]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/numa: Always try to migrate to preferred node at task_numa_placement() time
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
ca8ce3d0 1065 ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity;
5ef20ca1 1066 ns->task_capacity =
ca8ce3d0 1067 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1068 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1069}
1070
58d081b5
MG
1071struct task_numa_env {
1072 struct task_struct *p;
e6628d5b 1073
58d081b5
MG
1074 int src_cpu, src_nid;
1075 int dst_cpu, dst_nid;
e6628d5b 1076
58d081b5 1077 struct numa_stats src_stats, dst_stats;
e6628d5b 1078
40ea2b42 1079 int imbalance_pct;
fb13c7ee
MG
1080
1081 struct task_struct *best_task;
1082 long best_imp;
58d081b5
MG
1083 int best_cpu;
1084};
1085
fb13c7ee
MG
1086static void task_numa_assign(struct task_numa_env *env,
1087 struct task_struct *p, long imp)
1088{
1089 if (env->best_task)
1090 put_task_struct(env->best_task);
1091 if (p)
1092 get_task_struct(p);
1093
1094 env->best_task = p;
1095 env->best_imp = imp;
1096 env->best_cpu = env->dst_cpu;
1097}
1098
e63da036
RR
1099static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1100 long src_load, long dst_load,
1101 struct task_numa_env *env)
1102{
1103 long imb, old_imb;
1104
1105 /* We care about the slope of the imbalance, not the direction. */
1106 if (dst_load < src_load)
1107 swap(dst_load, src_load);
1108
1109 /* Is the difference below the threshold? */
1110 imb = dst_load * 100 - src_load * env->imbalance_pct;
1111 if (imb <= 0)
1112 return false;
1113
1114 /*
1115 * The imbalance is above the allowed threshold.
1116 * Compare it with the old imbalance.
1117 */
1118 if (orig_dst_load < orig_src_load)
1119 swap(orig_dst_load, orig_src_load);
1120
1121 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1122
1123 /* Would this change make things worse? */
1662867a 1124 return (imb > old_imb);
e63da036
RR
1125}
1126
fb13c7ee
MG
1127/*
1128 * This checks if the overall compute and NUMA accesses of the system would
1129 * be improved if the source tasks was migrated to the target dst_cpu taking
1130 * into account that it might be best if task running on the dst_cpu should
1131 * be exchanged with the source task
1132 */
887c290e
RR
1133static void task_numa_compare(struct task_numa_env *env,
1134 long taskimp, long groupimp)
fb13c7ee
MG
1135{
1136 struct rq *src_rq = cpu_rq(env->src_cpu);
1137 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1138 struct task_struct *cur;
e63da036
RR
1139 long orig_src_load, src_load;
1140 long orig_dst_load, dst_load;
fb13c7ee 1141 long load;
887c290e 1142 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1143
1144 rcu_read_lock();
1145 cur = ACCESS_ONCE(dst_rq->curr);
1146 if (cur->pid == 0) /* idle */
1147 cur = NULL;
1148
1149 /*
1150 * "imp" is the fault differential for the source task between the
1151 * source and destination node. Calculate the total differential for
1152 * the source task and potential destination task. The more negative
1153 * the value is, the more rmeote accesses that would be expected to
1154 * be incurred if the tasks were swapped.
1155 */
1156 if (cur) {
1157 /* Skip this swap candidate if cannot move to the source cpu */
1158 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1159 goto unlock;
1160
887c290e
RR
1161 /*
1162 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1163 * in any group then look only at task weights.
887c290e 1164 */
ca28aa53 1165 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1166 imp = taskimp + task_weight(cur, env->src_nid) -
1167 task_weight(cur, env->dst_nid);
ca28aa53
RR
1168 /*
1169 * Add some hysteresis to prevent swapping the
1170 * tasks within a group over tiny differences.
1171 */
1172 if (cur->numa_group)
1173 imp -= imp/16;
887c290e 1174 } else {
ca28aa53
RR
1175 /*
1176 * Compare the group weights. If a task is all by
1177 * itself (not part of a group), use the task weight
1178 * instead.
1179 */
1180 if (env->p->numa_group)
1181 imp = groupimp;
1182 else
1183 imp = taskimp;
1184
1185 if (cur->numa_group)
1186 imp += group_weight(cur, env->src_nid) -
1187 group_weight(cur, env->dst_nid);
1188 else
1189 imp += task_weight(cur, env->src_nid) -
1190 task_weight(cur, env->dst_nid);
887c290e 1191 }
fb13c7ee
MG
1192 }
1193
1194 if (imp < env->best_imp)
1195 goto unlock;
1196
1197 if (!cur) {
1198 /* Is there capacity at our destination? */
1b6a7495
NP
1199 if (env->src_stats.has_free_capacity &&
1200 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1201 goto unlock;
1202
1203 goto balance;
1204 }
1205
1206 /* Balance doesn't matter much if we're running a task per cpu */
1207 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1208 goto assign;
1209
1210 /*
1211 * In the overloaded case, try and keep the load balanced.
1212 */
1213balance:
e63da036
RR
1214 orig_dst_load = env->dst_stats.load;
1215 orig_src_load = env->src_stats.load;
fb13c7ee 1216
ced549fa 1217 /* XXX missing capacity terms */
fb13c7ee 1218 load = task_h_load(env->p);
e63da036
RR
1219 dst_load = orig_dst_load + load;
1220 src_load = orig_src_load - load;
fb13c7ee
MG
1221
1222 if (cur) {
1223 load = task_h_load(cur);
1224 dst_load -= load;
1225 src_load += load;
1226 }
1227
e63da036
RR
1228 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1229 src_load, dst_load, env))
fb13c7ee
MG
1230 goto unlock;
1231
1232assign:
1233 task_numa_assign(env, cur, imp);
1234unlock:
1235 rcu_read_unlock();
1236}
1237
887c290e
RR
1238static void task_numa_find_cpu(struct task_numa_env *env,
1239 long taskimp, long groupimp)
2c8a50aa
MG
1240{
1241 int cpu;
1242
1243 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1244 /* Skip this CPU if the source task cannot migrate */
1245 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1246 continue;
1247
1248 env->dst_cpu = cpu;
887c290e 1249 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1250 }
1251}
1252
58d081b5
MG
1253static int task_numa_migrate(struct task_struct *p)
1254{
58d081b5
MG
1255 struct task_numa_env env = {
1256 .p = p,
fb13c7ee 1257
58d081b5 1258 .src_cpu = task_cpu(p),
b32e86b4 1259 .src_nid = task_node(p),
fb13c7ee
MG
1260
1261 .imbalance_pct = 112,
1262
1263 .best_task = NULL,
1264 .best_imp = 0,
1265 .best_cpu = -1
58d081b5
MG
1266 };
1267 struct sched_domain *sd;
887c290e 1268 unsigned long taskweight, groupweight;
2c8a50aa 1269 int nid, ret;
887c290e 1270 long taskimp, groupimp;
e6628d5b 1271
58d081b5 1272 /*
fb13c7ee
MG
1273 * Pick the lowest SD_NUMA domain, as that would have the smallest
1274 * imbalance and would be the first to start moving tasks about.
1275 *
1276 * And we want to avoid any moving of tasks about, as that would create
1277 * random movement of tasks -- counter the numa conditions we're trying
1278 * to satisfy here.
58d081b5
MG
1279 */
1280 rcu_read_lock();
fb13c7ee 1281 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1282 if (sd)
1283 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1284 rcu_read_unlock();
1285
46a73e8a
RR
1286 /*
1287 * Cpusets can break the scheduler domain tree into smaller
1288 * balance domains, some of which do not cross NUMA boundaries.
1289 * Tasks that are "trapped" in such domains cannot be migrated
1290 * elsewhere, so there is no point in (re)trying.
1291 */
1292 if (unlikely(!sd)) {
de1b301a 1293 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1294 return -EINVAL;
1295 }
1296
887c290e
RR
1297 taskweight = task_weight(p, env.src_nid);
1298 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1299 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1300 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1301 taskimp = task_weight(p, env.dst_nid) - taskweight;
1302 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1303 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1304
a43455a1
RR
1305 /* Try to find a spot on the preferred nid. */
1306 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1307
1308 /* No space available on the preferred nid. Look elsewhere. */
1309 if (env.best_cpu == -1) {
2c8a50aa
MG
1310 for_each_online_node(nid) {
1311 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1312 continue;
58d081b5 1313
83e1d2cd 1314 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1315 taskimp = task_weight(p, nid) - taskweight;
1316 groupimp = group_weight(p, nid) - groupweight;
1317 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1318 continue;
1319
2c8a50aa
MG
1320 env.dst_nid = nid;
1321 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1322 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1323 }
1324 }
1325
fb13c7ee
MG
1326 /* No better CPU than the current one was found. */
1327 if (env.best_cpu == -1)
1328 return -EAGAIN;
1329
68d1b02a
RR
1330 /*
1331 * If the task is part of a workload that spans multiple NUMA nodes,
1332 * and is migrating into one of the workload's active nodes, remember
1333 * this node as the task's preferred numa node, so the workload can
1334 * settle down.
1335 * A task that migrated to a second choice node will be better off
1336 * trying for a better one later. Do not set the preferred node here.
1337 */
1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 sched_setnuma(p, env.dst_nid);
0ec8aa00 1340
04bb2f94
RR
1341 /*
1342 * Reset the scan period if the task is being rescheduled on an
1343 * alternative node to recheck if the tasks is now properly placed.
1344 */
1345 p->numa_scan_period = task_scan_min(p);
1346
fb13c7ee 1347 if (env.best_task == NULL) {
286549dc
MG
1348 ret = migrate_task_to(p, env.best_cpu);
1349 if (ret != 0)
1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1351 return ret;
1352 }
1353
1354 ret = migrate_swap(p, env.best_task);
286549dc
MG
1355 if (ret != 0)
1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1357 put_task_struct(env.best_task);
1358 return ret;
e6628d5b
MG
1359}
1360
6b9a7460
MG
1361/* Attempt to migrate a task to a CPU on the preferred node. */
1362static void numa_migrate_preferred(struct task_struct *p)
1363{
5085e2a3
RR
1364 unsigned long interval = HZ;
1365
2739d3ee 1366 /* This task has no NUMA fault statistics yet */
ff1df896 1367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1368 return;
1369
2739d3ee 1370 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1373
1374 /* Success if task is already running on preferred CPU */
de1b301a 1375 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1376 return;
1377
1378 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1379 task_numa_migrate(p);
6b9a7460
MG
1380}
1381
20e07dea
RR
1382/*
1383 * Find the nodes on which the workload is actively running. We do this by
1384 * tracking the nodes from which NUMA hinting faults are triggered. This can
1385 * be different from the set of nodes where the workload's memory is currently
1386 * located.
1387 *
1388 * The bitmask is used to make smarter decisions on when to do NUMA page
1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390 * are added when they cause over 6/16 of the maximum number of faults, but
1391 * only removed when they drop below 3/16.
1392 */
1393static void update_numa_active_node_mask(struct numa_group *numa_group)
1394{
1395 unsigned long faults, max_faults = 0;
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 faults = group_faults_cpu(numa_group, nid);
1400 if (faults > max_faults)
1401 max_faults = faults;
1402 }
1403
1404 for_each_online_node(nid) {
1405 faults = group_faults_cpu(numa_group, nid);
1406 if (!node_isset(nid, numa_group->active_nodes)) {
1407 if (faults > max_faults * 6 / 16)
1408 node_set(nid, numa_group->active_nodes);
1409 } else if (faults < max_faults * 3 / 16)
1410 node_clear(nid, numa_group->active_nodes);
1411 }
1412}
1413
04bb2f94
RR
1414/*
1415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416 * increments. The more local the fault statistics are, the higher the scan
1417 * period will be for the next scan window. If local/remote ratio is below
1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419 * scan period will decrease
1420 */
1421#define NUMA_PERIOD_SLOTS 10
1422#define NUMA_PERIOD_THRESHOLD 3
1423
1424/*
1425 * Increase the scan period (slow down scanning) if the majority of
1426 * our memory is already on our local node, or if the majority of
1427 * the page accesses are shared with other processes.
1428 * Otherwise, decrease the scan period.
1429 */
1430static void update_task_scan_period(struct task_struct *p,
1431 unsigned long shared, unsigned long private)
1432{
1433 unsigned int period_slot;
1434 int ratio;
1435 int diff;
1436
1437 unsigned long remote = p->numa_faults_locality[0];
1438 unsigned long local = p->numa_faults_locality[1];
1439
1440 /*
1441 * If there were no record hinting faults then either the task is
1442 * completely idle or all activity is areas that are not of interest
1443 * to automatic numa balancing. Scan slower
1444 */
1445 if (local + shared == 0) {
1446 p->numa_scan_period = min(p->numa_scan_period_max,
1447 p->numa_scan_period << 1);
1448
1449 p->mm->numa_next_scan = jiffies +
1450 msecs_to_jiffies(p->numa_scan_period);
1451
1452 return;
1453 }
1454
1455 /*
1456 * Prepare to scale scan period relative to the current period.
1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 */
1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 if (!slot)
1466 slot = 1;
1467 diff = slot * period_slot;
1468 } else {
1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470
1471 /*
1472 * Scale scan rate increases based on sharing. There is an
1473 * inverse relationship between the degree of sharing and
1474 * the adjustment made to the scanning period. Broadly
1475 * speaking the intent is that there is little point
1476 * scanning faster if shared accesses dominate as it may
1477 * simply bounce migrations uselessly
1478 */
04bb2f94
RR
1479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 }
1482
1483 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 task_scan_min(p), task_scan_max(p));
1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486}
1487
7e2703e6
RR
1488/*
1489 * Get the fraction of time the task has been running since the last
1490 * NUMA placement cycle. The scheduler keeps similar statistics, but
1491 * decays those on a 32ms period, which is orders of magnitude off
1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493 * stats only if the task is so new there are no NUMA statistics yet.
1494 */
1495static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496{
1497 u64 runtime, delta, now;
1498 /* Use the start of this time slice to avoid calculations. */
1499 now = p->se.exec_start;
1500 runtime = p->se.sum_exec_runtime;
1501
1502 if (p->last_task_numa_placement) {
1503 delta = runtime - p->last_sum_exec_runtime;
1504 *period = now - p->last_task_numa_placement;
1505 } else {
1506 delta = p->se.avg.runnable_avg_sum;
1507 *period = p->se.avg.runnable_avg_period;
1508 }
1509
1510 p->last_sum_exec_runtime = runtime;
1511 p->last_task_numa_placement = now;
1512
1513 return delta;
1514}
1515
cbee9f88
PZ
1516static void task_numa_placement(struct task_struct *p)
1517{
83e1d2cd
MG
1518 int seq, nid, max_nid = -1, max_group_nid = -1;
1519 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1520 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1521 unsigned long total_faults;
1522 u64 runtime, period;
7dbd13ed 1523 spinlock_t *group_lock = NULL;
cbee9f88 1524
2832bc19 1525 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1526 if (p->numa_scan_seq == seq)
1527 return;
1528 p->numa_scan_seq = seq;
598f0ec0 1529 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1530
7e2703e6
RR
1531 total_faults = p->numa_faults_locality[0] +
1532 p->numa_faults_locality[1];
1533 runtime = numa_get_avg_runtime(p, &period);
1534
7dbd13ed
MG
1535 /* If the task is part of a group prevent parallel updates to group stats */
1536 if (p->numa_group) {
1537 group_lock = &p->numa_group->lock;
60e69eed 1538 spin_lock_irq(group_lock);
7dbd13ed
MG
1539 }
1540
688b7585
MG
1541 /* Find the node with the highest number of faults */
1542 for_each_online_node(nid) {
83e1d2cd 1543 unsigned long faults = 0, group_faults = 0;
ac8e895b 1544 int priv, i;
745d6147 1545
be1e4e76 1546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1547 long diff, f_diff, f_weight;
8c8a743c 1548
ac8e895b 1549 i = task_faults_idx(nid, priv);
745d6147 1550
ac8e895b 1551 /* Decay existing window, copy faults since last scan */
35664fd4 1552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1553 fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1555
7e2703e6
RR
1556 /*
1557 * Normalize the faults_from, so all tasks in a group
1558 * count according to CPU use, instead of by the raw
1559 * number of faults. Tasks with little runtime have
1560 * little over-all impact on throughput, and thus their
1561 * faults are less important.
1562 */
1563 f_weight = div64_u64(runtime << 16, period + 1);
1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 (total_faults + 1);
35664fd4 1566 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1567 p->numa_faults_buffer_cpu[i] = 0;
1568
35664fd4
RR
1569 p->numa_faults_memory[i] += diff;
1570 p->numa_faults_cpu[i] += f_diff;
ff1df896 1571 faults += p->numa_faults_memory[i];
83e1d2cd 1572 p->total_numa_faults += diff;
8c8a743c
PZ
1573 if (p->numa_group) {
1574 /* safe because we can only change our own group */
989348b5 1575 p->numa_group->faults[i] += diff;
50ec8a40 1576 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1577 p->numa_group->total_faults += diff;
1578 group_faults += p->numa_group->faults[i];
8c8a743c 1579 }
ac8e895b
MG
1580 }
1581
688b7585
MG
1582 if (faults > max_faults) {
1583 max_faults = faults;
1584 max_nid = nid;
1585 }
83e1d2cd
MG
1586
1587 if (group_faults > max_group_faults) {
1588 max_group_faults = group_faults;
1589 max_group_nid = nid;
1590 }
1591 }
1592
04bb2f94
RR
1593 update_task_scan_period(p, fault_types[0], fault_types[1]);
1594
7dbd13ed 1595 if (p->numa_group) {
20e07dea 1596 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1597 /*
1598 * If the preferred task and group nids are different,
1599 * iterate over the nodes again to find the best place.
1600 */
1601 if (max_nid != max_group_nid) {
1602 unsigned long weight, max_weight = 0;
1603
1604 for_each_online_node(nid) {
1605 weight = task_weight(p, nid) + group_weight(p, nid);
1606 if (weight > max_weight) {
1607 max_weight = weight;
1608 max_nid = nid;
1609 }
83e1d2cd
MG
1610 }
1611 }
7dbd13ed 1612
60e69eed 1613 spin_unlock_irq(group_lock);
688b7585
MG
1614 }
1615
bb97fc31
RR
1616 if (max_faults) {
1617 /* Set the new preferred node */
1618 if (max_nid != p->numa_preferred_nid)
1619 sched_setnuma(p, max_nid);
1620
1621 if (task_node(p) != p->numa_preferred_nid)
1622 numa_migrate_preferred(p);
3a7053b3 1623 }
cbee9f88
PZ
1624}
1625
8c8a743c
PZ
1626static inline int get_numa_group(struct numa_group *grp)
1627{
1628 return atomic_inc_not_zero(&grp->refcount);
1629}
1630
1631static inline void put_numa_group(struct numa_group *grp)
1632{
1633 if (atomic_dec_and_test(&grp->refcount))
1634 kfree_rcu(grp, rcu);
1635}
1636
3e6a9418
MG
1637static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1638 int *priv)
8c8a743c
PZ
1639{
1640 struct numa_group *grp, *my_grp;
1641 struct task_struct *tsk;
1642 bool join = false;
1643 int cpu = cpupid_to_cpu(cpupid);
1644 int i;
1645
1646 if (unlikely(!p->numa_group)) {
1647 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1648 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1649
1650 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1651 if (!grp)
1652 return;
1653
1654 atomic_set(&grp->refcount, 1);
1655 spin_lock_init(&grp->lock);
1656 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1657 grp->gid = p->pid;
50ec8a40 1658 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1659 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1660 nr_node_ids;
8c8a743c 1661
20e07dea
RR
1662 node_set(task_node(current), grp->active_nodes);
1663
be1e4e76 1664 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1665 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1666
989348b5 1667 grp->total_faults = p->total_numa_faults;
83e1d2cd 1668
8c8a743c
PZ
1669 list_add(&p->numa_entry, &grp->task_list);
1670 grp->nr_tasks++;
1671 rcu_assign_pointer(p->numa_group, grp);
1672 }
1673
1674 rcu_read_lock();
1675 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1676
1677 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1678 goto no_join;
8c8a743c
PZ
1679
1680 grp = rcu_dereference(tsk->numa_group);
1681 if (!grp)
3354781a 1682 goto no_join;
8c8a743c
PZ
1683
1684 my_grp = p->numa_group;
1685 if (grp == my_grp)
3354781a 1686 goto no_join;
8c8a743c
PZ
1687
1688 /*
1689 * Only join the other group if its bigger; if we're the bigger group,
1690 * the other task will join us.
1691 */
1692 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1693 goto no_join;
8c8a743c
PZ
1694
1695 /*
1696 * Tie-break on the grp address.
1697 */
1698 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1699 goto no_join;
8c8a743c 1700
dabe1d99
RR
1701 /* Always join threads in the same process. */
1702 if (tsk->mm == current->mm)
1703 join = true;
1704
1705 /* Simple filter to avoid false positives due to PID collisions */
1706 if (flags & TNF_SHARED)
1707 join = true;
8c8a743c 1708
3e6a9418
MG
1709 /* Update priv based on whether false sharing was detected */
1710 *priv = !join;
1711
dabe1d99 1712 if (join && !get_numa_group(grp))
3354781a 1713 goto no_join;
8c8a743c 1714
8c8a743c
PZ
1715 rcu_read_unlock();
1716
1717 if (!join)
1718 return;
1719
60e69eed
MG
1720 BUG_ON(irqs_disabled());
1721 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1722
be1e4e76 1723 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1724 my_grp->faults[i] -= p->numa_faults_memory[i];
1725 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1726 }
989348b5
MG
1727 my_grp->total_faults -= p->total_numa_faults;
1728 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1729
1730 list_move(&p->numa_entry, &grp->task_list);
1731 my_grp->nr_tasks--;
1732 grp->nr_tasks++;
1733
1734 spin_unlock(&my_grp->lock);
60e69eed 1735 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1736
1737 rcu_assign_pointer(p->numa_group, grp);
1738
1739 put_numa_group(my_grp);
3354781a
PZ
1740 return;
1741
1742no_join:
1743 rcu_read_unlock();
1744 return;
8c8a743c
PZ
1745}
1746
1747void task_numa_free(struct task_struct *p)
1748{
1749 struct numa_group *grp = p->numa_group;
ff1df896 1750 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1751 unsigned long flags;
1752 int i;
8c8a743c
PZ
1753
1754 if (grp) {
e9dd685c 1755 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1756 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1757 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1758 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1759
8c8a743c
PZ
1760 list_del(&p->numa_entry);
1761 grp->nr_tasks--;
e9dd685c 1762 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1763 rcu_assign_pointer(p->numa_group, NULL);
1764 put_numa_group(grp);
1765 }
1766
ff1df896
RR
1767 p->numa_faults_memory = NULL;
1768 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1769 p->numa_faults_cpu= NULL;
1770 p->numa_faults_buffer_cpu = NULL;
82727018 1771 kfree(numa_faults);
8c8a743c
PZ
1772}
1773
cbee9f88
PZ
1774/*
1775 * Got a PROT_NONE fault for a page on @node.
1776 */
58b46da3 1777void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1778{
1779 struct task_struct *p = current;
6688cc05 1780 bool migrated = flags & TNF_MIGRATED;
58b46da3 1781 int cpu_node = task_node(current);
792568ec 1782 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1783 int priv;
cbee9f88 1784
10e84b97 1785 if (!numabalancing_enabled)
1a687c2e
MG
1786 return;
1787
9ff1d9ff
MG
1788 /* for example, ksmd faulting in a user's mm */
1789 if (!p->mm)
1790 return;
1791
82727018
RR
1792 /* Do not worry about placement if exiting */
1793 if (p->state == TASK_DEAD)
1794 return;
1795
f809ca9a 1796 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1797 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1798 int size = sizeof(*p->numa_faults_memory) *
1799 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1800
be1e4e76 1801 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1802 if (!p->numa_faults_memory)
f809ca9a 1803 return;
745d6147 1804
ff1df896 1805 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1806 /*
1807 * The averaged statistics, shared & private, memory & cpu,
1808 * occupy the first half of the array. The second half of the
1809 * array is for current counters, which are averaged into the
1810 * first set by task_numa_placement.
1811 */
50ec8a40
RR
1812 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1813 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1814 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1815 p->total_numa_faults = 0;
04bb2f94 1816 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1817 }
cbee9f88 1818
8c8a743c
PZ
1819 /*
1820 * First accesses are treated as private, otherwise consider accesses
1821 * to be private if the accessing pid has not changed
1822 */
1823 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1824 priv = 1;
1825 } else {
1826 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1827 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1828 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1829 }
1830
792568ec
RR
1831 /*
1832 * If a workload spans multiple NUMA nodes, a shared fault that
1833 * occurs wholly within the set of nodes that the workload is
1834 * actively using should be counted as local. This allows the
1835 * scan rate to slow down when a workload has settled down.
1836 */
1837 if (!priv && !local && p->numa_group &&
1838 node_isset(cpu_node, p->numa_group->active_nodes) &&
1839 node_isset(mem_node, p->numa_group->active_nodes))
1840 local = 1;
1841
cbee9f88 1842 task_numa_placement(p);
f809ca9a 1843
2739d3ee
RR
1844 /*
1845 * Retry task to preferred node migration periodically, in case it
1846 * case it previously failed, or the scheduler moved us.
1847 */
1848 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1849 numa_migrate_preferred(p);
1850
b32e86b4
IM
1851 if (migrated)
1852 p->numa_pages_migrated += pages;
1853
58b46da3
RR
1854 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1855 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1856 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1857}
1858
6e5fb223
PZ
1859static void reset_ptenuma_scan(struct task_struct *p)
1860{
1861 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1862 p->mm->numa_scan_offset = 0;
1863}
1864
cbee9f88
PZ
1865/*
1866 * The expensive part of numa migration is done from task_work context.
1867 * Triggered from task_tick_numa().
1868 */
1869void task_numa_work(struct callback_head *work)
1870{
1871 unsigned long migrate, next_scan, now = jiffies;
1872 struct task_struct *p = current;
1873 struct mm_struct *mm = p->mm;
6e5fb223 1874 struct vm_area_struct *vma;
9f40604c 1875 unsigned long start, end;
598f0ec0 1876 unsigned long nr_pte_updates = 0;
9f40604c 1877 long pages;
cbee9f88
PZ
1878
1879 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1880
1881 work->next = work; /* protect against double add */
1882 /*
1883 * Who cares about NUMA placement when they're dying.
1884 *
1885 * NOTE: make sure not to dereference p->mm before this check,
1886 * exit_task_work() happens _after_ exit_mm() so we could be called
1887 * without p->mm even though we still had it when we enqueued this
1888 * work.
1889 */
1890 if (p->flags & PF_EXITING)
1891 return;
1892
930aa174 1893 if (!mm->numa_next_scan) {
7e8d16b6
MG
1894 mm->numa_next_scan = now +
1895 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1896 }
1897
cbee9f88
PZ
1898 /*
1899 * Enforce maximal scan/migration frequency..
1900 */
1901 migrate = mm->numa_next_scan;
1902 if (time_before(now, migrate))
1903 return;
1904
598f0ec0
MG
1905 if (p->numa_scan_period == 0) {
1906 p->numa_scan_period_max = task_scan_max(p);
1907 p->numa_scan_period = task_scan_min(p);
1908 }
cbee9f88 1909
fb003b80 1910 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1911 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1912 return;
1913
19a78d11
PZ
1914 /*
1915 * Delay this task enough that another task of this mm will likely win
1916 * the next time around.
1917 */
1918 p->node_stamp += 2 * TICK_NSEC;
1919
9f40604c
MG
1920 start = mm->numa_scan_offset;
1921 pages = sysctl_numa_balancing_scan_size;
1922 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1923 if (!pages)
1924 return;
cbee9f88 1925
6e5fb223 1926 down_read(&mm->mmap_sem);
9f40604c 1927 vma = find_vma(mm, start);
6e5fb223
PZ
1928 if (!vma) {
1929 reset_ptenuma_scan(p);
9f40604c 1930 start = 0;
6e5fb223
PZ
1931 vma = mm->mmap;
1932 }
9f40604c 1933 for (; vma; vma = vma->vm_next) {
fc314724 1934 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1935 continue;
1936
4591ce4f
MG
1937 /*
1938 * Shared library pages mapped by multiple processes are not
1939 * migrated as it is expected they are cache replicated. Avoid
1940 * hinting faults in read-only file-backed mappings or the vdso
1941 * as migrating the pages will be of marginal benefit.
1942 */
1943 if (!vma->vm_mm ||
1944 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1945 continue;
1946
3c67f474
MG
1947 /*
1948 * Skip inaccessible VMAs to avoid any confusion between
1949 * PROT_NONE and NUMA hinting ptes
1950 */
1951 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1952 continue;
4591ce4f 1953
9f40604c
MG
1954 do {
1955 start = max(start, vma->vm_start);
1956 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1957 end = min(end, vma->vm_end);
598f0ec0
MG
1958 nr_pte_updates += change_prot_numa(vma, start, end);
1959
1960 /*
1961 * Scan sysctl_numa_balancing_scan_size but ensure that
1962 * at least one PTE is updated so that unused virtual
1963 * address space is quickly skipped.
1964 */
1965 if (nr_pte_updates)
1966 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1967
9f40604c
MG
1968 start = end;
1969 if (pages <= 0)
1970 goto out;
3cf1962c
RR
1971
1972 cond_resched();
9f40604c 1973 } while (end != vma->vm_end);
cbee9f88 1974 }
6e5fb223 1975
9f40604c 1976out:
6e5fb223 1977 /*
c69307d5
PZ
1978 * It is possible to reach the end of the VMA list but the last few
1979 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1980 * would find the !migratable VMA on the next scan but not reset the
1981 * scanner to the start so check it now.
6e5fb223
PZ
1982 */
1983 if (vma)
9f40604c 1984 mm->numa_scan_offset = start;
6e5fb223
PZ
1985 else
1986 reset_ptenuma_scan(p);
1987 up_read(&mm->mmap_sem);
cbee9f88
PZ
1988}
1989
1990/*
1991 * Drive the periodic memory faults..
1992 */
1993void task_tick_numa(struct rq *rq, struct task_struct *curr)
1994{
1995 struct callback_head *work = &curr->numa_work;
1996 u64 period, now;
1997
1998 /*
1999 * We don't care about NUMA placement if we don't have memory.
2000 */
2001 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2002 return;
2003
2004 /*
2005 * Using runtime rather than walltime has the dual advantage that
2006 * we (mostly) drive the selection from busy threads and that the
2007 * task needs to have done some actual work before we bother with
2008 * NUMA placement.
2009 */
2010 now = curr->se.sum_exec_runtime;
2011 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2012
2013 if (now - curr->node_stamp > period) {
4b96a29b 2014 if (!curr->node_stamp)
598f0ec0 2015 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2016 curr->node_stamp += period;
cbee9f88
PZ
2017
2018 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2019 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2020 task_work_add(curr, work, true);
2021 }
2022 }
2023}
2024#else
2025static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2026{
2027}
0ec8aa00
PZ
2028
2029static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2030{
2031}
2032
2033static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2034{
2035}
cbee9f88
PZ
2036#endif /* CONFIG_NUMA_BALANCING */
2037
30cfdcfc
DA
2038static void
2039account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2040{
2041 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2042 if (!parent_entity(se))
029632fb 2043 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2044#ifdef CONFIG_SMP
0ec8aa00
PZ
2045 if (entity_is_task(se)) {
2046 struct rq *rq = rq_of(cfs_rq);
2047
2048 account_numa_enqueue(rq, task_of(se));
2049 list_add(&se->group_node, &rq->cfs_tasks);
2050 }
367456c7 2051#endif
30cfdcfc 2052 cfs_rq->nr_running++;
30cfdcfc
DA
2053}
2054
2055static void
2056account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2057{
2058 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2059 if (!parent_entity(se))
029632fb 2060 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2061 if (entity_is_task(se)) {
2062 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2063 list_del_init(&se->group_node);
0ec8aa00 2064 }
30cfdcfc 2065 cfs_rq->nr_running--;
30cfdcfc
DA
2066}
2067
3ff6dcac
YZ
2068#ifdef CONFIG_FAIR_GROUP_SCHED
2069# ifdef CONFIG_SMP
cf5f0acf
PZ
2070static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2071{
2072 long tg_weight;
2073
2074 /*
2075 * Use this CPU's actual weight instead of the last load_contribution
2076 * to gain a more accurate current total weight. See
2077 * update_cfs_rq_load_contribution().
2078 */
bf5b986e 2079 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2080 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2081 tg_weight += cfs_rq->load.weight;
2082
2083 return tg_weight;
2084}
2085
6d5ab293 2086static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2087{
cf5f0acf 2088 long tg_weight, load, shares;
3ff6dcac 2089
cf5f0acf 2090 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2091 load = cfs_rq->load.weight;
3ff6dcac 2092
3ff6dcac 2093 shares = (tg->shares * load);
cf5f0acf
PZ
2094 if (tg_weight)
2095 shares /= tg_weight;
3ff6dcac
YZ
2096
2097 if (shares < MIN_SHARES)
2098 shares = MIN_SHARES;
2099 if (shares > tg->shares)
2100 shares = tg->shares;
2101
2102 return shares;
2103}
3ff6dcac 2104# else /* CONFIG_SMP */
6d5ab293 2105static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2106{
2107 return tg->shares;
2108}
3ff6dcac 2109# endif /* CONFIG_SMP */
2069dd75
PZ
2110static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2111 unsigned long weight)
2112{
19e5eebb
PT
2113 if (se->on_rq) {
2114 /* commit outstanding execution time */
2115 if (cfs_rq->curr == se)
2116 update_curr(cfs_rq);
2069dd75 2117 account_entity_dequeue(cfs_rq, se);
19e5eebb 2118 }
2069dd75
PZ
2119
2120 update_load_set(&se->load, weight);
2121
2122 if (se->on_rq)
2123 account_entity_enqueue(cfs_rq, se);
2124}
2125
82958366
PT
2126static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2127
6d5ab293 2128static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2129{
2130 struct task_group *tg;
2131 struct sched_entity *se;
3ff6dcac 2132 long shares;
2069dd75 2133
2069dd75
PZ
2134 tg = cfs_rq->tg;
2135 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2136 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2137 return;
3ff6dcac
YZ
2138#ifndef CONFIG_SMP
2139 if (likely(se->load.weight == tg->shares))
2140 return;
2141#endif
6d5ab293 2142 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2143
2144 reweight_entity(cfs_rq_of(se), se, shares);
2145}
2146#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2147static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2148{
2149}
2150#endif /* CONFIG_FAIR_GROUP_SCHED */
2151
141965c7 2152#ifdef CONFIG_SMP
5b51f2f8
PT
2153/*
2154 * We choose a half-life close to 1 scheduling period.
2155 * Note: The tables below are dependent on this value.
2156 */
2157#define LOAD_AVG_PERIOD 32
2158#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2159#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2160
2161/* Precomputed fixed inverse multiplies for multiplication by y^n */
2162static const u32 runnable_avg_yN_inv[] = {
2163 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2164 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2165 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2166 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2167 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2168 0x85aac367, 0x82cd8698,
2169};
2170
2171/*
2172 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2173 * over-estimates when re-combining.
2174 */
2175static const u32 runnable_avg_yN_sum[] = {
2176 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2177 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2178 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2179};
2180
9d85f21c
PT
2181/*
2182 * Approximate:
2183 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2184 */
2185static __always_inline u64 decay_load(u64 val, u64 n)
2186{
5b51f2f8
PT
2187 unsigned int local_n;
2188
2189 if (!n)
2190 return val;
2191 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2192 return 0;
2193
2194 /* after bounds checking we can collapse to 32-bit */
2195 local_n = n;
2196
2197 /*
2198 * As y^PERIOD = 1/2, we can combine
2199 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2200 * With a look-up table which covers k^n (n<PERIOD)
2201 *
2202 * To achieve constant time decay_load.
2203 */
2204 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2205 val >>= local_n / LOAD_AVG_PERIOD;
2206 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2207 }
2208
5b51f2f8
PT
2209 val *= runnable_avg_yN_inv[local_n];
2210 /* We don't use SRR here since we always want to round down. */
2211 return val >> 32;
2212}
2213
2214/*
2215 * For updates fully spanning n periods, the contribution to runnable
2216 * average will be: \Sum 1024*y^n
2217 *
2218 * We can compute this reasonably efficiently by combining:
2219 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2220 */
2221static u32 __compute_runnable_contrib(u64 n)
2222{
2223 u32 contrib = 0;
2224
2225 if (likely(n <= LOAD_AVG_PERIOD))
2226 return runnable_avg_yN_sum[n];
2227 else if (unlikely(n >= LOAD_AVG_MAX_N))
2228 return LOAD_AVG_MAX;
2229
2230 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2231 do {
2232 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2233 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2234
2235 n -= LOAD_AVG_PERIOD;
2236 } while (n > LOAD_AVG_PERIOD);
2237
2238 contrib = decay_load(contrib, n);
2239 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2240}
2241
2242/*
2243 * We can represent the historical contribution to runnable average as the
2244 * coefficients of a geometric series. To do this we sub-divide our runnable
2245 * history into segments of approximately 1ms (1024us); label the segment that
2246 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2247 *
2248 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2249 * p0 p1 p2
2250 * (now) (~1ms ago) (~2ms ago)
2251 *
2252 * Let u_i denote the fraction of p_i that the entity was runnable.
2253 *
2254 * We then designate the fractions u_i as our co-efficients, yielding the
2255 * following representation of historical load:
2256 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2257 *
2258 * We choose y based on the with of a reasonably scheduling period, fixing:
2259 * y^32 = 0.5
2260 *
2261 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2262 * approximately half as much as the contribution to load within the last ms
2263 * (u_0).
2264 *
2265 * When a period "rolls over" and we have new u_0`, multiplying the previous
2266 * sum again by y is sufficient to update:
2267 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2268 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2269 */
2270static __always_inline int __update_entity_runnable_avg(u64 now,
2271 struct sched_avg *sa,
2272 int runnable)
2273{
5b51f2f8
PT
2274 u64 delta, periods;
2275 u32 runnable_contrib;
9d85f21c
PT
2276 int delta_w, decayed = 0;
2277
2278 delta = now - sa->last_runnable_update;
2279 /*
2280 * This should only happen when time goes backwards, which it
2281 * unfortunately does during sched clock init when we swap over to TSC.
2282 */
2283 if ((s64)delta < 0) {
2284 sa->last_runnable_update = now;
2285 return 0;
2286 }
2287
2288 /*
2289 * Use 1024ns as the unit of measurement since it's a reasonable
2290 * approximation of 1us and fast to compute.
2291 */
2292 delta >>= 10;
2293 if (!delta)
2294 return 0;
2295 sa->last_runnable_update = now;
2296
2297 /* delta_w is the amount already accumulated against our next period */
2298 delta_w = sa->runnable_avg_period % 1024;
2299 if (delta + delta_w >= 1024) {
2300 /* period roll-over */
2301 decayed = 1;
2302
2303 /*
2304 * Now that we know we're crossing a period boundary, figure
2305 * out how much from delta we need to complete the current
2306 * period and accrue it.
2307 */
2308 delta_w = 1024 - delta_w;
5b51f2f8
PT
2309 if (runnable)
2310 sa->runnable_avg_sum += delta_w;
2311 sa->runnable_avg_period += delta_w;
2312
2313 delta -= delta_w;
2314
2315 /* Figure out how many additional periods this update spans */
2316 periods = delta / 1024;
2317 delta %= 1024;
2318
2319 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2320 periods + 1);
2321 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2322 periods + 1);
2323
2324 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2325 runnable_contrib = __compute_runnable_contrib(periods);
2326 if (runnable)
2327 sa->runnable_avg_sum += runnable_contrib;
2328 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2329 }
2330
2331 /* Remainder of delta accrued against u_0` */
2332 if (runnable)
2333 sa->runnable_avg_sum += delta;
2334 sa->runnable_avg_period += delta;
2335
2336 return decayed;
2337}
2338
9ee474f5 2339/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2340static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2341{
2342 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2343 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2344
2345 decays -= se->avg.decay_count;
2346 if (!decays)
aff3e498 2347 return 0;
9ee474f5
PT
2348
2349 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2350 se->avg.decay_count = 0;
aff3e498
PT
2351
2352 return decays;
9ee474f5
PT
2353}
2354
c566e8e9
PT
2355#ifdef CONFIG_FAIR_GROUP_SCHED
2356static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2357 int force_update)
2358{
2359 struct task_group *tg = cfs_rq->tg;
bf5b986e 2360 long tg_contrib;
c566e8e9
PT
2361
2362 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2363 tg_contrib -= cfs_rq->tg_load_contrib;
2364
bf5b986e
AS
2365 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2366 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2367 cfs_rq->tg_load_contrib += tg_contrib;
2368 }
2369}
8165e145 2370
bb17f655
PT
2371/*
2372 * Aggregate cfs_rq runnable averages into an equivalent task_group
2373 * representation for computing load contributions.
2374 */
2375static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2376 struct cfs_rq *cfs_rq)
2377{
2378 struct task_group *tg = cfs_rq->tg;
2379 long contrib;
2380
2381 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2382 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2383 sa->runnable_avg_period + 1);
2384 contrib -= cfs_rq->tg_runnable_contrib;
2385
2386 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2387 atomic_add(contrib, &tg->runnable_avg);
2388 cfs_rq->tg_runnable_contrib += contrib;
2389 }
2390}
2391
8165e145
PT
2392static inline void __update_group_entity_contrib(struct sched_entity *se)
2393{
2394 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2395 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2396 int runnable_avg;
2397
8165e145
PT
2398 u64 contrib;
2399
2400 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2401 se->avg.load_avg_contrib = div_u64(contrib,
2402 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2403
2404 /*
2405 * For group entities we need to compute a correction term in the case
2406 * that they are consuming <1 cpu so that we would contribute the same
2407 * load as a task of equal weight.
2408 *
2409 * Explicitly co-ordinating this measurement would be expensive, but
2410 * fortunately the sum of each cpus contribution forms a usable
2411 * lower-bound on the true value.
2412 *
2413 * Consider the aggregate of 2 contributions. Either they are disjoint
2414 * (and the sum represents true value) or they are disjoint and we are
2415 * understating by the aggregate of their overlap.
2416 *
2417 * Extending this to N cpus, for a given overlap, the maximum amount we
2418 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2419 * cpus that overlap for this interval and w_i is the interval width.
2420 *
2421 * On a small machine; the first term is well-bounded which bounds the
2422 * total error since w_i is a subset of the period. Whereas on a
2423 * larger machine, while this first term can be larger, if w_i is the
2424 * of consequential size guaranteed to see n_i*w_i quickly converge to
2425 * our upper bound of 1-cpu.
2426 */
2427 runnable_avg = atomic_read(&tg->runnable_avg);
2428 if (runnable_avg < NICE_0_LOAD) {
2429 se->avg.load_avg_contrib *= runnable_avg;
2430 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2431 }
8165e145 2432}
f5f9739d
DE
2433
2434static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2435{
2436 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2437 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2438}
6e83125c 2439#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2440static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2441 int force_update) {}
bb17f655
PT
2442static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2443 struct cfs_rq *cfs_rq) {}
8165e145 2444static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2445static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2446#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2447
8165e145
PT
2448static inline void __update_task_entity_contrib(struct sched_entity *se)
2449{
2450 u32 contrib;
2451
2452 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2453 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2454 contrib /= (se->avg.runnable_avg_period + 1);
2455 se->avg.load_avg_contrib = scale_load(contrib);
2456}
2457
2dac754e
PT
2458/* Compute the current contribution to load_avg by se, return any delta */
2459static long __update_entity_load_avg_contrib(struct sched_entity *se)
2460{
2461 long old_contrib = se->avg.load_avg_contrib;
2462
8165e145
PT
2463 if (entity_is_task(se)) {
2464 __update_task_entity_contrib(se);
2465 } else {
bb17f655 2466 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2467 __update_group_entity_contrib(se);
2468 }
2dac754e
PT
2469
2470 return se->avg.load_avg_contrib - old_contrib;
2471}
2472
9ee474f5
PT
2473static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2474 long load_contrib)
2475{
2476 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2477 cfs_rq->blocked_load_avg -= load_contrib;
2478 else
2479 cfs_rq->blocked_load_avg = 0;
2480}
2481
f1b17280
PT
2482static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2483
9d85f21c 2484/* Update a sched_entity's runnable average */
9ee474f5
PT
2485static inline void update_entity_load_avg(struct sched_entity *se,
2486 int update_cfs_rq)
9d85f21c 2487{
2dac754e
PT
2488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2489 long contrib_delta;
f1b17280 2490 u64 now;
2dac754e 2491
f1b17280
PT
2492 /*
2493 * For a group entity we need to use their owned cfs_rq_clock_task() in
2494 * case they are the parent of a throttled hierarchy.
2495 */
2496 if (entity_is_task(se))
2497 now = cfs_rq_clock_task(cfs_rq);
2498 else
2499 now = cfs_rq_clock_task(group_cfs_rq(se));
2500
2501 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2502 return;
2503
2504 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2505
2506 if (!update_cfs_rq)
2507 return;
2508
2dac754e
PT
2509 if (se->on_rq)
2510 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2511 else
2512 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2513}
2514
2515/*
2516 * Decay the load contributed by all blocked children and account this so that
2517 * their contribution may appropriately discounted when they wake up.
2518 */
aff3e498 2519static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2520{
f1b17280 2521 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2522 u64 decays;
2523
2524 decays = now - cfs_rq->last_decay;
aff3e498 2525 if (!decays && !force_update)
9ee474f5
PT
2526 return;
2527
2509940f
AS
2528 if (atomic_long_read(&cfs_rq->removed_load)) {
2529 unsigned long removed_load;
2530 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2531 subtract_blocked_load_contrib(cfs_rq, removed_load);
2532 }
9ee474f5 2533
aff3e498
PT
2534 if (decays) {
2535 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2536 decays);
2537 atomic64_add(decays, &cfs_rq->decay_counter);
2538 cfs_rq->last_decay = now;
2539 }
c566e8e9
PT
2540
2541 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2542}
18bf2805 2543
2dac754e
PT
2544/* Add the load generated by se into cfs_rq's child load-average */
2545static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2546 struct sched_entity *se,
2547 int wakeup)
2dac754e 2548{
aff3e498
PT
2549 /*
2550 * We track migrations using entity decay_count <= 0, on a wake-up
2551 * migration we use a negative decay count to track the remote decays
2552 * accumulated while sleeping.
a75cdaa9
AS
2553 *
2554 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2555 * are seen by enqueue_entity_load_avg() as a migration with an already
2556 * constructed load_avg_contrib.
aff3e498
PT
2557 */
2558 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2559 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2560 if (se->avg.decay_count) {
2561 /*
2562 * In a wake-up migration we have to approximate the
2563 * time sleeping. This is because we can't synchronize
2564 * clock_task between the two cpus, and it is not
2565 * guaranteed to be read-safe. Instead, we can
2566 * approximate this using our carried decays, which are
2567 * explicitly atomically readable.
2568 */
2569 se->avg.last_runnable_update -= (-se->avg.decay_count)
2570 << 20;
2571 update_entity_load_avg(se, 0);
2572 /* Indicate that we're now synchronized and on-rq */
2573 se->avg.decay_count = 0;
2574 }
9ee474f5
PT
2575 wakeup = 0;
2576 } else {
9390675a 2577 __synchronize_entity_decay(se);
9ee474f5
PT
2578 }
2579
aff3e498
PT
2580 /* migrated tasks did not contribute to our blocked load */
2581 if (wakeup) {
9ee474f5 2582 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2583 update_entity_load_avg(se, 0);
2584 }
9ee474f5 2585
2dac754e 2586 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2587 /* we force update consideration on load-balancer moves */
2588 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2589}
2590
9ee474f5
PT
2591/*
2592 * Remove se's load from this cfs_rq child load-average, if the entity is
2593 * transitioning to a blocked state we track its projected decay using
2594 * blocked_load_avg.
2595 */
2dac754e 2596static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2597 struct sched_entity *se,
2598 int sleep)
2dac754e 2599{
9ee474f5 2600 update_entity_load_avg(se, 1);
aff3e498
PT
2601 /* we force update consideration on load-balancer moves */
2602 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2603
2dac754e 2604 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2605 if (sleep) {
2606 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2607 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2608 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2609}
642dbc39
VG
2610
2611/*
2612 * Update the rq's load with the elapsed running time before entering
2613 * idle. if the last scheduled task is not a CFS task, idle_enter will
2614 * be the only way to update the runnable statistic.
2615 */
2616void idle_enter_fair(struct rq *this_rq)
2617{
2618 update_rq_runnable_avg(this_rq, 1);
2619}
2620
2621/*
2622 * Update the rq's load with the elapsed idle time before a task is
2623 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2624 * be the only way to update the runnable statistic.
2625 */
2626void idle_exit_fair(struct rq *this_rq)
2627{
2628 update_rq_runnable_avg(this_rq, 0);
2629}
2630
6e83125c
PZ
2631static int idle_balance(struct rq *this_rq);
2632
38033c37
PZ
2633#else /* CONFIG_SMP */
2634
9ee474f5
PT
2635static inline void update_entity_load_avg(struct sched_entity *se,
2636 int update_cfs_rq) {}
18bf2805 2637static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2638static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2639 struct sched_entity *se,
2640 int wakeup) {}
2dac754e 2641static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2642 struct sched_entity *se,
2643 int sleep) {}
aff3e498
PT
2644static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2645 int force_update) {}
6e83125c
PZ
2646
2647static inline int idle_balance(struct rq *rq)
2648{
2649 return 0;
2650}
2651
38033c37 2652#endif /* CONFIG_SMP */
9d85f21c 2653
2396af69 2654static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2655{
bf0f6f24 2656#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2657 struct task_struct *tsk = NULL;
2658
2659 if (entity_is_task(se))
2660 tsk = task_of(se);
2661
41acab88 2662 if (se->statistics.sleep_start) {
78becc27 2663 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2664
2665 if ((s64)delta < 0)
2666 delta = 0;
2667
41acab88
LDM
2668 if (unlikely(delta > se->statistics.sleep_max))
2669 se->statistics.sleep_max = delta;
bf0f6f24 2670
8c79a045 2671 se->statistics.sleep_start = 0;
41acab88 2672 se->statistics.sum_sleep_runtime += delta;
9745512c 2673
768d0c27 2674 if (tsk) {
e414314c 2675 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2676 trace_sched_stat_sleep(tsk, delta);
2677 }
bf0f6f24 2678 }
41acab88 2679 if (se->statistics.block_start) {
78becc27 2680 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2681
2682 if ((s64)delta < 0)
2683 delta = 0;
2684
41acab88
LDM
2685 if (unlikely(delta > se->statistics.block_max))
2686 se->statistics.block_max = delta;
bf0f6f24 2687
8c79a045 2688 se->statistics.block_start = 0;
41acab88 2689 se->statistics.sum_sleep_runtime += delta;
30084fbd 2690
e414314c 2691 if (tsk) {
8f0dfc34 2692 if (tsk->in_iowait) {
41acab88
LDM
2693 se->statistics.iowait_sum += delta;
2694 se->statistics.iowait_count++;
768d0c27 2695 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2696 }
2697
b781a602
AV
2698 trace_sched_stat_blocked(tsk, delta);
2699
e414314c
PZ
2700 /*
2701 * Blocking time is in units of nanosecs, so shift by
2702 * 20 to get a milliseconds-range estimation of the
2703 * amount of time that the task spent sleeping:
2704 */
2705 if (unlikely(prof_on == SLEEP_PROFILING)) {
2706 profile_hits(SLEEP_PROFILING,
2707 (void *)get_wchan(tsk),
2708 delta >> 20);
2709 }
2710 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2711 }
bf0f6f24
IM
2712 }
2713#endif
2714}
2715
ddc97297
PZ
2716static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2717{
2718#ifdef CONFIG_SCHED_DEBUG
2719 s64 d = se->vruntime - cfs_rq->min_vruntime;
2720
2721 if (d < 0)
2722 d = -d;
2723
2724 if (d > 3*sysctl_sched_latency)
2725 schedstat_inc(cfs_rq, nr_spread_over);
2726#endif
2727}
2728
aeb73b04
PZ
2729static void
2730place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2731{
1af5f730 2732 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2733
2cb8600e
PZ
2734 /*
2735 * The 'current' period is already promised to the current tasks,
2736 * however the extra weight of the new task will slow them down a
2737 * little, place the new task so that it fits in the slot that
2738 * stays open at the end.
2739 */
94dfb5e7 2740 if (initial && sched_feat(START_DEBIT))
f9c0b095 2741 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2742
a2e7a7eb 2743 /* sleeps up to a single latency don't count. */
5ca9880c 2744 if (!initial) {
a2e7a7eb 2745 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2746
a2e7a7eb
MG
2747 /*
2748 * Halve their sleep time's effect, to allow
2749 * for a gentler effect of sleepers:
2750 */
2751 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2752 thresh >>= 1;
51e0304c 2753
a2e7a7eb 2754 vruntime -= thresh;
aeb73b04
PZ
2755 }
2756
b5d9d734 2757 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2758 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2759}
2760
d3d9dc33
PT
2761static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2762
bf0f6f24 2763static void
88ec22d3 2764enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2765{
88ec22d3
PZ
2766 /*
2767 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2768 * through calling update_curr().
88ec22d3 2769 */
371fd7e7 2770 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2771 se->vruntime += cfs_rq->min_vruntime;
2772
bf0f6f24 2773 /*
a2a2d680 2774 * Update run-time statistics of the 'current'.
bf0f6f24 2775 */
b7cc0896 2776 update_curr(cfs_rq);
f269ae04 2777 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2778 account_entity_enqueue(cfs_rq, se);
2779 update_cfs_shares(cfs_rq);
bf0f6f24 2780
88ec22d3 2781 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2782 place_entity(cfs_rq, se, 0);
2396af69 2783 enqueue_sleeper(cfs_rq, se);
e9acbff6 2784 }
bf0f6f24 2785
d2417e5a 2786 update_stats_enqueue(cfs_rq, se);
ddc97297 2787 check_spread(cfs_rq, se);
83b699ed
SV
2788 if (se != cfs_rq->curr)
2789 __enqueue_entity(cfs_rq, se);
2069dd75 2790 se->on_rq = 1;
3d4b47b4 2791
d3d9dc33 2792 if (cfs_rq->nr_running == 1) {
3d4b47b4 2793 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2794 check_enqueue_throttle(cfs_rq);
2795 }
bf0f6f24
IM
2796}
2797
2c13c919 2798static void __clear_buddies_last(struct sched_entity *se)
2002c695 2799{
2c13c919
RR
2800 for_each_sched_entity(se) {
2801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2802 if (cfs_rq->last != se)
2c13c919 2803 break;
f1044799
PZ
2804
2805 cfs_rq->last = NULL;
2c13c919
RR
2806 }
2807}
2002c695 2808
2c13c919
RR
2809static void __clear_buddies_next(struct sched_entity *se)
2810{
2811 for_each_sched_entity(se) {
2812 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2813 if (cfs_rq->next != se)
2c13c919 2814 break;
f1044799
PZ
2815
2816 cfs_rq->next = NULL;
2c13c919 2817 }
2002c695
PZ
2818}
2819
ac53db59
RR
2820static void __clear_buddies_skip(struct sched_entity *se)
2821{
2822 for_each_sched_entity(se) {
2823 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2824 if (cfs_rq->skip != se)
ac53db59 2825 break;
f1044799
PZ
2826
2827 cfs_rq->skip = NULL;
ac53db59
RR
2828 }
2829}
2830
a571bbea
PZ
2831static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2832{
2c13c919
RR
2833 if (cfs_rq->last == se)
2834 __clear_buddies_last(se);
2835
2836 if (cfs_rq->next == se)
2837 __clear_buddies_next(se);
ac53db59
RR
2838
2839 if (cfs_rq->skip == se)
2840 __clear_buddies_skip(se);
a571bbea
PZ
2841}
2842
6c16a6dc 2843static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2844
bf0f6f24 2845static void
371fd7e7 2846dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2847{
a2a2d680
DA
2848 /*
2849 * Update run-time statistics of the 'current'.
2850 */
2851 update_curr(cfs_rq);
17bc14b7 2852 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2853
19b6a2e3 2854 update_stats_dequeue(cfs_rq, se);
371fd7e7 2855 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2856#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2857 if (entity_is_task(se)) {
2858 struct task_struct *tsk = task_of(se);
2859
2860 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2861 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2862 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2863 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2864 }
db36cc7d 2865#endif
67e9fb2a
PZ
2866 }
2867
2002c695 2868 clear_buddies(cfs_rq, se);
4793241b 2869
83b699ed 2870 if (se != cfs_rq->curr)
30cfdcfc 2871 __dequeue_entity(cfs_rq, se);
17bc14b7 2872 se->on_rq = 0;
30cfdcfc 2873 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2874
2875 /*
2876 * Normalize the entity after updating the min_vruntime because the
2877 * update can refer to the ->curr item and we need to reflect this
2878 * movement in our normalized position.
2879 */
371fd7e7 2880 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2881 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2882
d8b4986d
PT
2883 /* return excess runtime on last dequeue */
2884 return_cfs_rq_runtime(cfs_rq);
2885
1e876231 2886 update_min_vruntime(cfs_rq);
17bc14b7 2887 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2888}
2889
2890/*
2891 * Preempt the current task with a newly woken task if needed:
2892 */
7c92e54f 2893static void
2e09bf55 2894check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2895{
11697830 2896 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2897 struct sched_entity *se;
2898 s64 delta;
11697830 2899
6d0f0ebd 2900 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2901 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2902 if (delta_exec > ideal_runtime) {
bf0f6f24 2903 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2904 /*
2905 * The current task ran long enough, ensure it doesn't get
2906 * re-elected due to buddy favours.
2907 */
2908 clear_buddies(cfs_rq, curr);
f685ceac
MG
2909 return;
2910 }
2911
2912 /*
2913 * Ensure that a task that missed wakeup preemption by a
2914 * narrow margin doesn't have to wait for a full slice.
2915 * This also mitigates buddy induced latencies under load.
2916 */
f685ceac
MG
2917 if (delta_exec < sysctl_sched_min_granularity)
2918 return;
2919
f4cfb33e
WX
2920 se = __pick_first_entity(cfs_rq);
2921 delta = curr->vruntime - se->vruntime;
f685ceac 2922
f4cfb33e
WX
2923 if (delta < 0)
2924 return;
d7d82944 2925
f4cfb33e
WX
2926 if (delta > ideal_runtime)
2927 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2928}
2929
83b699ed 2930static void
8494f412 2931set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2932{
83b699ed
SV
2933 /* 'current' is not kept within the tree. */
2934 if (se->on_rq) {
2935 /*
2936 * Any task has to be enqueued before it get to execute on
2937 * a CPU. So account for the time it spent waiting on the
2938 * runqueue.
2939 */
2940 update_stats_wait_end(cfs_rq, se);
2941 __dequeue_entity(cfs_rq, se);
2942 }
2943
79303e9e 2944 update_stats_curr_start(cfs_rq, se);
429d43bc 2945 cfs_rq->curr = se;
eba1ed4b
IM
2946#ifdef CONFIG_SCHEDSTATS
2947 /*
2948 * Track our maximum slice length, if the CPU's load is at
2949 * least twice that of our own weight (i.e. dont track it
2950 * when there are only lesser-weight tasks around):
2951 */
495eca49 2952 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2953 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2954 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2955 }
2956#endif
4a55b450 2957 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2958}
2959
3f3a4904
PZ
2960static int
2961wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2962
ac53db59
RR
2963/*
2964 * Pick the next process, keeping these things in mind, in this order:
2965 * 1) keep things fair between processes/task groups
2966 * 2) pick the "next" process, since someone really wants that to run
2967 * 3) pick the "last" process, for cache locality
2968 * 4) do not run the "skip" process, if something else is available
2969 */
678d5718
PZ
2970static struct sched_entity *
2971pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2972{
678d5718
PZ
2973 struct sched_entity *left = __pick_first_entity(cfs_rq);
2974 struct sched_entity *se;
2975
2976 /*
2977 * If curr is set we have to see if its left of the leftmost entity
2978 * still in the tree, provided there was anything in the tree at all.
2979 */
2980 if (!left || (curr && entity_before(curr, left)))
2981 left = curr;
2982
2983 se = left; /* ideally we run the leftmost entity */
f4b6755f 2984
ac53db59
RR
2985 /*
2986 * Avoid running the skip buddy, if running something else can
2987 * be done without getting too unfair.
2988 */
2989 if (cfs_rq->skip == se) {
678d5718
PZ
2990 struct sched_entity *second;
2991
2992 if (se == curr) {
2993 second = __pick_first_entity(cfs_rq);
2994 } else {
2995 second = __pick_next_entity(se);
2996 if (!second || (curr && entity_before(curr, second)))
2997 second = curr;
2998 }
2999
ac53db59
RR
3000 if (second && wakeup_preempt_entity(second, left) < 1)
3001 se = second;
3002 }
aa2ac252 3003
f685ceac
MG
3004 /*
3005 * Prefer last buddy, try to return the CPU to a preempted task.
3006 */
3007 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3008 se = cfs_rq->last;
3009
ac53db59
RR
3010 /*
3011 * Someone really wants this to run. If it's not unfair, run it.
3012 */
3013 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3014 se = cfs_rq->next;
3015
f685ceac 3016 clear_buddies(cfs_rq, se);
4793241b
PZ
3017
3018 return se;
aa2ac252
PZ
3019}
3020
678d5718 3021static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3022
ab6cde26 3023static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3024{
3025 /*
3026 * If still on the runqueue then deactivate_task()
3027 * was not called and update_curr() has to be done:
3028 */
3029 if (prev->on_rq)
b7cc0896 3030 update_curr(cfs_rq);
bf0f6f24 3031
d3d9dc33
PT
3032 /* throttle cfs_rqs exceeding runtime */
3033 check_cfs_rq_runtime(cfs_rq);
3034
ddc97297 3035 check_spread(cfs_rq, prev);
30cfdcfc 3036 if (prev->on_rq) {
5870db5b 3037 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3038 /* Put 'current' back into the tree. */
3039 __enqueue_entity(cfs_rq, prev);
9d85f21c 3040 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3041 update_entity_load_avg(prev, 1);
30cfdcfc 3042 }
429d43bc 3043 cfs_rq->curr = NULL;
bf0f6f24
IM
3044}
3045
8f4d37ec
PZ
3046static void
3047entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3048{
bf0f6f24 3049 /*
30cfdcfc 3050 * Update run-time statistics of the 'current'.
bf0f6f24 3051 */
30cfdcfc 3052 update_curr(cfs_rq);
bf0f6f24 3053
9d85f21c
PT
3054 /*
3055 * Ensure that runnable average is periodically updated.
3056 */
9ee474f5 3057 update_entity_load_avg(curr, 1);
aff3e498 3058 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3059 update_cfs_shares(cfs_rq);
9d85f21c 3060
8f4d37ec
PZ
3061#ifdef CONFIG_SCHED_HRTICK
3062 /*
3063 * queued ticks are scheduled to match the slice, so don't bother
3064 * validating it and just reschedule.
3065 */
983ed7a6
HH
3066 if (queued) {
3067 resched_task(rq_of(cfs_rq)->curr);
3068 return;
3069 }
8f4d37ec
PZ
3070 /*
3071 * don't let the period tick interfere with the hrtick preemption
3072 */
3073 if (!sched_feat(DOUBLE_TICK) &&
3074 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3075 return;
3076#endif
3077
2c2efaed 3078 if (cfs_rq->nr_running > 1)
2e09bf55 3079 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3080}
3081
ab84d31e
PT
3082
3083/**************************************************
3084 * CFS bandwidth control machinery
3085 */
3086
3087#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3088
3089#ifdef HAVE_JUMP_LABEL
c5905afb 3090static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3091
3092static inline bool cfs_bandwidth_used(void)
3093{
c5905afb 3094 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3095}
3096
1ee14e6c 3097void cfs_bandwidth_usage_inc(void)
029632fb 3098{
1ee14e6c
BS
3099 static_key_slow_inc(&__cfs_bandwidth_used);
3100}
3101
3102void cfs_bandwidth_usage_dec(void)
3103{
3104 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3105}
3106#else /* HAVE_JUMP_LABEL */
3107static bool cfs_bandwidth_used(void)
3108{
3109 return true;
3110}
3111
1ee14e6c
BS
3112void cfs_bandwidth_usage_inc(void) {}
3113void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3114#endif /* HAVE_JUMP_LABEL */
3115
ab84d31e
PT
3116/*
3117 * default period for cfs group bandwidth.
3118 * default: 0.1s, units: nanoseconds
3119 */
3120static inline u64 default_cfs_period(void)
3121{
3122 return 100000000ULL;
3123}
ec12cb7f
PT
3124
3125static inline u64 sched_cfs_bandwidth_slice(void)
3126{
3127 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3128}
3129
a9cf55b2
PT
3130/*
3131 * Replenish runtime according to assigned quota and update expiration time.
3132 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3133 * additional synchronization around rq->lock.
3134 *
3135 * requires cfs_b->lock
3136 */
029632fb 3137void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3138{
3139 u64 now;
3140
3141 if (cfs_b->quota == RUNTIME_INF)
3142 return;
3143
3144 now = sched_clock_cpu(smp_processor_id());
3145 cfs_b->runtime = cfs_b->quota;
3146 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3147}
3148
029632fb
PZ
3149static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3150{
3151 return &tg->cfs_bandwidth;
3152}
3153
f1b17280
PT
3154/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3155static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3156{
3157 if (unlikely(cfs_rq->throttle_count))
3158 return cfs_rq->throttled_clock_task;
3159
78becc27 3160 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3161}
3162
85dac906
PT
3163/* returns 0 on failure to allocate runtime */
3164static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3165{
3166 struct task_group *tg = cfs_rq->tg;
3167 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3168 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3169
3170 /* note: this is a positive sum as runtime_remaining <= 0 */
3171 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 if (cfs_b->quota == RUNTIME_INF)
3175 amount = min_amount;
58088ad0 3176 else {
a9cf55b2
PT
3177 /*
3178 * If the bandwidth pool has become inactive, then at least one
3179 * period must have elapsed since the last consumption.
3180 * Refresh the global state and ensure bandwidth timer becomes
3181 * active.
3182 */
3183 if (!cfs_b->timer_active) {
3184 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3185 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3186 }
58088ad0
PT
3187
3188 if (cfs_b->runtime > 0) {
3189 amount = min(cfs_b->runtime, min_amount);
3190 cfs_b->runtime -= amount;
3191 cfs_b->idle = 0;
3192 }
ec12cb7f 3193 }
a9cf55b2 3194 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3195 raw_spin_unlock(&cfs_b->lock);
3196
3197 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3198 /*
3199 * we may have advanced our local expiration to account for allowed
3200 * spread between our sched_clock and the one on which runtime was
3201 * issued.
3202 */
3203 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3204 cfs_rq->runtime_expires = expires;
85dac906
PT
3205
3206 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3207}
3208
a9cf55b2
PT
3209/*
3210 * Note: This depends on the synchronization provided by sched_clock and the
3211 * fact that rq->clock snapshots this value.
3212 */
3213static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3214{
a9cf55b2 3215 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3216
3217 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3218 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3219 return;
3220
a9cf55b2
PT
3221 if (cfs_rq->runtime_remaining < 0)
3222 return;
3223
3224 /*
3225 * If the local deadline has passed we have to consider the
3226 * possibility that our sched_clock is 'fast' and the global deadline
3227 * has not truly expired.
3228 *
3229 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3230 * whether the global deadline has advanced. It is valid to compare
3231 * cfs_b->runtime_expires without any locks since we only care about
3232 * exact equality, so a partial write will still work.
a9cf55b2
PT
3233 */
3234
51f2176d 3235 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3236 /* extend local deadline, drift is bounded above by 2 ticks */
3237 cfs_rq->runtime_expires += TICK_NSEC;
3238 } else {
3239 /* global deadline is ahead, expiration has passed */
3240 cfs_rq->runtime_remaining = 0;
3241 }
3242}
3243
9dbdb155 3244static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3245{
3246 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3247 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3248 expire_cfs_rq_runtime(cfs_rq);
3249
3250 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3251 return;
3252
85dac906
PT
3253 /*
3254 * if we're unable to extend our runtime we resched so that the active
3255 * hierarchy can be throttled
3256 */
3257 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3258 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3259}
3260
6c16a6dc 3261static __always_inline
9dbdb155 3262void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3263{
56f570e5 3264 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3265 return;
3266
3267 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3268}
3269
85dac906
PT
3270static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3271{
56f570e5 3272 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3273}
3274
64660c86
PT
3275/* check whether cfs_rq, or any parent, is throttled */
3276static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3277{
56f570e5 3278 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3279}
3280
3281/*
3282 * Ensure that neither of the group entities corresponding to src_cpu or
3283 * dest_cpu are members of a throttled hierarchy when performing group
3284 * load-balance operations.
3285 */
3286static inline int throttled_lb_pair(struct task_group *tg,
3287 int src_cpu, int dest_cpu)
3288{
3289 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3290
3291 src_cfs_rq = tg->cfs_rq[src_cpu];
3292 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3293
3294 return throttled_hierarchy(src_cfs_rq) ||
3295 throttled_hierarchy(dest_cfs_rq);
3296}
3297
3298/* updated child weight may affect parent so we have to do this bottom up */
3299static int tg_unthrottle_up(struct task_group *tg, void *data)
3300{
3301 struct rq *rq = data;
3302 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3303
3304 cfs_rq->throttle_count--;
3305#ifdef CONFIG_SMP
3306 if (!cfs_rq->throttle_count) {
f1b17280 3307 /* adjust cfs_rq_clock_task() */
78becc27 3308 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3309 cfs_rq->throttled_clock_task;
64660c86
PT
3310 }
3311#endif
3312
3313 return 0;
3314}
3315
3316static int tg_throttle_down(struct task_group *tg, void *data)
3317{
3318 struct rq *rq = data;
3319 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3320
82958366
PT
3321 /* group is entering throttled state, stop time */
3322 if (!cfs_rq->throttle_count)
78becc27 3323 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3324 cfs_rq->throttle_count++;
3325
3326 return 0;
3327}
3328
d3d9dc33 3329static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3330{
3331 struct rq *rq = rq_of(cfs_rq);
3332 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3333 struct sched_entity *se;
3334 long task_delta, dequeue = 1;
3335
3336 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3337
f1b17280 3338 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3339 rcu_read_lock();
3340 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3341 rcu_read_unlock();
85dac906
PT
3342
3343 task_delta = cfs_rq->h_nr_running;
3344 for_each_sched_entity(se) {
3345 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3346 /* throttled entity or throttle-on-deactivate */
3347 if (!se->on_rq)
3348 break;
3349
3350 if (dequeue)
3351 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3352 qcfs_rq->h_nr_running -= task_delta;
3353
3354 if (qcfs_rq->load.weight)
3355 dequeue = 0;
3356 }
3357
3358 if (!se)
72465447 3359 sub_nr_running(rq, task_delta);
85dac906
PT
3360
3361 cfs_rq->throttled = 1;
78becc27 3362 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3363 raw_spin_lock(&cfs_b->lock);
3364 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3365 if (!cfs_b->timer_active)
09dc4ab0 3366 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3367 raw_spin_unlock(&cfs_b->lock);
3368}
3369
029632fb 3370void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3371{
3372 struct rq *rq = rq_of(cfs_rq);
3373 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3374 struct sched_entity *se;
3375 int enqueue = 1;
3376 long task_delta;
3377
22b958d8 3378 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3379
3380 cfs_rq->throttled = 0;
1a55af2e
FW
3381
3382 update_rq_clock(rq);
3383
671fd9da 3384 raw_spin_lock(&cfs_b->lock);
78becc27 3385 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3386 list_del_rcu(&cfs_rq->throttled_list);
3387 raw_spin_unlock(&cfs_b->lock);
3388
64660c86
PT
3389 /* update hierarchical throttle state */
3390 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3391
671fd9da
PT
3392 if (!cfs_rq->load.weight)
3393 return;
3394
3395 task_delta = cfs_rq->h_nr_running;
3396 for_each_sched_entity(se) {
3397 if (se->on_rq)
3398 enqueue = 0;
3399
3400 cfs_rq = cfs_rq_of(se);
3401 if (enqueue)
3402 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3403 cfs_rq->h_nr_running += task_delta;
3404
3405 if (cfs_rq_throttled(cfs_rq))
3406 break;
3407 }
3408
3409 if (!se)
72465447 3410 add_nr_running(rq, task_delta);
671fd9da
PT
3411
3412 /* determine whether we need to wake up potentially idle cpu */
3413 if (rq->curr == rq->idle && rq->cfs.nr_running)
3414 resched_task(rq->curr);
3415}
3416
3417static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3418 u64 remaining, u64 expires)
3419{
3420 struct cfs_rq *cfs_rq;
3421 u64 runtime = remaining;
3422
3423 rcu_read_lock();
3424 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3425 throttled_list) {
3426 struct rq *rq = rq_of(cfs_rq);
3427
3428 raw_spin_lock(&rq->lock);
3429 if (!cfs_rq_throttled(cfs_rq))
3430 goto next;
3431
3432 runtime = -cfs_rq->runtime_remaining + 1;
3433 if (runtime > remaining)
3434 runtime = remaining;
3435 remaining -= runtime;
3436
3437 cfs_rq->runtime_remaining += runtime;
3438 cfs_rq->runtime_expires = expires;
3439
3440 /* we check whether we're throttled above */
3441 if (cfs_rq->runtime_remaining > 0)
3442 unthrottle_cfs_rq(cfs_rq);
3443
3444next:
3445 raw_spin_unlock(&rq->lock);
3446
3447 if (!remaining)
3448 break;
3449 }
3450 rcu_read_unlock();
3451
3452 return remaining;
3453}
3454
58088ad0
PT
3455/*
3456 * Responsible for refilling a task_group's bandwidth and unthrottling its
3457 * cfs_rqs as appropriate. If there has been no activity within the last
3458 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3459 * used to track this state.
3460 */
3461static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3462{
671fd9da 3463 u64 runtime, runtime_expires;
51f2176d 3464 int throttled;
58088ad0 3465
58088ad0
PT
3466 /* no need to continue the timer with no bandwidth constraint */
3467 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3468 goto out_deactivate;
58088ad0 3469
671fd9da 3470 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3471 cfs_b->nr_periods += overrun;
671fd9da 3472
51f2176d
BS
3473 /*
3474 * idle depends on !throttled (for the case of a large deficit), and if
3475 * we're going inactive then everything else can be deferred
3476 */
3477 if (cfs_b->idle && !throttled)
3478 goto out_deactivate;
a9cf55b2 3479
927b54fc
BS
3480 /*
3481 * if we have relooped after returning idle once, we need to update our
3482 * status as actually running, so that other cpus doing
3483 * __start_cfs_bandwidth will stop trying to cancel us.
3484 */
3485 cfs_b->timer_active = 1;
3486
a9cf55b2
PT
3487 __refill_cfs_bandwidth_runtime(cfs_b);
3488
671fd9da
PT
3489 if (!throttled) {
3490 /* mark as potentially idle for the upcoming period */
3491 cfs_b->idle = 1;
51f2176d 3492 return 0;
671fd9da
PT
3493 }
3494
e8da1b18
NR
3495 /* account preceding periods in which throttling occurred */
3496 cfs_b->nr_throttled += overrun;
3497
671fd9da
PT
3498 /*
3499 * There are throttled entities so we must first use the new bandwidth
3500 * to unthrottle them before making it generally available. This
3501 * ensures that all existing debts will be paid before a new cfs_rq is
3502 * allowed to run.
3503 */
3504 runtime = cfs_b->runtime;
3505 runtime_expires = cfs_b->runtime_expires;
3506 cfs_b->runtime = 0;
3507
3508 /*
3509 * This check is repeated as we are holding onto the new bandwidth
3510 * while we unthrottle. This can potentially race with an unthrottled
3511 * group trying to acquire new bandwidth from the global pool.
3512 */
3513 while (throttled && runtime > 0) {
3514 raw_spin_unlock(&cfs_b->lock);
3515 /* we can't nest cfs_b->lock while distributing bandwidth */
3516 runtime = distribute_cfs_runtime(cfs_b, runtime,
3517 runtime_expires);
3518 raw_spin_lock(&cfs_b->lock);
3519
3520 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3521 }
58088ad0 3522
671fd9da
PT
3523 /* return (any) remaining runtime */
3524 cfs_b->runtime = runtime;
3525 /*
3526 * While we are ensured activity in the period following an
3527 * unthrottle, this also covers the case in which the new bandwidth is
3528 * insufficient to cover the existing bandwidth deficit. (Forcing the
3529 * timer to remain active while there are any throttled entities.)
3530 */
3531 cfs_b->idle = 0;
58088ad0 3532
51f2176d
BS
3533 return 0;
3534
3535out_deactivate:
3536 cfs_b->timer_active = 0;
3537 return 1;
58088ad0 3538}
d3d9dc33 3539
d8b4986d
PT
3540/* a cfs_rq won't donate quota below this amount */
3541static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3542/* minimum remaining period time to redistribute slack quota */
3543static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3544/* how long we wait to gather additional slack before distributing */
3545static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3546
db06e78c
BS
3547/*
3548 * Are we near the end of the current quota period?
3549 *
3550 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3551 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3552 * migrate_hrtimers, base is never cleared, so we are fine.
3553 */
d8b4986d
PT
3554static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3555{
3556 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3557 u64 remaining;
3558
3559 /* if the call-back is running a quota refresh is already occurring */
3560 if (hrtimer_callback_running(refresh_timer))
3561 return 1;
3562
3563 /* is a quota refresh about to occur? */
3564 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3565 if (remaining < min_expire)
3566 return 1;
3567
3568 return 0;
3569}
3570
3571static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3572{
3573 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3574
3575 /* if there's a quota refresh soon don't bother with slack */
3576 if (runtime_refresh_within(cfs_b, min_left))
3577 return;
3578
3579 start_bandwidth_timer(&cfs_b->slack_timer,
3580 ns_to_ktime(cfs_bandwidth_slack_period));
3581}
3582
3583/* we know any runtime found here is valid as update_curr() precedes return */
3584static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3585{
3586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3587 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3588
3589 if (slack_runtime <= 0)
3590 return;
3591
3592 raw_spin_lock(&cfs_b->lock);
3593 if (cfs_b->quota != RUNTIME_INF &&
3594 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3595 cfs_b->runtime += slack_runtime;
3596
3597 /* we are under rq->lock, defer unthrottling using a timer */
3598 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3599 !list_empty(&cfs_b->throttled_cfs_rq))
3600 start_cfs_slack_bandwidth(cfs_b);
3601 }
3602 raw_spin_unlock(&cfs_b->lock);
3603
3604 /* even if it's not valid for return we don't want to try again */
3605 cfs_rq->runtime_remaining -= slack_runtime;
3606}
3607
3608static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3609{
56f570e5
PT
3610 if (!cfs_bandwidth_used())
3611 return;
3612
fccfdc6f 3613 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3614 return;
3615
3616 __return_cfs_rq_runtime(cfs_rq);
3617}
3618
3619/*
3620 * This is done with a timer (instead of inline with bandwidth return) since
3621 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3622 */
3623static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3624{
3625 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3626 u64 expires;
3627
3628 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3629 raw_spin_lock(&cfs_b->lock);
3630 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3631 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3632 return;
db06e78c 3633 }
d8b4986d 3634
d8b4986d
PT
3635 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3636 runtime = cfs_b->runtime;
3637 cfs_b->runtime = 0;
3638 }
3639 expires = cfs_b->runtime_expires;
3640 raw_spin_unlock(&cfs_b->lock);
3641
3642 if (!runtime)
3643 return;
3644
3645 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3646
3647 raw_spin_lock(&cfs_b->lock);
3648 if (expires == cfs_b->runtime_expires)
3649 cfs_b->runtime = runtime;
3650 raw_spin_unlock(&cfs_b->lock);
3651}
3652
d3d9dc33
PT
3653/*
3654 * When a group wakes up we want to make sure that its quota is not already
3655 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3656 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3657 */
3658static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3659{
56f570e5
PT
3660 if (!cfs_bandwidth_used())
3661 return;
3662
d3d9dc33
PT
3663 /* an active group must be handled by the update_curr()->put() path */
3664 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3665 return;
3666
3667 /* ensure the group is not already throttled */
3668 if (cfs_rq_throttled(cfs_rq))
3669 return;
3670
3671 /* update runtime allocation */
3672 account_cfs_rq_runtime(cfs_rq, 0);
3673 if (cfs_rq->runtime_remaining <= 0)
3674 throttle_cfs_rq(cfs_rq);
3675}
3676
3677/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3678static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3679{
56f570e5 3680 if (!cfs_bandwidth_used())
678d5718 3681 return false;
56f570e5 3682
d3d9dc33 3683 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3684 return false;
d3d9dc33
PT
3685
3686 /*
3687 * it's possible for a throttled entity to be forced into a running
3688 * state (e.g. set_curr_task), in this case we're finished.
3689 */
3690 if (cfs_rq_throttled(cfs_rq))
678d5718 3691 return true;
d3d9dc33
PT
3692
3693 throttle_cfs_rq(cfs_rq);
678d5718 3694 return true;
d3d9dc33 3695}
029632fb 3696
029632fb
PZ
3697static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3698{
3699 struct cfs_bandwidth *cfs_b =
3700 container_of(timer, struct cfs_bandwidth, slack_timer);
3701 do_sched_cfs_slack_timer(cfs_b);
3702
3703 return HRTIMER_NORESTART;
3704}
3705
3706static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3707{
3708 struct cfs_bandwidth *cfs_b =
3709 container_of(timer, struct cfs_bandwidth, period_timer);
3710 ktime_t now;
3711 int overrun;
3712 int idle = 0;
3713
51f2176d 3714 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3715 for (;;) {
3716 now = hrtimer_cb_get_time(timer);
3717 overrun = hrtimer_forward(timer, now, cfs_b->period);
3718
3719 if (!overrun)
3720 break;
3721
3722 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3723 }
51f2176d 3724 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3725
3726 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3727}
3728
3729void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3730{
3731 raw_spin_lock_init(&cfs_b->lock);
3732 cfs_b->runtime = 0;
3733 cfs_b->quota = RUNTIME_INF;
3734 cfs_b->period = ns_to_ktime(default_cfs_period());
3735
3736 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3737 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3738 cfs_b->period_timer.function = sched_cfs_period_timer;
3739 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3740 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3741}
3742
3743static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3744{
3745 cfs_rq->runtime_enabled = 0;
3746 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3747}
3748
3749/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3750void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3751{
3752 /*
3753 * The timer may be active because we're trying to set a new bandwidth
3754 * period or because we're racing with the tear-down path
3755 * (timer_active==0 becomes visible before the hrtimer call-back
3756 * terminates). In either case we ensure that it's re-programmed
3757 */
927b54fc
BS
3758 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3759 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3760 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3761 raw_spin_unlock(&cfs_b->lock);
927b54fc 3762 cpu_relax();
029632fb
PZ
3763 raw_spin_lock(&cfs_b->lock);
3764 /* if someone else restarted the timer then we're done */
09dc4ab0 3765 if (!force && cfs_b->timer_active)
029632fb
PZ
3766 return;
3767 }
3768
3769 cfs_b->timer_active = 1;
3770 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3771}
3772
3773static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3774{
3775 hrtimer_cancel(&cfs_b->period_timer);
3776 hrtimer_cancel(&cfs_b->slack_timer);
3777}
3778
38dc3348 3779static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3780{
3781 struct cfs_rq *cfs_rq;
3782
3783 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3784 if (!cfs_rq->runtime_enabled)
3785 continue;
3786
3787 /*
3788 * clock_task is not advancing so we just need to make sure
3789 * there's some valid quota amount
3790 */
51f2176d 3791 cfs_rq->runtime_remaining = 1;
029632fb
PZ
3792 if (cfs_rq_throttled(cfs_rq))
3793 unthrottle_cfs_rq(cfs_rq);
3794 }
3795}
3796
3797#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3798static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3799{
78becc27 3800 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3801}
3802
9dbdb155 3803static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3804static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3805static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3806static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3807
3808static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3809{
3810 return 0;
3811}
64660c86
PT
3812
3813static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3814{
3815 return 0;
3816}
3817
3818static inline int throttled_lb_pair(struct task_group *tg,
3819 int src_cpu, int dest_cpu)
3820{
3821 return 0;
3822}
029632fb
PZ
3823
3824void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3825
3826#ifdef CONFIG_FAIR_GROUP_SCHED
3827static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3828#endif
3829
029632fb
PZ
3830static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3831{
3832 return NULL;
3833}
3834static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3835static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3836
3837#endif /* CONFIG_CFS_BANDWIDTH */
3838
bf0f6f24
IM
3839/**************************************************
3840 * CFS operations on tasks:
3841 */
3842
8f4d37ec
PZ
3843#ifdef CONFIG_SCHED_HRTICK
3844static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3845{
8f4d37ec
PZ
3846 struct sched_entity *se = &p->se;
3847 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3848
3849 WARN_ON(task_rq(p) != rq);
3850
b39e66ea 3851 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3852 u64 slice = sched_slice(cfs_rq, se);
3853 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3854 s64 delta = slice - ran;
3855
3856 if (delta < 0) {
3857 if (rq->curr == p)
3858 resched_task(p);
3859 return;
3860 }
3861
3862 /*
3863 * Don't schedule slices shorter than 10000ns, that just
3864 * doesn't make sense. Rely on vruntime for fairness.
3865 */
31656519 3866 if (rq->curr != p)
157124c1 3867 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3868
31656519 3869 hrtick_start(rq, delta);
8f4d37ec
PZ
3870 }
3871}
a4c2f00f
PZ
3872
3873/*
3874 * called from enqueue/dequeue and updates the hrtick when the
3875 * current task is from our class and nr_running is low enough
3876 * to matter.
3877 */
3878static void hrtick_update(struct rq *rq)
3879{
3880 struct task_struct *curr = rq->curr;
3881
b39e66ea 3882 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3883 return;
3884
3885 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3886 hrtick_start_fair(rq, curr);
3887}
55e12e5e 3888#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3889static inline void
3890hrtick_start_fair(struct rq *rq, struct task_struct *p)
3891{
3892}
a4c2f00f
PZ
3893
3894static inline void hrtick_update(struct rq *rq)
3895{
3896}
8f4d37ec
PZ
3897#endif
3898
bf0f6f24
IM
3899/*
3900 * The enqueue_task method is called before nr_running is
3901 * increased. Here we update the fair scheduling stats and
3902 * then put the task into the rbtree:
3903 */
ea87bb78 3904static void
371fd7e7 3905enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3906{
3907 struct cfs_rq *cfs_rq;
62fb1851 3908 struct sched_entity *se = &p->se;
bf0f6f24
IM
3909
3910 for_each_sched_entity(se) {
62fb1851 3911 if (se->on_rq)
bf0f6f24
IM
3912 break;
3913 cfs_rq = cfs_rq_of(se);
88ec22d3 3914 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3915
3916 /*
3917 * end evaluation on encountering a throttled cfs_rq
3918 *
3919 * note: in the case of encountering a throttled cfs_rq we will
3920 * post the final h_nr_running increment below.
3921 */
3922 if (cfs_rq_throttled(cfs_rq))
3923 break;
953bfcd1 3924 cfs_rq->h_nr_running++;
85dac906 3925
88ec22d3 3926 flags = ENQUEUE_WAKEUP;
bf0f6f24 3927 }
8f4d37ec 3928
2069dd75 3929 for_each_sched_entity(se) {
0f317143 3930 cfs_rq = cfs_rq_of(se);
953bfcd1 3931 cfs_rq->h_nr_running++;
2069dd75 3932
85dac906
PT
3933 if (cfs_rq_throttled(cfs_rq))
3934 break;
3935
17bc14b7 3936 update_cfs_shares(cfs_rq);
9ee474f5 3937 update_entity_load_avg(se, 1);
2069dd75
PZ
3938 }
3939
18bf2805
BS
3940 if (!se) {
3941 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3942 add_nr_running(rq, 1);
18bf2805 3943 }
a4c2f00f 3944 hrtick_update(rq);
bf0f6f24
IM
3945}
3946
2f36825b
VP
3947static void set_next_buddy(struct sched_entity *se);
3948
bf0f6f24
IM
3949/*
3950 * The dequeue_task method is called before nr_running is
3951 * decreased. We remove the task from the rbtree and
3952 * update the fair scheduling stats:
3953 */
371fd7e7 3954static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3955{
3956 struct cfs_rq *cfs_rq;
62fb1851 3957 struct sched_entity *se = &p->se;
2f36825b 3958 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3959
3960 for_each_sched_entity(se) {
3961 cfs_rq = cfs_rq_of(se);
371fd7e7 3962 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3963
3964 /*
3965 * end evaluation on encountering a throttled cfs_rq
3966 *
3967 * note: in the case of encountering a throttled cfs_rq we will
3968 * post the final h_nr_running decrement below.
3969 */
3970 if (cfs_rq_throttled(cfs_rq))
3971 break;
953bfcd1 3972 cfs_rq->h_nr_running--;
2069dd75 3973
bf0f6f24 3974 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3975 if (cfs_rq->load.weight) {
3976 /*
3977 * Bias pick_next to pick a task from this cfs_rq, as
3978 * p is sleeping when it is within its sched_slice.
3979 */
3980 if (task_sleep && parent_entity(se))
3981 set_next_buddy(parent_entity(se));
9598c82d
PT
3982
3983 /* avoid re-evaluating load for this entity */
3984 se = parent_entity(se);
bf0f6f24 3985 break;
2f36825b 3986 }
371fd7e7 3987 flags |= DEQUEUE_SLEEP;
bf0f6f24 3988 }
8f4d37ec 3989
2069dd75 3990 for_each_sched_entity(se) {
0f317143 3991 cfs_rq = cfs_rq_of(se);
953bfcd1 3992 cfs_rq->h_nr_running--;
2069dd75 3993
85dac906
PT
3994 if (cfs_rq_throttled(cfs_rq))
3995 break;
3996
17bc14b7 3997 update_cfs_shares(cfs_rq);
9ee474f5 3998 update_entity_load_avg(se, 1);
2069dd75
PZ
3999 }
4000
18bf2805 4001 if (!se) {
72465447 4002 sub_nr_running(rq, 1);
18bf2805
BS
4003 update_rq_runnable_avg(rq, 1);
4004 }
a4c2f00f 4005 hrtick_update(rq);
bf0f6f24
IM
4006}
4007
e7693a36 4008#ifdef CONFIG_SMP
029632fb
PZ
4009/* Used instead of source_load when we know the type == 0 */
4010static unsigned long weighted_cpuload(const int cpu)
4011{
b92486cb 4012 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4013}
4014
4015/*
4016 * Return a low guess at the load of a migration-source cpu weighted
4017 * according to the scheduling class and "nice" value.
4018 *
4019 * We want to under-estimate the load of migration sources, to
4020 * balance conservatively.
4021 */
4022static unsigned long source_load(int cpu, int type)
4023{
4024 struct rq *rq = cpu_rq(cpu);
4025 unsigned long total = weighted_cpuload(cpu);
4026
4027 if (type == 0 || !sched_feat(LB_BIAS))
4028 return total;
4029
4030 return min(rq->cpu_load[type-1], total);
4031}
4032
4033/*
4034 * Return a high guess at the load of a migration-target cpu weighted
4035 * according to the scheduling class and "nice" value.
4036 */
4037static unsigned long target_load(int cpu, int type)
4038{
4039 struct rq *rq = cpu_rq(cpu);
4040 unsigned long total = weighted_cpuload(cpu);
4041
4042 if (type == 0 || !sched_feat(LB_BIAS))
4043 return total;
4044
4045 return max(rq->cpu_load[type-1], total);
4046}
4047
ced549fa 4048static unsigned long capacity_of(int cpu)
029632fb 4049{
ced549fa 4050 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4051}
4052
4053static unsigned long cpu_avg_load_per_task(int cpu)
4054{
4055 struct rq *rq = cpu_rq(cpu);
4056 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4057 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4058
4059 if (nr_running)
b92486cb 4060 return load_avg / nr_running;
029632fb
PZ
4061
4062 return 0;
4063}
4064
62470419
MW
4065static void record_wakee(struct task_struct *p)
4066{
4067 /*
4068 * Rough decay (wiping) for cost saving, don't worry
4069 * about the boundary, really active task won't care
4070 * about the loss.
4071 */
2538d960 4072 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4073 current->wakee_flips >>= 1;
62470419
MW
4074 current->wakee_flip_decay_ts = jiffies;
4075 }
4076
4077 if (current->last_wakee != p) {
4078 current->last_wakee = p;
4079 current->wakee_flips++;
4080 }
4081}
098fb9db 4082
74f8e4b2 4083static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4084{
4085 struct sched_entity *se = &p->se;
4086 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4087 u64 min_vruntime;
4088
4089#ifndef CONFIG_64BIT
4090 u64 min_vruntime_copy;
88ec22d3 4091
3fe1698b
PZ
4092 do {
4093 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4094 smp_rmb();
4095 min_vruntime = cfs_rq->min_vruntime;
4096 } while (min_vruntime != min_vruntime_copy);
4097#else
4098 min_vruntime = cfs_rq->min_vruntime;
4099#endif
88ec22d3 4100
3fe1698b 4101 se->vruntime -= min_vruntime;
62470419 4102 record_wakee(p);
88ec22d3
PZ
4103}
4104
bb3469ac 4105#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4106/*
4107 * effective_load() calculates the load change as seen from the root_task_group
4108 *
4109 * Adding load to a group doesn't make a group heavier, but can cause movement
4110 * of group shares between cpus. Assuming the shares were perfectly aligned one
4111 * can calculate the shift in shares.
cf5f0acf
PZ
4112 *
4113 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4114 * on this @cpu and results in a total addition (subtraction) of @wg to the
4115 * total group weight.
4116 *
4117 * Given a runqueue weight distribution (rw_i) we can compute a shares
4118 * distribution (s_i) using:
4119 *
4120 * s_i = rw_i / \Sum rw_j (1)
4121 *
4122 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4123 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4124 * shares distribution (s_i):
4125 *
4126 * rw_i = { 2, 4, 1, 0 }
4127 * s_i = { 2/7, 4/7, 1/7, 0 }
4128 *
4129 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4130 * task used to run on and the CPU the waker is running on), we need to
4131 * compute the effect of waking a task on either CPU and, in case of a sync
4132 * wakeup, compute the effect of the current task going to sleep.
4133 *
4134 * So for a change of @wl to the local @cpu with an overall group weight change
4135 * of @wl we can compute the new shares distribution (s'_i) using:
4136 *
4137 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4138 *
4139 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4140 * differences in waking a task to CPU 0. The additional task changes the
4141 * weight and shares distributions like:
4142 *
4143 * rw'_i = { 3, 4, 1, 0 }
4144 * s'_i = { 3/8, 4/8, 1/8, 0 }
4145 *
4146 * We can then compute the difference in effective weight by using:
4147 *
4148 * dw_i = S * (s'_i - s_i) (3)
4149 *
4150 * Where 'S' is the group weight as seen by its parent.
4151 *
4152 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4153 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4154 * 4/7) times the weight of the group.
f5bfb7d9 4155 */
2069dd75 4156static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4157{
4be9daaa 4158 struct sched_entity *se = tg->se[cpu];
f1d239f7 4159
9722c2da 4160 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4161 return wl;
4162
4be9daaa 4163 for_each_sched_entity(se) {
cf5f0acf 4164 long w, W;
4be9daaa 4165
977dda7c 4166 tg = se->my_q->tg;
bb3469ac 4167
cf5f0acf
PZ
4168 /*
4169 * W = @wg + \Sum rw_j
4170 */
4171 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4172
cf5f0acf
PZ
4173 /*
4174 * w = rw_i + @wl
4175 */
4176 w = se->my_q->load.weight + wl;
940959e9 4177
cf5f0acf
PZ
4178 /*
4179 * wl = S * s'_i; see (2)
4180 */
4181 if (W > 0 && w < W)
4182 wl = (w * tg->shares) / W;
977dda7c
PT
4183 else
4184 wl = tg->shares;
940959e9 4185
cf5f0acf
PZ
4186 /*
4187 * Per the above, wl is the new se->load.weight value; since
4188 * those are clipped to [MIN_SHARES, ...) do so now. See
4189 * calc_cfs_shares().
4190 */
977dda7c
PT
4191 if (wl < MIN_SHARES)
4192 wl = MIN_SHARES;
cf5f0acf
PZ
4193
4194 /*
4195 * wl = dw_i = S * (s'_i - s_i); see (3)
4196 */
977dda7c 4197 wl -= se->load.weight;
cf5f0acf
PZ
4198
4199 /*
4200 * Recursively apply this logic to all parent groups to compute
4201 * the final effective load change on the root group. Since
4202 * only the @tg group gets extra weight, all parent groups can
4203 * only redistribute existing shares. @wl is the shift in shares
4204 * resulting from this level per the above.
4205 */
4be9daaa 4206 wg = 0;
4be9daaa 4207 }
bb3469ac 4208
4be9daaa 4209 return wl;
bb3469ac
PZ
4210}
4211#else
4be9daaa 4212
58d081b5 4213static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4214{
83378269 4215 return wl;
bb3469ac 4216}
4be9daaa 4217
bb3469ac
PZ
4218#endif
4219
62470419
MW
4220static int wake_wide(struct task_struct *p)
4221{
7d9ffa89 4222 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4223
4224 /*
4225 * Yeah, it's the switching-frequency, could means many wakee or
4226 * rapidly switch, use factor here will just help to automatically
4227 * adjust the loose-degree, so bigger node will lead to more pull.
4228 */
4229 if (p->wakee_flips > factor) {
4230 /*
4231 * wakee is somewhat hot, it needs certain amount of cpu
4232 * resource, so if waker is far more hot, prefer to leave
4233 * it alone.
4234 */
4235 if (current->wakee_flips > (factor * p->wakee_flips))
4236 return 1;
4237 }
4238
4239 return 0;
4240}
4241
c88d5910 4242static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4243{
e37b6a7b 4244 s64 this_load, load;
c88d5910 4245 int idx, this_cpu, prev_cpu;
098fb9db 4246 unsigned long tl_per_task;
c88d5910 4247 struct task_group *tg;
83378269 4248 unsigned long weight;
b3137bc8 4249 int balanced;
098fb9db 4250
62470419
MW
4251 /*
4252 * If we wake multiple tasks be careful to not bounce
4253 * ourselves around too much.
4254 */
4255 if (wake_wide(p))
4256 return 0;
4257
c88d5910
PZ
4258 idx = sd->wake_idx;
4259 this_cpu = smp_processor_id();
4260 prev_cpu = task_cpu(p);
4261 load = source_load(prev_cpu, idx);
4262 this_load = target_load(this_cpu, idx);
098fb9db 4263
b3137bc8
MG
4264 /*
4265 * If sync wakeup then subtract the (maximum possible)
4266 * effect of the currently running task from the load
4267 * of the current CPU:
4268 */
83378269
PZ
4269 if (sync) {
4270 tg = task_group(current);
4271 weight = current->se.load.weight;
4272
c88d5910 4273 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4274 load += effective_load(tg, prev_cpu, 0, -weight);
4275 }
b3137bc8 4276
83378269
PZ
4277 tg = task_group(p);
4278 weight = p->se.load.weight;
b3137bc8 4279
71a29aa7
PZ
4280 /*
4281 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4282 * due to the sync cause above having dropped this_load to 0, we'll
4283 * always have an imbalance, but there's really nothing you can do
4284 * about that, so that's good too.
71a29aa7
PZ
4285 *
4286 * Otherwise check if either cpus are near enough in load to allow this
4287 * task to be woken on this_cpu.
4288 */
e37b6a7b
PT
4289 if (this_load > 0) {
4290 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4291
4292 this_eff_load = 100;
ced549fa 4293 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4294 this_eff_load *= this_load +
4295 effective_load(tg, this_cpu, weight, weight);
4296
4297 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4298 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4299 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4300
4301 balanced = this_eff_load <= prev_eff_load;
4302 } else
4303 balanced = true;
b3137bc8 4304
098fb9db 4305 /*
4ae7d5ce
IM
4306 * If the currently running task will sleep within
4307 * a reasonable amount of time then attract this newly
4308 * woken task:
098fb9db 4309 */
2fb7635c
PZ
4310 if (sync && balanced)
4311 return 1;
098fb9db 4312
41acab88 4313 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4314 tl_per_task = cpu_avg_load_per_task(this_cpu);
4315
c88d5910
PZ
4316 if (balanced ||
4317 (this_load <= load &&
4318 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4319 /*
4320 * This domain has SD_WAKE_AFFINE and
4321 * p is cache cold in this domain, and
4322 * there is no bad imbalance.
4323 */
c88d5910 4324 schedstat_inc(sd, ttwu_move_affine);
41acab88 4325 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4326
4327 return 1;
4328 }
4329 return 0;
4330}
4331
aaee1203
PZ
4332/*
4333 * find_idlest_group finds and returns the least busy CPU group within the
4334 * domain.
4335 */
4336static struct sched_group *
78e7ed53 4337find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4338 int this_cpu, int sd_flag)
e7693a36 4339{
b3bd3de6 4340 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4341 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4342 int load_idx = sd->forkexec_idx;
aaee1203 4343 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4344
c44f2a02
VG
4345 if (sd_flag & SD_BALANCE_WAKE)
4346 load_idx = sd->wake_idx;
4347
aaee1203
PZ
4348 do {
4349 unsigned long load, avg_load;
4350 int local_group;
4351 int i;
e7693a36 4352
aaee1203
PZ
4353 /* Skip over this group if it has no CPUs allowed */
4354 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4355 tsk_cpus_allowed(p)))
aaee1203
PZ
4356 continue;
4357
4358 local_group = cpumask_test_cpu(this_cpu,
4359 sched_group_cpus(group));
4360
4361 /* Tally up the load of all CPUs in the group */
4362 avg_load = 0;
4363
4364 for_each_cpu(i, sched_group_cpus(group)) {
4365 /* Bias balancing toward cpus of our domain */
4366 if (local_group)
4367 load = source_load(i, load_idx);
4368 else
4369 load = target_load(i, load_idx);
4370
4371 avg_load += load;
4372 }
4373
63b2ca30 4374 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4375 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4376
4377 if (local_group) {
4378 this_load = avg_load;
aaee1203
PZ
4379 } else if (avg_load < min_load) {
4380 min_load = avg_load;
4381 idlest = group;
4382 }
4383 } while (group = group->next, group != sd->groups);
4384
4385 if (!idlest || 100*this_load < imbalance*min_load)
4386 return NULL;
4387 return idlest;
4388}
4389
4390/*
4391 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4392 */
4393static int
4394find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4395{
4396 unsigned long load, min_load = ULONG_MAX;
4397 int idlest = -1;
4398 int i;
4399
4400 /* Traverse only the allowed CPUs */
fa17b507 4401 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4402 load = weighted_cpuload(i);
4403
4404 if (load < min_load || (load == min_load && i == this_cpu)) {
4405 min_load = load;
4406 idlest = i;
e7693a36
GH
4407 }
4408 }
4409
aaee1203
PZ
4410 return idlest;
4411}
e7693a36 4412
a50bde51
PZ
4413/*
4414 * Try and locate an idle CPU in the sched_domain.
4415 */
99bd5e2f 4416static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4417{
99bd5e2f 4418 struct sched_domain *sd;
37407ea7 4419 struct sched_group *sg;
e0a79f52 4420 int i = task_cpu(p);
a50bde51 4421
e0a79f52
MG
4422 if (idle_cpu(target))
4423 return target;
99bd5e2f
SS
4424
4425 /*
e0a79f52 4426 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4427 */
e0a79f52
MG
4428 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4429 return i;
a50bde51
PZ
4430
4431 /*
37407ea7 4432 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4433 */
518cd623 4434 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4435 for_each_lower_domain(sd) {
37407ea7
LT
4436 sg = sd->groups;
4437 do {
4438 if (!cpumask_intersects(sched_group_cpus(sg),
4439 tsk_cpus_allowed(p)))
4440 goto next;
4441
4442 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4443 if (i == target || !idle_cpu(i))
37407ea7
LT
4444 goto next;
4445 }
970e1789 4446
37407ea7
LT
4447 target = cpumask_first_and(sched_group_cpus(sg),
4448 tsk_cpus_allowed(p));
4449 goto done;
4450next:
4451 sg = sg->next;
4452 } while (sg != sd->groups);
4453 }
4454done:
a50bde51
PZ
4455 return target;
4456}
4457
aaee1203 4458/*
de91b9cb
MR
4459 * select_task_rq_fair: Select target runqueue for the waking task in domains
4460 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4461 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4462 *
de91b9cb
MR
4463 * Balances load by selecting the idlest cpu in the idlest group, or under
4464 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4465 *
de91b9cb 4466 * Returns the target cpu number.
aaee1203
PZ
4467 *
4468 * preempt must be disabled.
4469 */
0017d735 4470static int
ac66f547 4471select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4472{
29cd8bae 4473 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4474 int cpu = smp_processor_id();
c88d5910 4475 int new_cpu = cpu;
99bd5e2f 4476 int want_affine = 0;
5158f4e4 4477 int sync = wake_flags & WF_SYNC;
c88d5910 4478
29baa747 4479 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4480 return prev_cpu;
4481
0763a660 4482 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4483 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4484 want_affine = 1;
4485 new_cpu = prev_cpu;
4486 }
aaee1203 4487
dce840a0 4488 rcu_read_lock();
aaee1203 4489 for_each_domain(cpu, tmp) {
e4f42888
PZ
4490 if (!(tmp->flags & SD_LOAD_BALANCE))
4491 continue;
4492
fe3bcfe1 4493 /*
99bd5e2f
SS
4494 * If both cpu and prev_cpu are part of this domain,
4495 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4496 */
99bd5e2f
SS
4497 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4498 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4499 affine_sd = tmp;
29cd8bae 4500 break;
f03542a7 4501 }
29cd8bae 4502
f03542a7 4503 if (tmp->flags & sd_flag)
29cd8bae
PZ
4504 sd = tmp;
4505 }
4506
8bf21433
RR
4507 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4508 prev_cpu = cpu;
dce840a0 4509
8bf21433 4510 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4511 new_cpu = select_idle_sibling(p, prev_cpu);
4512 goto unlock;
8b911acd 4513 }
e7693a36 4514
aaee1203
PZ
4515 while (sd) {
4516 struct sched_group *group;
c88d5910 4517 int weight;
098fb9db 4518
0763a660 4519 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4520 sd = sd->child;
4521 continue;
4522 }
098fb9db 4523
c44f2a02 4524 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4525 if (!group) {
4526 sd = sd->child;
4527 continue;
4528 }
4ae7d5ce 4529
d7c33c49 4530 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4531 if (new_cpu == -1 || new_cpu == cpu) {
4532 /* Now try balancing at a lower domain level of cpu */
4533 sd = sd->child;
4534 continue;
e7693a36 4535 }
aaee1203
PZ
4536
4537 /* Now try balancing at a lower domain level of new_cpu */
4538 cpu = new_cpu;
669c55e9 4539 weight = sd->span_weight;
aaee1203
PZ
4540 sd = NULL;
4541 for_each_domain(cpu, tmp) {
669c55e9 4542 if (weight <= tmp->span_weight)
aaee1203 4543 break;
0763a660 4544 if (tmp->flags & sd_flag)
aaee1203
PZ
4545 sd = tmp;
4546 }
4547 /* while loop will break here if sd == NULL */
e7693a36 4548 }
dce840a0
PZ
4549unlock:
4550 rcu_read_unlock();
e7693a36 4551
c88d5910 4552 return new_cpu;
e7693a36 4553}
0a74bef8
PT
4554
4555/*
4556 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4557 * cfs_rq_of(p) references at time of call are still valid and identify the
4558 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4559 * other assumptions, including the state of rq->lock, should be made.
4560 */
4561static void
4562migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4563{
aff3e498
PT
4564 struct sched_entity *se = &p->se;
4565 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4566
4567 /*
4568 * Load tracking: accumulate removed load so that it can be processed
4569 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4570 * to blocked load iff they have a positive decay-count. It can never
4571 * be negative here since on-rq tasks have decay-count == 0.
4572 */
4573 if (se->avg.decay_count) {
4574 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4575 atomic_long_add(se->avg.load_avg_contrib,
4576 &cfs_rq->removed_load);
aff3e498 4577 }
3944a927
BS
4578
4579 /* We have migrated, no longer consider this task hot */
4580 se->exec_start = 0;
0a74bef8 4581}
e7693a36
GH
4582#endif /* CONFIG_SMP */
4583
e52fb7c0
PZ
4584static unsigned long
4585wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4586{
4587 unsigned long gran = sysctl_sched_wakeup_granularity;
4588
4589 /*
e52fb7c0
PZ
4590 * Since its curr running now, convert the gran from real-time
4591 * to virtual-time in his units.
13814d42
MG
4592 *
4593 * By using 'se' instead of 'curr' we penalize light tasks, so
4594 * they get preempted easier. That is, if 'se' < 'curr' then
4595 * the resulting gran will be larger, therefore penalizing the
4596 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4597 * be smaller, again penalizing the lighter task.
4598 *
4599 * This is especially important for buddies when the leftmost
4600 * task is higher priority than the buddy.
0bbd3336 4601 */
f4ad9bd2 4602 return calc_delta_fair(gran, se);
0bbd3336
PZ
4603}
4604
464b7527
PZ
4605/*
4606 * Should 'se' preempt 'curr'.
4607 *
4608 * |s1
4609 * |s2
4610 * |s3
4611 * g
4612 * |<--->|c
4613 *
4614 * w(c, s1) = -1
4615 * w(c, s2) = 0
4616 * w(c, s3) = 1
4617 *
4618 */
4619static int
4620wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4621{
4622 s64 gran, vdiff = curr->vruntime - se->vruntime;
4623
4624 if (vdiff <= 0)
4625 return -1;
4626
e52fb7c0 4627 gran = wakeup_gran(curr, se);
464b7527
PZ
4628 if (vdiff > gran)
4629 return 1;
4630
4631 return 0;
4632}
4633
02479099
PZ
4634static void set_last_buddy(struct sched_entity *se)
4635{
69c80f3e
VP
4636 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4637 return;
4638
4639 for_each_sched_entity(se)
4640 cfs_rq_of(se)->last = se;
02479099
PZ
4641}
4642
4643static void set_next_buddy(struct sched_entity *se)
4644{
69c80f3e
VP
4645 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4646 return;
4647
4648 for_each_sched_entity(se)
4649 cfs_rq_of(se)->next = se;
02479099
PZ
4650}
4651
ac53db59
RR
4652static void set_skip_buddy(struct sched_entity *se)
4653{
69c80f3e
VP
4654 for_each_sched_entity(se)
4655 cfs_rq_of(se)->skip = se;
ac53db59
RR
4656}
4657
bf0f6f24
IM
4658/*
4659 * Preempt the current task with a newly woken task if needed:
4660 */
5a9b86f6 4661static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4662{
4663 struct task_struct *curr = rq->curr;
8651a86c 4664 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4665 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4666 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4667 int next_buddy_marked = 0;
bf0f6f24 4668
4ae7d5ce
IM
4669 if (unlikely(se == pse))
4670 return;
4671
5238cdd3 4672 /*
ddcdf6e7 4673 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4674 * unconditionally check_prempt_curr() after an enqueue (which may have
4675 * lead to a throttle). This both saves work and prevents false
4676 * next-buddy nomination below.
4677 */
4678 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4679 return;
4680
2f36825b 4681 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4682 set_next_buddy(pse);
2f36825b
VP
4683 next_buddy_marked = 1;
4684 }
57fdc26d 4685
aec0a514
BR
4686 /*
4687 * We can come here with TIF_NEED_RESCHED already set from new task
4688 * wake up path.
5238cdd3
PT
4689 *
4690 * Note: this also catches the edge-case of curr being in a throttled
4691 * group (e.g. via set_curr_task), since update_curr() (in the
4692 * enqueue of curr) will have resulted in resched being set. This
4693 * prevents us from potentially nominating it as a false LAST_BUDDY
4694 * below.
aec0a514
BR
4695 */
4696 if (test_tsk_need_resched(curr))
4697 return;
4698
a2f5c9ab
DH
4699 /* Idle tasks are by definition preempted by non-idle tasks. */
4700 if (unlikely(curr->policy == SCHED_IDLE) &&
4701 likely(p->policy != SCHED_IDLE))
4702 goto preempt;
4703
91c234b4 4704 /*
a2f5c9ab
DH
4705 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4706 * is driven by the tick):
91c234b4 4707 */
8ed92e51 4708 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4709 return;
bf0f6f24 4710
464b7527 4711 find_matching_se(&se, &pse);
9bbd7374 4712 update_curr(cfs_rq_of(se));
002f128b 4713 BUG_ON(!pse);
2f36825b
VP
4714 if (wakeup_preempt_entity(se, pse) == 1) {
4715 /*
4716 * Bias pick_next to pick the sched entity that is
4717 * triggering this preemption.
4718 */
4719 if (!next_buddy_marked)
4720 set_next_buddy(pse);
3a7e73a2 4721 goto preempt;
2f36825b 4722 }
464b7527 4723
3a7e73a2 4724 return;
a65ac745 4725
3a7e73a2
PZ
4726preempt:
4727 resched_task(curr);
4728 /*
4729 * Only set the backward buddy when the current task is still
4730 * on the rq. This can happen when a wakeup gets interleaved
4731 * with schedule on the ->pre_schedule() or idle_balance()
4732 * point, either of which can * drop the rq lock.
4733 *
4734 * Also, during early boot the idle thread is in the fair class,
4735 * for obvious reasons its a bad idea to schedule back to it.
4736 */
4737 if (unlikely(!se->on_rq || curr == rq->idle))
4738 return;
4739
4740 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4741 set_last_buddy(se);
bf0f6f24
IM
4742}
4743
606dba2e
PZ
4744static struct task_struct *
4745pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4746{
4747 struct cfs_rq *cfs_rq = &rq->cfs;
4748 struct sched_entity *se;
678d5718 4749 struct task_struct *p;
37e117c0 4750 int new_tasks;
678d5718 4751
6e83125c 4752again:
678d5718
PZ
4753#ifdef CONFIG_FAIR_GROUP_SCHED
4754 if (!cfs_rq->nr_running)
38033c37 4755 goto idle;
678d5718 4756
3f1d2a31 4757 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4758 goto simple;
4759
4760 /*
4761 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4762 * likely that a next task is from the same cgroup as the current.
4763 *
4764 * Therefore attempt to avoid putting and setting the entire cgroup
4765 * hierarchy, only change the part that actually changes.
4766 */
4767
4768 do {
4769 struct sched_entity *curr = cfs_rq->curr;
4770
4771 /*
4772 * Since we got here without doing put_prev_entity() we also
4773 * have to consider cfs_rq->curr. If it is still a runnable
4774 * entity, update_curr() will update its vruntime, otherwise
4775 * forget we've ever seen it.
4776 */
4777 if (curr && curr->on_rq)
4778 update_curr(cfs_rq);
4779 else
4780 curr = NULL;
4781
4782 /*
4783 * This call to check_cfs_rq_runtime() will do the throttle and
4784 * dequeue its entity in the parent(s). Therefore the 'simple'
4785 * nr_running test will indeed be correct.
4786 */
4787 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4788 goto simple;
4789
4790 se = pick_next_entity(cfs_rq, curr);
4791 cfs_rq = group_cfs_rq(se);
4792 } while (cfs_rq);
4793
4794 p = task_of(se);
4795
4796 /*
4797 * Since we haven't yet done put_prev_entity and if the selected task
4798 * is a different task than we started out with, try and touch the
4799 * least amount of cfs_rqs.
4800 */
4801 if (prev != p) {
4802 struct sched_entity *pse = &prev->se;
4803
4804 while (!(cfs_rq = is_same_group(se, pse))) {
4805 int se_depth = se->depth;
4806 int pse_depth = pse->depth;
4807
4808 if (se_depth <= pse_depth) {
4809 put_prev_entity(cfs_rq_of(pse), pse);
4810 pse = parent_entity(pse);
4811 }
4812 if (se_depth >= pse_depth) {
4813 set_next_entity(cfs_rq_of(se), se);
4814 se = parent_entity(se);
4815 }
4816 }
4817
4818 put_prev_entity(cfs_rq, pse);
4819 set_next_entity(cfs_rq, se);
4820 }
4821
4822 if (hrtick_enabled(rq))
4823 hrtick_start_fair(rq, p);
4824
4825 return p;
4826simple:
4827 cfs_rq = &rq->cfs;
4828#endif
bf0f6f24 4829
36ace27e 4830 if (!cfs_rq->nr_running)
38033c37 4831 goto idle;
bf0f6f24 4832
3f1d2a31 4833 put_prev_task(rq, prev);
606dba2e 4834
bf0f6f24 4835 do {
678d5718 4836 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4837 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4838 cfs_rq = group_cfs_rq(se);
4839 } while (cfs_rq);
4840
8f4d37ec 4841 p = task_of(se);
678d5718 4842
b39e66ea
MG
4843 if (hrtick_enabled(rq))
4844 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4845
4846 return p;
38033c37
PZ
4847
4848idle:
e4aa358b 4849 new_tasks = idle_balance(rq);
37e117c0
PZ
4850 /*
4851 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4852 * possible for any higher priority task to appear. In that case we
4853 * must re-start the pick_next_entity() loop.
4854 */
e4aa358b 4855 if (new_tasks < 0)
37e117c0
PZ
4856 return RETRY_TASK;
4857
e4aa358b 4858 if (new_tasks > 0)
38033c37 4859 goto again;
38033c37
PZ
4860
4861 return NULL;
bf0f6f24
IM
4862}
4863
4864/*
4865 * Account for a descheduled task:
4866 */
31ee529c 4867static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4868{
4869 struct sched_entity *se = &prev->se;
4870 struct cfs_rq *cfs_rq;
4871
4872 for_each_sched_entity(se) {
4873 cfs_rq = cfs_rq_of(se);
ab6cde26 4874 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4875 }
4876}
4877
ac53db59
RR
4878/*
4879 * sched_yield() is very simple
4880 *
4881 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4882 */
4883static void yield_task_fair(struct rq *rq)
4884{
4885 struct task_struct *curr = rq->curr;
4886 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4887 struct sched_entity *se = &curr->se;
4888
4889 /*
4890 * Are we the only task in the tree?
4891 */
4892 if (unlikely(rq->nr_running == 1))
4893 return;
4894
4895 clear_buddies(cfs_rq, se);
4896
4897 if (curr->policy != SCHED_BATCH) {
4898 update_rq_clock(rq);
4899 /*
4900 * Update run-time statistics of the 'current'.
4901 */
4902 update_curr(cfs_rq);
916671c0
MG
4903 /*
4904 * Tell update_rq_clock() that we've just updated,
4905 * so we don't do microscopic update in schedule()
4906 * and double the fastpath cost.
4907 */
4908 rq->skip_clock_update = 1;
ac53db59
RR
4909 }
4910
4911 set_skip_buddy(se);
4912}
4913
d95f4122
MG
4914static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4915{
4916 struct sched_entity *se = &p->se;
4917
5238cdd3
PT
4918 /* throttled hierarchies are not runnable */
4919 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4920 return false;
4921
4922 /* Tell the scheduler that we'd really like pse to run next. */
4923 set_next_buddy(se);
4924
d95f4122
MG
4925 yield_task_fair(rq);
4926
4927 return true;
4928}
4929
681f3e68 4930#ifdef CONFIG_SMP
bf0f6f24 4931/**************************************************
e9c84cb8
PZ
4932 * Fair scheduling class load-balancing methods.
4933 *
4934 * BASICS
4935 *
4936 * The purpose of load-balancing is to achieve the same basic fairness the
4937 * per-cpu scheduler provides, namely provide a proportional amount of compute
4938 * time to each task. This is expressed in the following equation:
4939 *
4940 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4941 *
4942 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4943 * W_i,0 is defined as:
4944 *
4945 * W_i,0 = \Sum_j w_i,j (2)
4946 *
4947 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4948 * is derived from the nice value as per prio_to_weight[].
4949 *
4950 * The weight average is an exponential decay average of the instantaneous
4951 * weight:
4952 *
4953 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4954 *
ced549fa 4955 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4956 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4957 * can also include other factors [XXX].
4958 *
4959 * To achieve this balance we define a measure of imbalance which follows
4960 * directly from (1):
4961 *
ced549fa 4962 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4963 *
4964 * We them move tasks around to minimize the imbalance. In the continuous
4965 * function space it is obvious this converges, in the discrete case we get
4966 * a few fun cases generally called infeasible weight scenarios.
4967 *
4968 * [XXX expand on:
4969 * - infeasible weights;
4970 * - local vs global optima in the discrete case. ]
4971 *
4972 *
4973 * SCHED DOMAINS
4974 *
4975 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4976 * for all i,j solution, we create a tree of cpus that follows the hardware
4977 * topology where each level pairs two lower groups (or better). This results
4978 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4979 * tree to only the first of the previous level and we decrease the frequency
4980 * of load-balance at each level inv. proportional to the number of cpus in
4981 * the groups.
4982 *
4983 * This yields:
4984 *
4985 * log_2 n 1 n
4986 * \Sum { --- * --- * 2^i } = O(n) (5)
4987 * i = 0 2^i 2^i
4988 * `- size of each group
4989 * | | `- number of cpus doing load-balance
4990 * | `- freq
4991 * `- sum over all levels
4992 *
4993 * Coupled with a limit on how many tasks we can migrate every balance pass,
4994 * this makes (5) the runtime complexity of the balancer.
4995 *
4996 * An important property here is that each CPU is still (indirectly) connected
4997 * to every other cpu in at most O(log n) steps:
4998 *
4999 * The adjacency matrix of the resulting graph is given by:
5000 *
5001 * log_2 n
5002 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5003 * k = 0
5004 *
5005 * And you'll find that:
5006 *
5007 * A^(log_2 n)_i,j != 0 for all i,j (7)
5008 *
5009 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5010 * The task movement gives a factor of O(m), giving a convergence complexity
5011 * of:
5012 *
5013 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5014 *
5015 *
5016 * WORK CONSERVING
5017 *
5018 * In order to avoid CPUs going idle while there's still work to do, new idle
5019 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5020 * tree itself instead of relying on other CPUs to bring it work.
5021 *
5022 * This adds some complexity to both (5) and (8) but it reduces the total idle
5023 * time.
5024 *
5025 * [XXX more?]
5026 *
5027 *
5028 * CGROUPS
5029 *
5030 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5031 *
5032 * s_k,i
5033 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5034 * S_k
5035 *
5036 * Where
5037 *
5038 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5039 *
5040 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5041 *
5042 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5043 * property.
5044 *
5045 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5046 * rewrite all of this once again.]
5047 */
bf0f6f24 5048
ed387b78
HS
5049static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5050
0ec8aa00
PZ
5051enum fbq_type { regular, remote, all };
5052
ddcdf6e7 5053#define LBF_ALL_PINNED 0x01
367456c7 5054#define LBF_NEED_BREAK 0x02
6263322c
PZ
5055#define LBF_DST_PINNED 0x04
5056#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5057
5058struct lb_env {
5059 struct sched_domain *sd;
5060
ddcdf6e7 5061 struct rq *src_rq;
85c1e7da 5062 int src_cpu;
ddcdf6e7
PZ
5063
5064 int dst_cpu;
5065 struct rq *dst_rq;
5066
88b8dac0
SV
5067 struct cpumask *dst_grpmask;
5068 int new_dst_cpu;
ddcdf6e7 5069 enum cpu_idle_type idle;
bd939f45 5070 long imbalance;
b9403130
MW
5071 /* The set of CPUs under consideration for load-balancing */
5072 struct cpumask *cpus;
5073
ddcdf6e7 5074 unsigned int flags;
367456c7
PZ
5075
5076 unsigned int loop;
5077 unsigned int loop_break;
5078 unsigned int loop_max;
0ec8aa00
PZ
5079
5080 enum fbq_type fbq_type;
ddcdf6e7
PZ
5081};
5082
1e3c88bd 5083/*
ddcdf6e7 5084 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5085 * Both runqueues must be locked.
5086 */
ddcdf6e7 5087static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5088{
ddcdf6e7
PZ
5089 deactivate_task(env->src_rq, p, 0);
5090 set_task_cpu(p, env->dst_cpu);
5091 activate_task(env->dst_rq, p, 0);
5092 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5093}
5094
029632fb
PZ
5095/*
5096 * Is this task likely cache-hot:
5097 */
5098static int
6037dd1a 5099task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5100{
5101 s64 delta;
5102
5103 if (p->sched_class != &fair_sched_class)
5104 return 0;
5105
5106 if (unlikely(p->policy == SCHED_IDLE))
5107 return 0;
5108
5109 /*
5110 * Buddy candidates are cache hot:
5111 */
5112 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5113 (&p->se == cfs_rq_of(&p->se)->next ||
5114 &p->se == cfs_rq_of(&p->se)->last))
5115 return 1;
5116
5117 if (sysctl_sched_migration_cost == -1)
5118 return 1;
5119 if (sysctl_sched_migration_cost == 0)
5120 return 0;
5121
5122 delta = now - p->se.exec_start;
5123
5124 return delta < (s64)sysctl_sched_migration_cost;
5125}
5126
3a7053b3
MG
5127#ifdef CONFIG_NUMA_BALANCING
5128/* Returns true if the destination node has incurred more faults */
5129static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5130{
b1ad065e 5131 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5132 int src_nid, dst_nid;
5133
ff1df896 5134 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5135 !(env->sd->flags & SD_NUMA)) {
5136 return false;
5137 }
5138
5139 src_nid = cpu_to_node(env->src_cpu);
5140 dst_nid = cpu_to_node(env->dst_cpu);
5141
83e1d2cd 5142 if (src_nid == dst_nid)
3a7053b3
MG
5143 return false;
5144
b1ad065e
RR
5145 if (numa_group) {
5146 /* Task is already in the group's interleave set. */
5147 if (node_isset(src_nid, numa_group->active_nodes))
5148 return false;
83e1d2cd 5149
b1ad065e
RR
5150 /* Task is moving into the group's interleave set. */
5151 if (node_isset(dst_nid, numa_group->active_nodes))
5152 return true;
83e1d2cd 5153
b1ad065e
RR
5154 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5155 }
5156
5157 /* Encourage migration to the preferred node. */
5158 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5159 return true;
5160
b1ad065e 5161 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5162}
7a0f3083
MG
5163
5164
5165static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5166{
b1ad065e 5167 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5168 int src_nid, dst_nid;
5169
5170 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5171 return false;
5172
ff1df896 5173 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5174 return false;
5175
5176 src_nid = cpu_to_node(env->src_cpu);
5177 dst_nid = cpu_to_node(env->dst_cpu);
5178
83e1d2cd 5179 if (src_nid == dst_nid)
7a0f3083
MG
5180 return false;
5181
b1ad065e
RR
5182 if (numa_group) {
5183 /* Task is moving within/into the group's interleave set. */
5184 if (node_isset(dst_nid, numa_group->active_nodes))
5185 return false;
5186
5187 /* Task is moving out of the group's interleave set. */
5188 if (node_isset(src_nid, numa_group->active_nodes))
5189 return true;
5190
5191 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5192 }
5193
83e1d2cd
MG
5194 /* Migrating away from the preferred node is always bad. */
5195 if (src_nid == p->numa_preferred_nid)
5196 return true;
5197
b1ad065e 5198 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5199}
5200
3a7053b3
MG
5201#else
5202static inline bool migrate_improves_locality(struct task_struct *p,
5203 struct lb_env *env)
5204{
5205 return false;
5206}
7a0f3083
MG
5207
5208static inline bool migrate_degrades_locality(struct task_struct *p,
5209 struct lb_env *env)
5210{
5211 return false;
5212}
3a7053b3
MG
5213#endif
5214
1e3c88bd
PZ
5215/*
5216 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5217 */
5218static
8e45cb54 5219int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5220{
5221 int tsk_cache_hot = 0;
5222 /*
5223 * We do not migrate tasks that are:
d3198084 5224 * 1) throttled_lb_pair, or
1e3c88bd 5225 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5226 * 3) running (obviously), or
5227 * 4) are cache-hot on their current CPU.
1e3c88bd 5228 */
d3198084
JK
5229 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5230 return 0;
5231
ddcdf6e7 5232 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5233 int cpu;
88b8dac0 5234
41acab88 5235 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5236
6263322c
PZ
5237 env->flags |= LBF_SOME_PINNED;
5238
88b8dac0
SV
5239 /*
5240 * Remember if this task can be migrated to any other cpu in
5241 * our sched_group. We may want to revisit it if we couldn't
5242 * meet load balance goals by pulling other tasks on src_cpu.
5243 *
5244 * Also avoid computing new_dst_cpu if we have already computed
5245 * one in current iteration.
5246 */
6263322c 5247 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5248 return 0;
5249
e02e60c1
JK
5250 /* Prevent to re-select dst_cpu via env's cpus */
5251 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5252 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5253 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5254 env->new_dst_cpu = cpu;
5255 break;
5256 }
88b8dac0 5257 }
e02e60c1 5258
1e3c88bd
PZ
5259 return 0;
5260 }
88b8dac0
SV
5261
5262 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5263 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5264
ddcdf6e7 5265 if (task_running(env->src_rq, p)) {
41acab88 5266 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5267 return 0;
5268 }
5269
5270 /*
5271 * Aggressive migration if:
3a7053b3
MG
5272 * 1) destination numa is preferred
5273 * 2) task is cache cold, or
5274 * 3) too many balance attempts have failed.
1e3c88bd 5275 */
6037dd1a 5276 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5277 if (!tsk_cache_hot)
5278 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5279
5280 if (migrate_improves_locality(p, env)) {
5281#ifdef CONFIG_SCHEDSTATS
5282 if (tsk_cache_hot) {
5283 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5284 schedstat_inc(p, se.statistics.nr_forced_migrations);
5285 }
5286#endif
5287 return 1;
5288 }
5289
1e3c88bd 5290 if (!tsk_cache_hot ||
8e45cb54 5291 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5292
1e3c88bd 5293 if (tsk_cache_hot) {
8e45cb54 5294 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5295 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5296 }
4e2dcb73 5297
1e3c88bd
PZ
5298 return 1;
5299 }
5300
4e2dcb73
ZH
5301 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5302 return 0;
1e3c88bd
PZ
5303}
5304
897c395f
PZ
5305/*
5306 * move_one_task tries to move exactly one task from busiest to this_rq, as
5307 * part of active balancing operations within "domain".
5308 * Returns 1 if successful and 0 otherwise.
5309 *
5310 * Called with both runqueues locked.
5311 */
8e45cb54 5312static int move_one_task(struct lb_env *env)
897c395f
PZ
5313{
5314 struct task_struct *p, *n;
897c395f 5315
367456c7 5316 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5317 if (!can_migrate_task(p, env))
5318 continue;
897c395f 5319
367456c7
PZ
5320 move_task(p, env);
5321 /*
5322 * Right now, this is only the second place move_task()
5323 * is called, so we can safely collect move_task()
5324 * stats here rather than inside move_task().
5325 */
5326 schedstat_inc(env->sd, lb_gained[env->idle]);
5327 return 1;
897c395f 5328 }
897c395f
PZ
5329 return 0;
5330}
5331
eb95308e
PZ
5332static const unsigned int sched_nr_migrate_break = 32;
5333
5d6523eb 5334/*
bd939f45 5335 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5336 * this_rq, as part of a balancing operation within domain "sd".
5337 * Returns 1 if successful and 0 otherwise.
5338 *
5339 * Called with both runqueues locked.
5340 */
5341static int move_tasks(struct lb_env *env)
1e3c88bd 5342{
5d6523eb
PZ
5343 struct list_head *tasks = &env->src_rq->cfs_tasks;
5344 struct task_struct *p;
367456c7
PZ
5345 unsigned long load;
5346 int pulled = 0;
1e3c88bd 5347
bd939f45 5348 if (env->imbalance <= 0)
5d6523eb 5349 return 0;
1e3c88bd 5350
5d6523eb
PZ
5351 while (!list_empty(tasks)) {
5352 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5353
367456c7
PZ
5354 env->loop++;
5355 /* We've more or less seen every task there is, call it quits */
5d6523eb 5356 if (env->loop > env->loop_max)
367456c7 5357 break;
5d6523eb
PZ
5358
5359 /* take a breather every nr_migrate tasks */
367456c7 5360 if (env->loop > env->loop_break) {
eb95308e 5361 env->loop_break += sched_nr_migrate_break;
8e45cb54 5362 env->flags |= LBF_NEED_BREAK;
ee00e66f 5363 break;
a195f004 5364 }
1e3c88bd 5365
d3198084 5366 if (!can_migrate_task(p, env))
367456c7
PZ
5367 goto next;
5368
5369 load = task_h_load(p);
5d6523eb 5370
eb95308e 5371 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5372 goto next;
5373
bd939f45 5374 if ((load / 2) > env->imbalance)
367456c7 5375 goto next;
1e3c88bd 5376
ddcdf6e7 5377 move_task(p, env);
ee00e66f 5378 pulled++;
bd939f45 5379 env->imbalance -= load;
1e3c88bd
PZ
5380
5381#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5382 /*
5383 * NEWIDLE balancing is a source of latency, so preemptible
5384 * kernels will stop after the first task is pulled to minimize
5385 * the critical section.
5386 */
5d6523eb 5387 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5388 break;
1e3c88bd
PZ
5389#endif
5390
ee00e66f
PZ
5391 /*
5392 * We only want to steal up to the prescribed amount of
5393 * weighted load.
5394 */
bd939f45 5395 if (env->imbalance <= 0)
ee00e66f 5396 break;
367456c7
PZ
5397
5398 continue;
5399next:
5d6523eb 5400 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5401 }
5d6523eb 5402
1e3c88bd 5403 /*
ddcdf6e7
PZ
5404 * Right now, this is one of only two places move_task() is called,
5405 * so we can safely collect move_task() stats here rather than
5406 * inside move_task().
1e3c88bd 5407 */
8e45cb54 5408 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5409
5d6523eb 5410 return pulled;
1e3c88bd
PZ
5411}
5412
230059de 5413#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5414/*
5415 * update tg->load_weight by folding this cpu's load_avg
5416 */
48a16753 5417static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5418{
48a16753
PT
5419 struct sched_entity *se = tg->se[cpu];
5420 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5421
48a16753
PT
5422 /* throttled entities do not contribute to load */
5423 if (throttled_hierarchy(cfs_rq))
5424 return;
9e3081ca 5425
aff3e498 5426 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5427
82958366
PT
5428 if (se) {
5429 update_entity_load_avg(se, 1);
5430 /*
5431 * We pivot on our runnable average having decayed to zero for
5432 * list removal. This generally implies that all our children
5433 * have also been removed (modulo rounding error or bandwidth
5434 * control); however, such cases are rare and we can fix these
5435 * at enqueue.
5436 *
5437 * TODO: fix up out-of-order children on enqueue.
5438 */
5439 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5440 list_del_leaf_cfs_rq(cfs_rq);
5441 } else {
48a16753 5442 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5443 update_rq_runnable_avg(rq, rq->nr_running);
5444 }
9e3081ca
PZ
5445}
5446
48a16753 5447static void update_blocked_averages(int cpu)
9e3081ca 5448{
9e3081ca 5449 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5450 struct cfs_rq *cfs_rq;
5451 unsigned long flags;
9e3081ca 5452
48a16753
PT
5453 raw_spin_lock_irqsave(&rq->lock, flags);
5454 update_rq_clock(rq);
9763b67f
PZ
5455 /*
5456 * Iterates the task_group tree in a bottom up fashion, see
5457 * list_add_leaf_cfs_rq() for details.
5458 */
64660c86 5459 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5460 /*
5461 * Note: We may want to consider periodically releasing
5462 * rq->lock about these updates so that creating many task
5463 * groups does not result in continually extending hold time.
5464 */
5465 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5466 }
48a16753
PT
5467
5468 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5469}
5470
9763b67f 5471/*
68520796 5472 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5473 * This needs to be done in a top-down fashion because the load of a child
5474 * group is a fraction of its parents load.
5475 */
68520796 5476static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5477{
68520796
VD
5478 struct rq *rq = rq_of(cfs_rq);
5479 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5480 unsigned long now = jiffies;
68520796 5481 unsigned long load;
a35b6466 5482
68520796 5483 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5484 return;
5485
68520796
VD
5486 cfs_rq->h_load_next = NULL;
5487 for_each_sched_entity(se) {
5488 cfs_rq = cfs_rq_of(se);
5489 cfs_rq->h_load_next = se;
5490 if (cfs_rq->last_h_load_update == now)
5491 break;
5492 }
a35b6466 5493
68520796 5494 if (!se) {
7e3115ef 5495 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5496 cfs_rq->last_h_load_update = now;
5497 }
5498
5499 while ((se = cfs_rq->h_load_next) != NULL) {
5500 load = cfs_rq->h_load;
5501 load = div64_ul(load * se->avg.load_avg_contrib,
5502 cfs_rq->runnable_load_avg + 1);
5503 cfs_rq = group_cfs_rq(se);
5504 cfs_rq->h_load = load;
5505 cfs_rq->last_h_load_update = now;
5506 }
9763b67f
PZ
5507}
5508
367456c7 5509static unsigned long task_h_load(struct task_struct *p)
230059de 5510{
367456c7 5511 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5512
68520796 5513 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5514 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5515 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5516}
5517#else
48a16753 5518static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5519{
5520}
5521
367456c7 5522static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5523{
a003a25b 5524 return p->se.avg.load_avg_contrib;
1e3c88bd 5525}
230059de 5526#endif
1e3c88bd 5527
1e3c88bd 5528/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5529/*
5530 * sg_lb_stats - stats of a sched_group required for load_balancing
5531 */
5532struct sg_lb_stats {
5533 unsigned long avg_load; /*Avg load across the CPUs of the group */
5534 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5535 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5536 unsigned long load_per_task;
63b2ca30 5537 unsigned long group_capacity;
147c5fc2 5538 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5539 unsigned int group_capacity_factor;
147c5fc2
PZ
5540 unsigned int idle_cpus;
5541 unsigned int group_weight;
1e3c88bd 5542 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5543 int group_has_free_capacity;
0ec8aa00
PZ
5544#ifdef CONFIG_NUMA_BALANCING
5545 unsigned int nr_numa_running;
5546 unsigned int nr_preferred_running;
5547#endif
1e3c88bd
PZ
5548};
5549
56cf515b
JK
5550/*
5551 * sd_lb_stats - Structure to store the statistics of a sched_domain
5552 * during load balancing.
5553 */
5554struct sd_lb_stats {
5555 struct sched_group *busiest; /* Busiest group in this sd */
5556 struct sched_group *local; /* Local group in this sd */
5557 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5558 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5559 unsigned long avg_load; /* Average load across all groups in sd */
5560
56cf515b 5561 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5562 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5563};
5564
147c5fc2
PZ
5565static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5566{
5567 /*
5568 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5569 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5570 * We must however clear busiest_stat::avg_load because
5571 * update_sd_pick_busiest() reads this before assignment.
5572 */
5573 *sds = (struct sd_lb_stats){
5574 .busiest = NULL,
5575 .local = NULL,
5576 .total_load = 0UL,
63b2ca30 5577 .total_capacity = 0UL,
147c5fc2
PZ
5578 .busiest_stat = {
5579 .avg_load = 0UL,
5580 },
5581 };
5582}
5583
1e3c88bd
PZ
5584/**
5585 * get_sd_load_idx - Obtain the load index for a given sched domain.
5586 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5587 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5588 *
5589 * Return: The load index.
1e3c88bd
PZ
5590 */
5591static inline int get_sd_load_idx(struct sched_domain *sd,
5592 enum cpu_idle_type idle)
5593{
5594 int load_idx;
5595
5596 switch (idle) {
5597 case CPU_NOT_IDLE:
5598 load_idx = sd->busy_idx;
5599 break;
5600
5601 case CPU_NEWLY_IDLE:
5602 load_idx = sd->newidle_idx;
5603 break;
5604 default:
5605 load_idx = sd->idle_idx;
5606 break;
5607 }
5608
5609 return load_idx;
5610}
5611
ced549fa 5612static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5613{
ca8ce3d0 5614 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5615}
5616
ca8ce3d0 5617unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5618{
ced549fa 5619 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5620}
5621
ced549fa 5622static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5623{
669c55e9 5624 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5625 unsigned long smt_gain = sd->smt_gain;
5626
5627 smt_gain /= weight;
5628
5629 return smt_gain;
5630}
5631
ca8ce3d0 5632unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5633{
ced549fa 5634 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5635}
5636
ced549fa 5637static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5638{
5639 struct rq *rq = cpu_rq(cpu);
b654f7de 5640 u64 total, available, age_stamp, avg;
cadefd3d 5641 s64 delta;
1e3c88bd 5642
b654f7de
PZ
5643 /*
5644 * Since we're reading these variables without serialization make sure
5645 * we read them once before doing sanity checks on them.
5646 */
5647 age_stamp = ACCESS_ONCE(rq->age_stamp);
5648 avg = ACCESS_ONCE(rq->rt_avg);
5649
cadefd3d
PZ
5650 delta = rq_clock(rq) - age_stamp;
5651 if (unlikely(delta < 0))
5652 delta = 0;
5653
5654 total = sched_avg_period() + delta;
aa483808 5655
b654f7de 5656 if (unlikely(total < avg)) {
ced549fa 5657 /* Ensures that capacity won't end up being negative */
aa483808
VP
5658 available = 0;
5659 } else {
b654f7de 5660 available = total - avg;
aa483808 5661 }
1e3c88bd 5662
ca8ce3d0
NP
5663 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5664 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5665
ca8ce3d0 5666 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5667
5668 return div_u64(available, total);
5669}
5670
ced549fa 5671static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5672{
669c55e9 5673 unsigned long weight = sd->span_weight;
ca8ce3d0 5674 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5675 struct sched_group *sdg = sd->groups;
5676
5d4dfddd
NP
5677 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5678 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5679 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5680 else
ced549fa 5681 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5682
ca8ce3d0 5683 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5684 }
5685
ced549fa 5686 sdg->sgc->capacity_orig = capacity;
9d5efe05 5687
5d4dfddd 5688 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5689 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5690 else
ced549fa 5691 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5692
ca8ce3d0 5693 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5694
ced549fa 5695 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5696 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5697
ced549fa
NP
5698 if (!capacity)
5699 capacity = 1;
1e3c88bd 5700
ced549fa
NP
5701 cpu_rq(cpu)->cpu_capacity = capacity;
5702 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5703}
5704
63b2ca30 5705void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5706{
5707 struct sched_domain *child = sd->child;
5708 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5709 unsigned long capacity, capacity_orig;
4ec4412e
VG
5710 unsigned long interval;
5711
5712 interval = msecs_to_jiffies(sd->balance_interval);
5713 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5714 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5715
5716 if (!child) {
ced549fa 5717 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5718 return;
5719 }
5720
63b2ca30 5721 capacity_orig = capacity = 0;
1e3c88bd 5722
74a5ce20
PZ
5723 if (child->flags & SD_OVERLAP) {
5724 /*
5725 * SD_OVERLAP domains cannot assume that child groups
5726 * span the current group.
5727 */
5728
863bffc8 5729 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5730 struct sched_group_capacity *sgc;
9abf24d4 5731 struct rq *rq = cpu_rq(cpu);
863bffc8 5732
9abf24d4 5733 /*
63b2ca30 5734 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5735 * gets here before we've attached the domains to the
5736 * runqueues.
5737 *
ced549fa
NP
5738 * Use capacity_of(), which is set irrespective of domains
5739 * in update_cpu_capacity().
9abf24d4 5740 *
63b2ca30 5741 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5742 * causing divide-by-zero issues on boot.
5743 *
63b2ca30 5744 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5745 */
5746 if (unlikely(!rq->sd)) {
ced549fa
NP
5747 capacity_orig += capacity_of(cpu);
5748 capacity += capacity_of(cpu);
9abf24d4
SD
5749 continue;
5750 }
863bffc8 5751
63b2ca30
NP
5752 sgc = rq->sd->groups->sgc;
5753 capacity_orig += sgc->capacity_orig;
5754 capacity += sgc->capacity;
863bffc8 5755 }
74a5ce20
PZ
5756 } else {
5757 /*
5758 * !SD_OVERLAP domains can assume that child groups
5759 * span the current group.
5760 */
5761
5762 group = child->groups;
5763 do {
63b2ca30
NP
5764 capacity_orig += group->sgc->capacity_orig;
5765 capacity += group->sgc->capacity;
74a5ce20
PZ
5766 group = group->next;
5767 } while (group != child->groups);
5768 }
1e3c88bd 5769
63b2ca30
NP
5770 sdg->sgc->capacity_orig = capacity_orig;
5771 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5772}
5773
9d5efe05
SV
5774/*
5775 * Try and fix up capacity for tiny siblings, this is needed when
5776 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5777 * which on its own isn't powerful enough.
5778 *
5779 * See update_sd_pick_busiest() and check_asym_packing().
5780 */
5781static inline int
5782fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5783{
5784 /*
ca8ce3d0 5785 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5786 */
5d4dfddd 5787 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5788 return 0;
5789
5790 /*
63b2ca30 5791 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5792 */
63b2ca30 5793 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5794 return 1;
5795
5796 return 0;
5797}
5798
30ce5dab
PZ
5799/*
5800 * Group imbalance indicates (and tries to solve) the problem where balancing
5801 * groups is inadequate due to tsk_cpus_allowed() constraints.
5802 *
5803 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5804 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5805 * Something like:
5806 *
5807 * { 0 1 2 3 } { 4 5 6 7 }
5808 * * * * *
5809 *
5810 * If we were to balance group-wise we'd place two tasks in the first group and
5811 * two tasks in the second group. Clearly this is undesired as it will overload
5812 * cpu 3 and leave one of the cpus in the second group unused.
5813 *
5814 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5815 * by noticing the lower domain failed to reach balance and had difficulty
5816 * moving tasks due to affinity constraints.
30ce5dab
PZ
5817 *
5818 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5819 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5820 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5821 * to create an effective group imbalance.
5822 *
5823 * This is a somewhat tricky proposition since the next run might not find the
5824 * group imbalance and decide the groups need to be balanced again. A most
5825 * subtle and fragile situation.
5826 */
5827
6263322c 5828static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5829{
63b2ca30 5830 return group->sgc->imbalance;
30ce5dab
PZ
5831}
5832
b37d9316 5833/*
0fedc6c8 5834 * Compute the group capacity factor.
b37d9316 5835 *
ced549fa 5836 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5837 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5838 * and limit unit capacity with that.
b37d9316 5839 */
0fedc6c8 5840static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5841{
0fedc6c8 5842 unsigned int capacity_factor, smt, cpus;
63b2ca30 5843 unsigned int capacity, capacity_orig;
c61037e9 5844
63b2ca30
NP
5845 capacity = group->sgc->capacity;
5846 capacity_orig = group->sgc->capacity_orig;
c61037e9 5847 cpus = group->group_weight;
b37d9316 5848
63b2ca30 5849 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5850 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5851 capacity_factor = cpus / smt; /* cores */
b37d9316 5852
63b2ca30 5853 capacity_factor = min_t(unsigned,
ca8ce3d0 5854 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5855 if (!capacity_factor)
5856 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5857
0fedc6c8 5858 return capacity_factor;
b37d9316
PZ
5859}
5860
1e3c88bd
PZ
5861/**
5862 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5863 * @env: The load balancing environment.
1e3c88bd 5864 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5865 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5866 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5867 * @sgs: variable to hold the statistics for this group.
5868 */
bd939f45
PZ
5869static inline void update_sg_lb_stats(struct lb_env *env,
5870 struct sched_group *group, int load_idx,
23f0d209 5871 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5872{
30ce5dab 5873 unsigned long load;
bd939f45 5874 int i;
1e3c88bd 5875
b72ff13c
PZ
5876 memset(sgs, 0, sizeof(*sgs));
5877
b9403130 5878 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5879 struct rq *rq = cpu_rq(i);
5880
1e3c88bd 5881 /* Bias balancing toward cpus of our domain */
6263322c 5882 if (local_group)
04f733b4 5883 load = target_load(i, load_idx);
6263322c 5884 else
1e3c88bd 5885 load = source_load(i, load_idx);
1e3c88bd
PZ
5886
5887 sgs->group_load += load;
380c9077 5888 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5889#ifdef CONFIG_NUMA_BALANCING
5890 sgs->nr_numa_running += rq->nr_numa_running;
5891 sgs->nr_preferred_running += rq->nr_preferred_running;
5892#endif
1e3c88bd 5893 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5894 if (idle_cpu(i))
5895 sgs->idle_cpus++;
1e3c88bd
PZ
5896 }
5897
63b2ca30
NP
5898 /* Adjust by relative CPU capacity of the group */
5899 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5900 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5901
dd5feea1 5902 if (sgs->sum_nr_running)
38d0f770 5903 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5904
aae6d3dd 5905 sgs->group_weight = group->group_weight;
fab47622 5906
b37d9316 5907 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5908 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5909
0fedc6c8 5910 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5911 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5912}
5913
532cb4c4
MN
5914/**
5915 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5916 * @env: The load balancing environment.
532cb4c4
MN
5917 * @sds: sched_domain statistics
5918 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5919 * @sgs: sched_group statistics
532cb4c4
MN
5920 *
5921 * Determine if @sg is a busier group than the previously selected
5922 * busiest group.
e69f6186
YB
5923 *
5924 * Return: %true if @sg is a busier group than the previously selected
5925 * busiest group. %false otherwise.
532cb4c4 5926 */
bd939f45 5927static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5928 struct sd_lb_stats *sds,
5929 struct sched_group *sg,
bd939f45 5930 struct sg_lb_stats *sgs)
532cb4c4 5931{
56cf515b 5932 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5933 return false;
5934
0fedc6c8 5935 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5936 return true;
5937
5938 if (sgs->group_imb)
5939 return true;
5940
5941 /*
5942 * ASYM_PACKING needs to move all the work to the lowest
5943 * numbered CPUs in the group, therefore mark all groups
5944 * higher than ourself as busy.
5945 */
bd939f45
PZ
5946 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5947 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5948 if (!sds->busiest)
5949 return true;
5950
5951 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5952 return true;
5953 }
5954
5955 return false;
5956}
5957
0ec8aa00
PZ
5958#ifdef CONFIG_NUMA_BALANCING
5959static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5960{
5961 if (sgs->sum_nr_running > sgs->nr_numa_running)
5962 return regular;
5963 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5964 return remote;
5965 return all;
5966}
5967
5968static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5969{
5970 if (rq->nr_running > rq->nr_numa_running)
5971 return regular;
5972 if (rq->nr_running > rq->nr_preferred_running)
5973 return remote;
5974 return all;
5975}
5976#else
5977static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5978{
5979 return all;
5980}
5981
5982static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5983{
5984 return regular;
5985}
5986#endif /* CONFIG_NUMA_BALANCING */
5987
1e3c88bd 5988/**
461819ac 5989 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5990 * @env: The load balancing environment.
1e3c88bd
PZ
5991 * @sds: variable to hold the statistics for this sched_domain.
5992 */
0ec8aa00 5993static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5994{
bd939f45
PZ
5995 struct sched_domain *child = env->sd->child;
5996 struct sched_group *sg = env->sd->groups;
56cf515b 5997 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5998 int load_idx, prefer_sibling = 0;
5999
6000 if (child && child->flags & SD_PREFER_SIBLING)
6001 prefer_sibling = 1;
6002
bd939f45 6003 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6004
6005 do {
56cf515b 6006 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6007 int local_group;
6008
bd939f45 6009 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6010 if (local_group) {
6011 sds->local = sg;
6012 sgs = &sds->local_stat;
b72ff13c
PZ
6013
6014 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6015 time_after_eq(jiffies, sg->sgc->next_update))
6016 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6017 }
1e3c88bd 6018
56cf515b 6019 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 6020
b72ff13c
PZ
6021 if (local_group)
6022 goto next_group;
6023
1e3c88bd
PZ
6024 /*
6025 * In case the child domain prefers tasks go to siblings
0fedc6c8 6026 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6027 * and move all the excess tasks away. We lower the capacity
6028 * of a group only if the local group has the capacity to fit
0fedc6c8 6029 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6030 * extra check prevents the case where you always pull from the
6031 * heaviest group when it is already under-utilized (possible
6032 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6033 */
b72ff13c 6034 if (prefer_sibling && sds->local &&
1b6a7495 6035 sds->local_stat.group_has_free_capacity)
0fedc6c8 6036 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6037
b72ff13c 6038 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6039 sds->busiest = sg;
56cf515b 6040 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6041 }
6042
b72ff13c
PZ
6043next_group:
6044 /* Now, start updating sd_lb_stats */
6045 sds->total_load += sgs->group_load;
63b2ca30 6046 sds->total_capacity += sgs->group_capacity;
b72ff13c 6047
532cb4c4 6048 sg = sg->next;
bd939f45 6049 } while (sg != env->sd->groups);
0ec8aa00
PZ
6050
6051 if (env->sd->flags & SD_NUMA)
6052 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6053}
6054
532cb4c4
MN
6055/**
6056 * check_asym_packing - Check to see if the group is packed into the
6057 * sched doman.
6058 *
6059 * This is primarily intended to used at the sibling level. Some
6060 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6061 * case of POWER7, it can move to lower SMT modes only when higher
6062 * threads are idle. When in lower SMT modes, the threads will
6063 * perform better since they share less core resources. Hence when we
6064 * have idle threads, we want them to be the higher ones.
6065 *
6066 * This packing function is run on idle threads. It checks to see if
6067 * the busiest CPU in this domain (core in the P7 case) has a higher
6068 * CPU number than the packing function is being run on. Here we are
6069 * assuming lower CPU number will be equivalent to lower a SMT thread
6070 * number.
6071 *
e69f6186 6072 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6073 * this CPU. The amount of the imbalance is returned in *imbalance.
6074 *
cd96891d 6075 * @env: The load balancing environment.
532cb4c4 6076 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6077 */
bd939f45 6078static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6079{
6080 int busiest_cpu;
6081
bd939f45 6082 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6083 return 0;
6084
6085 if (!sds->busiest)
6086 return 0;
6087
6088 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6089 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6090 return 0;
6091
bd939f45 6092 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6093 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6094 SCHED_CAPACITY_SCALE);
bd939f45 6095
532cb4c4 6096 return 1;
1e3c88bd
PZ
6097}
6098
6099/**
6100 * fix_small_imbalance - Calculate the minor imbalance that exists
6101 * amongst the groups of a sched_domain, during
6102 * load balancing.
cd96891d 6103 * @env: The load balancing environment.
1e3c88bd 6104 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6105 */
bd939f45
PZ
6106static inline
6107void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6108{
63b2ca30 6109 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6110 unsigned int imbn = 2;
dd5feea1 6111 unsigned long scaled_busy_load_per_task;
56cf515b 6112 struct sg_lb_stats *local, *busiest;
1e3c88bd 6113
56cf515b
JK
6114 local = &sds->local_stat;
6115 busiest = &sds->busiest_stat;
1e3c88bd 6116
56cf515b
JK
6117 if (!local->sum_nr_running)
6118 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6119 else if (busiest->load_per_task > local->load_per_task)
6120 imbn = 1;
dd5feea1 6121
56cf515b 6122 scaled_busy_load_per_task =
ca8ce3d0 6123 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6124 busiest->group_capacity;
56cf515b 6125
3029ede3
VD
6126 if (busiest->avg_load + scaled_busy_load_per_task >=
6127 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6128 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6129 return;
6130 }
6131
6132 /*
6133 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6134 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6135 * moving them.
6136 */
6137
63b2ca30 6138 capa_now += busiest->group_capacity *
56cf515b 6139 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6140 capa_now += local->group_capacity *
56cf515b 6141 min(local->load_per_task, local->avg_load);
ca8ce3d0 6142 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6143
6144 /* Amount of load we'd subtract */
a2cd4260 6145 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6146 capa_move += busiest->group_capacity *
56cf515b 6147 min(busiest->load_per_task,
a2cd4260 6148 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6149 }
1e3c88bd
PZ
6150
6151 /* Amount of load we'd add */
63b2ca30 6152 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6153 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6154 tmp = (busiest->avg_load * busiest->group_capacity) /
6155 local->group_capacity;
56cf515b 6156 } else {
ca8ce3d0 6157 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6158 local->group_capacity;
56cf515b 6159 }
63b2ca30 6160 capa_move += local->group_capacity *
3ae11c90 6161 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6162 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6163
6164 /* Move if we gain throughput */
63b2ca30 6165 if (capa_move > capa_now)
56cf515b 6166 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6167}
6168
6169/**
6170 * calculate_imbalance - Calculate the amount of imbalance present within the
6171 * groups of a given sched_domain during load balance.
bd939f45 6172 * @env: load balance environment
1e3c88bd 6173 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6174 */
bd939f45 6175static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6176{
dd5feea1 6177 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6178 struct sg_lb_stats *local, *busiest;
6179
6180 local = &sds->local_stat;
56cf515b 6181 busiest = &sds->busiest_stat;
dd5feea1 6182
56cf515b 6183 if (busiest->group_imb) {
30ce5dab
PZ
6184 /*
6185 * In the group_imb case we cannot rely on group-wide averages
6186 * to ensure cpu-load equilibrium, look at wider averages. XXX
6187 */
56cf515b
JK
6188 busiest->load_per_task =
6189 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6190 }
6191
1e3c88bd
PZ
6192 /*
6193 * In the presence of smp nice balancing, certain scenarios can have
6194 * max load less than avg load(as we skip the groups at or below
ced549fa 6195 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6196 */
b1885550
VD
6197 if (busiest->avg_load <= sds->avg_load ||
6198 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6199 env->imbalance = 0;
6200 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6201 }
6202
56cf515b 6203 if (!busiest->group_imb) {
dd5feea1
SS
6204 /*
6205 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6206 * Except of course for the group_imb case, since then we might
6207 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6208 */
56cf515b 6209 load_above_capacity =
0fedc6c8 6210 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6211
ca8ce3d0 6212 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6213 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6214 }
6215
6216 /*
6217 * We're trying to get all the cpus to the average_load, so we don't
6218 * want to push ourselves above the average load, nor do we wish to
6219 * reduce the max loaded cpu below the average load. At the same time,
6220 * we also don't want to reduce the group load below the group capacity
6221 * (so that we can implement power-savings policies etc). Thus we look
6222 * for the minimum possible imbalance.
dd5feea1 6223 */
30ce5dab 6224 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6225
6226 /* How much load to actually move to equalise the imbalance */
56cf515b 6227 env->imbalance = min(
63b2ca30
NP
6228 max_pull * busiest->group_capacity,
6229 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6230 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6231
6232 /*
6233 * if *imbalance is less than the average load per runnable task
25985edc 6234 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6235 * a think about bumping its value to force at least one task to be
6236 * moved
6237 */
56cf515b 6238 if (env->imbalance < busiest->load_per_task)
bd939f45 6239 return fix_small_imbalance(env, sds);
1e3c88bd 6240}
fab47622 6241
1e3c88bd
PZ
6242/******* find_busiest_group() helpers end here *********************/
6243
6244/**
6245 * find_busiest_group - Returns the busiest group within the sched_domain
6246 * if there is an imbalance. If there isn't an imbalance, and
6247 * the user has opted for power-savings, it returns a group whose
6248 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6249 * such a group exists.
6250 *
6251 * Also calculates the amount of weighted load which should be moved
6252 * to restore balance.
6253 *
cd96891d 6254 * @env: The load balancing environment.
1e3c88bd 6255 *
e69f6186 6256 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6257 * - If no imbalance and user has opted for power-savings balance,
6258 * return the least loaded group whose CPUs can be
6259 * put to idle by rebalancing its tasks onto our group.
6260 */
56cf515b 6261static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6262{
56cf515b 6263 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6264 struct sd_lb_stats sds;
6265
147c5fc2 6266 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6267
6268 /*
6269 * Compute the various statistics relavent for load balancing at
6270 * this level.
6271 */
23f0d209 6272 update_sd_lb_stats(env, &sds);
56cf515b
JK
6273 local = &sds.local_stat;
6274 busiest = &sds.busiest_stat;
1e3c88bd 6275
bd939f45
PZ
6276 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6277 check_asym_packing(env, &sds))
532cb4c4
MN
6278 return sds.busiest;
6279
cc57aa8f 6280 /* There is no busy sibling group to pull tasks from */
56cf515b 6281 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6282 goto out_balanced;
6283
ca8ce3d0
NP
6284 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6285 / sds.total_capacity;
b0432d8f 6286
866ab43e
PZ
6287 /*
6288 * If the busiest group is imbalanced the below checks don't
30ce5dab 6289 * work because they assume all things are equal, which typically
866ab43e
PZ
6290 * isn't true due to cpus_allowed constraints and the like.
6291 */
56cf515b 6292 if (busiest->group_imb)
866ab43e
PZ
6293 goto force_balance;
6294
cc57aa8f 6295 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6296 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6297 !busiest->group_has_free_capacity)
fab47622
NR
6298 goto force_balance;
6299
cc57aa8f
PZ
6300 /*
6301 * If the local group is more busy than the selected busiest group
6302 * don't try and pull any tasks.
6303 */
56cf515b 6304 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6305 goto out_balanced;
6306
cc57aa8f
PZ
6307 /*
6308 * Don't pull any tasks if this group is already above the domain
6309 * average load.
6310 */
56cf515b 6311 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6312 goto out_balanced;
6313
bd939f45 6314 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6315 /*
6316 * This cpu is idle. If the busiest group load doesn't
6317 * have more tasks than the number of available cpu's and
6318 * there is no imbalance between this and busiest group
6319 * wrt to idle cpu's, it is balanced.
6320 */
56cf515b
JK
6321 if ((local->idle_cpus < busiest->idle_cpus) &&
6322 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6323 goto out_balanced;
c186fafe
PZ
6324 } else {
6325 /*
6326 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6327 * imbalance_pct to be conservative.
6328 */
56cf515b
JK
6329 if (100 * busiest->avg_load <=
6330 env->sd->imbalance_pct * local->avg_load)
c186fafe 6331 goto out_balanced;
aae6d3dd 6332 }
1e3c88bd 6333
fab47622 6334force_balance:
1e3c88bd 6335 /* Looks like there is an imbalance. Compute it */
bd939f45 6336 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6337 return sds.busiest;
6338
6339out_balanced:
bd939f45 6340 env->imbalance = 0;
1e3c88bd
PZ
6341 return NULL;
6342}
6343
6344/*
6345 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6346 */
bd939f45 6347static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6348 struct sched_group *group)
1e3c88bd
PZ
6349{
6350 struct rq *busiest = NULL, *rq;
ced549fa 6351 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6352 int i;
6353
6906a408 6354 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6355 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6356 enum fbq_type rt;
6357
6358 rq = cpu_rq(i);
6359 rt = fbq_classify_rq(rq);
1e3c88bd 6360
0ec8aa00
PZ
6361 /*
6362 * We classify groups/runqueues into three groups:
6363 * - regular: there are !numa tasks
6364 * - remote: there are numa tasks that run on the 'wrong' node
6365 * - all: there is no distinction
6366 *
6367 * In order to avoid migrating ideally placed numa tasks,
6368 * ignore those when there's better options.
6369 *
6370 * If we ignore the actual busiest queue to migrate another
6371 * task, the next balance pass can still reduce the busiest
6372 * queue by moving tasks around inside the node.
6373 *
6374 * If we cannot move enough load due to this classification
6375 * the next pass will adjust the group classification and
6376 * allow migration of more tasks.
6377 *
6378 * Both cases only affect the total convergence complexity.
6379 */
6380 if (rt > env->fbq_type)
6381 continue;
6382
ced549fa 6383 capacity = capacity_of(i);
ca8ce3d0 6384 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6385 if (!capacity_factor)
6386 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6387
6e40f5bb 6388 wl = weighted_cpuload(i);
1e3c88bd 6389
6e40f5bb
TG
6390 /*
6391 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6392 * which is not scaled with the cpu capacity.
6e40f5bb 6393 */
0fedc6c8 6394 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6395 continue;
6396
6e40f5bb
TG
6397 /*
6398 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6399 * the weighted_cpuload() scaled with the cpu capacity, so
6400 * that the load can be moved away from the cpu that is
6401 * potentially running at a lower capacity.
95a79b80 6402 *
ced549fa 6403 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6404 * multiplication to rid ourselves of the division works out
ced549fa
NP
6405 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6406 * our previous maximum.
6e40f5bb 6407 */
ced549fa 6408 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6409 busiest_load = wl;
ced549fa 6410 busiest_capacity = capacity;
1e3c88bd
PZ
6411 busiest = rq;
6412 }
6413 }
6414
6415 return busiest;
6416}
6417
6418/*
6419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6420 * so long as it is large enough.
6421 */
6422#define MAX_PINNED_INTERVAL 512
6423
6424/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6425DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6426
bd939f45 6427static int need_active_balance(struct lb_env *env)
1af3ed3d 6428{
bd939f45
PZ
6429 struct sched_domain *sd = env->sd;
6430
6431 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6432
6433 /*
6434 * ASYM_PACKING needs to force migrate tasks from busy but
6435 * higher numbered CPUs in order to pack all tasks in the
6436 * lowest numbered CPUs.
6437 */
bd939f45 6438 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6439 return 1;
1af3ed3d
PZ
6440 }
6441
6442 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6443}
6444
969c7921
TH
6445static int active_load_balance_cpu_stop(void *data);
6446
23f0d209
JK
6447static int should_we_balance(struct lb_env *env)
6448{
6449 struct sched_group *sg = env->sd->groups;
6450 struct cpumask *sg_cpus, *sg_mask;
6451 int cpu, balance_cpu = -1;
6452
6453 /*
6454 * In the newly idle case, we will allow all the cpu's
6455 * to do the newly idle load balance.
6456 */
6457 if (env->idle == CPU_NEWLY_IDLE)
6458 return 1;
6459
6460 sg_cpus = sched_group_cpus(sg);
6461 sg_mask = sched_group_mask(sg);
6462 /* Try to find first idle cpu */
6463 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6464 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6465 continue;
6466
6467 balance_cpu = cpu;
6468 break;
6469 }
6470
6471 if (balance_cpu == -1)
6472 balance_cpu = group_balance_cpu(sg);
6473
6474 /*
6475 * First idle cpu or the first cpu(busiest) in this sched group
6476 * is eligible for doing load balancing at this and above domains.
6477 */
b0cff9d8 6478 return balance_cpu == env->dst_cpu;
23f0d209
JK
6479}
6480
1e3c88bd
PZ
6481/*
6482 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6483 * tasks if there is an imbalance.
6484 */
6485static int load_balance(int this_cpu, struct rq *this_rq,
6486 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6487 int *continue_balancing)
1e3c88bd 6488{
88b8dac0 6489 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6490 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6491 struct sched_group *group;
1e3c88bd
PZ
6492 struct rq *busiest;
6493 unsigned long flags;
e6252c3e 6494 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6495
8e45cb54
PZ
6496 struct lb_env env = {
6497 .sd = sd,
ddcdf6e7
PZ
6498 .dst_cpu = this_cpu,
6499 .dst_rq = this_rq,
88b8dac0 6500 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6501 .idle = idle,
eb95308e 6502 .loop_break = sched_nr_migrate_break,
b9403130 6503 .cpus = cpus,
0ec8aa00 6504 .fbq_type = all,
8e45cb54
PZ
6505 };
6506
cfc03118
JK
6507 /*
6508 * For NEWLY_IDLE load_balancing, we don't need to consider
6509 * other cpus in our group
6510 */
e02e60c1 6511 if (idle == CPU_NEWLY_IDLE)
cfc03118 6512 env.dst_grpmask = NULL;
cfc03118 6513
1e3c88bd
PZ
6514 cpumask_copy(cpus, cpu_active_mask);
6515
1e3c88bd
PZ
6516 schedstat_inc(sd, lb_count[idle]);
6517
6518redo:
23f0d209
JK
6519 if (!should_we_balance(&env)) {
6520 *continue_balancing = 0;
1e3c88bd 6521 goto out_balanced;
23f0d209 6522 }
1e3c88bd 6523
23f0d209 6524 group = find_busiest_group(&env);
1e3c88bd
PZ
6525 if (!group) {
6526 schedstat_inc(sd, lb_nobusyg[idle]);
6527 goto out_balanced;
6528 }
6529
b9403130 6530 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6531 if (!busiest) {
6532 schedstat_inc(sd, lb_nobusyq[idle]);
6533 goto out_balanced;
6534 }
6535
78feefc5 6536 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6537
bd939f45 6538 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6539
6540 ld_moved = 0;
6541 if (busiest->nr_running > 1) {
6542 /*
6543 * Attempt to move tasks. If find_busiest_group has found
6544 * an imbalance but busiest->nr_running <= 1, the group is
6545 * still unbalanced. ld_moved simply stays zero, so it is
6546 * correctly treated as an imbalance.
6547 */
8e45cb54 6548 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6549 env.src_cpu = busiest->cpu;
6550 env.src_rq = busiest;
6551 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6552
5d6523eb 6553more_balance:
1e3c88bd 6554 local_irq_save(flags);
78feefc5 6555 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6556
6557 /*
6558 * cur_ld_moved - load moved in current iteration
6559 * ld_moved - cumulative load moved across iterations
6560 */
6561 cur_ld_moved = move_tasks(&env);
6562 ld_moved += cur_ld_moved;
78feefc5 6563 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6564 local_irq_restore(flags);
6565
6566 /*
6567 * some other cpu did the load balance for us.
6568 */
88b8dac0
SV
6569 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6570 resched_cpu(env.dst_cpu);
6571
f1cd0858
JK
6572 if (env.flags & LBF_NEED_BREAK) {
6573 env.flags &= ~LBF_NEED_BREAK;
6574 goto more_balance;
6575 }
6576
88b8dac0
SV
6577 /*
6578 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6579 * us and move them to an alternate dst_cpu in our sched_group
6580 * where they can run. The upper limit on how many times we
6581 * iterate on same src_cpu is dependent on number of cpus in our
6582 * sched_group.
6583 *
6584 * This changes load balance semantics a bit on who can move
6585 * load to a given_cpu. In addition to the given_cpu itself
6586 * (or a ilb_cpu acting on its behalf where given_cpu is
6587 * nohz-idle), we now have balance_cpu in a position to move
6588 * load to given_cpu. In rare situations, this may cause
6589 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6590 * _independently_ and at _same_ time to move some load to
6591 * given_cpu) causing exceess load to be moved to given_cpu.
6592 * This however should not happen so much in practice and
6593 * moreover subsequent load balance cycles should correct the
6594 * excess load moved.
6595 */
6263322c 6596 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6597
7aff2e3a
VD
6598 /* Prevent to re-select dst_cpu via env's cpus */
6599 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6600
78feefc5 6601 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6602 env.dst_cpu = env.new_dst_cpu;
6263322c 6603 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6604 env.loop = 0;
6605 env.loop_break = sched_nr_migrate_break;
e02e60c1 6606
88b8dac0
SV
6607 /*
6608 * Go back to "more_balance" rather than "redo" since we
6609 * need to continue with same src_cpu.
6610 */
6611 goto more_balance;
6612 }
1e3c88bd 6613
6263322c
PZ
6614 /*
6615 * We failed to reach balance because of affinity.
6616 */
6617 if (sd_parent) {
63b2ca30 6618 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6619
6620 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6621 *group_imbalance = 1;
6622 } else if (*group_imbalance)
6623 *group_imbalance = 0;
6624 }
6625
1e3c88bd 6626 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6627 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6628 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6629 if (!cpumask_empty(cpus)) {
6630 env.loop = 0;
6631 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6632 goto redo;
bbf18b19 6633 }
1e3c88bd
PZ
6634 goto out_balanced;
6635 }
6636 }
6637
6638 if (!ld_moved) {
6639 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6640 /*
6641 * Increment the failure counter only on periodic balance.
6642 * We do not want newidle balance, which can be very
6643 * frequent, pollute the failure counter causing
6644 * excessive cache_hot migrations and active balances.
6645 */
6646 if (idle != CPU_NEWLY_IDLE)
6647 sd->nr_balance_failed++;
1e3c88bd 6648
bd939f45 6649 if (need_active_balance(&env)) {
1e3c88bd
PZ
6650 raw_spin_lock_irqsave(&busiest->lock, flags);
6651
969c7921
TH
6652 /* don't kick the active_load_balance_cpu_stop,
6653 * if the curr task on busiest cpu can't be
6654 * moved to this_cpu
1e3c88bd
PZ
6655 */
6656 if (!cpumask_test_cpu(this_cpu,
fa17b507 6657 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6658 raw_spin_unlock_irqrestore(&busiest->lock,
6659 flags);
8e45cb54 6660 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6661 goto out_one_pinned;
6662 }
6663
969c7921
TH
6664 /*
6665 * ->active_balance synchronizes accesses to
6666 * ->active_balance_work. Once set, it's cleared
6667 * only after active load balance is finished.
6668 */
1e3c88bd
PZ
6669 if (!busiest->active_balance) {
6670 busiest->active_balance = 1;
6671 busiest->push_cpu = this_cpu;
6672 active_balance = 1;
6673 }
6674 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6675
bd939f45 6676 if (active_balance) {
969c7921
TH
6677 stop_one_cpu_nowait(cpu_of(busiest),
6678 active_load_balance_cpu_stop, busiest,
6679 &busiest->active_balance_work);
bd939f45 6680 }
1e3c88bd
PZ
6681
6682 /*
6683 * We've kicked active balancing, reset the failure
6684 * counter.
6685 */
6686 sd->nr_balance_failed = sd->cache_nice_tries+1;
6687 }
6688 } else
6689 sd->nr_balance_failed = 0;
6690
6691 if (likely(!active_balance)) {
6692 /* We were unbalanced, so reset the balancing interval */
6693 sd->balance_interval = sd->min_interval;
6694 } else {
6695 /*
6696 * If we've begun active balancing, start to back off. This
6697 * case may not be covered by the all_pinned logic if there
6698 * is only 1 task on the busy runqueue (because we don't call
6699 * move_tasks).
6700 */
6701 if (sd->balance_interval < sd->max_interval)
6702 sd->balance_interval *= 2;
6703 }
6704
1e3c88bd
PZ
6705 goto out;
6706
6707out_balanced:
6708 schedstat_inc(sd, lb_balanced[idle]);
6709
6710 sd->nr_balance_failed = 0;
6711
6712out_one_pinned:
6713 /* tune up the balancing interval */
8e45cb54 6714 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6715 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6716 (sd->balance_interval < sd->max_interval))
6717 sd->balance_interval *= 2;
6718
46e49b38 6719 ld_moved = 0;
1e3c88bd 6720out:
1e3c88bd
PZ
6721 return ld_moved;
6722}
6723
52a08ef1
JL
6724static inline unsigned long
6725get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6726{
6727 unsigned long interval = sd->balance_interval;
6728
6729 if (cpu_busy)
6730 interval *= sd->busy_factor;
6731
6732 /* scale ms to jiffies */
6733 interval = msecs_to_jiffies(interval);
6734 interval = clamp(interval, 1UL, max_load_balance_interval);
6735
6736 return interval;
6737}
6738
6739static inline void
6740update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6741{
6742 unsigned long interval, next;
6743
6744 interval = get_sd_balance_interval(sd, cpu_busy);
6745 next = sd->last_balance + interval;
6746
6747 if (time_after(*next_balance, next))
6748 *next_balance = next;
6749}
6750
1e3c88bd
PZ
6751/*
6752 * idle_balance is called by schedule() if this_cpu is about to become
6753 * idle. Attempts to pull tasks from other CPUs.
6754 */
6e83125c 6755static int idle_balance(struct rq *this_rq)
1e3c88bd 6756{
52a08ef1
JL
6757 unsigned long next_balance = jiffies + HZ;
6758 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6759 struct sched_domain *sd;
6760 int pulled_task = 0;
9bd721c5 6761 u64 curr_cost = 0;
1e3c88bd 6762
6e83125c 6763 idle_enter_fair(this_rq);
0e5b5337 6764
6e83125c
PZ
6765 /*
6766 * We must set idle_stamp _before_ calling idle_balance(), such that we
6767 * measure the duration of idle_balance() as idle time.
6768 */
6769 this_rq->idle_stamp = rq_clock(this_rq);
6770
52a08ef1
JL
6771 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6772 rcu_read_lock();
6773 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6774 if (sd)
6775 update_next_balance(sd, 0, &next_balance);
6776 rcu_read_unlock();
6777
6e83125c 6778 goto out;
52a08ef1 6779 }
1e3c88bd 6780
f492e12e
PZ
6781 /*
6782 * Drop the rq->lock, but keep IRQ/preempt disabled.
6783 */
6784 raw_spin_unlock(&this_rq->lock);
6785
48a16753 6786 update_blocked_averages(this_cpu);
dce840a0 6787 rcu_read_lock();
1e3c88bd 6788 for_each_domain(this_cpu, sd) {
23f0d209 6789 int continue_balancing = 1;
9bd721c5 6790 u64 t0, domain_cost;
1e3c88bd
PZ
6791
6792 if (!(sd->flags & SD_LOAD_BALANCE))
6793 continue;
6794
52a08ef1
JL
6795 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6796 update_next_balance(sd, 0, &next_balance);
9bd721c5 6797 break;
52a08ef1 6798 }
9bd721c5 6799
f492e12e 6800 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6801 t0 = sched_clock_cpu(this_cpu);
6802
f492e12e 6803 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6804 sd, CPU_NEWLY_IDLE,
6805 &continue_balancing);
9bd721c5
JL
6806
6807 domain_cost = sched_clock_cpu(this_cpu) - t0;
6808 if (domain_cost > sd->max_newidle_lb_cost)
6809 sd->max_newidle_lb_cost = domain_cost;
6810
6811 curr_cost += domain_cost;
f492e12e 6812 }
1e3c88bd 6813
52a08ef1 6814 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6815
6816 /*
6817 * Stop searching for tasks to pull if there are
6818 * now runnable tasks on this rq.
6819 */
6820 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6821 break;
1e3c88bd 6822 }
dce840a0 6823 rcu_read_unlock();
f492e12e
PZ
6824
6825 raw_spin_lock(&this_rq->lock);
6826
0e5b5337
JL
6827 if (curr_cost > this_rq->max_idle_balance_cost)
6828 this_rq->max_idle_balance_cost = curr_cost;
6829
e5fc6611 6830 /*
0e5b5337
JL
6831 * While browsing the domains, we released the rq lock, a task could
6832 * have been enqueued in the meantime. Since we're not going idle,
6833 * pretend we pulled a task.
e5fc6611 6834 */
0e5b5337 6835 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6836 pulled_task = 1;
e5fc6611 6837
52a08ef1
JL
6838out:
6839 /* Move the next balance forward */
6840 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6841 this_rq->next_balance = next_balance;
9bd721c5 6842
e4aa358b 6843 /* Is there a task of a high priority class? */
46383648 6844 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6845 pulled_task = -1;
6846
6847 if (pulled_task) {
6848 idle_exit_fair(this_rq);
6e83125c 6849 this_rq->idle_stamp = 0;
e4aa358b 6850 }
6e83125c 6851
3c4017c1 6852 return pulled_task;
1e3c88bd
PZ
6853}
6854
6855/*
969c7921
TH
6856 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6857 * running tasks off the busiest CPU onto idle CPUs. It requires at
6858 * least 1 task to be running on each physical CPU where possible, and
6859 * avoids physical / logical imbalances.
1e3c88bd 6860 */
969c7921 6861static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6862{
969c7921
TH
6863 struct rq *busiest_rq = data;
6864 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6865 int target_cpu = busiest_rq->push_cpu;
969c7921 6866 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6867 struct sched_domain *sd;
969c7921
TH
6868
6869 raw_spin_lock_irq(&busiest_rq->lock);
6870
6871 /* make sure the requested cpu hasn't gone down in the meantime */
6872 if (unlikely(busiest_cpu != smp_processor_id() ||
6873 !busiest_rq->active_balance))
6874 goto out_unlock;
1e3c88bd
PZ
6875
6876 /* Is there any task to move? */
6877 if (busiest_rq->nr_running <= 1)
969c7921 6878 goto out_unlock;
1e3c88bd
PZ
6879
6880 /*
6881 * This condition is "impossible", if it occurs
6882 * we need to fix it. Originally reported by
6883 * Bjorn Helgaas on a 128-cpu setup.
6884 */
6885 BUG_ON(busiest_rq == target_rq);
6886
6887 /* move a task from busiest_rq to target_rq */
6888 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6889
6890 /* Search for an sd spanning us and the target CPU. */
dce840a0 6891 rcu_read_lock();
1e3c88bd
PZ
6892 for_each_domain(target_cpu, sd) {
6893 if ((sd->flags & SD_LOAD_BALANCE) &&
6894 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6895 break;
6896 }
6897
6898 if (likely(sd)) {
8e45cb54
PZ
6899 struct lb_env env = {
6900 .sd = sd,
ddcdf6e7
PZ
6901 .dst_cpu = target_cpu,
6902 .dst_rq = target_rq,
6903 .src_cpu = busiest_rq->cpu,
6904 .src_rq = busiest_rq,
8e45cb54
PZ
6905 .idle = CPU_IDLE,
6906 };
6907
1e3c88bd
PZ
6908 schedstat_inc(sd, alb_count);
6909
8e45cb54 6910 if (move_one_task(&env))
1e3c88bd
PZ
6911 schedstat_inc(sd, alb_pushed);
6912 else
6913 schedstat_inc(sd, alb_failed);
6914 }
dce840a0 6915 rcu_read_unlock();
1e3c88bd 6916 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6917out_unlock:
6918 busiest_rq->active_balance = 0;
6919 raw_spin_unlock_irq(&busiest_rq->lock);
6920 return 0;
1e3c88bd
PZ
6921}
6922
d987fc7f
MG
6923static inline int on_null_domain(struct rq *rq)
6924{
6925 return unlikely(!rcu_dereference_sched(rq->sd));
6926}
6927
3451d024 6928#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6929/*
6930 * idle load balancing details
83cd4fe2
VP
6931 * - When one of the busy CPUs notice that there may be an idle rebalancing
6932 * needed, they will kick the idle load balancer, which then does idle
6933 * load balancing for all the idle CPUs.
6934 */
1e3c88bd 6935static struct {
83cd4fe2 6936 cpumask_var_t idle_cpus_mask;
0b005cf5 6937 atomic_t nr_cpus;
83cd4fe2
VP
6938 unsigned long next_balance; /* in jiffy units */
6939} nohz ____cacheline_aligned;
1e3c88bd 6940
3dd0337d 6941static inline int find_new_ilb(void)
1e3c88bd 6942{
0b005cf5 6943 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6944
786d6dc7
SS
6945 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6946 return ilb;
6947
6948 return nr_cpu_ids;
1e3c88bd 6949}
1e3c88bd 6950
83cd4fe2
VP
6951/*
6952 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6953 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6954 * CPU (if there is one).
6955 */
0aeeeeba 6956static void nohz_balancer_kick(void)
83cd4fe2
VP
6957{
6958 int ilb_cpu;
6959
6960 nohz.next_balance++;
6961
3dd0337d 6962 ilb_cpu = find_new_ilb();
83cd4fe2 6963
0b005cf5
SS
6964 if (ilb_cpu >= nr_cpu_ids)
6965 return;
83cd4fe2 6966
cd490c5b 6967 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6968 return;
6969 /*
6970 * Use smp_send_reschedule() instead of resched_cpu().
6971 * This way we generate a sched IPI on the target cpu which
6972 * is idle. And the softirq performing nohz idle load balance
6973 * will be run before returning from the IPI.
6974 */
6975 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6976 return;
6977}
6978
c1cc017c 6979static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6980{
6981 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6982 /*
6983 * Completely isolated CPUs don't ever set, so we must test.
6984 */
6985 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6986 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6987 atomic_dec(&nohz.nr_cpus);
6988 }
71325960
SS
6989 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6990 }
6991}
6992
69e1e811
SS
6993static inline void set_cpu_sd_state_busy(void)
6994{
6995 struct sched_domain *sd;
37dc6b50 6996 int cpu = smp_processor_id();
69e1e811 6997
69e1e811 6998 rcu_read_lock();
37dc6b50 6999 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7000
7001 if (!sd || !sd->nohz_idle)
7002 goto unlock;
7003 sd->nohz_idle = 0;
7004
63b2ca30 7005 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7006unlock:
69e1e811
SS
7007 rcu_read_unlock();
7008}
7009
7010void set_cpu_sd_state_idle(void)
7011{
7012 struct sched_domain *sd;
37dc6b50 7013 int cpu = smp_processor_id();
69e1e811 7014
69e1e811 7015 rcu_read_lock();
37dc6b50 7016 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7017
7018 if (!sd || sd->nohz_idle)
7019 goto unlock;
7020 sd->nohz_idle = 1;
7021
63b2ca30 7022 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7023unlock:
69e1e811
SS
7024 rcu_read_unlock();
7025}
7026
1e3c88bd 7027/*
c1cc017c 7028 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7029 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7030 */
c1cc017c 7031void nohz_balance_enter_idle(int cpu)
1e3c88bd 7032{
71325960
SS
7033 /*
7034 * If this cpu is going down, then nothing needs to be done.
7035 */
7036 if (!cpu_active(cpu))
7037 return;
7038
c1cc017c
AS
7039 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7040 return;
1e3c88bd 7041
d987fc7f
MG
7042 /*
7043 * If we're a completely isolated CPU, we don't play.
7044 */
7045 if (on_null_domain(cpu_rq(cpu)))
7046 return;
7047
c1cc017c
AS
7048 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7049 atomic_inc(&nohz.nr_cpus);
7050 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7051}
71325960 7052
0db0628d 7053static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7054 unsigned long action, void *hcpu)
7055{
7056 switch (action & ~CPU_TASKS_FROZEN) {
7057 case CPU_DYING:
c1cc017c 7058 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7059 return NOTIFY_OK;
7060 default:
7061 return NOTIFY_DONE;
7062 }
7063}
1e3c88bd
PZ
7064#endif
7065
7066static DEFINE_SPINLOCK(balancing);
7067
49c022e6
PZ
7068/*
7069 * Scale the max load_balance interval with the number of CPUs in the system.
7070 * This trades load-balance latency on larger machines for less cross talk.
7071 */
029632fb 7072void update_max_interval(void)
49c022e6
PZ
7073{
7074 max_load_balance_interval = HZ*num_online_cpus()/10;
7075}
7076
1e3c88bd
PZ
7077/*
7078 * It checks each scheduling domain to see if it is due to be balanced,
7079 * and initiates a balancing operation if so.
7080 *
b9b0853a 7081 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7082 */
f7ed0a89 7083static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7084{
23f0d209 7085 int continue_balancing = 1;
f7ed0a89 7086 int cpu = rq->cpu;
1e3c88bd 7087 unsigned long interval;
04f733b4 7088 struct sched_domain *sd;
1e3c88bd
PZ
7089 /* Earliest time when we have to do rebalance again */
7090 unsigned long next_balance = jiffies + 60*HZ;
7091 int update_next_balance = 0;
f48627e6
JL
7092 int need_serialize, need_decay = 0;
7093 u64 max_cost = 0;
1e3c88bd 7094
48a16753 7095 update_blocked_averages(cpu);
2069dd75 7096
dce840a0 7097 rcu_read_lock();
1e3c88bd 7098 for_each_domain(cpu, sd) {
f48627e6
JL
7099 /*
7100 * Decay the newidle max times here because this is a regular
7101 * visit to all the domains. Decay ~1% per second.
7102 */
7103 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7104 sd->max_newidle_lb_cost =
7105 (sd->max_newidle_lb_cost * 253) / 256;
7106 sd->next_decay_max_lb_cost = jiffies + HZ;
7107 need_decay = 1;
7108 }
7109 max_cost += sd->max_newidle_lb_cost;
7110
1e3c88bd
PZ
7111 if (!(sd->flags & SD_LOAD_BALANCE))
7112 continue;
7113
f48627e6
JL
7114 /*
7115 * Stop the load balance at this level. There is another
7116 * CPU in our sched group which is doing load balancing more
7117 * actively.
7118 */
7119 if (!continue_balancing) {
7120 if (need_decay)
7121 continue;
7122 break;
7123 }
7124
52a08ef1 7125 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7126
7127 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7128 if (need_serialize) {
7129 if (!spin_trylock(&balancing))
7130 goto out;
7131 }
7132
7133 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7134 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7135 /*
6263322c 7136 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7137 * env->dst_cpu, so we can't know our idle
7138 * state even if we migrated tasks. Update it.
1e3c88bd 7139 */
de5eb2dd 7140 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7141 }
7142 sd->last_balance = jiffies;
52a08ef1 7143 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7144 }
7145 if (need_serialize)
7146 spin_unlock(&balancing);
7147out:
7148 if (time_after(next_balance, sd->last_balance + interval)) {
7149 next_balance = sd->last_balance + interval;
7150 update_next_balance = 1;
7151 }
f48627e6
JL
7152 }
7153 if (need_decay) {
1e3c88bd 7154 /*
f48627e6
JL
7155 * Ensure the rq-wide value also decays but keep it at a
7156 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7157 */
f48627e6
JL
7158 rq->max_idle_balance_cost =
7159 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7160 }
dce840a0 7161 rcu_read_unlock();
1e3c88bd
PZ
7162
7163 /*
7164 * next_balance will be updated only when there is a need.
7165 * When the cpu is attached to null domain for ex, it will not be
7166 * updated.
7167 */
7168 if (likely(update_next_balance))
7169 rq->next_balance = next_balance;
7170}
7171
3451d024 7172#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7173/*
3451d024 7174 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7175 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7176 */
208cb16b 7177static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7178{
208cb16b 7179 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7180 struct rq *rq;
7181 int balance_cpu;
7182
1c792db7
SS
7183 if (idle != CPU_IDLE ||
7184 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7185 goto end;
83cd4fe2
VP
7186
7187 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7188 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7189 continue;
7190
7191 /*
7192 * If this cpu gets work to do, stop the load balancing
7193 * work being done for other cpus. Next load
7194 * balancing owner will pick it up.
7195 */
1c792db7 7196 if (need_resched())
83cd4fe2 7197 break;
83cd4fe2 7198
5ed4f1d9
VG
7199 rq = cpu_rq(balance_cpu);
7200
ed61bbc6
TC
7201 /*
7202 * If time for next balance is due,
7203 * do the balance.
7204 */
7205 if (time_after_eq(jiffies, rq->next_balance)) {
7206 raw_spin_lock_irq(&rq->lock);
7207 update_rq_clock(rq);
7208 update_idle_cpu_load(rq);
7209 raw_spin_unlock_irq(&rq->lock);
7210 rebalance_domains(rq, CPU_IDLE);
7211 }
83cd4fe2 7212
83cd4fe2
VP
7213 if (time_after(this_rq->next_balance, rq->next_balance))
7214 this_rq->next_balance = rq->next_balance;
7215 }
7216 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7217end:
7218 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7219}
7220
7221/*
0b005cf5
SS
7222 * Current heuristic for kicking the idle load balancer in the presence
7223 * of an idle cpu is the system.
7224 * - This rq has more than one task.
7225 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7226 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7227 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7228 * domain span are idle.
83cd4fe2 7229 */
4a725627 7230static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7231{
7232 unsigned long now = jiffies;
0b005cf5 7233 struct sched_domain *sd;
63b2ca30 7234 struct sched_group_capacity *sgc;
4a725627 7235 int nr_busy, cpu = rq->cpu;
83cd4fe2 7236
4a725627 7237 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7238 return 0;
7239
1c792db7
SS
7240 /*
7241 * We may be recently in ticked or tickless idle mode. At the first
7242 * busy tick after returning from idle, we will update the busy stats.
7243 */
69e1e811 7244 set_cpu_sd_state_busy();
c1cc017c 7245 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7246
7247 /*
7248 * None are in tickless mode and hence no need for NOHZ idle load
7249 * balancing.
7250 */
7251 if (likely(!atomic_read(&nohz.nr_cpus)))
7252 return 0;
1c792db7
SS
7253
7254 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7255 return 0;
7256
0b005cf5
SS
7257 if (rq->nr_running >= 2)
7258 goto need_kick;
83cd4fe2 7259
067491b7 7260 rcu_read_lock();
37dc6b50 7261 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7262
37dc6b50 7263 if (sd) {
63b2ca30
NP
7264 sgc = sd->groups->sgc;
7265 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7266
37dc6b50 7267 if (nr_busy > 1)
067491b7 7268 goto need_kick_unlock;
83cd4fe2 7269 }
37dc6b50
PM
7270
7271 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7272
7273 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7274 sched_domain_span(sd)) < cpu))
7275 goto need_kick_unlock;
7276
067491b7 7277 rcu_read_unlock();
83cd4fe2 7278 return 0;
067491b7
PZ
7279
7280need_kick_unlock:
7281 rcu_read_unlock();
0b005cf5
SS
7282need_kick:
7283 return 1;
83cd4fe2
VP
7284}
7285#else
208cb16b 7286static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7287#endif
7288
7289/*
7290 * run_rebalance_domains is triggered when needed from the scheduler tick.
7291 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7292 */
1e3c88bd
PZ
7293static void run_rebalance_domains(struct softirq_action *h)
7294{
208cb16b 7295 struct rq *this_rq = this_rq();
6eb57e0d 7296 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7297 CPU_IDLE : CPU_NOT_IDLE;
7298
f7ed0a89 7299 rebalance_domains(this_rq, idle);
1e3c88bd 7300
1e3c88bd 7301 /*
83cd4fe2 7302 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7303 * balancing on behalf of the other idle cpus whose ticks are
7304 * stopped.
7305 */
208cb16b 7306 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7307}
7308
1e3c88bd
PZ
7309/*
7310 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7311 */
7caff66f 7312void trigger_load_balance(struct rq *rq)
1e3c88bd 7313{
1e3c88bd 7314 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7315 if (unlikely(on_null_domain(rq)))
7316 return;
7317
7318 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7319 raise_softirq(SCHED_SOFTIRQ);
3451d024 7320#ifdef CONFIG_NO_HZ_COMMON
c726099e 7321 if (nohz_kick_needed(rq))
0aeeeeba 7322 nohz_balancer_kick();
83cd4fe2 7323#endif
1e3c88bd
PZ
7324}
7325
0bcdcf28
CE
7326static void rq_online_fair(struct rq *rq)
7327{
7328 update_sysctl();
7329}
7330
7331static void rq_offline_fair(struct rq *rq)
7332{
7333 update_sysctl();
a4c96ae3
PB
7334
7335 /* Ensure any throttled groups are reachable by pick_next_task */
7336 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7337}
7338
55e12e5e 7339#endif /* CONFIG_SMP */
e1d1484f 7340
bf0f6f24
IM
7341/*
7342 * scheduler tick hitting a task of our scheduling class:
7343 */
8f4d37ec 7344static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7345{
7346 struct cfs_rq *cfs_rq;
7347 struct sched_entity *se = &curr->se;
7348
7349 for_each_sched_entity(se) {
7350 cfs_rq = cfs_rq_of(se);
8f4d37ec 7351 entity_tick(cfs_rq, se, queued);
bf0f6f24 7352 }
18bf2805 7353
10e84b97 7354 if (numabalancing_enabled)
cbee9f88 7355 task_tick_numa(rq, curr);
3d59eebc 7356
18bf2805 7357 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7358}
7359
7360/*
cd29fe6f
PZ
7361 * called on fork with the child task as argument from the parent's context
7362 * - child not yet on the tasklist
7363 * - preemption disabled
bf0f6f24 7364 */
cd29fe6f 7365static void task_fork_fair(struct task_struct *p)
bf0f6f24 7366{
4fc420c9
DN
7367 struct cfs_rq *cfs_rq;
7368 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7369 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7370 struct rq *rq = this_rq();
7371 unsigned long flags;
7372
05fa785c 7373 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7374
861d034e
PZ
7375 update_rq_clock(rq);
7376
4fc420c9
DN
7377 cfs_rq = task_cfs_rq(current);
7378 curr = cfs_rq->curr;
7379
6c9a27f5
DN
7380 /*
7381 * Not only the cpu but also the task_group of the parent might have
7382 * been changed after parent->se.parent,cfs_rq were copied to
7383 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7384 * of child point to valid ones.
7385 */
7386 rcu_read_lock();
7387 __set_task_cpu(p, this_cpu);
7388 rcu_read_unlock();
bf0f6f24 7389
7109c442 7390 update_curr(cfs_rq);
cd29fe6f 7391
b5d9d734
MG
7392 if (curr)
7393 se->vruntime = curr->vruntime;
aeb73b04 7394 place_entity(cfs_rq, se, 1);
4d78e7b6 7395
cd29fe6f 7396 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7397 /*
edcb60a3
IM
7398 * Upon rescheduling, sched_class::put_prev_task() will place
7399 * 'current' within the tree based on its new key value.
7400 */
4d78e7b6 7401 swap(curr->vruntime, se->vruntime);
aec0a514 7402 resched_task(rq->curr);
4d78e7b6 7403 }
bf0f6f24 7404
88ec22d3
PZ
7405 se->vruntime -= cfs_rq->min_vruntime;
7406
05fa785c 7407 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7408}
7409
cb469845
SR
7410/*
7411 * Priority of the task has changed. Check to see if we preempt
7412 * the current task.
7413 */
da7a735e
PZ
7414static void
7415prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7416{
da7a735e
PZ
7417 if (!p->se.on_rq)
7418 return;
7419
cb469845
SR
7420 /*
7421 * Reschedule if we are currently running on this runqueue and
7422 * our priority decreased, or if we are not currently running on
7423 * this runqueue and our priority is higher than the current's
7424 */
da7a735e 7425 if (rq->curr == p) {
cb469845
SR
7426 if (p->prio > oldprio)
7427 resched_task(rq->curr);
7428 } else
15afe09b 7429 check_preempt_curr(rq, p, 0);
cb469845
SR
7430}
7431
da7a735e
PZ
7432static void switched_from_fair(struct rq *rq, struct task_struct *p)
7433{
7434 struct sched_entity *se = &p->se;
7435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7436
7437 /*
791c9e02 7438 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7439 * switched back to the fair class the enqueue_entity(.flags=0) will
7440 * do the right thing.
7441 *
791c9e02
GM
7442 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7443 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7444 * the task is sleeping will it still have non-normalized vruntime.
7445 */
791c9e02 7446 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7447 /*
7448 * Fix up our vruntime so that the current sleep doesn't
7449 * cause 'unlimited' sleep bonus.
7450 */
7451 place_entity(cfs_rq, se, 0);
7452 se->vruntime -= cfs_rq->min_vruntime;
7453 }
9ee474f5 7454
141965c7 7455#ifdef CONFIG_SMP
9ee474f5
PT
7456 /*
7457 * Remove our load from contribution when we leave sched_fair
7458 * and ensure we don't carry in an old decay_count if we
7459 * switch back.
7460 */
87e3c8ae
KT
7461 if (se->avg.decay_count) {
7462 __synchronize_entity_decay(se);
7463 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7464 }
7465#endif
da7a735e
PZ
7466}
7467
cb469845
SR
7468/*
7469 * We switched to the sched_fair class.
7470 */
da7a735e 7471static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7472{
eb7a59b2
M
7473 struct sched_entity *se = &p->se;
7474#ifdef CONFIG_FAIR_GROUP_SCHED
7475 /*
7476 * Since the real-depth could have been changed (only FAIR
7477 * class maintain depth value), reset depth properly.
7478 */
7479 se->depth = se->parent ? se->parent->depth + 1 : 0;
7480#endif
7481 if (!se->on_rq)
da7a735e
PZ
7482 return;
7483
cb469845
SR
7484 /*
7485 * We were most likely switched from sched_rt, so
7486 * kick off the schedule if running, otherwise just see
7487 * if we can still preempt the current task.
7488 */
da7a735e 7489 if (rq->curr == p)
cb469845
SR
7490 resched_task(rq->curr);
7491 else
15afe09b 7492 check_preempt_curr(rq, p, 0);
cb469845
SR
7493}
7494
83b699ed
SV
7495/* Account for a task changing its policy or group.
7496 *
7497 * This routine is mostly called to set cfs_rq->curr field when a task
7498 * migrates between groups/classes.
7499 */
7500static void set_curr_task_fair(struct rq *rq)
7501{
7502 struct sched_entity *se = &rq->curr->se;
7503
ec12cb7f
PT
7504 for_each_sched_entity(se) {
7505 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7506
7507 set_next_entity(cfs_rq, se);
7508 /* ensure bandwidth has been allocated on our new cfs_rq */
7509 account_cfs_rq_runtime(cfs_rq, 0);
7510 }
83b699ed
SV
7511}
7512
029632fb
PZ
7513void init_cfs_rq(struct cfs_rq *cfs_rq)
7514{
7515 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7516 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7517#ifndef CONFIG_64BIT
7518 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7519#endif
141965c7 7520#ifdef CONFIG_SMP
9ee474f5 7521 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7522 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7523#endif
029632fb
PZ
7524}
7525
810b3817 7526#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7527static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7528{
fed14d45 7529 struct sched_entity *se = &p->se;
aff3e498 7530 struct cfs_rq *cfs_rq;
fed14d45 7531
b2b5ce02
PZ
7532 /*
7533 * If the task was not on the rq at the time of this cgroup movement
7534 * it must have been asleep, sleeping tasks keep their ->vruntime
7535 * absolute on their old rq until wakeup (needed for the fair sleeper
7536 * bonus in place_entity()).
7537 *
7538 * If it was on the rq, we've just 'preempted' it, which does convert
7539 * ->vruntime to a relative base.
7540 *
7541 * Make sure both cases convert their relative position when migrating
7542 * to another cgroup's rq. This does somewhat interfere with the
7543 * fair sleeper stuff for the first placement, but who cares.
7544 */
7ceff013
DN
7545 /*
7546 * When !on_rq, vruntime of the task has usually NOT been normalized.
7547 * But there are some cases where it has already been normalized:
7548 *
7549 * - Moving a forked child which is waiting for being woken up by
7550 * wake_up_new_task().
62af3783
DN
7551 * - Moving a task which has been woken up by try_to_wake_up() and
7552 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7553 *
7554 * To prevent boost or penalty in the new cfs_rq caused by delta
7555 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7556 */
fed14d45 7557 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7558 on_rq = 1;
7559
b2b5ce02 7560 if (!on_rq)
fed14d45 7561 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7562 set_task_rq(p, task_cpu(p));
fed14d45 7563 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7564 if (!on_rq) {
fed14d45
PZ
7565 cfs_rq = cfs_rq_of(se);
7566 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7567#ifdef CONFIG_SMP
7568 /*
7569 * migrate_task_rq_fair() will have removed our previous
7570 * contribution, but we must synchronize for ongoing future
7571 * decay.
7572 */
fed14d45
PZ
7573 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7574 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7575#endif
7576 }
810b3817 7577}
029632fb
PZ
7578
7579void free_fair_sched_group(struct task_group *tg)
7580{
7581 int i;
7582
7583 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7584
7585 for_each_possible_cpu(i) {
7586 if (tg->cfs_rq)
7587 kfree(tg->cfs_rq[i]);
7588 if (tg->se)
7589 kfree(tg->se[i]);
7590 }
7591
7592 kfree(tg->cfs_rq);
7593 kfree(tg->se);
7594}
7595
7596int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7597{
7598 struct cfs_rq *cfs_rq;
7599 struct sched_entity *se;
7600 int i;
7601
7602 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7603 if (!tg->cfs_rq)
7604 goto err;
7605 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7606 if (!tg->se)
7607 goto err;
7608
7609 tg->shares = NICE_0_LOAD;
7610
7611 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7612
7613 for_each_possible_cpu(i) {
7614 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7615 GFP_KERNEL, cpu_to_node(i));
7616 if (!cfs_rq)
7617 goto err;
7618
7619 se = kzalloc_node(sizeof(struct sched_entity),
7620 GFP_KERNEL, cpu_to_node(i));
7621 if (!se)
7622 goto err_free_rq;
7623
7624 init_cfs_rq(cfs_rq);
7625 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7626 }
7627
7628 return 1;
7629
7630err_free_rq:
7631 kfree(cfs_rq);
7632err:
7633 return 0;
7634}
7635
7636void unregister_fair_sched_group(struct task_group *tg, int cpu)
7637{
7638 struct rq *rq = cpu_rq(cpu);
7639 unsigned long flags;
7640
7641 /*
7642 * Only empty task groups can be destroyed; so we can speculatively
7643 * check on_list without danger of it being re-added.
7644 */
7645 if (!tg->cfs_rq[cpu]->on_list)
7646 return;
7647
7648 raw_spin_lock_irqsave(&rq->lock, flags);
7649 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7650 raw_spin_unlock_irqrestore(&rq->lock, flags);
7651}
7652
7653void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7654 struct sched_entity *se, int cpu,
7655 struct sched_entity *parent)
7656{
7657 struct rq *rq = cpu_rq(cpu);
7658
7659 cfs_rq->tg = tg;
7660 cfs_rq->rq = rq;
029632fb
PZ
7661 init_cfs_rq_runtime(cfs_rq);
7662
7663 tg->cfs_rq[cpu] = cfs_rq;
7664 tg->se[cpu] = se;
7665
7666 /* se could be NULL for root_task_group */
7667 if (!se)
7668 return;
7669
fed14d45 7670 if (!parent) {
029632fb 7671 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7672 se->depth = 0;
7673 } else {
029632fb 7674 se->cfs_rq = parent->my_q;
fed14d45
PZ
7675 se->depth = parent->depth + 1;
7676 }
029632fb
PZ
7677
7678 se->my_q = cfs_rq;
0ac9b1c2
PT
7679 /* guarantee group entities always have weight */
7680 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7681 se->parent = parent;
7682}
7683
7684static DEFINE_MUTEX(shares_mutex);
7685
7686int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7687{
7688 int i;
7689 unsigned long flags;
7690
7691 /*
7692 * We can't change the weight of the root cgroup.
7693 */
7694 if (!tg->se[0])
7695 return -EINVAL;
7696
7697 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7698
7699 mutex_lock(&shares_mutex);
7700 if (tg->shares == shares)
7701 goto done;
7702
7703 tg->shares = shares;
7704 for_each_possible_cpu(i) {
7705 struct rq *rq = cpu_rq(i);
7706 struct sched_entity *se;
7707
7708 se = tg->se[i];
7709 /* Propagate contribution to hierarchy */
7710 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7711
7712 /* Possible calls to update_curr() need rq clock */
7713 update_rq_clock(rq);
17bc14b7 7714 for_each_sched_entity(se)
029632fb
PZ
7715 update_cfs_shares(group_cfs_rq(se));
7716 raw_spin_unlock_irqrestore(&rq->lock, flags);
7717 }
7718
7719done:
7720 mutex_unlock(&shares_mutex);
7721 return 0;
7722}
7723#else /* CONFIG_FAIR_GROUP_SCHED */
7724
7725void free_fair_sched_group(struct task_group *tg) { }
7726
7727int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7728{
7729 return 1;
7730}
7731
7732void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7733
7734#endif /* CONFIG_FAIR_GROUP_SCHED */
7735
810b3817 7736
6d686f45 7737static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7738{
7739 struct sched_entity *se = &task->se;
0d721cea
PW
7740 unsigned int rr_interval = 0;
7741
7742 /*
7743 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7744 * idle runqueue:
7745 */
0d721cea 7746 if (rq->cfs.load.weight)
a59f4e07 7747 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7748
7749 return rr_interval;
7750}
7751
bf0f6f24
IM
7752/*
7753 * All the scheduling class methods:
7754 */
029632fb 7755const struct sched_class fair_sched_class = {
5522d5d5 7756 .next = &idle_sched_class,
bf0f6f24
IM
7757 .enqueue_task = enqueue_task_fair,
7758 .dequeue_task = dequeue_task_fair,
7759 .yield_task = yield_task_fair,
d95f4122 7760 .yield_to_task = yield_to_task_fair,
bf0f6f24 7761
2e09bf55 7762 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7763
7764 .pick_next_task = pick_next_task_fair,
7765 .put_prev_task = put_prev_task_fair,
7766
681f3e68 7767#ifdef CONFIG_SMP
4ce72a2c 7768 .select_task_rq = select_task_rq_fair,
0a74bef8 7769 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7770
0bcdcf28
CE
7771 .rq_online = rq_online_fair,
7772 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7773
7774 .task_waking = task_waking_fair,
681f3e68 7775#endif
bf0f6f24 7776
83b699ed 7777 .set_curr_task = set_curr_task_fair,
bf0f6f24 7778 .task_tick = task_tick_fair,
cd29fe6f 7779 .task_fork = task_fork_fair,
cb469845
SR
7780
7781 .prio_changed = prio_changed_fair,
da7a735e 7782 .switched_from = switched_from_fair,
cb469845 7783 .switched_to = switched_to_fair,
810b3817 7784
0d721cea
PW
7785 .get_rr_interval = get_rr_interval_fair,
7786
810b3817 7787#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7788 .task_move_group = task_move_group_fair,
810b3817 7789#endif
bf0f6f24
IM
7790};
7791
7792#ifdef CONFIG_SCHED_DEBUG
029632fb 7793void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7794{
bf0f6f24
IM
7795 struct cfs_rq *cfs_rq;
7796
5973e5b9 7797 rcu_read_lock();
c3b64f1e 7798 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7799 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7800 rcu_read_unlock();
bf0f6f24
IM
7801}
7802#endif
029632fb
PZ
7803
7804__init void init_sched_fair_class(void)
7805{
7806#ifdef CONFIG_SMP
7807 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7808
3451d024 7809#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7810 nohz.next_balance = jiffies;
029632fb 7811 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7812 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7813#endif
7814#endif /* SMP */
7815
7816}