]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched: Add SD_PREFER_SIBLING for SMT level
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
64192658 837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
28a21745 1201 long src_capacity, dst_capacity;
095bebf6
RR
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
28a21745
RR
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1216
1217 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
e63da036
RR
1222
1223 /* Is the difference below the threshold? */
095bebf6
RR
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
095bebf6
RR
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
28a21745 1235
095bebf6
RR
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
e63da036 1244
095bebf6
RR
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1251}
1252
fb13c7ee
MG
1253/*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
887c290e
RR
1259static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
fb13c7ee
MG
1261{
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
28a21745 1265 long src_load, dst_load;
fb13c7ee 1266 long load;
1c5d3eb3 1267 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1268 long moveimp = imp;
7bd95320 1269 int dist = env->dist;
fb13c7ee
MG
1270
1271 rcu_read_lock();
1effd9f1
KT
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1283 cur = NULL;
1effd9f1 1284 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1285
7af68335
PZ
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
fb13c7ee
MG
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
887c290e
RR
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1307 * in any group then look only at task weights.
887c290e 1308 */
ca28aa53 1309 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
887c290e 1318 } else {
ca28aa53
RR
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
ca28aa53 1324 if (cur->numa_group)
7bd95320
RR
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
ca28aa53 1327 else
7bd95320
RR
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
887c290e 1330 }
fb13c7ee
MG
1331 }
1332
0132c3e1 1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
b932c03c 1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1339 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
fb13c7ee
MG
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353balance:
e720fff6
PZ
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
fb13c7ee 1357
0132c3e1
RR
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
fb13c7ee 1375 if (cur) {
e720fff6
PZ
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
fb13c7ee
MG
1379 }
1380
28a21745 1381 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1382 goto unlock;
1383
ba7e5a27
RR
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
fb13c7ee
MG
1391assign:
1392 task_numa_assign(env, cur, imp);
1393unlock:
1394 rcu_read_unlock();
1395}
1396
887c290e
RR
1397static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
2c8a50aa
MG
1399{
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
887c290e 1408 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1409 }
1410}
1411
58d081b5
MG
1412static int task_numa_migrate(struct task_struct *p)
1413{
58d081b5
MG
1414 struct task_numa_env env = {
1415 .p = p,
fb13c7ee 1416
58d081b5 1417 .src_cpu = task_cpu(p),
b32e86b4 1418 .src_nid = task_node(p),
fb13c7ee
MG
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
58d081b5
MG
1425 };
1426 struct sched_domain *sd;
887c290e 1427 unsigned long taskweight, groupweight;
7bd95320 1428 int nid, ret, dist;
887c290e 1429 long taskimp, groupimp;
e6628d5b 1430
58d081b5 1431 /*
fb13c7ee
MG
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
58d081b5
MG
1438 */
1439 rcu_read_lock();
fb13c7ee 1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1443 rcu_read_unlock();
1444
46a73e8a
RR
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
de1b301a 1452 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1453 return -EINVAL;
1454 }
1455
2c8a50aa 1456 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1463 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1464
a43455a1
RR
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1467
9de05d48
RR
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
58d081b5 1480
7bd95320 1481 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
7bd95320 1487
83e1d2cd 1488 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1491 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1492 continue;
1493
7bd95320 1494 env.dist = dist;
2c8a50aa
MG
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1497 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1498 }
1499 }
1500
68d1b02a
RR
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
db015dae
RR
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
0ec8aa00 1522
04bb2f94
RR
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
fb13c7ee 1529 if (env.best_task == NULL) {
286549dc
MG
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
286549dc
MG
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1539 put_task_struct(env.best_task);
1540 return ret;
e6628d5b
MG
1541}
1542
6b9a7460
MG
1543/* Attempt to migrate a task to a CPU on the preferred node. */
1544static void numa_migrate_preferred(struct task_struct *p)
1545{
5085e2a3
RR
1546 unsigned long interval = HZ;
1547
2739d3ee 1548 /* This task has no NUMA fault statistics yet */
44dba3d5 1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1550 return;
1551
2739d3ee 1552 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1555
1556 /* Success if task is already running on preferred CPU */
de1b301a 1557 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1561 task_numa_migrate(p);
6b9a7460
MG
1562}
1563
20e07dea
RR
1564/*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575static void update_numa_active_node_mask(struct numa_group *numa_group)
1576{
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594}
1595
04bb2f94
RR
1596/*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1602 */
1603#define NUMA_PERIOD_SLOTS 10
a22b4b01 1604#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1605
1606/*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614{
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
1625 * to automatic numa balancing. Scan slower
1626 */
1627 if (local + shared == 0) {
1628 p->numa_scan_period = min(p->numa_scan_period_max,
1629 p->numa_scan_period << 1);
1630
1631 p->mm->numa_next_scan = jiffies +
1632 msecs_to_jiffies(p->numa_scan_period);
1633
1634 return;
1635 }
1636
1637 /*
1638 * Prepare to scale scan period relative to the current period.
1639 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1640 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1641 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1642 */
1643 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1644 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1645 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1646 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1647 if (!slot)
1648 slot = 1;
1649 diff = slot * period_slot;
1650 } else {
1651 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1652
1653 /*
1654 * Scale scan rate increases based on sharing. There is an
1655 * inverse relationship between the degree of sharing and
1656 * the adjustment made to the scanning period. Broadly
1657 * speaking the intent is that there is little point
1658 * scanning faster if shared accesses dominate as it may
1659 * simply bounce migrations uselessly
1660 */
2847c90e 1661 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1662 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1663 }
1664
1665 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1666 task_scan_min(p), task_scan_max(p));
1667 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1668}
1669
7e2703e6
RR
1670/*
1671 * Get the fraction of time the task has been running since the last
1672 * NUMA placement cycle. The scheduler keeps similar statistics, but
1673 * decays those on a 32ms period, which is orders of magnitude off
1674 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1675 * stats only if the task is so new there are no NUMA statistics yet.
1676 */
1677static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1678{
1679 u64 runtime, delta, now;
1680 /* Use the start of this time slice to avoid calculations. */
1681 now = p->se.exec_start;
1682 runtime = p->se.sum_exec_runtime;
1683
1684 if (p->last_task_numa_placement) {
1685 delta = runtime - p->last_sum_exec_runtime;
1686 *period = now - p->last_task_numa_placement;
1687 } else {
1688 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1689 *period = p->se.avg.avg_period;
7e2703e6
RR
1690 }
1691
1692 p->last_sum_exec_runtime = runtime;
1693 p->last_task_numa_placement = now;
1694
1695 return delta;
1696}
1697
54009416
RR
1698/*
1699 * Determine the preferred nid for a task in a numa_group. This needs to
1700 * be done in a way that produces consistent results with group_weight,
1701 * otherwise workloads might not converge.
1702 */
1703static int preferred_group_nid(struct task_struct *p, int nid)
1704{
1705 nodemask_t nodes;
1706 int dist;
1707
1708 /* Direct connections between all NUMA nodes. */
1709 if (sched_numa_topology_type == NUMA_DIRECT)
1710 return nid;
1711
1712 /*
1713 * On a system with glueless mesh NUMA topology, group_weight
1714 * scores nodes according to the number of NUMA hinting faults on
1715 * both the node itself, and on nearby nodes.
1716 */
1717 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1718 unsigned long score, max_score = 0;
1719 int node, max_node = nid;
1720
1721 dist = sched_max_numa_distance;
1722
1723 for_each_online_node(node) {
1724 score = group_weight(p, node, dist);
1725 if (score > max_score) {
1726 max_score = score;
1727 max_node = node;
1728 }
1729 }
1730 return max_node;
1731 }
1732
1733 /*
1734 * Finding the preferred nid in a system with NUMA backplane
1735 * interconnect topology is more involved. The goal is to locate
1736 * tasks from numa_groups near each other in the system, and
1737 * untangle workloads from different sides of the system. This requires
1738 * searching down the hierarchy of node groups, recursively searching
1739 * inside the highest scoring group of nodes. The nodemask tricks
1740 * keep the complexity of the search down.
1741 */
1742 nodes = node_online_map;
1743 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1744 unsigned long max_faults = 0;
81907478 1745 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1746 int a, b;
1747
1748 /* Are there nodes at this distance from each other? */
1749 if (!find_numa_distance(dist))
1750 continue;
1751
1752 for_each_node_mask(a, nodes) {
1753 unsigned long faults = 0;
1754 nodemask_t this_group;
1755 nodes_clear(this_group);
1756
1757 /* Sum group's NUMA faults; includes a==b case. */
1758 for_each_node_mask(b, nodes) {
1759 if (node_distance(a, b) < dist) {
1760 faults += group_faults(p, b);
1761 node_set(b, this_group);
1762 node_clear(b, nodes);
1763 }
1764 }
1765
1766 /* Remember the top group. */
1767 if (faults > max_faults) {
1768 max_faults = faults;
1769 max_group = this_group;
1770 /*
1771 * subtle: at the smallest distance there is
1772 * just one node left in each "group", the
1773 * winner is the preferred nid.
1774 */
1775 nid = a;
1776 }
1777 }
1778 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1779 if (!max_faults)
1780 break;
54009416
RR
1781 nodes = max_group;
1782 }
1783 return nid;
1784}
1785
cbee9f88
PZ
1786static void task_numa_placement(struct task_struct *p)
1787{
83e1d2cd
MG
1788 int seq, nid, max_nid = -1, max_group_nid = -1;
1789 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1790 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1791 unsigned long total_faults;
1792 u64 runtime, period;
7dbd13ed 1793 spinlock_t *group_lock = NULL;
cbee9f88 1794
2832bc19 1795 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1796 if (p->numa_scan_seq == seq)
1797 return;
1798 p->numa_scan_seq = seq;
598f0ec0 1799 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1800
7e2703e6
RR
1801 total_faults = p->numa_faults_locality[0] +
1802 p->numa_faults_locality[1];
1803 runtime = numa_get_avg_runtime(p, &period);
1804
7dbd13ed
MG
1805 /* If the task is part of a group prevent parallel updates to group stats */
1806 if (p->numa_group) {
1807 group_lock = &p->numa_group->lock;
60e69eed 1808 spin_lock_irq(group_lock);
7dbd13ed
MG
1809 }
1810
688b7585
MG
1811 /* Find the node with the highest number of faults */
1812 for_each_online_node(nid) {
44dba3d5
IM
1813 /* Keep track of the offsets in numa_faults array */
1814 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1815 unsigned long faults = 0, group_faults = 0;
44dba3d5 1816 int priv;
745d6147 1817
be1e4e76 1818 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1819 long diff, f_diff, f_weight;
8c8a743c 1820
44dba3d5
IM
1821 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1822 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1823 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1824 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1825
ac8e895b 1826 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1827 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1828 fault_types[priv] += p->numa_faults[membuf_idx];
1829 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1830
7e2703e6
RR
1831 /*
1832 * Normalize the faults_from, so all tasks in a group
1833 * count according to CPU use, instead of by the raw
1834 * number of faults. Tasks with little runtime have
1835 * little over-all impact on throughput, and thus their
1836 * faults are less important.
1837 */
1838 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1839 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1840 (total_faults + 1);
44dba3d5
IM
1841 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1842 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1843
44dba3d5
IM
1844 p->numa_faults[mem_idx] += diff;
1845 p->numa_faults[cpu_idx] += f_diff;
1846 faults += p->numa_faults[mem_idx];
83e1d2cd 1847 p->total_numa_faults += diff;
8c8a743c 1848 if (p->numa_group) {
44dba3d5
IM
1849 /*
1850 * safe because we can only change our own group
1851 *
1852 * mem_idx represents the offset for a given
1853 * nid and priv in a specific region because it
1854 * is at the beginning of the numa_faults array.
1855 */
1856 p->numa_group->faults[mem_idx] += diff;
1857 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1858 p->numa_group->total_faults += diff;
44dba3d5 1859 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1860 }
ac8e895b
MG
1861 }
1862
688b7585
MG
1863 if (faults > max_faults) {
1864 max_faults = faults;
1865 max_nid = nid;
1866 }
83e1d2cd
MG
1867
1868 if (group_faults > max_group_faults) {
1869 max_group_faults = group_faults;
1870 max_group_nid = nid;
1871 }
1872 }
1873
04bb2f94
RR
1874 update_task_scan_period(p, fault_types[0], fault_types[1]);
1875
7dbd13ed 1876 if (p->numa_group) {
20e07dea 1877 update_numa_active_node_mask(p->numa_group);
60e69eed 1878 spin_unlock_irq(group_lock);
54009416 1879 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1880 }
1881
bb97fc31
RR
1882 if (max_faults) {
1883 /* Set the new preferred node */
1884 if (max_nid != p->numa_preferred_nid)
1885 sched_setnuma(p, max_nid);
1886
1887 if (task_node(p) != p->numa_preferred_nid)
1888 numa_migrate_preferred(p);
3a7053b3 1889 }
cbee9f88
PZ
1890}
1891
8c8a743c
PZ
1892static inline int get_numa_group(struct numa_group *grp)
1893{
1894 return atomic_inc_not_zero(&grp->refcount);
1895}
1896
1897static inline void put_numa_group(struct numa_group *grp)
1898{
1899 if (atomic_dec_and_test(&grp->refcount))
1900 kfree_rcu(grp, rcu);
1901}
1902
3e6a9418
MG
1903static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1904 int *priv)
8c8a743c
PZ
1905{
1906 struct numa_group *grp, *my_grp;
1907 struct task_struct *tsk;
1908 bool join = false;
1909 int cpu = cpupid_to_cpu(cpupid);
1910 int i;
1911
1912 if (unlikely(!p->numa_group)) {
1913 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1914 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1915
1916 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1917 if (!grp)
1918 return;
1919
1920 atomic_set(&grp->refcount, 1);
1921 spin_lock_init(&grp->lock);
e29cf08b 1922 grp->gid = p->pid;
50ec8a40 1923 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1924 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1925 nr_node_ids;
8c8a743c 1926
20e07dea
RR
1927 node_set(task_node(current), grp->active_nodes);
1928
be1e4e76 1929 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1930 grp->faults[i] = p->numa_faults[i];
8c8a743c 1931
989348b5 1932 grp->total_faults = p->total_numa_faults;
83e1d2cd 1933
8c8a743c
PZ
1934 grp->nr_tasks++;
1935 rcu_assign_pointer(p->numa_group, grp);
1936 }
1937
1938 rcu_read_lock();
1939 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1940
1941 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1942 goto no_join;
8c8a743c
PZ
1943
1944 grp = rcu_dereference(tsk->numa_group);
1945 if (!grp)
3354781a 1946 goto no_join;
8c8a743c
PZ
1947
1948 my_grp = p->numa_group;
1949 if (grp == my_grp)
3354781a 1950 goto no_join;
8c8a743c
PZ
1951
1952 /*
1953 * Only join the other group if its bigger; if we're the bigger group,
1954 * the other task will join us.
1955 */
1956 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1957 goto no_join;
8c8a743c
PZ
1958
1959 /*
1960 * Tie-break on the grp address.
1961 */
1962 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1963 goto no_join;
8c8a743c 1964
dabe1d99
RR
1965 /* Always join threads in the same process. */
1966 if (tsk->mm == current->mm)
1967 join = true;
1968
1969 /* Simple filter to avoid false positives due to PID collisions */
1970 if (flags & TNF_SHARED)
1971 join = true;
8c8a743c 1972
3e6a9418
MG
1973 /* Update priv based on whether false sharing was detected */
1974 *priv = !join;
1975
dabe1d99 1976 if (join && !get_numa_group(grp))
3354781a 1977 goto no_join;
8c8a743c 1978
8c8a743c
PZ
1979 rcu_read_unlock();
1980
1981 if (!join)
1982 return;
1983
60e69eed
MG
1984 BUG_ON(irqs_disabled());
1985 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1986
be1e4e76 1987 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1988 my_grp->faults[i] -= p->numa_faults[i];
1989 grp->faults[i] += p->numa_faults[i];
8c8a743c 1990 }
989348b5
MG
1991 my_grp->total_faults -= p->total_numa_faults;
1992 grp->total_faults += p->total_numa_faults;
8c8a743c 1993
8c8a743c
PZ
1994 my_grp->nr_tasks--;
1995 grp->nr_tasks++;
1996
1997 spin_unlock(&my_grp->lock);
60e69eed 1998 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1999
2000 rcu_assign_pointer(p->numa_group, grp);
2001
2002 put_numa_group(my_grp);
3354781a
PZ
2003 return;
2004
2005no_join:
2006 rcu_read_unlock();
2007 return;
8c8a743c
PZ
2008}
2009
2010void task_numa_free(struct task_struct *p)
2011{
2012 struct numa_group *grp = p->numa_group;
44dba3d5 2013 void *numa_faults = p->numa_faults;
e9dd685c
SR
2014 unsigned long flags;
2015 int i;
8c8a743c
PZ
2016
2017 if (grp) {
e9dd685c 2018 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2019 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2020 grp->faults[i] -= p->numa_faults[i];
989348b5 2021 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2022
8c8a743c 2023 grp->nr_tasks--;
e9dd685c 2024 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2025 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2026 put_numa_group(grp);
2027 }
2028
44dba3d5 2029 p->numa_faults = NULL;
82727018 2030 kfree(numa_faults);
8c8a743c
PZ
2031}
2032
cbee9f88
PZ
2033/*
2034 * Got a PROT_NONE fault for a page on @node.
2035 */
58b46da3 2036void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2037{
2038 struct task_struct *p = current;
6688cc05 2039 bool migrated = flags & TNF_MIGRATED;
58b46da3 2040 int cpu_node = task_node(current);
792568ec 2041 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2042 int priv;
cbee9f88 2043
10e84b97 2044 if (!numabalancing_enabled)
1a687c2e
MG
2045 return;
2046
9ff1d9ff
MG
2047 /* for example, ksmd faulting in a user's mm */
2048 if (!p->mm)
2049 return;
2050
f809ca9a 2051 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2052 if (unlikely(!p->numa_faults)) {
2053 int size = sizeof(*p->numa_faults) *
be1e4e76 2054 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2055
44dba3d5
IM
2056 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2057 if (!p->numa_faults)
f809ca9a 2058 return;
745d6147 2059
83e1d2cd 2060 p->total_numa_faults = 0;
04bb2f94 2061 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2062 }
cbee9f88 2063
8c8a743c
PZ
2064 /*
2065 * First accesses are treated as private, otherwise consider accesses
2066 * to be private if the accessing pid has not changed
2067 */
2068 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2069 priv = 1;
2070 } else {
2071 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2072 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2073 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2074 }
2075
792568ec
RR
2076 /*
2077 * If a workload spans multiple NUMA nodes, a shared fault that
2078 * occurs wholly within the set of nodes that the workload is
2079 * actively using should be counted as local. This allows the
2080 * scan rate to slow down when a workload has settled down.
2081 */
2082 if (!priv && !local && p->numa_group &&
2083 node_isset(cpu_node, p->numa_group->active_nodes) &&
2084 node_isset(mem_node, p->numa_group->active_nodes))
2085 local = 1;
2086
cbee9f88 2087 task_numa_placement(p);
f809ca9a 2088
2739d3ee
RR
2089 /*
2090 * Retry task to preferred node migration periodically, in case it
2091 * case it previously failed, or the scheduler moved us.
2092 */
2093 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2094 numa_migrate_preferred(p);
2095
b32e86b4
IM
2096 if (migrated)
2097 p->numa_pages_migrated += pages;
2098
44dba3d5
IM
2099 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2100 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2101 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2102}
2103
6e5fb223
PZ
2104static void reset_ptenuma_scan(struct task_struct *p)
2105{
2106 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2107 p->mm->numa_scan_offset = 0;
2108}
2109
cbee9f88
PZ
2110/*
2111 * The expensive part of numa migration is done from task_work context.
2112 * Triggered from task_tick_numa().
2113 */
2114void task_numa_work(struct callback_head *work)
2115{
2116 unsigned long migrate, next_scan, now = jiffies;
2117 struct task_struct *p = current;
2118 struct mm_struct *mm = p->mm;
6e5fb223 2119 struct vm_area_struct *vma;
9f40604c 2120 unsigned long start, end;
598f0ec0 2121 unsigned long nr_pte_updates = 0;
9f40604c 2122 long pages;
cbee9f88
PZ
2123
2124 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2125
2126 work->next = work; /* protect against double add */
2127 /*
2128 * Who cares about NUMA placement when they're dying.
2129 *
2130 * NOTE: make sure not to dereference p->mm before this check,
2131 * exit_task_work() happens _after_ exit_mm() so we could be called
2132 * without p->mm even though we still had it when we enqueued this
2133 * work.
2134 */
2135 if (p->flags & PF_EXITING)
2136 return;
2137
930aa174 2138 if (!mm->numa_next_scan) {
7e8d16b6
MG
2139 mm->numa_next_scan = now +
2140 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2141 }
2142
cbee9f88
PZ
2143 /*
2144 * Enforce maximal scan/migration frequency..
2145 */
2146 migrate = mm->numa_next_scan;
2147 if (time_before(now, migrate))
2148 return;
2149
598f0ec0
MG
2150 if (p->numa_scan_period == 0) {
2151 p->numa_scan_period_max = task_scan_max(p);
2152 p->numa_scan_period = task_scan_min(p);
2153 }
cbee9f88 2154
fb003b80 2155 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2156 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2157 return;
2158
19a78d11
PZ
2159 /*
2160 * Delay this task enough that another task of this mm will likely win
2161 * the next time around.
2162 */
2163 p->node_stamp += 2 * TICK_NSEC;
2164
9f40604c
MG
2165 start = mm->numa_scan_offset;
2166 pages = sysctl_numa_balancing_scan_size;
2167 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2168 if (!pages)
2169 return;
cbee9f88 2170
6e5fb223 2171 down_read(&mm->mmap_sem);
9f40604c 2172 vma = find_vma(mm, start);
6e5fb223
PZ
2173 if (!vma) {
2174 reset_ptenuma_scan(p);
9f40604c 2175 start = 0;
6e5fb223
PZ
2176 vma = mm->mmap;
2177 }
9f40604c 2178 for (; vma; vma = vma->vm_next) {
6b6482bb 2179 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2180 continue;
2181
4591ce4f
MG
2182 /*
2183 * Shared library pages mapped by multiple processes are not
2184 * migrated as it is expected they are cache replicated. Avoid
2185 * hinting faults in read-only file-backed mappings or the vdso
2186 * as migrating the pages will be of marginal benefit.
2187 */
2188 if (!vma->vm_mm ||
2189 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2190 continue;
2191
3c67f474
MG
2192 /*
2193 * Skip inaccessible VMAs to avoid any confusion between
2194 * PROT_NONE and NUMA hinting ptes
2195 */
2196 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2197 continue;
4591ce4f 2198
9f40604c
MG
2199 do {
2200 start = max(start, vma->vm_start);
2201 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2202 end = min(end, vma->vm_end);
598f0ec0
MG
2203 nr_pte_updates += change_prot_numa(vma, start, end);
2204
2205 /*
2206 * Scan sysctl_numa_balancing_scan_size but ensure that
2207 * at least one PTE is updated so that unused virtual
2208 * address space is quickly skipped.
2209 */
2210 if (nr_pte_updates)
2211 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2212
9f40604c
MG
2213 start = end;
2214 if (pages <= 0)
2215 goto out;
3cf1962c
RR
2216
2217 cond_resched();
9f40604c 2218 } while (end != vma->vm_end);
cbee9f88 2219 }
6e5fb223 2220
9f40604c 2221out:
6e5fb223 2222 /*
c69307d5
PZ
2223 * It is possible to reach the end of the VMA list but the last few
2224 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2225 * would find the !migratable VMA on the next scan but not reset the
2226 * scanner to the start so check it now.
6e5fb223
PZ
2227 */
2228 if (vma)
9f40604c 2229 mm->numa_scan_offset = start;
6e5fb223
PZ
2230 else
2231 reset_ptenuma_scan(p);
2232 up_read(&mm->mmap_sem);
cbee9f88
PZ
2233}
2234
2235/*
2236 * Drive the periodic memory faults..
2237 */
2238void task_tick_numa(struct rq *rq, struct task_struct *curr)
2239{
2240 struct callback_head *work = &curr->numa_work;
2241 u64 period, now;
2242
2243 /*
2244 * We don't care about NUMA placement if we don't have memory.
2245 */
2246 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2247 return;
2248
2249 /*
2250 * Using runtime rather than walltime has the dual advantage that
2251 * we (mostly) drive the selection from busy threads and that the
2252 * task needs to have done some actual work before we bother with
2253 * NUMA placement.
2254 */
2255 now = curr->se.sum_exec_runtime;
2256 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2257
2258 if (now - curr->node_stamp > period) {
4b96a29b 2259 if (!curr->node_stamp)
598f0ec0 2260 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2261 curr->node_stamp += period;
cbee9f88
PZ
2262
2263 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2264 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2265 task_work_add(curr, work, true);
2266 }
2267 }
2268}
2269#else
2270static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2271{
2272}
0ec8aa00
PZ
2273
2274static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2275{
2276}
2277
2278static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2279{
2280}
cbee9f88
PZ
2281#endif /* CONFIG_NUMA_BALANCING */
2282
30cfdcfc
DA
2283static void
2284account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2285{
2286 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2287 if (!parent_entity(se))
029632fb 2288 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2289#ifdef CONFIG_SMP
0ec8aa00
PZ
2290 if (entity_is_task(se)) {
2291 struct rq *rq = rq_of(cfs_rq);
2292
2293 account_numa_enqueue(rq, task_of(se));
2294 list_add(&se->group_node, &rq->cfs_tasks);
2295 }
367456c7 2296#endif
30cfdcfc 2297 cfs_rq->nr_running++;
30cfdcfc
DA
2298}
2299
2300static void
2301account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2302{
2303 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2304 if (!parent_entity(se))
029632fb 2305 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2306 if (entity_is_task(se)) {
2307 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2308 list_del_init(&se->group_node);
0ec8aa00 2309 }
30cfdcfc 2310 cfs_rq->nr_running--;
30cfdcfc
DA
2311}
2312
3ff6dcac
YZ
2313#ifdef CONFIG_FAIR_GROUP_SCHED
2314# ifdef CONFIG_SMP
cf5f0acf
PZ
2315static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2316{
2317 long tg_weight;
2318
2319 /*
2320 * Use this CPU's actual weight instead of the last load_contribution
2321 * to gain a more accurate current total weight. See
2322 * update_cfs_rq_load_contribution().
2323 */
bf5b986e 2324 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2325 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2326 tg_weight += cfs_rq->load.weight;
2327
2328 return tg_weight;
2329}
2330
6d5ab293 2331static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2332{
cf5f0acf 2333 long tg_weight, load, shares;
3ff6dcac 2334
cf5f0acf 2335 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2336 load = cfs_rq->load.weight;
3ff6dcac 2337
3ff6dcac 2338 shares = (tg->shares * load);
cf5f0acf
PZ
2339 if (tg_weight)
2340 shares /= tg_weight;
3ff6dcac
YZ
2341
2342 if (shares < MIN_SHARES)
2343 shares = MIN_SHARES;
2344 if (shares > tg->shares)
2345 shares = tg->shares;
2346
2347 return shares;
2348}
3ff6dcac 2349# else /* CONFIG_SMP */
6d5ab293 2350static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2351{
2352 return tg->shares;
2353}
3ff6dcac 2354# endif /* CONFIG_SMP */
2069dd75
PZ
2355static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2356 unsigned long weight)
2357{
19e5eebb
PT
2358 if (se->on_rq) {
2359 /* commit outstanding execution time */
2360 if (cfs_rq->curr == se)
2361 update_curr(cfs_rq);
2069dd75 2362 account_entity_dequeue(cfs_rq, se);
19e5eebb 2363 }
2069dd75
PZ
2364
2365 update_load_set(&se->load, weight);
2366
2367 if (se->on_rq)
2368 account_entity_enqueue(cfs_rq, se);
2369}
2370
82958366
PT
2371static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2372
6d5ab293 2373static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2374{
2375 struct task_group *tg;
2376 struct sched_entity *se;
3ff6dcac 2377 long shares;
2069dd75 2378
2069dd75
PZ
2379 tg = cfs_rq->tg;
2380 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2381 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2382 return;
3ff6dcac
YZ
2383#ifndef CONFIG_SMP
2384 if (likely(se->load.weight == tg->shares))
2385 return;
2386#endif
6d5ab293 2387 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2388
2389 reweight_entity(cfs_rq_of(se), se, shares);
2390}
2391#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2392static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2393{
2394}
2395#endif /* CONFIG_FAIR_GROUP_SCHED */
2396
141965c7 2397#ifdef CONFIG_SMP
5b51f2f8
PT
2398/*
2399 * We choose a half-life close to 1 scheduling period.
2400 * Note: The tables below are dependent on this value.
2401 */
2402#define LOAD_AVG_PERIOD 32
2403#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2404#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2405
2406/* Precomputed fixed inverse multiplies for multiplication by y^n */
2407static const u32 runnable_avg_yN_inv[] = {
2408 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2409 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2410 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2411 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2412 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2413 0x85aac367, 0x82cd8698,
2414};
2415
2416/*
2417 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2418 * over-estimates when re-combining.
2419 */
2420static const u32 runnable_avg_yN_sum[] = {
2421 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2422 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2423 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2424};
2425
9d85f21c
PT
2426/*
2427 * Approximate:
2428 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2429 */
2430static __always_inline u64 decay_load(u64 val, u64 n)
2431{
5b51f2f8
PT
2432 unsigned int local_n;
2433
2434 if (!n)
2435 return val;
2436 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2437 return 0;
2438
2439 /* after bounds checking we can collapse to 32-bit */
2440 local_n = n;
2441
2442 /*
2443 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2444 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2445 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2446 *
2447 * To achieve constant time decay_load.
2448 */
2449 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2450 val >>= local_n / LOAD_AVG_PERIOD;
2451 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2452 }
2453
5b51f2f8
PT
2454 val *= runnable_avg_yN_inv[local_n];
2455 /* We don't use SRR here since we always want to round down. */
2456 return val >> 32;
2457}
2458
2459/*
2460 * For updates fully spanning n periods, the contribution to runnable
2461 * average will be: \Sum 1024*y^n
2462 *
2463 * We can compute this reasonably efficiently by combining:
2464 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2465 */
2466static u32 __compute_runnable_contrib(u64 n)
2467{
2468 u32 contrib = 0;
2469
2470 if (likely(n <= LOAD_AVG_PERIOD))
2471 return runnable_avg_yN_sum[n];
2472 else if (unlikely(n >= LOAD_AVG_MAX_N))
2473 return LOAD_AVG_MAX;
2474
2475 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2476 do {
2477 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2478 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2479
2480 n -= LOAD_AVG_PERIOD;
2481 } while (n > LOAD_AVG_PERIOD);
2482
2483 contrib = decay_load(contrib, n);
2484 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2485}
2486
0c1dc6b2
MR
2487unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu);
2488
9d85f21c
PT
2489/*
2490 * We can represent the historical contribution to runnable average as the
2491 * coefficients of a geometric series. To do this we sub-divide our runnable
2492 * history into segments of approximately 1ms (1024us); label the segment that
2493 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2494 *
2495 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2496 * p0 p1 p2
2497 * (now) (~1ms ago) (~2ms ago)
2498 *
2499 * Let u_i denote the fraction of p_i that the entity was runnable.
2500 *
2501 * We then designate the fractions u_i as our co-efficients, yielding the
2502 * following representation of historical load:
2503 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2504 *
2505 * We choose y based on the with of a reasonably scheduling period, fixing:
2506 * y^32 = 0.5
2507 *
2508 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2509 * approximately half as much as the contribution to load within the last ms
2510 * (u_0).
2511 *
2512 * When a period "rolls over" and we have new u_0`, multiplying the previous
2513 * sum again by y is sufficient to update:
2514 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2515 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2516 */
0c1dc6b2 2517static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2518 struct sched_avg *sa,
36ee28e4
VG
2519 int runnable,
2520 int running)
9d85f21c 2521{
5b51f2f8
PT
2522 u64 delta, periods;
2523 u32 runnable_contrib;
9d85f21c 2524 int delta_w, decayed = 0;
0c1dc6b2 2525 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2526
2527 delta = now - sa->last_runnable_update;
2528 /*
2529 * This should only happen when time goes backwards, which it
2530 * unfortunately does during sched clock init when we swap over to TSC.
2531 */
2532 if ((s64)delta < 0) {
2533 sa->last_runnable_update = now;
2534 return 0;
2535 }
2536
2537 /*
2538 * Use 1024ns as the unit of measurement since it's a reasonable
2539 * approximation of 1us and fast to compute.
2540 */
2541 delta >>= 10;
2542 if (!delta)
2543 return 0;
2544 sa->last_runnable_update = now;
2545
2546 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2547 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2548 if (delta + delta_w >= 1024) {
2549 /* period roll-over */
2550 decayed = 1;
2551
2552 /*
2553 * Now that we know we're crossing a period boundary, figure
2554 * out how much from delta we need to complete the current
2555 * period and accrue it.
2556 */
2557 delta_w = 1024 - delta_w;
5b51f2f8
PT
2558 if (runnable)
2559 sa->runnable_avg_sum += delta_w;
36ee28e4 2560 if (running)
0c1dc6b2
MR
2561 sa->running_avg_sum += delta_w * scale_freq
2562 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2563 sa->avg_period += delta_w;
5b51f2f8
PT
2564
2565 delta -= delta_w;
2566
2567 /* Figure out how many additional periods this update spans */
2568 periods = delta / 1024;
2569 delta %= 1024;
2570
2571 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2572 periods + 1);
36ee28e4
VG
2573 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2574 periods + 1);
2575 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2576 periods + 1);
2577
2578 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2579 runnable_contrib = __compute_runnable_contrib(periods);
2580 if (runnable)
2581 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2582 if (running)
0c1dc6b2
MR
2583 sa->running_avg_sum += runnable_contrib * scale_freq
2584 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2585 sa->avg_period += runnable_contrib;
9d85f21c
PT
2586 }
2587
2588 /* Remainder of delta accrued against u_0` */
2589 if (runnable)
2590 sa->runnable_avg_sum += delta;
36ee28e4 2591 if (running)
0c1dc6b2
MR
2592 sa->running_avg_sum += delta * scale_freq
2593 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2594 sa->avg_period += delta;
9d85f21c
PT
2595
2596 return decayed;
2597}
2598
9ee474f5 2599/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2600static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2601{
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2604
2605 decays -= se->avg.decay_count;
63847600 2606 se->avg.decay_count = 0;
9ee474f5 2607 if (!decays)
aff3e498 2608 return 0;
9ee474f5
PT
2609
2610 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2611 se->avg.utilization_avg_contrib =
2612 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2613
2614 return decays;
9ee474f5
PT
2615}
2616
c566e8e9
PT
2617#ifdef CONFIG_FAIR_GROUP_SCHED
2618static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2619 int force_update)
2620{
2621 struct task_group *tg = cfs_rq->tg;
bf5b986e 2622 long tg_contrib;
c566e8e9
PT
2623
2624 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2625 tg_contrib -= cfs_rq->tg_load_contrib;
2626
8236d907
JL
2627 if (!tg_contrib)
2628 return;
2629
bf5b986e
AS
2630 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2631 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2632 cfs_rq->tg_load_contrib += tg_contrib;
2633 }
2634}
8165e145 2635
bb17f655
PT
2636/*
2637 * Aggregate cfs_rq runnable averages into an equivalent task_group
2638 * representation for computing load contributions.
2639 */
2640static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2641 struct cfs_rq *cfs_rq)
2642{
2643 struct task_group *tg = cfs_rq->tg;
2644 long contrib;
2645
2646 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2647 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2648 sa->avg_period + 1);
bb17f655
PT
2649 contrib -= cfs_rq->tg_runnable_contrib;
2650
2651 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2652 atomic_add(contrib, &tg->runnable_avg);
2653 cfs_rq->tg_runnable_contrib += contrib;
2654 }
2655}
2656
8165e145
PT
2657static inline void __update_group_entity_contrib(struct sched_entity *se)
2658{
2659 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2660 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2661 int runnable_avg;
2662
8165e145
PT
2663 u64 contrib;
2664
2665 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2666 se->avg.load_avg_contrib = div_u64(contrib,
2667 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2668
2669 /*
2670 * For group entities we need to compute a correction term in the case
2671 * that they are consuming <1 cpu so that we would contribute the same
2672 * load as a task of equal weight.
2673 *
2674 * Explicitly co-ordinating this measurement would be expensive, but
2675 * fortunately the sum of each cpus contribution forms a usable
2676 * lower-bound on the true value.
2677 *
2678 * Consider the aggregate of 2 contributions. Either they are disjoint
2679 * (and the sum represents true value) or they are disjoint and we are
2680 * understating by the aggregate of their overlap.
2681 *
2682 * Extending this to N cpus, for a given overlap, the maximum amount we
2683 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2684 * cpus that overlap for this interval and w_i is the interval width.
2685 *
2686 * On a small machine; the first term is well-bounded which bounds the
2687 * total error since w_i is a subset of the period. Whereas on a
2688 * larger machine, while this first term can be larger, if w_i is the
2689 * of consequential size guaranteed to see n_i*w_i quickly converge to
2690 * our upper bound of 1-cpu.
2691 */
2692 runnable_avg = atomic_read(&tg->runnable_avg);
2693 if (runnable_avg < NICE_0_LOAD) {
2694 se->avg.load_avg_contrib *= runnable_avg;
2695 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2696 }
8165e145 2697}
f5f9739d
DE
2698
2699static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2700{
0c1dc6b2
MR
2701 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2702 runnable, runnable);
f5f9739d
DE
2703 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2704}
6e83125c 2705#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2706static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2707 int force_update) {}
bb17f655
PT
2708static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2709 struct cfs_rq *cfs_rq) {}
8165e145 2710static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2711static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2712#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2713
8165e145
PT
2714static inline void __update_task_entity_contrib(struct sched_entity *se)
2715{
2716 u32 contrib;
2717
2718 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2719 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2720 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2721 se->avg.load_avg_contrib = scale_load(contrib);
2722}
2723
2dac754e
PT
2724/* Compute the current contribution to load_avg by se, return any delta */
2725static long __update_entity_load_avg_contrib(struct sched_entity *se)
2726{
2727 long old_contrib = se->avg.load_avg_contrib;
2728
8165e145
PT
2729 if (entity_is_task(se)) {
2730 __update_task_entity_contrib(se);
2731 } else {
bb17f655 2732 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2733 __update_group_entity_contrib(se);
2734 }
2dac754e
PT
2735
2736 return se->avg.load_avg_contrib - old_contrib;
2737}
2738
36ee28e4
VG
2739
2740static inline void __update_task_entity_utilization(struct sched_entity *se)
2741{
2742 u32 contrib;
2743
2744 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2745 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2746 contrib /= (se->avg.avg_period + 1);
2747 se->avg.utilization_avg_contrib = scale_load(contrib);
2748}
2749
2750static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2751{
2752 long old_contrib = se->avg.utilization_avg_contrib;
2753
2754 if (entity_is_task(se))
2755 __update_task_entity_utilization(se);
21f44866
MR
2756 else
2757 se->avg.utilization_avg_contrib =
2758 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2759
2760 return se->avg.utilization_avg_contrib - old_contrib;
2761}
2762
9ee474f5
PT
2763static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2764 long load_contrib)
2765{
2766 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2767 cfs_rq->blocked_load_avg -= load_contrib;
2768 else
2769 cfs_rq->blocked_load_avg = 0;
2770}
2771
f1b17280
PT
2772static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2773
9d85f21c 2774/* Update a sched_entity's runnable average */
9ee474f5
PT
2775static inline void update_entity_load_avg(struct sched_entity *se,
2776 int update_cfs_rq)
9d85f21c 2777{
2dac754e 2778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2779 long contrib_delta, utilization_delta;
0c1dc6b2 2780 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2781 u64 now;
2dac754e 2782
f1b17280
PT
2783 /*
2784 * For a group entity we need to use their owned cfs_rq_clock_task() in
2785 * case they are the parent of a throttled hierarchy.
2786 */
2787 if (entity_is_task(se))
2788 now = cfs_rq_clock_task(cfs_rq);
2789 else
2790 now = cfs_rq_clock_task(group_cfs_rq(se));
2791
0c1dc6b2 2792 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2793 cfs_rq->curr == se))
2dac754e
PT
2794 return;
2795
2796 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2797 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2798
2799 if (!update_cfs_rq)
2800 return;
2801
36ee28e4 2802 if (se->on_rq) {
2dac754e 2803 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2804 cfs_rq->utilization_load_avg += utilization_delta;
2805 } else {
9ee474f5 2806 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2807 }
9ee474f5
PT
2808}
2809
2810/*
2811 * Decay the load contributed by all blocked children and account this so that
2812 * their contribution may appropriately discounted when they wake up.
2813 */
aff3e498 2814static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2815{
f1b17280 2816 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2817 u64 decays;
2818
2819 decays = now - cfs_rq->last_decay;
aff3e498 2820 if (!decays && !force_update)
9ee474f5
PT
2821 return;
2822
2509940f
AS
2823 if (atomic_long_read(&cfs_rq->removed_load)) {
2824 unsigned long removed_load;
2825 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2826 subtract_blocked_load_contrib(cfs_rq, removed_load);
2827 }
9ee474f5 2828
aff3e498
PT
2829 if (decays) {
2830 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2831 decays);
2832 atomic64_add(decays, &cfs_rq->decay_counter);
2833 cfs_rq->last_decay = now;
2834 }
c566e8e9
PT
2835
2836 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2837}
18bf2805 2838
2dac754e
PT
2839/* Add the load generated by se into cfs_rq's child load-average */
2840static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2841 struct sched_entity *se,
2842 int wakeup)
2dac754e 2843{
aff3e498
PT
2844 /*
2845 * We track migrations using entity decay_count <= 0, on a wake-up
2846 * migration we use a negative decay count to track the remote decays
2847 * accumulated while sleeping.
a75cdaa9
AS
2848 *
2849 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2850 * are seen by enqueue_entity_load_avg() as a migration with an already
2851 * constructed load_avg_contrib.
aff3e498
PT
2852 */
2853 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2854 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2855 if (se->avg.decay_count) {
2856 /*
2857 * In a wake-up migration we have to approximate the
2858 * time sleeping. This is because we can't synchronize
2859 * clock_task between the two cpus, and it is not
2860 * guaranteed to be read-safe. Instead, we can
2861 * approximate this using our carried decays, which are
2862 * explicitly atomically readable.
2863 */
2864 se->avg.last_runnable_update -= (-se->avg.decay_count)
2865 << 20;
2866 update_entity_load_avg(se, 0);
2867 /* Indicate that we're now synchronized and on-rq */
2868 se->avg.decay_count = 0;
2869 }
9ee474f5
PT
2870 wakeup = 0;
2871 } else {
9390675a 2872 __synchronize_entity_decay(se);
9ee474f5
PT
2873 }
2874
aff3e498
PT
2875 /* migrated tasks did not contribute to our blocked load */
2876 if (wakeup) {
9ee474f5 2877 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2878 update_entity_load_avg(se, 0);
2879 }
9ee474f5 2880
2dac754e 2881 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2882 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2883 /* we force update consideration on load-balancer moves */
2884 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2885}
2886
9ee474f5
PT
2887/*
2888 * Remove se's load from this cfs_rq child load-average, if the entity is
2889 * transitioning to a blocked state we track its projected decay using
2890 * blocked_load_avg.
2891 */
2dac754e 2892static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2893 struct sched_entity *se,
2894 int sleep)
2dac754e 2895{
9ee474f5 2896 update_entity_load_avg(se, 1);
aff3e498
PT
2897 /* we force update consideration on load-balancer moves */
2898 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2899
2dac754e 2900 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2901 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2902 if (sleep) {
2903 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2904 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2905 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2906}
642dbc39
VG
2907
2908/*
2909 * Update the rq's load with the elapsed running time before entering
2910 * idle. if the last scheduled task is not a CFS task, idle_enter will
2911 * be the only way to update the runnable statistic.
2912 */
2913void idle_enter_fair(struct rq *this_rq)
2914{
2915 update_rq_runnable_avg(this_rq, 1);
2916}
2917
2918/*
2919 * Update the rq's load with the elapsed idle time before a task is
2920 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2921 * be the only way to update the runnable statistic.
2922 */
2923void idle_exit_fair(struct rq *this_rq)
2924{
2925 update_rq_runnable_avg(this_rq, 0);
2926}
2927
6e83125c
PZ
2928static int idle_balance(struct rq *this_rq);
2929
38033c37
PZ
2930#else /* CONFIG_SMP */
2931
9ee474f5
PT
2932static inline void update_entity_load_avg(struct sched_entity *se,
2933 int update_cfs_rq) {}
18bf2805 2934static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2935static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2936 struct sched_entity *se,
2937 int wakeup) {}
2dac754e 2938static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2939 struct sched_entity *se,
2940 int sleep) {}
aff3e498
PT
2941static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2942 int force_update) {}
6e83125c
PZ
2943
2944static inline int idle_balance(struct rq *rq)
2945{
2946 return 0;
2947}
2948
38033c37 2949#endif /* CONFIG_SMP */
9d85f21c 2950
2396af69 2951static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2952{
bf0f6f24 2953#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2954 struct task_struct *tsk = NULL;
2955
2956 if (entity_is_task(se))
2957 tsk = task_of(se);
2958
41acab88 2959 if (se->statistics.sleep_start) {
78becc27 2960 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2961
2962 if ((s64)delta < 0)
2963 delta = 0;
2964
41acab88
LDM
2965 if (unlikely(delta > se->statistics.sleep_max))
2966 se->statistics.sleep_max = delta;
bf0f6f24 2967
8c79a045 2968 se->statistics.sleep_start = 0;
41acab88 2969 se->statistics.sum_sleep_runtime += delta;
9745512c 2970
768d0c27 2971 if (tsk) {
e414314c 2972 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2973 trace_sched_stat_sleep(tsk, delta);
2974 }
bf0f6f24 2975 }
41acab88 2976 if (se->statistics.block_start) {
78becc27 2977 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2978
2979 if ((s64)delta < 0)
2980 delta = 0;
2981
41acab88
LDM
2982 if (unlikely(delta > se->statistics.block_max))
2983 se->statistics.block_max = delta;
bf0f6f24 2984
8c79a045 2985 se->statistics.block_start = 0;
41acab88 2986 se->statistics.sum_sleep_runtime += delta;
30084fbd 2987
e414314c 2988 if (tsk) {
8f0dfc34 2989 if (tsk->in_iowait) {
41acab88
LDM
2990 se->statistics.iowait_sum += delta;
2991 se->statistics.iowait_count++;
768d0c27 2992 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2993 }
2994
b781a602
AV
2995 trace_sched_stat_blocked(tsk, delta);
2996
e414314c
PZ
2997 /*
2998 * Blocking time is in units of nanosecs, so shift by
2999 * 20 to get a milliseconds-range estimation of the
3000 * amount of time that the task spent sleeping:
3001 */
3002 if (unlikely(prof_on == SLEEP_PROFILING)) {
3003 profile_hits(SLEEP_PROFILING,
3004 (void *)get_wchan(tsk),
3005 delta >> 20);
3006 }
3007 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3008 }
bf0f6f24
IM
3009 }
3010#endif
3011}
3012
ddc97297
PZ
3013static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3014{
3015#ifdef CONFIG_SCHED_DEBUG
3016 s64 d = se->vruntime - cfs_rq->min_vruntime;
3017
3018 if (d < 0)
3019 d = -d;
3020
3021 if (d > 3*sysctl_sched_latency)
3022 schedstat_inc(cfs_rq, nr_spread_over);
3023#endif
3024}
3025
aeb73b04
PZ
3026static void
3027place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3028{
1af5f730 3029 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3030
2cb8600e
PZ
3031 /*
3032 * The 'current' period is already promised to the current tasks,
3033 * however the extra weight of the new task will slow them down a
3034 * little, place the new task so that it fits in the slot that
3035 * stays open at the end.
3036 */
94dfb5e7 3037 if (initial && sched_feat(START_DEBIT))
f9c0b095 3038 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3039
a2e7a7eb 3040 /* sleeps up to a single latency don't count. */
5ca9880c 3041 if (!initial) {
a2e7a7eb 3042 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3043
a2e7a7eb
MG
3044 /*
3045 * Halve their sleep time's effect, to allow
3046 * for a gentler effect of sleepers:
3047 */
3048 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3049 thresh >>= 1;
51e0304c 3050
a2e7a7eb 3051 vruntime -= thresh;
aeb73b04
PZ
3052 }
3053
b5d9d734 3054 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3055 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3056}
3057
d3d9dc33
PT
3058static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3059
bf0f6f24 3060static void
88ec22d3 3061enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3062{
88ec22d3
PZ
3063 /*
3064 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3065 * through calling update_curr().
88ec22d3 3066 */
371fd7e7 3067 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3068 se->vruntime += cfs_rq->min_vruntime;
3069
bf0f6f24 3070 /*
a2a2d680 3071 * Update run-time statistics of the 'current'.
bf0f6f24 3072 */
b7cc0896 3073 update_curr(cfs_rq);
f269ae04 3074 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3075 account_entity_enqueue(cfs_rq, se);
3076 update_cfs_shares(cfs_rq);
bf0f6f24 3077
88ec22d3 3078 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3079 place_entity(cfs_rq, se, 0);
2396af69 3080 enqueue_sleeper(cfs_rq, se);
e9acbff6 3081 }
bf0f6f24 3082
d2417e5a 3083 update_stats_enqueue(cfs_rq, se);
ddc97297 3084 check_spread(cfs_rq, se);
83b699ed
SV
3085 if (se != cfs_rq->curr)
3086 __enqueue_entity(cfs_rq, se);
2069dd75 3087 se->on_rq = 1;
3d4b47b4 3088
d3d9dc33 3089 if (cfs_rq->nr_running == 1) {
3d4b47b4 3090 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3091 check_enqueue_throttle(cfs_rq);
3092 }
bf0f6f24
IM
3093}
3094
2c13c919 3095static void __clear_buddies_last(struct sched_entity *se)
2002c695 3096{
2c13c919
RR
3097 for_each_sched_entity(se) {
3098 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3099 if (cfs_rq->last != se)
2c13c919 3100 break;
f1044799
PZ
3101
3102 cfs_rq->last = NULL;
2c13c919
RR
3103 }
3104}
2002c695 3105
2c13c919
RR
3106static void __clear_buddies_next(struct sched_entity *se)
3107{
3108 for_each_sched_entity(se) {
3109 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3110 if (cfs_rq->next != se)
2c13c919 3111 break;
f1044799
PZ
3112
3113 cfs_rq->next = NULL;
2c13c919 3114 }
2002c695
PZ
3115}
3116
ac53db59
RR
3117static void __clear_buddies_skip(struct sched_entity *se)
3118{
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3121 if (cfs_rq->skip != se)
ac53db59 3122 break;
f1044799
PZ
3123
3124 cfs_rq->skip = NULL;
ac53db59
RR
3125 }
3126}
3127
a571bbea
PZ
3128static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3129{
2c13c919
RR
3130 if (cfs_rq->last == se)
3131 __clear_buddies_last(se);
3132
3133 if (cfs_rq->next == se)
3134 __clear_buddies_next(se);
ac53db59
RR
3135
3136 if (cfs_rq->skip == se)
3137 __clear_buddies_skip(se);
a571bbea
PZ
3138}
3139
6c16a6dc 3140static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3141
bf0f6f24 3142static void
371fd7e7 3143dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3144{
a2a2d680
DA
3145 /*
3146 * Update run-time statistics of the 'current'.
3147 */
3148 update_curr(cfs_rq);
17bc14b7 3149 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3150
19b6a2e3 3151 update_stats_dequeue(cfs_rq, se);
371fd7e7 3152 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3153#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3154 if (entity_is_task(se)) {
3155 struct task_struct *tsk = task_of(se);
3156
3157 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3158 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3159 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3160 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3161 }
db36cc7d 3162#endif
67e9fb2a
PZ
3163 }
3164
2002c695 3165 clear_buddies(cfs_rq, se);
4793241b 3166
83b699ed 3167 if (se != cfs_rq->curr)
30cfdcfc 3168 __dequeue_entity(cfs_rq, se);
17bc14b7 3169 se->on_rq = 0;
30cfdcfc 3170 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3171
3172 /*
3173 * Normalize the entity after updating the min_vruntime because the
3174 * update can refer to the ->curr item and we need to reflect this
3175 * movement in our normalized position.
3176 */
371fd7e7 3177 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3178 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3179
d8b4986d
PT
3180 /* return excess runtime on last dequeue */
3181 return_cfs_rq_runtime(cfs_rq);
3182
1e876231 3183 update_min_vruntime(cfs_rq);
17bc14b7 3184 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3185}
3186
3187/*
3188 * Preempt the current task with a newly woken task if needed:
3189 */
7c92e54f 3190static void
2e09bf55 3191check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3192{
11697830 3193 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3194 struct sched_entity *se;
3195 s64 delta;
11697830 3196
6d0f0ebd 3197 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3198 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3199 if (delta_exec > ideal_runtime) {
8875125e 3200 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3201 /*
3202 * The current task ran long enough, ensure it doesn't get
3203 * re-elected due to buddy favours.
3204 */
3205 clear_buddies(cfs_rq, curr);
f685ceac
MG
3206 return;
3207 }
3208
3209 /*
3210 * Ensure that a task that missed wakeup preemption by a
3211 * narrow margin doesn't have to wait for a full slice.
3212 * This also mitigates buddy induced latencies under load.
3213 */
f685ceac
MG
3214 if (delta_exec < sysctl_sched_min_granularity)
3215 return;
3216
f4cfb33e
WX
3217 se = __pick_first_entity(cfs_rq);
3218 delta = curr->vruntime - se->vruntime;
f685ceac 3219
f4cfb33e
WX
3220 if (delta < 0)
3221 return;
d7d82944 3222
f4cfb33e 3223 if (delta > ideal_runtime)
8875125e 3224 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3225}
3226
83b699ed 3227static void
8494f412 3228set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3229{
83b699ed
SV
3230 /* 'current' is not kept within the tree. */
3231 if (se->on_rq) {
3232 /*
3233 * Any task has to be enqueued before it get to execute on
3234 * a CPU. So account for the time it spent waiting on the
3235 * runqueue.
3236 */
3237 update_stats_wait_end(cfs_rq, se);
3238 __dequeue_entity(cfs_rq, se);
36ee28e4 3239 update_entity_load_avg(se, 1);
83b699ed
SV
3240 }
3241
79303e9e 3242 update_stats_curr_start(cfs_rq, se);
429d43bc 3243 cfs_rq->curr = se;
eba1ed4b
IM
3244#ifdef CONFIG_SCHEDSTATS
3245 /*
3246 * Track our maximum slice length, if the CPU's load is at
3247 * least twice that of our own weight (i.e. dont track it
3248 * when there are only lesser-weight tasks around):
3249 */
495eca49 3250 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3251 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3252 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3253 }
3254#endif
4a55b450 3255 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3256}
3257
3f3a4904
PZ
3258static int
3259wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3260
ac53db59
RR
3261/*
3262 * Pick the next process, keeping these things in mind, in this order:
3263 * 1) keep things fair between processes/task groups
3264 * 2) pick the "next" process, since someone really wants that to run
3265 * 3) pick the "last" process, for cache locality
3266 * 4) do not run the "skip" process, if something else is available
3267 */
678d5718
PZ
3268static struct sched_entity *
3269pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3270{
678d5718
PZ
3271 struct sched_entity *left = __pick_first_entity(cfs_rq);
3272 struct sched_entity *se;
3273
3274 /*
3275 * If curr is set we have to see if its left of the leftmost entity
3276 * still in the tree, provided there was anything in the tree at all.
3277 */
3278 if (!left || (curr && entity_before(curr, left)))
3279 left = curr;
3280
3281 se = left; /* ideally we run the leftmost entity */
f4b6755f 3282
ac53db59
RR
3283 /*
3284 * Avoid running the skip buddy, if running something else can
3285 * be done without getting too unfair.
3286 */
3287 if (cfs_rq->skip == se) {
678d5718
PZ
3288 struct sched_entity *second;
3289
3290 if (se == curr) {
3291 second = __pick_first_entity(cfs_rq);
3292 } else {
3293 second = __pick_next_entity(se);
3294 if (!second || (curr && entity_before(curr, second)))
3295 second = curr;
3296 }
3297
ac53db59
RR
3298 if (second && wakeup_preempt_entity(second, left) < 1)
3299 se = second;
3300 }
aa2ac252 3301
f685ceac
MG
3302 /*
3303 * Prefer last buddy, try to return the CPU to a preempted task.
3304 */
3305 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3306 se = cfs_rq->last;
3307
ac53db59
RR
3308 /*
3309 * Someone really wants this to run. If it's not unfair, run it.
3310 */
3311 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3312 se = cfs_rq->next;
3313
f685ceac 3314 clear_buddies(cfs_rq, se);
4793241b
PZ
3315
3316 return se;
aa2ac252
PZ
3317}
3318
678d5718 3319static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3320
ab6cde26 3321static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3322{
3323 /*
3324 * If still on the runqueue then deactivate_task()
3325 * was not called and update_curr() has to be done:
3326 */
3327 if (prev->on_rq)
b7cc0896 3328 update_curr(cfs_rq);
bf0f6f24 3329
d3d9dc33
PT
3330 /* throttle cfs_rqs exceeding runtime */
3331 check_cfs_rq_runtime(cfs_rq);
3332
ddc97297 3333 check_spread(cfs_rq, prev);
30cfdcfc 3334 if (prev->on_rq) {
5870db5b 3335 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3336 /* Put 'current' back into the tree. */
3337 __enqueue_entity(cfs_rq, prev);
9d85f21c 3338 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3339 update_entity_load_avg(prev, 1);
30cfdcfc 3340 }
429d43bc 3341 cfs_rq->curr = NULL;
bf0f6f24
IM
3342}
3343
8f4d37ec
PZ
3344static void
3345entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3346{
bf0f6f24 3347 /*
30cfdcfc 3348 * Update run-time statistics of the 'current'.
bf0f6f24 3349 */
30cfdcfc 3350 update_curr(cfs_rq);
bf0f6f24 3351
9d85f21c
PT
3352 /*
3353 * Ensure that runnable average is periodically updated.
3354 */
9ee474f5 3355 update_entity_load_avg(curr, 1);
aff3e498 3356 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3357 update_cfs_shares(cfs_rq);
9d85f21c 3358
8f4d37ec
PZ
3359#ifdef CONFIG_SCHED_HRTICK
3360 /*
3361 * queued ticks are scheduled to match the slice, so don't bother
3362 * validating it and just reschedule.
3363 */
983ed7a6 3364 if (queued) {
8875125e 3365 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3366 return;
3367 }
8f4d37ec
PZ
3368 /*
3369 * don't let the period tick interfere with the hrtick preemption
3370 */
3371 if (!sched_feat(DOUBLE_TICK) &&
3372 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3373 return;
3374#endif
3375
2c2efaed 3376 if (cfs_rq->nr_running > 1)
2e09bf55 3377 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3378}
3379
ab84d31e
PT
3380
3381/**************************************************
3382 * CFS bandwidth control machinery
3383 */
3384
3385#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3386
3387#ifdef HAVE_JUMP_LABEL
c5905afb 3388static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3389
3390static inline bool cfs_bandwidth_used(void)
3391{
c5905afb 3392 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3393}
3394
1ee14e6c 3395void cfs_bandwidth_usage_inc(void)
029632fb 3396{
1ee14e6c
BS
3397 static_key_slow_inc(&__cfs_bandwidth_used);
3398}
3399
3400void cfs_bandwidth_usage_dec(void)
3401{
3402 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3403}
3404#else /* HAVE_JUMP_LABEL */
3405static bool cfs_bandwidth_used(void)
3406{
3407 return true;
3408}
3409
1ee14e6c
BS
3410void cfs_bandwidth_usage_inc(void) {}
3411void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3412#endif /* HAVE_JUMP_LABEL */
3413
ab84d31e
PT
3414/*
3415 * default period for cfs group bandwidth.
3416 * default: 0.1s, units: nanoseconds
3417 */
3418static inline u64 default_cfs_period(void)
3419{
3420 return 100000000ULL;
3421}
ec12cb7f
PT
3422
3423static inline u64 sched_cfs_bandwidth_slice(void)
3424{
3425 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3426}
3427
a9cf55b2
PT
3428/*
3429 * Replenish runtime according to assigned quota and update expiration time.
3430 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3431 * additional synchronization around rq->lock.
3432 *
3433 * requires cfs_b->lock
3434 */
029632fb 3435void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3436{
3437 u64 now;
3438
3439 if (cfs_b->quota == RUNTIME_INF)
3440 return;
3441
3442 now = sched_clock_cpu(smp_processor_id());
3443 cfs_b->runtime = cfs_b->quota;
3444 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3445}
3446
029632fb
PZ
3447static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3448{
3449 return &tg->cfs_bandwidth;
3450}
3451
f1b17280
PT
3452/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3453static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3454{
3455 if (unlikely(cfs_rq->throttle_count))
3456 return cfs_rq->throttled_clock_task;
3457
78becc27 3458 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3459}
3460
85dac906
PT
3461/* returns 0 on failure to allocate runtime */
3462static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3463{
3464 struct task_group *tg = cfs_rq->tg;
3465 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3466 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3467
3468 /* note: this is a positive sum as runtime_remaining <= 0 */
3469 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3470
3471 raw_spin_lock(&cfs_b->lock);
3472 if (cfs_b->quota == RUNTIME_INF)
3473 amount = min_amount;
58088ad0 3474 else {
a9cf55b2
PT
3475 /*
3476 * If the bandwidth pool has become inactive, then at least one
3477 * period must have elapsed since the last consumption.
3478 * Refresh the global state and ensure bandwidth timer becomes
3479 * active.
3480 */
3481 if (!cfs_b->timer_active) {
3482 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3483 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3484 }
58088ad0
PT
3485
3486 if (cfs_b->runtime > 0) {
3487 amount = min(cfs_b->runtime, min_amount);
3488 cfs_b->runtime -= amount;
3489 cfs_b->idle = 0;
3490 }
ec12cb7f 3491 }
a9cf55b2 3492 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3493 raw_spin_unlock(&cfs_b->lock);
3494
3495 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3496 /*
3497 * we may have advanced our local expiration to account for allowed
3498 * spread between our sched_clock and the one on which runtime was
3499 * issued.
3500 */
3501 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3502 cfs_rq->runtime_expires = expires;
85dac906
PT
3503
3504 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3505}
3506
a9cf55b2
PT
3507/*
3508 * Note: This depends on the synchronization provided by sched_clock and the
3509 * fact that rq->clock snapshots this value.
3510 */
3511static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3512{
a9cf55b2 3513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3514
3515 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3516 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3517 return;
3518
a9cf55b2
PT
3519 if (cfs_rq->runtime_remaining < 0)
3520 return;
3521
3522 /*
3523 * If the local deadline has passed we have to consider the
3524 * possibility that our sched_clock is 'fast' and the global deadline
3525 * has not truly expired.
3526 *
3527 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3528 * whether the global deadline has advanced. It is valid to compare
3529 * cfs_b->runtime_expires without any locks since we only care about
3530 * exact equality, so a partial write will still work.
a9cf55b2
PT
3531 */
3532
51f2176d 3533 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3534 /* extend local deadline, drift is bounded above by 2 ticks */
3535 cfs_rq->runtime_expires += TICK_NSEC;
3536 } else {
3537 /* global deadline is ahead, expiration has passed */
3538 cfs_rq->runtime_remaining = 0;
3539 }
3540}
3541
9dbdb155 3542static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3543{
3544 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3545 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3546 expire_cfs_rq_runtime(cfs_rq);
3547
3548 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3549 return;
3550
85dac906
PT
3551 /*
3552 * if we're unable to extend our runtime we resched so that the active
3553 * hierarchy can be throttled
3554 */
3555 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3556 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3557}
3558
6c16a6dc 3559static __always_inline
9dbdb155 3560void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3561{
56f570e5 3562 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3563 return;
3564
3565 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3566}
3567
85dac906
PT
3568static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3569{
56f570e5 3570 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3571}
3572
64660c86
PT
3573/* check whether cfs_rq, or any parent, is throttled */
3574static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3575{
56f570e5 3576 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3577}
3578
3579/*
3580 * Ensure that neither of the group entities corresponding to src_cpu or
3581 * dest_cpu are members of a throttled hierarchy when performing group
3582 * load-balance operations.
3583 */
3584static inline int throttled_lb_pair(struct task_group *tg,
3585 int src_cpu, int dest_cpu)
3586{
3587 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3588
3589 src_cfs_rq = tg->cfs_rq[src_cpu];
3590 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3591
3592 return throttled_hierarchy(src_cfs_rq) ||
3593 throttled_hierarchy(dest_cfs_rq);
3594}
3595
3596/* updated child weight may affect parent so we have to do this bottom up */
3597static int tg_unthrottle_up(struct task_group *tg, void *data)
3598{
3599 struct rq *rq = data;
3600 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3601
3602 cfs_rq->throttle_count--;
3603#ifdef CONFIG_SMP
3604 if (!cfs_rq->throttle_count) {
f1b17280 3605 /* adjust cfs_rq_clock_task() */
78becc27 3606 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3607 cfs_rq->throttled_clock_task;
64660c86
PT
3608 }
3609#endif
3610
3611 return 0;
3612}
3613
3614static int tg_throttle_down(struct task_group *tg, void *data)
3615{
3616 struct rq *rq = data;
3617 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3618
82958366
PT
3619 /* group is entering throttled state, stop time */
3620 if (!cfs_rq->throttle_count)
78becc27 3621 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3622 cfs_rq->throttle_count++;
3623
3624 return 0;
3625}
3626
d3d9dc33 3627static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3628{
3629 struct rq *rq = rq_of(cfs_rq);
3630 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3631 struct sched_entity *se;
3632 long task_delta, dequeue = 1;
3633
3634 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3635
f1b17280 3636 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3637 rcu_read_lock();
3638 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3639 rcu_read_unlock();
85dac906
PT
3640
3641 task_delta = cfs_rq->h_nr_running;
3642 for_each_sched_entity(se) {
3643 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3644 /* throttled entity or throttle-on-deactivate */
3645 if (!se->on_rq)
3646 break;
3647
3648 if (dequeue)
3649 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3650 qcfs_rq->h_nr_running -= task_delta;
3651
3652 if (qcfs_rq->load.weight)
3653 dequeue = 0;
3654 }
3655
3656 if (!se)
72465447 3657 sub_nr_running(rq, task_delta);
85dac906
PT
3658
3659 cfs_rq->throttled = 1;
78becc27 3660 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3661 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3662 /*
3663 * Add to the _head_ of the list, so that an already-started
3664 * distribute_cfs_runtime will not see us
3665 */
3666 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3667 if (!cfs_b->timer_active)
09dc4ab0 3668 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3669 raw_spin_unlock(&cfs_b->lock);
3670}
3671
029632fb 3672void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3673{
3674 struct rq *rq = rq_of(cfs_rq);
3675 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3676 struct sched_entity *se;
3677 int enqueue = 1;
3678 long task_delta;
3679
22b958d8 3680 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3681
3682 cfs_rq->throttled = 0;
1a55af2e
FW
3683
3684 update_rq_clock(rq);
3685
671fd9da 3686 raw_spin_lock(&cfs_b->lock);
78becc27 3687 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3688 list_del_rcu(&cfs_rq->throttled_list);
3689 raw_spin_unlock(&cfs_b->lock);
3690
64660c86
PT
3691 /* update hierarchical throttle state */
3692 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3693
671fd9da
PT
3694 if (!cfs_rq->load.weight)
3695 return;
3696
3697 task_delta = cfs_rq->h_nr_running;
3698 for_each_sched_entity(se) {
3699 if (se->on_rq)
3700 enqueue = 0;
3701
3702 cfs_rq = cfs_rq_of(se);
3703 if (enqueue)
3704 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3705 cfs_rq->h_nr_running += task_delta;
3706
3707 if (cfs_rq_throttled(cfs_rq))
3708 break;
3709 }
3710
3711 if (!se)
72465447 3712 add_nr_running(rq, task_delta);
671fd9da
PT
3713
3714 /* determine whether we need to wake up potentially idle cpu */
3715 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3716 resched_curr(rq);
671fd9da
PT
3717}
3718
3719static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3720 u64 remaining, u64 expires)
3721{
3722 struct cfs_rq *cfs_rq;
c06f04c7
BS
3723 u64 runtime;
3724 u64 starting_runtime = remaining;
671fd9da
PT
3725
3726 rcu_read_lock();
3727 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3728 throttled_list) {
3729 struct rq *rq = rq_of(cfs_rq);
3730
3731 raw_spin_lock(&rq->lock);
3732 if (!cfs_rq_throttled(cfs_rq))
3733 goto next;
3734
3735 runtime = -cfs_rq->runtime_remaining + 1;
3736 if (runtime > remaining)
3737 runtime = remaining;
3738 remaining -= runtime;
3739
3740 cfs_rq->runtime_remaining += runtime;
3741 cfs_rq->runtime_expires = expires;
3742
3743 /* we check whether we're throttled above */
3744 if (cfs_rq->runtime_remaining > 0)
3745 unthrottle_cfs_rq(cfs_rq);
3746
3747next:
3748 raw_spin_unlock(&rq->lock);
3749
3750 if (!remaining)
3751 break;
3752 }
3753 rcu_read_unlock();
3754
c06f04c7 3755 return starting_runtime - remaining;
671fd9da
PT
3756}
3757
58088ad0
PT
3758/*
3759 * Responsible for refilling a task_group's bandwidth and unthrottling its
3760 * cfs_rqs as appropriate. If there has been no activity within the last
3761 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3762 * used to track this state.
3763 */
3764static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3765{
671fd9da 3766 u64 runtime, runtime_expires;
51f2176d 3767 int throttled;
58088ad0 3768
58088ad0
PT
3769 /* no need to continue the timer with no bandwidth constraint */
3770 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3771 goto out_deactivate;
58088ad0 3772
671fd9da 3773 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3774 cfs_b->nr_periods += overrun;
671fd9da 3775
51f2176d
BS
3776 /*
3777 * idle depends on !throttled (for the case of a large deficit), and if
3778 * we're going inactive then everything else can be deferred
3779 */
3780 if (cfs_b->idle && !throttled)
3781 goto out_deactivate;
a9cf55b2 3782
927b54fc
BS
3783 /*
3784 * if we have relooped after returning idle once, we need to update our
3785 * status as actually running, so that other cpus doing
3786 * __start_cfs_bandwidth will stop trying to cancel us.
3787 */
3788 cfs_b->timer_active = 1;
3789
a9cf55b2
PT
3790 __refill_cfs_bandwidth_runtime(cfs_b);
3791
671fd9da
PT
3792 if (!throttled) {
3793 /* mark as potentially idle for the upcoming period */
3794 cfs_b->idle = 1;
51f2176d 3795 return 0;
671fd9da
PT
3796 }
3797
e8da1b18
NR
3798 /* account preceding periods in which throttling occurred */
3799 cfs_b->nr_throttled += overrun;
3800
671fd9da 3801 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3802
3803 /*
c06f04c7
BS
3804 * This check is repeated as we are holding onto the new bandwidth while
3805 * we unthrottle. This can potentially race with an unthrottled group
3806 * trying to acquire new bandwidth from the global pool. This can result
3807 * in us over-using our runtime if it is all used during this loop, but
3808 * only by limited amounts in that extreme case.
671fd9da 3809 */
c06f04c7
BS
3810 while (throttled && cfs_b->runtime > 0) {
3811 runtime = cfs_b->runtime;
671fd9da
PT
3812 raw_spin_unlock(&cfs_b->lock);
3813 /* we can't nest cfs_b->lock while distributing bandwidth */
3814 runtime = distribute_cfs_runtime(cfs_b, runtime,
3815 runtime_expires);
3816 raw_spin_lock(&cfs_b->lock);
3817
3818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3819
3820 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3821 }
58088ad0 3822
671fd9da
PT
3823 /*
3824 * While we are ensured activity in the period following an
3825 * unthrottle, this also covers the case in which the new bandwidth is
3826 * insufficient to cover the existing bandwidth deficit. (Forcing the
3827 * timer to remain active while there are any throttled entities.)
3828 */
3829 cfs_b->idle = 0;
58088ad0 3830
51f2176d
BS
3831 return 0;
3832
3833out_deactivate:
3834 cfs_b->timer_active = 0;
3835 return 1;
58088ad0 3836}
d3d9dc33 3837
d8b4986d
PT
3838/* a cfs_rq won't donate quota below this amount */
3839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3840/* minimum remaining period time to redistribute slack quota */
3841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3842/* how long we wait to gather additional slack before distributing */
3843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3844
db06e78c
BS
3845/*
3846 * Are we near the end of the current quota period?
3847 *
3848 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3849 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3850 * migrate_hrtimers, base is never cleared, so we are fine.
3851 */
d8b4986d
PT
3852static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3853{
3854 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3855 u64 remaining;
3856
3857 /* if the call-back is running a quota refresh is already occurring */
3858 if (hrtimer_callback_running(refresh_timer))
3859 return 1;
3860
3861 /* is a quota refresh about to occur? */
3862 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3863 if (remaining < min_expire)
3864 return 1;
3865
3866 return 0;
3867}
3868
3869static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3870{
3871 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3872
3873 /* if there's a quota refresh soon don't bother with slack */
3874 if (runtime_refresh_within(cfs_b, min_left))
3875 return;
3876
3877 start_bandwidth_timer(&cfs_b->slack_timer,
3878 ns_to_ktime(cfs_bandwidth_slack_period));
3879}
3880
3881/* we know any runtime found here is valid as update_curr() precedes return */
3882static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3883{
3884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3885 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3886
3887 if (slack_runtime <= 0)
3888 return;
3889
3890 raw_spin_lock(&cfs_b->lock);
3891 if (cfs_b->quota != RUNTIME_INF &&
3892 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3893 cfs_b->runtime += slack_runtime;
3894
3895 /* we are under rq->lock, defer unthrottling using a timer */
3896 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3897 !list_empty(&cfs_b->throttled_cfs_rq))
3898 start_cfs_slack_bandwidth(cfs_b);
3899 }
3900 raw_spin_unlock(&cfs_b->lock);
3901
3902 /* even if it's not valid for return we don't want to try again */
3903 cfs_rq->runtime_remaining -= slack_runtime;
3904}
3905
3906static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3907{
56f570e5
PT
3908 if (!cfs_bandwidth_used())
3909 return;
3910
fccfdc6f 3911 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3912 return;
3913
3914 __return_cfs_rq_runtime(cfs_rq);
3915}
3916
3917/*
3918 * This is done with a timer (instead of inline with bandwidth return) since
3919 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3920 */
3921static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3922{
3923 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3924 u64 expires;
3925
3926 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3927 raw_spin_lock(&cfs_b->lock);
3928 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3929 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3930 return;
db06e78c 3931 }
d8b4986d 3932
c06f04c7 3933 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3934 runtime = cfs_b->runtime;
c06f04c7 3935
d8b4986d
PT
3936 expires = cfs_b->runtime_expires;
3937 raw_spin_unlock(&cfs_b->lock);
3938
3939 if (!runtime)
3940 return;
3941
3942 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3943
3944 raw_spin_lock(&cfs_b->lock);
3945 if (expires == cfs_b->runtime_expires)
c06f04c7 3946 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3947 raw_spin_unlock(&cfs_b->lock);
3948}
3949
d3d9dc33
PT
3950/*
3951 * When a group wakes up we want to make sure that its quota is not already
3952 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3953 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3954 */
3955static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3956{
56f570e5
PT
3957 if (!cfs_bandwidth_used())
3958 return;
3959
d3d9dc33
PT
3960 /* an active group must be handled by the update_curr()->put() path */
3961 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3962 return;
3963
3964 /* ensure the group is not already throttled */
3965 if (cfs_rq_throttled(cfs_rq))
3966 return;
3967
3968 /* update runtime allocation */
3969 account_cfs_rq_runtime(cfs_rq, 0);
3970 if (cfs_rq->runtime_remaining <= 0)
3971 throttle_cfs_rq(cfs_rq);
3972}
3973
3974/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3975static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3976{
56f570e5 3977 if (!cfs_bandwidth_used())
678d5718 3978 return false;
56f570e5 3979
d3d9dc33 3980 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3981 return false;
d3d9dc33
PT
3982
3983 /*
3984 * it's possible for a throttled entity to be forced into a running
3985 * state (e.g. set_curr_task), in this case we're finished.
3986 */
3987 if (cfs_rq_throttled(cfs_rq))
678d5718 3988 return true;
d3d9dc33
PT
3989
3990 throttle_cfs_rq(cfs_rq);
678d5718 3991 return true;
d3d9dc33 3992}
029632fb 3993
029632fb
PZ
3994static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3995{
3996 struct cfs_bandwidth *cfs_b =
3997 container_of(timer, struct cfs_bandwidth, slack_timer);
3998 do_sched_cfs_slack_timer(cfs_b);
3999
4000 return HRTIMER_NORESTART;
4001}
4002
4003static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4004{
4005 struct cfs_bandwidth *cfs_b =
4006 container_of(timer, struct cfs_bandwidth, period_timer);
4007 ktime_t now;
4008 int overrun;
4009 int idle = 0;
4010
51f2176d 4011 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
4012 for (;;) {
4013 now = hrtimer_cb_get_time(timer);
4014 overrun = hrtimer_forward(timer, now, cfs_b->period);
4015
4016 if (!overrun)
4017 break;
4018
4019 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4020 }
51f2176d 4021 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4022
4023 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4024}
4025
4026void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4027{
4028 raw_spin_lock_init(&cfs_b->lock);
4029 cfs_b->runtime = 0;
4030 cfs_b->quota = RUNTIME_INF;
4031 cfs_b->period = ns_to_ktime(default_cfs_period());
4032
4033 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4034 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4035 cfs_b->period_timer.function = sched_cfs_period_timer;
4036 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4037 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4038}
4039
4040static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4041{
4042 cfs_rq->runtime_enabled = 0;
4043 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4044}
4045
4046/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 4047void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
4048{
4049 /*
4050 * The timer may be active because we're trying to set a new bandwidth
4051 * period or because we're racing with the tear-down path
4052 * (timer_active==0 becomes visible before the hrtimer call-back
4053 * terminates). In either case we ensure that it's re-programmed
4054 */
927b54fc
BS
4055 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4056 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4057 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4058 raw_spin_unlock(&cfs_b->lock);
927b54fc 4059 cpu_relax();
029632fb
PZ
4060 raw_spin_lock(&cfs_b->lock);
4061 /* if someone else restarted the timer then we're done */
09dc4ab0 4062 if (!force && cfs_b->timer_active)
029632fb
PZ
4063 return;
4064 }
4065
4066 cfs_b->timer_active = 1;
4067 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4068}
4069
4070static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4071{
7f1a169b
TH
4072 /* init_cfs_bandwidth() was not called */
4073 if (!cfs_b->throttled_cfs_rq.next)
4074 return;
4075
029632fb
PZ
4076 hrtimer_cancel(&cfs_b->period_timer);
4077 hrtimer_cancel(&cfs_b->slack_timer);
4078}
4079
0e59bdae
KT
4080static void __maybe_unused update_runtime_enabled(struct rq *rq)
4081{
4082 struct cfs_rq *cfs_rq;
4083
4084 for_each_leaf_cfs_rq(rq, cfs_rq) {
4085 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4086
4087 raw_spin_lock(&cfs_b->lock);
4088 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4089 raw_spin_unlock(&cfs_b->lock);
4090 }
4091}
4092
38dc3348 4093static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4094{
4095 struct cfs_rq *cfs_rq;
4096
4097 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4098 if (!cfs_rq->runtime_enabled)
4099 continue;
4100
4101 /*
4102 * clock_task is not advancing so we just need to make sure
4103 * there's some valid quota amount
4104 */
51f2176d 4105 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4106 /*
4107 * Offline rq is schedulable till cpu is completely disabled
4108 * in take_cpu_down(), so we prevent new cfs throttling here.
4109 */
4110 cfs_rq->runtime_enabled = 0;
4111
029632fb
PZ
4112 if (cfs_rq_throttled(cfs_rq))
4113 unthrottle_cfs_rq(cfs_rq);
4114 }
4115}
4116
4117#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4118static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4119{
78becc27 4120 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4121}
4122
9dbdb155 4123static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4124static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4125static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4126static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4127
4128static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4129{
4130 return 0;
4131}
64660c86
PT
4132
4133static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4134{
4135 return 0;
4136}
4137
4138static inline int throttled_lb_pair(struct task_group *tg,
4139 int src_cpu, int dest_cpu)
4140{
4141 return 0;
4142}
029632fb
PZ
4143
4144void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4145
4146#ifdef CONFIG_FAIR_GROUP_SCHED
4147static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4148#endif
4149
029632fb
PZ
4150static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4151{
4152 return NULL;
4153}
4154static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4155static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4156static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4157
4158#endif /* CONFIG_CFS_BANDWIDTH */
4159
bf0f6f24
IM
4160/**************************************************
4161 * CFS operations on tasks:
4162 */
4163
8f4d37ec
PZ
4164#ifdef CONFIG_SCHED_HRTICK
4165static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4166{
8f4d37ec
PZ
4167 struct sched_entity *se = &p->se;
4168 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4169
4170 WARN_ON(task_rq(p) != rq);
4171
b39e66ea 4172 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4173 u64 slice = sched_slice(cfs_rq, se);
4174 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4175 s64 delta = slice - ran;
4176
4177 if (delta < 0) {
4178 if (rq->curr == p)
8875125e 4179 resched_curr(rq);
8f4d37ec
PZ
4180 return;
4181 }
31656519 4182 hrtick_start(rq, delta);
8f4d37ec
PZ
4183 }
4184}
a4c2f00f
PZ
4185
4186/*
4187 * called from enqueue/dequeue and updates the hrtick when the
4188 * current task is from our class and nr_running is low enough
4189 * to matter.
4190 */
4191static void hrtick_update(struct rq *rq)
4192{
4193 struct task_struct *curr = rq->curr;
4194
b39e66ea 4195 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4196 return;
4197
4198 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4199 hrtick_start_fair(rq, curr);
4200}
55e12e5e 4201#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4202static inline void
4203hrtick_start_fair(struct rq *rq, struct task_struct *p)
4204{
4205}
a4c2f00f
PZ
4206
4207static inline void hrtick_update(struct rq *rq)
4208{
4209}
8f4d37ec
PZ
4210#endif
4211
bf0f6f24
IM
4212/*
4213 * The enqueue_task method is called before nr_running is
4214 * increased. Here we update the fair scheduling stats and
4215 * then put the task into the rbtree:
4216 */
ea87bb78 4217static void
371fd7e7 4218enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4219{
4220 struct cfs_rq *cfs_rq;
62fb1851 4221 struct sched_entity *se = &p->se;
bf0f6f24
IM
4222
4223 for_each_sched_entity(se) {
62fb1851 4224 if (se->on_rq)
bf0f6f24
IM
4225 break;
4226 cfs_rq = cfs_rq_of(se);
88ec22d3 4227 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4228
4229 /*
4230 * end evaluation on encountering a throttled cfs_rq
4231 *
4232 * note: in the case of encountering a throttled cfs_rq we will
4233 * post the final h_nr_running increment below.
4234 */
4235 if (cfs_rq_throttled(cfs_rq))
4236 break;
953bfcd1 4237 cfs_rq->h_nr_running++;
85dac906 4238
88ec22d3 4239 flags = ENQUEUE_WAKEUP;
bf0f6f24 4240 }
8f4d37ec 4241
2069dd75 4242 for_each_sched_entity(se) {
0f317143 4243 cfs_rq = cfs_rq_of(se);
953bfcd1 4244 cfs_rq->h_nr_running++;
2069dd75 4245
85dac906
PT
4246 if (cfs_rq_throttled(cfs_rq))
4247 break;
4248
17bc14b7 4249 update_cfs_shares(cfs_rq);
9ee474f5 4250 update_entity_load_avg(se, 1);
2069dd75
PZ
4251 }
4252
18bf2805
BS
4253 if (!se) {
4254 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4255 add_nr_running(rq, 1);
18bf2805 4256 }
a4c2f00f 4257 hrtick_update(rq);
bf0f6f24
IM
4258}
4259
2f36825b
VP
4260static void set_next_buddy(struct sched_entity *se);
4261
bf0f6f24
IM
4262/*
4263 * The dequeue_task method is called before nr_running is
4264 * decreased. We remove the task from the rbtree and
4265 * update the fair scheduling stats:
4266 */
371fd7e7 4267static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4268{
4269 struct cfs_rq *cfs_rq;
62fb1851 4270 struct sched_entity *se = &p->se;
2f36825b 4271 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4272
4273 for_each_sched_entity(se) {
4274 cfs_rq = cfs_rq_of(se);
371fd7e7 4275 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4276
4277 /*
4278 * end evaluation on encountering a throttled cfs_rq
4279 *
4280 * note: in the case of encountering a throttled cfs_rq we will
4281 * post the final h_nr_running decrement below.
4282 */
4283 if (cfs_rq_throttled(cfs_rq))
4284 break;
953bfcd1 4285 cfs_rq->h_nr_running--;
2069dd75 4286
bf0f6f24 4287 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4288 if (cfs_rq->load.weight) {
4289 /*
4290 * Bias pick_next to pick a task from this cfs_rq, as
4291 * p is sleeping when it is within its sched_slice.
4292 */
4293 if (task_sleep && parent_entity(se))
4294 set_next_buddy(parent_entity(se));
9598c82d
PT
4295
4296 /* avoid re-evaluating load for this entity */
4297 se = parent_entity(se);
bf0f6f24 4298 break;
2f36825b 4299 }
371fd7e7 4300 flags |= DEQUEUE_SLEEP;
bf0f6f24 4301 }
8f4d37ec 4302
2069dd75 4303 for_each_sched_entity(se) {
0f317143 4304 cfs_rq = cfs_rq_of(se);
953bfcd1 4305 cfs_rq->h_nr_running--;
2069dd75 4306
85dac906
PT
4307 if (cfs_rq_throttled(cfs_rq))
4308 break;
4309
17bc14b7 4310 update_cfs_shares(cfs_rq);
9ee474f5 4311 update_entity_load_avg(se, 1);
2069dd75
PZ
4312 }
4313
18bf2805 4314 if (!se) {
72465447 4315 sub_nr_running(rq, 1);
18bf2805
BS
4316 update_rq_runnable_avg(rq, 1);
4317 }
a4c2f00f 4318 hrtick_update(rq);
bf0f6f24
IM
4319}
4320
e7693a36 4321#ifdef CONFIG_SMP
029632fb
PZ
4322/* Used instead of source_load when we know the type == 0 */
4323static unsigned long weighted_cpuload(const int cpu)
4324{
b92486cb 4325 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4326}
4327
4328/*
4329 * Return a low guess at the load of a migration-source cpu weighted
4330 * according to the scheduling class and "nice" value.
4331 *
4332 * We want to under-estimate the load of migration sources, to
4333 * balance conservatively.
4334 */
4335static unsigned long source_load(int cpu, int type)
4336{
4337 struct rq *rq = cpu_rq(cpu);
4338 unsigned long total = weighted_cpuload(cpu);
4339
4340 if (type == 0 || !sched_feat(LB_BIAS))
4341 return total;
4342
4343 return min(rq->cpu_load[type-1], total);
4344}
4345
4346/*
4347 * Return a high guess at the load of a migration-target cpu weighted
4348 * according to the scheduling class and "nice" value.
4349 */
4350static unsigned long target_load(int cpu, int type)
4351{
4352 struct rq *rq = cpu_rq(cpu);
4353 unsigned long total = weighted_cpuload(cpu);
4354
4355 if (type == 0 || !sched_feat(LB_BIAS))
4356 return total;
4357
4358 return max(rq->cpu_load[type-1], total);
4359}
4360
ced549fa 4361static unsigned long capacity_of(int cpu)
029632fb 4362{
ced549fa 4363 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4364}
4365
ca6d75e6
VG
4366static unsigned long capacity_orig_of(int cpu)
4367{
4368 return cpu_rq(cpu)->cpu_capacity_orig;
4369}
4370
029632fb
PZ
4371static unsigned long cpu_avg_load_per_task(int cpu)
4372{
4373 struct rq *rq = cpu_rq(cpu);
65fdac08 4374 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4375 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4376
4377 if (nr_running)
b92486cb 4378 return load_avg / nr_running;
029632fb
PZ
4379
4380 return 0;
4381}
4382
62470419
MW
4383static void record_wakee(struct task_struct *p)
4384{
4385 /*
4386 * Rough decay (wiping) for cost saving, don't worry
4387 * about the boundary, really active task won't care
4388 * about the loss.
4389 */
2538d960 4390 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4391 current->wakee_flips >>= 1;
62470419
MW
4392 current->wakee_flip_decay_ts = jiffies;
4393 }
4394
4395 if (current->last_wakee != p) {
4396 current->last_wakee = p;
4397 current->wakee_flips++;
4398 }
4399}
098fb9db 4400
74f8e4b2 4401static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4402{
4403 struct sched_entity *se = &p->se;
4404 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4405 u64 min_vruntime;
4406
4407#ifndef CONFIG_64BIT
4408 u64 min_vruntime_copy;
88ec22d3 4409
3fe1698b
PZ
4410 do {
4411 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4412 smp_rmb();
4413 min_vruntime = cfs_rq->min_vruntime;
4414 } while (min_vruntime != min_vruntime_copy);
4415#else
4416 min_vruntime = cfs_rq->min_vruntime;
4417#endif
88ec22d3 4418
3fe1698b 4419 se->vruntime -= min_vruntime;
62470419 4420 record_wakee(p);
88ec22d3
PZ
4421}
4422
bb3469ac 4423#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4424/*
4425 * effective_load() calculates the load change as seen from the root_task_group
4426 *
4427 * Adding load to a group doesn't make a group heavier, but can cause movement
4428 * of group shares between cpus. Assuming the shares were perfectly aligned one
4429 * can calculate the shift in shares.
cf5f0acf
PZ
4430 *
4431 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4432 * on this @cpu and results in a total addition (subtraction) of @wg to the
4433 * total group weight.
4434 *
4435 * Given a runqueue weight distribution (rw_i) we can compute a shares
4436 * distribution (s_i) using:
4437 *
4438 * s_i = rw_i / \Sum rw_j (1)
4439 *
4440 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4441 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4442 * shares distribution (s_i):
4443 *
4444 * rw_i = { 2, 4, 1, 0 }
4445 * s_i = { 2/7, 4/7, 1/7, 0 }
4446 *
4447 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4448 * task used to run on and the CPU the waker is running on), we need to
4449 * compute the effect of waking a task on either CPU and, in case of a sync
4450 * wakeup, compute the effect of the current task going to sleep.
4451 *
4452 * So for a change of @wl to the local @cpu with an overall group weight change
4453 * of @wl we can compute the new shares distribution (s'_i) using:
4454 *
4455 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4456 *
4457 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4458 * differences in waking a task to CPU 0. The additional task changes the
4459 * weight and shares distributions like:
4460 *
4461 * rw'_i = { 3, 4, 1, 0 }
4462 * s'_i = { 3/8, 4/8, 1/8, 0 }
4463 *
4464 * We can then compute the difference in effective weight by using:
4465 *
4466 * dw_i = S * (s'_i - s_i) (3)
4467 *
4468 * Where 'S' is the group weight as seen by its parent.
4469 *
4470 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4471 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4472 * 4/7) times the weight of the group.
f5bfb7d9 4473 */
2069dd75 4474static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4475{
4be9daaa 4476 struct sched_entity *se = tg->se[cpu];
f1d239f7 4477
9722c2da 4478 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4479 return wl;
4480
4be9daaa 4481 for_each_sched_entity(se) {
cf5f0acf 4482 long w, W;
4be9daaa 4483
977dda7c 4484 tg = se->my_q->tg;
bb3469ac 4485
cf5f0acf
PZ
4486 /*
4487 * W = @wg + \Sum rw_j
4488 */
4489 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4490
cf5f0acf
PZ
4491 /*
4492 * w = rw_i + @wl
4493 */
4494 w = se->my_q->load.weight + wl;
940959e9 4495
cf5f0acf
PZ
4496 /*
4497 * wl = S * s'_i; see (2)
4498 */
4499 if (W > 0 && w < W)
32a8df4e 4500 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4501 else
4502 wl = tg->shares;
940959e9 4503
cf5f0acf
PZ
4504 /*
4505 * Per the above, wl is the new se->load.weight value; since
4506 * those are clipped to [MIN_SHARES, ...) do so now. See
4507 * calc_cfs_shares().
4508 */
977dda7c
PT
4509 if (wl < MIN_SHARES)
4510 wl = MIN_SHARES;
cf5f0acf
PZ
4511
4512 /*
4513 * wl = dw_i = S * (s'_i - s_i); see (3)
4514 */
977dda7c 4515 wl -= se->load.weight;
cf5f0acf
PZ
4516
4517 /*
4518 * Recursively apply this logic to all parent groups to compute
4519 * the final effective load change on the root group. Since
4520 * only the @tg group gets extra weight, all parent groups can
4521 * only redistribute existing shares. @wl is the shift in shares
4522 * resulting from this level per the above.
4523 */
4be9daaa 4524 wg = 0;
4be9daaa 4525 }
bb3469ac 4526
4be9daaa 4527 return wl;
bb3469ac
PZ
4528}
4529#else
4be9daaa 4530
58d081b5 4531static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4532{
83378269 4533 return wl;
bb3469ac 4534}
4be9daaa 4535
bb3469ac
PZ
4536#endif
4537
62470419
MW
4538static int wake_wide(struct task_struct *p)
4539{
7d9ffa89 4540 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4541
4542 /*
4543 * Yeah, it's the switching-frequency, could means many wakee or
4544 * rapidly switch, use factor here will just help to automatically
4545 * adjust the loose-degree, so bigger node will lead to more pull.
4546 */
4547 if (p->wakee_flips > factor) {
4548 /*
4549 * wakee is somewhat hot, it needs certain amount of cpu
4550 * resource, so if waker is far more hot, prefer to leave
4551 * it alone.
4552 */
4553 if (current->wakee_flips > (factor * p->wakee_flips))
4554 return 1;
4555 }
4556
4557 return 0;
4558}
4559
c88d5910 4560static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4561{
e37b6a7b 4562 s64 this_load, load;
bd61c98f 4563 s64 this_eff_load, prev_eff_load;
c88d5910 4564 int idx, this_cpu, prev_cpu;
c88d5910 4565 struct task_group *tg;
83378269 4566 unsigned long weight;
b3137bc8 4567 int balanced;
098fb9db 4568
62470419
MW
4569 /*
4570 * If we wake multiple tasks be careful to not bounce
4571 * ourselves around too much.
4572 */
4573 if (wake_wide(p))
4574 return 0;
4575
c88d5910
PZ
4576 idx = sd->wake_idx;
4577 this_cpu = smp_processor_id();
4578 prev_cpu = task_cpu(p);
4579 load = source_load(prev_cpu, idx);
4580 this_load = target_load(this_cpu, idx);
098fb9db 4581
b3137bc8
MG
4582 /*
4583 * If sync wakeup then subtract the (maximum possible)
4584 * effect of the currently running task from the load
4585 * of the current CPU:
4586 */
83378269
PZ
4587 if (sync) {
4588 tg = task_group(current);
4589 weight = current->se.load.weight;
4590
c88d5910 4591 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4592 load += effective_load(tg, prev_cpu, 0, -weight);
4593 }
b3137bc8 4594
83378269
PZ
4595 tg = task_group(p);
4596 weight = p->se.load.weight;
b3137bc8 4597
71a29aa7
PZ
4598 /*
4599 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4600 * due to the sync cause above having dropped this_load to 0, we'll
4601 * always have an imbalance, but there's really nothing you can do
4602 * about that, so that's good too.
71a29aa7
PZ
4603 *
4604 * Otherwise check if either cpus are near enough in load to allow this
4605 * task to be woken on this_cpu.
4606 */
bd61c98f
VG
4607 this_eff_load = 100;
4608 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4609
bd61c98f
VG
4610 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4611 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4612
bd61c98f 4613 if (this_load > 0) {
e51fd5e2
PZ
4614 this_eff_load *= this_load +
4615 effective_load(tg, this_cpu, weight, weight);
4616
e51fd5e2 4617 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4618 }
e51fd5e2 4619
bd61c98f 4620 balanced = this_eff_load <= prev_eff_load;
098fb9db 4621
41acab88 4622 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4623
05bfb65f
VG
4624 if (!balanced)
4625 return 0;
098fb9db 4626
05bfb65f
VG
4627 schedstat_inc(sd, ttwu_move_affine);
4628 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4629
4630 return 1;
098fb9db
IM
4631}
4632
aaee1203
PZ
4633/*
4634 * find_idlest_group finds and returns the least busy CPU group within the
4635 * domain.
4636 */
4637static struct sched_group *
78e7ed53 4638find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4639 int this_cpu, int sd_flag)
e7693a36 4640{
b3bd3de6 4641 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4642 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4643 int load_idx = sd->forkexec_idx;
aaee1203 4644 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4645
c44f2a02
VG
4646 if (sd_flag & SD_BALANCE_WAKE)
4647 load_idx = sd->wake_idx;
4648
aaee1203
PZ
4649 do {
4650 unsigned long load, avg_load;
4651 int local_group;
4652 int i;
e7693a36 4653
aaee1203
PZ
4654 /* Skip over this group if it has no CPUs allowed */
4655 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4656 tsk_cpus_allowed(p)))
aaee1203
PZ
4657 continue;
4658
4659 local_group = cpumask_test_cpu(this_cpu,
4660 sched_group_cpus(group));
4661
4662 /* Tally up the load of all CPUs in the group */
4663 avg_load = 0;
4664
4665 for_each_cpu(i, sched_group_cpus(group)) {
4666 /* Bias balancing toward cpus of our domain */
4667 if (local_group)
4668 load = source_load(i, load_idx);
4669 else
4670 load = target_load(i, load_idx);
4671
4672 avg_load += load;
4673 }
4674
63b2ca30 4675 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4676 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4677
4678 if (local_group) {
4679 this_load = avg_load;
aaee1203
PZ
4680 } else if (avg_load < min_load) {
4681 min_load = avg_load;
4682 idlest = group;
4683 }
4684 } while (group = group->next, group != sd->groups);
4685
4686 if (!idlest || 100*this_load < imbalance*min_load)
4687 return NULL;
4688 return idlest;
4689}
4690
4691/*
4692 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4693 */
4694static int
4695find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4696{
4697 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4698 unsigned int min_exit_latency = UINT_MAX;
4699 u64 latest_idle_timestamp = 0;
4700 int least_loaded_cpu = this_cpu;
4701 int shallowest_idle_cpu = -1;
aaee1203
PZ
4702 int i;
4703
4704 /* Traverse only the allowed CPUs */
fa17b507 4705 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4706 if (idle_cpu(i)) {
4707 struct rq *rq = cpu_rq(i);
4708 struct cpuidle_state *idle = idle_get_state(rq);
4709 if (idle && idle->exit_latency < min_exit_latency) {
4710 /*
4711 * We give priority to a CPU whose idle state
4712 * has the smallest exit latency irrespective
4713 * of any idle timestamp.
4714 */
4715 min_exit_latency = idle->exit_latency;
4716 latest_idle_timestamp = rq->idle_stamp;
4717 shallowest_idle_cpu = i;
4718 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4719 rq->idle_stamp > latest_idle_timestamp) {
4720 /*
4721 * If equal or no active idle state, then
4722 * the most recently idled CPU might have
4723 * a warmer cache.
4724 */
4725 latest_idle_timestamp = rq->idle_stamp;
4726 shallowest_idle_cpu = i;
4727 }
9f96742a 4728 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4729 load = weighted_cpuload(i);
4730 if (load < min_load || (load == min_load && i == this_cpu)) {
4731 min_load = load;
4732 least_loaded_cpu = i;
4733 }
e7693a36
GH
4734 }
4735 }
4736
83a0a96a 4737 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4738}
e7693a36 4739
a50bde51
PZ
4740/*
4741 * Try and locate an idle CPU in the sched_domain.
4742 */
99bd5e2f 4743static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4744{
99bd5e2f 4745 struct sched_domain *sd;
37407ea7 4746 struct sched_group *sg;
e0a79f52 4747 int i = task_cpu(p);
a50bde51 4748
e0a79f52
MG
4749 if (idle_cpu(target))
4750 return target;
99bd5e2f
SS
4751
4752 /*
e0a79f52 4753 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4754 */
e0a79f52
MG
4755 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4756 return i;
a50bde51
PZ
4757
4758 /*
37407ea7 4759 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4760 */
518cd623 4761 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4762 for_each_lower_domain(sd) {
37407ea7
LT
4763 sg = sd->groups;
4764 do {
4765 if (!cpumask_intersects(sched_group_cpus(sg),
4766 tsk_cpus_allowed(p)))
4767 goto next;
4768
4769 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4770 if (i == target || !idle_cpu(i))
37407ea7
LT
4771 goto next;
4772 }
970e1789 4773
37407ea7
LT
4774 target = cpumask_first_and(sched_group_cpus(sg),
4775 tsk_cpus_allowed(p));
4776 goto done;
4777next:
4778 sg = sg->next;
4779 } while (sg != sd->groups);
4780 }
4781done:
a50bde51
PZ
4782 return target;
4783}
8bb5b00c
VG
4784/*
4785 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4786 * tasks. The unit of the return value must be the one of capacity so we can
4787 * compare the usage with the capacity of the CPU that is available for CFS
4788 * task (ie cpu_capacity).
4789 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4790 * CPU. It represents the amount of utilization of a CPU in the range
4791 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4792 * capacity of the CPU because it's about the running time on this CPU.
4793 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4794 * because of unfortunate rounding in avg_period and running_load_avg or just
4795 * after migrating tasks until the average stabilizes with the new running
4796 * time. So we need to check that the usage stays into the range
4797 * [0..cpu_capacity_orig] and cap if necessary.
4798 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4799 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4800 */
4801static int get_cpu_usage(int cpu)
4802{
4803 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4804 unsigned long capacity = capacity_orig_of(cpu);
4805
4806 if (usage >= SCHED_LOAD_SCALE)
4807 return capacity;
4808
4809 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4810}
a50bde51 4811
aaee1203 4812/*
de91b9cb
MR
4813 * select_task_rq_fair: Select target runqueue for the waking task in domains
4814 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4815 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4816 *
de91b9cb
MR
4817 * Balances load by selecting the idlest cpu in the idlest group, or under
4818 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4819 *
de91b9cb 4820 * Returns the target cpu number.
aaee1203
PZ
4821 *
4822 * preempt must be disabled.
4823 */
0017d735 4824static int
ac66f547 4825select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4826{
29cd8bae 4827 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4828 int cpu = smp_processor_id();
c88d5910 4829 int new_cpu = cpu;
99bd5e2f 4830 int want_affine = 0;
5158f4e4 4831 int sync = wake_flags & WF_SYNC;
c88d5910 4832
a8edd075
KT
4833 if (sd_flag & SD_BALANCE_WAKE)
4834 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4835
dce840a0 4836 rcu_read_lock();
aaee1203 4837 for_each_domain(cpu, tmp) {
e4f42888
PZ
4838 if (!(tmp->flags & SD_LOAD_BALANCE))
4839 continue;
4840
fe3bcfe1 4841 /*
99bd5e2f
SS
4842 * If both cpu and prev_cpu are part of this domain,
4843 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4844 */
99bd5e2f
SS
4845 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4846 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4847 affine_sd = tmp;
29cd8bae 4848 break;
f03542a7 4849 }
29cd8bae 4850
f03542a7 4851 if (tmp->flags & sd_flag)
29cd8bae
PZ
4852 sd = tmp;
4853 }
4854
8bf21433
RR
4855 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4856 prev_cpu = cpu;
dce840a0 4857
8bf21433 4858 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4859 new_cpu = select_idle_sibling(p, prev_cpu);
4860 goto unlock;
8b911acd 4861 }
e7693a36 4862
aaee1203
PZ
4863 while (sd) {
4864 struct sched_group *group;
c88d5910 4865 int weight;
098fb9db 4866
0763a660 4867 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4868 sd = sd->child;
4869 continue;
4870 }
098fb9db 4871
c44f2a02 4872 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4873 if (!group) {
4874 sd = sd->child;
4875 continue;
4876 }
4ae7d5ce 4877
d7c33c49 4878 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4879 if (new_cpu == -1 || new_cpu == cpu) {
4880 /* Now try balancing at a lower domain level of cpu */
4881 sd = sd->child;
4882 continue;
e7693a36 4883 }
aaee1203
PZ
4884
4885 /* Now try balancing at a lower domain level of new_cpu */
4886 cpu = new_cpu;
669c55e9 4887 weight = sd->span_weight;
aaee1203
PZ
4888 sd = NULL;
4889 for_each_domain(cpu, tmp) {
669c55e9 4890 if (weight <= tmp->span_weight)
aaee1203 4891 break;
0763a660 4892 if (tmp->flags & sd_flag)
aaee1203
PZ
4893 sd = tmp;
4894 }
4895 /* while loop will break here if sd == NULL */
e7693a36 4896 }
dce840a0
PZ
4897unlock:
4898 rcu_read_unlock();
e7693a36 4899
c88d5910 4900 return new_cpu;
e7693a36 4901}
0a74bef8
PT
4902
4903/*
4904 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4905 * cfs_rq_of(p) references at time of call are still valid and identify the
4906 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4907 * other assumptions, including the state of rq->lock, should be made.
4908 */
4909static void
4910migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4911{
aff3e498
PT
4912 struct sched_entity *se = &p->se;
4913 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4914
4915 /*
4916 * Load tracking: accumulate removed load so that it can be processed
4917 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4918 * to blocked load iff they have a positive decay-count. It can never
4919 * be negative here since on-rq tasks have decay-count == 0.
4920 */
4921 if (se->avg.decay_count) {
4922 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4923 atomic_long_add(se->avg.load_avg_contrib,
4924 &cfs_rq->removed_load);
aff3e498 4925 }
3944a927
BS
4926
4927 /* We have migrated, no longer consider this task hot */
4928 se->exec_start = 0;
0a74bef8 4929}
e7693a36
GH
4930#endif /* CONFIG_SMP */
4931
e52fb7c0
PZ
4932static unsigned long
4933wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4934{
4935 unsigned long gran = sysctl_sched_wakeup_granularity;
4936
4937 /*
e52fb7c0
PZ
4938 * Since its curr running now, convert the gran from real-time
4939 * to virtual-time in his units.
13814d42
MG
4940 *
4941 * By using 'se' instead of 'curr' we penalize light tasks, so
4942 * they get preempted easier. That is, if 'se' < 'curr' then
4943 * the resulting gran will be larger, therefore penalizing the
4944 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4945 * be smaller, again penalizing the lighter task.
4946 *
4947 * This is especially important for buddies when the leftmost
4948 * task is higher priority than the buddy.
0bbd3336 4949 */
f4ad9bd2 4950 return calc_delta_fair(gran, se);
0bbd3336
PZ
4951}
4952
464b7527
PZ
4953/*
4954 * Should 'se' preempt 'curr'.
4955 *
4956 * |s1
4957 * |s2
4958 * |s3
4959 * g
4960 * |<--->|c
4961 *
4962 * w(c, s1) = -1
4963 * w(c, s2) = 0
4964 * w(c, s3) = 1
4965 *
4966 */
4967static int
4968wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4969{
4970 s64 gran, vdiff = curr->vruntime - se->vruntime;
4971
4972 if (vdiff <= 0)
4973 return -1;
4974
e52fb7c0 4975 gran = wakeup_gran(curr, se);
464b7527
PZ
4976 if (vdiff > gran)
4977 return 1;
4978
4979 return 0;
4980}
4981
02479099
PZ
4982static void set_last_buddy(struct sched_entity *se)
4983{
69c80f3e
VP
4984 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4985 return;
4986
4987 for_each_sched_entity(se)
4988 cfs_rq_of(se)->last = se;
02479099
PZ
4989}
4990
4991static void set_next_buddy(struct sched_entity *se)
4992{
69c80f3e
VP
4993 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4994 return;
4995
4996 for_each_sched_entity(se)
4997 cfs_rq_of(se)->next = se;
02479099
PZ
4998}
4999
ac53db59
RR
5000static void set_skip_buddy(struct sched_entity *se)
5001{
69c80f3e
VP
5002 for_each_sched_entity(se)
5003 cfs_rq_of(se)->skip = se;
ac53db59
RR
5004}
5005
bf0f6f24
IM
5006/*
5007 * Preempt the current task with a newly woken task if needed:
5008 */
5a9b86f6 5009static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5010{
5011 struct task_struct *curr = rq->curr;
8651a86c 5012 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5013 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5014 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5015 int next_buddy_marked = 0;
bf0f6f24 5016
4ae7d5ce
IM
5017 if (unlikely(se == pse))
5018 return;
5019
5238cdd3 5020 /*
163122b7 5021 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5022 * unconditionally check_prempt_curr() after an enqueue (which may have
5023 * lead to a throttle). This both saves work and prevents false
5024 * next-buddy nomination below.
5025 */
5026 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5027 return;
5028
2f36825b 5029 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5030 set_next_buddy(pse);
2f36825b
VP
5031 next_buddy_marked = 1;
5032 }
57fdc26d 5033
aec0a514
BR
5034 /*
5035 * We can come here with TIF_NEED_RESCHED already set from new task
5036 * wake up path.
5238cdd3
PT
5037 *
5038 * Note: this also catches the edge-case of curr being in a throttled
5039 * group (e.g. via set_curr_task), since update_curr() (in the
5040 * enqueue of curr) will have resulted in resched being set. This
5041 * prevents us from potentially nominating it as a false LAST_BUDDY
5042 * below.
aec0a514
BR
5043 */
5044 if (test_tsk_need_resched(curr))
5045 return;
5046
a2f5c9ab
DH
5047 /* Idle tasks are by definition preempted by non-idle tasks. */
5048 if (unlikely(curr->policy == SCHED_IDLE) &&
5049 likely(p->policy != SCHED_IDLE))
5050 goto preempt;
5051
91c234b4 5052 /*
a2f5c9ab
DH
5053 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5054 * is driven by the tick):
91c234b4 5055 */
8ed92e51 5056 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5057 return;
bf0f6f24 5058
464b7527 5059 find_matching_se(&se, &pse);
9bbd7374 5060 update_curr(cfs_rq_of(se));
002f128b 5061 BUG_ON(!pse);
2f36825b
VP
5062 if (wakeup_preempt_entity(se, pse) == 1) {
5063 /*
5064 * Bias pick_next to pick the sched entity that is
5065 * triggering this preemption.
5066 */
5067 if (!next_buddy_marked)
5068 set_next_buddy(pse);
3a7e73a2 5069 goto preempt;
2f36825b 5070 }
464b7527 5071
3a7e73a2 5072 return;
a65ac745 5073
3a7e73a2 5074preempt:
8875125e 5075 resched_curr(rq);
3a7e73a2
PZ
5076 /*
5077 * Only set the backward buddy when the current task is still
5078 * on the rq. This can happen when a wakeup gets interleaved
5079 * with schedule on the ->pre_schedule() or idle_balance()
5080 * point, either of which can * drop the rq lock.
5081 *
5082 * Also, during early boot the idle thread is in the fair class,
5083 * for obvious reasons its a bad idea to schedule back to it.
5084 */
5085 if (unlikely(!se->on_rq || curr == rq->idle))
5086 return;
5087
5088 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5089 set_last_buddy(se);
bf0f6f24
IM
5090}
5091
606dba2e
PZ
5092static struct task_struct *
5093pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5094{
5095 struct cfs_rq *cfs_rq = &rq->cfs;
5096 struct sched_entity *se;
678d5718 5097 struct task_struct *p;
37e117c0 5098 int new_tasks;
678d5718 5099
6e83125c 5100again:
678d5718
PZ
5101#ifdef CONFIG_FAIR_GROUP_SCHED
5102 if (!cfs_rq->nr_running)
38033c37 5103 goto idle;
678d5718 5104
3f1d2a31 5105 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5106 goto simple;
5107
5108 /*
5109 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5110 * likely that a next task is from the same cgroup as the current.
5111 *
5112 * Therefore attempt to avoid putting and setting the entire cgroup
5113 * hierarchy, only change the part that actually changes.
5114 */
5115
5116 do {
5117 struct sched_entity *curr = cfs_rq->curr;
5118
5119 /*
5120 * Since we got here without doing put_prev_entity() we also
5121 * have to consider cfs_rq->curr. If it is still a runnable
5122 * entity, update_curr() will update its vruntime, otherwise
5123 * forget we've ever seen it.
5124 */
5125 if (curr && curr->on_rq)
5126 update_curr(cfs_rq);
5127 else
5128 curr = NULL;
5129
5130 /*
5131 * This call to check_cfs_rq_runtime() will do the throttle and
5132 * dequeue its entity in the parent(s). Therefore the 'simple'
5133 * nr_running test will indeed be correct.
5134 */
5135 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5136 goto simple;
5137
5138 se = pick_next_entity(cfs_rq, curr);
5139 cfs_rq = group_cfs_rq(se);
5140 } while (cfs_rq);
5141
5142 p = task_of(se);
5143
5144 /*
5145 * Since we haven't yet done put_prev_entity and if the selected task
5146 * is a different task than we started out with, try and touch the
5147 * least amount of cfs_rqs.
5148 */
5149 if (prev != p) {
5150 struct sched_entity *pse = &prev->se;
5151
5152 while (!(cfs_rq = is_same_group(se, pse))) {
5153 int se_depth = se->depth;
5154 int pse_depth = pse->depth;
5155
5156 if (se_depth <= pse_depth) {
5157 put_prev_entity(cfs_rq_of(pse), pse);
5158 pse = parent_entity(pse);
5159 }
5160 if (se_depth >= pse_depth) {
5161 set_next_entity(cfs_rq_of(se), se);
5162 se = parent_entity(se);
5163 }
5164 }
5165
5166 put_prev_entity(cfs_rq, pse);
5167 set_next_entity(cfs_rq, se);
5168 }
5169
5170 if (hrtick_enabled(rq))
5171 hrtick_start_fair(rq, p);
5172
5173 return p;
5174simple:
5175 cfs_rq = &rq->cfs;
5176#endif
bf0f6f24 5177
36ace27e 5178 if (!cfs_rq->nr_running)
38033c37 5179 goto idle;
bf0f6f24 5180
3f1d2a31 5181 put_prev_task(rq, prev);
606dba2e 5182
bf0f6f24 5183 do {
678d5718 5184 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5185 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5186 cfs_rq = group_cfs_rq(se);
5187 } while (cfs_rq);
5188
8f4d37ec 5189 p = task_of(se);
678d5718 5190
b39e66ea
MG
5191 if (hrtick_enabled(rq))
5192 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5193
5194 return p;
38033c37
PZ
5195
5196idle:
e4aa358b 5197 new_tasks = idle_balance(rq);
37e117c0
PZ
5198 /*
5199 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5200 * possible for any higher priority task to appear. In that case we
5201 * must re-start the pick_next_entity() loop.
5202 */
e4aa358b 5203 if (new_tasks < 0)
37e117c0
PZ
5204 return RETRY_TASK;
5205
e4aa358b 5206 if (new_tasks > 0)
38033c37 5207 goto again;
38033c37
PZ
5208
5209 return NULL;
bf0f6f24
IM
5210}
5211
5212/*
5213 * Account for a descheduled task:
5214 */
31ee529c 5215static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5216{
5217 struct sched_entity *se = &prev->se;
5218 struct cfs_rq *cfs_rq;
5219
5220 for_each_sched_entity(se) {
5221 cfs_rq = cfs_rq_of(se);
ab6cde26 5222 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5223 }
5224}
5225
ac53db59
RR
5226/*
5227 * sched_yield() is very simple
5228 *
5229 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5230 */
5231static void yield_task_fair(struct rq *rq)
5232{
5233 struct task_struct *curr = rq->curr;
5234 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5235 struct sched_entity *se = &curr->se;
5236
5237 /*
5238 * Are we the only task in the tree?
5239 */
5240 if (unlikely(rq->nr_running == 1))
5241 return;
5242
5243 clear_buddies(cfs_rq, se);
5244
5245 if (curr->policy != SCHED_BATCH) {
5246 update_rq_clock(rq);
5247 /*
5248 * Update run-time statistics of the 'current'.
5249 */
5250 update_curr(cfs_rq);
916671c0
MG
5251 /*
5252 * Tell update_rq_clock() that we've just updated,
5253 * so we don't do microscopic update in schedule()
5254 * and double the fastpath cost.
5255 */
9edfbfed 5256 rq_clock_skip_update(rq, true);
ac53db59
RR
5257 }
5258
5259 set_skip_buddy(se);
5260}
5261
d95f4122
MG
5262static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5263{
5264 struct sched_entity *se = &p->se;
5265
5238cdd3
PT
5266 /* throttled hierarchies are not runnable */
5267 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5268 return false;
5269
5270 /* Tell the scheduler that we'd really like pse to run next. */
5271 set_next_buddy(se);
5272
d95f4122
MG
5273 yield_task_fair(rq);
5274
5275 return true;
5276}
5277
681f3e68 5278#ifdef CONFIG_SMP
bf0f6f24 5279/**************************************************
e9c84cb8
PZ
5280 * Fair scheduling class load-balancing methods.
5281 *
5282 * BASICS
5283 *
5284 * The purpose of load-balancing is to achieve the same basic fairness the
5285 * per-cpu scheduler provides, namely provide a proportional amount of compute
5286 * time to each task. This is expressed in the following equation:
5287 *
5288 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5289 *
5290 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5291 * W_i,0 is defined as:
5292 *
5293 * W_i,0 = \Sum_j w_i,j (2)
5294 *
5295 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5296 * is derived from the nice value as per prio_to_weight[].
5297 *
5298 * The weight average is an exponential decay average of the instantaneous
5299 * weight:
5300 *
5301 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5302 *
ced549fa 5303 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5304 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5305 * can also include other factors [XXX].
5306 *
5307 * To achieve this balance we define a measure of imbalance which follows
5308 * directly from (1):
5309 *
ced549fa 5310 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5311 *
5312 * We them move tasks around to minimize the imbalance. In the continuous
5313 * function space it is obvious this converges, in the discrete case we get
5314 * a few fun cases generally called infeasible weight scenarios.
5315 *
5316 * [XXX expand on:
5317 * - infeasible weights;
5318 * - local vs global optima in the discrete case. ]
5319 *
5320 *
5321 * SCHED DOMAINS
5322 *
5323 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5324 * for all i,j solution, we create a tree of cpus that follows the hardware
5325 * topology where each level pairs two lower groups (or better). This results
5326 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5327 * tree to only the first of the previous level and we decrease the frequency
5328 * of load-balance at each level inv. proportional to the number of cpus in
5329 * the groups.
5330 *
5331 * This yields:
5332 *
5333 * log_2 n 1 n
5334 * \Sum { --- * --- * 2^i } = O(n) (5)
5335 * i = 0 2^i 2^i
5336 * `- size of each group
5337 * | | `- number of cpus doing load-balance
5338 * | `- freq
5339 * `- sum over all levels
5340 *
5341 * Coupled with a limit on how many tasks we can migrate every balance pass,
5342 * this makes (5) the runtime complexity of the balancer.
5343 *
5344 * An important property here is that each CPU is still (indirectly) connected
5345 * to every other cpu in at most O(log n) steps:
5346 *
5347 * The adjacency matrix of the resulting graph is given by:
5348 *
5349 * log_2 n
5350 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5351 * k = 0
5352 *
5353 * And you'll find that:
5354 *
5355 * A^(log_2 n)_i,j != 0 for all i,j (7)
5356 *
5357 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5358 * The task movement gives a factor of O(m), giving a convergence complexity
5359 * of:
5360 *
5361 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5362 *
5363 *
5364 * WORK CONSERVING
5365 *
5366 * In order to avoid CPUs going idle while there's still work to do, new idle
5367 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5368 * tree itself instead of relying on other CPUs to bring it work.
5369 *
5370 * This adds some complexity to both (5) and (8) but it reduces the total idle
5371 * time.
5372 *
5373 * [XXX more?]
5374 *
5375 *
5376 * CGROUPS
5377 *
5378 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5379 *
5380 * s_k,i
5381 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5382 * S_k
5383 *
5384 * Where
5385 *
5386 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5387 *
5388 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5389 *
5390 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5391 * property.
5392 *
5393 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5394 * rewrite all of this once again.]
5395 */
bf0f6f24 5396
ed387b78
HS
5397static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5398
0ec8aa00
PZ
5399enum fbq_type { regular, remote, all };
5400
ddcdf6e7 5401#define LBF_ALL_PINNED 0x01
367456c7 5402#define LBF_NEED_BREAK 0x02
6263322c
PZ
5403#define LBF_DST_PINNED 0x04
5404#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5405
5406struct lb_env {
5407 struct sched_domain *sd;
5408
ddcdf6e7 5409 struct rq *src_rq;
85c1e7da 5410 int src_cpu;
ddcdf6e7
PZ
5411
5412 int dst_cpu;
5413 struct rq *dst_rq;
5414
88b8dac0
SV
5415 struct cpumask *dst_grpmask;
5416 int new_dst_cpu;
ddcdf6e7 5417 enum cpu_idle_type idle;
bd939f45 5418 long imbalance;
b9403130
MW
5419 /* The set of CPUs under consideration for load-balancing */
5420 struct cpumask *cpus;
5421
ddcdf6e7 5422 unsigned int flags;
367456c7
PZ
5423
5424 unsigned int loop;
5425 unsigned int loop_break;
5426 unsigned int loop_max;
0ec8aa00
PZ
5427
5428 enum fbq_type fbq_type;
163122b7 5429 struct list_head tasks;
ddcdf6e7
PZ
5430};
5431
029632fb
PZ
5432/*
5433 * Is this task likely cache-hot:
5434 */
5d5e2b1b 5435static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5436{
5437 s64 delta;
5438
e5673f28
KT
5439 lockdep_assert_held(&env->src_rq->lock);
5440
029632fb
PZ
5441 if (p->sched_class != &fair_sched_class)
5442 return 0;
5443
5444 if (unlikely(p->policy == SCHED_IDLE))
5445 return 0;
5446
5447 /*
5448 * Buddy candidates are cache hot:
5449 */
5d5e2b1b 5450 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5451 (&p->se == cfs_rq_of(&p->se)->next ||
5452 &p->se == cfs_rq_of(&p->se)->last))
5453 return 1;
5454
5455 if (sysctl_sched_migration_cost == -1)
5456 return 1;
5457 if (sysctl_sched_migration_cost == 0)
5458 return 0;
5459
5d5e2b1b 5460 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5461
5462 return delta < (s64)sysctl_sched_migration_cost;
5463}
5464
3a7053b3
MG
5465#ifdef CONFIG_NUMA_BALANCING
5466/* Returns true if the destination node has incurred more faults */
5467static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5468{
b1ad065e 5469 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5470 int src_nid, dst_nid;
5471
44dba3d5 5472 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5473 !(env->sd->flags & SD_NUMA)) {
5474 return false;
5475 }
5476
5477 src_nid = cpu_to_node(env->src_cpu);
5478 dst_nid = cpu_to_node(env->dst_cpu);
5479
83e1d2cd 5480 if (src_nid == dst_nid)
3a7053b3
MG
5481 return false;
5482
b1ad065e
RR
5483 if (numa_group) {
5484 /* Task is already in the group's interleave set. */
5485 if (node_isset(src_nid, numa_group->active_nodes))
5486 return false;
83e1d2cd 5487
b1ad065e
RR
5488 /* Task is moving into the group's interleave set. */
5489 if (node_isset(dst_nid, numa_group->active_nodes))
5490 return true;
83e1d2cd 5491
b1ad065e
RR
5492 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5493 }
5494
5495 /* Encourage migration to the preferred node. */
5496 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5497 return true;
5498
b1ad065e 5499 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5500}
7a0f3083
MG
5501
5502
5503static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5504{
b1ad065e 5505 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5506 int src_nid, dst_nid;
5507
5508 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5509 return false;
5510
44dba3d5 5511 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5512 return false;
5513
5514 src_nid = cpu_to_node(env->src_cpu);
5515 dst_nid = cpu_to_node(env->dst_cpu);
5516
83e1d2cd 5517 if (src_nid == dst_nid)
7a0f3083
MG
5518 return false;
5519
b1ad065e
RR
5520 if (numa_group) {
5521 /* Task is moving within/into the group's interleave set. */
5522 if (node_isset(dst_nid, numa_group->active_nodes))
5523 return false;
5524
5525 /* Task is moving out of the group's interleave set. */
5526 if (node_isset(src_nid, numa_group->active_nodes))
5527 return true;
5528
5529 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5530 }
5531
83e1d2cd
MG
5532 /* Migrating away from the preferred node is always bad. */
5533 if (src_nid == p->numa_preferred_nid)
5534 return true;
5535
b1ad065e 5536 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5537}
5538
3a7053b3
MG
5539#else
5540static inline bool migrate_improves_locality(struct task_struct *p,
5541 struct lb_env *env)
5542{
5543 return false;
5544}
7a0f3083
MG
5545
5546static inline bool migrate_degrades_locality(struct task_struct *p,
5547 struct lb_env *env)
5548{
5549 return false;
5550}
3a7053b3
MG
5551#endif
5552
1e3c88bd
PZ
5553/*
5554 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5555 */
5556static
8e45cb54 5557int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5558{
5559 int tsk_cache_hot = 0;
e5673f28
KT
5560
5561 lockdep_assert_held(&env->src_rq->lock);
5562
1e3c88bd
PZ
5563 /*
5564 * We do not migrate tasks that are:
d3198084 5565 * 1) throttled_lb_pair, or
1e3c88bd 5566 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5567 * 3) running (obviously), or
5568 * 4) are cache-hot on their current CPU.
1e3c88bd 5569 */
d3198084
JK
5570 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5571 return 0;
5572
ddcdf6e7 5573 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5574 int cpu;
88b8dac0 5575
41acab88 5576 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5577
6263322c
PZ
5578 env->flags |= LBF_SOME_PINNED;
5579
88b8dac0
SV
5580 /*
5581 * Remember if this task can be migrated to any other cpu in
5582 * our sched_group. We may want to revisit it if we couldn't
5583 * meet load balance goals by pulling other tasks on src_cpu.
5584 *
5585 * Also avoid computing new_dst_cpu if we have already computed
5586 * one in current iteration.
5587 */
6263322c 5588 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5589 return 0;
5590
e02e60c1
JK
5591 /* Prevent to re-select dst_cpu via env's cpus */
5592 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5593 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5594 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5595 env->new_dst_cpu = cpu;
5596 break;
5597 }
88b8dac0 5598 }
e02e60c1 5599
1e3c88bd
PZ
5600 return 0;
5601 }
88b8dac0
SV
5602
5603 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5604 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5605
ddcdf6e7 5606 if (task_running(env->src_rq, p)) {
41acab88 5607 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5608 return 0;
5609 }
5610
5611 /*
5612 * Aggressive migration if:
3a7053b3
MG
5613 * 1) destination numa is preferred
5614 * 2) task is cache cold, or
5615 * 3) too many balance attempts have failed.
1e3c88bd 5616 */
5d5e2b1b 5617 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5618 if (!tsk_cache_hot)
5619 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5620
7a96c231
KT
5621 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5622 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5623 if (tsk_cache_hot) {
5624 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5625 schedstat_inc(p, se.statistics.nr_forced_migrations);
5626 }
1e3c88bd
PZ
5627 return 1;
5628 }
5629
4e2dcb73
ZH
5630 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5631 return 0;
1e3c88bd
PZ
5632}
5633
897c395f 5634/*
163122b7
KT
5635 * detach_task() -- detach the task for the migration specified in env
5636 */
5637static void detach_task(struct task_struct *p, struct lb_env *env)
5638{
5639 lockdep_assert_held(&env->src_rq->lock);
5640
5641 deactivate_task(env->src_rq, p, 0);
5642 p->on_rq = TASK_ON_RQ_MIGRATING;
5643 set_task_cpu(p, env->dst_cpu);
5644}
5645
897c395f 5646/*
e5673f28 5647 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5648 * part of active balancing operations within "domain".
897c395f 5649 *
e5673f28 5650 * Returns a task if successful and NULL otherwise.
897c395f 5651 */
e5673f28 5652static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5653{
5654 struct task_struct *p, *n;
897c395f 5655
e5673f28
KT
5656 lockdep_assert_held(&env->src_rq->lock);
5657
367456c7 5658 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5659 if (!can_migrate_task(p, env))
5660 continue;
897c395f 5661
163122b7 5662 detach_task(p, env);
e5673f28 5663
367456c7 5664 /*
e5673f28 5665 * Right now, this is only the second place where
163122b7 5666 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5667 * so we can safely collect stats here rather than
163122b7 5668 * inside detach_tasks().
367456c7
PZ
5669 */
5670 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5671 return p;
897c395f 5672 }
e5673f28 5673 return NULL;
897c395f
PZ
5674}
5675
eb95308e
PZ
5676static const unsigned int sched_nr_migrate_break = 32;
5677
5d6523eb 5678/*
163122b7
KT
5679 * detach_tasks() -- tries to detach up to imbalance weighted load from
5680 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5681 *
163122b7 5682 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5683 */
163122b7 5684static int detach_tasks(struct lb_env *env)
1e3c88bd 5685{
5d6523eb
PZ
5686 struct list_head *tasks = &env->src_rq->cfs_tasks;
5687 struct task_struct *p;
367456c7 5688 unsigned long load;
163122b7
KT
5689 int detached = 0;
5690
5691 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5692
bd939f45 5693 if (env->imbalance <= 0)
5d6523eb 5694 return 0;
1e3c88bd 5695
5d6523eb
PZ
5696 while (!list_empty(tasks)) {
5697 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5698
367456c7
PZ
5699 env->loop++;
5700 /* We've more or less seen every task there is, call it quits */
5d6523eb 5701 if (env->loop > env->loop_max)
367456c7 5702 break;
5d6523eb
PZ
5703
5704 /* take a breather every nr_migrate tasks */
367456c7 5705 if (env->loop > env->loop_break) {
eb95308e 5706 env->loop_break += sched_nr_migrate_break;
8e45cb54 5707 env->flags |= LBF_NEED_BREAK;
ee00e66f 5708 break;
a195f004 5709 }
1e3c88bd 5710
d3198084 5711 if (!can_migrate_task(p, env))
367456c7
PZ
5712 goto next;
5713
5714 load = task_h_load(p);
5d6523eb 5715
eb95308e 5716 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5717 goto next;
5718
bd939f45 5719 if ((load / 2) > env->imbalance)
367456c7 5720 goto next;
1e3c88bd 5721
163122b7
KT
5722 detach_task(p, env);
5723 list_add(&p->se.group_node, &env->tasks);
5724
5725 detached++;
bd939f45 5726 env->imbalance -= load;
1e3c88bd
PZ
5727
5728#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5729 /*
5730 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5731 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5732 * the critical section.
5733 */
5d6523eb 5734 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5735 break;
1e3c88bd
PZ
5736#endif
5737
ee00e66f
PZ
5738 /*
5739 * We only want to steal up to the prescribed amount of
5740 * weighted load.
5741 */
bd939f45 5742 if (env->imbalance <= 0)
ee00e66f 5743 break;
367456c7
PZ
5744
5745 continue;
5746next:
5d6523eb 5747 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5748 }
5d6523eb 5749
1e3c88bd 5750 /*
163122b7
KT
5751 * Right now, this is one of only two places we collect this stat
5752 * so we can safely collect detach_one_task() stats here rather
5753 * than inside detach_one_task().
1e3c88bd 5754 */
163122b7 5755 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5756
163122b7
KT
5757 return detached;
5758}
5759
5760/*
5761 * attach_task() -- attach the task detached by detach_task() to its new rq.
5762 */
5763static void attach_task(struct rq *rq, struct task_struct *p)
5764{
5765 lockdep_assert_held(&rq->lock);
5766
5767 BUG_ON(task_rq(p) != rq);
5768 p->on_rq = TASK_ON_RQ_QUEUED;
5769 activate_task(rq, p, 0);
5770 check_preempt_curr(rq, p, 0);
5771}
5772
5773/*
5774 * attach_one_task() -- attaches the task returned from detach_one_task() to
5775 * its new rq.
5776 */
5777static void attach_one_task(struct rq *rq, struct task_struct *p)
5778{
5779 raw_spin_lock(&rq->lock);
5780 attach_task(rq, p);
5781 raw_spin_unlock(&rq->lock);
5782}
5783
5784/*
5785 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5786 * new rq.
5787 */
5788static void attach_tasks(struct lb_env *env)
5789{
5790 struct list_head *tasks = &env->tasks;
5791 struct task_struct *p;
5792
5793 raw_spin_lock(&env->dst_rq->lock);
5794
5795 while (!list_empty(tasks)) {
5796 p = list_first_entry(tasks, struct task_struct, se.group_node);
5797 list_del_init(&p->se.group_node);
1e3c88bd 5798
163122b7
KT
5799 attach_task(env->dst_rq, p);
5800 }
5801
5802 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5803}
5804
230059de 5805#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5806/*
5807 * update tg->load_weight by folding this cpu's load_avg
5808 */
48a16753 5809static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5810{
48a16753
PT
5811 struct sched_entity *se = tg->se[cpu];
5812 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5813
48a16753
PT
5814 /* throttled entities do not contribute to load */
5815 if (throttled_hierarchy(cfs_rq))
5816 return;
9e3081ca 5817
aff3e498 5818 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5819
82958366
PT
5820 if (se) {
5821 update_entity_load_avg(se, 1);
5822 /*
5823 * We pivot on our runnable average having decayed to zero for
5824 * list removal. This generally implies that all our children
5825 * have also been removed (modulo rounding error or bandwidth
5826 * control); however, such cases are rare and we can fix these
5827 * at enqueue.
5828 *
5829 * TODO: fix up out-of-order children on enqueue.
5830 */
5831 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5832 list_del_leaf_cfs_rq(cfs_rq);
5833 } else {
48a16753 5834 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5835 update_rq_runnable_avg(rq, rq->nr_running);
5836 }
9e3081ca
PZ
5837}
5838
48a16753 5839static void update_blocked_averages(int cpu)
9e3081ca 5840{
9e3081ca 5841 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5842 struct cfs_rq *cfs_rq;
5843 unsigned long flags;
9e3081ca 5844
48a16753
PT
5845 raw_spin_lock_irqsave(&rq->lock, flags);
5846 update_rq_clock(rq);
9763b67f
PZ
5847 /*
5848 * Iterates the task_group tree in a bottom up fashion, see
5849 * list_add_leaf_cfs_rq() for details.
5850 */
64660c86 5851 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5852 /*
5853 * Note: We may want to consider periodically releasing
5854 * rq->lock about these updates so that creating many task
5855 * groups does not result in continually extending hold time.
5856 */
5857 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5858 }
48a16753
PT
5859
5860 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5861}
5862
9763b67f 5863/*
68520796 5864 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5865 * This needs to be done in a top-down fashion because the load of a child
5866 * group is a fraction of its parents load.
5867 */
68520796 5868static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5869{
68520796
VD
5870 struct rq *rq = rq_of(cfs_rq);
5871 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5872 unsigned long now = jiffies;
68520796 5873 unsigned long load;
a35b6466 5874
68520796 5875 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5876 return;
5877
68520796
VD
5878 cfs_rq->h_load_next = NULL;
5879 for_each_sched_entity(se) {
5880 cfs_rq = cfs_rq_of(se);
5881 cfs_rq->h_load_next = se;
5882 if (cfs_rq->last_h_load_update == now)
5883 break;
5884 }
a35b6466 5885
68520796 5886 if (!se) {
7e3115ef 5887 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5888 cfs_rq->last_h_load_update = now;
5889 }
5890
5891 while ((se = cfs_rq->h_load_next) != NULL) {
5892 load = cfs_rq->h_load;
5893 load = div64_ul(load * se->avg.load_avg_contrib,
5894 cfs_rq->runnable_load_avg + 1);
5895 cfs_rq = group_cfs_rq(se);
5896 cfs_rq->h_load = load;
5897 cfs_rq->last_h_load_update = now;
5898 }
9763b67f
PZ
5899}
5900
367456c7 5901static unsigned long task_h_load(struct task_struct *p)
230059de 5902{
367456c7 5903 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5904
68520796 5905 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5906 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5907 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5908}
5909#else
48a16753 5910static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5911{
5912}
5913
367456c7 5914static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5915{
a003a25b 5916 return p->se.avg.load_avg_contrib;
1e3c88bd 5917}
230059de 5918#endif
1e3c88bd 5919
1e3c88bd 5920/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5921
5922enum group_type {
5923 group_other = 0,
5924 group_imbalanced,
5925 group_overloaded,
5926};
5927
1e3c88bd
PZ
5928/*
5929 * sg_lb_stats - stats of a sched_group required for load_balancing
5930 */
5931struct sg_lb_stats {
5932 unsigned long avg_load; /*Avg load across the CPUs of the group */
5933 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5934 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5935 unsigned long load_per_task;
63b2ca30 5936 unsigned long group_capacity;
8bb5b00c 5937 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5938 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5939 unsigned int idle_cpus;
5940 unsigned int group_weight;
caeb178c 5941 enum group_type group_type;
ea67821b 5942 int group_no_capacity;
0ec8aa00
PZ
5943#ifdef CONFIG_NUMA_BALANCING
5944 unsigned int nr_numa_running;
5945 unsigned int nr_preferred_running;
5946#endif
1e3c88bd
PZ
5947};
5948
56cf515b
JK
5949/*
5950 * sd_lb_stats - Structure to store the statistics of a sched_domain
5951 * during load balancing.
5952 */
5953struct sd_lb_stats {
5954 struct sched_group *busiest; /* Busiest group in this sd */
5955 struct sched_group *local; /* Local group in this sd */
5956 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5957 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5958 unsigned long avg_load; /* Average load across all groups in sd */
5959
56cf515b 5960 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5961 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5962};
5963
147c5fc2
PZ
5964static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5965{
5966 /*
5967 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5968 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5969 * We must however clear busiest_stat::avg_load because
5970 * update_sd_pick_busiest() reads this before assignment.
5971 */
5972 *sds = (struct sd_lb_stats){
5973 .busiest = NULL,
5974 .local = NULL,
5975 .total_load = 0UL,
63b2ca30 5976 .total_capacity = 0UL,
147c5fc2
PZ
5977 .busiest_stat = {
5978 .avg_load = 0UL,
caeb178c
RR
5979 .sum_nr_running = 0,
5980 .group_type = group_other,
147c5fc2
PZ
5981 },
5982 };
5983}
5984
1e3c88bd
PZ
5985/**
5986 * get_sd_load_idx - Obtain the load index for a given sched domain.
5987 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5988 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5989 *
5990 * Return: The load index.
1e3c88bd
PZ
5991 */
5992static inline int get_sd_load_idx(struct sched_domain *sd,
5993 enum cpu_idle_type idle)
5994{
5995 int load_idx;
5996
5997 switch (idle) {
5998 case CPU_NOT_IDLE:
5999 load_idx = sd->busy_idx;
6000 break;
6001
6002 case CPU_NEWLY_IDLE:
6003 load_idx = sd->newidle_idx;
6004 break;
6005 default:
6006 load_idx = sd->idle_idx;
6007 break;
6008 }
6009
6010 return load_idx;
6011}
6012
ced549fa 6013static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6014{
ca8ce3d0 6015 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6016}
6017
ca8ce3d0 6018unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6019{
ced549fa 6020 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
6021}
6022
26bc3c50 6023static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6024{
26bc3c50
VG
6025 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6026 return sd->smt_gain / sd->span_weight;
1e3c88bd 6027
26bc3c50 6028 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6029}
6030
26bc3c50 6031unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6032{
26bc3c50 6033 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6034}
6035
ced549fa 6036static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6037{
6038 struct rq *rq = cpu_rq(cpu);
b5b4860d 6039 u64 total, used, age_stamp, avg;
cadefd3d 6040 s64 delta;
1e3c88bd 6041
b654f7de
PZ
6042 /*
6043 * Since we're reading these variables without serialization make sure
6044 * we read them once before doing sanity checks on them.
6045 */
6046 age_stamp = ACCESS_ONCE(rq->age_stamp);
6047 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 6048 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6049
cadefd3d
PZ
6050 if (unlikely(delta < 0))
6051 delta = 0;
6052
6053 total = sched_avg_period() + delta;
aa483808 6054
b5b4860d 6055 used = div_u64(avg, total);
1e3c88bd 6056
b5b4860d
VG
6057 if (likely(used < SCHED_CAPACITY_SCALE))
6058 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6059
b5b4860d 6060 return 1;
1e3c88bd
PZ
6061}
6062
ced549fa 6063static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6064{
ca8ce3d0 6065 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6066 struct sched_group *sdg = sd->groups;
6067
26bc3c50
VG
6068 if (sched_feat(ARCH_CAPACITY))
6069 capacity *= arch_scale_cpu_capacity(sd, cpu);
6070 else
6071 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6072
26bc3c50 6073 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6074
ca6d75e6 6075 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6076
ced549fa 6077 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6078 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6079
ced549fa
NP
6080 if (!capacity)
6081 capacity = 1;
1e3c88bd 6082
ced549fa
NP
6083 cpu_rq(cpu)->cpu_capacity = capacity;
6084 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6085}
6086
63b2ca30 6087void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6088{
6089 struct sched_domain *child = sd->child;
6090 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6091 unsigned long capacity;
4ec4412e
VG
6092 unsigned long interval;
6093
6094 interval = msecs_to_jiffies(sd->balance_interval);
6095 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6096 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6097
6098 if (!child) {
ced549fa 6099 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6100 return;
6101 }
6102
dc7ff76e 6103 capacity = 0;
1e3c88bd 6104
74a5ce20
PZ
6105 if (child->flags & SD_OVERLAP) {
6106 /*
6107 * SD_OVERLAP domains cannot assume that child groups
6108 * span the current group.
6109 */
6110
863bffc8 6111 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6112 struct sched_group_capacity *sgc;
9abf24d4 6113 struct rq *rq = cpu_rq(cpu);
863bffc8 6114
9abf24d4 6115 /*
63b2ca30 6116 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6117 * gets here before we've attached the domains to the
6118 * runqueues.
6119 *
ced549fa
NP
6120 * Use capacity_of(), which is set irrespective of domains
6121 * in update_cpu_capacity().
9abf24d4 6122 *
dc7ff76e 6123 * This avoids capacity from being 0 and
9abf24d4 6124 * causing divide-by-zero issues on boot.
9abf24d4
SD
6125 */
6126 if (unlikely(!rq->sd)) {
ced549fa 6127 capacity += capacity_of(cpu);
9abf24d4
SD
6128 continue;
6129 }
863bffc8 6130
63b2ca30 6131 sgc = rq->sd->groups->sgc;
63b2ca30 6132 capacity += sgc->capacity;
863bffc8 6133 }
74a5ce20
PZ
6134 } else {
6135 /*
6136 * !SD_OVERLAP domains can assume that child groups
6137 * span the current group.
6138 */
6139
6140 group = child->groups;
6141 do {
63b2ca30 6142 capacity += group->sgc->capacity;
74a5ce20
PZ
6143 group = group->next;
6144 } while (group != child->groups);
6145 }
1e3c88bd 6146
63b2ca30 6147 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6148}
6149
9d5efe05 6150/*
ea67821b
VG
6151 * Check whether the capacity of the rq has been noticeably reduced by side
6152 * activity. The imbalance_pct is used for the threshold.
6153 * Return true is the capacity is reduced
9d5efe05
SV
6154 */
6155static inline int
ea67821b 6156check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6157{
ea67821b
VG
6158 return ((rq->cpu_capacity * sd->imbalance_pct) <
6159 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6160}
6161
30ce5dab
PZ
6162/*
6163 * Group imbalance indicates (and tries to solve) the problem where balancing
6164 * groups is inadequate due to tsk_cpus_allowed() constraints.
6165 *
6166 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6167 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6168 * Something like:
6169 *
6170 * { 0 1 2 3 } { 4 5 6 7 }
6171 * * * * *
6172 *
6173 * If we were to balance group-wise we'd place two tasks in the first group and
6174 * two tasks in the second group. Clearly this is undesired as it will overload
6175 * cpu 3 and leave one of the cpus in the second group unused.
6176 *
6177 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6178 * by noticing the lower domain failed to reach balance and had difficulty
6179 * moving tasks due to affinity constraints.
30ce5dab
PZ
6180 *
6181 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6182 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6183 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6184 * to create an effective group imbalance.
6185 *
6186 * This is a somewhat tricky proposition since the next run might not find the
6187 * group imbalance and decide the groups need to be balanced again. A most
6188 * subtle and fragile situation.
6189 */
6190
6263322c 6191static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6192{
63b2ca30 6193 return group->sgc->imbalance;
30ce5dab
PZ
6194}
6195
b37d9316 6196/*
ea67821b
VG
6197 * group_has_capacity returns true if the group has spare capacity that could
6198 * be used by some tasks.
6199 * We consider that a group has spare capacity if the * number of task is
6200 * smaller than the number of CPUs or if the usage is lower than the available
6201 * capacity for CFS tasks.
6202 * For the latter, we use a threshold to stabilize the state, to take into
6203 * account the variance of the tasks' load and to return true if the available
6204 * capacity in meaningful for the load balancer.
6205 * As an example, an available capacity of 1% can appear but it doesn't make
6206 * any benefit for the load balance.
b37d9316 6207 */
ea67821b
VG
6208static inline bool
6209group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6210{
ea67821b
VG
6211 if (sgs->sum_nr_running < sgs->group_weight)
6212 return true;
c61037e9 6213
ea67821b
VG
6214 if ((sgs->group_capacity * 100) >
6215 (sgs->group_usage * env->sd->imbalance_pct))
6216 return true;
b37d9316 6217
ea67821b
VG
6218 return false;
6219}
6220
6221/*
6222 * group_is_overloaded returns true if the group has more tasks than it can
6223 * handle.
6224 * group_is_overloaded is not equals to !group_has_capacity because a group
6225 * with the exact right number of tasks, has no more spare capacity but is not
6226 * overloaded so both group_has_capacity and group_is_overloaded return
6227 * false.
6228 */
6229static inline bool
6230group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6231{
6232 if (sgs->sum_nr_running <= sgs->group_weight)
6233 return false;
b37d9316 6234
ea67821b
VG
6235 if ((sgs->group_capacity * 100) <
6236 (sgs->group_usage * env->sd->imbalance_pct))
6237 return true;
b37d9316 6238
ea67821b 6239 return false;
b37d9316
PZ
6240}
6241
ea67821b
VG
6242static enum group_type group_classify(struct lb_env *env,
6243 struct sched_group *group,
6244 struct sg_lb_stats *sgs)
caeb178c 6245{
ea67821b 6246 if (sgs->group_no_capacity)
caeb178c
RR
6247 return group_overloaded;
6248
6249 if (sg_imbalanced(group))
6250 return group_imbalanced;
6251
6252 return group_other;
6253}
6254
1e3c88bd
PZ
6255/**
6256 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6257 * @env: The load balancing environment.
1e3c88bd 6258 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6259 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6260 * @local_group: Does group contain this_cpu.
1e3c88bd 6261 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6262 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6263 */
bd939f45
PZ
6264static inline void update_sg_lb_stats(struct lb_env *env,
6265 struct sched_group *group, int load_idx,
4486edd1
TC
6266 int local_group, struct sg_lb_stats *sgs,
6267 bool *overload)
1e3c88bd 6268{
30ce5dab 6269 unsigned long load;
bd939f45 6270 int i;
1e3c88bd 6271
b72ff13c
PZ
6272 memset(sgs, 0, sizeof(*sgs));
6273
b9403130 6274 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6275 struct rq *rq = cpu_rq(i);
6276
1e3c88bd 6277 /* Bias balancing toward cpus of our domain */
6263322c 6278 if (local_group)
04f733b4 6279 load = target_load(i, load_idx);
6263322c 6280 else
1e3c88bd 6281 load = source_load(i, load_idx);
1e3c88bd
PZ
6282
6283 sgs->group_load += load;
8bb5b00c 6284 sgs->group_usage += get_cpu_usage(i);
65fdac08 6285 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6286
6287 if (rq->nr_running > 1)
6288 *overload = true;
6289
0ec8aa00
PZ
6290#ifdef CONFIG_NUMA_BALANCING
6291 sgs->nr_numa_running += rq->nr_numa_running;
6292 sgs->nr_preferred_running += rq->nr_preferred_running;
6293#endif
1e3c88bd 6294 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6295 if (idle_cpu(i))
6296 sgs->idle_cpus++;
1e3c88bd
PZ
6297 }
6298
63b2ca30
NP
6299 /* Adjust by relative CPU capacity of the group */
6300 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6301 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6302
dd5feea1 6303 if (sgs->sum_nr_running)
38d0f770 6304 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6305
aae6d3dd 6306 sgs->group_weight = group->group_weight;
b37d9316 6307
ea67821b
VG
6308 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6309 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6310}
6311
532cb4c4
MN
6312/**
6313 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6314 * @env: The load balancing environment.
532cb4c4
MN
6315 * @sds: sched_domain statistics
6316 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6317 * @sgs: sched_group statistics
532cb4c4
MN
6318 *
6319 * Determine if @sg is a busier group than the previously selected
6320 * busiest group.
e69f6186
YB
6321 *
6322 * Return: %true if @sg is a busier group than the previously selected
6323 * busiest group. %false otherwise.
532cb4c4 6324 */
bd939f45 6325static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6326 struct sd_lb_stats *sds,
6327 struct sched_group *sg,
bd939f45 6328 struct sg_lb_stats *sgs)
532cb4c4 6329{
caeb178c 6330 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6331
caeb178c 6332 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6333 return true;
6334
caeb178c
RR
6335 if (sgs->group_type < busiest->group_type)
6336 return false;
6337
6338 if (sgs->avg_load <= busiest->avg_load)
6339 return false;
6340
6341 /* This is the busiest node in its class. */
6342 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6343 return true;
6344
6345 /*
6346 * ASYM_PACKING needs to move all the work to the lowest
6347 * numbered CPUs in the group, therefore mark all groups
6348 * higher than ourself as busy.
6349 */
caeb178c 6350 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6351 if (!sds->busiest)
6352 return true;
6353
6354 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6355 return true;
6356 }
6357
6358 return false;
6359}
6360
0ec8aa00
PZ
6361#ifdef CONFIG_NUMA_BALANCING
6362static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6363{
6364 if (sgs->sum_nr_running > sgs->nr_numa_running)
6365 return regular;
6366 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6367 return remote;
6368 return all;
6369}
6370
6371static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6372{
6373 if (rq->nr_running > rq->nr_numa_running)
6374 return regular;
6375 if (rq->nr_running > rq->nr_preferred_running)
6376 return remote;
6377 return all;
6378}
6379#else
6380static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6381{
6382 return all;
6383}
6384
6385static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6386{
6387 return regular;
6388}
6389#endif /* CONFIG_NUMA_BALANCING */
6390
1e3c88bd 6391/**
461819ac 6392 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6393 * @env: The load balancing environment.
1e3c88bd
PZ
6394 * @sds: variable to hold the statistics for this sched_domain.
6395 */
0ec8aa00 6396static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6397{
bd939f45
PZ
6398 struct sched_domain *child = env->sd->child;
6399 struct sched_group *sg = env->sd->groups;
56cf515b 6400 struct sg_lb_stats tmp_sgs;
1e3c88bd 6401 int load_idx, prefer_sibling = 0;
4486edd1 6402 bool overload = false;
1e3c88bd
PZ
6403
6404 if (child && child->flags & SD_PREFER_SIBLING)
6405 prefer_sibling = 1;
6406
bd939f45 6407 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6408
6409 do {
56cf515b 6410 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6411 int local_group;
6412
bd939f45 6413 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6414 if (local_group) {
6415 sds->local = sg;
6416 sgs = &sds->local_stat;
b72ff13c
PZ
6417
6418 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6419 time_after_eq(jiffies, sg->sgc->next_update))
6420 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6421 }
1e3c88bd 6422
4486edd1
TC
6423 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6424 &overload);
1e3c88bd 6425
b72ff13c
PZ
6426 if (local_group)
6427 goto next_group;
6428
1e3c88bd
PZ
6429 /*
6430 * In case the child domain prefers tasks go to siblings
ea67821b 6431 * first, lower the sg capacity so that we'll try
75dd321d
NR
6432 * and move all the excess tasks away. We lower the capacity
6433 * of a group only if the local group has the capacity to fit
ea67821b
VG
6434 * these excess tasks. The extra check prevents the case where
6435 * you always pull from the heaviest group when it is already
6436 * under-utilized (possible with a large weight task outweighs
6437 * the tasks on the system).
1e3c88bd 6438 */
b72ff13c 6439 if (prefer_sibling && sds->local &&
ea67821b
VG
6440 group_has_capacity(env, &sds->local_stat) &&
6441 (sgs->sum_nr_running > 1)) {
6442 sgs->group_no_capacity = 1;
6443 sgs->group_type = group_overloaded;
cb0b9f24 6444 }
1e3c88bd 6445
b72ff13c 6446 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6447 sds->busiest = sg;
56cf515b 6448 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6449 }
6450
b72ff13c
PZ
6451next_group:
6452 /* Now, start updating sd_lb_stats */
6453 sds->total_load += sgs->group_load;
63b2ca30 6454 sds->total_capacity += sgs->group_capacity;
b72ff13c 6455
532cb4c4 6456 sg = sg->next;
bd939f45 6457 } while (sg != env->sd->groups);
0ec8aa00
PZ
6458
6459 if (env->sd->flags & SD_NUMA)
6460 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6461
6462 if (!env->sd->parent) {
6463 /* update overload indicator if we are at root domain */
6464 if (env->dst_rq->rd->overload != overload)
6465 env->dst_rq->rd->overload = overload;
6466 }
6467
532cb4c4
MN
6468}
6469
532cb4c4
MN
6470/**
6471 * check_asym_packing - Check to see if the group is packed into the
6472 * sched doman.
6473 *
6474 * This is primarily intended to used at the sibling level. Some
6475 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6476 * case of POWER7, it can move to lower SMT modes only when higher
6477 * threads are idle. When in lower SMT modes, the threads will
6478 * perform better since they share less core resources. Hence when we
6479 * have idle threads, we want them to be the higher ones.
6480 *
6481 * This packing function is run on idle threads. It checks to see if
6482 * the busiest CPU in this domain (core in the P7 case) has a higher
6483 * CPU number than the packing function is being run on. Here we are
6484 * assuming lower CPU number will be equivalent to lower a SMT thread
6485 * number.
6486 *
e69f6186 6487 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6488 * this CPU. The amount of the imbalance is returned in *imbalance.
6489 *
cd96891d 6490 * @env: The load balancing environment.
532cb4c4 6491 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6492 */
bd939f45 6493static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6494{
6495 int busiest_cpu;
6496
bd939f45 6497 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6498 return 0;
6499
6500 if (!sds->busiest)
6501 return 0;
6502
6503 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6504 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6505 return 0;
6506
bd939f45 6507 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6508 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6509 SCHED_CAPACITY_SCALE);
bd939f45 6510
532cb4c4 6511 return 1;
1e3c88bd
PZ
6512}
6513
6514/**
6515 * fix_small_imbalance - Calculate the minor imbalance that exists
6516 * amongst the groups of a sched_domain, during
6517 * load balancing.
cd96891d 6518 * @env: The load balancing environment.
1e3c88bd 6519 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6520 */
bd939f45
PZ
6521static inline
6522void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6523{
63b2ca30 6524 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6525 unsigned int imbn = 2;
dd5feea1 6526 unsigned long scaled_busy_load_per_task;
56cf515b 6527 struct sg_lb_stats *local, *busiest;
1e3c88bd 6528
56cf515b
JK
6529 local = &sds->local_stat;
6530 busiest = &sds->busiest_stat;
1e3c88bd 6531
56cf515b
JK
6532 if (!local->sum_nr_running)
6533 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6534 else if (busiest->load_per_task > local->load_per_task)
6535 imbn = 1;
dd5feea1 6536
56cf515b 6537 scaled_busy_load_per_task =
ca8ce3d0 6538 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6539 busiest->group_capacity;
56cf515b 6540
3029ede3
VD
6541 if (busiest->avg_load + scaled_busy_load_per_task >=
6542 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6543 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6544 return;
6545 }
6546
6547 /*
6548 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6549 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6550 * moving them.
6551 */
6552
63b2ca30 6553 capa_now += busiest->group_capacity *
56cf515b 6554 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6555 capa_now += local->group_capacity *
56cf515b 6556 min(local->load_per_task, local->avg_load);
ca8ce3d0 6557 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6558
6559 /* Amount of load we'd subtract */
a2cd4260 6560 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6561 capa_move += busiest->group_capacity *
56cf515b 6562 min(busiest->load_per_task,
a2cd4260 6563 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6564 }
1e3c88bd
PZ
6565
6566 /* Amount of load we'd add */
63b2ca30 6567 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6568 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6569 tmp = (busiest->avg_load * busiest->group_capacity) /
6570 local->group_capacity;
56cf515b 6571 } else {
ca8ce3d0 6572 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6573 local->group_capacity;
56cf515b 6574 }
63b2ca30 6575 capa_move += local->group_capacity *
3ae11c90 6576 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6577 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6578
6579 /* Move if we gain throughput */
63b2ca30 6580 if (capa_move > capa_now)
56cf515b 6581 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6582}
6583
6584/**
6585 * calculate_imbalance - Calculate the amount of imbalance present within the
6586 * groups of a given sched_domain during load balance.
bd939f45 6587 * @env: load balance environment
1e3c88bd 6588 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6589 */
bd939f45 6590static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6591{
dd5feea1 6592 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6593 struct sg_lb_stats *local, *busiest;
6594
6595 local = &sds->local_stat;
56cf515b 6596 busiest = &sds->busiest_stat;
dd5feea1 6597
caeb178c 6598 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6599 /*
6600 * In the group_imb case we cannot rely on group-wide averages
6601 * to ensure cpu-load equilibrium, look at wider averages. XXX
6602 */
56cf515b
JK
6603 busiest->load_per_task =
6604 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6605 }
6606
1e3c88bd
PZ
6607 /*
6608 * In the presence of smp nice balancing, certain scenarios can have
6609 * max load less than avg load(as we skip the groups at or below
ced549fa 6610 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6611 */
b1885550
VD
6612 if (busiest->avg_load <= sds->avg_load ||
6613 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6614 env->imbalance = 0;
6615 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6616 }
6617
9a5d9ba6
PZ
6618 /*
6619 * If there aren't any idle cpus, avoid creating some.
6620 */
6621 if (busiest->group_type == group_overloaded &&
6622 local->group_type == group_overloaded) {
ea67821b
VG
6623 load_above_capacity = busiest->sum_nr_running *
6624 SCHED_LOAD_SCALE;
6625 if (load_above_capacity > busiest->group_capacity)
6626 load_above_capacity -= busiest->group_capacity;
6627 else
6628 load_above_capacity = ~0UL;
dd5feea1
SS
6629 }
6630
6631 /*
6632 * We're trying to get all the cpus to the average_load, so we don't
6633 * want to push ourselves above the average load, nor do we wish to
6634 * reduce the max loaded cpu below the average load. At the same time,
6635 * we also don't want to reduce the group load below the group capacity
6636 * (so that we can implement power-savings policies etc). Thus we look
6637 * for the minimum possible imbalance.
dd5feea1 6638 */
30ce5dab 6639 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6640
6641 /* How much load to actually move to equalise the imbalance */
56cf515b 6642 env->imbalance = min(
63b2ca30
NP
6643 max_pull * busiest->group_capacity,
6644 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6645 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6646
6647 /*
6648 * if *imbalance is less than the average load per runnable task
25985edc 6649 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6650 * a think about bumping its value to force at least one task to be
6651 * moved
6652 */
56cf515b 6653 if (env->imbalance < busiest->load_per_task)
bd939f45 6654 return fix_small_imbalance(env, sds);
1e3c88bd 6655}
fab47622 6656
1e3c88bd
PZ
6657/******* find_busiest_group() helpers end here *********************/
6658
6659/**
6660 * find_busiest_group - Returns the busiest group within the sched_domain
6661 * if there is an imbalance. If there isn't an imbalance, and
6662 * the user has opted for power-savings, it returns a group whose
6663 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6664 * such a group exists.
6665 *
6666 * Also calculates the amount of weighted load which should be moved
6667 * to restore balance.
6668 *
cd96891d 6669 * @env: The load balancing environment.
1e3c88bd 6670 *
e69f6186 6671 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6672 * - If no imbalance and user has opted for power-savings balance,
6673 * return the least loaded group whose CPUs can be
6674 * put to idle by rebalancing its tasks onto our group.
6675 */
56cf515b 6676static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6677{
56cf515b 6678 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6679 struct sd_lb_stats sds;
6680
147c5fc2 6681 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6682
6683 /*
6684 * Compute the various statistics relavent for load balancing at
6685 * this level.
6686 */
23f0d209 6687 update_sd_lb_stats(env, &sds);
56cf515b
JK
6688 local = &sds.local_stat;
6689 busiest = &sds.busiest_stat;
1e3c88bd 6690
ea67821b 6691 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6692 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6693 check_asym_packing(env, &sds))
532cb4c4
MN
6694 return sds.busiest;
6695
cc57aa8f 6696 /* There is no busy sibling group to pull tasks from */
56cf515b 6697 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6698 goto out_balanced;
6699
ca8ce3d0
NP
6700 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6701 / sds.total_capacity;
b0432d8f 6702
866ab43e
PZ
6703 /*
6704 * If the busiest group is imbalanced the below checks don't
30ce5dab 6705 * work because they assume all things are equal, which typically
866ab43e
PZ
6706 * isn't true due to cpus_allowed constraints and the like.
6707 */
caeb178c 6708 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6709 goto force_balance;
6710
cc57aa8f 6711 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6712 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6713 busiest->group_no_capacity)
fab47622
NR
6714 goto force_balance;
6715
cc57aa8f 6716 /*
9c58c79a 6717 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6718 * don't try and pull any tasks.
6719 */
56cf515b 6720 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6721 goto out_balanced;
6722
cc57aa8f
PZ
6723 /*
6724 * Don't pull any tasks if this group is already above the domain
6725 * average load.
6726 */
56cf515b 6727 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6728 goto out_balanced;
6729
bd939f45 6730 if (env->idle == CPU_IDLE) {
aae6d3dd 6731 /*
43f4d666
VG
6732 * This cpu is idle. If the busiest group is not overloaded
6733 * and there is no imbalance between this and busiest group
6734 * wrt idle cpus, it is balanced. The imbalance becomes
6735 * significant if the diff is greater than 1 otherwise we
6736 * might end up to just move the imbalance on another group
aae6d3dd 6737 */
43f4d666
VG
6738 if ((busiest->group_type != group_overloaded) &&
6739 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6740 goto out_balanced;
c186fafe
PZ
6741 } else {
6742 /*
6743 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6744 * imbalance_pct to be conservative.
6745 */
56cf515b
JK
6746 if (100 * busiest->avg_load <=
6747 env->sd->imbalance_pct * local->avg_load)
c186fafe 6748 goto out_balanced;
aae6d3dd 6749 }
1e3c88bd 6750
fab47622 6751force_balance:
1e3c88bd 6752 /* Looks like there is an imbalance. Compute it */
bd939f45 6753 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6754 return sds.busiest;
6755
6756out_balanced:
bd939f45 6757 env->imbalance = 0;
1e3c88bd
PZ
6758 return NULL;
6759}
6760
6761/*
6762 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6763 */
bd939f45 6764static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6765 struct sched_group *group)
1e3c88bd
PZ
6766{
6767 struct rq *busiest = NULL, *rq;
ced549fa 6768 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6769 int i;
6770
6906a408 6771 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6772 unsigned long capacity, wl;
0ec8aa00
PZ
6773 enum fbq_type rt;
6774
6775 rq = cpu_rq(i);
6776 rt = fbq_classify_rq(rq);
1e3c88bd 6777
0ec8aa00
PZ
6778 /*
6779 * We classify groups/runqueues into three groups:
6780 * - regular: there are !numa tasks
6781 * - remote: there are numa tasks that run on the 'wrong' node
6782 * - all: there is no distinction
6783 *
6784 * In order to avoid migrating ideally placed numa tasks,
6785 * ignore those when there's better options.
6786 *
6787 * If we ignore the actual busiest queue to migrate another
6788 * task, the next balance pass can still reduce the busiest
6789 * queue by moving tasks around inside the node.
6790 *
6791 * If we cannot move enough load due to this classification
6792 * the next pass will adjust the group classification and
6793 * allow migration of more tasks.
6794 *
6795 * Both cases only affect the total convergence complexity.
6796 */
6797 if (rt > env->fbq_type)
6798 continue;
6799
ced549fa 6800 capacity = capacity_of(i);
9d5efe05 6801
6e40f5bb 6802 wl = weighted_cpuload(i);
1e3c88bd 6803
6e40f5bb
TG
6804 /*
6805 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6806 * which is not scaled with the cpu capacity.
6e40f5bb 6807 */
ea67821b
VG
6808
6809 if (rq->nr_running == 1 && wl > env->imbalance &&
6810 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6811 continue;
6812
6e40f5bb
TG
6813 /*
6814 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6815 * the weighted_cpuload() scaled with the cpu capacity, so
6816 * that the load can be moved away from the cpu that is
6817 * potentially running at a lower capacity.
95a79b80 6818 *
ced549fa 6819 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6820 * multiplication to rid ourselves of the division works out
ced549fa
NP
6821 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6822 * our previous maximum.
6e40f5bb 6823 */
ced549fa 6824 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6825 busiest_load = wl;
ced549fa 6826 busiest_capacity = capacity;
1e3c88bd
PZ
6827 busiest = rq;
6828 }
6829 }
6830
6831 return busiest;
6832}
6833
6834/*
6835 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6836 * so long as it is large enough.
6837 */
6838#define MAX_PINNED_INTERVAL 512
6839
6840/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6841DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6842
bd939f45 6843static int need_active_balance(struct lb_env *env)
1af3ed3d 6844{
bd939f45
PZ
6845 struct sched_domain *sd = env->sd;
6846
6847 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6848
6849 /*
6850 * ASYM_PACKING needs to force migrate tasks from busy but
6851 * higher numbered CPUs in order to pack all tasks in the
6852 * lowest numbered CPUs.
6853 */
bd939f45 6854 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6855 return 1;
1af3ed3d
PZ
6856 }
6857
6858 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6859}
6860
969c7921
TH
6861static int active_load_balance_cpu_stop(void *data);
6862
23f0d209
JK
6863static int should_we_balance(struct lb_env *env)
6864{
6865 struct sched_group *sg = env->sd->groups;
6866 struct cpumask *sg_cpus, *sg_mask;
6867 int cpu, balance_cpu = -1;
6868
6869 /*
6870 * In the newly idle case, we will allow all the cpu's
6871 * to do the newly idle load balance.
6872 */
6873 if (env->idle == CPU_NEWLY_IDLE)
6874 return 1;
6875
6876 sg_cpus = sched_group_cpus(sg);
6877 sg_mask = sched_group_mask(sg);
6878 /* Try to find first idle cpu */
6879 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6880 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6881 continue;
6882
6883 balance_cpu = cpu;
6884 break;
6885 }
6886
6887 if (balance_cpu == -1)
6888 balance_cpu = group_balance_cpu(sg);
6889
6890 /*
6891 * First idle cpu or the first cpu(busiest) in this sched group
6892 * is eligible for doing load balancing at this and above domains.
6893 */
b0cff9d8 6894 return balance_cpu == env->dst_cpu;
23f0d209
JK
6895}
6896
1e3c88bd
PZ
6897/*
6898 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6899 * tasks if there is an imbalance.
6900 */
6901static int load_balance(int this_cpu, struct rq *this_rq,
6902 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6903 int *continue_balancing)
1e3c88bd 6904{
88b8dac0 6905 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6906 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6907 struct sched_group *group;
1e3c88bd
PZ
6908 struct rq *busiest;
6909 unsigned long flags;
4ba29684 6910 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6911
8e45cb54
PZ
6912 struct lb_env env = {
6913 .sd = sd,
ddcdf6e7
PZ
6914 .dst_cpu = this_cpu,
6915 .dst_rq = this_rq,
88b8dac0 6916 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6917 .idle = idle,
eb95308e 6918 .loop_break = sched_nr_migrate_break,
b9403130 6919 .cpus = cpus,
0ec8aa00 6920 .fbq_type = all,
163122b7 6921 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6922 };
6923
cfc03118
JK
6924 /*
6925 * For NEWLY_IDLE load_balancing, we don't need to consider
6926 * other cpus in our group
6927 */
e02e60c1 6928 if (idle == CPU_NEWLY_IDLE)
cfc03118 6929 env.dst_grpmask = NULL;
cfc03118 6930
1e3c88bd
PZ
6931 cpumask_copy(cpus, cpu_active_mask);
6932
1e3c88bd
PZ
6933 schedstat_inc(sd, lb_count[idle]);
6934
6935redo:
23f0d209
JK
6936 if (!should_we_balance(&env)) {
6937 *continue_balancing = 0;
1e3c88bd 6938 goto out_balanced;
23f0d209 6939 }
1e3c88bd 6940
23f0d209 6941 group = find_busiest_group(&env);
1e3c88bd
PZ
6942 if (!group) {
6943 schedstat_inc(sd, lb_nobusyg[idle]);
6944 goto out_balanced;
6945 }
6946
b9403130 6947 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6948 if (!busiest) {
6949 schedstat_inc(sd, lb_nobusyq[idle]);
6950 goto out_balanced;
6951 }
6952
78feefc5 6953 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6954
bd939f45 6955 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6956
6957 ld_moved = 0;
6958 if (busiest->nr_running > 1) {
6959 /*
6960 * Attempt to move tasks. If find_busiest_group has found
6961 * an imbalance but busiest->nr_running <= 1, the group is
6962 * still unbalanced. ld_moved simply stays zero, so it is
6963 * correctly treated as an imbalance.
6964 */
8e45cb54 6965 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6966 env.src_cpu = busiest->cpu;
6967 env.src_rq = busiest;
6968 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6969
5d6523eb 6970more_balance:
163122b7 6971 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6972
6973 /*
6974 * cur_ld_moved - load moved in current iteration
6975 * ld_moved - cumulative load moved across iterations
6976 */
163122b7 6977 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6978
6979 /*
163122b7
KT
6980 * We've detached some tasks from busiest_rq. Every
6981 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6982 * unlock busiest->lock, and we are able to be sure
6983 * that nobody can manipulate the tasks in parallel.
6984 * See task_rq_lock() family for the details.
1e3c88bd 6985 */
163122b7
KT
6986
6987 raw_spin_unlock(&busiest->lock);
6988
6989 if (cur_ld_moved) {
6990 attach_tasks(&env);
6991 ld_moved += cur_ld_moved;
6992 }
6993
1e3c88bd 6994 local_irq_restore(flags);
88b8dac0 6995
f1cd0858
JK
6996 if (env.flags & LBF_NEED_BREAK) {
6997 env.flags &= ~LBF_NEED_BREAK;
6998 goto more_balance;
6999 }
7000
88b8dac0
SV
7001 /*
7002 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7003 * us and move them to an alternate dst_cpu in our sched_group
7004 * where they can run. The upper limit on how many times we
7005 * iterate on same src_cpu is dependent on number of cpus in our
7006 * sched_group.
7007 *
7008 * This changes load balance semantics a bit on who can move
7009 * load to a given_cpu. In addition to the given_cpu itself
7010 * (or a ilb_cpu acting on its behalf where given_cpu is
7011 * nohz-idle), we now have balance_cpu in a position to move
7012 * load to given_cpu. In rare situations, this may cause
7013 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7014 * _independently_ and at _same_ time to move some load to
7015 * given_cpu) causing exceess load to be moved to given_cpu.
7016 * This however should not happen so much in practice and
7017 * moreover subsequent load balance cycles should correct the
7018 * excess load moved.
7019 */
6263322c 7020 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7021
7aff2e3a
VD
7022 /* Prevent to re-select dst_cpu via env's cpus */
7023 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7024
78feefc5 7025 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7026 env.dst_cpu = env.new_dst_cpu;
6263322c 7027 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7028 env.loop = 0;
7029 env.loop_break = sched_nr_migrate_break;
e02e60c1 7030
88b8dac0
SV
7031 /*
7032 * Go back to "more_balance" rather than "redo" since we
7033 * need to continue with same src_cpu.
7034 */
7035 goto more_balance;
7036 }
1e3c88bd 7037
6263322c
PZ
7038 /*
7039 * We failed to reach balance because of affinity.
7040 */
7041 if (sd_parent) {
63b2ca30 7042 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7043
afdeee05 7044 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7045 *group_imbalance = 1;
6263322c
PZ
7046 }
7047
1e3c88bd 7048 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7049 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7050 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7051 if (!cpumask_empty(cpus)) {
7052 env.loop = 0;
7053 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7054 goto redo;
bbf18b19 7055 }
afdeee05 7056 goto out_all_pinned;
1e3c88bd
PZ
7057 }
7058 }
7059
7060 if (!ld_moved) {
7061 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7062 /*
7063 * Increment the failure counter only on periodic balance.
7064 * We do not want newidle balance, which can be very
7065 * frequent, pollute the failure counter causing
7066 * excessive cache_hot migrations and active balances.
7067 */
7068 if (idle != CPU_NEWLY_IDLE)
7069 sd->nr_balance_failed++;
1e3c88bd 7070
bd939f45 7071 if (need_active_balance(&env)) {
1e3c88bd
PZ
7072 raw_spin_lock_irqsave(&busiest->lock, flags);
7073
969c7921
TH
7074 /* don't kick the active_load_balance_cpu_stop,
7075 * if the curr task on busiest cpu can't be
7076 * moved to this_cpu
1e3c88bd
PZ
7077 */
7078 if (!cpumask_test_cpu(this_cpu,
fa17b507 7079 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7080 raw_spin_unlock_irqrestore(&busiest->lock,
7081 flags);
8e45cb54 7082 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7083 goto out_one_pinned;
7084 }
7085
969c7921
TH
7086 /*
7087 * ->active_balance synchronizes accesses to
7088 * ->active_balance_work. Once set, it's cleared
7089 * only after active load balance is finished.
7090 */
1e3c88bd
PZ
7091 if (!busiest->active_balance) {
7092 busiest->active_balance = 1;
7093 busiest->push_cpu = this_cpu;
7094 active_balance = 1;
7095 }
7096 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7097
bd939f45 7098 if (active_balance) {
969c7921
TH
7099 stop_one_cpu_nowait(cpu_of(busiest),
7100 active_load_balance_cpu_stop, busiest,
7101 &busiest->active_balance_work);
bd939f45 7102 }
1e3c88bd
PZ
7103
7104 /*
7105 * We've kicked active balancing, reset the failure
7106 * counter.
7107 */
7108 sd->nr_balance_failed = sd->cache_nice_tries+1;
7109 }
7110 } else
7111 sd->nr_balance_failed = 0;
7112
7113 if (likely(!active_balance)) {
7114 /* We were unbalanced, so reset the balancing interval */
7115 sd->balance_interval = sd->min_interval;
7116 } else {
7117 /*
7118 * If we've begun active balancing, start to back off. This
7119 * case may not be covered by the all_pinned logic if there
7120 * is only 1 task on the busy runqueue (because we don't call
163122b7 7121 * detach_tasks).
1e3c88bd
PZ
7122 */
7123 if (sd->balance_interval < sd->max_interval)
7124 sd->balance_interval *= 2;
7125 }
7126
1e3c88bd
PZ
7127 goto out;
7128
7129out_balanced:
afdeee05
VG
7130 /*
7131 * We reach balance although we may have faced some affinity
7132 * constraints. Clear the imbalance flag if it was set.
7133 */
7134 if (sd_parent) {
7135 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7136
7137 if (*group_imbalance)
7138 *group_imbalance = 0;
7139 }
7140
7141out_all_pinned:
7142 /*
7143 * We reach balance because all tasks are pinned at this level so
7144 * we can't migrate them. Let the imbalance flag set so parent level
7145 * can try to migrate them.
7146 */
1e3c88bd
PZ
7147 schedstat_inc(sd, lb_balanced[idle]);
7148
7149 sd->nr_balance_failed = 0;
7150
7151out_one_pinned:
7152 /* tune up the balancing interval */
8e45cb54 7153 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7154 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7155 (sd->balance_interval < sd->max_interval))
7156 sd->balance_interval *= 2;
7157
46e49b38 7158 ld_moved = 0;
1e3c88bd 7159out:
1e3c88bd
PZ
7160 return ld_moved;
7161}
7162
52a08ef1
JL
7163static inline unsigned long
7164get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7165{
7166 unsigned long interval = sd->balance_interval;
7167
7168 if (cpu_busy)
7169 interval *= sd->busy_factor;
7170
7171 /* scale ms to jiffies */
7172 interval = msecs_to_jiffies(interval);
7173 interval = clamp(interval, 1UL, max_load_balance_interval);
7174
7175 return interval;
7176}
7177
7178static inline void
7179update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7180{
7181 unsigned long interval, next;
7182
7183 interval = get_sd_balance_interval(sd, cpu_busy);
7184 next = sd->last_balance + interval;
7185
7186 if (time_after(*next_balance, next))
7187 *next_balance = next;
7188}
7189
1e3c88bd
PZ
7190/*
7191 * idle_balance is called by schedule() if this_cpu is about to become
7192 * idle. Attempts to pull tasks from other CPUs.
7193 */
6e83125c 7194static int idle_balance(struct rq *this_rq)
1e3c88bd 7195{
52a08ef1
JL
7196 unsigned long next_balance = jiffies + HZ;
7197 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7198 struct sched_domain *sd;
7199 int pulled_task = 0;
9bd721c5 7200 u64 curr_cost = 0;
1e3c88bd 7201
6e83125c 7202 idle_enter_fair(this_rq);
0e5b5337 7203
6e83125c
PZ
7204 /*
7205 * We must set idle_stamp _before_ calling idle_balance(), such that we
7206 * measure the duration of idle_balance() as idle time.
7207 */
7208 this_rq->idle_stamp = rq_clock(this_rq);
7209
4486edd1
TC
7210 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7211 !this_rq->rd->overload) {
52a08ef1
JL
7212 rcu_read_lock();
7213 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7214 if (sd)
7215 update_next_balance(sd, 0, &next_balance);
7216 rcu_read_unlock();
7217
6e83125c 7218 goto out;
52a08ef1 7219 }
1e3c88bd 7220
f492e12e
PZ
7221 /*
7222 * Drop the rq->lock, but keep IRQ/preempt disabled.
7223 */
7224 raw_spin_unlock(&this_rq->lock);
7225
48a16753 7226 update_blocked_averages(this_cpu);
dce840a0 7227 rcu_read_lock();
1e3c88bd 7228 for_each_domain(this_cpu, sd) {
23f0d209 7229 int continue_balancing = 1;
9bd721c5 7230 u64 t0, domain_cost;
1e3c88bd
PZ
7231
7232 if (!(sd->flags & SD_LOAD_BALANCE))
7233 continue;
7234
52a08ef1
JL
7235 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7236 update_next_balance(sd, 0, &next_balance);
9bd721c5 7237 break;
52a08ef1 7238 }
9bd721c5 7239
f492e12e 7240 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7241 t0 = sched_clock_cpu(this_cpu);
7242
f492e12e 7243 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7244 sd, CPU_NEWLY_IDLE,
7245 &continue_balancing);
9bd721c5
JL
7246
7247 domain_cost = sched_clock_cpu(this_cpu) - t0;
7248 if (domain_cost > sd->max_newidle_lb_cost)
7249 sd->max_newidle_lb_cost = domain_cost;
7250
7251 curr_cost += domain_cost;
f492e12e 7252 }
1e3c88bd 7253
52a08ef1 7254 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7255
7256 /*
7257 * Stop searching for tasks to pull if there are
7258 * now runnable tasks on this rq.
7259 */
7260 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7261 break;
1e3c88bd 7262 }
dce840a0 7263 rcu_read_unlock();
f492e12e
PZ
7264
7265 raw_spin_lock(&this_rq->lock);
7266
0e5b5337
JL
7267 if (curr_cost > this_rq->max_idle_balance_cost)
7268 this_rq->max_idle_balance_cost = curr_cost;
7269
e5fc6611 7270 /*
0e5b5337
JL
7271 * While browsing the domains, we released the rq lock, a task could
7272 * have been enqueued in the meantime. Since we're not going idle,
7273 * pretend we pulled a task.
e5fc6611 7274 */
0e5b5337 7275 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7276 pulled_task = 1;
e5fc6611 7277
52a08ef1
JL
7278out:
7279 /* Move the next balance forward */
7280 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7281 this_rq->next_balance = next_balance;
9bd721c5 7282
e4aa358b 7283 /* Is there a task of a high priority class? */
46383648 7284 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7285 pulled_task = -1;
7286
7287 if (pulled_task) {
7288 idle_exit_fair(this_rq);
6e83125c 7289 this_rq->idle_stamp = 0;
e4aa358b 7290 }
6e83125c 7291
3c4017c1 7292 return pulled_task;
1e3c88bd
PZ
7293}
7294
7295/*
969c7921
TH
7296 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7297 * running tasks off the busiest CPU onto idle CPUs. It requires at
7298 * least 1 task to be running on each physical CPU where possible, and
7299 * avoids physical / logical imbalances.
1e3c88bd 7300 */
969c7921 7301static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7302{
969c7921
TH
7303 struct rq *busiest_rq = data;
7304 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7305 int target_cpu = busiest_rq->push_cpu;
969c7921 7306 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7307 struct sched_domain *sd;
e5673f28 7308 struct task_struct *p = NULL;
969c7921
TH
7309
7310 raw_spin_lock_irq(&busiest_rq->lock);
7311
7312 /* make sure the requested cpu hasn't gone down in the meantime */
7313 if (unlikely(busiest_cpu != smp_processor_id() ||
7314 !busiest_rq->active_balance))
7315 goto out_unlock;
1e3c88bd
PZ
7316
7317 /* Is there any task to move? */
7318 if (busiest_rq->nr_running <= 1)
969c7921 7319 goto out_unlock;
1e3c88bd
PZ
7320
7321 /*
7322 * This condition is "impossible", if it occurs
7323 * we need to fix it. Originally reported by
7324 * Bjorn Helgaas on a 128-cpu setup.
7325 */
7326 BUG_ON(busiest_rq == target_rq);
7327
1e3c88bd 7328 /* Search for an sd spanning us and the target CPU. */
dce840a0 7329 rcu_read_lock();
1e3c88bd
PZ
7330 for_each_domain(target_cpu, sd) {
7331 if ((sd->flags & SD_LOAD_BALANCE) &&
7332 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7333 break;
7334 }
7335
7336 if (likely(sd)) {
8e45cb54
PZ
7337 struct lb_env env = {
7338 .sd = sd,
ddcdf6e7
PZ
7339 .dst_cpu = target_cpu,
7340 .dst_rq = target_rq,
7341 .src_cpu = busiest_rq->cpu,
7342 .src_rq = busiest_rq,
8e45cb54
PZ
7343 .idle = CPU_IDLE,
7344 };
7345
1e3c88bd
PZ
7346 schedstat_inc(sd, alb_count);
7347
e5673f28
KT
7348 p = detach_one_task(&env);
7349 if (p)
1e3c88bd
PZ
7350 schedstat_inc(sd, alb_pushed);
7351 else
7352 schedstat_inc(sd, alb_failed);
7353 }
dce840a0 7354 rcu_read_unlock();
969c7921
TH
7355out_unlock:
7356 busiest_rq->active_balance = 0;
e5673f28
KT
7357 raw_spin_unlock(&busiest_rq->lock);
7358
7359 if (p)
7360 attach_one_task(target_rq, p);
7361
7362 local_irq_enable();
7363
969c7921 7364 return 0;
1e3c88bd
PZ
7365}
7366
d987fc7f
MG
7367static inline int on_null_domain(struct rq *rq)
7368{
7369 return unlikely(!rcu_dereference_sched(rq->sd));
7370}
7371
3451d024 7372#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7373/*
7374 * idle load balancing details
83cd4fe2
VP
7375 * - When one of the busy CPUs notice that there may be an idle rebalancing
7376 * needed, they will kick the idle load balancer, which then does idle
7377 * load balancing for all the idle CPUs.
7378 */
1e3c88bd 7379static struct {
83cd4fe2 7380 cpumask_var_t idle_cpus_mask;
0b005cf5 7381 atomic_t nr_cpus;
83cd4fe2
VP
7382 unsigned long next_balance; /* in jiffy units */
7383} nohz ____cacheline_aligned;
1e3c88bd 7384
3dd0337d 7385static inline int find_new_ilb(void)
1e3c88bd 7386{
0b005cf5 7387 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7388
786d6dc7
SS
7389 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7390 return ilb;
7391
7392 return nr_cpu_ids;
1e3c88bd 7393}
1e3c88bd 7394
83cd4fe2
VP
7395/*
7396 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7397 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7398 * CPU (if there is one).
7399 */
0aeeeeba 7400static void nohz_balancer_kick(void)
83cd4fe2
VP
7401{
7402 int ilb_cpu;
7403
7404 nohz.next_balance++;
7405
3dd0337d 7406 ilb_cpu = find_new_ilb();
83cd4fe2 7407
0b005cf5
SS
7408 if (ilb_cpu >= nr_cpu_ids)
7409 return;
83cd4fe2 7410
cd490c5b 7411 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7412 return;
7413 /*
7414 * Use smp_send_reschedule() instead of resched_cpu().
7415 * This way we generate a sched IPI on the target cpu which
7416 * is idle. And the softirq performing nohz idle load balance
7417 * will be run before returning from the IPI.
7418 */
7419 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7420 return;
7421}
7422
c1cc017c 7423static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7424{
7425 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7426 /*
7427 * Completely isolated CPUs don't ever set, so we must test.
7428 */
7429 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7430 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7431 atomic_dec(&nohz.nr_cpus);
7432 }
71325960
SS
7433 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7434 }
7435}
7436
69e1e811
SS
7437static inline void set_cpu_sd_state_busy(void)
7438{
7439 struct sched_domain *sd;
37dc6b50 7440 int cpu = smp_processor_id();
69e1e811 7441
69e1e811 7442 rcu_read_lock();
37dc6b50 7443 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7444
7445 if (!sd || !sd->nohz_idle)
7446 goto unlock;
7447 sd->nohz_idle = 0;
7448
63b2ca30 7449 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7450unlock:
69e1e811
SS
7451 rcu_read_unlock();
7452}
7453
7454void set_cpu_sd_state_idle(void)
7455{
7456 struct sched_domain *sd;
37dc6b50 7457 int cpu = smp_processor_id();
69e1e811 7458
69e1e811 7459 rcu_read_lock();
37dc6b50 7460 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7461
7462 if (!sd || sd->nohz_idle)
7463 goto unlock;
7464 sd->nohz_idle = 1;
7465
63b2ca30 7466 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7467unlock:
69e1e811
SS
7468 rcu_read_unlock();
7469}
7470
1e3c88bd 7471/*
c1cc017c 7472 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7473 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7474 */
c1cc017c 7475void nohz_balance_enter_idle(int cpu)
1e3c88bd 7476{
71325960
SS
7477 /*
7478 * If this cpu is going down, then nothing needs to be done.
7479 */
7480 if (!cpu_active(cpu))
7481 return;
7482
c1cc017c
AS
7483 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7484 return;
1e3c88bd 7485
d987fc7f
MG
7486 /*
7487 * If we're a completely isolated CPU, we don't play.
7488 */
7489 if (on_null_domain(cpu_rq(cpu)))
7490 return;
7491
c1cc017c
AS
7492 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7493 atomic_inc(&nohz.nr_cpus);
7494 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7495}
71325960 7496
0db0628d 7497static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7498 unsigned long action, void *hcpu)
7499{
7500 switch (action & ~CPU_TASKS_FROZEN) {
7501 case CPU_DYING:
c1cc017c 7502 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7503 return NOTIFY_OK;
7504 default:
7505 return NOTIFY_DONE;
7506 }
7507}
1e3c88bd
PZ
7508#endif
7509
7510static DEFINE_SPINLOCK(balancing);
7511
49c022e6
PZ
7512/*
7513 * Scale the max load_balance interval with the number of CPUs in the system.
7514 * This trades load-balance latency on larger machines for less cross talk.
7515 */
029632fb 7516void update_max_interval(void)
49c022e6
PZ
7517{
7518 max_load_balance_interval = HZ*num_online_cpus()/10;
7519}
7520
1e3c88bd
PZ
7521/*
7522 * It checks each scheduling domain to see if it is due to be balanced,
7523 * and initiates a balancing operation if so.
7524 *
b9b0853a 7525 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7526 */
f7ed0a89 7527static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7528{
23f0d209 7529 int continue_balancing = 1;
f7ed0a89 7530 int cpu = rq->cpu;
1e3c88bd 7531 unsigned long interval;
04f733b4 7532 struct sched_domain *sd;
1e3c88bd
PZ
7533 /* Earliest time when we have to do rebalance again */
7534 unsigned long next_balance = jiffies + 60*HZ;
7535 int update_next_balance = 0;
f48627e6
JL
7536 int need_serialize, need_decay = 0;
7537 u64 max_cost = 0;
1e3c88bd 7538
48a16753 7539 update_blocked_averages(cpu);
2069dd75 7540
dce840a0 7541 rcu_read_lock();
1e3c88bd 7542 for_each_domain(cpu, sd) {
f48627e6
JL
7543 /*
7544 * Decay the newidle max times here because this is a regular
7545 * visit to all the domains. Decay ~1% per second.
7546 */
7547 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7548 sd->max_newidle_lb_cost =
7549 (sd->max_newidle_lb_cost * 253) / 256;
7550 sd->next_decay_max_lb_cost = jiffies + HZ;
7551 need_decay = 1;
7552 }
7553 max_cost += sd->max_newidle_lb_cost;
7554
1e3c88bd
PZ
7555 if (!(sd->flags & SD_LOAD_BALANCE))
7556 continue;
7557
f48627e6
JL
7558 /*
7559 * Stop the load balance at this level. There is another
7560 * CPU in our sched group which is doing load balancing more
7561 * actively.
7562 */
7563 if (!continue_balancing) {
7564 if (need_decay)
7565 continue;
7566 break;
7567 }
7568
52a08ef1 7569 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7570
7571 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7572 if (need_serialize) {
7573 if (!spin_trylock(&balancing))
7574 goto out;
7575 }
7576
7577 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7578 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7579 /*
6263322c 7580 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7581 * env->dst_cpu, so we can't know our idle
7582 * state even if we migrated tasks. Update it.
1e3c88bd 7583 */
de5eb2dd 7584 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7585 }
7586 sd->last_balance = jiffies;
52a08ef1 7587 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7588 }
7589 if (need_serialize)
7590 spin_unlock(&balancing);
7591out:
7592 if (time_after(next_balance, sd->last_balance + interval)) {
7593 next_balance = sd->last_balance + interval;
7594 update_next_balance = 1;
7595 }
f48627e6
JL
7596 }
7597 if (need_decay) {
1e3c88bd 7598 /*
f48627e6
JL
7599 * Ensure the rq-wide value also decays but keep it at a
7600 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7601 */
f48627e6
JL
7602 rq->max_idle_balance_cost =
7603 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7604 }
dce840a0 7605 rcu_read_unlock();
1e3c88bd
PZ
7606
7607 /*
7608 * next_balance will be updated only when there is a need.
7609 * When the cpu is attached to null domain for ex, it will not be
7610 * updated.
7611 */
7612 if (likely(update_next_balance))
7613 rq->next_balance = next_balance;
7614}
7615
3451d024 7616#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7617/*
3451d024 7618 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7619 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7620 */
208cb16b 7621static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7622{
208cb16b 7623 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7624 struct rq *rq;
7625 int balance_cpu;
7626
1c792db7
SS
7627 if (idle != CPU_IDLE ||
7628 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7629 goto end;
83cd4fe2
VP
7630
7631 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7632 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7633 continue;
7634
7635 /*
7636 * If this cpu gets work to do, stop the load balancing
7637 * work being done for other cpus. Next load
7638 * balancing owner will pick it up.
7639 */
1c792db7 7640 if (need_resched())
83cd4fe2 7641 break;
83cd4fe2 7642
5ed4f1d9
VG
7643 rq = cpu_rq(balance_cpu);
7644
ed61bbc6
TC
7645 /*
7646 * If time for next balance is due,
7647 * do the balance.
7648 */
7649 if (time_after_eq(jiffies, rq->next_balance)) {
7650 raw_spin_lock_irq(&rq->lock);
7651 update_rq_clock(rq);
7652 update_idle_cpu_load(rq);
7653 raw_spin_unlock_irq(&rq->lock);
7654 rebalance_domains(rq, CPU_IDLE);
7655 }
83cd4fe2 7656
83cd4fe2
VP
7657 if (time_after(this_rq->next_balance, rq->next_balance))
7658 this_rq->next_balance = rq->next_balance;
7659 }
7660 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7661end:
7662 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7663}
7664
7665/*
0b005cf5
SS
7666 * Current heuristic for kicking the idle load balancer in the presence
7667 * of an idle cpu is the system.
7668 * - This rq has more than one task.
7669 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7670 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7671 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7672 * domain span are idle.
83cd4fe2 7673 */
4a725627 7674static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7675{
7676 unsigned long now = jiffies;
0b005cf5 7677 struct sched_domain *sd;
63b2ca30 7678 struct sched_group_capacity *sgc;
4a725627 7679 int nr_busy, cpu = rq->cpu;
83cd4fe2 7680
4a725627 7681 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7682 return 0;
7683
1c792db7
SS
7684 /*
7685 * We may be recently in ticked or tickless idle mode. At the first
7686 * busy tick after returning from idle, we will update the busy stats.
7687 */
69e1e811 7688 set_cpu_sd_state_busy();
c1cc017c 7689 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7690
7691 /*
7692 * None are in tickless mode and hence no need for NOHZ idle load
7693 * balancing.
7694 */
7695 if (likely(!atomic_read(&nohz.nr_cpus)))
7696 return 0;
1c792db7
SS
7697
7698 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7699 return 0;
7700
0b005cf5
SS
7701 if (rq->nr_running >= 2)
7702 goto need_kick;
83cd4fe2 7703
067491b7 7704 rcu_read_lock();
37dc6b50 7705 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7706
37dc6b50 7707 if (sd) {
63b2ca30
NP
7708 sgc = sd->groups->sgc;
7709 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7710
37dc6b50 7711 if (nr_busy > 1)
067491b7 7712 goto need_kick_unlock;
83cd4fe2 7713 }
37dc6b50
PM
7714
7715 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7716
7717 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7718 sched_domain_span(sd)) < cpu))
7719 goto need_kick_unlock;
7720
067491b7 7721 rcu_read_unlock();
83cd4fe2 7722 return 0;
067491b7
PZ
7723
7724need_kick_unlock:
7725 rcu_read_unlock();
0b005cf5
SS
7726need_kick:
7727 return 1;
83cd4fe2
VP
7728}
7729#else
208cb16b 7730static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7731#endif
7732
7733/*
7734 * run_rebalance_domains is triggered when needed from the scheduler tick.
7735 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7736 */
1e3c88bd
PZ
7737static void run_rebalance_domains(struct softirq_action *h)
7738{
208cb16b 7739 struct rq *this_rq = this_rq();
6eb57e0d 7740 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7741 CPU_IDLE : CPU_NOT_IDLE;
7742
f7ed0a89 7743 rebalance_domains(this_rq, idle);
1e3c88bd 7744
1e3c88bd 7745 /*
83cd4fe2 7746 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7747 * balancing on behalf of the other idle cpus whose ticks are
7748 * stopped.
7749 */
208cb16b 7750 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7751}
7752
1e3c88bd
PZ
7753/*
7754 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7755 */
7caff66f 7756void trigger_load_balance(struct rq *rq)
1e3c88bd 7757{
1e3c88bd 7758 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7759 if (unlikely(on_null_domain(rq)))
7760 return;
7761
7762 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7763 raise_softirq(SCHED_SOFTIRQ);
3451d024 7764#ifdef CONFIG_NO_HZ_COMMON
c726099e 7765 if (nohz_kick_needed(rq))
0aeeeeba 7766 nohz_balancer_kick();
83cd4fe2 7767#endif
1e3c88bd
PZ
7768}
7769
0bcdcf28
CE
7770static void rq_online_fair(struct rq *rq)
7771{
7772 update_sysctl();
0e59bdae
KT
7773
7774 update_runtime_enabled(rq);
0bcdcf28
CE
7775}
7776
7777static void rq_offline_fair(struct rq *rq)
7778{
7779 update_sysctl();
a4c96ae3
PB
7780
7781 /* Ensure any throttled groups are reachable by pick_next_task */
7782 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7783}
7784
55e12e5e 7785#endif /* CONFIG_SMP */
e1d1484f 7786
bf0f6f24
IM
7787/*
7788 * scheduler tick hitting a task of our scheduling class:
7789 */
8f4d37ec 7790static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7791{
7792 struct cfs_rq *cfs_rq;
7793 struct sched_entity *se = &curr->se;
7794
7795 for_each_sched_entity(se) {
7796 cfs_rq = cfs_rq_of(se);
8f4d37ec 7797 entity_tick(cfs_rq, se, queued);
bf0f6f24 7798 }
18bf2805 7799
10e84b97 7800 if (numabalancing_enabled)
cbee9f88 7801 task_tick_numa(rq, curr);
3d59eebc 7802
18bf2805 7803 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7804}
7805
7806/*
cd29fe6f
PZ
7807 * called on fork with the child task as argument from the parent's context
7808 * - child not yet on the tasklist
7809 * - preemption disabled
bf0f6f24 7810 */
cd29fe6f 7811static void task_fork_fair(struct task_struct *p)
bf0f6f24 7812{
4fc420c9
DN
7813 struct cfs_rq *cfs_rq;
7814 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7815 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7816 struct rq *rq = this_rq();
7817 unsigned long flags;
7818
05fa785c 7819 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7820
861d034e
PZ
7821 update_rq_clock(rq);
7822
4fc420c9
DN
7823 cfs_rq = task_cfs_rq(current);
7824 curr = cfs_rq->curr;
7825
6c9a27f5
DN
7826 /*
7827 * Not only the cpu but also the task_group of the parent might have
7828 * been changed after parent->se.parent,cfs_rq were copied to
7829 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7830 * of child point to valid ones.
7831 */
7832 rcu_read_lock();
7833 __set_task_cpu(p, this_cpu);
7834 rcu_read_unlock();
bf0f6f24 7835
7109c442 7836 update_curr(cfs_rq);
cd29fe6f 7837
b5d9d734
MG
7838 if (curr)
7839 se->vruntime = curr->vruntime;
aeb73b04 7840 place_entity(cfs_rq, se, 1);
4d78e7b6 7841
cd29fe6f 7842 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7843 /*
edcb60a3
IM
7844 * Upon rescheduling, sched_class::put_prev_task() will place
7845 * 'current' within the tree based on its new key value.
7846 */
4d78e7b6 7847 swap(curr->vruntime, se->vruntime);
8875125e 7848 resched_curr(rq);
4d78e7b6 7849 }
bf0f6f24 7850
88ec22d3
PZ
7851 se->vruntime -= cfs_rq->min_vruntime;
7852
05fa785c 7853 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7854}
7855
cb469845
SR
7856/*
7857 * Priority of the task has changed. Check to see if we preempt
7858 * the current task.
7859 */
da7a735e
PZ
7860static void
7861prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7862{
da0c1e65 7863 if (!task_on_rq_queued(p))
da7a735e
PZ
7864 return;
7865
cb469845
SR
7866 /*
7867 * Reschedule if we are currently running on this runqueue and
7868 * our priority decreased, or if we are not currently running on
7869 * this runqueue and our priority is higher than the current's
7870 */
da7a735e 7871 if (rq->curr == p) {
cb469845 7872 if (p->prio > oldprio)
8875125e 7873 resched_curr(rq);
cb469845 7874 } else
15afe09b 7875 check_preempt_curr(rq, p, 0);
cb469845
SR
7876}
7877
da7a735e
PZ
7878static void switched_from_fair(struct rq *rq, struct task_struct *p)
7879{
7880 struct sched_entity *se = &p->se;
7881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7882
7883 /*
791c9e02 7884 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7885 * switched back to the fair class the enqueue_entity(.flags=0) will
7886 * do the right thing.
7887 *
da0c1e65
KT
7888 * If it's queued, then the dequeue_entity(.flags=0) will already
7889 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7890 * the task is sleeping will it still have non-normalized vruntime.
7891 */
da0c1e65 7892 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7893 /*
7894 * Fix up our vruntime so that the current sleep doesn't
7895 * cause 'unlimited' sleep bonus.
7896 */
7897 place_entity(cfs_rq, se, 0);
7898 se->vruntime -= cfs_rq->min_vruntime;
7899 }
9ee474f5 7900
141965c7 7901#ifdef CONFIG_SMP
9ee474f5
PT
7902 /*
7903 * Remove our load from contribution when we leave sched_fair
7904 * and ensure we don't carry in an old decay_count if we
7905 * switch back.
7906 */
87e3c8ae
KT
7907 if (se->avg.decay_count) {
7908 __synchronize_entity_decay(se);
7909 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7910 }
7911#endif
da7a735e
PZ
7912}
7913
cb469845
SR
7914/*
7915 * We switched to the sched_fair class.
7916 */
da7a735e 7917static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7918{
eb7a59b2 7919#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7920 struct sched_entity *se = &p->se;
eb7a59b2
M
7921 /*
7922 * Since the real-depth could have been changed (only FAIR
7923 * class maintain depth value), reset depth properly.
7924 */
7925 se->depth = se->parent ? se->parent->depth + 1 : 0;
7926#endif
da0c1e65 7927 if (!task_on_rq_queued(p))
da7a735e
PZ
7928 return;
7929
cb469845
SR
7930 /*
7931 * We were most likely switched from sched_rt, so
7932 * kick off the schedule if running, otherwise just see
7933 * if we can still preempt the current task.
7934 */
da7a735e 7935 if (rq->curr == p)
8875125e 7936 resched_curr(rq);
cb469845 7937 else
15afe09b 7938 check_preempt_curr(rq, p, 0);
cb469845
SR
7939}
7940
83b699ed
SV
7941/* Account for a task changing its policy or group.
7942 *
7943 * This routine is mostly called to set cfs_rq->curr field when a task
7944 * migrates between groups/classes.
7945 */
7946static void set_curr_task_fair(struct rq *rq)
7947{
7948 struct sched_entity *se = &rq->curr->se;
7949
ec12cb7f
PT
7950 for_each_sched_entity(se) {
7951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7952
7953 set_next_entity(cfs_rq, se);
7954 /* ensure bandwidth has been allocated on our new cfs_rq */
7955 account_cfs_rq_runtime(cfs_rq, 0);
7956 }
83b699ed
SV
7957}
7958
029632fb
PZ
7959void init_cfs_rq(struct cfs_rq *cfs_rq)
7960{
7961 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7962 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7963#ifndef CONFIG_64BIT
7964 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7965#endif
141965c7 7966#ifdef CONFIG_SMP
9ee474f5 7967 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7968 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7969#endif
029632fb
PZ
7970}
7971
810b3817 7972#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7973static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7974{
fed14d45 7975 struct sched_entity *se = &p->se;
aff3e498 7976 struct cfs_rq *cfs_rq;
fed14d45 7977
b2b5ce02
PZ
7978 /*
7979 * If the task was not on the rq at the time of this cgroup movement
7980 * it must have been asleep, sleeping tasks keep their ->vruntime
7981 * absolute on their old rq until wakeup (needed for the fair sleeper
7982 * bonus in place_entity()).
7983 *
7984 * If it was on the rq, we've just 'preempted' it, which does convert
7985 * ->vruntime to a relative base.
7986 *
7987 * Make sure both cases convert their relative position when migrating
7988 * to another cgroup's rq. This does somewhat interfere with the
7989 * fair sleeper stuff for the first placement, but who cares.
7990 */
7ceff013 7991 /*
da0c1e65 7992 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7993 * But there are some cases where it has already been normalized:
7994 *
7995 * - Moving a forked child which is waiting for being woken up by
7996 * wake_up_new_task().
62af3783
DN
7997 * - Moving a task which has been woken up by try_to_wake_up() and
7998 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7999 *
8000 * To prevent boost or penalty in the new cfs_rq caused by delta
8001 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8002 */
da0c1e65
KT
8003 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8004 queued = 1;
7ceff013 8005
da0c1e65 8006 if (!queued)
fed14d45 8007 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8008 set_task_rq(p, task_cpu(p));
fed14d45 8009 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8010 if (!queued) {
fed14d45
PZ
8011 cfs_rq = cfs_rq_of(se);
8012 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8013#ifdef CONFIG_SMP
8014 /*
8015 * migrate_task_rq_fair() will have removed our previous
8016 * contribution, but we must synchronize for ongoing future
8017 * decay.
8018 */
fed14d45
PZ
8019 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8020 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8021#endif
8022 }
810b3817 8023}
029632fb
PZ
8024
8025void free_fair_sched_group(struct task_group *tg)
8026{
8027 int i;
8028
8029 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8030
8031 for_each_possible_cpu(i) {
8032 if (tg->cfs_rq)
8033 kfree(tg->cfs_rq[i]);
8034 if (tg->se)
8035 kfree(tg->se[i]);
8036 }
8037
8038 kfree(tg->cfs_rq);
8039 kfree(tg->se);
8040}
8041
8042int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8043{
8044 struct cfs_rq *cfs_rq;
8045 struct sched_entity *se;
8046 int i;
8047
8048 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8049 if (!tg->cfs_rq)
8050 goto err;
8051 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8052 if (!tg->se)
8053 goto err;
8054
8055 tg->shares = NICE_0_LOAD;
8056
8057 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8058
8059 for_each_possible_cpu(i) {
8060 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8061 GFP_KERNEL, cpu_to_node(i));
8062 if (!cfs_rq)
8063 goto err;
8064
8065 se = kzalloc_node(sizeof(struct sched_entity),
8066 GFP_KERNEL, cpu_to_node(i));
8067 if (!se)
8068 goto err_free_rq;
8069
8070 init_cfs_rq(cfs_rq);
8071 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8072 }
8073
8074 return 1;
8075
8076err_free_rq:
8077 kfree(cfs_rq);
8078err:
8079 return 0;
8080}
8081
8082void unregister_fair_sched_group(struct task_group *tg, int cpu)
8083{
8084 struct rq *rq = cpu_rq(cpu);
8085 unsigned long flags;
8086
8087 /*
8088 * Only empty task groups can be destroyed; so we can speculatively
8089 * check on_list without danger of it being re-added.
8090 */
8091 if (!tg->cfs_rq[cpu]->on_list)
8092 return;
8093
8094 raw_spin_lock_irqsave(&rq->lock, flags);
8095 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8096 raw_spin_unlock_irqrestore(&rq->lock, flags);
8097}
8098
8099void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8100 struct sched_entity *se, int cpu,
8101 struct sched_entity *parent)
8102{
8103 struct rq *rq = cpu_rq(cpu);
8104
8105 cfs_rq->tg = tg;
8106 cfs_rq->rq = rq;
029632fb
PZ
8107 init_cfs_rq_runtime(cfs_rq);
8108
8109 tg->cfs_rq[cpu] = cfs_rq;
8110 tg->se[cpu] = se;
8111
8112 /* se could be NULL for root_task_group */
8113 if (!se)
8114 return;
8115
fed14d45 8116 if (!parent) {
029632fb 8117 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8118 se->depth = 0;
8119 } else {
029632fb 8120 se->cfs_rq = parent->my_q;
fed14d45
PZ
8121 se->depth = parent->depth + 1;
8122 }
029632fb
PZ
8123
8124 se->my_q = cfs_rq;
0ac9b1c2
PT
8125 /* guarantee group entities always have weight */
8126 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8127 se->parent = parent;
8128}
8129
8130static DEFINE_MUTEX(shares_mutex);
8131
8132int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8133{
8134 int i;
8135 unsigned long flags;
8136
8137 /*
8138 * We can't change the weight of the root cgroup.
8139 */
8140 if (!tg->se[0])
8141 return -EINVAL;
8142
8143 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8144
8145 mutex_lock(&shares_mutex);
8146 if (tg->shares == shares)
8147 goto done;
8148
8149 tg->shares = shares;
8150 for_each_possible_cpu(i) {
8151 struct rq *rq = cpu_rq(i);
8152 struct sched_entity *se;
8153
8154 se = tg->se[i];
8155 /* Propagate contribution to hierarchy */
8156 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8157
8158 /* Possible calls to update_curr() need rq clock */
8159 update_rq_clock(rq);
17bc14b7 8160 for_each_sched_entity(se)
029632fb
PZ
8161 update_cfs_shares(group_cfs_rq(se));
8162 raw_spin_unlock_irqrestore(&rq->lock, flags);
8163 }
8164
8165done:
8166 mutex_unlock(&shares_mutex);
8167 return 0;
8168}
8169#else /* CONFIG_FAIR_GROUP_SCHED */
8170
8171void free_fair_sched_group(struct task_group *tg) { }
8172
8173int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8174{
8175 return 1;
8176}
8177
8178void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8179
8180#endif /* CONFIG_FAIR_GROUP_SCHED */
8181
810b3817 8182
6d686f45 8183static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8184{
8185 struct sched_entity *se = &task->se;
0d721cea
PW
8186 unsigned int rr_interval = 0;
8187
8188 /*
8189 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8190 * idle runqueue:
8191 */
0d721cea 8192 if (rq->cfs.load.weight)
a59f4e07 8193 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8194
8195 return rr_interval;
8196}
8197
bf0f6f24
IM
8198/*
8199 * All the scheduling class methods:
8200 */
029632fb 8201const struct sched_class fair_sched_class = {
5522d5d5 8202 .next = &idle_sched_class,
bf0f6f24
IM
8203 .enqueue_task = enqueue_task_fair,
8204 .dequeue_task = dequeue_task_fair,
8205 .yield_task = yield_task_fair,
d95f4122 8206 .yield_to_task = yield_to_task_fair,
bf0f6f24 8207
2e09bf55 8208 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8209
8210 .pick_next_task = pick_next_task_fair,
8211 .put_prev_task = put_prev_task_fair,
8212
681f3e68 8213#ifdef CONFIG_SMP
4ce72a2c 8214 .select_task_rq = select_task_rq_fair,
0a74bef8 8215 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8216
0bcdcf28
CE
8217 .rq_online = rq_online_fair,
8218 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8219
8220 .task_waking = task_waking_fair,
681f3e68 8221#endif
bf0f6f24 8222
83b699ed 8223 .set_curr_task = set_curr_task_fair,
bf0f6f24 8224 .task_tick = task_tick_fair,
cd29fe6f 8225 .task_fork = task_fork_fair,
cb469845
SR
8226
8227 .prio_changed = prio_changed_fair,
da7a735e 8228 .switched_from = switched_from_fair,
cb469845 8229 .switched_to = switched_to_fair,
810b3817 8230
0d721cea
PW
8231 .get_rr_interval = get_rr_interval_fair,
8232
6e998916
SG
8233 .update_curr = update_curr_fair,
8234
810b3817 8235#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8236 .task_move_group = task_move_group_fair,
810b3817 8237#endif
bf0f6f24
IM
8238};
8239
8240#ifdef CONFIG_SCHED_DEBUG
029632fb 8241void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8242{
bf0f6f24
IM
8243 struct cfs_rq *cfs_rq;
8244
5973e5b9 8245 rcu_read_lock();
c3b64f1e 8246 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8247 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8248 rcu_read_unlock();
bf0f6f24
IM
8249}
8250#endif
029632fb
PZ
8251
8252__init void init_sched_fair_class(void)
8253{
8254#ifdef CONFIG_SMP
8255 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8256
3451d024 8257#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8258 nohz.next_balance = jiffies;
029632fb 8259 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8260 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8261#endif
8262#endif /* SMP */
8263
8264}