]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/core: Store maximum per-CPU capacity in root domain
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
772bd008 659static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
7dc603c9
PZ
693static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 695static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
696static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697
2b8c41da
YD
698/*
699 * With new tasks being created, their initial util_avgs are extrapolated
700 * based on the cfs_rq's current util_avg:
701 *
702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703 *
704 * However, in many cases, the above util_avg does not give a desired
705 * value. Moreover, the sum of the util_avgs may be divergent, such
706 * as when the series is a harmonic series.
707 *
708 * To solve this problem, we also cap the util_avg of successive tasks to
709 * only 1/2 of the left utilization budget:
710 *
711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712 *
713 * where n denotes the nth task.
714 *
715 * For example, a simplest series from the beginning would be like:
716 *
717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719 *
720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721 * if util_avg > util_avg_cap.
722 */
723void post_init_entity_util_avg(struct sched_entity *se)
724{
725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 struct sched_avg *sa = &se->avg;
172895e6 727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 728 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
729
730 if (cap > 0) {
731 if (cfs_rq->avg.util_avg != 0) {
732 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
733 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
734
735 if (sa->util_avg > cap)
736 sa->util_avg = cap;
737 } else {
738 sa->util_avg = cap;
739 }
740 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
741 }
7dc603c9
PZ
742
743 if (entity_is_task(se)) {
744 struct task_struct *p = task_of(se);
745 if (p->sched_class != &fair_sched_class) {
746 /*
747 * For !fair tasks do:
748 *
749 update_cfs_rq_load_avg(now, cfs_rq, false);
750 attach_entity_load_avg(cfs_rq, se);
751 switched_from_fair(rq, p);
752 *
753 * such that the next switched_to_fair() has the
754 * expected state.
755 */
756 se->avg.last_update_time = now;
757 return;
758 }
759 }
760
7c3edd2c 761 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 762 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 763 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
764}
765
7dc603c9 766#else /* !CONFIG_SMP */
540247fb 767void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
768{
769}
2b8c41da
YD
770void post_init_entity_util_avg(struct sched_entity *se)
771{
772}
3d30544f
PZ
773static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
774{
775}
7dc603c9 776#endif /* CONFIG_SMP */
a75cdaa9 777
bf0f6f24 778/*
9dbdb155 779 * Update the current task's runtime statistics.
bf0f6f24 780 */
b7cc0896 781static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 782{
429d43bc 783 struct sched_entity *curr = cfs_rq->curr;
78becc27 784 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 785 u64 delta_exec;
bf0f6f24
IM
786
787 if (unlikely(!curr))
788 return;
789
9dbdb155
PZ
790 delta_exec = now - curr->exec_start;
791 if (unlikely((s64)delta_exec <= 0))
34f28ecd 792 return;
bf0f6f24 793
8ebc91d9 794 curr->exec_start = now;
d842de87 795
9dbdb155
PZ
796 schedstat_set(curr->statistics.exec_max,
797 max(delta_exec, curr->statistics.exec_max));
798
799 curr->sum_exec_runtime += delta_exec;
800 schedstat_add(cfs_rq, exec_clock, delta_exec);
801
802 curr->vruntime += calc_delta_fair(delta_exec, curr);
803 update_min_vruntime(cfs_rq);
804
d842de87
SV
805 if (entity_is_task(curr)) {
806 struct task_struct *curtask = task_of(curr);
807
f977bb49 808 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 809 cpuacct_charge(curtask, delta_exec);
f06febc9 810 account_group_exec_runtime(curtask, delta_exec);
d842de87 811 }
ec12cb7f
PT
812
813 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
814}
815
6e998916
SG
816static void update_curr_fair(struct rq *rq)
817{
818 update_curr(cfs_rq_of(&rq->curr->se));
819}
820
3ea94de1 821#ifdef CONFIG_SCHEDSTATS
bf0f6f24 822static inline void
5870db5b 823update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 824{
3ea94de1
JP
825 u64 wait_start = rq_clock(rq_of(cfs_rq));
826
827 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
828 likely(wait_start > se->statistics.wait_start))
829 wait_start -= se->statistics.wait_start;
830
831 se->statistics.wait_start = wait_start;
bf0f6f24
IM
832}
833
3ea94de1
JP
834static void
835update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
836{
837 struct task_struct *p;
cb251765
MG
838 u64 delta;
839
840 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
841
842 if (entity_is_task(se)) {
843 p = task_of(se);
844 if (task_on_rq_migrating(p)) {
845 /*
846 * Preserve migrating task's wait time so wait_start
847 * time stamp can be adjusted to accumulate wait time
848 * prior to migration.
849 */
850 se->statistics.wait_start = delta;
851 return;
852 }
853 trace_sched_stat_wait(p, delta);
854 }
855
856 se->statistics.wait_max = max(se->statistics.wait_max, delta);
857 se->statistics.wait_count++;
858 se->statistics.wait_sum += delta;
859 se->statistics.wait_start = 0;
860}
3ea94de1 861
bf0f6f24
IM
862/*
863 * Task is being enqueued - update stats:
864 */
cb251765
MG
865static inline void
866update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
bf0f6f24
IM
868 /*
869 * Are we enqueueing a waiting task? (for current tasks
870 * a dequeue/enqueue event is a NOP)
871 */
429d43bc 872 if (se != cfs_rq->curr)
5870db5b 873 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
874}
875
bf0f6f24 876static inline void
cb251765 877update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 878{
bf0f6f24
IM
879 /*
880 * Mark the end of the wait period if dequeueing a
881 * waiting task:
882 */
429d43bc 883 if (se != cfs_rq->curr)
9ef0a961 884 update_stats_wait_end(cfs_rq, se);
cb251765
MG
885
886 if (flags & DEQUEUE_SLEEP) {
887 if (entity_is_task(se)) {
888 struct task_struct *tsk = task_of(se);
889
890 if (tsk->state & TASK_INTERRUPTIBLE)
891 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
892 if (tsk->state & TASK_UNINTERRUPTIBLE)
893 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
894 }
895 }
896
897}
898#else
899static inline void
900update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
901{
902}
903
904static inline void
905update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
906{
907}
908
909static inline void
910update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
911{
912}
913
914static inline void
915update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
916{
bf0f6f24 917}
cb251765 918#endif
bf0f6f24
IM
919
920/*
921 * We are picking a new current task - update its stats:
922 */
923static inline void
79303e9e 924update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
925{
926 /*
927 * We are starting a new run period:
928 */
78becc27 929 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
930}
931
bf0f6f24
IM
932/**************************************************
933 * Scheduling class queueing methods:
934 */
935
cbee9f88
PZ
936#ifdef CONFIG_NUMA_BALANCING
937/*
598f0ec0
MG
938 * Approximate time to scan a full NUMA task in ms. The task scan period is
939 * calculated based on the tasks virtual memory size and
940 * numa_balancing_scan_size.
cbee9f88 941 */
598f0ec0
MG
942unsigned int sysctl_numa_balancing_scan_period_min = 1000;
943unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
944
945/* Portion of address space to scan in MB */
946unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 947
4b96a29b
PZ
948/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
949unsigned int sysctl_numa_balancing_scan_delay = 1000;
950
598f0ec0
MG
951static unsigned int task_nr_scan_windows(struct task_struct *p)
952{
953 unsigned long rss = 0;
954 unsigned long nr_scan_pages;
955
956 /*
957 * Calculations based on RSS as non-present and empty pages are skipped
958 * by the PTE scanner and NUMA hinting faults should be trapped based
959 * on resident pages
960 */
961 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
962 rss = get_mm_rss(p->mm);
963 if (!rss)
964 rss = nr_scan_pages;
965
966 rss = round_up(rss, nr_scan_pages);
967 return rss / nr_scan_pages;
968}
969
970/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
971#define MAX_SCAN_WINDOW 2560
972
973static unsigned int task_scan_min(struct task_struct *p)
974{
316c1608 975 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
976 unsigned int scan, floor;
977 unsigned int windows = 1;
978
64192658
KT
979 if (scan_size < MAX_SCAN_WINDOW)
980 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
981 floor = 1000 / windows;
982
983 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
984 return max_t(unsigned int, floor, scan);
985}
986
987static unsigned int task_scan_max(struct task_struct *p)
988{
989 unsigned int smin = task_scan_min(p);
990 unsigned int smax;
991
992 /* Watch for min being lower than max due to floor calculations */
993 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
994 return max(smin, smax);
995}
996
0ec8aa00
PZ
997static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
998{
999 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1000 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1001}
1002
1003static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1004{
1005 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1006 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1007}
1008
8c8a743c
PZ
1009struct numa_group {
1010 atomic_t refcount;
1011
1012 spinlock_t lock; /* nr_tasks, tasks */
1013 int nr_tasks;
e29cf08b 1014 pid_t gid;
4142c3eb 1015 int active_nodes;
8c8a743c
PZ
1016
1017 struct rcu_head rcu;
989348b5 1018 unsigned long total_faults;
4142c3eb 1019 unsigned long max_faults_cpu;
7e2703e6
RR
1020 /*
1021 * Faults_cpu is used to decide whether memory should move
1022 * towards the CPU. As a consequence, these stats are weighted
1023 * more by CPU use than by memory faults.
1024 */
50ec8a40 1025 unsigned long *faults_cpu;
989348b5 1026 unsigned long faults[0];
8c8a743c
PZ
1027};
1028
be1e4e76
RR
1029/* Shared or private faults. */
1030#define NR_NUMA_HINT_FAULT_TYPES 2
1031
1032/* Memory and CPU locality */
1033#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1034
1035/* Averaged statistics, and temporary buffers. */
1036#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1037
e29cf08b
MG
1038pid_t task_numa_group_id(struct task_struct *p)
1039{
1040 return p->numa_group ? p->numa_group->gid : 0;
1041}
1042
44dba3d5
IM
1043/*
1044 * The averaged statistics, shared & private, memory & cpu,
1045 * occupy the first half of the array. The second half of the
1046 * array is for current counters, which are averaged into the
1047 * first set by task_numa_placement.
1048 */
1049static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1050{
44dba3d5 1051 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1052}
1053
1054static inline unsigned long task_faults(struct task_struct *p, int nid)
1055{
44dba3d5 1056 if (!p->numa_faults)
ac8e895b
MG
1057 return 0;
1058
44dba3d5
IM
1059 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1060 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1061}
1062
83e1d2cd
MG
1063static inline unsigned long group_faults(struct task_struct *p, int nid)
1064{
1065 if (!p->numa_group)
1066 return 0;
1067
44dba3d5
IM
1068 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1069 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1070}
1071
20e07dea
RR
1072static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1073{
44dba3d5
IM
1074 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1075 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1076}
1077
4142c3eb
RR
1078/*
1079 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1080 * considered part of a numa group's pseudo-interleaving set. Migrations
1081 * between these nodes are slowed down, to allow things to settle down.
1082 */
1083#define ACTIVE_NODE_FRACTION 3
1084
1085static bool numa_is_active_node(int nid, struct numa_group *ng)
1086{
1087 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1088}
1089
6c6b1193
RR
1090/* Handle placement on systems where not all nodes are directly connected. */
1091static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1092 int maxdist, bool task)
1093{
1094 unsigned long score = 0;
1095 int node;
1096
1097 /*
1098 * All nodes are directly connected, and the same distance
1099 * from each other. No need for fancy placement algorithms.
1100 */
1101 if (sched_numa_topology_type == NUMA_DIRECT)
1102 return 0;
1103
1104 /*
1105 * This code is called for each node, introducing N^2 complexity,
1106 * which should be ok given the number of nodes rarely exceeds 8.
1107 */
1108 for_each_online_node(node) {
1109 unsigned long faults;
1110 int dist = node_distance(nid, node);
1111
1112 /*
1113 * The furthest away nodes in the system are not interesting
1114 * for placement; nid was already counted.
1115 */
1116 if (dist == sched_max_numa_distance || node == nid)
1117 continue;
1118
1119 /*
1120 * On systems with a backplane NUMA topology, compare groups
1121 * of nodes, and move tasks towards the group with the most
1122 * memory accesses. When comparing two nodes at distance
1123 * "hoplimit", only nodes closer by than "hoplimit" are part
1124 * of each group. Skip other nodes.
1125 */
1126 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1127 dist > maxdist)
1128 continue;
1129
1130 /* Add up the faults from nearby nodes. */
1131 if (task)
1132 faults = task_faults(p, node);
1133 else
1134 faults = group_faults(p, node);
1135
1136 /*
1137 * On systems with a glueless mesh NUMA topology, there are
1138 * no fixed "groups of nodes". Instead, nodes that are not
1139 * directly connected bounce traffic through intermediate
1140 * nodes; a numa_group can occupy any set of nodes.
1141 * The further away a node is, the less the faults count.
1142 * This seems to result in good task placement.
1143 */
1144 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1145 faults *= (sched_max_numa_distance - dist);
1146 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1147 }
1148
1149 score += faults;
1150 }
1151
1152 return score;
1153}
1154
83e1d2cd
MG
1155/*
1156 * These return the fraction of accesses done by a particular task, or
1157 * task group, on a particular numa node. The group weight is given a
1158 * larger multiplier, in order to group tasks together that are almost
1159 * evenly spread out between numa nodes.
1160 */
7bd95320
RR
1161static inline unsigned long task_weight(struct task_struct *p, int nid,
1162 int dist)
83e1d2cd 1163{
7bd95320 1164 unsigned long faults, total_faults;
83e1d2cd 1165
44dba3d5 1166 if (!p->numa_faults)
83e1d2cd
MG
1167 return 0;
1168
1169 total_faults = p->total_numa_faults;
1170
1171 if (!total_faults)
1172 return 0;
1173
7bd95320 1174 faults = task_faults(p, nid);
6c6b1193
RR
1175 faults += score_nearby_nodes(p, nid, dist, true);
1176
7bd95320 1177 return 1000 * faults / total_faults;
83e1d2cd
MG
1178}
1179
7bd95320
RR
1180static inline unsigned long group_weight(struct task_struct *p, int nid,
1181 int dist)
83e1d2cd 1182{
7bd95320
RR
1183 unsigned long faults, total_faults;
1184
1185 if (!p->numa_group)
1186 return 0;
1187
1188 total_faults = p->numa_group->total_faults;
1189
1190 if (!total_faults)
83e1d2cd
MG
1191 return 0;
1192
7bd95320 1193 faults = group_faults(p, nid);
6c6b1193
RR
1194 faults += score_nearby_nodes(p, nid, dist, false);
1195
7bd95320 1196 return 1000 * faults / total_faults;
83e1d2cd
MG
1197}
1198
10f39042
RR
1199bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1200 int src_nid, int dst_cpu)
1201{
1202 struct numa_group *ng = p->numa_group;
1203 int dst_nid = cpu_to_node(dst_cpu);
1204 int last_cpupid, this_cpupid;
1205
1206 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1207
1208 /*
1209 * Multi-stage node selection is used in conjunction with a periodic
1210 * migration fault to build a temporal task<->page relation. By using
1211 * a two-stage filter we remove short/unlikely relations.
1212 *
1213 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1214 * a task's usage of a particular page (n_p) per total usage of this
1215 * page (n_t) (in a given time-span) to a probability.
1216 *
1217 * Our periodic faults will sample this probability and getting the
1218 * same result twice in a row, given these samples are fully
1219 * independent, is then given by P(n)^2, provided our sample period
1220 * is sufficiently short compared to the usage pattern.
1221 *
1222 * This quadric squishes small probabilities, making it less likely we
1223 * act on an unlikely task<->page relation.
1224 */
1225 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1226 if (!cpupid_pid_unset(last_cpupid) &&
1227 cpupid_to_nid(last_cpupid) != dst_nid)
1228 return false;
1229
1230 /* Always allow migrate on private faults */
1231 if (cpupid_match_pid(p, last_cpupid))
1232 return true;
1233
1234 /* A shared fault, but p->numa_group has not been set up yet. */
1235 if (!ng)
1236 return true;
1237
1238 /*
4142c3eb
RR
1239 * Destination node is much more heavily used than the source
1240 * node? Allow migration.
10f39042 1241 */
4142c3eb
RR
1242 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1243 ACTIVE_NODE_FRACTION)
10f39042
RR
1244 return true;
1245
1246 /*
4142c3eb
RR
1247 * Distribute memory according to CPU & memory use on each node,
1248 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1249 *
1250 * faults_cpu(dst) 3 faults_cpu(src)
1251 * --------------- * - > ---------------
1252 * faults_mem(dst) 4 faults_mem(src)
10f39042 1253 */
4142c3eb
RR
1254 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1255 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1256}
1257
e6628d5b 1258static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1259static unsigned long source_load(int cpu, int type);
1260static unsigned long target_load(int cpu, int type);
ced549fa 1261static unsigned long capacity_of(int cpu);
58d081b5
MG
1262static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1263
fb13c7ee 1264/* Cached statistics for all CPUs within a node */
58d081b5 1265struct numa_stats {
fb13c7ee 1266 unsigned long nr_running;
58d081b5 1267 unsigned long load;
fb13c7ee
MG
1268
1269 /* Total compute capacity of CPUs on a node */
5ef20ca1 1270 unsigned long compute_capacity;
fb13c7ee
MG
1271
1272 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1273 unsigned long task_capacity;
1b6a7495 1274 int has_free_capacity;
58d081b5 1275};
e6628d5b 1276
fb13c7ee
MG
1277/*
1278 * XXX borrowed from update_sg_lb_stats
1279 */
1280static void update_numa_stats(struct numa_stats *ns, int nid)
1281{
83d7f242
RR
1282 int smt, cpu, cpus = 0;
1283 unsigned long capacity;
fb13c7ee
MG
1284
1285 memset(ns, 0, sizeof(*ns));
1286 for_each_cpu(cpu, cpumask_of_node(nid)) {
1287 struct rq *rq = cpu_rq(cpu);
1288
1289 ns->nr_running += rq->nr_running;
1290 ns->load += weighted_cpuload(cpu);
ced549fa 1291 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1292
1293 cpus++;
fb13c7ee
MG
1294 }
1295
5eca82a9
PZ
1296 /*
1297 * If we raced with hotplug and there are no CPUs left in our mask
1298 * the @ns structure is NULL'ed and task_numa_compare() will
1299 * not find this node attractive.
1300 *
1b6a7495
NP
1301 * We'll either bail at !has_free_capacity, or we'll detect a huge
1302 * imbalance and bail there.
5eca82a9
PZ
1303 */
1304 if (!cpus)
1305 return;
1306
83d7f242
RR
1307 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1308 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1309 capacity = cpus / smt; /* cores */
1310
1311 ns->task_capacity = min_t(unsigned, capacity,
1312 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1313 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1314}
1315
58d081b5
MG
1316struct task_numa_env {
1317 struct task_struct *p;
e6628d5b 1318
58d081b5
MG
1319 int src_cpu, src_nid;
1320 int dst_cpu, dst_nid;
e6628d5b 1321
58d081b5 1322 struct numa_stats src_stats, dst_stats;
e6628d5b 1323
40ea2b42 1324 int imbalance_pct;
7bd95320 1325 int dist;
fb13c7ee
MG
1326
1327 struct task_struct *best_task;
1328 long best_imp;
58d081b5
MG
1329 int best_cpu;
1330};
1331
fb13c7ee
MG
1332static void task_numa_assign(struct task_numa_env *env,
1333 struct task_struct *p, long imp)
1334{
1335 if (env->best_task)
1336 put_task_struct(env->best_task);
bac78573
ON
1337 if (p)
1338 get_task_struct(p);
fb13c7ee
MG
1339
1340 env->best_task = p;
1341 env->best_imp = imp;
1342 env->best_cpu = env->dst_cpu;
1343}
1344
28a21745 1345static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1346 struct task_numa_env *env)
1347{
e4991b24
RR
1348 long imb, old_imb;
1349 long orig_src_load, orig_dst_load;
28a21745
RR
1350 long src_capacity, dst_capacity;
1351
1352 /*
1353 * The load is corrected for the CPU capacity available on each node.
1354 *
1355 * src_load dst_load
1356 * ------------ vs ---------
1357 * src_capacity dst_capacity
1358 */
1359 src_capacity = env->src_stats.compute_capacity;
1360 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1361
1362 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1363 if (dst_load < src_load)
1364 swap(dst_load, src_load);
e63da036
RR
1365
1366 /* Is the difference below the threshold? */
e4991b24
RR
1367 imb = dst_load * src_capacity * 100 -
1368 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1369 if (imb <= 0)
1370 return false;
1371
1372 /*
1373 * The imbalance is above the allowed threshold.
e4991b24 1374 * Compare it with the old imbalance.
e63da036 1375 */
28a21745 1376 orig_src_load = env->src_stats.load;
e4991b24 1377 orig_dst_load = env->dst_stats.load;
28a21745 1378
e4991b24
RR
1379 if (orig_dst_load < orig_src_load)
1380 swap(orig_dst_load, orig_src_load);
e63da036 1381
e4991b24
RR
1382 old_imb = orig_dst_load * src_capacity * 100 -
1383 orig_src_load * dst_capacity * env->imbalance_pct;
1384
1385 /* Would this change make things worse? */
1386 return (imb > old_imb);
e63da036
RR
1387}
1388
fb13c7ee
MG
1389/*
1390 * This checks if the overall compute and NUMA accesses of the system would
1391 * be improved if the source tasks was migrated to the target dst_cpu taking
1392 * into account that it might be best if task running on the dst_cpu should
1393 * be exchanged with the source task
1394 */
887c290e
RR
1395static void task_numa_compare(struct task_numa_env *env,
1396 long taskimp, long groupimp)
fb13c7ee
MG
1397{
1398 struct rq *src_rq = cpu_rq(env->src_cpu);
1399 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1400 struct task_struct *cur;
28a21745 1401 long src_load, dst_load;
fb13c7ee 1402 long load;
1c5d3eb3 1403 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1404 long moveimp = imp;
7bd95320 1405 int dist = env->dist;
fb13c7ee
MG
1406
1407 rcu_read_lock();
bac78573
ON
1408 cur = task_rcu_dereference(&dst_rq->curr);
1409 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1410 cur = NULL;
1411
7af68335
PZ
1412 /*
1413 * Because we have preemption enabled we can get migrated around and
1414 * end try selecting ourselves (current == env->p) as a swap candidate.
1415 */
1416 if (cur == env->p)
1417 goto unlock;
1418
fb13c7ee
MG
1419 /*
1420 * "imp" is the fault differential for the source task between the
1421 * source and destination node. Calculate the total differential for
1422 * the source task and potential destination task. The more negative
1423 * the value is, the more rmeote accesses that would be expected to
1424 * be incurred if the tasks were swapped.
1425 */
1426 if (cur) {
1427 /* Skip this swap candidate if cannot move to the source cpu */
1428 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1429 goto unlock;
1430
887c290e
RR
1431 /*
1432 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1433 * in any group then look only at task weights.
887c290e 1434 */
ca28aa53 1435 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1436 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1437 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1438 /*
1439 * Add some hysteresis to prevent swapping the
1440 * tasks within a group over tiny differences.
1441 */
1442 if (cur->numa_group)
1443 imp -= imp/16;
887c290e 1444 } else {
ca28aa53
RR
1445 /*
1446 * Compare the group weights. If a task is all by
1447 * itself (not part of a group), use the task weight
1448 * instead.
1449 */
ca28aa53 1450 if (cur->numa_group)
7bd95320
RR
1451 imp += group_weight(cur, env->src_nid, dist) -
1452 group_weight(cur, env->dst_nid, dist);
ca28aa53 1453 else
7bd95320
RR
1454 imp += task_weight(cur, env->src_nid, dist) -
1455 task_weight(cur, env->dst_nid, dist);
887c290e 1456 }
fb13c7ee
MG
1457 }
1458
0132c3e1 1459 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1460 goto unlock;
1461
1462 if (!cur) {
1463 /* Is there capacity at our destination? */
b932c03c 1464 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1465 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1466 goto unlock;
1467
1468 goto balance;
1469 }
1470
1471 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1472 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1473 dst_rq->nr_running == 1)
fb13c7ee
MG
1474 goto assign;
1475
1476 /*
1477 * In the overloaded case, try and keep the load balanced.
1478 */
1479balance:
e720fff6
PZ
1480 load = task_h_load(env->p);
1481 dst_load = env->dst_stats.load + load;
1482 src_load = env->src_stats.load - load;
fb13c7ee 1483
0132c3e1
RR
1484 if (moveimp > imp && moveimp > env->best_imp) {
1485 /*
1486 * If the improvement from just moving env->p direction is
1487 * better than swapping tasks around, check if a move is
1488 * possible. Store a slightly smaller score than moveimp,
1489 * so an actually idle CPU will win.
1490 */
1491 if (!load_too_imbalanced(src_load, dst_load, env)) {
1492 imp = moveimp - 1;
1493 cur = NULL;
1494 goto assign;
1495 }
1496 }
1497
1498 if (imp <= env->best_imp)
1499 goto unlock;
1500
fb13c7ee 1501 if (cur) {
e720fff6
PZ
1502 load = task_h_load(cur);
1503 dst_load -= load;
1504 src_load += load;
fb13c7ee
MG
1505 }
1506
28a21745 1507 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1508 goto unlock;
1509
ba7e5a27
RR
1510 /*
1511 * One idle CPU per node is evaluated for a task numa move.
1512 * Call select_idle_sibling to maybe find a better one.
1513 */
1514 if (!cur)
772bd008
MR
1515 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1516 env->dst_cpu);
ba7e5a27 1517
fb13c7ee
MG
1518assign:
1519 task_numa_assign(env, cur, imp);
1520unlock:
1521 rcu_read_unlock();
1522}
1523
887c290e
RR
1524static void task_numa_find_cpu(struct task_numa_env *env,
1525 long taskimp, long groupimp)
2c8a50aa
MG
1526{
1527 int cpu;
1528
1529 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1530 /* Skip this CPU if the source task cannot migrate */
1531 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1532 continue;
1533
1534 env->dst_cpu = cpu;
887c290e 1535 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1536 }
1537}
1538
6f9aad0b
RR
1539/* Only move tasks to a NUMA node less busy than the current node. */
1540static bool numa_has_capacity(struct task_numa_env *env)
1541{
1542 struct numa_stats *src = &env->src_stats;
1543 struct numa_stats *dst = &env->dst_stats;
1544
1545 if (src->has_free_capacity && !dst->has_free_capacity)
1546 return false;
1547
1548 /*
1549 * Only consider a task move if the source has a higher load
1550 * than the destination, corrected for CPU capacity on each node.
1551 *
1552 * src->load dst->load
1553 * --------------------- vs ---------------------
1554 * src->compute_capacity dst->compute_capacity
1555 */
44dcb04f
SD
1556 if (src->load * dst->compute_capacity * env->imbalance_pct >
1557
1558 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1559 return true;
1560
1561 return false;
1562}
1563
58d081b5
MG
1564static int task_numa_migrate(struct task_struct *p)
1565{
58d081b5
MG
1566 struct task_numa_env env = {
1567 .p = p,
fb13c7ee 1568
58d081b5 1569 .src_cpu = task_cpu(p),
b32e86b4 1570 .src_nid = task_node(p),
fb13c7ee
MG
1571
1572 .imbalance_pct = 112,
1573
1574 .best_task = NULL,
1575 .best_imp = 0,
4142c3eb 1576 .best_cpu = -1,
58d081b5
MG
1577 };
1578 struct sched_domain *sd;
887c290e 1579 unsigned long taskweight, groupweight;
7bd95320 1580 int nid, ret, dist;
887c290e 1581 long taskimp, groupimp;
e6628d5b 1582
58d081b5 1583 /*
fb13c7ee
MG
1584 * Pick the lowest SD_NUMA domain, as that would have the smallest
1585 * imbalance and would be the first to start moving tasks about.
1586 *
1587 * And we want to avoid any moving of tasks about, as that would create
1588 * random movement of tasks -- counter the numa conditions we're trying
1589 * to satisfy here.
58d081b5
MG
1590 */
1591 rcu_read_lock();
fb13c7ee 1592 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1593 if (sd)
1594 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1595 rcu_read_unlock();
1596
46a73e8a
RR
1597 /*
1598 * Cpusets can break the scheduler domain tree into smaller
1599 * balance domains, some of which do not cross NUMA boundaries.
1600 * Tasks that are "trapped" in such domains cannot be migrated
1601 * elsewhere, so there is no point in (re)trying.
1602 */
1603 if (unlikely(!sd)) {
de1b301a 1604 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1605 return -EINVAL;
1606 }
1607
2c8a50aa 1608 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1609 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1610 taskweight = task_weight(p, env.src_nid, dist);
1611 groupweight = group_weight(p, env.src_nid, dist);
1612 update_numa_stats(&env.src_stats, env.src_nid);
1613 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1614 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1615 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1616
a43455a1 1617 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1618 if (numa_has_capacity(&env))
1619 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1620
9de05d48
RR
1621 /*
1622 * Look at other nodes in these cases:
1623 * - there is no space available on the preferred_nid
1624 * - the task is part of a numa_group that is interleaved across
1625 * multiple NUMA nodes; in order to better consolidate the group,
1626 * we need to check other locations.
1627 */
4142c3eb 1628 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1629 for_each_online_node(nid) {
1630 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1631 continue;
58d081b5 1632
7bd95320 1633 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1634 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1635 dist != env.dist) {
1636 taskweight = task_weight(p, env.src_nid, dist);
1637 groupweight = group_weight(p, env.src_nid, dist);
1638 }
7bd95320 1639
83e1d2cd 1640 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1641 taskimp = task_weight(p, nid, dist) - taskweight;
1642 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1643 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1644 continue;
1645
7bd95320 1646 env.dist = dist;
2c8a50aa
MG
1647 env.dst_nid = nid;
1648 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1649 if (numa_has_capacity(&env))
1650 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1651 }
1652 }
1653
68d1b02a
RR
1654 /*
1655 * If the task is part of a workload that spans multiple NUMA nodes,
1656 * and is migrating into one of the workload's active nodes, remember
1657 * this node as the task's preferred numa node, so the workload can
1658 * settle down.
1659 * A task that migrated to a second choice node will be better off
1660 * trying for a better one later. Do not set the preferred node here.
1661 */
db015dae 1662 if (p->numa_group) {
4142c3eb
RR
1663 struct numa_group *ng = p->numa_group;
1664
db015dae
RR
1665 if (env.best_cpu == -1)
1666 nid = env.src_nid;
1667 else
1668 nid = env.dst_nid;
1669
4142c3eb 1670 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1671 sched_setnuma(p, env.dst_nid);
1672 }
1673
1674 /* No better CPU than the current one was found. */
1675 if (env.best_cpu == -1)
1676 return -EAGAIN;
0ec8aa00 1677
04bb2f94
RR
1678 /*
1679 * Reset the scan period if the task is being rescheduled on an
1680 * alternative node to recheck if the tasks is now properly placed.
1681 */
1682 p->numa_scan_period = task_scan_min(p);
1683
fb13c7ee 1684 if (env.best_task == NULL) {
286549dc
MG
1685 ret = migrate_task_to(p, env.best_cpu);
1686 if (ret != 0)
1687 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1688 return ret;
1689 }
1690
1691 ret = migrate_swap(p, env.best_task);
286549dc
MG
1692 if (ret != 0)
1693 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1694 put_task_struct(env.best_task);
1695 return ret;
e6628d5b
MG
1696}
1697
6b9a7460
MG
1698/* Attempt to migrate a task to a CPU on the preferred node. */
1699static void numa_migrate_preferred(struct task_struct *p)
1700{
5085e2a3
RR
1701 unsigned long interval = HZ;
1702
2739d3ee 1703 /* This task has no NUMA fault statistics yet */
44dba3d5 1704 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1705 return;
1706
2739d3ee 1707 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1708 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1709 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1710
1711 /* Success if task is already running on preferred CPU */
de1b301a 1712 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1713 return;
1714
1715 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1716 task_numa_migrate(p);
6b9a7460
MG
1717}
1718
20e07dea 1719/*
4142c3eb 1720 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1721 * tracking the nodes from which NUMA hinting faults are triggered. This can
1722 * be different from the set of nodes where the workload's memory is currently
1723 * located.
20e07dea 1724 */
4142c3eb 1725static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1726{
1727 unsigned long faults, max_faults = 0;
4142c3eb 1728 int nid, active_nodes = 0;
20e07dea
RR
1729
1730 for_each_online_node(nid) {
1731 faults = group_faults_cpu(numa_group, nid);
1732 if (faults > max_faults)
1733 max_faults = faults;
1734 }
1735
1736 for_each_online_node(nid) {
1737 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1738 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1739 active_nodes++;
20e07dea 1740 }
4142c3eb
RR
1741
1742 numa_group->max_faults_cpu = max_faults;
1743 numa_group->active_nodes = active_nodes;
20e07dea
RR
1744}
1745
04bb2f94
RR
1746/*
1747 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1748 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1749 * period will be for the next scan window. If local/(local+remote) ratio is
1750 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1751 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1752 */
1753#define NUMA_PERIOD_SLOTS 10
a22b4b01 1754#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1755
1756/*
1757 * Increase the scan period (slow down scanning) if the majority of
1758 * our memory is already on our local node, or if the majority of
1759 * the page accesses are shared with other processes.
1760 * Otherwise, decrease the scan period.
1761 */
1762static void update_task_scan_period(struct task_struct *p,
1763 unsigned long shared, unsigned long private)
1764{
1765 unsigned int period_slot;
1766 int ratio;
1767 int diff;
1768
1769 unsigned long remote = p->numa_faults_locality[0];
1770 unsigned long local = p->numa_faults_locality[1];
1771
1772 /*
1773 * If there were no record hinting faults then either the task is
1774 * completely idle or all activity is areas that are not of interest
074c2381
MG
1775 * to automatic numa balancing. Related to that, if there were failed
1776 * migration then it implies we are migrating too quickly or the local
1777 * node is overloaded. In either case, scan slower
04bb2f94 1778 */
074c2381 1779 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1780 p->numa_scan_period = min(p->numa_scan_period_max,
1781 p->numa_scan_period << 1);
1782
1783 p->mm->numa_next_scan = jiffies +
1784 msecs_to_jiffies(p->numa_scan_period);
1785
1786 return;
1787 }
1788
1789 /*
1790 * Prepare to scale scan period relative to the current period.
1791 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1792 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1793 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1794 */
1795 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1796 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1797 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1798 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1799 if (!slot)
1800 slot = 1;
1801 diff = slot * period_slot;
1802 } else {
1803 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1804
1805 /*
1806 * Scale scan rate increases based on sharing. There is an
1807 * inverse relationship between the degree of sharing and
1808 * the adjustment made to the scanning period. Broadly
1809 * speaking the intent is that there is little point
1810 * scanning faster if shared accesses dominate as it may
1811 * simply bounce migrations uselessly
1812 */
2847c90e 1813 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1814 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1815 }
1816
1817 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1818 task_scan_min(p), task_scan_max(p));
1819 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1820}
1821
7e2703e6
RR
1822/*
1823 * Get the fraction of time the task has been running since the last
1824 * NUMA placement cycle. The scheduler keeps similar statistics, but
1825 * decays those on a 32ms period, which is orders of magnitude off
1826 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1827 * stats only if the task is so new there are no NUMA statistics yet.
1828 */
1829static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1830{
1831 u64 runtime, delta, now;
1832 /* Use the start of this time slice to avoid calculations. */
1833 now = p->se.exec_start;
1834 runtime = p->se.sum_exec_runtime;
1835
1836 if (p->last_task_numa_placement) {
1837 delta = runtime - p->last_sum_exec_runtime;
1838 *period = now - p->last_task_numa_placement;
1839 } else {
9d89c257
YD
1840 delta = p->se.avg.load_sum / p->se.load.weight;
1841 *period = LOAD_AVG_MAX;
7e2703e6
RR
1842 }
1843
1844 p->last_sum_exec_runtime = runtime;
1845 p->last_task_numa_placement = now;
1846
1847 return delta;
1848}
1849
54009416
RR
1850/*
1851 * Determine the preferred nid for a task in a numa_group. This needs to
1852 * be done in a way that produces consistent results with group_weight,
1853 * otherwise workloads might not converge.
1854 */
1855static int preferred_group_nid(struct task_struct *p, int nid)
1856{
1857 nodemask_t nodes;
1858 int dist;
1859
1860 /* Direct connections between all NUMA nodes. */
1861 if (sched_numa_topology_type == NUMA_DIRECT)
1862 return nid;
1863
1864 /*
1865 * On a system with glueless mesh NUMA topology, group_weight
1866 * scores nodes according to the number of NUMA hinting faults on
1867 * both the node itself, and on nearby nodes.
1868 */
1869 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1870 unsigned long score, max_score = 0;
1871 int node, max_node = nid;
1872
1873 dist = sched_max_numa_distance;
1874
1875 for_each_online_node(node) {
1876 score = group_weight(p, node, dist);
1877 if (score > max_score) {
1878 max_score = score;
1879 max_node = node;
1880 }
1881 }
1882 return max_node;
1883 }
1884
1885 /*
1886 * Finding the preferred nid in a system with NUMA backplane
1887 * interconnect topology is more involved. The goal is to locate
1888 * tasks from numa_groups near each other in the system, and
1889 * untangle workloads from different sides of the system. This requires
1890 * searching down the hierarchy of node groups, recursively searching
1891 * inside the highest scoring group of nodes. The nodemask tricks
1892 * keep the complexity of the search down.
1893 */
1894 nodes = node_online_map;
1895 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1896 unsigned long max_faults = 0;
81907478 1897 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1898 int a, b;
1899
1900 /* Are there nodes at this distance from each other? */
1901 if (!find_numa_distance(dist))
1902 continue;
1903
1904 for_each_node_mask(a, nodes) {
1905 unsigned long faults = 0;
1906 nodemask_t this_group;
1907 nodes_clear(this_group);
1908
1909 /* Sum group's NUMA faults; includes a==b case. */
1910 for_each_node_mask(b, nodes) {
1911 if (node_distance(a, b) < dist) {
1912 faults += group_faults(p, b);
1913 node_set(b, this_group);
1914 node_clear(b, nodes);
1915 }
1916 }
1917
1918 /* Remember the top group. */
1919 if (faults > max_faults) {
1920 max_faults = faults;
1921 max_group = this_group;
1922 /*
1923 * subtle: at the smallest distance there is
1924 * just one node left in each "group", the
1925 * winner is the preferred nid.
1926 */
1927 nid = a;
1928 }
1929 }
1930 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1931 if (!max_faults)
1932 break;
54009416
RR
1933 nodes = max_group;
1934 }
1935 return nid;
1936}
1937
cbee9f88
PZ
1938static void task_numa_placement(struct task_struct *p)
1939{
83e1d2cd
MG
1940 int seq, nid, max_nid = -1, max_group_nid = -1;
1941 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1942 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1943 unsigned long total_faults;
1944 u64 runtime, period;
7dbd13ed 1945 spinlock_t *group_lock = NULL;
cbee9f88 1946
7e5a2c17
JL
1947 /*
1948 * The p->mm->numa_scan_seq field gets updated without
1949 * exclusive access. Use READ_ONCE() here to ensure
1950 * that the field is read in a single access:
1951 */
316c1608 1952 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1953 if (p->numa_scan_seq == seq)
1954 return;
1955 p->numa_scan_seq = seq;
598f0ec0 1956 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1957
7e2703e6
RR
1958 total_faults = p->numa_faults_locality[0] +
1959 p->numa_faults_locality[1];
1960 runtime = numa_get_avg_runtime(p, &period);
1961
7dbd13ed
MG
1962 /* If the task is part of a group prevent parallel updates to group stats */
1963 if (p->numa_group) {
1964 group_lock = &p->numa_group->lock;
60e69eed 1965 spin_lock_irq(group_lock);
7dbd13ed
MG
1966 }
1967
688b7585
MG
1968 /* Find the node with the highest number of faults */
1969 for_each_online_node(nid) {
44dba3d5
IM
1970 /* Keep track of the offsets in numa_faults array */
1971 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1972 unsigned long faults = 0, group_faults = 0;
44dba3d5 1973 int priv;
745d6147 1974
be1e4e76 1975 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1976 long diff, f_diff, f_weight;
8c8a743c 1977
44dba3d5
IM
1978 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1979 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1980 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1981 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1982
ac8e895b 1983 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1984 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1985 fault_types[priv] += p->numa_faults[membuf_idx];
1986 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1987
7e2703e6
RR
1988 /*
1989 * Normalize the faults_from, so all tasks in a group
1990 * count according to CPU use, instead of by the raw
1991 * number of faults. Tasks with little runtime have
1992 * little over-all impact on throughput, and thus their
1993 * faults are less important.
1994 */
1995 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1996 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1997 (total_faults + 1);
44dba3d5
IM
1998 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1999 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2000
44dba3d5
IM
2001 p->numa_faults[mem_idx] += diff;
2002 p->numa_faults[cpu_idx] += f_diff;
2003 faults += p->numa_faults[mem_idx];
83e1d2cd 2004 p->total_numa_faults += diff;
8c8a743c 2005 if (p->numa_group) {
44dba3d5
IM
2006 /*
2007 * safe because we can only change our own group
2008 *
2009 * mem_idx represents the offset for a given
2010 * nid and priv in a specific region because it
2011 * is at the beginning of the numa_faults array.
2012 */
2013 p->numa_group->faults[mem_idx] += diff;
2014 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2015 p->numa_group->total_faults += diff;
44dba3d5 2016 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2017 }
ac8e895b
MG
2018 }
2019
688b7585
MG
2020 if (faults > max_faults) {
2021 max_faults = faults;
2022 max_nid = nid;
2023 }
83e1d2cd
MG
2024
2025 if (group_faults > max_group_faults) {
2026 max_group_faults = group_faults;
2027 max_group_nid = nid;
2028 }
2029 }
2030
04bb2f94
RR
2031 update_task_scan_period(p, fault_types[0], fault_types[1]);
2032
7dbd13ed 2033 if (p->numa_group) {
4142c3eb 2034 numa_group_count_active_nodes(p->numa_group);
60e69eed 2035 spin_unlock_irq(group_lock);
54009416 2036 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2037 }
2038
bb97fc31
RR
2039 if (max_faults) {
2040 /* Set the new preferred node */
2041 if (max_nid != p->numa_preferred_nid)
2042 sched_setnuma(p, max_nid);
2043
2044 if (task_node(p) != p->numa_preferred_nid)
2045 numa_migrate_preferred(p);
3a7053b3 2046 }
cbee9f88
PZ
2047}
2048
8c8a743c
PZ
2049static inline int get_numa_group(struct numa_group *grp)
2050{
2051 return atomic_inc_not_zero(&grp->refcount);
2052}
2053
2054static inline void put_numa_group(struct numa_group *grp)
2055{
2056 if (atomic_dec_and_test(&grp->refcount))
2057 kfree_rcu(grp, rcu);
2058}
2059
3e6a9418
MG
2060static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2061 int *priv)
8c8a743c
PZ
2062{
2063 struct numa_group *grp, *my_grp;
2064 struct task_struct *tsk;
2065 bool join = false;
2066 int cpu = cpupid_to_cpu(cpupid);
2067 int i;
2068
2069 if (unlikely(!p->numa_group)) {
2070 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2071 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2072
2073 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2074 if (!grp)
2075 return;
2076
2077 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2078 grp->active_nodes = 1;
2079 grp->max_faults_cpu = 0;
8c8a743c 2080 spin_lock_init(&grp->lock);
e29cf08b 2081 grp->gid = p->pid;
50ec8a40 2082 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2083 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2084 nr_node_ids;
8c8a743c 2085
be1e4e76 2086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2087 grp->faults[i] = p->numa_faults[i];
8c8a743c 2088
989348b5 2089 grp->total_faults = p->total_numa_faults;
83e1d2cd 2090
8c8a743c
PZ
2091 grp->nr_tasks++;
2092 rcu_assign_pointer(p->numa_group, grp);
2093 }
2094
2095 rcu_read_lock();
316c1608 2096 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2097
2098 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 grp = rcu_dereference(tsk->numa_group);
2102 if (!grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 my_grp = p->numa_group;
2106 if (grp == my_grp)
3354781a 2107 goto no_join;
8c8a743c
PZ
2108
2109 /*
2110 * Only join the other group if its bigger; if we're the bigger group,
2111 * the other task will join us.
2112 */
2113 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2114 goto no_join;
8c8a743c
PZ
2115
2116 /*
2117 * Tie-break on the grp address.
2118 */
2119 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2120 goto no_join;
8c8a743c 2121
dabe1d99
RR
2122 /* Always join threads in the same process. */
2123 if (tsk->mm == current->mm)
2124 join = true;
2125
2126 /* Simple filter to avoid false positives due to PID collisions */
2127 if (flags & TNF_SHARED)
2128 join = true;
8c8a743c 2129
3e6a9418
MG
2130 /* Update priv based on whether false sharing was detected */
2131 *priv = !join;
2132
dabe1d99 2133 if (join && !get_numa_group(grp))
3354781a 2134 goto no_join;
8c8a743c 2135
8c8a743c
PZ
2136 rcu_read_unlock();
2137
2138 if (!join)
2139 return;
2140
60e69eed
MG
2141 BUG_ON(irqs_disabled());
2142 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2143
be1e4e76 2144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2145 my_grp->faults[i] -= p->numa_faults[i];
2146 grp->faults[i] += p->numa_faults[i];
8c8a743c 2147 }
989348b5
MG
2148 my_grp->total_faults -= p->total_numa_faults;
2149 grp->total_faults += p->total_numa_faults;
8c8a743c 2150
8c8a743c
PZ
2151 my_grp->nr_tasks--;
2152 grp->nr_tasks++;
2153
2154 spin_unlock(&my_grp->lock);
60e69eed 2155 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2156
2157 rcu_assign_pointer(p->numa_group, grp);
2158
2159 put_numa_group(my_grp);
3354781a
PZ
2160 return;
2161
2162no_join:
2163 rcu_read_unlock();
2164 return;
8c8a743c
PZ
2165}
2166
2167void task_numa_free(struct task_struct *p)
2168{
2169 struct numa_group *grp = p->numa_group;
44dba3d5 2170 void *numa_faults = p->numa_faults;
e9dd685c
SR
2171 unsigned long flags;
2172 int i;
8c8a743c
PZ
2173
2174 if (grp) {
e9dd685c 2175 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2176 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2177 grp->faults[i] -= p->numa_faults[i];
989348b5 2178 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2179
8c8a743c 2180 grp->nr_tasks--;
e9dd685c 2181 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2182 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2183 put_numa_group(grp);
2184 }
2185
44dba3d5 2186 p->numa_faults = NULL;
82727018 2187 kfree(numa_faults);
8c8a743c
PZ
2188}
2189
cbee9f88
PZ
2190/*
2191 * Got a PROT_NONE fault for a page on @node.
2192 */
58b46da3 2193void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2194{
2195 struct task_struct *p = current;
6688cc05 2196 bool migrated = flags & TNF_MIGRATED;
58b46da3 2197 int cpu_node = task_node(current);
792568ec 2198 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2199 struct numa_group *ng;
ac8e895b 2200 int priv;
cbee9f88 2201
2a595721 2202 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2203 return;
2204
9ff1d9ff
MG
2205 /* for example, ksmd faulting in a user's mm */
2206 if (!p->mm)
2207 return;
2208
f809ca9a 2209 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2210 if (unlikely(!p->numa_faults)) {
2211 int size = sizeof(*p->numa_faults) *
be1e4e76 2212 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2213
44dba3d5
IM
2214 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2215 if (!p->numa_faults)
f809ca9a 2216 return;
745d6147 2217
83e1d2cd 2218 p->total_numa_faults = 0;
04bb2f94 2219 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2220 }
cbee9f88 2221
8c8a743c
PZ
2222 /*
2223 * First accesses are treated as private, otherwise consider accesses
2224 * to be private if the accessing pid has not changed
2225 */
2226 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2227 priv = 1;
2228 } else {
2229 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2230 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2231 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2232 }
2233
792568ec
RR
2234 /*
2235 * If a workload spans multiple NUMA nodes, a shared fault that
2236 * occurs wholly within the set of nodes that the workload is
2237 * actively using should be counted as local. This allows the
2238 * scan rate to slow down when a workload has settled down.
2239 */
4142c3eb
RR
2240 ng = p->numa_group;
2241 if (!priv && !local && ng && ng->active_nodes > 1 &&
2242 numa_is_active_node(cpu_node, ng) &&
2243 numa_is_active_node(mem_node, ng))
792568ec
RR
2244 local = 1;
2245
cbee9f88 2246 task_numa_placement(p);
f809ca9a 2247
2739d3ee
RR
2248 /*
2249 * Retry task to preferred node migration periodically, in case it
2250 * case it previously failed, or the scheduler moved us.
2251 */
2252 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2253 numa_migrate_preferred(p);
2254
b32e86b4
IM
2255 if (migrated)
2256 p->numa_pages_migrated += pages;
074c2381
MG
2257 if (flags & TNF_MIGRATE_FAIL)
2258 p->numa_faults_locality[2] += pages;
b32e86b4 2259
44dba3d5
IM
2260 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2261 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2262 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2263}
2264
6e5fb223
PZ
2265static void reset_ptenuma_scan(struct task_struct *p)
2266{
7e5a2c17
JL
2267 /*
2268 * We only did a read acquisition of the mmap sem, so
2269 * p->mm->numa_scan_seq is written to without exclusive access
2270 * and the update is not guaranteed to be atomic. That's not
2271 * much of an issue though, since this is just used for
2272 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2273 * expensive, to avoid any form of compiler optimizations:
2274 */
316c1608 2275 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2276 p->mm->numa_scan_offset = 0;
2277}
2278
cbee9f88
PZ
2279/*
2280 * The expensive part of numa migration is done from task_work context.
2281 * Triggered from task_tick_numa().
2282 */
2283void task_numa_work(struct callback_head *work)
2284{
2285 unsigned long migrate, next_scan, now = jiffies;
2286 struct task_struct *p = current;
2287 struct mm_struct *mm = p->mm;
51170840 2288 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2289 struct vm_area_struct *vma;
9f40604c 2290 unsigned long start, end;
598f0ec0 2291 unsigned long nr_pte_updates = 0;
4620f8c1 2292 long pages, virtpages;
cbee9f88
PZ
2293
2294 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2295
2296 work->next = work; /* protect against double add */
2297 /*
2298 * Who cares about NUMA placement when they're dying.
2299 *
2300 * NOTE: make sure not to dereference p->mm before this check,
2301 * exit_task_work() happens _after_ exit_mm() so we could be called
2302 * without p->mm even though we still had it when we enqueued this
2303 * work.
2304 */
2305 if (p->flags & PF_EXITING)
2306 return;
2307
930aa174 2308 if (!mm->numa_next_scan) {
7e8d16b6
MG
2309 mm->numa_next_scan = now +
2310 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2311 }
2312
cbee9f88
PZ
2313 /*
2314 * Enforce maximal scan/migration frequency..
2315 */
2316 migrate = mm->numa_next_scan;
2317 if (time_before(now, migrate))
2318 return;
2319
598f0ec0
MG
2320 if (p->numa_scan_period == 0) {
2321 p->numa_scan_period_max = task_scan_max(p);
2322 p->numa_scan_period = task_scan_min(p);
2323 }
cbee9f88 2324
fb003b80 2325 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2326 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2327 return;
2328
19a78d11
PZ
2329 /*
2330 * Delay this task enough that another task of this mm will likely win
2331 * the next time around.
2332 */
2333 p->node_stamp += 2 * TICK_NSEC;
2334
9f40604c
MG
2335 start = mm->numa_scan_offset;
2336 pages = sysctl_numa_balancing_scan_size;
2337 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2338 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2339 if (!pages)
2340 return;
cbee9f88 2341
4620f8c1 2342
6e5fb223 2343 down_read(&mm->mmap_sem);
9f40604c 2344 vma = find_vma(mm, start);
6e5fb223
PZ
2345 if (!vma) {
2346 reset_ptenuma_scan(p);
9f40604c 2347 start = 0;
6e5fb223
PZ
2348 vma = mm->mmap;
2349 }
9f40604c 2350 for (; vma; vma = vma->vm_next) {
6b79c57b 2351 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2352 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2353 continue;
6b79c57b 2354 }
6e5fb223 2355
4591ce4f
MG
2356 /*
2357 * Shared library pages mapped by multiple processes are not
2358 * migrated as it is expected they are cache replicated. Avoid
2359 * hinting faults in read-only file-backed mappings or the vdso
2360 * as migrating the pages will be of marginal benefit.
2361 */
2362 if (!vma->vm_mm ||
2363 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2364 continue;
2365
3c67f474
MG
2366 /*
2367 * Skip inaccessible VMAs to avoid any confusion between
2368 * PROT_NONE and NUMA hinting ptes
2369 */
2370 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2371 continue;
4591ce4f 2372
9f40604c
MG
2373 do {
2374 start = max(start, vma->vm_start);
2375 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2376 end = min(end, vma->vm_end);
4620f8c1 2377 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2378
2379 /*
4620f8c1
RR
2380 * Try to scan sysctl_numa_balancing_size worth of
2381 * hpages that have at least one present PTE that
2382 * is not already pte-numa. If the VMA contains
2383 * areas that are unused or already full of prot_numa
2384 * PTEs, scan up to virtpages, to skip through those
2385 * areas faster.
598f0ec0
MG
2386 */
2387 if (nr_pte_updates)
2388 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2389 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2390
9f40604c 2391 start = end;
4620f8c1 2392 if (pages <= 0 || virtpages <= 0)
9f40604c 2393 goto out;
3cf1962c
RR
2394
2395 cond_resched();
9f40604c 2396 } while (end != vma->vm_end);
cbee9f88 2397 }
6e5fb223 2398
9f40604c 2399out:
6e5fb223 2400 /*
c69307d5
PZ
2401 * It is possible to reach the end of the VMA list but the last few
2402 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2403 * would find the !migratable VMA on the next scan but not reset the
2404 * scanner to the start so check it now.
6e5fb223
PZ
2405 */
2406 if (vma)
9f40604c 2407 mm->numa_scan_offset = start;
6e5fb223
PZ
2408 else
2409 reset_ptenuma_scan(p);
2410 up_read(&mm->mmap_sem);
51170840
RR
2411
2412 /*
2413 * Make sure tasks use at least 32x as much time to run other code
2414 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2415 * Usually update_task_scan_period slows down scanning enough; on an
2416 * overloaded system we need to limit overhead on a per task basis.
2417 */
2418 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2419 u64 diff = p->se.sum_exec_runtime - runtime;
2420 p->node_stamp += 32 * diff;
2421 }
cbee9f88
PZ
2422}
2423
2424/*
2425 * Drive the periodic memory faults..
2426 */
2427void task_tick_numa(struct rq *rq, struct task_struct *curr)
2428{
2429 struct callback_head *work = &curr->numa_work;
2430 u64 period, now;
2431
2432 /*
2433 * We don't care about NUMA placement if we don't have memory.
2434 */
2435 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2436 return;
2437
2438 /*
2439 * Using runtime rather than walltime has the dual advantage that
2440 * we (mostly) drive the selection from busy threads and that the
2441 * task needs to have done some actual work before we bother with
2442 * NUMA placement.
2443 */
2444 now = curr->se.sum_exec_runtime;
2445 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2446
25b3e5a3 2447 if (now > curr->node_stamp + period) {
4b96a29b 2448 if (!curr->node_stamp)
598f0ec0 2449 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2450 curr->node_stamp += period;
cbee9f88
PZ
2451
2452 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2453 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2454 task_work_add(curr, work, true);
2455 }
2456 }
2457}
2458#else
2459static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2460{
2461}
0ec8aa00
PZ
2462
2463static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2464{
2465}
2466
2467static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2468{
2469}
cbee9f88
PZ
2470#endif /* CONFIG_NUMA_BALANCING */
2471
30cfdcfc
DA
2472static void
2473account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2474{
2475 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2476 if (!parent_entity(se))
029632fb 2477 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2478#ifdef CONFIG_SMP
0ec8aa00
PZ
2479 if (entity_is_task(se)) {
2480 struct rq *rq = rq_of(cfs_rq);
2481
2482 account_numa_enqueue(rq, task_of(se));
2483 list_add(&se->group_node, &rq->cfs_tasks);
2484 }
367456c7 2485#endif
30cfdcfc 2486 cfs_rq->nr_running++;
30cfdcfc
DA
2487}
2488
2489static void
2490account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2491{
2492 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2493 if (!parent_entity(se))
029632fb 2494 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2495#ifdef CONFIG_SMP
0ec8aa00
PZ
2496 if (entity_is_task(se)) {
2497 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2498 list_del_init(&se->group_node);
0ec8aa00 2499 }
bfdb198c 2500#endif
30cfdcfc 2501 cfs_rq->nr_running--;
30cfdcfc
DA
2502}
2503
3ff6dcac
YZ
2504#ifdef CONFIG_FAIR_GROUP_SCHED
2505# ifdef CONFIG_SMP
ea1dc6fc 2506static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2507{
ea1dc6fc 2508 long tg_weight, load, shares;
cf5f0acf
PZ
2509
2510 /*
ea1dc6fc
PZ
2511 * This really should be: cfs_rq->avg.load_avg, but instead we use
2512 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2513 * the shares for small weight interactive tasks.
cf5f0acf 2514 */
ea1dc6fc 2515 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2516
ea1dc6fc 2517 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2518
ea1dc6fc
PZ
2519 /* Ensure tg_weight >= load */
2520 tg_weight -= cfs_rq->tg_load_avg_contrib;
2521 tg_weight += load;
3ff6dcac 2522
3ff6dcac 2523 shares = (tg->shares * load);
cf5f0acf
PZ
2524 if (tg_weight)
2525 shares /= tg_weight;
3ff6dcac
YZ
2526
2527 if (shares < MIN_SHARES)
2528 shares = MIN_SHARES;
2529 if (shares > tg->shares)
2530 shares = tg->shares;
2531
2532 return shares;
2533}
3ff6dcac 2534# else /* CONFIG_SMP */
6d5ab293 2535static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2536{
2537 return tg->shares;
2538}
3ff6dcac 2539# endif /* CONFIG_SMP */
ea1dc6fc 2540
2069dd75
PZ
2541static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2542 unsigned long weight)
2543{
19e5eebb
PT
2544 if (se->on_rq) {
2545 /* commit outstanding execution time */
2546 if (cfs_rq->curr == se)
2547 update_curr(cfs_rq);
2069dd75 2548 account_entity_dequeue(cfs_rq, se);
19e5eebb 2549 }
2069dd75
PZ
2550
2551 update_load_set(&se->load, weight);
2552
2553 if (se->on_rq)
2554 account_entity_enqueue(cfs_rq, se);
2555}
2556
82958366
PT
2557static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2558
6d5ab293 2559static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2560{
2561 struct task_group *tg;
2562 struct sched_entity *se;
3ff6dcac 2563 long shares;
2069dd75 2564
2069dd75
PZ
2565 tg = cfs_rq->tg;
2566 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2567 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2568 return;
3ff6dcac
YZ
2569#ifndef CONFIG_SMP
2570 if (likely(se->load.weight == tg->shares))
2571 return;
2572#endif
6d5ab293 2573 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2574
2575 reweight_entity(cfs_rq_of(se), se, shares);
2576}
2577#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2578static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2579{
2580}
2581#endif /* CONFIG_FAIR_GROUP_SCHED */
2582
141965c7 2583#ifdef CONFIG_SMP
5b51f2f8
PT
2584/* Precomputed fixed inverse multiplies for multiplication by y^n */
2585static const u32 runnable_avg_yN_inv[] = {
2586 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2587 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2588 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2589 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2590 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2591 0x85aac367, 0x82cd8698,
2592};
2593
2594/*
2595 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2596 * over-estimates when re-combining.
2597 */
2598static const u32 runnable_avg_yN_sum[] = {
2599 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2600 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2601 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2602};
2603
7b20b916
YD
2604/*
2605 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2606 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2607 * were generated:
2608 */
2609static const u32 __accumulated_sum_N32[] = {
2610 0, 23371, 35056, 40899, 43820, 45281,
2611 46011, 46376, 46559, 46650, 46696, 46719,
2612};
2613
9d85f21c
PT
2614/*
2615 * Approximate:
2616 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2617 */
2618static __always_inline u64 decay_load(u64 val, u64 n)
2619{
5b51f2f8
PT
2620 unsigned int local_n;
2621
2622 if (!n)
2623 return val;
2624 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2625 return 0;
2626
2627 /* after bounds checking we can collapse to 32-bit */
2628 local_n = n;
2629
2630 /*
2631 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2632 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2633 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2634 *
2635 * To achieve constant time decay_load.
2636 */
2637 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2638 val >>= local_n / LOAD_AVG_PERIOD;
2639 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2640 }
2641
9d89c257
YD
2642 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2643 return val;
5b51f2f8
PT
2644}
2645
2646/*
2647 * For updates fully spanning n periods, the contribution to runnable
2648 * average will be: \Sum 1024*y^n
2649 *
2650 * We can compute this reasonably efficiently by combining:
2651 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2652 */
2653static u32 __compute_runnable_contrib(u64 n)
2654{
2655 u32 contrib = 0;
2656
2657 if (likely(n <= LOAD_AVG_PERIOD))
2658 return runnable_avg_yN_sum[n];
2659 else if (unlikely(n >= LOAD_AVG_MAX_N))
2660 return LOAD_AVG_MAX;
2661
7b20b916
YD
2662 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2663 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2664 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2665 contrib = decay_load(contrib, n);
2666 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2667}
2668
54a21385 2669#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2670
9d85f21c
PT
2671/*
2672 * We can represent the historical contribution to runnable average as the
2673 * coefficients of a geometric series. To do this we sub-divide our runnable
2674 * history into segments of approximately 1ms (1024us); label the segment that
2675 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2676 *
2677 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2678 * p0 p1 p2
2679 * (now) (~1ms ago) (~2ms ago)
2680 *
2681 * Let u_i denote the fraction of p_i that the entity was runnable.
2682 *
2683 * We then designate the fractions u_i as our co-efficients, yielding the
2684 * following representation of historical load:
2685 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2686 *
2687 * We choose y based on the with of a reasonably scheduling period, fixing:
2688 * y^32 = 0.5
2689 *
2690 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2691 * approximately half as much as the contribution to load within the last ms
2692 * (u_0).
2693 *
2694 * When a period "rolls over" and we have new u_0`, multiplying the previous
2695 * sum again by y is sufficient to update:
2696 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2697 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2698 */
9d89c257
YD
2699static __always_inline int
2700__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2701 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2702{
e0f5f3af 2703 u64 delta, scaled_delta, periods;
9d89c257 2704 u32 contrib;
6115c793 2705 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2706 unsigned long scale_freq, scale_cpu;
9d85f21c 2707
9d89c257 2708 delta = now - sa->last_update_time;
9d85f21c
PT
2709 /*
2710 * This should only happen when time goes backwards, which it
2711 * unfortunately does during sched clock init when we swap over to TSC.
2712 */
2713 if ((s64)delta < 0) {
9d89c257 2714 sa->last_update_time = now;
9d85f21c
PT
2715 return 0;
2716 }
2717
2718 /*
2719 * Use 1024ns as the unit of measurement since it's a reasonable
2720 * approximation of 1us and fast to compute.
2721 */
2722 delta >>= 10;
2723 if (!delta)
2724 return 0;
9d89c257 2725 sa->last_update_time = now;
9d85f21c 2726
6f2b0452
DE
2727 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2728 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2729
9d85f21c 2730 /* delta_w is the amount already accumulated against our next period */
9d89c257 2731 delta_w = sa->period_contrib;
9d85f21c 2732 if (delta + delta_w >= 1024) {
9d85f21c
PT
2733 decayed = 1;
2734
9d89c257
YD
2735 /* how much left for next period will start over, we don't know yet */
2736 sa->period_contrib = 0;
2737
9d85f21c
PT
2738 /*
2739 * Now that we know we're crossing a period boundary, figure
2740 * out how much from delta we need to complete the current
2741 * period and accrue it.
2742 */
2743 delta_w = 1024 - delta_w;
54a21385 2744 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2745 if (weight) {
e0f5f3af
DE
2746 sa->load_sum += weight * scaled_delta_w;
2747 if (cfs_rq) {
2748 cfs_rq->runnable_load_sum +=
2749 weight * scaled_delta_w;
2750 }
13962234 2751 }
36ee28e4 2752 if (running)
006cdf02 2753 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2754
2755 delta -= delta_w;
2756
2757 /* Figure out how many additional periods this update spans */
2758 periods = delta / 1024;
2759 delta %= 1024;
2760
9d89c257 2761 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_sum =
2764 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2765 }
9d89c257 2766 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2767
2768 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2769 contrib = __compute_runnable_contrib(periods);
54a21385 2770 contrib = cap_scale(contrib, scale_freq);
13962234 2771 if (weight) {
9d89c257 2772 sa->load_sum += weight * contrib;
13962234
YD
2773 if (cfs_rq)
2774 cfs_rq->runnable_load_sum += weight * contrib;
2775 }
36ee28e4 2776 if (running)
006cdf02 2777 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2778 }
2779
2780 /* Remainder of delta accrued against u_0` */
54a21385 2781 scaled_delta = cap_scale(delta, scale_freq);
13962234 2782 if (weight) {
e0f5f3af 2783 sa->load_sum += weight * scaled_delta;
13962234 2784 if (cfs_rq)
e0f5f3af 2785 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2786 }
36ee28e4 2787 if (running)
006cdf02 2788 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2789
9d89c257 2790 sa->period_contrib += delta;
9ee474f5 2791
9d89c257
YD
2792 if (decayed) {
2793 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2794 if (cfs_rq) {
2795 cfs_rq->runnable_load_avg =
2796 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2797 }
006cdf02 2798 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2799 }
aff3e498 2800
9d89c257 2801 return decayed;
9ee474f5
PT
2802}
2803
c566e8e9 2804#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2805/**
2806 * update_tg_load_avg - update the tg's load avg
2807 * @cfs_rq: the cfs_rq whose avg changed
2808 * @force: update regardless of how small the difference
2809 *
2810 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2811 * However, because tg->load_avg is a global value there are performance
2812 * considerations.
2813 *
2814 * In order to avoid having to look at the other cfs_rq's, we use a
2815 * differential update where we store the last value we propagated. This in
2816 * turn allows skipping updates if the differential is 'small'.
2817 *
2818 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2819 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2820 */
9d89c257 2821static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2822{
9d89c257 2823 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2824
aa0b7ae0
WL
2825 /*
2826 * No need to update load_avg for root_task_group as it is not used.
2827 */
2828 if (cfs_rq->tg == &root_task_group)
2829 return;
2830
9d89c257
YD
2831 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2832 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2833 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2834 }
8165e145 2835}
f5f9739d 2836
ad936d86
BP
2837/*
2838 * Called within set_task_rq() right before setting a task's cpu. The
2839 * caller only guarantees p->pi_lock is held; no other assumptions,
2840 * including the state of rq->lock, should be made.
2841 */
2842void set_task_rq_fair(struct sched_entity *se,
2843 struct cfs_rq *prev, struct cfs_rq *next)
2844{
2845 if (!sched_feat(ATTACH_AGE_LOAD))
2846 return;
2847
2848 /*
2849 * We are supposed to update the task to "current" time, then its up to
2850 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2851 * getting what current time is, so simply throw away the out-of-date
2852 * time. This will result in the wakee task is less decayed, but giving
2853 * the wakee more load sounds not bad.
2854 */
2855 if (se->avg.last_update_time && prev) {
2856 u64 p_last_update_time;
2857 u64 n_last_update_time;
2858
2859#ifndef CONFIG_64BIT
2860 u64 p_last_update_time_copy;
2861 u64 n_last_update_time_copy;
2862
2863 do {
2864 p_last_update_time_copy = prev->load_last_update_time_copy;
2865 n_last_update_time_copy = next->load_last_update_time_copy;
2866
2867 smp_rmb();
2868
2869 p_last_update_time = prev->avg.last_update_time;
2870 n_last_update_time = next->avg.last_update_time;
2871
2872 } while (p_last_update_time != p_last_update_time_copy ||
2873 n_last_update_time != n_last_update_time_copy);
2874#else
2875 p_last_update_time = prev->avg.last_update_time;
2876 n_last_update_time = next->avg.last_update_time;
2877#endif
2878 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2879 &se->avg, 0, 0, NULL);
2880 se->avg.last_update_time = n_last_update_time;
2881 }
2882}
6e83125c 2883#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2884static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2885#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2886
a2c6c91f
SM
2887static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2888{
2889 struct rq *rq = rq_of(cfs_rq);
2890 int cpu = cpu_of(rq);
2891
2892 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2893 unsigned long max = rq->cpu_capacity_orig;
2894
2895 /*
2896 * There are a few boundary cases this might miss but it should
2897 * get called often enough that that should (hopefully) not be
2898 * a real problem -- added to that it only calls on the local
2899 * CPU, so if we enqueue remotely we'll miss an update, but
2900 * the next tick/schedule should update.
2901 *
2902 * It will not get called when we go idle, because the idle
2903 * thread is a different class (!fair), nor will the utilization
2904 * number include things like RT tasks.
2905 *
2906 * As is, the util number is not freq-invariant (we'd have to
2907 * implement arch_scale_freq_capacity() for that).
2908 *
2909 * See cpu_util().
2910 */
2911 cpufreq_update_util(rq_clock(rq),
2912 min(cfs_rq->avg.util_avg, max), max);
2913 }
2914}
2915
89741892
PZ
2916/*
2917 * Unsigned subtract and clamp on underflow.
2918 *
2919 * Explicitly do a load-store to ensure the intermediate value never hits
2920 * memory. This allows lockless observations without ever seeing the negative
2921 * values.
2922 */
2923#define sub_positive(_ptr, _val) do { \
2924 typeof(_ptr) ptr = (_ptr); \
2925 typeof(*ptr) val = (_val); \
2926 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2927 res = var - val; \
2928 if (res > var) \
2929 res = 0; \
2930 WRITE_ONCE(*ptr, res); \
2931} while (0)
2932
3d30544f
PZ
2933/**
2934 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2935 * @now: current time, as per cfs_rq_clock_task()
2936 * @cfs_rq: cfs_rq to update
2937 * @update_freq: should we call cfs_rq_util_change() or will the call do so
2938 *
2939 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2940 * avg. The immediate corollary is that all (fair) tasks must be attached, see
2941 * post_init_entity_util_avg().
2942 *
2943 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2944 *
7c3edd2c
PZ
2945 * Returns true if the load decayed or we removed load.
2946 *
2947 * Since both these conditions indicate a changed cfs_rq->avg.load we should
2948 * call update_tg_load_avg() when this function returns true.
3d30544f 2949 */
a2c6c91f
SM
2950static inline int
2951update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2952{
9d89c257 2953 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2954 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2955
9d89c257 2956 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2957 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2958 sub_positive(&sa->load_avg, r);
2959 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2960 removed_load = 1;
8165e145 2961 }
2dac754e 2962
9d89c257
YD
2963 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2964 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2965 sub_positive(&sa->util_avg, r);
2966 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2967 removed_util = 1;
9d89c257 2968 }
36ee28e4 2969
a2c6c91f 2970 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2971 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2972
9d89c257
YD
2973#ifndef CONFIG_64BIT
2974 smp_wmb();
2975 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2976#endif
36ee28e4 2977
a2c6c91f
SM
2978 if (update_freq && (decayed || removed_util))
2979 cfs_rq_util_change(cfs_rq);
21e96f88 2980
41e0d37f 2981 return decayed || removed_load;
21e96f88
SM
2982}
2983
2984/* Update task and its cfs_rq load average */
2985static inline void update_load_avg(struct sched_entity *se, int update_tg)
2986{
2987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2988 u64 now = cfs_rq_clock_task(cfs_rq);
2989 struct rq *rq = rq_of(cfs_rq);
2990 int cpu = cpu_of(rq);
2991
2992 /*
2993 * Track task load average for carrying it to new CPU after migrated, and
2994 * track group sched_entity load average for task_h_load calc in migration
2995 */
2996 __update_load_avg(now, cpu, &se->avg,
2997 se->on_rq * scale_load_down(se->load.weight),
2998 cfs_rq->curr == se, NULL);
2999
a2c6c91f 3000 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3001 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3002}
3003
3d30544f
PZ
3004/**
3005 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3006 * @cfs_rq: cfs_rq to attach to
3007 * @se: sched_entity to attach
3008 *
3009 * Must call update_cfs_rq_load_avg() before this, since we rely on
3010 * cfs_rq->avg.last_update_time being current.
3011 */
a05e8c51
BP
3012static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013{
a9280514
PZ
3014 if (!sched_feat(ATTACH_AGE_LOAD))
3015 goto skip_aging;
3016
6efdb105
BP
3017 /*
3018 * If we got migrated (either between CPUs or between cgroups) we'll
3019 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3020 *
3021 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3022 */
3023 if (se->avg.last_update_time) {
3024 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3025 &se->avg, 0, 0, NULL);
3026
3027 /*
3028 * XXX: we could have just aged the entire load away if we've been
3029 * absent from the fair class for too long.
3030 */
3031 }
3032
a9280514 3033skip_aging:
a05e8c51
BP
3034 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3035 cfs_rq->avg.load_avg += se->avg.load_avg;
3036 cfs_rq->avg.load_sum += se->avg.load_sum;
3037 cfs_rq->avg.util_avg += se->avg.util_avg;
3038 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3039
3040 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3041}
3042
3d30544f
PZ
3043/**
3044 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3045 * @cfs_rq: cfs_rq to detach from
3046 * @se: sched_entity to detach
3047 *
3048 * Must call update_cfs_rq_load_avg() before this, since we rely on
3049 * cfs_rq->avg.last_update_time being current.
3050 */
a05e8c51
BP
3051static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052{
3053 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3054 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3055 cfs_rq->curr == se, NULL);
3056
89741892
PZ
3057 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3058 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3059 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3060 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3061
3062 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3063}
3064
9d89c257
YD
3065/* Add the load generated by se into cfs_rq's load average */
3066static inline void
3067enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3068{
9d89c257
YD
3069 struct sched_avg *sa = &se->avg;
3070 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3071 int migrated, decayed;
9ee474f5 3072
a05e8c51
BP
3073 migrated = !sa->last_update_time;
3074 if (!migrated) {
9d89c257 3075 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3076 se->on_rq * scale_load_down(se->load.weight),
3077 cfs_rq->curr == se, NULL);
aff3e498 3078 }
c566e8e9 3079
a2c6c91f 3080 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3081
13962234
YD
3082 cfs_rq->runnable_load_avg += sa->load_avg;
3083 cfs_rq->runnable_load_sum += sa->load_sum;
3084
a05e8c51
BP
3085 if (migrated)
3086 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3087
9d89c257
YD
3088 if (decayed || migrated)
3089 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3090}
3091
13962234
YD
3092/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3093static inline void
3094dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095{
3096 update_load_avg(se, 1);
3097
3098 cfs_rq->runnable_load_avg =
3099 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3100 cfs_rq->runnable_load_sum =
a05e8c51 3101 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3102}
3103
9d89c257 3104#ifndef CONFIG_64BIT
0905f04e
YD
3105static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3106{
9d89c257 3107 u64 last_update_time_copy;
0905f04e 3108 u64 last_update_time;
9ee474f5 3109
9d89c257
YD
3110 do {
3111 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3112 smp_rmb();
3113 last_update_time = cfs_rq->avg.last_update_time;
3114 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3115
3116 return last_update_time;
3117}
9d89c257 3118#else
0905f04e
YD
3119static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3120{
3121 return cfs_rq->avg.last_update_time;
3122}
9d89c257
YD
3123#endif
3124
0905f04e
YD
3125/*
3126 * Task first catches up with cfs_rq, and then subtract
3127 * itself from the cfs_rq (task must be off the queue now).
3128 */
3129void remove_entity_load_avg(struct sched_entity *se)
3130{
3131 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3132 u64 last_update_time;
3133
3134 /*
7dc603c9
PZ
3135 * tasks cannot exit without having gone through wake_up_new_task() ->
3136 * post_init_entity_util_avg() which will have added things to the
3137 * cfs_rq, so we can remove unconditionally.
3138 *
3139 * Similarly for groups, they will have passed through
3140 * post_init_entity_util_avg() before unregister_sched_fair_group()
3141 * calls this.
0905f04e 3142 */
0905f04e
YD
3143
3144 last_update_time = cfs_rq_last_update_time(cfs_rq);
3145
13962234 3146 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3147 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3148 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3149}
642dbc39 3150
7ea241af
YD
3151static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3152{
3153 return cfs_rq->runnable_load_avg;
3154}
3155
3156static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3157{
3158 return cfs_rq->avg.load_avg;
3159}
3160
6e83125c
PZ
3161static int idle_balance(struct rq *this_rq);
3162
38033c37
PZ
3163#else /* CONFIG_SMP */
3164
01011473
PZ
3165static inline int
3166update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3167{
3168 return 0;
3169}
3170
536bd00c
RW
3171static inline void update_load_avg(struct sched_entity *se, int not_used)
3172{
3173 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3174 struct rq *rq = rq_of(cfs_rq);
3175
3176 cpufreq_trigger_update(rq_clock(rq));
3177}
3178
9d89c257
YD
3179static inline void
3180enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3181static inline void
3182dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3183static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3184
a05e8c51
BP
3185static inline void
3186attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3187static inline void
3188detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3189
6e83125c
PZ
3190static inline int idle_balance(struct rq *rq)
3191{
3192 return 0;
3193}
3194
38033c37 3195#endif /* CONFIG_SMP */
9d85f21c 3196
2396af69 3197static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3198{
bf0f6f24 3199#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3200 struct task_struct *tsk = NULL;
3201
3202 if (entity_is_task(se))
3203 tsk = task_of(se);
3204
41acab88 3205 if (se->statistics.sleep_start) {
78becc27 3206 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3207
3208 if ((s64)delta < 0)
3209 delta = 0;
3210
41acab88
LDM
3211 if (unlikely(delta > se->statistics.sleep_max))
3212 se->statistics.sleep_max = delta;
bf0f6f24 3213
8c79a045 3214 se->statistics.sleep_start = 0;
41acab88 3215 se->statistics.sum_sleep_runtime += delta;
9745512c 3216
768d0c27 3217 if (tsk) {
e414314c 3218 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3219 trace_sched_stat_sleep(tsk, delta);
3220 }
bf0f6f24 3221 }
41acab88 3222 if (se->statistics.block_start) {
78becc27 3223 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3224
3225 if ((s64)delta < 0)
3226 delta = 0;
3227
41acab88
LDM
3228 if (unlikely(delta > se->statistics.block_max))
3229 se->statistics.block_max = delta;
bf0f6f24 3230
8c79a045 3231 se->statistics.block_start = 0;
41acab88 3232 se->statistics.sum_sleep_runtime += delta;
30084fbd 3233
e414314c 3234 if (tsk) {
8f0dfc34 3235 if (tsk->in_iowait) {
41acab88
LDM
3236 se->statistics.iowait_sum += delta;
3237 se->statistics.iowait_count++;
768d0c27 3238 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3239 }
3240
b781a602
AV
3241 trace_sched_stat_blocked(tsk, delta);
3242
e414314c
PZ
3243 /*
3244 * Blocking time is in units of nanosecs, so shift by
3245 * 20 to get a milliseconds-range estimation of the
3246 * amount of time that the task spent sleeping:
3247 */
3248 if (unlikely(prof_on == SLEEP_PROFILING)) {
3249 profile_hits(SLEEP_PROFILING,
3250 (void *)get_wchan(tsk),
3251 delta >> 20);
3252 }
3253 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3254 }
bf0f6f24
IM
3255 }
3256#endif
3257}
3258
ddc97297
PZ
3259static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3260{
3261#ifdef CONFIG_SCHED_DEBUG
3262 s64 d = se->vruntime - cfs_rq->min_vruntime;
3263
3264 if (d < 0)
3265 d = -d;
3266
3267 if (d > 3*sysctl_sched_latency)
3268 schedstat_inc(cfs_rq, nr_spread_over);
3269#endif
3270}
3271
aeb73b04
PZ
3272static void
3273place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3274{
1af5f730 3275 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3276
2cb8600e
PZ
3277 /*
3278 * The 'current' period is already promised to the current tasks,
3279 * however the extra weight of the new task will slow them down a
3280 * little, place the new task so that it fits in the slot that
3281 * stays open at the end.
3282 */
94dfb5e7 3283 if (initial && sched_feat(START_DEBIT))
f9c0b095 3284 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3285
a2e7a7eb 3286 /* sleeps up to a single latency don't count. */
5ca9880c 3287 if (!initial) {
a2e7a7eb 3288 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3289
a2e7a7eb
MG
3290 /*
3291 * Halve their sleep time's effect, to allow
3292 * for a gentler effect of sleepers:
3293 */
3294 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3295 thresh >>= 1;
51e0304c 3296
a2e7a7eb 3297 vruntime -= thresh;
aeb73b04
PZ
3298 }
3299
b5d9d734 3300 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3301 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3302}
3303
d3d9dc33
PT
3304static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3305
cb251765
MG
3306static inline void check_schedstat_required(void)
3307{
3308#ifdef CONFIG_SCHEDSTATS
3309 if (schedstat_enabled())
3310 return;
3311
3312 /* Force schedstat enabled if a dependent tracepoint is active */
3313 if (trace_sched_stat_wait_enabled() ||
3314 trace_sched_stat_sleep_enabled() ||
3315 trace_sched_stat_iowait_enabled() ||
3316 trace_sched_stat_blocked_enabled() ||
3317 trace_sched_stat_runtime_enabled()) {
eda8dca5 3318 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3319 "stat_blocked and stat_runtime require the "
3320 "kernel parameter schedstats=enabled or "
3321 "kernel.sched_schedstats=1\n");
3322 }
3323#endif
3324}
3325
b5179ac7
PZ
3326
3327/*
3328 * MIGRATION
3329 *
3330 * dequeue
3331 * update_curr()
3332 * update_min_vruntime()
3333 * vruntime -= min_vruntime
3334 *
3335 * enqueue
3336 * update_curr()
3337 * update_min_vruntime()
3338 * vruntime += min_vruntime
3339 *
3340 * this way the vruntime transition between RQs is done when both
3341 * min_vruntime are up-to-date.
3342 *
3343 * WAKEUP (remote)
3344 *
59efa0ba 3345 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3346 * vruntime -= min_vruntime
3347 *
3348 * enqueue
3349 * update_curr()
3350 * update_min_vruntime()
3351 * vruntime += min_vruntime
3352 *
3353 * this way we don't have the most up-to-date min_vruntime on the originating
3354 * CPU and an up-to-date min_vruntime on the destination CPU.
3355 */
3356
bf0f6f24 3357static void
88ec22d3 3358enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3359{
2f950354
PZ
3360 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3361 bool curr = cfs_rq->curr == se;
3362
88ec22d3 3363 /*
2f950354
PZ
3364 * If we're the current task, we must renormalise before calling
3365 * update_curr().
88ec22d3 3366 */
2f950354 3367 if (renorm && curr)
88ec22d3
PZ
3368 se->vruntime += cfs_rq->min_vruntime;
3369
2f950354
PZ
3370 update_curr(cfs_rq);
3371
bf0f6f24 3372 /*
2f950354
PZ
3373 * Otherwise, renormalise after, such that we're placed at the current
3374 * moment in time, instead of some random moment in the past. Being
3375 * placed in the past could significantly boost this task to the
3376 * fairness detriment of existing tasks.
bf0f6f24 3377 */
2f950354
PZ
3378 if (renorm && !curr)
3379 se->vruntime += cfs_rq->min_vruntime;
3380
9d89c257 3381 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3382 account_entity_enqueue(cfs_rq, se);
3383 update_cfs_shares(cfs_rq);
bf0f6f24 3384
88ec22d3 3385 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3386 place_entity(cfs_rq, se, 0);
cb251765
MG
3387 if (schedstat_enabled())
3388 enqueue_sleeper(cfs_rq, se);
e9acbff6 3389 }
bf0f6f24 3390
cb251765
MG
3391 check_schedstat_required();
3392 if (schedstat_enabled()) {
3393 update_stats_enqueue(cfs_rq, se);
3394 check_spread(cfs_rq, se);
3395 }
2f950354 3396 if (!curr)
83b699ed 3397 __enqueue_entity(cfs_rq, se);
2069dd75 3398 se->on_rq = 1;
3d4b47b4 3399
d3d9dc33 3400 if (cfs_rq->nr_running == 1) {
3d4b47b4 3401 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3402 check_enqueue_throttle(cfs_rq);
3403 }
bf0f6f24
IM
3404}
3405
2c13c919 3406static void __clear_buddies_last(struct sched_entity *se)
2002c695 3407{
2c13c919
RR
3408 for_each_sched_entity(se) {
3409 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3410 if (cfs_rq->last != se)
2c13c919 3411 break;
f1044799
PZ
3412
3413 cfs_rq->last = NULL;
2c13c919
RR
3414 }
3415}
2002c695 3416
2c13c919
RR
3417static void __clear_buddies_next(struct sched_entity *se)
3418{
3419 for_each_sched_entity(se) {
3420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3421 if (cfs_rq->next != se)
2c13c919 3422 break;
f1044799
PZ
3423
3424 cfs_rq->next = NULL;
2c13c919 3425 }
2002c695
PZ
3426}
3427
ac53db59
RR
3428static void __clear_buddies_skip(struct sched_entity *se)
3429{
3430 for_each_sched_entity(se) {
3431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3432 if (cfs_rq->skip != se)
ac53db59 3433 break;
f1044799
PZ
3434
3435 cfs_rq->skip = NULL;
ac53db59
RR
3436 }
3437}
3438
a571bbea
PZ
3439static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3440{
2c13c919
RR
3441 if (cfs_rq->last == se)
3442 __clear_buddies_last(se);
3443
3444 if (cfs_rq->next == se)
3445 __clear_buddies_next(se);
ac53db59
RR
3446
3447 if (cfs_rq->skip == se)
3448 __clear_buddies_skip(se);
a571bbea
PZ
3449}
3450
6c16a6dc 3451static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3452
bf0f6f24 3453static void
371fd7e7 3454dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3455{
a2a2d680
DA
3456 /*
3457 * Update run-time statistics of the 'current'.
3458 */
3459 update_curr(cfs_rq);
13962234 3460 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3461
cb251765
MG
3462 if (schedstat_enabled())
3463 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3464
2002c695 3465 clear_buddies(cfs_rq, se);
4793241b 3466
83b699ed 3467 if (se != cfs_rq->curr)
30cfdcfc 3468 __dequeue_entity(cfs_rq, se);
17bc14b7 3469 se->on_rq = 0;
30cfdcfc 3470 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3471
3472 /*
3473 * Normalize the entity after updating the min_vruntime because the
3474 * update can refer to the ->curr item and we need to reflect this
3475 * movement in our normalized position.
3476 */
371fd7e7 3477 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3478 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3479
d8b4986d
PT
3480 /* return excess runtime on last dequeue */
3481 return_cfs_rq_runtime(cfs_rq);
3482
1e876231 3483 update_min_vruntime(cfs_rq);
17bc14b7 3484 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3485}
3486
3487/*
3488 * Preempt the current task with a newly woken task if needed:
3489 */
7c92e54f 3490static void
2e09bf55 3491check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3492{
11697830 3493 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3494 struct sched_entity *se;
3495 s64 delta;
11697830 3496
6d0f0ebd 3497 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3498 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3499 if (delta_exec > ideal_runtime) {
8875125e 3500 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3501 /*
3502 * The current task ran long enough, ensure it doesn't get
3503 * re-elected due to buddy favours.
3504 */
3505 clear_buddies(cfs_rq, curr);
f685ceac
MG
3506 return;
3507 }
3508
3509 /*
3510 * Ensure that a task that missed wakeup preemption by a
3511 * narrow margin doesn't have to wait for a full slice.
3512 * This also mitigates buddy induced latencies under load.
3513 */
f685ceac
MG
3514 if (delta_exec < sysctl_sched_min_granularity)
3515 return;
3516
f4cfb33e
WX
3517 se = __pick_first_entity(cfs_rq);
3518 delta = curr->vruntime - se->vruntime;
f685ceac 3519
f4cfb33e
WX
3520 if (delta < 0)
3521 return;
d7d82944 3522
f4cfb33e 3523 if (delta > ideal_runtime)
8875125e 3524 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3525}
3526
83b699ed 3527static void
8494f412 3528set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3529{
83b699ed
SV
3530 /* 'current' is not kept within the tree. */
3531 if (se->on_rq) {
3532 /*
3533 * Any task has to be enqueued before it get to execute on
3534 * a CPU. So account for the time it spent waiting on the
3535 * runqueue.
3536 */
cb251765
MG
3537 if (schedstat_enabled())
3538 update_stats_wait_end(cfs_rq, se);
83b699ed 3539 __dequeue_entity(cfs_rq, se);
9d89c257 3540 update_load_avg(se, 1);
83b699ed
SV
3541 }
3542
79303e9e 3543 update_stats_curr_start(cfs_rq, se);
429d43bc 3544 cfs_rq->curr = se;
eba1ed4b
IM
3545#ifdef CONFIG_SCHEDSTATS
3546 /*
3547 * Track our maximum slice length, if the CPU's load is at
3548 * least twice that of our own weight (i.e. dont track it
3549 * when there are only lesser-weight tasks around):
3550 */
cb251765 3551 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3552 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3553 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3554 }
3555#endif
4a55b450 3556 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3557}
3558
3f3a4904
PZ
3559static int
3560wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3561
ac53db59
RR
3562/*
3563 * Pick the next process, keeping these things in mind, in this order:
3564 * 1) keep things fair between processes/task groups
3565 * 2) pick the "next" process, since someone really wants that to run
3566 * 3) pick the "last" process, for cache locality
3567 * 4) do not run the "skip" process, if something else is available
3568 */
678d5718
PZ
3569static struct sched_entity *
3570pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3571{
678d5718
PZ
3572 struct sched_entity *left = __pick_first_entity(cfs_rq);
3573 struct sched_entity *se;
3574
3575 /*
3576 * If curr is set we have to see if its left of the leftmost entity
3577 * still in the tree, provided there was anything in the tree at all.
3578 */
3579 if (!left || (curr && entity_before(curr, left)))
3580 left = curr;
3581
3582 se = left; /* ideally we run the leftmost entity */
f4b6755f 3583
ac53db59
RR
3584 /*
3585 * Avoid running the skip buddy, if running something else can
3586 * be done without getting too unfair.
3587 */
3588 if (cfs_rq->skip == se) {
678d5718
PZ
3589 struct sched_entity *second;
3590
3591 if (se == curr) {
3592 second = __pick_first_entity(cfs_rq);
3593 } else {
3594 second = __pick_next_entity(se);
3595 if (!second || (curr && entity_before(curr, second)))
3596 second = curr;
3597 }
3598
ac53db59
RR
3599 if (second && wakeup_preempt_entity(second, left) < 1)
3600 se = second;
3601 }
aa2ac252 3602
f685ceac
MG
3603 /*
3604 * Prefer last buddy, try to return the CPU to a preempted task.
3605 */
3606 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3607 se = cfs_rq->last;
3608
ac53db59
RR
3609 /*
3610 * Someone really wants this to run. If it's not unfair, run it.
3611 */
3612 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3613 se = cfs_rq->next;
3614
f685ceac 3615 clear_buddies(cfs_rq, se);
4793241b
PZ
3616
3617 return se;
aa2ac252
PZ
3618}
3619
678d5718 3620static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3621
ab6cde26 3622static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3623{
3624 /*
3625 * If still on the runqueue then deactivate_task()
3626 * was not called and update_curr() has to be done:
3627 */
3628 if (prev->on_rq)
b7cc0896 3629 update_curr(cfs_rq);
bf0f6f24 3630
d3d9dc33
PT
3631 /* throttle cfs_rqs exceeding runtime */
3632 check_cfs_rq_runtime(cfs_rq);
3633
cb251765
MG
3634 if (schedstat_enabled()) {
3635 check_spread(cfs_rq, prev);
3636 if (prev->on_rq)
3637 update_stats_wait_start(cfs_rq, prev);
3638 }
3639
30cfdcfc 3640 if (prev->on_rq) {
30cfdcfc
DA
3641 /* Put 'current' back into the tree. */
3642 __enqueue_entity(cfs_rq, prev);
9d85f21c 3643 /* in !on_rq case, update occurred at dequeue */
9d89c257 3644 update_load_avg(prev, 0);
30cfdcfc 3645 }
429d43bc 3646 cfs_rq->curr = NULL;
bf0f6f24
IM
3647}
3648
8f4d37ec
PZ
3649static void
3650entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3651{
bf0f6f24 3652 /*
30cfdcfc 3653 * Update run-time statistics of the 'current'.
bf0f6f24 3654 */
30cfdcfc 3655 update_curr(cfs_rq);
bf0f6f24 3656
9d85f21c
PT
3657 /*
3658 * Ensure that runnable average is periodically updated.
3659 */
9d89c257 3660 update_load_avg(curr, 1);
bf0bd948 3661 update_cfs_shares(cfs_rq);
9d85f21c 3662
8f4d37ec
PZ
3663#ifdef CONFIG_SCHED_HRTICK
3664 /*
3665 * queued ticks are scheduled to match the slice, so don't bother
3666 * validating it and just reschedule.
3667 */
983ed7a6 3668 if (queued) {
8875125e 3669 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3670 return;
3671 }
8f4d37ec
PZ
3672 /*
3673 * don't let the period tick interfere with the hrtick preemption
3674 */
3675 if (!sched_feat(DOUBLE_TICK) &&
3676 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3677 return;
3678#endif
3679
2c2efaed 3680 if (cfs_rq->nr_running > 1)
2e09bf55 3681 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3682}
3683
ab84d31e
PT
3684
3685/**************************************************
3686 * CFS bandwidth control machinery
3687 */
3688
3689#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3690
3691#ifdef HAVE_JUMP_LABEL
c5905afb 3692static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3693
3694static inline bool cfs_bandwidth_used(void)
3695{
c5905afb 3696 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3697}
3698
1ee14e6c 3699void cfs_bandwidth_usage_inc(void)
029632fb 3700{
1ee14e6c
BS
3701 static_key_slow_inc(&__cfs_bandwidth_used);
3702}
3703
3704void cfs_bandwidth_usage_dec(void)
3705{
3706 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3707}
3708#else /* HAVE_JUMP_LABEL */
3709static bool cfs_bandwidth_used(void)
3710{
3711 return true;
3712}
3713
1ee14e6c
BS
3714void cfs_bandwidth_usage_inc(void) {}
3715void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3716#endif /* HAVE_JUMP_LABEL */
3717
ab84d31e
PT
3718/*
3719 * default period for cfs group bandwidth.
3720 * default: 0.1s, units: nanoseconds
3721 */
3722static inline u64 default_cfs_period(void)
3723{
3724 return 100000000ULL;
3725}
ec12cb7f
PT
3726
3727static inline u64 sched_cfs_bandwidth_slice(void)
3728{
3729 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3730}
3731
a9cf55b2
PT
3732/*
3733 * Replenish runtime according to assigned quota and update expiration time.
3734 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3735 * additional synchronization around rq->lock.
3736 *
3737 * requires cfs_b->lock
3738 */
029632fb 3739void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3740{
3741 u64 now;
3742
3743 if (cfs_b->quota == RUNTIME_INF)
3744 return;
3745
3746 now = sched_clock_cpu(smp_processor_id());
3747 cfs_b->runtime = cfs_b->quota;
3748 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3749}
3750
029632fb
PZ
3751static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3752{
3753 return &tg->cfs_bandwidth;
3754}
3755
f1b17280
PT
3756/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3757static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3758{
3759 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3760 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3761
78becc27 3762 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3763}
3764
85dac906
PT
3765/* returns 0 on failure to allocate runtime */
3766static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3767{
3768 struct task_group *tg = cfs_rq->tg;
3769 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3770 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3771
3772 /* note: this is a positive sum as runtime_remaining <= 0 */
3773 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3774
3775 raw_spin_lock(&cfs_b->lock);
3776 if (cfs_b->quota == RUNTIME_INF)
3777 amount = min_amount;
58088ad0 3778 else {
77a4d1a1 3779 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3780
3781 if (cfs_b->runtime > 0) {
3782 amount = min(cfs_b->runtime, min_amount);
3783 cfs_b->runtime -= amount;
3784 cfs_b->idle = 0;
3785 }
ec12cb7f 3786 }
a9cf55b2 3787 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3788 raw_spin_unlock(&cfs_b->lock);
3789
3790 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3791 /*
3792 * we may have advanced our local expiration to account for allowed
3793 * spread between our sched_clock and the one on which runtime was
3794 * issued.
3795 */
3796 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3797 cfs_rq->runtime_expires = expires;
85dac906
PT
3798
3799 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3800}
3801
a9cf55b2
PT
3802/*
3803 * Note: This depends on the synchronization provided by sched_clock and the
3804 * fact that rq->clock snapshots this value.
3805 */
3806static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3807{
a9cf55b2 3808 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3809
3810 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3811 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3812 return;
3813
a9cf55b2
PT
3814 if (cfs_rq->runtime_remaining < 0)
3815 return;
3816
3817 /*
3818 * If the local deadline has passed we have to consider the
3819 * possibility that our sched_clock is 'fast' and the global deadline
3820 * has not truly expired.
3821 *
3822 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3823 * whether the global deadline has advanced. It is valid to compare
3824 * cfs_b->runtime_expires without any locks since we only care about
3825 * exact equality, so a partial write will still work.
a9cf55b2
PT
3826 */
3827
51f2176d 3828 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3829 /* extend local deadline, drift is bounded above by 2 ticks */
3830 cfs_rq->runtime_expires += TICK_NSEC;
3831 } else {
3832 /* global deadline is ahead, expiration has passed */
3833 cfs_rq->runtime_remaining = 0;
3834 }
3835}
3836
9dbdb155 3837static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3838{
3839 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3840 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3841 expire_cfs_rq_runtime(cfs_rq);
3842
3843 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3844 return;
3845
85dac906
PT
3846 /*
3847 * if we're unable to extend our runtime we resched so that the active
3848 * hierarchy can be throttled
3849 */
3850 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3851 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3852}
3853
6c16a6dc 3854static __always_inline
9dbdb155 3855void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3856{
56f570e5 3857 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3858 return;
3859
3860 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3861}
3862
85dac906
PT
3863static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3864{
56f570e5 3865 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3866}
3867
64660c86
PT
3868/* check whether cfs_rq, or any parent, is throttled */
3869static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3870{
56f570e5 3871 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3872}
3873
3874/*
3875 * Ensure that neither of the group entities corresponding to src_cpu or
3876 * dest_cpu are members of a throttled hierarchy when performing group
3877 * load-balance operations.
3878 */
3879static inline int throttled_lb_pair(struct task_group *tg,
3880 int src_cpu, int dest_cpu)
3881{
3882 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3883
3884 src_cfs_rq = tg->cfs_rq[src_cpu];
3885 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3886
3887 return throttled_hierarchy(src_cfs_rq) ||
3888 throttled_hierarchy(dest_cfs_rq);
3889}
3890
3891/* updated child weight may affect parent so we have to do this bottom up */
3892static int tg_unthrottle_up(struct task_group *tg, void *data)
3893{
3894 struct rq *rq = data;
3895 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3896
3897 cfs_rq->throttle_count--;
64660c86 3898 if (!cfs_rq->throttle_count) {
f1b17280 3899 /* adjust cfs_rq_clock_task() */
78becc27 3900 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3901 cfs_rq->throttled_clock_task;
64660c86 3902 }
64660c86
PT
3903
3904 return 0;
3905}
3906
3907static int tg_throttle_down(struct task_group *tg, void *data)
3908{
3909 struct rq *rq = data;
3910 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3911
82958366
PT
3912 /* group is entering throttled state, stop time */
3913 if (!cfs_rq->throttle_count)
78becc27 3914 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3915 cfs_rq->throttle_count++;
3916
3917 return 0;
3918}
3919
d3d9dc33 3920static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3921{
3922 struct rq *rq = rq_of(cfs_rq);
3923 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3924 struct sched_entity *se;
3925 long task_delta, dequeue = 1;
77a4d1a1 3926 bool empty;
85dac906
PT
3927
3928 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3929
f1b17280 3930 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3931 rcu_read_lock();
3932 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3933 rcu_read_unlock();
85dac906
PT
3934
3935 task_delta = cfs_rq->h_nr_running;
3936 for_each_sched_entity(se) {
3937 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3938 /* throttled entity or throttle-on-deactivate */
3939 if (!se->on_rq)
3940 break;
3941
3942 if (dequeue)
3943 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3944 qcfs_rq->h_nr_running -= task_delta;
3945
3946 if (qcfs_rq->load.weight)
3947 dequeue = 0;
3948 }
3949
3950 if (!se)
72465447 3951 sub_nr_running(rq, task_delta);
85dac906
PT
3952
3953 cfs_rq->throttled = 1;
78becc27 3954 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3955 raw_spin_lock(&cfs_b->lock);
d49db342 3956 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3957
c06f04c7
BS
3958 /*
3959 * Add to the _head_ of the list, so that an already-started
3960 * distribute_cfs_runtime will not see us
3961 */
3962 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3963
3964 /*
3965 * If we're the first throttled task, make sure the bandwidth
3966 * timer is running.
3967 */
3968 if (empty)
3969 start_cfs_bandwidth(cfs_b);
3970
85dac906
PT
3971 raw_spin_unlock(&cfs_b->lock);
3972}
3973
029632fb 3974void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3975{
3976 struct rq *rq = rq_of(cfs_rq);
3977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3978 struct sched_entity *se;
3979 int enqueue = 1;
3980 long task_delta;
3981
22b958d8 3982 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3983
3984 cfs_rq->throttled = 0;
1a55af2e
FW
3985
3986 update_rq_clock(rq);
3987
671fd9da 3988 raw_spin_lock(&cfs_b->lock);
78becc27 3989 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3990 list_del_rcu(&cfs_rq->throttled_list);
3991 raw_spin_unlock(&cfs_b->lock);
3992
64660c86
PT
3993 /* update hierarchical throttle state */
3994 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3995
671fd9da
PT
3996 if (!cfs_rq->load.weight)
3997 return;
3998
3999 task_delta = cfs_rq->h_nr_running;
4000 for_each_sched_entity(se) {
4001 if (se->on_rq)
4002 enqueue = 0;
4003
4004 cfs_rq = cfs_rq_of(se);
4005 if (enqueue)
4006 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4007 cfs_rq->h_nr_running += task_delta;
4008
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
4011 }
4012
4013 if (!se)
72465447 4014 add_nr_running(rq, task_delta);
671fd9da
PT
4015
4016 /* determine whether we need to wake up potentially idle cpu */
4017 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4018 resched_curr(rq);
671fd9da
PT
4019}
4020
4021static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4022 u64 remaining, u64 expires)
4023{
4024 struct cfs_rq *cfs_rq;
c06f04c7
BS
4025 u64 runtime;
4026 u64 starting_runtime = remaining;
671fd9da
PT
4027
4028 rcu_read_lock();
4029 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4030 throttled_list) {
4031 struct rq *rq = rq_of(cfs_rq);
4032
4033 raw_spin_lock(&rq->lock);
4034 if (!cfs_rq_throttled(cfs_rq))
4035 goto next;
4036
4037 runtime = -cfs_rq->runtime_remaining + 1;
4038 if (runtime > remaining)
4039 runtime = remaining;
4040 remaining -= runtime;
4041
4042 cfs_rq->runtime_remaining += runtime;
4043 cfs_rq->runtime_expires = expires;
4044
4045 /* we check whether we're throttled above */
4046 if (cfs_rq->runtime_remaining > 0)
4047 unthrottle_cfs_rq(cfs_rq);
4048
4049next:
4050 raw_spin_unlock(&rq->lock);
4051
4052 if (!remaining)
4053 break;
4054 }
4055 rcu_read_unlock();
4056
c06f04c7 4057 return starting_runtime - remaining;
671fd9da
PT
4058}
4059
58088ad0
PT
4060/*
4061 * Responsible for refilling a task_group's bandwidth and unthrottling its
4062 * cfs_rqs as appropriate. If there has been no activity within the last
4063 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4064 * used to track this state.
4065 */
4066static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4067{
671fd9da 4068 u64 runtime, runtime_expires;
51f2176d 4069 int throttled;
58088ad0 4070
58088ad0
PT
4071 /* no need to continue the timer with no bandwidth constraint */
4072 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4073 goto out_deactivate;
58088ad0 4074
671fd9da 4075 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4076 cfs_b->nr_periods += overrun;
671fd9da 4077
51f2176d
BS
4078 /*
4079 * idle depends on !throttled (for the case of a large deficit), and if
4080 * we're going inactive then everything else can be deferred
4081 */
4082 if (cfs_b->idle && !throttled)
4083 goto out_deactivate;
a9cf55b2
PT
4084
4085 __refill_cfs_bandwidth_runtime(cfs_b);
4086
671fd9da
PT
4087 if (!throttled) {
4088 /* mark as potentially idle for the upcoming period */
4089 cfs_b->idle = 1;
51f2176d 4090 return 0;
671fd9da
PT
4091 }
4092
e8da1b18
NR
4093 /* account preceding periods in which throttling occurred */
4094 cfs_b->nr_throttled += overrun;
4095
671fd9da 4096 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4097
4098 /*
c06f04c7
BS
4099 * This check is repeated as we are holding onto the new bandwidth while
4100 * we unthrottle. This can potentially race with an unthrottled group
4101 * trying to acquire new bandwidth from the global pool. This can result
4102 * in us over-using our runtime if it is all used during this loop, but
4103 * only by limited amounts in that extreme case.
671fd9da 4104 */
c06f04c7
BS
4105 while (throttled && cfs_b->runtime > 0) {
4106 runtime = cfs_b->runtime;
671fd9da
PT
4107 raw_spin_unlock(&cfs_b->lock);
4108 /* we can't nest cfs_b->lock while distributing bandwidth */
4109 runtime = distribute_cfs_runtime(cfs_b, runtime,
4110 runtime_expires);
4111 raw_spin_lock(&cfs_b->lock);
4112
4113 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4114
4115 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4116 }
58088ad0 4117
671fd9da
PT
4118 /*
4119 * While we are ensured activity in the period following an
4120 * unthrottle, this also covers the case in which the new bandwidth is
4121 * insufficient to cover the existing bandwidth deficit. (Forcing the
4122 * timer to remain active while there are any throttled entities.)
4123 */
4124 cfs_b->idle = 0;
58088ad0 4125
51f2176d
BS
4126 return 0;
4127
4128out_deactivate:
51f2176d 4129 return 1;
58088ad0 4130}
d3d9dc33 4131
d8b4986d
PT
4132/* a cfs_rq won't donate quota below this amount */
4133static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4134/* minimum remaining period time to redistribute slack quota */
4135static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4136/* how long we wait to gather additional slack before distributing */
4137static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4138
db06e78c
BS
4139/*
4140 * Are we near the end of the current quota period?
4141 *
4142 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4143 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4144 * migrate_hrtimers, base is never cleared, so we are fine.
4145 */
d8b4986d
PT
4146static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4147{
4148 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4149 u64 remaining;
4150
4151 /* if the call-back is running a quota refresh is already occurring */
4152 if (hrtimer_callback_running(refresh_timer))
4153 return 1;
4154
4155 /* is a quota refresh about to occur? */
4156 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4157 if (remaining < min_expire)
4158 return 1;
4159
4160 return 0;
4161}
4162
4163static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4164{
4165 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4166
4167 /* if there's a quota refresh soon don't bother with slack */
4168 if (runtime_refresh_within(cfs_b, min_left))
4169 return;
4170
4cfafd30
PZ
4171 hrtimer_start(&cfs_b->slack_timer,
4172 ns_to_ktime(cfs_bandwidth_slack_period),
4173 HRTIMER_MODE_REL);
d8b4986d
PT
4174}
4175
4176/* we know any runtime found here is valid as update_curr() precedes return */
4177static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4178{
4179 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4180 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4181
4182 if (slack_runtime <= 0)
4183 return;
4184
4185 raw_spin_lock(&cfs_b->lock);
4186 if (cfs_b->quota != RUNTIME_INF &&
4187 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4188 cfs_b->runtime += slack_runtime;
4189
4190 /* we are under rq->lock, defer unthrottling using a timer */
4191 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4192 !list_empty(&cfs_b->throttled_cfs_rq))
4193 start_cfs_slack_bandwidth(cfs_b);
4194 }
4195 raw_spin_unlock(&cfs_b->lock);
4196
4197 /* even if it's not valid for return we don't want to try again */
4198 cfs_rq->runtime_remaining -= slack_runtime;
4199}
4200
4201static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4202{
56f570e5
PT
4203 if (!cfs_bandwidth_used())
4204 return;
4205
fccfdc6f 4206 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4207 return;
4208
4209 __return_cfs_rq_runtime(cfs_rq);
4210}
4211
4212/*
4213 * This is done with a timer (instead of inline with bandwidth return) since
4214 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4215 */
4216static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4217{
4218 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4219 u64 expires;
4220
4221 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4222 raw_spin_lock(&cfs_b->lock);
4223 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4224 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4225 return;
db06e78c 4226 }
d8b4986d 4227
c06f04c7 4228 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4229 runtime = cfs_b->runtime;
c06f04c7 4230
d8b4986d
PT
4231 expires = cfs_b->runtime_expires;
4232 raw_spin_unlock(&cfs_b->lock);
4233
4234 if (!runtime)
4235 return;
4236
4237 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4238
4239 raw_spin_lock(&cfs_b->lock);
4240 if (expires == cfs_b->runtime_expires)
c06f04c7 4241 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4242 raw_spin_unlock(&cfs_b->lock);
4243}
4244
d3d9dc33
PT
4245/*
4246 * When a group wakes up we want to make sure that its quota is not already
4247 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4248 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4249 */
4250static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4251{
56f570e5
PT
4252 if (!cfs_bandwidth_used())
4253 return;
4254
d3d9dc33
PT
4255 /* an active group must be handled by the update_curr()->put() path */
4256 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4257 return;
4258
4259 /* ensure the group is not already throttled */
4260 if (cfs_rq_throttled(cfs_rq))
4261 return;
4262
4263 /* update runtime allocation */
4264 account_cfs_rq_runtime(cfs_rq, 0);
4265 if (cfs_rq->runtime_remaining <= 0)
4266 throttle_cfs_rq(cfs_rq);
4267}
4268
55e16d30
PZ
4269static void sync_throttle(struct task_group *tg, int cpu)
4270{
4271 struct cfs_rq *pcfs_rq, *cfs_rq;
4272
4273 if (!cfs_bandwidth_used())
4274 return;
4275
4276 if (!tg->parent)
4277 return;
4278
4279 cfs_rq = tg->cfs_rq[cpu];
4280 pcfs_rq = tg->parent->cfs_rq[cpu];
4281
4282 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4283 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4284}
4285
d3d9dc33 4286/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4287static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4288{
56f570e5 4289 if (!cfs_bandwidth_used())
678d5718 4290 return false;
56f570e5 4291
d3d9dc33 4292 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4293 return false;
d3d9dc33
PT
4294
4295 /*
4296 * it's possible for a throttled entity to be forced into a running
4297 * state (e.g. set_curr_task), in this case we're finished.
4298 */
4299 if (cfs_rq_throttled(cfs_rq))
678d5718 4300 return true;
d3d9dc33
PT
4301
4302 throttle_cfs_rq(cfs_rq);
678d5718 4303 return true;
d3d9dc33 4304}
029632fb 4305
029632fb
PZ
4306static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4307{
4308 struct cfs_bandwidth *cfs_b =
4309 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4310
029632fb
PZ
4311 do_sched_cfs_slack_timer(cfs_b);
4312
4313 return HRTIMER_NORESTART;
4314}
4315
4316static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4317{
4318 struct cfs_bandwidth *cfs_b =
4319 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4320 int overrun;
4321 int idle = 0;
4322
51f2176d 4323 raw_spin_lock(&cfs_b->lock);
029632fb 4324 for (;;) {
77a4d1a1 4325 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4326 if (!overrun)
4327 break;
4328
4329 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4330 }
4cfafd30
PZ
4331 if (idle)
4332 cfs_b->period_active = 0;
51f2176d 4333 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4334
4335 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4336}
4337
4338void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4339{
4340 raw_spin_lock_init(&cfs_b->lock);
4341 cfs_b->runtime = 0;
4342 cfs_b->quota = RUNTIME_INF;
4343 cfs_b->period = ns_to_ktime(default_cfs_period());
4344
4345 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4346 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4347 cfs_b->period_timer.function = sched_cfs_period_timer;
4348 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4349 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4350}
4351
4352static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4353{
4354 cfs_rq->runtime_enabled = 0;
4355 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4356}
4357
77a4d1a1 4358void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4359{
4cfafd30 4360 lockdep_assert_held(&cfs_b->lock);
029632fb 4361
4cfafd30
PZ
4362 if (!cfs_b->period_active) {
4363 cfs_b->period_active = 1;
4364 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4365 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4366 }
029632fb
PZ
4367}
4368
4369static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4370{
7f1a169b
TH
4371 /* init_cfs_bandwidth() was not called */
4372 if (!cfs_b->throttled_cfs_rq.next)
4373 return;
4374
029632fb
PZ
4375 hrtimer_cancel(&cfs_b->period_timer);
4376 hrtimer_cancel(&cfs_b->slack_timer);
4377}
4378
0e59bdae
KT
4379static void __maybe_unused update_runtime_enabled(struct rq *rq)
4380{
4381 struct cfs_rq *cfs_rq;
4382
4383 for_each_leaf_cfs_rq(rq, cfs_rq) {
4384 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4385
4386 raw_spin_lock(&cfs_b->lock);
4387 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4388 raw_spin_unlock(&cfs_b->lock);
4389 }
4390}
4391
38dc3348 4392static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4393{
4394 struct cfs_rq *cfs_rq;
4395
4396 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4397 if (!cfs_rq->runtime_enabled)
4398 continue;
4399
4400 /*
4401 * clock_task is not advancing so we just need to make sure
4402 * there's some valid quota amount
4403 */
51f2176d 4404 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4405 /*
4406 * Offline rq is schedulable till cpu is completely disabled
4407 * in take_cpu_down(), so we prevent new cfs throttling here.
4408 */
4409 cfs_rq->runtime_enabled = 0;
4410
029632fb
PZ
4411 if (cfs_rq_throttled(cfs_rq))
4412 unthrottle_cfs_rq(cfs_rq);
4413 }
4414}
4415
4416#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4417static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4418{
78becc27 4419 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4420}
4421
9dbdb155 4422static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4423static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4424static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4425static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4426static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4427
4428static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4429{
4430 return 0;
4431}
64660c86
PT
4432
4433static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4434{
4435 return 0;
4436}
4437
4438static inline int throttled_lb_pair(struct task_group *tg,
4439 int src_cpu, int dest_cpu)
4440{
4441 return 0;
4442}
029632fb
PZ
4443
4444void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4445
4446#ifdef CONFIG_FAIR_GROUP_SCHED
4447static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4448#endif
4449
029632fb
PZ
4450static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4451{
4452 return NULL;
4453}
4454static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4455static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4456static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4457
4458#endif /* CONFIG_CFS_BANDWIDTH */
4459
bf0f6f24
IM
4460/**************************************************
4461 * CFS operations on tasks:
4462 */
4463
8f4d37ec
PZ
4464#ifdef CONFIG_SCHED_HRTICK
4465static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4466{
8f4d37ec
PZ
4467 struct sched_entity *se = &p->se;
4468 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4469
4470 WARN_ON(task_rq(p) != rq);
4471
b39e66ea 4472 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4473 u64 slice = sched_slice(cfs_rq, se);
4474 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4475 s64 delta = slice - ran;
4476
4477 if (delta < 0) {
4478 if (rq->curr == p)
8875125e 4479 resched_curr(rq);
8f4d37ec
PZ
4480 return;
4481 }
31656519 4482 hrtick_start(rq, delta);
8f4d37ec
PZ
4483 }
4484}
a4c2f00f
PZ
4485
4486/*
4487 * called from enqueue/dequeue and updates the hrtick when the
4488 * current task is from our class and nr_running is low enough
4489 * to matter.
4490 */
4491static void hrtick_update(struct rq *rq)
4492{
4493 struct task_struct *curr = rq->curr;
4494
b39e66ea 4495 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4496 return;
4497
4498 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4499 hrtick_start_fair(rq, curr);
4500}
55e12e5e 4501#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4502static inline void
4503hrtick_start_fair(struct rq *rq, struct task_struct *p)
4504{
4505}
a4c2f00f
PZ
4506
4507static inline void hrtick_update(struct rq *rq)
4508{
4509}
8f4d37ec
PZ
4510#endif
4511
bf0f6f24
IM
4512/*
4513 * The enqueue_task method is called before nr_running is
4514 * increased. Here we update the fair scheduling stats and
4515 * then put the task into the rbtree:
4516 */
ea87bb78 4517static void
371fd7e7 4518enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4519{
4520 struct cfs_rq *cfs_rq;
62fb1851 4521 struct sched_entity *se = &p->se;
bf0f6f24
IM
4522
4523 for_each_sched_entity(se) {
62fb1851 4524 if (se->on_rq)
bf0f6f24
IM
4525 break;
4526 cfs_rq = cfs_rq_of(se);
88ec22d3 4527 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4528
4529 /*
4530 * end evaluation on encountering a throttled cfs_rq
4531 *
4532 * note: in the case of encountering a throttled cfs_rq we will
4533 * post the final h_nr_running increment below.
e210bffd 4534 */
85dac906
PT
4535 if (cfs_rq_throttled(cfs_rq))
4536 break;
953bfcd1 4537 cfs_rq->h_nr_running++;
85dac906 4538
88ec22d3 4539 flags = ENQUEUE_WAKEUP;
bf0f6f24 4540 }
8f4d37ec 4541
2069dd75 4542 for_each_sched_entity(se) {
0f317143 4543 cfs_rq = cfs_rq_of(se);
953bfcd1 4544 cfs_rq->h_nr_running++;
2069dd75 4545
85dac906
PT
4546 if (cfs_rq_throttled(cfs_rq))
4547 break;
4548
9d89c257 4549 update_load_avg(se, 1);
17bc14b7 4550 update_cfs_shares(cfs_rq);
2069dd75
PZ
4551 }
4552
cd126afe 4553 if (!se)
72465447 4554 add_nr_running(rq, 1);
cd126afe 4555
a4c2f00f 4556 hrtick_update(rq);
bf0f6f24
IM
4557}
4558
2f36825b
VP
4559static void set_next_buddy(struct sched_entity *se);
4560
bf0f6f24
IM
4561/*
4562 * The dequeue_task method is called before nr_running is
4563 * decreased. We remove the task from the rbtree and
4564 * update the fair scheduling stats:
4565 */
371fd7e7 4566static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4567{
4568 struct cfs_rq *cfs_rq;
62fb1851 4569 struct sched_entity *se = &p->se;
2f36825b 4570 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4571
4572 for_each_sched_entity(se) {
4573 cfs_rq = cfs_rq_of(se);
371fd7e7 4574 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4575
4576 /*
4577 * end evaluation on encountering a throttled cfs_rq
4578 *
4579 * note: in the case of encountering a throttled cfs_rq we will
4580 * post the final h_nr_running decrement below.
4581 */
4582 if (cfs_rq_throttled(cfs_rq))
4583 break;
953bfcd1 4584 cfs_rq->h_nr_running--;
2069dd75 4585
bf0f6f24 4586 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4587 if (cfs_rq->load.weight) {
754bd598
KK
4588 /* Avoid re-evaluating load for this entity: */
4589 se = parent_entity(se);
2f36825b
VP
4590 /*
4591 * Bias pick_next to pick a task from this cfs_rq, as
4592 * p is sleeping when it is within its sched_slice.
4593 */
754bd598
KK
4594 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4595 set_next_buddy(se);
bf0f6f24 4596 break;
2f36825b 4597 }
371fd7e7 4598 flags |= DEQUEUE_SLEEP;
bf0f6f24 4599 }
8f4d37ec 4600
2069dd75 4601 for_each_sched_entity(se) {
0f317143 4602 cfs_rq = cfs_rq_of(se);
953bfcd1 4603 cfs_rq->h_nr_running--;
2069dd75 4604
85dac906
PT
4605 if (cfs_rq_throttled(cfs_rq))
4606 break;
4607
9d89c257 4608 update_load_avg(se, 1);
17bc14b7 4609 update_cfs_shares(cfs_rq);
2069dd75
PZ
4610 }
4611
cd126afe 4612 if (!se)
72465447 4613 sub_nr_running(rq, 1);
cd126afe 4614
a4c2f00f 4615 hrtick_update(rq);
bf0f6f24
IM
4616}
4617
e7693a36 4618#ifdef CONFIG_SMP
9fd81dd5 4619#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4620/*
4621 * per rq 'load' arrray crap; XXX kill this.
4622 */
4623
4624/*
d937cdc5 4625 * The exact cpuload calculated at every tick would be:
3289bdb4 4626 *
d937cdc5
PZ
4627 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4628 *
4629 * If a cpu misses updates for n ticks (as it was idle) and update gets
4630 * called on the n+1-th tick when cpu may be busy, then we have:
4631 *
4632 * load_n = (1 - 1/2^i)^n * load_0
4633 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4634 *
4635 * decay_load_missed() below does efficient calculation of
3289bdb4 4636 *
d937cdc5
PZ
4637 * load' = (1 - 1/2^i)^n * load
4638 *
4639 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4640 * This allows us to precompute the above in said factors, thereby allowing the
4641 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4642 * fixed_power_int())
3289bdb4 4643 *
d937cdc5 4644 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4645 */
4646#define DEGRADE_SHIFT 7
d937cdc5
PZ
4647
4648static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4649static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4650 { 0, 0, 0, 0, 0, 0, 0, 0 },
4651 { 64, 32, 8, 0, 0, 0, 0, 0 },
4652 { 96, 72, 40, 12, 1, 0, 0, 0 },
4653 { 112, 98, 75, 43, 15, 1, 0, 0 },
4654 { 120, 112, 98, 76, 45, 16, 2, 0 }
4655};
3289bdb4
PZ
4656
4657/*
4658 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4659 * would be when CPU is idle and so we just decay the old load without
4660 * adding any new load.
4661 */
4662static unsigned long
4663decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4664{
4665 int j = 0;
4666
4667 if (!missed_updates)
4668 return load;
4669
4670 if (missed_updates >= degrade_zero_ticks[idx])
4671 return 0;
4672
4673 if (idx == 1)
4674 return load >> missed_updates;
4675
4676 while (missed_updates) {
4677 if (missed_updates % 2)
4678 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4679
4680 missed_updates >>= 1;
4681 j++;
4682 }
4683 return load;
4684}
9fd81dd5 4685#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4686
59543275 4687/**
cee1afce 4688 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4689 * @this_rq: The rq to update statistics for
4690 * @this_load: The current load
4691 * @pending_updates: The number of missed updates
59543275 4692 *
3289bdb4 4693 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4694 * scheduler tick (TICK_NSEC).
4695 *
4696 * This function computes a decaying average:
4697 *
4698 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4699 *
4700 * Because of NOHZ it might not get called on every tick which gives need for
4701 * the @pending_updates argument.
4702 *
4703 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4704 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4705 * = A * (A * load[i]_n-2 + B) + B
4706 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4707 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4708 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4709 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4710 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4711 *
4712 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4713 * any change in load would have resulted in the tick being turned back on.
4714 *
4715 * For regular NOHZ, this reduces to:
4716 *
4717 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4718 *
4719 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4720 * term.
3289bdb4 4721 */
1f41906a
FW
4722static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4723 unsigned long pending_updates)
3289bdb4 4724{
9fd81dd5 4725 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4726 int i, scale;
4727
4728 this_rq->nr_load_updates++;
4729
4730 /* Update our load: */
4731 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4732 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4733 unsigned long old_load, new_load;
4734
4735 /* scale is effectively 1 << i now, and >> i divides by scale */
4736
7400d3bb 4737 old_load = this_rq->cpu_load[i];
9fd81dd5 4738#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4739 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4740 if (tickless_load) {
4741 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4742 /*
4743 * old_load can never be a negative value because a
4744 * decayed tickless_load cannot be greater than the
4745 * original tickless_load.
4746 */
4747 old_load += tickless_load;
4748 }
9fd81dd5 4749#endif
3289bdb4
PZ
4750 new_load = this_load;
4751 /*
4752 * Round up the averaging division if load is increasing. This
4753 * prevents us from getting stuck on 9 if the load is 10, for
4754 * example.
4755 */
4756 if (new_load > old_load)
4757 new_load += scale - 1;
4758
4759 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4760 }
4761
4762 sched_avg_update(this_rq);
4763}
4764
7ea241af
YD
4765/* Used instead of source_load when we know the type == 0 */
4766static unsigned long weighted_cpuload(const int cpu)
4767{
4768 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4769}
4770
3289bdb4 4771#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4772/*
4773 * There is no sane way to deal with nohz on smp when using jiffies because the
4774 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4775 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4776 *
4777 * Therefore we need to avoid the delta approach from the regular tick when
4778 * possible since that would seriously skew the load calculation. This is why we
4779 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4780 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4781 * loop exit, nohz_idle_balance, nohz full exit...)
4782 *
4783 * This means we might still be one tick off for nohz periods.
4784 */
4785
4786static void cpu_load_update_nohz(struct rq *this_rq,
4787 unsigned long curr_jiffies,
4788 unsigned long load)
be68a682
FW
4789{
4790 unsigned long pending_updates;
4791
4792 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4793 if (pending_updates) {
4794 this_rq->last_load_update_tick = curr_jiffies;
4795 /*
4796 * In the regular NOHZ case, we were idle, this means load 0.
4797 * In the NOHZ_FULL case, we were non-idle, we should consider
4798 * its weighted load.
4799 */
1f41906a 4800 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4801 }
4802}
4803
3289bdb4
PZ
4804/*
4805 * Called from nohz_idle_balance() to update the load ratings before doing the
4806 * idle balance.
4807 */
cee1afce 4808static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4809{
3289bdb4
PZ
4810 /*
4811 * bail if there's load or we're actually up-to-date.
4812 */
be68a682 4813 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4814 return;
4815
1f41906a 4816 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4817}
4818
4819/*
1f41906a
FW
4820 * Record CPU load on nohz entry so we know the tickless load to account
4821 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4822 * than other cpu_load[idx] but it should be fine as cpu_load readers
4823 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4824 */
1f41906a 4825void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4826{
4827 struct rq *this_rq = this_rq();
1f41906a
FW
4828
4829 /*
4830 * This is all lockless but should be fine. If weighted_cpuload changes
4831 * concurrently we'll exit nohz. And cpu_load write can race with
4832 * cpu_load_update_idle() but both updater would be writing the same.
4833 */
4834 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4835}
4836
4837/*
4838 * Account the tickless load in the end of a nohz frame.
4839 */
4840void cpu_load_update_nohz_stop(void)
4841{
316c1608 4842 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4843 struct rq *this_rq = this_rq();
4844 unsigned long load;
3289bdb4
PZ
4845
4846 if (curr_jiffies == this_rq->last_load_update_tick)
4847 return;
4848
1f41906a 4849 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4850 raw_spin_lock(&this_rq->lock);
b52fad2d 4851 update_rq_clock(this_rq);
1f41906a 4852 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4853 raw_spin_unlock(&this_rq->lock);
4854}
1f41906a
FW
4855#else /* !CONFIG_NO_HZ_COMMON */
4856static inline void cpu_load_update_nohz(struct rq *this_rq,
4857 unsigned long curr_jiffies,
4858 unsigned long load) { }
4859#endif /* CONFIG_NO_HZ_COMMON */
4860
4861static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4862{
9fd81dd5 4863#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4864 /* See the mess around cpu_load_update_nohz(). */
4865 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4866#endif
1f41906a
FW
4867 cpu_load_update(this_rq, load, 1);
4868}
3289bdb4
PZ
4869
4870/*
4871 * Called from scheduler_tick()
4872 */
cee1afce 4873void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4874{
7ea241af 4875 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4876
4877 if (tick_nohz_tick_stopped())
4878 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4879 else
4880 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4881}
4882
029632fb
PZ
4883/*
4884 * Return a low guess at the load of a migration-source cpu weighted
4885 * according to the scheduling class and "nice" value.
4886 *
4887 * We want to under-estimate the load of migration sources, to
4888 * balance conservatively.
4889 */
4890static unsigned long source_load(int cpu, int type)
4891{
4892 struct rq *rq = cpu_rq(cpu);
4893 unsigned long total = weighted_cpuload(cpu);
4894
4895 if (type == 0 || !sched_feat(LB_BIAS))
4896 return total;
4897
4898 return min(rq->cpu_load[type-1], total);
4899}
4900
4901/*
4902 * Return a high guess at the load of a migration-target cpu weighted
4903 * according to the scheduling class and "nice" value.
4904 */
4905static unsigned long target_load(int cpu, int type)
4906{
4907 struct rq *rq = cpu_rq(cpu);
4908 unsigned long total = weighted_cpuload(cpu);
4909
4910 if (type == 0 || !sched_feat(LB_BIAS))
4911 return total;
4912
4913 return max(rq->cpu_load[type-1], total);
4914}
4915
ced549fa 4916static unsigned long capacity_of(int cpu)
029632fb 4917{
ced549fa 4918 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4919}
4920
ca6d75e6
VG
4921static unsigned long capacity_orig_of(int cpu)
4922{
4923 return cpu_rq(cpu)->cpu_capacity_orig;
4924}
4925
029632fb
PZ
4926static unsigned long cpu_avg_load_per_task(int cpu)
4927{
4928 struct rq *rq = cpu_rq(cpu);
316c1608 4929 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4930 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4931
4932 if (nr_running)
b92486cb 4933 return load_avg / nr_running;
029632fb
PZ
4934
4935 return 0;
4936}
4937
bb3469ac 4938#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4939/*
4940 * effective_load() calculates the load change as seen from the root_task_group
4941 *
4942 * Adding load to a group doesn't make a group heavier, but can cause movement
4943 * of group shares between cpus. Assuming the shares were perfectly aligned one
4944 * can calculate the shift in shares.
cf5f0acf
PZ
4945 *
4946 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4947 * on this @cpu and results in a total addition (subtraction) of @wg to the
4948 * total group weight.
4949 *
4950 * Given a runqueue weight distribution (rw_i) we can compute a shares
4951 * distribution (s_i) using:
4952 *
4953 * s_i = rw_i / \Sum rw_j (1)
4954 *
4955 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4956 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4957 * shares distribution (s_i):
4958 *
4959 * rw_i = { 2, 4, 1, 0 }
4960 * s_i = { 2/7, 4/7, 1/7, 0 }
4961 *
4962 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4963 * task used to run on and the CPU the waker is running on), we need to
4964 * compute the effect of waking a task on either CPU and, in case of a sync
4965 * wakeup, compute the effect of the current task going to sleep.
4966 *
4967 * So for a change of @wl to the local @cpu with an overall group weight change
4968 * of @wl we can compute the new shares distribution (s'_i) using:
4969 *
4970 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4971 *
4972 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4973 * differences in waking a task to CPU 0. The additional task changes the
4974 * weight and shares distributions like:
4975 *
4976 * rw'_i = { 3, 4, 1, 0 }
4977 * s'_i = { 3/8, 4/8, 1/8, 0 }
4978 *
4979 * We can then compute the difference in effective weight by using:
4980 *
4981 * dw_i = S * (s'_i - s_i) (3)
4982 *
4983 * Where 'S' is the group weight as seen by its parent.
4984 *
4985 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4986 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4987 * 4/7) times the weight of the group.
f5bfb7d9 4988 */
2069dd75 4989static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4990{
4be9daaa 4991 struct sched_entity *se = tg->se[cpu];
f1d239f7 4992
9722c2da 4993 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4994 return wl;
4995
4be9daaa 4996 for_each_sched_entity(se) {
7dd49125
PZ
4997 struct cfs_rq *cfs_rq = se->my_q;
4998 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4999
7dd49125 5000 tg = cfs_rq->tg;
bb3469ac 5001
cf5f0acf
PZ
5002 /*
5003 * W = @wg + \Sum rw_j
5004 */
7dd49125
PZ
5005 W = wg + atomic_long_read(&tg->load_avg);
5006
5007 /* Ensure \Sum rw_j >= rw_i */
5008 W -= cfs_rq->tg_load_avg_contrib;
5009 W += w;
4be9daaa 5010
cf5f0acf
PZ
5011 /*
5012 * w = rw_i + @wl
5013 */
7dd49125 5014 w += wl;
940959e9 5015
cf5f0acf
PZ
5016 /*
5017 * wl = S * s'_i; see (2)
5018 */
5019 if (W > 0 && w < W)
32a8df4e 5020 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5021 else
5022 wl = tg->shares;
940959e9 5023
cf5f0acf
PZ
5024 /*
5025 * Per the above, wl is the new se->load.weight value; since
5026 * those are clipped to [MIN_SHARES, ...) do so now. See
5027 * calc_cfs_shares().
5028 */
977dda7c
PT
5029 if (wl < MIN_SHARES)
5030 wl = MIN_SHARES;
cf5f0acf
PZ
5031
5032 /*
5033 * wl = dw_i = S * (s'_i - s_i); see (3)
5034 */
9d89c257 5035 wl -= se->avg.load_avg;
cf5f0acf
PZ
5036
5037 /*
5038 * Recursively apply this logic to all parent groups to compute
5039 * the final effective load change on the root group. Since
5040 * only the @tg group gets extra weight, all parent groups can
5041 * only redistribute existing shares. @wl is the shift in shares
5042 * resulting from this level per the above.
5043 */
4be9daaa 5044 wg = 0;
4be9daaa 5045 }
bb3469ac 5046
4be9daaa 5047 return wl;
bb3469ac
PZ
5048}
5049#else
4be9daaa 5050
58d081b5 5051static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5052{
83378269 5053 return wl;
bb3469ac 5054}
4be9daaa 5055
bb3469ac
PZ
5056#endif
5057
c58d25f3
PZ
5058static void record_wakee(struct task_struct *p)
5059{
5060 /*
5061 * Only decay a single time; tasks that have less then 1 wakeup per
5062 * jiffy will not have built up many flips.
5063 */
5064 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5065 current->wakee_flips >>= 1;
5066 current->wakee_flip_decay_ts = jiffies;
5067 }
5068
5069 if (current->last_wakee != p) {
5070 current->last_wakee = p;
5071 current->wakee_flips++;
5072 }
5073}
5074
63b0e9ed
MG
5075/*
5076 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5077 *
63b0e9ed 5078 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5079 * at a frequency roughly N times higher than one of its wakees.
5080 *
5081 * In order to determine whether we should let the load spread vs consolidating
5082 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5083 * partner, and a factor of lls_size higher frequency in the other.
5084 *
5085 * With both conditions met, we can be relatively sure that the relationship is
5086 * non-monogamous, with partner count exceeding socket size.
5087 *
5088 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5089 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5090 * socket size.
63b0e9ed 5091 */
62470419
MW
5092static int wake_wide(struct task_struct *p)
5093{
63b0e9ed
MG
5094 unsigned int master = current->wakee_flips;
5095 unsigned int slave = p->wakee_flips;
7d9ffa89 5096 int factor = this_cpu_read(sd_llc_size);
62470419 5097
63b0e9ed
MG
5098 if (master < slave)
5099 swap(master, slave);
5100 if (slave < factor || master < slave * factor)
5101 return 0;
5102 return 1;
62470419
MW
5103}
5104
772bd008
MR
5105static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5106 int prev_cpu, int sync)
098fb9db 5107{
e37b6a7b 5108 s64 this_load, load;
bd61c98f 5109 s64 this_eff_load, prev_eff_load;
772bd008 5110 int idx, this_cpu;
c88d5910 5111 struct task_group *tg;
83378269 5112 unsigned long weight;
b3137bc8 5113 int balanced;
098fb9db 5114
c88d5910
PZ
5115 idx = sd->wake_idx;
5116 this_cpu = smp_processor_id();
c88d5910
PZ
5117 load = source_load(prev_cpu, idx);
5118 this_load = target_load(this_cpu, idx);
098fb9db 5119
b3137bc8
MG
5120 /*
5121 * If sync wakeup then subtract the (maximum possible)
5122 * effect of the currently running task from the load
5123 * of the current CPU:
5124 */
83378269
PZ
5125 if (sync) {
5126 tg = task_group(current);
9d89c257 5127 weight = current->se.avg.load_avg;
83378269 5128
c88d5910 5129 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5130 load += effective_load(tg, prev_cpu, 0, -weight);
5131 }
b3137bc8 5132
83378269 5133 tg = task_group(p);
9d89c257 5134 weight = p->se.avg.load_avg;
b3137bc8 5135
71a29aa7
PZ
5136 /*
5137 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5138 * due to the sync cause above having dropped this_load to 0, we'll
5139 * always have an imbalance, but there's really nothing you can do
5140 * about that, so that's good too.
71a29aa7
PZ
5141 *
5142 * Otherwise check if either cpus are near enough in load to allow this
5143 * task to be woken on this_cpu.
5144 */
bd61c98f
VG
5145 this_eff_load = 100;
5146 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5147
bd61c98f
VG
5148 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5149 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5150
bd61c98f 5151 if (this_load > 0) {
e51fd5e2
PZ
5152 this_eff_load *= this_load +
5153 effective_load(tg, this_cpu, weight, weight);
5154
e51fd5e2 5155 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5156 }
e51fd5e2 5157
bd61c98f 5158 balanced = this_eff_load <= prev_eff_load;
098fb9db 5159
41acab88 5160 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5161
05bfb65f
VG
5162 if (!balanced)
5163 return 0;
098fb9db 5164
05bfb65f
VG
5165 schedstat_inc(sd, ttwu_move_affine);
5166 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5167
5168 return 1;
098fb9db
IM
5169}
5170
aaee1203
PZ
5171/*
5172 * find_idlest_group finds and returns the least busy CPU group within the
5173 * domain.
5174 */
5175static struct sched_group *
78e7ed53 5176find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5177 int this_cpu, int sd_flag)
e7693a36 5178{
b3bd3de6 5179 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5180 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5181 int load_idx = sd->forkexec_idx;
aaee1203 5182 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5183
c44f2a02
VG
5184 if (sd_flag & SD_BALANCE_WAKE)
5185 load_idx = sd->wake_idx;
5186
aaee1203
PZ
5187 do {
5188 unsigned long load, avg_load;
5189 int local_group;
5190 int i;
e7693a36 5191
aaee1203
PZ
5192 /* Skip over this group if it has no CPUs allowed */
5193 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5194 tsk_cpus_allowed(p)))
aaee1203
PZ
5195 continue;
5196
5197 local_group = cpumask_test_cpu(this_cpu,
5198 sched_group_cpus(group));
5199
5200 /* Tally up the load of all CPUs in the group */
5201 avg_load = 0;
5202
5203 for_each_cpu(i, sched_group_cpus(group)) {
5204 /* Bias balancing toward cpus of our domain */
5205 if (local_group)
5206 load = source_load(i, load_idx);
5207 else
5208 load = target_load(i, load_idx);
5209
5210 avg_load += load;
5211 }
5212
63b2ca30 5213 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5214 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5215
5216 if (local_group) {
5217 this_load = avg_load;
aaee1203
PZ
5218 } else if (avg_load < min_load) {
5219 min_load = avg_load;
5220 idlest = group;
5221 }
5222 } while (group = group->next, group != sd->groups);
5223
5224 if (!idlest || 100*this_load < imbalance*min_load)
5225 return NULL;
5226 return idlest;
5227}
5228
5229/*
5230 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5231 */
5232static int
5233find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5234{
5235 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5236 unsigned int min_exit_latency = UINT_MAX;
5237 u64 latest_idle_timestamp = 0;
5238 int least_loaded_cpu = this_cpu;
5239 int shallowest_idle_cpu = -1;
aaee1203
PZ
5240 int i;
5241
eaecf41f
MR
5242 /* Check if we have any choice: */
5243 if (group->group_weight == 1)
5244 return cpumask_first(sched_group_cpus(group));
5245
aaee1203 5246 /* Traverse only the allowed CPUs */
fa17b507 5247 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5248 if (idle_cpu(i)) {
5249 struct rq *rq = cpu_rq(i);
5250 struct cpuidle_state *idle = idle_get_state(rq);
5251 if (idle && idle->exit_latency < min_exit_latency) {
5252 /*
5253 * We give priority to a CPU whose idle state
5254 * has the smallest exit latency irrespective
5255 * of any idle timestamp.
5256 */
5257 min_exit_latency = idle->exit_latency;
5258 latest_idle_timestamp = rq->idle_stamp;
5259 shallowest_idle_cpu = i;
5260 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5261 rq->idle_stamp > latest_idle_timestamp) {
5262 /*
5263 * If equal or no active idle state, then
5264 * the most recently idled CPU might have
5265 * a warmer cache.
5266 */
5267 latest_idle_timestamp = rq->idle_stamp;
5268 shallowest_idle_cpu = i;
5269 }
9f96742a 5270 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5271 load = weighted_cpuload(i);
5272 if (load < min_load || (load == min_load && i == this_cpu)) {
5273 min_load = load;
5274 least_loaded_cpu = i;
5275 }
e7693a36
GH
5276 }
5277 }
5278
83a0a96a 5279 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5280}
e7693a36 5281
a50bde51
PZ
5282/*
5283 * Try and locate an idle CPU in the sched_domain.
5284 */
772bd008 5285static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5286{
99bd5e2f 5287 struct sched_domain *sd;
37407ea7 5288 struct sched_group *sg;
a50bde51 5289
e0a79f52
MG
5290 if (idle_cpu(target))
5291 return target;
99bd5e2f
SS
5292
5293 /*
e0a79f52 5294 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5295 */
772bd008
MR
5296 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5297 return prev;
a50bde51
PZ
5298
5299 /*
d4335581
MF
5300 * Otherwise, iterate the domains and find an eligible idle cpu.
5301 *
5302 * A completely idle sched group at higher domains is more
5303 * desirable than an idle group at a lower level, because lower
5304 * domains have smaller groups and usually share hardware
5305 * resources which causes tasks to contend on them, e.g. x86
5306 * hyperthread siblings in the lowest domain (SMT) can contend
5307 * on the shared cpu pipeline.
5308 *
5309 * However, while we prefer idle groups at higher domains
5310 * finding an idle cpu at the lowest domain is still better than
5311 * returning 'target', which we've already established, isn't
5312 * idle.
a50bde51 5313 */
518cd623 5314 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5315 for_each_lower_domain(sd) {
37407ea7
LT
5316 sg = sd->groups;
5317 do {
772bd008
MR
5318 int i;
5319
37407ea7
LT
5320 if (!cpumask_intersects(sched_group_cpus(sg),
5321 tsk_cpus_allowed(p)))
5322 goto next;
5323
d4335581 5324 /* Ensure the entire group is idle */
37407ea7 5325 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5326 if (i == target || !idle_cpu(i))
37407ea7
LT
5327 goto next;
5328 }
970e1789 5329
d4335581
MF
5330 /*
5331 * It doesn't matter which cpu we pick, the
5332 * whole group is idle.
5333 */
37407ea7
LT
5334 target = cpumask_first_and(sched_group_cpus(sg),
5335 tsk_cpus_allowed(p));
5336 goto done;
5337next:
5338 sg = sg->next;
5339 } while (sg != sd->groups);
5340 }
5341done:
a50bde51
PZ
5342 return target;
5343}
231678b7 5344
8bb5b00c 5345/*
9e91d61d 5346 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5347 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5348 * compare the utilization with the capacity of the CPU that is available for
5349 * CFS task (ie cpu_capacity).
231678b7
DE
5350 *
5351 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5352 * recent utilization of currently non-runnable tasks on a CPU. It represents
5353 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5354 * capacity_orig is the cpu_capacity available at the highest frequency
5355 * (arch_scale_freq_capacity()).
5356 * The utilization of a CPU converges towards a sum equal to or less than the
5357 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5358 * the running time on this CPU scaled by capacity_curr.
5359 *
5360 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5361 * higher than capacity_orig because of unfortunate rounding in
5362 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5363 * the average stabilizes with the new running time. We need to check that the
5364 * utilization stays within the range of [0..capacity_orig] and cap it if
5365 * necessary. Without utilization capping, a group could be seen as overloaded
5366 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5367 * available capacity. We allow utilization to overshoot capacity_curr (but not
5368 * capacity_orig) as it useful for predicting the capacity required after task
5369 * migrations (scheduler-driven DVFS).
8bb5b00c 5370 */
9e91d61d 5371static int cpu_util(int cpu)
8bb5b00c 5372{
9e91d61d 5373 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5374 unsigned long capacity = capacity_orig_of(cpu);
5375
231678b7 5376 return (util >= capacity) ? capacity : util;
8bb5b00c 5377}
a50bde51 5378
aaee1203 5379/*
de91b9cb
MR
5380 * select_task_rq_fair: Select target runqueue for the waking task in domains
5381 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5382 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5383 *
de91b9cb
MR
5384 * Balances load by selecting the idlest cpu in the idlest group, or under
5385 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5386 *
de91b9cb 5387 * Returns the target cpu number.
aaee1203
PZ
5388 *
5389 * preempt must be disabled.
5390 */
0017d735 5391static int
ac66f547 5392select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5393{
29cd8bae 5394 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5395 int cpu = smp_processor_id();
63b0e9ed 5396 int new_cpu = prev_cpu;
99bd5e2f 5397 int want_affine = 0;
5158f4e4 5398 int sync = wake_flags & WF_SYNC;
c88d5910 5399
c58d25f3
PZ
5400 if (sd_flag & SD_BALANCE_WAKE) {
5401 record_wakee(p);
63b0e9ed 5402 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5403 }
aaee1203 5404
dce840a0 5405 rcu_read_lock();
aaee1203 5406 for_each_domain(cpu, tmp) {
e4f42888 5407 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5408 break;
e4f42888 5409
fe3bcfe1 5410 /*
99bd5e2f
SS
5411 * If both cpu and prev_cpu are part of this domain,
5412 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5413 */
99bd5e2f
SS
5414 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5415 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5416 affine_sd = tmp;
29cd8bae 5417 break;
f03542a7 5418 }
29cd8bae 5419
f03542a7 5420 if (tmp->flags & sd_flag)
29cd8bae 5421 sd = tmp;
63b0e9ed
MG
5422 else if (!want_affine)
5423 break;
29cd8bae
PZ
5424 }
5425
63b0e9ed
MG
5426 if (affine_sd) {
5427 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5428 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5429 new_cpu = cpu;
8b911acd 5430 }
e7693a36 5431
63b0e9ed
MG
5432 if (!sd) {
5433 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5434 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5435
5436 } else while (sd) {
aaee1203 5437 struct sched_group *group;
c88d5910 5438 int weight;
098fb9db 5439
0763a660 5440 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5441 sd = sd->child;
5442 continue;
5443 }
098fb9db 5444
c44f2a02 5445 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5446 if (!group) {
5447 sd = sd->child;
5448 continue;
5449 }
4ae7d5ce 5450
d7c33c49 5451 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5452 if (new_cpu == -1 || new_cpu == cpu) {
5453 /* Now try balancing at a lower domain level of cpu */
5454 sd = sd->child;
5455 continue;
e7693a36 5456 }
aaee1203
PZ
5457
5458 /* Now try balancing at a lower domain level of new_cpu */
5459 cpu = new_cpu;
669c55e9 5460 weight = sd->span_weight;
aaee1203
PZ
5461 sd = NULL;
5462 for_each_domain(cpu, tmp) {
669c55e9 5463 if (weight <= tmp->span_weight)
aaee1203 5464 break;
0763a660 5465 if (tmp->flags & sd_flag)
aaee1203
PZ
5466 sd = tmp;
5467 }
5468 /* while loop will break here if sd == NULL */
e7693a36 5469 }
dce840a0 5470 rcu_read_unlock();
e7693a36 5471
c88d5910 5472 return new_cpu;
e7693a36 5473}
0a74bef8
PT
5474
5475/*
5476 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5477 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5478 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5479 */
5a4fd036 5480static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5481{
59efa0ba
PZ
5482 /*
5483 * As blocked tasks retain absolute vruntime the migration needs to
5484 * deal with this by subtracting the old and adding the new
5485 * min_vruntime -- the latter is done by enqueue_entity() when placing
5486 * the task on the new runqueue.
5487 */
5488 if (p->state == TASK_WAKING) {
5489 struct sched_entity *se = &p->se;
5490 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5491 u64 min_vruntime;
5492
5493#ifndef CONFIG_64BIT
5494 u64 min_vruntime_copy;
5495
5496 do {
5497 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5498 smp_rmb();
5499 min_vruntime = cfs_rq->min_vruntime;
5500 } while (min_vruntime != min_vruntime_copy);
5501#else
5502 min_vruntime = cfs_rq->min_vruntime;
5503#endif
5504
5505 se->vruntime -= min_vruntime;
5506 }
5507
aff3e498 5508 /*
9d89c257
YD
5509 * We are supposed to update the task to "current" time, then its up to date
5510 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5511 * what current time is, so simply throw away the out-of-date time. This
5512 * will result in the wakee task is less decayed, but giving the wakee more
5513 * load sounds not bad.
aff3e498 5514 */
9d89c257
YD
5515 remove_entity_load_avg(&p->se);
5516
5517 /* Tell new CPU we are migrated */
5518 p->se.avg.last_update_time = 0;
3944a927
BS
5519
5520 /* We have migrated, no longer consider this task hot */
9d89c257 5521 p->se.exec_start = 0;
0a74bef8 5522}
12695578
YD
5523
5524static void task_dead_fair(struct task_struct *p)
5525{
5526 remove_entity_load_avg(&p->se);
5527}
e7693a36
GH
5528#endif /* CONFIG_SMP */
5529
e52fb7c0
PZ
5530static unsigned long
5531wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5532{
5533 unsigned long gran = sysctl_sched_wakeup_granularity;
5534
5535 /*
e52fb7c0
PZ
5536 * Since its curr running now, convert the gran from real-time
5537 * to virtual-time in his units.
13814d42
MG
5538 *
5539 * By using 'se' instead of 'curr' we penalize light tasks, so
5540 * they get preempted easier. That is, if 'se' < 'curr' then
5541 * the resulting gran will be larger, therefore penalizing the
5542 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5543 * be smaller, again penalizing the lighter task.
5544 *
5545 * This is especially important for buddies when the leftmost
5546 * task is higher priority than the buddy.
0bbd3336 5547 */
f4ad9bd2 5548 return calc_delta_fair(gran, se);
0bbd3336
PZ
5549}
5550
464b7527
PZ
5551/*
5552 * Should 'se' preempt 'curr'.
5553 *
5554 * |s1
5555 * |s2
5556 * |s3
5557 * g
5558 * |<--->|c
5559 *
5560 * w(c, s1) = -1
5561 * w(c, s2) = 0
5562 * w(c, s3) = 1
5563 *
5564 */
5565static int
5566wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5567{
5568 s64 gran, vdiff = curr->vruntime - se->vruntime;
5569
5570 if (vdiff <= 0)
5571 return -1;
5572
e52fb7c0 5573 gran = wakeup_gran(curr, se);
464b7527
PZ
5574 if (vdiff > gran)
5575 return 1;
5576
5577 return 0;
5578}
5579
02479099
PZ
5580static void set_last_buddy(struct sched_entity *se)
5581{
69c80f3e
VP
5582 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5583 return;
5584
5585 for_each_sched_entity(se)
5586 cfs_rq_of(se)->last = se;
02479099
PZ
5587}
5588
5589static void set_next_buddy(struct sched_entity *se)
5590{
69c80f3e
VP
5591 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5592 return;
5593
5594 for_each_sched_entity(se)
5595 cfs_rq_of(se)->next = se;
02479099
PZ
5596}
5597
ac53db59
RR
5598static void set_skip_buddy(struct sched_entity *se)
5599{
69c80f3e
VP
5600 for_each_sched_entity(se)
5601 cfs_rq_of(se)->skip = se;
ac53db59
RR
5602}
5603
bf0f6f24
IM
5604/*
5605 * Preempt the current task with a newly woken task if needed:
5606 */
5a9b86f6 5607static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5608{
5609 struct task_struct *curr = rq->curr;
8651a86c 5610 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5611 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5612 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5613 int next_buddy_marked = 0;
bf0f6f24 5614
4ae7d5ce
IM
5615 if (unlikely(se == pse))
5616 return;
5617
5238cdd3 5618 /*
163122b7 5619 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5620 * unconditionally check_prempt_curr() after an enqueue (which may have
5621 * lead to a throttle). This both saves work and prevents false
5622 * next-buddy nomination below.
5623 */
5624 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5625 return;
5626
2f36825b 5627 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5628 set_next_buddy(pse);
2f36825b
VP
5629 next_buddy_marked = 1;
5630 }
57fdc26d 5631
aec0a514
BR
5632 /*
5633 * We can come here with TIF_NEED_RESCHED already set from new task
5634 * wake up path.
5238cdd3
PT
5635 *
5636 * Note: this also catches the edge-case of curr being in a throttled
5637 * group (e.g. via set_curr_task), since update_curr() (in the
5638 * enqueue of curr) will have resulted in resched being set. This
5639 * prevents us from potentially nominating it as a false LAST_BUDDY
5640 * below.
aec0a514
BR
5641 */
5642 if (test_tsk_need_resched(curr))
5643 return;
5644
a2f5c9ab
DH
5645 /* Idle tasks are by definition preempted by non-idle tasks. */
5646 if (unlikely(curr->policy == SCHED_IDLE) &&
5647 likely(p->policy != SCHED_IDLE))
5648 goto preempt;
5649
91c234b4 5650 /*
a2f5c9ab
DH
5651 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5652 * is driven by the tick):
91c234b4 5653 */
8ed92e51 5654 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5655 return;
bf0f6f24 5656
464b7527 5657 find_matching_se(&se, &pse);
9bbd7374 5658 update_curr(cfs_rq_of(se));
002f128b 5659 BUG_ON(!pse);
2f36825b
VP
5660 if (wakeup_preempt_entity(se, pse) == 1) {
5661 /*
5662 * Bias pick_next to pick the sched entity that is
5663 * triggering this preemption.
5664 */
5665 if (!next_buddy_marked)
5666 set_next_buddy(pse);
3a7e73a2 5667 goto preempt;
2f36825b 5668 }
464b7527 5669
3a7e73a2 5670 return;
a65ac745 5671
3a7e73a2 5672preempt:
8875125e 5673 resched_curr(rq);
3a7e73a2
PZ
5674 /*
5675 * Only set the backward buddy when the current task is still
5676 * on the rq. This can happen when a wakeup gets interleaved
5677 * with schedule on the ->pre_schedule() or idle_balance()
5678 * point, either of which can * drop the rq lock.
5679 *
5680 * Also, during early boot the idle thread is in the fair class,
5681 * for obvious reasons its a bad idea to schedule back to it.
5682 */
5683 if (unlikely(!se->on_rq || curr == rq->idle))
5684 return;
5685
5686 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5687 set_last_buddy(se);
bf0f6f24
IM
5688}
5689
606dba2e 5690static struct task_struct *
e7904a28 5691pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5692{
5693 struct cfs_rq *cfs_rq = &rq->cfs;
5694 struct sched_entity *se;
678d5718 5695 struct task_struct *p;
37e117c0 5696 int new_tasks;
678d5718 5697
6e83125c 5698again:
678d5718
PZ
5699#ifdef CONFIG_FAIR_GROUP_SCHED
5700 if (!cfs_rq->nr_running)
38033c37 5701 goto idle;
678d5718 5702
3f1d2a31 5703 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5704 goto simple;
5705
5706 /*
5707 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5708 * likely that a next task is from the same cgroup as the current.
5709 *
5710 * Therefore attempt to avoid putting and setting the entire cgroup
5711 * hierarchy, only change the part that actually changes.
5712 */
5713
5714 do {
5715 struct sched_entity *curr = cfs_rq->curr;
5716
5717 /*
5718 * Since we got here without doing put_prev_entity() we also
5719 * have to consider cfs_rq->curr. If it is still a runnable
5720 * entity, update_curr() will update its vruntime, otherwise
5721 * forget we've ever seen it.
5722 */
54d27365
BS
5723 if (curr) {
5724 if (curr->on_rq)
5725 update_curr(cfs_rq);
5726 else
5727 curr = NULL;
678d5718 5728
54d27365
BS
5729 /*
5730 * This call to check_cfs_rq_runtime() will do the
5731 * throttle and dequeue its entity in the parent(s).
5732 * Therefore the 'simple' nr_running test will indeed
5733 * be correct.
5734 */
5735 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5736 goto simple;
5737 }
678d5718
PZ
5738
5739 se = pick_next_entity(cfs_rq, curr);
5740 cfs_rq = group_cfs_rq(se);
5741 } while (cfs_rq);
5742
5743 p = task_of(se);
5744
5745 /*
5746 * Since we haven't yet done put_prev_entity and if the selected task
5747 * is a different task than we started out with, try and touch the
5748 * least amount of cfs_rqs.
5749 */
5750 if (prev != p) {
5751 struct sched_entity *pse = &prev->se;
5752
5753 while (!(cfs_rq = is_same_group(se, pse))) {
5754 int se_depth = se->depth;
5755 int pse_depth = pse->depth;
5756
5757 if (se_depth <= pse_depth) {
5758 put_prev_entity(cfs_rq_of(pse), pse);
5759 pse = parent_entity(pse);
5760 }
5761 if (se_depth >= pse_depth) {
5762 set_next_entity(cfs_rq_of(se), se);
5763 se = parent_entity(se);
5764 }
5765 }
5766
5767 put_prev_entity(cfs_rq, pse);
5768 set_next_entity(cfs_rq, se);
5769 }
5770
5771 if (hrtick_enabled(rq))
5772 hrtick_start_fair(rq, p);
5773
5774 return p;
5775simple:
5776 cfs_rq = &rq->cfs;
5777#endif
bf0f6f24 5778
36ace27e 5779 if (!cfs_rq->nr_running)
38033c37 5780 goto idle;
bf0f6f24 5781
3f1d2a31 5782 put_prev_task(rq, prev);
606dba2e 5783
bf0f6f24 5784 do {
678d5718 5785 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5786 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5787 cfs_rq = group_cfs_rq(se);
5788 } while (cfs_rq);
5789
8f4d37ec 5790 p = task_of(se);
678d5718 5791
b39e66ea
MG
5792 if (hrtick_enabled(rq))
5793 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5794
5795 return p;
38033c37
PZ
5796
5797idle:
cbce1a68
PZ
5798 /*
5799 * This is OK, because current is on_cpu, which avoids it being picked
5800 * for load-balance and preemption/IRQs are still disabled avoiding
5801 * further scheduler activity on it and we're being very careful to
5802 * re-start the picking loop.
5803 */
e7904a28 5804 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5805 new_tasks = idle_balance(rq);
e7904a28 5806 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5807 /*
5808 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5809 * possible for any higher priority task to appear. In that case we
5810 * must re-start the pick_next_entity() loop.
5811 */
e4aa358b 5812 if (new_tasks < 0)
37e117c0
PZ
5813 return RETRY_TASK;
5814
e4aa358b 5815 if (new_tasks > 0)
38033c37 5816 goto again;
38033c37
PZ
5817
5818 return NULL;
bf0f6f24
IM
5819}
5820
5821/*
5822 * Account for a descheduled task:
5823 */
31ee529c 5824static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5825{
5826 struct sched_entity *se = &prev->se;
5827 struct cfs_rq *cfs_rq;
5828
5829 for_each_sched_entity(se) {
5830 cfs_rq = cfs_rq_of(se);
ab6cde26 5831 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5832 }
5833}
5834
ac53db59
RR
5835/*
5836 * sched_yield() is very simple
5837 *
5838 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5839 */
5840static void yield_task_fair(struct rq *rq)
5841{
5842 struct task_struct *curr = rq->curr;
5843 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5844 struct sched_entity *se = &curr->se;
5845
5846 /*
5847 * Are we the only task in the tree?
5848 */
5849 if (unlikely(rq->nr_running == 1))
5850 return;
5851
5852 clear_buddies(cfs_rq, se);
5853
5854 if (curr->policy != SCHED_BATCH) {
5855 update_rq_clock(rq);
5856 /*
5857 * Update run-time statistics of the 'current'.
5858 */
5859 update_curr(cfs_rq);
916671c0
MG
5860 /*
5861 * Tell update_rq_clock() that we've just updated,
5862 * so we don't do microscopic update in schedule()
5863 * and double the fastpath cost.
5864 */
9edfbfed 5865 rq_clock_skip_update(rq, true);
ac53db59
RR
5866 }
5867
5868 set_skip_buddy(se);
5869}
5870
d95f4122
MG
5871static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5872{
5873 struct sched_entity *se = &p->se;
5874
5238cdd3
PT
5875 /* throttled hierarchies are not runnable */
5876 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5877 return false;
5878
5879 /* Tell the scheduler that we'd really like pse to run next. */
5880 set_next_buddy(se);
5881
d95f4122
MG
5882 yield_task_fair(rq);
5883
5884 return true;
5885}
5886
681f3e68 5887#ifdef CONFIG_SMP
bf0f6f24 5888/**************************************************
e9c84cb8
PZ
5889 * Fair scheduling class load-balancing methods.
5890 *
5891 * BASICS
5892 *
5893 * The purpose of load-balancing is to achieve the same basic fairness the
5894 * per-cpu scheduler provides, namely provide a proportional amount of compute
5895 * time to each task. This is expressed in the following equation:
5896 *
5897 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5898 *
5899 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5900 * W_i,0 is defined as:
5901 *
5902 * W_i,0 = \Sum_j w_i,j (2)
5903 *
5904 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5905 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5906 *
5907 * The weight average is an exponential decay average of the instantaneous
5908 * weight:
5909 *
5910 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5911 *
ced549fa 5912 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5913 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5914 * can also include other factors [XXX].
5915 *
5916 * To achieve this balance we define a measure of imbalance which follows
5917 * directly from (1):
5918 *
ced549fa 5919 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5920 *
5921 * We them move tasks around to minimize the imbalance. In the continuous
5922 * function space it is obvious this converges, in the discrete case we get
5923 * a few fun cases generally called infeasible weight scenarios.
5924 *
5925 * [XXX expand on:
5926 * - infeasible weights;
5927 * - local vs global optima in the discrete case. ]
5928 *
5929 *
5930 * SCHED DOMAINS
5931 *
5932 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5933 * for all i,j solution, we create a tree of cpus that follows the hardware
5934 * topology where each level pairs two lower groups (or better). This results
5935 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5936 * tree to only the first of the previous level and we decrease the frequency
5937 * of load-balance at each level inv. proportional to the number of cpus in
5938 * the groups.
5939 *
5940 * This yields:
5941 *
5942 * log_2 n 1 n
5943 * \Sum { --- * --- * 2^i } = O(n) (5)
5944 * i = 0 2^i 2^i
5945 * `- size of each group
5946 * | | `- number of cpus doing load-balance
5947 * | `- freq
5948 * `- sum over all levels
5949 *
5950 * Coupled with a limit on how many tasks we can migrate every balance pass,
5951 * this makes (5) the runtime complexity of the balancer.
5952 *
5953 * An important property here is that each CPU is still (indirectly) connected
5954 * to every other cpu in at most O(log n) steps:
5955 *
5956 * The adjacency matrix of the resulting graph is given by:
5957 *
5958 * log_2 n
5959 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5960 * k = 0
5961 *
5962 * And you'll find that:
5963 *
5964 * A^(log_2 n)_i,j != 0 for all i,j (7)
5965 *
5966 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5967 * The task movement gives a factor of O(m), giving a convergence complexity
5968 * of:
5969 *
5970 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5971 *
5972 *
5973 * WORK CONSERVING
5974 *
5975 * In order to avoid CPUs going idle while there's still work to do, new idle
5976 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5977 * tree itself instead of relying on other CPUs to bring it work.
5978 *
5979 * This adds some complexity to both (5) and (8) but it reduces the total idle
5980 * time.
5981 *
5982 * [XXX more?]
5983 *
5984 *
5985 * CGROUPS
5986 *
5987 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5988 *
5989 * s_k,i
5990 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5991 * S_k
5992 *
5993 * Where
5994 *
5995 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5996 *
5997 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5998 *
5999 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6000 * property.
6001 *
6002 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6003 * rewrite all of this once again.]
6004 */
bf0f6f24 6005
ed387b78
HS
6006static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6007
0ec8aa00
PZ
6008enum fbq_type { regular, remote, all };
6009
ddcdf6e7 6010#define LBF_ALL_PINNED 0x01
367456c7 6011#define LBF_NEED_BREAK 0x02
6263322c
PZ
6012#define LBF_DST_PINNED 0x04
6013#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6014
6015struct lb_env {
6016 struct sched_domain *sd;
6017
ddcdf6e7 6018 struct rq *src_rq;
85c1e7da 6019 int src_cpu;
ddcdf6e7
PZ
6020
6021 int dst_cpu;
6022 struct rq *dst_rq;
6023
88b8dac0
SV
6024 struct cpumask *dst_grpmask;
6025 int new_dst_cpu;
ddcdf6e7 6026 enum cpu_idle_type idle;
bd939f45 6027 long imbalance;
b9403130
MW
6028 /* The set of CPUs under consideration for load-balancing */
6029 struct cpumask *cpus;
6030
ddcdf6e7 6031 unsigned int flags;
367456c7
PZ
6032
6033 unsigned int loop;
6034 unsigned int loop_break;
6035 unsigned int loop_max;
0ec8aa00
PZ
6036
6037 enum fbq_type fbq_type;
163122b7 6038 struct list_head tasks;
ddcdf6e7
PZ
6039};
6040
029632fb
PZ
6041/*
6042 * Is this task likely cache-hot:
6043 */
5d5e2b1b 6044static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6045{
6046 s64 delta;
6047
e5673f28
KT
6048 lockdep_assert_held(&env->src_rq->lock);
6049
029632fb
PZ
6050 if (p->sched_class != &fair_sched_class)
6051 return 0;
6052
6053 if (unlikely(p->policy == SCHED_IDLE))
6054 return 0;
6055
6056 /*
6057 * Buddy candidates are cache hot:
6058 */
5d5e2b1b 6059 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6060 (&p->se == cfs_rq_of(&p->se)->next ||
6061 &p->se == cfs_rq_of(&p->se)->last))
6062 return 1;
6063
6064 if (sysctl_sched_migration_cost == -1)
6065 return 1;
6066 if (sysctl_sched_migration_cost == 0)
6067 return 0;
6068
5d5e2b1b 6069 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6070
6071 return delta < (s64)sysctl_sched_migration_cost;
6072}
6073
3a7053b3 6074#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6075/*
2a1ed24c
SD
6076 * Returns 1, if task migration degrades locality
6077 * Returns 0, if task migration improves locality i.e migration preferred.
6078 * Returns -1, if task migration is not affected by locality.
c1ceac62 6079 */
2a1ed24c 6080static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6081{
b1ad065e 6082 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6083 unsigned long src_faults, dst_faults;
3a7053b3
MG
6084 int src_nid, dst_nid;
6085
2a595721 6086 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6087 return -1;
6088
c3b9bc5b 6089 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6090 return -1;
7a0f3083
MG
6091
6092 src_nid = cpu_to_node(env->src_cpu);
6093 dst_nid = cpu_to_node(env->dst_cpu);
6094
83e1d2cd 6095 if (src_nid == dst_nid)
2a1ed24c 6096 return -1;
7a0f3083 6097
2a1ed24c
SD
6098 /* Migrating away from the preferred node is always bad. */
6099 if (src_nid == p->numa_preferred_nid) {
6100 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6101 return 1;
6102 else
6103 return -1;
6104 }
b1ad065e 6105
c1ceac62
RR
6106 /* Encourage migration to the preferred node. */
6107 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6108 return 0;
b1ad065e 6109
c1ceac62
RR
6110 if (numa_group) {
6111 src_faults = group_faults(p, src_nid);
6112 dst_faults = group_faults(p, dst_nid);
6113 } else {
6114 src_faults = task_faults(p, src_nid);
6115 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6116 }
6117
c1ceac62 6118 return dst_faults < src_faults;
7a0f3083
MG
6119}
6120
3a7053b3 6121#else
2a1ed24c 6122static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6123 struct lb_env *env)
6124{
2a1ed24c 6125 return -1;
7a0f3083 6126}
3a7053b3
MG
6127#endif
6128
1e3c88bd
PZ
6129/*
6130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6131 */
6132static
8e45cb54 6133int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6134{
2a1ed24c 6135 int tsk_cache_hot;
e5673f28
KT
6136
6137 lockdep_assert_held(&env->src_rq->lock);
6138
1e3c88bd
PZ
6139 /*
6140 * We do not migrate tasks that are:
d3198084 6141 * 1) throttled_lb_pair, or
1e3c88bd 6142 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6143 * 3) running (obviously), or
6144 * 4) are cache-hot on their current CPU.
1e3c88bd 6145 */
d3198084
JK
6146 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6147 return 0;
6148
ddcdf6e7 6149 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6150 int cpu;
88b8dac0 6151
41acab88 6152 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6153
6263322c
PZ
6154 env->flags |= LBF_SOME_PINNED;
6155
88b8dac0
SV
6156 /*
6157 * Remember if this task can be migrated to any other cpu in
6158 * our sched_group. We may want to revisit it if we couldn't
6159 * meet load balance goals by pulling other tasks on src_cpu.
6160 *
6161 * Also avoid computing new_dst_cpu if we have already computed
6162 * one in current iteration.
6163 */
6263322c 6164 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6165 return 0;
6166
e02e60c1
JK
6167 /* Prevent to re-select dst_cpu via env's cpus */
6168 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6169 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6170 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6171 env->new_dst_cpu = cpu;
6172 break;
6173 }
88b8dac0 6174 }
e02e60c1 6175
1e3c88bd
PZ
6176 return 0;
6177 }
88b8dac0
SV
6178
6179 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6180 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6181
ddcdf6e7 6182 if (task_running(env->src_rq, p)) {
41acab88 6183 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6184 return 0;
6185 }
6186
6187 /*
6188 * Aggressive migration if:
3a7053b3
MG
6189 * 1) destination numa is preferred
6190 * 2) task is cache cold, or
6191 * 3) too many balance attempts have failed.
1e3c88bd 6192 */
2a1ed24c
SD
6193 tsk_cache_hot = migrate_degrades_locality(p, env);
6194 if (tsk_cache_hot == -1)
6195 tsk_cache_hot = task_hot(p, env);
3a7053b3 6196
2a1ed24c 6197 if (tsk_cache_hot <= 0 ||
7a96c231 6198 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6199 if (tsk_cache_hot == 1) {
3a7053b3
MG
6200 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6201 schedstat_inc(p, se.statistics.nr_forced_migrations);
6202 }
1e3c88bd
PZ
6203 return 1;
6204 }
6205
4e2dcb73
ZH
6206 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6207 return 0;
1e3c88bd
PZ
6208}
6209
897c395f 6210/*
163122b7
KT
6211 * detach_task() -- detach the task for the migration specified in env
6212 */
6213static void detach_task(struct task_struct *p, struct lb_env *env)
6214{
6215 lockdep_assert_held(&env->src_rq->lock);
6216
163122b7 6217 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6218 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6219 set_task_cpu(p, env->dst_cpu);
6220}
6221
897c395f 6222/*
e5673f28 6223 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6224 * part of active balancing operations within "domain".
897c395f 6225 *
e5673f28 6226 * Returns a task if successful and NULL otherwise.
897c395f 6227 */
e5673f28 6228static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6229{
6230 struct task_struct *p, *n;
897c395f 6231
e5673f28
KT
6232 lockdep_assert_held(&env->src_rq->lock);
6233
367456c7 6234 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6235 if (!can_migrate_task(p, env))
6236 continue;
897c395f 6237
163122b7 6238 detach_task(p, env);
e5673f28 6239
367456c7 6240 /*
e5673f28 6241 * Right now, this is only the second place where
163122b7 6242 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6243 * so we can safely collect stats here rather than
163122b7 6244 * inside detach_tasks().
367456c7
PZ
6245 */
6246 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6247 return p;
897c395f 6248 }
e5673f28 6249 return NULL;
897c395f
PZ
6250}
6251
eb95308e
PZ
6252static const unsigned int sched_nr_migrate_break = 32;
6253
5d6523eb 6254/*
163122b7
KT
6255 * detach_tasks() -- tries to detach up to imbalance weighted load from
6256 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6257 *
163122b7 6258 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6259 */
163122b7 6260static int detach_tasks(struct lb_env *env)
1e3c88bd 6261{
5d6523eb
PZ
6262 struct list_head *tasks = &env->src_rq->cfs_tasks;
6263 struct task_struct *p;
367456c7 6264 unsigned long load;
163122b7
KT
6265 int detached = 0;
6266
6267 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6268
bd939f45 6269 if (env->imbalance <= 0)
5d6523eb 6270 return 0;
1e3c88bd 6271
5d6523eb 6272 while (!list_empty(tasks)) {
985d3a4c
YD
6273 /*
6274 * We don't want to steal all, otherwise we may be treated likewise,
6275 * which could at worst lead to a livelock crash.
6276 */
6277 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6278 break;
6279
5d6523eb 6280 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6281
367456c7
PZ
6282 env->loop++;
6283 /* We've more or less seen every task there is, call it quits */
5d6523eb 6284 if (env->loop > env->loop_max)
367456c7 6285 break;
5d6523eb
PZ
6286
6287 /* take a breather every nr_migrate tasks */
367456c7 6288 if (env->loop > env->loop_break) {
eb95308e 6289 env->loop_break += sched_nr_migrate_break;
8e45cb54 6290 env->flags |= LBF_NEED_BREAK;
ee00e66f 6291 break;
a195f004 6292 }
1e3c88bd 6293
d3198084 6294 if (!can_migrate_task(p, env))
367456c7
PZ
6295 goto next;
6296
6297 load = task_h_load(p);
5d6523eb 6298
eb95308e 6299 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6300 goto next;
6301
bd939f45 6302 if ((load / 2) > env->imbalance)
367456c7 6303 goto next;
1e3c88bd 6304
163122b7
KT
6305 detach_task(p, env);
6306 list_add(&p->se.group_node, &env->tasks);
6307
6308 detached++;
bd939f45 6309 env->imbalance -= load;
1e3c88bd
PZ
6310
6311#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6312 /*
6313 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6314 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6315 * the critical section.
6316 */
5d6523eb 6317 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6318 break;
1e3c88bd
PZ
6319#endif
6320
ee00e66f
PZ
6321 /*
6322 * We only want to steal up to the prescribed amount of
6323 * weighted load.
6324 */
bd939f45 6325 if (env->imbalance <= 0)
ee00e66f 6326 break;
367456c7
PZ
6327
6328 continue;
6329next:
5d6523eb 6330 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6331 }
5d6523eb 6332
1e3c88bd 6333 /*
163122b7
KT
6334 * Right now, this is one of only two places we collect this stat
6335 * so we can safely collect detach_one_task() stats here rather
6336 * than inside detach_one_task().
1e3c88bd 6337 */
163122b7 6338 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6339
163122b7
KT
6340 return detached;
6341}
6342
6343/*
6344 * attach_task() -- attach the task detached by detach_task() to its new rq.
6345 */
6346static void attach_task(struct rq *rq, struct task_struct *p)
6347{
6348 lockdep_assert_held(&rq->lock);
6349
6350 BUG_ON(task_rq(p) != rq);
163122b7 6351 activate_task(rq, p, 0);
3ea94de1 6352 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6353 check_preempt_curr(rq, p, 0);
6354}
6355
6356/*
6357 * attach_one_task() -- attaches the task returned from detach_one_task() to
6358 * its new rq.
6359 */
6360static void attach_one_task(struct rq *rq, struct task_struct *p)
6361{
6362 raw_spin_lock(&rq->lock);
6363 attach_task(rq, p);
6364 raw_spin_unlock(&rq->lock);
6365}
6366
6367/*
6368 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6369 * new rq.
6370 */
6371static void attach_tasks(struct lb_env *env)
6372{
6373 struct list_head *tasks = &env->tasks;
6374 struct task_struct *p;
6375
6376 raw_spin_lock(&env->dst_rq->lock);
6377
6378 while (!list_empty(tasks)) {
6379 p = list_first_entry(tasks, struct task_struct, se.group_node);
6380 list_del_init(&p->se.group_node);
1e3c88bd 6381
163122b7
KT
6382 attach_task(env->dst_rq, p);
6383 }
6384
6385 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6386}
6387
230059de 6388#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6389static void update_blocked_averages(int cpu)
9e3081ca 6390{
9e3081ca 6391 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6392 struct cfs_rq *cfs_rq;
6393 unsigned long flags;
9e3081ca 6394
48a16753
PT
6395 raw_spin_lock_irqsave(&rq->lock, flags);
6396 update_rq_clock(rq);
9d89c257 6397
9763b67f
PZ
6398 /*
6399 * Iterates the task_group tree in a bottom up fashion, see
6400 * list_add_leaf_cfs_rq() for details.
6401 */
64660c86 6402 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6403 /* throttled entities do not contribute to load */
6404 if (throttled_hierarchy(cfs_rq))
6405 continue;
48a16753 6406
a2c6c91f 6407 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6408 update_tg_load_avg(cfs_rq, 0);
6409 }
48a16753 6410 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6411}
6412
9763b67f 6413/*
68520796 6414 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6415 * This needs to be done in a top-down fashion because the load of a child
6416 * group is a fraction of its parents load.
6417 */
68520796 6418static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6419{
68520796
VD
6420 struct rq *rq = rq_of(cfs_rq);
6421 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6422 unsigned long now = jiffies;
68520796 6423 unsigned long load;
a35b6466 6424
68520796 6425 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6426 return;
6427
68520796
VD
6428 cfs_rq->h_load_next = NULL;
6429 for_each_sched_entity(se) {
6430 cfs_rq = cfs_rq_of(se);
6431 cfs_rq->h_load_next = se;
6432 if (cfs_rq->last_h_load_update == now)
6433 break;
6434 }
a35b6466 6435
68520796 6436 if (!se) {
7ea241af 6437 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6438 cfs_rq->last_h_load_update = now;
6439 }
6440
6441 while ((se = cfs_rq->h_load_next) != NULL) {
6442 load = cfs_rq->h_load;
7ea241af
YD
6443 load = div64_ul(load * se->avg.load_avg,
6444 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6445 cfs_rq = group_cfs_rq(se);
6446 cfs_rq->h_load = load;
6447 cfs_rq->last_h_load_update = now;
6448 }
9763b67f
PZ
6449}
6450
367456c7 6451static unsigned long task_h_load(struct task_struct *p)
230059de 6452{
367456c7 6453 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6454
68520796 6455 update_cfs_rq_h_load(cfs_rq);
9d89c257 6456 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6457 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6458}
6459#else
48a16753 6460static inline void update_blocked_averages(int cpu)
9e3081ca 6461{
6c1d47c0
VG
6462 struct rq *rq = cpu_rq(cpu);
6463 struct cfs_rq *cfs_rq = &rq->cfs;
6464 unsigned long flags;
6465
6466 raw_spin_lock_irqsave(&rq->lock, flags);
6467 update_rq_clock(rq);
a2c6c91f 6468 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6469 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6470}
6471
367456c7 6472static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6473{
9d89c257 6474 return p->se.avg.load_avg;
1e3c88bd 6475}
230059de 6476#endif
1e3c88bd 6477
1e3c88bd 6478/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6479
6480enum group_type {
6481 group_other = 0,
6482 group_imbalanced,
6483 group_overloaded,
6484};
6485
1e3c88bd
PZ
6486/*
6487 * sg_lb_stats - stats of a sched_group required for load_balancing
6488 */
6489struct sg_lb_stats {
6490 unsigned long avg_load; /*Avg load across the CPUs of the group */
6491 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6492 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6493 unsigned long load_per_task;
63b2ca30 6494 unsigned long group_capacity;
9e91d61d 6495 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6496 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6497 unsigned int idle_cpus;
6498 unsigned int group_weight;
caeb178c 6499 enum group_type group_type;
ea67821b 6500 int group_no_capacity;
0ec8aa00
PZ
6501#ifdef CONFIG_NUMA_BALANCING
6502 unsigned int nr_numa_running;
6503 unsigned int nr_preferred_running;
6504#endif
1e3c88bd
PZ
6505};
6506
56cf515b
JK
6507/*
6508 * sd_lb_stats - Structure to store the statistics of a sched_domain
6509 * during load balancing.
6510 */
6511struct sd_lb_stats {
6512 struct sched_group *busiest; /* Busiest group in this sd */
6513 struct sched_group *local; /* Local group in this sd */
6514 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6515 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6516 unsigned long avg_load; /* Average load across all groups in sd */
6517
56cf515b 6518 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6519 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6520};
6521
147c5fc2
PZ
6522static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6523{
6524 /*
6525 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6526 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6527 * We must however clear busiest_stat::avg_load because
6528 * update_sd_pick_busiest() reads this before assignment.
6529 */
6530 *sds = (struct sd_lb_stats){
6531 .busiest = NULL,
6532 .local = NULL,
6533 .total_load = 0UL,
63b2ca30 6534 .total_capacity = 0UL,
147c5fc2
PZ
6535 .busiest_stat = {
6536 .avg_load = 0UL,
caeb178c
RR
6537 .sum_nr_running = 0,
6538 .group_type = group_other,
147c5fc2
PZ
6539 },
6540 };
6541}
6542
1e3c88bd
PZ
6543/**
6544 * get_sd_load_idx - Obtain the load index for a given sched domain.
6545 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6546 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6547 *
6548 * Return: The load index.
1e3c88bd
PZ
6549 */
6550static inline int get_sd_load_idx(struct sched_domain *sd,
6551 enum cpu_idle_type idle)
6552{
6553 int load_idx;
6554
6555 switch (idle) {
6556 case CPU_NOT_IDLE:
6557 load_idx = sd->busy_idx;
6558 break;
6559
6560 case CPU_NEWLY_IDLE:
6561 load_idx = sd->newidle_idx;
6562 break;
6563 default:
6564 load_idx = sd->idle_idx;
6565 break;
6566 }
6567
6568 return load_idx;
6569}
6570
ced549fa 6571static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6572{
6573 struct rq *rq = cpu_rq(cpu);
b5b4860d 6574 u64 total, used, age_stamp, avg;
cadefd3d 6575 s64 delta;
1e3c88bd 6576
b654f7de
PZ
6577 /*
6578 * Since we're reading these variables without serialization make sure
6579 * we read them once before doing sanity checks on them.
6580 */
316c1608
JL
6581 age_stamp = READ_ONCE(rq->age_stamp);
6582 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6583 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6584
cadefd3d
PZ
6585 if (unlikely(delta < 0))
6586 delta = 0;
6587
6588 total = sched_avg_period() + delta;
aa483808 6589
b5b4860d 6590 used = div_u64(avg, total);
1e3c88bd 6591
b5b4860d
VG
6592 if (likely(used < SCHED_CAPACITY_SCALE))
6593 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6594
b5b4860d 6595 return 1;
1e3c88bd
PZ
6596}
6597
ced549fa 6598static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6599{
8cd5601c 6600 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6601 struct sched_group *sdg = sd->groups;
6602
ca6d75e6 6603 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6604
ced549fa 6605 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6606 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6607
ced549fa
NP
6608 if (!capacity)
6609 capacity = 1;
1e3c88bd 6610
ced549fa
NP
6611 cpu_rq(cpu)->cpu_capacity = capacity;
6612 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6613}
6614
63b2ca30 6615void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6616{
6617 struct sched_domain *child = sd->child;
6618 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6619 unsigned long capacity;
4ec4412e
VG
6620 unsigned long interval;
6621
6622 interval = msecs_to_jiffies(sd->balance_interval);
6623 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6624 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6625
6626 if (!child) {
ced549fa 6627 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6628 return;
6629 }
6630
dc7ff76e 6631 capacity = 0;
1e3c88bd 6632
74a5ce20
PZ
6633 if (child->flags & SD_OVERLAP) {
6634 /*
6635 * SD_OVERLAP domains cannot assume that child groups
6636 * span the current group.
6637 */
6638
863bffc8 6639 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6640 struct sched_group_capacity *sgc;
9abf24d4 6641 struct rq *rq = cpu_rq(cpu);
863bffc8 6642
9abf24d4 6643 /*
63b2ca30 6644 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6645 * gets here before we've attached the domains to the
6646 * runqueues.
6647 *
ced549fa
NP
6648 * Use capacity_of(), which is set irrespective of domains
6649 * in update_cpu_capacity().
9abf24d4 6650 *
dc7ff76e 6651 * This avoids capacity from being 0 and
9abf24d4 6652 * causing divide-by-zero issues on boot.
9abf24d4
SD
6653 */
6654 if (unlikely(!rq->sd)) {
ced549fa 6655 capacity += capacity_of(cpu);
9abf24d4
SD
6656 continue;
6657 }
863bffc8 6658
63b2ca30 6659 sgc = rq->sd->groups->sgc;
63b2ca30 6660 capacity += sgc->capacity;
863bffc8 6661 }
74a5ce20
PZ
6662 } else {
6663 /*
6664 * !SD_OVERLAP domains can assume that child groups
6665 * span the current group.
6666 */
6667
6668 group = child->groups;
6669 do {
63b2ca30 6670 capacity += group->sgc->capacity;
74a5ce20
PZ
6671 group = group->next;
6672 } while (group != child->groups);
6673 }
1e3c88bd 6674
63b2ca30 6675 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6676}
6677
9d5efe05 6678/*
ea67821b
VG
6679 * Check whether the capacity of the rq has been noticeably reduced by side
6680 * activity. The imbalance_pct is used for the threshold.
6681 * Return true is the capacity is reduced
9d5efe05
SV
6682 */
6683static inline int
ea67821b 6684check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6685{
ea67821b
VG
6686 return ((rq->cpu_capacity * sd->imbalance_pct) <
6687 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6688}
6689
30ce5dab
PZ
6690/*
6691 * Group imbalance indicates (and tries to solve) the problem where balancing
6692 * groups is inadequate due to tsk_cpus_allowed() constraints.
6693 *
6694 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6695 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6696 * Something like:
6697 *
6698 * { 0 1 2 3 } { 4 5 6 7 }
6699 * * * * *
6700 *
6701 * If we were to balance group-wise we'd place two tasks in the first group and
6702 * two tasks in the second group. Clearly this is undesired as it will overload
6703 * cpu 3 and leave one of the cpus in the second group unused.
6704 *
6705 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6706 * by noticing the lower domain failed to reach balance and had difficulty
6707 * moving tasks due to affinity constraints.
30ce5dab
PZ
6708 *
6709 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6710 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6711 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6712 * to create an effective group imbalance.
6713 *
6714 * This is a somewhat tricky proposition since the next run might not find the
6715 * group imbalance and decide the groups need to be balanced again. A most
6716 * subtle and fragile situation.
6717 */
6718
6263322c 6719static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6720{
63b2ca30 6721 return group->sgc->imbalance;
30ce5dab
PZ
6722}
6723
b37d9316 6724/*
ea67821b
VG
6725 * group_has_capacity returns true if the group has spare capacity that could
6726 * be used by some tasks.
6727 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6728 * smaller than the number of CPUs or if the utilization is lower than the
6729 * available capacity for CFS tasks.
ea67821b
VG
6730 * For the latter, we use a threshold to stabilize the state, to take into
6731 * account the variance of the tasks' load and to return true if the available
6732 * capacity in meaningful for the load balancer.
6733 * As an example, an available capacity of 1% can appear but it doesn't make
6734 * any benefit for the load balance.
b37d9316 6735 */
ea67821b
VG
6736static inline bool
6737group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6738{
ea67821b
VG
6739 if (sgs->sum_nr_running < sgs->group_weight)
6740 return true;
c61037e9 6741
ea67821b 6742 if ((sgs->group_capacity * 100) >
9e91d61d 6743 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6744 return true;
b37d9316 6745
ea67821b
VG
6746 return false;
6747}
6748
6749/*
6750 * group_is_overloaded returns true if the group has more tasks than it can
6751 * handle.
6752 * group_is_overloaded is not equals to !group_has_capacity because a group
6753 * with the exact right number of tasks, has no more spare capacity but is not
6754 * overloaded so both group_has_capacity and group_is_overloaded return
6755 * false.
6756 */
6757static inline bool
6758group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6759{
6760 if (sgs->sum_nr_running <= sgs->group_weight)
6761 return false;
b37d9316 6762
ea67821b 6763 if ((sgs->group_capacity * 100) <
9e91d61d 6764 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6765 return true;
b37d9316 6766
ea67821b 6767 return false;
b37d9316
PZ
6768}
6769
79a89f92
LY
6770static inline enum
6771group_type group_classify(struct sched_group *group,
6772 struct sg_lb_stats *sgs)
caeb178c 6773{
ea67821b 6774 if (sgs->group_no_capacity)
caeb178c
RR
6775 return group_overloaded;
6776
6777 if (sg_imbalanced(group))
6778 return group_imbalanced;
6779
6780 return group_other;
6781}
6782
1e3c88bd
PZ
6783/**
6784 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6785 * @env: The load balancing environment.
1e3c88bd 6786 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6787 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6788 * @local_group: Does group contain this_cpu.
1e3c88bd 6789 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6790 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6791 */
bd939f45
PZ
6792static inline void update_sg_lb_stats(struct lb_env *env,
6793 struct sched_group *group, int load_idx,
4486edd1
TC
6794 int local_group, struct sg_lb_stats *sgs,
6795 bool *overload)
1e3c88bd 6796{
30ce5dab 6797 unsigned long load;
a426f99c 6798 int i, nr_running;
1e3c88bd 6799
b72ff13c
PZ
6800 memset(sgs, 0, sizeof(*sgs));
6801
b9403130 6802 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6803 struct rq *rq = cpu_rq(i);
6804
1e3c88bd 6805 /* Bias balancing toward cpus of our domain */
6263322c 6806 if (local_group)
04f733b4 6807 load = target_load(i, load_idx);
6263322c 6808 else
1e3c88bd 6809 load = source_load(i, load_idx);
1e3c88bd
PZ
6810
6811 sgs->group_load += load;
9e91d61d 6812 sgs->group_util += cpu_util(i);
65fdac08 6813 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6814
a426f99c
WL
6815 nr_running = rq->nr_running;
6816 if (nr_running > 1)
4486edd1
TC
6817 *overload = true;
6818
0ec8aa00
PZ
6819#ifdef CONFIG_NUMA_BALANCING
6820 sgs->nr_numa_running += rq->nr_numa_running;
6821 sgs->nr_preferred_running += rq->nr_preferred_running;
6822#endif
1e3c88bd 6823 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6824 /*
6825 * No need to call idle_cpu() if nr_running is not 0
6826 */
6827 if (!nr_running && idle_cpu(i))
aae6d3dd 6828 sgs->idle_cpus++;
1e3c88bd
PZ
6829 }
6830
63b2ca30
NP
6831 /* Adjust by relative CPU capacity of the group */
6832 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6833 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6834
dd5feea1 6835 if (sgs->sum_nr_running)
38d0f770 6836 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6837
aae6d3dd 6838 sgs->group_weight = group->group_weight;
b37d9316 6839
ea67821b 6840 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6841 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6842}
6843
532cb4c4
MN
6844/**
6845 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6846 * @env: The load balancing environment.
532cb4c4
MN
6847 * @sds: sched_domain statistics
6848 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6849 * @sgs: sched_group statistics
532cb4c4
MN
6850 *
6851 * Determine if @sg is a busier group than the previously selected
6852 * busiest group.
e69f6186
YB
6853 *
6854 * Return: %true if @sg is a busier group than the previously selected
6855 * busiest group. %false otherwise.
532cb4c4 6856 */
bd939f45 6857static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6858 struct sd_lb_stats *sds,
6859 struct sched_group *sg,
bd939f45 6860 struct sg_lb_stats *sgs)
532cb4c4 6861{
caeb178c 6862 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6863
caeb178c 6864 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6865 return true;
6866
caeb178c
RR
6867 if (sgs->group_type < busiest->group_type)
6868 return false;
6869
6870 if (sgs->avg_load <= busiest->avg_load)
6871 return false;
6872
6873 /* This is the busiest node in its class. */
6874 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6875 return true;
6876
1f621e02
SD
6877 /* No ASYM_PACKING if target cpu is already busy */
6878 if (env->idle == CPU_NOT_IDLE)
6879 return true;
532cb4c4
MN
6880 /*
6881 * ASYM_PACKING needs to move all the work to the lowest
6882 * numbered CPUs in the group, therefore mark all groups
6883 * higher than ourself as busy.
6884 */
caeb178c 6885 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6886 if (!sds->busiest)
6887 return true;
6888
1f621e02
SD
6889 /* Prefer to move from highest possible cpu's work */
6890 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6891 return true;
6892 }
6893
6894 return false;
6895}
6896
0ec8aa00
PZ
6897#ifdef CONFIG_NUMA_BALANCING
6898static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6899{
6900 if (sgs->sum_nr_running > sgs->nr_numa_running)
6901 return regular;
6902 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6903 return remote;
6904 return all;
6905}
6906
6907static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6908{
6909 if (rq->nr_running > rq->nr_numa_running)
6910 return regular;
6911 if (rq->nr_running > rq->nr_preferred_running)
6912 return remote;
6913 return all;
6914}
6915#else
6916static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6917{
6918 return all;
6919}
6920
6921static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6922{
6923 return regular;
6924}
6925#endif /* CONFIG_NUMA_BALANCING */
6926
1e3c88bd 6927/**
461819ac 6928 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6929 * @env: The load balancing environment.
1e3c88bd
PZ
6930 * @sds: variable to hold the statistics for this sched_domain.
6931 */
0ec8aa00 6932static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6933{
bd939f45
PZ
6934 struct sched_domain *child = env->sd->child;
6935 struct sched_group *sg = env->sd->groups;
56cf515b 6936 struct sg_lb_stats tmp_sgs;
1e3c88bd 6937 int load_idx, prefer_sibling = 0;
4486edd1 6938 bool overload = false;
1e3c88bd
PZ
6939
6940 if (child && child->flags & SD_PREFER_SIBLING)
6941 prefer_sibling = 1;
6942
bd939f45 6943 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6944
6945 do {
56cf515b 6946 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6947 int local_group;
6948
bd939f45 6949 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6950 if (local_group) {
6951 sds->local = sg;
6952 sgs = &sds->local_stat;
b72ff13c
PZ
6953
6954 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6955 time_after_eq(jiffies, sg->sgc->next_update))
6956 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6957 }
1e3c88bd 6958
4486edd1
TC
6959 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6960 &overload);
1e3c88bd 6961
b72ff13c
PZ
6962 if (local_group)
6963 goto next_group;
6964
1e3c88bd
PZ
6965 /*
6966 * In case the child domain prefers tasks go to siblings
ea67821b 6967 * first, lower the sg capacity so that we'll try
75dd321d
NR
6968 * and move all the excess tasks away. We lower the capacity
6969 * of a group only if the local group has the capacity to fit
ea67821b
VG
6970 * these excess tasks. The extra check prevents the case where
6971 * you always pull from the heaviest group when it is already
6972 * under-utilized (possible with a large weight task outweighs
6973 * the tasks on the system).
1e3c88bd 6974 */
b72ff13c 6975 if (prefer_sibling && sds->local &&
ea67821b
VG
6976 group_has_capacity(env, &sds->local_stat) &&
6977 (sgs->sum_nr_running > 1)) {
6978 sgs->group_no_capacity = 1;
79a89f92 6979 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6980 }
1e3c88bd 6981
b72ff13c 6982 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6983 sds->busiest = sg;
56cf515b 6984 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6985 }
6986
b72ff13c
PZ
6987next_group:
6988 /* Now, start updating sd_lb_stats */
6989 sds->total_load += sgs->group_load;
63b2ca30 6990 sds->total_capacity += sgs->group_capacity;
b72ff13c 6991
532cb4c4 6992 sg = sg->next;
bd939f45 6993 } while (sg != env->sd->groups);
0ec8aa00
PZ
6994
6995 if (env->sd->flags & SD_NUMA)
6996 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6997
6998 if (!env->sd->parent) {
6999 /* update overload indicator if we are at root domain */
7000 if (env->dst_rq->rd->overload != overload)
7001 env->dst_rq->rd->overload = overload;
7002 }
7003
532cb4c4
MN
7004}
7005
532cb4c4
MN
7006/**
7007 * check_asym_packing - Check to see if the group is packed into the
7008 * sched doman.
7009 *
7010 * This is primarily intended to used at the sibling level. Some
7011 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7012 * case of POWER7, it can move to lower SMT modes only when higher
7013 * threads are idle. When in lower SMT modes, the threads will
7014 * perform better since they share less core resources. Hence when we
7015 * have idle threads, we want them to be the higher ones.
7016 *
7017 * This packing function is run on idle threads. It checks to see if
7018 * the busiest CPU in this domain (core in the P7 case) has a higher
7019 * CPU number than the packing function is being run on. Here we are
7020 * assuming lower CPU number will be equivalent to lower a SMT thread
7021 * number.
7022 *
e69f6186 7023 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7024 * this CPU. The amount of the imbalance is returned in *imbalance.
7025 *
cd96891d 7026 * @env: The load balancing environment.
532cb4c4 7027 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7028 */
bd939f45 7029static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7030{
7031 int busiest_cpu;
7032
bd939f45 7033 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7034 return 0;
7035
1f621e02
SD
7036 if (env->idle == CPU_NOT_IDLE)
7037 return 0;
7038
532cb4c4
MN
7039 if (!sds->busiest)
7040 return 0;
7041
7042 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7043 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7044 return 0;
7045
bd939f45 7046 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7047 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7048 SCHED_CAPACITY_SCALE);
bd939f45 7049
532cb4c4 7050 return 1;
1e3c88bd
PZ
7051}
7052
7053/**
7054 * fix_small_imbalance - Calculate the minor imbalance that exists
7055 * amongst the groups of a sched_domain, during
7056 * load balancing.
cd96891d 7057 * @env: The load balancing environment.
1e3c88bd 7058 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7059 */
bd939f45
PZ
7060static inline
7061void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7062{
63b2ca30 7063 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7064 unsigned int imbn = 2;
dd5feea1 7065 unsigned long scaled_busy_load_per_task;
56cf515b 7066 struct sg_lb_stats *local, *busiest;
1e3c88bd 7067
56cf515b
JK
7068 local = &sds->local_stat;
7069 busiest = &sds->busiest_stat;
1e3c88bd 7070
56cf515b
JK
7071 if (!local->sum_nr_running)
7072 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7073 else if (busiest->load_per_task > local->load_per_task)
7074 imbn = 1;
dd5feea1 7075
56cf515b 7076 scaled_busy_load_per_task =
ca8ce3d0 7077 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7078 busiest->group_capacity;
56cf515b 7079
3029ede3
VD
7080 if (busiest->avg_load + scaled_busy_load_per_task >=
7081 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7082 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7083 return;
7084 }
7085
7086 /*
7087 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7088 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7089 * moving them.
7090 */
7091
63b2ca30 7092 capa_now += busiest->group_capacity *
56cf515b 7093 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7094 capa_now += local->group_capacity *
56cf515b 7095 min(local->load_per_task, local->avg_load);
ca8ce3d0 7096 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7097
7098 /* Amount of load we'd subtract */
a2cd4260 7099 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7100 capa_move += busiest->group_capacity *
56cf515b 7101 min(busiest->load_per_task,
a2cd4260 7102 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7103 }
1e3c88bd
PZ
7104
7105 /* Amount of load we'd add */
63b2ca30 7106 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7107 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7108 tmp = (busiest->avg_load * busiest->group_capacity) /
7109 local->group_capacity;
56cf515b 7110 } else {
ca8ce3d0 7111 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7112 local->group_capacity;
56cf515b 7113 }
63b2ca30 7114 capa_move += local->group_capacity *
3ae11c90 7115 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7116 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7117
7118 /* Move if we gain throughput */
63b2ca30 7119 if (capa_move > capa_now)
56cf515b 7120 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7121}
7122
7123/**
7124 * calculate_imbalance - Calculate the amount of imbalance present within the
7125 * groups of a given sched_domain during load balance.
bd939f45 7126 * @env: load balance environment
1e3c88bd 7127 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7128 */
bd939f45 7129static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7130{
dd5feea1 7131 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7132 struct sg_lb_stats *local, *busiest;
7133
7134 local = &sds->local_stat;
56cf515b 7135 busiest = &sds->busiest_stat;
dd5feea1 7136
caeb178c 7137 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7138 /*
7139 * In the group_imb case we cannot rely on group-wide averages
7140 * to ensure cpu-load equilibrium, look at wider averages. XXX
7141 */
56cf515b
JK
7142 busiest->load_per_task =
7143 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7144 }
7145
1e3c88bd 7146 /*
885e542c
DE
7147 * Avg load of busiest sg can be less and avg load of local sg can
7148 * be greater than avg load across all sgs of sd because avg load
7149 * factors in sg capacity and sgs with smaller group_type are
7150 * skipped when updating the busiest sg:
1e3c88bd 7151 */
b1885550
VD
7152 if (busiest->avg_load <= sds->avg_load ||
7153 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7154 env->imbalance = 0;
7155 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7156 }
7157
9a5d9ba6
PZ
7158 /*
7159 * If there aren't any idle cpus, avoid creating some.
7160 */
7161 if (busiest->group_type == group_overloaded &&
7162 local->group_type == group_overloaded) {
1be0eb2a 7163 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7164 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7165 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7166 load_above_capacity *= NICE_0_LOAD;
7167 load_above_capacity /= busiest->group_capacity;
7168 } else
ea67821b 7169 load_above_capacity = ~0UL;
dd5feea1
SS
7170 }
7171
7172 /*
7173 * We're trying to get all the cpus to the average_load, so we don't
7174 * want to push ourselves above the average load, nor do we wish to
7175 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7176 * we also don't want to reduce the group load below the group
7177 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7178 */
30ce5dab 7179 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7180
7181 /* How much load to actually move to equalise the imbalance */
56cf515b 7182 env->imbalance = min(
63b2ca30
NP
7183 max_pull * busiest->group_capacity,
7184 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7185 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7186
7187 /*
7188 * if *imbalance is less than the average load per runnable task
25985edc 7189 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7190 * a think about bumping its value to force at least one task to be
7191 * moved
7192 */
56cf515b 7193 if (env->imbalance < busiest->load_per_task)
bd939f45 7194 return fix_small_imbalance(env, sds);
1e3c88bd 7195}
fab47622 7196
1e3c88bd
PZ
7197/******* find_busiest_group() helpers end here *********************/
7198
7199/**
7200 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7201 * if there is an imbalance.
1e3c88bd
PZ
7202 *
7203 * Also calculates the amount of weighted load which should be moved
7204 * to restore balance.
7205 *
cd96891d 7206 * @env: The load balancing environment.
1e3c88bd 7207 *
e69f6186 7208 * Return: - The busiest group if imbalance exists.
1e3c88bd 7209 */
56cf515b 7210static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7211{
56cf515b 7212 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7213 struct sd_lb_stats sds;
7214
147c5fc2 7215 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7216
7217 /*
7218 * Compute the various statistics relavent for load balancing at
7219 * this level.
7220 */
23f0d209 7221 update_sd_lb_stats(env, &sds);
56cf515b
JK
7222 local = &sds.local_stat;
7223 busiest = &sds.busiest_stat;
1e3c88bd 7224
ea67821b 7225 /* ASYM feature bypasses nice load balance check */
1f621e02 7226 if (check_asym_packing(env, &sds))
532cb4c4
MN
7227 return sds.busiest;
7228
cc57aa8f 7229 /* There is no busy sibling group to pull tasks from */
56cf515b 7230 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7231 goto out_balanced;
7232
ca8ce3d0
NP
7233 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7234 / sds.total_capacity;
b0432d8f 7235
866ab43e
PZ
7236 /*
7237 * If the busiest group is imbalanced the below checks don't
30ce5dab 7238 * work because they assume all things are equal, which typically
866ab43e
PZ
7239 * isn't true due to cpus_allowed constraints and the like.
7240 */
caeb178c 7241 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7242 goto force_balance;
7243
cc57aa8f 7244 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7245 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7246 busiest->group_no_capacity)
fab47622
NR
7247 goto force_balance;
7248
cc57aa8f 7249 /*
9c58c79a 7250 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7251 * don't try and pull any tasks.
7252 */
56cf515b 7253 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7254 goto out_balanced;
7255
cc57aa8f
PZ
7256 /*
7257 * Don't pull any tasks if this group is already above the domain
7258 * average load.
7259 */
56cf515b 7260 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7261 goto out_balanced;
7262
bd939f45 7263 if (env->idle == CPU_IDLE) {
aae6d3dd 7264 /*
43f4d666
VG
7265 * This cpu is idle. If the busiest group is not overloaded
7266 * and there is no imbalance between this and busiest group
7267 * wrt idle cpus, it is balanced. The imbalance becomes
7268 * significant if the diff is greater than 1 otherwise we
7269 * might end up to just move the imbalance on another group
aae6d3dd 7270 */
43f4d666
VG
7271 if ((busiest->group_type != group_overloaded) &&
7272 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7273 goto out_balanced;
c186fafe
PZ
7274 } else {
7275 /*
7276 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7277 * imbalance_pct to be conservative.
7278 */
56cf515b
JK
7279 if (100 * busiest->avg_load <=
7280 env->sd->imbalance_pct * local->avg_load)
c186fafe 7281 goto out_balanced;
aae6d3dd 7282 }
1e3c88bd 7283
fab47622 7284force_balance:
1e3c88bd 7285 /* Looks like there is an imbalance. Compute it */
bd939f45 7286 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7287 return sds.busiest;
7288
7289out_balanced:
bd939f45 7290 env->imbalance = 0;
1e3c88bd
PZ
7291 return NULL;
7292}
7293
7294/*
7295 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7296 */
bd939f45 7297static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7298 struct sched_group *group)
1e3c88bd
PZ
7299{
7300 struct rq *busiest = NULL, *rq;
ced549fa 7301 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7302 int i;
7303
6906a408 7304 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7305 unsigned long capacity, wl;
0ec8aa00
PZ
7306 enum fbq_type rt;
7307
7308 rq = cpu_rq(i);
7309 rt = fbq_classify_rq(rq);
1e3c88bd 7310
0ec8aa00
PZ
7311 /*
7312 * We classify groups/runqueues into three groups:
7313 * - regular: there are !numa tasks
7314 * - remote: there are numa tasks that run on the 'wrong' node
7315 * - all: there is no distinction
7316 *
7317 * In order to avoid migrating ideally placed numa tasks,
7318 * ignore those when there's better options.
7319 *
7320 * If we ignore the actual busiest queue to migrate another
7321 * task, the next balance pass can still reduce the busiest
7322 * queue by moving tasks around inside the node.
7323 *
7324 * If we cannot move enough load due to this classification
7325 * the next pass will adjust the group classification and
7326 * allow migration of more tasks.
7327 *
7328 * Both cases only affect the total convergence complexity.
7329 */
7330 if (rt > env->fbq_type)
7331 continue;
7332
ced549fa 7333 capacity = capacity_of(i);
9d5efe05 7334
6e40f5bb 7335 wl = weighted_cpuload(i);
1e3c88bd 7336
6e40f5bb
TG
7337 /*
7338 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7339 * which is not scaled with the cpu capacity.
6e40f5bb 7340 */
ea67821b
VG
7341
7342 if (rq->nr_running == 1 && wl > env->imbalance &&
7343 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7344 continue;
7345
6e40f5bb
TG
7346 /*
7347 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7348 * the weighted_cpuload() scaled with the cpu capacity, so
7349 * that the load can be moved away from the cpu that is
7350 * potentially running at a lower capacity.
95a79b80 7351 *
ced549fa 7352 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7353 * multiplication to rid ourselves of the division works out
ced549fa
NP
7354 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7355 * our previous maximum.
6e40f5bb 7356 */
ced549fa 7357 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7358 busiest_load = wl;
ced549fa 7359 busiest_capacity = capacity;
1e3c88bd
PZ
7360 busiest = rq;
7361 }
7362 }
7363
7364 return busiest;
7365}
7366
7367/*
7368 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7369 * so long as it is large enough.
7370 */
7371#define MAX_PINNED_INTERVAL 512
7372
7373/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7374DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7375
bd939f45 7376static int need_active_balance(struct lb_env *env)
1af3ed3d 7377{
bd939f45
PZ
7378 struct sched_domain *sd = env->sd;
7379
7380 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7381
7382 /*
7383 * ASYM_PACKING needs to force migrate tasks from busy but
7384 * higher numbered CPUs in order to pack all tasks in the
7385 * lowest numbered CPUs.
7386 */
bd939f45 7387 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7388 return 1;
1af3ed3d
PZ
7389 }
7390
1aaf90a4
VG
7391 /*
7392 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7393 * It's worth migrating the task if the src_cpu's capacity is reduced
7394 * because of other sched_class or IRQs if more capacity stays
7395 * available on dst_cpu.
7396 */
7397 if ((env->idle != CPU_NOT_IDLE) &&
7398 (env->src_rq->cfs.h_nr_running == 1)) {
7399 if ((check_cpu_capacity(env->src_rq, sd)) &&
7400 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7401 return 1;
7402 }
7403
1af3ed3d
PZ
7404 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7405}
7406
969c7921
TH
7407static int active_load_balance_cpu_stop(void *data);
7408
23f0d209
JK
7409static int should_we_balance(struct lb_env *env)
7410{
7411 struct sched_group *sg = env->sd->groups;
7412 struct cpumask *sg_cpus, *sg_mask;
7413 int cpu, balance_cpu = -1;
7414
7415 /*
7416 * In the newly idle case, we will allow all the cpu's
7417 * to do the newly idle load balance.
7418 */
7419 if (env->idle == CPU_NEWLY_IDLE)
7420 return 1;
7421
7422 sg_cpus = sched_group_cpus(sg);
7423 sg_mask = sched_group_mask(sg);
7424 /* Try to find first idle cpu */
7425 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7426 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7427 continue;
7428
7429 balance_cpu = cpu;
7430 break;
7431 }
7432
7433 if (balance_cpu == -1)
7434 balance_cpu = group_balance_cpu(sg);
7435
7436 /*
7437 * First idle cpu or the first cpu(busiest) in this sched group
7438 * is eligible for doing load balancing at this and above domains.
7439 */
b0cff9d8 7440 return balance_cpu == env->dst_cpu;
23f0d209
JK
7441}
7442
1e3c88bd
PZ
7443/*
7444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7445 * tasks if there is an imbalance.
7446 */
7447static int load_balance(int this_cpu, struct rq *this_rq,
7448 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7449 int *continue_balancing)
1e3c88bd 7450{
88b8dac0 7451 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7452 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7453 struct sched_group *group;
1e3c88bd
PZ
7454 struct rq *busiest;
7455 unsigned long flags;
4ba29684 7456 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7457
8e45cb54
PZ
7458 struct lb_env env = {
7459 .sd = sd,
ddcdf6e7
PZ
7460 .dst_cpu = this_cpu,
7461 .dst_rq = this_rq,
88b8dac0 7462 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7463 .idle = idle,
eb95308e 7464 .loop_break = sched_nr_migrate_break,
b9403130 7465 .cpus = cpus,
0ec8aa00 7466 .fbq_type = all,
163122b7 7467 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7468 };
7469
cfc03118
JK
7470 /*
7471 * For NEWLY_IDLE load_balancing, we don't need to consider
7472 * other cpus in our group
7473 */
e02e60c1 7474 if (idle == CPU_NEWLY_IDLE)
cfc03118 7475 env.dst_grpmask = NULL;
cfc03118 7476
1e3c88bd
PZ
7477 cpumask_copy(cpus, cpu_active_mask);
7478
1e3c88bd
PZ
7479 schedstat_inc(sd, lb_count[idle]);
7480
7481redo:
23f0d209
JK
7482 if (!should_we_balance(&env)) {
7483 *continue_balancing = 0;
1e3c88bd 7484 goto out_balanced;
23f0d209 7485 }
1e3c88bd 7486
23f0d209 7487 group = find_busiest_group(&env);
1e3c88bd
PZ
7488 if (!group) {
7489 schedstat_inc(sd, lb_nobusyg[idle]);
7490 goto out_balanced;
7491 }
7492
b9403130 7493 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7494 if (!busiest) {
7495 schedstat_inc(sd, lb_nobusyq[idle]);
7496 goto out_balanced;
7497 }
7498
78feefc5 7499 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7500
bd939f45 7501 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7502
1aaf90a4
VG
7503 env.src_cpu = busiest->cpu;
7504 env.src_rq = busiest;
7505
1e3c88bd
PZ
7506 ld_moved = 0;
7507 if (busiest->nr_running > 1) {
7508 /*
7509 * Attempt to move tasks. If find_busiest_group has found
7510 * an imbalance but busiest->nr_running <= 1, the group is
7511 * still unbalanced. ld_moved simply stays zero, so it is
7512 * correctly treated as an imbalance.
7513 */
8e45cb54 7514 env.flags |= LBF_ALL_PINNED;
c82513e5 7515 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7516
5d6523eb 7517more_balance:
163122b7 7518 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7519
7520 /*
7521 * cur_ld_moved - load moved in current iteration
7522 * ld_moved - cumulative load moved across iterations
7523 */
163122b7 7524 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7525
7526 /*
163122b7
KT
7527 * We've detached some tasks from busiest_rq. Every
7528 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7529 * unlock busiest->lock, and we are able to be sure
7530 * that nobody can manipulate the tasks in parallel.
7531 * See task_rq_lock() family for the details.
1e3c88bd 7532 */
163122b7
KT
7533
7534 raw_spin_unlock(&busiest->lock);
7535
7536 if (cur_ld_moved) {
7537 attach_tasks(&env);
7538 ld_moved += cur_ld_moved;
7539 }
7540
1e3c88bd 7541 local_irq_restore(flags);
88b8dac0 7542
f1cd0858
JK
7543 if (env.flags & LBF_NEED_BREAK) {
7544 env.flags &= ~LBF_NEED_BREAK;
7545 goto more_balance;
7546 }
7547
88b8dac0
SV
7548 /*
7549 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7550 * us and move them to an alternate dst_cpu in our sched_group
7551 * where they can run. The upper limit on how many times we
7552 * iterate on same src_cpu is dependent on number of cpus in our
7553 * sched_group.
7554 *
7555 * This changes load balance semantics a bit on who can move
7556 * load to a given_cpu. In addition to the given_cpu itself
7557 * (or a ilb_cpu acting on its behalf where given_cpu is
7558 * nohz-idle), we now have balance_cpu in a position to move
7559 * load to given_cpu. In rare situations, this may cause
7560 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7561 * _independently_ and at _same_ time to move some load to
7562 * given_cpu) causing exceess load to be moved to given_cpu.
7563 * This however should not happen so much in practice and
7564 * moreover subsequent load balance cycles should correct the
7565 * excess load moved.
7566 */
6263322c 7567 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7568
7aff2e3a
VD
7569 /* Prevent to re-select dst_cpu via env's cpus */
7570 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7571
78feefc5 7572 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7573 env.dst_cpu = env.new_dst_cpu;
6263322c 7574 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7575 env.loop = 0;
7576 env.loop_break = sched_nr_migrate_break;
e02e60c1 7577
88b8dac0
SV
7578 /*
7579 * Go back to "more_balance" rather than "redo" since we
7580 * need to continue with same src_cpu.
7581 */
7582 goto more_balance;
7583 }
1e3c88bd 7584
6263322c
PZ
7585 /*
7586 * We failed to reach balance because of affinity.
7587 */
7588 if (sd_parent) {
63b2ca30 7589 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7590
afdeee05 7591 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7592 *group_imbalance = 1;
6263322c
PZ
7593 }
7594
1e3c88bd 7595 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7596 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7597 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7598 if (!cpumask_empty(cpus)) {
7599 env.loop = 0;
7600 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7601 goto redo;
bbf18b19 7602 }
afdeee05 7603 goto out_all_pinned;
1e3c88bd
PZ
7604 }
7605 }
7606
7607 if (!ld_moved) {
7608 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7609 /*
7610 * Increment the failure counter only on periodic balance.
7611 * We do not want newidle balance, which can be very
7612 * frequent, pollute the failure counter causing
7613 * excessive cache_hot migrations and active balances.
7614 */
7615 if (idle != CPU_NEWLY_IDLE)
7616 sd->nr_balance_failed++;
1e3c88bd 7617
bd939f45 7618 if (need_active_balance(&env)) {
1e3c88bd
PZ
7619 raw_spin_lock_irqsave(&busiest->lock, flags);
7620
969c7921
TH
7621 /* don't kick the active_load_balance_cpu_stop,
7622 * if the curr task on busiest cpu can't be
7623 * moved to this_cpu
1e3c88bd
PZ
7624 */
7625 if (!cpumask_test_cpu(this_cpu,
fa17b507 7626 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7627 raw_spin_unlock_irqrestore(&busiest->lock,
7628 flags);
8e45cb54 7629 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7630 goto out_one_pinned;
7631 }
7632
969c7921
TH
7633 /*
7634 * ->active_balance synchronizes accesses to
7635 * ->active_balance_work. Once set, it's cleared
7636 * only after active load balance is finished.
7637 */
1e3c88bd
PZ
7638 if (!busiest->active_balance) {
7639 busiest->active_balance = 1;
7640 busiest->push_cpu = this_cpu;
7641 active_balance = 1;
7642 }
7643 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7644
bd939f45 7645 if (active_balance) {
969c7921
TH
7646 stop_one_cpu_nowait(cpu_of(busiest),
7647 active_load_balance_cpu_stop, busiest,
7648 &busiest->active_balance_work);
bd939f45 7649 }
1e3c88bd 7650
d02c0711 7651 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7652 sd->nr_balance_failed = sd->cache_nice_tries+1;
7653 }
7654 } else
7655 sd->nr_balance_failed = 0;
7656
7657 if (likely(!active_balance)) {
7658 /* We were unbalanced, so reset the balancing interval */
7659 sd->balance_interval = sd->min_interval;
7660 } else {
7661 /*
7662 * If we've begun active balancing, start to back off. This
7663 * case may not be covered by the all_pinned logic if there
7664 * is only 1 task on the busy runqueue (because we don't call
163122b7 7665 * detach_tasks).
1e3c88bd
PZ
7666 */
7667 if (sd->balance_interval < sd->max_interval)
7668 sd->balance_interval *= 2;
7669 }
7670
1e3c88bd
PZ
7671 goto out;
7672
7673out_balanced:
afdeee05
VG
7674 /*
7675 * We reach balance although we may have faced some affinity
7676 * constraints. Clear the imbalance flag if it was set.
7677 */
7678 if (sd_parent) {
7679 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7680
7681 if (*group_imbalance)
7682 *group_imbalance = 0;
7683 }
7684
7685out_all_pinned:
7686 /*
7687 * We reach balance because all tasks are pinned at this level so
7688 * we can't migrate them. Let the imbalance flag set so parent level
7689 * can try to migrate them.
7690 */
1e3c88bd
PZ
7691 schedstat_inc(sd, lb_balanced[idle]);
7692
7693 sd->nr_balance_failed = 0;
7694
7695out_one_pinned:
7696 /* tune up the balancing interval */
8e45cb54 7697 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7698 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7699 (sd->balance_interval < sd->max_interval))
7700 sd->balance_interval *= 2;
7701
46e49b38 7702 ld_moved = 0;
1e3c88bd 7703out:
1e3c88bd
PZ
7704 return ld_moved;
7705}
7706
52a08ef1
JL
7707static inline unsigned long
7708get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7709{
7710 unsigned long interval = sd->balance_interval;
7711
7712 if (cpu_busy)
7713 interval *= sd->busy_factor;
7714
7715 /* scale ms to jiffies */
7716 interval = msecs_to_jiffies(interval);
7717 interval = clamp(interval, 1UL, max_load_balance_interval);
7718
7719 return interval;
7720}
7721
7722static inline void
31851a98 7723update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7724{
7725 unsigned long interval, next;
7726
31851a98
LY
7727 /* used by idle balance, so cpu_busy = 0 */
7728 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7729 next = sd->last_balance + interval;
7730
7731 if (time_after(*next_balance, next))
7732 *next_balance = next;
7733}
7734
1e3c88bd
PZ
7735/*
7736 * idle_balance is called by schedule() if this_cpu is about to become
7737 * idle. Attempts to pull tasks from other CPUs.
7738 */
6e83125c 7739static int idle_balance(struct rq *this_rq)
1e3c88bd 7740{
52a08ef1
JL
7741 unsigned long next_balance = jiffies + HZ;
7742 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7743 struct sched_domain *sd;
7744 int pulled_task = 0;
9bd721c5 7745 u64 curr_cost = 0;
1e3c88bd 7746
6e83125c
PZ
7747 /*
7748 * We must set idle_stamp _before_ calling idle_balance(), such that we
7749 * measure the duration of idle_balance() as idle time.
7750 */
7751 this_rq->idle_stamp = rq_clock(this_rq);
7752
4486edd1
TC
7753 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7754 !this_rq->rd->overload) {
52a08ef1
JL
7755 rcu_read_lock();
7756 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7757 if (sd)
31851a98 7758 update_next_balance(sd, &next_balance);
52a08ef1
JL
7759 rcu_read_unlock();
7760
6e83125c 7761 goto out;
52a08ef1 7762 }
1e3c88bd 7763
f492e12e
PZ
7764 raw_spin_unlock(&this_rq->lock);
7765
48a16753 7766 update_blocked_averages(this_cpu);
dce840a0 7767 rcu_read_lock();
1e3c88bd 7768 for_each_domain(this_cpu, sd) {
23f0d209 7769 int continue_balancing = 1;
9bd721c5 7770 u64 t0, domain_cost;
1e3c88bd
PZ
7771
7772 if (!(sd->flags & SD_LOAD_BALANCE))
7773 continue;
7774
52a08ef1 7775 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7776 update_next_balance(sd, &next_balance);
9bd721c5 7777 break;
52a08ef1 7778 }
9bd721c5 7779
f492e12e 7780 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7781 t0 = sched_clock_cpu(this_cpu);
7782
f492e12e 7783 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7784 sd, CPU_NEWLY_IDLE,
7785 &continue_balancing);
9bd721c5
JL
7786
7787 domain_cost = sched_clock_cpu(this_cpu) - t0;
7788 if (domain_cost > sd->max_newidle_lb_cost)
7789 sd->max_newidle_lb_cost = domain_cost;
7790
7791 curr_cost += domain_cost;
f492e12e 7792 }
1e3c88bd 7793
31851a98 7794 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7795
7796 /*
7797 * Stop searching for tasks to pull if there are
7798 * now runnable tasks on this rq.
7799 */
7800 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7801 break;
1e3c88bd 7802 }
dce840a0 7803 rcu_read_unlock();
f492e12e
PZ
7804
7805 raw_spin_lock(&this_rq->lock);
7806
0e5b5337
JL
7807 if (curr_cost > this_rq->max_idle_balance_cost)
7808 this_rq->max_idle_balance_cost = curr_cost;
7809
e5fc6611 7810 /*
0e5b5337
JL
7811 * While browsing the domains, we released the rq lock, a task could
7812 * have been enqueued in the meantime. Since we're not going idle,
7813 * pretend we pulled a task.
e5fc6611 7814 */
0e5b5337 7815 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7816 pulled_task = 1;
e5fc6611 7817
52a08ef1
JL
7818out:
7819 /* Move the next balance forward */
7820 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7821 this_rq->next_balance = next_balance;
9bd721c5 7822
e4aa358b 7823 /* Is there a task of a high priority class? */
46383648 7824 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7825 pulled_task = -1;
7826
38c6ade2 7827 if (pulled_task)
6e83125c
PZ
7828 this_rq->idle_stamp = 0;
7829
3c4017c1 7830 return pulled_task;
1e3c88bd
PZ
7831}
7832
7833/*
969c7921
TH
7834 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7835 * running tasks off the busiest CPU onto idle CPUs. It requires at
7836 * least 1 task to be running on each physical CPU where possible, and
7837 * avoids physical / logical imbalances.
1e3c88bd 7838 */
969c7921 7839static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7840{
969c7921
TH
7841 struct rq *busiest_rq = data;
7842 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7843 int target_cpu = busiest_rq->push_cpu;
969c7921 7844 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7845 struct sched_domain *sd;
e5673f28 7846 struct task_struct *p = NULL;
969c7921
TH
7847
7848 raw_spin_lock_irq(&busiest_rq->lock);
7849
7850 /* make sure the requested cpu hasn't gone down in the meantime */
7851 if (unlikely(busiest_cpu != smp_processor_id() ||
7852 !busiest_rq->active_balance))
7853 goto out_unlock;
1e3c88bd
PZ
7854
7855 /* Is there any task to move? */
7856 if (busiest_rq->nr_running <= 1)
969c7921 7857 goto out_unlock;
1e3c88bd
PZ
7858
7859 /*
7860 * This condition is "impossible", if it occurs
7861 * we need to fix it. Originally reported by
7862 * Bjorn Helgaas on a 128-cpu setup.
7863 */
7864 BUG_ON(busiest_rq == target_rq);
7865
1e3c88bd 7866 /* Search for an sd spanning us and the target CPU. */
dce840a0 7867 rcu_read_lock();
1e3c88bd
PZ
7868 for_each_domain(target_cpu, sd) {
7869 if ((sd->flags & SD_LOAD_BALANCE) &&
7870 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7871 break;
7872 }
7873
7874 if (likely(sd)) {
8e45cb54
PZ
7875 struct lb_env env = {
7876 .sd = sd,
ddcdf6e7
PZ
7877 .dst_cpu = target_cpu,
7878 .dst_rq = target_rq,
7879 .src_cpu = busiest_rq->cpu,
7880 .src_rq = busiest_rq,
8e45cb54
PZ
7881 .idle = CPU_IDLE,
7882 };
7883
1e3c88bd
PZ
7884 schedstat_inc(sd, alb_count);
7885
e5673f28 7886 p = detach_one_task(&env);
d02c0711 7887 if (p) {
1e3c88bd 7888 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7889 /* Active balancing done, reset the failure counter. */
7890 sd->nr_balance_failed = 0;
7891 } else {
1e3c88bd 7892 schedstat_inc(sd, alb_failed);
d02c0711 7893 }
1e3c88bd 7894 }
dce840a0 7895 rcu_read_unlock();
969c7921
TH
7896out_unlock:
7897 busiest_rq->active_balance = 0;
e5673f28
KT
7898 raw_spin_unlock(&busiest_rq->lock);
7899
7900 if (p)
7901 attach_one_task(target_rq, p);
7902
7903 local_irq_enable();
7904
969c7921 7905 return 0;
1e3c88bd
PZ
7906}
7907
d987fc7f
MG
7908static inline int on_null_domain(struct rq *rq)
7909{
7910 return unlikely(!rcu_dereference_sched(rq->sd));
7911}
7912
3451d024 7913#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7914/*
7915 * idle load balancing details
83cd4fe2
VP
7916 * - When one of the busy CPUs notice that there may be an idle rebalancing
7917 * needed, they will kick the idle load balancer, which then does idle
7918 * load balancing for all the idle CPUs.
7919 */
1e3c88bd 7920static struct {
83cd4fe2 7921 cpumask_var_t idle_cpus_mask;
0b005cf5 7922 atomic_t nr_cpus;
83cd4fe2
VP
7923 unsigned long next_balance; /* in jiffy units */
7924} nohz ____cacheline_aligned;
1e3c88bd 7925
3dd0337d 7926static inline int find_new_ilb(void)
1e3c88bd 7927{
0b005cf5 7928 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7929
786d6dc7
SS
7930 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7931 return ilb;
7932
7933 return nr_cpu_ids;
1e3c88bd 7934}
1e3c88bd 7935
83cd4fe2
VP
7936/*
7937 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7938 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7939 * CPU (if there is one).
7940 */
0aeeeeba 7941static void nohz_balancer_kick(void)
83cd4fe2
VP
7942{
7943 int ilb_cpu;
7944
7945 nohz.next_balance++;
7946
3dd0337d 7947 ilb_cpu = find_new_ilb();
83cd4fe2 7948
0b005cf5
SS
7949 if (ilb_cpu >= nr_cpu_ids)
7950 return;
83cd4fe2 7951
cd490c5b 7952 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7953 return;
7954 /*
7955 * Use smp_send_reschedule() instead of resched_cpu().
7956 * This way we generate a sched IPI on the target cpu which
7957 * is idle. And the softirq performing nohz idle load balance
7958 * will be run before returning from the IPI.
7959 */
7960 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7961 return;
7962}
7963
20a5c8cc 7964void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7965{
7966 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7967 /*
7968 * Completely isolated CPUs don't ever set, so we must test.
7969 */
7970 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7971 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7972 atomic_dec(&nohz.nr_cpus);
7973 }
71325960
SS
7974 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7975 }
7976}
7977
69e1e811
SS
7978static inline void set_cpu_sd_state_busy(void)
7979{
7980 struct sched_domain *sd;
37dc6b50 7981 int cpu = smp_processor_id();
69e1e811 7982
69e1e811 7983 rcu_read_lock();
37dc6b50 7984 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7985
7986 if (!sd || !sd->nohz_idle)
7987 goto unlock;
7988 sd->nohz_idle = 0;
7989
63b2ca30 7990 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7991unlock:
69e1e811
SS
7992 rcu_read_unlock();
7993}
7994
7995void set_cpu_sd_state_idle(void)
7996{
7997 struct sched_domain *sd;
37dc6b50 7998 int cpu = smp_processor_id();
69e1e811 7999
69e1e811 8000 rcu_read_lock();
37dc6b50 8001 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8002
8003 if (!sd || sd->nohz_idle)
8004 goto unlock;
8005 sd->nohz_idle = 1;
8006
63b2ca30 8007 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8008unlock:
69e1e811
SS
8009 rcu_read_unlock();
8010}
8011
1e3c88bd 8012/*
c1cc017c 8013 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8014 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8015 */
c1cc017c 8016void nohz_balance_enter_idle(int cpu)
1e3c88bd 8017{
71325960
SS
8018 /*
8019 * If this cpu is going down, then nothing needs to be done.
8020 */
8021 if (!cpu_active(cpu))
8022 return;
8023
c1cc017c
AS
8024 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8025 return;
1e3c88bd 8026
d987fc7f
MG
8027 /*
8028 * If we're a completely isolated CPU, we don't play.
8029 */
8030 if (on_null_domain(cpu_rq(cpu)))
8031 return;
8032
c1cc017c
AS
8033 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8034 atomic_inc(&nohz.nr_cpus);
8035 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8036}
8037#endif
8038
8039static DEFINE_SPINLOCK(balancing);
8040
49c022e6
PZ
8041/*
8042 * Scale the max load_balance interval with the number of CPUs in the system.
8043 * This trades load-balance latency on larger machines for less cross talk.
8044 */
029632fb 8045void update_max_interval(void)
49c022e6
PZ
8046{
8047 max_load_balance_interval = HZ*num_online_cpus()/10;
8048}
8049
1e3c88bd
PZ
8050/*
8051 * It checks each scheduling domain to see if it is due to be balanced,
8052 * and initiates a balancing operation if so.
8053 *
b9b0853a 8054 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8055 */
f7ed0a89 8056static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8057{
23f0d209 8058 int continue_balancing = 1;
f7ed0a89 8059 int cpu = rq->cpu;
1e3c88bd 8060 unsigned long interval;
04f733b4 8061 struct sched_domain *sd;
1e3c88bd
PZ
8062 /* Earliest time when we have to do rebalance again */
8063 unsigned long next_balance = jiffies + 60*HZ;
8064 int update_next_balance = 0;
f48627e6
JL
8065 int need_serialize, need_decay = 0;
8066 u64 max_cost = 0;
1e3c88bd 8067
48a16753 8068 update_blocked_averages(cpu);
2069dd75 8069
dce840a0 8070 rcu_read_lock();
1e3c88bd 8071 for_each_domain(cpu, sd) {
f48627e6
JL
8072 /*
8073 * Decay the newidle max times here because this is a regular
8074 * visit to all the domains. Decay ~1% per second.
8075 */
8076 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8077 sd->max_newidle_lb_cost =
8078 (sd->max_newidle_lb_cost * 253) / 256;
8079 sd->next_decay_max_lb_cost = jiffies + HZ;
8080 need_decay = 1;
8081 }
8082 max_cost += sd->max_newidle_lb_cost;
8083
1e3c88bd
PZ
8084 if (!(sd->flags & SD_LOAD_BALANCE))
8085 continue;
8086
f48627e6
JL
8087 /*
8088 * Stop the load balance at this level. There is another
8089 * CPU in our sched group which is doing load balancing more
8090 * actively.
8091 */
8092 if (!continue_balancing) {
8093 if (need_decay)
8094 continue;
8095 break;
8096 }
8097
52a08ef1 8098 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8099
8100 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8101 if (need_serialize) {
8102 if (!spin_trylock(&balancing))
8103 goto out;
8104 }
8105
8106 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8107 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8108 /*
6263322c 8109 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8110 * env->dst_cpu, so we can't know our idle
8111 * state even if we migrated tasks. Update it.
1e3c88bd 8112 */
de5eb2dd 8113 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8114 }
8115 sd->last_balance = jiffies;
52a08ef1 8116 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8117 }
8118 if (need_serialize)
8119 spin_unlock(&balancing);
8120out:
8121 if (time_after(next_balance, sd->last_balance + interval)) {
8122 next_balance = sd->last_balance + interval;
8123 update_next_balance = 1;
8124 }
f48627e6
JL
8125 }
8126 if (need_decay) {
1e3c88bd 8127 /*
f48627e6
JL
8128 * Ensure the rq-wide value also decays but keep it at a
8129 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8130 */
f48627e6
JL
8131 rq->max_idle_balance_cost =
8132 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8133 }
dce840a0 8134 rcu_read_unlock();
1e3c88bd
PZ
8135
8136 /*
8137 * next_balance will be updated only when there is a need.
8138 * When the cpu is attached to null domain for ex, it will not be
8139 * updated.
8140 */
c5afb6a8 8141 if (likely(update_next_balance)) {
1e3c88bd 8142 rq->next_balance = next_balance;
c5afb6a8
VG
8143
8144#ifdef CONFIG_NO_HZ_COMMON
8145 /*
8146 * If this CPU has been elected to perform the nohz idle
8147 * balance. Other idle CPUs have already rebalanced with
8148 * nohz_idle_balance() and nohz.next_balance has been
8149 * updated accordingly. This CPU is now running the idle load
8150 * balance for itself and we need to update the
8151 * nohz.next_balance accordingly.
8152 */
8153 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8154 nohz.next_balance = rq->next_balance;
8155#endif
8156 }
1e3c88bd
PZ
8157}
8158
3451d024 8159#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8160/*
3451d024 8161 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8162 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8163 */
208cb16b 8164static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8165{
208cb16b 8166 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8167 struct rq *rq;
8168 int balance_cpu;
c5afb6a8
VG
8169 /* Earliest time when we have to do rebalance again */
8170 unsigned long next_balance = jiffies + 60*HZ;
8171 int update_next_balance = 0;
83cd4fe2 8172
1c792db7
SS
8173 if (idle != CPU_IDLE ||
8174 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8175 goto end;
83cd4fe2
VP
8176
8177 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8178 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8179 continue;
8180
8181 /*
8182 * If this cpu gets work to do, stop the load balancing
8183 * work being done for other cpus. Next load
8184 * balancing owner will pick it up.
8185 */
1c792db7 8186 if (need_resched())
83cd4fe2 8187 break;
83cd4fe2 8188
5ed4f1d9
VG
8189 rq = cpu_rq(balance_cpu);
8190
ed61bbc6
TC
8191 /*
8192 * If time for next balance is due,
8193 * do the balance.
8194 */
8195 if (time_after_eq(jiffies, rq->next_balance)) {
8196 raw_spin_lock_irq(&rq->lock);
8197 update_rq_clock(rq);
cee1afce 8198 cpu_load_update_idle(rq);
ed61bbc6
TC
8199 raw_spin_unlock_irq(&rq->lock);
8200 rebalance_domains(rq, CPU_IDLE);
8201 }
83cd4fe2 8202
c5afb6a8
VG
8203 if (time_after(next_balance, rq->next_balance)) {
8204 next_balance = rq->next_balance;
8205 update_next_balance = 1;
8206 }
83cd4fe2 8207 }
c5afb6a8
VG
8208
8209 /*
8210 * next_balance will be updated only when there is a need.
8211 * When the CPU is attached to null domain for ex, it will not be
8212 * updated.
8213 */
8214 if (likely(update_next_balance))
8215 nohz.next_balance = next_balance;
1c792db7
SS
8216end:
8217 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8218}
8219
8220/*
0b005cf5 8221 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8222 * of an idle cpu in the system.
0b005cf5 8223 * - This rq has more than one task.
1aaf90a4
VG
8224 * - This rq has at least one CFS task and the capacity of the CPU is
8225 * significantly reduced because of RT tasks or IRQs.
8226 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8227 * multiple busy cpu.
0b005cf5
SS
8228 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8229 * domain span are idle.
83cd4fe2 8230 */
1aaf90a4 8231static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8232{
8233 unsigned long now = jiffies;
0b005cf5 8234 struct sched_domain *sd;
63b2ca30 8235 struct sched_group_capacity *sgc;
4a725627 8236 int nr_busy, cpu = rq->cpu;
1aaf90a4 8237 bool kick = false;
83cd4fe2 8238
4a725627 8239 if (unlikely(rq->idle_balance))
1aaf90a4 8240 return false;
83cd4fe2 8241
1c792db7
SS
8242 /*
8243 * We may be recently in ticked or tickless idle mode. At the first
8244 * busy tick after returning from idle, we will update the busy stats.
8245 */
69e1e811 8246 set_cpu_sd_state_busy();
c1cc017c 8247 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8248
8249 /*
8250 * None are in tickless mode and hence no need for NOHZ idle load
8251 * balancing.
8252 */
8253 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8254 return false;
1c792db7
SS
8255
8256 if (time_before(now, nohz.next_balance))
1aaf90a4 8257 return false;
83cd4fe2 8258
0b005cf5 8259 if (rq->nr_running >= 2)
1aaf90a4 8260 return true;
83cd4fe2 8261
067491b7 8262 rcu_read_lock();
37dc6b50 8263 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8264 if (sd) {
63b2ca30
NP
8265 sgc = sd->groups->sgc;
8266 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8267
1aaf90a4
VG
8268 if (nr_busy > 1) {
8269 kick = true;
8270 goto unlock;
8271 }
8272
83cd4fe2 8273 }
37dc6b50 8274
1aaf90a4
VG
8275 sd = rcu_dereference(rq->sd);
8276 if (sd) {
8277 if ((rq->cfs.h_nr_running >= 1) &&
8278 check_cpu_capacity(rq, sd)) {
8279 kick = true;
8280 goto unlock;
8281 }
8282 }
37dc6b50 8283
1aaf90a4 8284 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8285 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8286 sched_domain_span(sd)) < cpu)) {
8287 kick = true;
8288 goto unlock;
8289 }
067491b7 8290
1aaf90a4 8291unlock:
067491b7 8292 rcu_read_unlock();
1aaf90a4 8293 return kick;
83cd4fe2
VP
8294}
8295#else
208cb16b 8296static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8297#endif
8298
8299/*
8300 * run_rebalance_domains is triggered when needed from the scheduler tick.
8301 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8302 */
1e3c88bd
PZ
8303static void run_rebalance_domains(struct softirq_action *h)
8304{
208cb16b 8305 struct rq *this_rq = this_rq();
6eb57e0d 8306 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8307 CPU_IDLE : CPU_NOT_IDLE;
8308
1e3c88bd 8309 /*
83cd4fe2 8310 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8311 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8312 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8313 * give the idle cpus a chance to load balance. Else we may
8314 * load balance only within the local sched_domain hierarchy
8315 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8316 */
208cb16b 8317 nohz_idle_balance(this_rq, idle);
d4573c3e 8318 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8319}
8320
1e3c88bd
PZ
8321/*
8322 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8323 */
7caff66f 8324void trigger_load_balance(struct rq *rq)
1e3c88bd 8325{
1e3c88bd 8326 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8327 if (unlikely(on_null_domain(rq)))
8328 return;
8329
8330 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8331 raise_softirq(SCHED_SOFTIRQ);
3451d024 8332#ifdef CONFIG_NO_HZ_COMMON
c726099e 8333 if (nohz_kick_needed(rq))
0aeeeeba 8334 nohz_balancer_kick();
83cd4fe2 8335#endif
1e3c88bd
PZ
8336}
8337
0bcdcf28
CE
8338static void rq_online_fair(struct rq *rq)
8339{
8340 update_sysctl();
0e59bdae
KT
8341
8342 update_runtime_enabled(rq);
0bcdcf28
CE
8343}
8344
8345static void rq_offline_fair(struct rq *rq)
8346{
8347 update_sysctl();
a4c96ae3
PB
8348
8349 /* Ensure any throttled groups are reachable by pick_next_task */
8350 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8351}
8352
55e12e5e 8353#endif /* CONFIG_SMP */
e1d1484f 8354
bf0f6f24
IM
8355/*
8356 * scheduler tick hitting a task of our scheduling class:
8357 */
8f4d37ec 8358static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8359{
8360 struct cfs_rq *cfs_rq;
8361 struct sched_entity *se = &curr->se;
8362
8363 for_each_sched_entity(se) {
8364 cfs_rq = cfs_rq_of(se);
8f4d37ec 8365 entity_tick(cfs_rq, se, queued);
bf0f6f24 8366 }
18bf2805 8367
b52da86e 8368 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8369 task_tick_numa(rq, curr);
bf0f6f24
IM
8370}
8371
8372/*
cd29fe6f
PZ
8373 * called on fork with the child task as argument from the parent's context
8374 * - child not yet on the tasklist
8375 * - preemption disabled
bf0f6f24 8376 */
cd29fe6f 8377static void task_fork_fair(struct task_struct *p)
bf0f6f24 8378{
4fc420c9
DN
8379 struct cfs_rq *cfs_rq;
8380 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8381 struct rq *rq = this_rq();
bf0f6f24 8382
e210bffd 8383 raw_spin_lock(&rq->lock);
861d034e
PZ
8384 update_rq_clock(rq);
8385
4fc420c9
DN
8386 cfs_rq = task_cfs_rq(current);
8387 curr = cfs_rq->curr;
e210bffd
PZ
8388 if (curr) {
8389 update_curr(cfs_rq);
b5d9d734 8390 se->vruntime = curr->vruntime;
e210bffd 8391 }
aeb73b04 8392 place_entity(cfs_rq, se, 1);
4d78e7b6 8393
cd29fe6f 8394 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8395 /*
edcb60a3
IM
8396 * Upon rescheduling, sched_class::put_prev_task() will place
8397 * 'current' within the tree based on its new key value.
8398 */
4d78e7b6 8399 swap(curr->vruntime, se->vruntime);
8875125e 8400 resched_curr(rq);
4d78e7b6 8401 }
bf0f6f24 8402
88ec22d3 8403 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8404 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8405}
8406
cb469845
SR
8407/*
8408 * Priority of the task has changed. Check to see if we preempt
8409 * the current task.
8410 */
da7a735e
PZ
8411static void
8412prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8413{
da0c1e65 8414 if (!task_on_rq_queued(p))
da7a735e
PZ
8415 return;
8416
cb469845
SR
8417 /*
8418 * Reschedule if we are currently running on this runqueue and
8419 * our priority decreased, or if we are not currently running on
8420 * this runqueue and our priority is higher than the current's
8421 */
da7a735e 8422 if (rq->curr == p) {
cb469845 8423 if (p->prio > oldprio)
8875125e 8424 resched_curr(rq);
cb469845 8425 } else
15afe09b 8426 check_preempt_curr(rq, p, 0);
cb469845
SR
8427}
8428
daa59407 8429static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8430{
8431 struct sched_entity *se = &p->se;
da7a735e
PZ
8432
8433 /*
daa59407
BP
8434 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8435 * the dequeue_entity(.flags=0) will already have normalized the
8436 * vruntime.
8437 */
8438 if (p->on_rq)
8439 return true;
8440
8441 /*
8442 * When !on_rq, vruntime of the task has usually NOT been normalized.
8443 * But there are some cases where it has already been normalized:
da7a735e 8444 *
daa59407
BP
8445 * - A forked child which is waiting for being woken up by
8446 * wake_up_new_task().
8447 * - A task which has been woken up by try_to_wake_up() and
8448 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8449 */
daa59407
BP
8450 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8451 return true;
8452
8453 return false;
8454}
8455
8456static void detach_task_cfs_rq(struct task_struct *p)
8457{
8458 struct sched_entity *se = &p->se;
8459 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8460 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8461
8462 if (!vruntime_normalized(p)) {
da7a735e
PZ
8463 /*
8464 * Fix up our vruntime so that the current sleep doesn't
8465 * cause 'unlimited' sleep bonus.
8466 */
8467 place_entity(cfs_rq, se, 0);
8468 se->vruntime -= cfs_rq->min_vruntime;
8469 }
9ee474f5 8470
9d89c257 8471 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8472 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8473 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8474 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8475}
8476
daa59407 8477static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8478{
f36c019c 8479 struct sched_entity *se = &p->se;
daa59407 8480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8481 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8482
8483#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8484 /*
8485 * Since the real-depth could have been changed (only FAIR
8486 * class maintain depth value), reset depth properly.
8487 */
8488 se->depth = se->parent ? se->parent->depth + 1 : 0;
8489#endif
7855a35a 8490
6efdb105 8491 /* Synchronize task with its cfs_rq */
7c3edd2c 8492 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8493 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8494 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8495
8496 if (!vruntime_normalized(p))
8497 se->vruntime += cfs_rq->min_vruntime;
8498}
6efdb105 8499
daa59407
BP
8500static void switched_from_fair(struct rq *rq, struct task_struct *p)
8501{
8502 detach_task_cfs_rq(p);
8503}
8504
8505static void switched_to_fair(struct rq *rq, struct task_struct *p)
8506{
8507 attach_task_cfs_rq(p);
7855a35a 8508
daa59407 8509 if (task_on_rq_queued(p)) {
7855a35a 8510 /*
daa59407
BP
8511 * We were most likely switched from sched_rt, so
8512 * kick off the schedule if running, otherwise just see
8513 * if we can still preempt the current task.
7855a35a 8514 */
daa59407
BP
8515 if (rq->curr == p)
8516 resched_curr(rq);
8517 else
8518 check_preempt_curr(rq, p, 0);
7855a35a 8519 }
cb469845
SR
8520}
8521
83b699ed
SV
8522/* Account for a task changing its policy or group.
8523 *
8524 * This routine is mostly called to set cfs_rq->curr field when a task
8525 * migrates between groups/classes.
8526 */
8527static void set_curr_task_fair(struct rq *rq)
8528{
8529 struct sched_entity *se = &rq->curr->se;
8530
ec12cb7f
PT
8531 for_each_sched_entity(se) {
8532 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8533
8534 set_next_entity(cfs_rq, se);
8535 /* ensure bandwidth has been allocated on our new cfs_rq */
8536 account_cfs_rq_runtime(cfs_rq, 0);
8537 }
83b699ed
SV
8538}
8539
029632fb
PZ
8540void init_cfs_rq(struct cfs_rq *cfs_rq)
8541{
8542 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8543 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8544#ifndef CONFIG_64BIT
8545 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8546#endif
141965c7 8547#ifdef CONFIG_SMP
9d89c257
YD
8548 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8549 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8550#endif
029632fb
PZ
8551}
8552
810b3817 8553#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8554static void task_set_group_fair(struct task_struct *p)
8555{
8556 struct sched_entity *se = &p->se;
8557
8558 set_task_rq(p, task_cpu(p));
8559 se->depth = se->parent ? se->parent->depth + 1 : 0;
8560}
8561
bc54da21 8562static void task_move_group_fair(struct task_struct *p)
810b3817 8563{
daa59407 8564 detach_task_cfs_rq(p);
b2b5ce02 8565 set_task_rq(p, task_cpu(p));
6efdb105
BP
8566
8567#ifdef CONFIG_SMP
8568 /* Tell se's cfs_rq has been changed -- migrated */
8569 p->se.avg.last_update_time = 0;
8570#endif
daa59407 8571 attach_task_cfs_rq(p);
810b3817 8572}
029632fb 8573
ea86cb4b
VG
8574static void task_change_group_fair(struct task_struct *p, int type)
8575{
8576 switch (type) {
8577 case TASK_SET_GROUP:
8578 task_set_group_fair(p);
8579 break;
8580
8581 case TASK_MOVE_GROUP:
8582 task_move_group_fair(p);
8583 break;
8584 }
8585}
8586
029632fb
PZ
8587void free_fair_sched_group(struct task_group *tg)
8588{
8589 int i;
8590
8591 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8592
8593 for_each_possible_cpu(i) {
8594 if (tg->cfs_rq)
8595 kfree(tg->cfs_rq[i]);
6fe1f348 8596 if (tg->se)
029632fb
PZ
8597 kfree(tg->se[i]);
8598 }
8599
8600 kfree(tg->cfs_rq);
8601 kfree(tg->se);
8602}
8603
8604int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8605{
029632fb 8606 struct sched_entity *se;
b7fa30c9
PZ
8607 struct cfs_rq *cfs_rq;
8608 struct rq *rq;
029632fb
PZ
8609 int i;
8610
8611 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8612 if (!tg->cfs_rq)
8613 goto err;
8614 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8615 if (!tg->se)
8616 goto err;
8617
8618 tg->shares = NICE_0_LOAD;
8619
8620 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8621
8622 for_each_possible_cpu(i) {
b7fa30c9
PZ
8623 rq = cpu_rq(i);
8624
029632fb
PZ
8625 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8626 GFP_KERNEL, cpu_to_node(i));
8627 if (!cfs_rq)
8628 goto err;
8629
8630 se = kzalloc_node(sizeof(struct sched_entity),
8631 GFP_KERNEL, cpu_to_node(i));
8632 if (!se)
8633 goto err_free_rq;
8634
8635 init_cfs_rq(cfs_rq);
8636 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8637 init_entity_runnable_average(se);
029632fb
PZ
8638 }
8639
8640 return 1;
8641
8642err_free_rq:
8643 kfree(cfs_rq);
8644err:
8645 return 0;
8646}
8647
8663e24d
PZ
8648void online_fair_sched_group(struct task_group *tg)
8649{
8650 struct sched_entity *se;
8651 struct rq *rq;
8652 int i;
8653
8654 for_each_possible_cpu(i) {
8655 rq = cpu_rq(i);
8656 se = tg->se[i];
8657
8658 raw_spin_lock_irq(&rq->lock);
8659 post_init_entity_util_avg(se);
55e16d30 8660 sync_throttle(tg, i);
8663e24d
PZ
8661 raw_spin_unlock_irq(&rq->lock);
8662 }
8663}
8664
6fe1f348 8665void unregister_fair_sched_group(struct task_group *tg)
029632fb 8666{
029632fb 8667 unsigned long flags;
6fe1f348
PZ
8668 struct rq *rq;
8669 int cpu;
029632fb 8670
6fe1f348
PZ
8671 for_each_possible_cpu(cpu) {
8672 if (tg->se[cpu])
8673 remove_entity_load_avg(tg->se[cpu]);
029632fb 8674
6fe1f348
PZ
8675 /*
8676 * Only empty task groups can be destroyed; so we can speculatively
8677 * check on_list without danger of it being re-added.
8678 */
8679 if (!tg->cfs_rq[cpu]->on_list)
8680 continue;
8681
8682 rq = cpu_rq(cpu);
8683
8684 raw_spin_lock_irqsave(&rq->lock, flags);
8685 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8686 raw_spin_unlock_irqrestore(&rq->lock, flags);
8687 }
029632fb
PZ
8688}
8689
8690void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8691 struct sched_entity *se, int cpu,
8692 struct sched_entity *parent)
8693{
8694 struct rq *rq = cpu_rq(cpu);
8695
8696 cfs_rq->tg = tg;
8697 cfs_rq->rq = rq;
029632fb
PZ
8698 init_cfs_rq_runtime(cfs_rq);
8699
8700 tg->cfs_rq[cpu] = cfs_rq;
8701 tg->se[cpu] = se;
8702
8703 /* se could be NULL for root_task_group */
8704 if (!se)
8705 return;
8706
fed14d45 8707 if (!parent) {
029632fb 8708 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8709 se->depth = 0;
8710 } else {
029632fb 8711 se->cfs_rq = parent->my_q;
fed14d45
PZ
8712 se->depth = parent->depth + 1;
8713 }
029632fb
PZ
8714
8715 se->my_q = cfs_rq;
0ac9b1c2
PT
8716 /* guarantee group entities always have weight */
8717 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8718 se->parent = parent;
8719}
8720
8721static DEFINE_MUTEX(shares_mutex);
8722
8723int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8724{
8725 int i;
8726 unsigned long flags;
8727
8728 /*
8729 * We can't change the weight of the root cgroup.
8730 */
8731 if (!tg->se[0])
8732 return -EINVAL;
8733
8734 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8735
8736 mutex_lock(&shares_mutex);
8737 if (tg->shares == shares)
8738 goto done;
8739
8740 tg->shares = shares;
8741 for_each_possible_cpu(i) {
8742 struct rq *rq = cpu_rq(i);
8743 struct sched_entity *se;
8744
8745 se = tg->se[i];
8746 /* Propagate contribution to hierarchy */
8747 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8748
8749 /* Possible calls to update_curr() need rq clock */
8750 update_rq_clock(rq);
17bc14b7 8751 for_each_sched_entity(se)
029632fb
PZ
8752 update_cfs_shares(group_cfs_rq(se));
8753 raw_spin_unlock_irqrestore(&rq->lock, flags);
8754 }
8755
8756done:
8757 mutex_unlock(&shares_mutex);
8758 return 0;
8759}
8760#else /* CONFIG_FAIR_GROUP_SCHED */
8761
8762void free_fair_sched_group(struct task_group *tg) { }
8763
8764int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8765{
8766 return 1;
8767}
8768
8663e24d
PZ
8769void online_fair_sched_group(struct task_group *tg) { }
8770
6fe1f348 8771void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8772
8773#endif /* CONFIG_FAIR_GROUP_SCHED */
8774
810b3817 8775
6d686f45 8776static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8777{
8778 struct sched_entity *se = &task->se;
0d721cea
PW
8779 unsigned int rr_interval = 0;
8780
8781 /*
8782 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8783 * idle runqueue:
8784 */
0d721cea 8785 if (rq->cfs.load.weight)
a59f4e07 8786 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8787
8788 return rr_interval;
8789}
8790
bf0f6f24
IM
8791/*
8792 * All the scheduling class methods:
8793 */
029632fb 8794const struct sched_class fair_sched_class = {
5522d5d5 8795 .next = &idle_sched_class,
bf0f6f24
IM
8796 .enqueue_task = enqueue_task_fair,
8797 .dequeue_task = dequeue_task_fair,
8798 .yield_task = yield_task_fair,
d95f4122 8799 .yield_to_task = yield_to_task_fair,
bf0f6f24 8800
2e09bf55 8801 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8802
8803 .pick_next_task = pick_next_task_fair,
8804 .put_prev_task = put_prev_task_fair,
8805
681f3e68 8806#ifdef CONFIG_SMP
4ce72a2c 8807 .select_task_rq = select_task_rq_fair,
0a74bef8 8808 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8809
0bcdcf28
CE
8810 .rq_online = rq_online_fair,
8811 .rq_offline = rq_offline_fair,
88ec22d3 8812
12695578 8813 .task_dead = task_dead_fair,
c5b28038 8814 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8815#endif
bf0f6f24 8816
83b699ed 8817 .set_curr_task = set_curr_task_fair,
bf0f6f24 8818 .task_tick = task_tick_fair,
cd29fe6f 8819 .task_fork = task_fork_fair,
cb469845
SR
8820
8821 .prio_changed = prio_changed_fair,
da7a735e 8822 .switched_from = switched_from_fair,
cb469845 8823 .switched_to = switched_to_fair,
810b3817 8824
0d721cea
PW
8825 .get_rr_interval = get_rr_interval_fair,
8826
6e998916
SG
8827 .update_curr = update_curr_fair,
8828
810b3817 8829#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8830 .task_change_group = task_change_group_fair,
810b3817 8831#endif
bf0f6f24
IM
8832};
8833
8834#ifdef CONFIG_SCHED_DEBUG
029632fb 8835void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8836{
bf0f6f24
IM
8837 struct cfs_rq *cfs_rq;
8838
5973e5b9 8839 rcu_read_lock();
c3b64f1e 8840 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8841 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8842 rcu_read_unlock();
bf0f6f24 8843}
397f2378
SD
8844
8845#ifdef CONFIG_NUMA_BALANCING
8846void show_numa_stats(struct task_struct *p, struct seq_file *m)
8847{
8848 int node;
8849 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8850
8851 for_each_online_node(node) {
8852 if (p->numa_faults) {
8853 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8854 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8855 }
8856 if (p->numa_group) {
8857 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8858 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8859 }
8860 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8861 }
8862}
8863#endif /* CONFIG_NUMA_BALANCING */
8864#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8865
8866__init void init_sched_fair_class(void)
8867{
8868#ifdef CONFIG_SMP
8869 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8870
3451d024 8871#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8872 nohz.next_balance = jiffies;
029632fb 8873 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8874#endif
8875#endif /* SMP */
8876
8877}