]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/core: Fix power to capacity renaming in comment
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
7dc603c9
PZ
693static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 695static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
696static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
2b8c41da
YD
698/*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723void post_init_entity_util_avg(struct sched_entity *se)
724{
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
172895e6 727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 728 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
729
730 if (cap > 0) {
731 if (cfs_rq->avg.util_avg != 0) {
732 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
733 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
734
735 if (sa->util_avg > cap)
736 sa->util_avg = cap;
737 } else {
738 sa->util_avg = cap;
739 }
740 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
741 }
7dc603c9
PZ
742
743 if (entity_is_task(se)) {
744 struct task_struct *p = task_of(se);
745 if (p->sched_class != &fair_sched_class) {
746 /*
747 * For !fair tasks do:
748 *
749 update_cfs_rq_load_avg(now, cfs_rq, false);
750 attach_entity_load_avg(cfs_rq, se);
751 switched_from_fair(rq, p);
752 *
753 * such that the next switched_to_fair() has the
754 * expected state.
755 */
756 se->avg.last_update_time = now;
757 return;
758 }
759 }
760
7c3edd2c 761 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 762 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 763 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
764}
765
7dc603c9 766#else /* !CONFIG_SMP */
540247fb 767void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
768{
769}
2b8c41da
YD
770void post_init_entity_util_avg(struct sched_entity *se)
771{
772}
3d30544f
PZ
773static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
774{
775}
7dc603c9 776#endif /* CONFIG_SMP */
a75cdaa9 777
bf0f6f24 778/*
9dbdb155 779 * Update the current task's runtime statistics.
bf0f6f24 780 */
b7cc0896 781static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 782{
429d43bc 783 struct sched_entity *curr = cfs_rq->curr;
78becc27 784 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 785 u64 delta_exec;
bf0f6f24
IM
786
787 if (unlikely(!curr))
788 return;
789
9dbdb155
PZ
790 delta_exec = now - curr->exec_start;
791 if (unlikely((s64)delta_exec <= 0))
34f28ecd 792 return;
bf0f6f24 793
8ebc91d9 794 curr->exec_start = now;
d842de87 795
9dbdb155
PZ
796 schedstat_set(curr->statistics.exec_max,
797 max(delta_exec, curr->statistics.exec_max));
798
799 curr->sum_exec_runtime += delta_exec;
800 schedstat_add(cfs_rq, exec_clock, delta_exec);
801
802 curr->vruntime += calc_delta_fair(delta_exec, curr);
803 update_min_vruntime(cfs_rq);
804
d842de87
SV
805 if (entity_is_task(curr)) {
806 struct task_struct *curtask = task_of(curr);
807
f977bb49 808 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 809 cpuacct_charge(curtask, delta_exec);
f06febc9 810 account_group_exec_runtime(curtask, delta_exec);
d842de87 811 }
ec12cb7f
PT
812
813 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
814}
815
6e998916
SG
816static void update_curr_fair(struct rq *rq)
817{
818 update_curr(cfs_rq_of(&rq->curr->se));
819}
820
3ea94de1 821#ifdef CONFIG_SCHEDSTATS
bf0f6f24 822static inline void
5870db5b 823update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 824{
3ea94de1
JP
825 u64 wait_start = rq_clock(rq_of(cfs_rq));
826
827 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
828 likely(wait_start > se->statistics.wait_start))
829 wait_start -= se->statistics.wait_start;
830
831 se->statistics.wait_start = wait_start;
bf0f6f24
IM
832}
833
3ea94de1
JP
834static void
835update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
836{
837 struct task_struct *p;
cb251765
MG
838 u64 delta;
839
840 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
841
842 if (entity_is_task(se)) {
843 p = task_of(se);
844 if (task_on_rq_migrating(p)) {
845 /*
846 * Preserve migrating task's wait time so wait_start
847 * time stamp can be adjusted to accumulate wait time
848 * prior to migration.
849 */
850 se->statistics.wait_start = delta;
851 return;
852 }
853 trace_sched_stat_wait(p, delta);
854 }
855
856 se->statistics.wait_max = max(se->statistics.wait_max, delta);
857 se->statistics.wait_count++;
858 se->statistics.wait_sum += delta;
859 se->statistics.wait_start = 0;
860}
3ea94de1 861
bf0f6f24
IM
862/*
863 * Task is being enqueued - update stats:
864 */
cb251765
MG
865static inline void
866update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
bf0f6f24
IM
868 /*
869 * Are we enqueueing a waiting task? (for current tasks
870 * a dequeue/enqueue event is a NOP)
871 */
429d43bc 872 if (se != cfs_rq->curr)
5870db5b 873 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
874}
875
bf0f6f24 876static inline void
cb251765 877update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 878{
bf0f6f24
IM
879 /*
880 * Mark the end of the wait period if dequeueing a
881 * waiting task:
882 */
429d43bc 883 if (se != cfs_rq->curr)
9ef0a961 884 update_stats_wait_end(cfs_rq, se);
cb251765
MG
885
886 if (flags & DEQUEUE_SLEEP) {
887 if (entity_is_task(se)) {
888 struct task_struct *tsk = task_of(se);
889
890 if (tsk->state & TASK_INTERRUPTIBLE)
891 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
892 if (tsk->state & TASK_UNINTERRUPTIBLE)
893 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
894 }
895 }
896
897}
898#else
899static inline void
900update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
901{
902}
903
904static inline void
905update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
906{
907}
908
909static inline void
910update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
911{
912}
913
914static inline void
915update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
916{
bf0f6f24 917}
cb251765 918#endif
bf0f6f24
IM
919
920/*
921 * We are picking a new current task - update its stats:
922 */
923static inline void
79303e9e 924update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
925{
926 /*
927 * We are starting a new run period:
928 */
78becc27 929 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
930}
931
bf0f6f24
IM
932/**************************************************
933 * Scheduling class queueing methods:
934 */
935
cbee9f88
PZ
936#ifdef CONFIG_NUMA_BALANCING
937/*
598f0ec0
MG
938 * Approximate time to scan a full NUMA task in ms. The task scan period is
939 * calculated based on the tasks virtual memory size and
940 * numa_balancing_scan_size.
cbee9f88 941 */
598f0ec0
MG
942unsigned int sysctl_numa_balancing_scan_period_min = 1000;
943unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
944
945/* Portion of address space to scan in MB */
946unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 947
4b96a29b
PZ
948/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
949unsigned int sysctl_numa_balancing_scan_delay = 1000;
950
598f0ec0
MG
951static unsigned int task_nr_scan_windows(struct task_struct *p)
952{
953 unsigned long rss = 0;
954 unsigned long nr_scan_pages;
955
956 /*
957 * Calculations based on RSS as non-present and empty pages are skipped
958 * by the PTE scanner and NUMA hinting faults should be trapped based
959 * on resident pages
960 */
961 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
962 rss = get_mm_rss(p->mm);
963 if (!rss)
964 rss = nr_scan_pages;
965
966 rss = round_up(rss, nr_scan_pages);
967 return rss / nr_scan_pages;
968}
969
970/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
971#define MAX_SCAN_WINDOW 2560
972
973static unsigned int task_scan_min(struct task_struct *p)
974{
316c1608 975 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
976 unsigned int scan, floor;
977 unsigned int windows = 1;
978
64192658
KT
979 if (scan_size < MAX_SCAN_WINDOW)
980 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
981 floor = 1000 / windows;
982
983 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
984 return max_t(unsigned int, floor, scan);
985}
986
987static unsigned int task_scan_max(struct task_struct *p)
988{
989 unsigned int smin = task_scan_min(p);
990 unsigned int smax;
991
992 /* Watch for min being lower than max due to floor calculations */
993 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
994 return max(smin, smax);
995}
996
0ec8aa00
PZ
997static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
998{
999 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1000 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1001}
1002
1003static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1004{
1005 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1006 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1007}
1008
8c8a743c
PZ
1009struct numa_group {
1010 atomic_t refcount;
1011
1012 spinlock_t lock; /* nr_tasks, tasks */
1013 int nr_tasks;
e29cf08b 1014 pid_t gid;
4142c3eb 1015 int active_nodes;
8c8a743c
PZ
1016
1017 struct rcu_head rcu;
989348b5 1018 unsigned long total_faults;
4142c3eb 1019 unsigned long max_faults_cpu;
7e2703e6
RR
1020 /*
1021 * Faults_cpu is used to decide whether memory should move
1022 * towards the CPU. As a consequence, these stats are weighted
1023 * more by CPU use than by memory faults.
1024 */
50ec8a40 1025 unsigned long *faults_cpu;
989348b5 1026 unsigned long faults[0];
8c8a743c
PZ
1027};
1028
be1e4e76
RR
1029/* Shared or private faults. */
1030#define NR_NUMA_HINT_FAULT_TYPES 2
1031
1032/* Memory and CPU locality */
1033#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1034
1035/* Averaged statistics, and temporary buffers. */
1036#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1037
e29cf08b
MG
1038pid_t task_numa_group_id(struct task_struct *p)
1039{
1040 return p->numa_group ? p->numa_group->gid : 0;
1041}
1042
44dba3d5
IM
1043/*
1044 * The averaged statistics, shared & private, memory & cpu,
1045 * occupy the first half of the array. The second half of the
1046 * array is for current counters, which are averaged into the
1047 * first set by task_numa_placement.
1048 */
1049static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1050{
44dba3d5 1051 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1052}
1053
1054static inline unsigned long task_faults(struct task_struct *p, int nid)
1055{
44dba3d5 1056 if (!p->numa_faults)
ac8e895b
MG
1057 return 0;
1058
44dba3d5
IM
1059 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1060 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1061}
1062
83e1d2cd
MG
1063static inline unsigned long group_faults(struct task_struct *p, int nid)
1064{
1065 if (!p->numa_group)
1066 return 0;
1067
44dba3d5
IM
1068 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1069 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1070}
1071
20e07dea
RR
1072static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1073{
44dba3d5
IM
1074 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1075 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1076}
1077
4142c3eb
RR
1078/*
1079 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1080 * considered part of a numa group's pseudo-interleaving set. Migrations
1081 * between these nodes are slowed down, to allow things to settle down.
1082 */
1083#define ACTIVE_NODE_FRACTION 3
1084
1085static bool numa_is_active_node(int nid, struct numa_group *ng)
1086{
1087 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1088}
1089
6c6b1193
RR
1090/* Handle placement on systems where not all nodes are directly connected. */
1091static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1092 int maxdist, bool task)
1093{
1094 unsigned long score = 0;
1095 int node;
1096
1097 /*
1098 * All nodes are directly connected, and the same distance
1099 * from each other. No need for fancy placement algorithms.
1100 */
1101 if (sched_numa_topology_type == NUMA_DIRECT)
1102 return 0;
1103
1104 /*
1105 * This code is called for each node, introducing N^2 complexity,
1106 * which should be ok given the number of nodes rarely exceeds 8.
1107 */
1108 for_each_online_node(node) {
1109 unsigned long faults;
1110 int dist = node_distance(nid, node);
1111
1112 /*
1113 * The furthest away nodes in the system are not interesting
1114 * for placement; nid was already counted.
1115 */
1116 if (dist == sched_max_numa_distance || node == nid)
1117 continue;
1118
1119 /*
1120 * On systems with a backplane NUMA topology, compare groups
1121 * of nodes, and move tasks towards the group with the most
1122 * memory accesses. When comparing two nodes at distance
1123 * "hoplimit", only nodes closer by than "hoplimit" are part
1124 * of each group. Skip other nodes.
1125 */
1126 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1127 dist > maxdist)
1128 continue;
1129
1130 /* Add up the faults from nearby nodes. */
1131 if (task)
1132 faults = task_faults(p, node);
1133 else
1134 faults = group_faults(p, node);
1135
1136 /*
1137 * On systems with a glueless mesh NUMA topology, there are
1138 * no fixed "groups of nodes". Instead, nodes that are not
1139 * directly connected bounce traffic through intermediate
1140 * nodes; a numa_group can occupy any set of nodes.
1141 * The further away a node is, the less the faults count.
1142 * This seems to result in good task placement.
1143 */
1144 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1145 faults *= (sched_max_numa_distance - dist);
1146 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1147 }
1148
1149 score += faults;
1150 }
1151
1152 return score;
1153}
1154
83e1d2cd
MG
1155/*
1156 * These return the fraction of accesses done by a particular task, or
1157 * task group, on a particular numa node. The group weight is given a
1158 * larger multiplier, in order to group tasks together that are almost
1159 * evenly spread out between numa nodes.
1160 */
7bd95320
RR
1161static inline unsigned long task_weight(struct task_struct *p, int nid,
1162 int dist)
83e1d2cd 1163{
7bd95320 1164 unsigned long faults, total_faults;
83e1d2cd 1165
44dba3d5 1166 if (!p->numa_faults)
83e1d2cd
MG
1167 return 0;
1168
1169 total_faults = p->total_numa_faults;
1170
1171 if (!total_faults)
1172 return 0;
1173
7bd95320 1174 faults = task_faults(p, nid);
6c6b1193
RR
1175 faults += score_nearby_nodes(p, nid, dist, true);
1176
7bd95320 1177 return 1000 * faults / total_faults;
83e1d2cd
MG
1178}
1179
7bd95320
RR
1180static inline unsigned long group_weight(struct task_struct *p, int nid,
1181 int dist)
83e1d2cd 1182{
7bd95320
RR
1183 unsigned long faults, total_faults;
1184
1185 if (!p->numa_group)
1186 return 0;
1187
1188 total_faults = p->numa_group->total_faults;
1189
1190 if (!total_faults)
83e1d2cd
MG
1191 return 0;
1192
7bd95320 1193 faults = group_faults(p, nid);
6c6b1193
RR
1194 faults += score_nearby_nodes(p, nid, dist, false);
1195
7bd95320 1196 return 1000 * faults / total_faults;
83e1d2cd
MG
1197}
1198
10f39042
RR
1199bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1200 int src_nid, int dst_cpu)
1201{
1202 struct numa_group *ng = p->numa_group;
1203 int dst_nid = cpu_to_node(dst_cpu);
1204 int last_cpupid, this_cpupid;
1205
1206 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1207
1208 /*
1209 * Multi-stage node selection is used in conjunction with a periodic
1210 * migration fault to build a temporal task<->page relation. By using
1211 * a two-stage filter we remove short/unlikely relations.
1212 *
1213 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1214 * a task's usage of a particular page (n_p) per total usage of this
1215 * page (n_t) (in a given time-span) to a probability.
1216 *
1217 * Our periodic faults will sample this probability and getting the
1218 * same result twice in a row, given these samples are fully
1219 * independent, is then given by P(n)^2, provided our sample period
1220 * is sufficiently short compared to the usage pattern.
1221 *
1222 * This quadric squishes small probabilities, making it less likely we
1223 * act on an unlikely task<->page relation.
1224 */
1225 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1226 if (!cpupid_pid_unset(last_cpupid) &&
1227 cpupid_to_nid(last_cpupid) != dst_nid)
1228 return false;
1229
1230 /* Always allow migrate on private faults */
1231 if (cpupid_match_pid(p, last_cpupid))
1232 return true;
1233
1234 /* A shared fault, but p->numa_group has not been set up yet. */
1235 if (!ng)
1236 return true;
1237
1238 /*
4142c3eb
RR
1239 * Destination node is much more heavily used than the source
1240 * node? Allow migration.
10f39042 1241 */
4142c3eb
RR
1242 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1243 ACTIVE_NODE_FRACTION)
10f39042
RR
1244 return true;
1245
1246 /*
4142c3eb
RR
1247 * Distribute memory according to CPU & memory use on each node,
1248 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1249 *
1250 * faults_cpu(dst) 3 faults_cpu(src)
1251 * --------------- * - > ---------------
1252 * faults_mem(dst) 4 faults_mem(src)
10f39042 1253 */
4142c3eb
RR
1254 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1255 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1256}
1257
e6628d5b 1258static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1259static unsigned long source_load(int cpu, int type);
1260static unsigned long target_load(int cpu, int type);
ced549fa 1261static unsigned long capacity_of(int cpu);
58d081b5
MG
1262static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1263
fb13c7ee 1264/* Cached statistics for all CPUs within a node */
58d081b5 1265struct numa_stats {
fb13c7ee 1266 unsigned long nr_running;
58d081b5 1267 unsigned long load;
fb13c7ee
MG
1268
1269 /* Total compute capacity of CPUs on a node */
5ef20ca1 1270 unsigned long compute_capacity;
fb13c7ee
MG
1271
1272 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1273 unsigned long task_capacity;
1b6a7495 1274 int has_free_capacity;
58d081b5 1275};
e6628d5b 1276
fb13c7ee
MG
1277/*
1278 * XXX borrowed from update_sg_lb_stats
1279 */
1280static void update_numa_stats(struct numa_stats *ns, int nid)
1281{
83d7f242
RR
1282 int smt, cpu, cpus = 0;
1283 unsigned long capacity;
fb13c7ee
MG
1284
1285 memset(ns, 0, sizeof(*ns));
1286 for_each_cpu(cpu, cpumask_of_node(nid)) {
1287 struct rq *rq = cpu_rq(cpu);
1288
1289 ns->nr_running += rq->nr_running;
1290 ns->load += weighted_cpuload(cpu);
ced549fa 1291 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1292
1293 cpus++;
fb13c7ee
MG
1294 }
1295
5eca82a9
PZ
1296 /*
1297 * If we raced with hotplug and there are no CPUs left in our mask
1298 * the @ns structure is NULL'ed and task_numa_compare() will
1299 * not find this node attractive.
1300 *
1b6a7495
NP
1301 * We'll either bail at !has_free_capacity, or we'll detect a huge
1302 * imbalance and bail there.
5eca82a9
PZ
1303 */
1304 if (!cpus)
1305 return;
1306
83d7f242
RR
1307 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1308 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1309 capacity = cpus / smt; /* cores */
1310
1311 ns->task_capacity = min_t(unsigned, capacity,
1312 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1313 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1314}
1315
58d081b5
MG
1316struct task_numa_env {
1317 struct task_struct *p;
e6628d5b 1318
58d081b5
MG
1319 int src_cpu, src_nid;
1320 int dst_cpu, dst_nid;
e6628d5b 1321
58d081b5 1322 struct numa_stats src_stats, dst_stats;
e6628d5b 1323
40ea2b42 1324 int imbalance_pct;
7bd95320 1325 int dist;
fb13c7ee
MG
1326
1327 struct task_struct *best_task;
1328 long best_imp;
58d081b5
MG
1329 int best_cpu;
1330};
1331
fb13c7ee
MG
1332static void task_numa_assign(struct task_numa_env *env,
1333 struct task_struct *p, long imp)
1334{
1335 if (env->best_task)
1336 put_task_struct(env->best_task);
bac78573
ON
1337 if (p)
1338 get_task_struct(p);
fb13c7ee
MG
1339
1340 env->best_task = p;
1341 env->best_imp = imp;
1342 env->best_cpu = env->dst_cpu;
1343}
1344
28a21745 1345static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1346 struct task_numa_env *env)
1347{
e4991b24
RR
1348 long imb, old_imb;
1349 long orig_src_load, orig_dst_load;
28a21745
RR
1350 long src_capacity, dst_capacity;
1351
1352 /*
1353 * The load is corrected for the CPU capacity available on each node.
1354 *
1355 * src_load dst_load
1356 * ------------ vs ---------
1357 * src_capacity dst_capacity
1358 */
1359 src_capacity = env->src_stats.compute_capacity;
1360 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1361
1362 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1363 if (dst_load < src_load)
1364 swap(dst_load, src_load);
e63da036
RR
1365
1366 /* Is the difference below the threshold? */
e4991b24
RR
1367 imb = dst_load * src_capacity * 100 -
1368 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1369 if (imb <= 0)
1370 return false;
1371
1372 /*
1373 * The imbalance is above the allowed threshold.
e4991b24 1374 * Compare it with the old imbalance.
e63da036 1375 */
28a21745 1376 orig_src_load = env->src_stats.load;
e4991b24 1377 orig_dst_load = env->dst_stats.load;
28a21745 1378
e4991b24
RR
1379 if (orig_dst_load < orig_src_load)
1380 swap(orig_dst_load, orig_src_load);
e63da036 1381
e4991b24
RR
1382 old_imb = orig_dst_load * src_capacity * 100 -
1383 orig_src_load * dst_capacity * env->imbalance_pct;
1384
1385 /* Would this change make things worse? */
1386 return (imb > old_imb);
e63da036
RR
1387}
1388
fb13c7ee
MG
1389/*
1390 * This checks if the overall compute and NUMA accesses of the system would
1391 * be improved if the source tasks was migrated to the target dst_cpu taking
1392 * into account that it might be best if task running on the dst_cpu should
1393 * be exchanged with the source task
1394 */
887c290e
RR
1395static void task_numa_compare(struct task_numa_env *env,
1396 long taskimp, long groupimp)
fb13c7ee
MG
1397{
1398 struct rq *src_rq = cpu_rq(env->src_cpu);
1399 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1400 struct task_struct *cur;
28a21745 1401 long src_load, dst_load;
fb13c7ee 1402 long load;
1c5d3eb3 1403 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1404 long moveimp = imp;
7bd95320 1405 int dist = env->dist;
fb13c7ee
MG
1406
1407 rcu_read_lock();
bac78573
ON
1408 cur = task_rcu_dereference(&dst_rq->curr);
1409 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1410 cur = NULL;
1411
7af68335
PZ
1412 /*
1413 * Because we have preemption enabled we can get migrated around and
1414 * end try selecting ourselves (current == env->p) as a swap candidate.
1415 */
1416 if (cur == env->p)
1417 goto unlock;
1418
fb13c7ee
MG
1419 /*
1420 * "imp" is the fault differential for the source task between the
1421 * source and destination node. Calculate the total differential for
1422 * the source task and potential destination task. The more negative
1423 * the value is, the more rmeote accesses that would be expected to
1424 * be incurred if the tasks were swapped.
1425 */
1426 if (cur) {
1427 /* Skip this swap candidate if cannot move to the source cpu */
1428 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1429 goto unlock;
1430
887c290e
RR
1431 /*
1432 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1433 * in any group then look only at task weights.
887c290e 1434 */
ca28aa53 1435 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1436 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1437 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1438 /*
1439 * Add some hysteresis to prevent swapping the
1440 * tasks within a group over tiny differences.
1441 */
1442 if (cur->numa_group)
1443 imp -= imp/16;
887c290e 1444 } else {
ca28aa53
RR
1445 /*
1446 * Compare the group weights. If a task is all by
1447 * itself (not part of a group), use the task weight
1448 * instead.
1449 */
ca28aa53 1450 if (cur->numa_group)
7bd95320
RR
1451 imp += group_weight(cur, env->src_nid, dist) -
1452 group_weight(cur, env->dst_nid, dist);
ca28aa53 1453 else
7bd95320
RR
1454 imp += task_weight(cur, env->src_nid, dist) -
1455 task_weight(cur, env->dst_nid, dist);
887c290e 1456 }
fb13c7ee
MG
1457 }
1458
0132c3e1 1459 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1460 goto unlock;
1461
1462 if (!cur) {
1463 /* Is there capacity at our destination? */
b932c03c 1464 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1465 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1466 goto unlock;
1467
1468 goto balance;
1469 }
1470
1471 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1472 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1473 dst_rq->nr_running == 1)
fb13c7ee
MG
1474 goto assign;
1475
1476 /*
1477 * In the overloaded case, try and keep the load balanced.
1478 */
1479balance:
e720fff6
PZ
1480 load = task_h_load(env->p);
1481 dst_load = env->dst_stats.load + load;
1482 src_load = env->src_stats.load - load;
fb13c7ee 1483
0132c3e1
RR
1484 if (moveimp > imp && moveimp > env->best_imp) {
1485 /*
1486 * If the improvement from just moving env->p direction is
1487 * better than swapping tasks around, check if a move is
1488 * possible. Store a slightly smaller score than moveimp,
1489 * so an actually idle CPU will win.
1490 */
1491 if (!load_too_imbalanced(src_load, dst_load, env)) {
1492 imp = moveimp - 1;
1493 cur = NULL;
1494 goto assign;
1495 }
1496 }
1497
1498 if (imp <= env->best_imp)
1499 goto unlock;
1500
fb13c7ee 1501 if (cur) {
e720fff6
PZ
1502 load = task_h_load(cur);
1503 dst_load -= load;
1504 src_load += load;
fb13c7ee
MG
1505 }
1506
28a21745 1507 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1508 goto unlock;
1509
ba7e5a27
RR
1510 /*
1511 * One idle CPU per node is evaluated for a task numa move.
1512 * Call select_idle_sibling to maybe find a better one.
1513 */
1514 if (!cur)
1515 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1516
fb13c7ee
MG
1517assign:
1518 task_numa_assign(env, cur, imp);
1519unlock:
1520 rcu_read_unlock();
1521}
1522
887c290e
RR
1523static void task_numa_find_cpu(struct task_numa_env *env,
1524 long taskimp, long groupimp)
2c8a50aa
MG
1525{
1526 int cpu;
1527
1528 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1529 /* Skip this CPU if the source task cannot migrate */
1530 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1531 continue;
1532
1533 env->dst_cpu = cpu;
887c290e 1534 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1535 }
1536}
1537
6f9aad0b
RR
1538/* Only move tasks to a NUMA node less busy than the current node. */
1539static bool numa_has_capacity(struct task_numa_env *env)
1540{
1541 struct numa_stats *src = &env->src_stats;
1542 struct numa_stats *dst = &env->dst_stats;
1543
1544 if (src->has_free_capacity && !dst->has_free_capacity)
1545 return false;
1546
1547 /*
1548 * Only consider a task move if the source has a higher load
1549 * than the destination, corrected for CPU capacity on each node.
1550 *
1551 * src->load dst->load
1552 * --------------------- vs ---------------------
1553 * src->compute_capacity dst->compute_capacity
1554 */
44dcb04f
SD
1555 if (src->load * dst->compute_capacity * env->imbalance_pct >
1556
1557 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1558 return true;
1559
1560 return false;
1561}
1562
58d081b5
MG
1563static int task_numa_migrate(struct task_struct *p)
1564{
58d081b5
MG
1565 struct task_numa_env env = {
1566 .p = p,
fb13c7ee 1567
58d081b5 1568 .src_cpu = task_cpu(p),
b32e86b4 1569 .src_nid = task_node(p),
fb13c7ee
MG
1570
1571 .imbalance_pct = 112,
1572
1573 .best_task = NULL,
1574 .best_imp = 0,
4142c3eb 1575 .best_cpu = -1,
58d081b5
MG
1576 };
1577 struct sched_domain *sd;
887c290e 1578 unsigned long taskweight, groupweight;
7bd95320 1579 int nid, ret, dist;
887c290e 1580 long taskimp, groupimp;
e6628d5b 1581
58d081b5 1582 /*
fb13c7ee
MG
1583 * Pick the lowest SD_NUMA domain, as that would have the smallest
1584 * imbalance and would be the first to start moving tasks about.
1585 *
1586 * And we want to avoid any moving of tasks about, as that would create
1587 * random movement of tasks -- counter the numa conditions we're trying
1588 * to satisfy here.
58d081b5
MG
1589 */
1590 rcu_read_lock();
fb13c7ee 1591 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1592 if (sd)
1593 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1594 rcu_read_unlock();
1595
46a73e8a
RR
1596 /*
1597 * Cpusets can break the scheduler domain tree into smaller
1598 * balance domains, some of which do not cross NUMA boundaries.
1599 * Tasks that are "trapped" in such domains cannot be migrated
1600 * elsewhere, so there is no point in (re)trying.
1601 */
1602 if (unlikely(!sd)) {
de1b301a 1603 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1604 return -EINVAL;
1605 }
1606
2c8a50aa 1607 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1608 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1609 taskweight = task_weight(p, env.src_nid, dist);
1610 groupweight = group_weight(p, env.src_nid, dist);
1611 update_numa_stats(&env.src_stats, env.src_nid);
1612 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1613 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1614 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1615
a43455a1 1616 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1617 if (numa_has_capacity(&env))
1618 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1619
9de05d48
RR
1620 /*
1621 * Look at other nodes in these cases:
1622 * - there is no space available on the preferred_nid
1623 * - the task is part of a numa_group that is interleaved across
1624 * multiple NUMA nodes; in order to better consolidate the group,
1625 * we need to check other locations.
1626 */
4142c3eb 1627 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1628 for_each_online_node(nid) {
1629 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1630 continue;
58d081b5 1631
7bd95320 1632 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1633 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1634 dist != env.dist) {
1635 taskweight = task_weight(p, env.src_nid, dist);
1636 groupweight = group_weight(p, env.src_nid, dist);
1637 }
7bd95320 1638
83e1d2cd 1639 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1640 taskimp = task_weight(p, nid, dist) - taskweight;
1641 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1642 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1643 continue;
1644
7bd95320 1645 env.dist = dist;
2c8a50aa
MG
1646 env.dst_nid = nid;
1647 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1648 if (numa_has_capacity(&env))
1649 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1650 }
1651 }
1652
68d1b02a
RR
1653 /*
1654 * If the task is part of a workload that spans multiple NUMA nodes,
1655 * and is migrating into one of the workload's active nodes, remember
1656 * this node as the task's preferred numa node, so the workload can
1657 * settle down.
1658 * A task that migrated to a second choice node will be better off
1659 * trying for a better one later. Do not set the preferred node here.
1660 */
db015dae 1661 if (p->numa_group) {
4142c3eb
RR
1662 struct numa_group *ng = p->numa_group;
1663
db015dae
RR
1664 if (env.best_cpu == -1)
1665 nid = env.src_nid;
1666 else
1667 nid = env.dst_nid;
1668
4142c3eb 1669 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1670 sched_setnuma(p, env.dst_nid);
1671 }
1672
1673 /* No better CPU than the current one was found. */
1674 if (env.best_cpu == -1)
1675 return -EAGAIN;
0ec8aa00 1676
04bb2f94
RR
1677 /*
1678 * Reset the scan period if the task is being rescheduled on an
1679 * alternative node to recheck if the tasks is now properly placed.
1680 */
1681 p->numa_scan_period = task_scan_min(p);
1682
fb13c7ee 1683 if (env.best_task == NULL) {
286549dc
MG
1684 ret = migrate_task_to(p, env.best_cpu);
1685 if (ret != 0)
1686 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1687 return ret;
1688 }
1689
1690 ret = migrate_swap(p, env.best_task);
286549dc
MG
1691 if (ret != 0)
1692 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1693 put_task_struct(env.best_task);
1694 return ret;
e6628d5b
MG
1695}
1696
6b9a7460
MG
1697/* Attempt to migrate a task to a CPU on the preferred node. */
1698static void numa_migrate_preferred(struct task_struct *p)
1699{
5085e2a3
RR
1700 unsigned long interval = HZ;
1701
2739d3ee 1702 /* This task has no NUMA fault statistics yet */
44dba3d5 1703 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1704 return;
1705
2739d3ee 1706 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1707 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1708 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1709
1710 /* Success if task is already running on preferred CPU */
de1b301a 1711 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1712 return;
1713
1714 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1715 task_numa_migrate(p);
6b9a7460
MG
1716}
1717
20e07dea 1718/*
4142c3eb 1719 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1720 * tracking the nodes from which NUMA hinting faults are triggered. This can
1721 * be different from the set of nodes where the workload's memory is currently
1722 * located.
20e07dea 1723 */
4142c3eb 1724static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1725{
1726 unsigned long faults, max_faults = 0;
4142c3eb 1727 int nid, active_nodes = 0;
20e07dea
RR
1728
1729 for_each_online_node(nid) {
1730 faults = group_faults_cpu(numa_group, nid);
1731 if (faults > max_faults)
1732 max_faults = faults;
1733 }
1734
1735 for_each_online_node(nid) {
1736 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1737 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1738 active_nodes++;
20e07dea 1739 }
4142c3eb
RR
1740
1741 numa_group->max_faults_cpu = max_faults;
1742 numa_group->active_nodes = active_nodes;
20e07dea
RR
1743}
1744
04bb2f94
RR
1745/*
1746 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1747 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1748 * period will be for the next scan window. If local/(local+remote) ratio is
1749 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1750 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1751 */
1752#define NUMA_PERIOD_SLOTS 10
a22b4b01 1753#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1754
1755/*
1756 * Increase the scan period (slow down scanning) if the majority of
1757 * our memory is already on our local node, or if the majority of
1758 * the page accesses are shared with other processes.
1759 * Otherwise, decrease the scan period.
1760 */
1761static void update_task_scan_period(struct task_struct *p,
1762 unsigned long shared, unsigned long private)
1763{
1764 unsigned int period_slot;
1765 int ratio;
1766 int diff;
1767
1768 unsigned long remote = p->numa_faults_locality[0];
1769 unsigned long local = p->numa_faults_locality[1];
1770
1771 /*
1772 * If there were no record hinting faults then either the task is
1773 * completely idle or all activity is areas that are not of interest
074c2381
MG
1774 * to automatic numa balancing. Related to that, if there were failed
1775 * migration then it implies we are migrating too quickly or the local
1776 * node is overloaded. In either case, scan slower
04bb2f94 1777 */
074c2381 1778 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1779 p->numa_scan_period = min(p->numa_scan_period_max,
1780 p->numa_scan_period << 1);
1781
1782 p->mm->numa_next_scan = jiffies +
1783 msecs_to_jiffies(p->numa_scan_period);
1784
1785 return;
1786 }
1787
1788 /*
1789 * Prepare to scale scan period relative to the current period.
1790 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1791 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1792 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1793 */
1794 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1795 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1796 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1797 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1798 if (!slot)
1799 slot = 1;
1800 diff = slot * period_slot;
1801 } else {
1802 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1803
1804 /*
1805 * Scale scan rate increases based on sharing. There is an
1806 * inverse relationship between the degree of sharing and
1807 * the adjustment made to the scanning period. Broadly
1808 * speaking the intent is that there is little point
1809 * scanning faster if shared accesses dominate as it may
1810 * simply bounce migrations uselessly
1811 */
2847c90e 1812 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1813 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1814 }
1815
1816 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1817 task_scan_min(p), task_scan_max(p));
1818 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1819}
1820
7e2703e6
RR
1821/*
1822 * Get the fraction of time the task has been running since the last
1823 * NUMA placement cycle. The scheduler keeps similar statistics, but
1824 * decays those on a 32ms period, which is orders of magnitude off
1825 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1826 * stats only if the task is so new there are no NUMA statistics yet.
1827 */
1828static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1829{
1830 u64 runtime, delta, now;
1831 /* Use the start of this time slice to avoid calculations. */
1832 now = p->se.exec_start;
1833 runtime = p->se.sum_exec_runtime;
1834
1835 if (p->last_task_numa_placement) {
1836 delta = runtime - p->last_sum_exec_runtime;
1837 *period = now - p->last_task_numa_placement;
1838 } else {
9d89c257
YD
1839 delta = p->se.avg.load_sum / p->se.load.weight;
1840 *period = LOAD_AVG_MAX;
7e2703e6
RR
1841 }
1842
1843 p->last_sum_exec_runtime = runtime;
1844 p->last_task_numa_placement = now;
1845
1846 return delta;
1847}
1848
54009416
RR
1849/*
1850 * Determine the preferred nid for a task in a numa_group. This needs to
1851 * be done in a way that produces consistent results with group_weight,
1852 * otherwise workloads might not converge.
1853 */
1854static int preferred_group_nid(struct task_struct *p, int nid)
1855{
1856 nodemask_t nodes;
1857 int dist;
1858
1859 /* Direct connections between all NUMA nodes. */
1860 if (sched_numa_topology_type == NUMA_DIRECT)
1861 return nid;
1862
1863 /*
1864 * On a system with glueless mesh NUMA topology, group_weight
1865 * scores nodes according to the number of NUMA hinting faults on
1866 * both the node itself, and on nearby nodes.
1867 */
1868 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1869 unsigned long score, max_score = 0;
1870 int node, max_node = nid;
1871
1872 dist = sched_max_numa_distance;
1873
1874 for_each_online_node(node) {
1875 score = group_weight(p, node, dist);
1876 if (score > max_score) {
1877 max_score = score;
1878 max_node = node;
1879 }
1880 }
1881 return max_node;
1882 }
1883
1884 /*
1885 * Finding the preferred nid in a system with NUMA backplane
1886 * interconnect topology is more involved. The goal is to locate
1887 * tasks from numa_groups near each other in the system, and
1888 * untangle workloads from different sides of the system. This requires
1889 * searching down the hierarchy of node groups, recursively searching
1890 * inside the highest scoring group of nodes. The nodemask tricks
1891 * keep the complexity of the search down.
1892 */
1893 nodes = node_online_map;
1894 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1895 unsigned long max_faults = 0;
81907478 1896 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1897 int a, b;
1898
1899 /* Are there nodes at this distance from each other? */
1900 if (!find_numa_distance(dist))
1901 continue;
1902
1903 for_each_node_mask(a, nodes) {
1904 unsigned long faults = 0;
1905 nodemask_t this_group;
1906 nodes_clear(this_group);
1907
1908 /* Sum group's NUMA faults; includes a==b case. */
1909 for_each_node_mask(b, nodes) {
1910 if (node_distance(a, b) < dist) {
1911 faults += group_faults(p, b);
1912 node_set(b, this_group);
1913 node_clear(b, nodes);
1914 }
1915 }
1916
1917 /* Remember the top group. */
1918 if (faults > max_faults) {
1919 max_faults = faults;
1920 max_group = this_group;
1921 /*
1922 * subtle: at the smallest distance there is
1923 * just one node left in each "group", the
1924 * winner is the preferred nid.
1925 */
1926 nid = a;
1927 }
1928 }
1929 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1930 if (!max_faults)
1931 break;
54009416
RR
1932 nodes = max_group;
1933 }
1934 return nid;
1935}
1936
cbee9f88
PZ
1937static void task_numa_placement(struct task_struct *p)
1938{
83e1d2cd
MG
1939 int seq, nid, max_nid = -1, max_group_nid = -1;
1940 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1941 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1942 unsigned long total_faults;
1943 u64 runtime, period;
7dbd13ed 1944 spinlock_t *group_lock = NULL;
cbee9f88 1945
7e5a2c17
JL
1946 /*
1947 * The p->mm->numa_scan_seq field gets updated without
1948 * exclusive access. Use READ_ONCE() here to ensure
1949 * that the field is read in a single access:
1950 */
316c1608 1951 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1952 if (p->numa_scan_seq == seq)
1953 return;
1954 p->numa_scan_seq = seq;
598f0ec0 1955 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1956
7e2703e6
RR
1957 total_faults = p->numa_faults_locality[0] +
1958 p->numa_faults_locality[1];
1959 runtime = numa_get_avg_runtime(p, &period);
1960
7dbd13ed
MG
1961 /* If the task is part of a group prevent parallel updates to group stats */
1962 if (p->numa_group) {
1963 group_lock = &p->numa_group->lock;
60e69eed 1964 spin_lock_irq(group_lock);
7dbd13ed
MG
1965 }
1966
688b7585
MG
1967 /* Find the node with the highest number of faults */
1968 for_each_online_node(nid) {
44dba3d5
IM
1969 /* Keep track of the offsets in numa_faults array */
1970 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1971 unsigned long faults = 0, group_faults = 0;
44dba3d5 1972 int priv;
745d6147 1973
be1e4e76 1974 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1975 long diff, f_diff, f_weight;
8c8a743c 1976
44dba3d5
IM
1977 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1978 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1979 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1980 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1981
ac8e895b 1982 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1983 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1984 fault_types[priv] += p->numa_faults[membuf_idx];
1985 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1986
7e2703e6
RR
1987 /*
1988 * Normalize the faults_from, so all tasks in a group
1989 * count according to CPU use, instead of by the raw
1990 * number of faults. Tasks with little runtime have
1991 * little over-all impact on throughput, and thus their
1992 * faults are less important.
1993 */
1994 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1995 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1996 (total_faults + 1);
44dba3d5
IM
1997 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1998 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1999
44dba3d5
IM
2000 p->numa_faults[mem_idx] += diff;
2001 p->numa_faults[cpu_idx] += f_diff;
2002 faults += p->numa_faults[mem_idx];
83e1d2cd 2003 p->total_numa_faults += diff;
8c8a743c 2004 if (p->numa_group) {
44dba3d5
IM
2005 /*
2006 * safe because we can only change our own group
2007 *
2008 * mem_idx represents the offset for a given
2009 * nid and priv in a specific region because it
2010 * is at the beginning of the numa_faults array.
2011 */
2012 p->numa_group->faults[mem_idx] += diff;
2013 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2014 p->numa_group->total_faults += diff;
44dba3d5 2015 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2016 }
ac8e895b
MG
2017 }
2018
688b7585
MG
2019 if (faults > max_faults) {
2020 max_faults = faults;
2021 max_nid = nid;
2022 }
83e1d2cd
MG
2023
2024 if (group_faults > max_group_faults) {
2025 max_group_faults = group_faults;
2026 max_group_nid = nid;
2027 }
2028 }
2029
04bb2f94
RR
2030 update_task_scan_period(p, fault_types[0], fault_types[1]);
2031
7dbd13ed 2032 if (p->numa_group) {
4142c3eb 2033 numa_group_count_active_nodes(p->numa_group);
60e69eed 2034 spin_unlock_irq(group_lock);
54009416 2035 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2036 }
2037
bb97fc31
RR
2038 if (max_faults) {
2039 /* Set the new preferred node */
2040 if (max_nid != p->numa_preferred_nid)
2041 sched_setnuma(p, max_nid);
2042
2043 if (task_node(p) != p->numa_preferred_nid)
2044 numa_migrate_preferred(p);
3a7053b3 2045 }
cbee9f88
PZ
2046}
2047
8c8a743c
PZ
2048static inline int get_numa_group(struct numa_group *grp)
2049{
2050 return atomic_inc_not_zero(&grp->refcount);
2051}
2052
2053static inline void put_numa_group(struct numa_group *grp)
2054{
2055 if (atomic_dec_and_test(&grp->refcount))
2056 kfree_rcu(grp, rcu);
2057}
2058
3e6a9418
MG
2059static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2060 int *priv)
8c8a743c
PZ
2061{
2062 struct numa_group *grp, *my_grp;
2063 struct task_struct *tsk;
2064 bool join = false;
2065 int cpu = cpupid_to_cpu(cpupid);
2066 int i;
2067
2068 if (unlikely(!p->numa_group)) {
2069 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2070 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2071
2072 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2073 if (!grp)
2074 return;
2075
2076 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2077 grp->active_nodes = 1;
2078 grp->max_faults_cpu = 0;
8c8a743c 2079 spin_lock_init(&grp->lock);
e29cf08b 2080 grp->gid = p->pid;
50ec8a40 2081 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2082 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2083 nr_node_ids;
8c8a743c 2084
be1e4e76 2085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2086 grp->faults[i] = p->numa_faults[i];
8c8a743c 2087
989348b5 2088 grp->total_faults = p->total_numa_faults;
83e1d2cd 2089
8c8a743c
PZ
2090 grp->nr_tasks++;
2091 rcu_assign_pointer(p->numa_group, grp);
2092 }
2093
2094 rcu_read_lock();
316c1608 2095 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2096
2097 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2098 goto no_join;
8c8a743c
PZ
2099
2100 grp = rcu_dereference(tsk->numa_group);
2101 if (!grp)
3354781a 2102 goto no_join;
8c8a743c
PZ
2103
2104 my_grp = p->numa_group;
2105 if (grp == my_grp)
3354781a 2106 goto no_join;
8c8a743c
PZ
2107
2108 /*
2109 * Only join the other group if its bigger; if we're the bigger group,
2110 * the other task will join us.
2111 */
2112 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2113 goto no_join;
8c8a743c
PZ
2114
2115 /*
2116 * Tie-break on the grp address.
2117 */
2118 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2119 goto no_join;
8c8a743c 2120
dabe1d99
RR
2121 /* Always join threads in the same process. */
2122 if (tsk->mm == current->mm)
2123 join = true;
2124
2125 /* Simple filter to avoid false positives due to PID collisions */
2126 if (flags & TNF_SHARED)
2127 join = true;
8c8a743c 2128
3e6a9418
MG
2129 /* Update priv based on whether false sharing was detected */
2130 *priv = !join;
2131
dabe1d99 2132 if (join && !get_numa_group(grp))
3354781a 2133 goto no_join;
8c8a743c 2134
8c8a743c
PZ
2135 rcu_read_unlock();
2136
2137 if (!join)
2138 return;
2139
60e69eed
MG
2140 BUG_ON(irqs_disabled());
2141 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2142
be1e4e76 2143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2144 my_grp->faults[i] -= p->numa_faults[i];
2145 grp->faults[i] += p->numa_faults[i];
8c8a743c 2146 }
989348b5
MG
2147 my_grp->total_faults -= p->total_numa_faults;
2148 grp->total_faults += p->total_numa_faults;
8c8a743c 2149
8c8a743c
PZ
2150 my_grp->nr_tasks--;
2151 grp->nr_tasks++;
2152
2153 spin_unlock(&my_grp->lock);
60e69eed 2154 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2155
2156 rcu_assign_pointer(p->numa_group, grp);
2157
2158 put_numa_group(my_grp);
3354781a
PZ
2159 return;
2160
2161no_join:
2162 rcu_read_unlock();
2163 return;
8c8a743c
PZ
2164}
2165
2166void task_numa_free(struct task_struct *p)
2167{
2168 struct numa_group *grp = p->numa_group;
44dba3d5 2169 void *numa_faults = p->numa_faults;
e9dd685c
SR
2170 unsigned long flags;
2171 int i;
8c8a743c
PZ
2172
2173 if (grp) {
e9dd685c 2174 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2175 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2176 grp->faults[i] -= p->numa_faults[i];
989348b5 2177 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2178
8c8a743c 2179 grp->nr_tasks--;
e9dd685c 2180 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2181 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2182 put_numa_group(grp);
2183 }
2184
44dba3d5 2185 p->numa_faults = NULL;
82727018 2186 kfree(numa_faults);
8c8a743c
PZ
2187}
2188
cbee9f88
PZ
2189/*
2190 * Got a PROT_NONE fault for a page on @node.
2191 */
58b46da3 2192void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2193{
2194 struct task_struct *p = current;
6688cc05 2195 bool migrated = flags & TNF_MIGRATED;
58b46da3 2196 int cpu_node = task_node(current);
792568ec 2197 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2198 struct numa_group *ng;
ac8e895b 2199 int priv;
cbee9f88 2200
2a595721 2201 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2202 return;
2203
9ff1d9ff
MG
2204 /* for example, ksmd faulting in a user's mm */
2205 if (!p->mm)
2206 return;
2207
f809ca9a 2208 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2209 if (unlikely(!p->numa_faults)) {
2210 int size = sizeof(*p->numa_faults) *
be1e4e76 2211 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2212
44dba3d5
IM
2213 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2214 if (!p->numa_faults)
f809ca9a 2215 return;
745d6147 2216
83e1d2cd 2217 p->total_numa_faults = 0;
04bb2f94 2218 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2219 }
cbee9f88 2220
8c8a743c
PZ
2221 /*
2222 * First accesses are treated as private, otherwise consider accesses
2223 * to be private if the accessing pid has not changed
2224 */
2225 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2226 priv = 1;
2227 } else {
2228 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2229 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2230 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2231 }
2232
792568ec
RR
2233 /*
2234 * If a workload spans multiple NUMA nodes, a shared fault that
2235 * occurs wholly within the set of nodes that the workload is
2236 * actively using should be counted as local. This allows the
2237 * scan rate to slow down when a workload has settled down.
2238 */
4142c3eb
RR
2239 ng = p->numa_group;
2240 if (!priv && !local && ng && ng->active_nodes > 1 &&
2241 numa_is_active_node(cpu_node, ng) &&
2242 numa_is_active_node(mem_node, ng))
792568ec
RR
2243 local = 1;
2244
cbee9f88 2245 task_numa_placement(p);
f809ca9a 2246
2739d3ee
RR
2247 /*
2248 * Retry task to preferred node migration periodically, in case it
2249 * case it previously failed, or the scheduler moved us.
2250 */
2251 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2252 numa_migrate_preferred(p);
2253
b32e86b4
IM
2254 if (migrated)
2255 p->numa_pages_migrated += pages;
074c2381
MG
2256 if (flags & TNF_MIGRATE_FAIL)
2257 p->numa_faults_locality[2] += pages;
b32e86b4 2258
44dba3d5
IM
2259 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2260 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2261 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2262}
2263
6e5fb223
PZ
2264static void reset_ptenuma_scan(struct task_struct *p)
2265{
7e5a2c17
JL
2266 /*
2267 * We only did a read acquisition of the mmap sem, so
2268 * p->mm->numa_scan_seq is written to without exclusive access
2269 * and the update is not guaranteed to be atomic. That's not
2270 * much of an issue though, since this is just used for
2271 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2272 * expensive, to avoid any form of compiler optimizations:
2273 */
316c1608 2274 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2275 p->mm->numa_scan_offset = 0;
2276}
2277
cbee9f88
PZ
2278/*
2279 * The expensive part of numa migration is done from task_work context.
2280 * Triggered from task_tick_numa().
2281 */
2282void task_numa_work(struct callback_head *work)
2283{
2284 unsigned long migrate, next_scan, now = jiffies;
2285 struct task_struct *p = current;
2286 struct mm_struct *mm = p->mm;
51170840 2287 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2288 struct vm_area_struct *vma;
9f40604c 2289 unsigned long start, end;
598f0ec0 2290 unsigned long nr_pte_updates = 0;
4620f8c1 2291 long pages, virtpages;
cbee9f88
PZ
2292
2293 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2294
2295 work->next = work; /* protect against double add */
2296 /*
2297 * Who cares about NUMA placement when they're dying.
2298 *
2299 * NOTE: make sure not to dereference p->mm before this check,
2300 * exit_task_work() happens _after_ exit_mm() so we could be called
2301 * without p->mm even though we still had it when we enqueued this
2302 * work.
2303 */
2304 if (p->flags & PF_EXITING)
2305 return;
2306
930aa174 2307 if (!mm->numa_next_scan) {
7e8d16b6
MG
2308 mm->numa_next_scan = now +
2309 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2310 }
2311
cbee9f88
PZ
2312 /*
2313 * Enforce maximal scan/migration frequency..
2314 */
2315 migrate = mm->numa_next_scan;
2316 if (time_before(now, migrate))
2317 return;
2318
598f0ec0
MG
2319 if (p->numa_scan_period == 0) {
2320 p->numa_scan_period_max = task_scan_max(p);
2321 p->numa_scan_period = task_scan_min(p);
2322 }
cbee9f88 2323
fb003b80 2324 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2325 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2326 return;
2327
19a78d11
PZ
2328 /*
2329 * Delay this task enough that another task of this mm will likely win
2330 * the next time around.
2331 */
2332 p->node_stamp += 2 * TICK_NSEC;
2333
9f40604c
MG
2334 start = mm->numa_scan_offset;
2335 pages = sysctl_numa_balancing_scan_size;
2336 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2337 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2338 if (!pages)
2339 return;
cbee9f88 2340
4620f8c1 2341
6e5fb223 2342 down_read(&mm->mmap_sem);
9f40604c 2343 vma = find_vma(mm, start);
6e5fb223
PZ
2344 if (!vma) {
2345 reset_ptenuma_scan(p);
9f40604c 2346 start = 0;
6e5fb223
PZ
2347 vma = mm->mmap;
2348 }
9f40604c 2349 for (; vma; vma = vma->vm_next) {
6b79c57b 2350 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2351 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2352 continue;
6b79c57b 2353 }
6e5fb223 2354
4591ce4f
MG
2355 /*
2356 * Shared library pages mapped by multiple processes are not
2357 * migrated as it is expected they are cache replicated. Avoid
2358 * hinting faults in read-only file-backed mappings or the vdso
2359 * as migrating the pages will be of marginal benefit.
2360 */
2361 if (!vma->vm_mm ||
2362 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2363 continue;
2364
3c67f474
MG
2365 /*
2366 * Skip inaccessible VMAs to avoid any confusion between
2367 * PROT_NONE and NUMA hinting ptes
2368 */
2369 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2370 continue;
4591ce4f 2371
9f40604c
MG
2372 do {
2373 start = max(start, vma->vm_start);
2374 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2375 end = min(end, vma->vm_end);
4620f8c1 2376 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2377
2378 /*
4620f8c1
RR
2379 * Try to scan sysctl_numa_balancing_size worth of
2380 * hpages that have at least one present PTE that
2381 * is not already pte-numa. If the VMA contains
2382 * areas that are unused or already full of prot_numa
2383 * PTEs, scan up to virtpages, to skip through those
2384 * areas faster.
598f0ec0
MG
2385 */
2386 if (nr_pte_updates)
2387 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2388 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2389
9f40604c 2390 start = end;
4620f8c1 2391 if (pages <= 0 || virtpages <= 0)
9f40604c 2392 goto out;
3cf1962c
RR
2393
2394 cond_resched();
9f40604c 2395 } while (end != vma->vm_end);
cbee9f88 2396 }
6e5fb223 2397
9f40604c 2398out:
6e5fb223 2399 /*
c69307d5
PZ
2400 * It is possible to reach the end of the VMA list but the last few
2401 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2402 * would find the !migratable VMA on the next scan but not reset the
2403 * scanner to the start so check it now.
6e5fb223
PZ
2404 */
2405 if (vma)
9f40604c 2406 mm->numa_scan_offset = start;
6e5fb223
PZ
2407 else
2408 reset_ptenuma_scan(p);
2409 up_read(&mm->mmap_sem);
51170840
RR
2410
2411 /*
2412 * Make sure tasks use at least 32x as much time to run other code
2413 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2414 * Usually update_task_scan_period slows down scanning enough; on an
2415 * overloaded system we need to limit overhead on a per task basis.
2416 */
2417 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2418 u64 diff = p->se.sum_exec_runtime - runtime;
2419 p->node_stamp += 32 * diff;
2420 }
cbee9f88
PZ
2421}
2422
2423/*
2424 * Drive the periodic memory faults..
2425 */
2426void task_tick_numa(struct rq *rq, struct task_struct *curr)
2427{
2428 struct callback_head *work = &curr->numa_work;
2429 u64 period, now;
2430
2431 /*
2432 * We don't care about NUMA placement if we don't have memory.
2433 */
2434 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2435 return;
2436
2437 /*
2438 * Using runtime rather than walltime has the dual advantage that
2439 * we (mostly) drive the selection from busy threads and that the
2440 * task needs to have done some actual work before we bother with
2441 * NUMA placement.
2442 */
2443 now = curr->se.sum_exec_runtime;
2444 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2445
25b3e5a3 2446 if (now > curr->node_stamp + period) {
4b96a29b 2447 if (!curr->node_stamp)
598f0ec0 2448 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2449 curr->node_stamp += period;
cbee9f88
PZ
2450
2451 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2452 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2453 task_work_add(curr, work, true);
2454 }
2455 }
2456}
2457#else
2458static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2459{
2460}
0ec8aa00
PZ
2461
2462static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2463{
2464}
2465
2466static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2467{
2468}
cbee9f88
PZ
2469#endif /* CONFIG_NUMA_BALANCING */
2470
30cfdcfc
DA
2471static void
2472account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2473{
2474 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2475 if (!parent_entity(se))
029632fb 2476 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2477#ifdef CONFIG_SMP
0ec8aa00
PZ
2478 if (entity_is_task(se)) {
2479 struct rq *rq = rq_of(cfs_rq);
2480
2481 account_numa_enqueue(rq, task_of(se));
2482 list_add(&se->group_node, &rq->cfs_tasks);
2483 }
367456c7 2484#endif
30cfdcfc 2485 cfs_rq->nr_running++;
30cfdcfc
DA
2486}
2487
2488static void
2489account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2490{
2491 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2492 if (!parent_entity(se))
029632fb 2493 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2494#ifdef CONFIG_SMP
0ec8aa00
PZ
2495 if (entity_is_task(se)) {
2496 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2497 list_del_init(&se->group_node);
0ec8aa00 2498 }
bfdb198c 2499#endif
30cfdcfc 2500 cfs_rq->nr_running--;
30cfdcfc
DA
2501}
2502
3ff6dcac
YZ
2503#ifdef CONFIG_FAIR_GROUP_SCHED
2504# ifdef CONFIG_SMP
ea1dc6fc 2505static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2506{
ea1dc6fc 2507 long tg_weight, load, shares;
cf5f0acf
PZ
2508
2509 /*
ea1dc6fc
PZ
2510 * This really should be: cfs_rq->avg.load_avg, but instead we use
2511 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2512 * the shares for small weight interactive tasks.
cf5f0acf 2513 */
ea1dc6fc 2514 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2515
ea1dc6fc 2516 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2517
ea1dc6fc
PZ
2518 /* Ensure tg_weight >= load */
2519 tg_weight -= cfs_rq->tg_load_avg_contrib;
2520 tg_weight += load;
3ff6dcac 2521
3ff6dcac 2522 shares = (tg->shares * load);
cf5f0acf
PZ
2523 if (tg_weight)
2524 shares /= tg_weight;
3ff6dcac
YZ
2525
2526 if (shares < MIN_SHARES)
2527 shares = MIN_SHARES;
2528 if (shares > tg->shares)
2529 shares = tg->shares;
2530
2531 return shares;
2532}
3ff6dcac 2533# else /* CONFIG_SMP */
6d5ab293 2534static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2535{
2536 return tg->shares;
2537}
3ff6dcac 2538# endif /* CONFIG_SMP */
ea1dc6fc 2539
2069dd75
PZ
2540static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2541 unsigned long weight)
2542{
19e5eebb
PT
2543 if (se->on_rq) {
2544 /* commit outstanding execution time */
2545 if (cfs_rq->curr == se)
2546 update_curr(cfs_rq);
2069dd75 2547 account_entity_dequeue(cfs_rq, se);
19e5eebb 2548 }
2069dd75
PZ
2549
2550 update_load_set(&se->load, weight);
2551
2552 if (se->on_rq)
2553 account_entity_enqueue(cfs_rq, se);
2554}
2555
82958366
PT
2556static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2557
6d5ab293 2558static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2559{
2560 struct task_group *tg;
2561 struct sched_entity *se;
3ff6dcac 2562 long shares;
2069dd75 2563
2069dd75
PZ
2564 tg = cfs_rq->tg;
2565 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2566 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2567 return;
3ff6dcac
YZ
2568#ifndef CONFIG_SMP
2569 if (likely(se->load.weight == tg->shares))
2570 return;
2571#endif
6d5ab293 2572 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2573
2574 reweight_entity(cfs_rq_of(se), se, shares);
2575}
2576#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2577static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2578{
2579}
2580#endif /* CONFIG_FAIR_GROUP_SCHED */
2581
141965c7 2582#ifdef CONFIG_SMP
5b51f2f8
PT
2583/* Precomputed fixed inverse multiplies for multiplication by y^n */
2584static const u32 runnable_avg_yN_inv[] = {
2585 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2586 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2587 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2588 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2589 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2590 0x85aac367, 0x82cd8698,
2591};
2592
2593/*
2594 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2595 * over-estimates when re-combining.
2596 */
2597static const u32 runnable_avg_yN_sum[] = {
2598 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2599 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2600 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2601};
2602
7b20b916
YD
2603/*
2604 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2605 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2606 * were generated:
2607 */
2608static const u32 __accumulated_sum_N32[] = {
2609 0, 23371, 35056, 40899, 43820, 45281,
2610 46011, 46376, 46559, 46650, 46696, 46719,
2611};
2612
9d85f21c
PT
2613/*
2614 * Approximate:
2615 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2616 */
2617static __always_inline u64 decay_load(u64 val, u64 n)
2618{
5b51f2f8
PT
2619 unsigned int local_n;
2620
2621 if (!n)
2622 return val;
2623 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2624 return 0;
2625
2626 /* after bounds checking we can collapse to 32-bit */
2627 local_n = n;
2628
2629 /*
2630 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2631 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2632 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2633 *
2634 * To achieve constant time decay_load.
2635 */
2636 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2637 val >>= local_n / LOAD_AVG_PERIOD;
2638 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2639 }
2640
9d89c257
YD
2641 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2642 return val;
5b51f2f8
PT
2643}
2644
2645/*
2646 * For updates fully spanning n periods, the contribution to runnable
2647 * average will be: \Sum 1024*y^n
2648 *
2649 * We can compute this reasonably efficiently by combining:
2650 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2651 */
2652static u32 __compute_runnable_contrib(u64 n)
2653{
2654 u32 contrib = 0;
2655
2656 if (likely(n <= LOAD_AVG_PERIOD))
2657 return runnable_avg_yN_sum[n];
2658 else if (unlikely(n >= LOAD_AVG_MAX_N))
2659 return LOAD_AVG_MAX;
2660
7b20b916
YD
2661 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2662 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2663 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2664 contrib = decay_load(contrib, n);
2665 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2666}
2667
54a21385 2668#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2669
9d85f21c
PT
2670/*
2671 * We can represent the historical contribution to runnable average as the
2672 * coefficients of a geometric series. To do this we sub-divide our runnable
2673 * history into segments of approximately 1ms (1024us); label the segment that
2674 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2675 *
2676 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2677 * p0 p1 p2
2678 * (now) (~1ms ago) (~2ms ago)
2679 *
2680 * Let u_i denote the fraction of p_i that the entity was runnable.
2681 *
2682 * We then designate the fractions u_i as our co-efficients, yielding the
2683 * following representation of historical load:
2684 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2685 *
2686 * We choose y based on the with of a reasonably scheduling period, fixing:
2687 * y^32 = 0.5
2688 *
2689 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2690 * approximately half as much as the contribution to load within the last ms
2691 * (u_0).
2692 *
2693 * When a period "rolls over" and we have new u_0`, multiplying the previous
2694 * sum again by y is sufficient to update:
2695 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2696 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2697 */
9d89c257
YD
2698static __always_inline int
2699__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2700 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2701{
e0f5f3af 2702 u64 delta, scaled_delta, periods;
9d89c257 2703 u32 contrib;
6115c793 2704 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2705 unsigned long scale_freq, scale_cpu;
9d85f21c 2706
9d89c257 2707 delta = now - sa->last_update_time;
9d85f21c
PT
2708 /*
2709 * This should only happen when time goes backwards, which it
2710 * unfortunately does during sched clock init when we swap over to TSC.
2711 */
2712 if ((s64)delta < 0) {
9d89c257 2713 sa->last_update_time = now;
9d85f21c
PT
2714 return 0;
2715 }
2716
2717 /*
2718 * Use 1024ns as the unit of measurement since it's a reasonable
2719 * approximation of 1us and fast to compute.
2720 */
2721 delta >>= 10;
2722 if (!delta)
2723 return 0;
9d89c257 2724 sa->last_update_time = now;
9d85f21c 2725
6f2b0452
DE
2726 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2727 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2728
9d85f21c 2729 /* delta_w is the amount already accumulated against our next period */
9d89c257 2730 delta_w = sa->period_contrib;
9d85f21c 2731 if (delta + delta_w >= 1024) {
9d85f21c
PT
2732 decayed = 1;
2733
9d89c257
YD
2734 /* how much left for next period will start over, we don't know yet */
2735 sa->period_contrib = 0;
2736
9d85f21c
PT
2737 /*
2738 * Now that we know we're crossing a period boundary, figure
2739 * out how much from delta we need to complete the current
2740 * period and accrue it.
2741 */
2742 delta_w = 1024 - delta_w;
54a21385 2743 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2744 if (weight) {
e0f5f3af
DE
2745 sa->load_sum += weight * scaled_delta_w;
2746 if (cfs_rq) {
2747 cfs_rq->runnable_load_sum +=
2748 weight * scaled_delta_w;
2749 }
13962234 2750 }
36ee28e4 2751 if (running)
006cdf02 2752 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2753
2754 delta -= delta_w;
2755
2756 /* Figure out how many additional periods this update spans */
2757 periods = delta / 1024;
2758 delta %= 1024;
2759
9d89c257 2760 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2761 if (cfs_rq) {
2762 cfs_rq->runnable_load_sum =
2763 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2764 }
9d89c257 2765 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2766
2767 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2768 contrib = __compute_runnable_contrib(periods);
54a21385 2769 contrib = cap_scale(contrib, scale_freq);
13962234 2770 if (weight) {
9d89c257 2771 sa->load_sum += weight * contrib;
13962234
YD
2772 if (cfs_rq)
2773 cfs_rq->runnable_load_sum += weight * contrib;
2774 }
36ee28e4 2775 if (running)
006cdf02 2776 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2777 }
2778
2779 /* Remainder of delta accrued against u_0` */
54a21385 2780 scaled_delta = cap_scale(delta, scale_freq);
13962234 2781 if (weight) {
e0f5f3af 2782 sa->load_sum += weight * scaled_delta;
13962234 2783 if (cfs_rq)
e0f5f3af 2784 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2785 }
36ee28e4 2786 if (running)
006cdf02 2787 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2788
9d89c257 2789 sa->period_contrib += delta;
9ee474f5 2790
9d89c257
YD
2791 if (decayed) {
2792 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2793 if (cfs_rq) {
2794 cfs_rq->runnable_load_avg =
2795 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2796 }
006cdf02 2797 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2798 }
aff3e498 2799
9d89c257 2800 return decayed;
9ee474f5
PT
2801}
2802
c566e8e9 2803#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2804/**
2805 * update_tg_load_avg - update the tg's load avg
2806 * @cfs_rq: the cfs_rq whose avg changed
2807 * @force: update regardless of how small the difference
2808 *
2809 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2810 * However, because tg->load_avg is a global value there are performance
2811 * considerations.
2812 *
2813 * In order to avoid having to look at the other cfs_rq's, we use a
2814 * differential update where we store the last value we propagated. This in
2815 * turn allows skipping updates if the differential is 'small'.
2816 *
2817 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2818 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2819 */
9d89c257 2820static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2821{
9d89c257 2822 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2823
aa0b7ae0
WL
2824 /*
2825 * No need to update load_avg for root_task_group as it is not used.
2826 */
2827 if (cfs_rq->tg == &root_task_group)
2828 return;
2829
9d89c257
YD
2830 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2831 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2832 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2833 }
8165e145 2834}
f5f9739d 2835
ad936d86
BP
2836/*
2837 * Called within set_task_rq() right before setting a task's cpu. The
2838 * caller only guarantees p->pi_lock is held; no other assumptions,
2839 * including the state of rq->lock, should be made.
2840 */
2841void set_task_rq_fair(struct sched_entity *se,
2842 struct cfs_rq *prev, struct cfs_rq *next)
2843{
2844 if (!sched_feat(ATTACH_AGE_LOAD))
2845 return;
2846
2847 /*
2848 * We are supposed to update the task to "current" time, then its up to
2849 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2850 * getting what current time is, so simply throw away the out-of-date
2851 * time. This will result in the wakee task is less decayed, but giving
2852 * the wakee more load sounds not bad.
2853 */
2854 if (se->avg.last_update_time && prev) {
2855 u64 p_last_update_time;
2856 u64 n_last_update_time;
2857
2858#ifndef CONFIG_64BIT
2859 u64 p_last_update_time_copy;
2860 u64 n_last_update_time_copy;
2861
2862 do {
2863 p_last_update_time_copy = prev->load_last_update_time_copy;
2864 n_last_update_time_copy = next->load_last_update_time_copy;
2865
2866 smp_rmb();
2867
2868 p_last_update_time = prev->avg.last_update_time;
2869 n_last_update_time = next->avg.last_update_time;
2870
2871 } while (p_last_update_time != p_last_update_time_copy ||
2872 n_last_update_time != n_last_update_time_copy);
2873#else
2874 p_last_update_time = prev->avg.last_update_time;
2875 n_last_update_time = next->avg.last_update_time;
2876#endif
2877 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2878 &se->avg, 0, 0, NULL);
2879 se->avg.last_update_time = n_last_update_time;
2880 }
2881}
6e83125c 2882#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2883static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2884#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2885
a2c6c91f
SM
2886static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2887{
2888 struct rq *rq = rq_of(cfs_rq);
2889 int cpu = cpu_of(rq);
2890
2891 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2892 unsigned long max = rq->cpu_capacity_orig;
2893
2894 /*
2895 * There are a few boundary cases this might miss but it should
2896 * get called often enough that that should (hopefully) not be
2897 * a real problem -- added to that it only calls on the local
2898 * CPU, so if we enqueue remotely we'll miss an update, but
2899 * the next tick/schedule should update.
2900 *
2901 * It will not get called when we go idle, because the idle
2902 * thread is a different class (!fair), nor will the utilization
2903 * number include things like RT tasks.
2904 *
2905 * As is, the util number is not freq-invariant (we'd have to
2906 * implement arch_scale_freq_capacity() for that).
2907 *
2908 * See cpu_util().
2909 */
2910 cpufreq_update_util(rq_clock(rq),
2911 min(cfs_rq->avg.util_avg, max), max);
2912 }
2913}
2914
89741892
PZ
2915/*
2916 * Unsigned subtract and clamp on underflow.
2917 *
2918 * Explicitly do a load-store to ensure the intermediate value never hits
2919 * memory. This allows lockless observations without ever seeing the negative
2920 * values.
2921 */
2922#define sub_positive(_ptr, _val) do { \
2923 typeof(_ptr) ptr = (_ptr); \
2924 typeof(*ptr) val = (_val); \
2925 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2926 res = var - val; \
2927 if (res > var) \
2928 res = 0; \
2929 WRITE_ONCE(*ptr, res); \
2930} while (0)
2931
3d30544f
PZ
2932/**
2933 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2934 * @now: current time, as per cfs_rq_clock_task()
2935 * @cfs_rq: cfs_rq to update
2936 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2937 *
2938 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2939 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2940 * post_init_entity_util_avg().
2941 *
2942 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2943 *
7c3edd2c
PZ
2944 * Returns true if the load decayed or we removed load.
2945 *
2946 * Since both these conditions indicate a changed cfs_rq->avg.load we should
2947 * call update_tg_load_avg() when this function returns true.
3d30544f 2948 */
a2c6c91f
SM
2949static inline int
2950update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2951{
9d89c257 2952 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2953 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2954
9d89c257 2955 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2956 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2957 sub_positive(&sa->load_avg, r);
2958 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2959 removed_load = 1;
8165e145 2960 }
2dac754e 2961
9d89c257
YD
2962 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2963 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2964 sub_positive(&sa->util_avg, r);
2965 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2966 removed_util = 1;
9d89c257 2967 }
36ee28e4 2968
a2c6c91f 2969 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2970 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2971
9d89c257
YD
2972#ifndef CONFIG_64BIT
2973 smp_wmb();
2974 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2975#endif
36ee28e4 2976
a2c6c91f
SM
2977 if (update_freq && (decayed || removed_util))
2978 cfs_rq_util_change(cfs_rq);
21e96f88 2979
41e0d37f 2980 return decayed || removed_load;
21e96f88
SM
2981}
2982
2983/* Update task and its cfs_rq load average */
2984static inline void update_load_avg(struct sched_entity *se, int update_tg)
2985{
2986 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2987 u64 now = cfs_rq_clock_task(cfs_rq);
2988 struct rq *rq = rq_of(cfs_rq);
2989 int cpu = cpu_of(rq);
2990
2991 /*
2992 * Track task load average for carrying it to new CPU after migrated, and
2993 * track group sched_entity load average for task_h_load calc in migration
2994 */
2995 __update_load_avg(now, cpu, &se->avg,
2996 se->on_rq * scale_load_down(se->load.weight),
2997 cfs_rq->curr == se, NULL);
2998
a2c6c91f 2999 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3000 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3001}
3002
3d30544f
PZ
3003/**
3004 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3005 * @cfs_rq: cfs_rq to attach to
3006 * @se: sched_entity to attach
3007 *
3008 * Must call update_cfs_rq_load_avg() before this, since we rely on
3009 * cfs_rq->avg.last_update_time being current.
3010 */
a05e8c51
BP
3011static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3012{
a9280514
PZ
3013 if (!sched_feat(ATTACH_AGE_LOAD))
3014 goto skip_aging;
3015
6efdb105
BP
3016 /*
3017 * If we got migrated (either between CPUs or between cgroups) we'll
3018 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3019 *
3020 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3021 */
3022 if (se->avg.last_update_time) {
3023 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3024 &se->avg, 0, 0, NULL);
3025
3026 /*
3027 * XXX: we could have just aged the entire load away if we've been
3028 * absent from the fair class for too long.
3029 */
3030 }
3031
a9280514 3032skip_aging:
a05e8c51
BP
3033 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3034 cfs_rq->avg.load_avg += se->avg.load_avg;
3035 cfs_rq->avg.load_sum += se->avg.load_sum;
3036 cfs_rq->avg.util_avg += se->avg.util_avg;
3037 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3038
3039 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3040}
3041
3d30544f
PZ
3042/**
3043 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3044 * @cfs_rq: cfs_rq to detach from
3045 * @se: sched_entity to detach
3046 *
3047 * Must call update_cfs_rq_load_avg() before this, since we rely on
3048 * cfs_rq->avg.last_update_time being current.
3049 */
a05e8c51
BP
3050static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3051{
3052 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3053 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3054 cfs_rq->curr == se, NULL);
3055
89741892
PZ
3056 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3057 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3058 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3059 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3060
3061 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3062}
3063
9d89c257
YD
3064/* Add the load generated by se into cfs_rq's load average */
3065static inline void
3066enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3067{
9d89c257
YD
3068 struct sched_avg *sa = &se->avg;
3069 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3070 int migrated, decayed;
9ee474f5 3071
a05e8c51
BP
3072 migrated = !sa->last_update_time;
3073 if (!migrated) {
9d89c257 3074 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3075 se->on_rq * scale_load_down(se->load.weight),
3076 cfs_rq->curr == se, NULL);
aff3e498 3077 }
c566e8e9 3078
a2c6c91f 3079 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3080
13962234
YD
3081 cfs_rq->runnable_load_avg += sa->load_avg;
3082 cfs_rq->runnable_load_sum += sa->load_sum;
3083
a05e8c51
BP
3084 if (migrated)
3085 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3086
9d89c257
YD
3087 if (decayed || migrated)
3088 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3089}
3090
13962234
YD
3091/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3092static inline void
3093dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3094{
3095 update_load_avg(se, 1);
3096
3097 cfs_rq->runnable_load_avg =
3098 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3099 cfs_rq->runnable_load_sum =
a05e8c51 3100 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3101}
3102
9d89c257 3103#ifndef CONFIG_64BIT
0905f04e
YD
3104static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3105{
9d89c257 3106 u64 last_update_time_copy;
0905f04e 3107 u64 last_update_time;
9ee474f5 3108
9d89c257
YD
3109 do {
3110 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3111 smp_rmb();
3112 last_update_time = cfs_rq->avg.last_update_time;
3113 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3114
3115 return last_update_time;
3116}
9d89c257 3117#else
0905f04e
YD
3118static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3119{
3120 return cfs_rq->avg.last_update_time;
3121}
9d89c257
YD
3122#endif
3123
0905f04e
YD
3124/*
3125 * Task first catches up with cfs_rq, and then subtract
3126 * itself from the cfs_rq (task must be off the queue now).
3127 */
3128void remove_entity_load_avg(struct sched_entity *se)
3129{
3130 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3131 u64 last_update_time;
3132
3133 /*
7dc603c9
PZ
3134 * tasks cannot exit without having gone through wake_up_new_task() ->
3135 * post_init_entity_util_avg() which will have added things to the
3136 * cfs_rq, so we can remove unconditionally.
3137 *
3138 * Similarly for groups, they will have passed through
3139 * post_init_entity_util_avg() before unregister_sched_fair_group()
3140 * calls this.
0905f04e 3141 */
0905f04e
YD
3142
3143 last_update_time = cfs_rq_last_update_time(cfs_rq);
3144
13962234 3145 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3146 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3147 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3148}
642dbc39 3149
7ea241af
YD
3150static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3151{
3152 return cfs_rq->runnable_load_avg;
3153}
3154
3155static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3156{
3157 return cfs_rq->avg.load_avg;
3158}
3159
6e83125c
PZ
3160static int idle_balance(struct rq *this_rq);
3161
38033c37
PZ
3162#else /* CONFIG_SMP */
3163
01011473
PZ
3164static inline int
3165update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3166{
3167 return 0;
3168}
3169
536bd00c
RW
3170static inline void update_load_avg(struct sched_entity *se, int not_used)
3171{
3172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3173 struct rq *rq = rq_of(cfs_rq);
3174
3175 cpufreq_trigger_update(rq_clock(rq));
3176}
3177
9d89c257
YD
3178static inline void
3179enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3180static inline void
3181dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3182static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3183
a05e8c51
BP
3184static inline void
3185attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3186static inline void
3187detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3188
6e83125c
PZ
3189static inline int idle_balance(struct rq *rq)
3190{
3191 return 0;
3192}
3193
38033c37 3194#endif /* CONFIG_SMP */
9d85f21c 3195
2396af69 3196static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3197{
bf0f6f24 3198#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3199 struct task_struct *tsk = NULL;
3200
3201 if (entity_is_task(se))
3202 tsk = task_of(se);
3203
41acab88 3204 if (se->statistics.sleep_start) {
78becc27 3205 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3206
3207 if ((s64)delta < 0)
3208 delta = 0;
3209
41acab88
LDM
3210 if (unlikely(delta > se->statistics.sleep_max))
3211 se->statistics.sleep_max = delta;
bf0f6f24 3212
8c79a045 3213 se->statistics.sleep_start = 0;
41acab88 3214 se->statistics.sum_sleep_runtime += delta;
9745512c 3215
768d0c27 3216 if (tsk) {
e414314c 3217 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3218 trace_sched_stat_sleep(tsk, delta);
3219 }
bf0f6f24 3220 }
41acab88 3221 if (se->statistics.block_start) {
78becc27 3222 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3223
3224 if ((s64)delta < 0)
3225 delta = 0;
3226
41acab88
LDM
3227 if (unlikely(delta > se->statistics.block_max))
3228 se->statistics.block_max = delta;
bf0f6f24 3229
8c79a045 3230 se->statistics.block_start = 0;
41acab88 3231 se->statistics.sum_sleep_runtime += delta;
30084fbd 3232
e414314c 3233 if (tsk) {
8f0dfc34 3234 if (tsk->in_iowait) {
41acab88
LDM
3235 se->statistics.iowait_sum += delta;
3236 se->statistics.iowait_count++;
768d0c27 3237 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3238 }
3239
b781a602
AV
3240 trace_sched_stat_blocked(tsk, delta);
3241
e414314c
PZ
3242 /*
3243 * Blocking time is in units of nanosecs, so shift by
3244 * 20 to get a milliseconds-range estimation of the
3245 * amount of time that the task spent sleeping:
3246 */
3247 if (unlikely(prof_on == SLEEP_PROFILING)) {
3248 profile_hits(SLEEP_PROFILING,
3249 (void *)get_wchan(tsk),
3250 delta >> 20);
3251 }
3252 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3253 }
bf0f6f24
IM
3254 }
3255#endif
3256}
3257
ddc97297
PZ
3258static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3259{
3260#ifdef CONFIG_SCHED_DEBUG
3261 s64 d = se->vruntime - cfs_rq->min_vruntime;
3262
3263 if (d < 0)
3264 d = -d;
3265
3266 if (d > 3*sysctl_sched_latency)
3267 schedstat_inc(cfs_rq, nr_spread_over);
3268#endif
3269}
3270
aeb73b04
PZ
3271static void
3272place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3273{
1af5f730 3274 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3275
2cb8600e
PZ
3276 /*
3277 * The 'current' period is already promised to the current tasks,
3278 * however the extra weight of the new task will slow them down a
3279 * little, place the new task so that it fits in the slot that
3280 * stays open at the end.
3281 */
94dfb5e7 3282 if (initial && sched_feat(START_DEBIT))
f9c0b095 3283 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3284
a2e7a7eb 3285 /* sleeps up to a single latency don't count. */
5ca9880c 3286 if (!initial) {
a2e7a7eb 3287 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3288
a2e7a7eb
MG
3289 /*
3290 * Halve their sleep time's effect, to allow
3291 * for a gentler effect of sleepers:
3292 */
3293 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3294 thresh >>= 1;
51e0304c 3295
a2e7a7eb 3296 vruntime -= thresh;
aeb73b04
PZ
3297 }
3298
b5d9d734 3299 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3300 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3301}
3302
d3d9dc33
PT
3303static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3304
cb251765
MG
3305static inline void check_schedstat_required(void)
3306{
3307#ifdef CONFIG_SCHEDSTATS
3308 if (schedstat_enabled())
3309 return;
3310
3311 /* Force schedstat enabled if a dependent tracepoint is active */
3312 if (trace_sched_stat_wait_enabled() ||
3313 trace_sched_stat_sleep_enabled() ||
3314 trace_sched_stat_iowait_enabled() ||
3315 trace_sched_stat_blocked_enabled() ||
3316 trace_sched_stat_runtime_enabled()) {
eda8dca5 3317 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3318 "stat_blocked and stat_runtime require the "
3319 "kernel parameter schedstats=enabled or "
3320 "kernel.sched_schedstats=1\n");
3321 }
3322#endif
3323}
3324
b5179ac7
PZ
3325
3326/*
3327 * MIGRATION
3328 *
3329 * dequeue
3330 * update_curr()
3331 * update_min_vruntime()
3332 * vruntime -= min_vruntime
3333 *
3334 * enqueue
3335 * update_curr()
3336 * update_min_vruntime()
3337 * vruntime += min_vruntime
3338 *
3339 * this way the vruntime transition between RQs is done when both
3340 * min_vruntime are up-to-date.
3341 *
3342 * WAKEUP (remote)
3343 *
59efa0ba 3344 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3345 * vruntime -= min_vruntime
3346 *
3347 * enqueue
3348 * update_curr()
3349 * update_min_vruntime()
3350 * vruntime += min_vruntime
3351 *
3352 * this way we don't have the most up-to-date min_vruntime on the originating
3353 * CPU and an up-to-date min_vruntime on the destination CPU.
3354 */
3355
bf0f6f24 3356static void
88ec22d3 3357enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3358{
2f950354
PZ
3359 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3360 bool curr = cfs_rq->curr == se;
3361
88ec22d3 3362 /*
2f950354
PZ
3363 * If we're the current task, we must renormalise before calling
3364 * update_curr().
88ec22d3 3365 */
2f950354 3366 if (renorm && curr)
88ec22d3
PZ
3367 se->vruntime += cfs_rq->min_vruntime;
3368
2f950354
PZ
3369 update_curr(cfs_rq);
3370
bf0f6f24 3371 /*
2f950354
PZ
3372 * Otherwise, renormalise after, such that we're placed at the current
3373 * moment in time, instead of some random moment in the past. Being
3374 * placed in the past could significantly boost this task to the
3375 * fairness detriment of existing tasks.
bf0f6f24 3376 */
2f950354
PZ
3377 if (renorm && !curr)
3378 se->vruntime += cfs_rq->min_vruntime;
3379
9d89c257 3380 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3381 account_entity_enqueue(cfs_rq, se);
3382 update_cfs_shares(cfs_rq);
bf0f6f24 3383
88ec22d3 3384 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3385 place_entity(cfs_rq, se, 0);
cb251765
MG
3386 if (schedstat_enabled())
3387 enqueue_sleeper(cfs_rq, se);
e9acbff6 3388 }
bf0f6f24 3389
cb251765
MG
3390 check_schedstat_required();
3391 if (schedstat_enabled()) {
3392 update_stats_enqueue(cfs_rq, se);
3393 check_spread(cfs_rq, se);
3394 }
2f950354 3395 if (!curr)
83b699ed 3396 __enqueue_entity(cfs_rq, se);
2069dd75 3397 se->on_rq = 1;
3d4b47b4 3398
d3d9dc33 3399 if (cfs_rq->nr_running == 1) {
3d4b47b4 3400 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3401 check_enqueue_throttle(cfs_rq);
3402 }
bf0f6f24
IM
3403}
3404
2c13c919 3405static void __clear_buddies_last(struct sched_entity *se)
2002c695 3406{
2c13c919
RR
3407 for_each_sched_entity(se) {
3408 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3409 if (cfs_rq->last != se)
2c13c919 3410 break;
f1044799
PZ
3411
3412 cfs_rq->last = NULL;
2c13c919
RR
3413 }
3414}
2002c695 3415
2c13c919
RR
3416static void __clear_buddies_next(struct sched_entity *se)
3417{
3418 for_each_sched_entity(se) {
3419 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3420 if (cfs_rq->next != se)
2c13c919 3421 break;
f1044799
PZ
3422
3423 cfs_rq->next = NULL;
2c13c919 3424 }
2002c695
PZ
3425}
3426
ac53db59
RR
3427static void __clear_buddies_skip(struct sched_entity *se)
3428{
3429 for_each_sched_entity(se) {
3430 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3431 if (cfs_rq->skip != se)
ac53db59 3432 break;
f1044799
PZ
3433
3434 cfs_rq->skip = NULL;
ac53db59
RR
3435 }
3436}
3437
a571bbea
PZ
3438static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3439{
2c13c919
RR
3440 if (cfs_rq->last == se)
3441 __clear_buddies_last(se);
3442
3443 if (cfs_rq->next == se)
3444 __clear_buddies_next(se);
ac53db59
RR
3445
3446 if (cfs_rq->skip == se)
3447 __clear_buddies_skip(se);
a571bbea
PZ
3448}
3449
6c16a6dc 3450static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3451
bf0f6f24 3452static void
371fd7e7 3453dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3454{
a2a2d680
DA
3455 /*
3456 * Update run-time statistics of the 'current'.
3457 */
3458 update_curr(cfs_rq);
13962234 3459 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3460
cb251765
MG
3461 if (schedstat_enabled())
3462 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3463
2002c695 3464 clear_buddies(cfs_rq, se);
4793241b 3465
83b699ed 3466 if (se != cfs_rq->curr)
30cfdcfc 3467 __dequeue_entity(cfs_rq, se);
17bc14b7 3468 se->on_rq = 0;
30cfdcfc 3469 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3470
3471 /*
3472 * Normalize the entity after updating the min_vruntime because the
3473 * update can refer to the ->curr item and we need to reflect this
3474 * movement in our normalized position.
3475 */
371fd7e7 3476 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3477 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3478
d8b4986d
PT
3479 /* return excess runtime on last dequeue */
3480 return_cfs_rq_runtime(cfs_rq);
3481
1e876231 3482 update_min_vruntime(cfs_rq);
17bc14b7 3483 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3484}
3485
3486/*
3487 * Preempt the current task with a newly woken task if needed:
3488 */
7c92e54f 3489static void
2e09bf55 3490check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3491{
11697830 3492 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3493 struct sched_entity *se;
3494 s64 delta;
11697830 3495
6d0f0ebd 3496 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3497 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3498 if (delta_exec > ideal_runtime) {
8875125e 3499 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3500 /*
3501 * The current task ran long enough, ensure it doesn't get
3502 * re-elected due to buddy favours.
3503 */
3504 clear_buddies(cfs_rq, curr);
f685ceac
MG
3505 return;
3506 }
3507
3508 /*
3509 * Ensure that a task that missed wakeup preemption by a
3510 * narrow margin doesn't have to wait for a full slice.
3511 * This also mitigates buddy induced latencies under load.
3512 */
f685ceac
MG
3513 if (delta_exec < sysctl_sched_min_granularity)
3514 return;
3515
f4cfb33e
WX
3516 se = __pick_first_entity(cfs_rq);
3517 delta = curr->vruntime - se->vruntime;
f685ceac 3518
f4cfb33e
WX
3519 if (delta < 0)
3520 return;
d7d82944 3521
f4cfb33e 3522 if (delta > ideal_runtime)
8875125e 3523 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3524}
3525
83b699ed 3526static void
8494f412 3527set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3528{
83b699ed
SV
3529 /* 'current' is not kept within the tree. */
3530 if (se->on_rq) {
3531 /*
3532 * Any task has to be enqueued before it get to execute on
3533 * a CPU. So account for the time it spent waiting on the
3534 * runqueue.
3535 */
cb251765
MG
3536 if (schedstat_enabled())
3537 update_stats_wait_end(cfs_rq, se);
83b699ed 3538 __dequeue_entity(cfs_rq, se);
9d89c257 3539 update_load_avg(se, 1);
83b699ed
SV
3540 }
3541
79303e9e 3542 update_stats_curr_start(cfs_rq, se);
429d43bc 3543 cfs_rq->curr = se;
eba1ed4b
IM
3544#ifdef CONFIG_SCHEDSTATS
3545 /*
3546 * Track our maximum slice length, if the CPU's load is at
3547 * least twice that of our own weight (i.e. dont track it
3548 * when there are only lesser-weight tasks around):
3549 */
cb251765 3550 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3551 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3552 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3553 }
3554#endif
4a55b450 3555 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3556}
3557
3f3a4904
PZ
3558static int
3559wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3560
ac53db59
RR
3561/*
3562 * Pick the next process, keeping these things in mind, in this order:
3563 * 1) keep things fair between processes/task groups
3564 * 2) pick the "next" process, since someone really wants that to run
3565 * 3) pick the "last" process, for cache locality
3566 * 4) do not run the "skip" process, if something else is available
3567 */
678d5718
PZ
3568static struct sched_entity *
3569pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3570{
678d5718
PZ
3571 struct sched_entity *left = __pick_first_entity(cfs_rq);
3572 struct sched_entity *se;
3573
3574 /*
3575 * If curr is set we have to see if its left of the leftmost entity
3576 * still in the tree, provided there was anything in the tree at all.
3577 */
3578 if (!left || (curr && entity_before(curr, left)))
3579 left = curr;
3580
3581 se = left; /* ideally we run the leftmost entity */
f4b6755f 3582
ac53db59
RR
3583 /*
3584 * Avoid running the skip buddy, if running something else can
3585 * be done without getting too unfair.
3586 */
3587 if (cfs_rq->skip == se) {
678d5718
PZ
3588 struct sched_entity *second;
3589
3590 if (se == curr) {
3591 second = __pick_first_entity(cfs_rq);
3592 } else {
3593 second = __pick_next_entity(se);
3594 if (!second || (curr && entity_before(curr, second)))
3595 second = curr;
3596 }
3597
ac53db59
RR
3598 if (second && wakeup_preempt_entity(second, left) < 1)
3599 se = second;
3600 }
aa2ac252 3601
f685ceac
MG
3602 /*
3603 * Prefer last buddy, try to return the CPU to a preempted task.
3604 */
3605 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3606 se = cfs_rq->last;
3607
ac53db59
RR
3608 /*
3609 * Someone really wants this to run. If it's not unfair, run it.
3610 */
3611 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3612 se = cfs_rq->next;
3613
f685ceac 3614 clear_buddies(cfs_rq, se);
4793241b
PZ
3615
3616 return se;
aa2ac252
PZ
3617}
3618
678d5718 3619static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3620
ab6cde26 3621static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3622{
3623 /*
3624 * If still on the runqueue then deactivate_task()
3625 * was not called and update_curr() has to be done:
3626 */
3627 if (prev->on_rq)
b7cc0896 3628 update_curr(cfs_rq);
bf0f6f24 3629
d3d9dc33
PT
3630 /* throttle cfs_rqs exceeding runtime */
3631 check_cfs_rq_runtime(cfs_rq);
3632
cb251765
MG
3633 if (schedstat_enabled()) {
3634 check_spread(cfs_rq, prev);
3635 if (prev->on_rq)
3636 update_stats_wait_start(cfs_rq, prev);
3637 }
3638
30cfdcfc 3639 if (prev->on_rq) {
30cfdcfc
DA
3640 /* Put 'current' back into the tree. */
3641 __enqueue_entity(cfs_rq, prev);
9d85f21c 3642 /* in !on_rq case, update occurred at dequeue */
9d89c257 3643 update_load_avg(prev, 0);
30cfdcfc 3644 }
429d43bc 3645 cfs_rq->curr = NULL;
bf0f6f24
IM
3646}
3647
8f4d37ec
PZ
3648static void
3649entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3650{
bf0f6f24 3651 /*
30cfdcfc 3652 * Update run-time statistics of the 'current'.
bf0f6f24 3653 */
30cfdcfc 3654 update_curr(cfs_rq);
bf0f6f24 3655
9d85f21c
PT
3656 /*
3657 * Ensure that runnable average is periodically updated.
3658 */
9d89c257 3659 update_load_avg(curr, 1);
bf0bd948 3660 update_cfs_shares(cfs_rq);
9d85f21c 3661
8f4d37ec
PZ
3662#ifdef CONFIG_SCHED_HRTICK
3663 /*
3664 * queued ticks are scheduled to match the slice, so don't bother
3665 * validating it and just reschedule.
3666 */
983ed7a6 3667 if (queued) {
8875125e 3668 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3669 return;
3670 }
8f4d37ec
PZ
3671 /*
3672 * don't let the period tick interfere with the hrtick preemption
3673 */
3674 if (!sched_feat(DOUBLE_TICK) &&
3675 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3676 return;
3677#endif
3678
2c2efaed 3679 if (cfs_rq->nr_running > 1)
2e09bf55 3680 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3681}
3682
ab84d31e
PT
3683
3684/**************************************************
3685 * CFS bandwidth control machinery
3686 */
3687
3688#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3689
3690#ifdef HAVE_JUMP_LABEL
c5905afb 3691static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3692
3693static inline bool cfs_bandwidth_used(void)
3694{
c5905afb 3695 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3696}
3697
1ee14e6c 3698void cfs_bandwidth_usage_inc(void)
029632fb 3699{
1ee14e6c
BS
3700 static_key_slow_inc(&__cfs_bandwidth_used);
3701}
3702
3703void cfs_bandwidth_usage_dec(void)
3704{
3705 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3706}
3707#else /* HAVE_JUMP_LABEL */
3708static bool cfs_bandwidth_used(void)
3709{
3710 return true;
3711}
3712
1ee14e6c
BS
3713void cfs_bandwidth_usage_inc(void) {}
3714void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3715#endif /* HAVE_JUMP_LABEL */
3716
ab84d31e
PT
3717/*
3718 * default period for cfs group bandwidth.
3719 * default: 0.1s, units: nanoseconds
3720 */
3721static inline u64 default_cfs_period(void)
3722{
3723 return 100000000ULL;
3724}
ec12cb7f
PT
3725
3726static inline u64 sched_cfs_bandwidth_slice(void)
3727{
3728 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3729}
3730
a9cf55b2
PT
3731/*
3732 * Replenish runtime according to assigned quota and update expiration time.
3733 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3734 * additional synchronization around rq->lock.
3735 *
3736 * requires cfs_b->lock
3737 */
029632fb 3738void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3739{
3740 u64 now;
3741
3742 if (cfs_b->quota == RUNTIME_INF)
3743 return;
3744
3745 now = sched_clock_cpu(smp_processor_id());
3746 cfs_b->runtime = cfs_b->quota;
3747 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3748}
3749
029632fb
PZ
3750static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3751{
3752 return &tg->cfs_bandwidth;
3753}
3754
f1b17280
PT
3755/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3756static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3757{
3758 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3759 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3760
78becc27 3761 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3762}
3763
85dac906
PT
3764/* returns 0 on failure to allocate runtime */
3765static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3766{
3767 struct task_group *tg = cfs_rq->tg;
3768 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3769 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3770
3771 /* note: this is a positive sum as runtime_remaining <= 0 */
3772 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3773
3774 raw_spin_lock(&cfs_b->lock);
3775 if (cfs_b->quota == RUNTIME_INF)
3776 amount = min_amount;
58088ad0 3777 else {
77a4d1a1 3778 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3779
3780 if (cfs_b->runtime > 0) {
3781 amount = min(cfs_b->runtime, min_amount);
3782 cfs_b->runtime -= amount;
3783 cfs_b->idle = 0;
3784 }
ec12cb7f 3785 }
a9cf55b2 3786 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3787 raw_spin_unlock(&cfs_b->lock);
3788
3789 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3790 /*
3791 * we may have advanced our local expiration to account for allowed
3792 * spread between our sched_clock and the one on which runtime was
3793 * issued.
3794 */
3795 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3796 cfs_rq->runtime_expires = expires;
85dac906
PT
3797
3798 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3799}
3800
a9cf55b2
PT
3801/*
3802 * Note: This depends on the synchronization provided by sched_clock and the
3803 * fact that rq->clock snapshots this value.
3804 */
3805static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3806{
a9cf55b2 3807 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3808
3809 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3810 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3811 return;
3812
a9cf55b2
PT
3813 if (cfs_rq->runtime_remaining < 0)
3814 return;
3815
3816 /*
3817 * If the local deadline has passed we have to consider the
3818 * possibility that our sched_clock is 'fast' and the global deadline
3819 * has not truly expired.
3820 *
3821 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3822 * whether the global deadline has advanced. It is valid to compare
3823 * cfs_b->runtime_expires without any locks since we only care about
3824 * exact equality, so a partial write will still work.
a9cf55b2
PT
3825 */
3826
51f2176d 3827 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3828 /* extend local deadline, drift is bounded above by 2 ticks */
3829 cfs_rq->runtime_expires += TICK_NSEC;
3830 } else {
3831 /* global deadline is ahead, expiration has passed */
3832 cfs_rq->runtime_remaining = 0;
3833 }
3834}
3835
9dbdb155 3836static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3837{
3838 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3839 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3840 expire_cfs_rq_runtime(cfs_rq);
3841
3842 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3843 return;
3844
85dac906
PT
3845 /*
3846 * if we're unable to extend our runtime we resched so that the active
3847 * hierarchy can be throttled
3848 */
3849 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3850 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3851}
3852
6c16a6dc 3853static __always_inline
9dbdb155 3854void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3855{
56f570e5 3856 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3857 return;
3858
3859 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3860}
3861
85dac906
PT
3862static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3863{
56f570e5 3864 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3865}
3866
64660c86
PT
3867/* check whether cfs_rq, or any parent, is throttled */
3868static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3869{
56f570e5 3870 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3871}
3872
3873/*
3874 * Ensure that neither of the group entities corresponding to src_cpu or
3875 * dest_cpu are members of a throttled hierarchy when performing group
3876 * load-balance operations.
3877 */
3878static inline int throttled_lb_pair(struct task_group *tg,
3879 int src_cpu, int dest_cpu)
3880{
3881 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3882
3883 src_cfs_rq = tg->cfs_rq[src_cpu];
3884 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3885
3886 return throttled_hierarchy(src_cfs_rq) ||
3887 throttled_hierarchy(dest_cfs_rq);
3888}
3889
3890/* updated child weight may affect parent so we have to do this bottom up */
3891static int tg_unthrottle_up(struct task_group *tg, void *data)
3892{
3893 struct rq *rq = data;
3894 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3895
3896 cfs_rq->throttle_count--;
64660c86 3897 if (!cfs_rq->throttle_count) {
f1b17280 3898 /* adjust cfs_rq_clock_task() */
78becc27 3899 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3900 cfs_rq->throttled_clock_task;
64660c86 3901 }
64660c86
PT
3902
3903 return 0;
3904}
3905
3906static int tg_throttle_down(struct task_group *tg, void *data)
3907{
3908 struct rq *rq = data;
3909 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3910
82958366
PT
3911 /* group is entering throttled state, stop time */
3912 if (!cfs_rq->throttle_count)
78becc27 3913 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3914 cfs_rq->throttle_count++;
3915
3916 return 0;
3917}
3918
d3d9dc33 3919static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3920{
3921 struct rq *rq = rq_of(cfs_rq);
3922 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3923 struct sched_entity *se;
3924 long task_delta, dequeue = 1;
77a4d1a1 3925 bool empty;
85dac906
PT
3926
3927 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3928
f1b17280 3929 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3930 rcu_read_lock();
3931 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3932 rcu_read_unlock();
85dac906
PT
3933
3934 task_delta = cfs_rq->h_nr_running;
3935 for_each_sched_entity(se) {
3936 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3937 /* throttled entity or throttle-on-deactivate */
3938 if (!se->on_rq)
3939 break;
3940
3941 if (dequeue)
3942 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3943 qcfs_rq->h_nr_running -= task_delta;
3944
3945 if (qcfs_rq->load.weight)
3946 dequeue = 0;
3947 }
3948
3949 if (!se)
72465447 3950 sub_nr_running(rq, task_delta);
85dac906
PT
3951
3952 cfs_rq->throttled = 1;
78becc27 3953 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3954 raw_spin_lock(&cfs_b->lock);
d49db342 3955 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3956
c06f04c7
BS
3957 /*
3958 * Add to the _head_ of the list, so that an already-started
3959 * distribute_cfs_runtime will not see us
3960 */
3961 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3962
3963 /*
3964 * If we're the first throttled task, make sure the bandwidth
3965 * timer is running.
3966 */
3967 if (empty)
3968 start_cfs_bandwidth(cfs_b);
3969
85dac906
PT
3970 raw_spin_unlock(&cfs_b->lock);
3971}
3972
029632fb 3973void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3974{
3975 struct rq *rq = rq_of(cfs_rq);
3976 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3977 struct sched_entity *se;
3978 int enqueue = 1;
3979 long task_delta;
3980
22b958d8 3981 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3982
3983 cfs_rq->throttled = 0;
1a55af2e
FW
3984
3985 update_rq_clock(rq);
3986
671fd9da 3987 raw_spin_lock(&cfs_b->lock);
78becc27 3988 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3989 list_del_rcu(&cfs_rq->throttled_list);
3990 raw_spin_unlock(&cfs_b->lock);
3991
64660c86
PT
3992 /* update hierarchical throttle state */
3993 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3994
671fd9da
PT
3995 if (!cfs_rq->load.weight)
3996 return;
3997
3998 task_delta = cfs_rq->h_nr_running;
3999 for_each_sched_entity(se) {
4000 if (se->on_rq)
4001 enqueue = 0;
4002
4003 cfs_rq = cfs_rq_of(se);
4004 if (enqueue)
4005 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4006 cfs_rq->h_nr_running += task_delta;
4007
4008 if (cfs_rq_throttled(cfs_rq))
4009 break;
4010 }
4011
4012 if (!se)
72465447 4013 add_nr_running(rq, task_delta);
671fd9da
PT
4014
4015 /* determine whether we need to wake up potentially idle cpu */
4016 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4017 resched_curr(rq);
671fd9da
PT
4018}
4019
4020static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4021 u64 remaining, u64 expires)
4022{
4023 struct cfs_rq *cfs_rq;
c06f04c7
BS
4024 u64 runtime;
4025 u64 starting_runtime = remaining;
671fd9da
PT
4026
4027 rcu_read_lock();
4028 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4029 throttled_list) {
4030 struct rq *rq = rq_of(cfs_rq);
4031
4032 raw_spin_lock(&rq->lock);
4033 if (!cfs_rq_throttled(cfs_rq))
4034 goto next;
4035
4036 runtime = -cfs_rq->runtime_remaining + 1;
4037 if (runtime > remaining)
4038 runtime = remaining;
4039 remaining -= runtime;
4040
4041 cfs_rq->runtime_remaining += runtime;
4042 cfs_rq->runtime_expires = expires;
4043
4044 /* we check whether we're throttled above */
4045 if (cfs_rq->runtime_remaining > 0)
4046 unthrottle_cfs_rq(cfs_rq);
4047
4048next:
4049 raw_spin_unlock(&rq->lock);
4050
4051 if (!remaining)
4052 break;
4053 }
4054 rcu_read_unlock();
4055
c06f04c7 4056 return starting_runtime - remaining;
671fd9da
PT
4057}
4058
58088ad0
PT
4059/*
4060 * Responsible for refilling a task_group's bandwidth and unthrottling its
4061 * cfs_rqs as appropriate. If there has been no activity within the last
4062 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4063 * used to track this state.
4064 */
4065static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4066{
671fd9da 4067 u64 runtime, runtime_expires;
51f2176d 4068 int throttled;
58088ad0 4069
58088ad0
PT
4070 /* no need to continue the timer with no bandwidth constraint */
4071 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4072 goto out_deactivate;
58088ad0 4073
671fd9da 4074 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4075 cfs_b->nr_periods += overrun;
671fd9da 4076
51f2176d
BS
4077 /*
4078 * idle depends on !throttled (for the case of a large deficit), and if
4079 * we're going inactive then everything else can be deferred
4080 */
4081 if (cfs_b->idle && !throttled)
4082 goto out_deactivate;
a9cf55b2
PT
4083
4084 __refill_cfs_bandwidth_runtime(cfs_b);
4085
671fd9da
PT
4086 if (!throttled) {
4087 /* mark as potentially idle for the upcoming period */
4088 cfs_b->idle = 1;
51f2176d 4089 return 0;
671fd9da
PT
4090 }
4091
e8da1b18
NR
4092 /* account preceding periods in which throttling occurred */
4093 cfs_b->nr_throttled += overrun;
4094
671fd9da 4095 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4096
4097 /*
c06f04c7
BS
4098 * This check is repeated as we are holding onto the new bandwidth while
4099 * we unthrottle. This can potentially race with an unthrottled group
4100 * trying to acquire new bandwidth from the global pool. This can result
4101 * in us over-using our runtime if it is all used during this loop, but
4102 * only by limited amounts in that extreme case.
671fd9da 4103 */
c06f04c7
BS
4104 while (throttled && cfs_b->runtime > 0) {
4105 runtime = cfs_b->runtime;
671fd9da
PT
4106 raw_spin_unlock(&cfs_b->lock);
4107 /* we can't nest cfs_b->lock while distributing bandwidth */
4108 runtime = distribute_cfs_runtime(cfs_b, runtime,
4109 runtime_expires);
4110 raw_spin_lock(&cfs_b->lock);
4111
4112 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4113
4114 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4115 }
58088ad0 4116
671fd9da
PT
4117 /*
4118 * While we are ensured activity in the period following an
4119 * unthrottle, this also covers the case in which the new bandwidth is
4120 * insufficient to cover the existing bandwidth deficit. (Forcing the
4121 * timer to remain active while there are any throttled entities.)
4122 */
4123 cfs_b->idle = 0;
58088ad0 4124
51f2176d
BS
4125 return 0;
4126
4127out_deactivate:
51f2176d 4128 return 1;
58088ad0 4129}
d3d9dc33 4130
d8b4986d
PT
4131/* a cfs_rq won't donate quota below this amount */
4132static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4133/* minimum remaining period time to redistribute slack quota */
4134static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4135/* how long we wait to gather additional slack before distributing */
4136static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4137
db06e78c
BS
4138/*
4139 * Are we near the end of the current quota period?
4140 *
4141 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4142 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4143 * migrate_hrtimers, base is never cleared, so we are fine.
4144 */
d8b4986d
PT
4145static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4146{
4147 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4148 u64 remaining;
4149
4150 /* if the call-back is running a quota refresh is already occurring */
4151 if (hrtimer_callback_running(refresh_timer))
4152 return 1;
4153
4154 /* is a quota refresh about to occur? */
4155 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4156 if (remaining < min_expire)
4157 return 1;
4158
4159 return 0;
4160}
4161
4162static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4163{
4164 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4165
4166 /* if there's a quota refresh soon don't bother with slack */
4167 if (runtime_refresh_within(cfs_b, min_left))
4168 return;
4169
4cfafd30
PZ
4170 hrtimer_start(&cfs_b->slack_timer,
4171 ns_to_ktime(cfs_bandwidth_slack_period),
4172 HRTIMER_MODE_REL);
d8b4986d
PT
4173}
4174
4175/* we know any runtime found here is valid as update_curr() precedes return */
4176static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4177{
4178 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4179 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4180
4181 if (slack_runtime <= 0)
4182 return;
4183
4184 raw_spin_lock(&cfs_b->lock);
4185 if (cfs_b->quota != RUNTIME_INF &&
4186 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4187 cfs_b->runtime += slack_runtime;
4188
4189 /* we are under rq->lock, defer unthrottling using a timer */
4190 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4191 !list_empty(&cfs_b->throttled_cfs_rq))
4192 start_cfs_slack_bandwidth(cfs_b);
4193 }
4194 raw_spin_unlock(&cfs_b->lock);
4195
4196 /* even if it's not valid for return we don't want to try again */
4197 cfs_rq->runtime_remaining -= slack_runtime;
4198}
4199
4200static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4201{
56f570e5
PT
4202 if (!cfs_bandwidth_used())
4203 return;
4204
fccfdc6f 4205 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4206 return;
4207
4208 __return_cfs_rq_runtime(cfs_rq);
4209}
4210
4211/*
4212 * This is done with a timer (instead of inline with bandwidth return) since
4213 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4214 */
4215static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4216{
4217 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4218 u64 expires;
4219
4220 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4221 raw_spin_lock(&cfs_b->lock);
4222 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4223 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4224 return;
db06e78c 4225 }
d8b4986d 4226
c06f04c7 4227 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4228 runtime = cfs_b->runtime;
c06f04c7 4229
d8b4986d
PT
4230 expires = cfs_b->runtime_expires;
4231 raw_spin_unlock(&cfs_b->lock);
4232
4233 if (!runtime)
4234 return;
4235
4236 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4237
4238 raw_spin_lock(&cfs_b->lock);
4239 if (expires == cfs_b->runtime_expires)
c06f04c7 4240 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4241 raw_spin_unlock(&cfs_b->lock);
4242}
4243
d3d9dc33
PT
4244/*
4245 * When a group wakes up we want to make sure that its quota is not already
4246 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4247 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4248 */
4249static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4250{
56f570e5
PT
4251 if (!cfs_bandwidth_used())
4252 return;
4253
d3d9dc33
PT
4254 /* an active group must be handled by the update_curr()->put() path */
4255 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4256 return;
4257
4258 /* ensure the group is not already throttled */
4259 if (cfs_rq_throttled(cfs_rq))
4260 return;
4261
4262 /* update runtime allocation */
4263 account_cfs_rq_runtime(cfs_rq, 0);
4264 if (cfs_rq->runtime_remaining <= 0)
4265 throttle_cfs_rq(cfs_rq);
4266}
4267
55e16d30
PZ
4268static void sync_throttle(struct task_group *tg, int cpu)
4269{
4270 struct cfs_rq *pcfs_rq, *cfs_rq;
4271
4272 if (!cfs_bandwidth_used())
4273 return;
4274
4275 if (!tg->parent)
4276 return;
4277
4278 cfs_rq = tg->cfs_rq[cpu];
4279 pcfs_rq = tg->parent->cfs_rq[cpu];
4280
4281 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4282 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4283}
4284
d3d9dc33 4285/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4286static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4287{
56f570e5 4288 if (!cfs_bandwidth_used())
678d5718 4289 return false;
56f570e5 4290
d3d9dc33 4291 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4292 return false;
d3d9dc33
PT
4293
4294 /*
4295 * it's possible for a throttled entity to be forced into a running
4296 * state (e.g. set_curr_task), in this case we're finished.
4297 */
4298 if (cfs_rq_throttled(cfs_rq))
678d5718 4299 return true;
d3d9dc33
PT
4300
4301 throttle_cfs_rq(cfs_rq);
678d5718 4302 return true;
d3d9dc33 4303}
029632fb 4304
029632fb
PZ
4305static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4306{
4307 struct cfs_bandwidth *cfs_b =
4308 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4309
029632fb
PZ
4310 do_sched_cfs_slack_timer(cfs_b);
4311
4312 return HRTIMER_NORESTART;
4313}
4314
4315static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4316{
4317 struct cfs_bandwidth *cfs_b =
4318 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4319 int overrun;
4320 int idle = 0;
4321
51f2176d 4322 raw_spin_lock(&cfs_b->lock);
029632fb 4323 for (;;) {
77a4d1a1 4324 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4325 if (!overrun)
4326 break;
4327
4328 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4329 }
4cfafd30
PZ
4330 if (idle)
4331 cfs_b->period_active = 0;
51f2176d 4332 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4333
4334 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4335}
4336
4337void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4338{
4339 raw_spin_lock_init(&cfs_b->lock);
4340 cfs_b->runtime = 0;
4341 cfs_b->quota = RUNTIME_INF;
4342 cfs_b->period = ns_to_ktime(default_cfs_period());
4343
4344 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4345 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4346 cfs_b->period_timer.function = sched_cfs_period_timer;
4347 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4348 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4349}
4350
4351static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4352{
4353 cfs_rq->runtime_enabled = 0;
4354 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4355}
4356
77a4d1a1 4357void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4358{
4cfafd30 4359 lockdep_assert_held(&cfs_b->lock);
029632fb 4360
4cfafd30
PZ
4361 if (!cfs_b->period_active) {
4362 cfs_b->period_active = 1;
4363 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4364 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4365 }
029632fb
PZ
4366}
4367
4368static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4369{
7f1a169b
TH
4370 /* init_cfs_bandwidth() was not called */
4371 if (!cfs_b->throttled_cfs_rq.next)
4372 return;
4373
029632fb
PZ
4374 hrtimer_cancel(&cfs_b->period_timer);
4375 hrtimer_cancel(&cfs_b->slack_timer);
4376}
4377
0e59bdae
KT
4378static void __maybe_unused update_runtime_enabled(struct rq *rq)
4379{
4380 struct cfs_rq *cfs_rq;
4381
4382 for_each_leaf_cfs_rq(rq, cfs_rq) {
4383 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4384
4385 raw_spin_lock(&cfs_b->lock);
4386 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4387 raw_spin_unlock(&cfs_b->lock);
4388 }
4389}
4390
38dc3348 4391static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4392{
4393 struct cfs_rq *cfs_rq;
4394
4395 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4396 if (!cfs_rq->runtime_enabled)
4397 continue;
4398
4399 /*
4400 * clock_task is not advancing so we just need to make sure
4401 * there's some valid quota amount
4402 */
51f2176d 4403 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4404 /*
4405 * Offline rq is schedulable till cpu is completely disabled
4406 * in take_cpu_down(), so we prevent new cfs throttling here.
4407 */
4408 cfs_rq->runtime_enabled = 0;
4409
029632fb
PZ
4410 if (cfs_rq_throttled(cfs_rq))
4411 unthrottle_cfs_rq(cfs_rq);
4412 }
4413}
4414
4415#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4416static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4417{
78becc27 4418 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4419}
4420
9dbdb155 4421static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4422static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4423static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4424static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4425static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4426
4427static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4428{
4429 return 0;
4430}
64660c86
PT
4431
4432static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4433{
4434 return 0;
4435}
4436
4437static inline int throttled_lb_pair(struct task_group *tg,
4438 int src_cpu, int dest_cpu)
4439{
4440 return 0;
4441}
029632fb
PZ
4442
4443void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4444
4445#ifdef CONFIG_FAIR_GROUP_SCHED
4446static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4447#endif
4448
029632fb
PZ
4449static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4450{
4451 return NULL;
4452}
4453static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4454static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4455static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4456
4457#endif /* CONFIG_CFS_BANDWIDTH */
4458
bf0f6f24
IM
4459/**************************************************
4460 * CFS operations on tasks:
4461 */
4462
8f4d37ec
PZ
4463#ifdef CONFIG_SCHED_HRTICK
4464static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4465{
8f4d37ec
PZ
4466 struct sched_entity *se = &p->se;
4467 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4468
4469 WARN_ON(task_rq(p) != rq);
4470
b39e66ea 4471 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4472 u64 slice = sched_slice(cfs_rq, se);
4473 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4474 s64 delta = slice - ran;
4475
4476 if (delta < 0) {
4477 if (rq->curr == p)
8875125e 4478 resched_curr(rq);
8f4d37ec
PZ
4479 return;
4480 }
31656519 4481 hrtick_start(rq, delta);
8f4d37ec
PZ
4482 }
4483}
a4c2f00f
PZ
4484
4485/*
4486 * called from enqueue/dequeue and updates the hrtick when the
4487 * current task is from our class and nr_running is low enough
4488 * to matter.
4489 */
4490static void hrtick_update(struct rq *rq)
4491{
4492 struct task_struct *curr = rq->curr;
4493
b39e66ea 4494 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4495 return;
4496
4497 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4498 hrtick_start_fair(rq, curr);
4499}
55e12e5e 4500#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4501static inline void
4502hrtick_start_fair(struct rq *rq, struct task_struct *p)
4503{
4504}
a4c2f00f
PZ
4505
4506static inline void hrtick_update(struct rq *rq)
4507{
4508}
8f4d37ec
PZ
4509#endif
4510
bf0f6f24
IM
4511/*
4512 * The enqueue_task method is called before nr_running is
4513 * increased. Here we update the fair scheduling stats and
4514 * then put the task into the rbtree:
4515 */
ea87bb78 4516static void
371fd7e7 4517enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4518{
4519 struct cfs_rq *cfs_rq;
62fb1851 4520 struct sched_entity *se = &p->se;
bf0f6f24
IM
4521
4522 for_each_sched_entity(se) {
62fb1851 4523 if (se->on_rq)
bf0f6f24
IM
4524 break;
4525 cfs_rq = cfs_rq_of(se);
88ec22d3 4526 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4527
4528 /*
4529 * end evaluation on encountering a throttled cfs_rq
4530 *
4531 * note: in the case of encountering a throttled cfs_rq we will
4532 * post the final h_nr_running increment below.
e210bffd 4533 */
85dac906
PT
4534 if (cfs_rq_throttled(cfs_rq))
4535 break;
953bfcd1 4536 cfs_rq->h_nr_running++;
85dac906 4537
88ec22d3 4538 flags = ENQUEUE_WAKEUP;
bf0f6f24 4539 }
8f4d37ec 4540
2069dd75 4541 for_each_sched_entity(se) {
0f317143 4542 cfs_rq = cfs_rq_of(se);
953bfcd1 4543 cfs_rq->h_nr_running++;
2069dd75 4544
85dac906
PT
4545 if (cfs_rq_throttled(cfs_rq))
4546 break;
4547
9d89c257 4548 update_load_avg(se, 1);
17bc14b7 4549 update_cfs_shares(cfs_rq);
2069dd75
PZ
4550 }
4551
cd126afe 4552 if (!se)
72465447 4553 add_nr_running(rq, 1);
cd126afe 4554
a4c2f00f 4555 hrtick_update(rq);
bf0f6f24
IM
4556}
4557
2f36825b
VP
4558static void set_next_buddy(struct sched_entity *se);
4559
bf0f6f24
IM
4560/*
4561 * The dequeue_task method is called before nr_running is
4562 * decreased. We remove the task from the rbtree and
4563 * update the fair scheduling stats:
4564 */
371fd7e7 4565static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4566{
4567 struct cfs_rq *cfs_rq;
62fb1851 4568 struct sched_entity *se = &p->se;
2f36825b 4569 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4570
4571 for_each_sched_entity(se) {
4572 cfs_rq = cfs_rq_of(se);
371fd7e7 4573 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4574
4575 /*
4576 * end evaluation on encountering a throttled cfs_rq
4577 *
4578 * note: in the case of encountering a throttled cfs_rq we will
4579 * post the final h_nr_running decrement below.
4580 */
4581 if (cfs_rq_throttled(cfs_rq))
4582 break;
953bfcd1 4583 cfs_rq->h_nr_running--;
2069dd75 4584
bf0f6f24 4585 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4586 if (cfs_rq->load.weight) {
754bd598
KK
4587 /* Avoid re-evaluating load for this entity: */
4588 se = parent_entity(se);
2f36825b
VP
4589 /*
4590 * Bias pick_next to pick a task from this cfs_rq, as
4591 * p is sleeping when it is within its sched_slice.
4592 */
754bd598
KK
4593 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4594 set_next_buddy(se);
bf0f6f24 4595 break;
2f36825b 4596 }
371fd7e7 4597 flags |= DEQUEUE_SLEEP;
bf0f6f24 4598 }
8f4d37ec 4599
2069dd75 4600 for_each_sched_entity(se) {
0f317143 4601 cfs_rq = cfs_rq_of(se);
953bfcd1 4602 cfs_rq->h_nr_running--;
2069dd75 4603
85dac906
PT
4604 if (cfs_rq_throttled(cfs_rq))
4605 break;
4606
9d89c257 4607 update_load_avg(se, 1);
17bc14b7 4608 update_cfs_shares(cfs_rq);
2069dd75
PZ
4609 }
4610
cd126afe 4611 if (!se)
72465447 4612 sub_nr_running(rq, 1);
cd126afe 4613
a4c2f00f 4614 hrtick_update(rq);
bf0f6f24
IM
4615}
4616
e7693a36 4617#ifdef CONFIG_SMP
9fd81dd5 4618#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4619/*
4620 * per rq 'load' arrray crap; XXX kill this.
4621 */
4622
4623/*
d937cdc5 4624 * The exact cpuload calculated at every tick would be:
3289bdb4 4625 *
d937cdc5
PZ
4626 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4627 *
4628 * If a cpu misses updates for n ticks (as it was idle) and update gets
4629 * called on the n+1-th tick when cpu may be busy, then we have:
4630 *
4631 * load_n = (1 - 1/2^i)^n * load_0
4632 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4633 *
4634 * decay_load_missed() below does efficient calculation of
3289bdb4 4635 *
d937cdc5
PZ
4636 * load' = (1 - 1/2^i)^n * load
4637 *
4638 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4639 * This allows us to precompute the above in said factors, thereby allowing the
4640 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4641 * fixed_power_int())
3289bdb4 4642 *
d937cdc5 4643 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4644 */
4645#define DEGRADE_SHIFT 7
d937cdc5
PZ
4646
4647static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4648static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4649 { 0, 0, 0, 0, 0, 0, 0, 0 },
4650 { 64, 32, 8, 0, 0, 0, 0, 0 },
4651 { 96, 72, 40, 12, 1, 0, 0, 0 },
4652 { 112, 98, 75, 43, 15, 1, 0, 0 },
4653 { 120, 112, 98, 76, 45, 16, 2, 0 }
4654};
3289bdb4
PZ
4655
4656/*
4657 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4658 * would be when CPU is idle and so we just decay the old load without
4659 * adding any new load.
4660 */
4661static unsigned long
4662decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4663{
4664 int j = 0;
4665
4666 if (!missed_updates)
4667 return load;
4668
4669 if (missed_updates >= degrade_zero_ticks[idx])
4670 return 0;
4671
4672 if (idx == 1)
4673 return load >> missed_updates;
4674
4675 while (missed_updates) {
4676 if (missed_updates % 2)
4677 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4678
4679 missed_updates >>= 1;
4680 j++;
4681 }
4682 return load;
4683}
9fd81dd5 4684#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4685
59543275 4686/**
cee1afce 4687 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4688 * @this_rq: The rq to update statistics for
4689 * @this_load: The current load
4690 * @pending_updates: The number of missed updates
59543275 4691 *
3289bdb4 4692 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4693 * scheduler tick (TICK_NSEC).
4694 *
4695 * This function computes a decaying average:
4696 *
4697 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4698 *
4699 * Because of NOHZ it might not get called on every tick which gives need for
4700 * the @pending_updates argument.
4701 *
4702 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4703 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4704 * = A * (A * load[i]_n-2 + B) + B
4705 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4706 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4707 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4708 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4709 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4710 *
4711 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4712 * any change in load would have resulted in the tick being turned back on.
4713 *
4714 * For regular NOHZ, this reduces to:
4715 *
4716 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4717 *
4718 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4719 * term.
3289bdb4 4720 */
1f41906a
FW
4721static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4722 unsigned long pending_updates)
3289bdb4 4723{
9fd81dd5 4724 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4725 int i, scale;
4726
4727 this_rq->nr_load_updates++;
4728
4729 /* Update our load: */
4730 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4731 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4732 unsigned long old_load, new_load;
4733
4734 /* scale is effectively 1 << i now, and >> i divides by scale */
4735
7400d3bb 4736 old_load = this_rq->cpu_load[i];
9fd81dd5 4737#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4738 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4739 if (tickless_load) {
4740 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4741 /*
4742 * old_load can never be a negative value because a
4743 * decayed tickless_load cannot be greater than the
4744 * original tickless_load.
4745 */
4746 old_load += tickless_load;
4747 }
9fd81dd5 4748#endif
3289bdb4
PZ
4749 new_load = this_load;
4750 /*
4751 * Round up the averaging division if load is increasing. This
4752 * prevents us from getting stuck on 9 if the load is 10, for
4753 * example.
4754 */
4755 if (new_load > old_load)
4756 new_load += scale - 1;
4757
4758 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4759 }
4760
4761 sched_avg_update(this_rq);
4762}
4763
7ea241af
YD
4764/* Used instead of source_load when we know the type == 0 */
4765static unsigned long weighted_cpuload(const int cpu)
4766{
4767 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4768}
4769
3289bdb4 4770#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4771/*
4772 * There is no sane way to deal with nohz on smp when using jiffies because the
4773 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4774 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4775 *
4776 * Therefore we need to avoid the delta approach from the regular tick when
4777 * possible since that would seriously skew the load calculation. This is why we
4778 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4779 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4780 * loop exit, nohz_idle_balance, nohz full exit...)
4781 *
4782 * This means we might still be one tick off for nohz periods.
4783 */
4784
4785static void cpu_load_update_nohz(struct rq *this_rq,
4786 unsigned long curr_jiffies,
4787 unsigned long load)
be68a682
FW
4788{
4789 unsigned long pending_updates;
4790
4791 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4792 if (pending_updates) {
4793 this_rq->last_load_update_tick = curr_jiffies;
4794 /*
4795 * In the regular NOHZ case, we were idle, this means load 0.
4796 * In the NOHZ_FULL case, we were non-idle, we should consider
4797 * its weighted load.
4798 */
1f41906a 4799 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4800 }
4801}
4802
3289bdb4
PZ
4803/*
4804 * Called from nohz_idle_balance() to update the load ratings before doing the
4805 * idle balance.
4806 */
cee1afce 4807static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4808{
3289bdb4
PZ
4809 /*
4810 * bail if there's load or we're actually up-to-date.
4811 */
be68a682 4812 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4813 return;
4814
1f41906a 4815 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4816}
4817
4818/*
1f41906a
FW
4819 * Record CPU load on nohz entry so we know the tickless load to account
4820 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4821 * than other cpu_load[idx] but it should be fine as cpu_load readers
4822 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4823 */
1f41906a 4824void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4825{
4826 struct rq *this_rq = this_rq();
1f41906a
FW
4827
4828 /*
4829 * This is all lockless but should be fine. If weighted_cpuload changes
4830 * concurrently we'll exit nohz. And cpu_load write can race with
4831 * cpu_load_update_idle() but both updater would be writing the same.
4832 */
4833 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4834}
4835
4836/*
4837 * Account the tickless load in the end of a nohz frame.
4838 */
4839void cpu_load_update_nohz_stop(void)
4840{
316c1608 4841 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4842 struct rq *this_rq = this_rq();
4843 unsigned long load;
3289bdb4
PZ
4844
4845 if (curr_jiffies == this_rq->last_load_update_tick)
4846 return;
4847
1f41906a 4848 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4849 raw_spin_lock(&this_rq->lock);
b52fad2d 4850 update_rq_clock(this_rq);
1f41906a 4851 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4852 raw_spin_unlock(&this_rq->lock);
4853}
1f41906a
FW
4854#else /* !CONFIG_NO_HZ_COMMON */
4855static inline void cpu_load_update_nohz(struct rq *this_rq,
4856 unsigned long curr_jiffies,
4857 unsigned long load) { }
4858#endif /* CONFIG_NO_HZ_COMMON */
4859
4860static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4861{
9fd81dd5 4862#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4863 /* See the mess around cpu_load_update_nohz(). */
4864 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4865#endif
1f41906a
FW
4866 cpu_load_update(this_rq, load, 1);
4867}
3289bdb4
PZ
4868
4869/*
4870 * Called from scheduler_tick()
4871 */
cee1afce 4872void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4873{
7ea241af 4874 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4875
4876 if (tick_nohz_tick_stopped())
4877 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4878 else
4879 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4880}
4881
029632fb
PZ
4882/*
4883 * Return a low guess at the load of a migration-source cpu weighted
4884 * according to the scheduling class and "nice" value.
4885 *
4886 * We want to under-estimate the load of migration sources, to
4887 * balance conservatively.
4888 */
4889static unsigned long source_load(int cpu, int type)
4890{
4891 struct rq *rq = cpu_rq(cpu);
4892 unsigned long total = weighted_cpuload(cpu);
4893
4894 if (type == 0 || !sched_feat(LB_BIAS))
4895 return total;
4896
4897 return min(rq->cpu_load[type-1], total);
4898}
4899
4900/*
4901 * Return a high guess at the load of a migration-target cpu weighted
4902 * according to the scheduling class and "nice" value.
4903 */
4904static unsigned long target_load(int cpu, int type)
4905{
4906 struct rq *rq = cpu_rq(cpu);
4907 unsigned long total = weighted_cpuload(cpu);
4908
4909 if (type == 0 || !sched_feat(LB_BIAS))
4910 return total;
4911
4912 return max(rq->cpu_load[type-1], total);
4913}
4914
ced549fa 4915static unsigned long capacity_of(int cpu)
029632fb 4916{
ced549fa 4917 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4918}
4919
ca6d75e6
VG
4920static unsigned long capacity_orig_of(int cpu)
4921{
4922 return cpu_rq(cpu)->cpu_capacity_orig;
4923}
4924
029632fb
PZ
4925static unsigned long cpu_avg_load_per_task(int cpu)
4926{
4927 struct rq *rq = cpu_rq(cpu);
316c1608 4928 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4929 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4930
4931 if (nr_running)
b92486cb 4932 return load_avg / nr_running;
029632fb
PZ
4933
4934 return 0;
4935}
4936
bb3469ac 4937#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4938/*
4939 * effective_load() calculates the load change as seen from the root_task_group
4940 *
4941 * Adding load to a group doesn't make a group heavier, but can cause movement
4942 * of group shares between cpus. Assuming the shares were perfectly aligned one
4943 * can calculate the shift in shares.
cf5f0acf
PZ
4944 *
4945 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4946 * on this @cpu and results in a total addition (subtraction) of @wg to the
4947 * total group weight.
4948 *
4949 * Given a runqueue weight distribution (rw_i) we can compute a shares
4950 * distribution (s_i) using:
4951 *
4952 * s_i = rw_i / \Sum rw_j (1)
4953 *
4954 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4955 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4956 * shares distribution (s_i):
4957 *
4958 * rw_i = { 2, 4, 1, 0 }
4959 * s_i = { 2/7, 4/7, 1/7, 0 }
4960 *
4961 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4962 * task used to run on and the CPU the waker is running on), we need to
4963 * compute the effect of waking a task on either CPU and, in case of a sync
4964 * wakeup, compute the effect of the current task going to sleep.
4965 *
4966 * So for a change of @wl to the local @cpu with an overall group weight change
4967 * of @wl we can compute the new shares distribution (s'_i) using:
4968 *
4969 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4970 *
4971 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4972 * differences in waking a task to CPU 0. The additional task changes the
4973 * weight and shares distributions like:
4974 *
4975 * rw'_i = { 3, 4, 1, 0 }
4976 * s'_i = { 3/8, 4/8, 1/8, 0 }
4977 *
4978 * We can then compute the difference in effective weight by using:
4979 *
4980 * dw_i = S * (s'_i - s_i) (3)
4981 *
4982 * Where 'S' is the group weight as seen by its parent.
4983 *
4984 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4985 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4986 * 4/7) times the weight of the group.
f5bfb7d9 4987 */
2069dd75 4988static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4989{
4be9daaa 4990 struct sched_entity *se = tg->se[cpu];
f1d239f7 4991
9722c2da 4992 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4993 return wl;
4994
4be9daaa 4995 for_each_sched_entity(se) {
7dd49125
PZ
4996 struct cfs_rq *cfs_rq = se->my_q;
4997 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4998
7dd49125 4999 tg = cfs_rq->tg;
bb3469ac 5000
cf5f0acf
PZ
5001 /*
5002 * W = @wg + \Sum rw_j
5003 */
7dd49125
PZ
5004 W = wg + atomic_long_read(&tg->load_avg);
5005
5006 /* Ensure \Sum rw_j >= rw_i */
5007 W -= cfs_rq->tg_load_avg_contrib;
5008 W += w;
4be9daaa 5009
cf5f0acf
PZ
5010 /*
5011 * w = rw_i + @wl
5012 */
7dd49125 5013 w += wl;
940959e9 5014
cf5f0acf
PZ
5015 /*
5016 * wl = S * s'_i; see (2)
5017 */
5018 if (W > 0 && w < W)
32a8df4e 5019 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5020 else
5021 wl = tg->shares;
940959e9 5022
cf5f0acf
PZ
5023 /*
5024 * Per the above, wl is the new se->load.weight value; since
5025 * those are clipped to [MIN_SHARES, ...) do so now. See
5026 * calc_cfs_shares().
5027 */
977dda7c
PT
5028 if (wl < MIN_SHARES)
5029 wl = MIN_SHARES;
cf5f0acf
PZ
5030
5031 /*
5032 * wl = dw_i = S * (s'_i - s_i); see (3)
5033 */
9d89c257 5034 wl -= se->avg.load_avg;
cf5f0acf
PZ
5035
5036 /*
5037 * Recursively apply this logic to all parent groups to compute
5038 * the final effective load change on the root group. Since
5039 * only the @tg group gets extra weight, all parent groups can
5040 * only redistribute existing shares. @wl is the shift in shares
5041 * resulting from this level per the above.
5042 */
4be9daaa 5043 wg = 0;
4be9daaa 5044 }
bb3469ac 5045
4be9daaa 5046 return wl;
bb3469ac
PZ
5047}
5048#else
4be9daaa 5049
58d081b5 5050static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5051{
83378269 5052 return wl;
bb3469ac 5053}
4be9daaa 5054
bb3469ac
PZ
5055#endif
5056
c58d25f3
PZ
5057static void record_wakee(struct task_struct *p)
5058{
5059 /*
5060 * Only decay a single time; tasks that have less then 1 wakeup per
5061 * jiffy will not have built up many flips.
5062 */
5063 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5064 current->wakee_flips >>= 1;
5065 current->wakee_flip_decay_ts = jiffies;
5066 }
5067
5068 if (current->last_wakee != p) {
5069 current->last_wakee = p;
5070 current->wakee_flips++;
5071 }
5072}
5073
63b0e9ed
MG
5074/*
5075 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5076 *
63b0e9ed 5077 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5078 * at a frequency roughly N times higher than one of its wakees.
5079 *
5080 * In order to determine whether we should let the load spread vs consolidating
5081 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5082 * partner, and a factor of lls_size higher frequency in the other.
5083 *
5084 * With both conditions met, we can be relatively sure that the relationship is
5085 * non-monogamous, with partner count exceeding socket size.
5086 *
5087 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5088 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5089 * socket size.
63b0e9ed 5090 */
62470419
MW
5091static int wake_wide(struct task_struct *p)
5092{
63b0e9ed
MG
5093 unsigned int master = current->wakee_flips;
5094 unsigned int slave = p->wakee_flips;
7d9ffa89 5095 int factor = this_cpu_read(sd_llc_size);
62470419 5096
63b0e9ed
MG
5097 if (master < slave)
5098 swap(master, slave);
5099 if (slave < factor || master < slave * factor)
5100 return 0;
5101 return 1;
62470419
MW
5102}
5103
c88d5910 5104static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5105{
e37b6a7b 5106 s64 this_load, load;
bd61c98f 5107 s64 this_eff_load, prev_eff_load;
c88d5910 5108 int idx, this_cpu, prev_cpu;
c88d5910 5109 struct task_group *tg;
83378269 5110 unsigned long weight;
b3137bc8 5111 int balanced;
098fb9db 5112
c88d5910
PZ
5113 idx = sd->wake_idx;
5114 this_cpu = smp_processor_id();
5115 prev_cpu = task_cpu(p);
5116 load = source_load(prev_cpu, idx);
5117 this_load = target_load(this_cpu, idx);
098fb9db 5118
b3137bc8
MG
5119 /*
5120 * If sync wakeup then subtract the (maximum possible)
5121 * effect of the currently running task from the load
5122 * of the current CPU:
5123 */
83378269
PZ
5124 if (sync) {
5125 tg = task_group(current);
9d89c257 5126 weight = current->se.avg.load_avg;
83378269 5127
c88d5910 5128 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5129 load += effective_load(tg, prev_cpu, 0, -weight);
5130 }
b3137bc8 5131
83378269 5132 tg = task_group(p);
9d89c257 5133 weight = p->se.avg.load_avg;
b3137bc8 5134
71a29aa7
PZ
5135 /*
5136 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5137 * due to the sync cause above having dropped this_load to 0, we'll
5138 * always have an imbalance, but there's really nothing you can do
5139 * about that, so that's good too.
71a29aa7
PZ
5140 *
5141 * Otherwise check if either cpus are near enough in load to allow this
5142 * task to be woken on this_cpu.
5143 */
bd61c98f
VG
5144 this_eff_load = 100;
5145 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5146
bd61c98f
VG
5147 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5148 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5149
bd61c98f 5150 if (this_load > 0) {
e51fd5e2
PZ
5151 this_eff_load *= this_load +
5152 effective_load(tg, this_cpu, weight, weight);
5153
e51fd5e2 5154 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5155 }
e51fd5e2 5156
bd61c98f 5157 balanced = this_eff_load <= prev_eff_load;
098fb9db 5158
41acab88 5159 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5160
05bfb65f
VG
5161 if (!balanced)
5162 return 0;
098fb9db 5163
05bfb65f
VG
5164 schedstat_inc(sd, ttwu_move_affine);
5165 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5166
5167 return 1;
098fb9db
IM
5168}
5169
aaee1203
PZ
5170/*
5171 * find_idlest_group finds and returns the least busy CPU group within the
5172 * domain.
5173 */
5174static struct sched_group *
78e7ed53 5175find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5176 int this_cpu, int sd_flag)
e7693a36 5177{
b3bd3de6 5178 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5179 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5180 int load_idx = sd->forkexec_idx;
aaee1203 5181 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5182
c44f2a02
VG
5183 if (sd_flag & SD_BALANCE_WAKE)
5184 load_idx = sd->wake_idx;
5185
aaee1203
PZ
5186 do {
5187 unsigned long load, avg_load;
5188 int local_group;
5189 int i;
e7693a36 5190
aaee1203
PZ
5191 /* Skip over this group if it has no CPUs allowed */
5192 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5193 tsk_cpus_allowed(p)))
aaee1203
PZ
5194 continue;
5195
5196 local_group = cpumask_test_cpu(this_cpu,
5197 sched_group_cpus(group));
5198
5199 /* Tally up the load of all CPUs in the group */
5200 avg_load = 0;
5201
5202 for_each_cpu(i, sched_group_cpus(group)) {
5203 /* Bias balancing toward cpus of our domain */
5204 if (local_group)
5205 load = source_load(i, load_idx);
5206 else
5207 load = target_load(i, load_idx);
5208
5209 avg_load += load;
5210 }
5211
63b2ca30 5212 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5213 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5214
5215 if (local_group) {
5216 this_load = avg_load;
aaee1203
PZ
5217 } else if (avg_load < min_load) {
5218 min_load = avg_load;
5219 idlest = group;
5220 }
5221 } while (group = group->next, group != sd->groups);
5222
5223 if (!idlest || 100*this_load < imbalance*min_load)
5224 return NULL;
5225 return idlest;
5226}
5227
5228/*
5229 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5230 */
5231static int
5232find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5233{
5234 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5235 unsigned int min_exit_latency = UINT_MAX;
5236 u64 latest_idle_timestamp = 0;
5237 int least_loaded_cpu = this_cpu;
5238 int shallowest_idle_cpu = -1;
aaee1203
PZ
5239 int i;
5240
5241 /* Traverse only the allowed CPUs */
fa17b507 5242 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5243 if (idle_cpu(i)) {
5244 struct rq *rq = cpu_rq(i);
5245 struct cpuidle_state *idle = idle_get_state(rq);
5246 if (idle && idle->exit_latency < min_exit_latency) {
5247 /*
5248 * We give priority to a CPU whose idle state
5249 * has the smallest exit latency irrespective
5250 * of any idle timestamp.
5251 */
5252 min_exit_latency = idle->exit_latency;
5253 latest_idle_timestamp = rq->idle_stamp;
5254 shallowest_idle_cpu = i;
5255 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5256 rq->idle_stamp > latest_idle_timestamp) {
5257 /*
5258 * If equal or no active idle state, then
5259 * the most recently idled CPU might have
5260 * a warmer cache.
5261 */
5262 latest_idle_timestamp = rq->idle_stamp;
5263 shallowest_idle_cpu = i;
5264 }
9f96742a 5265 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5266 load = weighted_cpuload(i);
5267 if (load < min_load || (load == min_load && i == this_cpu)) {
5268 min_load = load;
5269 least_loaded_cpu = i;
5270 }
e7693a36
GH
5271 }
5272 }
5273
83a0a96a 5274 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5275}
e7693a36 5276
a50bde51
PZ
5277/*
5278 * Try and locate an idle CPU in the sched_domain.
5279 */
99bd5e2f 5280static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5281{
99bd5e2f 5282 struct sched_domain *sd;
37407ea7 5283 struct sched_group *sg;
e0a79f52 5284 int i = task_cpu(p);
a50bde51 5285
e0a79f52
MG
5286 if (idle_cpu(target))
5287 return target;
99bd5e2f
SS
5288
5289 /*
e0a79f52 5290 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5291 */
e0a79f52
MG
5292 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5293 return i;
a50bde51
PZ
5294
5295 /*
d4335581
MF
5296 * Otherwise, iterate the domains and find an eligible idle cpu.
5297 *
5298 * A completely idle sched group at higher domains is more
5299 * desirable than an idle group at a lower level, because lower
5300 * domains have smaller groups and usually share hardware
5301 * resources which causes tasks to contend on them, e.g. x86
5302 * hyperthread siblings in the lowest domain (SMT) can contend
5303 * on the shared cpu pipeline.
5304 *
5305 * However, while we prefer idle groups at higher domains
5306 * finding an idle cpu at the lowest domain is still better than
5307 * returning 'target', which we've already established, isn't
5308 * idle.
a50bde51 5309 */
518cd623 5310 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5311 for_each_lower_domain(sd) {
37407ea7
LT
5312 sg = sd->groups;
5313 do {
5314 if (!cpumask_intersects(sched_group_cpus(sg),
5315 tsk_cpus_allowed(p)))
5316 goto next;
5317
d4335581 5318 /* Ensure the entire group is idle */
37407ea7 5319 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5320 if (i == target || !idle_cpu(i))
37407ea7
LT
5321 goto next;
5322 }
970e1789 5323
d4335581
MF
5324 /*
5325 * It doesn't matter which cpu we pick, the
5326 * whole group is idle.
5327 */
37407ea7
LT
5328 target = cpumask_first_and(sched_group_cpus(sg),
5329 tsk_cpus_allowed(p));
5330 goto done;
5331next:
5332 sg = sg->next;
5333 } while (sg != sd->groups);
5334 }
5335done:
a50bde51
PZ
5336 return target;
5337}
231678b7 5338
8bb5b00c 5339/*
9e91d61d 5340 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5341 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5342 * compare the utilization with the capacity of the CPU that is available for
5343 * CFS task (ie cpu_capacity).
231678b7
DE
5344 *
5345 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5346 * recent utilization of currently non-runnable tasks on a CPU. It represents
5347 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5348 * capacity_orig is the cpu_capacity available at the highest frequency
5349 * (arch_scale_freq_capacity()).
5350 * The utilization of a CPU converges towards a sum equal to or less than the
5351 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5352 * the running time on this CPU scaled by capacity_curr.
5353 *
5354 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5355 * higher than capacity_orig because of unfortunate rounding in
5356 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5357 * the average stabilizes with the new running time. We need to check that the
5358 * utilization stays within the range of [0..capacity_orig] and cap it if
5359 * necessary. Without utilization capping, a group could be seen as overloaded
5360 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5361 * available capacity. We allow utilization to overshoot capacity_curr (but not
5362 * capacity_orig) as it useful for predicting the capacity required after task
5363 * migrations (scheduler-driven DVFS).
8bb5b00c 5364 */
9e91d61d 5365static int cpu_util(int cpu)
8bb5b00c 5366{
9e91d61d 5367 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5368 unsigned long capacity = capacity_orig_of(cpu);
5369
231678b7 5370 return (util >= capacity) ? capacity : util;
8bb5b00c 5371}
a50bde51 5372
aaee1203 5373/*
de91b9cb
MR
5374 * select_task_rq_fair: Select target runqueue for the waking task in domains
5375 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5376 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5377 *
de91b9cb
MR
5378 * Balances load by selecting the idlest cpu in the idlest group, or under
5379 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5380 *
de91b9cb 5381 * Returns the target cpu number.
aaee1203
PZ
5382 *
5383 * preempt must be disabled.
5384 */
0017d735 5385static int
ac66f547 5386select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5387{
29cd8bae 5388 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5389 int cpu = smp_processor_id();
63b0e9ed 5390 int new_cpu = prev_cpu;
99bd5e2f 5391 int want_affine = 0;
5158f4e4 5392 int sync = wake_flags & WF_SYNC;
c88d5910 5393
c58d25f3
PZ
5394 if (sd_flag & SD_BALANCE_WAKE) {
5395 record_wakee(p);
63b0e9ed 5396 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5397 }
aaee1203 5398
dce840a0 5399 rcu_read_lock();
aaee1203 5400 for_each_domain(cpu, tmp) {
e4f42888 5401 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5402 break;
e4f42888 5403
fe3bcfe1 5404 /*
99bd5e2f
SS
5405 * If both cpu and prev_cpu are part of this domain,
5406 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5407 */
99bd5e2f
SS
5408 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5409 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5410 affine_sd = tmp;
29cd8bae 5411 break;
f03542a7 5412 }
29cd8bae 5413
f03542a7 5414 if (tmp->flags & sd_flag)
29cd8bae 5415 sd = tmp;
63b0e9ed
MG
5416 else if (!want_affine)
5417 break;
29cd8bae
PZ
5418 }
5419
63b0e9ed
MG
5420 if (affine_sd) {
5421 sd = NULL; /* Prefer wake_affine over balance flags */
5422 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5423 new_cpu = cpu;
8b911acd 5424 }
e7693a36 5425
63b0e9ed
MG
5426 if (!sd) {
5427 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5428 new_cpu = select_idle_sibling(p, new_cpu);
5429
5430 } else while (sd) {
aaee1203 5431 struct sched_group *group;
c88d5910 5432 int weight;
098fb9db 5433
0763a660 5434 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5435 sd = sd->child;
5436 continue;
5437 }
098fb9db 5438
c44f2a02 5439 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5440 if (!group) {
5441 sd = sd->child;
5442 continue;
5443 }
4ae7d5ce 5444
d7c33c49 5445 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5446 if (new_cpu == -1 || new_cpu == cpu) {
5447 /* Now try balancing at a lower domain level of cpu */
5448 sd = sd->child;
5449 continue;
e7693a36 5450 }
aaee1203
PZ
5451
5452 /* Now try balancing at a lower domain level of new_cpu */
5453 cpu = new_cpu;
669c55e9 5454 weight = sd->span_weight;
aaee1203
PZ
5455 sd = NULL;
5456 for_each_domain(cpu, tmp) {
669c55e9 5457 if (weight <= tmp->span_weight)
aaee1203 5458 break;
0763a660 5459 if (tmp->flags & sd_flag)
aaee1203
PZ
5460 sd = tmp;
5461 }
5462 /* while loop will break here if sd == NULL */
e7693a36 5463 }
dce840a0 5464 rcu_read_unlock();
e7693a36 5465
c88d5910 5466 return new_cpu;
e7693a36 5467}
0a74bef8
PT
5468
5469/*
5470 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5471 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5472 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5473 */
5a4fd036 5474static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5475{
59efa0ba
PZ
5476 /*
5477 * As blocked tasks retain absolute vruntime the migration needs to
5478 * deal with this by subtracting the old and adding the new
5479 * min_vruntime -- the latter is done by enqueue_entity() when placing
5480 * the task on the new runqueue.
5481 */
5482 if (p->state == TASK_WAKING) {
5483 struct sched_entity *se = &p->se;
5484 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5485 u64 min_vruntime;
5486
5487#ifndef CONFIG_64BIT
5488 u64 min_vruntime_copy;
5489
5490 do {
5491 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5492 smp_rmb();
5493 min_vruntime = cfs_rq->min_vruntime;
5494 } while (min_vruntime != min_vruntime_copy);
5495#else
5496 min_vruntime = cfs_rq->min_vruntime;
5497#endif
5498
5499 se->vruntime -= min_vruntime;
5500 }
5501
aff3e498 5502 /*
9d89c257
YD
5503 * We are supposed to update the task to "current" time, then its up to date
5504 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5505 * what current time is, so simply throw away the out-of-date time. This
5506 * will result in the wakee task is less decayed, but giving the wakee more
5507 * load sounds not bad.
aff3e498 5508 */
9d89c257
YD
5509 remove_entity_load_avg(&p->se);
5510
5511 /* Tell new CPU we are migrated */
5512 p->se.avg.last_update_time = 0;
3944a927
BS
5513
5514 /* We have migrated, no longer consider this task hot */
9d89c257 5515 p->se.exec_start = 0;
0a74bef8 5516}
12695578
YD
5517
5518static void task_dead_fair(struct task_struct *p)
5519{
5520 remove_entity_load_avg(&p->se);
5521}
e7693a36
GH
5522#endif /* CONFIG_SMP */
5523
e52fb7c0
PZ
5524static unsigned long
5525wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5526{
5527 unsigned long gran = sysctl_sched_wakeup_granularity;
5528
5529 /*
e52fb7c0
PZ
5530 * Since its curr running now, convert the gran from real-time
5531 * to virtual-time in his units.
13814d42
MG
5532 *
5533 * By using 'se' instead of 'curr' we penalize light tasks, so
5534 * they get preempted easier. That is, if 'se' < 'curr' then
5535 * the resulting gran will be larger, therefore penalizing the
5536 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5537 * be smaller, again penalizing the lighter task.
5538 *
5539 * This is especially important for buddies when the leftmost
5540 * task is higher priority than the buddy.
0bbd3336 5541 */
f4ad9bd2 5542 return calc_delta_fair(gran, se);
0bbd3336
PZ
5543}
5544
464b7527
PZ
5545/*
5546 * Should 'se' preempt 'curr'.
5547 *
5548 * |s1
5549 * |s2
5550 * |s3
5551 * g
5552 * |<--->|c
5553 *
5554 * w(c, s1) = -1
5555 * w(c, s2) = 0
5556 * w(c, s3) = 1
5557 *
5558 */
5559static int
5560wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5561{
5562 s64 gran, vdiff = curr->vruntime - se->vruntime;
5563
5564 if (vdiff <= 0)
5565 return -1;
5566
e52fb7c0 5567 gran = wakeup_gran(curr, se);
464b7527
PZ
5568 if (vdiff > gran)
5569 return 1;
5570
5571 return 0;
5572}
5573
02479099
PZ
5574static void set_last_buddy(struct sched_entity *se)
5575{
69c80f3e
VP
5576 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5577 return;
5578
5579 for_each_sched_entity(se)
5580 cfs_rq_of(se)->last = se;
02479099
PZ
5581}
5582
5583static void set_next_buddy(struct sched_entity *se)
5584{
69c80f3e
VP
5585 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5586 return;
5587
5588 for_each_sched_entity(se)
5589 cfs_rq_of(se)->next = se;
02479099
PZ
5590}
5591
ac53db59
RR
5592static void set_skip_buddy(struct sched_entity *se)
5593{
69c80f3e
VP
5594 for_each_sched_entity(se)
5595 cfs_rq_of(se)->skip = se;
ac53db59
RR
5596}
5597
bf0f6f24
IM
5598/*
5599 * Preempt the current task with a newly woken task if needed:
5600 */
5a9b86f6 5601static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5602{
5603 struct task_struct *curr = rq->curr;
8651a86c 5604 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5605 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5606 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5607 int next_buddy_marked = 0;
bf0f6f24 5608
4ae7d5ce
IM
5609 if (unlikely(se == pse))
5610 return;
5611
5238cdd3 5612 /*
163122b7 5613 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5614 * unconditionally check_prempt_curr() after an enqueue (which may have
5615 * lead to a throttle). This both saves work and prevents false
5616 * next-buddy nomination below.
5617 */
5618 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5619 return;
5620
2f36825b 5621 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5622 set_next_buddy(pse);
2f36825b
VP
5623 next_buddy_marked = 1;
5624 }
57fdc26d 5625
aec0a514
BR
5626 /*
5627 * We can come here with TIF_NEED_RESCHED already set from new task
5628 * wake up path.
5238cdd3
PT
5629 *
5630 * Note: this also catches the edge-case of curr being in a throttled
5631 * group (e.g. via set_curr_task), since update_curr() (in the
5632 * enqueue of curr) will have resulted in resched being set. This
5633 * prevents us from potentially nominating it as a false LAST_BUDDY
5634 * below.
aec0a514
BR
5635 */
5636 if (test_tsk_need_resched(curr))
5637 return;
5638
a2f5c9ab
DH
5639 /* Idle tasks are by definition preempted by non-idle tasks. */
5640 if (unlikely(curr->policy == SCHED_IDLE) &&
5641 likely(p->policy != SCHED_IDLE))
5642 goto preempt;
5643
91c234b4 5644 /*
a2f5c9ab
DH
5645 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5646 * is driven by the tick):
91c234b4 5647 */
8ed92e51 5648 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5649 return;
bf0f6f24 5650
464b7527 5651 find_matching_se(&se, &pse);
9bbd7374 5652 update_curr(cfs_rq_of(se));
002f128b 5653 BUG_ON(!pse);
2f36825b
VP
5654 if (wakeup_preempt_entity(se, pse) == 1) {
5655 /*
5656 * Bias pick_next to pick the sched entity that is
5657 * triggering this preemption.
5658 */
5659 if (!next_buddy_marked)
5660 set_next_buddy(pse);
3a7e73a2 5661 goto preempt;
2f36825b 5662 }
464b7527 5663
3a7e73a2 5664 return;
a65ac745 5665
3a7e73a2 5666preempt:
8875125e 5667 resched_curr(rq);
3a7e73a2
PZ
5668 /*
5669 * Only set the backward buddy when the current task is still
5670 * on the rq. This can happen when a wakeup gets interleaved
5671 * with schedule on the ->pre_schedule() or idle_balance()
5672 * point, either of which can * drop the rq lock.
5673 *
5674 * Also, during early boot the idle thread is in the fair class,
5675 * for obvious reasons its a bad idea to schedule back to it.
5676 */
5677 if (unlikely(!se->on_rq || curr == rq->idle))
5678 return;
5679
5680 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5681 set_last_buddy(se);
bf0f6f24
IM
5682}
5683
606dba2e 5684static struct task_struct *
e7904a28 5685pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5686{
5687 struct cfs_rq *cfs_rq = &rq->cfs;
5688 struct sched_entity *se;
678d5718 5689 struct task_struct *p;
37e117c0 5690 int new_tasks;
678d5718 5691
6e83125c 5692again:
678d5718
PZ
5693#ifdef CONFIG_FAIR_GROUP_SCHED
5694 if (!cfs_rq->nr_running)
38033c37 5695 goto idle;
678d5718 5696
3f1d2a31 5697 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5698 goto simple;
5699
5700 /*
5701 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5702 * likely that a next task is from the same cgroup as the current.
5703 *
5704 * Therefore attempt to avoid putting and setting the entire cgroup
5705 * hierarchy, only change the part that actually changes.
5706 */
5707
5708 do {
5709 struct sched_entity *curr = cfs_rq->curr;
5710
5711 /*
5712 * Since we got here without doing put_prev_entity() we also
5713 * have to consider cfs_rq->curr. If it is still a runnable
5714 * entity, update_curr() will update its vruntime, otherwise
5715 * forget we've ever seen it.
5716 */
54d27365
BS
5717 if (curr) {
5718 if (curr->on_rq)
5719 update_curr(cfs_rq);
5720 else
5721 curr = NULL;
678d5718 5722
54d27365
BS
5723 /*
5724 * This call to check_cfs_rq_runtime() will do the
5725 * throttle and dequeue its entity in the parent(s).
5726 * Therefore the 'simple' nr_running test will indeed
5727 * be correct.
5728 */
5729 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5730 goto simple;
5731 }
678d5718
PZ
5732
5733 se = pick_next_entity(cfs_rq, curr);
5734 cfs_rq = group_cfs_rq(se);
5735 } while (cfs_rq);
5736
5737 p = task_of(se);
5738
5739 /*
5740 * Since we haven't yet done put_prev_entity and if the selected task
5741 * is a different task than we started out with, try and touch the
5742 * least amount of cfs_rqs.
5743 */
5744 if (prev != p) {
5745 struct sched_entity *pse = &prev->se;
5746
5747 while (!(cfs_rq = is_same_group(se, pse))) {
5748 int se_depth = se->depth;
5749 int pse_depth = pse->depth;
5750
5751 if (se_depth <= pse_depth) {
5752 put_prev_entity(cfs_rq_of(pse), pse);
5753 pse = parent_entity(pse);
5754 }
5755 if (se_depth >= pse_depth) {
5756 set_next_entity(cfs_rq_of(se), se);
5757 se = parent_entity(se);
5758 }
5759 }
5760
5761 put_prev_entity(cfs_rq, pse);
5762 set_next_entity(cfs_rq, se);
5763 }
5764
5765 if (hrtick_enabled(rq))
5766 hrtick_start_fair(rq, p);
5767
5768 return p;
5769simple:
5770 cfs_rq = &rq->cfs;
5771#endif
bf0f6f24 5772
36ace27e 5773 if (!cfs_rq->nr_running)
38033c37 5774 goto idle;
bf0f6f24 5775
3f1d2a31 5776 put_prev_task(rq, prev);
606dba2e 5777
bf0f6f24 5778 do {
678d5718 5779 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5780 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5781 cfs_rq = group_cfs_rq(se);
5782 } while (cfs_rq);
5783
8f4d37ec 5784 p = task_of(se);
678d5718 5785
b39e66ea
MG
5786 if (hrtick_enabled(rq))
5787 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5788
5789 return p;
38033c37
PZ
5790
5791idle:
cbce1a68
PZ
5792 /*
5793 * This is OK, because current is on_cpu, which avoids it being picked
5794 * for load-balance and preemption/IRQs are still disabled avoiding
5795 * further scheduler activity on it and we're being very careful to
5796 * re-start the picking loop.
5797 */
e7904a28 5798 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5799 new_tasks = idle_balance(rq);
e7904a28 5800 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5801 /*
5802 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5803 * possible for any higher priority task to appear. In that case we
5804 * must re-start the pick_next_entity() loop.
5805 */
e4aa358b 5806 if (new_tasks < 0)
37e117c0
PZ
5807 return RETRY_TASK;
5808
e4aa358b 5809 if (new_tasks > 0)
38033c37 5810 goto again;
38033c37
PZ
5811
5812 return NULL;
bf0f6f24
IM
5813}
5814
5815/*
5816 * Account for a descheduled task:
5817 */
31ee529c 5818static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5819{
5820 struct sched_entity *se = &prev->se;
5821 struct cfs_rq *cfs_rq;
5822
5823 for_each_sched_entity(se) {
5824 cfs_rq = cfs_rq_of(se);
ab6cde26 5825 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5826 }
5827}
5828
ac53db59
RR
5829/*
5830 * sched_yield() is very simple
5831 *
5832 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5833 */
5834static void yield_task_fair(struct rq *rq)
5835{
5836 struct task_struct *curr = rq->curr;
5837 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5838 struct sched_entity *se = &curr->se;
5839
5840 /*
5841 * Are we the only task in the tree?
5842 */
5843 if (unlikely(rq->nr_running == 1))
5844 return;
5845
5846 clear_buddies(cfs_rq, se);
5847
5848 if (curr->policy != SCHED_BATCH) {
5849 update_rq_clock(rq);
5850 /*
5851 * Update run-time statistics of the 'current'.
5852 */
5853 update_curr(cfs_rq);
916671c0
MG
5854 /*
5855 * Tell update_rq_clock() that we've just updated,
5856 * so we don't do microscopic update in schedule()
5857 * and double the fastpath cost.
5858 */
9edfbfed 5859 rq_clock_skip_update(rq, true);
ac53db59
RR
5860 }
5861
5862 set_skip_buddy(se);
5863}
5864
d95f4122
MG
5865static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5866{
5867 struct sched_entity *se = &p->se;
5868
5238cdd3
PT
5869 /* throttled hierarchies are not runnable */
5870 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5871 return false;
5872
5873 /* Tell the scheduler that we'd really like pse to run next. */
5874 set_next_buddy(se);
5875
d95f4122
MG
5876 yield_task_fair(rq);
5877
5878 return true;
5879}
5880
681f3e68 5881#ifdef CONFIG_SMP
bf0f6f24 5882/**************************************************
e9c84cb8
PZ
5883 * Fair scheduling class load-balancing methods.
5884 *
5885 * BASICS
5886 *
5887 * The purpose of load-balancing is to achieve the same basic fairness the
5888 * per-cpu scheduler provides, namely provide a proportional amount of compute
5889 * time to each task. This is expressed in the following equation:
5890 *
5891 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5892 *
5893 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5894 * W_i,0 is defined as:
5895 *
5896 * W_i,0 = \Sum_j w_i,j (2)
5897 *
5898 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5899 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5900 *
5901 * The weight average is an exponential decay average of the instantaneous
5902 * weight:
5903 *
5904 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5905 *
ced549fa 5906 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5907 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5908 * can also include other factors [XXX].
5909 *
5910 * To achieve this balance we define a measure of imbalance which follows
5911 * directly from (1):
5912 *
ced549fa 5913 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5914 *
5915 * We them move tasks around to minimize the imbalance. In the continuous
5916 * function space it is obvious this converges, in the discrete case we get
5917 * a few fun cases generally called infeasible weight scenarios.
5918 *
5919 * [XXX expand on:
5920 * - infeasible weights;
5921 * - local vs global optima in the discrete case. ]
5922 *
5923 *
5924 * SCHED DOMAINS
5925 *
5926 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5927 * for all i,j solution, we create a tree of cpus that follows the hardware
5928 * topology where each level pairs two lower groups (or better). This results
5929 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5930 * tree to only the first of the previous level and we decrease the frequency
5931 * of load-balance at each level inv. proportional to the number of cpus in
5932 * the groups.
5933 *
5934 * This yields:
5935 *
5936 * log_2 n 1 n
5937 * \Sum { --- * --- * 2^i } = O(n) (5)
5938 * i = 0 2^i 2^i
5939 * `- size of each group
5940 * | | `- number of cpus doing load-balance
5941 * | `- freq
5942 * `- sum over all levels
5943 *
5944 * Coupled with a limit on how many tasks we can migrate every balance pass,
5945 * this makes (5) the runtime complexity of the balancer.
5946 *
5947 * An important property here is that each CPU is still (indirectly) connected
5948 * to every other cpu in at most O(log n) steps:
5949 *
5950 * The adjacency matrix of the resulting graph is given by:
5951 *
5952 * log_2 n
5953 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5954 * k = 0
5955 *
5956 * And you'll find that:
5957 *
5958 * A^(log_2 n)_i,j != 0 for all i,j (7)
5959 *
5960 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5961 * The task movement gives a factor of O(m), giving a convergence complexity
5962 * of:
5963 *
5964 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5965 *
5966 *
5967 * WORK CONSERVING
5968 *
5969 * In order to avoid CPUs going idle while there's still work to do, new idle
5970 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5971 * tree itself instead of relying on other CPUs to bring it work.
5972 *
5973 * This adds some complexity to both (5) and (8) but it reduces the total idle
5974 * time.
5975 *
5976 * [XXX more?]
5977 *
5978 *
5979 * CGROUPS
5980 *
5981 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5982 *
5983 * s_k,i
5984 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5985 * S_k
5986 *
5987 * Where
5988 *
5989 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5990 *
5991 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5992 *
5993 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5994 * property.
5995 *
5996 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5997 * rewrite all of this once again.]
5998 */
bf0f6f24 5999
ed387b78
HS
6000static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6001
0ec8aa00
PZ
6002enum fbq_type { regular, remote, all };
6003
ddcdf6e7 6004#define LBF_ALL_PINNED 0x01
367456c7 6005#define LBF_NEED_BREAK 0x02
6263322c
PZ
6006#define LBF_DST_PINNED 0x04
6007#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6008
6009struct lb_env {
6010 struct sched_domain *sd;
6011
ddcdf6e7 6012 struct rq *src_rq;
85c1e7da 6013 int src_cpu;
ddcdf6e7
PZ
6014
6015 int dst_cpu;
6016 struct rq *dst_rq;
6017
88b8dac0
SV
6018 struct cpumask *dst_grpmask;
6019 int new_dst_cpu;
ddcdf6e7 6020 enum cpu_idle_type idle;
bd939f45 6021 long imbalance;
b9403130
MW
6022 /* The set of CPUs under consideration for load-balancing */
6023 struct cpumask *cpus;
6024
ddcdf6e7 6025 unsigned int flags;
367456c7
PZ
6026
6027 unsigned int loop;
6028 unsigned int loop_break;
6029 unsigned int loop_max;
0ec8aa00
PZ
6030
6031 enum fbq_type fbq_type;
163122b7 6032 struct list_head tasks;
ddcdf6e7
PZ
6033};
6034
029632fb
PZ
6035/*
6036 * Is this task likely cache-hot:
6037 */
5d5e2b1b 6038static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6039{
6040 s64 delta;
6041
e5673f28
KT
6042 lockdep_assert_held(&env->src_rq->lock);
6043
029632fb
PZ
6044 if (p->sched_class != &fair_sched_class)
6045 return 0;
6046
6047 if (unlikely(p->policy == SCHED_IDLE))
6048 return 0;
6049
6050 /*
6051 * Buddy candidates are cache hot:
6052 */
5d5e2b1b 6053 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6054 (&p->se == cfs_rq_of(&p->se)->next ||
6055 &p->se == cfs_rq_of(&p->se)->last))
6056 return 1;
6057
6058 if (sysctl_sched_migration_cost == -1)
6059 return 1;
6060 if (sysctl_sched_migration_cost == 0)
6061 return 0;
6062
5d5e2b1b 6063 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6064
6065 return delta < (s64)sysctl_sched_migration_cost;
6066}
6067
3a7053b3 6068#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6069/*
2a1ed24c
SD
6070 * Returns 1, if task migration degrades locality
6071 * Returns 0, if task migration improves locality i.e migration preferred.
6072 * Returns -1, if task migration is not affected by locality.
c1ceac62 6073 */
2a1ed24c 6074static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6075{
b1ad065e 6076 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6077 unsigned long src_faults, dst_faults;
3a7053b3
MG
6078 int src_nid, dst_nid;
6079
2a595721 6080 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6081 return -1;
6082
c3b9bc5b 6083 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6084 return -1;
7a0f3083
MG
6085
6086 src_nid = cpu_to_node(env->src_cpu);
6087 dst_nid = cpu_to_node(env->dst_cpu);
6088
83e1d2cd 6089 if (src_nid == dst_nid)
2a1ed24c 6090 return -1;
7a0f3083 6091
2a1ed24c
SD
6092 /* Migrating away from the preferred node is always bad. */
6093 if (src_nid == p->numa_preferred_nid) {
6094 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6095 return 1;
6096 else
6097 return -1;
6098 }
b1ad065e 6099
c1ceac62
RR
6100 /* Encourage migration to the preferred node. */
6101 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6102 return 0;
b1ad065e 6103
c1ceac62
RR
6104 if (numa_group) {
6105 src_faults = group_faults(p, src_nid);
6106 dst_faults = group_faults(p, dst_nid);
6107 } else {
6108 src_faults = task_faults(p, src_nid);
6109 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6110 }
6111
c1ceac62 6112 return dst_faults < src_faults;
7a0f3083
MG
6113}
6114
3a7053b3 6115#else
2a1ed24c 6116static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6117 struct lb_env *env)
6118{
2a1ed24c 6119 return -1;
7a0f3083 6120}
3a7053b3
MG
6121#endif
6122
1e3c88bd
PZ
6123/*
6124 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6125 */
6126static
8e45cb54 6127int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6128{
2a1ed24c 6129 int tsk_cache_hot;
e5673f28
KT
6130
6131 lockdep_assert_held(&env->src_rq->lock);
6132
1e3c88bd
PZ
6133 /*
6134 * We do not migrate tasks that are:
d3198084 6135 * 1) throttled_lb_pair, or
1e3c88bd 6136 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6137 * 3) running (obviously), or
6138 * 4) are cache-hot on their current CPU.
1e3c88bd 6139 */
d3198084
JK
6140 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6141 return 0;
6142
ddcdf6e7 6143 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6144 int cpu;
88b8dac0 6145
41acab88 6146 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6147
6263322c
PZ
6148 env->flags |= LBF_SOME_PINNED;
6149
88b8dac0
SV
6150 /*
6151 * Remember if this task can be migrated to any other cpu in
6152 * our sched_group. We may want to revisit it if we couldn't
6153 * meet load balance goals by pulling other tasks on src_cpu.
6154 *
6155 * Also avoid computing new_dst_cpu if we have already computed
6156 * one in current iteration.
6157 */
6263322c 6158 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6159 return 0;
6160
e02e60c1
JK
6161 /* Prevent to re-select dst_cpu via env's cpus */
6162 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6163 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6164 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6165 env->new_dst_cpu = cpu;
6166 break;
6167 }
88b8dac0 6168 }
e02e60c1 6169
1e3c88bd
PZ
6170 return 0;
6171 }
88b8dac0
SV
6172
6173 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6174 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6175
ddcdf6e7 6176 if (task_running(env->src_rq, p)) {
41acab88 6177 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6178 return 0;
6179 }
6180
6181 /*
6182 * Aggressive migration if:
3a7053b3
MG
6183 * 1) destination numa is preferred
6184 * 2) task is cache cold, or
6185 * 3) too many balance attempts have failed.
1e3c88bd 6186 */
2a1ed24c
SD
6187 tsk_cache_hot = migrate_degrades_locality(p, env);
6188 if (tsk_cache_hot == -1)
6189 tsk_cache_hot = task_hot(p, env);
3a7053b3 6190
2a1ed24c 6191 if (tsk_cache_hot <= 0 ||
7a96c231 6192 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6193 if (tsk_cache_hot == 1) {
3a7053b3
MG
6194 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6195 schedstat_inc(p, se.statistics.nr_forced_migrations);
6196 }
1e3c88bd
PZ
6197 return 1;
6198 }
6199
4e2dcb73
ZH
6200 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6201 return 0;
1e3c88bd
PZ
6202}
6203
897c395f 6204/*
163122b7
KT
6205 * detach_task() -- detach the task for the migration specified in env
6206 */
6207static void detach_task(struct task_struct *p, struct lb_env *env)
6208{
6209 lockdep_assert_held(&env->src_rq->lock);
6210
163122b7 6211 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6212 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6213 set_task_cpu(p, env->dst_cpu);
6214}
6215
897c395f 6216/*
e5673f28 6217 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6218 * part of active balancing operations within "domain".
897c395f 6219 *
e5673f28 6220 * Returns a task if successful and NULL otherwise.
897c395f 6221 */
e5673f28 6222static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6223{
6224 struct task_struct *p, *n;
897c395f 6225
e5673f28
KT
6226 lockdep_assert_held(&env->src_rq->lock);
6227
367456c7 6228 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6229 if (!can_migrate_task(p, env))
6230 continue;
897c395f 6231
163122b7 6232 detach_task(p, env);
e5673f28 6233
367456c7 6234 /*
e5673f28 6235 * Right now, this is only the second place where
163122b7 6236 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6237 * so we can safely collect stats here rather than
163122b7 6238 * inside detach_tasks().
367456c7
PZ
6239 */
6240 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6241 return p;
897c395f 6242 }
e5673f28 6243 return NULL;
897c395f
PZ
6244}
6245
eb95308e
PZ
6246static const unsigned int sched_nr_migrate_break = 32;
6247
5d6523eb 6248/*
163122b7
KT
6249 * detach_tasks() -- tries to detach up to imbalance weighted load from
6250 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6251 *
163122b7 6252 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6253 */
163122b7 6254static int detach_tasks(struct lb_env *env)
1e3c88bd 6255{
5d6523eb
PZ
6256 struct list_head *tasks = &env->src_rq->cfs_tasks;
6257 struct task_struct *p;
367456c7 6258 unsigned long load;
163122b7
KT
6259 int detached = 0;
6260
6261 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6262
bd939f45 6263 if (env->imbalance <= 0)
5d6523eb 6264 return 0;
1e3c88bd 6265
5d6523eb 6266 while (!list_empty(tasks)) {
985d3a4c
YD
6267 /*
6268 * We don't want to steal all, otherwise we may be treated likewise,
6269 * which could at worst lead to a livelock crash.
6270 */
6271 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6272 break;
6273
5d6523eb 6274 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6275
367456c7
PZ
6276 env->loop++;
6277 /* We've more or less seen every task there is, call it quits */
5d6523eb 6278 if (env->loop > env->loop_max)
367456c7 6279 break;
5d6523eb
PZ
6280
6281 /* take a breather every nr_migrate tasks */
367456c7 6282 if (env->loop > env->loop_break) {
eb95308e 6283 env->loop_break += sched_nr_migrate_break;
8e45cb54 6284 env->flags |= LBF_NEED_BREAK;
ee00e66f 6285 break;
a195f004 6286 }
1e3c88bd 6287
d3198084 6288 if (!can_migrate_task(p, env))
367456c7
PZ
6289 goto next;
6290
6291 load = task_h_load(p);
5d6523eb 6292
eb95308e 6293 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6294 goto next;
6295
bd939f45 6296 if ((load / 2) > env->imbalance)
367456c7 6297 goto next;
1e3c88bd 6298
163122b7
KT
6299 detach_task(p, env);
6300 list_add(&p->se.group_node, &env->tasks);
6301
6302 detached++;
bd939f45 6303 env->imbalance -= load;
1e3c88bd
PZ
6304
6305#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6306 /*
6307 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6308 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6309 * the critical section.
6310 */
5d6523eb 6311 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6312 break;
1e3c88bd
PZ
6313#endif
6314
ee00e66f
PZ
6315 /*
6316 * We only want to steal up to the prescribed amount of
6317 * weighted load.
6318 */
bd939f45 6319 if (env->imbalance <= 0)
ee00e66f 6320 break;
367456c7
PZ
6321
6322 continue;
6323next:
5d6523eb 6324 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6325 }
5d6523eb 6326
1e3c88bd 6327 /*
163122b7
KT
6328 * Right now, this is one of only two places we collect this stat
6329 * so we can safely collect detach_one_task() stats here rather
6330 * than inside detach_one_task().
1e3c88bd 6331 */
163122b7 6332 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6333
163122b7
KT
6334 return detached;
6335}
6336
6337/*
6338 * attach_task() -- attach the task detached by detach_task() to its new rq.
6339 */
6340static void attach_task(struct rq *rq, struct task_struct *p)
6341{
6342 lockdep_assert_held(&rq->lock);
6343
6344 BUG_ON(task_rq(p) != rq);
163122b7 6345 activate_task(rq, p, 0);
3ea94de1 6346 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6347 check_preempt_curr(rq, p, 0);
6348}
6349
6350/*
6351 * attach_one_task() -- attaches the task returned from detach_one_task() to
6352 * its new rq.
6353 */
6354static void attach_one_task(struct rq *rq, struct task_struct *p)
6355{
6356 raw_spin_lock(&rq->lock);
6357 attach_task(rq, p);
6358 raw_spin_unlock(&rq->lock);
6359}
6360
6361/*
6362 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6363 * new rq.
6364 */
6365static void attach_tasks(struct lb_env *env)
6366{
6367 struct list_head *tasks = &env->tasks;
6368 struct task_struct *p;
6369
6370 raw_spin_lock(&env->dst_rq->lock);
6371
6372 while (!list_empty(tasks)) {
6373 p = list_first_entry(tasks, struct task_struct, se.group_node);
6374 list_del_init(&p->se.group_node);
1e3c88bd 6375
163122b7
KT
6376 attach_task(env->dst_rq, p);
6377 }
6378
6379 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6380}
6381
230059de 6382#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6383static void update_blocked_averages(int cpu)
9e3081ca 6384{
9e3081ca 6385 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6386 struct cfs_rq *cfs_rq;
6387 unsigned long flags;
9e3081ca 6388
48a16753
PT
6389 raw_spin_lock_irqsave(&rq->lock, flags);
6390 update_rq_clock(rq);
9d89c257 6391
9763b67f
PZ
6392 /*
6393 * Iterates the task_group tree in a bottom up fashion, see
6394 * list_add_leaf_cfs_rq() for details.
6395 */
64660c86 6396 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6397 /* throttled entities do not contribute to load */
6398 if (throttled_hierarchy(cfs_rq))
6399 continue;
48a16753 6400
a2c6c91f 6401 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6402 update_tg_load_avg(cfs_rq, 0);
6403 }
48a16753 6404 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6405}
6406
9763b67f 6407/*
68520796 6408 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6409 * This needs to be done in a top-down fashion because the load of a child
6410 * group is a fraction of its parents load.
6411 */
68520796 6412static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6413{
68520796
VD
6414 struct rq *rq = rq_of(cfs_rq);
6415 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6416 unsigned long now = jiffies;
68520796 6417 unsigned long load;
a35b6466 6418
68520796 6419 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6420 return;
6421
68520796
VD
6422 cfs_rq->h_load_next = NULL;
6423 for_each_sched_entity(se) {
6424 cfs_rq = cfs_rq_of(se);
6425 cfs_rq->h_load_next = se;
6426 if (cfs_rq->last_h_load_update == now)
6427 break;
6428 }
a35b6466 6429
68520796 6430 if (!se) {
7ea241af 6431 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6432 cfs_rq->last_h_load_update = now;
6433 }
6434
6435 while ((se = cfs_rq->h_load_next) != NULL) {
6436 load = cfs_rq->h_load;
7ea241af
YD
6437 load = div64_ul(load * se->avg.load_avg,
6438 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6439 cfs_rq = group_cfs_rq(se);
6440 cfs_rq->h_load = load;
6441 cfs_rq->last_h_load_update = now;
6442 }
9763b67f
PZ
6443}
6444
367456c7 6445static unsigned long task_h_load(struct task_struct *p)
230059de 6446{
367456c7 6447 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6448
68520796 6449 update_cfs_rq_h_load(cfs_rq);
9d89c257 6450 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6451 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6452}
6453#else
48a16753 6454static inline void update_blocked_averages(int cpu)
9e3081ca 6455{
6c1d47c0
VG
6456 struct rq *rq = cpu_rq(cpu);
6457 struct cfs_rq *cfs_rq = &rq->cfs;
6458 unsigned long flags;
6459
6460 raw_spin_lock_irqsave(&rq->lock, flags);
6461 update_rq_clock(rq);
a2c6c91f 6462 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6463 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6464}
6465
367456c7 6466static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6467{
9d89c257 6468 return p->se.avg.load_avg;
1e3c88bd 6469}
230059de 6470#endif
1e3c88bd 6471
1e3c88bd 6472/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6473
6474enum group_type {
6475 group_other = 0,
6476 group_imbalanced,
6477 group_overloaded,
6478};
6479
1e3c88bd
PZ
6480/*
6481 * sg_lb_stats - stats of a sched_group required for load_balancing
6482 */
6483struct sg_lb_stats {
6484 unsigned long avg_load; /*Avg load across the CPUs of the group */
6485 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6486 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6487 unsigned long load_per_task;
63b2ca30 6488 unsigned long group_capacity;
9e91d61d 6489 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6490 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6491 unsigned int idle_cpus;
6492 unsigned int group_weight;
caeb178c 6493 enum group_type group_type;
ea67821b 6494 int group_no_capacity;
0ec8aa00
PZ
6495#ifdef CONFIG_NUMA_BALANCING
6496 unsigned int nr_numa_running;
6497 unsigned int nr_preferred_running;
6498#endif
1e3c88bd
PZ
6499};
6500
56cf515b
JK
6501/*
6502 * sd_lb_stats - Structure to store the statistics of a sched_domain
6503 * during load balancing.
6504 */
6505struct sd_lb_stats {
6506 struct sched_group *busiest; /* Busiest group in this sd */
6507 struct sched_group *local; /* Local group in this sd */
6508 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6509 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6510 unsigned long avg_load; /* Average load across all groups in sd */
6511
56cf515b 6512 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6513 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6514};
6515
147c5fc2
PZ
6516static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6517{
6518 /*
6519 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6520 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6521 * We must however clear busiest_stat::avg_load because
6522 * update_sd_pick_busiest() reads this before assignment.
6523 */
6524 *sds = (struct sd_lb_stats){
6525 .busiest = NULL,
6526 .local = NULL,
6527 .total_load = 0UL,
63b2ca30 6528 .total_capacity = 0UL,
147c5fc2
PZ
6529 .busiest_stat = {
6530 .avg_load = 0UL,
caeb178c
RR
6531 .sum_nr_running = 0,
6532 .group_type = group_other,
147c5fc2
PZ
6533 },
6534 };
6535}
6536
1e3c88bd
PZ
6537/**
6538 * get_sd_load_idx - Obtain the load index for a given sched domain.
6539 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6540 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6541 *
6542 * Return: The load index.
1e3c88bd
PZ
6543 */
6544static inline int get_sd_load_idx(struct sched_domain *sd,
6545 enum cpu_idle_type idle)
6546{
6547 int load_idx;
6548
6549 switch (idle) {
6550 case CPU_NOT_IDLE:
6551 load_idx = sd->busy_idx;
6552 break;
6553
6554 case CPU_NEWLY_IDLE:
6555 load_idx = sd->newidle_idx;
6556 break;
6557 default:
6558 load_idx = sd->idle_idx;
6559 break;
6560 }
6561
6562 return load_idx;
6563}
6564
ced549fa 6565static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6566{
6567 struct rq *rq = cpu_rq(cpu);
b5b4860d 6568 u64 total, used, age_stamp, avg;
cadefd3d 6569 s64 delta;
1e3c88bd 6570
b654f7de
PZ
6571 /*
6572 * Since we're reading these variables without serialization make sure
6573 * we read them once before doing sanity checks on them.
6574 */
316c1608
JL
6575 age_stamp = READ_ONCE(rq->age_stamp);
6576 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6577 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6578
cadefd3d
PZ
6579 if (unlikely(delta < 0))
6580 delta = 0;
6581
6582 total = sched_avg_period() + delta;
aa483808 6583
b5b4860d 6584 used = div_u64(avg, total);
1e3c88bd 6585
b5b4860d
VG
6586 if (likely(used < SCHED_CAPACITY_SCALE))
6587 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6588
b5b4860d 6589 return 1;
1e3c88bd
PZ
6590}
6591
ced549fa 6592static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6593{
8cd5601c 6594 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6595 struct sched_group *sdg = sd->groups;
6596
ca6d75e6 6597 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6598
ced549fa 6599 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6600 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6601
ced549fa
NP
6602 if (!capacity)
6603 capacity = 1;
1e3c88bd 6604
ced549fa
NP
6605 cpu_rq(cpu)->cpu_capacity = capacity;
6606 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6607}
6608
63b2ca30 6609void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6610{
6611 struct sched_domain *child = sd->child;
6612 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6613 unsigned long capacity;
4ec4412e
VG
6614 unsigned long interval;
6615
6616 interval = msecs_to_jiffies(sd->balance_interval);
6617 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6618 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6619
6620 if (!child) {
ced549fa 6621 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6622 return;
6623 }
6624
dc7ff76e 6625 capacity = 0;
1e3c88bd 6626
74a5ce20
PZ
6627 if (child->flags & SD_OVERLAP) {
6628 /*
6629 * SD_OVERLAP domains cannot assume that child groups
6630 * span the current group.
6631 */
6632
863bffc8 6633 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6634 struct sched_group_capacity *sgc;
9abf24d4 6635 struct rq *rq = cpu_rq(cpu);
863bffc8 6636
9abf24d4 6637 /*
63b2ca30 6638 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6639 * gets here before we've attached the domains to the
6640 * runqueues.
6641 *
ced549fa
NP
6642 * Use capacity_of(), which is set irrespective of domains
6643 * in update_cpu_capacity().
9abf24d4 6644 *
dc7ff76e 6645 * This avoids capacity from being 0 and
9abf24d4 6646 * causing divide-by-zero issues on boot.
9abf24d4
SD
6647 */
6648 if (unlikely(!rq->sd)) {
ced549fa 6649 capacity += capacity_of(cpu);
9abf24d4
SD
6650 continue;
6651 }
863bffc8 6652
63b2ca30 6653 sgc = rq->sd->groups->sgc;
63b2ca30 6654 capacity += sgc->capacity;
863bffc8 6655 }
74a5ce20
PZ
6656 } else {
6657 /*
6658 * !SD_OVERLAP domains can assume that child groups
6659 * span the current group.
6660 */
6661
6662 group = child->groups;
6663 do {
63b2ca30 6664 capacity += group->sgc->capacity;
74a5ce20
PZ
6665 group = group->next;
6666 } while (group != child->groups);
6667 }
1e3c88bd 6668
63b2ca30 6669 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6670}
6671
9d5efe05 6672/*
ea67821b
VG
6673 * Check whether the capacity of the rq has been noticeably reduced by side
6674 * activity. The imbalance_pct is used for the threshold.
6675 * Return true is the capacity is reduced
9d5efe05
SV
6676 */
6677static inline int
ea67821b 6678check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6679{
ea67821b
VG
6680 return ((rq->cpu_capacity * sd->imbalance_pct) <
6681 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6682}
6683
30ce5dab
PZ
6684/*
6685 * Group imbalance indicates (and tries to solve) the problem where balancing
6686 * groups is inadequate due to tsk_cpus_allowed() constraints.
6687 *
6688 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6689 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6690 * Something like:
6691 *
6692 * { 0 1 2 3 } { 4 5 6 7 }
6693 * * * * *
6694 *
6695 * If we were to balance group-wise we'd place two tasks in the first group and
6696 * two tasks in the second group. Clearly this is undesired as it will overload
6697 * cpu 3 and leave one of the cpus in the second group unused.
6698 *
6699 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6700 * by noticing the lower domain failed to reach balance and had difficulty
6701 * moving tasks due to affinity constraints.
30ce5dab
PZ
6702 *
6703 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6704 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6705 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6706 * to create an effective group imbalance.
6707 *
6708 * This is a somewhat tricky proposition since the next run might not find the
6709 * group imbalance and decide the groups need to be balanced again. A most
6710 * subtle and fragile situation.
6711 */
6712
6263322c 6713static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6714{
63b2ca30 6715 return group->sgc->imbalance;
30ce5dab
PZ
6716}
6717
b37d9316 6718/*
ea67821b
VG
6719 * group_has_capacity returns true if the group has spare capacity that could
6720 * be used by some tasks.
6721 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6722 * smaller than the number of CPUs or if the utilization is lower than the
6723 * available capacity for CFS tasks.
ea67821b
VG
6724 * For the latter, we use a threshold to stabilize the state, to take into
6725 * account the variance of the tasks' load and to return true if the available
6726 * capacity in meaningful for the load balancer.
6727 * As an example, an available capacity of 1% can appear but it doesn't make
6728 * any benefit for the load balance.
b37d9316 6729 */
ea67821b
VG
6730static inline bool
6731group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6732{
ea67821b
VG
6733 if (sgs->sum_nr_running < sgs->group_weight)
6734 return true;
c61037e9 6735
ea67821b 6736 if ((sgs->group_capacity * 100) >
9e91d61d 6737 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6738 return true;
b37d9316 6739
ea67821b
VG
6740 return false;
6741}
6742
6743/*
6744 * group_is_overloaded returns true if the group has more tasks than it can
6745 * handle.
6746 * group_is_overloaded is not equals to !group_has_capacity because a group
6747 * with the exact right number of tasks, has no more spare capacity but is not
6748 * overloaded so both group_has_capacity and group_is_overloaded return
6749 * false.
6750 */
6751static inline bool
6752group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6753{
6754 if (sgs->sum_nr_running <= sgs->group_weight)
6755 return false;
b37d9316 6756
ea67821b 6757 if ((sgs->group_capacity * 100) <
9e91d61d 6758 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6759 return true;
b37d9316 6760
ea67821b 6761 return false;
b37d9316
PZ
6762}
6763
79a89f92
LY
6764static inline enum
6765group_type group_classify(struct sched_group *group,
6766 struct sg_lb_stats *sgs)
caeb178c 6767{
ea67821b 6768 if (sgs->group_no_capacity)
caeb178c
RR
6769 return group_overloaded;
6770
6771 if (sg_imbalanced(group))
6772 return group_imbalanced;
6773
6774 return group_other;
6775}
6776
1e3c88bd
PZ
6777/**
6778 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6779 * @env: The load balancing environment.
1e3c88bd 6780 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6781 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6782 * @local_group: Does group contain this_cpu.
1e3c88bd 6783 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6784 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6785 */
bd939f45
PZ
6786static inline void update_sg_lb_stats(struct lb_env *env,
6787 struct sched_group *group, int load_idx,
4486edd1
TC
6788 int local_group, struct sg_lb_stats *sgs,
6789 bool *overload)
1e3c88bd 6790{
30ce5dab 6791 unsigned long load;
a426f99c 6792 int i, nr_running;
1e3c88bd 6793
b72ff13c
PZ
6794 memset(sgs, 0, sizeof(*sgs));
6795
b9403130 6796 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6797 struct rq *rq = cpu_rq(i);
6798
1e3c88bd 6799 /* Bias balancing toward cpus of our domain */
6263322c 6800 if (local_group)
04f733b4 6801 load = target_load(i, load_idx);
6263322c 6802 else
1e3c88bd 6803 load = source_load(i, load_idx);
1e3c88bd
PZ
6804
6805 sgs->group_load += load;
9e91d61d 6806 sgs->group_util += cpu_util(i);
65fdac08 6807 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6808
a426f99c
WL
6809 nr_running = rq->nr_running;
6810 if (nr_running > 1)
4486edd1
TC
6811 *overload = true;
6812
0ec8aa00
PZ
6813#ifdef CONFIG_NUMA_BALANCING
6814 sgs->nr_numa_running += rq->nr_numa_running;
6815 sgs->nr_preferred_running += rq->nr_preferred_running;
6816#endif
1e3c88bd 6817 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6818 /*
6819 * No need to call idle_cpu() if nr_running is not 0
6820 */
6821 if (!nr_running && idle_cpu(i))
aae6d3dd 6822 sgs->idle_cpus++;
1e3c88bd
PZ
6823 }
6824
63b2ca30
NP
6825 /* Adjust by relative CPU capacity of the group */
6826 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6827 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6828
dd5feea1 6829 if (sgs->sum_nr_running)
38d0f770 6830 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6831
aae6d3dd 6832 sgs->group_weight = group->group_weight;
b37d9316 6833
ea67821b 6834 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6835 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6836}
6837
532cb4c4
MN
6838/**
6839 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6840 * @env: The load balancing environment.
532cb4c4
MN
6841 * @sds: sched_domain statistics
6842 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6843 * @sgs: sched_group statistics
532cb4c4
MN
6844 *
6845 * Determine if @sg is a busier group than the previously selected
6846 * busiest group.
e69f6186
YB
6847 *
6848 * Return: %true if @sg is a busier group than the previously selected
6849 * busiest group. %false otherwise.
532cb4c4 6850 */
bd939f45 6851static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6852 struct sd_lb_stats *sds,
6853 struct sched_group *sg,
bd939f45 6854 struct sg_lb_stats *sgs)
532cb4c4 6855{
caeb178c 6856 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6857
caeb178c 6858 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6859 return true;
6860
caeb178c
RR
6861 if (sgs->group_type < busiest->group_type)
6862 return false;
6863
6864 if (sgs->avg_load <= busiest->avg_load)
6865 return false;
6866
6867 /* This is the busiest node in its class. */
6868 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6869 return true;
6870
1f621e02
SD
6871 /* No ASYM_PACKING if target cpu is already busy */
6872 if (env->idle == CPU_NOT_IDLE)
6873 return true;
532cb4c4
MN
6874 /*
6875 * ASYM_PACKING needs to move all the work to the lowest
6876 * numbered CPUs in the group, therefore mark all groups
6877 * higher than ourself as busy.
6878 */
caeb178c 6879 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6880 if (!sds->busiest)
6881 return true;
6882
1f621e02
SD
6883 /* Prefer to move from highest possible cpu's work */
6884 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6885 return true;
6886 }
6887
6888 return false;
6889}
6890
0ec8aa00
PZ
6891#ifdef CONFIG_NUMA_BALANCING
6892static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6893{
6894 if (sgs->sum_nr_running > sgs->nr_numa_running)
6895 return regular;
6896 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6897 return remote;
6898 return all;
6899}
6900
6901static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6902{
6903 if (rq->nr_running > rq->nr_numa_running)
6904 return regular;
6905 if (rq->nr_running > rq->nr_preferred_running)
6906 return remote;
6907 return all;
6908}
6909#else
6910static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6911{
6912 return all;
6913}
6914
6915static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6916{
6917 return regular;
6918}
6919#endif /* CONFIG_NUMA_BALANCING */
6920
1e3c88bd 6921/**
461819ac 6922 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6923 * @env: The load balancing environment.
1e3c88bd
PZ
6924 * @sds: variable to hold the statistics for this sched_domain.
6925 */
0ec8aa00 6926static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6927{
bd939f45
PZ
6928 struct sched_domain *child = env->sd->child;
6929 struct sched_group *sg = env->sd->groups;
56cf515b 6930 struct sg_lb_stats tmp_sgs;
1e3c88bd 6931 int load_idx, prefer_sibling = 0;
4486edd1 6932 bool overload = false;
1e3c88bd
PZ
6933
6934 if (child && child->flags & SD_PREFER_SIBLING)
6935 prefer_sibling = 1;
6936
bd939f45 6937 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6938
6939 do {
56cf515b 6940 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6941 int local_group;
6942
bd939f45 6943 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6944 if (local_group) {
6945 sds->local = sg;
6946 sgs = &sds->local_stat;
b72ff13c
PZ
6947
6948 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6949 time_after_eq(jiffies, sg->sgc->next_update))
6950 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6951 }
1e3c88bd 6952
4486edd1
TC
6953 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6954 &overload);
1e3c88bd 6955
b72ff13c
PZ
6956 if (local_group)
6957 goto next_group;
6958
1e3c88bd
PZ
6959 /*
6960 * In case the child domain prefers tasks go to siblings
ea67821b 6961 * first, lower the sg capacity so that we'll try
75dd321d
NR
6962 * and move all the excess tasks away. We lower the capacity
6963 * of a group only if the local group has the capacity to fit
ea67821b
VG
6964 * these excess tasks. The extra check prevents the case where
6965 * you always pull from the heaviest group when it is already
6966 * under-utilized (possible with a large weight task outweighs
6967 * the tasks on the system).
1e3c88bd 6968 */
b72ff13c 6969 if (prefer_sibling && sds->local &&
ea67821b
VG
6970 group_has_capacity(env, &sds->local_stat) &&
6971 (sgs->sum_nr_running > 1)) {
6972 sgs->group_no_capacity = 1;
79a89f92 6973 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6974 }
1e3c88bd 6975
b72ff13c 6976 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6977 sds->busiest = sg;
56cf515b 6978 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6979 }
6980
b72ff13c
PZ
6981next_group:
6982 /* Now, start updating sd_lb_stats */
6983 sds->total_load += sgs->group_load;
63b2ca30 6984 sds->total_capacity += sgs->group_capacity;
b72ff13c 6985
532cb4c4 6986 sg = sg->next;
bd939f45 6987 } while (sg != env->sd->groups);
0ec8aa00
PZ
6988
6989 if (env->sd->flags & SD_NUMA)
6990 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6991
6992 if (!env->sd->parent) {
6993 /* update overload indicator if we are at root domain */
6994 if (env->dst_rq->rd->overload != overload)
6995 env->dst_rq->rd->overload = overload;
6996 }
6997
532cb4c4
MN
6998}
6999
532cb4c4
MN
7000/**
7001 * check_asym_packing - Check to see if the group is packed into the
7002 * sched doman.
7003 *
7004 * This is primarily intended to used at the sibling level. Some
7005 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7006 * case of POWER7, it can move to lower SMT modes only when higher
7007 * threads are idle. When in lower SMT modes, the threads will
7008 * perform better since they share less core resources. Hence when we
7009 * have idle threads, we want them to be the higher ones.
7010 *
7011 * This packing function is run on idle threads. It checks to see if
7012 * the busiest CPU in this domain (core in the P7 case) has a higher
7013 * CPU number than the packing function is being run on. Here we are
7014 * assuming lower CPU number will be equivalent to lower a SMT thread
7015 * number.
7016 *
e69f6186 7017 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7018 * this CPU. The amount of the imbalance is returned in *imbalance.
7019 *
cd96891d 7020 * @env: The load balancing environment.
532cb4c4 7021 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7022 */
bd939f45 7023static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7024{
7025 int busiest_cpu;
7026
bd939f45 7027 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7028 return 0;
7029
1f621e02
SD
7030 if (env->idle == CPU_NOT_IDLE)
7031 return 0;
7032
532cb4c4
MN
7033 if (!sds->busiest)
7034 return 0;
7035
7036 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7037 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7038 return 0;
7039
bd939f45 7040 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7041 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7042 SCHED_CAPACITY_SCALE);
bd939f45 7043
532cb4c4 7044 return 1;
1e3c88bd
PZ
7045}
7046
7047/**
7048 * fix_small_imbalance - Calculate the minor imbalance that exists
7049 * amongst the groups of a sched_domain, during
7050 * load balancing.
cd96891d 7051 * @env: The load balancing environment.
1e3c88bd 7052 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7053 */
bd939f45
PZ
7054static inline
7055void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7056{
63b2ca30 7057 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7058 unsigned int imbn = 2;
dd5feea1 7059 unsigned long scaled_busy_load_per_task;
56cf515b 7060 struct sg_lb_stats *local, *busiest;
1e3c88bd 7061
56cf515b
JK
7062 local = &sds->local_stat;
7063 busiest = &sds->busiest_stat;
1e3c88bd 7064
56cf515b
JK
7065 if (!local->sum_nr_running)
7066 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7067 else if (busiest->load_per_task > local->load_per_task)
7068 imbn = 1;
dd5feea1 7069
56cf515b 7070 scaled_busy_load_per_task =
ca8ce3d0 7071 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7072 busiest->group_capacity;
56cf515b 7073
3029ede3
VD
7074 if (busiest->avg_load + scaled_busy_load_per_task >=
7075 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7076 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7077 return;
7078 }
7079
7080 /*
7081 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7082 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7083 * moving them.
7084 */
7085
63b2ca30 7086 capa_now += busiest->group_capacity *
56cf515b 7087 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7088 capa_now += local->group_capacity *
56cf515b 7089 min(local->load_per_task, local->avg_load);
ca8ce3d0 7090 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7091
7092 /* Amount of load we'd subtract */
a2cd4260 7093 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7094 capa_move += busiest->group_capacity *
56cf515b 7095 min(busiest->load_per_task,
a2cd4260 7096 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7097 }
1e3c88bd
PZ
7098
7099 /* Amount of load we'd add */
63b2ca30 7100 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7101 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7102 tmp = (busiest->avg_load * busiest->group_capacity) /
7103 local->group_capacity;
56cf515b 7104 } else {
ca8ce3d0 7105 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7106 local->group_capacity;
56cf515b 7107 }
63b2ca30 7108 capa_move += local->group_capacity *
3ae11c90 7109 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7110 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7111
7112 /* Move if we gain throughput */
63b2ca30 7113 if (capa_move > capa_now)
56cf515b 7114 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7115}
7116
7117/**
7118 * calculate_imbalance - Calculate the amount of imbalance present within the
7119 * groups of a given sched_domain during load balance.
bd939f45 7120 * @env: load balance environment
1e3c88bd 7121 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7122 */
bd939f45 7123static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7124{
dd5feea1 7125 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7126 struct sg_lb_stats *local, *busiest;
7127
7128 local = &sds->local_stat;
56cf515b 7129 busiest = &sds->busiest_stat;
dd5feea1 7130
caeb178c 7131 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7132 /*
7133 * In the group_imb case we cannot rely on group-wide averages
7134 * to ensure cpu-load equilibrium, look at wider averages. XXX
7135 */
56cf515b
JK
7136 busiest->load_per_task =
7137 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7138 }
7139
1e3c88bd 7140 /*
885e542c
DE
7141 * Avg load of busiest sg can be less and avg load of local sg can
7142 * be greater than avg load across all sgs of sd because avg load
7143 * factors in sg capacity and sgs with smaller group_type are
7144 * skipped when updating the busiest sg:
1e3c88bd 7145 */
b1885550
VD
7146 if (busiest->avg_load <= sds->avg_load ||
7147 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7148 env->imbalance = 0;
7149 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7150 }
7151
9a5d9ba6
PZ
7152 /*
7153 * If there aren't any idle cpus, avoid creating some.
7154 */
7155 if (busiest->group_type == group_overloaded &&
7156 local->group_type == group_overloaded) {
1be0eb2a 7157 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7158 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7159 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7160 load_above_capacity *= NICE_0_LOAD;
7161 load_above_capacity /= busiest->group_capacity;
7162 } else
ea67821b 7163 load_above_capacity = ~0UL;
dd5feea1
SS
7164 }
7165
7166 /*
7167 * We're trying to get all the cpus to the average_load, so we don't
7168 * want to push ourselves above the average load, nor do we wish to
7169 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7170 * we also don't want to reduce the group load below the group
7171 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7172 */
30ce5dab 7173 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7174
7175 /* How much load to actually move to equalise the imbalance */
56cf515b 7176 env->imbalance = min(
63b2ca30
NP
7177 max_pull * busiest->group_capacity,
7178 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7179 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7180
7181 /*
7182 * if *imbalance is less than the average load per runnable task
25985edc 7183 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7184 * a think about bumping its value to force at least one task to be
7185 * moved
7186 */
56cf515b 7187 if (env->imbalance < busiest->load_per_task)
bd939f45 7188 return fix_small_imbalance(env, sds);
1e3c88bd 7189}
fab47622 7190
1e3c88bd
PZ
7191/******* find_busiest_group() helpers end here *********************/
7192
7193/**
7194 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7195 * if there is an imbalance.
1e3c88bd
PZ
7196 *
7197 * Also calculates the amount of weighted load which should be moved
7198 * to restore balance.
7199 *
cd96891d 7200 * @env: The load balancing environment.
1e3c88bd 7201 *
e69f6186 7202 * Return: - The busiest group if imbalance exists.
1e3c88bd 7203 */
56cf515b 7204static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7205{
56cf515b 7206 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7207 struct sd_lb_stats sds;
7208
147c5fc2 7209 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7210
7211 /*
7212 * Compute the various statistics relavent for load balancing at
7213 * this level.
7214 */
23f0d209 7215 update_sd_lb_stats(env, &sds);
56cf515b
JK
7216 local = &sds.local_stat;
7217 busiest = &sds.busiest_stat;
1e3c88bd 7218
ea67821b 7219 /* ASYM feature bypasses nice load balance check */
1f621e02 7220 if (check_asym_packing(env, &sds))
532cb4c4
MN
7221 return sds.busiest;
7222
cc57aa8f 7223 /* There is no busy sibling group to pull tasks from */
56cf515b 7224 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7225 goto out_balanced;
7226
ca8ce3d0
NP
7227 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7228 / sds.total_capacity;
b0432d8f 7229
866ab43e
PZ
7230 /*
7231 * If the busiest group is imbalanced the below checks don't
30ce5dab 7232 * work because they assume all things are equal, which typically
866ab43e
PZ
7233 * isn't true due to cpus_allowed constraints and the like.
7234 */
caeb178c 7235 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7236 goto force_balance;
7237
cc57aa8f 7238 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7239 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7240 busiest->group_no_capacity)
fab47622
NR
7241 goto force_balance;
7242
cc57aa8f 7243 /*
9c58c79a 7244 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7245 * don't try and pull any tasks.
7246 */
56cf515b 7247 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7248 goto out_balanced;
7249
cc57aa8f
PZ
7250 /*
7251 * Don't pull any tasks if this group is already above the domain
7252 * average load.
7253 */
56cf515b 7254 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7255 goto out_balanced;
7256
bd939f45 7257 if (env->idle == CPU_IDLE) {
aae6d3dd 7258 /*
43f4d666
VG
7259 * This cpu is idle. If the busiest group is not overloaded
7260 * and there is no imbalance between this and busiest group
7261 * wrt idle cpus, it is balanced. The imbalance becomes
7262 * significant if the diff is greater than 1 otherwise we
7263 * might end up to just move the imbalance on another group
aae6d3dd 7264 */
43f4d666
VG
7265 if ((busiest->group_type != group_overloaded) &&
7266 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7267 goto out_balanced;
c186fafe
PZ
7268 } else {
7269 /*
7270 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7271 * imbalance_pct to be conservative.
7272 */
56cf515b
JK
7273 if (100 * busiest->avg_load <=
7274 env->sd->imbalance_pct * local->avg_load)
c186fafe 7275 goto out_balanced;
aae6d3dd 7276 }
1e3c88bd 7277
fab47622 7278force_balance:
1e3c88bd 7279 /* Looks like there is an imbalance. Compute it */
bd939f45 7280 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7281 return sds.busiest;
7282
7283out_balanced:
bd939f45 7284 env->imbalance = 0;
1e3c88bd
PZ
7285 return NULL;
7286}
7287
7288/*
7289 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7290 */
bd939f45 7291static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7292 struct sched_group *group)
1e3c88bd
PZ
7293{
7294 struct rq *busiest = NULL, *rq;
ced549fa 7295 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7296 int i;
7297
6906a408 7298 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7299 unsigned long capacity, wl;
0ec8aa00
PZ
7300 enum fbq_type rt;
7301
7302 rq = cpu_rq(i);
7303 rt = fbq_classify_rq(rq);
1e3c88bd 7304
0ec8aa00
PZ
7305 /*
7306 * We classify groups/runqueues into three groups:
7307 * - regular: there are !numa tasks
7308 * - remote: there are numa tasks that run on the 'wrong' node
7309 * - all: there is no distinction
7310 *
7311 * In order to avoid migrating ideally placed numa tasks,
7312 * ignore those when there's better options.
7313 *
7314 * If we ignore the actual busiest queue to migrate another
7315 * task, the next balance pass can still reduce the busiest
7316 * queue by moving tasks around inside the node.
7317 *
7318 * If we cannot move enough load due to this classification
7319 * the next pass will adjust the group classification and
7320 * allow migration of more tasks.
7321 *
7322 * Both cases only affect the total convergence complexity.
7323 */
7324 if (rt > env->fbq_type)
7325 continue;
7326
ced549fa 7327 capacity = capacity_of(i);
9d5efe05 7328
6e40f5bb 7329 wl = weighted_cpuload(i);
1e3c88bd 7330
6e40f5bb
TG
7331 /*
7332 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7333 * which is not scaled with the cpu capacity.
6e40f5bb 7334 */
ea67821b
VG
7335
7336 if (rq->nr_running == 1 && wl > env->imbalance &&
7337 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7338 continue;
7339
6e40f5bb
TG
7340 /*
7341 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7342 * the weighted_cpuload() scaled with the cpu capacity, so
7343 * that the load can be moved away from the cpu that is
7344 * potentially running at a lower capacity.
95a79b80 7345 *
ced549fa 7346 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7347 * multiplication to rid ourselves of the division works out
ced549fa
NP
7348 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7349 * our previous maximum.
6e40f5bb 7350 */
ced549fa 7351 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7352 busiest_load = wl;
ced549fa 7353 busiest_capacity = capacity;
1e3c88bd
PZ
7354 busiest = rq;
7355 }
7356 }
7357
7358 return busiest;
7359}
7360
7361/*
7362 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7363 * so long as it is large enough.
7364 */
7365#define MAX_PINNED_INTERVAL 512
7366
7367/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7368DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7369
bd939f45 7370static int need_active_balance(struct lb_env *env)
1af3ed3d 7371{
bd939f45
PZ
7372 struct sched_domain *sd = env->sd;
7373
7374 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7375
7376 /*
7377 * ASYM_PACKING needs to force migrate tasks from busy but
7378 * higher numbered CPUs in order to pack all tasks in the
7379 * lowest numbered CPUs.
7380 */
bd939f45 7381 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7382 return 1;
1af3ed3d
PZ
7383 }
7384
1aaf90a4
VG
7385 /*
7386 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7387 * It's worth migrating the task if the src_cpu's capacity is reduced
7388 * because of other sched_class or IRQs if more capacity stays
7389 * available on dst_cpu.
7390 */
7391 if ((env->idle != CPU_NOT_IDLE) &&
7392 (env->src_rq->cfs.h_nr_running == 1)) {
7393 if ((check_cpu_capacity(env->src_rq, sd)) &&
7394 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7395 return 1;
7396 }
7397
1af3ed3d
PZ
7398 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7399}
7400
969c7921
TH
7401static int active_load_balance_cpu_stop(void *data);
7402
23f0d209
JK
7403static int should_we_balance(struct lb_env *env)
7404{
7405 struct sched_group *sg = env->sd->groups;
7406 struct cpumask *sg_cpus, *sg_mask;
7407 int cpu, balance_cpu = -1;
7408
7409 /*
7410 * In the newly idle case, we will allow all the cpu's
7411 * to do the newly idle load balance.
7412 */
7413 if (env->idle == CPU_NEWLY_IDLE)
7414 return 1;
7415
7416 sg_cpus = sched_group_cpus(sg);
7417 sg_mask = sched_group_mask(sg);
7418 /* Try to find first idle cpu */
7419 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7420 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7421 continue;
7422
7423 balance_cpu = cpu;
7424 break;
7425 }
7426
7427 if (balance_cpu == -1)
7428 balance_cpu = group_balance_cpu(sg);
7429
7430 /*
7431 * First idle cpu or the first cpu(busiest) in this sched group
7432 * is eligible for doing load balancing at this and above domains.
7433 */
b0cff9d8 7434 return balance_cpu == env->dst_cpu;
23f0d209
JK
7435}
7436
1e3c88bd
PZ
7437/*
7438 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7439 * tasks if there is an imbalance.
7440 */
7441static int load_balance(int this_cpu, struct rq *this_rq,
7442 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7443 int *continue_balancing)
1e3c88bd 7444{
88b8dac0 7445 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7446 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7447 struct sched_group *group;
1e3c88bd
PZ
7448 struct rq *busiest;
7449 unsigned long flags;
4ba29684 7450 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7451
8e45cb54
PZ
7452 struct lb_env env = {
7453 .sd = sd,
ddcdf6e7
PZ
7454 .dst_cpu = this_cpu,
7455 .dst_rq = this_rq,
88b8dac0 7456 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7457 .idle = idle,
eb95308e 7458 .loop_break = sched_nr_migrate_break,
b9403130 7459 .cpus = cpus,
0ec8aa00 7460 .fbq_type = all,
163122b7 7461 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7462 };
7463
cfc03118
JK
7464 /*
7465 * For NEWLY_IDLE load_balancing, we don't need to consider
7466 * other cpus in our group
7467 */
e02e60c1 7468 if (idle == CPU_NEWLY_IDLE)
cfc03118 7469 env.dst_grpmask = NULL;
cfc03118 7470
1e3c88bd
PZ
7471 cpumask_copy(cpus, cpu_active_mask);
7472
1e3c88bd
PZ
7473 schedstat_inc(sd, lb_count[idle]);
7474
7475redo:
23f0d209
JK
7476 if (!should_we_balance(&env)) {
7477 *continue_balancing = 0;
1e3c88bd 7478 goto out_balanced;
23f0d209 7479 }
1e3c88bd 7480
23f0d209 7481 group = find_busiest_group(&env);
1e3c88bd
PZ
7482 if (!group) {
7483 schedstat_inc(sd, lb_nobusyg[idle]);
7484 goto out_balanced;
7485 }
7486
b9403130 7487 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7488 if (!busiest) {
7489 schedstat_inc(sd, lb_nobusyq[idle]);
7490 goto out_balanced;
7491 }
7492
78feefc5 7493 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7494
bd939f45 7495 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7496
1aaf90a4
VG
7497 env.src_cpu = busiest->cpu;
7498 env.src_rq = busiest;
7499
1e3c88bd
PZ
7500 ld_moved = 0;
7501 if (busiest->nr_running > 1) {
7502 /*
7503 * Attempt to move tasks. If find_busiest_group has found
7504 * an imbalance but busiest->nr_running <= 1, the group is
7505 * still unbalanced. ld_moved simply stays zero, so it is
7506 * correctly treated as an imbalance.
7507 */
8e45cb54 7508 env.flags |= LBF_ALL_PINNED;
c82513e5 7509 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7510
5d6523eb 7511more_balance:
163122b7 7512 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7513
7514 /*
7515 * cur_ld_moved - load moved in current iteration
7516 * ld_moved - cumulative load moved across iterations
7517 */
163122b7 7518 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7519
7520 /*
163122b7
KT
7521 * We've detached some tasks from busiest_rq. Every
7522 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7523 * unlock busiest->lock, and we are able to be sure
7524 * that nobody can manipulate the tasks in parallel.
7525 * See task_rq_lock() family for the details.
1e3c88bd 7526 */
163122b7
KT
7527
7528 raw_spin_unlock(&busiest->lock);
7529
7530 if (cur_ld_moved) {
7531 attach_tasks(&env);
7532 ld_moved += cur_ld_moved;
7533 }
7534
1e3c88bd 7535 local_irq_restore(flags);
88b8dac0 7536
f1cd0858
JK
7537 if (env.flags & LBF_NEED_BREAK) {
7538 env.flags &= ~LBF_NEED_BREAK;
7539 goto more_balance;
7540 }
7541
88b8dac0
SV
7542 /*
7543 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7544 * us and move them to an alternate dst_cpu in our sched_group
7545 * where they can run. The upper limit on how many times we
7546 * iterate on same src_cpu is dependent on number of cpus in our
7547 * sched_group.
7548 *
7549 * This changes load balance semantics a bit on who can move
7550 * load to a given_cpu. In addition to the given_cpu itself
7551 * (or a ilb_cpu acting on its behalf where given_cpu is
7552 * nohz-idle), we now have balance_cpu in a position to move
7553 * load to given_cpu. In rare situations, this may cause
7554 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7555 * _independently_ and at _same_ time to move some load to
7556 * given_cpu) causing exceess load to be moved to given_cpu.
7557 * This however should not happen so much in practice and
7558 * moreover subsequent load balance cycles should correct the
7559 * excess load moved.
7560 */
6263322c 7561 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7562
7aff2e3a
VD
7563 /* Prevent to re-select dst_cpu via env's cpus */
7564 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7565
78feefc5 7566 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7567 env.dst_cpu = env.new_dst_cpu;
6263322c 7568 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7569 env.loop = 0;
7570 env.loop_break = sched_nr_migrate_break;
e02e60c1 7571
88b8dac0
SV
7572 /*
7573 * Go back to "more_balance" rather than "redo" since we
7574 * need to continue with same src_cpu.
7575 */
7576 goto more_balance;
7577 }
1e3c88bd 7578
6263322c
PZ
7579 /*
7580 * We failed to reach balance because of affinity.
7581 */
7582 if (sd_parent) {
63b2ca30 7583 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7584
afdeee05 7585 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7586 *group_imbalance = 1;
6263322c
PZ
7587 }
7588
1e3c88bd 7589 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7590 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7591 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7592 if (!cpumask_empty(cpus)) {
7593 env.loop = 0;
7594 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7595 goto redo;
bbf18b19 7596 }
afdeee05 7597 goto out_all_pinned;
1e3c88bd
PZ
7598 }
7599 }
7600
7601 if (!ld_moved) {
7602 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7603 /*
7604 * Increment the failure counter only on periodic balance.
7605 * We do not want newidle balance, which can be very
7606 * frequent, pollute the failure counter causing
7607 * excessive cache_hot migrations and active balances.
7608 */
7609 if (idle != CPU_NEWLY_IDLE)
7610 sd->nr_balance_failed++;
1e3c88bd 7611
bd939f45 7612 if (need_active_balance(&env)) {
1e3c88bd
PZ
7613 raw_spin_lock_irqsave(&busiest->lock, flags);
7614
969c7921
TH
7615 /* don't kick the active_load_balance_cpu_stop,
7616 * if the curr task on busiest cpu can't be
7617 * moved to this_cpu
1e3c88bd
PZ
7618 */
7619 if (!cpumask_test_cpu(this_cpu,
fa17b507 7620 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7621 raw_spin_unlock_irqrestore(&busiest->lock,
7622 flags);
8e45cb54 7623 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7624 goto out_one_pinned;
7625 }
7626
969c7921
TH
7627 /*
7628 * ->active_balance synchronizes accesses to
7629 * ->active_balance_work. Once set, it's cleared
7630 * only after active load balance is finished.
7631 */
1e3c88bd
PZ
7632 if (!busiest->active_balance) {
7633 busiest->active_balance = 1;
7634 busiest->push_cpu = this_cpu;
7635 active_balance = 1;
7636 }
7637 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7638
bd939f45 7639 if (active_balance) {
969c7921
TH
7640 stop_one_cpu_nowait(cpu_of(busiest),
7641 active_load_balance_cpu_stop, busiest,
7642 &busiest->active_balance_work);
bd939f45 7643 }
1e3c88bd 7644
d02c0711 7645 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7646 sd->nr_balance_failed = sd->cache_nice_tries+1;
7647 }
7648 } else
7649 sd->nr_balance_failed = 0;
7650
7651 if (likely(!active_balance)) {
7652 /* We were unbalanced, so reset the balancing interval */
7653 sd->balance_interval = sd->min_interval;
7654 } else {
7655 /*
7656 * If we've begun active balancing, start to back off. This
7657 * case may not be covered by the all_pinned logic if there
7658 * is only 1 task on the busy runqueue (because we don't call
163122b7 7659 * detach_tasks).
1e3c88bd
PZ
7660 */
7661 if (sd->balance_interval < sd->max_interval)
7662 sd->balance_interval *= 2;
7663 }
7664
1e3c88bd
PZ
7665 goto out;
7666
7667out_balanced:
afdeee05
VG
7668 /*
7669 * We reach balance although we may have faced some affinity
7670 * constraints. Clear the imbalance flag if it was set.
7671 */
7672 if (sd_parent) {
7673 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7674
7675 if (*group_imbalance)
7676 *group_imbalance = 0;
7677 }
7678
7679out_all_pinned:
7680 /*
7681 * We reach balance because all tasks are pinned at this level so
7682 * we can't migrate them. Let the imbalance flag set so parent level
7683 * can try to migrate them.
7684 */
1e3c88bd
PZ
7685 schedstat_inc(sd, lb_balanced[idle]);
7686
7687 sd->nr_balance_failed = 0;
7688
7689out_one_pinned:
7690 /* tune up the balancing interval */
8e45cb54 7691 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7692 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7693 (sd->balance_interval < sd->max_interval))
7694 sd->balance_interval *= 2;
7695
46e49b38 7696 ld_moved = 0;
1e3c88bd 7697out:
1e3c88bd
PZ
7698 return ld_moved;
7699}
7700
52a08ef1
JL
7701static inline unsigned long
7702get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7703{
7704 unsigned long interval = sd->balance_interval;
7705
7706 if (cpu_busy)
7707 interval *= sd->busy_factor;
7708
7709 /* scale ms to jiffies */
7710 interval = msecs_to_jiffies(interval);
7711 interval = clamp(interval, 1UL, max_load_balance_interval);
7712
7713 return interval;
7714}
7715
7716static inline void
31851a98 7717update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7718{
7719 unsigned long interval, next;
7720
31851a98
LY
7721 /* used by idle balance, so cpu_busy = 0 */
7722 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7723 next = sd->last_balance + interval;
7724
7725 if (time_after(*next_balance, next))
7726 *next_balance = next;
7727}
7728
1e3c88bd
PZ
7729/*
7730 * idle_balance is called by schedule() if this_cpu is about to become
7731 * idle. Attempts to pull tasks from other CPUs.
7732 */
6e83125c 7733static int idle_balance(struct rq *this_rq)
1e3c88bd 7734{
52a08ef1
JL
7735 unsigned long next_balance = jiffies + HZ;
7736 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7737 struct sched_domain *sd;
7738 int pulled_task = 0;
9bd721c5 7739 u64 curr_cost = 0;
1e3c88bd 7740
6e83125c
PZ
7741 /*
7742 * We must set idle_stamp _before_ calling idle_balance(), such that we
7743 * measure the duration of idle_balance() as idle time.
7744 */
7745 this_rq->idle_stamp = rq_clock(this_rq);
7746
4486edd1
TC
7747 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7748 !this_rq->rd->overload) {
52a08ef1
JL
7749 rcu_read_lock();
7750 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7751 if (sd)
31851a98 7752 update_next_balance(sd, &next_balance);
52a08ef1
JL
7753 rcu_read_unlock();
7754
6e83125c 7755 goto out;
52a08ef1 7756 }
1e3c88bd 7757
f492e12e
PZ
7758 raw_spin_unlock(&this_rq->lock);
7759
48a16753 7760 update_blocked_averages(this_cpu);
dce840a0 7761 rcu_read_lock();
1e3c88bd 7762 for_each_domain(this_cpu, sd) {
23f0d209 7763 int continue_balancing = 1;
9bd721c5 7764 u64 t0, domain_cost;
1e3c88bd
PZ
7765
7766 if (!(sd->flags & SD_LOAD_BALANCE))
7767 continue;
7768
52a08ef1 7769 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7770 update_next_balance(sd, &next_balance);
9bd721c5 7771 break;
52a08ef1 7772 }
9bd721c5 7773
f492e12e 7774 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7775 t0 = sched_clock_cpu(this_cpu);
7776
f492e12e 7777 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7778 sd, CPU_NEWLY_IDLE,
7779 &continue_balancing);
9bd721c5
JL
7780
7781 domain_cost = sched_clock_cpu(this_cpu) - t0;
7782 if (domain_cost > sd->max_newidle_lb_cost)
7783 sd->max_newidle_lb_cost = domain_cost;
7784
7785 curr_cost += domain_cost;
f492e12e 7786 }
1e3c88bd 7787
31851a98 7788 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7789
7790 /*
7791 * Stop searching for tasks to pull if there are
7792 * now runnable tasks on this rq.
7793 */
7794 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7795 break;
1e3c88bd 7796 }
dce840a0 7797 rcu_read_unlock();
f492e12e
PZ
7798
7799 raw_spin_lock(&this_rq->lock);
7800
0e5b5337
JL
7801 if (curr_cost > this_rq->max_idle_balance_cost)
7802 this_rq->max_idle_balance_cost = curr_cost;
7803
e5fc6611 7804 /*
0e5b5337
JL
7805 * While browsing the domains, we released the rq lock, a task could
7806 * have been enqueued in the meantime. Since we're not going idle,
7807 * pretend we pulled a task.
e5fc6611 7808 */
0e5b5337 7809 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7810 pulled_task = 1;
e5fc6611 7811
52a08ef1
JL
7812out:
7813 /* Move the next balance forward */
7814 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7815 this_rq->next_balance = next_balance;
9bd721c5 7816
e4aa358b 7817 /* Is there a task of a high priority class? */
46383648 7818 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7819 pulled_task = -1;
7820
38c6ade2 7821 if (pulled_task)
6e83125c
PZ
7822 this_rq->idle_stamp = 0;
7823
3c4017c1 7824 return pulled_task;
1e3c88bd
PZ
7825}
7826
7827/*
969c7921
TH
7828 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7829 * running tasks off the busiest CPU onto idle CPUs. It requires at
7830 * least 1 task to be running on each physical CPU where possible, and
7831 * avoids physical / logical imbalances.
1e3c88bd 7832 */
969c7921 7833static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7834{
969c7921
TH
7835 struct rq *busiest_rq = data;
7836 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7837 int target_cpu = busiest_rq->push_cpu;
969c7921 7838 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7839 struct sched_domain *sd;
e5673f28 7840 struct task_struct *p = NULL;
969c7921
TH
7841
7842 raw_spin_lock_irq(&busiest_rq->lock);
7843
7844 /* make sure the requested cpu hasn't gone down in the meantime */
7845 if (unlikely(busiest_cpu != smp_processor_id() ||
7846 !busiest_rq->active_balance))
7847 goto out_unlock;
1e3c88bd
PZ
7848
7849 /* Is there any task to move? */
7850 if (busiest_rq->nr_running <= 1)
969c7921 7851 goto out_unlock;
1e3c88bd
PZ
7852
7853 /*
7854 * This condition is "impossible", if it occurs
7855 * we need to fix it. Originally reported by
7856 * Bjorn Helgaas on a 128-cpu setup.
7857 */
7858 BUG_ON(busiest_rq == target_rq);
7859
1e3c88bd 7860 /* Search for an sd spanning us and the target CPU. */
dce840a0 7861 rcu_read_lock();
1e3c88bd
PZ
7862 for_each_domain(target_cpu, sd) {
7863 if ((sd->flags & SD_LOAD_BALANCE) &&
7864 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7865 break;
7866 }
7867
7868 if (likely(sd)) {
8e45cb54
PZ
7869 struct lb_env env = {
7870 .sd = sd,
ddcdf6e7
PZ
7871 .dst_cpu = target_cpu,
7872 .dst_rq = target_rq,
7873 .src_cpu = busiest_rq->cpu,
7874 .src_rq = busiest_rq,
8e45cb54
PZ
7875 .idle = CPU_IDLE,
7876 };
7877
1e3c88bd
PZ
7878 schedstat_inc(sd, alb_count);
7879
e5673f28 7880 p = detach_one_task(&env);
d02c0711 7881 if (p) {
1e3c88bd 7882 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7883 /* Active balancing done, reset the failure counter. */
7884 sd->nr_balance_failed = 0;
7885 } else {
1e3c88bd 7886 schedstat_inc(sd, alb_failed);
d02c0711 7887 }
1e3c88bd 7888 }
dce840a0 7889 rcu_read_unlock();
969c7921
TH
7890out_unlock:
7891 busiest_rq->active_balance = 0;
e5673f28
KT
7892 raw_spin_unlock(&busiest_rq->lock);
7893
7894 if (p)
7895 attach_one_task(target_rq, p);
7896
7897 local_irq_enable();
7898
969c7921 7899 return 0;
1e3c88bd
PZ
7900}
7901
d987fc7f
MG
7902static inline int on_null_domain(struct rq *rq)
7903{
7904 return unlikely(!rcu_dereference_sched(rq->sd));
7905}
7906
3451d024 7907#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7908/*
7909 * idle load balancing details
83cd4fe2
VP
7910 * - When one of the busy CPUs notice that there may be an idle rebalancing
7911 * needed, they will kick the idle load balancer, which then does idle
7912 * load balancing for all the idle CPUs.
7913 */
1e3c88bd 7914static struct {
83cd4fe2 7915 cpumask_var_t idle_cpus_mask;
0b005cf5 7916 atomic_t nr_cpus;
83cd4fe2
VP
7917 unsigned long next_balance; /* in jiffy units */
7918} nohz ____cacheline_aligned;
1e3c88bd 7919
3dd0337d 7920static inline int find_new_ilb(void)
1e3c88bd 7921{
0b005cf5 7922 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7923
786d6dc7
SS
7924 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7925 return ilb;
7926
7927 return nr_cpu_ids;
1e3c88bd 7928}
1e3c88bd 7929
83cd4fe2
VP
7930/*
7931 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7932 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7933 * CPU (if there is one).
7934 */
0aeeeeba 7935static void nohz_balancer_kick(void)
83cd4fe2
VP
7936{
7937 int ilb_cpu;
7938
7939 nohz.next_balance++;
7940
3dd0337d 7941 ilb_cpu = find_new_ilb();
83cd4fe2 7942
0b005cf5
SS
7943 if (ilb_cpu >= nr_cpu_ids)
7944 return;
83cd4fe2 7945
cd490c5b 7946 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7947 return;
7948 /*
7949 * Use smp_send_reschedule() instead of resched_cpu().
7950 * This way we generate a sched IPI on the target cpu which
7951 * is idle. And the softirq performing nohz idle load balance
7952 * will be run before returning from the IPI.
7953 */
7954 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7955 return;
7956}
7957
20a5c8cc 7958void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7959{
7960 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7961 /*
7962 * Completely isolated CPUs don't ever set, so we must test.
7963 */
7964 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7965 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7966 atomic_dec(&nohz.nr_cpus);
7967 }
71325960
SS
7968 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7969 }
7970}
7971
69e1e811
SS
7972static inline void set_cpu_sd_state_busy(void)
7973{
7974 struct sched_domain *sd;
37dc6b50 7975 int cpu = smp_processor_id();
69e1e811 7976
69e1e811 7977 rcu_read_lock();
37dc6b50 7978 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7979
7980 if (!sd || !sd->nohz_idle)
7981 goto unlock;
7982 sd->nohz_idle = 0;
7983
63b2ca30 7984 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7985unlock:
69e1e811
SS
7986 rcu_read_unlock();
7987}
7988
7989void set_cpu_sd_state_idle(void)
7990{
7991 struct sched_domain *sd;
37dc6b50 7992 int cpu = smp_processor_id();
69e1e811 7993
69e1e811 7994 rcu_read_lock();
37dc6b50 7995 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7996
7997 if (!sd || sd->nohz_idle)
7998 goto unlock;
7999 sd->nohz_idle = 1;
8000
63b2ca30 8001 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8002unlock:
69e1e811
SS
8003 rcu_read_unlock();
8004}
8005
1e3c88bd 8006/*
c1cc017c 8007 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8008 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8009 */
c1cc017c 8010void nohz_balance_enter_idle(int cpu)
1e3c88bd 8011{
71325960
SS
8012 /*
8013 * If this cpu is going down, then nothing needs to be done.
8014 */
8015 if (!cpu_active(cpu))
8016 return;
8017
c1cc017c
AS
8018 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8019 return;
1e3c88bd 8020
d987fc7f
MG
8021 /*
8022 * If we're a completely isolated CPU, we don't play.
8023 */
8024 if (on_null_domain(cpu_rq(cpu)))
8025 return;
8026
c1cc017c
AS
8027 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8028 atomic_inc(&nohz.nr_cpus);
8029 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8030}
8031#endif
8032
8033static DEFINE_SPINLOCK(balancing);
8034
49c022e6
PZ
8035/*
8036 * Scale the max load_balance interval with the number of CPUs in the system.
8037 * This trades load-balance latency on larger machines for less cross talk.
8038 */
029632fb 8039void update_max_interval(void)
49c022e6
PZ
8040{
8041 max_load_balance_interval = HZ*num_online_cpus()/10;
8042}
8043
1e3c88bd
PZ
8044/*
8045 * It checks each scheduling domain to see if it is due to be balanced,
8046 * and initiates a balancing operation if so.
8047 *
b9b0853a 8048 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8049 */
f7ed0a89 8050static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8051{
23f0d209 8052 int continue_balancing = 1;
f7ed0a89 8053 int cpu = rq->cpu;
1e3c88bd 8054 unsigned long interval;
04f733b4 8055 struct sched_domain *sd;
1e3c88bd
PZ
8056 /* Earliest time when we have to do rebalance again */
8057 unsigned long next_balance = jiffies + 60*HZ;
8058 int update_next_balance = 0;
f48627e6
JL
8059 int need_serialize, need_decay = 0;
8060 u64 max_cost = 0;
1e3c88bd 8061
48a16753 8062 update_blocked_averages(cpu);
2069dd75 8063
dce840a0 8064 rcu_read_lock();
1e3c88bd 8065 for_each_domain(cpu, sd) {
f48627e6
JL
8066 /*
8067 * Decay the newidle max times here because this is a regular
8068 * visit to all the domains. Decay ~1% per second.
8069 */
8070 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8071 sd->max_newidle_lb_cost =
8072 (sd->max_newidle_lb_cost * 253) / 256;
8073 sd->next_decay_max_lb_cost = jiffies + HZ;
8074 need_decay = 1;
8075 }
8076 max_cost += sd->max_newidle_lb_cost;
8077
1e3c88bd
PZ
8078 if (!(sd->flags & SD_LOAD_BALANCE))
8079 continue;
8080
f48627e6
JL
8081 /*
8082 * Stop the load balance at this level. There is another
8083 * CPU in our sched group which is doing load balancing more
8084 * actively.
8085 */
8086 if (!continue_balancing) {
8087 if (need_decay)
8088 continue;
8089 break;
8090 }
8091
52a08ef1 8092 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8093
8094 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8095 if (need_serialize) {
8096 if (!spin_trylock(&balancing))
8097 goto out;
8098 }
8099
8100 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8101 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8102 /*
6263322c 8103 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8104 * env->dst_cpu, so we can't know our idle
8105 * state even if we migrated tasks. Update it.
1e3c88bd 8106 */
de5eb2dd 8107 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8108 }
8109 sd->last_balance = jiffies;
52a08ef1 8110 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8111 }
8112 if (need_serialize)
8113 spin_unlock(&balancing);
8114out:
8115 if (time_after(next_balance, sd->last_balance + interval)) {
8116 next_balance = sd->last_balance + interval;
8117 update_next_balance = 1;
8118 }
f48627e6
JL
8119 }
8120 if (need_decay) {
1e3c88bd 8121 /*
f48627e6
JL
8122 * Ensure the rq-wide value also decays but keep it at a
8123 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8124 */
f48627e6
JL
8125 rq->max_idle_balance_cost =
8126 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8127 }
dce840a0 8128 rcu_read_unlock();
1e3c88bd
PZ
8129
8130 /*
8131 * next_balance will be updated only when there is a need.
8132 * When the cpu is attached to null domain for ex, it will not be
8133 * updated.
8134 */
c5afb6a8 8135 if (likely(update_next_balance)) {
1e3c88bd 8136 rq->next_balance = next_balance;
c5afb6a8
VG
8137
8138#ifdef CONFIG_NO_HZ_COMMON
8139 /*
8140 * If this CPU has been elected to perform the nohz idle
8141 * balance. Other idle CPUs have already rebalanced with
8142 * nohz_idle_balance() and nohz.next_balance has been
8143 * updated accordingly. This CPU is now running the idle load
8144 * balance for itself and we need to update the
8145 * nohz.next_balance accordingly.
8146 */
8147 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8148 nohz.next_balance = rq->next_balance;
8149#endif
8150 }
1e3c88bd
PZ
8151}
8152
3451d024 8153#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8154/*
3451d024 8155 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8156 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8157 */
208cb16b 8158static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8159{
208cb16b 8160 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8161 struct rq *rq;
8162 int balance_cpu;
c5afb6a8
VG
8163 /* Earliest time when we have to do rebalance again */
8164 unsigned long next_balance = jiffies + 60*HZ;
8165 int update_next_balance = 0;
83cd4fe2 8166
1c792db7
SS
8167 if (idle != CPU_IDLE ||
8168 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8169 goto end;
83cd4fe2
VP
8170
8171 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8172 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8173 continue;
8174
8175 /*
8176 * If this cpu gets work to do, stop the load balancing
8177 * work being done for other cpus. Next load
8178 * balancing owner will pick it up.
8179 */
1c792db7 8180 if (need_resched())
83cd4fe2 8181 break;
83cd4fe2 8182
5ed4f1d9
VG
8183 rq = cpu_rq(balance_cpu);
8184
ed61bbc6
TC
8185 /*
8186 * If time for next balance is due,
8187 * do the balance.
8188 */
8189 if (time_after_eq(jiffies, rq->next_balance)) {
8190 raw_spin_lock_irq(&rq->lock);
8191 update_rq_clock(rq);
cee1afce 8192 cpu_load_update_idle(rq);
ed61bbc6
TC
8193 raw_spin_unlock_irq(&rq->lock);
8194 rebalance_domains(rq, CPU_IDLE);
8195 }
83cd4fe2 8196
c5afb6a8
VG
8197 if (time_after(next_balance, rq->next_balance)) {
8198 next_balance = rq->next_balance;
8199 update_next_balance = 1;
8200 }
83cd4fe2 8201 }
c5afb6a8
VG
8202
8203 /*
8204 * next_balance will be updated only when there is a need.
8205 * When the CPU is attached to null domain for ex, it will not be
8206 * updated.
8207 */
8208 if (likely(update_next_balance))
8209 nohz.next_balance = next_balance;
1c792db7
SS
8210end:
8211 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8212}
8213
8214/*
0b005cf5 8215 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8216 * of an idle cpu in the system.
0b005cf5 8217 * - This rq has more than one task.
1aaf90a4
VG
8218 * - This rq has at least one CFS task and the capacity of the CPU is
8219 * significantly reduced because of RT tasks or IRQs.
8220 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8221 * multiple busy cpu.
0b005cf5
SS
8222 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8223 * domain span are idle.
83cd4fe2 8224 */
1aaf90a4 8225static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8226{
8227 unsigned long now = jiffies;
0b005cf5 8228 struct sched_domain *sd;
63b2ca30 8229 struct sched_group_capacity *sgc;
4a725627 8230 int nr_busy, cpu = rq->cpu;
1aaf90a4 8231 bool kick = false;
83cd4fe2 8232
4a725627 8233 if (unlikely(rq->idle_balance))
1aaf90a4 8234 return false;
83cd4fe2 8235
1c792db7
SS
8236 /*
8237 * We may be recently in ticked or tickless idle mode. At the first
8238 * busy tick after returning from idle, we will update the busy stats.
8239 */
69e1e811 8240 set_cpu_sd_state_busy();
c1cc017c 8241 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8242
8243 /*
8244 * None are in tickless mode and hence no need for NOHZ idle load
8245 * balancing.
8246 */
8247 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8248 return false;
1c792db7
SS
8249
8250 if (time_before(now, nohz.next_balance))
1aaf90a4 8251 return false;
83cd4fe2 8252
0b005cf5 8253 if (rq->nr_running >= 2)
1aaf90a4 8254 return true;
83cd4fe2 8255
067491b7 8256 rcu_read_lock();
37dc6b50 8257 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8258 if (sd) {
63b2ca30
NP
8259 sgc = sd->groups->sgc;
8260 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8261
1aaf90a4
VG
8262 if (nr_busy > 1) {
8263 kick = true;
8264 goto unlock;
8265 }
8266
83cd4fe2 8267 }
37dc6b50 8268
1aaf90a4
VG
8269 sd = rcu_dereference(rq->sd);
8270 if (sd) {
8271 if ((rq->cfs.h_nr_running >= 1) &&
8272 check_cpu_capacity(rq, sd)) {
8273 kick = true;
8274 goto unlock;
8275 }
8276 }
37dc6b50 8277
1aaf90a4 8278 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8279 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8280 sched_domain_span(sd)) < cpu)) {
8281 kick = true;
8282 goto unlock;
8283 }
067491b7 8284
1aaf90a4 8285unlock:
067491b7 8286 rcu_read_unlock();
1aaf90a4 8287 return kick;
83cd4fe2
VP
8288}
8289#else
208cb16b 8290static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8291#endif
8292
8293/*
8294 * run_rebalance_domains is triggered when needed from the scheduler tick.
8295 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8296 */
1e3c88bd
PZ
8297static void run_rebalance_domains(struct softirq_action *h)
8298{
208cb16b 8299 struct rq *this_rq = this_rq();
6eb57e0d 8300 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8301 CPU_IDLE : CPU_NOT_IDLE;
8302
1e3c88bd 8303 /*
83cd4fe2 8304 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8305 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8306 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8307 * give the idle cpus a chance to load balance. Else we may
8308 * load balance only within the local sched_domain hierarchy
8309 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8310 */
208cb16b 8311 nohz_idle_balance(this_rq, idle);
d4573c3e 8312 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8313}
8314
1e3c88bd
PZ
8315/*
8316 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8317 */
7caff66f 8318void trigger_load_balance(struct rq *rq)
1e3c88bd 8319{
1e3c88bd 8320 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8321 if (unlikely(on_null_domain(rq)))
8322 return;
8323
8324 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8325 raise_softirq(SCHED_SOFTIRQ);
3451d024 8326#ifdef CONFIG_NO_HZ_COMMON
c726099e 8327 if (nohz_kick_needed(rq))
0aeeeeba 8328 nohz_balancer_kick();
83cd4fe2 8329#endif
1e3c88bd
PZ
8330}
8331
0bcdcf28
CE
8332static void rq_online_fair(struct rq *rq)
8333{
8334 update_sysctl();
0e59bdae
KT
8335
8336 update_runtime_enabled(rq);
0bcdcf28
CE
8337}
8338
8339static void rq_offline_fair(struct rq *rq)
8340{
8341 update_sysctl();
a4c96ae3
PB
8342
8343 /* Ensure any throttled groups are reachable by pick_next_task */
8344 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8345}
8346
55e12e5e 8347#endif /* CONFIG_SMP */
e1d1484f 8348
bf0f6f24
IM
8349/*
8350 * scheduler tick hitting a task of our scheduling class:
8351 */
8f4d37ec 8352static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8353{
8354 struct cfs_rq *cfs_rq;
8355 struct sched_entity *se = &curr->se;
8356
8357 for_each_sched_entity(se) {
8358 cfs_rq = cfs_rq_of(se);
8f4d37ec 8359 entity_tick(cfs_rq, se, queued);
bf0f6f24 8360 }
18bf2805 8361
b52da86e 8362 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8363 task_tick_numa(rq, curr);
bf0f6f24
IM
8364}
8365
8366/*
cd29fe6f
PZ
8367 * called on fork with the child task as argument from the parent's context
8368 * - child not yet on the tasklist
8369 * - preemption disabled
bf0f6f24 8370 */
cd29fe6f 8371static void task_fork_fair(struct task_struct *p)
bf0f6f24 8372{
4fc420c9
DN
8373 struct cfs_rq *cfs_rq;
8374 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8375 struct rq *rq = this_rq();
bf0f6f24 8376
e210bffd 8377 raw_spin_lock(&rq->lock);
861d034e
PZ
8378 update_rq_clock(rq);
8379
4fc420c9
DN
8380 cfs_rq = task_cfs_rq(current);
8381 curr = cfs_rq->curr;
e210bffd
PZ
8382 if (curr) {
8383 update_curr(cfs_rq);
b5d9d734 8384 se->vruntime = curr->vruntime;
e210bffd 8385 }
aeb73b04 8386 place_entity(cfs_rq, se, 1);
4d78e7b6 8387
cd29fe6f 8388 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8389 /*
edcb60a3
IM
8390 * Upon rescheduling, sched_class::put_prev_task() will place
8391 * 'current' within the tree based on its new key value.
8392 */
4d78e7b6 8393 swap(curr->vruntime, se->vruntime);
8875125e 8394 resched_curr(rq);
4d78e7b6 8395 }
bf0f6f24 8396
88ec22d3 8397 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8398 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8399}
8400
cb469845
SR
8401/*
8402 * Priority of the task has changed. Check to see if we preempt
8403 * the current task.
8404 */
da7a735e
PZ
8405static void
8406prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8407{
da0c1e65 8408 if (!task_on_rq_queued(p))
da7a735e
PZ
8409 return;
8410
cb469845
SR
8411 /*
8412 * Reschedule if we are currently running on this runqueue and
8413 * our priority decreased, or if we are not currently running on
8414 * this runqueue and our priority is higher than the current's
8415 */
da7a735e 8416 if (rq->curr == p) {
cb469845 8417 if (p->prio > oldprio)
8875125e 8418 resched_curr(rq);
cb469845 8419 } else
15afe09b 8420 check_preempt_curr(rq, p, 0);
cb469845
SR
8421}
8422
daa59407 8423static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8424{
8425 struct sched_entity *se = &p->se;
da7a735e
PZ
8426
8427 /*
daa59407
BP
8428 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8429 * the dequeue_entity(.flags=0) will already have normalized the
8430 * vruntime.
8431 */
8432 if (p->on_rq)
8433 return true;
8434
8435 /*
8436 * When !on_rq, vruntime of the task has usually NOT been normalized.
8437 * But there are some cases where it has already been normalized:
da7a735e 8438 *
daa59407
BP
8439 * - A forked child which is waiting for being woken up by
8440 * wake_up_new_task().
8441 * - A task which has been woken up by try_to_wake_up() and
8442 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8443 */
daa59407
BP
8444 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8445 return true;
8446
8447 return false;
8448}
8449
8450static void detach_task_cfs_rq(struct task_struct *p)
8451{
8452 struct sched_entity *se = &p->se;
8453 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8454 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8455
8456 if (!vruntime_normalized(p)) {
da7a735e
PZ
8457 /*
8458 * Fix up our vruntime so that the current sleep doesn't
8459 * cause 'unlimited' sleep bonus.
8460 */
8461 place_entity(cfs_rq, se, 0);
8462 se->vruntime -= cfs_rq->min_vruntime;
8463 }
9ee474f5 8464
9d89c257 8465 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8466 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8467 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8468 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8469}
8470
daa59407 8471static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8472{
f36c019c 8473 struct sched_entity *se = &p->se;
daa59407 8474 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8475 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8476
8477#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8478 /*
8479 * Since the real-depth could have been changed (only FAIR
8480 * class maintain depth value), reset depth properly.
8481 */
8482 se->depth = se->parent ? se->parent->depth + 1 : 0;
8483#endif
7855a35a 8484
6efdb105 8485 /* Synchronize task with its cfs_rq */
7c3edd2c 8486 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8487 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8488 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8489
8490 if (!vruntime_normalized(p))
8491 se->vruntime += cfs_rq->min_vruntime;
8492}
6efdb105 8493
daa59407
BP
8494static void switched_from_fair(struct rq *rq, struct task_struct *p)
8495{
8496 detach_task_cfs_rq(p);
8497}
8498
8499static void switched_to_fair(struct rq *rq, struct task_struct *p)
8500{
8501 attach_task_cfs_rq(p);
7855a35a 8502
daa59407 8503 if (task_on_rq_queued(p)) {
7855a35a 8504 /*
daa59407
BP
8505 * We were most likely switched from sched_rt, so
8506 * kick off the schedule if running, otherwise just see
8507 * if we can still preempt the current task.
7855a35a 8508 */
daa59407
BP
8509 if (rq->curr == p)
8510 resched_curr(rq);
8511 else
8512 check_preempt_curr(rq, p, 0);
7855a35a 8513 }
cb469845
SR
8514}
8515
83b699ed
SV
8516/* Account for a task changing its policy or group.
8517 *
8518 * This routine is mostly called to set cfs_rq->curr field when a task
8519 * migrates between groups/classes.
8520 */
8521static void set_curr_task_fair(struct rq *rq)
8522{
8523 struct sched_entity *se = &rq->curr->se;
8524
ec12cb7f
PT
8525 for_each_sched_entity(se) {
8526 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8527
8528 set_next_entity(cfs_rq, se);
8529 /* ensure bandwidth has been allocated on our new cfs_rq */
8530 account_cfs_rq_runtime(cfs_rq, 0);
8531 }
83b699ed
SV
8532}
8533
029632fb
PZ
8534void init_cfs_rq(struct cfs_rq *cfs_rq)
8535{
8536 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8537 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8538#ifndef CONFIG_64BIT
8539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8540#endif
141965c7 8541#ifdef CONFIG_SMP
9d89c257
YD
8542 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8543 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8544#endif
029632fb
PZ
8545}
8546
810b3817 8547#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8548static void task_set_group_fair(struct task_struct *p)
8549{
8550 struct sched_entity *se = &p->se;
8551
8552 set_task_rq(p, task_cpu(p));
8553 se->depth = se->parent ? se->parent->depth + 1 : 0;
8554}
8555
bc54da21 8556static void task_move_group_fair(struct task_struct *p)
810b3817 8557{
daa59407 8558 detach_task_cfs_rq(p);
b2b5ce02 8559 set_task_rq(p, task_cpu(p));
6efdb105
BP
8560
8561#ifdef CONFIG_SMP
8562 /* Tell se's cfs_rq has been changed -- migrated */
8563 p->se.avg.last_update_time = 0;
8564#endif
daa59407 8565 attach_task_cfs_rq(p);
810b3817 8566}
029632fb 8567
ea86cb4b
VG
8568static void task_change_group_fair(struct task_struct *p, int type)
8569{
8570 switch (type) {
8571 case TASK_SET_GROUP:
8572 task_set_group_fair(p);
8573 break;
8574
8575 case TASK_MOVE_GROUP:
8576 task_move_group_fair(p);
8577 break;
8578 }
8579}
8580
029632fb
PZ
8581void free_fair_sched_group(struct task_group *tg)
8582{
8583 int i;
8584
8585 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8586
8587 for_each_possible_cpu(i) {
8588 if (tg->cfs_rq)
8589 kfree(tg->cfs_rq[i]);
6fe1f348 8590 if (tg->se)
029632fb
PZ
8591 kfree(tg->se[i]);
8592 }
8593
8594 kfree(tg->cfs_rq);
8595 kfree(tg->se);
8596}
8597
8598int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8599{
029632fb 8600 struct sched_entity *se;
b7fa30c9
PZ
8601 struct cfs_rq *cfs_rq;
8602 struct rq *rq;
029632fb
PZ
8603 int i;
8604
8605 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8606 if (!tg->cfs_rq)
8607 goto err;
8608 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8609 if (!tg->se)
8610 goto err;
8611
8612 tg->shares = NICE_0_LOAD;
8613
8614 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8615
8616 for_each_possible_cpu(i) {
b7fa30c9
PZ
8617 rq = cpu_rq(i);
8618
029632fb
PZ
8619 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8620 GFP_KERNEL, cpu_to_node(i));
8621 if (!cfs_rq)
8622 goto err;
8623
8624 se = kzalloc_node(sizeof(struct sched_entity),
8625 GFP_KERNEL, cpu_to_node(i));
8626 if (!se)
8627 goto err_free_rq;
8628
8629 init_cfs_rq(cfs_rq);
8630 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8631 init_entity_runnable_average(se);
029632fb
PZ
8632 }
8633
8634 return 1;
8635
8636err_free_rq:
8637 kfree(cfs_rq);
8638err:
8639 return 0;
8640}
8641
8663e24d
PZ
8642void online_fair_sched_group(struct task_group *tg)
8643{
8644 struct sched_entity *se;
8645 struct rq *rq;
8646 int i;
8647
8648 for_each_possible_cpu(i) {
8649 rq = cpu_rq(i);
8650 se = tg->se[i];
8651
8652 raw_spin_lock_irq(&rq->lock);
8653 post_init_entity_util_avg(se);
55e16d30 8654 sync_throttle(tg, i);
8663e24d
PZ
8655 raw_spin_unlock_irq(&rq->lock);
8656 }
8657}
8658
6fe1f348 8659void unregister_fair_sched_group(struct task_group *tg)
029632fb 8660{
029632fb 8661 unsigned long flags;
6fe1f348
PZ
8662 struct rq *rq;
8663 int cpu;
029632fb 8664
6fe1f348
PZ
8665 for_each_possible_cpu(cpu) {
8666 if (tg->se[cpu])
8667 remove_entity_load_avg(tg->se[cpu]);
029632fb 8668
6fe1f348
PZ
8669 /*
8670 * Only empty task groups can be destroyed; so we can speculatively
8671 * check on_list without danger of it being re-added.
8672 */
8673 if (!tg->cfs_rq[cpu]->on_list)
8674 continue;
8675
8676 rq = cpu_rq(cpu);
8677
8678 raw_spin_lock_irqsave(&rq->lock, flags);
8679 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8680 raw_spin_unlock_irqrestore(&rq->lock, flags);
8681 }
029632fb
PZ
8682}
8683
8684void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8685 struct sched_entity *se, int cpu,
8686 struct sched_entity *parent)
8687{
8688 struct rq *rq = cpu_rq(cpu);
8689
8690 cfs_rq->tg = tg;
8691 cfs_rq->rq = rq;
029632fb
PZ
8692 init_cfs_rq_runtime(cfs_rq);
8693
8694 tg->cfs_rq[cpu] = cfs_rq;
8695 tg->se[cpu] = se;
8696
8697 /* se could be NULL for root_task_group */
8698 if (!se)
8699 return;
8700
fed14d45 8701 if (!parent) {
029632fb 8702 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8703 se->depth = 0;
8704 } else {
029632fb 8705 se->cfs_rq = parent->my_q;
fed14d45
PZ
8706 se->depth = parent->depth + 1;
8707 }
029632fb
PZ
8708
8709 se->my_q = cfs_rq;
0ac9b1c2
PT
8710 /* guarantee group entities always have weight */
8711 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8712 se->parent = parent;
8713}
8714
8715static DEFINE_MUTEX(shares_mutex);
8716
8717int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8718{
8719 int i;
8720 unsigned long flags;
8721
8722 /*
8723 * We can't change the weight of the root cgroup.
8724 */
8725 if (!tg->se[0])
8726 return -EINVAL;
8727
8728 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8729
8730 mutex_lock(&shares_mutex);
8731 if (tg->shares == shares)
8732 goto done;
8733
8734 tg->shares = shares;
8735 for_each_possible_cpu(i) {
8736 struct rq *rq = cpu_rq(i);
8737 struct sched_entity *se;
8738
8739 se = tg->se[i];
8740 /* Propagate contribution to hierarchy */
8741 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8742
8743 /* Possible calls to update_curr() need rq clock */
8744 update_rq_clock(rq);
17bc14b7 8745 for_each_sched_entity(se)
029632fb
PZ
8746 update_cfs_shares(group_cfs_rq(se));
8747 raw_spin_unlock_irqrestore(&rq->lock, flags);
8748 }
8749
8750done:
8751 mutex_unlock(&shares_mutex);
8752 return 0;
8753}
8754#else /* CONFIG_FAIR_GROUP_SCHED */
8755
8756void free_fair_sched_group(struct task_group *tg) { }
8757
8758int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8759{
8760 return 1;
8761}
8762
8663e24d
PZ
8763void online_fair_sched_group(struct task_group *tg) { }
8764
6fe1f348 8765void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8766
8767#endif /* CONFIG_FAIR_GROUP_SCHED */
8768
810b3817 8769
6d686f45 8770static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8771{
8772 struct sched_entity *se = &task->se;
0d721cea
PW
8773 unsigned int rr_interval = 0;
8774
8775 /*
8776 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8777 * idle runqueue:
8778 */
0d721cea 8779 if (rq->cfs.load.weight)
a59f4e07 8780 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8781
8782 return rr_interval;
8783}
8784
bf0f6f24
IM
8785/*
8786 * All the scheduling class methods:
8787 */
029632fb 8788const struct sched_class fair_sched_class = {
5522d5d5 8789 .next = &idle_sched_class,
bf0f6f24
IM
8790 .enqueue_task = enqueue_task_fair,
8791 .dequeue_task = dequeue_task_fair,
8792 .yield_task = yield_task_fair,
d95f4122 8793 .yield_to_task = yield_to_task_fair,
bf0f6f24 8794
2e09bf55 8795 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8796
8797 .pick_next_task = pick_next_task_fair,
8798 .put_prev_task = put_prev_task_fair,
8799
681f3e68 8800#ifdef CONFIG_SMP
4ce72a2c 8801 .select_task_rq = select_task_rq_fair,
0a74bef8 8802 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8803
0bcdcf28
CE
8804 .rq_online = rq_online_fair,
8805 .rq_offline = rq_offline_fair,
88ec22d3 8806
12695578 8807 .task_dead = task_dead_fair,
c5b28038 8808 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8809#endif
bf0f6f24 8810
83b699ed 8811 .set_curr_task = set_curr_task_fair,
bf0f6f24 8812 .task_tick = task_tick_fair,
cd29fe6f 8813 .task_fork = task_fork_fair,
cb469845
SR
8814
8815 .prio_changed = prio_changed_fair,
da7a735e 8816 .switched_from = switched_from_fair,
cb469845 8817 .switched_to = switched_to_fair,
810b3817 8818
0d721cea
PW
8819 .get_rr_interval = get_rr_interval_fair,
8820
6e998916
SG
8821 .update_curr = update_curr_fair,
8822
810b3817 8823#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8824 .task_change_group = task_change_group_fair,
810b3817 8825#endif
bf0f6f24
IM
8826};
8827
8828#ifdef CONFIG_SCHED_DEBUG
029632fb 8829void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8830{
bf0f6f24
IM
8831 struct cfs_rq *cfs_rq;
8832
5973e5b9 8833 rcu_read_lock();
c3b64f1e 8834 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8835 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8836 rcu_read_unlock();
bf0f6f24 8837}
397f2378
SD
8838
8839#ifdef CONFIG_NUMA_BALANCING
8840void show_numa_stats(struct task_struct *p, struct seq_file *m)
8841{
8842 int node;
8843 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8844
8845 for_each_online_node(node) {
8846 if (p->numa_faults) {
8847 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8848 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8849 }
8850 if (p->numa_group) {
8851 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8852 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8853 }
8854 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8855 }
8856}
8857#endif /* CONFIG_NUMA_BALANCING */
8858#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8859
8860__init void init_sched_fair_class(void)
8861{
8862#ifdef CONFIG_SMP
8863 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8864
3451d024 8865#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8866 nohz.next_balance = jiffies;
029632fb 8867 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8868#endif
8869#endif /* SMP */
8870
8871}