809 lockdep_assert_held(&env->src_rq->lock);
6810
163122b7 6811 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 6812 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
6813 set_task_cpu(p, env->dst_cpu);
6814}
6815
897c395f 6816/*
e5673f28 6817 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6818 * part of active balancing operations within "domain".
897c395f 6819 *
e5673f28 6820 * Returns a task if successful and NULL otherwise.
897c395f 6821 */
e5673f28 6822static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6823{
6824 struct task_struct *p, *n;
897c395f 6825
e5673f28
KT
6826 lockdep_assert_held(&env->src_rq->lock);
6827
367456c7 6828 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6829 if (!can_migrate_task(p, env))
6830 continue;
897c395f 6831
163122b7 6832 detach_task(p, env);
e5673f28 6833
367456c7 6834 /*
e5673f28 6835 * Right now, this is only the second place where
163122b7 6836 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6837 * so we can safely collect stats here rather than
163122b7 6838 * inside detach_tasks().
367456c7 6839 */
ae92882e 6840 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6841 return p;
897c395f 6842 }
e5673f28 6843 return NULL;
897c395f
PZ
6844}
6845
eb95308e
PZ
6846static const unsigned int sched_nr_migrate_break = 32;
6847
5d6523eb 6848/*
163122b7
KT
6849 * detach_tasks() -- tries to detach up to imbalance weighted load from
6850 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6851 *
163122b7 6852 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6853 */
163122b7 6854static int detach_tasks(struct lb_env *env)
1e3c88bd 6855{
5d6523eb
PZ
6856 struct list_head *tasks = &env->src_rq->cfs_tasks;
6857 struct task_struct *p;
367456c7 6858 unsigned long load;
163122b7
KT
6859 int detached = 0;
6860
6861 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6862
bd939f45 6863 if (env->imbalance <= 0)
5d6523eb 6864 return 0;
1e3c88bd 6865
5d6523eb 6866 while (!list_empty(tasks)) {
985d3a4c
YD
6867 /*
6868 * We don't want to steal all, otherwise we may be treated likewise,
6869 * which could at worst lead to a livelock crash.
6870 */
6871 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6872 break;
6873
5d6523eb 6874 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6875
367456c7
PZ
6876 env->loop++;
6877 /* We've more or less seen every task there is, call it quits */
5d6523eb 6878 if (env->loop > env->loop_max)
367456c7 6879 break;
5d6523eb
PZ
6880
6881 /* take a breather every nr_migrate tasks */
367456c7 6882 if (env->loop > env->loop_break) {
eb95308e 6883 env->loop_break += sched_nr_migrate_break;
8e45cb54 6884 env->flags |= LBF_NEED_BREAK;
ee00e66f 6885 break;
a195f004 6886 }
1e3c88bd 6887
d3198084 6888 if (!can_migrate_task(p, env))
367456c7
PZ
6889 goto next;
6890
6891 load = task_h_load(p);
5d6523eb 6892
eb95308e 6893 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6894 goto next;
6895
bd939f45 6896 if ((load / 2) > env->imbalance)
367456c7 6897 goto next;
1e3c88bd 6898
163122b7
KT
6899 detach_task(p, env);
6900 list_add(&p->se.group_node, &env->tasks);
6901
6902 detached++;
bd939f45 6903 env->imbalance -= load;
1e3c88bd
PZ
6904
6905#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6906 /*
6907 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6908 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6909 * the critical section.
6910 */
5d6523eb 6911 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6912 break;
1e3c88bd
PZ
6913#endif
6914
ee00e66f
PZ
6915 /*
6916 * We only want to steal up to the prescribed amount of
6917 * weighted load.
6918 */
bd939f45 6919 if (env->imbalance <= 0)
ee00e66f 6920 break;
367456c7
PZ
6921
6922 continue;
6923next:
5d6523eb 6924 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6925 }
5d6523eb 6926
1e3c88bd 6927 /*
163122b7
KT
6928 * Right now, this is one of only two places we collect this stat
6929 * so we can safely collect detach_one_task() stats here rather
6930 * than inside detach_one_task().
1e3c88bd 6931 */
ae92882e 6932 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6933
163122b7
KT
6934 return detached;
6935}
6936
6937/*
6938 * attach_task() -- attach the task detached by detach_task() to its new rq.
6939 */
6940static void attach_task(struct rq *rq, struct task_struct *p)
6941{
6942 lockdep_assert_held(&rq->lock);
6943
6944 BUG_ON(task_rq(p) != rq);
5704ac0a 6945 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 6946 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6947 check_preempt_curr(rq, p, 0);
6948}
6949
6950/*
6951 * attach_one_task() -- attaches the task returned from detach_one_task() to
6952 * its new rq.
6953 */
6954static void attach_one_task(struct rq *rq, struct task_struct *p)
6955{
8a8c69c3
PZ
6956 struct rq_flags rf;
6957
6958 rq_lock(rq, &rf);
5704ac0a 6959 update_rq_clock(rq);
163122b7 6960 attach_task(rq, p);
8a8c69c3 6961 rq_unlock(rq, &rf);
163122b7
KT
6962}
6963
6964/*
6965 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6966 * new rq.
6967 */
6968static void attach_tasks(struct lb_env *env)
6969{
6970 struct list_head *tasks = &env->tasks;
6971 struct task_struct *p;
8a8c69c3 6972 struct rq_flags rf;
163122b7 6973
8a8c69c3 6974 rq_lock(env->dst_rq, &rf);
5704ac0a 6975 update_rq_clock(env->dst_rq);
163122b7
KT
6976
6977 while (!list_empty(tasks)) {
6978 p = list_first_entry(tasks, struct task_struct, se.group_node);
6979 list_del_init(&p->se.group_node);
1e3c88bd 6980
163122b7
KT
6981 attach_task(env->dst_rq, p);
6982 }
6983
8a8c69c3 6984 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
6985}
6986
230059de 6987#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6988static void update_blocked_averages(int cpu)
9e3081ca 6989{
9e3081ca 6990 struct rq *rq = cpu_rq(cpu);
48a16753 6991 struct cfs_rq *cfs_rq;
8a8c69c3 6992 struct rq_flags rf;
9e3081ca 6993
8a8c69c3 6994 rq_lock_irqsave(rq, &rf);
48a16753 6995 update_rq_clock(rq);
9d89c257 6996
9763b67f
PZ
6997 /*
6998 * Iterates the task_group tree in a bottom up fashion, see
6999 * list_add_leaf_cfs_rq() for details.
7000 */
64660c86 7001 for_each_leaf_cfs_rq(rq, cfs_rq) {
bc427898
VG
7002 struct sched_entity *se;
7003
9d89c257
YD
7004 /* throttled entities do not contribute to load */
7005 if (throttled_hierarchy(cfs_rq))
7006 continue;
48a16753 7007
a2c6c91f 7008 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257 7009 update_tg_load_avg(cfs_rq, 0);
4e516076 7010
bc427898
VG
7011 /* Propagate pending load changes to the parent, if any: */
7012 se = cfs_rq->tg->se[cpu];
7013 if (se && !skip_blocked_update(se))
7014 update_load_avg(se, 0);
9d89c257 7015 }
8a8c69c3 7016 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7017}
7018
9763b67f 7019/*
68520796 7020 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7021 * This needs to be done in a top-down fashion because the load of a child
7022 * group is a fraction of its parents load.
7023 */
68520796 7024static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7025{
68520796
VD
7026 struct rq *rq = rq_of(cfs_rq);
7027 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7028 unsigned long now = jiffies;
68520796 7029 unsigned long load;
a35b6466 7030
68520796 7031 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7032 return;
7033
68520796
VD
7034 cfs_rq->h_load_next = NULL;
7035 for_each_sched_entity(se) {
7036 cfs_rq = cfs_rq_of(se);
7037 cfs_rq->h_load_next = se;
7038 if (cfs_rq->last_h_load_update == now)
7039 break;
7040 }
a35b6466 7041
68520796 7042 if (!se) {
7ea241af 7043 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7044 cfs_rq->last_h_load_update = now;
7045 }
7046
7047 while ((se = cfs_rq->h_load_next) != NULL) {
7048 load = cfs_rq->h_load;
7ea241af
YD
7049 load = div64_ul(load * se->avg.load_avg,
7050 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7051 cfs_rq = group_cfs_rq(se);
7052 cfs_rq->h_load = load;
7053 cfs_rq->last_h_load_update = now;
7054 }
9763b67f
PZ
7055}
7056
367456c7 7057static unsigned long task_h_load(struct task_struct *p)
230059de 7058{
367456c7 7059 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7060
68520796 7061 update_cfs_rq_h_load(cfs_rq);
9d89c257 7062 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7063 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7064}
7065#else
48a16753 7066static inline void update_blocked_averages(int cpu)
9e3081ca 7067{
6c1d47c0
VG
7068 struct rq *rq = cpu_rq(cpu);
7069 struct cfs_rq *cfs_rq = &rq->cfs;
8a8c69c3 7070 struct rq_flags rf;
6c1d47c0 7071
8a8c69c3 7072 rq_lock_irqsave(rq, &rf);
6c1d47c0 7073 update_rq_clock(rq);
a2c6c91f 7074 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8a8c69c3 7075 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7076}
7077
367456c7 7078static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7079{
9d89c257 7080 return p->se.avg.load_avg;
1e3c88bd 7081}
230059de 7082#endif
1e3c88bd 7083
1e3c88bd 7084/********** Helpers for find_busiest_group ************************/
caeb178c
RR
7085
7086enum group_type {
7087 group_other = 0,
7088 group_imbalanced,
7089 group_overloaded,
7090};
7091
1e3c88bd
PZ
7092/*
7093 * sg_lb_stats - stats of a sched_group required for load_balancing
7094 */
7095struct sg_lb_stats {
7096 unsigned long avg_load; /*Avg load across the CPUs of the group */
7097 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7098 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7099 unsigned long load_per_task;
63b2ca30 7100 unsigned long group_capacity;
9e91d61d 7101 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7102 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7103 unsigned int idle_cpus;
7104 unsigned int group_weight;
caeb178c 7105 enum group_type group_type;
ea67821b 7106 int group_no_capacity;
0ec8aa00
PZ
7107#ifdef CONFIG_NUMA_BALANCING
7108 unsigned int nr_numa_running;
7109 unsigned int nr_preferred_running;
7110#endif
1e3c88bd
PZ
7111};
7112
56cf515b
JK
7113/*
7114 * sd_lb_stats - Structure to store the statistics of a sched_domain
7115 * during load balancing.
7116 */
7117struct sd_lb_stats {
7118 struct sched_group *busiest; /* Busiest group in this sd */
7119 struct sched_group *local; /* Local group in this sd */
7120 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7121 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7122 unsigned long avg_load; /* Average load across all groups in sd */
7123
56cf515b 7124 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7125 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7126};
7127
147c5fc2
PZ
7128static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7129{
7130 /*
7131 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7132 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7133 * We must however clear busiest_stat::avg_load because
7134 * update_sd_pick_busiest() reads this before assignment.
7135 */
7136 *sds = (struct sd_lb_stats){
7137 .busiest = NULL,
7138 .local = NULL,
7139 .total_load = 0UL,
63b2ca30 7140 .total_capacity = 0UL,
147c5fc2
PZ
7141 .busiest_stat = {
7142 .avg_load = 0UL,
caeb178c
RR
7143 .sum_nr_running = 0,
7144 .group_type = group_other,
147c5fc2
PZ
7145 },
7146 };
7147}
7148
1e3c88bd
PZ
7149/**
7150 * get_sd_load_idx - Obtain the load index for a given sched domain.
7151 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7152 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7153 *
7154 * Return: The load index.
1e3c88bd
PZ
7155 */
7156static inline int get_sd_load_idx(struct sched_domain *sd,
7157 enum cpu_idle_type idle)
7158{
7159 int load_idx;
7160
7161 switch (idle) {
7162 case CPU_NOT_IDLE:
7163 load_idx = sd->busy_idx;
7164 break;
7165
7166 case CPU_NEWLY_IDLE:
7167 load_idx = sd->newidle_idx;
7168 break;
7169 default:
7170 load_idx = sd->idle_idx;
7171 break;
7172 }
7173
7174 return load_idx;
7175}
7176
ced549fa 7177static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
7178{
7179 struct rq *rq = cpu_rq(cpu);
b5b4860d 7180 u64 total, used, age_stamp, avg;
cadefd3d 7181 s64 delta;
1e3c88bd 7182
b654f7de
PZ
7183 /*
7184 * Since we're reading these variables without serialization make sure
7185 * we read them once before doing sanity checks on them.
7186 */
316c1608
JL
7187 age_stamp = READ_ONCE(rq->age_stamp);
7188 avg = READ_ONCE(rq->rt_avg);
cebde6d6 7189 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 7190
cadefd3d
PZ
7191 if (unlikely(delta < 0))
7192 delta = 0;
7193
7194 total = sched_avg_period() + delta;
aa483808 7195
b5b4860d 7196 used = div_u64(avg, total);
1e3c88bd 7197
b5b4860d
VG
7198 if (likely(used < SCHED_CAPACITY_SCALE))
7199 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 7200
b5b4860d 7201 return 1;
1e3c88bd
PZ
7202}
7203
ced549fa 7204static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7205{
8cd5601c 7206 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7207 struct sched_group *sdg = sd->groups;
7208
ca6d75e6 7209 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 7210
ced549fa 7211 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 7212 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 7213
ced549fa
NP
7214 if (!capacity)
7215 capacity = 1;
1e3c88bd 7216
ced549fa
NP
7217 cpu_rq(cpu)->cpu_capacity = capacity;
7218 sdg->sgc->capacity = capacity;
bf475ce0 7219 sdg->sgc->min_capacity = capacity;
1e3c88bd
PZ
7220}
7221
63b2ca30 7222void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7223{
7224 struct sched_domain *child = sd->child;
7225 struct sched_group *group, *sdg = sd->groups;
bf475ce0 7226 unsigned long capacity, min_capacity;
4ec4412e
VG
7227 unsigned long interval;
7228
7229 interval = msecs_to_jiffies(sd->balance_interval);
7230 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7231 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7232
7233 if (!child) {
ced549fa 7234 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7235 return;
7236 }
7237
dc7ff76e 7238 capacity = 0;
bf475ce0 7239 min_capacity = ULONG_MAX;
1e3c88bd 7240
74a5ce20
PZ
7241 if (child->flags & SD_OVERLAP) {
7242 /*
7243 * SD_OVERLAP domains cannot assume that child groups
7244 * span the current group.
7245 */
7246
863bffc8 7247 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 7248 struct sched_group_capacity *sgc;
9abf24d4 7249 struct rq *rq = cpu_rq(cpu);
863bffc8 7250
9abf24d4 7251 /*
63b2ca30 7252 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7253 * gets here before we've attached the domains to the
7254 * runqueues.
7255 *
ced549fa
NP
7256 * Use capacity_of(), which is set irrespective of domains
7257 * in update_cpu_capacity().
9abf24d4 7258 *
dc7ff76e 7259 * This avoids capacity from being 0 and
9abf24d4 7260 * causing divide-by-zero issues on boot.
9abf24d4
SD
7261 */
7262 if (unlikely(!rq->sd)) {
ced549fa 7263 capacity += capacity_of(cpu);
bf475ce0
MR
7264 } else {
7265 sgc = rq->sd->groups->sgc;
7266 capacity += sgc->capacity;
9abf24d4 7267 }
863bffc8 7268
bf475ce0 7269 min_capacity = min(capacity, min_capacity);
863bffc8 7270 }
74a5ce20
PZ
7271 } else {
7272 /*
7273 * !SD_OVERLAP domains can assume that child groups
7274 * span the current group.
97a7142f 7275 */
74a5ce20
PZ
7276
7277 group = child->groups;
7278 do {
bf475ce0
MR
7279 struct sched_group_capacity *sgc = group->sgc;
7280
7281 capacity += sgc->capacity;
7282 min_capacity = min(sgc->min_capacity, min_capacity);
74a5ce20
PZ
7283 group = group->next;
7284 } while (group != child->groups);
7285 }
1e3c88bd 7286
63b2ca30 7287 sdg->sgc->capacity = capacity;
bf475ce0 7288 sdg->sgc->min_capacity = min_capacity;
1e3c88bd
PZ
7289}
7290
9d5efe05 7291/*
ea67821b
VG
7292 * Check whether the capacity of the rq has been noticeably reduced by side
7293 * activity. The imbalance_pct is used for the threshold.
7294 * Return true is the capacity is reduced
9d5efe05
SV
7295 */
7296static inline int
ea67821b 7297check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7298{
ea67821b
VG
7299 return ((rq->cpu_capacity * sd->imbalance_pct) <
7300 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7301}
7302
30ce5dab
PZ
7303/*
7304 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 7305 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab
PZ
7306 *
7307 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7308 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7309 * Something like:
7310 *
2b4d5b25
IM
7311 * { 0 1 2 3 } { 4 5 6 7 }
7312 * * * * *
30ce5dab
PZ
7313 *
7314 * If we were to balance group-wise we'd place two tasks in the first group and
7315 * two tasks in the second group. Clearly this is undesired as it will overload
7316 * cpu 3 and leave one of the cpus in the second group unused.
7317 *
7318 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7319 * by noticing the lower domain failed to reach balance and had difficulty
7320 * moving tasks due to affinity constraints.
30ce5dab
PZ
7321 *
7322 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7323 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7324 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7325 * to create an effective group imbalance.
7326 *
7327 * This is a somewhat tricky proposition since the next run might not find the
7328 * group imbalance and decide the groups need to be balanced again. A most
7329 * subtle and fragile situation.
7330 */
7331
6263322c 7332static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7333{
63b2ca30 7334 return group->sgc->imbalance;
30ce5dab
PZ
7335}
7336
b37d9316 7337/*
ea67821b
VG
7338 * group_has_capacity returns true if the group has spare capacity that could
7339 * be used by some tasks.
7340 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7341 * smaller than the number of CPUs or if the utilization is lower than the
7342 * available capacity for CFS tasks.
ea67821b
VG
7343 * For the latter, we use a threshold to stabilize the state, to take into
7344 * account the variance of the tasks' load and to return true if the available
7345 * capacity in meaningful for the load balancer.
7346 * As an example, an available capacity of 1% can appear but it doesn't make
7347 * any benefit for the load balance.
b37d9316 7348 */
ea67821b
VG
7349static inline bool
7350group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7351{
ea67821b
VG
7352 if (sgs->sum_nr_running < sgs->group_weight)
7353 return true;
c61037e9 7354
ea67821b 7355 if ((sgs->group_capacity * 100) >
9e91d61d 7356 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7357 return true;
b37d9316 7358
ea67821b
VG
7359 return false;
7360}
7361
7362/*
7363 * group_is_overloaded returns true if the group has more tasks than it can
7364 * handle.
7365 * group_is_overloaded is not equals to !group_has_capacity because a group
7366 * with the exact right number of tasks, has no more spare capacity but is not
7367 * overloaded so both group_has_capacity and group_is_overloaded return
7368 * false.
7369 */
7370static inline bool
7371group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7372{
7373 if (sgs->sum_nr_running <= sgs->group_weight)
7374 return false;
b37d9316 7375
ea67821b 7376 if ((sgs->group_capacity * 100) <
9e91d61d 7377 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7378 return true;
b37d9316 7379
ea67821b 7380 return false;
b37d9316
PZ
7381}
7382
9e0994c0
MR
7383/*
7384 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7385 * per-CPU capacity than sched_group ref.
7386 */
7387static inline bool
7388group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7389{
7390 return sg->sgc->min_capacity * capacity_margin <
7391 ref->sgc->min_capacity * 1024;
7392}
7393
79a89f92
LY
7394static inline enum
7395group_type group_classify(struct sched_group *group,
7396 struct sg_lb_stats *sgs)
caeb178c 7397{
ea67821b 7398 if (sgs->group_no_capacity)
caeb178c
RR
7399 return group_overloaded;
7400
7401 if (sg_imbalanced(group))
7402 return group_imbalanced;
7403
7404 return group_other;
7405}
7406
1e3c88bd
PZ
7407/**
7408 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 7409 * @env: The load balancing environment.
1e3c88bd 7410 * @group: sched_group whose statistics are to be updated.
1e3c88bd 7411 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 7412 * @local_group: Does group contain this_cpu.
1e3c88bd 7413 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 7414 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 7415 */
bd939f45
PZ
7416static inline void update_sg_lb_stats(struct lb_env *env,
7417 struct sched_group *group, int load_idx,
4486edd1
TC
7418 int local_group, struct sg_lb_stats *sgs,
7419 bool *overload)
1e3c88bd 7420{
30ce5dab 7421 unsigned long load;
a426f99c 7422 int i, nr_running;
1e3c88bd 7423
b72ff13c
PZ
7424 memset(sgs, 0, sizeof(*sgs));
7425
b9403130 7426 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
7427 struct rq *rq = cpu_rq(i);
7428
1e3c88bd 7429 /* Bias balancing toward cpus of our domain */
6263322c 7430 if (local_group)
04f733b4 7431 load = target_load(i, load_idx);
6263322c 7432 else
1e3c88bd 7433 load = source_load(i, load_idx);
1e3c88bd
PZ
7434
7435 sgs->group_load += load;
9e91d61d 7436 sgs->group_util += cpu_util(i);
65fdac08 7437 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 7438
a426f99c
WL
7439 nr_running = rq->nr_running;
7440 if (nr_running > 1)
4486edd1
TC
7441 *overload = true;
7442
0ec8aa00
PZ
7443#ifdef CONFIG_NUMA_BALANCING
7444 sgs->nr_numa_running += rq->nr_numa_running;
7445 sgs->nr_preferred_running += rq->nr_preferred_running;
7446#endif
1e3c88bd 7447 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
7448 /*
7449 * No need to call idle_cpu() if nr_running is not 0
7450 */
7451 if (!nr_running && idle_cpu(i))
aae6d3dd 7452 sgs->idle_cpus++;
1e3c88bd
PZ
7453 }
7454
63b2ca30
NP
7455 /* Adjust by relative CPU capacity of the group */
7456 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 7457 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 7458
dd5feea1 7459 if (sgs->sum_nr_running)
38d0f770 7460 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 7461
aae6d3dd 7462 sgs->group_weight = group->group_weight;
b37d9316 7463
ea67821b 7464 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 7465 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
7466}
7467
532cb4c4
MN
7468/**
7469 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 7470 * @env: The load balancing environment.
532cb4c4
MN
7471 * @sds: sched_domain statistics
7472 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 7473 * @sgs: sched_group statistics
532cb4c4
MN
7474 *
7475 * Determine if @sg is a busier group than the previously selected
7476 * busiest group.
e69f6186
YB
7477 *
7478 * Return: %true if @sg is a busier group than the previously selected
7479 * busiest group. %false otherwise.
532cb4c4 7480 */
bd939f45 7481static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
7482 struct sd_lb_stats *sds,
7483 struct sched_group *sg,
bd939f45 7484 struct sg_lb_stats *sgs)
532cb4c4 7485{
caeb178c 7486 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 7487
caeb178c 7488 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
7489 return true;
7490
caeb178c
RR
7491 if (sgs->group_type < busiest->group_type)
7492 return false;
7493
7494 if (sgs->avg_load <= busiest->avg_load)
7495 return false;
7496
9e0994c0
MR
7497 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7498 goto asym_packing;
7499
7500 /*
7501 * Candidate sg has no more than one task per CPU and
7502 * has higher per-CPU capacity. Migrating tasks to less
7503 * capable CPUs may harm throughput. Maximize throughput,
7504 * power/energy consequences are not considered.
7505 */
7506 if (sgs->sum_nr_running <= sgs->group_weight &&
7507 group_smaller_cpu_capacity(sds->local, sg))
7508 return false;
7509
7510asym_packing:
caeb178c
RR
7511 /* This is the busiest node in its class. */
7512 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7513 return true;
7514
1f621e02
SD
7515 /* No ASYM_PACKING if target cpu is already busy */
7516 if (env->idle == CPU_NOT_IDLE)
7517 return true;
532cb4c4 7518 /*
afe06efd
TC
7519 * ASYM_PACKING needs to move all the work to the highest
7520 * prority CPUs in the group, therefore mark all groups
7521 * of lower priority than ourself as busy.
532cb4c4 7522 */
afe06efd
TC
7523 if (sgs->sum_nr_running &&
7524 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
7525 if (!sds->busiest)
7526 return true;
7527
afe06efd
TC
7528 /* Prefer to move from lowest priority cpu's work */
7529 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7530 sg->asym_prefer_cpu))
532cb4c4
MN
7531 return true;
7532 }
7533
7534 return false;
7535}
7536
0ec8aa00
PZ
7537#ifdef CONFIG_NUMA_BALANCING
7538static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7539{
7540 if (sgs->sum_nr_running > sgs->nr_numa_running)
7541 return regular;
7542 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7543 return remote;
7544 return all;
7545}
7546
7547static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7548{
7549 if (rq->nr_running > rq->nr_numa_running)
7550 return regular;
7551 if (rq->nr_running > rq->nr_preferred_running)
7552 return remote;
7553 return all;
7554}
7555#else
7556static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7557{
7558 return all;
7559}
7560
7561static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7562{
7563 return regular;
7564}
7565#endif /* CONFIG_NUMA_BALANCING */
7566
1e3c88bd 7567/**
461819ac 7568 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 7569 * @env: The load balancing environment.
1e3c88bd
PZ
7570 * @sds: variable to hold the statistics for this sched_domain.
7571 */
0ec8aa00 7572static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7573{
bd939f45
PZ
7574 struct sched_domain *child = env->sd->child;
7575 struct sched_group *sg = env->sd->groups;
05b40e05 7576 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 7577 struct sg_lb_stats tmp_sgs;
1e3c88bd 7578 int load_idx, prefer_sibling = 0;
4486edd1 7579 bool overload = false;
1e3c88bd
PZ
7580
7581 if (child && child->flags & SD_PREFER_SIBLING)
7582 prefer_sibling = 1;
7583
bd939f45 7584 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
7585
7586 do {
56cf515b 7587 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
7588 int local_group;
7589
bd939f45 7590 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
7591 if (local_group) {
7592 sds->local = sg;
05b40e05 7593 sgs = local;
b72ff13c
PZ
7594
7595 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
7596 time_after_eq(jiffies, sg->sgc->next_update))
7597 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 7598 }
1e3c88bd 7599
4486edd1
TC
7600 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7601 &overload);
1e3c88bd 7602
b72ff13c
PZ
7603 if (local_group)
7604 goto next_group;
7605
1e3c88bd
PZ
7606 /*
7607 * In case the child domain prefers tasks go to siblings
ea67821b 7608 * first, lower the sg capacity so that we'll try
75dd321d
NR
7609 * and move all the excess tasks away. We lower the capacity
7610 * of a group only if the local group has the capacity to fit
ea67821b
VG
7611 * these excess tasks. The extra check prevents the case where
7612 * you always pull from the heaviest group when it is already
7613 * under-utilized (possible with a large weight task outweighs
7614 * the tasks on the system).
1e3c88bd 7615 */
b72ff13c 7616 if (prefer_sibling && sds->local &&
05b40e05
SD
7617 group_has_capacity(env, local) &&
7618 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 7619 sgs->group_no_capacity = 1;
79a89f92 7620 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 7621 }
1e3c88bd 7622
b72ff13c 7623 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7624 sds->busiest = sg;
56cf515b 7625 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7626 }
7627
b72ff13c
PZ
7628next_group:
7629 /* Now, start updating sd_lb_stats */
7630 sds->total_load += sgs->group_load;
63b2ca30 7631 sds->total_capacity += sgs->group_capacity;
b72ff13c 7632
532cb4c4 7633 sg = sg->next;
bd939f45 7634 } while (sg != env->sd->groups);
0ec8aa00
PZ
7635
7636 if (env->sd->flags & SD_NUMA)
7637 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7638
7639 if (!env->sd->parent) {
7640 /* update overload indicator if we are at root domain */
7641 if (env->dst_rq->rd->overload != overload)
7642 env->dst_rq->rd->overload = overload;
7643 }
7644
532cb4c4
MN
7645}
7646
532cb4c4
MN
7647/**
7648 * check_asym_packing - Check to see if the group is packed into the
7649 * sched doman.
7650 *
7651 * This is primarily intended to used at the sibling level. Some
7652 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7653 * case of POWER7, it can move to lower SMT modes only when higher
7654 * threads are idle. When in lower SMT modes, the threads will
7655 * perform better since they share less core resources. Hence when we
7656 * have idle threads, we want them to be the higher ones.
7657 *
7658 * This packing function is run on idle threads. It checks to see if
7659 * the busiest CPU in this domain (core in the P7 case) has a higher
7660 * CPU number than the packing function is being run on. Here we are
7661 * assuming lower CPU number will be equivalent to lower a SMT thread
7662 * number.
7663 *
e69f6186 7664 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7665 * this CPU. The amount of the imbalance is returned in *imbalance.
7666 *
cd96891d 7667 * @env: The load balancing environment.
532cb4c4 7668 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7669 */
bd939f45 7670static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7671{
7672 int busiest_cpu;
7673
bd939f45 7674 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7675 return 0;
7676
1f621e02
SD
7677 if (env->idle == CPU_NOT_IDLE)
7678 return 0;
7679
532cb4c4
MN
7680 if (!sds->busiest)
7681 return 0;
7682
afe06efd
TC
7683 busiest_cpu = sds->busiest->asym_prefer_cpu;
7684 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
7685 return 0;
7686
bd939f45 7687 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7688 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7689 SCHED_CAPACITY_SCALE);
bd939f45 7690
532cb4c4 7691 return 1;
1e3c88bd
PZ
7692}
7693
7694/**
7695 * fix_small_imbalance - Calculate the minor imbalance that exists
7696 * amongst the groups of a sched_domain, during
7697 * load balancing.
cd96891d 7698 * @env: The load balancing environment.
1e3c88bd 7699 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7700 */
bd939f45
PZ
7701static inline
7702void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7703{
63b2ca30 7704 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7705 unsigned int imbn = 2;
dd5feea1 7706 unsigned long scaled_busy_load_per_task;
56cf515b 7707 struct sg_lb_stats *local, *busiest;
1e3c88bd 7708
56cf515b
JK
7709 local = &sds->local_stat;
7710 busiest = &sds->busiest_stat;
1e3c88bd 7711
56cf515b
JK
7712 if (!local->sum_nr_running)
7713 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7714 else if (busiest->load_per_task > local->load_per_task)
7715 imbn = 1;
dd5feea1 7716
56cf515b 7717 scaled_busy_load_per_task =
ca8ce3d0 7718 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7719 busiest->group_capacity;
56cf515b 7720
3029ede3
VD
7721 if (busiest->avg_load + scaled_busy_load_per_task >=
7722 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7723 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7724 return;
7725 }
7726
7727 /*
7728 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7729 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7730 * moving them.
7731 */
7732
63b2ca30 7733 capa_now += busiest->group_capacity *
56cf515b 7734 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7735 capa_now += local->group_capacity *
56cf515b 7736 min(local->load_per_task, local->avg_load);
ca8ce3d0 7737 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7738
7739 /* Amount of load we'd subtract */
a2cd4260 7740 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7741 capa_move += busiest->group_capacity *
56cf515b 7742 min(busiest->load_per_task,
a2cd4260 7743 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7744 }
1e3c88bd
PZ
7745
7746 /* Amount of load we'd add */
63b2ca30 7747 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7748 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7749 tmp = (busiest->avg_load * busiest->group_capacity) /
7750 local->group_capacity;
56cf515b 7751 } else {
ca8ce3d0 7752 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7753 local->group_capacity;
56cf515b 7754 }
63b2ca30 7755 capa_move += local->group_capacity *
3ae11c90 7756 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7757 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7758
7759 /* Move if we gain throughput */
63b2ca30 7760 if (capa_move > capa_now)
56cf515b 7761 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7762}
7763
7764/**
7765 * calculate_imbalance - Calculate the amount of imbalance present within the
7766 * groups of a given sched_domain during load balance.
bd939f45 7767 * @env: load balance environment
1e3c88bd 7768 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7769 */
bd939f45 7770static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7771{
dd5feea1 7772 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7773 struct sg_lb_stats *local, *busiest;
7774
7775 local = &sds->local_stat;
56cf515b 7776 busiest = &sds->busiest_stat;
dd5feea1 7777
caeb178c 7778 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7779 /*
7780 * In the group_imb case we cannot rely on group-wide averages
7781 * to ensure cpu-load equilibrium, look at wider averages. XXX
7782 */
56cf515b
JK
7783 busiest->load_per_task =
7784 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7785 }
7786
1e3c88bd 7787 /*
885e542c
DE
7788 * Avg load of busiest sg can be less and avg load of local sg can
7789 * be greater than avg load across all sgs of sd because avg load
7790 * factors in sg capacity and sgs with smaller group_type are
7791 * skipped when updating the busiest sg:
1e3c88bd 7792 */
b1885550
VD
7793 if (busiest->avg_load <= sds->avg_load ||
7794 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7795 env->imbalance = 0;
7796 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7797 }
7798
9a5d9ba6
PZ
7799 /*
7800 * If there aren't any idle cpus, avoid creating some.
7801 */
7802 if (busiest->group_type == group_overloaded &&
7803 local->group_type == group_overloaded) {
1be0eb2a 7804 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7805 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7806 load_above_capacity -= busiest->group_capacity;
26656215 7807 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7808 load_above_capacity /= busiest->group_capacity;
7809 } else
ea67821b 7810 load_above_capacity = ~0UL;
dd5feea1
SS
7811 }
7812
7813 /*
7814 * We're trying to get all the cpus to the average_load, so we don't
7815 * want to push ourselves above the average load, nor do we wish to
7816 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7817 * we also don't want to reduce the group load below the group
7818 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7819 */
30ce5dab 7820 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7821
7822 /* How much load to actually move to equalise the imbalance */
56cf515b 7823 env->imbalance = min(
63b2ca30
NP
7824 max_pull * busiest->group_capacity,
7825 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7826 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7827
7828 /*
7829 * if *imbalance is less than the average load per runnable task
25985edc 7830 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7831 * a think about bumping its value to force at least one task to be
7832 * moved
7833 */
56cf515b 7834 if (env->imbalance < busiest->load_per_task)
bd939f45 7835 return fix_small_imbalance(env, sds);
1e3c88bd 7836}
fab47622 7837
1e3c88bd
PZ
7838/******* find_busiest_group() helpers end here *********************/
7839
7840/**
7841 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7842 * if there is an imbalance.
1e3c88bd
PZ
7843 *
7844 * Also calculates the amount of weighted load which should be moved
7845 * to restore balance.
7846 *
cd96891d 7847 * @env: The load balancing environment.
1e3c88bd 7848 *
e69f6186 7849 * Return: - The busiest group if imbalance exists.
1e3c88bd 7850 */
56cf515b 7851static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7852{
56cf515b 7853 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7854 struct sd_lb_stats sds;
7855
147c5fc2 7856 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7857
7858 /*
7859 * Compute the various statistics relavent for load balancing at
7860 * this level.
7861 */
23f0d209 7862 update_sd_lb_stats(env, &sds);
56cf515b
JK
7863 local = &sds.local_stat;
7864 busiest = &sds.busiest_stat;
1e3c88bd 7865
ea67821b 7866 /* ASYM feature bypasses nice load balance check */
1f621e02 7867 if (check_asym_packing(env, &sds))
532cb4c4
MN
7868 return sds.busiest;
7869
cc57aa8f 7870 /* There is no busy sibling group to pull tasks from */
56cf515b 7871 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7872 goto out_balanced;
7873
ca8ce3d0
NP
7874 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7875 / sds.total_capacity;
b0432d8f 7876
866ab43e
PZ
7877 /*
7878 * If the busiest group is imbalanced the below checks don't
30ce5dab 7879 * work because they assume all things are equal, which typically
866ab43e
PZ
7880 * isn't true due to cpus_allowed constraints and the like.
7881 */
caeb178c 7882 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7883 goto force_balance;
7884
cc57aa8f 7885 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7886 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7887 busiest->group_no_capacity)
fab47622
NR
7888 goto force_balance;
7889
cc57aa8f 7890 /*
9c58c79a 7891 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7892 * don't try and pull any tasks.
7893 */
56cf515b 7894 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7895 goto out_balanced;
7896
cc57aa8f
PZ
7897 /*
7898 * Don't pull any tasks if this group is already above the domain
7899 * average load.
7900 */
56cf515b 7901 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7902 goto out_balanced;
7903
bd939f45 7904 if (env->idle == CPU_IDLE) {
aae6d3dd 7905 /*
43f4d666
VG
7906 * This cpu is idle. If the busiest group is not overloaded
7907 * and there is no imbalance between this and busiest group
7908 * wrt idle cpus, it is balanced. The imbalance becomes
7909 * significant if the diff is greater than 1 otherwise we
7910 * might end up to just move the imbalance on another group
aae6d3dd 7911 */
43f4d666
VG
7912 if ((busiest->group_type != group_overloaded) &&
7913 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7914 goto out_balanced;
c186fafe
PZ
7915 } else {
7916 /*
7917 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7918 * imbalance_pct to be conservative.
7919 */
56cf515b
JK
7920 if (100 * busiest->avg_load <=
7921 env->sd->imbalance_pct * local->avg_load)
c186fafe 7922 goto out_balanced;
aae6d3dd 7923 }
1e3c88bd 7924
fab47622 7925force_balance:
1e3c88bd 7926 /* Looks like there is an imbalance. Compute it */
bd939f45 7927 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7928 return sds.busiest;
7929
7930out_balanced:
bd939f45 7931 env->imbalance = 0;
1e3c88bd
PZ
7932 return NULL;
7933}
7934
7935/*
7936 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7937 */
bd939f45 7938static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7939 struct sched_group *group)
1e3c88bd
PZ
7940{
7941 struct rq *busiest = NULL, *rq;
ced549fa 7942 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7943 int i;
7944
6906a408 7945 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7946 unsigned long capacity, wl;
0ec8aa00
PZ
7947 enum fbq_type rt;
7948
7949 rq = cpu_rq(i);
7950 rt = fbq_classify_rq(rq);
1e3c88bd 7951
0ec8aa00
PZ
7952 /*
7953 * We classify groups/runqueues into three groups:
7954 * - regular: there are !numa tasks
7955 * - remote: there are numa tasks that run on the 'wrong' node
7956 * - all: there is no distinction
7957 *
7958 * In order to avoid migrating ideally placed numa tasks,
7959 * ignore those when there's better options.
7960 *
7961 * If we ignore the actual busiest queue to migrate another
7962 * task, the next balance pass can still reduce the busiest
7963 * queue by moving tasks around inside the node.
7964 *
7965 * If we cannot move enough load due to this classification
7966 * the next pass will adjust the group classification and
7967 * allow migration of more tasks.
7968 *
7969 * Both cases only affect the total convergence complexity.
7970 */
7971 if (rt > env->fbq_type)
7972 continue;
7973
ced549fa 7974 capacity = capacity_of(i);
9d5efe05 7975
6e40f5bb 7976 wl = weighted_cpuload(i);
1e3c88bd 7977
6e40f5bb
TG
7978 /*
7979 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7980 * which is not scaled with the cpu capacity.
6e40f5bb 7981 */
ea67821b
VG
7982
7983 if (rq->nr_running == 1 && wl > env->imbalance &&
7984 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7985 continue;
7986
6e40f5bb
TG
7987 /*
7988 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7989 * the weighted_cpuload() scaled with the cpu capacity, so
7990 * that the load can be moved away from the cpu that is
7991 * potentially running at a lower capacity.
95a79b80 7992 *
ced549fa 7993 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7994 * multiplication to rid ourselves of the division works out
ced549fa
NP
7995 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7996 * our previous maximum.
6e40f5bb 7997 */
ced549fa 7998 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7999 busiest_load = wl;
ced549fa 8000 busiest_capacity = capacity;
1e3c88bd
PZ
8001 busiest = rq;
8002 }
8003 }
8004
8005 return busiest;
8006}
8007
8008/*
8009 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8010 * so long as it is large enough.
8011 */
8012#define MAX_PINNED_INTERVAL 512
8013
bd939f45 8014static int need_active_balance(struct lb_env *env)
1af3ed3d 8015{
bd939f45
PZ
8016 struct sched_domain *sd = env->sd;
8017
8018 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
8019
8020 /*
8021 * ASYM_PACKING needs to force migrate tasks from busy but
afe06efd
TC
8022 * lower priority CPUs in order to pack all tasks in the
8023 * highest priority CPUs.
532cb4c4 8024 */
afe06efd
TC
8025 if ((sd->flags & SD_ASYM_PACKING) &&
8026 sched_asym_prefer(env->dst_cpu, env->src_cpu))
532cb4c4 8027 return 1;
1af3ed3d
PZ
8028 }
8029
1aaf90a4
VG
8030 /*
8031 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8032 * It's worth migrating the task if the src_cpu's capacity is reduced
8033 * because of other sched_class or IRQs if more capacity stays
8034 * available on dst_cpu.
8035 */
8036 if ((env->idle != CPU_NOT_IDLE) &&
8037 (env->src_rq->cfs.h_nr_running == 1)) {
8038 if ((check_cpu_capacity(env->src_rq, sd)) &&
8039 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8040 return 1;
8041 }
8042
1af3ed3d
PZ
8043 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8044}
8045
969c7921
TH
8046static int active_load_balance_cpu_stop(void *data);
8047
23f0d209
JK
8048static int should_we_balance(struct lb_env *env)
8049{
8050 struct sched_group *sg = env->sd->groups;
8051 struct cpumask *sg_cpus, *sg_mask;
8052 int cpu, balance_cpu = -1;
8053
8054 /*
8055 * In the newly idle case, we will allow all the cpu's
8056 * to do the newly idle load balance.
8057 */
8058 if (env->idle == CPU_NEWLY_IDLE)
8059 return 1;
8060
8061 sg_cpus = sched_group_cpus(sg);
8062 sg_mask = sched_group_mask(sg);
8063 /* Try to find first idle cpu */
8064 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8065 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8066 continue;
8067
8068 balance_cpu = cpu;
8069 break;
8070 }
8071
8072 if (balance_cpu == -1)
8073 balance_cpu = group_balance_cpu(sg);
8074
8075 /*
8076 * First idle cpu or the first cpu(busiest) in this sched group
8077 * is eligible for doing load balancing at this and above domains.
8078 */
b0cff9d8 8079 return balance_cpu == env->dst_cpu;
23f0d209
JK
8080}
8081
1e3c88bd
PZ
8082/*
8083 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8084 * tasks if there is an imbalance.
8085 */
8086static int load_balance(int this_cpu, struct rq *this_rq,
8087 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8088 int *continue_balancing)
1e3c88bd 8089{
88b8dac0 8090 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8091 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8092 struct sched_group *group;
1e3c88bd 8093 struct rq *busiest;
8a8c69c3 8094 struct rq_flags rf;
4ba29684 8095 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8096
8e45cb54
PZ
8097 struct lb_env env = {
8098 .sd = sd,
ddcdf6e7
PZ
8099 .dst_cpu = this_cpu,
8100 .dst_rq = this_rq,
88b8dac0 8101 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 8102 .idle = idle,
eb95308e 8103 .loop_break = sched_nr_migrate_break,
b9403130 8104 .cpus = cpus,
0ec8aa00 8105 .fbq_type = all,
163122b7 8106 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8107 };
8108
cfc03118
JK
8109 /*
8110 * For NEWLY_IDLE load_balancing, we don't need to consider
8111 * other cpus in our group
8112 */
e02e60c1 8113 if (idle == CPU_NEWLY_IDLE)
cfc03118 8114 env.dst_grpmask = NULL;
cfc03118 8115
1e3c88bd
PZ
8116 cpumask_copy(cpus, cpu_active_mask);
8117
ae92882e 8118 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8119
8120redo:
23f0d209
JK
8121 if (!should_we_balance(&env)) {
8122 *continue_balancing = 0;
1e3c88bd 8123 goto out_balanced;
23f0d209 8124 }
1e3c88bd 8125
23f0d209 8126 group = find_busiest_group(&env);
1e3c88bd 8127 if (!group) {
ae92882e 8128 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8129 goto out_balanced;
8130 }
8131
b9403130 8132 busiest = find_busiest_queue(&env, group);
1e3c88bd 8133 if (!busiest) {
ae92882e 8134 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8135 goto out_balanced;
8136 }
8137
78feefc5 8138 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8139
ae92882e 8140 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8141
1aaf90a4
VG
8142 env.src_cpu = busiest->cpu;
8143 env.src_rq = busiest;
8144
1e3c88bd
PZ
8145 ld_moved = 0;
8146 if (busiest->nr_running > 1) {
8147 /*
8148 * Attempt to move tasks. If find_busiest_group has found
8149 * an imbalance but busiest->nr_running <= 1, the group is
8150 * still unbalanced. ld_moved simply stays zero, so it is
8151 * correctly treated as an imbalance.
8152 */
8e45cb54 8153 env.flags |= LBF_ALL_PINNED;
c82513e5 8154 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8155
5d6523eb 8156more_balance:
8a8c69c3 8157 rq_lock_irqsave(busiest, &rf);
3bed5e21 8158 update_rq_clock(busiest);
88b8dac0
SV
8159
8160 /*
8161 * cur_ld_moved - load moved in current iteration
8162 * ld_moved - cumulative load moved across iterations
8163 */
163122b7 8164 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8165
8166 /*
163122b7
KT
8167 * We've detached some tasks from busiest_rq. Every
8168 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8169 * unlock busiest->lock, and we are able to be sure
8170 * that nobody can manipulate the tasks in parallel.
8171 * See task_rq_lock() family for the details.
1e3c88bd 8172 */
163122b7 8173
8a8c69c3 8174 rq_unlock(busiest, &rf);
163122b7
KT
8175
8176 if (cur_ld_moved) {
8177 attach_tasks(&env);
8178 ld_moved += cur_ld_moved;
8179 }
8180
8a8c69c3 8181 local_irq_restore(rf.flags);
88b8dac0 8182
f1cd0858
JK
8183 if (env.flags & LBF_NEED_BREAK) {
8184 env.flags &= ~LBF_NEED_BREAK;
8185 goto more_balance;
8186 }
8187
88b8dac0
SV
8188 /*
8189 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8190 * us and move them to an alternate dst_cpu in our sched_group
8191 * where they can run. The upper limit on how many times we
8192 * iterate on same src_cpu is dependent on number of cpus in our
8193 * sched_group.
8194 *
8195 * This changes load balance semantics a bit on who can move
8196 * load to a given_cpu. In addition to the given_cpu itself
8197 * (or a ilb_cpu acting on its behalf where given_cpu is
8198 * nohz-idle), we now have balance_cpu in a position to move
8199 * load to given_cpu. In rare situations, this may cause
8200 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8201 * _independently_ and at _same_ time to move some load to
8202 * given_cpu) causing exceess load to be moved to given_cpu.
8203 * This however should not happen so much in practice and
8204 * moreover subsequent load balance cycles should correct the
8205 * excess load moved.
8206 */
6263322c 8207 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8208
7aff2e3a
VD
8209 /* Prevent to re-select dst_cpu via env's cpus */
8210 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8211
78feefc5 8212 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8213 env.dst_cpu = env.new_dst_cpu;
6263322c 8214 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8215 env.loop = 0;
8216 env.loop_break = sched_nr_migrate_break;
e02e60c1 8217
88b8dac0
SV
8218 /*
8219 * Go back to "more_balance" rather than "redo" since we
8220 * need to continue with same src_cpu.
8221 */
8222 goto more_balance;
8223 }
1e3c88bd 8224
6263322c
PZ
8225 /*
8226 * We failed to reach balance because of affinity.
8227 */
8228 if (sd_parent) {
63b2ca30 8229 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8230
afdeee05 8231 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8232 *group_imbalance = 1;
6263322c
PZ
8233 }
8234
1e3c88bd 8235 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8236 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 8237 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
8238 if (!cpumask_empty(cpus)) {
8239 env.loop = 0;
8240 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8241 goto redo;
bbf18b19 8242 }
afdeee05 8243 goto out_all_pinned;
1e3c88bd
PZ
8244 }
8245 }
8246
8247 if (!ld_moved) {
ae92882e 8248 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8249 /*
8250 * Increment the failure counter only on periodic balance.
8251 * We do not want newidle balance, which can be very
8252 * frequent, pollute the failure counter causing
8253 * excessive cache_hot migrations and active balances.
8254 */
8255 if (idle != CPU_NEWLY_IDLE)
8256 sd->nr_balance_failed++;
1e3c88bd 8257
bd939f45 8258 if (need_active_balance(&env)) {
8a8c69c3
PZ
8259 unsigned long flags;
8260
1e3c88bd
PZ
8261 raw_spin_lock_irqsave(&busiest->lock, flags);
8262
969c7921
TH
8263 /* don't kick the active_load_balance_cpu_stop,
8264 * if the curr task on busiest cpu can't be
8265 * moved to this_cpu
1e3c88bd 8266 */
0c98d344 8267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
8268 raw_spin_unlock_irqrestore(&busiest->lock,
8269 flags);
8e45cb54 8270 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
8271 goto out_one_pinned;
8272 }
8273
969c7921
TH
8274 /*
8275 * ->active_balance synchronizes accesses to
8276 * ->active_balance_work. Once set, it's cleared
8277 * only after active load balance is finished.
8278 */
1e3c88bd
PZ
8279 if (!busiest->active_balance) {
8280 busiest->active_balance = 1;
8281 busiest->push_cpu = this_cpu;
8282 active_balance = 1;
8283 }
8284 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 8285
bd939f45 8286 if (active_balance) {
969c7921
TH
8287 stop_one_cpu_nowait(cpu_of(busiest),
8288 active_load_balance_cpu_stop, busiest,
8289 &busiest->active_balance_work);
bd939f45 8290 }
1e3c88bd 8291
d02c0711 8292 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
8293 sd->nr_balance_failed = sd->cache_nice_tries+1;
8294 }
8295 } else
8296 sd->nr_balance_failed = 0;
8297
8298 if (likely(!active_balance)) {
8299 /* We were unbalanced, so reset the balancing interval */
8300 sd->balance_interval = sd->min_interval;
8301 } else {
8302 /*
8303 * If we've begun active balancing, start to back off. This
8304 * case may not be covered by the all_pinned logic if there
8305 * is only 1 task on the busy runqueue (because we don't call
163122b7 8306 * detach_tasks).
1e3c88bd
PZ
8307 */
8308 if (sd->balance_interval < sd->max_interval)
8309 sd->balance_interval *= 2;
8310 }
8311
1e3c88bd
PZ
8312 goto out;
8313
8314out_balanced:
afdeee05
VG
8315 /*
8316 * We reach balance although we may have faced some affinity
8317 * constraints. Clear the imbalance flag if it was set.
8318 */
8319 if (sd_parent) {
8320 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8321
8322 if (*group_imbalance)
8323 *group_imbalance = 0;
8324 }
8325
8326out_all_pinned:
8327 /*
8328 * We reach balance because all tasks are pinned at this level so
8329 * we can't migrate them. Let the imbalance flag set so parent level
8330 * can try to migrate them.
8331 */
ae92882e 8332 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
8333
8334 sd->nr_balance_failed = 0;
8335
8336out_one_pinned:
8337 /* tune up the balancing interval */
8e45cb54 8338 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 8339 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
8340 (sd->balance_interval < sd->max_interval))
8341 sd->balance_interval *= 2;
8342
46e49b38 8343 ld_moved = 0;
1e3c88bd 8344out:
1e3c88bd
PZ
8345 return ld_moved;
8346}
8347
52a08ef1
JL
8348static inline unsigned long
8349get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8350{
8351 unsigned long interval = sd->balance_interval;
8352
8353 if (cpu_busy)
8354 interval *= sd->busy_factor;
8355
8356 /* scale ms to jiffies */
8357 interval = msecs_to_jiffies(interval);
8358 interval = clamp(interval, 1UL, max_load_balance_interval);
8359
8360 return interval;
8361}
8362
8363static inline void
31851a98 8364update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
8365{
8366 unsigned long interval, next;
8367
31851a98
LY
8368 /* used by idle balance, so cpu_busy = 0 */
8369 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
8370 next = sd->last_balance + interval;
8371
8372 if (time_after(*next_balance, next))
8373 *next_balance = next;
8374}
8375
1e3c88bd
PZ
8376/*
8377 * idle_balance is called by schedule() if this_cpu is about to become
8378 * idle. Attempts to pull tasks from other CPUs.
8379 */
46f69fa3 8380static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
1e3c88bd 8381{
52a08ef1
JL
8382 unsigned long next_balance = jiffies + HZ;
8383 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
8384 struct sched_domain *sd;
8385 int pulled_task = 0;
9bd721c5 8386 u64 curr_cost = 0;
1e3c88bd 8387
6e83125c
PZ
8388 /*
8389 * We must set idle_stamp _before_ calling idle_balance(), such that we
8390 * measure the duration of idle_balance() as idle time.
8391 */
8392 this_rq->idle_stamp = rq_clock(this_rq);
8393
46f69fa3
MF
8394 /*
8395 * This is OK, because current is on_cpu, which avoids it being picked
8396 * for load-balance and preemption/IRQs are still disabled avoiding
8397 * further scheduler activity on it and we're being very careful to
8398 * re-start the picking loop.
8399 */
8400 rq_unpin_lock(this_rq, rf);
8401
4486edd1
TC
8402 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8403 !this_rq->rd->overload) {
52a08ef1
JL
8404 rcu_read_lock();
8405 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8406 if (sd)
31851a98 8407 update_next_balance(sd, &next_balance);
52a08ef1
JL
8408 rcu_read_unlock();
8409
6e83125c 8410 goto out;
52a08ef1 8411 }
1e3c88bd 8412
f492e12e
PZ
8413 raw_spin_unlock(&this_rq->lock);
8414
48a16753 8415 update_blocked_averages(this_cpu);
dce840a0 8416 rcu_read_lock();
1e3c88bd 8417 for_each_domain(this_cpu, sd) {
23f0d209 8418 int continue_balancing = 1;
9bd721c5 8419 u64 t0, domain_cost;
1e3c88bd
PZ
8420
8421 if (!(sd->flags & SD_LOAD_BALANCE))
8422 continue;
8423
52a08ef1 8424 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 8425 update_next_balance(sd, &next_balance);
9bd721c5 8426 break;
52a08ef1 8427 }
9bd721c5 8428
f492e12e 8429 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
8430 t0 = sched_clock_cpu(this_cpu);
8431
f492e12e 8432 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
8433 sd, CPU_NEWLY_IDLE,
8434 &continue_balancing);
9bd721c5
JL
8435
8436 domain_cost = sched_clock_cpu(this_cpu) - t0;
8437 if (domain_cost > sd->max_newidle_lb_cost)
8438 sd->max_newidle_lb_cost = domain_cost;
8439
8440 curr_cost += domain_cost;
f492e12e 8441 }
1e3c88bd 8442
31851a98 8443 update_next_balance(sd, &next_balance);
39a4d9ca
JL
8444
8445 /*
8446 * Stop searching for tasks to pull if there are
8447 * now runnable tasks on this rq.
8448 */
8449 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 8450 break;
1e3c88bd 8451 }
dce840a0 8452 rcu_read_unlock();
f492e12e
PZ
8453
8454 raw_spin_lock(&this_rq->lock);
8455
0e5b5337
JL
8456 if (curr_cost > this_rq->max_idle_balance_cost)
8457 this_rq->max_idle_balance_cost = curr_cost;
8458
e5fc6611 8459 /*
0e5b5337
JL
8460 * While browsing the domains, we released the rq lock, a task could
8461 * have been enqueued in the meantime. Since we're not going idle,
8462 * pretend we pulled a task.
e5fc6611 8463 */
0e5b5337 8464 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 8465 pulled_task = 1;
e5fc6611 8466
52a08ef1
JL
8467out:
8468 /* Move the next balance forward */
8469 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 8470 this_rq->next_balance = next_balance;
9bd721c5 8471
e4aa358b 8472 /* Is there a task of a high priority class? */
46383648 8473 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
8474 pulled_task = -1;
8475
38c6ade2 8476 if (pulled_task)
6e83125c
PZ
8477 this_rq->idle_stamp = 0;
8478
46f69fa3
MF
8479 rq_repin_lock(this_rq, rf);
8480
3c4017c1 8481 return pulled_task;
1e3c88bd
PZ
8482}
8483
8484/*
969c7921
TH
8485 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8486 * running tasks off the busiest CPU onto idle CPUs. It requires at
8487 * least 1 task to be running on each physical CPU where possible, and
8488 * avoids physical / logical imbalances.
1e3c88bd 8489 */
969c7921 8490static int active_load_balance_cpu_stop(void *data)
1e3c88bd 8491{
969c7921
TH
8492 struct rq *busiest_rq = data;
8493 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 8494 int target_cpu = busiest_rq->push_cpu;
969c7921 8495 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 8496 struct sched_domain *sd;
e5673f28 8497 struct task_struct *p = NULL;
8a8c69c3 8498 struct rq_flags rf;
969c7921 8499
8a8c69c3 8500 rq_lock_irq(busiest_rq, &rf);
969c7921
TH
8501
8502 /* make sure the requested cpu hasn't gone down in the meantime */
8503 if (unlikely(busiest_cpu != smp_processor_id() ||
8504 !busiest_rq->active_balance))
8505 goto out_unlock;
1e3c88bd
PZ
8506
8507 /* Is there any task to move? */
8508 if (busiest_rq->nr_running <= 1)
969c7921 8509 goto out_unlock;
1e3c88bd
PZ
8510
8511 /*
8512 * This condition is "impossible", if it occurs
8513 * we need to fix it. Originally reported by
8514 * Bjorn Helgaas on a 128-cpu setup.
8515 */
8516 BUG_ON(busiest_rq == target_rq);
8517
1e3c88bd 8518 /* Search for an sd spanning us and the target CPU. */
dce840a0 8519 rcu_read_lock();
1e3c88bd
PZ
8520 for_each_domain(target_cpu, sd) {
8521 if ((sd->flags & SD_LOAD_BALANCE) &&
8522 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8523 break;
8524 }
8525
8526 if (likely(sd)) {
8e45cb54
PZ
8527 struct lb_env env = {
8528 .sd = sd,
ddcdf6e7
PZ
8529 .dst_cpu = target_cpu,
8530 .dst_rq = target_rq,
8531 .src_cpu = busiest_rq->cpu,
8532 .src_rq = busiest_rq,
8e45cb54
PZ
8533 .idle = CPU_IDLE,
8534 };
8535
ae92882e 8536 schedstat_inc(sd->alb_count);
3bed5e21 8537 update_rq_clock(busiest_rq);
1e3c88bd 8538
e5673f28 8539 p = detach_one_task(&env);
d02c0711 8540 if (p) {
ae92882e 8541 schedstat_inc(sd->alb_pushed);
d02c0711
SD
8542 /* Active balancing done, reset the failure counter. */
8543 sd->nr_balance_failed = 0;
8544 } else {
ae92882e 8545 schedstat_inc(sd->alb_failed);
d02c0711 8546 }
1e3c88bd 8547 }
dce840a0 8548 rcu_read_unlock();
969c7921
TH
8549out_unlock:
8550 busiest_rq->active_balance = 0;
8a8c69c3 8551 rq_unlock(busiest_rq, &rf);
e5673f28
KT
8552
8553 if (p)
8554 attach_one_task(target_rq, p);
8555
8556 local_irq_enable();
8557
969c7921 8558 return 0;
1e3c88bd
PZ
8559}
8560
d987fc7f
MG
8561static inline int on_null_domain(struct rq *rq)
8562{
8563 return unlikely(!rcu_dereference_sched(rq->sd));
8564}
8565
3451d024 8566#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
8567/*
8568 * idle load balancing details
83cd4fe2
VP
8569 * - When one of the busy CPUs notice that there may be an idle rebalancing
8570 * needed, they will kick the idle load balancer, which then does idle
8571 * load balancing for all the idle CPUs.
8572 */
1e3c88bd 8573static struct {
83cd4fe2 8574 cpumask_var_t idle_cpus_mask;
0b005cf5 8575 atomic_t nr_cpus;
83cd4fe2
VP
8576 unsigned long next_balance; /* in jiffy units */
8577} nohz ____cacheline_aligned;
1e3c88bd 8578
3dd0337d 8579static inline int find_new_ilb(void)
1e3c88bd 8580{
0b005cf5 8581 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 8582
786d6dc7
SS
8583 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8584 return ilb;
8585
8586 return nr_cpu_ids;
1e3c88bd 8587}
1e3c88bd 8588
83cd4fe2
VP
8589/*
8590 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8591 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8592 * CPU (if there is one).
8593 */
0aeeeeba 8594static void nohz_balancer_kick(void)
83cd4fe2
VP
8595{
8596 int ilb_cpu;
8597
8598 nohz.next_balance++;
8599
3dd0337d 8600 ilb_cpu = find_new_ilb();
83cd4fe2 8601
0b005cf5
SS
8602 if (ilb_cpu >= nr_cpu_ids)
8603 return;
83cd4fe2 8604
cd490c5b 8605 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
8606 return;
8607 /*
8608 * Use smp_send_reschedule() instead of resched_cpu().
8609 * This way we generate a sched IPI on the target cpu which
8610 * is idle. And the softirq performing nohz idle load balance
8611 * will be run before returning from the IPI.
8612 */
8613 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
8614 return;
8615}
8616
20a5c8cc 8617void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
8618{
8619 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
8620 /*
8621 * Completely isolated CPUs don't ever set, so we must test.
8622 */
8623 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8624 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8625 atomic_dec(&nohz.nr_cpus);
8626 }
71325960
SS
8627 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8628 }
8629}
8630
69e1e811
SS
8631static inline void set_cpu_sd_state_busy(void)
8632{
8633 struct sched_domain *sd;
37dc6b50 8634 int cpu = smp_processor_id();
69e1e811 8635
69e1e811 8636 rcu_read_lock();
0e369d75 8637 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8638
8639 if (!sd || !sd->nohz_idle)
8640 goto unlock;
8641 sd->nohz_idle = 0;
8642
0e369d75 8643 atomic_inc(&sd->shared->nr_busy_cpus);
25f55d9d 8644unlock:
69e1e811
SS
8645 rcu_read_unlock();
8646}
8647
8648void set_cpu_sd_state_idle(void)
8649{
8650 struct sched_domain *sd;
37dc6b50 8651 int cpu = smp_processor_id();
69e1e811 8652
69e1e811 8653 rcu_read_lock();
0e369d75 8654 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
8655
8656 if (!sd || sd->nohz_idle)
8657 goto unlock;
8658 sd->nohz_idle = 1;
8659
0e369d75 8660 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 8661unlock:
69e1e811
SS
8662 rcu_read_unlock();
8663}
8664
1e3c88bd 8665/*
c1cc017c 8666 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8667 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8668 */
c1cc017c 8669void nohz_balance_enter_idle(int cpu)
1e3c88bd 8670{
71325960
SS
8671 /*
8672 * If this cpu is going down, then nothing needs to be done.
8673 */
8674 if (!cpu_active(cpu))
8675 return;
8676
c1cc017c
AS
8677 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8678 return;
1e3c88bd 8679
d987fc7f
MG
8680 /*
8681 * If we're a completely isolated CPU, we don't play.
8682 */
8683 if (on_null_domain(cpu_rq(cpu)))
8684 return;
8685
c1cc017c
AS
8686 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8687 atomic_inc(&nohz.nr_cpus);
8688 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8689}
8690#endif
8691
8692static DEFINE_SPINLOCK(balancing);
8693
49c022e6
PZ
8694/*
8695 * Scale the max load_balance interval with the number of CPUs in the system.
8696 * This trades load-balance latency on larger machines for less cross talk.
8697 */
029632fb 8698void update_max_interval(void)
49c022e6
PZ
8699{
8700 max_load_balance_interval = HZ*num_online_cpus()/10;
8701}
8702
1e3c88bd
PZ
8703/*
8704 * It checks each scheduling domain to see if it is due to be balanced,
8705 * and initiates a balancing operation if so.
8706 *
b9b0853a 8707 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8708 */
f7ed0a89 8709static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8710{
23f0d209 8711 int continue_balancing = 1;
f7ed0a89 8712 int cpu = rq->cpu;
1e3c88bd 8713 unsigned long interval;
04f733b4 8714 struct sched_domain *sd;
1e3c88bd
PZ
8715 /* Earliest time when we have to do rebalance again */
8716 unsigned long next_balance = jiffies + 60*HZ;
8717 int update_next_balance = 0;
f48627e6
JL
8718 int need_serialize, need_decay = 0;
8719 u64 max_cost = 0;
1e3c88bd 8720
48a16753 8721 update_blocked_averages(cpu);
2069dd75 8722
dce840a0 8723 rcu_read_lock();
1e3c88bd 8724 for_each_domain(cpu, sd) {
f48627e6
JL
8725 /*
8726 * Decay the newidle max times here because this is a regular
8727 * visit to all the domains. Decay ~1% per second.
8728 */
8729 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8730 sd->max_newidle_lb_cost =
8731 (sd->max_newidle_lb_cost * 253) / 256;
8732 sd->next_decay_max_lb_cost = jiffies + HZ;
8733 need_decay = 1;
8734 }
8735 max_cost += sd->max_newidle_lb_cost;
8736
1e3c88bd
PZ
8737 if (!(sd->flags & SD_LOAD_BALANCE))
8738 continue;
8739
f48627e6
JL
8740 /*
8741 * Stop the load balance at this level. There is another
8742 * CPU in our sched group which is doing load balancing more
8743 * actively.
8744 */
8745 if (!continue_balancing) {
8746 if (need_decay)
8747 continue;
8748 break;
8749 }
8750
52a08ef1 8751 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8752
8753 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8754 if (need_serialize) {
8755 if (!spin_trylock(&balancing))
8756 goto out;
8757 }
8758
8759 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8760 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8761 /*
6263322c 8762 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8763 * env->dst_cpu, so we can't know our idle
8764 * state even if we migrated tasks. Update it.
1e3c88bd 8765 */
de5eb2dd 8766 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8767 }
8768 sd->last_balance = jiffies;
52a08ef1 8769 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8770 }
8771 if (need_serialize)
8772 spin_unlock(&balancing);
8773out:
8774 if (time_after(next_balance, sd->last_balance + interval)) {
8775 next_balance = sd->last_balance + interval;
8776 update_next_balance = 1;
8777 }
f48627e6
JL
8778 }
8779 if (need_decay) {
1e3c88bd 8780 /*
f48627e6
JL
8781 * Ensure the rq-wide value also decays but keep it at a
8782 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8783 */
f48627e6
JL
8784 rq->max_idle_balance_cost =
8785 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8786 }
dce840a0 8787 rcu_read_unlock();
1e3c88bd
PZ
8788
8789 /*
8790 * next_balance will be updated only when there is a need.
8791 * When the cpu is attached to null domain for ex, it will not be
8792 * updated.
8793 */
c5afb6a8 8794 if (likely(update_next_balance)) {
1e3c88bd 8795 rq->next_balance = next_balance;
c5afb6a8
VG
8796
8797#ifdef CONFIG_NO_HZ_COMMON
8798 /*
8799 * If this CPU has been elected to perform the nohz idle
8800 * balance. Other idle CPUs have already rebalanced with
8801 * nohz_idle_balance() and nohz.next_balance has been
8802 * updated accordingly. This CPU is now running the idle load
8803 * balance for itself and we need to update the
8804 * nohz.next_balance accordingly.
8805 */
8806 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8807 nohz.next_balance = rq->next_balance;
8808#endif
8809 }
1e3c88bd
PZ
8810}
8811
3451d024 8812#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8813/*
3451d024 8814 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8815 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8816 */
208cb16b 8817static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8818{
208cb16b 8819 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8820 struct rq *rq;
8821 int balance_cpu;
c5afb6a8
VG
8822 /* Earliest time when we have to do rebalance again */
8823 unsigned long next_balance = jiffies + 60*HZ;
8824 int update_next_balance = 0;
83cd4fe2 8825
1c792db7
SS
8826 if (idle != CPU_IDLE ||
8827 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8828 goto end;
83cd4fe2
VP
8829
8830 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8831 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8832 continue;
8833
8834 /*
8835 * If this cpu gets work to do, stop the load balancing
8836 * work being done for other cpus. Next load
8837 * balancing owner will pick it up.
8838 */
1c792db7 8839 if (need_resched())
83cd4fe2 8840 break;
83cd4fe2 8841
5ed4f1d9
VG
8842 rq = cpu_rq(balance_cpu);
8843
ed61bbc6
TC
8844 /*
8845 * If time for next balance is due,
8846 * do the balance.
8847 */
8848 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
8849 struct rq_flags rf;
8850
8851 rq_lock_irq(rq, &rf);
ed61bbc6 8852 update_rq_clock(rq);
cee1afce 8853 cpu_load_update_idle(rq);
8a8c69c3
PZ
8854 rq_unlock_irq(rq, &rf);
8855
ed61bbc6
TC
8856 rebalance_domains(rq, CPU_IDLE);
8857 }
83cd4fe2 8858
c5afb6a8
VG
8859 if (time_after(next_balance, rq->next_balance)) {
8860 next_balance = rq->next_balance;
8861 update_next_balance = 1;
8862 }
83cd4fe2 8863 }
c5afb6a8
VG
8864
8865 /*
8866 * next_balance will be updated only when there is a need.
8867 * When the CPU is attached to null domain for ex, it will not be
8868 * updated.
8869 */
8870 if (likely(update_next_balance))
8871 nohz.next_balance = next_balance;
1c792db7
SS
8872end:
8873 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8874}
8875
8876/*
0b005cf5 8877 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8878 * of an idle cpu in the system.
0b005cf5 8879 * - This rq has more than one task.
1aaf90a4
VG
8880 * - This rq has at least one CFS task and the capacity of the CPU is
8881 * significantly reduced because of RT tasks or IRQs.
8882 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8883 * multiple busy cpu.
0b005cf5
SS
8884 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8885 * domain span are idle.
83cd4fe2 8886 */
1aaf90a4 8887static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8888{
8889 unsigned long now = jiffies;
0e369d75 8890 struct sched_domain_shared *sds;
0b005cf5 8891 struct sched_domain *sd;
afe06efd 8892 int nr_busy, i, cpu = rq->cpu;
1aaf90a4 8893 bool kick = false;
83cd4fe2 8894
4a725627 8895 if (unlikely(rq->idle_balance))
1aaf90a4 8896 return false;
83cd4fe2 8897
1c792db7
SS
8898 /*
8899 * We may be recently in ticked or tickless idle mode. At the first
8900 * busy tick after returning from idle, we will update the busy stats.
8901 */
69e1e811 8902 set_cpu_sd_state_busy();
c1cc017c 8903 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8904
8905 /*
8906 * None are in tickless mode and hence no need for NOHZ idle load
8907 * balancing.
8908 */
8909 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8910 return false;
1c792db7
SS
8911
8912 if (time_before(now, nohz.next_balance))
1aaf90a4 8913 return false;
83cd4fe2 8914
0b005cf5 8915 if (rq->nr_running >= 2)
1aaf90a4 8916 return true;
83cd4fe2 8917
067491b7 8918 rcu_read_lock();
0e369d75
PZ
8919 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8920 if (sds) {
8921 /*
8922 * XXX: write a coherent comment on why we do this.
8923 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8924 */
8925 nr_busy = atomic_read(&sds->nr_busy_cpus);
1aaf90a4
VG
8926 if (nr_busy > 1) {
8927 kick = true;
8928 goto unlock;
8929 }
8930
83cd4fe2 8931 }
37dc6b50 8932
1aaf90a4
VG
8933 sd = rcu_dereference(rq->sd);
8934 if (sd) {
8935 if ((rq->cfs.h_nr_running >= 1) &&
8936 check_cpu_capacity(rq, sd)) {
8937 kick = true;
8938 goto unlock;
8939 }
8940 }
37dc6b50 8941
1aaf90a4 8942 sd = rcu_dereference(per_cpu(sd_asym, cpu));
afe06efd
TC
8943 if (sd) {
8944 for_each_cpu(i, sched_domain_span(sd)) {
8945 if (i == cpu ||
8946 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8947 continue;
067491b7 8948
afe06efd
TC
8949 if (sched_asym_prefer(i, cpu)) {
8950 kick = true;
8951 goto unlock;
8952 }
8953 }
8954 }
1aaf90a4 8955unlock:
067491b7 8956 rcu_read_unlock();
1aaf90a4 8957 return kick;
83cd4fe2
VP
8958}
8959#else
208cb16b 8960static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8961#endif
8962
8963/*
8964 * run_rebalance_domains is triggered when needed from the scheduler tick.
8965 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8966 */
0766f788 8967static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8968{
208cb16b 8969 struct rq *this_rq = this_rq();
6eb57e0d 8970 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8971 CPU_IDLE : CPU_NOT_IDLE;
8972
1e3c88bd 8973 /*
83cd4fe2 8974 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8975 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8976 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8977 * give the idle cpus a chance to load balance. Else we may
8978 * load balance only within the local sched_domain hierarchy
8979 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8980 */
208cb16b 8981 nohz_idle_balance(this_rq, idle);
d4573c3e 8982 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8983}
8984
1e3c88bd
PZ
8985/*
8986 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8987 */
7caff66f 8988void trigger_load_balance(struct rq *rq)
1e3c88bd 8989{
1e3c88bd 8990 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8991 if (unlikely(on_null_domain(rq)))
8992 return;
8993
8994 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8995 raise_softirq(SCHED_SOFTIRQ);
3451d024 8996#ifdef CONFIG_NO_HZ_COMMON
c726099e 8997 if (nohz_kick_needed(rq))
0aeeeeba 8998 nohz_balancer_kick();
83cd4fe2 8999#endif
1e3c88bd
PZ
9000}
9001
0bcdcf28
CE
9002static void rq_online_fair(struct rq *rq)
9003{
9004 update_sysctl();
0e59bdae
KT
9005
9006 update_runtime_enabled(rq);
0bcdcf28
CE
9007}
9008
9009static void rq_offline_fair(struct rq *rq)
9010{
9011 update_sysctl();
a4c96ae3
PB
9012
9013 /* Ensure any throttled groups are reachable by pick_next_task */
9014 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9015}
9016
55e12e5e 9017#endif /* CONFIG_SMP */
e1d1484f 9018
bf0f6f24
IM
9019/*
9020 * scheduler tick hitting a task of our scheduling class:
9021 */
8f4d37ec 9022static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9023{
9024 struct cfs_rq *cfs_rq;
9025 struct sched_entity *se = &curr->se;
9026
9027 for_each_sched_entity(se) {
9028 cfs_rq = cfs_rq_of(se);
8f4d37ec 9029 entity_tick(cfs_rq, se, queued);
bf0f6f24 9030 }
18bf2805 9031
b52da86e 9032 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9033 task_tick_numa(rq, curr);
bf0f6f24
IM
9034}
9035
9036/*
cd29fe6f
PZ
9037 * called on fork with the child task as argument from the parent's context
9038 * - child not yet on the tasklist
9039 * - preemption disabled
bf0f6f24 9040 */
cd29fe6f 9041static void task_fork_fair(struct task_struct *p)
bf0f6f24 9042{
4fc420c9
DN
9043 struct cfs_rq *cfs_rq;
9044 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9045 struct rq *rq = this_rq();
8a8c69c3 9046 struct rq_flags rf;
bf0f6f24 9047
8a8c69c3 9048 rq_lock(rq, &rf);
861d034e
PZ
9049 update_rq_clock(rq);
9050
4fc420c9
DN
9051 cfs_rq = task_cfs_rq(current);
9052 curr = cfs_rq->curr;
e210bffd
PZ
9053 if (curr) {
9054 update_curr(cfs_rq);
b5d9d734 9055 se->vruntime = curr->vruntime;
e210bffd 9056 }
aeb73b04 9057 place_entity(cfs_rq, se, 1);
4d78e7b6 9058
cd29fe6f 9059 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 9060 /*
edcb60a3
IM
9061 * Upon rescheduling, sched_class::put_prev_task() will place
9062 * 'current' within the tree based on its new key value.
9063 */
4d78e7b6 9064 swap(curr->vruntime, se->vruntime);
8875125e 9065 resched_curr(rq);
4d78e7b6 9066 }
bf0f6f24 9067
88ec22d3 9068 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 9069 rq_unlock(rq, &rf);
bf0f6f24
IM
9070}
9071
cb469845
SR
9072/*
9073 * Priority of the task has changed. Check to see if we preempt
9074 * the current task.
9075 */
da7a735e
PZ
9076static void
9077prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 9078{
da0c1e65 9079 if (!task_on_rq_queued(p))
da7a735e
PZ
9080 return;
9081
cb469845
SR
9082 /*
9083 * Reschedule if we are currently running on this runqueue and
9084 * our priority decreased, or if we are not currently running on
9085 * this runqueue and our priority is higher than the current's
9086 */
da7a735e 9087 if (rq->curr == p) {
cb469845 9088 if (p->prio > oldprio)
8875125e 9089 resched_curr(rq);
cb469845 9090 } else
15afe09b 9091 check_preempt_curr(rq, p, 0);
cb469845
SR
9092}
9093
daa59407 9094static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
9095{
9096 struct sched_entity *se = &p->se;
da7a735e
PZ
9097
9098 /*
daa59407
BP
9099 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9100 * the dequeue_entity(.flags=0) will already have normalized the
9101 * vruntime.
9102 */
9103 if (p->on_rq)
9104 return true;
9105
9106 /*
9107 * When !on_rq, vruntime of the task has usually NOT been normalized.
9108 * But there are some cases where it has already been normalized:
da7a735e 9109 *
daa59407
BP
9110 * - A forked child which is waiting for being woken up by
9111 * wake_up_new_task().
9112 * - A task which has been woken up by try_to_wake_up() and
9113 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 9114 */
daa59407
BP
9115 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9116 return true;
9117
9118 return false;
9119}
9120
09a43ace
VG
9121#ifdef CONFIG_FAIR_GROUP_SCHED
9122/*
9123 * Propagate the changes of the sched_entity across the tg tree to make it
9124 * visible to the root
9125 */
9126static void propagate_entity_cfs_rq(struct sched_entity *se)
9127{
9128 struct cfs_rq *cfs_rq;
9129
9130 /* Start to propagate at parent */
9131 se = se->parent;
9132
9133 for_each_sched_entity(se) {
9134 cfs_rq = cfs_rq_of(se);
9135
9136 if (cfs_rq_throttled(cfs_rq))
9137 break;
9138
9139 update_load_avg(se, UPDATE_TG);
9140 }
9141}
9142#else
9143static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9144#endif
9145
df217913 9146static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 9147{
daa59407
BP
9148 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9149
9d89c257 9150 /* Catch up with the cfs_rq and remove our load when we leave */
d31b1a66 9151 update_load_avg(se, 0);
a05e8c51 9152 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 9153 update_tg_load_avg(cfs_rq, false);
09a43ace 9154 propagate_entity_cfs_rq(se);
da7a735e
PZ
9155}
9156
df217913 9157static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 9158{
daa59407 9159 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
9160
9161#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
9162 /*
9163 * Since the real-depth could have been changed (only FAIR
9164 * class maintain depth value), reset depth properly.
9165 */
9166 se->depth = se->parent ? se->parent->depth + 1 : 0;
9167#endif
7855a35a 9168
df217913 9169 /* Synchronize entity with its cfs_rq */
d31b1a66 9170 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
daa59407 9171 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 9172 update_tg_load_avg(cfs_rq, false);
09a43ace 9173 propagate_entity_cfs_rq(se);
df217913
VG
9174}
9175
9176static void detach_task_cfs_rq(struct task_struct *p)
9177{
9178 struct sched_entity *se = &p->se;
9179 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9180
9181 if (!vruntime_normalized(p)) {
9182 /*
9183 * Fix up our vruntime so that the current sleep doesn't
9184 * cause 'unlimited' sleep bonus.
9185 */
9186 place_entity(cfs_rq, se, 0);
9187 se->vruntime -= cfs_rq->min_vruntime;
9188 }
9189
9190 detach_entity_cfs_rq(se);
9191}
9192
9193static void attach_task_cfs_rq(struct task_struct *p)
9194{
9195 struct sched_entity *se = &p->se;
9196 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9197
9198 attach_entity_cfs_rq(se);
daa59407
BP
9199
9200 if (!vruntime_normalized(p))
9201 se->vruntime += cfs_rq->min_vruntime;
9202}
6efdb105 9203
daa59407
BP
9204static void switched_from_fair(struct rq *rq, struct task_struct *p)
9205{
9206 detach_task_cfs_rq(p);
9207}
9208
9209static void switched_to_fair(struct rq *rq, struct task_struct *p)
9210{
9211 attach_task_cfs_rq(p);
7855a35a 9212
daa59407 9213 if (task_on_rq_queued(p)) {
7855a35a 9214 /*
daa59407
BP
9215 * We were most likely switched from sched_rt, so
9216 * kick off the schedule if running, otherwise just see
9217 * if we can still preempt the current task.
7855a35a 9218 */
daa59407
BP
9219 if (rq->curr == p)
9220 resched_curr(rq);
9221 else
9222 check_preempt_curr(rq, p, 0);
7855a35a 9223 }
cb469845
SR
9224}
9225
83b699ed
SV
9226/* Account for a task changing its policy or group.
9227 *
9228 * This routine is mostly called to set cfs_rq->curr field when a task
9229 * migrates between groups/classes.
9230 */
9231static void set_curr_task_fair(struct rq *rq)
9232{
9233 struct sched_entity *se = &rq->curr->se;
9234
ec12cb7f
PT
9235 for_each_sched_entity(se) {
9236 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9237
9238 set_next_entity(cfs_rq, se);
9239 /* ensure bandwidth has been allocated on our new cfs_rq */
9240 account_cfs_rq_runtime(cfs_rq, 0);
9241 }
83b699ed
SV
9242}
9243
029632fb
PZ
9244void init_cfs_rq(struct cfs_rq *cfs_rq)
9245{
9246 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
9247 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9248#ifndef CONFIG_64BIT
9249 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9250#endif
141965c7 9251#ifdef CONFIG_SMP
09a43ace
VG
9252#ifdef CONFIG_FAIR_GROUP_SCHED
9253 cfs_rq->propagate_avg = 0;
9254#endif
9d89c257
YD
9255 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9256 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 9257#endif
029632fb
PZ
9258}
9259
810b3817 9260#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
9261static void task_set_group_fair(struct task_struct *p)
9262{
9263 struct sched_entity *se = &p->se;
9264
9265 set_task_rq(p, task_cpu(p));
9266 se->depth = se->parent ? se->parent->depth + 1 : 0;
9267}
9268
bc54da21 9269static void task_move_group_fair(struct task_struct *p)
810b3817 9270{
daa59407 9271 detach_task_cfs_rq(p);
b2b5ce02 9272 set_task_rq(p, task_cpu(p));
6efdb105
BP
9273
9274#ifdef CONFIG_SMP
9275 /* Tell se's cfs_rq has been changed -- migrated */
9276 p->se.avg.last_update_time = 0;
9277#endif
daa59407 9278 attach_task_cfs_rq(p);
810b3817 9279}
029632fb 9280
ea86cb4b
VG
9281static void task_change_group_fair(struct task_struct *p, int type)
9282{
9283 switch (type) {
9284 case TASK_SET_GROUP:
9285 task_set_group_fair(p);
9286 break;
9287
9288 case TASK_MOVE_GROUP:
9289 task_move_group_fair(p);
9290 break;
9291 }
9292}
9293
029632fb
PZ
9294void free_fair_sched_group(struct task_group *tg)
9295{
9296 int i;
9297
9298 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9299
9300 for_each_possible_cpu(i) {
9301 if (tg->cfs_rq)
9302 kfree(tg->cfs_rq[i]);
6fe1f348 9303 if (tg->se)
029632fb
PZ
9304 kfree(tg->se[i]);
9305 }
9306
9307 kfree(tg->cfs_rq);
9308 kfree(tg->se);
9309}
9310
9311int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9312{
029632fb 9313 struct sched_entity *se;
b7fa30c9 9314 struct cfs_rq *cfs_rq;
029632fb
PZ
9315 int i;
9316
9317 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9318 if (!tg->cfs_rq)
9319 goto err;
9320 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9321 if (!tg->se)
9322 goto err;
9323
9324 tg->shares = NICE_0_LOAD;
9325
9326 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9327
9328 for_each_possible_cpu(i) {
9329 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9330 GFP_KERNEL, cpu_to_node(i));
9331 if (!cfs_rq)
9332 goto err;
9333
9334 se = kzalloc_node(sizeof(struct sched_entity),
9335 GFP_KERNEL, cpu_to_node(i));
9336 if (!se)
9337 goto err_free_rq;
9338
9339 init_cfs_rq(cfs_rq);
9340 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 9341 init_entity_runnable_average(se);
029632fb
PZ
9342 }
9343
9344 return 1;
9345
9346err_free_rq:
9347 kfree(cfs_rq);
9348err:
9349 return 0;
9350}
9351
8663e24d
PZ
9352void online_fair_sched_group(struct task_group *tg)
9353{
9354 struct sched_entity *se;
9355 struct rq *rq;
9356 int i;
9357
9358 for_each_possible_cpu(i) {
9359 rq = cpu_rq(i);
9360 se = tg->se[i];
9361
9362 raw_spin_lock_irq(&rq->lock);
4126bad6 9363 update_rq_clock(rq);
d0326691 9364 attach_entity_cfs_rq(se);
55e16d30 9365 sync_throttle(tg, i);
8663e24d
PZ
9366 raw_spin_unlock_irq(&rq->lock);
9367 }
9368}
9369
6fe1f348 9370void unregister_fair_sched_group(struct task_group *tg)
029632fb 9371{
029632fb 9372 unsigned long flags;
6fe1f348
PZ
9373 struct rq *rq;
9374 int cpu;
029632fb 9375
6fe1f348
PZ
9376 for_each_possible_cpu(cpu) {
9377 if (tg->se[cpu])
9378 remove_entity_load_avg(tg->se[cpu]);
029632fb 9379
6fe1f348
PZ
9380 /*
9381 * Only empty task groups can be destroyed; so we can speculatively
9382 * check on_list without danger of it being re-added.
9383 */
9384 if (!tg->cfs_rq[cpu]->on_list)
9385 continue;
9386
9387 rq = cpu_rq(cpu);
9388
9389 raw_spin_lock_irqsave(&rq->lock, flags);
9390 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9391 raw_spin_unlock_irqrestore(&rq->lock, flags);
9392 }
029632fb
PZ
9393}
9394
9395void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9396 struct sched_entity *se, int cpu,
9397 struct sched_entity *parent)
9398{
9399 struct rq *rq = cpu_rq(cpu);
9400
9401 cfs_rq->tg = tg;
9402 cfs_rq->rq = rq;
029632fb
PZ
9403 init_cfs_rq_runtime(cfs_rq);
9404
9405 tg->cfs_rq[cpu] = cfs_rq;
9406 tg->se[cpu] = se;
9407
9408 /* se could be NULL for root_task_group */
9409 if (!se)
9410 return;
9411
fed14d45 9412 if (!parent) {
029632fb 9413 se->cfs_rq = &rq->cfs;
fed14d45
PZ
9414 se->depth = 0;
9415 } else {
029632fb 9416 se->cfs_rq = parent->my_q;
fed14d45
PZ
9417 se->depth = parent->depth + 1;
9418 }
029632fb
PZ
9419
9420 se->my_q = cfs_rq;
0ac9b1c2
PT
9421 /* guarantee group entities always have weight */
9422 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
9423 se->parent = parent;
9424}
9425
9426static DEFINE_MUTEX(shares_mutex);
9427
9428int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9429{
9430 int i;
029632fb
PZ
9431
9432 /*
9433 * We can't change the weight of the root cgroup.
9434 */
9435 if (!tg->se[0])
9436 return -EINVAL;
9437
9438 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9439
9440 mutex_lock(&shares_mutex);
9441 if (tg->shares == shares)
9442 goto done;
9443
9444 tg->shares = shares;
9445 for_each_possible_cpu(i) {
9446 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
9447 struct sched_entity *se = tg->se[i];
9448 struct rq_flags rf;
029632fb 9449
029632fb 9450 /* Propagate contribution to hierarchy */
8a8c69c3 9451 rq_lock_irqsave(rq, &rf);
71b1da46 9452 update_rq_clock(rq);
89ee048f
VG
9453 for_each_sched_entity(se) {
9454 update_load_avg(se, UPDATE_TG);
9455 update_cfs_shares(se);
9456 }
8a8c69c3 9457 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
9458 }
9459
9460done:
9461 mutex_unlock(&shares_mutex);
9462 return 0;
9463}
9464#else /* CONFIG_FAIR_GROUP_SCHED */
9465
9466void free_fair_sched_group(struct task_group *tg) { }
9467
9468int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9469{
9470 return 1;
9471}
9472
8663e24d
PZ
9473void online_fair_sched_group(struct task_group *tg) { }
9474
6fe1f348 9475void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
9476
9477#endif /* CONFIG_FAIR_GROUP_SCHED */
9478
810b3817 9479
6d686f45 9480static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
9481{
9482 struct sched_entity *se = &task->se;
0d721cea
PW
9483 unsigned int rr_interval = 0;
9484
9485 /*
9486 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9487 * idle runqueue:
9488 */
0d721cea 9489 if (rq->cfs.load.weight)
a59f4e07 9490 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
9491
9492 return rr_interval;
9493}
9494
bf0f6f24
IM
9495/*
9496 * All the scheduling class methods:
9497 */
029632fb 9498const struct sched_class fair_sched_class = {
5522d5d5 9499 .next = &idle_sched_class,
bf0f6f24
IM
9500 .enqueue_task = enqueue_task_fair,
9501 .dequeue_task = dequeue_task_fair,
9502 .yield_task = yield_task_fair,
d95f4122 9503 .yield_to_task = yield_to_task_fair,
bf0f6f24 9504
2e09bf55 9505 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
9506
9507 .pick_next_task = pick_next_task_fair,
9508 .put_prev_task = put_prev_task_fair,
9509
681f3e68 9510#ifdef CONFIG_SMP
4ce72a2c 9511 .select_task_rq = select_task_rq_fair,
0a74bef8 9512 .migrate_task_rq = migrate_task_rq_fair,
141965c7 9513
0bcdcf28
CE
9514 .rq_online = rq_online_fair,
9515 .rq_offline = rq_offline_fair,
88ec22d3 9516
12695578 9517 .task_dead = task_dead_fair,
c5b28038 9518 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 9519#endif
bf0f6f24 9520
83b699ed 9521 .set_curr_task = set_curr_task_fair,
bf0f6f24 9522 .task_tick = task_tick_fair,
cd29fe6f 9523 .task_fork = task_fork_fair,
cb469845
SR
9524
9525 .prio_changed = prio_changed_fair,
da7a735e 9526 .switched_from = switched_from_fair,
cb469845 9527 .switched_to = switched_to_fair,
810b3817 9528
0d721cea
PW
9529 .get_rr_interval = get_rr_interval_fair,
9530
6e998916
SG
9531 .update_curr = update_curr_fair,
9532
810b3817 9533#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 9534 .task_change_group = task_change_group_fair,
810b3817 9535#endif
bf0f6f24
IM
9536};
9537
9538#ifdef CONFIG_SCHED_DEBUG
029632fb 9539void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 9540{
bf0f6f24
IM
9541 struct cfs_rq *cfs_rq;
9542
5973e5b9 9543 rcu_read_lock();
c3b64f1e 9544 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 9545 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 9546 rcu_read_unlock();
bf0f6f24 9547}
397f2378
SD
9548
9549#ifdef CONFIG_NUMA_BALANCING
9550void show_numa_stats(struct task_struct *p, struct seq_file *m)
9551{
9552 int node;
9553 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9554
9555 for_each_online_node(node) {
9556 if (p->numa_faults) {
9557 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9558 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9559 }
9560 if (p->numa_group) {
9561 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9562 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9563 }
9564 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9565 }
9566}
9567#endif /* CONFIG_NUMA_BALANCING */
9568#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
9569
9570__init void init_sched_fair_class(void)
9571{
9572#ifdef CONFIG_SMP
9573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9574
3451d024 9575#ifdef CONFIG_NO_HZ_COMMON
554cecaf 9576 nohz.next_balance = jiffies;
029632fb 9577 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
9578#endif
9579#endif /* SMP */
9580
9581}