]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/fair.c
sched/fair: Move task sched_avg attach to enqueue_task_fair()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
c4ad6fcb
IM
23#include <linux/energy_model.h>
24#include <linux/mmap_lock.h>
25#include <linux/hugetlb_inline.h>
26#include <linux/jiffies.h>
27#include <linux/mm_api.h>
28#include <linux/highmem.h>
29#include <linux/spinlock_api.h>
30#include <linux/cpumask_api.h>
31#include <linux/lockdep_api.h>
32#include <linux/softirq.h>
33#include <linux/refcount_api.h>
34#include <linux/topology.h>
35#include <linux/sched/clock.h>
36#include <linux/sched/cond_resched.h>
37#include <linux/sched/cputime.h>
38#include <linux/sched/isolation.h>
d664e399 39#include <linux/sched/nohz.h>
c4ad6fcb
IM
40
41#include <linux/cpuidle.h>
42#include <linux/interrupt.h>
43#include <linux/mempolicy.h>
44#include <linux/mutex_api.h>
45#include <linux/profile.h>
46#include <linux/psi.h>
47#include <linux/ratelimit.h>
1930a6e7 48#include <linux/task_work.h>
c4ad6fcb
IM
49
50#include <asm/switch_to.h>
51
52#include <linux/sched/cond_resched.h>
53
325ea10c 54#include "sched.h"
b9e9c6ca
IM
55#include "stats.h"
56#include "autogroup.h"
029632fb 57
bf0f6f24 58/*
21805085 59 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 60 *
21805085 61 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
62 * 'timeslice length' - timeslices in CFS are of variable length
63 * and have no persistent notion like in traditional, time-slice
64 * based scheduling concepts.
bf0f6f24 65 *
d274a4ce
IM
66 * (to see the precise effective timeslice length of your workload,
67 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
68 *
69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 70 */
2b4d5b25 71unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 72static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 73
1983a922
CE
74/*
75 * The initial- and re-scaling of tunables is configurable
1983a922
CE
76 *
77 * Options are:
2b4d5b25
IM
78 *
79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
82 *
83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 84 */
8a99b683 85unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 86
2bd8e6d4 87/*
b2be5e96 88 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 89 *
864616ee 90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 91 */
ed8885a1
MS
92unsigned int sysctl_sched_min_granularity = 750000ULL;
93static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085 94
51ce83ed
JD
95/*
96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
97 * Applies only when SCHED_IDLE tasks compete with normal tasks.
98 *
99 * (default: 0.75 msec)
100 */
101unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
102
21805085 103/*
2b4d5b25 104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 105 */
0bf377bb 106static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
107
108/*
2bba22c5 109 * After fork, child runs first. If set to 0 (default) then
b2be5e96 110 * parent will (try to) run first.
21805085 111 */
2bba22c5 112unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 113
bf0f6f24
IM
114/*
115 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
116 *
117 * This option delays the preemption effects of decoupled workloads
118 * and reduces their over-scheduling. Synchronous workloads will still
119 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
120 *
121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 122 */
ed8885a1
MS
123unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
124static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 125
2b4d5b25 126const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 127
05289b90
TG
128int sched_thermal_decay_shift;
129static int __init setup_sched_thermal_decay_shift(char *str)
130{
131 int _shift = 0;
132
133 if (kstrtoint(str, 0, &_shift))
134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
135
136 sched_thermal_decay_shift = clamp(_shift, 0, 10);
137 return 1;
138}
139__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
140
afe06efd
TC
141#ifdef CONFIG_SMP
142/*
97fb7a0a 143 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
144 */
145int __weak arch_asym_cpu_priority(int cpu)
146{
147 return -cpu;
148}
6d101ba6
OJ
149
150/*
60e17f5c 151 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
152 *
153 * (default: ~20%)
154 */
60e17f5c
VK
155#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
156
4aed8aa4
VS
157/*
158 * The margin used when comparing CPU capacities.
159 * is 'cap1' noticeably greater than 'cap2'
160 *
161 * (default: ~5%)
162 */
163#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
afe06efd
TC
164#endif
165
ec12cb7f
PT
166#ifdef CONFIG_CFS_BANDWIDTH
167/*
168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169 * each time a cfs_rq requests quota.
170 *
171 * Note: in the case that the slice exceeds the runtime remaining (either due
172 * to consumption or the quota being specified to be smaller than the slice)
173 * we will always only issue the remaining available time.
174 *
2b4d5b25
IM
175 * (default: 5 msec, units: microseconds)
176 */
d4ae80ff
ZN
177static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
178#endif
179
180#ifdef CONFIG_SYSCTL
181static struct ctl_table sched_fair_sysctls[] = {
182 {
183 .procname = "sched_child_runs_first",
184 .data = &sysctl_sched_child_runs_first,
185 .maxlen = sizeof(unsigned int),
186 .mode = 0644,
187 .proc_handler = proc_dointvec,
188 },
189#ifdef CONFIG_CFS_BANDWIDTH
190 {
191 .procname = "sched_cfs_bandwidth_slice_us",
192 .data = &sysctl_sched_cfs_bandwidth_slice,
193 .maxlen = sizeof(unsigned int),
194 .mode = 0644,
195 .proc_handler = proc_dointvec_minmax,
196 .extra1 = SYSCTL_ONE,
197 },
198#endif
199 {}
200};
201
202static int __init sched_fair_sysctl_init(void)
203{
204 register_sysctl_init("kernel", sched_fair_sysctls);
205 return 0;
206}
207late_initcall(sched_fair_sysctl_init);
ec12cb7f
PT
208#endif
209
8527632d
PG
210static inline void update_load_add(struct load_weight *lw, unsigned long inc)
211{
212 lw->weight += inc;
213 lw->inv_weight = 0;
214}
215
216static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
217{
218 lw->weight -= dec;
219 lw->inv_weight = 0;
220}
221
222static inline void update_load_set(struct load_weight *lw, unsigned long w)
223{
224 lw->weight = w;
225 lw->inv_weight = 0;
226}
227
029632fb
PZ
228/*
229 * Increase the granularity value when there are more CPUs,
230 * because with more CPUs the 'effective latency' as visible
231 * to users decreases. But the relationship is not linear,
232 * so pick a second-best guess by going with the log2 of the
233 * number of CPUs.
234 *
235 * This idea comes from the SD scheduler of Con Kolivas:
236 */
58ac93e4 237static unsigned int get_update_sysctl_factor(void)
029632fb 238{
58ac93e4 239 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
240 unsigned int factor;
241
242 switch (sysctl_sched_tunable_scaling) {
243 case SCHED_TUNABLESCALING_NONE:
244 factor = 1;
245 break;
246 case SCHED_TUNABLESCALING_LINEAR:
247 factor = cpus;
248 break;
249 case SCHED_TUNABLESCALING_LOG:
250 default:
251 factor = 1 + ilog2(cpus);
252 break;
253 }
254
255 return factor;
256}
257
258static void update_sysctl(void)
259{
260 unsigned int factor = get_update_sysctl_factor();
261
262#define SET_SYSCTL(name) \
263 (sysctl_##name = (factor) * normalized_sysctl_##name)
264 SET_SYSCTL(sched_min_granularity);
265 SET_SYSCTL(sched_latency);
266 SET_SYSCTL(sched_wakeup_granularity);
267#undef SET_SYSCTL
268}
269
f38f12d1 270void __init sched_init_granularity(void)
029632fb
PZ
271{
272 update_sysctl();
273}
274
9dbdb155 275#define WMULT_CONST (~0U)
029632fb
PZ
276#define WMULT_SHIFT 32
277
9dbdb155
PZ
278static void __update_inv_weight(struct load_weight *lw)
279{
280 unsigned long w;
281
282 if (likely(lw->inv_weight))
283 return;
284
285 w = scale_load_down(lw->weight);
286
287 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
288 lw->inv_weight = 1;
289 else if (unlikely(!w))
290 lw->inv_weight = WMULT_CONST;
291 else
292 lw->inv_weight = WMULT_CONST / w;
293}
029632fb
PZ
294
295/*
9dbdb155
PZ
296 * delta_exec * weight / lw.weight
297 * OR
298 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
299 *
1c3de5e1 300 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
301 * we're guaranteed shift stays positive because inv_weight is guaranteed to
302 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
303 *
304 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
305 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 306 */
9dbdb155 307static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 308{
9dbdb155 309 u64 fact = scale_load_down(weight);
1e17fb8e 310 u32 fact_hi = (u32)(fact >> 32);
9dbdb155 311 int shift = WMULT_SHIFT;
1e17fb8e 312 int fs;
029632fb 313
9dbdb155 314 __update_inv_weight(lw);
029632fb 315
1e17fb8e
CC
316 if (unlikely(fact_hi)) {
317 fs = fls(fact_hi);
318 shift -= fs;
319 fact >>= fs;
029632fb
PZ
320 }
321
2eeb01a2 322 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 323
1e17fb8e
CC
324 fact_hi = (u32)(fact >> 32);
325 if (fact_hi) {
326 fs = fls(fact_hi);
327 shift -= fs;
328 fact >>= fs;
9dbdb155 329 }
029632fb 330
9dbdb155 331 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
332}
333
334
335const struct sched_class fair_sched_class;
a4c2f00f 336
bf0f6f24
IM
337/**************************************************************
338 * CFS operations on generic schedulable entities:
339 */
340
62160e3f 341#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f 342
b758149c
PZ
343/* Walk up scheduling entities hierarchy */
344#define for_each_sched_entity(se) \
345 for (; se; se = se->parent)
346
f6783319 347static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 348{
5d299eab
PZ
349 struct rq *rq = rq_of(cfs_rq);
350 int cpu = cpu_of(rq);
351
352 if (cfs_rq->on_list)
f6783319 353 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
354
355 cfs_rq->on_list = 1;
356
357 /*
358 * Ensure we either appear before our parent (if already
359 * enqueued) or force our parent to appear after us when it is
360 * enqueued. The fact that we always enqueue bottom-up
361 * reduces this to two cases and a special case for the root
362 * cfs_rq. Furthermore, it also means that we will always reset
363 * tmp_alone_branch either when the branch is connected
364 * to a tree or when we reach the top of the tree
365 */
366 if (cfs_rq->tg->parent &&
367 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 368 /*
5d299eab
PZ
369 * If parent is already on the list, we add the child
370 * just before. Thanks to circular linked property of
371 * the list, this means to put the child at the tail
372 * of the list that starts by parent.
67e86250 373 */
5d299eab
PZ
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
376 /*
377 * The branch is now connected to its tree so we can
378 * reset tmp_alone_branch to the beginning of the
379 * list.
380 */
381 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 382 return true;
5d299eab 383 }
3d4b47b4 384
5d299eab
PZ
385 if (!cfs_rq->tg->parent) {
386 /*
387 * cfs rq without parent should be put
388 * at the tail of the list.
389 */
390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 &rq->leaf_cfs_rq_list);
392 /*
393 * We have reach the top of a tree so we can reset
394 * tmp_alone_branch to the beginning of the list.
395 */
396 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 397 return true;
3d4b47b4 398 }
5d299eab
PZ
399
400 /*
401 * The parent has not already been added so we want to
402 * make sure that it will be put after us.
403 * tmp_alone_branch points to the begin of the branch
404 * where we will add parent.
405 */
406 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
407 /*
408 * update tmp_alone_branch to points to the new begin
409 * of the branch
410 */
411 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 412 return false;
3d4b47b4
PZ
413}
414
415static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416{
417 if (cfs_rq->on_list) {
31bc6aea
VG
418 struct rq *rq = rq_of(cfs_rq);
419
420 /*
421 * With cfs_rq being unthrottled/throttled during an enqueue,
422 * it can happen the tmp_alone_branch points the a leaf that
423 * we finally want to del. In this case, tmp_alone_branch moves
424 * to the prev element but it will point to rq->leaf_cfs_rq_list
425 * at the end of the enqueue.
426 */
427 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
428 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
429
3d4b47b4
PZ
430 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
431 cfs_rq->on_list = 0;
432 }
433}
434
5d299eab
PZ
435static inline void assert_list_leaf_cfs_rq(struct rq *rq)
436{
437 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
438}
439
039ae8bc
VG
440/* Iterate thr' all leaf cfs_rq's on a runqueue */
441#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
442 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
443 leaf_cfs_rq_list)
b758149c
PZ
444
445/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 446static inline struct cfs_rq *
b758149c
PZ
447is_same_group(struct sched_entity *se, struct sched_entity *pse)
448{
449 if (se->cfs_rq == pse->cfs_rq)
fed14d45 450 return se->cfs_rq;
b758149c 451
fed14d45 452 return NULL;
b758149c
PZ
453}
454
455static inline struct sched_entity *parent_entity(struct sched_entity *se)
456{
457 return se->parent;
458}
459
464b7527
PZ
460static void
461find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462{
463 int se_depth, pse_depth;
464
465 /*
466 * preemption test can be made between sibling entities who are in the
467 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
468 * both tasks until we find their ancestors who are siblings of common
469 * parent.
470 */
471
472 /* First walk up until both entities are at same depth */
fed14d45
PZ
473 se_depth = (*se)->depth;
474 pse_depth = (*pse)->depth;
464b7527
PZ
475
476 while (se_depth > pse_depth) {
477 se_depth--;
478 *se = parent_entity(*se);
479 }
480
481 while (pse_depth > se_depth) {
482 pse_depth--;
483 *pse = parent_entity(*pse);
484 }
485
486 while (!is_same_group(*se, *pse)) {
487 *se = parent_entity(*se);
488 *pse = parent_entity(*pse);
489 }
490}
491
30400039
JD
492static int tg_is_idle(struct task_group *tg)
493{
494 return tg->idle > 0;
495}
496
497static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498{
499 return cfs_rq->idle > 0;
500}
501
502static int se_is_idle(struct sched_entity *se)
503{
504 if (entity_is_task(se))
505 return task_has_idle_policy(task_of(se));
506 return cfs_rq_is_idle(group_cfs_rq(se));
507}
508
8f48894f
PZ
509#else /* !CONFIG_FAIR_GROUP_SCHED */
510
b758149c
PZ
511#define for_each_sched_entity(se) \
512 for (; se; se = NULL)
bf0f6f24 513
f6783319 514static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 515{
f6783319 516 return true;
3d4b47b4
PZ
517}
518
519static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
520{
521}
522
5d299eab
PZ
523static inline void assert_list_leaf_cfs_rq(struct rq *rq)
524{
525}
526
039ae8bc
VG
527#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
528 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 529
b758149c
PZ
530static inline struct sched_entity *parent_entity(struct sched_entity *se)
531{
532 return NULL;
533}
534
464b7527
PZ
535static inline void
536find_matching_se(struct sched_entity **se, struct sched_entity **pse)
537{
538}
539
366e7ad6 540static inline int tg_is_idle(struct task_group *tg)
30400039
JD
541{
542 return 0;
543}
544
545static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
546{
547 return 0;
548}
549
550static int se_is_idle(struct sched_entity *se)
551{
552 return 0;
553}
554
b758149c
PZ
555#endif /* CONFIG_FAIR_GROUP_SCHED */
556
6c16a6dc 557static __always_inline
9dbdb155 558void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
559
560/**************************************************************
561 * Scheduling class tree data structure manipulation methods:
562 */
563
1bf08230 564static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 565{
1bf08230 566 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 567 if (delta > 0)
1bf08230 568 max_vruntime = vruntime;
02e0431a 569
1bf08230 570 return max_vruntime;
02e0431a
PZ
571}
572
0702e3eb 573static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
574{
575 s64 delta = (s64)(vruntime - min_vruntime);
576 if (delta < 0)
577 min_vruntime = vruntime;
578
579 return min_vruntime;
580}
581
bf9be9a1 582static inline bool entity_before(struct sched_entity *a,
54fdc581
FC
583 struct sched_entity *b)
584{
585 return (s64)(a->vruntime - b->vruntime) < 0;
586}
587
bf9be9a1
PZ
588#define __node_2_se(node) \
589 rb_entry((node), struct sched_entity, run_node)
590
1af5f730
PZ
591static void update_min_vruntime(struct cfs_rq *cfs_rq)
592{
b60205c7 593 struct sched_entity *curr = cfs_rq->curr;
bfb06889 594 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 595
1af5f730
PZ
596 u64 vruntime = cfs_rq->min_vruntime;
597
b60205c7
PZ
598 if (curr) {
599 if (curr->on_rq)
600 vruntime = curr->vruntime;
601 else
602 curr = NULL;
603 }
1af5f730 604
bfb06889 605 if (leftmost) { /* non-empty tree */
bf9be9a1 606 struct sched_entity *se = __node_2_se(leftmost);
1af5f730 607
b60205c7 608 if (!curr)
1af5f730
PZ
609 vruntime = se->vruntime;
610 else
611 vruntime = min_vruntime(vruntime, se->vruntime);
612 }
613
1bf08230 614 /* ensure we never gain time by being placed backwards. */
d05b4305
VD
615 u64_u32_store(cfs_rq->min_vruntime,
616 max_vruntime(cfs_rq->min_vruntime, vruntime));
1af5f730
PZ
617}
618
bf9be9a1
PZ
619static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
620{
621 return entity_before(__node_2_se(a), __node_2_se(b));
622}
623
bf0f6f24
IM
624/*
625 * Enqueue an entity into the rb-tree:
626 */
0702e3eb 627static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 628{
bf9be9a1 629 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
bf0f6f24
IM
630}
631
0702e3eb 632static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 633{
bfb06889 634 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
635}
636
029632fb 637struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 638{
bfb06889 639 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
640
641 if (!left)
642 return NULL;
643
bf9be9a1 644 return __node_2_se(left);
bf0f6f24
IM
645}
646
ac53db59
RR
647static struct sched_entity *__pick_next_entity(struct sched_entity *se)
648{
649 struct rb_node *next = rb_next(&se->run_node);
650
651 if (!next)
652 return NULL;
653
bf9be9a1 654 return __node_2_se(next);
ac53db59
RR
655}
656
657#ifdef CONFIG_SCHED_DEBUG
029632fb 658struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 659{
bfb06889 660 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 661
70eee74b
BS
662 if (!last)
663 return NULL;
7eee3e67 664
bf9be9a1 665 return __node_2_se(last);
aeb73b04
PZ
666}
667
bf0f6f24
IM
668/**************************************************************
669 * Scheduling class statistics methods:
670 */
671
8a99b683 672int sched_update_scaling(void)
b2be5e96 673{
58ac93e4 674 unsigned int factor = get_update_sysctl_factor();
b2be5e96 675
b2be5e96
PZ
676 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
677 sysctl_sched_min_granularity);
678
acb4a848
CE
679#define WRT_SYSCTL(name) \
680 (normalized_sysctl_##name = sysctl_##name / (factor))
681 WRT_SYSCTL(sched_min_granularity);
682 WRT_SYSCTL(sched_latency);
683 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
684#undef WRT_SYSCTL
685
b2be5e96
PZ
686 return 0;
687}
688#endif
647e7cac 689
a7be37ac 690/*
f9c0b095 691 * delta /= w
a7be37ac 692 */
9dbdb155 693static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 694{
f9c0b095 695 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 696 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
697
698 return delta;
699}
700
647e7cac
IM
701/*
702 * The idea is to set a period in which each task runs once.
703 *
532b1858 704 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
705 * this period because otherwise the slices get too small.
706 *
707 * p = (nr <= nl) ? l : l*nr/nl
708 */
4d78e7b6
PZ
709static u64 __sched_period(unsigned long nr_running)
710{
8e2b0bf3
BF
711 if (unlikely(nr_running > sched_nr_latency))
712 return nr_running * sysctl_sched_min_granularity;
713 else
714 return sysctl_sched_latency;
4d78e7b6
PZ
715}
716
51ce83ed
JD
717static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
718
647e7cac
IM
719/*
720 * We calculate the wall-time slice from the period by taking a part
721 * proportional to the weight.
722 *
f9c0b095 723 * s = p*P[w/rw]
647e7cac 724 */
6d0f0ebd 725static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 726{
0c2de3f0 727 unsigned int nr_running = cfs_rq->nr_running;
51ce83ed
JD
728 struct sched_entity *init_se = se;
729 unsigned int min_gran;
0c2de3f0
PZ
730 u64 slice;
731
732 if (sched_feat(ALT_PERIOD))
733 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
734
735 slice = __sched_period(nr_running + !se->on_rq);
f9c0b095 736
0a582440 737 for_each_sched_entity(se) {
6272d68c 738 struct load_weight *load;
3104bf03 739 struct load_weight lw;
51ce83ed 740 struct cfs_rq *qcfs_rq;
6272d68c 741
51ce83ed
JD
742 qcfs_rq = cfs_rq_of(se);
743 load = &qcfs_rq->load;
f9c0b095 744
0a582440 745 if (unlikely(!se->on_rq)) {
51ce83ed 746 lw = qcfs_rq->load;
0a582440
MG
747
748 update_load_add(&lw, se->load.weight);
749 load = &lw;
750 }
9dbdb155 751 slice = __calc_delta(slice, se->load.weight, load);
0a582440 752 }
0c2de3f0 753
51ce83ed
JD
754 if (sched_feat(BASE_SLICE)) {
755 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
756 min_gran = sysctl_sched_idle_min_granularity;
757 else
758 min_gran = sysctl_sched_min_granularity;
759
760 slice = max_t(u64, slice, min_gran);
761 }
0c2de3f0 762
0a582440 763 return slice;
bf0f6f24
IM
764}
765
647e7cac 766/*
660cc00f 767 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 768 *
f9c0b095 769 * vs = s/w
647e7cac 770 */
f9c0b095 771static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 772{
f9c0b095 773 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
774}
775
c0796298 776#include "pelt.h"
23127296 777#ifdef CONFIG_SMP
283e2ed3 778
772bd008 779static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 780static unsigned long task_h_load(struct task_struct *p);
3b1baa64 781static unsigned long capacity_of(int cpu);
fb13c7ee 782
540247fb
YD
783/* Give new sched_entity start runnable values to heavy its load in infant time */
784void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 785{
540247fb 786 struct sched_avg *sa = &se->avg;
a75cdaa9 787
f207934f
PZ
788 memset(sa, 0, sizeof(*sa));
789
b5a9b340 790 /*
dfcb245e 791 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 792 * they get a chance to stabilize to their real load level.
dfcb245e 793 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
794 * nothing has been attached to the task group yet.
795 */
796 if (entity_is_task(se))
0dacee1b 797 sa->load_avg = scale_load_down(se->load.weight);
f207934f 798
9d89c257 799 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 800}
7ea241af 801
2b8c41da
YD
802/*
803 * With new tasks being created, their initial util_avgs are extrapolated
804 * based on the cfs_rq's current util_avg:
805 *
806 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
807 *
808 * However, in many cases, the above util_avg does not give a desired
809 * value. Moreover, the sum of the util_avgs may be divergent, such
810 * as when the series is a harmonic series.
811 *
812 * To solve this problem, we also cap the util_avg of successive tasks to
813 * only 1/2 of the left utilization budget:
814 *
8fe5c5a9 815 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 816 *
8fe5c5a9 817 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 818 *
8fe5c5a9
QP
819 * For example, for a CPU with 1024 of capacity, a simplest series from
820 * the beginning would be like:
2b8c41da
YD
821 *
822 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
823 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
824 *
825 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
826 * if util_avg > util_avg_cap.
827 */
d0fe0b9c 828void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 829{
d0fe0b9c 830 struct sched_entity *se = &p->se;
2b8c41da
YD
831 struct cfs_rq *cfs_rq = cfs_rq_of(se);
832 struct sched_avg *sa = &se->avg;
8ec59c0f 833 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 834 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
835
836 if (cap > 0) {
837 if (cfs_rq->avg.util_avg != 0) {
838 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
839 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
840
841 if (sa->util_avg > cap)
842 sa->util_avg = cap;
843 } else {
844 sa->util_avg = cap;
845 }
2b8c41da 846 }
7dc603c9 847
e21cf434 848 sa->runnable_avg = sa->util_avg;
9f683953 849
d0fe0b9c
DE
850 if (p->sched_class != &fair_sched_class) {
851 /*
852 * For !fair tasks do:
853 *
854 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 855 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
856 switched_from_fair(rq, p);
857 *
858 * such that the next switched_to_fair() has the
859 * expected state.
860 */
861 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
862 return;
7dc603c9 863 }
2b8c41da
YD
864}
865
7dc603c9 866#else /* !CONFIG_SMP */
540247fb 867void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
868{
869}
d0fe0b9c 870void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
871{
872}
fe749158 873static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
874{
875}
7dc603c9 876#endif /* CONFIG_SMP */
a75cdaa9 877
bf0f6f24 878/*
9dbdb155 879 * Update the current task's runtime statistics.
bf0f6f24 880 */
b7cc0896 881static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 882{
429d43bc 883 struct sched_entity *curr = cfs_rq->curr;
78becc27 884 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 885 u64 delta_exec;
bf0f6f24
IM
886
887 if (unlikely(!curr))
888 return;
889
9dbdb155
PZ
890 delta_exec = now - curr->exec_start;
891 if (unlikely((s64)delta_exec <= 0))
34f28ecd 892 return;
bf0f6f24 893
8ebc91d9 894 curr->exec_start = now;
d842de87 895
ceeadb83
YS
896 if (schedstat_enabled()) {
897 struct sched_statistics *stats;
898
899 stats = __schedstats_from_se(curr);
900 __schedstat_set(stats->exec_max,
901 max(delta_exec, stats->exec_max));
902 }
9dbdb155
PZ
903
904 curr->sum_exec_runtime += delta_exec;
ae92882e 905 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
906
907 curr->vruntime += calc_delta_fair(delta_exec, curr);
908 update_min_vruntime(cfs_rq);
909
d842de87
SV
910 if (entity_is_task(curr)) {
911 struct task_struct *curtask = task_of(curr);
912
f977bb49 913 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 914 cgroup_account_cputime(curtask, delta_exec);
f06febc9 915 account_group_exec_runtime(curtask, delta_exec);
d842de87 916 }
ec12cb7f
PT
917
918 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
919}
920
6e998916
SG
921static void update_curr_fair(struct rq *rq)
922{
923 update_curr(cfs_rq_of(&rq->curr->se));
924}
925
bf0f6f24 926static inline void
60f2415e 927update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 928{
ceeadb83 929 struct sched_statistics *stats;
60f2415e 930 struct task_struct *p = NULL;
4fa8d299
JP
931
932 if (!schedstat_enabled())
933 return;
934
ceeadb83
YS
935 stats = __schedstats_from_se(se);
936
60f2415e
YS
937 if (entity_is_task(se))
938 p = task_of(se);
3ea94de1 939
60f2415e 940 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
bf0f6f24
IM
941}
942
4fa8d299 943static inline void
60f2415e 944update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
3ea94de1 945{
ceeadb83
YS
946 struct sched_statistics *stats;
947 struct task_struct *p = NULL;
cb251765 948
4fa8d299
JP
949 if (!schedstat_enabled())
950 return;
951
ceeadb83
YS
952 stats = __schedstats_from_se(se);
953
b9c88f75 954 /*
955 * When the sched_schedstat changes from 0 to 1, some sched se
956 * maybe already in the runqueue, the se->statistics.wait_start
957 * will be 0.So it will let the delta wrong. We need to avoid this
958 * scenario.
959 */
ceeadb83 960 if (unlikely(!schedstat_val(stats->wait_start)))
b9c88f75 961 return;
962
60f2415e 963 if (entity_is_task(se))
3ea94de1 964 p = task_of(se);
3ea94de1 965
60f2415e 966 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
3ea94de1 967}
3ea94de1 968
4fa8d299 969static inline void
60f2415e 970update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1a3d027c 971{
ceeadb83 972 struct sched_statistics *stats;
1a3d027c 973 struct task_struct *tsk = NULL;
4fa8d299
JP
974
975 if (!schedstat_enabled())
976 return;
977
ceeadb83
YS
978 stats = __schedstats_from_se(se);
979
1a3d027c
JP
980 if (entity_is_task(se))
981 tsk = task_of(se);
982
60f2415e 983 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
3ea94de1 984}
3ea94de1 985
bf0f6f24
IM
986/*
987 * Task is being enqueued - update stats:
988 */
cb251765 989static inline void
60f2415e 990update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 991{
4fa8d299
JP
992 if (!schedstat_enabled())
993 return;
994
bf0f6f24
IM
995 /*
996 * Are we enqueueing a waiting task? (for current tasks
997 * a dequeue/enqueue event is a NOP)
998 */
429d43bc 999 if (se != cfs_rq->curr)
60f2415e 1000 update_stats_wait_start_fair(cfs_rq, se);
1a3d027c
JP
1001
1002 if (flags & ENQUEUE_WAKEUP)
60f2415e 1003 update_stats_enqueue_sleeper_fair(cfs_rq, se);
bf0f6f24
IM
1004}
1005
bf0f6f24 1006static inline void
60f2415e 1007update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1008{
4fa8d299
JP
1009
1010 if (!schedstat_enabled())
1011 return;
1012
bf0f6f24
IM
1013 /*
1014 * Mark the end of the wait period if dequeueing a
1015 * waiting task:
1016 */
429d43bc 1017 if (se != cfs_rq->curr)
60f2415e 1018 update_stats_wait_end_fair(cfs_rq, se);
cb251765 1019
4fa8d299
JP
1020 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1021 struct task_struct *tsk = task_of(se);
2f064a59 1022 unsigned int state;
cb251765 1023
2f064a59
PZ
1024 /* XXX racy against TTWU */
1025 state = READ_ONCE(tsk->__state);
1026 if (state & TASK_INTERRUPTIBLE)
ceeadb83 1027 __schedstat_set(tsk->stats.sleep_start,
4fa8d299 1028 rq_clock(rq_of(cfs_rq)));
2f064a59 1029 if (state & TASK_UNINTERRUPTIBLE)
ceeadb83 1030 __schedstat_set(tsk->stats.block_start,
4fa8d299 1031 rq_clock(rq_of(cfs_rq)));
cb251765 1032 }
cb251765
MG
1033}
1034
bf0f6f24
IM
1035/*
1036 * We are picking a new current task - update its stats:
1037 */
1038static inline void
79303e9e 1039update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1040{
1041 /*
1042 * We are starting a new run period:
1043 */
78becc27 1044 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1045}
1046
bf0f6f24
IM
1047/**************************************************
1048 * Scheduling class queueing methods:
1049 */
1050
cb29a5c1
MG
1051#ifdef CONFIG_NUMA
1052#define NUMA_IMBALANCE_MIN 2
1053
1054static inline long
1055adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1056{
1057 /*
1058 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1059 * threshold. Above this threshold, individual tasks may be contending
1060 * for both memory bandwidth and any shared HT resources. This is an
1061 * approximation as the number of running tasks may not be related to
1062 * the number of busy CPUs due to sched_setaffinity.
1063 */
1064 if (dst_running > imb_numa_nr)
1065 return imbalance;
1066
1067 /*
1068 * Allow a small imbalance based on a simple pair of communicating
1069 * tasks that remain local when the destination is lightly loaded.
1070 */
1071 if (imbalance <= NUMA_IMBALANCE_MIN)
1072 return 0;
1073
1074 return imbalance;
1075}
1076#endif /* CONFIG_NUMA */
1077
cbee9f88
PZ
1078#ifdef CONFIG_NUMA_BALANCING
1079/*
598f0ec0
MG
1080 * Approximate time to scan a full NUMA task in ms. The task scan period is
1081 * calculated based on the tasks virtual memory size and
1082 * numa_balancing_scan_size.
cbee9f88 1083 */
598f0ec0
MG
1084unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1085unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1086
1087/* Portion of address space to scan in MB */
1088unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1089
4b96a29b
PZ
1090/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1091unsigned int sysctl_numa_balancing_scan_delay = 1000;
1092
b5dd77c8 1093struct numa_group {
c45a7795 1094 refcount_t refcount;
b5dd77c8
RR
1095
1096 spinlock_t lock; /* nr_tasks, tasks */
1097 int nr_tasks;
1098 pid_t gid;
1099 int active_nodes;
1100
1101 struct rcu_head rcu;
1102 unsigned long total_faults;
1103 unsigned long max_faults_cpu;
1104 /*
5b763a14
BR
1105 * faults[] array is split into two regions: faults_mem and faults_cpu.
1106 *
b5dd77c8
RR
1107 * Faults_cpu is used to decide whether memory should move
1108 * towards the CPU. As a consequence, these stats are weighted
1109 * more by CPU use than by memory faults.
1110 */
04f5c362 1111 unsigned long faults[];
b5dd77c8
RR
1112};
1113
cb361d8c
JH
1114/*
1115 * For functions that can be called in multiple contexts that permit reading
1116 * ->numa_group (see struct task_struct for locking rules).
1117 */
1118static struct numa_group *deref_task_numa_group(struct task_struct *p)
1119{
1120 return rcu_dereference_check(p->numa_group, p == current ||
9ef7e7e3 1121 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
cb361d8c
JH
1122}
1123
1124static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1125{
1126 return rcu_dereference_protected(p->numa_group, p == current);
1127}
1128
b5dd77c8
RR
1129static inline unsigned long group_faults_priv(struct numa_group *ng);
1130static inline unsigned long group_faults_shared(struct numa_group *ng);
1131
598f0ec0
MG
1132static unsigned int task_nr_scan_windows(struct task_struct *p)
1133{
1134 unsigned long rss = 0;
1135 unsigned long nr_scan_pages;
1136
1137 /*
1138 * Calculations based on RSS as non-present and empty pages are skipped
1139 * by the PTE scanner and NUMA hinting faults should be trapped based
1140 * on resident pages
1141 */
1142 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1143 rss = get_mm_rss(p->mm);
1144 if (!rss)
1145 rss = nr_scan_pages;
1146
1147 rss = round_up(rss, nr_scan_pages);
1148 return rss / nr_scan_pages;
1149}
1150
3b03706f 1151/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
598f0ec0
MG
1152#define MAX_SCAN_WINDOW 2560
1153
1154static unsigned int task_scan_min(struct task_struct *p)
1155{
316c1608 1156 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1157 unsigned int scan, floor;
1158 unsigned int windows = 1;
1159
64192658
KT
1160 if (scan_size < MAX_SCAN_WINDOW)
1161 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1162 floor = 1000 / windows;
1163
1164 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1165 return max_t(unsigned int, floor, scan);
1166}
1167
b5dd77c8
RR
1168static unsigned int task_scan_start(struct task_struct *p)
1169{
1170 unsigned long smin = task_scan_min(p);
1171 unsigned long period = smin;
cb361d8c 1172 struct numa_group *ng;
b5dd77c8
RR
1173
1174 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1175 rcu_read_lock();
1176 ng = rcu_dereference(p->numa_group);
1177 if (ng) {
b5dd77c8
RR
1178 unsigned long shared = group_faults_shared(ng);
1179 unsigned long private = group_faults_priv(ng);
1180
c45a7795 1181 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1182 period *= shared + 1;
1183 period /= private + shared + 1;
1184 }
cb361d8c 1185 rcu_read_unlock();
b5dd77c8
RR
1186
1187 return max(smin, period);
1188}
1189
598f0ec0
MG
1190static unsigned int task_scan_max(struct task_struct *p)
1191{
b5dd77c8
RR
1192 unsigned long smin = task_scan_min(p);
1193 unsigned long smax;
cb361d8c 1194 struct numa_group *ng;
598f0ec0
MG
1195
1196 /* Watch for min being lower than max due to floor calculations */
1197 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1198
1199 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1200 ng = deref_curr_numa_group(p);
1201 if (ng) {
b5dd77c8
RR
1202 unsigned long shared = group_faults_shared(ng);
1203 unsigned long private = group_faults_priv(ng);
1204 unsigned long period = smax;
1205
c45a7795 1206 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1207 period *= shared + 1;
1208 period /= private + shared + 1;
1209
1210 smax = max(smax, period);
1211 }
1212
598f0ec0
MG
1213 return max(smin, smax);
1214}
1215
0ec8aa00
PZ
1216static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1217{
98fa15f3 1218 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1219 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1220}
1221
1222static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1223{
98fa15f3 1224 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1225 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1226}
1227
be1e4e76
RR
1228/* Shared or private faults. */
1229#define NR_NUMA_HINT_FAULT_TYPES 2
1230
1231/* Memory and CPU locality */
1232#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1233
1234/* Averaged statistics, and temporary buffers. */
1235#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1236
e29cf08b
MG
1237pid_t task_numa_group_id(struct task_struct *p)
1238{
cb361d8c
JH
1239 struct numa_group *ng;
1240 pid_t gid = 0;
1241
1242 rcu_read_lock();
1243 ng = rcu_dereference(p->numa_group);
1244 if (ng)
1245 gid = ng->gid;
1246 rcu_read_unlock();
1247
1248 return gid;
e29cf08b
MG
1249}
1250
44dba3d5 1251/*
97fb7a0a 1252 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1253 * occupy the first half of the array. The second half of the
1254 * array is for current counters, which are averaged into the
1255 * first set by task_numa_placement.
1256 */
1257static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1258{
44dba3d5 1259 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1260}
1261
1262static inline unsigned long task_faults(struct task_struct *p, int nid)
1263{
44dba3d5 1264 if (!p->numa_faults)
ac8e895b
MG
1265 return 0;
1266
44dba3d5
IM
1267 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1269}
1270
83e1d2cd
MG
1271static inline unsigned long group_faults(struct task_struct *p, int nid)
1272{
cb361d8c
JH
1273 struct numa_group *ng = deref_task_numa_group(p);
1274
1275 if (!ng)
83e1d2cd
MG
1276 return 0;
1277
cb361d8c
JH
1278 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1279 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1280}
1281
20e07dea
RR
1282static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1283{
5b763a14
BR
1284 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1285 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
20e07dea
RR
1286}
1287
b5dd77c8
RR
1288static inline unsigned long group_faults_priv(struct numa_group *ng)
1289{
1290 unsigned long faults = 0;
1291 int node;
1292
1293 for_each_online_node(node) {
1294 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1295 }
1296
1297 return faults;
1298}
1299
1300static inline unsigned long group_faults_shared(struct numa_group *ng)
1301{
1302 unsigned long faults = 0;
1303 int node;
1304
1305 for_each_online_node(node) {
1306 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1307 }
1308
1309 return faults;
1310}
1311
4142c3eb
RR
1312/*
1313 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1314 * considered part of a numa group's pseudo-interleaving set. Migrations
1315 * between these nodes are slowed down, to allow things to settle down.
1316 */
1317#define ACTIVE_NODE_FRACTION 3
1318
1319static bool numa_is_active_node(int nid, struct numa_group *ng)
1320{
1321 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1322}
1323
6c6b1193
RR
1324/* Handle placement on systems where not all nodes are directly connected. */
1325static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
0fb3978b 1326 int lim_dist, bool task)
6c6b1193
RR
1327{
1328 unsigned long score = 0;
0fb3978b 1329 int node, max_dist;
6c6b1193
RR
1330
1331 /*
1332 * All nodes are directly connected, and the same distance
1333 * from each other. No need for fancy placement algorithms.
1334 */
1335 if (sched_numa_topology_type == NUMA_DIRECT)
1336 return 0;
1337
0fb3978b
HY
1338 /* sched_max_numa_distance may be changed in parallel. */
1339 max_dist = READ_ONCE(sched_max_numa_distance);
6c6b1193
RR
1340 /*
1341 * This code is called for each node, introducing N^2 complexity,
1342 * which should be ok given the number of nodes rarely exceeds 8.
1343 */
1344 for_each_online_node(node) {
1345 unsigned long faults;
1346 int dist = node_distance(nid, node);
1347
1348 /*
1349 * The furthest away nodes in the system are not interesting
1350 * for placement; nid was already counted.
1351 */
0fb3978b 1352 if (dist >= max_dist || node == nid)
6c6b1193
RR
1353 continue;
1354
1355 /*
1356 * On systems with a backplane NUMA topology, compare groups
1357 * of nodes, and move tasks towards the group with the most
1358 * memory accesses. When comparing two nodes at distance
1359 * "hoplimit", only nodes closer by than "hoplimit" are part
1360 * of each group. Skip other nodes.
1361 */
0fb3978b 1362 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
6c6b1193
RR
1363 continue;
1364
1365 /* Add up the faults from nearby nodes. */
1366 if (task)
1367 faults = task_faults(p, node);
1368 else
1369 faults = group_faults(p, node);
1370
1371 /*
1372 * On systems with a glueless mesh NUMA topology, there are
1373 * no fixed "groups of nodes". Instead, nodes that are not
1374 * directly connected bounce traffic through intermediate
1375 * nodes; a numa_group can occupy any set of nodes.
1376 * The further away a node is, the less the faults count.
1377 * This seems to result in good task placement.
1378 */
1379 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
0fb3978b
HY
1380 faults *= (max_dist - dist);
1381 faults /= (max_dist - LOCAL_DISTANCE);
6c6b1193
RR
1382 }
1383
1384 score += faults;
1385 }
1386
1387 return score;
1388}
1389
83e1d2cd
MG
1390/*
1391 * These return the fraction of accesses done by a particular task, or
1392 * task group, on a particular numa node. The group weight is given a
1393 * larger multiplier, in order to group tasks together that are almost
1394 * evenly spread out between numa nodes.
1395 */
7bd95320
RR
1396static inline unsigned long task_weight(struct task_struct *p, int nid,
1397 int dist)
83e1d2cd 1398{
7bd95320 1399 unsigned long faults, total_faults;
83e1d2cd 1400
44dba3d5 1401 if (!p->numa_faults)
83e1d2cd
MG
1402 return 0;
1403
1404 total_faults = p->total_numa_faults;
1405
1406 if (!total_faults)
1407 return 0;
1408
7bd95320 1409 faults = task_faults(p, nid);
6c6b1193
RR
1410 faults += score_nearby_nodes(p, nid, dist, true);
1411
7bd95320 1412 return 1000 * faults / total_faults;
83e1d2cd
MG
1413}
1414
7bd95320
RR
1415static inline unsigned long group_weight(struct task_struct *p, int nid,
1416 int dist)
83e1d2cd 1417{
cb361d8c 1418 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1419 unsigned long faults, total_faults;
1420
cb361d8c 1421 if (!ng)
7bd95320
RR
1422 return 0;
1423
cb361d8c 1424 total_faults = ng->total_faults;
7bd95320
RR
1425
1426 if (!total_faults)
83e1d2cd
MG
1427 return 0;
1428
7bd95320 1429 faults = group_faults(p, nid);
6c6b1193
RR
1430 faults += score_nearby_nodes(p, nid, dist, false);
1431
7bd95320 1432 return 1000 * faults / total_faults;
83e1d2cd
MG
1433}
1434
10f39042
RR
1435bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1436 int src_nid, int dst_cpu)
1437{
cb361d8c 1438 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1439 int dst_nid = cpu_to_node(dst_cpu);
1440 int last_cpupid, this_cpupid;
1441
1442 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1443 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1444
1445 /*
1446 * Allow first faults or private faults to migrate immediately early in
1447 * the lifetime of a task. The magic number 4 is based on waiting for
1448 * two full passes of the "multi-stage node selection" test that is
1449 * executed below.
1450 */
98fa15f3 1451 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1452 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1453 return true;
10f39042
RR
1454
1455 /*
1456 * Multi-stage node selection is used in conjunction with a periodic
1457 * migration fault to build a temporal task<->page relation. By using
1458 * a two-stage filter we remove short/unlikely relations.
1459 *
1460 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1461 * a task's usage of a particular page (n_p) per total usage of this
1462 * page (n_t) (in a given time-span) to a probability.
1463 *
1464 * Our periodic faults will sample this probability and getting the
1465 * same result twice in a row, given these samples are fully
1466 * independent, is then given by P(n)^2, provided our sample period
1467 * is sufficiently short compared to the usage pattern.
1468 *
1469 * This quadric squishes small probabilities, making it less likely we
1470 * act on an unlikely task<->page relation.
1471 */
10f39042
RR
1472 if (!cpupid_pid_unset(last_cpupid) &&
1473 cpupid_to_nid(last_cpupid) != dst_nid)
1474 return false;
1475
1476 /* Always allow migrate on private faults */
1477 if (cpupid_match_pid(p, last_cpupid))
1478 return true;
1479
1480 /* A shared fault, but p->numa_group has not been set up yet. */
1481 if (!ng)
1482 return true;
1483
1484 /*
4142c3eb
RR
1485 * Destination node is much more heavily used than the source
1486 * node? Allow migration.
10f39042 1487 */
4142c3eb
RR
1488 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1489 ACTIVE_NODE_FRACTION)
10f39042
RR
1490 return true;
1491
1492 /*
4142c3eb
RR
1493 * Distribute memory according to CPU & memory use on each node,
1494 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1495 *
1496 * faults_cpu(dst) 3 faults_cpu(src)
1497 * --------------- * - > ---------------
1498 * faults_mem(dst) 4 faults_mem(src)
10f39042 1499 */
4142c3eb
RR
1500 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1501 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1502}
1503
6499b1b2
VG
1504/*
1505 * 'numa_type' describes the node at the moment of load balancing.
1506 */
1507enum numa_type {
1508 /* The node has spare capacity that can be used to run more tasks. */
1509 node_has_spare = 0,
1510 /*
1511 * The node is fully used and the tasks don't compete for more CPU
1512 * cycles. Nevertheless, some tasks might wait before running.
1513 */
1514 node_fully_busy,
1515 /*
1516 * The node is overloaded and can't provide expected CPU cycles to all
1517 * tasks.
1518 */
1519 node_overloaded
1520};
58d081b5 1521
fb13c7ee 1522/* Cached statistics for all CPUs within a node */
58d081b5
MG
1523struct numa_stats {
1524 unsigned long load;
8e0e0eda 1525 unsigned long runnable;
6499b1b2 1526 unsigned long util;
fb13c7ee 1527 /* Total compute capacity of CPUs on a node */
5ef20ca1 1528 unsigned long compute_capacity;
6499b1b2
VG
1529 unsigned int nr_running;
1530 unsigned int weight;
1531 enum numa_type node_type;
ff7db0bf 1532 int idle_cpu;
58d081b5 1533};
e6628d5b 1534
ff7db0bf
MG
1535static inline bool is_core_idle(int cpu)
1536{
1537#ifdef CONFIG_SCHED_SMT
1538 int sibling;
1539
1540 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1541 if (cpu == sibling)
1542 continue;
1543
1c6829cf 1544 if (!idle_cpu(sibling))
ff7db0bf
MG
1545 return false;
1546 }
1547#endif
1548
1549 return true;
1550}
1551
58d081b5
MG
1552struct task_numa_env {
1553 struct task_struct *p;
e6628d5b 1554
58d081b5
MG
1555 int src_cpu, src_nid;
1556 int dst_cpu, dst_nid;
e496132e 1557 int imb_numa_nr;
e6628d5b 1558
58d081b5 1559 struct numa_stats src_stats, dst_stats;
e6628d5b 1560
40ea2b42 1561 int imbalance_pct;
7bd95320 1562 int dist;
fb13c7ee
MG
1563
1564 struct task_struct *best_task;
1565 long best_imp;
58d081b5
MG
1566 int best_cpu;
1567};
1568
6499b1b2 1569static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1570static unsigned long cpu_runnable(struct rq *rq);
6499b1b2
VG
1571
1572static inline enum
1573numa_type numa_classify(unsigned int imbalance_pct,
1574 struct numa_stats *ns)
1575{
1576 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1577 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1578 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1579 return node_overloaded;
1580
1581 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1582 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1583 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1584 return node_has_spare;
1585
1586 return node_fully_busy;
1587}
1588
76c389ab
VS
1589#ifdef CONFIG_SCHED_SMT
1590/* Forward declarations of select_idle_sibling helpers */
1591static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1592static inline int numa_idle_core(int idle_core, int cpu)
1593{
ff7db0bf
MG
1594 if (!static_branch_likely(&sched_smt_present) ||
1595 idle_core >= 0 || !test_idle_cores(cpu, false))
1596 return idle_core;
1597
1598 /*
1599 * Prefer cores instead of packing HT siblings
1600 * and triggering future load balancing.
1601 */
1602 if (is_core_idle(cpu))
1603 idle_core = cpu;
ff7db0bf
MG
1604
1605 return idle_core;
1606}
76c389ab
VS
1607#else
1608static inline int numa_idle_core(int idle_core, int cpu)
1609{
1610 return idle_core;
1611}
1612#endif
ff7db0bf 1613
6499b1b2 1614/*
ff7db0bf
MG
1615 * Gather all necessary information to make NUMA balancing placement
1616 * decisions that are compatible with standard load balancer. This
1617 * borrows code and logic from update_sg_lb_stats but sharing a
1618 * common implementation is impractical.
6499b1b2
VG
1619 */
1620static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1621 struct numa_stats *ns, int nid,
1622 bool find_idle)
6499b1b2 1623{
ff7db0bf 1624 int cpu, idle_core = -1;
6499b1b2
VG
1625
1626 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1627 ns->idle_cpu = -1;
1628
0621df31 1629 rcu_read_lock();
6499b1b2
VG
1630 for_each_cpu(cpu, cpumask_of_node(nid)) {
1631 struct rq *rq = cpu_rq(cpu);
1632
1633 ns->load += cpu_load(rq);
8e0e0eda 1634 ns->runnable += cpu_runnable(rq);
82762d2a 1635 ns->util += cpu_util_cfs(cpu);
6499b1b2
VG
1636 ns->nr_running += rq->cfs.h_nr_running;
1637 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1638
1639 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1640 if (READ_ONCE(rq->numa_migrate_on) ||
1641 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1642 continue;
1643
1644 if (ns->idle_cpu == -1)
1645 ns->idle_cpu = cpu;
1646
1647 idle_core = numa_idle_core(idle_core, cpu);
1648 }
6499b1b2 1649 }
0621df31 1650 rcu_read_unlock();
6499b1b2
VG
1651
1652 ns->weight = cpumask_weight(cpumask_of_node(nid));
1653
1654 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1655
1656 if (idle_core >= 0)
1657 ns->idle_cpu = idle_core;
6499b1b2
VG
1658}
1659
fb13c7ee
MG
1660static void task_numa_assign(struct task_numa_env *env,
1661 struct task_struct *p, long imp)
1662{
a4739eca
SD
1663 struct rq *rq = cpu_rq(env->dst_cpu);
1664
5fb52dd9
MG
1665 /* Check if run-queue part of active NUMA balance. */
1666 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1667 int cpu;
1668 int start = env->dst_cpu;
1669
1670 /* Find alternative idle CPU. */
1671 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1672 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1673 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1674 continue;
1675 }
1676
1677 env->dst_cpu = cpu;
1678 rq = cpu_rq(env->dst_cpu);
1679 if (!xchg(&rq->numa_migrate_on, 1))
1680 goto assign;
1681 }
1682
1683 /* Failed to find an alternative idle CPU */
a4739eca 1684 return;
5fb52dd9 1685 }
a4739eca 1686
5fb52dd9 1687assign:
a4739eca
SD
1688 /*
1689 * Clear previous best_cpu/rq numa-migrate flag, since task now
1690 * found a better CPU to move/swap.
1691 */
5fb52dd9 1692 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1693 rq = cpu_rq(env->best_cpu);
1694 WRITE_ONCE(rq->numa_migrate_on, 0);
1695 }
1696
fb13c7ee
MG
1697 if (env->best_task)
1698 put_task_struct(env->best_task);
bac78573
ON
1699 if (p)
1700 get_task_struct(p);
fb13c7ee
MG
1701
1702 env->best_task = p;
1703 env->best_imp = imp;
1704 env->best_cpu = env->dst_cpu;
1705}
1706
28a21745 1707static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1708 struct task_numa_env *env)
1709{
e4991b24
RR
1710 long imb, old_imb;
1711 long orig_src_load, orig_dst_load;
28a21745
RR
1712 long src_capacity, dst_capacity;
1713
1714 /*
1715 * The load is corrected for the CPU capacity available on each node.
1716 *
1717 * src_load dst_load
1718 * ------------ vs ---------
1719 * src_capacity dst_capacity
1720 */
1721 src_capacity = env->src_stats.compute_capacity;
1722 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1723
5f95ba7a 1724 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1725
28a21745 1726 orig_src_load = env->src_stats.load;
e4991b24 1727 orig_dst_load = env->dst_stats.load;
28a21745 1728
5f95ba7a 1729 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1730
1731 /* Would this change make things worse? */
1732 return (imb > old_imb);
e63da036
RR
1733}
1734
6fd98e77
SD
1735/*
1736 * Maximum NUMA importance can be 1998 (2*999);
1737 * SMALLIMP @ 30 would be close to 1998/64.
1738 * Used to deter task migration.
1739 */
1740#define SMALLIMP 30
1741
fb13c7ee
MG
1742/*
1743 * This checks if the overall compute and NUMA accesses of the system would
1744 * be improved if the source tasks was migrated to the target dst_cpu taking
1745 * into account that it might be best if task running on the dst_cpu should
1746 * be exchanged with the source task
1747 */
a0f03b61 1748static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1749 long taskimp, long groupimp, bool maymove)
fb13c7ee 1750{
cb361d8c 1751 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1752 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1753 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1754 struct task_struct *cur;
28a21745 1755 long src_load, dst_load;
7bd95320 1756 int dist = env->dist;
cb361d8c
JH
1757 long moveimp = imp;
1758 long load;
a0f03b61 1759 bool stopsearch = false;
fb13c7ee 1760
a4739eca 1761 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1762 return false;
a4739eca 1763
fb13c7ee 1764 rcu_read_lock();
154abafc 1765 cur = rcu_dereference(dst_rq->curr);
bac78573 1766 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1767 cur = NULL;
1768
7af68335
PZ
1769 /*
1770 * Because we have preemption enabled we can get migrated around and
1771 * end try selecting ourselves (current == env->p) as a swap candidate.
1772 */
a0f03b61
MG
1773 if (cur == env->p) {
1774 stopsearch = true;
7af68335 1775 goto unlock;
a0f03b61 1776 }
7af68335 1777
305c1fac 1778 if (!cur) {
6fd98e77 1779 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1780 goto assign;
1781 else
1782 goto unlock;
1783 }
1784
88cca72c
MG
1785 /* Skip this swap candidate if cannot move to the source cpu. */
1786 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1787 goto unlock;
1788
1789 /*
1790 * Skip this swap candidate if it is not moving to its preferred
1791 * node and the best task is.
1792 */
1793 if (env->best_task &&
1794 env->best_task->numa_preferred_nid == env->src_nid &&
1795 cur->numa_preferred_nid != env->src_nid) {
1796 goto unlock;
1797 }
1798
fb13c7ee
MG
1799 /*
1800 * "imp" is the fault differential for the source task between the
1801 * source and destination node. Calculate the total differential for
1802 * the source task and potential destination task. The more negative
305c1fac 1803 * the value is, the more remote accesses that would be expected to
fb13c7ee 1804 * be incurred if the tasks were swapped.
88cca72c 1805 *
305c1fac
SD
1806 * If dst and source tasks are in the same NUMA group, or not
1807 * in any group then look only at task weights.
1808 */
cb361d8c
JH
1809 cur_ng = rcu_dereference(cur->numa_group);
1810 if (cur_ng == p_ng) {
13ede331
MG
1811 /*
1812 * Do not swap within a group or between tasks that have
1813 * no group if there is spare capacity. Swapping does
1814 * not address the load imbalance and helps one task at
1815 * the cost of punishing another.
1816 */
1817 if (env->dst_stats.node_type == node_has_spare)
1818 goto unlock;
1819
305c1fac
SD
1820 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1821 task_weight(cur, env->dst_nid, dist);
887c290e 1822 /*
305c1fac
SD
1823 * Add some hysteresis to prevent swapping the
1824 * tasks within a group over tiny differences.
887c290e 1825 */
cb361d8c 1826 if (cur_ng)
305c1fac
SD
1827 imp -= imp / 16;
1828 } else {
1829 /*
1830 * Compare the group weights. If a task is all by itself
1831 * (not part of a group), use the task weight instead.
1832 */
cb361d8c 1833 if (cur_ng && p_ng)
305c1fac
SD
1834 imp += group_weight(cur, env->src_nid, dist) -
1835 group_weight(cur, env->dst_nid, dist);
1836 else
1837 imp += task_weight(cur, env->src_nid, dist) -
1838 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1839 }
1840
88cca72c
MG
1841 /* Discourage picking a task already on its preferred node */
1842 if (cur->numa_preferred_nid == env->dst_nid)
1843 imp -= imp / 16;
1844
1845 /*
1846 * Encourage picking a task that moves to its preferred node.
1847 * This potentially makes imp larger than it's maximum of
1848 * 1998 (see SMALLIMP and task_weight for why) but in this
1849 * case, it does not matter.
1850 */
1851 if (cur->numa_preferred_nid == env->src_nid)
1852 imp += imp / 8;
1853
305c1fac 1854 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1855 imp = moveimp;
305c1fac 1856 cur = NULL;
fb13c7ee 1857 goto assign;
305c1fac 1858 }
fb13c7ee 1859
88cca72c
MG
1860 /*
1861 * Prefer swapping with a task moving to its preferred node over a
1862 * task that is not.
1863 */
1864 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1865 env->best_task->numa_preferred_nid != env->src_nid) {
1866 goto assign;
1867 }
1868
6fd98e77
SD
1869 /*
1870 * If the NUMA importance is less than SMALLIMP,
1871 * task migration might only result in ping pong
1872 * of tasks and also hurt performance due to cache
1873 * misses.
1874 */
1875 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1876 goto unlock;
1877
fb13c7ee
MG
1878 /*
1879 * In the overloaded case, try and keep the load balanced.
1880 */
305c1fac
SD
1881 load = task_h_load(env->p) - task_h_load(cur);
1882 if (!load)
1883 goto assign;
1884
e720fff6
PZ
1885 dst_load = env->dst_stats.load + load;
1886 src_load = env->src_stats.load - load;
fb13c7ee 1887
28a21745 1888 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1889 goto unlock;
1890
305c1fac 1891assign:
ff7db0bf 1892 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1893 if (!cur) {
ff7db0bf
MG
1894 int cpu = env->dst_stats.idle_cpu;
1895
1896 /* Nothing cached so current CPU went idle since the search. */
1897 if (cpu < 0)
1898 cpu = env->dst_cpu;
1899
10e2f1ac 1900 /*
ff7db0bf
MG
1901 * If the CPU is no longer truly idle and the previous best CPU
1902 * is, keep using it.
10e2f1ac 1903 */
ff7db0bf
MG
1904 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1905 idle_cpu(env->best_cpu)) {
1906 cpu = env->best_cpu;
1907 }
1908
ff7db0bf 1909 env->dst_cpu = cpu;
10e2f1ac 1910 }
ba7e5a27 1911
fb13c7ee 1912 task_numa_assign(env, cur, imp);
a0f03b61
MG
1913
1914 /*
1915 * If a move to idle is allowed because there is capacity or load
1916 * balance improves then stop the search. While a better swap
1917 * candidate may exist, a search is not free.
1918 */
1919 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1920 stopsearch = true;
1921
1922 /*
1923 * If a swap candidate must be identified and the current best task
1924 * moves its preferred node then stop the search.
1925 */
1926 if (!maymove && env->best_task &&
1927 env->best_task->numa_preferred_nid == env->src_nid) {
1928 stopsearch = true;
1929 }
fb13c7ee
MG
1930unlock:
1931 rcu_read_unlock();
a0f03b61
MG
1932
1933 return stopsearch;
fb13c7ee
MG
1934}
1935
887c290e
RR
1936static void task_numa_find_cpu(struct task_numa_env *env,
1937 long taskimp, long groupimp)
2c8a50aa 1938{
305c1fac 1939 bool maymove = false;
2c8a50aa
MG
1940 int cpu;
1941
305c1fac 1942 /*
fb86f5b2
MG
1943 * If dst node has spare capacity, then check if there is an
1944 * imbalance that would be overruled by the load balancer.
305c1fac 1945 */
fb86f5b2
MG
1946 if (env->dst_stats.node_type == node_has_spare) {
1947 unsigned int imbalance;
1948 int src_running, dst_running;
1949
1950 /*
1951 * Would movement cause an imbalance? Note that if src has
1952 * more running tasks that the imbalance is ignored as the
1953 * move improves the imbalance from the perspective of the
1954 * CPU load balancer.
1955 * */
1956 src_running = env->src_stats.nr_running - 1;
1957 dst_running = env->dst_stats.nr_running + 1;
1958 imbalance = max(0, dst_running - src_running);
7d2b5dd0 1959 imbalance = adjust_numa_imbalance(imbalance, dst_running,
e496132e 1960 env->imb_numa_nr);
fb86f5b2
MG
1961
1962 /* Use idle CPU if there is no imbalance */
ff7db0bf 1963 if (!imbalance) {
fb86f5b2 1964 maymove = true;
ff7db0bf
MG
1965 if (env->dst_stats.idle_cpu >= 0) {
1966 env->dst_cpu = env->dst_stats.idle_cpu;
1967 task_numa_assign(env, NULL, 0);
1968 return;
1969 }
1970 }
fb86f5b2
MG
1971 } else {
1972 long src_load, dst_load, load;
1973 /*
1974 * If the improvement from just moving env->p direction is better
1975 * than swapping tasks around, check if a move is possible.
1976 */
1977 load = task_h_load(env->p);
1978 dst_load = env->dst_stats.load + load;
1979 src_load = env->src_stats.load - load;
1980 maymove = !load_too_imbalanced(src_load, dst_load, env);
1981 }
305c1fac 1982
2c8a50aa
MG
1983 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1984 /* Skip this CPU if the source task cannot migrate */
3bd37062 1985 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1986 continue;
1987
1988 env->dst_cpu = cpu;
a0f03b61
MG
1989 if (task_numa_compare(env, taskimp, groupimp, maymove))
1990 break;
2c8a50aa
MG
1991 }
1992}
1993
58d081b5
MG
1994static int task_numa_migrate(struct task_struct *p)
1995{
58d081b5
MG
1996 struct task_numa_env env = {
1997 .p = p,
fb13c7ee 1998
58d081b5 1999 .src_cpu = task_cpu(p),
b32e86b4 2000 .src_nid = task_node(p),
fb13c7ee
MG
2001
2002 .imbalance_pct = 112,
2003
2004 .best_task = NULL,
2005 .best_imp = 0,
4142c3eb 2006 .best_cpu = -1,
58d081b5 2007 };
cb361d8c 2008 unsigned long taskweight, groupweight;
58d081b5 2009 struct sched_domain *sd;
cb361d8c
JH
2010 long taskimp, groupimp;
2011 struct numa_group *ng;
a4739eca 2012 struct rq *best_rq;
7bd95320 2013 int nid, ret, dist;
e6628d5b 2014
58d081b5 2015 /*
fb13c7ee
MG
2016 * Pick the lowest SD_NUMA domain, as that would have the smallest
2017 * imbalance and would be the first to start moving tasks about.
2018 *
2019 * And we want to avoid any moving of tasks about, as that would create
2020 * random movement of tasks -- counter the numa conditions we're trying
2021 * to satisfy here.
58d081b5
MG
2022 */
2023 rcu_read_lock();
fb13c7ee 2024 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
e496132e 2025 if (sd) {
46a73e8a 2026 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e496132e
MG
2027 env.imb_numa_nr = sd->imb_numa_nr;
2028 }
e6628d5b
MG
2029 rcu_read_unlock();
2030
46a73e8a
RR
2031 /*
2032 * Cpusets can break the scheduler domain tree into smaller
2033 * balance domains, some of which do not cross NUMA boundaries.
2034 * Tasks that are "trapped" in such domains cannot be migrated
2035 * elsewhere, so there is no point in (re)trying.
2036 */
2037 if (unlikely(!sd)) {
8cd45eee 2038 sched_setnuma(p, task_node(p));
46a73e8a
RR
2039 return -EINVAL;
2040 }
2041
2c8a50aa 2042 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2043 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2044 taskweight = task_weight(p, env.src_nid, dist);
2045 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2046 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2047 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2048 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2049 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2050
a43455a1 2051 /* Try to find a spot on the preferred nid. */
2d4056fa 2052 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2053
9de05d48
RR
2054 /*
2055 * Look at other nodes in these cases:
2056 * - there is no space available on the preferred_nid
2057 * - the task is part of a numa_group that is interleaved across
2058 * multiple NUMA nodes; in order to better consolidate the group,
2059 * we need to check other locations.
2060 */
cb361d8c
JH
2061 ng = deref_curr_numa_group(p);
2062 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
5c7b1aaf 2063 for_each_node_state(nid, N_CPU) {
2c8a50aa
MG
2064 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2065 continue;
58d081b5 2066
7bd95320 2067 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2068 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2069 dist != env.dist) {
2070 taskweight = task_weight(p, env.src_nid, dist);
2071 groupweight = group_weight(p, env.src_nid, dist);
2072 }
7bd95320 2073
83e1d2cd 2074 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2075 taskimp = task_weight(p, nid, dist) - taskweight;
2076 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2077 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2078 continue;
2079
7bd95320 2080 env.dist = dist;
2c8a50aa 2081 env.dst_nid = nid;
ff7db0bf 2082 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2083 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2084 }
2085 }
2086
68d1b02a
RR
2087 /*
2088 * If the task is part of a workload that spans multiple NUMA nodes,
2089 * and is migrating into one of the workload's active nodes, remember
2090 * this node as the task's preferred numa node, so the workload can
2091 * settle down.
2092 * A task that migrated to a second choice node will be better off
2093 * trying for a better one later. Do not set the preferred node here.
2094 */
cb361d8c 2095 if (ng) {
db015dae
RR
2096 if (env.best_cpu == -1)
2097 nid = env.src_nid;
2098 else
8cd45eee 2099 nid = cpu_to_node(env.best_cpu);
db015dae 2100
8cd45eee
SD
2101 if (nid != p->numa_preferred_nid)
2102 sched_setnuma(p, nid);
db015dae
RR
2103 }
2104
2105 /* No better CPU than the current one was found. */
f22aef4a 2106 if (env.best_cpu == -1) {
b2b2042b 2107 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2108 return -EAGAIN;
f22aef4a 2109 }
0ec8aa00 2110
a4739eca 2111 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2112 if (env.best_task == NULL) {
286549dc 2113 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2114 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2115 if (ret != 0)
b2b2042b 2116 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2117 return ret;
2118 }
2119
0ad4e3df 2120 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2121 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2122
286549dc 2123 if (ret != 0)
b2b2042b 2124 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2125 put_task_struct(env.best_task);
2126 return ret;
e6628d5b
MG
2127}
2128
6b9a7460
MG
2129/* Attempt to migrate a task to a CPU on the preferred node. */
2130static void numa_migrate_preferred(struct task_struct *p)
2131{
5085e2a3
RR
2132 unsigned long interval = HZ;
2133
2739d3ee 2134 /* This task has no NUMA fault statistics yet */
98fa15f3 2135 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2136 return;
2137
2739d3ee 2138 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2139 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2140 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2141
2142 /* Success if task is already running on preferred CPU */
de1b301a 2143 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2144 return;
2145
2146 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2147 task_numa_migrate(p);
6b9a7460
MG
2148}
2149
20e07dea 2150/*
7d380f24 2151 * Find out how many nodes the workload is actively running on. Do this by
20e07dea
RR
2152 * tracking the nodes from which NUMA hinting faults are triggered. This can
2153 * be different from the set of nodes where the workload's memory is currently
2154 * located.
20e07dea 2155 */
4142c3eb 2156static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2157{
2158 unsigned long faults, max_faults = 0;
4142c3eb 2159 int nid, active_nodes = 0;
20e07dea 2160
5c7b1aaf 2161 for_each_node_state(nid, N_CPU) {
20e07dea
RR
2162 faults = group_faults_cpu(numa_group, nid);
2163 if (faults > max_faults)
2164 max_faults = faults;
2165 }
2166
5c7b1aaf 2167 for_each_node_state(nid, N_CPU) {
20e07dea 2168 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2169 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2170 active_nodes++;
20e07dea 2171 }
4142c3eb
RR
2172
2173 numa_group->max_faults_cpu = max_faults;
2174 numa_group->active_nodes = active_nodes;
20e07dea
RR
2175}
2176
04bb2f94
RR
2177/*
2178 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2179 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2180 * period will be for the next scan window. If local/(local+remote) ratio is
2181 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2182 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2183 */
2184#define NUMA_PERIOD_SLOTS 10
a22b4b01 2185#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2186
2187/*
2188 * Increase the scan period (slow down scanning) if the majority of
2189 * our memory is already on our local node, or if the majority of
2190 * the page accesses are shared with other processes.
2191 * Otherwise, decrease the scan period.
2192 */
2193static void update_task_scan_period(struct task_struct *p,
2194 unsigned long shared, unsigned long private)
2195{
2196 unsigned int period_slot;
37ec97de 2197 int lr_ratio, ps_ratio;
04bb2f94
RR
2198 int diff;
2199
2200 unsigned long remote = p->numa_faults_locality[0];
2201 unsigned long local = p->numa_faults_locality[1];
2202
2203 /*
2204 * If there were no record hinting faults then either the task is
7d380f24 2205 * completely idle or all activity is in areas that are not of interest
074c2381
MG
2206 * to automatic numa balancing. Related to that, if there were failed
2207 * migration then it implies we are migrating too quickly or the local
2208 * node is overloaded. In either case, scan slower
04bb2f94 2209 */
074c2381 2210 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2211 p->numa_scan_period = min(p->numa_scan_period_max,
2212 p->numa_scan_period << 1);
2213
2214 p->mm->numa_next_scan = jiffies +
2215 msecs_to_jiffies(p->numa_scan_period);
2216
2217 return;
2218 }
2219
2220 /*
2221 * Prepare to scale scan period relative to the current period.
2222 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2223 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2224 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2225 */
2226 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2227 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2228 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2229
2230 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2231 /*
2232 * Most memory accesses are local. There is no need to
2233 * do fast NUMA scanning, since memory is already local.
2234 */
2235 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2236 if (!slot)
2237 slot = 1;
2238 diff = slot * period_slot;
2239 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2240 /*
2241 * Most memory accesses are shared with other tasks.
2242 * There is no point in continuing fast NUMA scanning,
2243 * since other tasks may just move the memory elsewhere.
2244 */
2245 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2246 if (!slot)
2247 slot = 1;
2248 diff = slot * period_slot;
2249 } else {
04bb2f94 2250 /*
37ec97de
RR
2251 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2252 * yet they are not on the local NUMA node. Speed up
2253 * NUMA scanning to get the memory moved over.
04bb2f94 2254 */
37ec97de
RR
2255 int ratio = max(lr_ratio, ps_ratio);
2256 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2257 }
2258
2259 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2260 task_scan_min(p), task_scan_max(p));
2261 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2262}
2263
7e2703e6
RR
2264/*
2265 * Get the fraction of time the task has been running since the last
2266 * NUMA placement cycle. The scheduler keeps similar statistics, but
2267 * decays those on a 32ms period, which is orders of magnitude off
2268 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2269 * stats only if the task is so new there are no NUMA statistics yet.
2270 */
2271static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2272{
2273 u64 runtime, delta, now;
2274 /* Use the start of this time slice to avoid calculations. */
2275 now = p->se.exec_start;
2276 runtime = p->se.sum_exec_runtime;
2277
2278 if (p->last_task_numa_placement) {
2279 delta = runtime - p->last_sum_exec_runtime;
2280 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2281
2282 /* Avoid time going backwards, prevent potential divide error: */
2283 if (unlikely((s64)*period < 0))
2284 *period = 0;
7e2703e6 2285 } else {
c7b50216 2286 delta = p->se.avg.load_sum;
9d89c257 2287 *period = LOAD_AVG_MAX;
7e2703e6
RR
2288 }
2289
2290 p->last_sum_exec_runtime = runtime;
2291 p->last_task_numa_placement = now;
2292
2293 return delta;
2294}
2295
54009416
RR
2296/*
2297 * Determine the preferred nid for a task in a numa_group. This needs to
2298 * be done in a way that produces consistent results with group_weight,
2299 * otherwise workloads might not converge.
2300 */
2301static int preferred_group_nid(struct task_struct *p, int nid)
2302{
2303 nodemask_t nodes;
2304 int dist;
2305
2306 /* Direct connections between all NUMA nodes. */
2307 if (sched_numa_topology_type == NUMA_DIRECT)
2308 return nid;
2309
2310 /*
2311 * On a system with glueless mesh NUMA topology, group_weight
2312 * scores nodes according to the number of NUMA hinting faults on
2313 * both the node itself, and on nearby nodes.
2314 */
2315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2316 unsigned long score, max_score = 0;
2317 int node, max_node = nid;
2318
2319 dist = sched_max_numa_distance;
2320
5c7b1aaf 2321 for_each_node_state(node, N_CPU) {
54009416
RR
2322 score = group_weight(p, node, dist);
2323 if (score > max_score) {
2324 max_score = score;
2325 max_node = node;
2326 }
2327 }
2328 return max_node;
2329 }
2330
2331 /*
2332 * Finding the preferred nid in a system with NUMA backplane
2333 * interconnect topology is more involved. The goal is to locate
2334 * tasks from numa_groups near each other in the system, and
2335 * untangle workloads from different sides of the system. This requires
2336 * searching down the hierarchy of node groups, recursively searching
2337 * inside the highest scoring group of nodes. The nodemask tricks
2338 * keep the complexity of the search down.
2339 */
5c7b1aaf 2340 nodes = node_states[N_CPU];
54009416
RR
2341 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2342 unsigned long max_faults = 0;
81907478 2343 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2344 int a, b;
2345
2346 /* Are there nodes at this distance from each other? */
2347 if (!find_numa_distance(dist))
2348 continue;
2349
2350 for_each_node_mask(a, nodes) {
2351 unsigned long faults = 0;
2352 nodemask_t this_group;
2353 nodes_clear(this_group);
2354
2355 /* Sum group's NUMA faults; includes a==b case. */
2356 for_each_node_mask(b, nodes) {
2357 if (node_distance(a, b) < dist) {
2358 faults += group_faults(p, b);
2359 node_set(b, this_group);
2360 node_clear(b, nodes);
2361 }
2362 }
2363
2364 /* Remember the top group. */
2365 if (faults > max_faults) {
2366 max_faults = faults;
2367 max_group = this_group;
2368 /*
2369 * subtle: at the smallest distance there is
2370 * just one node left in each "group", the
2371 * winner is the preferred nid.
2372 */
2373 nid = a;
2374 }
2375 }
2376 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2377 if (!max_faults)
2378 break;
54009416
RR
2379 nodes = max_group;
2380 }
2381 return nid;
2382}
2383
cbee9f88
PZ
2384static void task_numa_placement(struct task_struct *p)
2385{
98fa15f3 2386 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2387 unsigned long max_faults = 0;
04bb2f94 2388 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2389 unsigned long total_faults;
2390 u64 runtime, period;
7dbd13ed 2391 spinlock_t *group_lock = NULL;
cb361d8c 2392 struct numa_group *ng;
cbee9f88 2393
7e5a2c17
JL
2394 /*
2395 * The p->mm->numa_scan_seq field gets updated without
2396 * exclusive access. Use READ_ONCE() here to ensure
2397 * that the field is read in a single access:
2398 */
316c1608 2399 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2400 if (p->numa_scan_seq == seq)
2401 return;
2402 p->numa_scan_seq = seq;
598f0ec0 2403 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2404
7e2703e6
RR
2405 total_faults = p->numa_faults_locality[0] +
2406 p->numa_faults_locality[1];
2407 runtime = numa_get_avg_runtime(p, &period);
2408
7dbd13ed 2409 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2410 ng = deref_curr_numa_group(p);
2411 if (ng) {
2412 group_lock = &ng->lock;
60e69eed 2413 spin_lock_irq(group_lock);
7dbd13ed
MG
2414 }
2415
688b7585
MG
2416 /* Find the node with the highest number of faults */
2417 for_each_online_node(nid) {
44dba3d5
IM
2418 /* Keep track of the offsets in numa_faults array */
2419 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2420 unsigned long faults = 0, group_faults = 0;
44dba3d5 2421 int priv;
745d6147 2422
be1e4e76 2423 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2424 long diff, f_diff, f_weight;
8c8a743c 2425
44dba3d5
IM
2426 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2427 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2428 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2429 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2430
ac8e895b 2431 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2432 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2433 fault_types[priv] += p->numa_faults[membuf_idx];
2434 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2435
7e2703e6
RR
2436 /*
2437 * Normalize the faults_from, so all tasks in a group
2438 * count according to CPU use, instead of by the raw
2439 * number of faults. Tasks with little runtime have
2440 * little over-all impact on throughput, and thus their
2441 * faults are less important.
2442 */
2443 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2444 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2445 (total_faults + 1);
44dba3d5
IM
2446 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2447 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2448
44dba3d5
IM
2449 p->numa_faults[mem_idx] += diff;
2450 p->numa_faults[cpu_idx] += f_diff;
2451 faults += p->numa_faults[mem_idx];
83e1d2cd 2452 p->total_numa_faults += diff;
cb361d8c 2453 if (ng) {
44dba3d5
IM
2454 /*
2455 * safe because we can only change our own group
2456 *
2457 * mem_idx represents the offset for a given
2458 * nid and priv in a specific region because it
2459 * is at the beginning of the numa_faults array.
2460 */
cb361d8c 2461 ng->faults[mem_idx] += diff;
5b763a14 2462 ng->faults[cpu_idx] += f_diff;
cb361d8c
JH
2463 ng->total_faults += diff;
2464 group_faults += ng->faults[mem_idx];
8c8a743c 2465 }
ac8e895b
MG
2466 }
2467
cb361d8c 2468 if (!ng) {
f03bb676
SD
2469 if (faults > max_faults) {
2470 max_faults = faults;
2471 max_nid = nid;
2472 }
2473 } else if (group_faults > max_faults) {
2474 max_faults = group_faults;
688b7585
MG
2475 max_nid = nid;
2476 }
83e1d2cd
MG
2477 }
2478
5c7b1aaf 2479 /* Cannot migrate task to CPU-less node */
ab31c7fd 2480 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
5c7b1aaf
HY
2481 int near_nid = max_nid;
2482 int distance, near_distance = INT_MAX;
2483
2484 for_each_node_state(nid, N_CPU) {
2485 distance = node_distance(max_nid, nid);
2486 if (distance < near_distance) {
2487 near_nid = nid;
2488 near_distance = distance;
2489 }
2490 }
2491 max_nid = near_nid;
2492 }
2493
cb361d8c
JH
2494 if (ng) {
2495 numa_group_count_active_nodes(ng);
60e69eed 2496 spin_unlock_irq(group_lock);
f03bb676 2497 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2498 }
2499
bb97fc31
RR
2500 if (max_faults) {
2501 /* Set the new preferred node */
2502 if (max_nid != p->numa_preferred_nid)
2503 sched_setnuma(p, max_nid);
3a7053b3 2504 }
30619c89
SD
2505
2506 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2507}
2508
8c8a743c
PZ
2509static inline int get_numa_group(struct numa_group *grp)
2510{
c45a7795 2511 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2512}
2513
2514static inline void put_numa_group(struct numa_group *grp)
2515{
c45a7795 2516 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2517 kfree_rcu(grp, rcu);
2518}
2519
3e6a9418
MG
2520static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2521 int *priv)
8c8a743c
PZ
2522{
2523 struct numa_group *grp, *my_grp;
2524 struct task_struct *tsk;
2525 bool join = false;
2526 int cpu = cpupid_to_cpu(cpupid);
2527 int i;
2528
cb361d8c 2529 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2530 unsigned int size = sizeof(struct numa_group) +
7a2341fc
BR
2531 NR_NUMA_HINT_FAULT_STATS *
2532 nr_node_ids * sizeof(unsigned long);
8c8a743c
PZ
2533
2534 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2535 if (!grp)
2536 return;
2537
c45a7795 2538 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2539 grp->active_nodes = 1;
2540 grp->max_faults_cpu = 0;
8c8a743c 2541 spin_lock_init(&grp->lock);
e29cf08b 2542 grp->gid = p->pid;
8c8a743c 2543
be1e4e76 2544 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2545 grp->faults[i] = p->numa_faults[i];
8c8a743c 2546
989348b5 2547 grp->total_faults = p->total_numa_faults;
83e1d2cd 2548
8c8a743c
PZ
2549 grp->nr_tasks++;
2550 rcu_assign_pointer(p->numa_group, grp);
2551 }
2552
2553 rcu_read_lock();
316c1608 2554 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2555
2556 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2557 goto no_join;
8c8a743c
PZ
2558
2559 grp = rcu_dereference(tsk->numa_group);
2560 if (!grp)
3354781a 2561 goto no_join;
8c8a743c 2562
cb361d8c 2563 my_grp = deref_curr_numa_group(p);
8c8a743c 2564 if (grp == my_grp)
3354781a 2565 goto no_join;
8c8a743c
PZ
2566
2567 /*
2568 * Only join the other group if its bigger; if we're the bigger group,
2569 * the other task will join us.
2570 */
2571 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2572 goto no_join;
8c8a743c
PZ
2573
2574 /*
2575 * Tie-break on the grp address.
2576 */
2577 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2578 goto no_join;
8c8a743c 2579
dabe1d99
RR
2580 /* Always join threads in the same process. */
2581 if (tsk->mm == current->mm)
2582 join = true;
2583
2584 /* Simple filter to avoid false positives due to PID collisions */
2585 if (flags & TNF_SHARED)
2586 join = true;
8c8a743c 2587
3e6a9418
MG
2588 /* Update priv based on whether false sharing was detected */
2589 *priv = !join;
2590
dabe1d99 2591 if (join && !get_numa_group(grp))
3354781a 2592 goto no_join;
8c8a743c 2593
8c8a743c
PZ
2594 rcu_read_unlock();
2595
2596 if (!join)
2597 return;
2598
60e69eed
MG
2599 BUG_ON(irqs_disabled());
2600 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2601
be1e4e76 2602 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2603 my_grp->faults[i] -= p->numa_faults[i];
2604 grp->faults[i] += p->numa_faults[i];
8c8a743c 2605 }
989348b5
MG
2606 my_grp->total_faults -= p->total_numa_faults;
2607 grp->total_faults += p->total_numa_faults;
8c8a743c 2608
8c8a743c
PZ
2609 my_grp->nr_tasks--;
2610 grp->nr_tasks++;
2611
2612 spin_unlock(&my_grp->lock);
60e69eed 2613 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2614
2615 rcu_assign_pointer(p->numa_group, grp);
2616
2617 put_numa_group(my_grp);
3354781a
PZ
2618 return;
2619
2620no_join:
2621 rcu_read_unlock();
2622 return;
8c8a743c
PZ
2623}
2624
16d51a59 2625/*
3b03706f 2626 * Get rid of NUMA statistics associated with a task (either current or dead).
16d51a59
JH
2627 * If @final is set, the task is dead and has reached refcount zero, so we can
2628 * safely free all relevant data structures. Otherwise, there might be
2629 * concurrent reads from places like load balancing and procfs, and we should
2630 * reset the data back to default state without freeing ->numa_faults.
2631 */
2632void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2633{
cb361d8c
JH
2634 /* safe: p either is current or is being freed by current */
2635 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2636 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2637 unsigned long flags;
2638 int i;
8c8a743c 2639
16d51a59
JH
2640 if (!numa_faults)
2641 return;
2642
8c8a743c 2643 if (grp) {
e9dd685c 2644 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2645 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2646 grp->faults[i] -= p->numa_faults[i];
989348b5 2647 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2648
8c8a743c 2649 grp->nr_tasks--;
e9dd685c 2650 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2651 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2652 put_numa_group(grp);
2653 }
2654
16d51a59
JH
2655 if (final) {
2656 p->numa_faults = NULL;
2657 kfree(numa_faults);
2658 } else {
2659 p->total_numa_faults = 0;
2660 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2661 numa_faults[i] = 0;
2662 }
8c8a743c
PZ
2663}
2664
cbee9f88
PZ
2665/*
2666 * Got a PROT_NONE fault for a page on @node.
2667 */
58b46da3 2668void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2669{
2670 struct task_struct *p = current;
6688cc05 2671 bool migrated = flags & TNF_MIGRATED;
58b46da3 2672 int cpu_node = task_node(current);
792568ec 2673 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2674 struct numa_group *ng;
ac8e895b 2675 int priv;
cbee9f88 2676
2a595721 2677 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2678 return;
2679
9ff1d9ff
MG
2680 /* for example, ksmd faulting in a user's mm */
2681 if (!p->mm)
2682 return;
2683
f809ca9a 2684 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2685 if (unlikely(!p->numa_faults)) {
2686 int size = sizeof(*p->numa_faults) *
be1e4e76 2687 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2688
44dba3d5
IM
2689 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2690 if (!p->numa_faults)
f809ca9a 2691 return;
745d6147 2692
83e1d2cd 2693 p->total_numa_faults = 0;
04bb2f94 2694 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2695 }
cbee9f88 2696
8c8a743c
PZ
2697 /*
2698 * First accesses are treated as private, otherwise consider accesses
2699 * to be private if the accessing pid has not changed
2700 */
2701 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2702 priv = 1;
2703 } else {
2704 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2705 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2706 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2707 }
2708
792568ec
RR
2709 /*
2710 * If a workload spans multiple NUMA nodes, a shared fault that
2711 * occurs wholly within the set of nodes that the workload is
2712 * actively using should be counted as local. This allows the
2713 * scan rate to slow down when a workload has settled down.
2714 */
cb361d8c 2715 ng = deref_curr_numa_group(p);
4142c3eb
RR
2716 if (!priv && !local && ng && ng->active_nodes > 1 &&
2717 numa_is_active_node(cpu_node, ng) &&
2718 numa_is_active_node(mem_node, ng))
792568ec
RR
2719 local = 1;
2720
2739d3ee 2721 /*
e1ff516a
YW
2722 * Retry to migrate task to preferred node periodically, in case it
2723 * previously failed, or the scheduler moved us.
2739d3ee 2724 */
b6a60cf3
SD
2725 if (time_after(jiffies, p->numa_migrate_retry)) {
2726 task_numa_placement(p);
6b9a7460 2727 numa_migrate_preferred(p);
b6a60cf3 2728 }
6b9a7460 2729
b32e86b4
IM
2730 if (migrated)
2731 p->numa_pages_migrated += pages;
074c2381
MG
2732 if (flags & TNF_MIGRATE_FAIL)
2733 p->numa_faults_locality[2] += pages;
b32e86b4 2734
44dba3d5
IM
2735 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2736 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2737 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2738}
2739
6e5fb223
PZ
2740static void reset_ptenuma_scan(struct task_struct *p)
2741{
7e5a2c17
JL
2742 /*
2743 * We only did a read acquisition of the mmap sem, so
2744 * p->mm->numa_scan_seq is written to without exclusive access
2745 * and the update is not guaranteed to be atomic. That's not
2746 * much of an issue though, since this is just used for
2747 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2748 * expensive, to avoid any form of compiler optimizations:
2749 */
316c1608 2750 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2751 p->mm->numa_scan_offset = 0;
2752}
2753
cbee9f88
PZ
2754/*
2755 * The expensive part of numa migration is done from task_work context.
2756 * Triggered from task_tick_numa().
2757 */
9434f9f5 2758static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2759{
2760 unsigned long migrate, next_scan, now = jiffies;
2761 struct task_struct *p = current;
2762 struct mm_struct *mm = p->mm;
51170840 2763 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2764 struct vm_area_struct *vma;
9f40604c 2765 unsigned long start, end;
598f0ec0 2766 unsigned long nr_pte_updates = 0;
4620f8c1 2767 long pages, virtpages;
cbee9f88 2768
9148a3a1 2769 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2770
b34920d4 2771 work->next = work;
cbee9f88
PZ
2772 /*
2773 * Who cares about NUMA placement when they're dying.
2774 *
2775 * NOTE: make sure not to dereference p->mm before this check,
2776 * exit_task_work() happens _after_ exit_mm() so we could be called
2777 * without p->mm even though we still had it when we enqueued this
2778 * work.
2779 */
2780 if (p->flags & PF_EXITING)
2781 return;
2782
930aa174 2783 if (!mm->numa_next_scan) {
7e8d16b6
MG
2784 mm->numa_next_scan = now +
2785 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2786 }
2787
cbee9f88
PZ
2788 /*
2789 * Enforce maximal scan/migration frequency..
2790 */
2791 migrate = mm->numa_next_scan;
2792 if (time_before(now, migrate))
2793 return;
2794
598f0ec0
MG
2795 if (p->numa_scan_period == 0) {
2796 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2797 p->numa_scan_period = task_scan_start(p);
598f0ec0 2798 }
cbee9f88 2799
fb003b80 2800 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2801 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2802 return;
2803
19a78d11
PZ
2804 /*
2805 * Delay this task enough that another task of this mm will likely win
2806 * the next time around.
2807 */
2808 p->node_stamp += 2 * TICK_NSEC;
2809
9f40604c
MG
2810 start = mm->numa_scan_offset;
2811 pages = sysctl_numa_balancing_scan_size;
2812 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2813 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2814 if (!pages)
2815 return;
cbee9f88 2816
4620f8c1 2817
d8ed45c5 2818 if (!mmap_read_trylock(mm))
8655d549 2819 return;
9f40604c 2820 vma = find_vma(mm, start);
6e5fb223
PZ
2821 if (!vma) {
2822 reset_ptenuma_scan(p);
9f40604c 2823 start = 0;
6e5fb223
PZ
2824 vma = mm->mmap;
2825 }
9f40604c 2826 for (; vma; vma = vma->vm_next) {
6b79c57b 2827 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2828 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2829 continue;
6b79c57b 2830 }
6e5fb223 2831
4591ce4f
MG
2832 /*
2833 * Shared library pages mapped by multiple processes are not
2834 * migrated as it is expected they are cache replicated. Avoid
2835 * hinting faults in read-only file-backed mappings or the vdso
2836 * as migrating the pages will be of marginal benefit.
2837 */
2838 if (!vma->vm_mm ||
2839 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2840 continue;
2841
3c67f474
MG
2842 /*
2843 * Skip inaccessible VMAs to avoid any confusion between
2844 * PROT_NONE and NUMA hinting ptes
2845 */
3122e80e 2846 if (!vma_is_accessible(vma))
3c67f474 2847 continue;
4591ce4f 2848
9f40604c
MG
2849 do {
2850 start = max(start, vma->vm_start);
2851 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2852 end = min(end, vma->vm_end);
4620f8c1 2853 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2854
2855 /*
4620f8c1
RR
2856 * Try to scan sysctl_numa_balancing_size worth of
2857 * hpages that have at least one present PTE that
2858 * is not already pte-numa. If the VMA contains
2859 * areas that are unused or already full of prot_numa
2860 * PTEs, scan up to virtpages, to skip through those
2861 * areas faster.
598f0ec0
MG
2862 */
2863 if (nr_pte_updates)
2864 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2865 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2866
9f40604c 2867 start = end;
4620f8c1 2868 if (pages <= 0 || virtpages <= 0)
9f40604c 2869 goto out;
3cf1962c
RR
2870
2871 cond_resched();
9f40604c 2872 } while (end != vma->vm_end);
cbee9f88 2873 }
6e5fb223 2874
9f40604c 2875out:
6e5fb223 2876 /*
c69307d5
PZ
2877 * It is possible to reach the end of the VMA list but the last few
2878 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2879 * would find the !migratable VMA on the next scan but not reset the
2880 * scanner to the start so check it now.
6e5fb223
PZ
2881 */
2882 if (vma)
9f40604c 2883 mm->numa_scan_offset = start;
6e5fb223
PZ
2884 else
2885 reset_ptenuma_scan(p);
d8ed45c5 2886 mmap_read_unlock(mm);
51170840
RR
2887
2888 /*
2889 * Make sure tasks use at least 32x as much time to run other code
2890 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2891 * Usually update_task_scan_period slows down scanning enough; on an
2892 * overloaded system we need to limit overhead on a per task basis.
2893 */
2894 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2895 u64 diff = p->se.sum_exec_runtime - runtime;
2896 p->node_stamp += 32 * diff;
2897 }
cbee9f88
PZ
2898}
2899
d35927a1
VS
2900void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2901{
2902 int mm_users = 0;
2903 struct mm_struct *mm = p->mm;
2904
2905 if (mm) {
2906 mm_users = atomic_read(&mm->mm_users);
2907 if (mm_users == 1) {
2908 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2909 mm->numa_scan_seq = 0;
2910 }
2911 }
2912 p->node_stamp = 0;
2913 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2914 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
70ce3ea9 2915 p->numa_migrate_retry = 0;
b34920d4 2916 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2917 p->numa_work.next = &p->numa_work;
2918 p->numa_faults = NULL;
12bf8a7e
HW
2919 p->numa_pages_migrated = 0;
2920 p->total_numa_faults = 0;
d35927a1
VS
2921 RCU_INIT_POINTER(p->numa_group, NULL);
2922 p->last_task_numa_placement = 0;
2923 p->last_sum_exec_runtime = 0;
2924
b34920d4
VS
2925 init_task_work(&p->numa_work, task_numa_work);
2926
d35927a1
VS
2927 /* New address space, reset the preferred nid */
2928 if (!(clone_flags & CLONE_VM)) {
2929 p->numa_preferred_nid = NUMA_NO_NODE;
2930 return;
2931 }
2932
2933 /*
2934 * New thread, keep existing numa_preferred_nid which should be copied
2935 * already by arch_dup_task_struct but stagger when scans start.
2936 */
2937 if (mm) {
2938 unsigned int delay;
2939
2940 delay = min_t(unsigned int, task_scan_max(current),
2941 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2942 delay += 2 * TICK_NSEC;
2943 p->node_stamp = delay;
2944 }
2945}
2946
cbee9f88
PZ
2947/*
2948 * Drive the periodic memory faults..
2949 */
b1546edc 2950static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2951{
2952 struct callback_head *work = &curr->numa_work;
2953 u64 period, now;
2954
2955 /*
2956 * We don't care about NUMA placement if we don't have memory.
2957 */
b3f9916d 2958 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2959 return;
2960
2961 /*
2962 * Using runtime rather than walltime has the dual advantage that
2963 * we (mostly) drive the selection from busy threads and that the
2964 * task needs to have done some actual work before we bother with
2965 * NUMA placement.
2966 */
2967 now = curr->se.sum_exec_runtime;
2968 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2969
25b3e5a3 2970 if (now > curr->node_stamp + period) {
4b96a29b 2971 if (!curr->node_stamp)
b5dd77c8 2972 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2973 curr->node_stamp += period;
cbee9f88 2974
b34920d4 2975 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2976 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2977 }
2978}
3fed382b 2979
3f9672ba
SD
2980static void update_scan_period(struct task_struct *p, int new_cpu)
2981{
2982 int src_nid = cpu_to_node(task_cpu(p));
2983 int dst_nid = cpu_to_node(new_cpu);
2984
05cbdf4f
MG
2985 if (!static_branch_likely(&sched_numa_balancing))
2986 return;
2987
3f9672ba
SD
2988 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2989 return;
2990
05cbdf4f
MG
2991 if (src_nid == dst_nid)
2992 return;
2993
2994 /*
2995 * Allow resets if faults have been trapped before one scan
2996 * has completed. This is most likely due to a new task that
2997 * is pulled cross-node due to wakeups or load balancing.
2998 */
2999 if (p->numa_scan_seq) {
3000 /*
3001 * Avoid scan adjustments if moving to the preferred
3002 * node or if the task was not previously running on
3003 * the preferred node.
3004 */
3005 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
3006 (p->numa_preferred_nid != NUMA_NO_NODE &&
3007 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
3008 return;
3009 }
3010
3011 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
3012}
3013
cbee9f88
PZ
3014#else
3015static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3016{
3017}
0ec8aa00
PZ
3018
3019static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3020{
3021}
3022
3023static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3024{
3025}
3fed382b 3026
3f9672ba
SD
3027static inline void update_scan_period(struct task_struct *p, int new_cpu)
3028{
3029}
3030
cbee9f88
PZ
3031#endif /* CONFIG_NUMA_BALANCING */
3032
30cfdcfc
DA
3033static void
3034account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035{
3036 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3037#ifdef CONFIG_SMP
0ec8aa00
PZ
3038 if (entity_is_task(se)) {
3039 struct rq *rq = rq_of(cfs_rq);
3040
3041 account_numa_enqueue(rq, task_of(se));
3042 list_add(&se->group_node, &rq->cfs_tasks);
3043 }
367456c7 3044#endif
30cfdcfc 3045 cfs_rq->nr_running++;
a480adde
JD
3046 if (se_is_idle(se))
3047 cfs_rq->idle_nr_running++;
30cfdcfc
DA
3048}
3049
3050static void
3051account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052{
3053 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3054#ifdef CONFIG_SMP
0ec8aa00
PZ
3055 if (entity_is_task(se)) {
3056 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3057 list_del_init(&se->group_node);
0ec8aa00 3058 }
bfdb198c 3059#endif
30cfdcfc 3060 cfs_rq->nr_running--;
a480adde
JD
3061 if (se_is_idle(se))
3062 cfs_rq->idle_nr_running--;
30cfdcfc
DA
3063}
3064
8d5b9025
PZ
3065/*
3066 * Signed add and clamp on underflow.
3067 *
3068 * Explicitly do a load-store to ensure the intermediate value never hits
3069 * memory. This allows lockless observations without ever seeing the negative
3070 * values.
3071 */
3072#define add_positive(_ptr, _val) do { \
3073 typeof(_ptr) ptr = (_ptr); \
3074 typeof(_val) val = (_val); \
3075 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3076 \
3077 res = var + val; \
3078 \
3079 if (val < 0 && res > var) \
3080 res = 0; \
3081 \
3082 WRITE_ONCE(*ptr, res); \
3083} while (0)
3084
3085/*
3086 * Unsigned subtract and clamp on underflow.
3087 *
3088 * Explicitly do a load-store to ensure the intermediate value never hits
3089 * memory. This allows lockless observations without ever seeing the negative
3090 * values.
3091 */
3092#define sub_positive(_ptr, _val) do { \
3093 typeof(_ptr) ptr = (_ptr); \
3094 typeof(*ptr) val = (_val); \
3095 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3096 res = var - val; \
3097 if (res > var) \
3098 res = 0; \
3099 WRITE_ONCE(*ptr, res); \
3100} while (0)
3101
b5c0ce7b
PB
3102/*
3103 * Remove and clamp on negative, from a local variable.
3104 *
3105 * A variant of sub_positive(), which does not use explicit load-store
3106 * and is thus optimized for local variable updates.
3107 */
3108#define lsub_positive(_ptr, _val) do { \
3109 typeof(_ptr) ptr = (_ptr); \
3110 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3111} while (0)
3112
8d5b9025 3113#ifdef CONFIG_SMP
8d5b9025
PZ
3114static inline void
3115enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3116{
3117 cfs_rq->avg.load_avg += se->avg.load_avg;
3118 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3119}
3120
3121static inline void
3122dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3123{
3124 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2d02fa8c
VG
3125 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3126 /* See update_cfs_rq_load_avg() */
3127 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3128 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
8d5b9025
PZ
3129}
3130#else
3131static inline void
8d5b9025
PZ
3132enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3133static inline void
3134dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3135#endif
3136
9059393e 3137static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3138 unsigned long weight)
9059393e
VG
3139{
3140 if (se->on_rq) {
3141 /* commit outstanding execution time */
3142 if (cfs_rq->curr == se)
3143 update_curr(cfs_rq);
1724b95b 3144 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3145 }
3146 dequeue_load_avg(cfs_rq, se);
3147
3148 update_load_set(&se->load, weight);
3149
3150#ifdef CONFIG_SMP
1ea6c46a 3151 do {
87e867b4 3152 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3153
3154 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3155 } while (0);
9059393e
VG
3156#endif
3157
3158 enqueue_load_avg(cfs_rq, se);
0dacee1b 3159 if (se->on_rq)
1724b95b 3160 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3161
9059393e
VG
3162}
3163
3164void reweight_task(struct task_struct *p, int prio)
3165{
3166 struct sched_entity *se = &p->se;
3167 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3168 struct load_weight *load = &se->load;
3169 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3170
0dacee1b 3171 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3172 load->inv_weight = sched_prio_to_wmult[prio];
3173}
3174
51bf903b
CZ
3175static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3176
3ff6dcac 3177#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3178#ifdef CONFIG_SMP
cef27403
PZ
3179/*
3180 * All this does is approximate the hierarchical proportion which includes that
3181 * global sum we all love to hate.
3182 *
3183 * That is, the weight of a group entity, is the proportional share of the
3184 * group weight based on the group runqueue weights. That is:
3185 *
3186 * tg->weight * grq->load.weight
3187 * ge->load.weight = ----------------------------- (1)
08f7c2f4 3188 * \Sum grq->load.weight
cef27403
PZ
3189 *
3190 * Now, because computing that sum is prohibitively expensive to compute (been
3191 * there, done that) we approximate it with this average stuff. The average
3192 * moves slower and therefore the approximation is cheaper and more stable.
3193 *
3194 * So instead of the above, we substitute:
3195 *
3196 * grq->load.weight -> grq->avg.load_avg (2)
3197 *
3198 * which yields the following:
3199 *
3200 * tg->weight * grq->avg.load_avg
3201 * ge->load.weight = ------------------------------ (3)
08f7c2f4 3202 * tg->load_avg
cef27403
PZ
3203 *
3204 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3205 *
3206 * That is shares_avg, and it is right (given the approximation (2)).
3207 *
3208 * The problem with it is that because the average is slow -- it was designed
3209 * to be exactly that of course -- this leads to transients in boundary
3210 * conditions. In specific, the case where the group was idle and we start the
3211 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3212 * yielding bad latency etc..
3213 *
3214 * Now, in that special case (1) reduces to:
3215 *
3216 * tg->weight * grq->load.weight
17de4ee0 3217 * ge->load.weight = ----------------------------- = tg->weight (4)
08f7c2f4 3218 * grp->load.weight
cef27403
PZ
3219 *
3220 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3221 *
3222 * So what we do is modify our approximation (3) to approach (4) in the (near)
3223 * UP case, like:
3224 *
3225 * ge->load.weight =
3226 *
3227 * tg->weight * grq->load.weight
3228 * --------------------------------------------------- (5)
3229 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3230 *
17de4ee0
PZ
3231 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3232 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3233 *
3234 *
3235 * tg->weight * grq->load.weight
3236 * ge->load.weight = ----------------------------- (6)
08f7c2f4 3237 * tg_load_avg'
17de4ee0
PZ
3238 *
3239 * Where:
3240 *
3241 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3242 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3243 *
3244 * And that is shares_weight and is icky. In the (near) UP case it approaches
3245 * (4) while in the normal case it approaches (3). It consistently
3246 * overestimates the ge->load.weight and therefore:
3247 *
3248 * \Sum ge->load.weight >= tg->weight
3249 *
3250 * hence icky!
3251 */
2c8e4dce 3252static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3253{
7c80cfc9
PZ
3254 long tg_weight, tg_shares, load, shares;
3255 struct task_group *tg = cfs_rq->tg;
3256
3257 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3258
3d4b60d3 3259 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3260
ea1dc6fc 3261 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3262
ea1dc6fc
PZ
3263 /* Ensure tg_weight >= load */
3264 tg_weight -= cfs_rq->tg_load_avg_contrib;
3265 tg_weight += load;
3ff6dcac 3266
7c80cfc9 3267 shares = (tg_shares * load);
cf5f0acf
PZ
3268 if (tg_weight)
3269 shares /= tg_weight;
3ff6dcac 3270
b8fd8423
DE
3271 /*
3272 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3273 * of a group with small tg->shares value. It is a floor value which is
3274 * assigned as a minimum load.weight to the sched_entity representing
3275 * the group on a CPU.
3276 *
3277 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3278 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3279 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3280 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3281 * instead of 0.
3282 */
7c80cfc9 3283 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3284}
387f77cc 3285#endif /* CONFIG_SMP */
ea1dc6fc 3286
1ea6c46a
PZ
3287/*
3288 * Recomputes the group entity based on the current state of its group
3289 * runqueue.
3290 */
3291static void update_cfs_group(struct sched_entity *se)
2069dd75 3292{
1ea6c46a 3293 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3294 long shares;
2069dd75 3295
1ea6c46a 3296 if (!gcfs_rq)
89ee048f
VG
3297 return;
3298
1ea6c46a 3299 if (throttled_hierarchy(gcfs_rq))
2069dd75 3300 return;
89ee048f 3301
3ff6dcac 3302#ifndef CONFIG_SMP
0dacee1b 3303 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3304
3305 if (likely(se->load.weight == shares))
3ff6dcac 3306 return;
7c80cfc9 3307#else
2c8e4dce 3308 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3309#endif
2069dd75 3310
0dacee1b 3311 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3312}
89ee048f 3313
2069dd75 3314#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3315static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3316{
3317}
3318#endif /* CONFIG_FAIR_GROUP_SCHED */
3319
ea14b57e 3320static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3321{
43964409
LT
3322 struct rq *rq = rq_of(cfs_rq);
3323
a4f9a0e5 3324 if (&rq->cfs == cfs_rq) {
a030d738
VK
3325 /*
3326 * There are a few boundary cases this might miss but it should
3327 * get called often enough that that should (hopefully) not be
9783be2c 3328 * a real problem.
a030d738
VK
3329 *
3330 * It will not get called when we go idle, because the idle
3331 * thread is a different class (!fair), nor will the utilization
3332 * number include things like RT tasks.
3333 *
3334 * As is, the util number is not freq-invariant (we'd have to
3335 * implement arch_scale_freq_capacity() for that).
3336 *
82762d2a 3337 * See cpu_util_cfs().
a030d738 3338 */
ea14b57e 3339 cpufreq_update_util(rq, flags);
a030d738
VK
3340 }
3341}
3342
141965c7 3343#ifdef CONFIG_SMP
e2f3e35f
VD
3344static inline bool load_avg_is_decayed(struct sched_avg *sa)
3345{
3346 if (sa->load_sum)
3347 return false;
3348
3349 if (sa->util_sum)
3350 return false;
3351
3352 if (sa->runnable_sum)
3353 return false;
3354
3355 /*
3356 * _avg must be null when _sum are null because _avg = _sum / divider
3357 * Make sure that rounding and/or propagation of PELT values never
3358 * break this.
3359 */
3360 SCHED_WARN_ON(sa->load_avg ||
3361 sa->util_avg ||
3362 sa->runnable_avg);
3363
3364 return true;
3365}
3366
d05b4305
VD
3367static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3368{
3369 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3370 cfs_rq->last_update_time_copy);
3371}
c566e8e9 3372#ifdef CONFIG_FAIR_GROUP_SCHED
fdaba61e
RR
3373/*
3374 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3375 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3376 * bottom-up, we only have to test whether the cfs_rq before us on the list
3377 * is our child.
3378 * If cfs_rq is not on the list, test whether a child needs its to be added to
3379 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3380 */
3381static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3382{
3383 struct cfs_rq *prev_cfs_rq;
3384 struct list_head *prev;
3385
3386 if (cfs_rq->on_list) {
3387 prev = cfs_rq->leaf_cfs_rq_list.prev;
3388 } else {
3389 struct rq *rq = rq_of(cfs_rq);
3390
3391 prev = rq->tmp_alone_branch;
3392 }
3393
3394 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3395
3396 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3397}
a7b359fc
OU
3398
3399static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3400{
3401 if (cfs_rq->load.weight)
3402 return false;
3403
e2f3e35f 3404 if (!load_avg_is_decayed(&cfs_rq->avg))
a7b359fc
OU
3405 return false;
3406
fdaba61e
RR
3407 if (child_cfs_rq_on_list(cfs_rq))
3408 return false;
3409
a7b359fc
OU
3410 return true;
3411}
3412
7c3edd2c
PZ
3413/**
3414 * update_tg_load_avg - update the tg's load avg
3415 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3416 *
3417 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3418 * However, because tg->load_avg is a global value there are performance
3419 * considerations.
3420 *
3421 * In order to avoid having to look at the other cfs_rq's, we use a
3422 * differential update where we store the last value we propagated. This in
3423 * turn allows skipping updates if the differential is 'small'.
3424 *
815abf5a 3425 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3426 */
fe749158 3427static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3428{
9d89c257 3429 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3430
aa0b7ae0
WL
3431 /*
3432 * No need to update load_avg for root_task_group as it is not used.
3433 */
3434 if (cfs_rq->tg == &root_task_group)
3435 return;
3436
fe749158 3437 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3438 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3439 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3440 }
8165e145 3441}
f5f9739d 3442
ad936d86 3443/*
97fb7a0a 3444 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3445 * caller only guarantees p->pi_lock is held; no other assumptions,
3446 * including the state of rq->lock, should be made.
3447 */
3448void set_task_rq_fair(struct sched_entity *se,
3449 struct cfs_rq *prev, struct cfs_rq *next)
3450{
0ccb977f
PZ
3451 u64 p_last_update_time;
3452 u64 n_last_update_time;
3453
ad936d86
BP
3454 if (!sched_feat(ATTACH_AGE_LOAD))
3455 return;
3456
3457 /*
3458 * We are supposed to update the task to "current" time, then its up to
3459 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3460 * getting what current time is, so simply throw away the out-of-date
3461 * time. This will result in the wakee task is less decayed, but giving
3462 * the wakee more load sounds not bad.
3463 */
0ccb977f
PZ
3464 if (!(se->avg.last_update_time && prev))
3465 return;
ad936d86 3466
d05b4305
VD
3467 p_last_update_time = cfs_rq_last_update_time(prev);
3468 n_last_update_time = cfs_rq_last_update_time(next);
ad936d86 3469
23127296 3470 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3471 se->avg.last_update_time = n_last_update_time;
ad936d86 3472}
09a43ace 3473
0e2d2aaa
PZ
3474/*
3475 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3476 * propagate its contribution. The key to this propagation is the invariant
3477 * that for each group:
3478 *
3479 * ge->avg == grq->avg (1)
3480 *
3481 * _IFF_ we look at the pure running and runnable sums. Because they
3482 * represent the very same entity, just at different points in the hierarchy.
3483 *
9f683953
VG
3484 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3485 * and simply copies the running/runnable sum over (but still wrong, because
3486 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3487 *
0dacee1b 3488 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3489 *
3490 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3491 *
3492 * And since, like util, the runnable part should be directly transferable,
3493 * the following would _appear_ to be the straight forward approach:
3494 *
a4c3c049 3495 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3496 *
3497 * And per (1) we have:
3498 *
a4c3c049 3499 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3500 *
3501 * Which gives:
3502 *
3503 * ge->load.weight * grq->avg.load_avg
3504 * ge->avg.load_avg = ----------------------------------- (4)
3505 * grq->load.weight
3506 *
3507 * Except that is wrong!
3508 *
3509 * Because while for entities historical weight is not important and we
3510 * really only care about our future and therefore can consider a pure
3511 * runnable sum, runqueues can NOT do this.
3512 *
3513 * We specifically want runqueues to have a load_avg that includes
3514 * historical weights. Those represent the blocked load, the load we expect
3515 * to (shortly) return to us. This only works by keeping the weights as
3516 * integral part of the sum. We therefore cannot decompose as per (3).
3517 *
a4c3c049
VG
3518 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3519 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3520 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3521 * runnable section of these tasks overlap (or not). If they were to perfectly
3522 * align the rq as a whole would be runnable 2/3 of the time. If however we
3523 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3524 *
a4c3c049 3525 * So we'll have to approximate.. :/
0e2d2aaa 3526 *
a4c3c049 3527 * Given the constraint:
0e2d2aaa 3528 *
a4c3c049 3529 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3530 *
a4c3c049
VG
3531 * We can construct a rule that adds runnable to a rq by assuming minimal
3532 * overlap.
0e2d2aaa 3533 *
a4c3c049 3534 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3535 *
a4c3c049 3536 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3537 *
a4c3c049 3538 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3539 *
0e2d2aaa 3540 */
09a43ace 3541static inline void
0e2d2aaa 3542update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3543{
7ceb7710
VG
3544 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3545 u32 new_sum, divider;
09a43ace
VG
3546
3547 /* Nothing to update */
7ceb7710 3548 if (!delta_avg)
09a43ace
VG
3549 return;
3550
87e867b4
VG
3551 /*
3552 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3553 * See ___update_load_avg() for details.
3554 */
3555 divider = get_pelt_divider(&cfs_rq->avg);
3556
7ceb7710 3557
09a43ace
VG
3558 /* Set new sched_entity's utilization */
3559 se->avg.util_avg = gcfs_rq->avg.util_avg;
7ceb7710
VG
3560 new_sum = se->avg.util_avg * divider;
3561 delta_sum = (long)new_sum - (long)se->avg.util_sum;
3562 se->avg.util_sum = new_sum;
09a43ace
VG
3563
3564 /* Update parent cfs_rq utilization */
7ceb7710
VG
3565 add_positive(&cfs_rq->avg.util_avg, delta_avg);
3566 add_positive(&cfs_rq->avg.util_sum, delta_sum);
3567
3568 /* See update_cfs_rq_load_avg() */
3569 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3570 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
09a43ace
VG
3571}
3572
9f683953
VG
3573static inline void
3574update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3575{
95246d1e
VG
3576 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3577 u32 new_sum, divider;
9f683953
VG
3578
3579 /* Nothing to update */
95246d1e 3580 if (!delta_avg)
9f683953
VG
3581 return;
3582
87e867b4
VG
3583 /*
3584 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3585 * See ___update_load_avg() for details.
3586 */
3587 divider = get_pelt_divider(&cfs_rq->avg);
3588
9f683953
VG
3589 /* Set new sched_entity's runnable */
3590 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95246d1e
VG
3591 new_sum = se->avg.runnable_avg * divider;
3592 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3593 se->avg.runnable_sum = new_sum;
9f683953
VG
3594
3595 /* Update parent cfs_rq runnable */
95246d1e
VG
3596 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3597 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3598 /* See update_cfs_rq_load_avg() */
3599 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3600 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
9f683953
VG
3601}
3602
09a43ace 3603static inline void
0dacee1b 3604update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3605{
2d02fa8c 3606 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3607 unsigned long load_avg;
3608 u64 load_sum = 0;
2d02fa8c 3609 s64 delta_sum;
95d68593 3610 u32 divider;
09a43ace 3611
0e2d2aaa
PZ
3612 if (!runnable_sum)
3613 return;
09a43ace 3614
0e2d2aaa 3615 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3616
95d68593
VG
3617 /*
3618 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3619 * See ___update_load_avg() for details.
3620 */
87e867b4 3621 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3622
a4c3c049
VG
3623 if (runnable_sum >= 0) {
3624 /*
3625 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3626 * the CPU is saturated running == runnable.
3627 */
3628 runnable_sum += se->avg.load_sum;
95d68593 3629 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3630 } else {
3631 /*
3632 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3633 * assuming all tasks are equally runnable.
3634 */
3635 if (scale_load_down(gcfs_rq->load.weight)) {
2d02fa8c 3636 load_sum = div_u64(gcfs_rq->avg.load_sum,
a4c3c049
VG
3637 scale_load_down(gcfs_rq->load.weight));
3638 }
3639
3640 /* But make sure to not inflate se's runnable */
3641 runnable_sum = min(se->avg.load_sum, load_sum);
3642 }
3643
3644 /*
3645 * runnable_sum can't be lower than running_sum
23127296
VG
3646 * Rescale running sum to be in the same range as runnable sum
3647 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3648 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3649 */
23127296 3650 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3651 runnable_sum = max(runnable_sum, running_sum);
3652
2d02fa8c
VG
3653 load_sum = se_weight(se) * runnable_sum;
3654 load_avg = div_u64(load_sum, divider);
83c5e9d5 3655
2d02fa8c
VG
3656 delta_avg = load_avg - se->avg.load_avg;
3657 if (!delta_avg)
83c5e9d5 3658 return;
09a43ace 3659
2d02fa8c 3660 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
7c7ad626 3661
2d02fa8c
VG
3662 se->avg.load_sum = runnable_sum;
3663 se->avg.load_avg = load_avg;
3664 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3665 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3666 /* See update_cfs_rq_load_avg() */
3667 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3668 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
09a43ace
VG
3669}
3670
0e2d2aaa 3671static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3672{
0e2d2aaa
PZ
3673 cfs_rq->propagate = 1;
3674 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3675}
3676
3677/* Update task and its cfs_rq load average */
3678static inline int propagate_entity_load_avg(struct sched_entity *se)
3679{
0e2d2aaa 3680 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3681
3682 if (entity_is_task(se))
3683 return 0;
3684
0e2d2aaa
PZ
3685 gcfs_rq = group_cfs_rq(se);
3686 if (!gcfs_rq->propagate)
09a43ace
VG
3687 return 0;
3688
0e2d2aaa
PZ
3689 gcfs_rq->propagate = 0;
3690
09a43ace
VG
3691 cfs_rq = cfs_rq_of(se);
3692
0e2d2aaa 3693 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3694
0e2d2aaa 3695 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3696 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3697 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3698
ba19f51f 3699 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3700 trace_pelt_se_tp(se);
ba19f51f 3701
09a43ace
VG
3702 return 1;
3703}
3704
bc427898
VG
3705/*
3706 * Check if we need to update the load and the utilization of a blocked
3707 * group_entity:
3708 */
3709static inline bool skip_blocked_update(struct sched_entity *se)
3710{
3711 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3712
3713 /*
3714 * If sched_entity still have not zero load or utilization, we have to
3715 * decay it:
3716 */
3717 if (se->avg.load_avg || se->avg.util_avg)
3718 return false;
3719
3720 /*
3721 * If there is a pending propagation, we have to update the load and
3722 * the utilization of the sched_entity:
3723 */
0e2d2aaa 3724 if (gcfs_rq->propagate)
bc427898
VG
3725 return false;
3726
3727 /*
3728 * Otherwise, the load and the utilization of the sched_entity is
3729 * already zero and there is no pending propagation, so it will be a
3730 * waste of time to try to decay it:
3731 */
3732 return true;
3733}
3734
6e83125c 3735#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3736
fe749158 3737static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3738
3739static inline int propagate_entity_load_avg(struct sched_entity *se)
3740{
3741 return 0;
3742}
3743
0e2d2aaa 3744static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3745
6e83125c 3746#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3747
e2f3e35f
VD
3748#ifdef CONFIG_NO_HZ_COMMON
3749static inline void migrate_se_pelt_lag(struct sched_entity *se)
3750{
3751 u64 throttled = 0, now, lut;
3752 struct cfs_rq *cfs_rq;
3753 struct rq *rq;
3754 bool is_idle;
3755
3756 if (load_avg_is_decayed(&se->avg))
3757 return;
3758
3759 cfs_rq = cfs_rq_of(se);
3760 rq = rq_of(cfs_rq);
3761
3762 rcu_read_lock();
3763 is_idle = is_idle_task(rcu_dereference(rq->curr));
3764 rcu_read_unlock();
3765
3766 /*
3767 * The lag estimation comes with a cost we don't want to pay all the
3768 * time. Hence, limiting to the case where the source CPU is idle and
3769 * we know we are at the greatest risk to have an outdated clock.
3770 */
3771 if (!is_idle)
3772 return;
3773
3774 /*
3775 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3776 *
3777 * last_update_time (the cfs_rq's last_update_time)
3778 * = cfs_rq_clock_pelt()@cfs_rq_idle
3779 * = rq_clock_pelt()@cfs_rq_idle
3780 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
3781 *
3782 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
3783 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3784 *
3785 * rq_idle_lag (delta between now and rq's update)
3786 * = sched_clock_cpu() - rq_clock()@rq_idle
3787 *
3788 * We can then write:
3789 *
3790 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3791 * sched_clock_cpu() - rq_clock()@rq_idle
3792 * Where:
3793 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3794 * rq_clock()@rq_idle is rq->clock_idle
3795 * cfs->throttled_clock_pelt_time@cfs_rq_idle
3796 * is cfs_rq->throttled_pelt_idle
3797 */
3798
3799#ifdef CONFIG_CFS_BANDWIDTH
3800 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3801 /* The clock has been stopped for throttling */
3802 if (throttled == U64_MAX)
3803 return;
3804#endif
3805 now = u64_u32_load(rq->clock_pelt_idle);
3806 /*
3807 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3808 * is observed the old clock_pelt_idle value and the new clock_idle,
3809 * which lead to an underestimation. The opposite would lead to an
3810 * overestimation.
3811 */
3812 smp_rmb();
3813 lut = cfs_rq_last_update_time(cfs_rq);
3814
3815 now -= throttled;
3816 if (now < lut)
3817 /*
3818 * cfs_rq->avg.last_update_time is more recent than our
3819 * estimation, let's use it.
3820 */
3821 now = lut;
3822 else
3823 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3824
3825 __update_load_avg_blocked_se(now, se);
3826}
3827#else
3828static void migrate_se_pelt_lag(struct sched_entity *se) {}
3829#endif
3830
3d30544f
PZ
3831/**
3832 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3833 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3834 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3835 *
3836 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
d6531ab6 3837 * avg. The immediate corollary is that all (fair) tasks must be attached.
3d30544f
PZ
3838 *
3839 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3840 *
a315da5e 3841 * Return: true if the load decayed or we removed load.
7c3edd2c
PZ
3842 *
3843 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3844 * call update_tg_load_avg() when this function returns true.
3d30544f 3845 */
a2c6c91f 3846static inline int
3a123bbb 3847update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3848{
9f683953 3849 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3850 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3851 int decayed = 0;
2dac754e 3852
2a2f5d4e
PZ
3853 if (cfs_rq->removed.nr) {
3854 unsigned long r;
87e867b4 3855 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3856
3857 raw_spin_lock(&cfs_rq->removed.lock);
3858 swap(cfs_rq->removed.util_avg, removed_util);
3859 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3860 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3861 cfs_rq->removed.nr = 0;
3862 raw_spin_unlock(&cfs_rq->removed.lock);
3863
2a2f5d4e 3864 r = removed_load;
89741892 3865 sub_positive(&sa->load_avg, r);
2d02fa8c
VG
3866 sub_positive(&sa->load_sum, r * divider);
3867 /* See sa->util_sum below */
3868 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
2dac754e 3869
2a2f5d4e 3870 r = removed_util;
89741892 3871 sub_positive(&sa->util_avg, r);
98b0d890
VG
3872 sub_positive(&sa->util_sum, r * divider);
3873 /*
3874 * Because of rounding, se->util_sum might ends up being +1 more than
3875 * cfs->util_sum. Although this is not a problem by itself, detaching
3876 * a lot of tasks with the rounding problem between 2 updates of
3877 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3878 * cfs_util_avg is not.
3879 * Check that util_sum is still above its lower bound for the new
3880 * util_avg. Given that period_contrib might have moved since the last
3881 * sync, we are only sure that util_sum must be above or equal to
3882 * util_avg * minimum possible divider
3883 */
3884 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
2a2f5d4e 3885
9f683953
VG
3886 r = removed_runnable;
3887 sub_positive(&sa->runnable_avg, r);
95246d1e
VG
3888 sub_positive(&sa->runnable_sum, r * divider);
3889 /* See sa->util_sum above */
3890 sa->runnable_sum = max_t(u32, sa->runnable_sum,
3891 sa->runnable_avg * PELT_MIN_DIVIDER);
9f683953
VG
3892
3893 /*
3894 * removed_runnable is the unweighted version of removed_load so we
3895 * can use it to estimate removed_load_sum.
3896 */
3897 add_tg_cfs_propagate(cfs_rq,
3898 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3899
3900 decayed = 1;
9d89c257 3901 }
36ee28e4 3902
23127296 3903 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
d05b4305
VD
3904 u64_u32_store_copy(sa->last_update_time,
3905 cfs_rq->last_update_time_copy,
3906 sa->last_update_time);
2a2f5d4e 3907 return decayed;
21e96f88
SM
3908}
3909
3d30544f
PZ
3910/**
3911 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3912 * @cfs_rq: cfs_rq to attach to
3913 * @se: sched_entity to attach
3914 *
3915 * Must call update_cfs_rq_load_avg() before this, since we rely on
3916 * cfs_rq->avg.last_update_time being current.
3917 */
a4f9a0e5 3918static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3919{
95d68593
VG
3920 /*
3921 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3922 * See ___update_load_avg() for details.
3923 */
87e867b4 3924 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3925
3926 /*
3927 * When we attach the @se to the @cfs_rq, we must align the decay
3928 * window because without that, really weird and wonderful things can
3929 * happen.
3930 *
3931 * XXX illustrate
3932 */
a05e8c51 3933 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3934 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3935
3936 /*
3937 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3938 * period_contrib. This isn't strictly correct, but since we're
3939 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3940 * _sum a little.
3941 */
3942 se->avg.util_sum = se->avg.util_avg * divider;
3943
9f683953
VG
3944 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3945
40f5aa4c 3946 se->avg.load_sum = se->avg.load_avg * divider;
3947 if (se_weight(se) < se->avg.load_sum)
3948 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3949 else
3950 se->avg.load_sum = 1;
f207934f 3951
8d5b9025 3952 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3953 cfs_rq->avg.util_avg += se->avg.util_avg;
3954 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3955 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3956 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3957
3958 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3959
a4f9a0e5 3960 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3961
3962 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3963}
3964
3d30544f
PZ
3965/**
3966 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3967 * @cfs_rq: cfs_rq to detach from
3968 * @se: sched_entity to detach
3969 *
3970 * Must call update_cfs_rq_load_avg() before this, since we rely on
3971 * cfs_rq->avg.last_update_time being current.
3972 */
a05e8c51
BP
3973static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3974{
8d5b9025 3975 dequeue_load_avg(cfs_rq, se);
89741892 3976 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
7ceb7710
VG
3977 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3978 /* See update_cfs_rq_load_avg() */
3979 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3980 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3981
9f683953 3982 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
95246d1e
VG
3983 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3984 /* See update_cfs_rq_load_avg() */
3985 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3986 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
0e2d2aaa
PZ
3987
3988 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3989
ea14b57e 3990 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3991
3992 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3993}
3994
b382a531
PZ
3995/*
3996 * Optional action to be done while updating the load average
3997 */
3998#define UPDATE_TG 0x1
3999#define SKIP_AGE_LOAD 0x2
4000#define DO_ATTACH 0x4
e1f078f5 4001#define DO_DETACH 0x8
b382a531
PZ
4002
4003/* Update task and its cfs_rq load average */
4004static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4005{
23127296 4006 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
4007 int decayed;
4008
4009 /*
4010 * Track task load average for carrying it to new CPU after migrated, and
4011 * track group sched_entity load average for task_h_load calc in migration
4012 */
4013 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 4014 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
4015
4016 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4017 decayed |= propagate_entity_load_avg(se);
4018
4019 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4020
ea14b57e
PZ
4021 /*
4022 * DO_ATTACH means we're here from enqueue_entity().
4023 * !last_update_time means we've passed through
4024 * migrate_task_rq_fair() indicating we migrated.
4025 *
4026 * IOW we're enqueueing a task on a new CPU.
4027 */
a4f9a0e5 4028 attach_entity_load_avg(cfs_rq, se);
fe749158 4029 update_tg_load_avg(cfs_rq);
b382a531 4030
e1f078f5
CZ
4031 } else if (flags & DO_DETACH) {
4032 /*
4033 * DO_DETACH means we're here from dequeue_entity()
4034 * and we are migrating task out of the CPU.
4035 */
4036 detach_entity_load_avg(cfs_rq, se);
4037 update_tg_load_avg(cfs_rq);
bef69dd8
VG
4038 } else if (decayed) {
4039 cfs_rq_util_change(cfs_rq, 0);
4040
4041 if (flags & UPDATE_TG)
fe749158 4042 update_tg_load_avg(cfs_rq);
bef69dd8 4043 }
b382a531
PZ
4044}
4045
104cb16d
MR
4046/*
4047 * Synchronize entity load avg of dequeued entity without locking
4048 * the previous rq.
4049 */
71b47eaf 4050static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
4051{
4052 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4053 u64 last_update_time;
4054
4055 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 4056 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
4057}
4058
0905f04e
YD
4059/*
4060 * Task first catches up with cfs_rq, and then subtract
4061 * itself from the cfs_rq (task must be off the queue now).
4062 */
71b47eaf 4063static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
4064{
4065 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 4066 unsigned long flags;
0905f04e
YD
4067
4068 /*
7dc603c9 4069 * tasks cannot exit without having gone through wake_up_new_task() ->
d6531ab6
CZ
4070 * enqueue_task_fair() which will have added things to the cfs_rq,
4071 * so we can remove unconditionally.
0905f04e 4072 */
0905f04e 4073
104cb16d 4074 sync_entity_load_avg(se);
2a2f5d4e
PZ
4075
4076 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4077 ++cfs_rq->removed.nr;
4078 cfs_rq->removed.util_avg += se->avg.util_avg;
4079 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 4080 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 4081 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 4082}
642dbc39 4083
9f683953
VG
4084static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4085{
4086 return cfs_rq->avg.runnable_avg;
4087}
4088
7ea241af
YD
4089static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4090{
4091 return cfs_rq->avg.load_avg;
4092}
4093
d91cecc1
CY
4094static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4095
7f65ea42
PB
4096static inline unsigned long task_util(struct task_struct *p)
4097{
4098 return READ_ONCE(p->se.avg.util_avg);
4099}
4100
4101static inline unsigned long _task_util_est(struct task_struct *p)
4102{
4103 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4104
68d7a190 4105 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
7f65ea42
PB
4106}
4107
4108static inline unsigned long task_util_est(struct task_struct *p)
4109{
4110 return max(task_util(p), _task_util_est(p));
4111}
4112
a7008c07
VS
4113#ifdef CONFIG_UCLAMP_TASK
4114static inline unsigned long uclamp_task_util(struct task_struct *p)
4115{
4116 return clamp(task_util_est(p),
4117 uclamp_eff_value(p, UCLAMP_MIN),
4118 uclamp_eff_value(p, UCLAMP_MAX));
4119}
4120#else
4121static inline unsigned long uclamp_task_util(struct task_struct *p)
4122{
4123 return task_util_est(p);
4124}
4125#endif
4126
7f65ea42
PB
4127static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4128 struct task_struct *p)
4129{
4130 unsigned int enqueued;
4131
4132 if (!sched_feat(UTIL_EST))
4133 return;
4134
4135 /* Update root cfs_rq's estimated utilization */
4136 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 4137 enqueued += _task_util_est(p);
7f65ea42 4138 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
4139
4140 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
4141}
4142
8c1f560c
XY
4143static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4144 struct task_struct *p)
4145{
4146 unsigned int enqueued;
4147
4148 if (!sched_feat(UTIL_EST))
4149 return;
4150
4151 /* Update root cfs_rq's estimated utilization */
4152 enqueued = cfs_rq->avg.util_est.enqueued;
4153 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4154 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4155
4156 trace_sched_util_est_cfs_tp(cfs_rq);
4157}
4158
b89997aa
VD
4159#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4160
7f65ea42
PB
4161/*
4162 * Check if a (signed) value is within a specified (unsigned) margin,
4163 * based on the observation that:
4164 *
4165 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4166 *
3b03706f 4167 * NOTE: this only works when value + margin < INT_MAX.
7f65ea42
PB
4168 */
4169static inline bool within_margin(int value, int margin)
4170{
4171 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4172}
4173
8c1f560c
XY
4174static inline void util_est_update(struct cfs_rq *cfs_rq,
4175 struct task_struct *p,
4176 bool task_sleep)
7f65ea42 4177{
b89997aa 4178 long last_ewma_diff, last_enqueued_diff;
7f65ea42
PB
4179 struct util_est ue;
4180
4181 if (!sched_feat(UTIL_EST))
4182 return;
4183
7f65ea42
PB
4184 /*
4185 * Skip update of task's estimated utilization when the task has not
4186 * yet completed an activation, e.g. being migrated.
4187 */
4188 if (!task_sleep)
4189 return;
4190
d519329f
PB
4191 /*
4192 * If the PELT values haven't changed since enqueue time,
4193 * skip the util_est update.
4194 */
4195 ue = p->se.avg.util_est;
4196 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4197 return;
4198
b89997aa
VD
4199 last_enqueued_diff = ue.enqueued;
4200
b8c96361
PB
4201 /*
4202 * Reset EWMA on utilization increases, the moving average is used only
4203 * to smooth utilization decreases.
4204 */
68d7a190 4205 ue.enqueued = task_util(p);
b8c96361
PB
4206 if (sched_feat(UTIL_EST_FASTUP)) {
4207 if (ue.ewma < ue.enqueued) {
4208 ue.ewma = ue.enqueued;
4209 goto done;
4210 }
4211 }
4212
7f65ea42 4213 /*
b89997aa 4214 * Skip update of task's estimated utilization when its members are
7f65ea42
PB
4215 * already ~1% close to its last activation value.
4216 */
7f65ea42 4217 last_ewma_diff = ue.enqueued - ue.ewma;
b89997aa
VD
4218 last_enqueued_diff -= ue.enqueued;
4219 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4220 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4221 goto done;
4222
7f65ea42 4223 return;
b89997aa 4224 }
7f65ea42 4225
10a35e68
VG
4226 /*
4227 * To avoid overestimation of actual task utilization, skip updates if
4228 * we cannot grant there is idle time in this CPU.
4229 */
8c1f560c 4230 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
10a35e68
VG
4231 return;
4232
7f65ea42
PB
4233 /*
4234 * Update Task's estimated utilization
4235 *
4236 * When *p completes an activation we can consolidate another sample
4237 * of the task size. This is done by storing the current PELT value
4238 * as ue.enqueued and by using this value to update the Exponential
4239 * Weighted Moving Average (EWMA):
4240 *
4241 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4242 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4243 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4244 * = w * ( last_ewma_diff ) + ewma(t-1)
4245 * = w * (last_ewma_diff + ewma(t-1) / w)
4246 *
4247 * Where 'w' is the weight of new samples, which is configured to be
4248 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4249 */
4250 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4251 ue.ewma += last_ewma_diff;
4252 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4253done:
68d7a190 4254 ue.enqueued |= UTIL_AVG_UNCHANGED;
7f65ea42 4255 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4256
4257 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4258}
4259
ef8df979
VD
4260static inline int task_fits_capacity(struct task_struct *p,
4261 unsigned long capacity)
3b1baa64 4262{
a7008c07 4263 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4264}
4265
4266static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4267{
740cf8a7 4268 if (!sched_asym_cpucap_active())
3b1baa64
MR
4269 return;
4270
0ae78eec 4271 if (!p || p->nr_cpus_allowed == 1) {
3b1baa64
MR
4272 rq->misfit_task_load = 0;
4273 return;
4274 }
4275
4276 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4277 rq->misfit_task_load = 0;
4278 return;
4279 }
4280
01cfcde9
VG
4281 /*
4282 * Make sure that misfit_task_load will not be null even if
4283 * task_h_load() returns 0.
4284 */
4285 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4286}
4287
38033c37
PZ
4288#else /* CONFIG_SMP */
4289
a7b359fc
OU
4290static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4291{
4292 return true;
4293}
4294
d31b1a66
VG
4295#define UPDATE_TG 0x0
4296#define SKIP_AGE_LOAD 0x0
b382a531 4297#define DO_ATTACH 0x0
e1f078f5 4298#define DO_DETACH 0x0
d31b1a66 4299
88c0616e 4300static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4301{
ea14b57e 4302 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4303}
4304
9d89c257 4305static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4306
a05e8c51 4307static inline void
a4f9a0e5 4308attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4309static inline void
4310detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4311
d91cecc1 4312static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4313{
4314 return 0;
4315}
4316
7f65ea42
PB
4317static inline void
4318util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4319
4320static inline void
8c1f560c
XY
4321util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4322
4323static inline void
4324util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4325 bool task_sleep) {}
3b1baa64 4326static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4327
38033c37 4328#endif /* CONFIG_SMP */
9d85f21c 4329
ddc97297
PZ
4330static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4331{
4332#ifdef CONFIG_SCHED_DEBUG
4333 s64 d = se->vruntime - cfs_rq->min_vruntime;
4334
4335 if (d < 0)
4336 d = -d;
4337
4338 if (d > 3*sysctl_sched_latency)
ae92882e 4339 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4340#endif
4341}
4342
aeb73b04
PZ
4343static void
4344place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4345{
1af5f730 4346 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4347
2cb8600e
PZ
4348 /*
4349 * The 'current' period is already promised to the current tasks,
4350 * however the extra weight of the new task will slow them down a
4351 * little, place the new task so that it fits in the slot that
4352 * stays open at the end.
4353 */
94dfb5e7 4354 if (initial && sched_feat(START_DEBIT))
f9c0b095 4355 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4356
a2e7a7eb 4357 /* sleeps up to a single latency don't count. */
5ca9880c 4358 if (!initial) {
2cae3948
JD
4359 unsigned long thresh;
4360
4361 if (se_is_idle(se))
4362 thresh = sysctl_sched_min_granularity;
4363 else
4364 thresh = sysctl_sched_latency;
a7be37ac 4365
a2e7a7eb
MG
4366 /*
4367 * Halve their sleep time's effect, to allow
4368 * for a gentler effect of sleepers:
4369 */
4370 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4371 thresh >>= 1;
51e0304c 4372
a2e7a7eb 4373 vruntime -= thresh;
aeb73b04
PZ
4374 }
4375
b5d9d734 4376 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4377 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4378}
4379
d3d9dc33
PT
4380static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4381
fe61468b 4382static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4383
4384/*
4385 * MIGRATION
4386 *
4387 * dequeue
4388 * update_curr()
4389 * update_min_vruntime()
4390 * vruntime -= min_vruntime
4391 *
4392 * enqueue
4393 * update_curr()
4394 * update_min_vruntime()
4395 * vruntime += min_vruntime
4396 *
4397 * this way the vruntime transition between RQs is done when both
4398 * min_vruntime are up-to-date.
4399 *
4400 * WAKEUP (remote)
4401 *
59efa0ba 4402 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4403 * vruntime -= min_vruntime
4404 *
4405 * enqueue
4406 * update_curr()
4407 * update_min_vruntime()
4408 * vruntime += min_vruntime
4409 *
4410 * this way we don't have the most up-to-date min_vruntime on the originating
4411 * CPU and an up-to-date min_vruntime on the destination CPU.
4412 */
4413
bf0f6f24 4414static void
88ec22d3 4415enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4416{
2f950354
PZ
4417 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4418 bool curr = cfs_rq->curr == se;
4419
88ec22d3 4420 /*
2f950354
PZ
4421 * If we're the current task, we must renormalise before calling
4422 * update_curr().
88ec22d3 4423 */
2f950354 4424 if (renorm && curr)
88ec22d3
PZ
4425 se->vruntime += cfs_rq->min_vruntime;
4426
2f950354
PZ
4427 update_curr(cfs_rq);
4428
bf0f6f24 4429 /*
2f950354
PZ
4430 * Otherwise, renormalise after, such that we're placed at the current
4431 * moment in time, instead of some random moment in the past. Being
4432 * placed in the past could significantly boost this task to the
4433 * fairness detriment of existing tasks.
bf0f6f24 4434 */
2f950354
PZ
4435 if (renorm && !curr)
4436 se->vruntime += cfs_rq->min_vruntime;
4437
89ee048f
VG
4438 /*
4439 * When enqueuing a sched_entity, we must:
4440 * - Update loads to have both entity and cfs_rq synced with now.
859f2062
CZ
4441 * - For group_entity, update its runnable_weight to reflect the new
4442 * h_nr_running of its group cfs_rq.
89ee048f
VG
4443 * - For group_entity, update its weight to reflect the new share of
4444 * its group cfs_rq
4445 * - Add its new weight to cfs_rq->load.weight
4446 */
b382a531 4447 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4448 se_update_runnable(se);
1ea6c46a 4449 update_cfs_group(se);
17bc14b7 4450 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4451
1a3d027c 4452 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4453 place_entity(cfs_rq, se, 0);
bf0f6f24 4454
cb251765 4455 check_schedstat_required();
60f2415e 4456 update_stats_enqueue_fair(cfs_rq, se, flags);
4fa8d299 4457 check_spread(cfs_rq, se);
2f950354 4458 if (!curr)
83b699ed 4459 __enqueue_entity(cfs_rq, se);
2069dd75 4460 se->on_rq = 1;
3d4b47b4 4461
51bf903b 4462 if (cfs_rq->nr_running == 1) {
d3d9dc33 4463 check_enqueue_throttle(cfs_rq);
51bf903b
CZ
4464 if (!throttled_hierarchy(cfs_rq))
4465 list_add_leaf_cfs_rq(cfs_rq);
4466 }
bf0f6f24
IM
4467}
4468
2c13c919 4469static void __clear_buddies_last(struct sched_entity *se)
2002c695 4470{
2c13c919
RR
4471 for_each_sched_entity(se) {
4472 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4473 if (cfs_rq->last != se)
2c13c919 4474 break;
f1044799
PZ
4475
4476 cfs_rq->last = NULL;
2c13c919
RR
4477 }
4478}
2002c695 4479
2c13c919
RR
4480static void __clear_buddies_next(struct sched_entity *se)
4481{
4482 for_each_sched_entity(se) {
4483 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4484 if (cfs_rq->next != se)
2c13c919 4485 break;
f1044799
PZ
4486
4487 cfs_rq->next = NULL;
2c13c919 4488 }
2002c695
PZ
4489}
4490
ac53db59
RR
4491static void __clear_buddies_skip(struct sched_entity *se)
4492{
4493 for_each_sched_entity(se) {
4494 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4495 if (cfs_rq->skip != se)
ac53db59 4496 break;
f1044799
PZ
4497
4498 cfs_rq->skip = NULL;
ac53db59
RR
4499 }
4500}
4501
a571bbea
PZ
4502static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4503{
2c13c919
RR
4504 if (cfs_rq->last == se)
4505 __clear_buddies_last(se);
4506
4507 if (cfs_rq->next == se)
4508 __clear_buddies_next(se);
ac53db59
RR
4509
4510 if (cfs_rq->skip == se)
4511 __clear_buddies_skip(se);
a571bbea
PZ
4512}
4513
6c16a6dc 4514static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4515
bf0f6f24 4516static void
371fd7e7 4517dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4518{
e1f078f5
CZ
4519 int action = UPDATE_TG;
4520
4521 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4522 action |= DO_DETACH;
4523
a2a2d680
DA
4524 /*
4525 * Update run-time statistics of the 'current'.
4526 */
4527 update_curr(cfs_rq);
89ee048f
VG
4528
4529 /*
4530 * When dequeuing a sched_entity, we must:
4531 * - Update loads to have both entity and cfs_rq synced with now.
859f2062
CZ
4532 * - For group_entity, update its runnable_weight to reflect the new
4533 * h_nr_running of its group cfs_rq.
dfcb245e 4534 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4535 * - For group entity, update its weight to reflect the new share
4536 * of its group cfs_rq.
4537 */
e1f078f5 4538 update_load_avg(cfs_rq, se, action);
9f683953 4539 se_update_runnable(se);
a2a2d680 4540
60f2415e 4541 update_stats_dequeue_fair(cfs_rq, se, flags);
67e9fb2a 4542
2002c695 4543 clear_buddies(cfs_rq, se);
4793241b 4544
83b699ed 4545 if (se != cfs_rq->curr)
30cfdcfc 4546 __dequeue_entity(cfs_rq, se);
17bc14b7 4547 se->on_rq = 0;
30cfdcfc 4548 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4549
4550 /*
b60205c7
PZ
4551 * Normalize after update_curr(); which will also have moved
4552 * min_vruntime if @se is the one holding it back. But before doing
4553 * update_min_vruntime() again, which will discount @se's position and
4554 * can move min_vruntime forward still more.
88ec22d3 4555 */
371fd7e7 4556 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4557 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4558
d8b4986d
PT
4559 /* return excess runtime on last dequeue */
4560 return_cfs_rq_runtime(cfs_rq);
4561
1ea6c46a 4562 update_cfs_group(se);
b60205c7
PZ
4563
4564 /*
4565 * Now advance min_vruntime if @se was the entity holding it back,
4566 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4567 * put back on, and if we advance min_vruntime, we'll be placed back
4568 * further than we started -- ie. we'll be penalized.
4569 */
9845c49c 4570 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4571 update_min_vruntime(cfs_rq);
e2f3e35f
VD
4572
4573 if (cfs_rq->nr_running == 0)
4574 update_idle_cfs_rq_clock_pelt(cfs_rq);
bf0f6f24
IM
4575}
4576
4577/*
4578 * Preempt the current task with a newly woken task if needed:
4579 */
7c92e54f 4580static void
2e09bf55 4581check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4582{
11697830 4583 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4584 struct sched_entity *se;
4585 s64 delta;
11697830 4586
6d0f0ebd 4587 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4588 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4589 if (delta_exec > ideal_runtime) {
8875125e 4590 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4591 /*
4592 * The current task ran long enough, ensure it doesn't get
4593 * re-elected due to buddy favours.
4594 */
4595 clear_buddies(cfs_rq, curr);
f685ceac
MG
4596 return;
4597 }
4598
4599 /*
4600 * Ensure that a task that missed wakeup preemption by a
4601 * narrow margin doesn't have to wait for a full slice.
4602 * This also mitigates buddy induced latencies under load.
4603 */
f685ceac
MG
4604 if (delta_exec < sysctl_sched_min_granularity)
4605 return;
4606
f4cfb33e
WX
4607 se = __pick_first_entity(cfs_rq);
4608 delta = curr->vruntime - se->vruntime;
f685ceac 4609
f4cfb33e
WX
4610 if (delta < 0)
4611 return;
d7d82944 4612
f4cfb33e 4613 if (delta > ideal_runtime)
8875125e 4614 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4615}
4616
83b699ed 4617static void
8494f412 4618set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4619{
21f56ffe
PZ
4620 clear_buddies(cfs_rq, se);
4621
83b699ed
SV
4622 /* 'current' is not kept within the tree. */
4623 if (se->on_rq) {
4624 /*
4625 * Any task has to be enqueued before it get to execute on
4626 * a CPU. So account for the time it spent waiting on the
4627 * runqueue.
4628 */
60f2415e 4629 update_stats_wait_end_fair(cfs_rq, se);
83b699ed 4630 __dequeue_entity(cfs_rq, se);
88c0616e 4631 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4632 }
4633
79303e9e 4634 update_stats_curr_start(cfs_rq, se);
429d43bc 4635 cfs_rq->curr = se;
4fa8d299 4636
eba1ed4b
IM
4637 /*
4638 * Track our maximum slice length, if the CPU's load is at
4639 * least twice that of our own weight (i.e. dont track it
4640 * when there are only lesser-weight tasks around):
4641 */
f2bedc47
DE
4642 if (schedstat_enabled() &&
4643 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
ceeadb83
YS
4644 struct sched_statistics *stats;
4645
4646 stats = __schedstats_from_se(se);
4647 __schedstat_set(stats->slice_max,
4648 max((u64)stats->slice_max,
a2dcb276 4649 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4650 }
4fa8d299 4651
4a55b450 4652 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4653}
4654
3f3a4904
PZ
4655static int
4656wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4657
ac53db59
RR
4658/*
4659 * Pick the next process, keeping these things in mind, in this order:
4660 * 1) keep things fair between processes/task groups
4661 * 2) pick the "next" process, since someone really wants that to run
4662 * 3) pick the "last" process, for cache locality
4663 * 4) do not run the "skip" process, if something else is available
4664 */
678d5718
PZ
4665static struct sched_entity *
4666pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4667{
678d5718
PZ
4668 struct sched_entity *left = __pick_first_entity(cfs_rq);
4669 struct sched_entity *se;
4670
4671 /*
4672 * If curr is set we have to see if its left of the leftmost entity
4673 * still in the tree, provided there was anything in the tree at all.
4674 */
4675 if (!left || (curr && entity_before(curr, left)))
4676 left = curr;
4677
4678 se = left; /* ideally we run the leftmost entity */
f4b6755f 4679
ac53db59
RR
4680 /*
4681 * Avoid running the skip buddy, if running something else can
4682 * be done without getting too unfair.
4683 */
21f56ffe 4684 if (cfs_rq->skip && cfs_rq->skip == se) {
678d5718
PZ
4685 struct sched_entity *second;
4686
4687 if (se == curr) {
4688 second = __pick_first_entity(cfs_rq);
4689 } else {
4690 second = __pick_next_entity(se);
4691 if (!second || (curr && entity_before(curr, second)))
4692 second = curr;
4693 }
4694
ac53db59
RR
4695 if (second && wakeup_preempt_entity(second, left) < 1)
4696 se = second;
4697 }
aa2ac252 4698
9abb8973
PO
4699 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4700 /*
4701 * Someone really wants this to run. If it's not unfair, run it.
4702 */
ac53db59 4703 se = cfs_rq->next;
9abb8973
PO
4704 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4705 /*
4706 * Prefer last buddy, try to return the CPU to a preempted task.
4707 */
4708 se = cfs_rq->last;
4709 }
ac53db59 4710
4793241b 4711 return se;
aa2ac252
PZ
4712}
4713
678d5718 4714static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4715
ab6cde26 4716static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4717{
4718 /*
4719 * If still on the runqueue then deactivate_task()
4720 * was not called and update_curr() has to be done:
4721 */
4722 if (prev->on_rq)
b7cc0896 4723 update_curr(cfs_rq);
bf0f6f24 4724
d3d9dc33
PT
4725 /* throttle cfs_rqs exceeding runtime */
4726 check_cfs_rq_runtime(cfs_rq);
4727
4fa8d299 4728 check_spread(cfs_rq, prev);
cb251765 4729
30cfdcfc 4730 if (prev->on_rq) {
60f2415e 4731 update_stats_wait_start_fair(cfs_rq, prev);
30cfdcfc
DA
4732 /* Put 'current' back into the tree. */
4733 __enqueue_entity(cfs_rq, prev);
9d85f21c 4734 /* in !on_rq case, update occurred at dequeue */
88c0616e 4735 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4736 }
429d43bc 4737 cfs_rq->curr = NULL;
bf0f6f24
IM
4738}
4739
8f4d37ec
PZ
4740static void
4741entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4742{
bf0f6f24 4743 /*
30cfdcfc 4744 * Update run-time statistics of the 'current'.
bf0f6f24 4745 */
30cfdcfc 4746 update_curr(cfs_rq);
bf0f6f24 4747
9d85f21c
PT
4748 /*
4749 * Ensure that runnable average is periodically updated.
4750 */
88c0616e 4751 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4752 update_cfs_group(curr);
9d85f21c 4753
8f4d37ec
PZ
4754#ifdef CONFIG_SCHED_HRTICK
4755 /*
4756 * queued ticks are scheduled to match the slice, so don't bother
4757 * validating it and just reschedule.
4758 */
983ed7a6 4759 if (queued) {
8875125e 4760 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4761 return;
4762 }
8f4d37ec
PZ
4763 /*
4764 * don't let the period tick interfere with the hrtick preemption
4765 */
4766 if (!sched_feat(DOUBLE_TICK) &&
4767 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4768 return;
4769#endif
4770
2c2efaed 4771 if (cfs_rq->nr_running > 1)
2e09bf55 4772 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4773}
4774
ab84d31e
PT
4775
4776/**************************************************
4777 * CFS bandwidth control machinery
4778 */
4779
4780#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4781
e9666d10 4782#ifdef CONFIG_JUMP_LABEL
c5905afb 4783static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4784
4785static inline bool cfs_bandwidth_used(void)
4786{
c5905afb 4787 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4788}
4789
1ee14e6c 4790void cfs_bandwidth_usage_inc(void)
029632fb 4791{
ce48c146 4792 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4793}
4794
4795void cfs_bandwidth_usage_dec(void)
4796{
ce48c146 4797 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4798}
e9666d10 4799#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4800static bool cfs_bandwidth_used(void)
4801{
4802 return true;
4803}
4804
1ee14e6c
BS
4805void cfs_bandwidth_usage_inc(void) {}
4806void cfs_bandwidth_usage_dec(void) {}
e9666d10 4807#endif /* CONFIG_JUMP_LABEL */
029632fb 4808
ab84d31e
PT
4809/*
4810 * default period for cfs group bandwidth.
4811 * default: 0.1s, units: nanoseconds
4812 */
4813static inline u64 default_cfs_period(void)
4814{
4815 return 100000000ULL;
4816}
ec12cb7f
PT
4817
4818static inline u64 sched_cfs_bandwidth_slice(void)
4819{
4820 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4821}
4822
a9cf55b2 4823/*
763a9ec0
QC
4824 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4825 * directly instead of rq->clock to avoid adding additional synchronization
4826 * around rq->lock.
a9cf55b2
PT
4827 *
4828 * requires cfs_b->lock
4829 */
029632fb 4830void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4831{
bcb1704a
HC
4832 s64 runtime;
4833
f4183717
HC
4834 if (unlikely(cfs_b->quota == RUNTIME_INF))
4835 return;
4836
4837 cfs_b->runtime += cfs_b->quota;
bcb1704a
HC
4838 runtime = cfs_b->runtime_snap - cfs_b->runtime;
4839 if (runtime > 0) {
4840 cfs_b->burst_time += runtime;
4841 cfs_b->nr_burst++;
4842 }
4843
f4183717 4844 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
bcb1704a 4845 cfs_b->runtime_snap = cfs_b->runtime;
a9cf55b2
PT
4846}
4847
029632fb
PZ
4848static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4849{
4850 return &tg->cfs_bandwidth;
4851}
4852
85dac906 4853/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4854static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4855 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4856{
e98fa02c
PT
4857 u64 min_amount, amount = 0;
4858
4859 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4860
4861 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4862 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4863
ec12cb7f
PT
4864 if (cfs_b->quota == RUNTIME_INF)
4865 amount = min_amount;
58088ad0 4866 else {
77a4d1a1 4867 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4868
4869 if (cfs_b->runtime > 0) {
4870 amount = min(cfs_b->runtime, min_amount);
4871 cfs_b->runtime -= amount;
4872 cfs_b->idle = 0;
4873 }
ec12cb7f 4874 }
ec12cb7f
PT
4875
4876 cfs_rq->runtime_remaining += amount;
85dac906
PT
4877
4878 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4879}
4880
e98fa02c
PT
4881/* returns 0 on failure to allocate runtime */
4882static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4883{
4884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4885 int ret;
4886
4887 raw_spin_lock(&cfs_b->lock);
4888 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4889 raw_spin_unlock(&cfs_b->lock);
4890
4891 return ret;
4892}
4893
9dbdb155 4894static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4895{
4896 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4897 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4898
4899 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4900 return;
4901
5e2d2cc2
L
4902 if (cfs_rq->throttled)
4903 return;
85dac906
PT
4904 /*
4905 * if we're unable to extend our runtime we resched so that the active
4906 * hierarchy can be throttled
4907 */
4908 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4909 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4910}
4911
6c16a6dc 4912static __always_inline
9dbdb155 4913void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4914{
56f570e5 4915 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4916 return;
4917
4918 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4919}
4920
85dac906
PT
4921static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4922{
56f570e5 4923 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4924}
4925
64660c86
PT
4926/* check whether cfs_rq, or any parent, is throttled */
4927static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4928{
56f570e5 4929 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4930}
4931
4932/*
4933 * Ensure that neither of the group entities corresponding to src_cpu or
4934 * dest_cpu are members of a throttled hierarchy when performing group
4935 * load-balance operations.
4936 */
4937static inline int throttled_lb_pair(struct task_group *tg,
4938 int src_cpu, int dest_cpu)
4939{
4940 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4941
4942 src_cfs_rq = tg->cfs_rq[src_cpu];
4943 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4944
4945 return throttled_hierarchy(src_cfs_rq) ||
4946 throttled_hierarchy(dest_cfs_rq);
4947}
4948
64660c86
PT
4949static int tg_unthrottle_up(struct task_group *tg, void *data)
4950{
4951 struct rq *rq = data;
4952 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4953
4954 cfs_rq->throttle_count--;
64660c86 4955 if (!cfs_rq->throttle_count) {
64eaf507
CZ
4956 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4957 cfs_rq->throttled_clock_pelt;
31bc6aea 4958
a7b359fc 4959 /* Add cfs_rq with load or one or more already running entities to the list */
0a00a354 4960 if (!cfs_rq_is_decayed(cfs_rq))
31bc6aea 4961 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4962 }
64660c86
PT
4963
4964 return 0;
4965}
4966
4967static int tg_throttle_down(struct task_group *tg, void *data)
4968{
4969 struct rq *rq = data;
4970 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4971
82958366 4972 /* group is entering throttled state, stop time */
31bc6aea 4973 if (!cfs_rq->throttle_count) {
64eaf507 4974 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
31bc6aea
VG
4975 list_del_leaf_cfs_rq(cfs_rq);
4976 }
64660c86
PT
4977 cfs_rq->throttle_count++;
4978
4979 return 0;
4980}
4981
e98fa02c 4982static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4983{
4984 struct rq *rq = rq_of(cfs_rq);
4985 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4986 struct sched_entity *se;
43e9f7f2 4987 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4988
4989 raw_spin_lock(&cfs_b->lock);
4990 /* This will start the period timer if necessary */
4991 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4992 /*
4993 * We have raced with bandwidth becoming available, and if we
4994 * actually throttled the timer might not unthrottle us for an
4995 * entire period. We additionally needed to make sure that any
4996 * subsequent check_cfs_rq_runtime calls agree not to throttle
4997 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4998 * for 1ns of runtime rather than just check cfs_b.
4999 */
5000 dequeue = 0;
5001 } else {
5002 list_add_tail_rcu(&cfs_rq->throttled_list,
5003 &cfs_b->throttled_cfs_rq);
5004 }
5005 raw_spin_unlock(&cfs_b->lock);
5006
5007 if (!dequeue)
5008 return false; /* Throttle no longer required. */
85dac906
PT
5009
5010 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5011
f1b17280 5012 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
5013 rcu_read_lock();
5014 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5015 rcu_read_unlock();
85dac906
PT
5016
5017 task_delta = cfs_rq->h_nr_running;
43e9f7f2 5018 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
5019 for_each_sched_entity(se) {
5020 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5021 /* throttled entity or throttle-on-deactivate */
5022 if (!se->on_rq)
b6d37a76 5023 goto done;
85dac906 5024
b6d37a76 5025 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f 5026
30400039
JD
5027 if (cfs_rq_is_idle(group_cfs_rq(se)))
5028 idle_task_delta = cfs_rq->h_nr_running;
5029
85dac906 5030 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 5031 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906 5032
b6d37a76
PW
5033 if (qcfs_rq->load.weight) {
5034 /* Avoid re-evaluating load for this entity: */
5035 se = parent_entity(se);
5036 break;
5037 }
5038 }
5039
5040 for_each_sched_entity(se) {
5041 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5042 /* throttled entity or throttle-on-deactivate */
5043 if (!se->on_rq)
5044 goto done;
5045
5046 update_load_avg(qcfs_rq, se, 0);
5047 se_update_runnable(se);
5048
30400039
JD
5049 if (cfs_rq_is_idle(group_cfs_rq(se)))
5050 idle_task_delta = cfs_rq->h_nr_running;
5051
b6d37a76
PW
5052 qcfs_rq->h_nr_running -= task_delta;
5053 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
5054 }
5055
b6d37a76
PW
5056 /* At this point se is NULL and we are at root level*/
5057 sub_nr_running(rq, task_delta);
85dac906 5058
b6d37a76 5059done:
c06f04c7 5060 /*
e98fa02c
PT
5061 * Note: distribution will already see us throttled via the
5062 * throttled-list. rq->lock protects completion.
c06f04c7 5063 */
e98fa02c
PT
5064 cfs_rq->throttled = 1;
5065 cfs_rq->throttled_clock = rq_clock(rq);
5066 return true;
85dac906
PT
5067}
5068
029632fb 5069void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
5070{
5071 struct rq *rq = rq_of(cfs_rq);
5072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5073 struct sched_entity *se;
43e9f7f2 5074 long task_delta, idle_task_delta;
671fd9da 5075
22b958d8 5076 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
5077
5078 cfs_rq->throttled = 0;
1a55af2e
FW
5079
5080 update_rq_clock(rq);
5081
671fd9da 5082 raw_spin_lock(&cfs_b->lock);
78becc27 5083 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
5084 list_del_rcu(&cfs_rq->throttled_list);
5085 raw_spin_unlock(&cfs_b->lock);
5086
64660c86
PT
5087 /* update hierarchical throttle state */
5088 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5089
2630cde2 5090 if (!cfs_rq->load.weight) {
51bf903b
CZ
5091 if (!cfs_rq->on_list)
5092 return;
5093 /*
5094 * Nothing to run but something to decay (on_list)?
5095 * Complete the branch.
5096 */
5097 for_each_sched_entity(se) {
5098 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5099 break;
5100 }
5101 goto unthrottle_throttle;
2630cde2 5102 }
671fd9da
PT
5103
5104 task_delta = cfs_rq->h_nr_running;
43e9f7f2 5105 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da 5106 for_each_sched_entity(se) {
30400039
JD
5107 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5108
671fd9da 5109 if (se->on_rq)
39f23ce0 5110 break;
30400039
JD
5111 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5112
5113 if (cfs_rq_is_idle(group_cfs_rq(se)))
5114 idle_task_delta = cfs_rq->h_nr_running;
39f23ce0 5115
30400039
JD
5116 qcfs_rq->h_nr_running += task_delta;
5117 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
5118
5119 /* end evaluation on encountering a throttled cfs_rq */
30400039 5120 if (cfs_rq_throttled(qcfs_rq))
39f23ce0
VG
5121 goto unthrottle_throttle;
5122 }
671fd9da 5123
39f23ce0 5124 for_each_sched_entity(se) {
30400039 5125 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
39f23ce0 5126
30400039 5127 update_load_avg(qcfs_rq, se, UPDATE_TG);
39f23ce0 5128 se_update_runnable(se);
6212437f 5129
30400039
JD
5130 if (cfs_rq_is_idle(group_cfs_rq(se)))
5131 idle_task_delta = cfs_rq->h_nr_running;
671fd9da 5132
30400039
JD
5133 qcfs_rq->h_nr_running += task_delta;
5134 qcfs_rq->idle_h_nr_running += idle_task_delta;
39f23ce0
VG
5135
5136 /* end evaluation on encountering a throttled cfs_rq */
30400039 5137 if (cfs_rq_throttled(qcfs_rq))
39f23ce0 5138 goto unthrottle_throttle;
671fd9da
PT
5139 }
5140
39f23ce0
VG
5141 /* At this point se is NULL and we are at root level*/
5142 add_nr_running(rq, task_delta);
671fd9da 5143
39f23ce0 5144unthrottle_throttle:
fe61468b
VG
5145 assert_list_leaf_cfs_rq(rq);
5146
97fb7a0a 5147 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 5148 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 5149 resched_curr(rq);
671fd9da
PT
5150}
5151
26a8b127 5152static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
5153{
5154 struct cfs_rq *cfs_rq;
26a8b127 5155 u64 runtime, remaining = 1;
671fd9da
PT
5156
5157 rcu_read_lock();
5158 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5159 throttled_list) {
5160 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 5161 struct rq_flags rf;
671fd9da 5162
c0ad4aa4 5163 rq_lock_irqsave(rq, &rf);
671fd9da
PT
5164 if (!cfs_rq_throttled(cfs_rq))
5165 goto next;
5166
5e2d2cc2
L
5167 /* By the above check, this should never be true */
5168 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5169
26a8b127 5170 raw_spin_lock(&cfs_b->lock);
671fd9da 5171 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
5172 if (runtime > cfs_b->runtime)
5173 runtime = cfs_b->runtime;
5174 cfs_b->runtime -= runtime;
5175 remaining = cfs_b->runtime;
5176 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
5177
5178 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
5179
5180 /* we check whether we're throttled above */
5181 if (cfs_rq->runtime_remaining > 0)
5182 unthrottle_cfs_rq(cfs_rq);
5183
5184next:
c0ad4aa4 5185 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
5186
5187 if (!remaining)
5188 break;
5189 }
5190 rcu_read_unlock();
671fd9da
PT
5191}
5192
58088ad0
PT
5193/*
5194 * Responsible for refilling a task_group's bandwidth and unthrottling its
5195 * cfs_rqs as appropriate. If there has been no activity within the last
5196 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5197 * used to track this state.
5198 */
c0ad4aa4 5199static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 5200{
51f2176d 5201 int throttled;
58088ad0 5202
58088ad0
PT
5203 /* no need to continue the timer with no bandwidth constraint */
5204 if (cfs_b->quota == RUNTIME_INF)
51f2176d 5205 goto out_deactivate;
58088ad0 5206
671fd9da 5207 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 5208 cfs_b->nr_periods += overrun;
671fd9da 5209
f4183717
HC
5210 /* Refill extra burst quota even if cfs_b->idle */
5211 __refill_cfs_bandwidth_runtime(cfs_b);
5212
51f2176d
BS
5213 /*
5214 * idle depends on !throttled (for the case of a large deficit), and if
5215 * we're going inactive then everything else can be deferred
5216 */
5217 if (cfs_b->idle && !throttled)
5218 goto out_deactivate;
a9cf55b2 5219
671fd9da
PT
5220 if (!throttled) {
5221 /* mark as potentially idle for the upcoming period */
5222 cfs_b->idle = 1;
51f2176d 5223 return 0;
671fd9da
PT
5224 }
5225
e8da1b18
NR
5226 /* account preceding periods in which throttling occurred */
5227 cfs_b->nr_throttled += overrun;
5228
671fd9da 5229 /*
26a8b127 5230 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 5231 */
ab93a4bc 5232 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 5233 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 5234 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 5235 distribute_cfs_runtime(cfs_b);
c0ad4aa4 5236 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
5237
5238 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5239 }
58088ad0 5240
671fd9da
PT
5241 /*
5242 * While we are ensured activity in the period following an
5243 * unthrottle, this also covers the case in which the new bandwidth is
5244 * insufficient to cover the existing bandwidth deficit. (Forcing the
5245 * timer to remain active while there are any throttled entities.)
5246 */
5247 cfs_b->idle = 0;
58088ad0 5248
51f2176d
BS
5249 return 0;
5250
5251out_deactivate:
51f2176d 5252 return 1;
58088ad0 5253}
d3d9dc33 5254
d8b4986d
PT
5255/* a cfs_rq won't donate quota below this amount */
5256static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5257/* minimum remaining period time to redistribute slack quota */
5258static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5259/* how long we wait to gather additional slack before distributing */
5260static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5261
db06e78c
BS
5262/*
5263 * Are we near the end of the current quota period?
5264 *
5265 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5266 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5267 * migrate_hrtimers, base is never cleared, so we are fine.
5268 */
d8b4986d
PT
5269static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5270{
5271 struct hrtimer *refresh_timer = &cfs_b->period_timer;
72d0ad7c 5272 s64 remaining;
d8b4986d
PT
5273
5274 /* if the call-back is running a quota refresh is already occurring */
5275 if (hrtimer_callback_running(refresh_timer))
5276 return 1;
5277
5278 /* is a quota refresh about to occur? */
5279 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
72d0ad7c 5280 if (remaining < (s64)min_expire)
d8b4986d
PT
5281 return 1;
5282
5283 return 0;
5284}
5285
5286static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5287{
5288 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5289
5290 /* if there's a quota refresh soon don't bother with slack */
5291 if (runtime_refresh_within(cfs_b, min_left))
5292 return;
5293
66567fcb 5294 /* don't push forwards an existing deferred unthrottle */
5295 if (cfs_b->slack_started)
5296 return;
5297 cfs_b->slack_started = true;
5298
4cfafd30
PZ
5299 hrtimer_start(&cfs_b->slack_timer,
5300 ns_to_ktime(cfs_bandwidth_slack_period),
5301 HRTIMER_MODE_REL);
d8b4986d
PT
5302}
5303
5304/* we know any runtime found here is valid as update_curr() precedes return */
5305static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5306{
5307 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5308 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5309
5310 if (slack_runtime <= 0)
5311 return;
5312
5313 raw_spin_lock(&cfs_b->lock);
de53fd7a 5314 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5315 cfs_b->runtime += slack_runtime;
5316
5317 /* we are under rq->lock, defer unthrottling using a timer */
5318 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5319 !list_empty(&cfs_b->throttled_cfs_rq))
5320 start_cfs_slack_bandwidth(cfs_b);
5321 }
5322 raw_spin_unlock(&cfs_b->lock);
5323
5324 /* even if it's not valid for return we don't want to try again */
5325 cfs_rq->runtime_remaining -= slack_runtime;
5326}
5327
5328static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5329{
56f570e5
PT
5330 if (!cfs_bandwidth_used())
5331 return;
5332
fccfdc6f 5333 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5334 return;
5335
5336 __return_cfs_rq_runtime(cfs_rq);
5337}
5338
5339/*
5340 * This is done with a timer (instead of inline with bandwidth return) since
5341 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5342 */
5343static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5344{
5345 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5346 unsigned long flags;
d8b4986d
PT
5347
5348 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5349 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5350 cfs_b->slack_started = false;
baa9be4f 5351
db06e78c 5352 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5353 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5354 return;
db06e78c 5355 }
d8b4986d 5356
c06f04c7 5357 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5358 runtime = cfs_b->runtime;
c06f04c7 5359
c0ad4aa4 5360 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5361
5362 if (!runtime)
5363 return;
5364
26a8b127 5365 distribute_cfs_runtime(cfs_b);
d8b4986d
PT
5366}
5367
d3d9dc33
PT
5368/*
5369 * When a group wakes up we want to make sure that its quota is not already
5370 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
c034f48e 5371 * runtime as update_curr() throttling can not trigger until it's on-rq.
d3d9dc33
PT
5372 */
5373static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5374{
56f570e5
PT
5375 if (!cfs_bandwidth_used())
5376 return;
5377
d3d9dc33
PT
5378 /* an active group must be handled by the update_curr()->put() path */
5379 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5380 return;
5381
5382 /* ensure the group is not already throttled */
5383 if (cfs_rq_throttled(cfs_rq))
5384 return;
5385
5386 /* update runtime allocation */
5387 account_cfs_rq_runtime(cfs_rq, 0);
5388 if (cfs_rq->runtime_remaining <= 0)
5389 throttle_cfs_rq(cfs_rq);
5390}
5391
55e16d30
PZ
5392static void sync_throttle(struct task_group *tg, int cpu)
5393{
5394 struct cfs_rq *pcfs_rq, *cfs_rq;
5395
5396 if (!cfs_bandwidth_used())
5397 return;
5398
5399 if (!tg->parent)
5400 return;
5401
5402 cfs_rq = tg->cfs_rq[cpu];
5403 pcfs_rq = tg->parent->cfs_rq[cpu];
5404
5405 cfs_rq->throttle_count = pcfs_rq->throttle_count;
64eaf507 5406 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
55e16d30
PZ
5407}
5408
d3d9dc33 5409/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5410static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5411{
56f570e5 5412 if (!cfs_bandwidth_used())
678d5718 5413 return false;
56f570e5 5414
d3d9dc33 5415 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5416 return false;
d3d9dc33
PT
5417
5418 /*
5419 * it's possible for a throttled entity to be forced into a running
5420 * state (e.g. set_curr_task), in this case we're finished.
5421 */
5422 if (cfs_rq_throttled(cfs_rq))
678d5718 5423 return true;
d3d9dc33 5424
e98fa02c 5425 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5426}
029632fb 5427
029632fb
PZ
5428static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5429{
5430 struct cfs_bandwidth *cfs_b =
5431 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5432
029632fb
PZ
5433 do_sched_cfs_slack_timer(cfs_b);
5434
5435 return HRTIMER_NORESTART;
5436}
5437
2e8e1922
PA
5438extern const u64 max_cfs_quota_period;
5439
029632fb
PZ
5440static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5441{
5442 struct cfs_bandwidth *cfs_b =
5443 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5444 unsigned long flags;
029632fb
PZ
5445 int overrun;
5446 int idle = 0;
2e8e1922 5447 int count = 0;
029632fb 5448
c0ad4aa4 5449 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5450 for (;;) {
77a4d1a1 5451 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5452 if (!overrun)
5453 break;
5454
5a6d6a6c
HC
5455 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5456
2e8e1922
PA
5457 if (++count > 3) {
5458 u64 new, old = ktime_to_ns(cfs_b->period);
5459
4929a4e6
XZ
5460 /*
5461 * Grow period by a factor of 2 to avoid losing precision.
5462 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5463 * to fail.
5464 */
5465 new = old * 2;
5466 if (new < max_cfs_quota_period) {
5467 cfs_b->period = ns_to_ktime(new);
5468 cfs_b->quota *= 2;
f4183717 5469 cfs_b->burst *= 2;
4929a4e6
XZ
5470
5471 pr_warn_ratelimited(
5472 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5473 smp_processor_id(),
5474 div_u64(new, NSEC_PER_USEC),
5475 div_u64(cfs_b->quota, NSEC_PER_USEC));
5476 } else {
5477 pr_warn_ratelimited(
5478 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5479 smp_processor_id(),
5480 div_u64(old, NSEC_PER_USEC),
5481 div_u64(cfs_b->quota, NSEC_PER_USEC));
5482 }
2e8e1922
PA
5483
5484 /* reset count so we don't come right back in here */
5485 count = 0;
5486 }
029632fb 5487 }
4cfafd30
PZ
5488 if (idle)
5489 cfs_b->period_active = 0;
c0ad4aa4 5490 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5491
5492 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5493}
5494
5495void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5496{
5497 raw_spin_lock_init(&cfs_b->lock);
5498 cfs_b->runtime = 0;
5499 cfs_b->quota = RUNTIME_INF;
5500 cfs_b->period = ns_to_ktime(default_cfs_period());
f4183717 5501 cfs_b->burst = 0;
029632fb
PZ
5502
5503 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5504 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5505 cfs_b->period_timer.function = sched_cfs_period_timer;
5506 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5507 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5508 cfs_b->slack_started = false;
029632fb
PZ
5509}
5510
5511static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5512{
5513 cfs_rq->runtime_enabled = 0;
5514 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5515}
5516
77a4d1a1 5517void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5518{
4cfafd30 5519 lockdep_assert_held(&cfs_b->lock);
029632fb 5520
f1d1be8a
XP
5521 if (cfs_b->period_active)
5522 return;
5523
5524 cfs_b->period_active = 1;
763a9ec0 5525 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5526 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5527}
5528
5529static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5530{
7f1a169b
TH
5531 /* init_cfs_bandwidth() was not called */
5532 if (!cfs_b->throttled_cfs_rq.next)
5533 return;
5534
029632fb
PZ
5535 hrtimer_cancel(&cfs_b->period_timer);
5536 hrtimer_cancel(&cfs_b->slack_timer);
5537}
5538
502ce005 5539/*
97fb7a0a 5540 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5541 *
5542 * The race is harmless, since modifying bandwidth settings of unhooked group
5543 * bits doesn't do much.
5544 */
5545
3b03706f 5546/* cpu online callback */
0e59bdae
KT
5547static void __maybe_unused update_runtime_enabled(struct rq *rq)
5548{
502ce005 5549 struct task_group *tg;
0e59bdae 5550
5cb9eaa3 5551 lockdep_assert_rq_held(rq);
502ce005
PZ
5552
5553 rcu_read_lock();
5554 list_for_each_entry_rcu(tg, &task_groups, list) {
5555 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5556 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5557
5558 raw_spin_lock(&cfs_b->lock);
5559 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5560 raw_spin_unlock(&cfs_b->lock);
5561 }
502ce005 5562 rcu_read_unlock();
0e59bdae
KT
5563}
5564
502ce005 5565/* cpu offline callback */
38dc3348 5566static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5567{
502ce005
PZ
5568 struct task_group *tg;
5569
5cb9eaa3 5570 lockdep_assert_rq_held(rq);
502ce005
PZ
5571
5572 rcu_read_lock();
5573 list_for_each_entry_rcu(tg, &task_groups, list) {
5574 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5575
029632fb
PZ
5576 if (!cfs_rq->runtime_enabled)
5577 continue;
5578
5579 /*
5580 * clock_task is not advancing so we just need to make sure
5581 * there's some valid quota amount
5582 */
51f2176d 5583 cfs_rq->runtime_remaining = 1;
0e59bdae 5584 /*
97fb7a0a 5585 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5586 * in take_cpu_down(), so we prevent new cfs throttling here.
5587 */
5588 cfs_rq->runtime_enabled = 0;
5589
029632fb
PZ
5590 if (cfs_rq_throttled(cfs_rq))
5591 unthrottle_cfs_rq(cfs_rq);
5592 }
502ce005 5593 rcu_read_unlock();
029632fb
PZ
5594}
5595
5596#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5597
5598static inline bool cfs_bandwidth_used(void)
5599{
5600 return false;
5601}
5602
9dbdb155 5603static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5604static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5605static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5606static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5607static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5608
5609static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5610{
5611 return 0;
5612}
64660c86
PT
5613
5614static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5615{
5616 return 0;
5617}
5618
5619static inline int throttled_lb_pair(struct task_group *tg,
5620 int src_cpu, int dest_cpu)
5621{
5622 return 0;
5623}
029632fb
PZ
5624
5625void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5626
5627#ifdef CONFIG_FAIR_GROUP_SCHED
5628static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5629#endif
5630
029632fb
PZ
5631static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5632{
5633 return NULL;
5634}
5635static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5636static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5637static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5638
5639#endif /* CONFIG_CFS_BANDWIDTH */
5640
bf0f6f24
IM
5641/**************************************************
5642 * CFS operations on tasks:
5643 */
5644
8f4d37ec
PZ
5645#ifdef CONFIG_SCHED_HRTICK
5646static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5647{
8f4d37ec
PZ
5648 struct sched_entity *se = &p->se;
5649 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5650
9148a3a1 5651 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5652
8bf46a39 5653 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5654 u64 slice = sched_slice(cfs_rq, se);
5655 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5656 s64 delta = slice - ran;
5657
5658 if (delta < 0) {
65bcf072 5659 if (task_current(rq, p))
8875125e 5660 resched_curr(rq);
8f4d37ec
PZ
5661 return;
5662 }
31656519 5663 hrtick_start(rq, delta);
8f4d37ec
PZ
5664 }
5665}
a4c2f00f
PZ
5666
5667/*
5668 * called from enqueue/dequeue and updates the hrtick when the
5669 * current task is from our class and nr_running is low enough
5670 * to matter.
5671 */
5672static void hrtick_update(struct rq *rq)
5673{
5674 struct task_struct *curr = rq->curr;
5675
e0ee463c 5676 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5677 return;
5678
5679 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5680 hrtick_start_fair(rq, curr);
5681}
55e12e5e 5682#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5683static inline void
5684hrtick_start_fair(struct rq *rq, struct task_struct *p)
5685{
5686}
a4c2f00f
PZ
5687
5688static inline void hrtick_update(struct rq *rq)
5689{
5690}
8f4d37ec
PZ
5691#endif
5692
2802bf3c 5693#ifdef CONFIG_SMP
2802bf3c
MR
5694static inline bool cpu_overutilized(int cpu)
5695{
82762d2a 5696 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
2802bf3c
MR
5697}
5698
5699static inline void update_overutilized_status(struct rq *rq)
5700{
f9f240f9 5701 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5702 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5703 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5704 }
2802bf3c
MR
5705}
5706#else
5707static inline void update_overutilized_status(struct rq *rq) { }
5708#endif
5709
323af6de
VK
5710/* Runqueue only has SCHED_IDLE tasks enqueued */
5711static int sched_idle_rq(struct rq *rq)
5712{
5713 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5714 rq->nr_running);
5715}
5716
a480adde
JD
5717/*
5718 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5719 * of idle_nr_running, which does not consider idle descendants of normal
5720 * entities.
5721 */
5722static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5723{
5724 return cfs_rq->nr_running &&
5725 cfs_rq->nr_running == cfs_rq->idle_nr_running;
5726}
5727
afa70d94 5728#ifdef CONFIG_SMP
323af6de
VK
5729static int sched_idle_cpu(int cpu)
5730{
5731 return sched_idle_rq(cpu_rq(cpu));
5732}
afa70d94 5733#endif
323af6de 5734
bf0f6f24
IM
5735/*
5736 * The enqueue_task method is called before nr_running is
5737 * increased. Here we update the fair scheduling stats and
5738 * then put the task into the rbtree:
5739 */
ea87bb78 5740static void
371fd7e7 5741enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5742{
5743 struct cfs_rq *cfs_rq;
62fb1851 5744 struct sched_entity *se = &p->se;
43e9f7f2 5745 int idle_h_nr_running = task_has_idle_policy(p);
8e1ac429 5746 int task_new = !(flags & ENQUEUE_WAKEUP);
bf0f6f24 5747
2539fc82
PB
5748 /*
5749 * The code below (indirectly) updates schedutil which looks at
5750 * the cfs_rq utilization to select a frequency.
5751 * Let's add the task's estimated utilization to the cfs_rq's
5752 * estimated utilization, before we update schedutil.
5753 */
5754 util_est_enqueue(&rq->cfs, p);
5755
8c34ab19
RW
5756 /*
5757 * If in_iowait is set, the code below may not trigger any cpufreq
5758 * utilization updates, so do it here explicitly with the IOWAIT flag
5759 * passed.
5760 */
5761 if (p->in_iowait)
674e7541 5762 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5763
bf0f6f24 5764 for_each_sched_entity(se) {
62fb1851 5765 if (se->on_rq)
bf0f6f24
IM
5766 break;
5767 cfs_rq = cfs_rq_of(se);
88ec22d3 5768 enqueue_entity(cfs_rq, se, flags);
85dac906 5769
953bfcd1 5770 cfs_rq->h_nr_running++;
43e9f7f2 5771 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5772
30400039
JD
5773 if (cfs_rq_is_idle(cfs_rq))
5774 idle_h_nr_running = 1;
5775
6d4d2246
VG
5776 /* end evaluation on encountering a throttled cfs_rq */
5777 if (cfs_rq_throttled(cfs_rq))
5778 goto enqueue_throttle;
5779
88ec22d3 5780 flags = ENQUEUE_WAKEUP;
bf0f6f24 5781 }
8f4d37ec 5782
2069dd75 5783 for_each_sched_entity(se) {
0f317143 5784 cfs_rq = cfs_rq_of(se);
2069dd75 5785
88c0616e 5786 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5787 se_update_runnable(se);
1ea6c46a 5788 update_cfs_group(se);
6d4d2246
VG
5789
5790 cfs_rq->h_nr_running++;
5791 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba 5792
30400039
JD
5793 if (cfs_rq_is_idle(cfs_rq))
5794 idle_h_nr_running = 1;
5795
5ab297ba
VG
5796 /* end evaluation on encountering a throttled cfs_rq */
5797 if (cfs_rq_throttled(cfs_rq))
5798 goto enqueue_throttle;
2069dd75
PZ
5799 }
5800
7d148be6
VG
5801 /* At this point se is NULL and we are at root level*/
5802 add_nr_running(rq, 1);
2802bf3c 5803
7d148be6
VG
5804 /*
5805 * Since new tasks are assigned an initial util_avg equal to
5806 * half of the spare capacity of their CPU, tiny tasks have the
5807 * ability to cross the overutilized threshold, which will
5808 * result in the load balancer ruining all the task placement
5809 * done by EAS. As a way to mitigate that effect, do not account
5810 * for the first enqueue operation of new tasks during the
5811 * overutilized flag detection.
5812 *
5813 * A better way of solving this problem would be to wait for
5814 * the PELT signals of tasks to converge before taking them
5815 * into account, but that is not straightforward to implement,
5816 * and the following generally works well enough in practice.
5817 */
8e1ac429 5818 if (!task_new)
7d148be6 5819 update_overutilized_status(rq);
cd126afe 5820
7d148be6 5821enqueue_throttle:
5d299eab
PZ
5822 assert_list_leaf_cfs_rq(rq);
5823
a4c2f00f 5824 hrtick_update(rq);
bf0f6f24
IM
5825}
5826
2f36825b
VP
5827static void set_next_buddy(struct sched_entity *se);
5828
bf0f6f24
IM
5829/*
5830 * The dequeue_task method is called before nr_running is
5831 * decreased. We remove the task from the rbtree and
5832 * update the fair scheduling stats:
5833 */
371fd7e7 5834static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5835{
5836 struct cfs_rq *cfs_rq;
62fb1851 5837 struct sched_entity *se = &p->se;
2f36825b 5838 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5839 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5840 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24 5841
8c1f560c
XY
5842 util_est_dequeue(&rq->cfs, p);
5843
bf0f6f24
IM
5844 for_each_sched_entity(se) {
5845 cfs_rq = cfs_rq_of(se);
371fd7e7 5846 dequeue_entity(cfs_rq, se, flags);
85dac906 5847
953bfcd1 5848 cfs_rq->h_nr_running--;
43e9f7f2 5849 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5850
30400039
JD
5851 if (cfs_rq_is_idle(cfs_rq))
5852 idle_h_nr_running = 1;
5853
6d4d2246
VG
5854 /* end evaluation on encountering a throttled cfs_rq */
5855 if (cfs_rq_throttled(cfs_rq))
5856 goto dequeue_throttle;
5857
bf0f6f24 5858 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5859 if (cfs_rq->load.weight) {
754bd598
KK
5860 /* Avoid re-evaluating load for this entity: */
5861 se = parent_entity(se);
2f36825b
VP
5862 /*
5863 * Bias pick_next to pick a task from this cfs_rq, as
5864 * p is sleeping when it is within its sched_slice.
5865 */
754bd598
KK
5866 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5867 set_next_buddy(se);
bf0f6f24 5868 break;
2f36825b 5869 }
371fd7e7 5870 flags |= DEQUEUE_SLEEP;
bf0f6f24 5871 }
8f4d37ec 5872
2069dd75 5873 for_each_sched_entity(se) {
0f317143 5874 cfs_rq = cfs_rq_of(se);
2069dd75 5875
88c0616e 5876 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5877 se_update_runnable(se);
1ea6c46a 5878 update_cfs_group(se);
6d4d2246
VG
5879
5880 cfs_rq->h_nr_running--;
5881 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba 5882
30400039
JD
5883 if (cfs_rq_is_idle(cfs_rq))
5884 idle_h_nr_running = 1;
5885
5ab297ba
VG
5886 /* end evaluation on encountering a throttled cfs_rq */
5887 if (cfs_rq_throttled(cfs_rq))
5888 goto dequeue_throttle;
5889
2069dd75
PZ
5890 }
5891
423d02e1
PW
5892 /* At this point se is NULL and we are at root level*/
5893 sub_nr_running(rq, 1);
cd126afe 5894
323af6de
VK
5895 /* balance early to pull high priority tasks */
5896 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5897 rq->next_balance = jiffies;
5898
423d02e1 5899dequeue_throttle:
8c1f560c 5900 util_est_update(&rq->cfs, p, task_sleep);
a4c2f00f 5901 hrtick_update(rq);
bf0f6f24
IM
5902}
5903
e7693a36 5904#ifdef CONFIG_SMP
10e2f1ac
PZ
5905
5906/* Working cpumask for: load_balance, load_balance_newidle. */
18c31c97
BH
5907static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5908static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
10e2f1ac 5909
9fd81dd5 5910#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5911
5912static struct {
5913 cpumask_var_t idle_cpus_mask;
5914 atomic_t nr_cpus;
f643ea22 5915 int has_blocked; /* Idle CPUS has blocked load */
7fd7a9e0 5916 int needs_update; /* Newly idle CPUs need their next_balance collated */
e022e0d3 5917 unsigned long next_balance; /* in jiffy units */
f643ea22 5918 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5919} nohz ____cacheline_aligned;
5920
9fd81dd5 5921#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5922
b0fb1eb4
VG
5923static unsigned long cpu_load(struct rq *rq)
5924{
5925 return cfs_rq_load_avg(&rq->cfs);
5926}
5927
3318544b
VG
5928/*
5929 * cpu_load_without - compute CPU load without any contributions from *p
5930 * @cpu: the CPU which load is requested
5931 * @p: the task which load should be discounted
5932 *
5933 * The load of a CPU is defined by the load of tasks currently enqueued on that
5934 * CPU as well as tasks which are currently sleeping after an execution on that
5935 * CPU.
5936 *
5937 * This method returns the load of the specified CPU by discounting the load of
5938 * the specified task, whenever the task is currently contributing to the CPU
5939 * load.
5940 */
5941static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5942{
5943 struct cfs_rq *cfs_rq;
5944 unsigned int load;
5945
5946 /* Task has no contribution or is new */
5947 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5948 return cpu_load(rq);
5949
5950 cfs_rq = &rq->cfs;
5951 load = READ_ONCE(cfs_rq->avg.load_avg);
5952
5953 /* Discount task's util from CPU's util */
5954 lsub_positive(&load, task_h_load(p));
5955
5956 return load;
5957}
5958
9f683953
VG
5959static unsigned long cpu_runnable(struct rq *rq)
5960{
5961 return cfs_rq_runnable_avg(&rq->cfs);
5962}
5963
070f5e86
VG
5964static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5965{
5966 struct cfs_rq *cfs_rq;
5967 unsigned int runnable;
5968
5969 /* Task has no contribution or is new */
5970 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5971 return cpu_runnable(rq);
5972
5973 cfs_rq = &rq->cfs;
5974 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5975
5976 /* Discount task's runnable from CPU's runnable */
5977 lsub_positive(&runnable, p->se.avg.runnable_avg);
5978
5979 return runnable;
5980}
5981
ced549fa 5982static unsigned long capacity_of(int cpu)
029632fb 5983{
ced549fa 5984 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5985}
5986
c58d25f3
PZ
5987static void record_wakee(struct task_struct *p)
5988{
5989 /*
5990 * Only decay a single time; tasks that have less then 1 wakeup per
5991 * jiffy will not have built up many flips.
5992 */
5993 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5994 current->wakee_flips >>= 1;
5995 current->wakee_flip_decay_ts = jiffies;
5996 }
5997
5998 if (current->last_wakee != p) {
5999 current->last_wakee = p;
6000 current->wakee_flips++;
6001 }
6002}
6003
63b0e9ed
MG
6004/*
6005 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 6006 *
63b0e9ed 6007 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
6008 * at a frequency roughly N times higher than one of its wakees.
6009 *
6010 * In order to determine whether we should let the load spread vs consolidating
6011 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6012 * partner, and a factor of lls_size higher frequency in the other.
6013 *
6014 * With both conditions met, we can be relatively sure that the relationship is
6015 * non-monogamous, with partner count exceeding socket size.
6016 *
6017 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6018 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6019 * socket size.
63b0e9ed 6020 */
62470419
MW
6021static int wake_wide(struct task_struct *p)
6022{
63b0e9ed
MG
6023 unsigned int master = current->wakee_flips;
6024 unsigned int slave = p->wakee_flips;
17c891ab 6025 int factor = __this_cpu_read(sd_llc_size);
62470419 6026
63b0e9ed
MG
6027 if (master < slave)
6028 swap(master, slave);
6029 if (slave < factor || master < slave * factor)
6030 return 0;
6031 return 1;
62470419
MW
6032}
6033
90001d67 6034/*
d153b153
PZ
6035 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6036 * soonest. For the purpose of speed we only consider the waking and previous
6037 * CPU.
90001d67 6038 *
7332dec0
MG
6039 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6040 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
6041 *
6042 * wake_affine_weight() - considers the weight to reflect the average
6043 * scheduling latency of the CPUs. This seems to work
6044 * for the overloaded case.
90001d67 6045 */
3b76c4a3 6046static int
89a55f56 6047wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 6048{
7332dec0
MG
6049 /*
6050 * If this_cpu is idle, it implies the wakeup is from interrupt
6051 * context. Only allow the move if cache is shared. Otherwise an
6052 * interrupt intensive workload could force all tasks onto one
6053 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
6054 *
6055 * If the prev_cpu is idle and cache affine then avoid a migration.
6056 * There is no guarantee that the cache hot data from an interrupt
6057 * is more important than cache hot data on the prev_cpu and from
6058 * a cpufreq perspective, it's better to have higher utilisation
6059 * on one CPU.
7332dec0 6060 */
943d355d
RJ
6061 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6062 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 6063
d153b153 6064 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 6065 return this_cpu;
90001d67 6066
d8fcb81f
JL
6067 if (available_idle_cpu(prev_cpu))
6068 return prev_cpu;
6069
3b76c4a3 6070 return nr_cpumask_bits;
90001d67
PZ
6071}
6072
3b76c4a3 6073static int
f2cdd9cc
PZ
6074wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6075 int this_cpu, int prev_cpu, int sync)
90001d67 6076{
90001d67
PZ
6077 s64 this_eff_load, prev_eff_load;
6078 unsigned long task_load;
6079
11f10e54 6080 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 6081
90001d67
PZ
6082 if (sync) {
6083 unsigned long current_load = task_h_load(current);
6084
f2cdd9cc 6085 if (current_load > this_eff_load)
3b76c4a3 6086 return this_cpu;
90001d67 6087
f2cdd9cc 6088 this_eff_load -= current_load;
90001d67
PZ
6089 }
6090
90001d67
PZ
6091 task_load = task_h_load(p);
6092
f2cdd9cc
PZ
6093 this_eff_load += task_load;
6094 if (sched_feat(WA_BIAS))
6095 this_eff_load *= 100;
6096 this_eff_load *= capacity_of(prev_cpu);
90001d67 6097
11f10e54 6098 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
6099 prev_eff_load -= task_load;
6100 if (sched_feat(WA_BIAS))
6101 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6102 prev_eff_load *= capacity_of(this_cpu);
90001d67 6103
082f764a
MG
6104 /*
6105 * If sync, adjust the weight of prev_eff_load such that if
6106 * prev_eff == this_eff that select_idle_sibling() will consider
6107 * stacking the wakee on top of the waker if no other CPU is
6108 * idle.
6109 */
6110 if (sync)
6111 prev_eff_load += 1;
6112
6113 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
6114}
6115
772bd008 6116static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 6117 int this_cpu, int prev_cpu, int sync)
098fb9db 6118{
3b76c4a3 6119 int target = nr_cpumask_bits;
098fb9db 6120
89a55f56 6121 if (sched_feat(WA_IDLE))
3b76c4a3 6122 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 6123
3b76c4a3
MG
6124 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6125 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 6126
ceeadb83 6127 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
3b76c4a3
MG
6128 if (target == nr_cpumask_bits)
6129 return prev_cpu;
098fb9db 6130
3b76c4a3 6131 schedstat_inc(sd->ttwu_move_affine);
ceeadb83 6132 schedstat_inc(p->stats.nr_wakeups_affine);
3b76c4a3 6133 return target;
098fb9db
IM
6134}
6135
aaee1203 6136static struct sched_group *
45da2773 6137find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
6138
6139/*
97fb7a0a 6140 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
6141 */
6142static int
18bd1b4b 6143find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
6144{
6145 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
6146 unsigned int min_exit_latency = UINT_MAX;
6147 u64 latest_idle_timestamp = 0;
6148 int least_loaded_cpu = this_cpu;
17346452 6149 int shallowest_idle_cpu = -1;
aaee1203
PZ
6150 int i;
6151
eaecf41f
MR
6152 /* Check if we have any choice: */
6153 if (group->group_weight == 1)
ae4df9d6 6154 return cpumask_first(sched_group_span(group));
eaecf41f 6155
aaee1203 6156 /* Traverse only the allowed CPUs */
3bd37062 6157 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
97886d9d
AL
6158 struct rq *rq = cpu_rq(i);
6159
6160 if (!sched_core_cookie_match(rq, p))
6161 continue;
6162
17346452
VK
6163 if (sched_idle_cpu(i))
6164 return i;
6165
943d355d 6166 if (available_idle_cpu(i)) {
83a0a96a
NP
6167 struct cpuidle_state *idle = idle_get_state(rq);
6168 if (idle && idle->exit_latency < min_exit_latency) {
6169 /*
6170 * We give priority to a CPU whose idle state
6171 * has the smallest exit latency irrespective
6172 * of any idle timestamp.
6173 */
6174 min_exit_latency = idle->exit_latency;
6175 latest_idle_timestamp = rq->idle_stamp;
6176 shallowest_idle_cpu = i;
6177 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6178 rq->idle_stamp > latest_idle_timestamp) {
6179 /*
6180 * If equal or no active idle state, then
6181 * the most recently idled CPU might have
6182 * a warmer cache.
6183 */
6184 latest_idle_timestamp = rq->idle_stamp;
6185 shallowest_idle_cpu = i;
6186 }
17346452 6187 } else if (shallowest_idle_cpu == -1) {
11f10e54 6188 load = cpu_load(cpu_rq(i));
18cec7e0 6189 if (load < min_load) {
83a0a96a
NP
6190 min_load = load;
6191 least_loaded_cpu = i;
6192 }
e7693a36
GH
6193 }
6194 }
6195
17346452 6196 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 6197}
e7693a36 6198
18bd1b4b
BJ
6199static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6200 int cpu, int prev_cpu, int sd_flag)
6201{
93f50f90 6202 int new_cpu = cpu;
18bd1b4b 6203
3bd37062 6204 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
6205 return prev_cpu;
6206
c976a862 6207 /*
57abff06 6208 * We need task's util for cpu_util_without, sync it up to
c469933e 6209 * prev_cpu's last_update_time.
c976a862
VK
6210 */
6211 if (!(sd_flag & SD_BALANCE_FORK))
6212 sync_entity_load_avg(&p->se);
6213
18bd1b4b
BJ
6214 while (sd) {
6215 struct sched_group *group;
6216 struct sched_domain *tmp;
6217 int weight;
6218
6219 if (!(sd->flags & sd_flag)) {
6220 sd = sd->child;
6221 continue;
6222 }
6223
45da2773 6224 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
6225 if (!group) {
6226 sd = sd->child;
6227 continue;
6228 }
6229
6230 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6231 if (new_cpu == cpu) {
97fb7a0a 6232 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6233 sd = sd->child;
6234 continue;
6235 }
6236
97fb7a0a 6237 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6238 cpu = new_cpu;
6239 weight = sd->span_weight;
6240 sd = NULL;
6241 for_each_domain(cpu, tmp) {
6242 if (weight <= tmp->span_weight)
6243 break;
6244 if (tmp->flags & sd_flag)
6245 sd = tmp;
6246 }
18bd1b4b
BJ
6247 }
6248
6249 return new_cpu;
6250}
6251
97886d9d 6252static inline int __select_idle_cpu(int cpu, struct task_struct *p)
9fe1f127 6253{
97886d9d
AL
6254 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6255 sched_cpu_cookie_match(cpu_rq(cpu), p))
9fe1f127
MG
6256 return cpu;
6257
6258 return -1;
6259}
6260
10e2f1ac 6261#ifdef CONFIG_SCHED_SMT
ba2591a5 6262DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6263EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6264
6265static inline void set_idle_cores(int cpu, int val)
6266{
6267 struct sched_domain_shared *sds;
6268
6269 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6270 if (sds)
6271 WRITE_ONCE(sds->has_idle_cores, val);
6272}
6273
6274static inline bool test_idle_cores(int cpu, bool def)
6275{
6276 struct sched_domain_shared *sds;
6277
c722f35b
RR
6278 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6279 if (sds)
6280 return READ_ONCE(sds->has_idle_cores);
10e2f1ac
PZ
6281
6282 return def;
6283}
6284
6285/*
6286 * Scans the local SMT mask to see if the entire core is idle, and records this
6287 * information in sd_llc_shared->has_idle_cores.
6288 *
6289 * Since SMT siblings share all cache levels, inspecting this limited remote
6290 * state should be fairly cheap.
6291 */
1b568f0a 6292void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6293{
6294 int core = cpu_of(rq);
6295 int cpu;
6296
6297 rcu_read_lock();
6298 if (test_idle_cores(core, true))
6299 goto unlock;
6300
6301 for_each_cpu(cpu, cpu_smt_mask(core)) {
6302 if (cpu == core)
6303 continue;
6304
943d355d 6305 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6306 goto unlock;
6307 }
6308
6309 set_idle_cores(core, 1);
6310unlock:
6311 rcu_read_unlock();
6312}
6313
6314/*
6315 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6316 * there are no idle cores left in the system; tracked through
6317 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6318 */
9fe1f127 6319static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
10e2f1ac 6320{
9fe1f127
MG
6321 bool idle = true;
6322 int cpu;
10e2f1ac 6323
1b568f0a 6324 if (!static_branch_likely(&sched_smt_present))
97886d9d 6325 return __select_idle_cpu(core, p);
10e2f1ac 6326
9fe1f127
MG
6327 for_each_cpu(cpu, cpu_smt_mask(core)) {
6328 if (!available_idle_cpu(cpu)) {
6329 idle = false;
6330 if (*idle_cpu == -1) {
6331 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6332 *idle_cpu = cpu;
6333 break;
6334 }
6335 continue;
bec2860a 6336 }
9fe1f127 6337 break;
10e2f1ac 6338 }
9fe1f127
MG
6339 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6340 *idle_cpu = cpu;
10e2f1ac
PZ
6341 }
6342
9fe1f127
MG
6343 if (idle)
6344 return core;
10e2f1ac 6345
9fe1f127 6346 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6347 return -1;
6348}
6349
c722f35b
RR
6350/*
6351 * Scan the local SMT mask for idle CPUs.
6352 */
6353static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6354{
6355 int cpu;
6356
6357 for_each_cpu(cpu, cpu_smt_mask(target)) {
6358 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6359 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6360 continue;
6361 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6362 return cpu;
6363 }
6364
6365 return -1;
6366}
6367
10e2f1ac
PZ
6368#else /* CONFIG_SCHED_SMT */
6369
9fe1f127 6370static inline void set_idle_cores(int cpu, int val)
10e2f1ac 6371{
9fe1f127
MG
6372}
6373
6374static inline bool test_idle_cores(int cpu, bool def)
6375{
6376 return def;
6377}
6378
6379static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6380{
97886d9d 6381 return __select_idle_cpu(core, p);
10e2f1ac
PZ
6382}
6383
c722f35b
RR
6384static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6385{
6386 return -1;
6387}
6388
10e2f1ac
PZ
6389#endif /* CONFIG_SCHED_SMT */
6390
6391/*
6392 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6393 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6394 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6395 */
c722f35b 6396static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
10e2f1ac 6397{
ec4fc801 6398 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9fe1f127 6399 int i, cpu, idle_cpu = -1, nr = INT_MAX;
70fb5ccf 6400 struct sched_domain_shared *sd_share;
94aafc3e 6401 struct rq *this_rq = this_rq();
9fe1f127 6402 int this = smp_processor_id();
9cfb38a7 6403 struct sched_domain *this_sd;
94aafc3e 6404 u64 time = 0;
10e2f1ac 6405
9cfb38a7
WL
6406 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6407 if (!this_sd)
6408 return -1;
6409
bae4ec13
MG
6410 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6411
c722f35b 6412 if (sched_feat(SIS_PROP) && !has_idle_core) {
e6e0dc2d 6413 u64 avg_cost, avg_idle, span_avg;
94aafc3e 6414 unsigned long now = jiffies;
1ad3aaf3 6415
e6e0dc2d 6416 /*
94aafc3e
PZ
6417 * If we're busy, the assumption that the last idle period
6418 * predicts the future is flawed; age away the remaining
6419 * predicted idle time.
e6e0dc2d 6420 */
94aafc3e
PZ
6421 if (unlikely(this_rq->wake_stamp < now)) {
6422 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6423 this_rq->wake_stamp++;
6424 this_rq->wake_avg_idle >>= 1;
6425 }
6426 }
6427
6428 avg_idle = this_rq->wake_avg_idle;
e6e0dc2d 6429 avg_cost = this_sd->avg_scan_cost + 1;
10e2f1ac 6430
e6e0dc2d 6431 span_avg = sd->span_weight * avg_idle;
1ad3aaf3
PZ
6432 if (span_avg > 4*avg_cost)
6433 nr = div_u64(span_avg, avg_cost);
6434 else
6435 nr = 4;
10e2f1ac 6436
bae4ec13
MG
6437 time = cpu_clock(this);
6438 }
60588bfa 6439
70fb5ccf
CY
6440 if (sched_feat(SIS_UTIL)) {
6441 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6442 if (sd_share) {
6443 /* because !--nr is the condition to stop scan */
6444 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6445 /* overloaded LLC is unlikely to have idle cpu/core */
6446 if (nr == 1)
6447 return -1;
6448 }
6449 }
6450
56498cfb 6451 for_each_cpu_wrap(cpu, cpus, target + 1) {
c722f35b 6452 if (has_idle_core) {
9fe1f127
MG
6453 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6454 if ((unsigned int)i < nr_cpumask_bits)
6455 return i;
6456
6457 } else {
6458 if (!--nr)
6459 return -1;
97886d9d 6460 idle_cpu = __select_idle_cpu(cpu, p);
9fe1f127
MG
6461 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6462 break;
6463 }
10e2f1ac
PZ
6464 }
6465
c722f35b 6466 if (has_idle_core)
02dbb724 6467 set_idle_cores(target, false);
9fe1f127 6468
c722f35b 6469 if (sched_feat(SIS_PROP) && !has_idle_core) {
bae4ec13 6470 time = cpu_clock(this) - time;
94aafc3e
PZ
6471
6472 /*
6473 * Account for the scan cost of wakeups against the average
6474 * idle time.
6475 */
6476 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6477
bae4ec13
MG
6478 update_avg(&this_sd->avg_scan_cost, time);
6479 }
10e2f1ac 6480
9fe1f127 6481 return idle_cpu;
10e2f1ac
PZ
6482}
6483
b7a33161
MR
6484/*
6485 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6486 * the task fits. If no CPU is big enough, but there are idle ones, try to
6487 * maximize capacity.
6488 */
6489static int
6490select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6491{
b4c9c9f1 6492 unsigned long task_util, best_cap = 0;
b7a33161
MR
6493 int cpu, best_cpu = -1;
6494 struct cpumask *cpus;
6495
ec4fc801 6496 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
b7a33161
MR
6497 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6498
b4c9c9f1
VG
6499 task_util = uclamp_task_util(p);
6500
b7a33161
MR
6501 for_each_cpu_wrap(cpu, cpus, target) {
6502 unsigned long cpu_cap = capacity_of(cpu);
6503
6504 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6505 continue;
b4c9c9f1 6506 if (fits_capacity(task_util, cpu_cap))
b7a33161
MR
6507 return cpu;
6508
6509 if (cpu_cap > best_cap) {
6510 best_cap = cpu_cap;
6511 best_cpu = cpu;
6512 }
6513 }
6514
6515 return best_cpu;
6516}
6517
ef8df979 6518static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
b4c9c9f1 6519{
740cf8a7 6520 if (sched_asym_cpucap_active())
b4c9c9f1
VG
6521 return fits_capacity(task_util, capacity_of(cpu));
6522
6523 return true;
6524}
6525
10e2f1ac
PZ
6526/*
6527 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6528 */
772bd008 6529static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6530{
c722f35b 6531 bool has_idle_core = false;
99bd5e2f 6532 struct sched_domain *sd;
b4c9c9f1 6533 unsigned long task_util;
32e839dd 6534 int i, recent_used_cpu;
a50bde51 6535
b7a33161 6536 /*
b4c9c9f1
VG
6537 * On asymmetric system, update task utilization because we will check
6538 * that the task fits with cpu's capacity.
b7a33161 6539 */
740cf8a7 6540 if (sched_asym_cpucap_active()) {
b4c9c9f1
VG
6541 sync_entity_load_avg(&p->se);
6542 task_util = uclamp_task_util(p);
b7a33161
MR
6543 }
6544
9099a147 6545 /*
ec4fc801 6546 * per-cpu select_rq_mask usage
9099a147
PZ
6547 */
6548 lockdep_assert_irqs_disabled();
6549
b4c9c9f1
VG
6550 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6551 asym_fits_capacity(task_util, target))
e0a79f52 6552 return target;
99bd5e2f
SS
6553
6554 /*
97fb7a0a 6555 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6556 */
3c29e651 6557 if (prev != target && cpus_share_cache(prev, target) &&
b4c9c9f1
VG
6558 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6559 asym_fits_capacity(task_util, prev))
772bd008 6560 return prev;
a50bde51 6561
52262ee5
MG
6562 /*
6563 * Allow a per-cpu kthread to stack with the wakee if the
6564 * kworker thread and the tasks previous CPUs are the same.
6565 * The assumption is that the wakee queued work for the
6566 * per-cpu kthread that is now complete and the wakeup is
6567 * essentially a sync wakeup. An obvious example of this
6568 * pattern is IO completions.
6569 */
6570 if (is_per_cpu_kthread(current) &&
8b4e74cc 6571 in_task() &&
52262ee5 6572 prev == smp_processor_id() &&
014ba44e
VD
6573 this_rq()->nr_running <= 1 &&
6574 asym_fits_capacity(task_util, prev)) {
52262ee5
MG
6575 return prev;
6576 }
6577
97fb7a0a 6578 /* Check a recently used CPU as a potential idle candidate: */
32e839dd 6579 recent_used_cpu = p->recent_used_cpu;
89aafd67 6580 p->recent_used_cpu = prev;
32e839dd
MG
6581 if (recent_used_cpu != prev &&
6582 recent_used_cpu != target &&
6583 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6584 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
b4c9c9f1
VG
6585 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6586 asym_fits_capacity(task_util, recent_used_cpu)) {
32e839dd
MG
6587 return recent_used_cpu;
6588 }
6589
b4c9c9f1
VG
6590 /*
6591 * For asymmetric CPU capacity systems, our domain of interest is
6592 * sd_asym_cpucapacity rather than sd_llc.
6593 */
740cf8a7 6594 if (sched_asym_cpucap_active()) {
b4c9c9f1
VG
6595 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6596 /*
6597 * On an asymmetric CPU capacity system where an exclusive
6598 * cpuset defines a symmetric island (i.e. one unique
6599 * capacity_orig value through the cpuset), the key will be set
6600 * but the CPUs within that cpuset will not have a domain with
6601 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6602 * capacity path.
6603 */
6604 if (sd) {
6605 i = select_idle_capacity(p, sd, target);
6606 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6607 }
6608 }
6609
518cd623 6610 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6611 if (!sd)
6612 return target;
772bd008 6613
c722f35b
RR
6614 if (sched_smt_active()) {
6615 has_idle_core = test_idle_cores(target, false);
6616
6617 if (!has_idle_core && cpus_share_cache(prev, target)) {
6618 i = select_idle_smt(p, sd, prev);
6619 if ((unsigned int)i < nr_cpumask_bits)
6620 return i;
6621 }
6622 }
6623
6624 i = select_idle_cpu(p, sd, has_idle_core, target);
10e2f1ac
PZ
6625 if ((unsigned)i < nr_cpumask_bits)
6626 return i;
6627
a50bde51
PZ
6628 return target;
6629}
231678b7 6630
104cb16d 6631/*
4e3c7d33
DE
6632 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6633 * (@dst_cpu = -1) or migrated to @dst_cpu.
390031e4
QP
6634 */
6635static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6636{
6637 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
4e3c7d33 6638 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
390031e4
QP
6639
6640 /*
4e3c7d33
DE
6641 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6642 * contribution. If @p migrates from another CPU to @cpu add its
6643 * contribution. In all the other cases @cpu is not impacted by the
6644 * migration so its util_avg is already correct.
390031e4
QP
6645 */
6646 if (task_cpu(p) == cpu && dst_cpu != cpu)
736cc6b3 6647 lsub_positive(&util, task_util(p));
390031e4
QP
6648 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6649 util += task_util(p);
6650
6651 if (sched_feat(UTIL_EST)) {
4e3c7d33
DE
6652 unsigned long util_est;
6653
390031e4
QP
6654 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6655
6656 /*
4e3c7d33
DE
6657 * During wake-up @p isn't enqueued yet and doesn't contribute
6658 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6659 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6660 * has been enqueued.
6661 *
6662 * During exec (@dst_cpu = -1) @p is enqueued and does
6663 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6664 * Remove it to "simulate" cpu_util without @p's contribution.
6665 *
6666 * Despite the task_on_rq_queued(@p) check there is still a
6667 * small window for a possible race when an exec
6668 * select_task_rq_fair() races with LB's detach_task().
6669 *
6670 * detach_task()
6671 * deactivate_task()
6672 * p->on_rq = TASK_ON_RQ_MIGRATING;
6673 * -------------------------------- A
6674 * dequeue_task() \
6675 * dequeue_task_fair() + Race Time
6676 * util_est_dequeue() /
6677 * -------------------------------- B
6678 *
6679 * The additional check "current == p" is required to further
6680 * reduce the race window.
390031e4
QP
6681 */
6682 if (dst_cpu == cpu)
6683 util_est += _task_util_est(p);
4e3c7d33
DE
6684 else if (unlikely(task_on_rq_queued(p) || current == p))
6685 lsub_positive(&util_est, _task_util_est(p));
390031e4
QP
6686
6687 util = max(util, util_est);
6688 }
6689
6690 return min(util, capacity_orig_of(cpu));
6691}
6692
4e3c7d33
DE
6693/*
6694 * cpu_util_without: compute cpu utilization without any contributions from *p
6695 * @cpu: the CPU which utilization is requested
6696 * @p: the task which utilization should be discounted
6697 *
6698 * The utilization of a CPU is defined by the utilization of tasks currently
6699 * enqueued on that CPU as well as tasks which are currently sleeping after an
6700 * execution on that CPU.
6701 *
6702 * This method returns the utilization of the specified CPU by discounting the
6703 * utilization of the specified task, whenever the task is currently
6704 * contributing to the CPU utilization.
6705 */
6706static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6707{
6708 /* Task has no contribution or is new */
6709 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6710 return cpu_util_cfs(cpu);
6711
6712 return cpu_util_next(cpu, p, -1);
6713}
6714
390031e4 6715/*
3e8c6c9a
VD
6716 * energy_env - Utilization landscape for energy estimation.
6717 * @task_busy_time: Utilization contribution by the task for which we test the
6718 * placement. Given by eenv_task_busy_time().
6719 * @pd_busy_time: Utilization of the whole perf domain without the task
6720 * contribution. Given by eenv_pd_busy_time().
6721 * @cpu_cap: Maximum CPU capacity for the perf domain.
6722 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
390031e4 6723 */
3e8c6c9a
VD
6724struct energy_env {
6725 unsigned long task_busy_time;
6726 unsigned long pd_busy_time;
6727 unsigned long cpu_cap;
6728 unsigned long pd_cap;
6729};
6730
6731/*
6732 * Compute the task busy time for compute_energy(). This time cannot be
6733 * injected directly into effective_cpu_util() because of the IRQ scaling.
6734 * The latter only makes sense with the most recent CPUs where the task has
6735 * run.
6736 */
6737static inline void eenv_task_busy_time(struct energy_env *eenv,
6738 struct task_struct *p, int prev_cpu)
390031e4 6739{
3e8c6c9a
VD
6740 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
6741 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
6742
6743 if (unlikely(irq >= max_cap))
6744 busy_time = max_cap;
6745 else
6746 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
6747
6748 eenv->task_busy_time = busy_time;
6749}
6750
6751/*
6752 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
6753 * utilization for each @pd_cpus, it however doesn't take into account
6754 * clamping since the ratio (utilization / cpu_capacity) is already enough to
6755 * scale the EM reported power consumption at the (eventually clamped)
6756 * cpu_capacity.
6757 *
6758 * The contribution of the task @p for which we want to estimate the
6759 * energy cost is removed (by cpu_util_next()) and must be calculated
6760 * separately (see eenv_task_busy_time). This ensures:
6761 *
6762 * - A stable PD utilization, no matter which CPU of that PD we want to place
6763 * the task on.
6764 *
6765 * - A fair comparison between CPUs as the task contribution (task_util())
6766 * will always be the same no matter which CPU utilization we rely on
6767 * (util_avg or util_est).
6768 *
6769 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
6770 * exceed @eenv->pd_cap.
6771 */
6772static inline void eenv_pd_busy_time(struct energy_env *eenv,
6773 struct cpumask *pd_cpus,
6774 struct task_struct *p)
6775{
6776 unsigned long busy_time = 0;
390031e4
QP
6777 int cpu;
6778
3e8c6c9a
VD
6779 for_each_cpu(cpu, pd_cpus) {
6780 unsigned long util = cpu_util_next(cpu, p, -1);
489f1645 6781
3e8c6c9a
VD
6782 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
6783 }
0372e1cf 6784
3e8c6c9a
VD
6785 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
6786}
af24bde8 6787
3e8c6c9a
VD
6788/*
6789 * Compute the maximum utilization for compute_energy() when the task @p
6790 * is placed on the cpu @dst_cpu.
6791 *
6792 * Returns the maximum utilization among @eenv->cpus. This utilization can't
6793 * exceed @eenv->cpu_cap.
6794 */
6795static inline unsigned long
6796eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
6797 struct task_struct *p, int dst_cpu)
6798{
6799 unsigned long max_util = 0;
6800 int cpu;
489f1645 6801
3e8c6c9a
VD
6802 for_each_cpu(cpu, pd_cpus) {
6803 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
6804 unsigned long util = cpu_util_next(cpu, p, dst_cpu);
6805 unsigned long cpu_util;
af24bde8 6806
390031e4 6807 /*
eb92692b
QP
6808 * Performance domain frequency: utilization clamping
6809 * must be considered since it affects the selection
6810 * of the performance domain frequency.
6811 * NOTE: in case RT tasks are running, by default the
6812 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6813 */
3e8c6c9a
VD
6814 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
6815 max_util = max(max_util, cpu_util);
390031e4
QP
6816 }
6817
3e8c6c9a
VD
6818 return min(max_util, eenv->cpu_cap);
6819}
6820
6821/*
6822 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
6823 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
6824 * contribution is ignored.
6825 */
6826static inline unsigned long
6827compute_energy(struct energy_env *eenv, struct perf_domain *pd,
6828 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
6829{
6830 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
6831 unsigned long busy_time = eenv->pd_busy_time;
6832
6833 if (dst_cpu >= 0)
6834 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
6835
6836 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
390031e4
QP
6837}
6838
732cd75b
QP
6839/*
6840 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6841 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6842 * spare capacity in each performance domain and uses it as a potential
6843 * candidate to execute the task. Then, it uses the Energy Model to figure
6844 * out which of the CPU candidates is the most energy-efficient.
6845 *
6846 * The rationale for this heuristic is as follows. In a performance domain,
6847 * all the most energy efficient CPU candidates (according to the Energy
6848 * Model) are those for which we'll request a low frequency. When there are
6849 * several CPUs for which the frequency request will be the same, we don't
6850 * have enough data to break the tie between them, because the Energy Model
6851 * only includes active power costs. With this model, if we assume that
6852 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6853 * the maximum spare capacity in a performance domain is guaranteed to be among
6854 * the best candidates of the performance domain.
6855 *
6856 * In practice, it could be preferable from an energy standpoint to pack
6857 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6858 * but that could also hurt our chances to go cluster idle, and we have no
6859 * ways to tell with the current Energy Model if this is actually a good
6860 * idea or not. So, find_energy_efficient_cpu() basically favors
6861 * cluster-packing, and spreading inside a cluster. That should at least be
6862 * a good thing for latency, and this is consistent with the idea that most
6863 * of the energy savings of EAS come from the asymmetry of the system, and
6864 * not so much from breaking the tie between identical CPUs. That's also the
6865 * reason why EAS is enabled in the topology code only for systems where
6866 * SD_ASYM_CPUCAPACITY is set.
6867 *
6868 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6869 * they don't have any useful utilization data yet and it's not possible to
6870 * forecast their impact on energy consumption. Consequently, they will be
6871 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6872 * to be energy-inefficient in some use-cases. The alternative would be to
6873 * bias new tasks towards specific types of CPUs first, or to try to infer
6874 * their util_avg from the parent task, but those heuristics could hurt
6875 * other use-cases too. So, until someone finds a better way to solve this,
6876 * let's keep things simple by re-using the existing slow path.
6877 */
732cd75b
QP
6878static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6879{
9b340131 6880 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
eb92692b 6881 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
3e8c6c9a 6882 struct root_domain *rd = this_rq()->rd;
b812fc97 6883 int cpu, best_energy_cpu, target = -1;
732cd75b 6884 struct sched_domain *sd;
eb92692b 6885 struct perf_domain *pd;
3e8c6c9a 6886 struct energy_env eenv;
732cd75b
QP
6887
6888 rcu_read_lock();
6889 pd = rcu_dereference(rd->pd);
6890 if (!pd || READ_ONCE(rd->overutilized))
619e090c 6891 goto unlock;
732cd75b
QP
6892
6893 /*
6894 * Energy-aware wake-up happens on the lowest sched_domain starting
6895 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6896 */
6897 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6898 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6899 sd = sd->parent;
6900 if (!sd)
619e090c
PG
6901 goto unlock;
6902
6903 target = prev_cpu;
732cd75b
QP
6904
6905 sync_entity_load_avg(&p->se);
6906 if (!task_util_est(p))
6907 goto unlock;
6908
3e8c6c9a
VD
6909 eenv_task_busy_time(&eenv, p, prev_cpu);
6910
732cd75b 6911 for (; pd; pd = pd->next) {
3e8c6c9a
VD
6912 unsigned long cpu_cap, cpu_thermal_cap, util;
6913 unsigned long cur_delta, max_spare_cap = 0;
8d4c97c1 6914 bool compute_prev_delta = false;
732cd75b 6915 int max_spare_cap_cpu = -1;
b812fc97 6916 unsigned long base_energy;
732cd75b 6917
9b340131
DE
6918 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
6919
3e8c6c9a
VD
6920 if (cpumask_empty(cpus))
6921 continue;
6922
6923 /* Account thermal pressure for the energy estimation */
6924 cpu = cpumask_first(cpus);
6925 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
6926 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
6927
6928 eenv.cpu_cap = cpu_thermal_cap;
6929 eenv.pd_cap = 0;
6930
6931 for_each_cpu(cpu, cpus) {
6932 eenv.pd_cap += cpu_thermal_cap;
6933
6934 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
6935 continue;
6936
3bd37062 6937 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6938 continue;
6939
732cd75b
QP
6940 util = cpu_util_next(cpu, p, cpu);
6941 cpu_cap = capacity_of(cpu);
1d42509e
VS
6942
6943 /*
6944 * Skip CPUs that cannot satisfy the capacity request.
6945 * IOW, placing the task there would make the CPU
6946 * overutilized. Take uclamp into account to see how
6947 * much capacity we can get out of the CPU; this is
a5418be9 6948 * aligned with sched_cpu_util().
1d42509e
VS
6949 */
6950 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6951 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6952 continue;
6953
3e8c6c9a
VD
6954 lsub_positive(&cpu_cap, util);
6955
732cd75b 6956 if (cpu == prev_cpu) {
8d4c97c1
PG
6957 /* Always use prev_cpu as a candidate. */
6958 compute_prev_delta = true;
3e8c6c9a 6959 } else if (cpu_cap > max_spare_cap) {
8d4c97c1
PG
6960 /*
6961 * Find the CPU with the maximum spare capacity
6962 * in the performance domain.
6963 */
3e8c6c9a 6964 max_spare_cap = cpu_cap;
732cd75b
QP
6965 max_spare_cap_cpu = cpu;
6966 }
6967 }
6968
8d4c97c1
PG
6969 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6970 continue;
6971
3e8c6c9a 6972 eenv_pd_busy_time(&eenv, cpus, p);
8d4c97c1 6973 /* Compute the 'base' energy of the pd, without @p */
b812fc97 6974 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8d4c97c1
PG
6975
6976 /* Evaluate the energy impact of using prev_cpu. */
6977 if (compute_prev_delta) {
3e8c6c9a
VD
6978 prev_delta = compute_energy(&eenv, pd, cpus, p,
6979 prev_cpu);
6980 /* CPU utilization has changed */
b812fc97 6981 if (prev_delta < base_energy)
619e090c 6982 goto unlock;
b812fc97 6983 prev_delta -= base_energy;
8d4c97c1
PG
6984 best_delta = min(best_delta, prev_delta);
6985 }
6986
6987 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6988 if (max_spare_cap_cpu >= 0) {
3e8c6c9a
VD
6989 cur_delta = compute_energy(&eenv, pd, cpus, p,
6990 max_spare_cap_cpu);
6991 /* CPU utilization has changed */
b812fc97 6992 if (cur_delta < base_energy)
619e090c 6993 goto unlock;
b812fc97 6994 cur_delta -= base_energy;
eb92692b
QP
6995 if (cur_delta < best_delta) {
6996 best_delta = cur_delta;
732cd75b
QP
6997 best_energy_cpu = max_spare_cap_cpu;
6998 }
6999 }
7000 }
732cd75b
QP
7001 rcu_read_unlock();
7002
b812fc97 7003 if (best_delta < prev_delta)
619e090c 7004 target = best_energy_cpu;
732cd75b 7005
619e090c 7006 return target;
732cd75b 7007
619e090c 7008unlock:
732cd75b
QP
7009 rcu_read_unlock();
7010
619e090c 7011 return target;
732cd75b
QP
7012}
7013
aaee1203 7014/*
de91b9cb 7015 * select_task_rq_fair: Select target runqueue for the waking task in domains
3aef1551 7016 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
de91b9cb 7017 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 7018 *
97fb7a0a
IM
7019 * Balances load by selecting the idlest CPU in the idlest group, or under
7020 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 7021 *
97fb7a0a 7022 * Returns the target CPU number.
aaee1203 7023 */
0017d735 7024static int
3aef1551 7025select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
aaee1203 7026{
3aef1551 7027 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
f1d88b44 7028 struct sched_domain *tmp, *sd = NULL;
c88d5910 7029 int cpu = smp_processor_id();
63b0e9ed 7030 int new_cpu = prev_cpu;
99bd5e2f 7031 int want_affine = 0;
3aef1551
VS
7032 /* SD_flags and WF_flags share the first nibble */
7033 int sd_flag = wake_flags & 0xF;
c88d5910 7034
9099a147
PZ
7035 /*
7036 * required for stable ->cpus_allowed
7037 */
7038 lockdep_assert_held(&p->pi_lock);
dc824eb8 7039 if (wake_flags & WF_TTWU) {
c58d25f3 7040 record_wakee(p);
732cd75b 7041
f8a696f2 7042 if (sched_energy_enabled()) {
732cd75b
QP
7043 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7044 if (new_cpu >= 0)
7045 return new_cpu;
7046 new_cpu = prev_cpu;
7047 }
7048
00061968 7049 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 7050 }
aaee1203 7051
dce840a0 7052 rcu_read_lock();
aaee1203 7053 for_each_domain(cpu, tmp) {
fe3bcfe1 7054 /*
97fb7a0a 7055 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 7056 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 7057 */
99bd5e2f
SS
7058 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7059 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
7060 if (cpu != prev_cpu)
7061 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7062
7063 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 7064 break;
f03542a7 7065 }
29cd8bae 7066
2917406c
BS
7067 /*
7068 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7069 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7070 * will usually go to the fast path.
7071 */
f03542a7 7072 if (tmp->flags & sd_flag)
29cd8bae 7073 sd = tmp;
63b0e9ed
MG
7074 else if (!want_affine)
7075 break;
29cd8bae
PZ
7076 }
7077
f1d88b44
VK
7078 if (unlikely(sd)) {
7079 /* Slow path */
18bd1b4b 7080 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
dc824eb8 7081 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
f1d88b44 7082 /* Fast path */
f1d88b44 7083 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
e7693a36 7084 }
dce840a0 7085 rcu_read_unlock();
e7693a36 7086
c88d5910 7087 return new_cpu;
e7693a36 7088}
0a74bef8
PT
7089
7090/*
97fb7a0a 7091 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 7092 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 7093 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 7094 */
3f9672ba 7095static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 7096{
e2f3e35f
VD
7097 struct sched_entity *se = &p->se;
7098
59efa0ba
PZ
7099 /*
7100 * As blocked tasks retain absolute vruntime the migration needs to
7101 * deal with this by subtracting the old and adding the new
7102 * min_vruntime -- the latter is done by enqueue_entity() when placing
7103 * the task on the new runqueue.
7104 */
2f064a59 7105 if (READ_ONCE(p->__state) == TASK_WAKING) {
59efa0ba 7106 struct cfs_rq *cfs_rq = cfs_rq_of(se);
59efa0ba 7107
d05b4305 7108 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
59efa0ba
PZ
7109 }
7110
e1f078f5 7111 if (!task_on_rq_migrating(p)) {
e2f3e35f
VD
7112 remove_entity_load_avg(se);
7113
144d8487 7114 /*
e2f3e35f
VD
7115 * Here, the task's PELT values have been updated according to
7116 * the current rq's clock. But if that clock hasn't been
7117 * updated in a while, a substantial idle time will be missed,
7118 * leading to an inflation after wake-up on the new rq.
7119 *
7120 * Estimate the missing time from the cfs_rq last_update_time
7121 * and update sched_avg to improve the PELT continuity after
7122 * migration.
144d8487 7123 */
e2f3e35f 7124 migrate_se_pelt_lag(se);
144d8487 7125 }
9d89c257
YD
7126
7127 /* Tell new CPU we are migrated */
e2f3e35f 7128 se->avg.last_update_time = 0;
3944a927
BS
7129
7130 /* We have migrated, no longer consider this task hot */
e2f3e35f 7131 se->exec_start = 0;
3f9672ba
SD
7132
7133 update_scan_period(p, new_cpu);
0a74bef8 7134}
12695578
YD
7135
7136static void task_dead_fair(struct task_struct *p)
7137{
7138 remove_entity_load_avg(&p->se);
7139}
6e2df058
PZ
7140
7141static int
7142balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7143{
7144 if (rq->nr_running)
7145 return 1;
7146
7147 return newidle_balance(rq, rf) != 0;
7148}
e7693a36
GH
7149#endif /* CONFIG_SMP */
7150
a555e9d8 7151static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
7152{
7153 unsigned long gran = sysctl_sched_wakeup_granularity;
7154
7155 /*
e52fb7c0
PZ
7156 * Since its curr running now, convert the gran from real-time
7157 * to virtual-time in his units.
13814d42
MG
7158 *
7159 * By using 'se' instead of 'curr' we penalize light tasks, so
7160 * they get preempted easier. That is, if 'se' < 'curr' then
7161 * the resulting gran will be larger, therefore penalizing the
7162 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7163 * be smaller, again penalizing the lighter task.
7164 *
7165 * This is especially important for buddies when the leftmost
7166 * task is higher priority than the buddy.
0bbd3336 7167 */
f4ad9bd2 7168 return calc_delta_fair(gran, se);
0bbd3336
PZ
7169}
7170
464b7527
PZ
7171/*
7172 * Should 'se' preempt 'curr'.
7173 *
7174 * |s1
7175 * |s2
7176 * |s3
7177 * g
7178 * |<--->|c
7179 *
7180 * w(c, s1) = -1
7181 * w(c, s2) = 0
7182 * w(c, s3) = 1
7183 *
7184 */
7185static int
7186wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7187{
7188 s64 gran, vdiff = curr->vruntime - se->vruntime;
7189
7190 if (vdiff <= 0)
7191 return -1;
7192
a555e9d8 7193 gran = wakeup_gran(se);
464b7527
PZ
7194 if (vdiff > gran)
7195 return 1;
7196
7197 return 0;
7198}
7199
02479099
PZ
7200static void set_last_buddy(struct sched_entity *se)
7201{
c5ae366e
DA
7202 for_each_sched_entity(se) {
7203 if (SCHED_WARN_ON(!se->on_rq))
7204 return;
30400039
JD
7205 if (se_is_idle(se))
7206 return;
69c80f3e 7207 cfs_rq_of(se)->last = se;
c5ae366e 7208 }
02479099
PZ
7209}
7210
7211static void set_next_buddy(struct sched_entity *se)
7212{
c5ae366e
DA
7213 for_each_sched_entity(se) {
7214 if (SCHED_WARN_ON(!se->on_rq))
7215 return;
30400039
JD
7216 if (se_is_idle(se))
7217 return;
69c80f3e 7218 cfs_rq_of(se)->next = se;
c5ae366e 7219 }
02479099
PZ
7220}
7221
ac53db59
RR
7222static void set_skip_buddy(struct sched_entity *se)
7223{
69c80f3e
VP
7224 for_each_sched_entity(se)
7225 cfs_rq_of(se)->skip = se;
ac53db59
RR
7226}
7227
bf0f6f24
IM
7228/*
7229 * Preempt the current task with a newly woken task if needed:
7230 */
5a9b86f6 7231static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
7232{
7233 struct task_struct *curr = rq->curr;
8651a86c 7234 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 7235 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 7236 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 7237 int next_buddy_marked = 0;
30400039 7238 int cse_is_idle, pse_is_idle;
bf0f6f24 7239
4ae7d5ce
IM
7240 if (unlikely(se == pse))
7241 return;
7242
5238cdd3 7243 /*
163122b7 7244 * This is possible from callers such as attach_tasks(), in which we
3b03706f 7245 * unconditionally check_preempt_curr() after an enqueue (which may have
5238cdd3
PT
7246 * lead to a throttle). This both saves work and prevents false
7247 * next-buddy nomination below.
7248 */
7249 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7250 return;
7251
2f36825b 7252 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 7253 set_next_buddy(pse);
2f36825b
VP
7254 next_buddy_marked = 1;
7255 }
57fdc26d 7256
aec0a514
BR
7257 /*
7258 * We can come here with TIF_NEED_RESCHED already set from new task
7259 * wake up path.
5238cdd3
PT
7260 *
7261 * Note: this also catches the edge-case of curr being in a throttled
7262 * group (e.g. via set_curr_task), since update_curr() (in the
7263 * enqueue of curr) will have resulted in resched being set. This
7264 * prevents us from potentially nominating it as a false LAST_BUDDY
7265 * below.
aec0a514
BR
7266 */
7267 if (test_tsk_need_resched(curr))
7268 return;
7269
a2f5c9ab 7270 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
7271 if (unlikely(task_has_idle_policy(curr)) &&
7272 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
7273 goto preempt;
7274
91c234b4 7275 /*
a2f5c9ab
DH
7276 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7277 * is driven by the tick):
91c234b4 7278 */
8ed92e51 7279 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 7280 return;
bf0f6f24 7281
464b7527 7282 find_matching_se(&se, &pse);
002f128b 7283 BUG_ON(!pse);
30400039
JD
7284
7285 cse_is_idle = se_is_idle(se);
7286 pse_is_idle = se_is_idle(pse);
7287
7288 /*
7289 * Preempt an idle group in favor of a non-idle group (and don't preempt
7290 * in the inverse case).
7291 */
7292 if (cse_is_idle && !pse_is_idle)
7293 goto preempt;
7294 if (cse_is_idle != pse_is_idle)
7295 return;
7296
7297 update_curr(cfs_rq_of(se));
2f36825b
VP
7298 if (wakeup_preempt_entity(se, pse) == 1) {
7299 /*
7300 * Bias pick_next to pick the sched entity that is
7301 * triggering this preemption.
7302 */
7303 if (!next_buddy_marked)
7304 set_next_buddy(pse);
3a7e73a2 7305 goto preempt;
2f36825b 7306 }
464b7527 7307
3a7e73a2 7308 return;
a65ac745 7309
3a7e73a2 7310preempt:
8875125e 7311 resched_curr(rq);
3a7e73a2
PZ
7312 /*
7313 * Only set the backward buddy when the current task is still
7314 * on the rq. This can happen when a wakeup gets interleaved
7315 * with schedule on the ->pre_schedule() or idle_balance()
7316 * point, either of which can * drop the rq lock.
7317 *
7318 * Also, during early boot the idle thread is in the fair class,
7319 * for obvious reasons its a bad idea to schedule back to it.
7320 */
7321 if (unlikely(!se->on_rq || curr == rq->idle))
7322 return;
7323
7324 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7325 set_last_buddy(se);
bf0f6f24
IM
7326}
7327
21f56ffe
PZ
7328#ifdef CONFIG_SMP
7329static struct task_struct *pick_task_fair(struct rq *rq)
7330{
7331 struct sched_entity *se;
7332 struct cfs_rq *cfs_rq;
7333
7334again:
7335 cfs_rq = &rq->cfs;
7336 if (!cfs_rq->nr_running)
7337 return NULL;
7338
7339 do {
7340 struct sched_entity *curr = cfs_rq->curr;
7341
7342 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7343 if (curr) {
7344 if (curr->on_rq)
7345 update_curr(cfs_rq);
7346 else
7347 curr = NULL;
7348
7349 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7350 goto again;
7351 }
7352
7353 se = pick_next_entity(cfs_rq, curr);
7354 cfs_rq = group_cfs_rq(se);
7355 } while (cfs_rq);
7356
7357 return task_of(se);
7358}
7359#endif
7360
5d7d6056 7361struct task_struct *
d8ac8971 7362pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
7363{
7364 struct cfs_rq *cfs_rq = &rq->cfs;
7365 struct sched_entity *se;
678d5718 7366 struct task_struct *p;
37e117c0 7367 int new_tasks;
678d5718 7368
6e83125c 7369again:
6e2df058 7370 if (!sched_fair_runnable(rq))
38033c37 7371 goto idle;
678d5718 7372
9674f5ca 7373#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7374 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7375 goto simple;
7376
7377 /*
7378 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7379 * likely that a next task is from the same cgroup as the current.
7380 *
7381 * Therefore attempt to avoid putting and setting the entire cgroup
7382 * hierarchy, only change the part that actually changes.
7383 */
7384
7385 do {
7386 struct sched_entity *curr = cfs_rq->curr;
7387
7388 /*
7389 * Since we got here without doing put_prev_entity() we also
7390 * have to consider cfs_rq->curr. If it is still a runnable
7391 * entity, update_curr() will update its vruntime, otherwise
7392 * forget we've ever seen it.
7393 */
54d27365
BS
7394 if (curr) {
7395 if (curr->on_rq)
7396 update_curr(cfs_rq);
7397 else
7398 curr = NULL;
678d5718 7399
54d27365
BS
7400 /*
7401 * This call to check_cfs_rq_runtime() will do the
7402 * throttle and dequeue its entity in the parent(s).
9674f5ca 7403 * Therefore the nr_running test will indeed
54d27365
BS
7404 * be correct.
7405 */
9674f5ca
VK
7406 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7407 cfs_rq = &rq->cfs;
7408
7409 if (!cfs_rq->nr_running)
7410 goto idle;
7411
54d27365 7412 goto simple;
9674f5ca 7413 }
54d27365 7414 }
678d5718
PZ
7415
7416 se = pick_next_entity(cfs_rq, curr);
7417 cfs_rq = group_cfs_rq(se);
7418 } while (cfs_rq);
7419
7420 p = task_of(se);
7421
7422 /*
7423 * Since we haven't yet done put_prev_entity and if the selected task
7424 * is a different task than we started out with, try and touch the
7425 * least amount of cfs_rqs.
7426 */
7427 if (prev != p) {
7428 struct sched_entity *pse = &prev->se;
7429
7430 while (!(cfs_rq = is_same_group(se, pse))) {
7431 int se_depth = se->depth;
7432 int pse_depth = pse->depth;
7433
7434 if (se_depth <= pse_depth) {
7435 put_prev_entity(cfs_rq_of(pse), pse);
7436 pse = parent_entity(pse);
7437 }
7438 if (se_depth >= pse_depth) {
7439 set_next_entity(cfs_rq_of(se), se);
7440 se = parent_entity(se);
7441 }
7442 }
7443
7444 put_prev_entity(cfs_rq, pse);
7445 set_next_entity(cfs_rq, se);
7446 }
7447
93824900 7448 goto done;
678d5718 7449simple:
678d5718 7450#endif
67692435
PZ
7451 if (prev)
7452 put_prev_task(rq, prev);
606dba2e 7453
bf0f6f24 7454 do {
678d5718 7455 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7456 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7457 cfs_rq = group_cfs_rq(se);
7458 } while (cfs_rq);
7459
8f4d37ec 7460 p = task_of(se);
678d5718 7461
13a453c2 7462done: __maybe_unused;
93824900
UR
7463#ifdef CONFIG_SMP
7464 /*
7465 * Move the next running task to the front of
7466 * the list, so our cfs_tasks list becomes MRU
7467 * one.
7468 */
7469 list_move(&p->se.group_node, &rq->cfs_tasks);
7470#endif
7471
e0ee463c 7472 if (hrtick_enabled_fair(rq))
b39e66ea 7473 hrtick_start_fair(rq, p);
8f4d37ec 7474
3b1baa64
MR
7475 update_misfit_status(p, rq);
7476
8f4d37ec 7477 return p;
38033c37
PZ
7478
7479idle:
67692435
PZ
7480 if (!rf)
7481 return NULL;
7482
5ba553ef 7483 new_tasks = newidle_balance(rq, rf);
46f69fa3 7484
37e117c0 7485 /*
5ba553ef 7486 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7487 * possible for any higher priority task to appear. In that case we
7488 * must re-start the pick_next_entity() loop.
7489 */
e4aa358b 7490 if (new_tasks < 0)
37e117c0
PZ
7491 return RETRY_TASK;
7492
e4aa358b 7493 if (new_tasks > 0)
38033c37 7494 goto again;
38033c37 7495
23127296
VG
7496 /*
7497 * rq is about to be idle, check if we need to update the
7498 * lost_idle_time of clock_pelt
7499 */
7500 update_idle_rq_clock_pelt(rq);
7501
38033c37 7502 return NULL;
bf0f6f24
IM
7503}
7504
98c2f700
PZ
7505static struct task_struct *__pick_next_task_fair(struct rq *rq)
7506{
7507 return pick_next_task_fair(rq, NULL, NULL);
7508}
7509
bf0f6f24
IM
7510/*
7511 * Account for a descheduled task:
7512 */
6e2df058 7513static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7514{
7515 struct sched_entity *se = &prev->se;
7516 struct cfs_rq *cfs_rq;
7517
7518 for_each_sched_entity(se) {
7519 cfs_rq = cfs_rq_of(se);
ab6cde26 7520 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7521 }
7522}
7523
ac53db59
RR
7524/*
7525 * sched_yield() is very simple
7526 *
7527 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7528 */
7529static void yield_task_fair(struct rq *rq)
7530{
7531 struct task_struct *curr = rq->curr;
7532 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7533 struct sched_entity *se = &curr->se;
7534
7535 /*
7536 * Are we the only task in the tree?
7537 */
7538 if (unlikely(rq->nr_running == 1))
7539 return;
7540
7541 clear_buddies(cfs_rq, se);
7542
7543 if (curr->policy != SCHED_BATCH) {
7544 update_rq_clock(rq);
7545 /*
7546 * Update run-time statistics of the 'current'.
7547 */
7548 update_curr(cfs_rq);
916671c0
MG
7549 /*
7550 * Tell update_rq_clock() that we've just updated,
7551 * so we don't do microscopic update in schedule()
7552 * and double the fastpath cost.
7553 */
adcc8da8 7554 rq_clock_skip_update(rq);
ac53db59
RR
7555 }
7556
7557 set_skip_buddy(se);
7558}
7559
0900acf2 7560static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7561{
7562 struct sched_entity *se = &p->se;
7563
5238cdd3
PT
7564 /* throttled hierarchies are not runnable */
7565 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7566 return false;
7567
7568 /* Tell the scheduler that we'd really like pse to run next. */
7569 set_next_buddy(se);
7570
d95f4122
MG
7571 yield_task_fair(rq);
7572
7573 return true;
7574}
7575
681f3e68 7576#ifdef CONFIG_SMP
bf0f6f24 7577/**************************************************
e9c84cb8
PZ
7578 * Fair scheduling class load-balancing methods.
7579 *
7580 * BASICS
7581 *
7582 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7583 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7584 * time to each task. This is expressed in the following equation:
7585 *
7586 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7587 *
97fb7a0a 7588 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7589 * W_i,0 is defined as:
7590 *
7591 * W_i,0 = \Sum_j w_i,j (2)
7592 *
97fb7a0a 7593 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7594 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7595 *
7596 * The weight average is an exponential decay average of the instantaneous
7597 * weight:
7598 *
7599 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7600 *
97fb7a0a 7601 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7602 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7603 * can also include other factors [XXX].
7604 *
7605 * To achieve this balance we define a measure of imbalance which follows
7606 * directly from (1):
7607 *
ced549fa 7608 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7609 *
7610 * We them move tasks around to minimize the imbalance. In the continuous
7611 * function space it is obvious this converges, in the discrete case we get
7612 * a few fun cases generally called infeasible weight scenarios.
7613 *
7614 * [XXX expand on:
7615 * - infeasible weights;
7616 * - local vs global optima in the discrete case. ]
7617 *
7618 *
7619 * SCHED DOMAINS
7620 *
7621 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7622 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7623 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7624 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7625 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7626 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7627 * the groups.
7628 *
7629 * This yields:
7630 *
7631 * log_2 n 1 n
7632 * \Sum { --- * --- * 2^i } = O(n) (5)
7633 * i = 0 2^i 2^i
7634 * `- size of each group
97fb7a0a 7635 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7636 * | `- freq
7637 * `- sum over all levels
7638 *
7639 * Coupled with a limit on how many tasks we can migrate every balance pass,
7640 * this makes (5) the runtime complexity of the balancer.
7641 *
7642 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7643 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7644 *
7645 * The adjacency matrix of the resulting graph is given by:
7646 *
97a7142f 7647 * log_2 n
e9c84cb8
PZ
7648 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7649 * k = 0
7650 *
7651 * And you'll find that:
7652 *
7653 * A^(log_2 n)_i,j != 0 for all i,j (7)
7654 *
97fb7a0a 7655 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7656 * The task movement gives a factor of O(m), giving a convergence complexity
7657 * of:
7658 *
7659 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7660 *
7661 *
7662 * WORK CONSERVING
7663 *
7664 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7665 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7666 * tree itself instead of relying on other CPUs to bring it work.
7667 *
7668 * This adds some complexity to both (5) and (8) but it reduces the total idle
7669 * time.
7670 *
7671 * [XXX more?]
7672 *
7673 *
7674 * CGROUPS
7675 *
7676 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7677 *
7678 * s_k,i
7679 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7680 * S_k
7681 *
7682 * Where
7683 *
7684 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7685 *
97fb7a0a 7686 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7687 *
7688 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7689 * property.
7690 *
7691 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7692 * rewrite all of this once again.]
97a7142f 7693 */
bf0f6f24 7694
ed387b78
HS
7695static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7696
0ec8aa00
PZ
7697enum fbq_type { regular, remote, all };
7698
0b0695f2 7699/*
a9723389
VG
7700 * 'group_type' describes the group of CPUs at the moment of load balancing.
7701 *
0b0695f2 7702 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7703 * first so the group_type can simply be compared when selecting the busiest
7704 * group. See update_sd_pick_busiest().
0b0695f2 7705 */
3b1baa64 7706enum group_type {
a9723389 7707 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7708 group_has_spare = 0,
a9723389
VG
7709 /*
7710 * The group is fully used and the tasks don't compete for more CPU
7711 * cycles. Nevertheless, some tasks might wait before running.
7712 */
0b0695f2 7713 group_fully_busy,
a9723389 7714 /*
c82a6962
VG
7715 * One task doesn't fit with CPU's capacity and must be migrated to a
7716 * more powerful CPU.
a9723389 7717 */
3b1baa64 7718 group_misfit_task,
a9723389
VG
7719 /*
7720 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7721 * and the task should be migrated to it instead of running on the
7722 * current CPU.
7723 */
0b0695f2 7724 group_asym_packing,
a9723389
VG
7725 /*
7726 * The tasks' affinity constraints previously prevented the scheduler
7727 * from balancing the load across the system.
7728 */
3b1baa64 7729 group_imbalanced,
a9723389
VG
7730 /*
7731 * The CPU is overloaded and can't provide expected CPU cycles to all
7732 * tasks.
7733 */
0b0695f2
VG
7734 group_overloaded
7735};
7736
7737enum migration_type {
7738 migrate_load = 0,
7739 migrate_util,
7740 migrate_task,
7741 migrate_misfit
3b1baa64
MR
7742};
7743
ddcdf6e7 7744#define LBF_ALL_PINNED 0x01
367456c7 7745#define LBF_NEED_BREAK 0x02
6263322c
PZ
7746#define LBF_DST_PINNED 0x04
7747#define LBF_SOME_PINNED 0x08
23fb06d9 7748#define LBF_ACTIVE_LB 0x10
ddcdf6e7
PZ
7749
7750struct lb_env {
7751 struct sched_domain *sd;
7752
ddcdf6e7 7753 struct rq *src_rq;
85c1e7da 7754 int src_cpu;
ddcdf6e7
PZ
7755
7756 int dst_cpu;
7757 struct rq *dst_rq;
7758
88b8dac0
SV
7759 struct cpumask *dst_grpmask;
7760 int new_dst_cpu;
ddcdf6e7 7761 enum cpu_idle_type idle;
bd939f45 7762 long imbalance;
b9403130
MW
7763 /* The set of CPUs under consideration for load-balancing */
7764 struct cpumask *cpus;
7765
ddcdf6e7 7766 unsigned int flags;
367456c7
PZ
7767
7768 unsigned int loop;
7769 unsigned int loop_break;
7770 unsigned int loop_max;
0ec8aa00
PZ
7771
7772 enum fbq_type fbq_type;
0b0695f2 7773 enum migration_type migration_type;
163122b7 7774 struct list_head tasks;
ddcdf6e7
PZ
7775};
7776
029632fb
PZ
7777/*
7778 * Is this task likely cache-hot:
7779 */
5d5e2b1b 7780static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7781{
7782 s64 delta;
7783
5cb9eaa3 7784 lockdep_assert_rq_held(env->src_rq);
e5673f28 7785
029632fb
PZ
7786 if (p->sched_class != &fair_sched_class)
7787 return 0;
7788
1da1843f 7789 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7790 return 0;
7791
ec73240b
JD
7792 /* SMT siblings share cache */
7793 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7794 return 0;
7795
029632fb
PZ
7796 /*
7797 * Buddy candidates are cache hot:
7798 */
5d5e2b1b 7799 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7800 (&p->se == cfs_rq_of(&p->se)->next ||
7801 &p->se == cfs_rq_of(&p->se)->last))
7802 return 1;
7803
7804 if (sysctl_sched_migration_cost == -1)
7805 return 1;
97886d9d
AL
7806
7807 /*
7808 * Don't migrate task if the task's cookie does not match
7809 * with the destination CPU's core cookie.
7810 */
7811 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7812 return 1;
7813
029632fb
PZ
7814 if (sysctl_sched_migration_cost == 0)
7815 return 0;
7816
5d5e2b1b 7817 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7818
7819 return delta < (s64)sysctl_sched_migration_cost;
7820}
7821
3a7053b3 7822#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7823/*
2a1ed24c
SD
7824 * Returns 1, if task migration degrades locality
7825 * Returns 0, if task migration improves locality i.e migration preferred.
7826 * Returns -1, if task migration is not affected by locality.
c1ceac62 7827 */
2a1ed24c 7828static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7829{
b1ad065e 7830 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7831 unsigned long src_weight, dst_weight;
7832 int src_nid, dst_nid, dist;
3a7053b3 7833
2a595721 7834 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7835 return -1;
7836
c3b9bc5b 7837 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7838 return -1;
7a0f3083
MG
7839
7840 src_nid = cpu_to_node(env->src_cpu);
7841 dst_nid = cpu_to_node(env->dst_cpu);
7842
83e1d2cd 7843 if (src_nid == dst_nid)
2a1ed24c 7844 return -1;
7a0f3083 7845
2a1ed24c
SD
7846 /* Migrating away from the preferred node is always bad. */
7847 if (src_nid == p->numa_preferred_nid) {
7848 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7849 return 1;
7850 else
7851 return -1;
7852 }
b1ad065e 7853
c1ceac62
RR
7854 /* Encourage migration to the preferred node. */
7855 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7856 return 0;
b1ad065e 7857
739294fb 7858 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7859 if (env->idle == CPU_IDLE)
739294fb
RR
7860 return -1;
7861
f35678b6 7862 dist = node_distance(src_nid, dst_nid);
c1ceac62 7863 if (numa_group) {
f35678b6
SD
7864 src_weight = group_weight(p, src_nid, dist);
7865 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7866 } else {
f35678b6
SD
7867 src_weight = task_weight(p, src_nid, dist);
7868 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7869 }
7870
f35678b6 7871 return dst_weight < src_weight;
7a0f3083
MG
7872}
7873
3a7053b3 7874#else
2a1ed24c 7875static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7876 struct lb_env *env)
7877{
2a1ed24c 7878 return -1;
7a0f3083 7879}
3a7053b3
MG
7880#endif
7881
1e3c88bd
PZ
7882/*
7883 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7884 */
7885static
8e45cb54 7886int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7887{
2a1ed24c 7888 int tsk_cache_hot;
e5673f28 7889
5cb9eaa3 7890 lockdep_assert_rq_held(env->src_rq);
e5673f28 7891
1e3c88bd
PZ
7892 /*
7893 * We do not migrate tasks that are:
d3198084 7894 * 1) throttled_lb_pair, or
3bd37062 7895 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7896 * 3) running (obviously), or
7897 * 4) are cache-hot on their current CPU.
1e3c88bd 7898 */
d3198084
JK
7899 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7900 return 0;
7901
9bcb959d 7902 /* Disregard pcpu kthreads; they are where they need to be. */
3a7956e2 7903 if (kthread_is_per_cpu(p))
9bcb959d
LC
7904 return 0;
7905
3bd37062 7906 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7907 int cpu;
88b8dac0 7908
ceeadb83 7909 schedstat_inc(p->stats.nr_failed_migrations_affine);
88b8dac0 7910
6263322c
PZ
7911 env->flags |= LBF_SOME_PINNED;
7912
88b8dac0 7913 /*
97fb7a0a 7914 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7915 * our sched_group. We may want to revisit it if we couldn't
7916 * meet load balance goals by pulling other tasks on src_cpu.
7917 *
23fb06d9
VS
7918 * Avoid computing new_dst_cpu
7919 * - for NEWLY_IDLE
7920 * - if we have already computed one in current iteration
7921 * - if it's an active balance
88b8dac0 7922 */
23fb06d9
VS
7923 if (env->idle == CPU_NEWLY_IDLE ||
7924 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
88b8dac0
SV
7925 return 0;
7926
97fb7a0a 7927 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7928 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7929 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7930 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7931 env->new_dst_cpu = cpu;
7932 break;
7933 }
88b8dac0 7934 }
e02e60c1 7935
1e3c88bd
PZ
7936 return 0;
7937 }
88b8dac0 7938
3b03706f 7939 /* Record that we found at least one task that could run on dst_cpu */
8e45cb54 7940 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7941
ddcdf6e7 7942 if (task_running(env->src_rq, p)) {
ceeadb83 7943 schedstat_inc(p->stats.nr_failed_migrations_running);
1e3c88bd
PZ
7944 return 0;
7945 }
7946
7947 /*
7948 * Aggressive migration if:
23fb06d9
VS
7949 * 1) active balance
7950 * 2) destination numa is preferred
7951 * 3) task is cache cold, or
7952 * 4) too many balance attempts have failed.
1e3c88bd 7953 */
23fb06d9
VS
7954 if (env->flags & LBF_ACTIVE_LB)
7955 return 1;
7956
2a1ed24c
SD
7957 tsk_cache_hot = migrate_degrades_locality(p, env);
7958 if (tsk_cache_hot == -1)
7959 tsk_cache_hot = task_hot(p, env);
3a7053b3 7960
2a1ed24c 7961 if (tsk_cache_hot <= 0 ||
7a96c231 7962 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7963 if (tsk_cache_hot == 1) {
ae92882e 7964 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
ceeadb83 7965 schedstat_inc(p->stats.nr_forced_migrations);
3a7053b3 7966 }
1e3c88bd
PZ
7967 return 1;
7968 }
7969
ceeadb83 7970 schedstat_inc(p->stats.nr_failed_migrations_hot);
4e2dcb73 7971 return 0;
1e3c88bd
PZ
7972}
7973
897c395f 7974/*
163122b7
KT
7975 * detach_task() -- detach the task for the migration specified in env
7976 */
7977static void detach_task(struct task_struct *p, struct lb_env *env)
7978{
5cb9eaa3 7979 lockdep_assert_rq_held(env->src_rq);
163122b7 7980
5704ac0a 7981 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7982 set_task_cpu(p, env->dst_cpu);
7983}
7984
897c395f 7985/*
e5673f28 7986 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7987 * part of active balancing operations within "domain".
897c395f 7988 *
e5673f28 7989 * Returns a task if successful and NULL otherwise.
897c395f 7990 */
e5673f28 7991static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7992{
93824900 7993 struct task_struct *p;
897c395f 7994
5cb9eaa3 7995 lockdep_assert_rq_held(env->src_rq);
e5673f28 7996
93824900
UR
7997 list_for_each_entry_reverse(p,
7998 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7999 if (!can_migrate_task(p, env))
8000 continue;
897c395f 8001
163122b7 8002 detach_task(p, env);
e5673f28 8003
367456c7 8004 /*
e5673f28 8005 * Right now, this is only the second place where
163122b7 8006 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 8007 * so we can safely collect stats here rather than
163122b7 8008 * inside detach_tasks().
367456c7 8009 */
ae92882e 8010 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 8011 return p;
897c395f 8012 }
e5673f28 8013 return NULL;
897c395f
PZ
8014}
8015
eb95308e
PZ
8016static const unsigned int sched_nr_migrate_break = 32;
8017
5d6523eb 8018/*
0b0695f2 8019 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 8020 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 8021 *
163122b7 8022 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 8023 */
163122b7 8024static int detach_tasks(struct lb_env *env)
1e3c88bd 8025{
5d6523eb 8026 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 8027 unsigned long util, load;
5d6523eb 8028 struct task_struct *p;
163122b7
KT
8029 int detached = 0;
8030
5cb9eaa3 8031 lockdep_assert_rq_held(env->src_rq);
1e3c88bd 8032
acb4decc
AL
8033 /*
8034 * Source run queue has been emptied by another CPU, clear
8035 * LBF_ALL_PINNED flag as we will not test any task.
8036 */
8037 if (env->src_rq->nr_running <= 1) {
8038 env->flags &= ~LBF_ALL_PINNED;
8039 return 0;
8040 }
8041
bd939f45 8042 if (env->imbalance <= 0)
5d6523eb 8043 return 0;
1e3c88bd 8044
5d6523eb 8045 while (!list_empty(tasks)) {
985d3a4c
YD
8046 /*
8047 * We don't want to steal all, otherwise we may be treated likewise,
8048 * which could at worst lead to a livelock crash.
8049 */
8050 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8051 break;
8052
93824900 8053 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 8054
367456c7
PZ
8055 env->loop++;
8056 /* We've more or less seen every task there is, call it quits */
5d6523eb 8057 if (env->loop > env->loop_max)
367456c7 8058 break;
5d6523eb
PZ
8059
8060 /* take a breather every nr_migrate tasks */
367456c7 8061 if (env->loop > env->loop_break) {
eb95308e 8062 env->loop_break += sched_nr_migrate_break;
8e45cb54 8063 env->flags |= LBF_NEED_BREAK;
ee00e66f 8064 break;
a195f004 8065 }
1e3c88bd 8066
d3198084 8067 if (!can_migrate_task(p, env))
367456c7
PZ
8068 goto next;
8069
0b0695f2
VG
8070 switch (env->migration_type) {
8071 case migrate_load:
01cfcde9
VG
8072 /*
8073 * Depending of the number of CPUs and tasks and the
8074 * cgroup hierarchy, task_h_load() can return a null
8075 * value. Make sure that env->imbalance decreases
8076 * otherwise detach_tasks() will stop only after
8077 * detaching up to loop_max tasks.
8078 */
8079 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 8080
0b0695f2
VG
8081 if (sched_feat(LB_MIN) &&
8082 load < 16 && !env->sd->nr_balance_failed)
8083 goto next;
367456c7 8084
6cf82d55
VG
8085 /*
8086 * Make sure that we don't migrate too much load.
8087 * Nevertheless, let relax the constraint if
8088 * scheduler fails to find a good waiting task to
8089 * migrate.
8090 */
39a2a6eb 8091 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
8092 goto next;
8093
8094 env->imbalance -= load;
8095 break;
8096
8097 case migrate_util:
8098 util = task_util_est(p);
8099
8100 if (util > env->imbalance)
8101 goto next;
8102
8103 env->imbalance -= util;
8104 break;
8105
8106 case migrate_task:
8107 env->imbalance--;
8108 break;
8109
8110 case migrate_misfit:
c63be7be
VG
8111 /* This is not a misfit task */
8112 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
8113 goto next;
8114
8115 env->imbalance = 0;
8116 break;
8117 }
1e3c88bd 8118
163122b7
KT
8119 detach_task(p, env);
8120 list_add(&p->se.group_node, &env->tasks);
8121
8122 detached++;
1e3c88bd 8123
c1a280b6 8124#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
8125 /*
8126 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 8127 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
8128 * the critical section.
8129 */
5d6523eb 8130 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 8131 break;
1e3c88bd
PZ
8132#endif
8133
ee00e66f
PZ
8134 /*
8135 * We only want to steal up to the prescribed amount of
0b0695f2 8136 * load/util/tasks.
ee00e66f 8137 */
bd939f45 8138 if (env->imbalance <= 0)
ee00e66f 8139 break;
367456c7
PZ
8140
8141 continue;
8142next:
93824900 8143 list_move(&p->se.group_node, tasks);
1e3c88bd 8144 }
5d6523eb 8145
1e3c88bd 8146 /*
163122b7
KT
8147 * Right now, this is one of only two places we collect this stat
8148 * so we can safely collect detach_one_task() stats here rather
8149 * than inside detach_one_task().
1e3c88bd 8150 */
ae92882e 8151 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 8152
163122b7
KT
8153 return detached;
8154}
8155
8156/*
8157 * attach_task() -- attach the task detached by detach_task() to its new rq.
8158 */
8159static void attach_task(struct rq *rq, struct task_struct *p)
8160{
5cb9eaa3 8161 lockdep_assert_rq_held(rq);
163122b7
KT
8162
8163 BUG_ON(task_rq(p) != rq);
5704ac0a 8164 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
8165 check_preempt_curr(rq, p, 0);
8166}
8167
8168/*
8169 * attach_one_task() -- attaches the task returned from detach_one_task() to
8170 * its new rq.
8171 */
8172static void attach_one_task(struct rq *rq, struct task_struct *p)
8173{
8a8c69c3
PZ
8174 struct rq_flags rf;
8175
8176 rq_lock(rq, &rf);
5704ac0a 8177 update_rq_clock(rq);
163122b7 8178 attach_task(rq, p);
8a8c69c3 8179 rq_unlock(rq, &rf);
163122b7
KT
8180}
8181
8182/*
8183 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8184 * new rq.
8185 */
8186static void attach_tasks(struct lb_env *env)
8187{
8188 struct list_head *tasks = &env->tasks;
8189 struct task_struct *p;
8a8c69c3 8190 struct rq_flags rf;
163122b7 8191
8a8c69c3 8192 rq_lock(env->dst_rq, &rf);
5704ac0a 8193 update_rq_clock(env->dst_rq);
163122b7
KT
8194
8195 while (!list_empty(tasks)) {
8196 p = list_first_entry(tasks, struct task_struct, se.group_node);
8197 list_del_init(&p->se.group_node);
1e3c88bd 8198
163122b7
KT
8199 attach_task(env->dst_rq, p);
8200 }
8201
8a8c69c3 8202 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
8203}
8204
b0c79224 8205#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
8206static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8207{
8208 if (cfs_rq->avg.load_avg)
8209 return true;
8210
8211 if (cfs_rq->avg.util_avg)
8212 return true;
8213
8214 return false;
8215}
8216
91c27493 8217static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
8218{
8219 if (READ_ONCE(rq->avg_rt.util_avg))
8220 return true;
8221
3727e0e1
VG
8222 if (READ_ONCE(rq->avg_dl.util_avg))
8223 return true;
8224
b4eccf5f
TG
8225 if (thermal_load_avg(rq))
8226 return true;
8227
11d4afd4 8228#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
8229 if (READ_ONCE(rq->avg_irq.util_avg))
8230 return true;
8231#endif
8232
371bf427
VG
8233 return false;
8234}
8235
39b6a429 8236static inline void update_blocked_load_tick(struct rq *rq)
b0c79224 8237{
39b6a429
VG
8238 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8239}
b0c79224 8240
39b6a429
VG
8241static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8242{
b0c79224
VS
8243 if (!has_blocked)
8244 rq->has_blocked_load = 0;
8245}
8246#else
8247static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8248static inline bool others_have_blocked(struct rq *rq) { return false; }
39b6a429 8249static inline void update_blocked_load_tick(struct rq *rq) {}
b0c79224
VS
8250static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8251#endif
8252
bef69dd8
VG
8253static bool __update_blocked_others(struct rq *rq, bool *done)
8254{
8255 const struct sched_class *curr_class;
8256 u64 now = rq_clock_pelt(rq);
b4eccf5f 8257 unsigned long thermal_pressure;
bef69dd8
VG
8258 bool decayed;
8259
8260 /*
8261 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8262 * DL and IRQ signals have been updated before updating CFS.
8263 */
8264 curr_class = rq->curr->sched_class;
8265
b4eccf5f
TG
8266 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8267
bef69dd8
VG
8268 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8269 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 8270 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
8271 update_irq_load_avg(rq, 0);
8272
8273 if (others_have_blocked(rq))
8274 *done = false;
8275
8276 return decayed;
8277}
8278
1936c53c
VG
8279#ifdef CONFIG_FAIR_GROUP_SCHED
8280
bef69dd8 8281static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8282{
039ae8bc 8283 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
8284 bool decayed = false;
8285 int cpu = cpu_of(rq);
b90f7c9d 8286
9763b67f
PZ
8287 /*
8288 * Iterates the task_group tree in a bottom up fashion, see
8289 * list_add_leaf_cfs_rq() for details.
8290 */
039ae8bc 8291 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
8292 struct sched_entity *se;
8293
bef69dd8 8294 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 8295 update_tg_load_avg(cfs_rq);
4e516076 8296
e2f3e35f
VD
8297 if (cfs_rq->nr_running == 0)
8298 update_idle_cfs_rq_clock_pelt(cfs_rq);
8299
bef69dd8
VG
8300 if (cfs_rq == &rq->cfs)
8301 decayed = true;
8302 }
8303
bc427898
VG
8304 /* Propagate pending load changes to the parent, if any: */
8305 se = cfs_rq->tg->se[cpu];
8306 if (se && !skip_blocked_update(se))
02da26ad 8307 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
a9e7f654 8308
039ae8bc
VG
8309 /*
8310 * There can be a lot of idle CPU cgroups. Don't let fully
8311 * decayed cfs_rqs linger on the list.
8312 */
8313 if (cfs_rq_is_decayed(cfs_rq))
8314 list_del_leaf_cfs_rq(cfs_rq);
8315
1936c53c
VG
8316 /* Don't need periodic decay once load/util_avg are null */
8317 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 8318 *done = false;
9d89c257 8319 }
12b04875 8320
bef69dd8 8321 return decayed;
9e3081ca
PZ
8322}
8323
9763b67f 8324/*
68520796 8325 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
8326 * This needs to be done in a top-down fashion because the load of a child
8327 * group is a fraction of its parents load.
8328 */
68520796 8329static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 8330{
68520796
VD
8331 struct rq *rq = rq_of(cfs_rq);
8332 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 8333 unsigned long now = jiffies;
68520796 8334 unsigned long load;
a35b6466 8335
68520796 8336 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
8337 return;
8338
0e9f0245 8339 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
8340 for_each_sched_entity(se) {
8341 cfs_rq = cfs_rq_of(se);
0e9f0245 8342 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
8343 if (cfs_rq->last_h_load_update == now)
8344 break;
8345 }
a35b6466 8346
68520796 8347 if (!se) {
7ea241af 8348 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
8349 cfs_rq->last_h_load_update = now;
8350 }
8351
0e9f0245 8352 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 8353 load = cfs_rq->h_load;
7ea241af
YD
8354 load = div64_ul(load * se->avg.load_avg,
8355 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
8356 cfs_rq = group_cfs_rq(se);
8357 cfs_rq->h_load = load;
8358 cfs_rq->last_h_load_update = now;
8359 }
9763b67f
PZ
8360}
8361
367456c7 8362static unsigned long task_h_load(struct task_struct *p)
230059de 8363{
367456c7 8364 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 8365
68520796 8366 update_cfs_rq_h_load(cfs_rq);
9d89c257 8367 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 8368 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
8369}
8370#else
bef69dd8 8371static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 8372{
6c1d47c0 8373 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 8374 bool decayed;
b90f7c9d 8375
bef69dd8
VG
8376 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8377 if (cfs_rq_has_blocked(cfs_rq))
8378 *done = false;
b90f7c9d 8379
bef69dd8 8380 return decayed;
9e3081ca
PZ
8381}
8382
367456c7 8383static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 8384{
9d89c257 8385 return p->se.avg.load_avg;
1e3c88bd 8386}
230059de 8387#endif
1e3c88bd 8388
bef69dd8
VG
8389static void update_blocked_averages(int cpu)
8390{
8391 bool decayed = false, done = true;
8392 struct rq *rq = cpu_rq(cpu);
8393 struct rq_flags rf;
8394
8395 rq_lock_irqsave(rq, &rf);
39b6a429 8396 update_blocked_load_tick(rq);
bef69dd8
VG
8397 update_rq_clock(rq);
8398
8399 decayed |= __update_blocked_others(rq, &done);
8400 decayed |= __update_blocked_fair(rq, &done);
8401
8402 update_blocked_load_status(rq, !done);
8403 if (decayed)
8404 cpufreq_update_util(rq, 0);
8405 rq_unlock_irqrestore(rq, &rf);
8406}
8407
1e3c88bd 8408/********** Helpers for find_busiest_group ************************/
caeb178c 8409
1e3c88bd
PZ
8410/*
8411 * sg_lb_stats - stats of a sched_group required for load_balancing
8412 */
8413struct sg_lb_stats {
8414 unsigned long avg_load; /*Avg load across the CPUs of the group */
8415 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8416 unsigned long group_capacity;
070f5e86
VG
8417 unsigned long group_util; /* Total utilization over the CPUs of the group */
8418 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8419 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8420 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8421 unsigned int idle_cpus;
8422 unsigned int group_weight;
caeb178c 8423 enum group_type group_type;
490ba971 8424 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8425 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8426#ifdef CONFIG_NUMA_BALANCING
8427 unsigned int nr_numa_running;
8428 unsigned int nr_preferred_running;
8429#endif
1e3c88bd
PZ
8430};
8431
56cf515b
JK
8432/*
8433 * sd_lb_stats - Structure to store the statistics of a sched_domain
8434 * during load balancing.
8435 */
8436struct sd_lb_stats {
8437 struct sched_group *busiest; /* Busiest group in this sd */
8438 struct sched_group *local; /* Local group in this sd */
8439 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8440 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8441 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8442 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8443
56cf515b 8444 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8445 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8446};
8447
147c5fc2
PZ
8448static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8449{
8450 /*
8451 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8452 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8453 * We must however set busiest_stat::group_type and
8454 * busiest_stat::idle_cpus to the worst busiest group because
8455 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8456 */
8457 *sds = (struct sd_lb_stats){
8458 .busiest = NULL,
8459 .local = NULL,
8460 .total_load = 0UL,
63b2ca30 8461 .total_capacity = 0UL,
147c5fc2 8462 .busiest_stat = {
0b0695f2
VG
8463 .idle_cpus = UINT_MAX,
8464 .group_type = group_has_spare,
147c5fc2
PZ
8465 },
8466 };
8467}
8468
1ca2034e 8469static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8470{
8471 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8472 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8473 unsigned long used, free;
523e979d 8474 unsigned long irq;
b654f7de 8475
2e62c474 8476 irq = cpu_util_irq(rq);
cadefd3d 8477
523e979d
VG
8478 if (unlikely(irq >= max))
8479 return 1;
aa483808 8480
467b7d01
TG
8481 /*
8482 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8483 * (running and not running) with weights 0 and 1024 respectively.
8484 * avg_thermal.load_avg tracks thermal pressure and the weighted
8485 * average uses the actual delta max capacity(load).
8486 */
523e979d
VG
8487 used = READ_ONCE(rq->avg_rt.util_avg);
8488 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8489 used += thermal_load_avg(rq);
1e3c88bd 8490
523e979d
VG
8491 if (unlikely(used >= max))
8492 return 1;
1e3c88bd 8493
523e979d 8494 free = max - used;
2e62c474
VG
8495
8496 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8497}
8498
ced549fa 8499static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8500{
1ca2034e 8501 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8502 struct sched_group *sdg = sd->groups;
8503
8ec59c0f 8504 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8505
ced549fa
NP
8506 if (!capacity)
8507 capacity = 1;
1e3c88bd 8508
ced549fa 8509 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8510 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8511
ced549fa 8512 sdg->sgc->capacity = capacity;
bf475ce0 8513 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8514 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8515}
8516
63b2ca30 8517void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8518{
8519 struct sched_domain *child = sd->child;
8520 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8521 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8522 unsigned long interval;
8523
8524 interval = msecs_to_jiffies(sd->balance_interval);
8525 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8526 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8527
8528 if (!child) {
ced549fa 8529 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8530 return;
8531 }
8532
dc7ff76e 8533 capacity = 0;
bf475ce0 8534 min_capacity = ULONG_MAX;
e3d6d0cb 8535 max_capacity = 0;
1e3c88bd 8536
74a5ce20
PZ
8537 if (child->flags & SD_OVERLAP) {
8538 /*
8539 * SD_OVERLAP domains cannot assume that child groups
8540 * span the current group.
8541 */
8542
ae4df9d6 8543 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8544 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8545
4c58f57f
PL
8546 capacity += cpu_cap;
8547 min_capacity = min(cpu_cap, min_capacity);
8548 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8549 }
74a5ce20
PZ
8550 } else {
8551 /*
8552 * !SD_OVERLAP domains can assume that child groups
8553 * span the current group.
97a7142f 8554 */
74a5ce20
PZ
8555
8556 group = child->groups;
8557 do {
bf475ce0
MR
8558 struct sched_group_capacity *sgc = group->sgc;
8559
8560 capacity += sgc->capacity;
8561 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8562 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8563 group = group->next;
8564 } while (group != child->groups);
8565 }
1e3c88bd 8566
63b2ca30 8567 sdg->sgc->capacity = capacity;
bf475ce0 8568 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8569 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8570}
8571
9d5efe05 8572/*
ea67821b
VG
8573 * Check whether the capacity of the rq has been noticeably reduced by side
8574 * activity. The imbalance_pct is used for the threshold.
8575 * Return true is the capacity is reduced
9d5efe05
SV
8576 */
8577static inline int
ea67821b 8578check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8579{
ea67821b
VG
8580 return ((rq->cpu_capacity * sd->imbalance_pct) <
8581 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8582}
8583
a0fe2cf0
VS
8584/*
8585 * Check whether a rq has a misfit task and if it looks like we can actually
8586 * help that task: we can migrate the task to a CPU of higher capacity, or
8587 * the task's current CPU is heavily pressured.
8588 */
8589static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8590{
8591 return rq->misfit_task_load &&
8592 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8593 check_cpu_capacity(rq, sd));
8594}
8595
30ce5dab
PZ
8596/*
8597 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8598 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8599 *
97fb7a0a
IM
8600 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8601 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8602 * Something like:
8603 *
2b4d5b25
IM
8604 * { 0 1 2 3 } { 4 5 6 7 }
8605 * * * * *
30ce5dab
PZ
8606 *
8607 * If we were to balance group-wise we'd place two tasks in the first group and
8608 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8609 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8610 *
8611 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8612 * by noticing the lower domain failed to reach balance and had difficulty
8613 * moving tasks due to affinity constraints.
30ce5dab
PZ
8614 *
8615 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8616 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8617 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8618 * to create an effective group imbalance.
8619 *
8620 * This is a somewhat tricky proposition since the next run might not find the
8621 * group imbalance and decide the groups need to be balanced again. A most
8622 * subtle and fragile situation.
8623 */
8624
6263322c 8625static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8626{
63b2ca30 8627 return group->sgc->imbalance;
30ce5dab
PZ
8628}
8629
b37d9316 8630/*
ea67821b
VG
8631 * group_has_capacity returns true if the group has spare capacity that could
8632 * be used by some tasks.
fb95a5a0 8633 * We consider that a group has spare capacity if the number of task is
9e91d61d
DE
8634 * smaller than the number of CPUs or if the utilization is lower than the
8635 * available capacity for CFS tasks.
ea67821b
VG
8636 * For the latter, we use a threshold to stabilize the state, to take into
8637 * account the variance of the tasks' load and to return true if the available
8638 * capacity in meaningful for the load balancer.
8639 * As an example, an available capacity of 1% can appear but it doesn't make
8640 * any benefit for the load balance.
b37d9316 8641 */
ea67821b 8642static inline bool
57abff06 8643group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8644{
5e23e474 8645 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8646 return true;
c61037e9 8647
070f5e86
VG
8648 if ((sgs->group_capacity * imbalance_pct) <
8649 (sgs->group_runnable * 100))
8650 return false;
8651
ea67821b 8652 if ((sgs->group_capacity * 100) >
57abff06 8653 (sgs->group_util * imbalance_pct))
ea67821b 8654 return true;
b37d9316 8655
ea67821b
VG
8656 return false;
8657}
8658
8659/*
8660 * group_is_overloaded returns true if the group has more tasks than it can
8661 * handle.
8662 * group_is_overloaded is not equals to !group_has_capacity because a group
8663 * with the exact right number of tasks, has no more spare capacity but is not
8664 * overloaded so both group_has_capacity and group_is_overloaded return
8665 * false.
8666 */
8667static inline bool
57abff06 8668group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8669{
5e23e474 8670 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8671 return false;
b37d9316 8672
ea67821b 8673 if ((sgs->group_capacity * 100) <
57abff06 8674 (sgs->group_util * imbalance_pct))
ea67821b 8675 return true;
b37d9316 8676
070f5e86
VG
8677 if ((sgs->group_capacity * imbalance_pct) <
8678 (sgs->group_runnable * 100))
8679 return true;
8680
ea67821b 8681 return false;
b37d9316
PZ
8682}
8683
79a89f92 8684static inline enum
57abff06 8685group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8686 struct sched_group *group,
79a89f92 8687 struct sg_lb_stats *sgs)
caeb178c 8688{
57abff06 8689 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8690 return group_overloaded;
8691
8692 if (sg_imbalanced(group))
8693 return group_imbalanced;
8694
0b0695f2
VG
8695 if (sgs->group_asym_packing)
8696 return group_asym_packing;
8697
3b1baa64
MR
8698 if (sgs->group_misfit_task_load)
8699 return group_misfit_task;
8700
57abff06 8701 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8702 return group_fully_busy;
8703
8704 return group_has_spare;
caeb178c
RR
8705}
8706
4006a72b
RN
8707/**
8708 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8709 * @dst_cpu: Destination CPU of the load balancing
8710 * @sds: Load-balancing data with statistics of the local group
8711 * @sgs: Load-balancing statistics of the candidate busiest group
8712 * @sg: The candidate busiest group
8713 *
8714 * Check the state of the SMT siblings of both @sds::local and @sg and decide
8715 * if @dst_cpu can pull tasks.
8716 *
8717 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8718 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8719 * only if @dst_cpu has higher priority.
8720 *
8721 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8722 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8723 * Bigger imbalances in the number of busy CPUs will be dealt with in
8724 * update_sd_pick_busiest().
8725 *
8726 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8727 * of @dst_cpu are idle and @sg has lower priority.
a315da5e
RD
8728 *
8729 * Return: true if @dst_cpu can pull tasks, false otherwise.
4006a72b
RN
8730 */
8731static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8732 struct sg_lb_stats *sgs,
8733 struct sched_group *sg)
8734{
8735#ifdef CONFIG_SCHED_SMT
8736 bool local_is_smt, sg_is_smt;
8737 int sg_busy_cpus;
8738
8739 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8740 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8741
8742 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8743
8744 if (!local_is_smt) {
8745 /*
8746 * If we are here, @dst_cpu is idle and does not have SMT
8747 * siblings. Pull tasks if candidate group has two or more
8748 * busy CPUs.
8749 */
8750 if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8751 return true;
8752
8753 /*
8754 * @dst_cpu does not have SMT siblings. @sg may have SMT
8755 * siblings and only one is busy. In such case, @dst_cpu
8756 * can help if it has higher priority and is idle (i.e.,
8757 * it has no running tasks).
8758 */
8759 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8760 }
8761
8762 /* @dst_cpu has SMT siblings. */
8763
8764 if (sg_is_smt) {
8765 int local_busy_cpus = sds->local->group_weight -
8766 sds->local_stat.idle_cpus;
8767 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8768
8769 if (busy_cpus_delta == 1)
8770 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8771
8772 return false;
8773 }
8774
8775 /*
8776 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8777 * up with more than one busy SMT sibling and only pull tasks if there
8778 * are not busy CPUs (i.e., no CPU has running tasks).
8779 */
8780 if (!sds->local_stat.sum_nr_running)
8781 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8782
8783 return false;
8784#else
8785 /* Always return false so that callers deal with non-SMT cases. */
8786 return false;
8787#endif
8788}
8789
aafc917a
RN
8790static inline bool
8791sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
8792 struct sched_group *group)
8793{
4006a72b
RN
8794 /* Only do SMT checks if either local or candidate have SMT siblings */
8795 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8796 (group->flags & SD_SHARE_CPUCAPACITY))
8797 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8798
aafc917a
RN
8799 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8800}
8801
c82a6962
VG
8802static inline bool
8803sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8804{
8805 /*
8806 * When there is more than 1 task, the group_overloaded case already
8807 * takes care of cpu with reduced capacity
8808 */
8809 if (rq->cfs.h_nr_running != 1)
8810 return false;
8811
8812 return check_cpu_capacity(rq, sd);
8813}
8814
1e3c88bd
PZ
8815/**
8816 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8817 * @env: The load balancing environment.
a315da5e 8818 * @sds: Load-balancing data with statistics of the local group.
1e3c88bd 8819 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8820 * @sgs: variable to hold the statistics for this group.
630246a0 8821 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8822 */
bd939f45 8823static inline void update_sg_lb_stats(struct lb_env *env,
c0d14b57 8824 struct sd_lb_stats *sds,
630246a0
QP
8825 struct sched_group *group,
8826 struct sg_lb_stats *sgs,
8827 int *sg_status)
1e3c88bd 8828{
0b0695f2 8829 int i, nr_running, local_group;
1e3c88bd 8830
b72ff13c
PZ
8831 memset(sgs, 0, sizeof(*sgs));
8832
c0d14b57 8833 local_group = group == sds->local;
0b0695f2 8834
ae4df9d6 8835 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd 8836 struct rq *rq = cpu_rq(i);
c82a6962 8837 unsigned long load = cpu_load(rq);
1e3c88bd 8838
c82a6962 8839 sgs->group_load += load;
82762d2a 8840 sgs->group_util += cpu_util_cfs(i);
070f5e86 8841 sgs->group_runnable += cpu_runnable(rq);
a3498347 8842 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8843
a426f99c 8844 nr_running = rq->nr_running;
5e23e474
VG
8845 sgs->sum_nr_running += nr_running;
8846
a426f99c 8847 if (nr_running > 1)
630246a0 8848 *sg_status |= SG_OVERLOAD;
4486edd1 8849
2802bf3c
MR
8850 if (cpu_overutilized(i))
8851 *sg_status |= SG_OVERUTILIZED;
4486edd1 8852
0ec8aa00
PZ
8853#ifdef CONFIG_NUMA_BALANCING
8854 sgs->nr_numa_running += rq->nr_numa_running;
8855 sgs->nr_preferred_running += rq->nr_preferred_running;
8856#endif
a426f99c
WL
8857 /*
8858 * No need to call idle_cpu() if nr_running is not 0
8859 */
0b0695f2 8860 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8861 sgs->idle_cpus++;
0b0695f2
VG
8862 /* Idle cpu can't have misfit task */
8863 continue;
8864 }
8865
8866 if (local_group)
8867 continue;
3b1baa64 8868
c82a6962
VG
8869 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
8870 /* Check for a misfit task on the cpu */
8871 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
8872 sgs->group_misfit_task_load = rq->misfit_task_load;
8873 *sg_status |= SG_OVERLOAD;
8874 }
8875 } else if ((env->idle != CPU_NOT_IDLE) &&
8876 sched_reduced_capacity(rq, env->sd)) {
8877 /* Check for a task running on a CPU with reduced capacity */
8878 if (sgs->group_misfit_task_load < load)
8879 sgs->group_misfit_task_load = load;
757ffdd7 8880 }
1e3c88bd
PZ
8881 }
8882
aafc917a
RN
8883 sgs->group_capacity = group->sgc->capacity;
8884
8885 sgs->group_weight = group->group_weight;
8886
0b0695f2 8887 /* Check if dst CPU is idle and preferred to this group */
60256435 8888 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
aafc917a
RN
8889 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8890 sched_asym(env, sds, sgs, group)) {
0b0695f2
VG
8891 sgs->group_asym_packing = 1;
8892 }
8893
57abff06 8894 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8895
8896 /* Computing avg_load makes sense only when group is overloaded */
8897 if (sgs->group_type == group_overloaded)
8898 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8899 sgs->group_capacity;
1e3c88bd
PZ
8900}
8901
532cb4c4
MN
8902/**
8903 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8904 * @env: The load balancing environment.
532cb4c4
MN
8905 * @sds: sched_domain statistics
8906 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8907 * @sgs: sched_group statistics
532cb4c4
MN
8908 *
8909 * Determine if @sg is a busier group than the previously selected
8910 * busiest group.
e69f6186
YB
8911 *
8912 * Return: %true if @sg is a busier group than the previously selected
8913 * busiest group. %false otherwise.
532cb4c4 8914 */
bd939f45 8915static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8916 struct sd_lb_stats *sds,
8917 struct sched_group *sg,
bd939f45 8918 struct sg_lb_stats *sgs)
532cb4c4 8919{
caeb178c 8920 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8921
0b0695f2
VG
8922 /* Make sure that there is at least one task to pull */
8923 if (!sgs->sum_h_nr_running)
8924 return false;
8925
cad68e55
MR
8926 /*
8927 * Don't try to pull misfit tasks we can't help.
8928 * We can use max_capacity here as reduction in capacity on some
8929 * CPUs in the group should either be possible to resolve
8930 * internally or be covered by avg_load imbalance (eventually).
8931 */
c82a6962
VG
8932 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8933 (sgs->group_type == group_misfit_task) &&
4aed8aa4 8934 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
0b0695f2 8935 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8936 return false;
8937
caeb178c 8938 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8939 return true;
8940
caeb178c
RR
8941 if (sgs->group_type < busiest->group_type)
8942 return false;
8943
9e0994c0 8944 /*
0b0695f2
VG
8945 * The candidate and the current busiest group are the same type of
8946 * group. Let check which one is the busiest according to the type.
9e0994c0 8947 */
9e0994c0 8948
0b0695f2
VG
8949 switch (sgs->group_type) {
8950 case group_overloaded:
8951 /* Select the overloaded group with highest avg_load. */
8952 if (sgs->avg_load <= busiest->avg_load)
8953 return false;
8954 break;
8955
8956 case group_imbalanced:
8957 /*
8958 * Select the 1st imbalanced group as we don't have any way to
8959 * choose one more than another.
8960 */
9e0994c0
MR
8961 return false;
8962
0b0695f2
VG
8963 case group_asym_packing:
8964 /* Prefer to move from lowest priority CPU's work */
8965 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8966 return false;
8967 break;
532cb4c4 8968
0b0695f2
VG
8969 case group_misfit_task:
8970 /*
8971 * If we have more than one misfit sg go with the biggest
8972 * misfit.
8973 */
8974 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8975 return false;
8976 break;
532cb4c4 8977
0b0695f2
VG
8978 case group_fully_busy:
8979 /*
8980 * Select the fully busy group with highest avg_load. In
8981 * theory, there is no need to pull task from such kind of
8982 * group because tasks have all compute capacity that they need
8983 * but we can still improve the overall throughput by reducing
8984 * contention when accessing shared HW resources.
8985 *
8986 * XXX for now avg_load is not computed and always 0 so we
8987 * select the 1st one.
8988 */
8989 if (sgs->avg_load <= busiest->avg_load)
8990 return false;
8991 break;
8992
8993 case group_has_spare:
8994 /*
5f68eb19
VG
8995 * Select not overloaded group with lowest number of idle cpus
8996 * and highest number of running tasks. We could also compare
8997 * the spare capacity which is more stable but it can end up
8998 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8999 * CPUs which means less opportunity to pull tasks.
9000 */
5f68eb19 9001 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 9002 return false;
5f68eb19
VG
9003 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9004 (sgs->sum_nr_running <= busiest->sum_nr_running))
9005 return false;
9006
0b0695f2 9007 break;
532cb4c4
MN
9008 }
9009
0b0695f2
VG
9010 /*
9011 * Candidate sg has no more than one task per CPU and has higher
9012 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9013 * throughput. Maximize throughput, power/energy consequences are not
9014 * considered.
9015 */
9016 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9017 (sgs->group_type <= group_fully_busy) &&
4aed8aa4 9018 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
0b0695f2
VG
9019 return false;
9020
9021 return true;
532cb4c4
MN
9022}
9023
0ec8aa00
PZ
9024#ifdef CONFIG_NUMA_BALANCING
9025static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9026{
a3498347 9027 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 9028 return regular;
a3498347 9029 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
9030 return remote;
9031 return all;
9032}
9033
9034static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9035{
9036 if (rq->nr_running > rq->nr_numa_running)
9037 return regular;
9038 if (rq->nr_running > rq->nr_preferred_running)
9039 return remote;
9040 return all;
9041}
9042#else
9043static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9044{
9045 return all;
9046}
9047
9048static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9049{
9050 return regular;
9051}
9052#endif /* CONFIG_NUMA_BALANCING */
9053
57abff06
VG
9054
9055struct sg_lb_stats;
9056
3318544b
VG
9057/*
9058 * task_running_on_cpu - return 1 if @p is running on @cpu.
9059 */
9060
9061static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9062{
9063 /* Task has no contribution or is new */
9064 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9065 return 0;
9066
9067 if (task_on_rq_queued(p))
9068 return 1;
9069
9070 return 0;
9071}
9072
9073/**
9074 * idle_cpu_without - would a given CPU be idle without p ?
9075 * @cpu: the processor on which idleness is tested.
9076 * @p: task which should be ignored.
9077 *
9078 * Return: 1 if the CPU would be idle. 0 otherwise.
9079 */
9080static int idle_cpu_without(int cpu, struct task_struct *p)
9081{
9082 struct rq *rq = cpu_rq(cpu);
9083
9084 if (rq->curr != rq->idle && rq->curr != p)
9085 return 0;
9086
9087 /*
9088 * rq->nr_running can't be used but an updated version without the
9089 * impact of p on cpu must be used instead. The updated nr_running
9090 * be computed and tested before calling idle_cpu_without().
9091 */
9092
9093#ifdef CONFIG_SMP
126c2092 9094 if (rq->ttwu_pending)
3318544b
VG
9095 return 0;
9096#endif
9097
9098 return 1;
9099}
9100
57abff06
VG
9101/*
9102 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 9103 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
9104 * @group: sched_group whose statistics are to be updated.
9105 * @sgs: variable to hold the statistics for this group.
3318544b 9106 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
9107 */
9108static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9109 struct sched_group *group,
9110 struct sg_lb_stats *sgs,
9111 struct task_struct *p)
9112{
9113 int i, nr_running;
9114
9115 memset(sgs, 0, sizeof(*sgs));
9116
9117 for_each_cpu(i, sched_group_span(group)) {
9118 struct rq *rq = cpu_rq(i);
3318544b 9119 unsigned int local;
57abff06 9120
3318544b 9121 sgs->group_load += cpu_load_without(rq, p);
57abff06 9122 sgs->group_util += cpu_util_without(i, p);
070f5e86 9123 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
9124 local = task_running_on_cpu(i, p);
9125 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 9126
3318544b 9127 nr_running = rq->nr_running - local;
57abff06
VG
9128 sgs->sum_nr_running += nr_running;
9129
9130 /*
3318544b 9131 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 9132 */
3318544b 9133 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
9134 sgs->idle_cpus++;
9135
57abff06
VG
9136 }
9137
9138 /* Check if task fits in the group */
9139 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9140 !task_fits_capacity(p, group->sgc->max_capacity)) {
9141 sgs->group_misfit_task_load = 1;
9142 }
9143
9144 sgs->group_capacity = group->sgc->capacity;
9145
289de359
VG
9146 sgs->group_weight = group->group_weight;
9147
57abff06
VG
9148 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9149
9150 /*
9151 * Computing avg_load makes sense only when group is fully busy or
9152 * overloaded
9153 */
6c8116c9
TZ
9154 if (sgs->group_type == group_fully_busy ||
9155 sgs->group_type == group_overloaded)
57abff06
VG
9156 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9157 sgs->group_capacity;
9158}
9159
9160static bool update_pick_idlest(struct sched_group *idlest,
9161 struct sg_lb_stats *idlest_sgs,
9162 struct sched_group *group,
9163 struct sg_lb_stats *sgs)
9164{
9165 if (sgs->group_type < idlest_sgs->group_type)
9166 return true;
9167
9168 if (sgs->group_type > idlest_sgs->group_type)
9169 return false;
9170
9171 /*
9172 * The candidate and the current idlest group are the same type of
9173 * group. Let check which one is the idlest according to the type.
9174 */
9175
9176 switch (sgs->group_type) {
9177 case group_overloaded:
9178 case group_fully_busy:
9179 /* Select the group with lowest avg_load. */
9180 if (idlest_sgs->avg_load <= sgs->avg_load)
9181 return false;
9182 break;
9183
9184 case group_imbalanced:
9185 case group_asym_packing:
9186 /* Those types are not used in the slow wakeup path */
9187 return false;
9188
9189 case group_misfit_task:
9190 /* Select group with the highest max capacity */
9191 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9192 return false;
9193 break;
9194
9195 case group_has_spare:
9196 /* Select group with most idle CPUs */
3edecfef 9197 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 9198 return false;
3edecfef
PP
9199
9200 /* Select group with lowest group_util */
9201 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9202 idlest_sgs->group_util <= sgs->group_util)
9203 return false;
9204
57abff06
VG
9205 break;
9206 }
9207
9208 return true;
9209}
9210
9211/*
9212 * find_idlest_group() finds and returns the least busy CPU group within the
9213 * domain.
9214 *
9215 * Assumes p is allowed on at least one CPU in sd.
9216 */
9217static struct sched_group *
45da2773 9218find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
9219{
9220 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9221 struct sg_lb_stats local_sgs, tmp_sgs;
9222 struct sg_lb_stats *sgs;
9223 unsigned long imbalance;
9224 struct sg_lb_stats idlest_sgs = {
9225 .avg_load = UINT_MAX,
9226 .group_type = group_overloaded,
9227 };
9228
57abff06
VG
9229 do {
9230 int local_group;
9231
9232 /* Skip over this group if it has no CPUs allowed */
9233 if (!cpumask_intersects(sched_group_span(group),
9234 p->cpus_ptr))
9235 continue;
9236
97886d9d
AL
9237 /* Skip over this group if no cookie matched */
9238 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9239 continue;
9240
57abff06
VG
9241 local_group = cpumask_test_cpu(this_cpu,
9242 sched_group_span(group));
9243
9244 if (local_group) {
9245 sgs = &local_sgs;
9246 local = group;
9247 } else {
9248 sgs = &tmp_sgs;
9249 }
9250
9251 update_sg_wakeup_stats(sd, group, sgs, p);
9252
9253 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9254 idlest = group;
9255 idlest_sgs = *sgs;
9256 }
9257
9258 } while (group = group->next, group != sd->groups);
9259
9260
9261 /* There is no idlest group to push tasks to */
9262 if (!idlest)
9263 return NULL;
9264
7ed735c3
VG
9265 /* The local group has been skipped because of CPU affinity */
9266 if (!local)
9267 return idlest;
9268
57abff06
VG
9269 /*
9270 * If the local group is idler than the selected idlest group
9271 * don't try and push the task.
9272 */
9273 if (local_sgs.group_type < idlest_sgs.group_type)
9274 return NULL;
9275
9276 /*
9277 * If the local group is busier than the selected idlest group
9278 * try and push the task.
9279 */
9280 if (local_sgs.group_type > idlest_sgs.group_type)
9281 return idlest;
9282
9283 switch (local_sgs.group_type) {
9284 case group_overloaded:
9285 case group_fully_busy:
5c339005
MG
9286
9287 /* Calculate allowed imbalance based on load */
9288 imbalance = scale_load_down(NICE_0_LOAD) *
9289 (sd->imbalance_pct-100) / 100;
9290
57abff06
VG
9291 /*
9292 * When comparing groups across NUMA domains, it's possible for
9293 * the local domain to be very lightly loaded relative to the
9294 * remote domains but "imbalance" skews the comparison making
9295 * remote CPUs look much more favourable. When considering
9296 * cross-domain, add imbalance to the load on the remote node
9297 * and consider staying local.
9298 */
9299
9300 if ((sd->flags & SD_NUMA) &&
9301 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9302 return NULL;
9303
9304 /*
9305 * If the local group is less loaded than the selected
9306 * idlest group don't try and push any tasks.
9307 */
9308 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9309 return NULL;
9310
9311 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9312 return NULL;
9313 break;
9314
9315 case group_imbalanced:
9316 case group_asym_packing:
9317 /* Those type are not used in the slow wakeup path */
9318 return NULL;
9319
9320 case group_misfit_task:
9321 /* Select group with the highest max capacity */
9322 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9323 return NULL;
9324 break;
9325
9326 case group_has_spare:
cb29a5c1 9327#ifdef CONFIG_NUMA
57abff06 9328 if (sd->flags & SD_NUMA) {
f5b2eeb4 9329 int imb_numa_nr = sd->imb_numa_nr;
57abff06
VG
9330#ifdef CONFIG_NUMA_BALANCING
9331 int idlest_cpu;
9332 /*
9333 * If there is spare capacity at NUMA, try to select
9334 * the preferred node
9335 */
9336 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9337 return NULL;
9338
9339 idlest_cpu = cpumask_first(sched_group_span(idlest));
9340 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9341 return idlest;
cb29a5c1 9342#endif /* CONFIG_NUMA_BALANCING */
57abff06 9343 /*
2cfb7a1b
MG
9344 * Otherwise, keep the task close to the wakeup source
9345 * and improve locality if the number of running tasks
9346 * would remain below threshold where an imbalance is
f5b2eeb4
PN
9347 * allowed while accounting for the possibility the
9348 * task is pinned to a subset of CPUs. If there is a
9349 * real need of migration, periodic load balance will
9350 * take care of it.
57abff06 9351 */
f5b2eeb4 9352 if (p->nr_cpus_allowed != NR_CPUS) {
ec4fc801 9353 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
f5b2eeb4
PN
9354
9355 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9356 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9357 }
9358
cb29a5c1
MG
9359 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9360 if (!adjust_numa_imbalance(imbalance,
9361 local_sgs.sum_nr_running + 1,
f5b2eeb4 9362 imb_numa_nr)) {
57abff06 9363 return NULL;
cb29a5c1 9364 }
57abff06 9365 }
cb29a5c1 9366#endif /* CONFIG_NUMA */
57abff06
VG
9367
9368 /*
9369 * Select group with highest number of idle CPUs. We could also
9370 * compare the utilization which is more stable but it can end
9371 * up that the group has less spare capacity but finally more
9372 * idle CPUs which means more opportunity to run task.
9373 */
9374 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9375 return NULL;
9376 break;
9377 }
9378
9379 return idlest;
9380}
9381
70fb5ccf
CY
9382static void update_idle_cpu_scan(struct lb_env *env,
9383 unsigned long sum_util)
9384{
9385 struct sched_domain_shared *sd_share;
9386 int llc_weight, pct;
9387 u64 x, y, tmp;
9388 /*
9389 * Update the number of CPUs to scan in LLC domain, which could
9390 * be used as a hint in select_idle_cpu(). The update of sd_share
9391 * could be expensive because it is within a shared cache line.
9392 * So the write of this hint only occurs during periodic load
9393 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9394 * can fire way more frequently than the former.
9395 */
9396 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9397 return;
9398
9399 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9400 if (env->sd->span_weight != llc_weight)
9401 return;
9402
9403 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9404 if (!sd_share)
9405 return;
9406
9407 /*
9408 * The number of CPUs to search drops as sum_util increases, when
9409 * sum_util hits 85% or above, the scan stops.
9410 * The reason to choose 85% as the threshold is because this is the
9411 * imbalance_pct(117) when a LLC sched group is overloaded.
9412 *
9413 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
9414 * and y'= y / SCHED_CAPACITY_SCALE
9415 *
9416 * x is the ratio of sum_util compared to the CPU capacity:
9417 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9418 * y' is the ratio of CPUs to be scanned in the LLC domain,
9419 * and the number of CPUs to scan is calculated by:
9420 *
9421 * nr_scan = llc_weight * y' [2]
9422 *
9423 * When x hits the threshold of overloaded, AKA, when
9424 * x = 100 / pct, y drops to 0. According to [1],
9425 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9426 *
9427 * Scale x by SCHED_CAPACITY_SCALE:
9428 * x' = sum_util / llc_weight; [3]
9429 *
9430 * and finally [1] becomes:
9431 * y = SCHED_CAPACITY_SCALE -
9432 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
9433 *
9434 */
9435 /* equation [3] */
9436 x = sum_util;
9437 do_div(x, llc_weight);
9438
9439 /* equation [4] */
9440 pct = env->sd->imbalance_pct;
9441 tmp = x * x * pct * pct;
9442 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9443 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9444 y = SCHED_CAPACITY_SCALE - tmp;
9445
9446 /* equation [2] */
9447 y *= llc_weight;
9448 do_div(y, SCHED_CAPACITY_SCALE);
9449 if ((int)y != sd_share->nr_idle_scan)
9450 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9451}
9452
1e3c88bd 9453/**
461819ac 9454 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 9455 * @env: The load balancing environment.
1e3c88bd
PZ
9456 * @sds: variable to hold the statistics for this sched_domain.
9457 */
0b0695f2 9458
0ec8aa00 9459static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9460{
bd939f45
PZ
9461 struct sched_domain *child = env->sd->child;
9462 struct sched_group *sg = env->sd->groups;
05b40e05 9463 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 9464 struct sg_lb_stats tmp_sgs;
70fb5ccf 9465 unsigned long sum_util = 0;
630246a0 9466 int sg_status = 0;
1e3c88bd 9467
1e3c88bd 9468 do {
56cf515b 9469 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
9470 int local_group;
9471
ae4df9d6 9472 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
9473 if (local_group) {
9474 sds->local = sg;
05b40e05 9475 sgs = local;
b72ff13c
PZ
9476
9477 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
9478 time_after_eq(jiffies, sg->sgc->next_update))
9479 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 9480 }
1e3c88bd 9481
c0d14b57 9482 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
1e3c88bd 9483
b72ff13c
PZ
9484 if (local_group)
9485 goto next_group;
9486
1e3c88bd 9487
b72ff13c 9488 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 9489 sds->busiest = sg;
56cf515b 9490 sds->busiest_stat = *sgs;
1e3c88bd
PZ
9491 }
9492
b72ff13c
PZ
9493next_group:
9494 /* Now, start updating sd_lb_stats */
9495 sds->total_load += sgs->group_load;
63b2ca30 9496 sds->total_capacity += sgs->group_capacity;
b72ff13c 9497
70fb5ccf 9498 sum_util += sgs->group_util;
532cb4c4 9499 sg = sg->next;
bd939f45 9500 } while (sg != env->sd->groups);
0ec8aa00 9501
0b0695f2
VG
9502 /* Tag domain that child domain prefers tasks go to siblings first */
9503 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9504
f643ea22 9505
0ec8aa00
PZ
9506 if (env->sd->flags & SD_NUMA)
9507 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
9508
9509 if (!env->sd->parent) {
2802bf3c
MR
9510 struct root_domain *rd = env->dst_rq->rd;
9511
4486edd1 9512 /* update overload indicator if we are at root domain */
2802bf3c
MR
9513 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9514
9515 /* Update over-utilization (tipping point, U >= 0) indicator */
9516 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 9517 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 9518 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
9519 struct root_domain *rd = env->dst_rq->rd;
9520
9521 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9522 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 9523 }
70fb5ccf
CY
9524
9525 update_idle_cpu_scan(env, sum_util);
532cb4c4
MN
9526}
9527
1e3c88bd
PZ
9528/**
9529 * calculate_imbalance - Calculate the amount of imbalance present within the
9530 * groups of a given sched_domain during load balance.
bd939f45 9531 * @env: load balance environment
1e3c88bd 9532 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9533 */
bd939f45 9534static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9535{
56cf515b
JK
9536 struct sg_lb_stats *local, *busiest;
9537
9538 local = &sds->local_stat;
56cf515b 9539 busiest = &sds->busiest_stat;
dd5feea1 9540
0b0695f2 9541 if (busiest->group_type == group_misfit_task) {
c82a6962
VG
9542 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9543 /* Set imbalance to allow misfit tasks to be balanced. */
9544 env->migration_type = migrate_misfit;
9545 env->imbalance = 1;
9546 } else {
9547 /*
9548 * Set load imbalance to allow moving task from cpu
9549 * with reduced capacity.
9550 */
9551 env->migration_type = migrate_load;
9552 env->imbalance = busiest->group_misfit_task_load;
9553 }
0b0695f2
VG
9554 return;
9555 }
9556
9557 if (busiest->group_type == group_asym_packing) {
9558 /*
9559 * In case of asym capacity, we will try to migrate all load to
9560 * the preferred CPU.
9561 */
9562 env->migration_type = migrate_task;
9563 env->imbalance = busiest->sum_h_nr_running;
9564 return;
9565 }
9566
9567 if (busiest->group_type == group_imbalanced) {
9568 /*
9569 * In the group_imb case we cannot rely on group-wide averages
9570 * to ensure CPU-load equilibrium, try to move any task to fix
9571 * the imbalance. The next load balance will take care of
9572 * balancing back the system.
9573 */
9574 env->migration_type = migrate_task;
9575 env->imbalance = 1;
490ba971
VG
9576 return;
9577 }
9578
1e3c88bd 9579 /*
0b0695f2 9580 * Try to use spare capacity of local group without overloading it or
a9723389 9581 * emptying busiest.
1e3c88bd 9582 */
0b0695f2 9583 if (local->group_type == group_has_spare) {
16b0a7a1
VG
9584 if ((busiest->group_type > group_fully_busy) &&
9585 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
0b0695f2
VG
9586 /*
9587 * If busiest is overloaded, try to fill spare
9588 * capacity. This might end up creating spare capacity
9589 * in busiest or busiest still being overloaded but
9590 * there is no simple way to directly compute the
9591 * amount of load to migrate in order to balance the
9592 * system.
9593 */
9594 env->migration_type = migrate_util;
9595 env->imbalance = max(local->group_capacity, local->group_util) -
9596 local->group_util;
9597
9598 /*
9599 * In some cases, the group's utilization is max or even
9600 * higher than capacity because of migrations but the
9601 * local CPU is (newly) idle. There is at least one
9602 * waiting task in this overloaded busiest group. Let's
9603 * try to pull it.
9604 */
9605 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9606 env->migration_type = migrate_task;
9607 env->imbalance = 1;
9608 }
9609
9610 return;
9611 }
9612
9613 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9614 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9615 /*
9616 * When prefer sibling, evenly spread running tasks on
9617 * groups.
9618 */
9619 env->migration_type = migrate_task;
5e23e474 9620 lsub_positive(&nr_diff, local->sum_nr_running);
cb29a5c1 9621 env->imbalance = nr_diff;
b396f523 9622 } else {
0b0695f2 9623
b396f523
MG
9624 /*
9625 * If there is no overload, we just want to even the number of
9626 * idle cpus.
9627 */
9628 env->migration_type = migrate_task;
cb29a5c1
MG
9629 env->imbalance = max_t(long, 0,
9630 (local->idle_cpus - busiest->idle_cpus));
b396f523
MG
9631 }
9632
cb29a5c1 9633#ifdef CONFIG_NUMA
b396f523 9634 /* Consider allowing a small imbalance between NUMA groups */
7d2b5dd0 9635 if (env->sd->flags & SD_NUMA) {
fb86f5b2 9636 env->imbalance = adjust_numa_imbalance(env->imbalance,
cb29a5c1
MG
9637 local->sum_nr_running + 1,
9638 env->sd->imb_numa_nr);
7d2b5dd0 9639 }
cb29a5c1
MG
9640#endif
9641
9642 /* Number of tasks to move to restore balance */
9643 env->imbalance >>= 1;
b396f523 9644
fcf0553d 9645 return;
1e3c88bd
PZ
9646 }
9647
9a5d9ba6 9648 /*
0b0695f2
VG
9649 * Local is fully busy but has to take more load to relieve the
9650 * busiest group
9a5d9ba6 9651 */
0b0695f2
VG
9652 if (local->group_type < group_overloaded) {
9653 /*
9654 * Local will become overloaded so the avg_load metrics are
9655 * finally needed.
9656 */
9657
9658 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9659 local->group_capacity;
9660
111688ca
AL
9661 /*
9662 * If the local group is more loaded than the selected
9663 * busiest group don't try to pull any tasks.
9664 */
9665 if (local->avg_load >= busiest->avg_load) {
9666 env->imbalance = 0;
9667 return;
9668 }
06354900 9669
9670 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9671 sds->total_capacity;
dd5feea1
SS
9672 }
9673
9674 /*
0b0695f2
VG
9675 * Both group are or will become overloaded and we're trying to get all
9676 * the CPUs to the average_load, so we don't want to push ourselves
9677 * above the average load, nor do we wish to reduce the max loaded CPU
9678 * below the average load. At the same time, we also don't want to
9679 * reduce the group load below the group capacity. Thus we look for
9680 * the minimum possible imbalance.
dd5feea1 9681 */
0b0695f2 9682 env->migration_type = migrate_load;
56cf515b 9683 env->imbalance = min(
0b0695f2 9684 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9685 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9686 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9687}
fab47622 9688
1e3c88bd
PZ
9689/******* find_busiest_group() helpers end here *********************/
9690
0b0695f2
VG
9691/*
9692 * Decision matrix according to the local and busiest group type:
9693 *
9694 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9695 * has_spare nr_idle balanced N/A N/A balanced balanced
9696 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
a6583531 9697 * misfit_task force N/A N/A N/A N/A N/A
0b0695f2
VG
9698 * asym_packing force force N/A N/A force force
9699 * imbalanced force force N/A N/A force force
9700 * overloaded force force N/A N/A force avg_load
9701 *
9702 * N/A : Not Applicable because already filtered while updating
9703 * statistics.
9704 * balanced : The system is balanced for these 2 groups.
9705 * force : Calculate the imbalance as load migration is probably needed.
9706 * avg_load : Only if imbalance is significant enough.
9707 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9708 * different in groups.
9709 */
9710
1e3c88bd
PZ
9711/**
9712 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9713 * if there is an imbalance.
a315da5e 9714 * @env: The load balancing environment.
1e3c88bd 9715 *
a3df0679 9716 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9717 * to restore balance.
9718 *
e69f6186 9719 * Return: - The busiest group if imbalance exists.
1e3c88bd 9720 */
56cf515b 9721static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9722{
56cf515b 9723 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9724 struct sd_lb_stats sds;
9725
147c5fc2 9726 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9727
9728 /*
b0fb1eb4 9729 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9730 * this level.
9731 */
23f0d209 9732 update_sd_lb_stats(env, &sds);
2802bf3c 9733
f8a696f2 9734 if (sched_energy_enabled()) {
2802bf3c
MR
9735 struct root_domain *rd = env->dst_rq->rd;
9736
9737 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9738 goto out_balanced;
9739 }
9740
56cf515b
JK
9741 local = &sds.local_stat;
9742 busiest = &sds.busiest_stat;
1e3c88bd 9743
cc57aa8f 9744 /* There is no busy sibling group to pull tasks from */
0b0695f2 9745 if (!sds.busiest)
1e3c88bd
PZ
9746 goto out_balanced;
9747
0b0695f2
VG
9748 /* Misfit tasks should be dealt with regardless of the avg load */
9749 if (busiest->group_type == group_misfit_task)
9750 goto force_balance;
9751
9752 /* ASYM feature bypasses nice load balance check */
9753 if (busiest->group_type == group_asym_packing)
9754 goto force_balance;
b0432d8f 9755
866ab43e
PZ
9756 /*
9757 * If the busiest group is imbalanced the below checks don't
30ce5dab 9758 * work because they assume all things are equal, which typically
3bd37062 9759 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9760 */
caeb178c 9761 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9762 goto force_balance;
9763
cc57aa8f 9764 /*
9c58c79a 9765 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9766 * don't try and pull any tasks.
9767 */
0b0695f2 9768 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9769 goto out_balanced;
9770
cc57aa8f 9771 /*
0b0695f2
VG
9772 * When groups are overloaded, use the avg_load to ensure fairness
9773 * between tasks.
cc57aa8f 9774 */
0b0695f2
VG
9775 if (local->group_type == group_overloaded) {
9776 /*
9777 * If the local group is more loaded than the selected
9778 * busiest group don't try to pull any tasks.
9779 */
9780 if (local->avg_load >= busiest->avg_load)
9781 goto out_balanced;
9782
9783 /* XXX broken for overlapping NUMA groups */
9784 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9785 sds.total_capacity;
1e3c88bd 9786
aae6d3dd 9787 /*
0b0695f2
VG
9788 * Don't pull any tasks if this group is already above the
9789 * domain average load.
aae6d3dd 9790 */
0b0695f2 9791 if (local->avg_load >= sds.avg_load)
aae6d3dd 9792 goto out_balanced;
0b0695f2 9793
c186fafe 9794 /*
0b0695f2
VG
9795 * If the busiest group is more loaded, use imbalance_pct to be
9796 * conservative.
c186fafe 9797 */
56cf515b
JK
9798 if (100 * busiest->avg_load <=
9799 env->sd->imbalance_pct * local->avg_load)
c186fafe 9800 goto out_balanced;
aae6d3dd 9801 }
1e3c88bd 9802
0b0695f2
VG
9803 /* Try to move all excess tasks to child's sibling domain */
9804 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9805 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9806 goto force_balance;
9807
2ab4092f
VG
9808 if (busiest->group_type != group_overloaded) {
9809 if (env->idle == CPU_NOT_IDLE)
9810 /*
9811 * If the busiest group is not overloaded (and as a
9812 * result the local one too) but this CPU is already
9813 * busy, let another idle CPU try to pull task.
9814 */
9815 goto out_balanced;
9816
9817 if (busiest->group_weight > 1 &&
9818 local->idle_cpus <= (busiest->idle_cpus + 1))
9819 /*
9820 * If the busiest group is not overloaded
9821 * and there is no imbalance between this and busiest
9822 * group wrt idle CPUs, it is balanced. The imbalance
9823 * becomes significant if the diff is greater than 1
9824 * otherwise we might end up to just move the imbalance
9825 * on another group. Of course this applies only if
9826 * there is more than 1 CPU per group.
9827 */
9828 goto out_balanced;
9829
9830 if (busiest->sum_h_nr_running == 1)
9831 /*
9832 * busiest doesn't have any tasks waiting to run
9833 */
9834 goto out_balanced;
9835 }
0b0695f2 9836
fab47622 9837force_balance:
1e3c88bd 9838 /* Looks like there is an imbalance. Compute it */
bd939f45 9839 calculate_imbalance(env, &sds);
bb3485c8 9840 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9841
9842out_balanced:
bd939f45 9843 env->imbalance = 0;
1e3c88bd
PZ
9844 return NULL;
9845}
9846
9847/*
97fb7a0a 9848 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9849 */
bd939f45 9850static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9851 struct sched_group *group)
1e3c88bd
PZ
9852{
9853 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9854 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9855 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9856 int i;
9857
ae4df9d6 9858 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9859 unsigned long capacity, load, util;
9860 unsigned int nr_running;
0ec8aa00
PZ
9861 enum fbq_type rt;
9862
9863 rq = cpu_rq(i);
9864 rt = fbq_classify_rq(rq);
1e3c88bd 9865
0ec8aa00
PZ
9866 /*
9867 * We classify groups/runqueues into three groups:
9868 * - regular: there are !numa tasks
9869 * - remote: there are numa tasks that run on the 'wrong' node
9870 * - all: there is no distinction
9871 *
9872 * In order to avoid migrating ideally placed numa tasks,
9873 * ignore those when there's better options.
9874 *
9875 * If we ignore the actual busiest queue to migrate another
9876 * task, the next balance pass can still reduce the busiest
9877 * queue by moving tasks around inside the node.
9878 *
9879 * If we cannot move enough load due to this classification
9880 * the next pass will adjust the group classification and
9881 * allow migration of more tasks.
9882 *
9883 * Both cases only affect the total convergence complexity.
9884 */
9885 if (rt > env->fbq_type)
9886 continue;
9887
0b0695f2 9888 nr_running = rq->cfs.h_nr_running;
fc488ffd
VG
9889 if (!nr_running)
9890 continue;
9891
9892 capacity = capacity_of(i);
9d5efe05 9893
4ad3831a
CR
9894 /*
9895 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9896 * eventually lead to active_balancing high->low capacity.
9897 * Higher per-CPU capacity is considered better than balancing
9898 * average load.
9899 */
9900 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
4aed8aa4 9901 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
0b0695f2 9902 nr_running == 1)
4ad3831a
CR
9903 continue;
9904
4006a72b
RN
9905 /* Make sure we only pull tasks from a CPU of lower priority */
9906 if ((env->sd->flags & SD_ASYM_PACKING) &&
9907 sched_asym_prefer(i, env->dst_cpu) &&
9908 nr_running == 1)
9909 continue;
9910
0b0695f2
VG
9911 switch (env->migration_type) {
9912 case migrate_load:
9913 /*
b0fb1eb4
VG
9914 * When comparing with load imbalance, use cpu_load()
9915 * which is not scaled with the CPU capacity.
0b0695f2 9916 */
b0fb1eb4 9917 load = cpu_load(rq);
1e3c88bd 9918
0b0695f2
VG
9919 if (nr_running == 1 && load > env->imbalance &&
9920 !check_cpu_capacity(rq, env->sd))
9921 break;
ea67821b 9922
0b0695f2
VG
9923 /*
9924 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9925 * consider the cpu_load() scaled with the CPU
9926 * capacity, so that the load can be moved away
9927 * from the CPU that is potentially running at a
9928 * lower capacity.
0b0695f2
VG
9929 *
9930 * Thus we're looking for max(load_i / capacity_i),
9931 * crosswise multiplication to rid ourselves of the
9932 * division works out to:
9933 * load_i * capacity_j > load_j * capacity_i;
9934 * where j is our previous maximum.
9935 */
9936 if (load * busiest_capacity > busiest_load * capacity) {
9937 busiest_load = load;
9938 busiest_capacity = capacity;
9939 busiest = rq;
9940 }
9941 break;
9942
9943 case migrate_util:
82762d2a 9944 util = cpu_util_cfs(i);
0b0695f2 9945
c32b4308
VG
9946 /*
9947 * Don't try to pull utilization from a CPU with one
9948 * running task. Whatever its utilization, we will fail
9949 * detach the task.
9950 */
9951 if (nr_running <= 1)
9952 continue;
9953
0b0695f2
VG
9954 if (busiest_util < util) {
9955 busiest_util = util;
9956 busiest = rq;
9957 }
9958 break;
9959
9960 case migrate_task:
9961 if (busiest_nr < nr_running) {
9962 busiest_nr = nr_running;
9963 busiest = rq;
9964 }
9965 break;
9966
9967 case migrate_misfit:
9968 /*
9969 * For ASYM_CPUCAPACITY domains with misfit tasks we
9970 * simply seek the "biggest" misfit task.
9971 */
9972 if (rq->misfit_task_load > busiest_load) {
9973 busiest_load = rq->misfit_task_load;
9974 busiest = rq;
9975 }
9976
9977 break;
1e3c88bd 9978
1e3c88bd
PZ
9979 }
9980 }
9981
9982 return busiest;
9983}
9984
9985/*
9986 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9987 * so long as it is large enough.
9988 */
9989#define MAX_PINNED_INTERVAL 512
9990
46a745d9
VG
9991static inline bool
9992asym_active_balance(struct lb_env *env)
1af3ed3d 9993{
46a745d9
VG
9994 /*
9995 * ASYM_PACKING needs to force migrate tasks from busy but
9996 * lower priority CPUs in order to pack all tasks in the
9997 * highest priority CPUs.
9998 */
9999 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10000 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10001}
bd939f45 10002
46a745d9 10003static inline bool
e9b9734b
VG
10004imbalanced_active_balance(struct lb_env *env)
10005{
10006 struct sched_domain *sd = env->sd;
10007
10008 /*
10009 * The imbalanced case includes the case of pinned tasks preventing a fair
10010 * distribution of the load on the system but also the even distribution of the
10011 * threads on a system with spare capacity
10012 */
10013 if ((env->migration_type == migrate_task) &&
10014 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10015 return 1;
10016
10017 return 0;
10018}
10019
10020static int need_active_balance(struct lb_env *env)
46a745d9
VG
10021{
10022 struct sched_domain *sd = env->sd;
532cb4c4 10023
46a745d9
VG
10024 if (asym_active_balance(env))
10025 return 1;
1af3ed3d 10026
e9b9734b
VG
10027 if (imbalanced_active_balance(env))
10028 return 1;
10029
1aaf90a4
VG
10030 /*
10031 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10032 * It's worth migrating the task if the src_cpu's capacity is reduced
10033 * because of other sched_class or IRQs if more capacity stays
10034 * available on dst_cpu.
10035 */
10036 if ((env->idle != CPU_NOT_IDLE) &&
10037 (env->src_rq->cfs.h_nr_running == 1)) {
10038 if ((check_cpu_capacity(env->src_rq, sd)) &&
10039 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10040 return 1;
10041 }
10042
0b0695f2 10043 if (env->migration_type == migrate_misfit)
cad68e55
MR
10044 return 1;
10045
46a745d9
VG
10046 return 0;
10047}
10048
969c7921
TH
10049static int active_load_balance_cpu_stop(void *data);
10050
23f0d209
JK
10051static int should_we_balance(struct lb_env *env)
10052{
10053 struct sched_group *sg = env->sd->groups;
64297f2b 10054 int cpu;
23f0d209 10055
024c9d2f
PZ
10056 /*
10057 * Ensure the balancing environment is consistent; can happen
10058 * when the softirq triggers 'during' hotplug.
10059 */
10060 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10061 return 0;
10062
23f0d209 10063 /*
97fb7a0a 10064 * In the newly idle case, we will allow all the CPUs
23f0d209 10065 * to do the newly idle load balance.
792b9f65
JD
10066 *
10067 * However, we bail out if we already have tasks or a wakeup pending,
10068 * to optimize wakeup latency.
23f0d209 10069 */
792b9f65
JD
10070 if (env->idle == CPU_NEWLY_IDLE) {
10071 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10072 return 0;
23f0d209 10073 return 1;
792b9f65 10074 }
23f0d209 10075
97fb7a0a 10076 /* Try to find first idle CPU */
e5c14b1f 10077 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 10078 if (!idle_cpu(cpu))
23f0d209
JK
10079 continue;
10080
64297f2b
PW
10081 /* Are we the first idle CPU? */
10082 return cpu == env->dst_cpu;
23f0d209
JK
10083 }
10084
64297f2b
PW
10085 /* Are we the first CPU of this group ? */
10086 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
10087}
10088
1e3c88bd
PZ
10089/*
10090 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10091 * tasks if there is an imbalance.
10092 */
10093static int load_balance(int this_cpu, struct rq *this_rq,
10094 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 10095 int *continue_balancing)
1e3c88bd 10096{
88b8dac0 10097 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 10098 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 10099 struct sched_group *group;
1e3c88bd 10100 struct rq *busiest;
8a8c69c3 10101 struct rq_flags rf;
4ba29684 10102 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 10103
8e45cb54
PZ
10104 struct lb_env env = {
10105 .sd = sd,
ddcdf6e7
PZ
10106 .dst_cpu = this_cpu,
10107 .dst_rq = this_rq,
ae4df9d6 10108 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 10109 .idle = idle,
eb95308e 10110 .loop_break = sched_nr_migrate_break,
b9403130 10111 .cpus = cpus,
0ec8aa00 10112 .fbq_type = all,
163122b7 10113 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
10114 };
10115
65a4433a 10116 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 10117
ae92882e 10118 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
10119
10120redo:
23f0d209
JK
10121 if (!should_we_balance(&env)) {
10122 *continue_balancing = 0;
1e3c88bd 10123 goto out_balanced;
23f0d209 10124 }
1e3c88bd 10125
23f0d209 10126 group = find_busiest_group(&env);
1e3c88bd 10127 if (!group) {
ae92882e 10128 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
10129 goto out_balanced;
10130 }
10131
b9403130 10132 busiest = find_busiest_queue(&env, group);
1e3c88bd 10133 if (!busiest) {
ae92882e 10134 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
10135 goto out_balanced;
10136 }
10137
78feefc5 10138 BUG_ON(busiest == env.dst_rq);
1e3c88bd 10139
ae92882e 10140 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 10141
1aaf90a4
VG
10142 env.src_cpu = busiest->cpu;
10143 env.src_rq = busiest;
10144
1e3c88bd 10145 ld_moved = 0;
8a41dfcd
VG
10146 /* Clear this flag as soon as we find a pullable task */
10147 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
10148 if (busiest->nr_running > 1) {
10149 /*
10150 * Attempt to move tasks. If find_busiest_group has found
10151 * an imbalance but busiest->nr_running <= 1, the group is
10152 * still unbalanced. ld_moved simply stays zero, so it is
10153 * correctly treated as an imbalance.
10154 */
c82513e5 10155 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 10156
5d6523eb 10157more_balance:
8a8c69c3 10158 rq_lock_irqsave(busiest, &rf);
3bed5e21 10159 update_rq_clock(busiest);
88b8dac0
SV
10160
10161 /*
10162 * cur_ld_moved - load moved in current iteration
10163 * ld_moved - cumulative load moved across iterations
10164 */
163122b7 10165 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
10166
10167 /*
163122b7
KT
10168 * We've detached some tasks from busiest_rq. Every
10169 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10170 * unlock busiest->lock, and we are able to be sure
10171 * that nobody can manipulate the tasks in parallel.
10172 * See task_rq_lock() family for the details.
1e3c88bd 10173 */
163122b7 10174
8a8c69c3 10175 rq_unlock(busiest, &rf);
163122b7
KT
10176
10177 if (cur_ld_moved) {
10178 attach_tasks(&env);
10179 ld_moved += cur_ld_moved;
10180 }
10181
8a8c69c3 10182 local_irq_restore(rf.flags);
88b8dac0 10183
f1cd0858
JK
10184 if (env.flags & LBF_NEED_BREAK) {
10185 env.flags &= ~LBF_NEED_BREAK;
10186 goto more_balance;
10187 }
10188
88b8dac0
SV
10189 /*
10190 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10191 * us and move them to an alternate dst_cpu in our sched_group
10192 * where they can run. The upper limit on how many times we
97fb7a0a 10193 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
10194 * sched_group.
10195 *
10196 * This changes load balance semantics a bit on who can move
10197 * load to a given_cpu. In addition to the given_cpu itself
10198 * (or a ilb_cpu acting on its behalf where given_cpu is
10199 * nohz-idle), we now have balance_cpu in a position to move
10200 * load to given_cpu. In rare situations, this may cause
10201 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10202 * _independently_ and at _same_ time to move some load to
3b03706f 10203 * given_cpu) causing excess load to be moved to given_cpu.
88b8dac0
SV
10204 * This however should not happen so much in practice and
10205 * moreover subsequent load balance cycles should correct the
10206 * excess load moved.
10207 */
6263322c 10208 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 10209
97fb7a0a 10210 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 10211 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 10212
78feefc5 10213 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 10214 env.dst_cpu = env.new_dst_cpu;
6263322c 10215 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
10216 env.loop = 0;
10217 env.loop_break = sched_nr_migrate_break;
e02e60c1 10218
88b8dac0
SV
10219 /*
10220 * Go back to "more_balance" rather than "redo" since we
10221 * need to continue with same src_cpu.
10222 */
10223 goto more_balance;
10224 }
1e3c88bd 10225
6263322c
PZ
10226 /*
10227 * We failed to reach balance because of affinity.
10228 */
10229 if (sd_parent) {
63b2ca30 10230 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 10231
afdeee05 10232 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 10233 *group_imbalance = 1;
6263322c
PZ
10234 }
10235
1e3c88bd 10236 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 10237 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 10238 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
10239 /*
10240 * Attempting to continue load balancing at the current
10241 * sched_domain level only makes sense if there are
10242 * active CPUs remaining as possible busiest CPUs to
10243 * pull load from which are not contained within the
10244 * destination group that is receiving any migrated
10245 * load.
10246 */
10247 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
10248 env.loop = 0;
10249 env.loop_break = sched_nr_migrate_break;
1e3c88bd 10250 goto redo;
bbf18b19 10251 }
afdeee05 10252 goto out_all_pinned;
1e3c88bd
PZ
10253 }
10254 }
10255
10256 if (!ld_moved) {
ae92882e 10257 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
10258 /*
10259 * Increment the failure counter only on periodic balance.
10260 * We do not want newidle balance, which can be very
10261 * frequent, pollute the failure counter causing
10262 * excessive cache_hot migrations and active balances.
10263 */
10264 if (idle != CPU_NEWLY_IDLE)
10265 sd->nr_balance_failed++;
1e3c88bd 10266
bd939f45 10267 if (need_active_balance(&env)) {
8a8c69c3
PZ
10268 unsigned long flags;
10269
5cb9eaa3 10270 raw_spin_rq_lock_irqsave(busiest, flags);
1e3c88bd 10271
97fb7a0a
IM
10272 /*
10273 * Don't kick the active_load_balance_cpu_stop,
10274 * if the curr task on busiest CPU can't be
10275 * moved to this_cpu:
1e3c88bd 10276 */
3bd37062 10277 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
5cb9eaa3 10278 raw_spin_rq_unlock_irqrestore(busiest, flags);
1e3c88bd
PZ
10279 goto out_one_pinned;
10280 }
10281
8a41dfcd
VG
10282 /* Record that we found at least one task that could run on this_cpu */
10283 env.flags &= ~LBF_ALL_PINNED;
10284
969c7921
TH
10285 /*
10286 * ->active_balance synchronizes accesses to
10287 * ->active_balance_work. Once set, it's cleared
10288 * only after active load balance is finished.
10289 */
1e3c88bd
PZ
10290 if (!busiest->active_balance) {
10291 busiest->active_balance = 1;
10292 busiest->push_cpu = this_cpu;
10293 active_balance = 1;
10294 }
5cb9eaa3 10295 raw_spin_rq_unlock_irqrestore(busiest, flags);
969c7921 10296
bd939f45 10297 if (active_balance) {
969c7921
TH
10298 stop_one_cpu_nowait(cpu_of(busiest),
10299 active_load_balance_cpu_stop, busiest,
10300 &busiest->active_balance_work);
bd939f45 10301 }
1e3c88bd 10302 }
e9b9734b 10303 } else {
1e3c88bd 10304 sd->nr_balance_failed = 0;
e9b9734b 10305 }
1e3c88bd 10306
e9b9734b 10307 if (likely(!active_balance) || need_active_balance(&env)) {
1e3c88bd
PZ
10308 /* We were unbalanced, so reset the balancing interval */
10309 sd->balance_interval = sd->min_interval;
1e3c88bd
PZ
10310 }
10311
1e3c88bd
PZ
10312 goto out;
10313
10314out_balanced:
afdeee05
VG
10315 /*
10316 * We reach balance although we may have faced some affinity
f6cad8df
VG
10317 * constraints. Clear the imbalance flag only if other tasks got
10318 * a chance to move and fix the imbalance.
afdeee05 10319 */
f6cad8df 10320 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
10321 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10322
10323 if (*group_imbalance)
10324 *group_imbalance = 0;
10325 }
10326
10327out_all_pinned:
10328 /*
10329 * We reach balance because all tasks are pinned at this level so
10330 * we can't migrate them. Let the imbalance flag set so parent level
10331 * can try to migrate them.
10332 */
ae92882e 10333 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
10334
10335 sd->nr_balance_failed = 0;
10336
10337out_one_pinned:
3f130a37
VS
10338 ld_moved = 0;
10339
10340 /*
5ba553ef
PZ
10341 * newidle_balance() disregards balance intervals, so we could
10342 * repeatedly reach this code, which would lead to balance_interval
3b03706f 10343 * skyrocketing in a short amount of time. Skip the balance_interval
5ba553ef 10344 * increase logic to avoid that.
3f130a37
VS
10345 */
10346 if (env.idle == CPU_NEWLY_IDLE)
10347 goto out;
10348
1e3c88bd 10349 /* tune up the balancing interval */
47b7aee1
VS
10350 if ((env.flags & LBF_ALL_PINNED &&
10351 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10352 sd->balance_interval < sd->max_interval)
1e3c88bd 10353 sd->balance_interval *= 2;
1e3c88bd 10354out:
1e3c88bd
PZ
10355 return ld_moved;
10356}
10357
52a08ef1
JL
10358static inline unsigned long
10359get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10360{
10361 unsigned long interval = sd->balance_interval;
10362
10363 if (cpu_busy)
10364 interval *= sd->busy_factor;
10365
10366 /* scale ms to jiffies */
10367 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
10368
10369 /*
10370 * Reduce likelihood of busy balancing at higher domains racing with
10371 * balancing at lower domains by preventing their balancing periods
10372 * from being multiples of each other.
10373 */
10374 if (cpu_busy)
10375 interval -= 1;
10376
52a08ef1
JL
10377 interval = clamp(interval, 1UL, max_load_balance_interval);
10378
10379 return interval;
10380}
10381
10382static inline void
31851a98 10383update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
10384{
10385 unsigned long interval, next;
10386
31851a98
LY
10387 /* used by idle balance, so cpu_busy = 0 */
10388 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
10389 next = sd->last_balance + interval;
10390
10391 if (time_after(*next_balance, next))
10392 *next_balance = next;
10393}
10394
1e3c88bd 10395/*
97fb7a0a 10396 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
10397 * running tasks off the busiest CPU onto idle CPUs. It requires at
10398 * least 1 task to be running on each physical CPU where possible, and
10399 * avoids physical / logical imbalances.
1e3c88bd 10400 */
969c7921 10401static int active_load_balance_cpu_stop(void *data)
1e3c88bd 10402{
969c7921
TH
10403 struct rq *busiest_rq = data;
10404 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 10405 int target_cpu = busiest_rq->push_cpu;
969c7921 10406 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 10407 struct sched_domain *sd;
e5673f28 10408 struct task_struct *p = NULL;
8a8c69c3 10409 struct rq_flags rf;
969c7921 10410
8a8c69c3 10411 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
10412 /*
10413 * Between queueing the stop-work and running it is a hole in which
10414 * CPUs can become inactive. We should not move tasks from or to
10415 * inactive CPUs.
10416 */
10417 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10418 goto out_unlock;
969c7921 10419
97fb7a0a 10420 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
10421 if (unlikely(busiest_cpu != smp_processor_id() ||
10422 !busiest_rq->active_balance))
10423 goto out_unlock;
1e3c88bd
PZ
10424
10425 /* Is there any task to move? */
10426 if (busiest_rq->nr_running <= 1)
969c7921 10427 goto out_unlock;
1e3c88bd
PZ
10428
10429 /*
10430 * This condition is "impossible", if it occurs
10431 * we need to fix it. Originally reported by
97fb7a0a 10432 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
10433 */
10434 BUG_ON(busiest_rq == target_rq);
10435
1e3c88bd 10436 /* Search for an sd spanning us and the target CPU. */
dce840a0 10437 rcu_read_lock();
1e3c88bd 10438 for_each_domain(target_cpu, sd) {
e669ac8a
VS
10439 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10440 break;
1e3c88bd
PZ
10441 }
10442
10443 if (likely(sd)) {
8e45cb54
PZ
10444 struct lb_env env = {
10445 .sd = sd,
ddcdf6e7
PZ
10446 .dst_cpu = target_cpu,
10447 .dst_rq = target_rq,
10448 .src_cpu = busiest_rq->cpu,
10449 .src_rq = busiest_rq,
8e45cb54 10450 .idle = CPU_IDLE,
23fb06d9 10451 .flags = LBF_ACTIVE_LB,
8e45cb54
PZ
10452 };
10453
ae92882e 10454 schedstat_inc(sd->alb_count);
3bed5e21 10455 update_rq_clock(busiest_rq);
1e3c88bd 10456
e5673f28 10457 p = detach_one_task(&env);
d02c0711 10458 if (p) {
ae92882e 10459 schedstat_inc(sd->alb_pushed);
d02c0711
SD
10460 /* Active balancing done, reset the failure counter. */
10461 sd->nr_balance_failed = 0;
10462 } else {
ae92882e 10463 schedstat_inc(sd->alb_failed);
d02c0711 10464 }
1e3c88bd 10465 }
dce840a0 10466 rcu_read_unlock();
969c7921
TH
10467out_unlock:
10468 busiest_rq->active_balance = 0;
8a8c69c3 10469 rq_unlock(busiest_rq, &rf);
e5673f28
KT
10470
10471 if (p)
10472 attach_one_task(target_rq, p);
10473
10474 local_irq_enable();
10475
969c7921 10476 return 0;
1e3c88bd
PZ
10477}
10478
af3fe03c
PZ
10479static DEFINE_SPINLOCK(balancing);
10480
10481/*
10482 * Scale the max load_balance interval with the number of CPUs in the system.
10483 * This trades load-balance latency on larger machines for less cross talk.
10484 */
10485void update_max_interval(void)
10486{
10487 max_load_balance_interval = HZ*num_online_cpus()/10;
10488}
10489
e60b56e4
VG
10490static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10491{
10492 if (cost > sd->max_newidle_lb_cost) {
10493 /*
10494 * Track max cost of a domain to make sure to not delay the
10495 * next wakeup on the CPU.
10496 */
10497 sd->max_newidle_lb_cost = cost;
10498 sd->last_decay_max_lb_cost = jiffies;
10499 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10500 /*
10501 * Decay the newidle max times by ~1% per second to ensure that
10502 * it is not outdated and the current max cost is actually
10503 * shorter.
10504 */
10505 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10506 sd->last_decay_max_lb_cost = jiffies;
10507
10508 return true;
10509 }
10510
10511 return false;
10512}
10513
af3fe03c
PZ
10514/*
10515 * It checks each scheduling domain to see if it is due to be balanced,
10516 * and initiates a balancing operation if so.
10517 *
10518 * Balancing parameters are set up in init_sched_domains.
10519 */
10520static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10521{
10522 int continue_balancing = 1;
10523 int cpu = rq->cpu;
323af6de 10524 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10525 unsigned long interval;
10526 struct sched_domain *sd;
10527 /* Earliest time when we have to do rebalance again */
10528 unsigned long next_balance = jiffies + 60*HZ;
10529 int update_next_balance = 0;
10530 int need_serialize, need_decay = 0;
10531 u64 max_cost = 0;
10532
10533 rcu_read_lock();
10534 for_each_domain(cpu, sd) {
10535 /*
10536 * Decay the newidle max times here because this is a regular
e60b56e4 10537 * visit to all the domains.
af3fe03c 10538 */
e60b56e4 10539 need_decay = update_newidle_cost(sd, 0);
af3fe03c
PZ
10540 max_cost += sd->max_newidle_lb_cost;
10541
af3fe03c
PZ
10542 /*
10543 * Stop the load balance at this level. There is another
10544 * CPU in our sched group which is doing load balancing more
10545 * actively.
10546 */
10547 if (!continue_balancing) {
10548 if (need_decay)
10549 continue;
10550 break;
10551 }
10552
323af6de 10553 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10554
10555 need_serialize = sd->flags & SD_SERIALIZE;
10556 if (need_serialize) {
10557 if (!spin_trylock(&balancing))
10558 goto out;
10559 }
10560
10561 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10562 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10563 /*
10564 * The LBF_DST_PINNED logic could have changed
10565 * env->dst_cpu, so we can't know our idle
10566 * state even if we migrated tasks. Update it.
10567 */
10568 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 10569 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
10570 }
10571 sd->last_balance = jiffies;
323af6de 10572 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
10573 }
10574 if (need_serialize)
10575 spin_unlock(&balancing);
10576out:
10577 if (time_after(next_balance, sd->last_balance + interval)) {
10578 next_balance = sd->last_balance + interval;
10579 update_next_balance = 1;
10580 }
10581 }
10582 if (need_decay) {
10583 /*
10584 * Ensure the rq-wide value also decays but keep it at a
10585 * reasonable floor to avoid funnies with rq->avg_idle.
10586 */
10587 rq->max_idle_balance_cost =
10588 max((u64)sysctl_sched_migration_cost, max_cost);
10589 }
10590 rcu_read_unlock();
10591
10592 /*
10593 * next_balance will be updated only when there is a need.
10594 * When the cpu is attached to null domain for ex, it will not be
10595 * updated.
10596 */
7a82e5f5 10597 if (likely(update_next_balance))
af3fe03c
PZ
10598 rq->next_balance = next_balance;
10599
af3fe03c
PZ
10600}
10601
d987fc7f
MG
10602static inline int on_null_domain(struct rq *rq)
10603{
10604 return unlikely(!rcu_dereference_sched(rq->sd));
10605}
10606
3451d024 10607#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10608/*
10609 * idle load balancing details
83cd4fe2
VP
10610 * - When one of the busy CPUs notice that there may be an idle rebalancing
10611 * needed, they will kick the idle load balancer, which then does idle
10612 * load balancing for all the idle CPUs.
04d4e665 10613 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
9b019acb 10614 * anywhere yet.
83cd4fe2 10615 */
1e3c88bd 10616
3dd0337d 10617static inline int find_new_ilb(void)
1e3c88bd 10618{
9b019acb 10619 int ilb;
031e3bd8 10620 const struct cpumask *hk_mask;
1e3c88bd 10621
04d4e665 10622 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
1e3c88bd 10623
031e3bd8 10624 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
45da7a2b
PZ
10625
10626 if (ilb == smp_processor_id())
10627 continue;
10628
9b019acb
NP
10629 if (idle_cpu(ilb))
10630 return ilb;
10631 }
786d6dc7
SS
10632
10633 return nr_cpu_ids;
1e3c88bd 10634}
1e3c88bd 10635
83cd4fe2 10636/*
9b019acb 10637 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
04d4e665 10638 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
83cd4fe2 10639 */
a4064fb6 10640static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10641{
10642 int ilb_cpu;
10643
3ea2f097
VG
10644 /*
10645 * Increase nohz.next_balance only when if full ilb is triggered but
10646 * not if we only update stats.
10647 */
10648 if (flags & NOHZ_BALANCE_KICK)
10649 nohz.next_balance = jiffies+1;
83cd4fe2 10650
3dd0337d 10651 ilb_cpu = find_new_ilb();
83cd4fe2 10652
0b005cf5
SS
10653 if (ilb_cpu >= nr_cpu_ids)
10654 return;
83cd4fe2 10655
19a1f5ec
PZ
10656 /*
10657 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10658 * the first flag owns it; cleared by nohz_csd_func().
10659 */
a4064fb6 10660 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10661 if (flags & NOHZ_KICK_MASK)
1c792db7 10662 return;
4550487a 10663
1c792db7 10664 /*
90b5363a 10665 * This way we generate an IPI on the target CPU which
1c792db7
SS
10666 * is idle. And the softirq performing nohz idle load balance
10667 * will be run before returning from the IPI.
10668 */
90b5363a 10669 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10670}
10671
10672/*
9f132742
VS
10673 * Current decision point for kicking the idle load balancer in the presence
10674 * of idle CPUs in the system.
4550487a
PZ
10675 */
10676static void nohz_balancer_kick(struct rq *rq)
10677{
10678 unsigned long now = jiffies;
10679 struct sched_domain_shared *sds;
10680 struct sched_domain *sd;
10681 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10682 unsigned int flags = 0;
4550487a
PZ
10683
10684 if (unlikely(rq->idle_balance))
10685 return;
10686
10687 /*
10688 * We may be recently in ticked or tickless idle mode. At the first
10689 * busy tick after returning from idle, we will update the busy stats.
10690 */
00357f5e 10691 nohz_balance_exit_idle(rq);
4550487a
PZ
10692
10693 /*
10694 * None are in tickless mode and hence no need for NOHZ idle load
10695 * balancing.
10696 */
10697 if (likely(!atomic_read(&nohz.nr_cpus)))
10698 return;
10699
f643ea22
VG
10700 if (READ_ONCE(nohz.has_blocked) &&
10701 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10702 flags = NOHZ_STATS_KICK;
10703
4550487a 10704 if (time_before(now, nohz.next_balance))
a4064fb6 10705 goto out;
4550487a 10706
a0fe2cf0 10707 if (rq->nr_running >= 2) {
efd984c4 10708 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10709 goto out;
10710 }
10711
10712 rcu_read_lock();
4550487a
PZ
10713
10714 sd = rcu_dereference(rq->sd);
10715 if (sd) {
e25a7a94
VS
10716 /*
10717 * If there's a CFS task and the current CPU has reduced
10718 * capacity; kick the ILB to see if there's a better CPU to run
10719 * on.
10720 */
10721 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
efd984c4 10722 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10723 goto unlock;
10724 }
10725 }
10726
011b27bb 10727 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10728 if (sd) {
b9a7b883
VS
10729 /*
10730 * When ASYM_PACKING; see if there's a more preferred CPU
10731 * currently idle; in which case, kick the ILB to move tasks
10732 * around.
10733 */
7edab78d 10734 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10735 if (sched_asym_prefer(i, cpu)) {
efd984c4 10736 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
4550487a
PZ
10737 goto unlock;
10738 }
10739 }
10740 }
b9a7b883 10741
a0fe2cf0
VS
10742 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10743 if (sd) {
10744 /*
10745 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10746 * to run the misfit task on.
10747 */
10748 if (check_misfit_status(rq, sd)) {
efd984c4 10749 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
a0fe2cf0
VS
10750 goto unlock;
10751 }
b9a7b883
VS
10752
10753 /*
10754 * For asymmetric systems, we do not want to nicely balance
10755 * cache use, instead we want to embrace asymmetry and only
10756 * ensure tasks have enough CPU capacity.
10757 *
10758 * Skip the LLC logic because it's not relevant in that case.
10759 */
10760 goto unlock;
a0fe2cf0
VS
10761 }
10762
b9a7b883
VS
10763 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10764 if (sds) {
e25a7a94 10765 /*
b9a7b883
VS
10766 * If there is an imbalance between LLC domains (IOW we could
10767 * increase the overall cache use), we need some less-loaded LLC
10768 * domain to pull some load. Likewise, we may need to spread
10769 * load within the current LLC domain (e.g. packed SMT cores but
10770 * other CPUs are idle). We can't really know from here how busy
10771 * the others are - so just get a nohz balance going if it looks
10772 * like this LLC domain has tasks we could move.
e25a7a94 10773 */
b9a7b883
VS
10774 nr_busy = atomic_read(&sds->nr_busy_cpus);
10775 if (nr_busy > 1) {
efd984c4 10776 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
b9a7b883 10777 goto unlock;
4550487a
PZ
10778 }
10779 }
10780unlock:
10781 rcu_read_unlock();
10782out:
7fd7a9e0
VS
10783 if (READ_ONCE(nohz.needs_update))
10784 flags |= NOHZ_NEXT_KICK;
10785
a4064fb6
PZ
10786 if (flags)
10787 kick_ilb(flags);
83cd4fe2
VP
10788}
10789
00357f5e 10790static void set_cpu_sd_state_busy(int cpu)
71325960 10791{
00357f5e 10792 struct sched_domain *sd;
a22e47a4 10793
00357f5e
PZ
10794 rcu_read_lock();
10795 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10796
00357f5e
PZ
10797 if (!sd || !sd->nohz_idle)
10798 goto unlock;
10799 sd->nohz_idle = 0;
10800
10801 atomic_inc(&sd->shared->nr_busy_cpus);
10802unlock:
10803 rcu_read_unlock();
71325960
SS
10804}
10805
00357f5e
PZ
10806void nohz_balance_exit_idle(struct rq *rq)
10807{
10808 SCHED_WARN_ON(rq != this_rq());
10809
10810 if (likely(!rq->nohz_tick_stopped))
10811 return;
10812
10813 rq->nohz_tick_stopped = 0;
10814 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10815 atomic_dec(&nohz.nr_cpus);
10816
10817 set_cpu_sd_state_busy(rq->cpu);
10818}
10819
10820static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10821{
10822 struct sched_domain *sd;
69e1e811 10823
69e1e811 10824 rcu_read_lock();
0e369d75 10825 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10826
10827 if (!sd || sd->nohz_idle)
10828 goto unlock;
10829 sd->nohz_idle = 1;
10830
0e369d75 10831 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10832unlock:
69e1e811
SS
10833 rcu_read_unlock();
10834}
10835
1e3c88bd 10836/*
97fb7a0a 10837 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10838 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10839 */
c1cc017c 10840void nohz_balance_enter_idle(int cpu)
1e3c88bd 10841{
00357f5e
PZ
10842 struct rq *rq = cpu_rq(cpu);
10843
10844 SCHED_WARN_ON(cpu != smp_processor_id());
10845
97fb7a0a 10846 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10847 if (!cpu_active(cpu))
10848 return;
10849
387bc8b5 10850 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
04d4e665 10851 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
387bc8b5
FW
10852 return;
10853
f643ea22
VG
10854 /*
10855 * Can be set safely without rq->lock held
10856 * If a clear happens, it will have evaluated last additions because
10857 * rq->lock is held during the check and the clear
10858 */
10859 rq->has_blocked_load = 1;
10860
10861 /*
10862 * The tick is still stopped but load could have been added in the
10863 * meantime. We set the nohz.has_blocked flag to trig a check of the
10864 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10865 * of nohz.has_blocked can only happen after checking the new load
10866 */
00357f5e 10867 if (rq->nohz_tick_stopped)
f643ea22 10868 goto out;
1e3c88bd 10869
97fb7a0a 10870 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10871 if (on_null_domain(rq))
d987fc7f
MG
10872 return;
10873
00357f5e
PZ
10874 rq->nohz_tick_stopped = 1;
10875
c1cc017c
AS
10876 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10877 atomic_inc(&nohz.nr_cpus);
00357f5e 10878
f643ea22
VG
10879 /*
10880 * Ensures that if nohz_idle_balance() fails to observe our
10881 * @idle_cpus_mask store, it must observe the @has_blocked
7fd7a9e0 10882 * and @needs_update stores.
f643ea22
VG
10883 */
10884 smp_mb__after_atomic();
10885
00357f5e 10886 set_cpu_sd_state_idle(cpu);
f643ea22 10887
7fd7a9e0 10888 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10889out:
10890 /*
10891 * Each time a cpu enter idle, we assume that it has blocked load and
10892 * enable the periodic update of the load of idle cpus
10893 */
10894 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10895}
1e3c88bd 10896
3f5ad914
Y
10897static bool update_nohz_stats(struct rq *rq)
10898{
10899 unsigned int cpu = rq->cpu;
10900
10901 if (!rq->has_blocked_load)
10902 return false;
10903
10904 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10905 return false;
10906
10907 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10908 return true;
10909
10910 update_blocked_averages(cpu);
10911
10912 return rq->has_blocked_load;
10913}
10914
1e3c88bd 10915/*
31e77c93
VG
10916 * Internal function that runs load balance for all idle cpus. The load balance
10917 * can be a simple update of blocked load or a complete load balance with
10918 * tasks movement depending of flags.
1e3c88bd 10919 */
d985ee9f 10920static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
83cd4fe2 10921{
c5afb6a8 10922 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10923 unsigned long now = jiffies;
10924 unsigned long next_balance = now + 60*HZ;
f643ea22 10925 bool has_blocked_load = false;
c5afb6a8 10926 int update_next_balance = 0;
b7031a02 10927 int this_cpu = this_rq->cpu;
b7031a02
PZ
10928 int balance_cpu;
10929 struct rq *rq;
83cd4fe2 10930
b7031a02 10931 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10932
f643ea22
VG
10933 /*
10934 * We assume there will be no idle load after this update and clear
10935 * the has_blocked flag. If a cpu enters idle in the mean time, it will
7fd7a9e0 10936 * set the has_blocked flag and trigger another update of idle load.
f643ea22
VG
10937 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10938 * setting the flag, we are sure to not clear the state and not
10939 * check the load of an idle cpu.
7fd7a9e0
VS
10940 *
10941 * Same applies to idle_cpus_mask vs needs_update.
f643ea22 10942 */
efd984c4
VS
10943 if (flags & NOHZ_STATS_KICK)
10944 WRITE_ONCE(nohz.has_blocked, 0);
7fd7a9e0
VS
10945 if (flags & NOHZ_NEXT_KICK)
10946 WRITE_ONCE(nohz.needs_update, 0);
f643ea22
VG
10947
10948 /*
10949 * Ensures that if we miss the CPU, we must see the has_blocked
10950 * store from nohz_balance_enter_idle().
10951 */
10952 smp_mb();
10953
7a82e5f5
VG
10954 /*
10955 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10956 * chance for other idle cpu to pull load.
10957 */
10958 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10959 if (!idle_cpu(balance_cpu))
83cd4fe2
VP
10960 continue;
10961
10962 /*
97fb7a0a
IM
10963 * If this CPU gets work to do, stop the load balancing
10964 * work being done for other CPUs. Next load
83cd4fe2
VP
10965 * balancing owner will pick it up.
10966 */
f643ea22 10967 if (need_resched()) {
efd984c4
VS
10968 if (flags & NOHZ_STATS_KICK)
10969 has_blocked_load = true;
7fd7a9e0
VS
10970 if (flags & NOHZ_NEXT_KICK)
10971 WRITE_ONCE(nohz.needs_update, 1);
f643ea22
VG
10972 goto abort;
10973 }
83cd4fe2 10974
5ed4f1d9
VG
10975 rq = cpu_rq(balance_cpu);
10976
efd984c4
VS
10977 if (flags & NOHZ_STATS_KICK)
10978 has_blocked_load |= update_nohz_stats(rq);
f643ea22 10979
ed61bbc6
TC
10980 /*
10981 * If time for next balance is due,
10982 * do the balance.
10983 */
10984 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10985 struct rq_flags rf;
10986
31e77c93 10987 rq_lock_irqsave(rq, &rf);
ed61bbc6 10988 update_rq_clock(rq);
31e77c93 10989 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10990
b7031a02
PZ
10991 if (flags & NOHZ_BALANCE_KICK)
10992 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10993 }
83cd4fe2 10994
c5afb6a8
VG
10995 if (time_after(next_balance, rq->next_balance)) {
10996 next_balance = rq->next_balance;
10997 update_next_balance = 1;
10998 }
83cd4fe2 10999 }
c5afb6a8 11000
3ea2f097
VG
11001 /*
11002 * next_balance will be updated only when there is a need.
11003 * When the CPU is attached to null domain for ex, it will not be
11004 * updated.
11005 */
11006 if (likely(update_next_balance))
11007 nohz.next_balance = next_balance;
11008
efd984c4
VS
11009 if (flags & NOHZ_STATS_KICK)
11010 WRITE_ONCE(nohz.next_blocked,
11011 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
f643ea22
VG
11012
11013abort:
11014 /* There is still blocked load, enable periodic update */
11015 if (has_blocked_load)
11016 WRITE_ONCE(nohz.has_blocked, 1);
31e77c93
VG
11017}
11018
11019/*
11020 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11021 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11022 */
11023static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11024{
19a1f5ec 11025 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 11026
19a1f5ec 11027 if (!flags)
31e77c93
VG
11028 return false;
11029
19a1f5ec 11030 this_rq->nohz_idle_balance = 0;
31e77c93 11031
19a1f5ec 11032 if (idle != CPU_IDLE)
31e77c93
VG
11033 return false;
11034
d985ee9f 11035 _nohz_idle_balance(this_rq, flags);
31e77c93 11036
b7031a02 11037 return true;
83cd4fe2 11038}
31e77c93 11039
c6f88654
VG
11040/*
11041 * Check if we need to run the ILB for updating blocked load before entering
11042 * idle state.
11043 */
11044void nohz_run_idle_balance(int cpu)
11045{
11046 unsigned int flags;
11047
11048 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11049
11050 /*
11051 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11052 * (ie NOHZ_STATS_KICK set) and will do the same.
11053 */
11054 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
d985ee9f 11055 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
c6f88654
VG
11056}
11057
31e77c93
VG
11058static void nohz_newidle_balance(struct rq *this_rq)
11059{
11060 int this_cpu = this_rq->cpu;
11061
11062 /*
11063 * This CPU doesn't want to be disturbed by scheduler
11064 * housekeeping
11065 */
04d4e665 11066 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
31e77c93
VG
11067 return;
11068
11069 /* Will wake up very soon. No time for doing anything else*/
11070 if (this_rq->avg_idle < sysctl_sched_migration_cost)
11071 return;
11072
11073 /* Don't need to update blocked load of idle CPUs*/
11074 if (!READ_ONCE(nohz.has_blocked) ||
11075 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11076 return;
11077
31e77c93 11078 /*
c6f88654
VG
11079 * Set the need to trigger ILB in order to update blocked load
11080 * before entering idle state.
31e77c93 11081 */
c6f88654 11082 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
31e77c93
VG
11083}
11084
dd707247
PZ
11085#else /* !CONFIG_NO_HZ_COMMON */
11086static inline void nohz_balancer_kick(struct rq *rq) { }
11087
31e77c93 11088static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
11089{
11090 return false;
11091}
31e77c93
VG
11092
11093static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 11094#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 11095
47ea5412 11096/*
5b78f2dc 11097 * newidle_balance is called by schedule() if this_cpu is about to become
47ea5412 11098 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
11099 *
11100 * Returns:
11101 * < 0 - we released the lock and there are !fair tasks present
11102 * 0 - failed, no new tasks
11103 * > 0 - success, new (fair) tasks present
47ea5412 11104 */
d91cecc1 11105static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
11106{
11107 unsigned long next_balance = jiffies + HZ;
11108 int this_cpu = this_rq->cpu;
9e9af819 11109 u64 t0, t1, curr_cost = 0;
47ea5412
PZ
11110 struct sched_domain *sd;
11111 int pulled_task = 0;
47ea5412 11112
5ba553ef 11113 update_misfit_status(NULL, this_rq);
e5e678e4
RR
11114
11115 /*
11116 * There is a task waiting to run. No need to search for one.
11117 * Return 0; the task will be enqueued when switching to idle.
11118 */
11119 if (this_rq->ttwu_pending)
11120 return 0;
11121
47ea5412
PZ
11122 /*
11123 * We must set idle_stamp _before_ calling idle_balance(), such that we
11124 * measure the duration of idle_balance() as idle time.
11125 */
11126 this_rq->idle_stamp = rq_clock(this_rq);
11127
11128 /*
11129 * Do not pull tasks towards !active CPUs...
11130 */
11131 if (!cpu_active(this_cpu))
11132 return 0;
11133
11134 /*
11135 * This is OK, because current is on_cpu, which avoids it being picked
11136 * for load-balance and preemption/IRQs are still disabled avoiding
11137 * further scheduler activity on it and we're being very careful to
11138 * re-start the picking loop.
11139 */
11140 rq_unpin_lock(this_rq, rf);
11141
9d783c8d
VG
11142 rcu_read_lock();
11143 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11144
c5b0a7ee 11145 if (!READ_ONCE(this_rq->rd->overload) ||
9d783c8d 11146 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
31e77c93 11147
47ea5412
PZ
11148 if (sd)
11149 update_next_balance(sd, &next_balance);
11150 rcu_read_unlock();
11151
11152 goto out;
11153 }
9d783c8d 11154 rcu_read_unlock();
47ea5412 11155
5cb9eaa3 11156 raw_spin_rq_unlock(this_rq);
47ea5412 11157
9e9af819 11158 t0 = sched_clock_cpu(this_cpu);
47ea5412 11159 update_blocked_averages(this_cpu);
9e9af819 11160
47ea5412
PZ
11161 rcu_read_lock();
11162 for_each_domain(this_cpu, sd) {
11163 int continue_balancing = 1;
9e9af819 11164 u64 domain_cost;
47ea5412 11165
8ea9183d
VG
11166 update_next_balance(sd, &next_balance);
11167
11168 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
47ea5412 11169 break;
47ea5412
PZ
11170
11171 if (sd->flags & SD_BALANCE_NEWIDLE) {
47ea5412
PZ
11172
11173 pulled_task = load_balance(this_cpu, this_rq,
11174 sd, CPU_NEWLY_IDLE,
11175 &continue_balancing);
11176
9e9af819
VG
11177 t1 = sched_clock_cpu(this_cpu);
11178 domain_cost = t1 - t0;
e60b56e4 11179 update_newidle_cost(sd, domain_cost);
47ea5412
PZ
11180
11181 curr_cost += domain_cost;
9e9af819 11182 t0 = t1;
47ea5412
PZ
11183 }
11184
47ea5412
PZ
11185 /*
11186 * Stop searching for tasks to pull if there are
11187 * now runnable tasks on this rq.
11188 */
e5e678e4
RR
11189 if (pulled_task || this_rq->nr_running > 0 ||
11190 this_rq->ttwu_pending)
47ea5412
PZ
11191 break;
11192 }
11193 rcu_read_unlock();
11194
5cb9eaa3 11195 raw_spin_rq_lock(this_rq);
47ea5412
PZ
11196
11197 if (curr_cost > this_rq->max_idle_balance_cost)
11198 this_rq->max_idle_balance_cost = curr_cost;
11199
11200 /*
11201 * While browsing the domains, we released the rq lock, a task could
11202 * have been enqueued in the meantime. Since we're not going idle,
11203 * pretend we pulled a task.
11204 */
11205 if (this_rq->cfs.h_nr_running && !pulled_task)
11206 pulled_task = 1;
11207
47ea5412
PZ
11208 /* Is there a task of a high priority class? */
11209 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11210 pulled_task = -1;
11211
6553fc18
VG
11212out:
11213 /* Move the next balance forward */
11214 if (time_after(this_rq->next_balance, next_balance))
11215 this_rq->next_balance = next_balance;
11216
47ea5412
PZ
11217 if (pulled_task)
11218 this_rq->idle_stamp = 0;
0826530d
VG
11219 else
11220 nohz_newidle_balance(this_rq);
47ea5412
PZ
11221
11222 rq_repin_lock(this_rq, rf);
11223
11224 return pulled_task;
11225}
11226
83cd4fe2
VP
11227/*
11228 * run_rebalance_domains is triggered when needed from the scheduler tick.
11229 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11230 */
0766f788 11231static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 11232{
208cb16b 11233 struct rq *this_rq = this_rq();
6eb57e0d 11234 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
11235 CPU_IDLE : CPU_NOT_IDLE;
11236
1e3c88bd 11237 /*
97fb7a0a
IM
11238 * If this CPU has a pending nohz_balance_kick, then do the
11239 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 11240 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 11241 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
11242 * load balance only within the local sched_domain hierarchy
11243 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 11244 */
b7031a02
PZ
11245 if (nohz_idle_balance(this_rq, idle))
11246 return;
11247
11248 /* normal load balance */
11249 update_blocked_averages(this_rq->cpu);
d4573c3e 11250 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
11251}
11252
1e3c88bd
PZ
11253/*
11254 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 11255 */
7caff66f 11256void trigger_load_balance(struct rq *rq)
1e3c88bd 11257{
e0b257c3
AMB
11258 /*
11259 * Don't need to rebalance while attached to NULL domain or
11260 * runqueue CPU is not active
11261 */
11262 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
c726099e
DL
11263 return;
11264
11265 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 11266 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
11267
11268 nohz_balancer_kick(rq);
1e3c88bd
PZ
11269}
11270
0bcdcf28
CE
11271static void rq_online_fair(struct rq *rq)
11272{
11273 update_sysctl();
0e59bdae
KT
11274
11275 update_runtime_enabled(rq);
0bcdcf28
CE
11276}
11277
11278static void rq_offline_fair(struct rq *rq)
11279{
11280 update_sysctl();
a4c96ae3
PB
11281
11282 /* Ensure any throttled groups are reachable by pick_next_task */
11283 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
11284}
11285
55e12e5e 11286#endif /* CONFIG_SMP */
e1d1484f 11287
8039e96f
VP
11288#ifdef CONFIG_SCHED_CORE
11289static inline bool
11290__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11291{
11292 u64 slice = sched_slice(cfs_rq_of(se), se);
11293 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11294
11295 return (rtime * min_nr_tasks > slice);
11296}
11297
11298#define MIN_NR_TASKS_DURING_FORCEIDLE 2
11299static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11300{
11301 if (!sched_core_enabled(rq))
11302 return;
11303
11304 /*
11305 * If runqueue has only one task which used up its slice and
11306 * if the sibling is forced idle, then trigger schedule to
11307 * give forced idle task a chance.
11308 *
11309 * sched_slice() considers only this active rq and it gets the
11310 * whole slice. But during force idle, we have siblings acting
11311 * like a single runqueue and hence we need to consider runnable
cc00c198 11312 * tasks on this CPU and the forced idle CPU. Ideally, we should
8039e96f 11313 * go through the forced idle rq, but that would be a perf hit.
cc00c198 11314 * We can assume that the forced idle CPU has at least
8039e96f 11315 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
cc00c198 11316 * if we need to give up the CPU.
8039e96f 11317 */
4feee7d1 11318 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
8039e96f
VP
11319 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11320 resched_curr(rq);
11321}
c6047c2e
JFG
11322
11323/*
11324 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11325 */
11326static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11327{
11328 for_each_sched_entity(se) {
11329 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11330
11331 if (forceidle) {
11332 if (cfs_rq->forceidle_seq == fi_seq)
11333 break;
11334 cfs_rq->forceidle_seq = fi_seq;
11335 }
11336
11337 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11338 }
11339}
11340
11341void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11342{
11343 struct sched_entity *se = &p->se;
11344
11345 if (p->sched_class != &fair_sched_class)
11346 return;
11347
11348 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11349}
11350
11351bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11352{
11353 struct rq *rq = task_rq(a);
11354 struct sched_entity *sea = &a->se;
11355 struct sched_entity *seb = &b->se;
11356 struct cfs_rq *cfs_rqa;
11357 struct cfs_rq *cfs_rqb;
11358 s64 delta;
11359
11360 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11361
11362#ifdef CONFIG_FAIR_GROUP_SCHED
11363 /*
11364 * Find an se in the hierarchy for tasks a and b, such that the se's
11365 * are immediate siblings.
11366 */
11367 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11368 int sea_depth = sea->depth;
11369 int seb_depth = seb->depth;
11370
11371 if (sea_depth >= seb_depth)
11372 sea = parent_entity(sea);
11373 if (sea_depth <= seb_depth)
11374 seb = parent_entity(seb);
11375 }
11376
11377 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11378 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11379
11380 cfs_rqa = sea->cfs_rq;
11381 cfs_rqb = seb->cfs_rq;
11382#else
11383 cfs_rqa = &task_rq(a)->cfs;
11384 cfs_rqb = &task_rq(b)->cfs;
11385#endif
11386
11387 /*
11388 * Find delta after normalizing se's vruntime with its cfs_rq's
11389 * min_vruntime_fi, which would have been updated in prior calls
11390 * to se_fi_update().
11391 */
11392 delta = (s64)(sea->vruntime - seb->vruntime) +
11393 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11394
11395 return delta > 0;
11396}
8039e96f
VP
11397#else
11398static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11399#endif
11400
bf0f6f24 11401/*
d84b3131
FW
11402 * scheduler tick hitting a task of our scheduling class.
11403 *
11404 * NOTE: This function can be called remotely by the tick offload that
11405 * goes along full dynticks. Therefore no local assumption can be made
11406 * and everything must be accessed through the @rq and @curr passed in
11407 * parameters.
bf0f6f24 11408 */
8f4d37ec 11409static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
11410{
11411 struct cfs_rq *cfs_rq;
11412 struct sched_entity *se = &curr->se;
11413
11414 for_each_sched_entity(se) {
11415 cfs_rq = cfs_rq_of(se);
8f4d37ec 11416 entity_tick(cfs_rq, se, queued);
bf0f6f24 11417 }
18bf2805 11418
b52da86e 11419 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 11420 task_tick_numa(rq, curr);
3b1baa64
MR
11421
11422 update_misfit_status(curr, rq);
2802bf3c 11423 update_overutilized_status(task_rq(curr));
8039e96f
VP
11424
11425 task_tick_core(rq, curr);
bf0f6f24
IM
11426}
11427
11428/*
cd29fe6f
PZ
11429 * called on fork with the child task as argument from the parent's context
11430 * - child not yet on the tasklist
11431 * - preemption disabled
bf0f6f24 11432 */
cd29fe6f 11433static void task_fork_fair(struct task_struct *p)
bf0f6f24 11434{
4fc420c9
DN
11435 struct cfs_rq *cfs_rq;
11436 struct sched_entity *se = &p->se, *curr;
cd29fe6f 11437 struct rq *rq = this_rq();
8a8c69c3 11438 struct rq_flags rf;
bf0f6f24 11439
8a8c69c3 11440 rq_lock(rq, &rf);
861d034e
PZ
11441 update_rq_clock(rq);
11442
4fc420c9
DN
11443 cfs_rq = task_cfs_rq(current);
11444 curr = cfs_rq->curr;
e210bffd
PZ
11445 if (curr) {
11446 update_curr(cfs_rq);
b5d9d734 11447 se->vruntime = curr->vruntime;
e210bffd 11448 }
aeb73b04 11449 place_entity(cfs_rq, se, 1);
4d78e7b6 11450
cd29fe6f 11451 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 11452 /*
edcb60a3
IM
11453 * Upon rescheduling, sched_class::put_prev_task() will place
11454 * 'current' within the tree based on its new key value.
11455 */
4d78e7b6 11456 swap(curr->vruntime, se->vruntime);
8875125e 11457 resched_curr(rq);
4d78e7b6 11458 }
bf0f6f24 11459
88ec22d3 11460 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 11461 rq_unlock(rq, &rf);
bf0f6f24
IM
11462}
11463
cb469845
SR
11464/*
11465 * Priority of the task has changed. Check to see if we preempt
11466 * the current task.
11467 */
da7a735e
PZ
11468static void
11469prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 11470{
da0c1e65 11471 if (!task_on_rq_queued(p))
da7a735e
PZ
11472 return;
11473
7c2e8bbd
FW
11474 if (rq->cfs.nr_running == 1)
11475 return;
11476
cb469845
SR
11477 /*
11478 * Reschedule if we are currently running on this runqueue and
11479 * our priority decreased, or if we are not currently running on
11480 * this runqueue and our priority is higher than the current's
11481 */
65bcf072 11482 if (task_current(rq, p)) {
cb469845 11483 if (p->prio > oldprio)
8875125e 11484 resched_curr(rq);
cb469845 11485 } else
15afe09b 11486 check_preempt_curr(rq, p, 0);
cb469845
SR
11487}
11488
daa59407 11489static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
11490{
11491 struct sched_entity *se = &p->se;
da7a735e
PZ
11492
11493 /*
daa59407
BP
11494 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11495 * the dequeue_entity(.flags=0) will already have normalized the
11496 * vruntime.
11497 */
11498 if (p->on_rq)
11499 return true;
11500
11501 /*
11502 * When !on_rq, vruntime of the task has usually NOT been normalized.
11503 * But there are some cases where it has already been normalized:
da7a735e 11504 *
daa59407
BP
11505 * - A forked child which is waiting for being woken up by
11506 * wake_up_new_task().
11507 * - A task which has been woken up by try_to_wake_up() and
11508 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 11509 */
d0cdb3ce 11510 if (!se->sum_exec_runtime ||
2f064a59 11511 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
11512 return true;
11513
11514 return false;
11515}
11516
09a43ace
VG
11517#ifdef CONFIG_FAIR_GROUP_SCHED
11518/*
11519 * Propagate the changes of the sched_entity across the tg tree to make it
11520 * visible to the root
11521 */
11522static void propagate_entity_cfs_rq(struct sched_entity *se)
11523{
51bf903b
CZ
11524 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11525
11526 if (cfs_rq_throttled(cfs_rq))
11527 return;
09a43ace 11528
51bf903b
CZ
11529 if (!throttled_hierarchy(cfs_rq))
11530 list_add_leaf_cfs_rq(cfs_rq);
0258bdfa 11531
09a43ace
VG
11532 /* Start to propagate at parent */
11533 se = se->parent;
11534
11535 for_each_sched_entity(se) {
11536 cfs_rq = cfs_rq_of(se);
11537
51bf903b 11538 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace 11539
51bf903b 11540 if (cfs_rq_throttled(cfs_rq))
0258bdfa 11541 break;
51bf903b
CZ
11542
11543 if (!throttled_hierarchy(cfs_rq))
11544 list_add_leaf_cfs_rq(cfs_rq);
09a43ace
VG
11545 }
11546}
11547#else
11548static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11549#endif
11550
df217913 11551static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 11552{
daa59407
BP
11553 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11554
7e2edaf6
CZ
11555#ifdef CONFIG_SMP
11556 /*
11557 * In case the task sched_avg hasn't been attached:
11558 * - A forked task which hasn't been woken up by wake_up_new_task().
11559 * - A task which has been woken up by try_to_wake_up() but is
11560 * waiting for actually being woken up by sched_ttwu_pending().
11561 */
11562 if (!se->avg.last_update_time)
11563 return;
11564#endif
11565
9d89c257 11566 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 11567 update_load_avg(cfs_rq, se, 0);
a05e8c51 11568 detach_entity_load_avg(cfs_rq, se);
fe749158 11569 update_tg_load_avg(cfs_rq);
09a43ace 11570 propagate_entity_cfs_rq(se);
da7a735e
PZ
11571}
11572
df217913 11573static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 11574{
daa59407 11575 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a 11576
df217913 11577 /* Synchronize entity with its cfs_rq */
88c0616e 11578 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 11579 attach_entity_load_avg(cfs_rq, se);
fe749158 11580 update_tg_load_avg(cfs_rq);
09a43ace 11581 propagate_entity_cfs_rq(se);
df217913
VG
11582}
11583
11584static void detach_task_cfs_rq(struct task_struct *p)
11585{
11586 struct sched_entity *se = &p->se;
11587 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11588
11589 if (!vruntime_normalized(p)) {
11590 /*
11591 * Fix up our vruntime so that the current sleep doesn't
11592 * cause 'unlimited' sleep bonus.
11593 */
11594 place_entity(cfs_rq, se, 0);
11595 se->vruntime -= cfs_rq->min_vruntime;
11596 }
11597
11598 detach_entity_cfs_rq(se);
11599}
11600
11601static void attach_task_cfs_rq(struct task_struct *p)
11602{
11603 struct sched_entity *se = &p->se;
11604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11605
11606 attach_entity_cfs_rq(se);
daa59407
BP
11607
11608 if (!vruntime_normalized(p))
11609 se->vruntime += cfs_rq->min_vruntime;
11610}
6efdb105 11611
daa59407
BP
11612static void switched_from_fair(struct rq *rq, struct task_struct *p)
11613{
11614 detach_task_cfs_rq(p);
11615}
11616
11617static void switched_to_fair(struct rq *rq, struct task_struct *p)
11618{
11619 attach_task_cfs_rq(p);
7855a35a 11620
daa59407 11621 if (task_on_rq_queued(p)) {
7855a35a 11622 /*
daa59407
BP
11623 * We were most likely switched from sched_rt, so
11624 * kick off the schedule if running, otherwise just see
11625 * if we can still preempt the current task.
7855a35a 11626 */
65bcf072 11627 if (task_current(rq, p))
daa59407
BP
11628 resched_curr(rq);
11629 else
11630 check_preempt_curr(rq, p, 0);
7855a35a 11631 }
cb469845
SR
11632}
11633
83b699ed
SV
11634/* Account for a task changing its policy or group.
11635 *
11636 * This routine is mostly called to set cfs_rq->curr field when a task
11637 * migrates between groups/classes.
11638 */
a0e813f2 11639static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 11640{
03b7fad1
PZ
11641 struct sched_entity *se = &p->se;
11642
11643#ifdef CONFIG_SMP
11644 if (task_on_rq_queued(p)) {
11645 /*
11646 * Move the next running task to the front of the list, so our
11647 * cfs_tasks list becomes MRU one.
11648 */
11649 list_move(&se->group_node, &rq->cfs_tasks);
11650 }
11651#endif
83b699ed 11652
ec12cb7f
PT
11653 for_each_sched_entity(se) {
11654 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11655
11656 set_next_entity(cfs_rq, se);
11657 /* ensure bandwidth has been allocated on our new cfs_rq */
11658 account_cfs_rq_runtime(cfs_rq, 0);
11659 }
83b699ed
SV
11660}
11661
029632fb
PZ
11662void init_cfs_rq(struct cfs_rq *cfs_rq)
11663{
bfb06889 11664 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
d05b4305 11665 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
141965c7 11666#ifdef CONFIG_SMP
2a2f5d4e 11667 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 11668#endif
029632fb
PZ
11669}
11670
810b3817 11671#ifdef CONFIG_FAIR_GROUP_SCHED
39c42611 11672static void task_change_group_fair(struct task_struct *p)
810b3817 11673{
df16b71c
CZ
11674 /*
11675 * We couldn't detach or attach a forked task which
11676 * hasn't been woken up by wake_up_new_task().
11677 */
11678 if (READ_ONCE(p->__state) == TASK_NEW)
11679 return;
11680
daa59407 11681 detach_task_cfs_rq(p);
6efdb105
BP
11682
11683#ifdef CONFIG_SMP
11684 /* Tell se's cfs_rq has been changed -- migrated */
11685 p->se.avg.last_update_time = 0;
11686#endif
5d6da83c 11687 set_task_rq(p, task_cpu(p));
daa59407 11688 attach_task_cfs_rq(p);
810b3817 11689}
029632fb
PZ
11690
11691void free_fair_sched_group(struct task_group *tg)
11692{
11693 int i;
11694
029632fb
PZ
11695 for_each_possible_cpu(i) {
11696 if (tg->cfs_rq)
11697 kfree(tg->cfs_rq[i]);
6fe1f348 11698 if (tg->se)
029632fb
PZ
11699 kfree(tg->se[i]);
11700 }
11701
11702 kfree(tg->cfs_rq);
11703 kfree(tg->se);
11704}
11705
11706int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11707{
029632fb 11708 struct sched_entity *se;
b7fa30c9 11709 struct cfs_rq *cfs_rq;
029632fb
PZ
11710 int i;
11711
6396bb22 11712 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
11713 if (!tg->cfs_rq)
11714 goto err;
6396bb22 11715 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
11716 if (!tg->se)
11717 goto err;
11718
11719 tg->shares = NICE_0_LOAD;
11720
11721 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11722
11723 for_each_possible_cpu(i) {
11724 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11725 GFP_KERNEL, cpu_to_node(i));
11726 if (!cfs_rq)
11727 goto err;
11728
ceeadb83 11729 se = kzalloc_node(sizeof(struct sched_entity_stats),
029632fb
PZ
11730 GFP_KERNEL, cpu_to_node(i));
11731 if (!se)
11732 goto err_free_rq;
11733
11734 init_cfs_rq(cfs_rq);
11735 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11736 init_entity_runnable_average(se);
029632fb
PZ
11737 }
11738
11739 return 1;
11740
11741err_free_rq:
11742 kfree(cfs_rq);
11743err:
11744 return 0;
11745}
11746
8663e24d
PZ
11747void online_fair_sched_group(struct task_group *tg)
11748{
11749 struct sched_entity *se;
a46d14ec 11750 struct rq_flags rf;
8663e24d
PZ
11751 struct rq *rq;
11752 int i;
11753
11754 for_each_possible_cpu(i) {
11755 rq = cpu_rq(i);
11756 se = tg->se[i];
a46d14ec 11757 rq_lock_irq(rq, &rf);
4126bad6 11758 update_rq_clock(rq);
d0326691 11759 attach_entity_cfs_rq(se);
55e16d30 11760 sync_throttle(tg, i);
a46d14ec 11761 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11762 }
11763}
11764
6fe1f348 11765void unregister_fair_sched_group(struct task_group *tg)
029632fb 11766{
029632fb 11767 unsigned long flags;
6fe1f348
PZ
11768 struct rq *rq;
11769 int cpu;
029632fb 11770
b027789e
MK
11771 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11772
6fe1f348
PZ
11773 for_each_possible_cpu(cpu) {
11774 if (tg->se[cpu])
11775 remove_entity_load_avg(tg->se[cpu]);
029632fb 11776
6fe1f348
PZ
11777 /*
11778 * Only empty task groups can be destroyed; so we can speculatively
11779 * check on_list without danger of it being re-added.
11780 */
11781 if (!tg->cfs_rq[cpu]->on_list)
11782 continue;
11783
11784 rq = cpu_rq(cpu);
11785
5cb9eaa3 11786 raw_spin_rq_lock_irqsave(rq, flags);
6fe1f348 11787 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5cb9eaa3 11788 raw_spin_rq_unlock_irqrestore(rq, flags);
6fe1f348 11789 }
029632fb
PZ
11790}
11791
11792void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11793 struct sched_entity *se, int cpu,
11794 struct sched_entity *parent)
11795{
11796 struct rq *rq = cpu_rq(cpu);
11797
11798 cfs_rq->tg = tg;
11799 cfs_rq->rq = rq;
029632fb
PZ
11800 init_cfs_rq_runtime(cfs_rq);
11801
11802 tg->cfs_rq[cpu] = cfs_rq;
11803 tg->se[cpu] = se;
11804
11805 /* se could be NULL for root_task_group */
11806 if (!se)
11807 return;
11808
fed14d45 11809 if (!parent) {
029632fb 11810 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11811 se->depth = 0;
11812 } else {
029632fb 11813 se->cfs_rq = parent->my_q;
fed14d45
PZ
11814 se->depth = parent->depth + 1;
11815 }
029632fb
PZ
11816
11817 se->my_q = cfs_rq;
0ac9b1c2
PT
11818 /* guarantee group entities always have weight */
11819 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11820 se->parent = parent;
11821}
11822
11823static DEFINE_MUTEX(shares_mutex);
11824
30400039 11825static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
029632fb
PZ
11826{
11827 int i;
029632fb 11828
30400039
JD
11829 lockdep_assert_held(&shares_mutex);
11830
029632fb
PZ
11831 /*
11832 * We can't change the weight of the root cgroup.
11833 */
11834 if (!tg->se[0])
11835 return -EINVAL;
11836
11837 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11838
029632fb 11839 if (tg->shares == shares)
30400039 11840 return 0;
029632fb
PZ
11841
11842 tg->shares = shares;
11843 for_each_possible_cpu(i) {
11844 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11845 struct sched_entity *se = tg->se[i];
11846 struct rq_flags rf;
029632fb 11847
029632fb 11848 /* Propagate contribution to hierarchy */
8a8c69c3 11849 rq_lock_irqsave(rq, &rf);
71b1da46 11850 update_rq_clock(rq);
89ee048f 11851 for_each_sched_entity(se) {
88c0616e 11852 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11853 update_cfs_group(se);
89ee048f 11854 }
8a8c69c3 11855 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11856 }
11857
30400039
JD
11858 return 0;
11859}
11860
11861int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11862{
11863 int ret;
11864
11865 mutex_lock(&shares_mutex);
11866 if (tg_is_idle(tg))
11867 ret = -EINVAL;
11868 else
11869 ret = __sched_group_set_shares(tg, shares);
11870 mutex_unlock(&shares_mutex);
11871
11872 return ret;
11873}
11874
11875int sched_group_set_idle(struct task_group *tg, long idle)
11876{
11877 int i;
11878
11879 if (tg == &root_task_group)
11880 return -EINVAL;
11881
11882 if (idle < 0 || idle > 1)
11883 return -EINVAL;
11884
11885 mutex_lock(&shares_mutex);
11886
11887 if (tg->idle == idle) {
11888 mutex_unlock(&shares_mutex);
11889 return 0;
11890 }
11891
11892 tg->idle = idle;
11893
11894 for_each_possible_cpu(i) {
11895 struct rq *rq = cpu_rq(i);
11896 struct sched_entity *se = tg->se[i];
a480adde 11897 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
30400039
JD
11898 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11899 long idle_task_delta;
11900 struct rq_flags rf;
11901
11902 rq_lock_irqsave(rq, &rf);
11903
11904 grp_cfs_rq->idle = idle;
11905 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11906 goto next_cpu;
11907
a480adde
JD
11908 if (se->on_rq) {
11909 parent_cfs_rq = cfs_rq_of(se);
11910 if (cfs_rq_is_idle(grp_cfs_rq))
11911 parent_cfs_rq->idle_nr_running++;
11912 else
11913 parent_cfs_rq->idle_nr_running--;
11914 }
11915
30400039
JD
11916 idle_task_delta = grp_cfs_rq->h_nr_running -
11917 grp_cfs_rq->idle_h_nr_running;
11918 if (!cfs_rq_is_idle(grp_cfs_rq))
11919 idle_task_delta *= -1;
11920
11921 for_each_sched_entity(se) {
11922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11923
11924 if (!se->on_rq)
11925 break;
11926
11927 cfs_rq->idle_h_nr_running += idle_task_delta;
11928
11929 /* Already accounted at parent level and above. */
11930 if (cfs_rq_is_idle(cfs_rq))
11931 break;
11932 }
11933
11934next_cpu:
11935 rq_unlock_irqrestore(rq, &rf);
11936 }
11937
11938 /* Idle groups have minimum weight. */
11939 if (tg_is_idle(tg))
11940 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11941 else
11942 __sched_group_set_shares(tg, NICE_0_LOAD);
11943
029632fb
PZ
11944 mutex_unlock(&shares_mutex);
11945 return 0;
11946}
30400039 11947
029632fb
PZ
11948#else /* CONFIG_FAIR_GROUP_SCHED */
11949
11950void free_fair_sched_group(struct task_group *tg) { }
11951
11952int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11953{
11954 return 1;
11955}
11956
8663e24d
PZ
11957void online_fair_sched_group(struct task_group *tg) { }
11958
6fe1f348 11959void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11960
11961#endif /* CONFIG_FAIR_GROUP_SCHED */
11962
810b3817 11963
6d686f45 11964static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11965{
11966 struct sched_entity *se = &task->se;
0d721cea
PW
11967 unsigned int rr_interval = 0;
11968
11969 /*
11970 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11971 * idle runqueue:
11972 */
0d721cea 11973 if (rq->cfs.load.weight)
a59f4e07 11974 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11975
11976 return rr_interval;
11977}
11978
bf0f6f24
IM
11979/*
11980 * All the scheduling class methods:
11981 */
43c31ac0
PZ
11982DEFINE_SCHED_CLASS(fair) = {
11983
bf0f6f24
IM
11984 .enqueue_task = enqueue_task_fair,
11985 .dequeue_task = dequeue_task_fair,
11986 .yield_task = yield_task_fair,
d95f4122 11987 .yield_to_task = yield_to_task_fair,
bf0f6f24 11988
2e09bf55 11989 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11990
98c2f700 11991 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11992 .put_prev_task = put_prev_task_fair,
03b7fad1 11993 .set_next_task = set_next_task_fair,
bf0f6f24 11994
681f3e68 11995#ifdef CONFIG_SMP
6e2df058 11996 .balance = balance_fair,
21f56ffe 11997 .pick_task = pick_task_fair,
4ce72a2c 11998 .select_task_rq = select_task_rq_fair,
0a74bef8 11999 .migrate_task_rq = migrate_task_rq_fair,
141965c7 12000
0bcdcf28
CE
12001 .rq_online = rq_online_fair,
12002 .rq_offline = rq_offline_fair,
88ec22d3 12003
12695578 12004 .task_dead = task_dead_fair,
c5b28038 12005 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 12006#endif
bf0f6f24 12007
bf0f6f24 12008 .task_tick = task_tick_fair,
cd29fe6f 12009 .task_fork = task_fork_fair,
cb469845
SR
12010
12011 .prio_changed = prio_changed_fair,
da7a735e 12012 .switched_from = switched_from_fair,
cb469845 12013 .switched_to = switched_to_fair,
810b3817 12014
0d721cea
PW
12015 .get_rr_interval = get_rr_interval_fair,
12016
6e998916
SG
12017 .update_curr = update_curr_fair,
12018
810b3817 12019#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 12020 .task_change_group = task_change_group_fair,
810b3817 12021#endif
982d9cdc
PB
12022
12023#ifdef CONFIG_UCLAMP_TASK
12024 .uclamp_enabled = 1,
12025#endif
bf0f6f24
IM
12026};
12027
12028#ifdef CONFIG_SCHED_DEBUG
029632fb 12029void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 12030{
039ae8bc 12031 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 12032
5973e5b9 12033 rcu_read_lock();
039ae8bc 12034 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 12035 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 12036 rcu_read_unlock();
bf0f6f24 12037}
397f2378
SD
12038
12039#ifdef CONFIG_NUMA_BALANCING
12040void show_numa_stats(struct task_struct *p, struct seq_file *m)
12041{
12042 int node;
12043 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 12044 struct numa_group *ng;
397f2378 12045
cb361d8c
JH
12046 rcu_read_lock();
12047 ng = rcu_dereference(p->numa_group);
397f2378
SD
12048 for_each_online_node(node) {
12049 if (p->numa_faults) {
12050 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12051 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12052 }
cb361d8c
JH
12053 if (ng) {
12054 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12055 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
12056 }
12057 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12058 }
cb361d8c 12059 rcu_read_unlock();
397f2378
SD
12060}
12061#endif /* CONFIG_NUMA_BALANCING */
12062#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
12063
12064__init void init_sched_fair_class(void)
12065{
12066#ifdef CONFIG_SMP
18c31c97
BH
12067 int i;
12068
12069 for_each_possible_cpu(i) {
12070 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12071 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
12072 }
12073
029632fb
PZ
12074 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12075
3451d024 12076#ifdef CONFIG_NO_HZ_COMMON
554cecaf 12077 nohz.next_balance = jiffies;
f643ea22 12078 nohz.next_blocked = jiffies;
029632fb 12079 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
12080#endif
12081#endif /* SMP */
12082
12083}