]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched: Add wrapper for checking task_struct::on_rq
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
83d7f242
RR
1041 int smt, cpu, cpus = 0;
1042 unsigned long capacity;
fb13c7ee
MG
1043
1044 memset(ns, 0, sizeof(*ns));
1045 for_each_cpu(cpu, cpumask_of_node(nid)) {
1046 struct rq *rq = cpu_rq(cpu);
1047
1048 ns->nr_running += rq->nr_running;
1049 ns->load += weighted_cpuload(cpu);
ced549fa 1050 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1051
1052 cpus++;
fb13c7ee
MG
1053 }
1054
5eca82a9
PZ
1055 /*
1056 * If we raced with hotplug and there are no CPUs left in our mask
1057 * the @ns structure is NULL'ed and task_numa_compare() will
1058 * not find this node attractive.
1059 *
1b6a7495
NP
1060 * We'll either bail at !has_free_capacity, or we'll detect a huge
1061 * imbalance and bail there.
5eca82a9
PZ
1062 */
1063 if (!cpus)
1064 return;
1065
83d7f242
RR
1066 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1067 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1068 capacity = cpus / smt; /* cores */
1069
1070 ns->task_capacity = min_t(unsigned, capacity,
1071 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1072 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1073}
1074
58d081b5
MG
1075struct task_numa_env {
1076 struct task_struct *p;
e6628d5b 1077
58d081b5
MG
1078 int src_cpu, src_nid;
1079 int dst_cpu, dst_nid;
e6628d5b 1080
58d081b5 1081 struct numa_stats src_stats, dst_stats;
e6628d5b 1082
40ea2b42 1083 int imbalance_pct;
fb13c7ee
MG
1084
1085 struct task_struct *best_task;
1086 long best_imp;
58d081b5
MG
1087 int best_cpu;
1088};
1089
fb13c7ee
MG
1090static void task_numa_assign(struct task_numa_env *env,
1091 struct task_struct *p, long imp)
1092{
1093 if (env->best_task)
1094 put_task_struct(env->best_task);
1095 if (p)
1096 get_task_struct(p);
1097
1098 env->best_task = p;
1099 env->best_imp = imp;
1100 env->best_cpu = env->dst_cpu;
1101}
1102
28a21745 1103static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1104 struct task_numa_env *env)
1105{
1106 long imb, old_imb;
28a21745
RR
1107 long orig_src_load, orig_dst_load;
1108 long src_capacity, dst_capacity;
1109
1110 /*
1111 * The load is corrected for the CPU capacity available on each node.
1112 *
1113 * src_load dst_load
1114 * ------------ vs ---------
1115 * src_capacity dst_capacity
1116 */
1117 src_capacity = env->src_stats.compute_capacity;
1118 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1119
1120 /* We care about the slope of the imbalance, not the direction. */
1121 if (dst_load < src_load)
1122 swap(dst_load, src_load);
1123
1124 /* Is the difference below the threshold? */
28a21745
RR
1125 imb = dst_load * src_capacity * 100 -
1126 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1127 if (imb <= 0)
1128 return false;
1129
1130 /*
1131 * The imbalance is above the allowed threshold.
1132 * Compare it with the old imbalance.
1133 */
28a21745
RR
1134 orig_src_load = env->src_stats.load;
1135 orig_dst_load = env->dst_stats.load;
1136
e63da036
RR
1137 if (orig_dst_load < orig_src_load)
1138 swap(orig_dst_load, orig_src_load);
1139
28a21745
RR
1140 old_imb = orig_dst_load * src_capacity * 100 -
1141 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1142
1143 /* Would this change make things worse? */
1662867a 1144 return (imb > old_imb);
e63da036
RR
1145}
1146
fb13c7ee
MG
1147/*
1148 * This checks if the overall compute and NUMA accesses of the system would
1149 * be improved if the source tasks was migrated to the target dst_cpu taking
1150 * into account that it might be best if task running on the dst_cpu should
1151 * be exchanged with the source task
1152 */
887c290e
RR
1153static void task_numa_compare(struct task_numa_env *env,
1154 long taskimp, long groupimp)
fb13c7ee
MG
1155{
1156 struct rq *src_rq = cpu_rq(env->src_cpu);
1157 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1158 struct task_struct *cur;
28a21745 1159 long src_load, dst_load;
fb13c7ee 1160 long load;
1c5d3eb3 1161 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1162 long moveimp = imp;
fb13c7ee
MG
1163
1164 rcu_read_lock();
1165 cur = ACCESS_ONCE(dst_rq->curr);
1166 if (cur->pid == 0) /* idle */
1167 cur = NULL;
1168
1169 /*
1170 * "imp" is the fault differential for the source task between the
1171 * source and destination node. Calculate the total differential for
1172 * the source task and potential destination task. The more negative
1173 * the value is, the more rmeote accesses that would be expected to
1174 * be incurred if the tasks were swapped.
1175 */
1176 if (cur) {
1177 /* Skip this swap candidate if cannot move to the source cpu */
1178 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1179 goto unlock;
1180
887c290e
RR
1181 /*
1182 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1183 * in any group then look only at task weights.
887c290e 1184 */
ca28aa53 1185 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1186 imp = taskimp + task_weight(cur, env->src_nid) -
1187 task_weight(cur, env->dst_nid);
ca28aa53
RR
1188 /*
1189 * Add some hysteresis to prevent swapping the
1190 * tasks within a group over tiny differences.
1191 */
1192 if (cur->numa_group)
1193 imp -= imp/16;
887c290e 1194 } else {
ca28aa53
RR
1195 /*
1196 * Compare the group weights. If a task is all by
1197 * itself (not part of a group), use the task weight
1198 * instead.
1199 */
ca28aa53
RR
1200 if (cur->numa_group)
1201 imp += group_weight(cur, env->src_nid) -
1202 group_weight(cur, env->dst_nid);
1203 else
1204 imp += task_weight(cur, env->src_nid) -
1205 task_weight(cur, env->dst_nid);
887c290e 1206 }
fb13c7ee
MG
1207 }
1208
0132c3e1 1209 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1210 goto unlock;
1211
1212 if (!cur) {
1213 /* Is there capacity at our destination? */
b932c03c 1214 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1215 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1216 goto unlock;
1217
1218 goto balance;
1219 }
1220
1221 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1222 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1223 dst_rq->nr_running == 1)
fb13c7ee
MG
1224 goto assign;
1225
1226 /*
1227 * In the overloaded case, try and keep the load balanced.
1228 */
1229balance:
e720fff6
PZ
1230 load = task_h_load(env->p);
1231 dst_load = env->dst_stats.load + load;
1232 src_load = env->src_stats.load - load;
fb13c7ee 1233
0132c3e1
RR
1234 if (moveimp > imp && moveimp > env->best_imp) {
1235 /*
1236 * If the improvement from just moving env->p direction is
1237 * better than swapping tasks around, check if a move is
1238 * possible. Store a slightly smaller score than moveimp,
1239 * so an actually idle CPU will win.
1240 */
1241 if (!load_too_imbalanced(src_load, dst_load, env)) {
1242 imp = moveimp - 1;
1243 cur = NULL;
1244 goto assign;
1245 }
1246 }
1247
1248 if (imp <= env->best_imp)
1249 goto unlock;
1250
fb13c7ee 1251 if (cur) {
e720fff6
PZ
1252 load = task_h_load(cur);
1253 dst_load -= load;
1254 src_load += load;
fb13c7ee
MG
1255 }
1256
28a21745 1257 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1258 goto unlock;
1259
1260assign:
1261 task_numa_assign(env, cur, imp);
1262unlock:
1263 rcu_read_unlock();
1264}
1265
887c290e
RR
1266static void task_numa_find_cpu(struct task_numa_env *env,
1267 long taskimp, long groupimp)
2c8a50aa
MG
1268{
1269 int cpu;
1270
1271 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1272 /* Skip this CPU if the source task cannot migrate */
1273 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1274 continue;
1275
1276 env->dst_cpu = cpu;
887c290e 1277 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1278 }
1279}
1280
58d081b5
MG
1281static int task_numa_migrate(struct task_struct *p)
1282{
58d081b5
MG
1283 struct task_numa_env env = {
1284 .p = p,
fb13c7ee 1285
58d081b5 1286 .src_cpu = task_cpu(p),
b32e86b4 1287 .src_nid = task_node(p),
fb13c7ee
MG
1288
1289 .imbalance_pct = 112,
1290
1291 .best_task = NULL,
1292 .best_imp = 0,
1293 .best_cpu = -1
58d081b5
MG
1294 };
1295 struct sched_domain *sd;
887c290e 1296 unsigned long taskweight, groupweight;
2c8a50aa 1297 int nid, ret;
887c290e 1298 long taskimp, groupimp;
e6628d5b 1299
58d081b5 1300 /*
fb13c7ee
MG
1301 * Pick the lowest SD_NUMA domain, as that would have the smallest
1302 * imbalance and would be the first to start moving tasks about.
1303 *
1304 * And we want to avoid any moving of tasks about, as that would create
1305 * random movement of tasks -- counter the numa conditions we're trying
1306 * to satisfy here.
58d081b5
MG
1307 */
1308 rcu_read_lock();
fb13c7ee 1309 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1310 if (sd)
1311 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1312 rcu_read_unlock();
1313
46a73e8a
RR
1314 /*
1315 * Cpusets can break the scheduler domain tree into smaller
1316 * balance domains, some of which do not cross NUMA boundaries.
1317 * Tasks that are "trapped" in such domains cannot be migrated
1318 * elsewhere, so there is no point in (re)trying.
1319 */
1320 if (unlikely(!sd)) {
de1b301a 1321 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1322 return -EINVAL;
1323 }
1324
887c290e
RR
1325 taskweight = task_weight(p, env.src_nid);
1326 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1327 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1328 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1329 taskimp = task_weight(p, env.dst_nid) - taskweight;
1330 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1331 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1332
a43455a1
RR
1333 /* Try to find a spot on the preferred nid. */
1334 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1335
1336 /* No space available on the preferred nid. Look elsewhere. */
1337 if (env.best_cpu == -1) {
2c8a50aa
MG
1338 for_each_online_node(nid) {
1339 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1340 continue;
58d081b5 1341
83e1d2cd 1342 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1343 taskimp = task_weight(p, nid) - taskweight;
1344 groupimp = group_weight(p, nid) - groupweight;
1345 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1346 continue;
1347
2c8a50aa
MG
1348 env.dst_nid = nid;
1349 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1350 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1351 }
1352 }
1353
68d1b02a
RR
1354 /*
1355 * If the task is part of a workload that spans multiple NUMA nodes,
1356 * and is migrating into one of the workload's active nodes, remember
1357 * this node as the task's preferred numa node, so the workload can
1358 * settle down.
1359 * A task that migrated to a second choice node will be better off
1360 * trying for a better one later. Do not set the preferred node here.
1361 */
db015dae
RR
1362 if (p->numa_group) {
1363 if (env.best_cpu == -1)
1364 nid = env.src_nid;
1365 else
1366 nid = env.dst_nid;
1367
1368 if (node_isset(nid, p->numa_group->active_nodes))
1369 sched_setnuma(p, env.dst_nid);
1370 }
1371
1372 /* No better CPU than the current one was found. */
1373 if (env.best_cpu == -1)
1374 return -EAGAIN;
0ec8aa00 1375
04bb2f94
RR
1376 /*
1377 * Reset the scan period if the task is being rescheduled on an
1378 * alternative node to recheck if the tasks is now properly placed.
1379 */
1380 p->numa_scan_period = task_scan_min(p);
1381
fb13c7ee 1382 if (env.best_task == NULL) {
286549dc
MG
1383 ret = migrate_task_to(p, env.best_cpu);
1384 if (ret != 0)
1385 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1386 return ret;
1387 }
1388
1389 ret = migrate_swap(p, env.best_task);
286549dc
MG
1390 if (ret != 0)
1391 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1392 put_task_struct(env.best_task);
1393 return ret;
e6628d5b
MG
1394}
1395
6b9a7460
MG
1396/* Attempt to migrate a task to a CPU on the preferred node. */
1397static void numa_migrate_preferred(struct task_struct *p)
1398{
5085e2a3
RR
1399 unsigned long interval = HZ;
1400
2739d3ee 1401 /* This task has no NUMA fault statistics yet */
ff1df896 1402 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1403 return;
1404
2739d3ee 1405 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1406 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1407 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1408
1409 /* Success if task is already running on preferred CPU */
de1b301a 1410 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1411 return;
1412
1413 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1414 task_numa_migrate(p);
6b9a7460
MG
1415}
1416
20e07dea
RR
1417/*
1418 * Find the nodes on which the workload is actively running. We do this by
1419 * tracking the nodes from which NUMA hinting faults are triggered. This can
1420 * be different from the set of nodes where the workload's memory is currently
1421 * located.
1422 *
1423 * The bitmask is used to make smarter decisions on when to do NUMA page
1424 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1425 * are added when they cause over 6/16 of the maximum number of faults, but
1426 * only removed when they drop below 3/16.
1427 */
1428static void update_numa_active_node_mask(struct numa_group *numa_group)
1429{
1430 unsigned long faults, max_faults = 0;
1431 int nid;
1432
1433 for_each_online_node(nid) {
1434 faults = group_faults_cpu(numa_group, nid);
1435 if (faults > max_faults)
1436 max_faults = faults;
1437 }
1438
1439 for_each_online_node(nid) {
1440 faults = group_faults_cpu(numa_group, nid);
1441 if (!node_isset(nid, numa_group->active_nodes)) {
1442 if (faults > max_faults * 6 / 16)
1443 node_set(nid, numa_group->active_nodes);
1444 } else if (faults < max_faults * 3 / 16)
1445 node_clear(nid, numa_group->active_nodes);
1446 }
1447}
1448
04bb2f94
RR
1449/*
1450 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1451 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1452 * period will be for the next scan window. If local/(local+remote) ratio is
1453 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1454 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1455 */
1456#define NUMA_PERIOD_SLOTS 10
a22b4b01 1457#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1458
1459/*
1460 * Increase the scan period (slow down scanning) if the majority of
1461 * our memory is already on our local node, or if the majority of
1462 * the page accesses are shared with other processes.
1463 * Otherwise, decrease the scan period.
1464 */
1465static void update_task_scan_period(struct task_struct *p,
1466 unsigned long shared, unsigned long private)
1467{
1468 unsigned int period_slot;
1469 int ratio;
1470 int diff;
1471
1472 unsigned long remote = p->numa_faults_locality[0];
1473 unsigned long local = p->numa_faults_locality[1];
1474
1475 /*
1476 * If there were no record hinting faults then either the task is
1477 * completely idle or all activity is areas that are not of interest
1478 * to automatic numa balancing. Scan slower
1479 */
1480 if (local + shared == 0) {
1481 p->numa_scan_period = min(p->numa_scan_period_max,
1482 p->numa_scan_period << 1);
1483
1484 p->mm->numa_next_scan = jiffies +
1485 msecs_to_jiffies(p->numa_scan_period);
1486
1487 return;
1488 }
1489
1490 /*
1491 * Prepare to scale scan period relative to the current period.
1492 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1493 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1494 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1495 */
1496 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1497 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1498 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1499 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1500 if (!slot)
1501 slot = 1;
1502 diff = slot * period_slot;
1503 } else {
1504 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1505
1506 /*
1507 * Scale scan rate increases based on sharing. There is an
1508 * inverse relationship between the degree of sharing and
1509 * the adjustment made to the scanning period. Broadly
1510 * speaking the intent is that there is little point
1511 * scanning faster if shared accesses dominate as it may
1512 * simply bounce migrations uselessly
1513 */
04bb2f94
RR
1514 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1515 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1516 }
1517
1518 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1519 task_scan_min(p), task_scan_max(p));
1520 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1521}
1522
7e2703e6
RR
1523/*
1524 * Get the fraction of time the task has been running since the last
1525 * NUMA placement cycle. The scheduler keeps similar statistics, but
1526 * decays those on a 32ms period, which is orders of magnitude off
1527 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1528 * stats only if the task is so new there are no NUMA statistics yet.
1529 */
1530static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1531{
1532 u64 runtime, delta, now;
1533 /* Use the start of this time slice to avoid calculations. */
1534 now = p->se.exec_start;
1535 runtime = p->se.sum_exec_runtime;
1536
1537 if (p->last_task_numa_placement) {
1538 delta = runtime - p->last_sum_exec_runtime;
1539 *period = now - p->last_task_numa_placement;
1540 } else {
1541 delta = p->se.avg.runnable_avg_sum;
1542 *period = p->se.avg.runnable_avg_period;
1543 }
1544
1545 p->last_sum_exec_runtime = runtime;
1546 p->last_task_numa_placement = now;
1547
1548 return delta;
1549}
1550
cbee9f88
PZ
1551static void task_numa_placement(struct task_struct *p)
1552{
83e1d2cd
MG
1553 int seq, nid, max_nid = -1, max_group_nid = -1;
1554 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1555 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1556 unsigned long total_faults;
1557 u64 runtime, period;
7dbd13ed 1558 spinlock_t *group_lock = NULL;
cbee9f88 1559
2832bc19 1560 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1561 if (p->numa_scan_seq == seq)
1562 return;
1563 p->numa_scan_seq = seq;
598f0ec0 1564 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1565
7e2703e6
RR
1566 total_faults = p->numa_faults_locality[0] +
1567 p->numa_faults_locality[1];
1568 runtime = numa_get_avg_runtime(p, &period);
1569
7dbd13ed
MG
1570 /* If the task is part of a group prevent parallel updates to group stats */
1571 if (p->numa_group) {
1572 group_lock = &p->numa_group->lock;
60e69eed 1573 spin_lock_irq(group_lock);
7dbd13ed
MG
1574 }
1575
688b7585
MG
1576 /* Find the node with the highest number of faults */
1577 for_each_online_node(nid) {
83e1d2cd 1578 unsigned long faults = 0, group_faults = 0;
ac8e895b 1579 int priv, i;
745d6147 1580
be1e4e76 1581 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1582 long diff, f_diff, f_weight;
8c8a743c 1583
ac8e895b 1584 i = task_faults_idx(nid, priv);
745d6147 1585
ac8e895b 1586 /* Decay existing window, copy faults since last scan */
35664fd4 1587 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1588 fault_types[priv] += p->numa_faults_buffer_memory[i];
1589 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1590
7e2703e6
RR
1591 /*
1592 * Normalize the faults_from, so all tasks in a group
1593 * count according to CPU use, instead of by the raw
1594 * number of faults. Tasks with little runtime have
1595 * little over-all impact on throughput, and thus their
1596 * faults are less important.
1597 */
1598 f_weight = div64_u64(runtime << 16, period + 1);
1599 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1600 (total_faults + 1);
35664fd4 1601 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1602 p->numa_faults_buffer_cpu[i] = 0;
1603
35664fd4
RR
1604 p->numa_faults_memory[i] += diff;
1605 p->numa_faults_cpu[i] += f_diff;
ff1df896 1606 faults += p->numa_faults_memory[i];
83e1d2cd 1607 p->total_numa_faults += diff;
8c8a743c
PZ
1608 if (p->numa_group) {
1609 /* safe because we can only change our own group */
989348b5 1610 p->numa_group->faults[i] += diff;
50ec8a40 1611 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1612 p->numa_group->total_faults += diff;
1613 group_faults += p->numa_group->faults[i];
8c8a743c 1614 }
ac8e895b
MG
1615 }
1616
688b7585
MG
1617 if (faults > max_faults) {
1618 max_faults = faults;
1619 max_nid = nid;
1620 }
83e1d2cd
MG
1621
1622 if (group_faults > max_group_faults) {
1623 max_group_faults = group_faults;
1624 max_group_nid = nid;
1625 }
1626 }
1627
04bb2f94
RR
1628 update_task_scan_period(p, fault_types[0], fault_types[1]);
1629
7dbd13ed 1630 if (p->numa_group) {
20e07dea 1631 update_numa_active_node_mask(p->numa_group);
60e69eed 1632 spin_unlock_irq(group_lock);
f0b8a4af 1633 max_nid = max_group_nid;
688b7585
MG
1634 }
1635
bb97fc31
RR
1636 if (max_faults) {
1637 /* Set the new preferred node */
1638 if (max_nid != p->numa_preferred_nid)
1639 sched_setnuma(p, max_nid);
1640
1641 if (task_node(p) != p->numa_preferred_nid)
1642 numa_migrate_preferred(p);
3a7053b3 1643 }
cbee9f88
PZ
1644}
1645
8c8a743c
PZ
1646static inline int get_numa_group(struct numa_group *grp)
1647{
1648 return atomic_inc_not_zero(&grp->refcount);
1649}
1650
1651static inline void put_numa_group(struct numa_group *grp)
1652{
1653 if (atomic_dec_and_test(&grp->refcount))
1654 kfree_rcu(grp, rcu);
1655}
1656
3e6a9418
MG
1657static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1658 int *priv)
8c8a743c
PZ
1659{
1660 struct numa_group *grp, *my_grp;
1661 struct task_struct *tsk;
1662 bool join = false;
1663 int cpu = cpupid_to_cpu(cpupid);
1664 int i;
1665
1666 if (unlikely(!p->numa_group)) {
1667 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1668 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1669
1670 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1671 if (!grp)
1672 return;
1673
1674 atomic_set(&grp->refcount, 1);
1675 spin_lock_init(&grp->lock);
1676 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1677 grp->gid = p->pid;
50ec8a40 1678 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1679 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1680 nr_node_ids;
8c8a743c 1681
20e07dea
RR
1682 node_set(task_node(current), grp->active_nodes);
1683
be1e4e76 1684 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1685 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1686
989348b5 1687 grp->total_faults = p->total_numa_faults;
83e1d2cd 1688
8c8a743c
PZ
1689 list_add(&p->numa_entry, &grp->task_list);
1690 grp->nr_tasks++;
1691 rcu_assign_pointer(p->numa_group, grp);
1692 }
1693
1694 rcu_read_lock();
1695 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1696
1697 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1698 goto no_join;
8c8a743c
PZ
1699
1700 grp = rcu_dereference(tsk->numa_group);
1701 if (!grp)
3354781a 1702 goto no_join;
8c8a743c
PZ
1703
1704 my_grp = p->numa_group;
1705 if (grp == my_grp)
3354781a 1706 goto no_join;
8c8a743c
PZ
1707
1708 /*
1709 * Only join the other group if its bigger; if we're the bigger group,
1710 * the other task will join us.
1711 */
1712 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1713 goto no_join;
8c8a743c
PZ
1714
1715 /*
1716 * Tie-break on the grp address.
1717 */
1718 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1719 goto no_join;
8c8a743c 1720
dabe1d99
RR
1721 /* Always join threads in the same process. */
1722 if (tsk->mm == current->mm)
1723 join = true;
1724
1725 /* Simple filter to avoid false positives due to PID collisions */
1726 if (flags & TNF_SHARED)
1727 join = true;
8c8a743c 1728
3e6a9418
MG
1729 /* Update priv based on whether false sharing was detected */
1730 *priv = !join;
1731
dabe1d99 1732 if (join && !get_numa_group(grp))
3354781a 1733 goto no_join;
8c8a743c 1734
8c8a743c
PZ
1735 rcu_read_unlock();
1736
1737 if (!join)
1738 return;
1739
60e69eed
MG
1740 BUG_ON(irqs_disabled());
1741 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1742
be1e4e76 1743 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1744 my_grp->faults[i] -= p->numa_faults_memory[i];
1745 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1746 }
989348b5
MG
1747 my_grp->total_faults -= p->total_numa_faults;
1748 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1749
1750 list_move(&p->numa_entry, &grp->task_list);
1751 my_grp->nr_tasks--;
1752 grp->nr_tasks++;
1753
1754 spin_unlock(&my_grp->lock);
60e69eed 1755 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1756
1757 rcu_assign_pointer(p->numa_group, grp);
1758
1759 put_numa_group(my_grp);
3354781a
PZ
1760 return;
1761
1762no_join:
1763 rcu_read_unlock();
1764 return;
8c8a743c
PZ
1765}
1766
1767void task_numa_free(struct task_struct *p)
1768{
1769 struct numa_group *grp = p->numa_group;
ff1df896 1770 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1771 unsigned long flags;
1772 int i;
8c8a743c
PZ
1773
1774 if (grp) {
e9dd685c 1775 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1776 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1777 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1778 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1779
8c8a743c
PZ
1780 list_del(&p->numa_entry);
1781 grp->nr_tasks--;
e9dd685c 1782 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1783 rcu_assign_pointer(p->numa_group, NULL);
1784 put_numa_group(grp);
1785 }
1786
ff1df896
RR
1787 p->numa_faults_memory = NULL;
1788 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1789 p->numa_faults_cpu= NULL;
1790 p->numa_faults_buffer_cpu = NULL;
82727018 1791 kfree(numa_faults);
8c8a743c
PZ
1792}
1793
cbee9f88
PZ
1794/*
1795 * Got a PROT_NONE fault for a page on @node.
1796 */
58b46da3 1797void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1798{
1799 struct task_struct *p = current;
6688cc05 1800 bool migrated = flags & TNF_MIGRATED;
58b46da3 1801 int cpu_node = task_node(current);
792568ec 1802 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1803 int priv;
cbee9f88 1804
10e84b97 1805 if (!numabalancing_enabled)
1a687c2e
MG
1806 return;
1807
9ff1d9ff
MG
1808 /* for example, ksmd faulting in a user's mm */
1809 if (!p->mm)
1810 return;
1811
82727018
RR
1812 /* Do not worry about placement if exiting */
1813 if (p->state == TASK_DEAD)
1814 return;
1815
f809ca9a 1816 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1817 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1818 int size = sizeof(*p->numa_faults_memory) *
1819 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1820
be1e4e76 1821 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1822 if (!p->numa_faults_memory)
f809ca9a 1823 return;
745d6147 1824
ff1df896 1825 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1826 /*
1827 * The averaged statistics, shared & private, memory & cpu,
1828 * occupy the first half of the array. The second half of the
1829 * array is for current counters, which are averaged into the
1830 * first set by task_numa_placement.
1831 */
50ec8a40
RR
1832 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1833 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1834 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1835 p->total_numa_faults = 0;
04bb2f94 1836 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1837 }
cbee9f88 1838
8c8a743c
PZ
1839 /*
1840 * First accesses are treated as private, otherwise consider accesses
1841 * to be private if the accessing pid has not changed
1842 */
1843 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1844 priv = 1;
1845 } else {
1846 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1847 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1848 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1849 }
1850
792568ec
RR
1851 /*
1852 * If a workload spans multiple NUMA nodes, a shared fault that
1853 * occurs wholly within the set of nodes that the workload is
1854 * actively using should be counted as local. This allows the
1855 * scan rate to slow down when a workload has settled down.
1856 */
1857 if (!priv && !local && p->numa_group &&
1858 node_isset(cpu_node, p->numa_group->active_nodes) &&
1859 node_isset(mem_node, p->numa_group->active_nodes))
1860 local = 1;
1861
cbee9f88 1862 task_numa_placement(p);
f809ca9a 1863
2739d3ee
RR
1864 /*
1865 * Retry task to preferred node migration periodically, in case it
1866 * case it previously failed, or the scheduler moved us.
1867 */
1868 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1869 numa_migrate_preferred(p);
1870
b32e86b4
IM
1871 if (migrated)
1872 p->numa_pages_migrated += pages;
1873
58b46da3
RR
1874 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1875 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1876 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1877}
1878
6e5fb223
PZ
1879static void reset_ptenuma_scan(struct task_struct *p)
1880{
1881 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1882 p->mm->numa_scan_offset = 0;
1883}
1884
cbee9f88
PZ
1885/*
1886 * The expensive part of numa migration is done from task_work context.
1887 * Triggered from task_tick_numa().
1888 */
1889void task_numa_work(struct callback_head *work)
1890{
1891 unsigned long migrate, next_scan, now = jiffies;
1892 struct task_struct *p = current;
1893 struct mm_struct *mm = p->mm;
6e5fb223 1894 struct vm_area_struct *vma;
9f40604c 1895 unsigned long start, end;
598f0ec0 1896 unsigned long nr_pte_updates = 0;
9f40604c 1897 long pages;
cbee9f88
PZ
1898
1899 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1900
1901 work->next = work; /* protect against double add */
1902 /*
1903 * Who cares about NUMA placement when they're dying.
1904 *
1905 * NOTE: make sure not to dereference p->mm before this check,
1906 * exit_task_work() happens _after_ exit_mm() so we could be called
1907 * without p->mm even though we still had it when we enqueued this
1908 * work.
1909 */
1910 if (p->flags & PF_EXITING)
1911 return;
1912
930aa174 1913 if (!mm->numa_next_scan) {
7e8d16b6
MG
1914 mm->numa_next_scan = now +
1915 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1916 }
1917
cbee9f88
PZ
1918 /*
1919 * Enforce maximal scan/migration frequency..
1920 */
1921 migrate = mm->numa_next_scan;
1922 if (time_before(now, migrate))
1923 return;
1924
598f0ec0
MG
1925 if (p->numa_scan_period == 0) {
1926 p->numa_scan_period_max = task_scan_max(p);
1927 p->numa_scan_period = task_scan_min(p);
1928 }
cbee9f88 1929
fb003b80 1930 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1931 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1932 return;
1933
19a78d11
PZ
1934 /*
1935 * Delay this task enough that another task of this mm will likely win
1936 * the next time around.
1937 */
1938 p->node_stamp += 2 * TICK_NSEC;
1939
9f40604c
MG
1940 start = mm->numa_scan_offset;
1941 pages = sysctl_numa_balancing_scan_size;
1942 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1943 if (!pages)
1944 return;
cbee9f88 1945
6e5fb223 1946 down_read(&mm->mmap_sem);
9f40604c 1947 vma = find_vma(mm, start);
6e5fb223
PZ
1948 if (!vma) {
1949 reset_ptenuma_scan(p);
9f40604c 1950 start = 0;
6e5fb223
PZ
1951 vma = mm->mmap;
1952 }
9f40604c 1953 for (; vma; vma = vma->vm_next) {
fc314724 1954 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1955 continue;
1956
4591ce4f
MG
1957 /*
1958 * Shared library pages mapped by multiple processes are not
1959 * migrated as it is expected they are cache replicated. Avoid
1960 * hinting faults in read-only file-backed mappings or the vdso
1961 * as migrating the pages will be of marginal benefit.
1962 */
1963 if (!vma->vm_mm ||
1964 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1965 continue;
1966
3c67f474
MG
1967 /*
1968 * Skip inaccessible VMAs to avoid any confusion between
1969 * PROT_NONE and NUMA hinting ptes
1970 */
1971 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1972 continue;
4591ce4f 1973
9f40604c
MG
1974 do {
1975 start = max(start, vma->vm_start);
1976 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1977 end = min(end, vma->vm_end);
598f0ec0
MG
1978 nr_pte_updates += change_prot_numa(vma, start, end);
1979
1980 /*
1981 * Scan sysctl_numa_balancing_scan_size but ensure that
1982 * at least one PTE is updated so that unused virtual
1983 * address space is quickly skipped.
1984 */
1985 if (nr_pte_updates)
1986 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1987
9f40604c
MG
1988 start = end;
1989 if (pages <= 0)
1990 goto out;
3cf1962c
RR
1991
1992 cond_resched();
9f40604c 1993 } while (end != vma->vm_end);
cbee9f88 1994 }
6e5fb223 1995
9f40604c 1996out:
6e5fb223 1997 /*
c69307d5
PZ
1998 * It is possible to reach the end of the VMA list but the last few
1999 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2000 * would find the !migratable VMA on the next scan but not reset the
2001 * scanner to the start so check it now.
6e5fb223
PZ
2002 */
2003 if (vma)
9f40604c 2004 mm->numa_scan_offset = start;
6e5fb223
PZ
2005 else
2006 reset_ptenuma_scan(p);
2007 up_read(&mm->mmap_sem);
cbee9f88
PZ
2008}
2009
2010/*
2011 * Drive the periodic memory faults..
2012 */
2013void task_tick_numa(struct rq *rq, struct task_struct *curr)
2014{
2015 struct callback_head *work = &curr->numa_work;
2016 u64 period, now;
2017
2018 /*
2019 * We don't care about NUMA placement if we don't have memory.
2020 */
2021 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2022 return;
2023
2024 /*
2025 * Using runtime rather than walltime has the dual advantage that
2026 * we (mostly) drive the selection from busy threads and that the
2027 * task needs to have done some actual work before we bother with
2028 * NUMA placement.
2029 */
2030 now = curr->se.sum_exec_runtime;
2031 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2032
2033 if (now - curr->node_stamp > period) {
4b96a29b 2034 if (!curr->node_stamp)
598f0ec0 2035 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2036 curr->node_stamp += period;
cbee9f88
PZ
2037
2038 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2039 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2040 task_work_add(curr, work, true);
2041 }
2042 }
2043}
2044#else
2045static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2046{
2047}
0ec8aa00
PZ
2048
2049static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2050{
2051}
2052
2053static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2054{
2055}
cbee9f88
PZ
2056#endif /* CONFIG_NUMA_BALANCING */
2057
30cfdcfc
DA
2058static void
2059account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2060{
2061 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2062 if (!parent_entity(se))
029632fb 2063 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2064#ifdef CONFIG_SMP
0ec8aa00
PZ
2065 if (entity_is_task(se)) {
2066 struct rq *rq = rq_of(cfs_rq);
2067
2068 account_numa_enqueue(rq, task_of(se));
2069 list_add(&se->group_node, &rq->cfs_tasks);
2070 }
367456c7 2071#endif
30cfdcfc 2072 cfs_rq->nr_running++;
30cfdcfc
DA
2073}
2074
2075static void
2076account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2077{
2078 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2079 if (!parent_entity(se))
029632fb 2080 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2081 if (entity_is_task(se)) {
2082 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2083 list_del_init(&se->group_node);
0ec8aa00 2084 }
30cfdcfc 2085 cfs_rq->nr_running--;
30cfdcfc
DA
2086}
2087
3ff6dcac
YZ
2088#ifdef CONFIG_FAIR_GROUP_SCHED
2089# ifdef CONFIG_SMP
cf5f0acf
PZ
2090static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2091{
2092 long tg_weight;
2093
2094 /*
2095 * Use this CPU's actual weight instead of the last load_contribution
2096 * to gain a more accurate current total weight. See
2097 * update_cfs_rq_load_contribution().
2098 */
bf5b986e 2099 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2100 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2101 tg_weight += cfs_rq->load.weight;
2102
2103 return tg_weight;
2104}
2105
6d5ab293 2106static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2107{
cf5f0acf 2108 long tg_weight, load, shares;
3ff6dcac 2109
cf5f0acf 2110 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2111 load = cfs_rq->load.weight;
3ff6dcac 2112
3ff6dcac 2113 shares = (tg->shares * load);
cf5f0acf
PZ
2114 if (tg_weight)
2115 shares /= tg_weight;
3ff6dcac
YZ
2116
2117 if (shares < MIN_SHARES)
2118 shares = MIN_SHARES;
2119 if (shares > tg->shares)
2120 shares = tg->shares;
2121
2122 return shares;
2123}
3ff6dcac 2124# else /* CONFIG_SMP */
6d5ab293 2125static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2126{
2127 return tg->shares;
2128}
3ff6dcac 2129# endif /* CONFIG_SMP */
2069dd75
PZ
2130static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2131 unsigned long weight)
2132{
19e5eebb
PT
2133 if (se->on_rq) {
2134 /* commit outstanding execution time */
2135 if (cfs_rq->curr == se)
2136 update_curr(cfs_rq);
2069dd75 2137 account_entity_dequeue(cfs_rq, se);
19e5eebb 2138 }
2069dd75
PZ
2139
2140 update_load_set(&se->load, weight);
2141
2142 if (se->on_rq)
2143 account_entity_enqueue(cfs_rq, se);
2144}
2145
82958366
PT
2146static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2147
6d5ab293 2148static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2149{
2150 struct task_group *tg;
2151 struct sched_entity *se;
3ff6dcac 2152 long shares;
2069dd75 2153
2069dd75
PZ
2154 tg = cfs_rq->tg;
2155 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2156 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2157 return;
3ff6dcac
YZ
2158#ifndef CONFIG_SMP
2159 if (likely(se->load.weight == tg->shares))
2160 return;
2161#endif
6d5ab293 2162 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2163
2164 reweight_entity(cfs_rq_of(se), se, shares);
2165}
2166#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2167static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2168{
2169}
2170#endif /* CONFIG_FAIR_GROUP_SCHED */
2171
141965c7 2172#ifdef CONFIG_SMP
5b51f2f8
PT
2173/*
2174 * We choose a half-life close to 1 scheduling period.
2175 * Note: The tables below are dependent on this value.
2176 */
2177#define LOAD_AVG_PERIOD 32
2178#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2179#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2180
2181/* Precomputed fixed inverse multiplies for multiplication by y^n */
2182static const u32 runnable_avg_yN_inv[] = {
2183 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2184 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2185 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2186 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2187 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2188 0x85aac367, 0x82cd8698,
2189};
2190
2191/*
2192 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2193 * over-estimates when re-combining.
2194 */
2195static const u32 runnable_avg_yN_sum[] = {
2196 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2197 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2198 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2199};
2200
9d85f21c
PT
2201/*
2202 * Approximate:
2203 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2204 */
2205static __always_inline u64 decay_load(u64 val, u64 n)
2206{
5b51f2f8
PT
2207 unsigned int local_n;
2208
2209 if (!n)
2210 return val;
2211 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2212 return 0;
2213
2214 /* after bounds checking we can collapse to 32-bit */
2215 local_n = n;
2216
2217 /*
2218 * As y^PERIOD = 1/2, we can combine
2219 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2220 * With a look-up table which covers k^n (n<PERIOD)
2221 *
2222 * To achieve constant time decay_load.
2223 */
2224 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2225 val >>= local_n / LOAD_AVG_PERIOD;
2226 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2227 }
2228
5b51f2f8
PT
2229 val *= runnable_avg_yN_inv[local_n];
2230 /* We don't use SRR here since we always want to round down. */
2231 return val >> 32;
2232}
2233
2234/*
2235 * For updates fully spanning n periods, the contribution to runnable
2236 * average will be: \Sum 1024*y^n
2237 *
2238 * We can compute this reasonably efficiently by combining:
2239 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2240 */
2241static u32 __compute_runnable_contrib(u64 n)
2242{
2243 u32 contrib = 0;
2244
2245 if (likely(n <= LOAD_AVG_PERIOD))
2246 return runnable_avg_yN_sum[n];
2247 else if (unlikely(n >= LOAD_AVG_MAX_N))
2248 return LOAD_AVG_MAX;
2249
2250 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2251 do {
2252 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2253 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2254
2255 n -= LOAD_AVG_PERIOD;
2256 } while (n > LOAD_AVG_PERIOD);
2257
2258 contrib = decay_load(contrib, n);
2259 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2260}
2261
2262/*
2263 * We can represent the historical contribution to runnable average as the
2264 * coefficients of a geometric series. To do this we sub-divide our runnable
2265 * history into segments of approximately 1ms (1024us); label the segment that
2266 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2267 *
2268 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2269 * p0 p1 p2
2270 * (now) (~1ms ago) (~2ms ago)
2271 *
2272 * Let u_i denote the fraction of p_i that the entity was runnable.
2273 *
2274 * We then designate the fractions u_i as our co-efficients, yielding the
2275 * following representation of historical load:
2276 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2277 *
2278 * We choose y based on the with of a reasonably scheduling period, fixing:
2279 * y^32 = 0.5
2280 *
2281 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2282 * approximately half as much as the contribution to load within the last ms
2283 * (u_0).
2284 *
2285 * When a period "rolls over" and we have new u_0`, multiplying the previous
2286 * sum again by y is sufficient to update:
2287 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2288 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2289 */
2290static __always_inline int __update_entity_runnable_avg(u64 now,
2291 struct sched_avg *sa,
2292 int runnable)
2293{
5b51f2f8
PT
2294 u64 delta, periods;
2295 u32 runnable_contrib;
9d85f21c
PT
2296 int delta_w, decayed = 0;
2297
2298 delta = now - sa->last_runnable_update;
2299 /*
2300 * This should only happen when time goes backwards, which it
2301 * unfortunately does during sched clock init when we swap over to TSC.
2302 */
2303 if ((s64)delta < 0) {
2304 sa->last_runnable_update = now;
2305 return 0;
2306 }
2307
2308 /*
2309 * Use 1024ns as the unit of measurement since it's a reasonable
2310 * approximation of 1us and fast to compute.
2311 */
2312 delta >>= 10;
2313 if (!delta)
2314 return 0;
2315 sa->last_runnable_update = now;
2316
2317 /* delta_w is the amount already accumulated against our next period */
2318 delta_w = sa->runnable_avg_period % 1024;
2319 if (delta + delta_w >= 1024) {
2320 /* period roll-over */
2321 decayed = 1;
2322
2323 /*
2324 * Now that we know we're crossing a period boundary, figure
2325 * out how much from delta we need to complete the current
2326 * period and accrue it.
2327 */
2328 delta_w = 1024 - delta_w;
5b51f2f8
PT
2329 if (runnable)
2330 sa->runnable_avg_sum += delta_w;
2331 sa->runnable_avg_period += delta_w;
2332
2333 delta -= delta_w;
2334
2335 /* Figure out how many additional periods this update spans */
2336 periods = delta / 1024;
2337 delta %= 1024;
2338
2339 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2340 periods + 1);
2341 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2342 periods + 1);
2343
2344 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2345 runnable_contrib = __compute_runnable_contrib(periods);
2346 if (runnable)
2347 sa->runnable_avg_sum += runnable_contrib;
2348 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2349 }
2350
2351 /* Remainder of delta accrued against u_0` */
2352 if (runnable)
2353 sa->runnable_avg_sum += delta;
2354 sa->runnable_avg_period += delta;
2355
2356 return decayed;
2357}
2358
9ee474f5 2359/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2360static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2361{
2362 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2363 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2364
2365 decays -= se->avg.decay_count;
2366 if (!decays)
aff3e498 2367 return 0;
9ee474f5
PT
2368
2369 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2370 se->avg.decay_count = 0;
aff3e498
PT
2371
2372 return decays;
9ee474f5
PT
2373}
2374
c566e8e9
PT
2375#ifdef CONFIG_FAIR_GROUP_SCHED
2376static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2377 int force_update)
2378{
2379 struct task_group *tg = cfs_rq->tg;
bf5b986e 2380 long tg_contrib;
c566e8e9
PT
2381
2382 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2383 tg_contrib -= cfs_rq->tg_load_contrib;
2384
bf5b986e
AS
2385 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2386 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2387 cfs_rq->tg_load_contrib += tg_contrib;
2388 }
2389}
8165e145 2390
bb17f655
PT
2391/*
2392 * Aggregate cfs_rq runnable averages into an equivalent task_group
2393 * representation for computing load contributions.
2394 */
2395static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2396 struct cfs_rq *cfs_rq)
2397{
2398 struct task_group *tg = cfs_rq->tg;
2399 long contrib;
2400
2401 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2402 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2403 sa->runnable_avg_period + 1);
2404 contrib -= cfs_rq->tg_runnable_contrib;
2405
2406 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2407 atomic_add(contrib, &tg->runnable_avg);
2408 cfs_rq->tg_runnable_contrib += contrib;
2409 }
2410}
2411
8165e145
PT
2412static inline void __update_group_entity_contrib(struct sched_entity *se)
2413{
2414 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2415 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2416 int runnable_avg;
2417
8165e145
PT
2418 u64 contrib;
2419
2420 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2421 se->avg.load_avg_contrib = div_u64(contrib,
2422 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2423
2424 /*
2425 * For group entities we need to compute a correction term in the case
2426 * that they are consuming <1 cpu so that we would contribute the same
2427 * load as a task of equal weight.
2428 *
2429 * Explicitly co-ordinating this measurement would be expensive, but
2430 * fortunately the sum of each cpus contribution forms a usable
2431 * lower-bound on the true value.
2432 *
2433 * Consider the aggregate of 2 contributions. Either they are disjoint
2434 * (and the sum represents true value) or they are disjoint and we are
2435 * understating by the aggregate of their overlap.
2436 *
2437 * Extending this to N cpus, for a given overlap, the maximum amount we
2438 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2439 * cpus that overlap for this interval and w_i is the interval width.
2440 *
2441 * On a small machine; the first term is well-bounded which bounds the
2442 * total error since w_i is a subset of the period. Whereas on a
2443 * larger machine, while this first term can be larger, if w_i is the
2444 * of consequential size guaranteed to see n_i*w_i quickly converge to
2445 * our upper bound of 1-cpu.
2446 */
2447 runnable_avg = atomic_read(&tg->runnable_avg);
2448 if (runnable_avg < NICE_0_LOAD) {
2449 se->avg.load_avg_contrib *= runnable_avg;
2450 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2451 }
8165e145 2452}
f5f9739d
DE
2453
2454static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2455{
2456 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2457 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2458}
6e83125c 2459#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2460static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2461 int force_update) {}
bb17f655
PT
2462static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2463 struct cfs_rq *cfs_rq) {}
8165e145 2464static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2465static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2466#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2467
8165e145
PT
2468static inline void __update_task_entity_contrib(struct sched_entity *se)
2469{
2470 u32 contrib;
2471
2472 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2473 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2474 contrib /= (se->avg.runnable_avg_period + 1);
2475 se->avg.load_avg_contrib = scale_load(contrib);
2476}
2477
2dac754e
PT
2478/* Compute the current contribution to load_avg by se, return any delta */
2479static long __update_entity_load_avg_contrib(struct sched_entity *se)
2480{
2481 long old_contrib = se->avg.load_avg_contrib;
2482
8165e145
PT
2483 if (entity_is_task(se)) {
2484 __update_task_entity_contrib(se);
2485 } else {
bb17f655 2486 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2487 __update_group_entity_contrib(se);
2488 }
2dac754e
PT
2489
2490 return se->avg.load_avg_contrib - old_contrib;
2491}
2492
9ee474f5
PT
2493static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2494 long load_contrib)
2495{
2496 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2497 cfs_rq->blocked_load_avg -= load_contrib;
2498 else
2499 cfs_rq->blocked_load_avg = 0;
2500}
2501
f1b17280
PT
2502static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2503
9d85f21c 2504/* Update a sched_entity's runnable average */
9ee474f5
PT
2505static inline void update_entity_load_avg(struct sched_entity *se,
2506 int update_cfs_rq)
9d85f21c 2507{
2dac754e
PT
2508 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2509 long contrib_delta;
f1b17280 2510 u64 now;
2dac754e 2511
f1b17280
PT
2512 /*
2513 * For a group entity we need to use their owned cfs_rq_clock_task() in
2514 * case they are the parent of a throttled hierarchy.
2515 */
2516 if (entity_is_task(se))
2517 now = cfs_rq_clock_task(cfs_rq);
2518 else
2519 now = cfs_rq_clock_task(group_cfs_rq(se));
2520
2521 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2522 return;
2523
2524 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2525
2526 if (!update_cfs_rq)
2527 return;
2528
2dac754e
PT
2529 if (se->on_rq)
2530 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2531 else
2532 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2533}
2534
2535/*
2536 * Decay the load contributed by all blocked children and account this so that
2537 * their contribution may appropriately discounted when they wake up.
2538 */
aff3e498 2539static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2540{
f1b17280 2541 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2542 u64 decays;
2543
2544 decays = now - cfs_rq->last_decay;
aff3e498 2545 if (!decays && !force_update)
9ee474f5
PT
2546 return;
2547
2509940f
AS
2548 if (atomic_long_read(&cfs_rq->removed_load)) {
2549 unsigned long removed_load;
2550 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2551 subtract_blocked_load_contrib(cfs_rq, removed_load);
2552 }
9ee474f5 2553
aff3e498
PT
2554 if (decays) {
2555 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2556 decays);
2557 atomic64_add(decays, &cfs_rq->decay_counter);
2558 cfs_rq->last_decay = now;
2559 }
c566e8e9
PT
2560
2561 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2562}
18bf2805 2563
2dac754e
PT
2564/* Add the load generated by se into cfs_rq's child load-average */
2565static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2566 struct sched_entity *se,
2567 int wakeup)
2dac754e 2568{
aff3e498
PT
2569 /*
2570 * We track migrations using entity decay_count <= 0, on a wake-up
2571 * migration we use a negative decay count to track the remote decays
2572 * accumulated while sleeping.
a75cdaa9
AS
2573 *
2574 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2575 * are seen by enqueue_entity_load_avg() as a migration with an already
2576 * constructed load_avg_contrib.
aff3e498
PT
2577 */
2578 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2579 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2580 if (se->avg.decay_count) {
2581 /*
2582 * In a wake-up migration we have to approximate the
2583 * time sleeping. This is because we can't synchronize
2584 * clock_task between the two cpus, and it is not
2585 * guaranteed to be read-safe. Instead, we can
2586 * approximate this using our carried decays, which are
2587 * explicitly atomically readable.
2588 */
2589 se->avg.last_runnable_update -= (-se->avg.decay_count)
2590 << 20;
2591 update_entity_load_avg(se, 0);
2592 /* Indicate that we're now synchronized and on-rq */
2593 se->avg.decay_count = 0;
2594 }
9ee474f5
PT
2595 wakeup = 0;
2596 } else {
9390675a 2597 __synchronize_entity_decay(se);
9ee474f5
PT
2598 }
2599
aff3e498
PT
2600 /* migrated tasks did not contribute to our blocked load */
2601 if (wakeup) {
9ee474f5 2602 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2603 update_entity_load_avg(se, 0);
2604 }
9ee474f5 2605
2dac754e 2606 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2607 /* we force update consideration on load-balancer moves */
2608 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2609}
2610
9ee474f5
PT
2611/*
2612 * Remove se's load from this cfs_rq child load-average, if the entity is
2613 * transitioning to a blocked state we track its projected decay using
2614 * blocked_load_avg.
2615 */
2dac754e 2616static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2617 struct sched_entity *se,
2618 int sleep)
2dac754e 2619{
9ee474f5 2620 update_entity_load_avg(se, 1);
aff3e498
PT
2621 /* we force update consideration on load-balancer moves */
2622 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2623
2dac754e 2624 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2625 if (sleep) {
2626 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2627 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2628 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2629}
642dbc39
VG
2630
2631/*
2632 * Update the rq's load with the elapsed running time before entering
2633 * idle. if the last scheduled task is not a CFS task, idle_enter will
2634 * be the only way to update the runnable statistic.
2635 */
2636void idle_enter_fair(struct rq *this_rq)
2637{
2638 update_rq_runnable_avg(this_rq, 1);
2639}
2640
2641/*
2642 * Update the rq's load with the elapsed idle time before a task is
2643 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2644 * be the only way to update the runnable statistic.
2645 */
2646void idle_exit_fair(struct rq *this_rq)
2647{
2648 update_rq_runnable_avg(this_rq, 0);
2649}
2650
6e83125c
PZ
2651static int idle_balance(struct rq *this_rq);
2652
38033c37
PZ
2653#else /* CONFIG_SMP */
2654
9ee474f5
PT
2655static inline void update_entity_load_avg(struct sched_entity *se,
2656 int update_cfs_rq) {}
18bf2805 2657static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2658static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2659 struct sched_entity *se,
2660 int wakeup) {}
2dac754e 2661static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2662 struct sched_entity *se,
2663 int sleep) {}
aff3e498
PT
2664static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2665 int force_update) {}
6e83125c
PZ
2666
2667static inline int idle_balance(struct rq *rq)
2668{
2669 return 0;
2670}
2671
38033c37 2672#endif /* CONFIG_SMP */
9d85f21c 2673
2396af69 2674static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2675{
bf0f6f24 2676#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2677 struct task_struct *tsk = NULL;
2678
2679 if (entity_is_task(se))
2680 tsk = task_of(se);
2681
41acab88 2682 if (se->statistics.sleep_start) {
78becc27 2683 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2684
2685 if ((s64)delta < 0)
2686 delta = 0;
2687
41acab88
LDM
2688 if (unlikely(delta > se->statistics.sleep_max))
2689 se->statistics.sleep_max = delta;
bf0f6f24 2690
8c79a045 2691 se->statistics.sleep_start = 0;
41acab88 2692 se->statistics.sum_sleep_runtime += delta;
9745512c 2693
768d0c27 2694 if (tsk) {
e414314c 2695 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2696 trace_sched_stat_sleep(tsk, delta);
2697 }
bf0f6f24 2698 }
41acab88 2699 if (se->statistics.block_start) {
78becc27 2700 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2701
2702 if ((s64)delta < 0)
2703 delta = 0;
2704
41acab88
LDM
2705 if (unlikely(delta > se->statistics.block_max))
2706 se->statistics.block_max = delta;
bf0f6f24 2707
8c79a045 2708 se->statistics.block_start = 0;
41acab88 2709 se->statistics.sum_sleep_runtime += delta;
30084fbd 2710
e414314c 2711 if (tsk) {
8f0dfc34 2712 if (tsk->in_iowait) {
41acab88
LDM
2713 se->statistics.iowait_sum += delta;
2714 se->statistics.iowait_count++;
768d0c27 2715 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2716 }
2717
b781a602
AV
2718 trace_sched_stat_blocked(tsk, delta);
2719
e414314c
PZ
2720 /*
2721 * Blocking time is in units of nanosecs, so shift by
2722 * 20 to get a milliseconds-range estimation of the
2723 * amount of time that the task spent sleeping:
2724 */
2725 if (unlikely(prof_on == SLEEP_PROFILING)) {
2726 profile_hits(SLEEP_PROFILING,
2727 (void *)get_wchan(tsk),
2728 delta >> 20);
2729 }
2730 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2731 }
bf0f6f24
IM
2732 }
2733#endif
2734}
2735
ddc97297
PZ
2736static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2737{
2738#ifdef CONFIG_SCHED_DEBUG
2739 s64 d = se->vruntime - cfs_rq->min_vruntime;
2740
2741 if (d < 0)
2742 d = -d;
2743
2744 if (d > 3*sysctl_sched_latency)
2745 schedstat_inc(cfs_rq, nr_spread_over);
2746#endif
2747}
2748
aeb73b04
PZ
2749static void
2750place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2751{
1af5f730 2752 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2753
2cb8600e
PZ
2754 /*
2755 * The 'current' period is already promised to the current tasks,
2756 * however the extra weight of the new task will slow them down a
2757 * little, place the new task so that it fits in the slot that
2758 * stays open at the end.
2759 */
94dfb5e7 2760 if (initial && sched_feat(START_DEBIT))
f9c0b095 2761 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2762
a2e7a7eb 2763 /* sleeps up to a single latency don't count. */
5ca9880c 2764 if (!initial) {
a2e7a7eb 2765 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2766
a2e7a7eb
MG
2767 /*
2768 * Halve their sleep time's effect, to allow
2769 * for a gentler effect of sleepers:
2770 */
2771 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2772 thresh >>= 1;
51e0304c 2773
a2e7a7eb 2774 vruntime -= thresh;
aeb73b04
PZ
2775 }
2776
b5d9d734 2777 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2778 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2779}
2780
d3d9dc33
PT
2781static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2782
bf0f6f24 2783static void
88ec22d3 2784enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2785{
88ec22d3
PZ
2786 /*
2787 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2788 * through calling update_curr().
88ec22d3 2789 */
371fd7e7 2790 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2791 se->vruntime += cfs_rq->min_vruntime;
2792
bf0f6f24 2793 /*
a2a2d680 2794 * Update run-time statistics of the 'current'.
bf0f6f24 2795 */
b7cc0896 2796 update_curr(cfs_rq);
f269ae04 2797 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2798 account_entity_enqueue(cfs_rq, se);
2799 update_cfs_shares(cfs_rq);
bf0f6f24 2800
88ec22d3 2801 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2802 place_entity(cfs_rq, se, 0);
2396af69 2803 enqueue_sleeper(cfs_rq, se);
e9acbff6 2804 }
bf0f6f24 2805
d2417e5a 2806 update_stats_enqueue(cfs_rq, se);
ddc97297 2807 check_spread(cfs_rq, se);
83b699ed
SV
2808 if (se != cfs_rq->curr)
2809 __enqueue_entity(cfs_rq, se);
2069dd75 2810 se->on_rq = 1;
3d4b47b4 2811
d3d9dc33 2812 if (cfs_rq->nr_running == 1) {
3d4b47b4 2813 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2814 check_enqueue_throttle(cfs_rq);
2815 }
bf0f6f24
IM
2816}
2817
2c13c919 2818static void __clear_buddies_last(struct sched_entity *se)
2002c695 2819{
2c13c919
RR
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2822 if (cfs_rq->last != se)
2c13c919 2823 break;
f1044799
PZ
2824
2825 cfs_rq->last = NULL;
2c13c919
RR
2826 }
2827}
2002c695 2828
2c13c919
RR
2829static void __clear_buddies_next(struct sched_entity *se)
2830{
2831 for_each_sched_entity(se) {
2832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2833 if (cfs_rq->next != se)
2c13c919 2834 break;
f1044799
PZ
2835
2836 cfs_rq->next = NULL;
2c13c919 2837 }
2002c695
PZ
2838}
2839
ac53db59
RR
2840static void __clear_buddies_skip(struct sched_entity *se)
2841{
2842 for_each_sched_entity(se) {
2843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2844 if (cfs_rq->skip != se)
ac53db59 2845 break;
f1044799
PZ
2846
2847 cfs_rq->skip = NULL;
ac53db59
RR
2848 }
2849}
2850
a571bbea
PZ
2851static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2852{
2c13c919
RR
2853 if (cfs_rq->last == se)
2854 __clear_buddies_last(se);
2855
2856 if (cfs_rq->next == se)
2857 __clear_buddies_next(se);
ac53db59
RR
2858
2859 if (cfs_rq->skip == se)
2860 __clear_buddies_skip(se);
a571bbea
PZ
2861}
2862
6c16a6dc 2863static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2864
bf0f6f24 2865static void
371fd7e7 2866dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2867{
a2a2d680
DA
2868 /*
2869 * Update run-time statistics of the 'current'.
2870 */
2871 update_curr(cfs_rq);
17bc14b7 2872 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2873
19b6a2e3 2874 update_stats_dequeue(cfs_rq, se);
371fd7e7 2875 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2876#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2877 if (entity_is_task(se)) {
2878 struct task_struct *tsk = task_of(se);
2879
2880 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2881 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2882 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2883 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2884 }
db36cc7d 2885#endif
67e9fb2a
PZ
2886 }
2887
2002c695 2888 clear_buddies(cfs_rq, se);
4793241b 2889
83b699ed 2890 if (se != cfs_rq->curr)
30cfdcfc 2891 __dequeue_entity(cfs_rq, se);
17bc14b7 2892 se->on_rq = 0;
30cfdcfc 2893 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2894
2895 /*
2896 * Normalize the entity after updating the min_vruntime because the
2897 * update can refer to the ->curr item and we need to reflect this
2898 * movement in our normalized position.
2899 */
371fd7e7 2900 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2901 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2902
d8b4986d
PT
2903 /* return excess runtime on last dequeue */
2904 return_cfs_rq_runtime(cfs_rq);
2905
1e876231 2906 update_min_vruntime(cfs_rq);
17bc14b7 2907 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2908}
2909
2910/*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
7c92e54f 2913static void
2e09bf55 2914check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2915{
11697830 2916 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2917 struct sched_entity *se;
2918 s64 delta;
11697830 2919
6d0f0ebd 2920 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2921 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2922 if (delta_exec > ideal_runtime) {
8875125e 2923 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2924 /*
2925 * The current task ran long enough, ensure it doesn't get
2926 * re-elected due to buddy favours.
2927 */
2928 clear_buddies(cfs_rq, curr);
f685ceac
MG
2929 return;
2930 }
2931
2932 /*
2933 * Ensure that a task that missed wakeup preemption by a
2934 * narrow margin doesn't have to wait for a full slice.
2935 * This also mitigates buddy induced latencies under load.
2936 */
f685ceac
MG
2937 if (delta_exec < sysctl_sched_min_granularity)
2938 return;
2939
f4cfb33e
WX
2940 se = __pick_first_entity(cfs_rq);
2941 delta = curr->vruntime - se->vruntime;
f685ceac 2942
f4cfb33e
WX
2943 if (delta < 0)
2944 return;
d7d82944 2945
f4cfb33e 2946 if (delta > ideal_runtime)
8875125e 2947 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2948}
2949
83b699ed 2950static void
8494f412 2951set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2952{
83b699ed
SV
2953 /* 'current' is not kept within the tree. */
2954 if (se->on_rq) {
2955 /*
2956 * Any task has to be enqueued before it get to execute on
2957 * a CPU. So account for the time it spent waiting on the
2958 * runqueue.
2959 */
2960 update_stats_wait_end(cfs_rq, se);
2961 __dequeue_entity(cfs_rq, se);
2962 }
2963
79303e9e 2964 update_stats_curr_start(cfs_rq, se);
429d43bc 2965 cfs_rq->curr = se;
eba1ed4b
IM
2966#ifdef CONFIG_SCHEDSTATS
2967 /*
2968 * Track our maximum slice length, if the CPU's load is at
2969 * least twice that of our own weight (i.e. dont track it
2970 * when there are only lesser-weight tasks around):
2971 */
495eca49 2972 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2973 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2974 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2975 }
2976#endif
4a55b450 2977 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2978}
2979
3f3a4904
PZ
2980static int
2981wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2982
ac53db59
RR
2983/*
2984 * Pick the next process, keeping these things in mind, in this order:
2985 * 1) keep things fair between processes/task groups
2986 * 2) pick the "next" process, since someone really wants that to run
2987 * 3) pick the "last" process, for cache locality
2988 * 4) do not run the "skip" process, if something else is available
2989 */
678d5718
PZ
2990static struct sched_entity *
2991pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2992{
678d5718
PZ
2993 struct sched_entity *left = __pick_first_entity(cfs_rq);
2994 struct sched_entity *se;
2995
2996 /*
2997 * If curr is set we have to see if its left of the leftmost entity
2998 * still in the tree, provided there was anything in the tree at all.
2999 */
3000 if (!left || (curr && entity_before(curr, left)))
3001 left = curr;
3002
3003 se = left; /* ideally we run the leftmost entity */
f4b6755f 3004
ac53db59
RR
3005 /*
3006 * Avoid running the skip buddy, if running something else can
3007 * be done without getting too unfair.
3008 */
3009 if (cfs_rq->skip == se) {
678d5718
PZ
3010 struct sched_entity *second;
3011
3012 if (se == curr) {
3013 second = __pick_first_entity(cfs_rq);
3014 } else {
3015 second = __pick_next_entity(se);
3016 if (!second || (curr && entity_before(curr, second)))
3017 second = curr;
3018 }
3019
ac53db59
RR
3020 if (second && wakeup_preempt_entity(second, left) < 1)
3021 se = second;
3022 }
aa2ac252 3023
f685ceac
MG
3024 /*
3025 * Prefer last buddy, try to return the CPU to a preempted task.
3026 */
3027 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3028 se = cfs_rq->last;
3029
ac53db59
RR
3030 /*
3031 * Someone really wants this to run. If it's not unfair, run it.
3032 */
3033 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3034 se = cfs_rq->next;
3035
f685ceac 3036 clear_buddies(cfs_rq, se);
4793241b
PZ
3037
3038 return se;
aa2ac252
PZ
3039}
3040
678d5718 3041static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3042
ab6cde26 3043static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3044{
3045 /*
3046 * If still on the runqueue then deactivate_task()
3047 * was not called and update_curr() has to be done:
3048 */
3049 if (prev->on_rq)
b7cc0896 3050 update_curr(cfs_rq);
bf0f6f24 3051
d3d9dc33
PT
3052 /* throttle cfs_rqs exceeding runtime */
3053 check_cfs_rq_runtime(cfs_rq);
3054
ddc97297 3055 check_spread(cfs_rq, prev);
30cfdcfc 3056 if (prev->on_rq) {
5870db5b 3057 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3058 /* Put 'current' back into the tree. */
3059 __enqueue_entity(cfs_rq, prev);
9d85f21c 3060 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3061 update_entity_load_avg(prev, 1);
30cfdcfc 3062 }
429d43bc 3063 cfs_rq->curr = NULL;
bf0f6f24
IM
3064}
3065
8f4d37ec
PZ
3066static void
3067entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3068{
bf0f6f24 3069 /*
30cfdcfc 3070 * Update run-time statistics of the 'current'.
bf0f6f24 3071 */
30cfdcfc 3072 update_curr(cfs_rq);
bf0f6f24 3073
9d85f21c
PT
3074 /*
3075 * Ensure that runnable average is periodically updated.
3076 */
9ee474f5 3077 update_entity_load_avg(curr, 1);
aff3e498 3078 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3079 update_cfs_shares(cfs_rq);
9d85f21c 3080
8f4d37ec
PZ
3081#ifdef CONFIG_SCHED_HRTICK
3082 /*
3083 * queued ticks are scheduled to match the slice, so don't bother
3084 * validating it and just reschedule.
3085 */
983ed7a6 3086 if (queued) {
8875125e 3087 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3088 return;
3089 }
8f4d37ec
PZ
3090 /*
3091 * don't let the period tick interfere with the hrtick preemption
3092 */
3093 if (!sched_feat(DOUBLE_TICK) &&
3094 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3095 return;
3096#endif
3097
2c2efaed 3098 if (cfs_rq->nr_running > 1)
2e09bf55 3099 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3100}
3101
ab84d31e
PT
3102
3103/**************************************************
3104 * CFS bandwidth control machinery
3105 */
3106
3107#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3108
3109#ifdef HAVE_JUMP_LABEL
c5905afb 3110static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3111
3112static inline bool cfs_bandwidth_used(void)
3113{
c5905afb 3114 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3115}
3116
1ee14e6c 3117void cfs_bandwidth_usage_inc(void)
029632fb 3118{
1ee14e6c
BS
3119 static_key_slow_inc(&__cfs_bandwidth_used);
3120}
3121
3122void cfs_bandwidth_usage_dec(void)
3123{
3124 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3125}
3126#else /* HAVE_JUMP_LABEL */
3127static bool cfs_bandwidth_used(void)
3128{
3129 return true;
3130}
3131
1ee14e6c
BS
3132void cfs_bandwidth_usage_inc(void) {}
3133void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3134#endif /* HAVE_JUMP_LABEL */
3135
ab84d31e
PT
3136/*
3137 * default period for cfs group bandwidth.
3138 * default: 0.1s, units: nanoseconds
3139 */
3140static inline u64 default_cfs_period(void)
3141{
3142 return 100000000ULL;
3143}
ec12cb7f
PT
3144
3145static inline u64 sched_cfs_bandwidth_slice(void)
3146{
3147 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3148}
3149
a9cf55b2
PT
3150/*
3151 * Replenish runtime according to assigned quota and update expiration time.
3152 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3153 * additional synchronization around rq->lock.
3154 *
3155 * requires cfs_b->lock
3156 */
029632fb 3157void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3158{
3159 u64 now;
3160
3161 if (cfs_b->quota == RUNTIME_INF)
3162 return;
3163
3164 now = sched_clock_cpu(smp_processor_id());
3165 cfs_b->runtime = cfs_b->quota;
3166 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3167}
3168
029632fb
PZ
3169static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3170{
3171 return &tg->cfs_bandwidth;
3172}
3173
f1b17280
PT
3174/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3175static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3176{
3177 if (unlikely(cfs_rq->throttle_count))
3178 return cfs_rq->throttled_clock_task;
3179
78becc27 3180 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3181}
3182
85dac906
PT
3183/* returns 0 on failure to allocate runtime */
3184static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3185{
3186 struct task_group *tg = cfs_rq->tg;
3187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3188 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3189
3190 /* note: this is a positive sum as runtime_remaining <= 0 */
3191 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3192
3193 raw_spin_lock(&cfs_b->lock);
3194 if (cfs_b->quota == RUNTIME_INF)
3195 amount = min_amount;
58088ad0 3196 else {
a9cf55b2
PT
3197 /*
3198 * If the bandwidth pool has become inactive, then at least one
3199 * period must have elapsed since the last consumption.
3200 * Refresh the global state and ensure bandwidth timer becomes
3201 * active.
3202 */
3203 if (!cfs_b->timer_active) {
3204 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3205 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3206 }
58088ad0
PT
3207
3208 if (cfs_b->runtime > 0) {
3209 amount = min(cfs_b->runtime, min_amount);
3210 cfs_b->runtime -= amount;
3211 cfs_b->idle = 0;
3212 }
ec12cb7f 3213 }
a9cf55b2 3214 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3215 raw_spin_unlock(&cfs_b->lock);
3216
3217 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3218 /*
3219 * we may have advanced our local expiration to account for allowed
3220 * spread between our sched_clock and the one on which runtime was
3221 * issued.
3222 */
3223 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3224 cfs_rq->runtime_expires = expires;
85dac906
PT
3225
3226 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3227}
3228
a9cf55b2
PT
3229/*
3230 * Note: This depends on the synchronization provided by sched_clock and the
3231 * fact that rq->clock snapshots this value.
3232 */
3233static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3234{
a9cf55b2 3235 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3236
3237 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3238 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3239 return;
3240
a9cf55b2
PT
3241 if (cfs_rq->runtime_remaining < 0)
3242 return;
3243
3244 /*
3245 * If the local deadline has passed we have to consider the
3246 * possibility that our sched_clock is 'fast' and the global deadline
3247 * has not truly expired.
3248 *
3249 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3250 * whether the global deadline has advanced. It is valid to compare
3251 * cfs_b->runtime_expires without any locks since we only care about
3252 * exact equality, so a partial write will still work.
a9cf55b2
PT
3253 */
3254
51f2176d 3255 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3256 /* extend local deadline, drift is bounded above by 2 ticks */
3257 cfs_rq->runtime_expires += TICK_NSEC;
3258 } else {
3259 /* global deadline is ahead, expiration has passed */
3260 cfs_rq->runtime_remaining = 0;
3261 }
3262}
3263
9dbdb155 3264static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3265{
3266 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3267 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3268 expire_cfs_rq_runtime(cfs_rq);
3269
3270 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3271 return;
3272
85dac906
PT
3273 /*
3274 * if we're unable to extend our runtime we resched so that the active
3275 * hierarchy can be throttled
3276 */
3277 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3278 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3279}
3280
6c16a6dc 3281static __always_inline
9dbdb155 3282void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3283{
56f570e5 3284 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3285 return;
3286
3287 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3288}
3289
85dac906
PT
3290static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3291{
56f570e5 3292 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3293}
3294
64660c86
PT
3295/* check whether cfs_rq, or any parent, is throttled */
3296static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3297{
56f570e5 3298 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3299}
3300
3301/*
3302 * Ensure that neither of the group entities corresponding to src_cpu or
3303 * dest_cpu are members of a throttled hierarchy when performing group
3304 * load-balance operations.
3305 */
3306static inline int throttled_lb_pair(struct task_group *tg,
3307 int src_cpu, int dest_cpu)
3308{
3309 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3310
3311 src_cfs_rq = tg->cfs_rq[src_cpu];
3312 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3313
3314 return throttled_hierarchy(src_cfs_rq) ||
3315 throttled_hierarchy(dest_cfs_rq);
3316}
3317
3318/* updated child weight may affect parent so we have to do this bottom up */
3319static int tg_unthrottle_up(struct task_group *tg, void *data)
3320{
3321 struct rq *rq = data;
3322 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3323
3324 cfs_rq->throttle_count--;
3325#ifdef CONFIG_SMP
3326 if (!cfs_rq->throttle_count) {
f1b17280 3327 /* adjust cfs_rq_clock_task() */
78becc27 3328 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3329 cfs_rq->throttled_clock_task;
64660c86
PT
3330 }
3331#endif
3332
3333 return 0;
3334}
3335
3336static int tg_throttle_down(struct task_group *tg, void *data)
3337{
3338 struct rq *rq = data;
3339 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3340
82958366
PT
3341 /* group is entering throttled state, stop time */
3342 if (!cfs_rq->throttle_count)
78becc27 3343 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3344 cfs_rq->throttle_count++;
3345
3346 return 0;
3347}
3348
d3d9dc33 3349static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3350{
3351 struct rq *rq = rq_of(cfs_rq);
3352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3353 struct sched_entity *se;
3354 long task_delta, dequeue = 1;
3355
3356 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3357
f1b17280 3358 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3359 rcu_read_lock();
3360 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3361 rcu_read_unlock();
85dac906
PT
3362
3363 task_delta = cfs_rq->h_nr_running;
3364 for_each_sched_entity(se) {
3365 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3366 /* throttled entity or throttle-on-deactivate */
3367 if (!se->on_rq)
3368 break;
3369
3370 if (dequeue)
3371 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3372 qcfs_rq->h_nr_running -= task_delta;
3373
3374 if (qcfs_rq->load.weight)
3375 dequeue = 0;
3376 }
3377
3378 if (!se)
72465447 3379 sub_nr_running(rq, task_delta);
85dac906
PT
3380
3381 cfs_rq->throttled = 1;
78becc27 3382 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3383 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3384 /*
3385 * Add to the _head_ of the list, so that an already-started
3386 * distribute_cfs_runtime will not see us
3387 */
3388 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3389 if (!cfs_b->timer_active)
09dc4ab0 3390 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3391 raw_spin_unlock(&cfs_b->lock);
3392}
3393
029632fb 3394void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3395{
3396 struct rq *rq = rq_of(cfs_rq);
3397 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3398 struct sched_entity *se;
3399 int enqueue = 1;
3400 long task_delta;
3401
22b958d8 3402 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3403
3404 cfs_rq->throttled = 0;
1a55af2e
FW
3405
3406 update_rq_clock(rq);
3407
671fd9da 3408 raw_spin_lock(&cfs_b->lock);
78becc27 3409 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3410 list_del_rcu(&cfs_rq->throttled_list);
3411 raw_spin_unlock(&cfs_b->lock);
3412
64660c86
PT
3413 /* update hierarchical throttle state */
3414 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3415
671fd9da
PT
3416 if (!cfs_rq->load.weight)
3417 return;
3418
3419 task_delta = cfs_rq->h_nr_running;
3420 for_each_sched_entity(se) {
3421 if (se->on_rq)
3422 enqueue = 0;
3423
3424 cfs_rq = cfs_rq_of(se);
3425 if (enqueue)
3426 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3427 cfs_rq->h_nr_running += task_delta;
3428
3429 if (cfs_rq_throttled(cfs_rq))
3430 break;
3431 }
3432
3433 if (!se)
72465447 3434 add_nr_running(rq, task_delta);
671fd9da
PT
3435
3436 /* determine whether we need to wake up potentially idle cpu */
3437 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3438 resched_curr(rq);
671fd9da
PT
3439}
3440
3441static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3442 u64 remaining, u64 expires)
3443{
3444 struct cfs_rq *cfs_rq;
c06f04c7
BS
3445 u64 runtime;
3446 u64 starting_runtime = remaining;
671fd9da
PT
3447
3448 rcu_read_lock();
3449 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3450 throttled_list) {
3451 struct rq *rq = rq_of(cfs_rq);
3452
3453 raw_spin_lock(&rq->lock);
3454 if (!cfs_rq_throttled(cfs_rq))
3455 goto next;
3456
3457 runtime = -cfs_rq->runtime_remaining + 1;
3458 if (runtime > remaining)
3459 runtime = remaining;
3460 remaining -= runtime;
3461
3462 cfs_rq->runtime_remaining += runtime;
3463 cfs_rq->runtime_expires = expires;
3464
3465 /* we check whether we're throttled above */
3466 if (cfs_rq->runtime_remaining > 0)
3467 unthrottle_cfs_rq(cfs_rq);
3468
3469next:
3470 raw_spin_unlock(&rq->lock);
3471
3472 if (!remaining)
3473 break;
3474 }
3475 rcu_read_unlock();
3476
c06f04c7 3477 return starting_runtime - remaining;
671fd9da
PT
3478}
3479
58088ad0
PT
3480/*
3481 * Responsible for refilling a task_group's bandwidth and unthrottling its
3482 * cfs_rqs as appropriate. If there has been no activity within the last
3483 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3484 * used to track this state.
3485 */
3486static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3487{
671fd9da 3488 u64 runtime, runtime_expires;
51f2176d 3489 int throttled;
58088ad0 3490
58088ad0
PT
3491 /* no need to continue the timer with no bandwidth constraint */
3492 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3493 goto out_deactivate;
58088ad0 3494
671fd9da 3495 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3496 cfs_b->nr_periods += overrun;
671fd9da 3497
51f2176d
BS
3498 /*
3499 * idle depends on !throttled (for the case of a large deficit), and if
3500 * we're going inactive then everything else can be deferred
3501 */
3502 if (cfs_b->idle && !throttled)
3503 goto out_deactivate;
a9cf55b2 3504
927b54fc
BS
3505 /*
3506 * if we have relooped after returning idle once, we need to update our
3507 * status as actually running, so that other cpus doing
3508 * __start_cfs_bandwidth will stop trying to cancel us.
3509 */
3510 cfs_b->timer_active = 1;
3511
a9cf55b2
PT
3512 __refill_cfs_bandwidth_runtime(cfs_b);
3513
671fd9da
PT
3514 if (!throttled) {
3515 /* mark as potentially idle for the upcoming period */
3516 cfs_b->idle = 1;
51f2176d 3517 return 0;
671fd9da
PT
3518 }
3519
e8da1b18
NR
3520 /* account preceding periods in which throttling occurred */
3521 cfs_b->nr_throttled += overrun;
3522
671fd9da 3523 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3524
3525 /*
c06f04c7
BS
3526 * This check is repeated as we are holding onto the new bandwidth while
3527 * we unthrottle. This can potentially race with an unthrottled group
3528 * trying to acquire new bandwidth from the global pool. This can result
3529 * in us over-using our runtime if it is all used during this loop, but
3530 * only by limited amounts in that extreme case.
671fd9da 3531 */
c06f04c7
BS
3532 while (throttled && cfs_b->runtime > 0) {
3533 runtime = cfs_b->runtime;
671fd9da
PT
3534 raw_spin_unlock(&cfs_b->lock);
3535 /* we can't nest cfs_b->lock while distributing bandwidth */
3536 runtime = distribute_cfs_runtime(cfs_b, runtime,
3537 runtime_expires);
3538 raw_spin_lock(&cfs_b->lock);
3539
3540 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3541
3542 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3543 }
58088ad0 3544
671fd9da
PT
3545 /*
3546 * While we are ensured activity in the period following an
3547 * unthrottle, this also covers the case in which the new bandwidth is
3548 * insufficient to cover the existing bandwidth deficit. (Forcing the
3549 * timer to remain active while there are any throttled entities.)
3550 */
3551 cfs_b->idle = 0;
58088ad0 3552
51f2176d
BS
3553 return 0;
3554
3555out_deactivate:
3556 cfs_b->timer_active = 0;
3557 return 1;
58088ad0 3558}
d3d9dc33 3559
d8b4986d
PT
3560/* a cfs_rq won't donate quota below this amount */
3561static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3562/* minimum remaining period time to redistribute slack quota */
3563static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3564/* how long we wait to gather additional slack before distributing */
3565static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3566
db06e78c
BS
3567/*
3568 * Are we near the end of the current quota period?
3569 *
3570 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3571 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3572 * migrate_hrtimers, base is never cleared, so we are fine.
3573 */
d8b4986d
PT
3574static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3575{
3576 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3577 u64 remaining;
3578
3579 /* if the call-back is running a quota refresh is already occurring */
3580 if (hrtimer_callback_running(refresh_timer))
3581 return 1;
3582
3583 /* is a quota refresh about to occur? */
3584 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3585 if (remaining < min_expire)
3586 return 1;
3587
3588 return 0;
3589}
3590
3591static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3592{
3593 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3594
3595 /* if there's a quota refresh soon don't bother with slack */
3596 if (runtime_refresh_within(cfs_b, min_left))
3597 return;
3598
3599 start_bandwidth_timer(&cfs_b->slack_timer,
3600 ns_to_ktime(cfs_bandwidth_slack_period));
3601}
3602
3603/* we know any runtime found here is valid as update_curr() precedes return */
3604static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3605{
3606 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3607 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3608
3609 if (slack_runtime <= 0)
3610 return;
3611
3612 raw_spin_lock(&cfs_b->lock);
3613 if (cfs_b->quota != RUNTIME_INF &&
3614 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3615 cfs_b->runtime += slack_runtime;
3616
3617 /* we are under rq->lock, defer unthrottling using a timer */
3618 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3619 !list_empty(&cfs_b->throttled_cfs_rq))
3620 start_cfs_slack_bandwidth(cfs_b);
3621 }
3622 raw_spin_unlock(&cfs_b->lock);
3623
3624 /* even if it's not valid for return we don't want to try again */
3625 cfs_rq->runtime_remaining -= slack_runtime;
3626}
3627
3628static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3629{
56f570e5
PT
3630 if (!cfs_bandwidth_used())
3631 return;
3632
fccfdc6f 3633 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3634 return;
3635
3636 __return_cfs_rq_runtime(cfs_rq);
3637}
3638
3639/*
3640 * This is done with a timer (instead of inline with bandwidth return) since
3641 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3642 */
3643static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3644{
3645 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3646 u64 expires;
3647
3648 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3649 raw_spin_lock(&cfs_b->lock);
3650 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3651 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3652 return;
db06e78c 3653 }
d8b4986d 3654
c06f04c7 3655 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3656 runtime = cfs_b->runtime;
c06f04c7 3657
d8b4986d
PT
3658 expires = cfs_b->runtime_expires;
3659 raw_spin_unlock(&cfs_b->lock);
3660
3661 if (!runtime)
3662 return;
3663
3664 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3665
3666 raw_spin_lock(&cfs_b->lock);
3667 if (expires == cfs_b->runtime_expires)
c06f04c7 3668 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3669 raw_spin_unlock(&cfs_b->lock);
3670}
3671
d3d9dc33
PT
3672/*
3673 * When a group wakes up we want to make sure that its quota is not already
3674 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3675 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3676 */
3677static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3678{
56f570e5
PT
3679 if (!cfs_bandwidth_used())
3680 return;
3681
d3d9dc33
PT
3682 /* an active group must be handled by the update_curr()->put() path */
3683 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3684 return;
3685
3686 /* ensure the group is not already throttled */
3687 if (cfs_rq_throttled(cfs_rq))
3688 return;
3689
3690 /* update runtime allocation */
3691 account_cfs_rq_runtime(cfs_rq, 0);
3692 if (cfs_rq->runtime_remaining <= 0)
3693 throttle_cfs_rq(cfs_rq);
3694}
3695
3696/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3697static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3698{
56f570e5 3699 if (!cfs_bandwidth_used())
678d5718 3700 return false;
56f570e5 3701
d3d9dc33 3702 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3703 return false;
d3d9dc33
PT
3704
3705 /*
3706 * it's possible for a throttled entity to be forced into a running
3707 * state (e.g. set_curr_task), in this case we're finished.
3708 */
3709 if (cfs_rq_throttled(cfs_rq))
678d5718 3710 return true;
d3d9dc33
PT
3711
3712 throttle_cfs_rq(cfs_rq);
678d5718 3713 return true;
d3d9dc33 3714}
029632fb 3715
029632fb
PZ
3716static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3717{
3718 struct cfs_bandwidth *cfs_b =
3719 container_of(timer, struct cfs_bandwidth, slack_timer);
3720 do_sched_cfs_slack_timer(cfs_b);
3721
3722 return HRTIMER_NORESTART;
3723}
3724
3725static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3726{
3727 struct cfs_bandwidth *cfs_b =
3728 container_of(timer, struct cfs_bandwidth, period_timer);
3729 ktime_t now;
3730 int overrun;
3731 int idle = 0;
3732
51f2176d 3733 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3734 for (;;) {
3735 now = hrtimer_cb_get_time(timer);
3736 overrun = hrtimer_forward(timer, now, cfs_b->period);
3737
3738 if (!overrun)
3739 break;
3740
3741 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3742 }
51f2176d 3743 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3744
3745 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3746}
3747
3748void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3749{
3750 raw_spin_lock_init(&cfs_b->lock);
3751 cfs_b->runtime = 0;
3752 cfs_b->quota = RUNTIME_INF;
3753 cfs_b->period = ns_to_ktime(default_cfs_period());
3754
3755 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3756 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3757 cfs_b->period_timer.function = sched_cfs_period_timer;
3758 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3759 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3760}
3761
3762static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3763{
3764 cfs_rq->runtime_enabled = 0;
3765 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3766}
3767
3768/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3769void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3770{
3771 /*
3772 * The timer may be active because we're trying to set a new bandwidth
3773 * period or because we're racing with the tear-down path
3774 * (timer_active==0 becomes visible before the hrtimer call-back
3775 * terminates). In either case we ensure that it's re-programmed
3776 */
927b54fc
BS
3777 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3778 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3779 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3780 raw_spin_unlock(&cfs_b->lock);
927b54fc 3781 cpu_relax();
029632fb
PZ
3782 raw_spin_lock(&cfs_b->lock);
3783 /* if someone else restarted the timer then we're done */
09dc4ab0 3784 if (!force && cfs_b->timer_active)
029632fb
PZ
3785 return;
3786 }
3787
3788 cfs_b->timer_active = 1;
3789 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3790}
3791
3792static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3793{
3794 hrtimer_cancel(&cfs_b->period_timer);
3795 hrtimer_cancel(&cfs_b->slack_timer);
3796}
3797
0e59bdae
KT
3798static void __maybe_unused update_runtime_enabled(struct rq *rq)
3799{
3800 struct cfs_rq *cfs_rq;
3801
3802 for_each_leaf_cfs_rq(rq, cfs_rq) {
3803 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3804
3805 raw_spin_lock(&cfs_b->lock);
3806 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3807 raw_spin_unlock(&cfs_b->lock);
3808 }
3809}
3810
38dc3348 3811static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3812{
3813 struct cfs_rq *cfs_rq;
3814
3815 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3816 if (!cfs_rq->runtime_enabled)
3817 continue;
3818
3819 /*
3820 * clock_task is not advancing so we just need to make sure
3821 * there's some valid quota amount
3822 */
51f2176d 3823 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3824 /*
3825 * Offline rq is schedulable till cpu is completely disabled
3826 * in take_cpu_down(), so we prevent new cfs throttling here.
3827 */
3828 cfs_rq->runtime_enabled = 0;
3829
029632fb
PZ
3830 if (cfs_rq_throttled(cfs_rq))
3831 unthrottle_cfs_rq(cfs_rq);
3832 }
3833}
3834
3835#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3836static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3837{
78becc27 3838 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3839}
3840
9dbdb155 3841static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3842static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3843static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3844static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3845
3846static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3847{
3848 return 0;
3849}
64660c86
PT
3850
3851static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3852{
3853 return 0;
3854}
3855
3856static inline int throttled_lb_pair(struct task_group *tg,
3857 int src_cpu, int dest_cpu)
3858{
3859 return 0;
3860}
029632fb
PZ
3861
3862void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3863
3864#ifdef CONFIG_FAIR_GROUP_SCHED
3865static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3866#endif
3867
029632fb
PZ
3868static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3869{
3870 return NULL;
3871}
3872static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3873static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3874static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3875
3876#endif /* CONFIG_CFS_BANDWIDTH */
3877
bf0f6f24
IM
3878/**************************************************
3879 * CFS operations on tasks:
3880 */
3881
8f4d37ec
PZ
3882#ifdef CONFIG_SCHED_HRTICK
3883static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3884{
8f4d37ec
PZ
3885 struct sched_entity *se = &p->se;
3886 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887
3888 WARN_ON(task_rq(p) != rq);
3889
b39e66ea 3890 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3891 u64 slice = sched_slice(cfs_rq, se);
3892 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3893 s64 delta = slice - ran;
3894
3895 if (delta < 0) {
3896 if (rq->curr == p)
8875125e 3897 resched_curr(rq);
8f4d37ec
PZ
3898 return;
3899 }
3900
3901 /*
3902 * Don't schedule slices shorter than 10000ns, that just
3903 * doesn't make sense. Rely on vruntime for fairness.
3904 */
31656519 3905 if (rq->curr != p)
157124c1 3906 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3907
31656519 3908 hrtick_start(rq, delta);
8f4d37ec
PZ
3909 }
3910}
a4c2f00f
PZ
3911
3912/*
3913 * called from enqueue/dequeue and updates the hrtick when the
3914 * current task is from our class and nr_running is low enough
3915 * to matter.
3916 */
3917static void hrtick_update(struct rq *rq)
3918{
3919 struct task_struct *curr = rq->curr;
3920
b39e66ea 3921 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3922 return;
3923
3924 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 hrtick_start_fair(rq, curr);
3926}
55e12e5e 3927#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3928static inline void
3929hrtick_start_fair(struct rq *rq, struct task_struct *p)
3930{
3931}
a4c2f00f
PZ
3932
3933static inline void hrtick_update(struct rq *rq)
3934{
3935}
8f4d37ec
PZ
3936#endif
3937
bf0f6f24
IM
3938/*
3939 * The enqueue_task method is called before nr_running is
3940 * increased. Here we update the fair scheduling stats and
3941 * then put the task into the rbtree:
3942 */
ea87bb78 3943static void
371fd7e7 3944enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3945{
3946 struct cfs_rq *cfs_rq;
62fb1851 3947 struct sched_entity *se = &p->se;
bf0f6f24
IM
3948
3949 for_each_sched_entity(se) {
62fb1851 3950 if (se->on_rq)
bf0f6f24
IM
3951 break;
3952 cfs_rq = cfs_rq_of(se);
88ec22d3 3953 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3954
3955 /*
3956 * end evaluation on encountering a throttled cfs_rq
3957 *
3958 * note: in the case of encountering a throttled cfs_rq we will
3959 * post the final h_nr_running increment below.
3960 */
3961 if (cfs_rq_throttled(cfs_rq))
3962 break;
953bfcd1 3963 cfs_rq->h_nr_running++;
85dac906 3964
88ec22d3 3965 flags = ENQUEUE_WAKEUP;
bf0f6f24 3966 }
8f4d37ec 3967
2069dd75 3968 for_each_sched_entity(se) {
0f317143 3969 cfs_rq = cfs_rq_of(se);
953bfcd1 3970 cfs_rq->h_nr_running++;
2069dd75 3971
85dac906
PT
3972 if (cfs_rq_throttled(cfs_rq))
3973 break;
3974
17bc14b7 3975 update_cfs_shares(cfs_rq);
9ee474f5 3976 update_entity_load_avg(se, 1);
2069dd75
PZ
3977 }
3978
18bf2805
BS
3979 if (!se) {
3980 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3981 add_nr_running(rq, 1);
18bf2805 3982 }
a4c2f00f 3983 hrtick_update(rq);
bf0f6f24
IM
3984}
3985
2f36825b
VP
3986static void set_next_buddy(struct sched_entity *se);
3987
bf0f6f24
IM
3988/*
3989 * The dequeue_task method is called before nr_running is
3990 * decreased. We remove the task from the rbtree and
3991 * update the fair scheduling stats:
3992 */
371fd7e7 3993static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3994{
3995 struct cfs_rq *cfs_rq;
62fb1851 3996 struct sched_entity *se = &p->se;
2f36825b 3997 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3998
3999 for_each_sched_entity(se) {
4000 cfs_rq = cfs_rq_of(se);
371fd7e7 4001 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4002
4003 /*
4004 * end evaluation on encountering a throttled cfs_rq
4005 *
4006 * note: in the case of encountering a throttled cfs_rq we will
4007 * post the final h_nr_running decrement below.
4008 */
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
953bfcd1 4011 cfs_rq->h_nr_running--;
2069dd75 4012
bf0f6f24 4013 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4014 if (cfs_rq->load.weight) {
4015 /*
4016 * Bias pick_next to pick a task from this cfs_rq, as
4017 * p is sleeping when it is within its sched_slice.
4018 */
4019 if (task_sleep && parent_entity(se))
4020 set_next_buddy(parent_entity(se));
9598c82d
PT
4021
4022 /* avoid re-evaluating load for this entity */
4023 se = parent_entity(se);
bf0f6f24 4024 break;
2f36825b 4025 }
371fd7e7 4026 flags |= DEQUEUE_SLEEP;
bf0f6f24 4027 }
8f4d37ec 4028
2069dd75 4029 for_each_sched_entity(se) {
0f317143 4030 cfs_rq = cfs_rq_of(se);
953bfcd1 4031 cfs_rq->h_nr_running--;
2069dd75 4032
85dac906
PT
4033 if (cfs_rq_throttled(cfs_rq))
4034 break;
4035
17bc14b7 4036 update_cfs_shares(cfs_rq);
9ee474f5 4037 update_entity_load_avg(se, 1);
2069dd75
PZ
4038 }
4039
18bf2805 4040 if (!se) {
72465447 4041 sub_nr_running(rq, 1);
18bf2805
BS
4042 update_rq_runnable_avg(rq, 1);
4043 }
a4c2f00f 4044 hrtick_update(rq);
bf0f6f24
IM
4045}
4046
e7693a36 4047#ifdef CONFIG_SMP
029632fb
PZ
4048/* Used instead of source_load when we know the type == 0 */
4049static unsigned long weighted_cpuload(const int cpu)
4050{
b92486cb 4051 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4052}
4053
4054/*
4055 * Return a low guess at the load of a migration-source cpu weighted
4056 * according to the scheduling class and "nice" value.
4057 *
4058 * We want to under-estimate the load of migration sources, to
4059 * balance conservatively.
4060 */
4061static unsigned long source_load(int cpu, int type)
4062{
4063 struct rq *rq = cpu_rq(cpu);
4064 unsigned long total = weighted_cpuload(cpu);
4065
4066 if (type == 0 || !sched_feat(LB_BIAS))
4067 return total;
4068
4069 return min(rq->cpu_load[type-1], total);
4070}
4071
4072/*
4073 * Return a high guess at the load of a migration-target cpu weighted
4074 * according to the scheduling class and "nice" value.
4075 */
4076static unsigned long target_load(int cpu, int type)
4077{
4078 struct rq *rq = cpu_rq(cpu);
4079 unsigned long total = weighted_cpuload(cpu);
4080
4081 if (type == 0 || !sched_feat(LB_BIAS))
4082 return total;
4083
4084 return max(rq->cpu_load[type-1], total);
4085}
4086
ced549fa 4087static unsigned long capacity_of(int cpu)
029632fb 4088{
ced549fa 4089 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4090}
4091
4092static unsigned long cpu_avg_load_per_task(int cpu)
4093{
4094 struct rq *rq = cpu_rq(cpu);
4095 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4096 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4097
4098 if (nr_running)
b92486cb 4099 return load_avg / nr_running;
029632fb
PZ
4100
4101 return 0;
4102}
4103
62470419
MW
4104static void record_wakee(struct task_struct *p)
4105{
4106 /*
4107 * Rough decay (wiping) for cost saving, don't worry
4108 * about the boundary, really active task won't care
4109 * about the loss.
4110 */
2538d960 4111 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4112 current->wakee_flips >>= 1;
62470419
MW
4113 current->wakee_flip_decay_ts = jiffies;
4114 }
4115
4116 if (current->last_wakee != p) {
4117 current->last_wakee = p;
4118 current->wakee_flips++;
4119 }
4120}
098fb9db 4121
74f8e4b2 4122static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4123{
4124 struct sched_entity *se = &p->se;
4125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4126 u64 min_vruntime;
4127
4128#ifndef CONFIG_64BIT
4129 u64 min_vruntime_copy;
88ec22d3 4130
3fe1698b
PZ
4131 do {
4132 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4133 smp_rmb();
4134 min_vruntime = cfs_rq->min_vruntime;
4135 } while (min_vruntime != min_vruntime_copy);
4136#else
4137 min_vruntime = cfs_rq->min_vruntime;
4138#endif
88ec22d3 4139
3fe1698b 4140 se->vruntime -= min_vruntime;
62470419 4141 record_wakee(p);
88ec22d3
PZ
4142}
4143
bb3469ac 4144#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4145/*
4146 * effective_load() calculates the load change as seen from the root_task_group
4147 *
4148 * Adding load to a group doesn't make a group heavier, but can cause movement
4149 * of group shares between cpus. Assuming the shares were perfectly aligned one
4150 * can calculate the shift in shares.
cf5f0acf
PZ
4151 *
4152 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153 * on this @cpu and results in a total addition (subtraction) of @wg to the
4154 * total group weight.
4155 *
4156 * Given a runqueue weight distribution (rw_i) we can compute a shares
4157 * distribution (s_i) using:
4158 *
4159 * s_i = rw_i / \Sum rw_j (1)
4160 *
4161 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163 * shares distribution (s_i):
4164 *
4165 * rw_i = { 2, 4, 1, 0 }
4166 * s_i = { 2/7, 4/7, 1/7, 0 }
4167 *
4168 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169 * task used to run on and the CPU the waker is running on), we need to
4170 * compute the effect of waking a task on either CPU and, in case of a sync
4171 * wakeup, compute the effect of the current task going to sleep.
4172 *
4173 * So for a change of @wl to the local @cpu with an overall group weight change
4174 * of @wl we can compute the new shares distribution (s'_i) using:
4175 *
4176 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4177 *
4178 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179 * differences in waking a task to CPU 0. The additional task changes the
4180 * weight and shares distributions like:
4181 *
4182 * rw'_i = { 3, 4, 1, 0 }
4183 * s'_i = { 3/8, 4/8, 1/8, 0 }
4184 *
4185 * We can then compute the difference in effective weight by using:
4186 *
4187 * dw_i = S * (s'_i - s_i) (3)
4188 *
4189 * Where 'S' is the group weight as seen by its parent.
4190 *
4191 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193 * 4/7) times the weight of the group.
f5bfb7d9 4194 */
2069dd75 4195static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4196{
4be9daaa 4197 struct sched_entity *se = tg->se[cpu];
f1d239f7 4198
9722c2da 4199 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4200 return wl;
4201
4be9daaa 4202 for_each_sched_entity(se) {
cf5f0acf 4203 long w, W;
4be9daaa 4204
977dda7c 4205 tg = se->my_q->tg;
bb3469ac 4206
cf5f0acf
PZ
4207 /*
4208 * W = @wg + \Sum rw_j
4209 */
4210 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4211
cf5f0acf
PZ
4212 /*
4213 * w = rw_i + @wl
4214 */
4215 w = se->my_q->load.weight + wl;
940959e9 4216
cf5f0acf
PZ
4217 /*
4218 * wl = S * s'_i; see (2)
4219 */
4220 if (W > 0 && w < W)
4221 wl = (w * tg->shares) / W;
977dda7c
PT
4222 else
4223 wl = tg->shares;
940959e9 4224
cf5f0acf
PZ
4225 /*
4226 * Per the above, wl is the new se->load.weight value; since
4227 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 * calc_cfs_shares().
4229 */
977dda7c
PT
4230 if (wl < MIN_SHARES)
4231 wl = MIN_SHARES;
cf5f0acf
PZ
4232
4233 /*
4234 * wl = dw_i = S * (s'_i - s_i); see (3)
4235 */
977dda7c 4236 wl -= se->load.weight;
cf5f0acf
PZ
4237
4238 /*
4239 * Recursively apply this logic to all parent groups to compute
4240 * the final effective load change on the root group. Since
4241 * only the @tg group gets extra weight, all parent groups can
4242 * only redistribute existing shares. @wl is the shift in shares
4243 * resulting from this level per the above.
4244 */
4be9daaa 4245 wg = 0;
4be9daaa 4246 }
bb3469ac 4247
4be9daaa 4248 return wl;
bb3469ac
PZ
4249}
4250#else
4be9daaa 4251
58d081b5 4252static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4253{
83378269 4254 return wl;
bb3469ac 4255}
4be9daaa 4256
bb3469ac
PZ
4257#endif
4258
62470419
MW
4259static int wake_wide(struct task_struct *p)
4260{
7d9ffa89 4261 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4262
4263 /*
4264 * Yeah, it's the switching-frequency, could means many wakee or
4265 * rapidly switch, use factor here will just help to automatically
4266 * adjust the loose-degree, so bigger node will lead to more pull.
4267 */
4268 if (p->wakee_flips > factor) {
4269 /*
4270 * wakee is somewhat hot, it needs certain amount of cpu
4271 * resource, so if waker is far more hot, prefer to leave
4272 * it alone.
4273 */
4274 if (current->wakee_flips > (factor * p->wakee_flips))
4275 return 1;
4276 }
4277
4278 return 0;
4279}
4280
c88d5910 4281static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4282{
e37b6a7b 4283 s64 this_load, load;
c88d5910 4284 int idx, this_cpu, prev_cpu;
098fb9db 4285 unsigned long tl_per_task;
c88d5910 4286 struct task_group *tg;
83378269 4287 unsigned long weight;
b3137bc8 4288 int balanced;
098fb9db 4289
62470419
MW
4290 /*
4291 * If we wake multiple tasks be careful to not bounce
4292 * ourselves around too much.
4293 */
4294 if (wake_wide(p))
4295 return 0;
4296
c88d5910
PZ
4297 idx = sd->wake_idx;
4298 this_cpu = smp_processor_id();
4299 prev_cpu = task_cpu(p);
4300 load = source_load(prev_cpu, idx);
4301 this_load = target_load(this_cpu, idx);
098fb9db 4302
b3137bc8
MG
4303 /*
4304 * If sync wakeup then subtract the (maximum possible)
4305 * effect of the currently running task from the load
4306 * of the current CPU:
4307 */
83378269
PZ
4308 if (sync) {
4309 tg = task_group(current);
4310 weight = current->se.load.weight;
4311
c88d5910 4312 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4313 load += effective_load(tg, prev_cpu, 0, -weight);
4314 }
b3137bc8 4315
83378269
PZ
4316 tg = task_group(p);
4317 weight = p->se.load.weight;
b3137bc8 4318
71a29aa7
PZ
4319 /*
4320 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4321 * due to the sync cause above having dropped this_load to 0, we'll
4322 * always have an imbalance, but there's really nothing you can do
4323 * about that, so that's good too.
71a29aa7
PZ
4324 *
4325 * Otherwise check if either cpus are near enough in load to allow this
4326 * task to be woken on this_cpu.
4327 */
e37b6a7b
PT
4328 if (this_load > 0) {
4329 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4330
4331 this_eff_load = 100;
ced549fa 4332 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4333 this_eff_load *= this_load +
4334 effective_load(tg, this_cpu, weight, weight);
4335
4336 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4337 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4338 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4339
4340 balanced = this_eff_load <= prev_eff_load;
4341 } else
4342 balanced = true;
b3137bc8 4343
098fb9db 4344 /*
4ae7d5ce
IM
4345 * If the currently running task will sleep within
4346 * a reasonable amount of time then attract this newly
4347 * woken task:
098fb9db 4348 */
2fb7635c
PZ
4349 if (sync && balanced)
4350 return 1;
098fb9db 4351
41acab88 4352 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4353 tl_per_task = cpu_avg_load_per_task(this_cpu);
4354
c88d5910
PZ
4355 if (balanced ||
4356 (this_load <= load &&
4357 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4358 /*
4359 * This domain has SD_WAKE_AFFINE and
4360 * p is cache cold in this domain, and
4361 * there is no bad imbalance.
4362 */
c88d5910 4363 schedstat_inc(sd, ttwu_move_affine);
41acab88 4364 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4365
4366 return 1;
4367 }
4368 return 0;
4369}
4370
aaee1203
PZ
4371/*
4372 * find_idlest_group finds and returns the least busy CPU group within the
4373 * domain.
4374 */
4375static struct sched_group *
78e7ed53 4376find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4377 int this_cpu, int sd_flag)
e7693a36 4378{
b3bd3de6 4379 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4380 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4381 int load_idx = sd->forkexec_idx;
aaee1203 4382 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4383
c44f2a02
VG
4384 if (sd_flag & SD_BALANCE_WAKE)
4385 load_idx = sd->wake_idx;
4386
aaee1203
PZ
4387 do {
4388 unsigned long load, avg_load;
4389 int local_group;
4390 int i;
e7693a36 4391
aaee1203
PZ
4392 /* Skip over this group if it has no CPUs allowed */
4393 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4394 tsk_cpus_allowed(p)))
aaee1203
PZ
4395 continue;
4396
4397 local_group = cpumask_test_cpu(this_cpu,
4398 sched_group_cpus(group));
4399
4400 /* Tally up the load of all CPUs in the group */
4401 avg_load = 0;
4402
4403 for_each_cpu(i, sched_group_cpus(group)) {
4404 /* Bias balancing toward cpus of our domain */
4405 if (local_group)
4406 load = source_load(i, load_idx);
4407 else
4408 load = target_load(i, load_idx);
4409
4410 avg_load += load;
4411 }
4412
63b2ca30 4413 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4414 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4415
4416 if (local_group) {
4417 this_load = avg_load;
aaee1203
PZ
4418 } else if (avg_load < min_load) {
4419 min_load = avg_load;
4420 idlest = group;
4421 }
4422 } while (group = group->next, group != sd->groups);
4423
4424 if (!idlest || 100*this_load < imbalance*min_load)
4425 return NULL;
4426 return idlest;
4427}
4428
4429/*
4430 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4431 */
4432static int
4433find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4434{
4435 unsigned long load, min_load = ULONG_MAX;
4436 int idlest = -1;
4437 int i;
4438
4439 /* Traverse only the allowed CPUs */
fa17b507 4440 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4441 load = weighted_cpuload(i);
4442
4443 if (load < min_load || (load == min_load && i == this_cpu)) {
4444 min_load = load;
4445 idlest = i;
e7693a36
GH
4446 }
4447 }
4448
aaee1203
PZ
4449 return idlest;
4450}
e7693a36 4451
a50bde51
PZ
4452/*
4453 * Try and locate an idle CPU in the sched_domain.
4454 */
99bd5e2f 4455static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4456{
99bd5e2f 4457 struct sched_domain *sd;
37407ea7 4458 struct sched_group *sg;
e0a79f52 4459 int i = task_cpu(p);
a50bde51 4460
e0a79f52
MG
4461 if (idle_cpu(target))
4462 return target;
99bd5e2f
SS
4463
4464 /*
e0a79f52 4465 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4466 */
e0a79f52
MG
4467 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4468 return i;
a50bde51
PZ
4469
4470 /*
37407ea7 4471 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4472 */
518cd623 4473 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4474 for_each_lower_domain(sd) {
37407ea7
LT
4475 sg = sd->groups;
4476 do {
4477 if (!cpumask_intersects(sched_group_cpus(sg),
4478 tsk_cpus_allowed(p)))
4479 goto next;
4480
4481 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4482 if (i == target || !idle_cpu(i))
37407ea7
LT
4483 goto next;
4484 }
970e1789 4485
37407ea7
LT
4486 target = cpumask_first_and(sched_group_cpus(sg),
4487 tsk_cpus_allowed(p));
4488 goto done;
4489next:
4490 sg = sg->next;
4491 } while (sg != sd->groups);
4492 }
4493done:
a50bde51
PZ
4494 return target;
4495}
4496
aaee1203 4497/*
de91b9cb
MR
4498 * select_task_rq_fair: Select target runqueue for the waking task in domains
4499 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4500 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4501 *
de91b9cb
MR
4502 * Balances load by selecting the idlest cpu in the idlest group, or under
4503 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4504 *
de91b9cb 4505 * Returns the target cpu number.
aaee1203
PZ
4506 *
4507 * preempt must be disabled.
4508 */
0017d735 4509static int
ac66f547 4510select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4511{
29cd8bae 4512 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4513 int cpu = smp_processor_id();
c88d5910 4514 int new_cpu = cpu;
99bd5e2f 4515 int want_affine = 0;
5158f4e4 4516 int sync = wake_flags & WF_SYNC;
c88d5910 4517
29baa747 4518 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4519 return prev_cpu;
4520
0763a660 4521 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4522 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4523 want_affine = 1;
4524 new_cpu = prev_cpu;
4525 }
aaee1203 4526
dce840a0 4527 rcu_read_lock();
aaee1203 4528 for_each_domain(cpu, tmp) {
e4f42888
PZ
4529 if (!(tmp->flags & SD_LOAD_BALANCE))
4530 continue;
4531
fe3bcfe1 4532 /*
99bd5e2f
SS
4533 * If both cpu and prev_cpu are part of this domain,
4534 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4535 */
99bd5e2f
SS
4536 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4537 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4538 affine_sd = tmp;
29cd8bae 4539 break;
f03542a7 4540 }
29cd8bae 4541
f03542a7 4542 if (tmp->flags & sd_flag)
29cd8bae
PZ
4543 sd = tmp;
4544 }
4545
8bf21433
RR
4546 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4547 prev_cpu = cpu;
dce840a0 4548
8bf21433 4549 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4550 new_cpu = select_idle_sibling(p, prev_cpu);
4551 goto unlock;
8b911acd 4552 }
e7693a36 4553
aaee1203
PZ
4554 while (sd) {
4555 struct sched_group *group;
c88d5910 4556 int weight;
098fb9db 4557
0763a660 4558 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4559 sd = sd->child;
4560 continue;
4561 }
098fb9db 4562
c44f2a02 4563 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4564 if (!group) {
4565 sd = sd->child;
4566 continue;
4567 }
4ae7d5ce 4568
d7c33c49 4569 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4570 if (new_cpu == -1 || new_cpu == cpu) {
4571 /* Now try balancing at a lower domain level of cpu */
4572 sd = sd->child;
4573 continue;
e7693a36 4574 }
aaee1203
PZ
4575
4576 /* Now try balancing at a lower domain level of new_cpu */
4577 cpu = new_cpu;
669c55e9 4578 weight = sd->span_weight;
aaee1203
PZ
4579 sd = NULL;
4580 for_each_domain(cpu, tmp) {
669c55e9 4581 if (weight <= tmp->span_weight)
aaee1203 4582 break;
0763a660 4583 if (tmp->flags & sd_flag)
aaee1203
PZ
4584 sd = tmp;
4585 }
4586 /* while loop will break here if sd == NULL */
e7693a36 4587 }
dce840a0
PZ
4588unlock:
4589 rcu_read_unlock();
e7693a36 4590
c88d5910 4591 return new_cpu;
e7693a36 4592}
0a74bef8
PT
4593
4594/*
4595 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4596 * cfs_rq_of(p) references at time of call are still valid and identify the
4597 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4598 * other assumptions, including the state of rq->lock, should be made.
4599 */
4600static void
4601migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4602{
aff3e498
PT
4603 struct sched_entity *se = &p->se;
4604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4605
4606 /*
4607 * Load tracking: accumulate removed load so that it can be processed
4608 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4609 * to blocked load iff they have a positive decay-count. It can never
4610 * be negative here since on-rq tasks have decay-count == 0.
4611 */
4612 if (se->avg.decay_count) {
4613 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4614 atomic_long_add(se->avg.load_avg_contrib,
4615 &cfs_rq->removed_load);
aff3e498 4616 }
3944a927
BS
4617
4618 /* We have migrated, no longer consider this task hot */
4619 se->exec_start = 0;
0a74bef8 4620}
e7693a36
GH
4621#endif /* CONFIG_SMP */
4622
e52fb7c0
PZ
4623static unsigned long
4624wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4625{
4626 unsigned long gran = sysctl_sched_wakeup_granularity;
4627
4628 /*
e52fb7c0
PZ
4629 * Since its curr running now, convert the gran from real-time
4630 * to virtual-time in his units.
13814d42
MG
4631 *
4632 * By using 'se' instead of 'curr' we penalize light tasks, so
4633 * they get preempted easier. That is, if 'se' < 'curr' then
4634 * the resulting gran will be larger, therefore penalizing the
4635 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4636 * be smaller, again penalizing the lighter task.
4637 *
4638 * This is especially important for buddies when the leftmost
4639 * task is higher priority than the buddy.
0bbd3336 4640 */
f4ad9bd2 4641 return calc_delta_fair(gran, se);
0bbd3336
PZ
4642}
4643
464b7527
PZ
4644/*
4645 * Should 'se' preempt 'curr'.
4646 *
4647 * |s1
4648 * |s2
4649 * |s3
4650 * g
4651 * |<--->|c
4652 *
4653 * w(c, s1) = -1
4654 * w(c, s2) = 0
4655 * w(c, s3) = 1
4656 *
4657 */
4658static int
4659wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4660{
4661 s64 gran, vdiff = curr->vruntime - se->vruntime;
4662
4663 if (vdiff <= 0)
4664 return -1;
4665
e52fb7c0 4666 gran = wakeup_gran(curr, se);
464b7527
PZ
4667 if (vdiff > gran)
4668 return 1;
4669
4670 return 0;
4671}
4672
02479099
PZ
4673static void set_last_buddy(struct sched_entity *se)
4674{
69c80f3e
VP
4675 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4676 return;
4677
4678 for_each_sched_entity(se)
4679 cfs_rq_of(se)->last = se;
02479099
PZ
4680}
4681
4682static void set_next_buddy(struct sched_entity *se)
4683{
69c80f3e
VP
4684 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4685 return;
4686
4687 for_each_sched_entity(se)
4688 cfs_rq_of(se)->next = se;
02479099
PZ
4689}
4690
ac53db59
RR
4691static void set_skip_buddy(struct sched_entity *se)
4692{
69c80f3e
VP
4693 for_each_sched_entity(se)
4694 cfs_rq_of(se)->skip = se;
ac53db59
RR
4695}
4696
bf0f6f24
IM
4697/*
4698 * Preempt the current task with a newly woken task if needed:
4699 */
5a9b86f6 4700static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4701{
4702 struct task_struct *curr = rq->curr;
8651a86c 4703 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4704 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4705 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4706 int next_buddy_marked = 0;
bf0f6f24 4707
4ae7d5ce
IM
4708 if (unlikely(se == pse))
4709 return;
4710
5238cdd3 4711 /*
ddcdf6e7 4712 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4713 * unconditionally check_prempt_curr() after an enqueue (which may have
4714 * lead to a throttle). This both saves work and prevents false
4715 * next-buddy nomination below.
4716 */
4717 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4718 return;
4719
2f36825b 4720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4721 set_next_buddy(pse);
2f36825b
VP
4722 next_buddy_marked = 1;
4723 }
57fdc26d 4724
aec0a514
BR
4725 /*
4726 * We can come here with TIF_NEED_RESCHED already set from new task
4727 * wake up path.
5238cdd3
PT
4728 *
4729 * Note: this also catches the edge-case of curr being in a throttled
4730 * group (e.g. via set_curr_task), since update_curr() (in the
4731 * enqueue of curr) will have resulted in resched being set. This
4732 * prevents us from potentially nominating it as a false LAST_BUDDY
4733 * below.
aec0a514
BR
4734 */
4735 if (test_tsk_need_resched(curr))
4736 return;
4737
a2f5c9ab
DH
4738 /* Idle tasks are by definition preempted by non-idle tasks. */
4739 if (unlikely(curr->policy == SCHED_IDLE) &&
4740 likely(p->policy != SCHED_IDLE))
4741 goto preempt;
4742
91c234b4 4743 /*
a2f5c9ab
DH
4744 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4745 * is driven by the tick):
91c234b4 4746 */
8ed92e51 4747 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4748 return;
bf0f6f24 4749
464b7527 4750 find_matching_se(&se, &pse);
9bbd7374 4751 update_curr(cfs_rq_of(se));
002f128b 4752 BUG_ON(!pse);
2f36825b
VP
4753 if (wakeup_preempt_entity(se, pse) == 1) {
4754 /*
4755 * Bias pick_next to pick the sched entity that is
4756 * triggering this preemption.
4757 */
4758 if (!next_buddy_marked)
4759 set_next_buddy(pse);
3a7e73a2 4760 goto preempt;
2f36825b 4761 }
464b7527 4762
3a7e73a2 4763 return;
a65ac745 4764
3a7e73a2 4765preempt:
8875125e 4766 resched_curr(rq);
3a7e73a2
PZ
4767 /*
4768 * Only set the backward buddy when the current task is still
4769 * on the rq. This can happen when a wakeup gets interleaved
4770 * with schedule on the ->pre_schedule() or idle_balance()
4771 * point, either of which can * drop the rq lock.
4772 *
4773 * Also, during early boot the idle thread is in the fair class,
4774 * for obvious reasons its a bad idea to schedule back to it.
4775 */
4776 if (unlikely(!se->on_rq || curr == rq->idle))
4777 return;
4778
4779 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4780 set_last_buddy(se);
bf0f6f24
IM
4781}
4782
606dba2e
PZ
4783static struct task_struct *
4784pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4785{
4786 struct cfs_rq *cfs_rq = &rq->cfs;
4787 struct sched_entity *se;
678d5718 4788 struct task_struct *p;
37e117c0 4789 int new_tasks;
678d5718 4790
6e83125c 4791again:
678d5718
PZ
4792#ifdef CONFIG_FAIR_GROUP_SCHED
4793 if (!cfs_rq->nr_running)
38033c37 4794 goto idle;
678d5718 4795
3f1d2a31 4796 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4797 goto simple;
4798
4799 /*
4800 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4801 * likely that a next task is from the same cgroup as the current.
4802 *
4803 * Therefore attempt to avoid putting and setting the entire cgroup
4804 * hierarchy, only change the part that actually changes.
4805 */
4806
4807 do {
4808 struct sched_entity *curr = cfs_rq->curr;
4809
4810 /*
4811 * Since we got here without doing put_prev_entity() we also
4812 * have to consider cfs_rq->curr. If it is still a runnable
4813 * entity, update_curr() will update its vruntime, otherwise
4814 * forget we've ever seen it.
4815 */
4816 if (curr && curr->on_rq)
4817 update_curr(cfs_rq);
4818 else
4819 curr = NULL;
4820
4821 /*
4822 * This call to check_cfs_rq_runtime() will do the throttle and
4823 * dequeue its entity in the parent(s). Therefore the 'simple'
4824 * nr_running test will indeed be correct.
4825 */
4826 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4827 goto simple;
4828
4829 se = pick_next_entity(cfs_rq, curr);
4830 cfs_rq = group_cfs_rq(se);
4831 } while (cfs_rq);
4832
4833 p = task_of(se);
4834
4835 /*
4836 * Since we haven't yet done put_prev_entity and if the selected task
4837 * is a different task than we started out with, try and touch the
4838 * least amount of cfs_rqs.
4839 */
4840 if (prev != p) {
4841 struct sched_entity *pse = &prev->se;
4842
4843 while (!(cfs_rq = is_same_group(se, pse))) {
4844 int se_depth = se->depth;
4845 int pse_depth = pse->depth;
4846
4847 if (se_depth <= pse_depth) {
4848 put_prev_entity(cfs_rq_of(pse), pse);
4849 pse = parent_entity(pse);
4850 }
4851 if (se_depth >= pse_depth) {
4852 set_next_entity(cfs_rq_of(se), se);
4853 se = parent_entity(se);
4854 }
4855 }
4856
4857 put_prev_entity(cfs_rq, pse);
4858 set_next_entity(cfs_rq, se);
4859 }
4860
4861 if (hrtick_enabled(rq))
4862 hrtick_start_fair(rq, p);
4863
4864 return p;
4865simple:
4866 cfs_rq = &rq->cfs;
4867#endif
bf0f6f24 4868
36ace27e 4869 if (!cfs_rq->nr_running)
38033c37 4870 goto idle;
bf0f6f24 4871
3f1d2a31 4872 put_prev_task(rq, prev);
606dba2e 4873
bf0f6f24 4874 do {
678d5718 4875 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4876 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4877 cfs_rq = group_cfs_rq(se);
4878 } while (cfs_rq);
4879
8f4d37ec 4880 p = task_of(se);
678d5718 4881
b39e66ea
MG
4882 if (hrtick_enabled(rq))
4883 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4884
4885 return p;
38033c37
PZ
4886
4887idle:
e4aa358b 4888 new_tasks = idle_balance(rq);
37e117c0
PZ
4889 /*
4890 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4891 * possible for any higher priority task to appear. In that case we
4892 * must re-start the pick_next_entity() loop.
4893 */
e4aa358b 4894 if (new_tasks < 0)
37e117c0
PZ
4895 return RETRY_TASK;
4896
e4aa358b 4897 if (new_tasks > 0)
38033c37 4898 goto again;
38033c37
PZ
4899
4900 return NULL;
bf0f6f24
IM
4901}
4902
4903/*
4904 * Account for a descheduled task:
4905 */
31ee529c 4906static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4907{
4908 struct sched_entity *se = &prev->se;
4909 struct cfs_rq *cfs_rq;
4910
4911 for_each_sched_entity(se) {
4912 cfs_rq = cfs_rq_of(se);
ab6cde26 4913 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4914 }
4915}
4916
ac53db59
RR
4917/*
4918 * sched_yield() is very simple
4919 *
4920 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4921 */
4922static void yield_task_fair(struct rq *rq)
4923{
4924 struct task_struct *curr = rq->curr;
4925 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4926 struct sched_entity *se = &curr->se;
4927
4928 /*
4929 * Are we the only task in the tree?
4930 */
4931 if (unlikely(rq->nr_running == 1))
4932 return;
4933
4934 clear_buddies(cfs_rq, se);
4935
4936 if (curr->policy != SCHED_BATCH) {
4937 update_rq_clock(rq);
4938 /*
4939 * Update run-time statistics of the 'current'.
4940 */
4941 update_curr(cfs_rq);
916671c0
MG
4942 /*
4943 * Tell update_rq_clock() that we've just updated,
4944 * so we don't do microscopic update in schedule()
4945 * and double the fastpath cost.
4946 */
4947 rq->skip_clock_update = 1;
ac53db59
RR
4948 }
4949
4950 set_skip_buddy(se);
4951}
4952
d95f4122
MG
4953static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4954{
4955 struct sched_entity *se = &p->se;
4956
5238cdd3
PT
4957 /* throttled hierarchies are not runnable */
4958 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4959 return false;
4960
4961 /* Tell the scheduler that we'd really like pse to run next. */
4962 set_next_buddy(se);
4963
d95f4122
MG
4964 yield_task_fair(rq);
4965
4966 return true;
4967}
4968
681f3e68 4969#ifdef CONFIG_SMP
bf0f6f24 4970/**************************************************
e9c84cb8
PZ
4971 * Fair scheduling class load-balancing methods.
4972 *
4973 * BASICS
4974 *
4975 * The purpose of load-balancing is to achieve the same basic fairness the
4976 * per-cpu scheduler provides, namely provide a proportional amount of compute
4977 * time to each task. This is expressed in the following equation:
4978 *
4979 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4980 *
4981 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4982 * W_i,0 is defined as:
4983 *
4984 * W_i,0 = \Sum_j w_i,j (2)
4985 *
4986 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4987 * is derived from the nice value as per prio_to_weight[].
4988 *
4989 * The weight average is an exponential decay average of the instantaneous
4990 * weight:
4991 *
4992 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4993 *
ced549fa 4994 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4995 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4996 * can also include other factors [XXX].
4997 *
4998 * To achieve this balance we define a measure of imbalance which follows
4999 * directly from (1):
5000 *
ced549fa 5001 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5002 *
5003 * We them move tasks around to minimize the imbalance. In the continuous
5004 * function space it is obvious this converges, in the discrete case we get
5005 * a few fun cases generally called infeasible weight scenarios.
5006 *
5007 * [XXX expand on:
5008 * - infeasible weights;
5009 * - local vs global optima in the discrete case. ]
5010 *
5011 *
5012 * SCHED DOMAINS
5013 *
5014 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5015 * for all i,j solution, we create a tree of cpus that follows the hardware
5016 * topology where each level pairs two lower groups (or better). This results
5017 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5018 * tree to only the first of the previous level and we decrease the frequency
5019 * of load-balance at each level inv. proportional to the number of cpus in
5020 * the groups.
5021 *
5022 * This yields:
5023 *
5024 * log_2 n 1 n
5025 * \Sum { --- * --- * 2^i } = O(n) (5)
5026 * i = 0 2^i 2^i
5027 * `- size of each group
5028 * | | `- number of cpus doing load-balance
5029 * | `- freq
5030 * `- sum over all levels
5031 *
5032 * Coupled with a limit on how many tasks we can migrate every balance pass,
5033 * this makes (5) the runtime complexity of the balancer.
5034 *
5035 * An important property here is that each CPU is still (indirectly) connected
5036 * to every other cpu in at most O(log n) steps:
5037 *
5038 * The adjacency matrix of the resulting graph is given by:
5039 *
5040 * log_2 n
5041 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5042 * k = 0
5043 *
5044 * And you'll find that:
5045 *
5046 * A^(log_2 n)_i,j != 0 for all i,j (7)
5047 *
5048 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5049 * The task movement gives a factor of O(m), giving a convergence complexity
5050 * of:
5051 *
5052 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5053 *
5054 *
5055 * WORK CONSERVING
5056 *
5057 * In order to avoid CPUs going idle while there's still work to do, new idle
5058 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5059 * tree itself instead of relying on other CPUs to bring it work.
5060 *
5061 * This adds some complexity to both (5) and (8) but it reduces the total idle
5062 * time.
5063 *
5064 * [XXX more?]
5065 *
5066 *
5067 * CGROUPS
5068 *
5069 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5070 *
5071 * s_k,i
5072 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5073 * S_k
5074 *
5075 * Where
5076 *
5077 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5078 *
5079 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5080 *
5081 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5082 * property.
5083 *
5084 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5085 * rewrite all of this once again.]
5086 */
bf0f6f24 5087
ed387b78
HS
5088static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5089
0ec8aa00
PZ
5090enum fbq_type { regular, remote, all };
5091
ddcdf6e7 5092#define LBF_ALL_PINNED 0x01
367456c7 5093#define LBF_NEED_BREAK 0x02
6263322c
PZ
5094#define LBF_DST_PINNED 0x04
5095#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5096
5097struct lb_env {
5098 struct sched_domain *sd;
5099
ddcdf6e7 5100 struct rq *src_rq;
85c1e7da 5101 int src_cpu;
ddcdf6e7
PZ
5102
5103 int dst_cpu;
5104 struct rq *dst_rq;
5105
88b8dac0
SV
5106 struct cpumask *dst_grpmask;
5107 int new_dst_cpu;
ddcdf6e7 5108 enum cpu_idle_type idle;
bd939f45 5109 long imbalance;
b9403130
MW
5110 /* The set of CPUs under consideration for load-balancing */
5111 struct cpumask *cpus;
5112
ddcdf6e7 5113 unsigned int flags;
367456c7
PZ
5114
5115 unsigned int loop;
5116 unsigned int loop_break;
5117 unsigned int loop_max;
0ec8aa00
PZ
5118
5119 enum fbq_type fbq_type;
ddcdf6e7
PZ
5120};
5121
1e3c88bd 5122/*
ddcdf6e7 5123 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5124 * Both runqueues must be locked.
5125 */
ddcdf6e7 5126static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5127{
ddcdf6e7
PZ
5128 deactivate_task(env->src_rq, p, 0);
5129 set_task_cpu(p, env->dst_cpu);
5130 activate_task(env->dst_rq, p, 0);
5131 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5132}
5133
029632fb
PZ
5134/*
5135 * Is this task likely cache-hot:
5136 */
5d5e2b1b 5137static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5138{
5139 s64 delta;
5140
5141 if (p->sched_class != &fair_sched_class)
5142 return 0;
5143
5144 if (unlikely(p->policy == SCHED_IDLE))
5145 return 0;
5146
5147 /*
5148 * Buddy candidates are cache hot:
5149 */
5d5e2b1b 5150 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5151 (&p->se == cfs_rq_of(&p->se)->next ||
5152 &p->se == cfs_rq_of(&p->se)->last))
5153 return 1;
5154
5155 if (sysctl_sched_migration_cost == -1)
5156 return 1;
5157 if (sysctl_sched_migration_cost == 0)
5158 return 0;
5159
5d5e2b1b 5160 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5161
5162 return delta < (s64)sysctl_sched_migration_cost;
5163}
5164
3a7053b3
MG
5165#ifdef CONFIG_NUMA_BALANCING
5166/* Returns true if the destination node has incurred more faults */
5167static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5168{
b1ad065e 5169 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5170 int src_nid, dst_nid;
5171
ff1df896 5172 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5173 !(env->sd->flags & SD_NUMA)) {
5174 return false;
5175 }
5176
5177 src_nid = cpu_to_node(env->src_cpu);
5178 dst_nid = cpu_to_node(env->dst_cpu);
5179
83e1d2cd 5180 if (src_nid == dst_nid)
3a7053b3
MG
5181 return false;
5182
b1ad065e
RR
5183 if (numa_group) {
5184 /* Task is already in the group's interleave set. */
5185 if (node_isset(src_nid, numa_group->active_nodes))
5186 return false;
83e1d2cd 5187
b1ad065e
RR
5188 /* Task is moving into the group's interleave set. */
5189 if (node_isset(dst_nid, numa_group->active_nodes))
5190 return true;
83e1d2cd 5191
b1ad065e
RR
5192 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5193 }
5194
5195 /* Encourage migration to the preferred node. */
5196 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5197 return true;
5198
b1ad065e 5199 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5200}
7a0f3083
MG
5201
5202
5203static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5204{
b1ad065e 5205 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5206 int src_nid, dst_nid;
5207
5208 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5209 return false;
5210
ff1df896 5211 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5212 return false;
5213
5214 src_nid = cpu_to_node(env->src_cpu);
5215 dst_nid = cpu_to_node(env->dst_cpu);
5216
83e1d2cd 5217 if (src_nid == dst_nid)
7a0f3083
MG
5218 return false;
5219
b1ad065e
RR
5220 if (numa_group) {
5221 /* Task is moving within/into the group's interleave set. */
5222 if (node_isset(dst_nid, numa_group->active_nodes))
5223 return false;
5224
5225 /* Task is moving out of the group's interleave set. */
5226 if (node_isset(src_nid, numa_group->active_nodes))
5227 return true;
5228
5229 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5230 }
5231
83e1d2cd
MG
5232 /* Migrating away from the preferred node is always bad. */
5233 if (src_nid == p->numa_preferred_nid)
5234 return true;
5235
b1ad065e 5236 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5237}
5238
3a7053b3
MG
5239#else
5240static inline bool migrate_improves_locality(struct task_struct *p,
5241 struct lb_env *env)
5242{
5243 return false;
5244}
7a0f3083
MG
5245
5246static inline bool migrate_degrades_locality(struct task_struct *p,
5247 struct lb_env *env)
5248{
5249 return false;
5250}
3a7053b3
MG
5251#endif
5252
1e3c88bd
PZ
5253/*
5254 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5255 */
5256static
8e45cb54 5257int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5258{
5259 int tsk_cache_hot = 0;
5260 /*
5261 * We do not migrate tasks that are:
d3198084 5262 * 1) throttled_lb_pair, or
1e3c88bd 5263 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5264 * 3) running (obviously), or
5265 * 4) are cache-hot on their current CPU.
1e3c88bd 5266 */
d3198084
JK
5267 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5268 return 0;
5269
ddcdf6e7 5270 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5271 int cpu;
88b8dac0 5272
41acab88 5273 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5274
6263322c
PZ
5275 env->flags |= LBF_SOME_PINNED;
5276
88b8dac0
SV
5277 /*
5278 * Remember if this task can be migrated to any other cpu in
5279 * our sched_group. We may want to revisit it if we couldn't
5280 * meet load balance goals by pulling other tasks on src_cpu.
5281 *
5282 * Also avoid computing new_dst_cpu if we have already computed
5283 * one in current iteration.
5284 */
6263322c 5285 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5286 return 0;
5287
e02e60c1
JK
5288 /* Prevent to re-select dst_cpu via env's cpus */
5289 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5290 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5291 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5292 env->new_dst_cpu = cpu;
5293 break;
5294 }
88b8dac0 5295 }
e02e60c1 5296
1e3c88bd
PZ
5297 return 0;
5298 }
88b8dac0
SV
5299
5300 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5301 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5302
ddcdf6e7 5303 if (task_running(env->src_rq, p)) {
41acab88 5304 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5305 return 0;
5306 }
5307
5308 /*
5309 * Aggressive migration if:
3a7053b3
MG
5310 * 1) destination numa is preferred
5311 * 2) task is cache cold, or
5312 * 3) too many balance attempts have failed.
1e3c88bd 5313 */
5d5e2b1b 5314 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5315 if (!tsk_cache_hot)
5316 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5317
5318 if (migrate_improves_locality(p, env)) {
5319#ifdef CONFIG_SCHEDSTATS
5320 if (tsk_cache_hot) {
5321 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5322 schedstat_inc(p, se.statistics.nr_forced_migrations);
5323 }
5324#endif
5325 return 1;
5326 }
5327
1e3c88bd 5328 if (!tsk_cache_hot ||
8e45cb54 5329 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5330
1e3c88bd 5331 if (tsk_cache_hot) {
8e45cb54 5332 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5333 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5334 }
4e2dcb73 5335
1e3c88bd
PZ
5336 return 1;
5337 }
5338
4e2dcb73
ZH
5339 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5340 return 0;
1e3c88bd
PZ
5341}
5342
897c395f
PZ
5343/*
5344 * move_one_task tries to move exactly one task from busiest to this_rq, as
5345 * part of active balancing operations within "domain".
5346 * Returns 1 if successful and 0 otherwise.
5347 *
5348 * Called with both runqueues locked.
5349 */
8e45cb54 5350static int move_one_task(struct lb_env *env)
897c395f
PZ
5351{
5352 struct task_struct *p, *n;
897c395f 5353
367456c7 5354 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5355 if (!can_migrate_task(p, env))
5356 continue;
897c395f 5357
367456c7
PZ
5358 move_task(p, env);
5359 /*
5360 * Right now, this is only the second place move_task()
5361 * is called, so we can safely collect move_task()
5362 * stats here rather than inside move_task().
5363 */
5364 schedstat_inc(env->sd, lb_gained[env->idle]);
5365 return 1;
897c395f 5366 }
897c395f
PZ
5367 return 0;
5368}
5369
eb95308e
PZ
5370static const unsigned int sched_nr_migrate_break = 32;
5371
5d6523eb 5372/*
bd939f45 5373 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5374 * this_rq, as part of a balancing operation within domain "sd".
5375 * Returns 1 if successful and 0 otherwise.
5376 *
5377 * Called with both runqueues locked.
5378 */
5379static int move_tasks(struct lb_env *env)
1e3c88bd 5380{
5d6523eb
PZ
5381 struct list_head *tasks = &env->src_rq->cfs_tasks;
5382 struct task_struct *p;
367456c7
PZ
5383 unsigned long load;
5384 int pulled = 0;
1e3c88bd 5385
bd939f45 5386 if (env->imbalance <= 0)
5d6523eb 5387 return 0;
1e3c88bd 5388
5d6523eb
PZ
5389 while (!list_empty(tasks)) {
5390 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5391
367456c7
PZ
5392 env->loop++;
5393 /* We've more or less seen every task there is, call it quits */
5d6523eb 5394 if (env->loop > env->loop_max)
367456c7 5395 break;
5d6523eb
PZ
5396
5397 /* take a breather every nr_migrate tasks */
367456c7 5398 if (env->loop > env->loop_break) {
eb95308e 5399 env->loop_break += sched_nr_migrate_break;
8e45cb54 5400 env->flags |= LBF_NEED_BREAK;
ee00e66f 5401 break;
a195f004 5402 }
1e3c88bd 5403
d3198084 5404 if (!can_migrate_task(p, env))
367456c7
PZ
5405 goto next;
5406
5407 load = task_h_load(p);
5d6523eb 5408
eb95308e 5409 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5410 goto next;
5411
bd939f45 5412 if ((load / 2) > env->imbalance)
367456c7 5413 goto next;
1e3c88bd 5414
ddcdf6e7 5415 move_task(p, env);
ee00e66f 5416 pulled++;
bd939f45 5417 env->imbalance -= load;
1e3c88bd
PZ
5418
5419#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5420 /*
5421 * NEWIDLE balancing is a source of latency, so preemptible
5422 * kernels will stop after the first task is pulled to minimize
5423 * the critical section.
5424 */
5d6523eb 5425 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5426 break;
1e3c88bd
PZ
5427#endif
5428
ee00e66f
PZ
5429 /*
5430 * We only want to steal up to the prescribed amount of
5431 * weighted load.
5432 */
bd939f45 5433 if (env->imbalance <= 0)
ee00e66f 5434 break;
367456c7
PZ
5435
5436 continue;
5437next:
5d6523eb 5438 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5439 }
5d6523eb 5440
1e3c88bd 5441 /*
ddcdf6e7
PZ
5442 * Right now, this is one of only two places move_task() is called,
5443 * so we can safely collect move_task() stats here rather than
5444 * inside move_task().
1e3c88bd 5445 */
8e45cb54 5446 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5447
5d6523eb 5448 return pulled;
1e3c88bd
PZ
5449}
5450
230059de 5451#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5452/*
5453 * update tg->load_weight by folding this cpu's load_avg
5454 */
48a16753 5455static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5456{
48a16753
PT
5457 struct sched_entity *se = tg->se[cpu];
5458 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5459
48a16753
PT
5460 /* throttled entities do not contribute to load */
5461 if (throttled_hierarchy(cfs_rq))
5462 return;
9e3081ca 5463
aff3e498 5464 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5465
82958366
PT
5466 if (se) {
5467 update_entity_load_avg(se, 1);
5468 /*
5469 * We pivot on our runnable average having decayed to zero for
5470 * list removal. This generally implies that all our children
5471 * have also been removed (modulo rounding error or bandwidth
5472 * control); however, such cases are rare and we can fix these
5473 * at enqueue.
5474 *
5475 * TODO: fix up out-of-order children on enqueue.
5476 */
5477 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5478 list_del_leaf_cfs_rq(cfs_rq);
5479 } else {
48a16753 5480 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5481 update_rq_runnable_avg(rq, rq->nr_running);
5482 }
9e3081ca
PZ
5483}
5484
48a16753 5485static void update_blocked_averages(int cpu)
9e3081ca 5486{
9e3081ca 5487 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5488 struct cfs_rq *cfs_rq;
5489 unsigned long flags;
9e3081ca 5490
48a16753
PT
5491 raw_spin_lock_irqsave(&rq->lock, flags);
5492 update_rq_clock(rq);
9763b67f
PZ
5493 /*
5494 * Iterates the task_group tree in a bottom up fashion, see
5495 * list_add_leaf_cfs_rq() for details.
5496 */
64660c86 5497 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5498 /*
5499 * Note: We may want to consider periodically releasing
5500 * rq->lock about these updates so that creating many task
5501 * groups does not result in continually extending hold time.
5502 */
5503 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5504 }
48a16753
PT
5505
5506 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5507}
5508
9763b67f 5509/*
68520796 5510 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5511 * This needs to be done in a top-down fashion because the load of a child
5512 * group is a fraction of its parents load.
5513 */
68520796 5514static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5515{
68520796
VD
5516 struct rq *rq = rq_of(cfs_rq);
5517 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5518 unsigned long now = jiffies;
68520796 5519 unsigned long load;
a35b6466 5520
68520796 5521 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5522 return;
5523
68520796
VD
5524 cfs_rq->h_load_next = NULL;
5525 for_each_sched_entity(se) {
5526 cfs_rq = cfs_rq_of(se);
5527 cfs_rq->h_load_next = se;
5528 if (cfs_rq->last_h_load_update == now)
5529 break;
5530 }
a35b6466 5531
68520796 5532 if (!se) {
7e3115ef 5533 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5534 cfs_rq->last_h_load_update = now;
5535 }
5536
5537 while ((se = cfs_rq->h_load_next) != NULL) {
5538 load = cfs_rq->h_load;
5539 load = div64_ul(load * se->avg.load_avg_contrib,
5540 cfs_rq->runnable_load_avg + 1);
5541 cfs_rq = group_cfs_rq(se);
5542 cfs_rq->h_load = load;
5543 cfs_rq->last_h_load_update = now;
5544 }
9763b67f
PZ
5545}
5546
367456c7 5547static unsigned long task_h_load(struct task_struct *p)
230059de 5548{
367456c7 5549 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5550
68520796 5551 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5552 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5553 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5554}
5555#else
48a16753 5556static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5557{
5558}
5559
367456c7 5560static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5561{
a003a25b 5562 return p->se.avg.load_avg_contrib;
1e3c88bd 5563}
230059de 5564#endif
1e3c88bd 5565
1e3c88bd 5566/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5567
5568enum group_type {
5569 group_other = 0,
5570 group_imbalanced,
5571 group_overloaded,
5572};
5573
1e3c88bd
PZ
5574/*
5575 * sg_lb_stats - stats of a sched_group required for load_balancing
5576 */
5577struct sg_lb_stats {
5578 unsigned long avg_load; /*Avg load across the CPUs of the group */
5579 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5580 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5581 unsigned long load_per_task;
63b2ca30 5582 unsigned long group_capacity;
147c5fc2 5583 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5584 unsigned int group_capacity_factor;
147c5fc2
PZ
5585 unsigned int idle_cpus;
5586 unsigned int group_weight;
caeb178c 5587 enum group_type group_type;
1b6a7495 5588 int group_has_free_capacity;
0ec8aa00
PZ
5589#ifdef CONFIG_NUMA_BALANCING
5590 unsigned int nr_numa_running;
5591 unsigned int nr_preferred_running;
5592#endif
1e3c88bd
PZ
5593};
5594
56cf515b
JK
5595/*
5596 * sd_lb_stats - Structure to store the statistics of a sched_domain
5597 * during load balancing.
5598 */
5599struct sd_lb_stats {
5600 struct sched_group *busiest; /* Busiest group in this sd */
5601 struct sched_group *local; /* Local group in this sd */
5602 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5603 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5604 unsigned long avg_load; /* Average load across all groups in sd */
5605
56cf515b 5606 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5607 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5608};
5609
147c5fc2
PZ
5610static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5611{
5612 /*
5613 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5614 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5615 * We must however clear busiest_stat::avg_load because
5616 * update_sd_pick_busiest() reads this before assignment.
5617 */
5618 *sds = (struct sd_lb_stats){
5619 .busiest = NULL,
5620 .local = NULL,
5621 .total_load = 0UL,
63b2ca30 5622 .total_capacity = 0UL,
147c5fc2
PZ
5623 .busiest_stat = {
5624 .avg_load = 0UL,
caeb178c
RR
5625 .sum_nr_running = 0,
5626 .group_type = group_other,
147c5fc2
PZ
5627 },
5628 };
5629}
5630
1e3c88bd
PZ
5631/**
5632 * get_sd_load_idx - Obtain the load index for a given sched domain.
5633 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5634 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5635 *
5636 * Return: The load index.
1e3c88bd
PZ
5637 */
5638static inline int get_sd_load_idx(struct sched_domain *sd,
5639 enum cpu_idle_type idle)
5640{
5641 int load_idx;
5642
5643 switch (idle) {
5644 case CPU_NOT_IDLE:
5645 load_idx = sd->busy_idx;
5646 break;
5647
5648 case CPU_NEWLY_IDLE:
5649 load_idx = sd->newidle_idx;
5650 break;
5651 default:
5652 load_idx = sd->idle_idx;
5653 break;
5654 }
5655
5656 return load_idx;
5657}
5658
ced549fa 5659static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5660{
ca8ce3d0 5661 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5662}
5663
ca8ce3d0 5664unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5665{
ced549fa 5666 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5667}
5668
ced549fa 5669static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5670{
669c55e9 5671 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5672 unsigned long smt_gain = sd->smt_gain;
5673
5674 smt_gain /= weight;
5675
5676 return smt_gain;
5677}
5678
ca8ce3d0 5679unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5680{
ced549fa 5681 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5682}
5683
ced549fa 5684static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5685{
5686 struct rq *rq = cpu_rq(cpu);
b654f7de 5687 u64 total, available, age_stamp, avg;
cadefd3d 5688 s64 delta;
1e3c88bd 5689
b654f7de
PZ
5690 /*
5691 * Since we're reading these variables without serialization make sure
5692 * we read them once before doing sanity checks on them.
5693 */
5694 age_stamp = ACCESS_ONCE(rq->age_stamp);
5695 avg = ACCESS_ONCE(rq->rt_avg);
5696
cadefd3d
PZ
5697 delta = rq_clock(rq) - age_stamp;
5698 if (unlikely(delta < 0))
5699 delta = 0;
5700
5701 total = sched_avg_period() + delta;
aa483808 5702
b654f7de 5703 if (unlikely(total < avg)) {
ced549fa 5704 /* Ensures that capacity won't end up being negative */
aa483808
VP
5705 available = 0;
5706 } else {
b654f7de 5707 available = total - avg;
aa483808 5708 }
1e3c88bd 5709
ca8ce3d0
NP
5710 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5711 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5712
ca8ce3d0 5713 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5714
5715 return div_u64(available, total);
5716}
5717
ced549fa 5718static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5719{
669c55e9 5720 unsigned long weight = sd->span_weight;
ca8ce3d0 5721 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5722 struct sched_group *sdg = sd->groups;
5723
5d4dfddd
NP
5724 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5725 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5726 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5727 else
ced549fa 5728 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5729
ca8ce3d0 5730 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5731 }
5732
ced549fa 5733 sdg->sgc->capacity_orig = capacity;
9d5efe05 5734
5d4dfddd 5735 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5736 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5737 else
ced549fa 5738 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5739
ca8ce3d0 5740 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5741
ced549fa 5742 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5743 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5744
ced549fa
NP
5745 if (!capacity)
5746 capacity = 1;
1e3c88bd 5747
ced549fa
NP
5748 cpu_rq(cpu)->cpu_capacity = capacity;
5749 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5750}
5751
63b2ca30 5752void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5753{
5754 struct sched_domain *child = sd->child;
5755 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5756 unsigned long capacity, capacity_orig;
4ec4412e
VG
5757 unsigned long interval;
5758
5759 interval = msecs_to_jiffies(sd->balance_interval);
5760 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5761 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5762
5763 if (!child) {
ced549fa 5764 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5765 return;
5766 }
5767
63b2ca30 5768 capacity_orig = capacity = 0;
1e3c88bd 5769
74a5ce20
PZ
5770 if (child->flags & SD_OVERLAP) {
5771 /*
5772 * SD_OVERLAP domains cannot assume that child groups
5773 * span the current group.
5774 */
5775
863bffc8 5776 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5777 struct sched_group_capacity *sgc;
9abf24d4 5778 struct rq *rq = cpu_rq(cpu);
863bffc8 5779
9abf24d4 5780 /*
63b2ca30 5781 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5782 * gets here before we've attached the domains to the
5783 * runqueues.
5784 *
ced549fa
NP
5785 * Use capacity_of(), which is set irrespective of domains
5786 * in update_cpu_capacity().
9abf24d4 5787 *
63b2ca30 5788 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5789 * causing divide-by-zero issues on boot.
5790 *
63b2ca30 5791 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5792 */
5793 if (unlikely(!rq->sd)) {
ced549fa
NP
5794 capacity_orig += capacity_of(cpu);
5795 capacity += capacity_of(cpu);
9abf24d4
SD
5796 continue;
5797 }
863bffc8 5798
63b2ca30
NP
5799 sgc = rq->sd->groups->sgc;
5800 capacity_orig += sgc->capacity_orig;
5801 capacity += sgc->capacity;
863bffc8 5802 }
74a5ce20
PZ
5803 } else {
5804 /*
5805 * !SD_OVERLAP domains can assume that child groups
5806 * span the current group.
5807 */
5808
5809 group = child->groups;
5810 do {
63b2ca30
NP
5811 capacity_orig += group->sgc->capacity_orig;
5812 capacity += group->sgc->capacity;
74a5ce20
PZ
5813 group = group->next;
5814 } while (group != child->groups);
5815 }
1e3c88bd 5816
63b2ca30
NP
5817 sdg->sgc->capacity_orig = capacity_orig;
5818 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5819}
5820
9d5efe05
SV
5821/*
5822 * Try and fix up capacity for tiny siblings, this is needed when
5823 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5824 * which on its own isn't powerful enough.
5825 *
5826 * See update_sd_pick_busiest() and check_asym_packing().
5827 */
5828static inline int
5829fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5830{
5831 /*
ca8ce3d0 5832 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5833 */
5d4dfddd 5834 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5835 return 0;
5836
5837 /*
63b2ca30 5838 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5839 */
63b2ca30 5840 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5841 return 1;
5842
5843 return 0;
5844}
5845
30ce5dab
PZ
5846/*
5847 * Group imbalance indicates (and tries to solve) the problem where balancing
5848 * groups is inadequate due to tsk_cpus_allowed() constraints.
5849 *
5850 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5851 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5852 * Something like:
5853 *
5854 * { 0 1 2 3 } { 4 5 6 7 }
5855 * * * * *
5856 *
5857 * If we were to balance group-wise we'd place two tasks in the first group and
5858 * two tasks in the second group. Clearly this is undesired as it will overload
5859 * cpu 3 and leave one of the cpus in the second group unused.
5860 *
5861 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5862 * by noticing the lower domain failed to reach balance and had difficulty
5863 * moving tasks due to affinity constraints.
30ce5dab
PZ
5864 *
5865 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5866 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5867 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5868 * to create an effective group imbalance.
5869 *
5870 * This is a somewhat tricky proposition since the next run might not find the
5871 * group imbalance and decide the groups need to be balanced again. A most
5872 * subtle and fragile situation.
5873 */
5874
6263322c 5875static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5876{
63b2ca30 5877 return group->sgc->imbalance;
30ce5dab
PZ
5878}
5879
b37d9316 5880/*
0fedc6c8 5881 * Compute the group capacity factor.
b37d9316 5882 *
ced549fa 5883 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5884 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5885 * and limit unit capacity with that.
b37d9316 5886 */
0fedc6c8 5887static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5888{
0fedc6c8 5889 unsigned int capacity_factor, smt, cpus;
63b2ca30 5890 unsigned int capacity, capacity_orig;
c61037e9 5891
63b2ca30
NP
5892 capacity = group->sgc->capacity;
5893 capacity_orig = group->sgc->capacity_orig;
c61037e9 5894 cpus = group->group_weight;
b37d9316 5895
63b2ca30 5896 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5897 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5898 capacity_factor = cpus / smt; /* cores */
b37d9316 5899
63b2ca30 5900 capacity_factor = min_t(unsigned,
ca8ce3d0 5901 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5902 if (!capacity_factor)
5903 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5904
0fedc6c8 5905 return capacity_factor;
b37d9316
PZ
5906}
5907
caeb178c
RR
5908static enum group_type
5909group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5910{
5911 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5912 return group_overloaded;
5913
5914 if (sg_imbalanced(group))
5915 return group_imbalanced;
5916
5917 return group_other;
5918}
5919
1e3c88bd
PZ
5920/**
5921 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5922 * @env: The load balancing environment.
1e3c88bd 5923 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5924 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5925 * @local_group: Does group contain this_cpu.
1e3c88bd 5926 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5927 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5928 */
bd939f45
PZ
5929static inline void update_sg_lb_stats(struct lb_env *env,
5930 struct sched_group *group, int load_idx,
4486edd1
TC
5931 int local_group, struct sg_lb_stats *sgs,
5932 bool *overload)
1e3c88bd 5933{
30ce5dab 5934 unsigned long load;
bd939f45 5935 int i;
1e3c88bd 5936
b72ff13c
PZ
5937 memset(sgs, 0, sizeof(*sgs));
5938
b9403130 5939 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5940 struct rq *rq = cpu_rq(i);
5941
1e3c88bd 5942 /* Bias balancing toward cpus of our domain */
6263322c 5943 if (local_group)
04f733b4 5944 load = target_load(i, load_idx);
6263322c 5945 else
1e3c88bd 5946 load = source_load(i, load_idx);
1e3c88bd
PZ
5947
5948 sgs->group_load += load;
380c9077 5949 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
5950
5951 if (rq->nr_running > 1)
5952 *overload = true;
5953
0ec8aa00
PZ
5954#ifdef CONFIG_NUMA_BALANCING
5955 sgs->nr_numa_running += rq->nr_numa_running;
5956 sgs->nr_preferred_running += rq->nr_preferred_running;
5957#endif
1e3c88bd 5958 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5959 if (idle_cpu(i))
5960 sgs->idle_cpus++;
1e3c88bd
PZ
5961 }
5962
63b2ca30
NP
5963 /* Adjust by relative CPU capacity of the group */
5964 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5965 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5966
dd5feea1 5967 if (sgs->sum_nr_running)
38d0f770 5968 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5969
aae6d3dd 5970 sgs->group_weight = group->group_weight;
0fedc6c8 5971 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 5972 sgs->group_type = group_classify(group, sgs);
b37d9316 5973
0fedc6c8 5974 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5975 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5976}
5977
532cb4c4
MN
5978/**
5979 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5980 * @env: The load balancing environment.
532cb4c4
MN
5981 * @sds: sched_domain statistics
5982 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5983 * @sgs: sched_group statistics
532cb4c4
MN
5984 *
5985 * Determine if @sg is a busier group than the previously selected
5986 * busiest group.
e69f6186
YB
5987 *
5988 * Return: %true if @sg is a busier group than the previously selected
5989 * busiest group. %false otherwise.
532cb4c4 5990 */
bd939f45 5991static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5992 struct sd_lb_stats *sds,
5993 struct sched_group *sg,
bd939f45 5994 struct sg_lb_stats *sgs)
532cb4c4 5995{
caeb178c 5996 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 5997
caeb178c 5998 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
5999 return true;
6000
caeb178c
RR
6001 if (sgs->group_type < busiest->group_type)
6002 return false;
6003
6004 if (sgs->avg_load <= busiest->avg_load)
6005 return false;
6006
6007 /* This is the busiest node in its class. */
6008 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6009 return true;
6010
6011 /*
6012 * ASYM_PACKING needs to move all the work to the lowest
6013 * numbered CPUs in the group, therefore mark all groups
6014 * higher than ourself as busy.
6015 */
caeb178c 6016 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6017 if (!sds->busiest)
6018 return true;
6019
6020 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6021 return true;
6022 }
6023
6024 return false;
6025}
6026
0ec8aa00
PZ
6027#ifdef CONFIG_NUMA_BALANCING
6028static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6029{
6030 if (sgs->sum_nr_running > sgs->nr_numa_running)
6031 return regular;
6032 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6033 return remote;
6034 return all;
6035}
6036
6037static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6038{
6039 if (rq->nr_running > rq->nr_numa_running)
6040 return regular;
6041 if (rq->nr_running > rq->nr_preferred_running)
6042 return remote;
6043 return all;
6044}
6045#else
6046static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6047{
6048 return all;
6049}
6050
6051static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6052{
6053 return regular;
6054}
6055#endif /* CONFIG_NUMA_BALANCING */
6056
1e3c88bd 6057/**
461819ac 6058 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6059 * @env: The load balancing environment.
1e3c88bd
PZ
6060 * @sds: variable to hold the statistics for this sched_domain.
6061 */
0ec8aa00 6062static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6063{
bd939f45
PZ
6064 struct sched_domain *child = env->sd->child;
6065 struct sched_group *sg = env->sd->groups;
56cf515b 6066 struct sg_lb_stats tmp_sgs;
1e3c88bd 6067 int load_idx, prefer_sibling = 0;
4486edd1 6068 bool overload = false;
1e3c88bd
PZ
6069
6070 if (child && child->flags & SD_PREFER_SIBLING)
6071 prefer_sibling = 1;
6072
bd939f45 6073 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6074
6075 do {
56cf515b 6076 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6077 int local_group;
6078
bd939f45 6079 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6080 if (local_group) {
6081 sds->local = sg;
6082 sgs = &sds->local_stat;
b72ff13c
PZ
6083
6084 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6085 time_after_eq(jiffies, sg->sgc->next_update))
6086 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6087 }
1e3c88bd 6088
4486edd1
TC
6089 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6090 &overload);
1e3c88bd 6091
b72ff13c
PZ
6092 if (local_group)
6093 goto next_group;
6094
1e3c88bd
PZ
6095 /*
6096 * In case the child domain prefers tasks go to siblings
0fedc6c8 6097 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6098 * and move all the excess tasks away. We lower the capacity
6099 * of a group only if the local group has the capacity to fit
0fedc6c8 6100 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6101 * extra check prevents the case where you always pull from the
6102 * heaviest group when it is already under-utilized (possible
6103 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6104 */
b72ff13c 6105 if (prefer_sibling && sds->local &&
1b6a7495 6106 sds->local_stat.group_has_free_capacity)
0fedc6c8 6107 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6108
b72ff13c 6109 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6110 sds->busiest = sg;
56cf515b 6111 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6112 }
6113
b72ff13c
PZ
6114next_group:
6115 /* Now, start updating sd_lb_stats */
6116 sds->total_load += sgs->group_load;
63b2ca30 6117 sds->total_capacity += sgs->group_capacity;
b72ff13c 6118
532cb4c4 6119 sg = sg->next;
bd939f45 6120 } while (sg != env->sd->groups);
0ec8aa00
PZ
6121
6122 if (env->sd->flags & SD_NUMA)
6123 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6124
6125 if (!env->sd->parent) {
6126 /* update overload indicator if we are at root domain */
6127 if (env->dst_rq->rd->overload != overload)
6128 env->dst_rq->rd->overload = overload;
6129 }
6130
532cb4c4
MN
6131}
6132
532cb4c4
MN
6133/**
6134 * check_asym_packing - Check to see if the group is packed into the
6135 * sched doman.
6136 *
6137 * This is primarily intended to used at the sibling level. Some
6138 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6139 * case of POWER7, it can move to lower SMT modes only when higher
6140 * threads are idle. When in lower SMT modes, the threads will
6141 * perform better since they share less core resources. Hence when we
6142 * have idle threads, we want them to be the higher ones.
6143 *
6144 * This packing function is run on idle threads. It checks to see if
6145 * the busiest CPU in this domain (core in the P7 case) has a higher
6146 * CPU number than the packing function is being run on. Here we are
6147 * assuming lower CPU number will be equivalent to lower a SMT thread
6148 * number.
6149 *
e69f6186 6150 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6151 * this CPU. The amount of the imbalance is returned in *imbalance.
6152 *
cd96891d 6153 * @env: The load balancing environment.
532cb4c4 6154 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6155 */
bd939f45 6156static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6157{
6158 int busiest_cpu;
6159
bd939f45 6160 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6161 return 0;
6162
6163 if (!sds->busiest)
6164 return 0;
6165
6166 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6167 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6168 return 0;
6169
bd939f45 6170 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6171 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6172 SCHED_CAPACITY_SCALE);
bd939f45 6173
532cb4c4 6174 return 1;
1e3c88bd
PZ
6175}
6176
6177/**
6178 * fix_small_imbalance - Calculate the minor imbalance that exists
6179 * amongst the groups of a sched_domain, during
6180 * load balancing.
cd96891d 6181 * @env: The load balancing environment.
1e3c88bd 6182 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6183 */
bd939f45
PZ
6184static inline
6185void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6186{
63b2ca30 6187 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6188 unsigned int imbn = 2;
dd5feea1 6189 unsigned long scaled_busy_load_per_task;
56cf515b 6190 struct sg_lb_stats *local, *busiest;
1e3c88bd 6191
56cf515b
JK
6192 local = &sds->local_stat;
6193 busiest = &sds->busiest_stat;
1e3c88bd 6194
56cf515b
JK
6195 if (!local->sum_nr_running)
6196 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6197 else if (busiest->load_per_task > local->load_per_task)
6198 imbn = 1;
dd5feea1 6199
56cf515b 6200 scaled_busy_load_per_task =
ca8ce3d0 6201 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6202 busiest->group_capacity;
56cf515b 6203
3029ede3
VD
6204 if (busiest->avg_load + scaled_busy_load_per_task >=
6205 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6206 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6207 return;
6208 }
6209
6210 /*
6211 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6212 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6213 * moving them.
6214 */
6215
63b2ca30 6216 capa_now += busiest->group_capacity *
56cf515b 6217 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6218 capa_now += local->group_capacity *
56cf515b 6219 min(local->load_per_task, local->avg_load);
ca8ce3d0 6220 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6221
6222 /* Amount of load we'd subtract */
a2cd4260 6223 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6224 capa_move += busiest->group_capacity *
56cf515b 6225 min(busiest->load_per_task,
a2cd4260 6226 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6227 }
1e3c88bd
PZ
6228
6229 /* Amount of load we'd add */
63b2ca30 6230 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6231 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6232 tmp = (busiest->avg_load * busiest->group_capacity) /
6233 local->group_capacity;
56cf515b 6234 } else {
ca8ce3d0 6235 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6236 local->group_capacity;
56cf515b 6237 }
63b2ca30 6238 capa_move += local->group_capacity *
3ae11c90 6239 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6240 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6241
6242 /* Move if we gain throughput */
63b2ca30 6243 if (capa_move > capa_now)
56cf515b 6244 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6245}
6246
6247/**
6248 * calculate_imbalance - Calculate the amount of imbalance present within the
6249 * groups of a given sched_domain during load balance.
bd939f45 6250 * @env: load balance environment
1e3c88bd 6251 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6252 */
bd939f45 6253static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6254{
dd5feea1 6255 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6256 struct sg_lb_stats *local, *busiest;
6257
6258 local = &sds->local_stat;
56cf515b 6259 busiest = &sds->busiest_stat;
dd5feea1 6260
caeb178c 6261 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6262 /*
6263 * In the group_imb case we cannot rely on group-wide averages
6264 * to ensure cpu-load equilibrium, look at wider averages. XXX
6265 */
56cf515b
JK
6266 busiest->load_per_task =
6267 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6268 }
6269
1e3c88bd
PZ
6270 /*
6271 * In the presence of smp nice balancing, certain scenarios can have
6272 * max load less than avg load(as we skip the groups at or below
ced549fa 6273 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6274 */
b1885550
VD
6275 if (busiest->avg_load <= sds->avg_load ||
6276 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6277 env->imbalance = 0;
6278 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6279 }
6280
9a5d9ba6
PZ
6281 /*
6282 * If there aren't any idle cpus, avoid creating some.
6283 */
6284 if (busiest->group_type == group_overloaded &&
6285 local->group_type == group_overloaded) {
56cf515b 6286 load_above_capacity =
0fedc6c8 6287 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6288
ca8ce3d0 6289 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6290 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6291 }
6292
6293 /*
6294 * We're trying to get all the cpus to the average_load, so we don't
6295 * want to push ourselves above the average load, nor do we wish to
6296 * reduce the max loaded cpu below the average load. At the same time,
6297 * we also don't want to reduce the group load below the group capacity
6298 * (so that we can implement power-savings policies etc). Thus we look
6299 * for the minimum possible imbalance.
dd5feea1 6300 */
30ce5dab 6301 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6302
6303 /* How much load to actually move to equalise the imbalance */
56cf515b 6304 env->imbalance = min(
63b2ca30
NP
6305 max_pull * busiest->group_capacity,
6306 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6307 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6308
6309 /*
6310 * if *imbalance is less than the average load per runnable task
25985edc 6311 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6312 * a think about bumping its value to force at least one task to be
6313 * moved
6314 */
56cf515b 6315 if (env->imbalance < busiest->load_per_task)
bd939f45 6316 return fix_small_imbalance(env, sds);
1e3c88bd 6317}
fab47622 6318
1e3c88bd
PZ
6319/******* find_busiest_group() helpers end here *********************/
6320
6321/**
6322 * find_busiest_group - Returns the busiest group within the sched_domain
6323 * if there is an imbalance. If there isn't an imbalance, and
6324 * the user has opted for power-savings, it returns a group whose
6325 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6326 * such a group exists.
6327 *
6328 * Also calculates the amount of weighted load which should be moved
6329 * to restore balance.
6330 *
cd96891d 6331 * @env: The load balancing environment.
1e3c88bd 6332 *
e69f6186 6333 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6334 * - If no imbalance and user has opted for power-savings balance,
6335 * return the least loaded group whose CPUs can be
6336 * put to idle by rebalancing its tasks onto our group.
6337 */
56cf515b 6338static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6339{
56cf515b 6340 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6341 struct sd_lb_stats sds;
6342
147c5fc2 6343 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6344
6345 /*
6346 * Compute the various statistics relavent for load balancing at
6347 * this level.
6348 */
23f0d209 6349 update_sd_lb_stats(env, &sds);
56cf515b
JK
6350 local = &sds.local_stat;
6351 busiest = &sds.busiest_stat;
1e3c88bd 6352
bd939f45
PZ
6353 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6354 check_asym_packing(env, &sds))
532cb4c4
MN
6355 return sds.busiest;
6356
cc57aa8f 6357 /* There is no busy sibling group to pull tasks from */
56cf515b 6358 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6359 goto out_balanced;
6360
ca8ce3d0
NP
6361 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6362 / sds.total_capacity;
b0432d8f 6363
866ab43e
PZ
6364 /*
6365 * If the busiest group is imbalanced the below checks don't
30ce5dab 6366 * work because they assume all things are equal, which typically
866ab43e
PZ
6367 * isn't true due to cpus_allowed constraints and the like.
6368 */
caeb178c 6369 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6370 goto force_balance;
6371
cc57aa8f 6372 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6373 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6374 !busiest->group_has_free_capacity)
fab47622
NR
6375 goto force_balance;
6376
cc57aa8f
PZ
6377 /*
6378 * If the local group is more busy than the selected busiest group
6379 * don't try and pull any tasks.
6380 */
56cf515b 6381 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6382 goto out_balanced;
6383
cc57aa8f
PZ
6384 /*
6385 * Don't pull any tasks if this group is already above the domain
6386 * average load.
6387 */
56cf515b 6388 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6389 goto out_balanced;
6390
bd939f45 6391 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6392 /*
6393 * This cpu is idle. If the busiest group load doesn't
6394 * have more tasks than the number of available cpu's and
6395 * there is no imbalance between this and busiest group
6396 * wrt to idle cpu's, it is balanced.
6397 */
56cf515b
JK
6398 if ((local->idle_cpus < busiest->idle_cpus) &&
6399 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6400 goto out_balanced;
c186fafe
PZ
6401 } else {
6402 /*
6403 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6404 * imbalance_pct to be conservative.
6405 */
56cf515b
JK
6406 if (100 * busiest->avg_load <=
6407 env->sd->imbalance_pct * local->avg_load)
c186fafe 6408 goto out_balanced;
aae6d3dd 6409 }
1e3c88bd 6410
fab47622 6411force_balance:
1e3c88bd 6412 /* Looks like there is an imbalance. Compute it */
bd939f45 6413 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6414 return sds.busiest;
6415
6416out_balanced:
bd939f45 6417 env->imbalance = 0;
1e3c88bd
PZ
6418 return NULL;
6419}
6420
6421/*
6422 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6423 */
bd939f45 6424static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6425 struct sched_group *group)
1e3c88bd
PZ
6426{
6427 struct rq *busiest = NULL, *rq;
ced549fa 6428 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6429 int i;
6430
6906a408 6431 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6432 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6433 enum fbq_type rt;
6434
6435 rq = cpu_rq(i);
6436 rt = fbq_classify_rq(rq);
1e3c88bd 6437
0ec8aa00
PZ
6438 /*
6439 * We classify groups/runqueues into three groups:
6440 * - regular: there are !numa tasks
6441 * - remote: there are numa tasks that run on the 'wrong' node
6442 * - all: there is no distinction
6443 *
6444 * In order to avoid migrating ideally placed numa tasks,
6445 * ignore those when there's better options.
6446 *
6447 * If we ignore the actual busiest queue to migrate another
6448 * task, the next balance pass can still reduce the busiest
6449 * queue by moving tasks around inside the node.
6450 *
6451 * If we cannot move enough load due to this classification
6452 * the next pass will adjust the group classification and
6453 * allow migration of more tasks.
6454 *
6455 * Both cases only affect the total convergence complexity.
6456 */
6457 if (rt > env->fbq_type)
6458 continue;
6459
ced549fa 6460 capacity = capacity_of(i);
ca8ce3d0 6461 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6462 if (!capacity_factor)
6463 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6464
6e40f5bb 6465 wl = weighted_cpuload(i);
1e3c88bd 6466
6e40f5bb
TG
6467 /*
6468 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6469 * which is not scaled with the cpu capacity.
6e40f5bb 6470 */
0fedc6c8 6471 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6472 continue;
6473
6e40f5bb
TG
6474 /*
6475 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6476 * the weighted_cpuload() scaled with the cpu capacity, so
6477 * that the load can be moved away from the cpu that is
6478 * potentially running at a lower capacity.
95a79b80 6479 *
ced549fa 6480 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6481 * multiplication to rid ourselves of the division works out
ced549fa
NP
6482 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6483 * our previous maximum.
6e40f5bb 6484 */
ced549fa 6485 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6486 busiest_load = wl;
ced549fa 6487 busiest_capacity = capacity;
1e3c88bd
PZ
6488 busiest = rq;
6489 }
6490 }
6491
6492 return busiest;
6493}
6494
6495/*
6496 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6497 * so long as it is large enough.
6498 */
6499#define MAX_PINNED_INTERVAL 512
6500
6501/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6502DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6503
bd939f45 6504static int need_active_balance(struct lb_env *env)
1af3ed3d 6505{
bd939f45
PZ
6506 struct sched_domain *sd = env->sd;
6507
6508 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6509
6510 /*
6511 * ASYM_PACKING needs to force migrate tasks from busy but
6512 * higher numbered CPUs in order to pack all tasks in the
6513 * lowest numbered CPUs.
6514 */
bd939f45 6515 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6516 return 1;
1af3ed3d
PZ
6517 }
6518
6519 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6520}
6521
969c7921
TH
6522static int active_load_balance_cpu_stop(void *data);
6523
23f0d209
JK
6524static int should_we_balance(struct lb_env *env)
6525{
6526 struct sched_group *sg = env->sd->groups;
6527 struct cpumask *sg_cpus, *sg_mask;
6528 int cpu, balance_cpu = -1;
6529
6530 /*
6531 * In the newly idle case, we will allow all the cpu's
6532 * to do the newly idle load balance.
6533 */
6534 if (env->idle == CPU_NEWLY_IDLE)
6535 return 1;
6536
6537 sg_cpus = sched_group_cpus(sg);
6538 sg_mask = sched_group_mask(sg);
6539 /* Try to find first idle cpu */
6540 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6541 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6542 continue;
6543
6544 balance_cpu = cpu;
6545 break;
6546 }
6547
6548 if (balance_cpu == -1)
6549 balance_cpu = group_balance_cpu(sg);
6550
6551 /*
6552 * First idle cpu or the first cpu(busiest) in this sched group
6553 * is eligible for doing load balancing at this and above domains.
6554 */
b0cff9d8 6555 return balance_cpu == env->dst_cpu;
23f0d209
JK
6556}
6557
1e3c88bd
PZ
6558/*
6559 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6560 * tasks if there is an imbalance.
6561 */
6562static int load_balance(int this_cpu, struct rq *this_rq,
6563 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6564 int *continue_balancing)
1e3c88bd 6565{
88b8dac0 6566 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6567 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6568 struct sched_group *group;
1e3c88bd
PZ
6569 struct rq *busiest;
6570 unsigned long flags;
e6252c3e 6571 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6572
8e45cb54
PZ
6573 struct lb_env env = {
6574 .sd = sd,
ddcdf6e7
PZ
6575 .dst_cpu = this_cpu,
6576 .dst_rq = this_rq,
88b8dac0 6577 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6578 .idle = idle,
eb95308e 6579 .loop_break = sched_nr_migrate_break,
b9403130 6580 .cpus = cpus,
0ec8aa00 6581 .fbq_type = all,
8e45cb54
PZ
6582 };
6583
cfc03118
JK
6584 /*
6585 * For NEWLY_IDLE load_balancing, we don't need to consider
6586 * other cpus in our group
6587 */
e02e60c1 6588 if (idle == CPU_NEWLY_IDLE)
cfc03118 6589 env.dst_grpmask = NULL;
cfc03118 6590
1e3c88bd
PZ
6591 cpumask_copy(cpus, cpu_active_mask);
6592
1e3c88bd
PZ
6593 schedstat_inc(sd, lb_count[idle]);
6594
6595redo:
23f0d209
JK
6596 if (!should_we_balance(&env)) {
6597 *continue_balancing = 0;
1e3c88bd 6598 goto out_balanced;
23f0d209 6599 }
1e3c88bd 6600
23f0d209 6601 group = find_busiest_group(&env);
1e3c88bd
PZ
6602 if (!group) {
6603 schedstat_inc(sd, lb_nobusyg[idle]);
6604 goto out_balanced;
6605 }
6606
b9403130 6607 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6608 if (!busiest) {
6609 schedstat_inc(sd, lb_nobusyq[idle]);
6610 goto out_balanced;
6611 }
6612
78feefc5 6613 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6614
bd939f45 6615 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6616
6617 ld_moved = 0;
6618 if (busiest->nr_running > 1) {
6619 /*
6620 * Attempt to move tasks. If find_busiest_group has found
6621 * an imbalance but busiest->nr_running <= 1, the group is
6622 * still unbalanced. ld_moved simply stays zero, so it is
6623 * correctly treated as an imbalance.
6624 */
8e45cb54 6625 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6626 env.src_cpu = busiest->cpu;
6627 env.src_rq = busiest;
6628 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6629
5d6523eb 6630more_balance:
1e3c88bd 6631 local_irq_save(flags);
78feefc5 6632 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6633
6634 /*
6635 * cur_ld_moved - load moved in current iteration
6636 * ld_moved - cumulative load moved across iterations
6637 */
6638 cur_ld_moved = move_tasks(&env);
6639 ld_moved += cur_ld_moved;
78feefc5 6640 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6641 local_irq_restore(flags);
6642
6643 /*
6644 * some other cpu did the load balance for us.
6645 */
88b8dac0
SV
6646 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6647 resched_cpu(env.dst_cpu);
6648
f1cd0858
JK
6649 if (env.flags & LBF_NEED_BREAK) {
6650 env.flags &= ~LBF_NEED_BREAK;
6651 goto more_balance;
6652 }
6653
88b8dac0
SV
6654 /*
6655 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6656 * us and move them to an alternate dst_cpu in our sched_group
6657 * where they can run. The upper limit on how many times we
6658 * iterate on same src_cpu is dependent on number of cpus in our
6659 * sched_group.
6660 *
6661 * This changes load balance semantics a bit on who can move
6662 * load to a given_cpu. In addition to the given_cpu itself
6663 * (or a ilb_cpu acting on its behalf where given_cpu is
6664 * nohz-idle), we now have balance_cpu in a position to move
6665 * load to given_cpu. In rare situations, this may cause
6666 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6667 * _independently_ and at _same_ time to move some load to
6668 * given_cpu) causing exceess load to be moved to given_cpu.
6669 * This however should not happen so much in practice and
6670 * moreover subsequent load balance cycles should correct the
6671 * excess load moved.
6672 */
6263322c 6673 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6674
7aff2e3a
VD
6675 /* Prevent to re-select dst_cpu via env's cpus */
6676 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6677
78feefc5 6678 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6679 env.dst_cpu = env.new_dst_cpu;
6263322c 6680 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6681 env.loop = 0;
6682 env.loop_break = sched_nr_migrate_break;
e02e60c1 6683
88b8dac0
SV
6684 /*
6685 * Go back to "more_balance" rather than "redo" since we
6686 * need to continue with same src_cpu.
6687 */
6688 goto more_balance;
6689 }
1e3c88bd 6690
6263322c
PZ
6691 /*
6692 * We failed to reach balance because of affinity.
6693 */
6694 if (sd_parent) {
63b2ca30 6695 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6696
6697 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6698 *group_imbalance = 1;
6699 } else if (*group_imbalance)
6700 *group_imbalance = 0;
6701 }
6702
1e3c88bd 6703 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6704 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6705 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6706 if (!cpumask_empty(cpus)) {
6707 env.loop = 0;
6708 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6709 goto redo;
bbf18b19 6710 }
1e3c88bd
PZ
6711 goto out_balanced;
6712 }
6713 }
6714
6715 if (!ld_moved) {
6716 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6717 /*
6718 * Increment the failure counter only on periodic balance.
6719 * We do not want newidle balance, which can be very
6720 * frequent, pollute the failure counter causing
6721 * excessive cache_hot migrations and active balances.
6722 */
6723 if (idle != CPU_NEWLY_IDLE)
6724 sd->nr_balance_failed++;
1e3c88bd 6725
bd939f45 6726 if (need_active_balance(&env)) {
1e3c88bd
PZ
6727 raw_spin_lock_irqsave(&busiest->lock, flags);
6728
969c7921
TH
6729 /* don't kick the active_load_balance_cpu_stop,
6730 * if the curr task on busiest cpu can't be
6731 * moved to this_cpu
1e3c88bd
PZ
6732 */
6733 if (!cpumask_test_cpu(this_cpu,
fa17b507 6734 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6735 raw_spin_unlock_irqrestore(&busiest->lock,
6736 flags);
8e45cb54 6737 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6738 goto out_one_pinned;
6739 }
6740
969c7921
TH
6741 /*
6742 * ->active_balance synchronizes accesses to
6743 * ->active_balance_work. Once set, it's cleared
6744 * only after active load balance is finished.
6745 */
1e3c88bd
PZ
6746 if (!busiest->active_balance) {
6747 busiest->active_balance = 1;
6748 busiest->push_cpu = this_cpu;
6749 active_balance = 1;
6750 }
6751 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6752
bd939f45 6753 if (active_balance) {
969c7921
TH
6754 stop_one_cpu_nowait(cpu_of(busiest),
6755 active_load_balance_cpu_stop, busiest,
6756 &busiest->active_balance_work);
bd939f45 6757 }
1e3c88bd
PZ
6758
6759 /*
6760 * We've kicked active balancing, reset the failure
6761 * counter.
6762 */
6763 sd->nr_balance_failed = sd->cache_nice_tries+1;
6764 }
6765 } else
6766 sd->nr_balance_failed = 0;
6767
6768 if (likely(!active_balance)) {
6769 /* We were unbalanced, so reset the balancing interval */
6770 sd->balance_interval = sd->min_interval;
6771 } else {
6772 /*
6773 * If we've begun active balancing, start to back off. This
6774 * case may not be covered by the all_pinned logic if there
6775 * is only 1 task on the busy runqueue (because we don't call
6776 * move_tasks).
6777 */
6778 if (sd->balance_interval < sd->max_interval)
6779 sd->balance_interval *= 2;
6780 }
6781
1e3c88bd
PZ
6782 goto out;
6783
6784out_balanced:
6785 schedstat_inc(sd, lb_balanced[idle]);
6786
6787 sd->nr_balance_failed = 0;
6788
6789out_one_pinned:
6790 /* tune up the balancing interval */
8e45cb54 6791 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6792 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6793 (sd->balance_interval < sd->max_interval))
6794 sd->balance_interval *= 2;
6795
46e49b38 6796 ld_moved = 0;
1e3c88bd 6797out:
1e3c88bd
PZ
6798 return ld_moved;
6799}
6800
52a08ef1
JL
6801static inline unsigned long
6802get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6803{
6804 unsigned long interval = sd->balance_interval;
6805
6806 if (cpu_busy)
6807 interval *= sd->busy_factor;
6808
6809 /* scale ms to jiffies */
6810 interval = msecs_to_jiffies(interval);
6811 interval = clamp(interval, 1UL, max_load_balance_interval);
6812
6813 return interval;
6814}
6815
6816static inline void
6817update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6818{
6819 unsigned long interval, next;
6820
6821 interval = get_sd_balance_interval(sd, cpu_busy);
6822 next = sd->last_balance + interval;
6823
6824 if (time_after(*next_balance, next))
6825 *next_balance = next;
6826}
6827
1e3c88bd
PZ
6828/*
6829 * idle_balance is called by schedule() if this_cpu is about to become
6830 * idle. Attempts to pull tasks from other CPUs.
6831 */
6e83125c 6832static int idle_balance(struct rq *this_rq)
1e3c88bd 6833{
52a08ef1
JL
6834 unsigned long next_balance = jiffies + HZ;
6835 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6836 struct sched_domain *sd;
6837 int pulled_task = 0;
9bd721c5 6838 u64 curr_cost = 0;
1e3c88bd 6839
6e83125c 6840 idle_enter_fair(this_rq);
0e5b5337 6841
6e83125c
PZ
6842 /*
6843 * We must set idle_stamp _before_ calling idle_balance(), such that we
6844 * measure the duration of idle_balance() as idle time.
6845 */
6846 this_rq->idle_stamp = rq_clock(this_rq);
6847
4486edd1
TC
6848 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6849 !this_rq->rd->overload) {
52a08ef1
JL
6850 rcu_read_lock();
6851 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6852 if (sd)
6853 update_next_balance(sd, 0, &next_balance);
6854 rcu_read_unlock();
6855
6e83125c 6856 goto out;
52a08ef1 6857 }
1e3c88bd 6858
f492e12e
PZ
6859 /*
6860 * Drop the rq->lock, but keep IRQ/preempt disabled.
6861 */
6862 raw_spin_unlock(&this_rq->lock);
6863
48a16753 6864 update_blocked_averages(this_cpu);
dce840a0 6865 rcu_read_lock();
1e3c88bd 6866 for_each_domain(this_cpu, sd) {
23f0d209 6867 int continue_balancing = 1;
9bd721c5 6868 u64 t0, domain_cost;
1e3c88bd
PZ
6869
6870 if (!(sd->flags & SD_LOAD_BALANCE))
6871 continue;
6872
52a08ef1
JL
6873 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6874 update_next_balance(sd, 0, &next_balance);
9bd721c5 6875 break;
52a08ef1 6876 }
9bd721c5 6877
f492e12e 6878 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6879 t0 = sched_clock_cpu(this_cpu);
6880
f492e12e 6881 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6882 sd, CPU_NEWLY_IDLE,
6883 &continue_balancing);
9bd721c5
JL
6884
6885 domain_cost = sched_clock_cpu(this_cpu) - t0;
6886 if (domain_cost > sd->max_newidle_lb_cost)
6887 sd->max_newidle_lb_cost = domain_cost;
6888
6889 curr_cost += domain_cost;
f492e12e 6890 }
1e3c88bd 6891
52a08ef1 6892 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6893
6894 /*
6895 * Stop searching for tasks to pull if there are
6896 * now runnable tasks on this rq.
6897 */
6898 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6899 break;
1e3c88bd 6900 }
dce840a0 6901 rcu_read_unlock();
f492e12e
PZ
6902
6903 raw_spin_lock(&this_rq->lock);
6904
0e5b5337
JL
6905 if (curr_cost > this_rq->max_idle_balance_cost)
6906 this_rq->max_idle_balance_cost = curr_cost;
6907
e5fc6611 6908 /*
0e5b5337
JL
6909 * While browsing the domains, we released the rq lock, a task could
6910 * have been enqueued in the meantime. Since we're not going idle,
6911 * pretend we pulled a task.
e5fc6611 6912 */
0e5b5337 6913 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6914 pulled_task = 1;
e5fc6611 6915
52a08ef1
JL
6916out:
6917 /* Move the next balance forward */
6918 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6919 this_rq->next_balance = next_balance;
9bd721c5 6920
e4aa358b 6921 /* Is there a task of a high priority class? */
46383648 6922 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6923 pulled_task = -1;
6924
6925 if (pulled_task) {
6926 idle_exit_fair(this_rq);
6e83125c 6927 this_rq->idle_stamp = 0;
e4aa358b 6928 }
6e83125c 6929
3c4017c1 6930 return pulled_task;
1e3c88bd
PZ
6931}
6932
6933/*
969c7921
TH
6934 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6935 * running tasks off the busiest CPU onto idle CPUs. It requires at
6936 * least 1 task to be running on each physical CPU where possible, and
6937 * avoids physical / logical imbalances.
1e3c88bd 6938 */
969c7921 6939static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6940{
969c7921
TH
6941 struct rq *busiest_rq = data;
6942 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6943 int target_cpu = busiest_rq->push_cpu;
969c7921 6944 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6945 struct sched_domain *sd;
969c7921
TH
6946
6947 raw_spin_lock_irq(&busiest_rq->lock);
6948
6949 /* make sure the requested cpu hasn't gone down in the meantime */
6950 if (unlikely(busiest_cpu != smp_processor_id() ||
6951 !busiest_rq->active_balance))
6952 goto out_unlock;
1e3c88bd
PZ
6953
6954 /* Is there any task to move? */
6955 if (busiest_rq->nr_running <= 1)
969c7921 6956 goto out_unlock;
1e3c88bd
PZ
6957
6958 /*
6959 * This condition is "impossible", if it occurs
6960 * we need to fix it. Originally reported by
6961 * Bjorn Helgaas on a 128-cpu setup.
6962 */
6963 BUG_ON(busiest_rq == target_rq);
6964
6965 /* move a task from busiest_rq to target_rq */
6966 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6967
6968 /* Search for an sd spanning us and the target CPU. */
dce840a0 6969 rcu_read_lock();
1e3c88bd
PZ
6970 for_each_domain(target_cpu, sd) {
6971 if ((sd->flags & SD_LOAD_BALANCE) &&
6972 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6973 break;
6974 }
6975
6976 if (likely(sd)) {
8e45cb54
PZ
6977 struct lb_env env = {
6978 .sd = sd,
ddcdf6e7
PZ
6979 .dst_cpu = target_cpu,
6980 .dst_rq = target_rq,
6981 .src_cpu = busiest_rq->cpu,
6982 .src_rq = busiest_rq,
8e45cb54
PZ
6983 .idle = CPU_IDLE,
6984 };
6985
1e3c88bd
PZ
6986 schedstat_inc(sd, alb_count);
6987
8e45cb54 6988 if (move_one_task(&env))
1e3c88bd
PZ
6989 schedstat_inc(sd, alb_pushed);
6990 else
6991 schedstat_inc(sd, alb_failed);
6992 }
dce840a0 6993 rcu_read_unlock();
1e3c88bd 6994 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6995out_unlock:
6996 busiest_rq->active_balance = 0;
6997 raw_spin_unlock_irq(&busiest_rq->lock);
6998 return 0;
1e3c88bd
PZ
6999}
7000
d987fc7f
MG
7001static inline int on_null_domain(struct rq *rq)
7002{
7003 return unlikely(!rcu_dereference_sched(rq->sd));
7004}
7005
3451d024 7006#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7007/*
7008 * idle load balancing details
83cd4fe2
VP
7009 * - When one of the busy CPUs notice that there may be an idle rebalancing
7010 * needed, they will kick the idle load balancer, which then does idle
7011 * load balancing for all the idle CPUs.
7012 */
1e3c88bd 7013static struct {
83cd4fe2 7014 cpumask_var_t idle_cpus_mask;
0b005cf5 7015 atomic_t nr_cpus;
83cd4fe2
VP
7016 unsigned long next_balance; /* in jiffy units */
7017} nohz ____cacheline_aligned;
1e3c88bd 7018
3dd0337d 7019static inline int find_new_ilb(void)
1e3c88bd 7020{
0b005cf5 7021 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7022
786d6dc7
SS
7023 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7024 return ilb;
7025
7026 return nr_cpu_ids;
1e3c88bd 7027}
1e3c88bd 7028
83cd4fe2
VP
7029/*
7030 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7031 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7032 * CPU (if there is one).
7033 */
0aeeeeba 7034static void nohz_balancer_kick(void)
83cd4fe2
VP
7035{
7036 int ilb_cpu;
7037
7038 nohz.next_balance++;
7039
3dd0337d 7040 ilb_cpu = find_new_ilb();
83cd4fe2 7041
0b005cf5
SS
7042 if (ilb_cpu >= nr_cpu_ids)
7043 return;
83cd4fe2 7044
cd490c5b 7045 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7046 return;
7047 /*
7048 * Use smp_send_reschedule() instead of resched_cpu().
7049 * This way we generate a sched IPI on the target cpu which
7050 * is idle. And the softirq performing nohz idle load balance
7051 * will be run before returning from the IPI.
7052 */
7053 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7054 return;
7055}
7056
c1cc017c 7057static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7058{
7059 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7060 /*
7061 * Completely isolated CPUs don't ever set, so we must test.
7062 */
7063 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7064 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7065 atomic_dec(&nohz.nr_cpus);
7066 }
71325960
SS
7067 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7068 }
7069}
7070
69e1e811
SS
7071static inline void set_cpu_sd_state_busy(void)
7072{
7073 struct sched_domain *sd;
37dc6b50 7074 int cpu = smp_processor_id();
69e1e811 7075
69e1e811 7076 rcu_read_lock();
37dc6b50 7077 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7078
7079 if (!sd || !sd->nohz_idle)
7080 goto unlock;
7081 sd->nohz_idle = 0;
7082
63b2ca30 7083 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7084unlock:
69e1e811
SS
7085 rcu_read_unlock();
7086}
7087
7088void set_cpu_sd_state_idle(void)
7089{
7090 struct sched_domain *sd;
37dc6b50 7091 int cpu = smp_processor_id();
69e1e811 7092
69e1e811 7093 rcu_read_lock();
37dc6b50 7094 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7095
7096 if (!sd || sd->nohz_idle)
7097 goto unlock;
7098 sd->nohz_idle = 1;
7099
63b2ca30 7100 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7101unlock:
69e1e811
SS
7102 rcu_read_unlock();
7103}
7104
1e3c88bd 7105/*
c1cc017c 7106 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7107 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7108 */
c1cc017c 7109void nohz_balance_enter_idle(int cpu)
1e3c88bd 7110{
71325960
SS
7111 /*
7112 * If this cpu is going down, then nothing needs to be done.
7113 */
7114 if (!cpu_active(cpu))
7115 return;
7116
c1cc017c
AS
7117 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7118 return;
1e3c88bd 7119
d987fc7f
MG
7120 /*
7121 * If we're a completely isolated CPU, we don't play.
7122 */
7123 if (on_null_domain(cpu_rq(cpu)))
7124 return;
7125
c1cc017c
AS
7126 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7127 atomic_inc(&nohz.nr_cpus);
7128 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7129}
71325960 7130
0db0628d 7131static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7132 unsigned long action, void *hcpu)
7133{
7134 switch (action & ~CPU_TASKS_FROZEN) {
7135 case CPU_DYING:
c1cc017c 7136 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7137 return NOTIFY_OK;
7138 default:
7139 return NOTIFY_DONE;
7140 }
7141}
1e3c88bd
PZ
7142#endif
7143
7144static DEFINE_SPINLOCK(balancing);
7145
49c022e6
PZ
7146/*
7147 * Scale the max load_balance interval with the number of CPUs in the system.
7148 * This trades load-balance latency on larger machines for less cross talk.
7149 */
029632fb 7150void update_max_interval(void)
49c022e6
PZ
7151{
7152 max_load_balance_interval = HZ*num_online_cpus()/10;
7153}
7154
1e3c88bd
PZ
7155/*
7156 * It checks each scheduling domain to see if it is due to be balanced,
7157 * and initiates a balancing operation if so.
7158 *
b9b0853a 7159 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7160 */
f7ed0a89 7161static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7162{
23f0d209 7163 int continue_balancing = 1;
f7ed0a89 7164 int cpu = rq->cpu;
1e3c88bd 7165 unsigned long interval;
04f733b4 7166 struct sched_domain *sd;
1e3c88bd
PZ
7167 /* Earliest time when we have to do rebalance again */
7168 unsigned long next_balance = jiffies + 60*HZ;
7169 int update_next_balance = 0;
f48627e6
JL
7170 int need_serialize, need_decay = 0;
7171 u64 max_cost = 0;
1e3c88bd 7172
48a16753 7173 update_blocked_averages(cpu);
2069dd75 7174
dce840a0 7175 rcu_read_lock();
1e3c88bd 7176 for_each_domain(cpu, sd) {
f48627e6
JL
7177 /*
7178 * Decay the newidle max times here because this is a regular
7179 * visit to all the domains. Decay ~1% per second.
7180 */
7181 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7182 sd->max_newidle_lb_cost =
7183 (sd->max_newidle_lb_cost * 253) / 256;
7184 sd->next_decay_max_lb_cost = jiffies + HZ;
7185 need_decay = 1;
7186 }
7187 max_cost += sd->max_newidle_lb_cost;
7188
1e3c88bd
PZ
7189 if (!(sd->flags & SD_LOAD_BALANCE))
7190 continue;
7191
f48627e6
JL
7192 /*
7193 * Stop the load balance at this level. There is another
7194 * CPU in our sched group which is doing load balancing more
7195 * actively.
7196 */
7197 if (!continue_balancing) {
7198 if (need_decay)
7199 continue;
7200 break;
7201 }
7202
52a08ef1 7203 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7204
7205 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7206 if (need_serialize) {
7207 if (!spin_trylock(&balancing))
7208 goto out;
7209 }
7210
7211 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7212 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7213 /*
6263322c 7214 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7215 * env->dst_cpu, so we can't know our idle
7216 * state even if we migrated tasks. Update it.
1e3c88bd 7217 */
de5eb2dd 7218 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7219 }
7220 sd->last_balance = jiffies;
52a08ef1 7221 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7222 }
7223 if (need_serialize)
7224 spin_unlock(&balancing);
7225out:
7226 if (time_after(next_balance, sd->last_balance + interval)) {
7227 next_balance = sd->last_balance + interval;
7228 update_next_balance = 1;
7229 }
f48627e6
JL
7230 }
7231 if (need_decay) {
1e3c88bd 7232 /*
f48627e6
JL
7233 * Ensure the rq-wide value also decays but keep it at a
7234 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7235 */
f48627e6
JL
7236 rq->max_idle_balance_cost =
7237 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7238 }
dce840a0 7239 rcu_read_unlock();
1e3c88bd
PZ
7240
7241 /*
7242 * next_balance will be updated only when there is a need.
7243 * When the cpu is attached to null domain for ex, it will not be
7244 * updated.
7245 */
7246 if (likely(update_next_balance))
7247 rq->next_balance = next_balance;
7248}
7249
3451d024 7250#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7251/*
3451d024 7252 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7253 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7254 */
208cb16b 7255static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7256{
208cb16b 7257 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7258 struct rq *rq;
7259 int balance_cpu;
7260
1c792db7
SS
7261 if (idle != CPU_IDLE ||
7262 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7263 goto end;
83cd4fe2
VP
7264
7265 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7266 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7267 continue;
7268
7269 /*
7270 * If this cpu gets work to do, stop the load balancing
7271 * work being done for other cpus. Next load
7272 * balancing owner will pick it up.
7273 */
1c792db7 7274 if (need_resched())
83cd4fe2 7275 break;
83cd4fe2 7276
5ed4f1d9
VG
7277 rq = cpu_rq(balance_cpu);
7278
ed61bbc6
TC
7279 /*
7280 * If time for next balance is due,
7281 * do the balance.
7282 */
7283 if (time_after_eq(jiffies, rq->next_balance)) {
7284 raw_spin_lock_irq(&rq->lock);
7285 update_rq_clock(rq);
7286 update_idle_cpu_load(rq);
7287 raw_spin_unlock_irq(&rq->lock);
7288 rebalance_domains(rq, CPU_IDLE);
7289 }
83cd4fe2 7290
83cd4fe2
VP
7291 if (time_after(this_rq->next_balance, rq->next_balance))
7292 this_rq->next_balance = rq->next_balance;
7293 }
7294 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7295end:
7296 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7297}
7298
7299/*
0b005cf5
SS
7300 * Current heuristic for kicking the idle load balancer in the presence
7301 * of an idle cpu is the system.
7302 * - This rq has more than one task.
7303 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7304 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7305 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7306 * domain span are idle.
83cd4fe2 7307 */
4a725627 7308static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7309{
7310 unsigned long now = jiffies;
0b005cf5 7311 struct sched_domain *sd;
63b2ca30 7312 struct sched_group_capacity *sgc;
4a725627 7313 int nr_busy, cpu = rq->cpu;
83cd4fe2 7314
4a725627 7315 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7316 return 0;
7317
1c792db7
SS
7318 /*
7319 * We may be recently in ticked or tickless idle mode. At the first
7320 * busy tick after returning from idle, we will update the busy stats.
7321 */
69e1e811 7322 set_cpu_sd_state_busy();
c1cc017c 7323 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7324
7325 /*
7326 * None are in tickless mode and hence no need for NOHZ idle load
7327 * balancing.
7328 */
7329 if (likely(!atomic_read(&nohz.nr_cpus)))
7330 return 0;
1c792db7
SS
7331
7332 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7333 return 0;
7334
0b005cf5
SS
7335 if (rq->nr_running >= 2)
7336 goto need_kick;
83cd4fe2 7337
067491b7 7338 rcu_read_lock();
37dc6b50 7339 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7340
37dc6b50 7341 if (sd) {
63b2ca30
NP
7342 sgc = sd->groups->sgc;
7343 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7344
37dc6b50 7345 if (nr_busy > 1)
067491b7 7346 goto need_kick_unlock;
83cd4fe2 7347 }
37dc6b50
PM
7348
7349 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7350
7351 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7352 sched_domain_span(sd)) < cpu))
7353 goto need_kick_unlock;
7354
067491b7 7355 rcu_read_unlock();
83cd4fe2 7356 return 0;
067491b7
PZ
7357
7358need_kick_unlock:
7359 rcu_read_unlock();
0b005cf5
SS
7360need_kick:
7361 return 1;
83cd4fe2
VP
7362}
7363#else
208cb16b 7364static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7365#endif
7366
7367/*
7368 * run_rebalance_domains is triggered when needed from the scheduler tick.
7369 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7370 */
1e3c88bd
PZ
7371static void run_rebalance_domains(struct softirq_action *h)
7372{
208cb16b 7373 struct rq *this_rq = this_rq();
6eb57e0d 7374 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7375 CPU_IDLE : CPU_NOT_IDLE;
7376
f7ed0a89 7377 rebalance_domains(this_rq, idle);
1e3c88bd 7378
1e3c88bd 7379 /*
83cd4fe2 7380 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7381 * balancing on behalf of the other idle cpus whose ticks are
7382 * stopped.
7383 */
208cb16b 7384 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7385}
7386
1e3c88bd
PZ
7387/*
7388 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7389 */
7caff66f 7390void trigger_load_balance(struct rq *rq)
1e3c88bd 7391{
1e3c88bd 7392 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7393 if (unlikely(on_null_domain(rq)))
7394 return;
7395
7396 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7397 raise_softirq(SCHED_SOFTIRQ);
3451d024 7398#ifdef CONFIG_NO_HZ_COMMON
c726099e 7399 if (nohz_kick_needed(rq))
0aeeeeba 7400 nohz_balancer_kick();
83cd4fe2 7401#endif
1e3c88bd
PZ
7402}
7403
0bcdcf28
CE
7404static void rq_online_fair(struct rq *rq)
7405{
7406 update_sysctl();
0e59bdae
KT
7407
7408 update_runtime_enabled(rq);
0bcdcf28
CE
7409}
7410
7411static void rq_offline_fair(struct rq *rq)
7412{
7413 update_sysctl();
a4c96ae3
PB
7414
7415 /* Ensure any throttled groups are reachable by pick_next_task */
7416 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7417}
7418
55e12e5e 7419#endif /* CONFIG_SMP */
e1d1484f 7420
bf0f6f24
IM
7421/*
7422 * scheduler tick hitting a task of our scheduling class:
7423 */
8f4d37ec 7424static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7425{
7426 struct cfs_rq *cfs_rq;
7427 struct sched_entity *se = &curr->se;
7428
7429 for_each_sched_entity(se) {
7430 cfs_rq = cfs_rq_of(se);
8f4d37ec 7431 entity_tick(cfs_rq, se, queued);
bf0f6f24 7432 }
18bf2805 7433
10e84b97 7434 if (numabalancing_enabled)
cbee9f88 7435 task_tick_numa(rq, curr);
3d59eebc 7436
18bf2805 7437 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7438}
7439
7440/*
cd29fe6f
PZ
7441 * called on fork with the child task as argument from the parent's context
7442 * - child not yet on the tasklist
7443 * - preemption disabled
bf0f6f24 7444 */
cd29fe6f 7445static void task_fork_fair(struct task_struct *p)
bf0f6f24 7446{
4fc420c9
DN
7447 struct cfs_rq *cfs_rq;
7448 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7449 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7450 struct rq *rq = this_rq();
7451 unsigned long flags;
7452
05fa785c 7453 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7454
861d034e
PZ
7455 update_rq_clock(rq);
7456
4fc420c9
DN
7457 cfs_rq = task_cfs_rq(current);
7458 curr = cfs_rq->curr;
7459
6c9a27f5
DN
7460 /*
7461 * Not only the cpu but also the task_group of the parent might have
7462 * been changed after parent->se.parent,cfs_rq were copied to
7463 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7464 * of child point to valid ones.
7465 */
7466 rcu_read_lock();
7467 __set_task_cpu(p, this_cpu);
7468 rcu_read_unlock();
bf0f6f24 7469
7109c442 7470 update_curr(cfs_rq);
cd29fe6f 7471
b5d9d734
MG
7472 if (curr)
7473 se->vruntime = curr->vruntime;
aeb73b04 7474 place_entity(cfs_rq, se, 1);
4d78e7b6 7475
cd29fe6f 7476 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7477 /*
edcb60a3
IM
7478 * Upon rescheduling, sched_class::put_prev_task() will place
7479 * 'current' within the tree based on its new key value.
7480 */
4d78e7b6 7481 swap(curr->vruntime, se->vruntime);
8875125e 7482 resched_curr(rq);
4d78e7b6 7483 }
bf0f6f24 7484
88ec22d3
PZ
7485 se->vruntime -= cfs_rq->min_vruntime;
7486
05fa785c 7487 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7488}
7489
cb469845
SR
7490/*
7491 * Priority of the task has changed. Check to see if we preempt
7492 * the current task.
7493 */
da7a735e
PZ
7494static void
7495prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7496{
da0c1e65 7497 if (!task_on_rq_queued(p))
da7a735e
PZ
7498 return;
7499
cb469845
SR
7500 /*
7501 * Reschedule if we are currently running on this runqueue and
7502 * our priority decreased, or if we are not currently running on
7503 * this runqueue and our priority is higher than the current's
7504 */
da7a735e 7505 if (rq->curr == p) {
cb469845 7506 if (p->prio > oldprio)
8875125e 7507 resched_curr(rq);
cb469845 7508 } else
15afe09b 7509 check_preempt_curr(rq, p, 0);
cb469845
SR
7510}
7511
da7a735e
PZ
7512static void switched_from_fair(struct rq *rq, struct task_struct *p)
7513{
7514 struct sched_entity *se = &p->se;
7515 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7516
7517 /*
791c9e02 7518 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7519 * switched back to the fair class the enqueue_entity(.flags=0) will
7520 * do the right thing.
7521 *
da0c1e65
KT
7522 * If it's queued, then the dequeue_entity(.flags=0) will already
7523 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7524 * the task is sleeping will it still have non-normalized vruntime.
7525 */
da0c1e65 7526 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7527 /*
7528 * Fix up our vruntime so that the current sleep doesn't
7529 * cause 'unlimited' sleep bonus.
7530 */
7531 place_entity(cfs_rq, se, 0);
7532 se->vruntime -= cfs_rq->min_vruntime;
7533 }
9ee474f5 7534
141965c7 7535#ifdef CONFIG_SMP
9ee474f5
PT
7536 /*
7537 * Remove our load from contribution when we leave sched_fair
7538 * and ensure we don't carry in an old decay_count if we
7539 * switch back.
7540 */
87e3c8ae
KT
7541 if (se->avg.decay_count) {
7542 __synchronize_entity_decay(se);
7543 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7544 }
7545#endif
da7a735e
PZ
7546}
7547
cb469845
SR
7548/*
7549 * We switched to the sched_fair class.
7550 */
da7a735e 7551static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7552{
eb7a59b2 7553#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7554 struct sched_entity *se = &p->se;
eb7a59b2
M
7555 /*
7556 * Since the real-depth could have been changed (only FAIR
7557 * class maintain depth value), reset depth properly.
7558 */
7559 se->depth = se->parent ? se->parent->depth + 1 : 0;
7560#endif
da0c1e65 7561 if (!task_on_rq_queued(p))
da7a735e
PZ
7562 return;
7563
cb469845
SR
7564 /*
7565 * We were most likely switched from sched_rt, so
7566 * kick off the schedule if running, otherwise just see
7567 * if we can still preempt the current task.
7568 */
da7a735e 7569 if (rq->curr == p)
8875125e 7570 resched_curr(rq);
cb469845 7571 else
15afe09b 7572 check_preempt_curr(rq, p, 0);
cb469845
SR
7573}
7574
83b699ed
SV
7575/* Account for a task changing its policy or group.
7576 *
7577 * This routine is mostly called to set cfs_rq->curr field when a task
7578 * migrates between groups/classes.
7579 */
7580static void set_curr_task_fair(struct rq *rq)
7581{
7582 struct sched_entity *se = &rq->curr->se;
7583
ec12cb7f
PT
7584 for_each_sched_entity(se) {
7585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7586
7587 set_next_entity(cfs_rq, se);
7588 /* ensure bandwidth has been allocated on our new cfs_rq */
7589 account_cfs_rq_runtime(cfs_rq, 0);
7590 }
83b699ed
SV
7591}
7592
029632fb
PZ
7593void init_cfs_rq(struct cfs_rq *cfs_rq)
7594{
7595 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7596 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7597#ifndef CONFIG_64BIT
7598 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7599#endif
141965c7 7600#ifdef CONFIG_SMP
9ee474f5 7601 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7602 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7603#endif
029632fb
PZ
7604}
7605
810b3817 7606#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7607static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7608{
fed14d45 7609 struct sched_entity *se = &p->se;
aff3e498 7610 struct cfs_rq *cfs_rq;
fed14d45 7611
b2b5ce02
PZ
7612 /*
7613 * If the task was not on the rq at the time of this cgroup movement
7614 * it must have been asleep, sleeping tasks keep their ->vruntime
7615 * absolute on their old rq until wakeup (needed for the fair sleeper
7616 * bonus in place_entity()).
7617 *
7618 * If it was on the rq, we've just 'preempted' it, which does convert
7619 * ->vruntime to a relative base.
7620 *
7621 * Make sure both cases convert their relative position when migrating
7622 * to another cgroup's rq. This does somewhat interfere with the
7623 * fair sleeper stuff for the first placement, but who cares.
7624 */
7ceff013 7625 /*
da0c1e65 7626 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7627 * But there are some cases where it has already been normalized:
7628 *
7629 * - Moving a forked child which is waiting for being woken up by
7630 * wake_up_new_task().
62af3783
DN
7631 * - Moving a task which has been woken up by try_to_wake_up() and
7632 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7633 *
7634 * To prevent boost or penalty in the new cfs_rq caused by delta
7635 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7636 */
da0c1e65
KT
7637 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7638 queued = 1;
7ceff013 7639
da0c1e65 7640 if (!queued)
fed14d45 7641 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7642 set_task_rq(p, task_cpu(p));
fed14d45 7643 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7644 if (!queued) {
fed14d45
PZ
7645 cfs_rq = cfs_rq_of(se);
7646 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7647#ifdef CONFIG_SMP
7648 /*
7649 * migrate_task_rq_fair() will have removed our previous
7650 * contribution, but we must synchronize for ongoing future
7651 * decay.
7652 */
fed14d45
PZ
7653 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7654 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7655#endif
7656 }
810b3817 7657}
029632fb
PZ
7658
7659void free_fair_sched_group(struct task_group *tg)
7660{
7661 int i;
7662
7663 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7664
7665 for_each_possible_cpu(i) {
7666 if (tg->cfs_rq)
7667 kfree(tg->cfs_rq[i]);
7668 if (tg->se)
7669 kfree(tg->se[i]);
7670 }
7671
7672 kfree(tg->cfs_rq);
7673 kfree(tg->se);
7674}
7675
7676int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7677{
7678 struct cfs_rq *cfs_rq;
7679 struct sched_entity *se;
7680 int i;
7681
7682 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7683 if (!tg->cfs_rq)
7684 goto err;
7685 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7686 if (!tg->se)
7687 goto err;
7688
7689 tg->shares = NICE_0_LOAD;
7690
7691 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7692
7693 for_each_possible_cpu(i) {
7694 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7695 GFP_KERNEL, cpu_to_node(i));
7696 if (!cfs_rq)
7697 goto err;
7698
7699 se = kzalloc_node(sizeof(struct sched_entity),
7700 GFP_KERNEL, cpu_to_node(i));
7701 if (!se)
7702 goto err_free_rq;
7703
7704 init_cfs_rq(cfs_rq);
7705 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7706 }
7707
7708 return 1;
7709
7710err_free_rq:
7711 kfree(cfs_rq);
7712err:
7713 return 0;
7714}
7715
7716void unregister_fair_sched_group(struct task_group *tg, int cpu)
7717{
7718 struct rq *rq = cpu_rq(cpu);
7719 unsigned long flags;
7720
7721 /*
7722 * Only empty task groups can be destroyed; so we can speculatively
7723 * check on_list without danger of it being re-added.
7724 */
7725 if (!tg->cfs_rq[cpu]->on_list)
7726 return;
7727
7728 raw_spin_lock_irqsave(&rq->lock, flags);
7729 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7730 raw_spin_unlock_irqrestore(&rq->lock, flags);
7731}
7732
7733void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7734 struct sched_entity *se, int cpu,
7735 struct sched_entity *parent)
7736{
7737 struct rq *rq = cpu_rq(cpu);
7738
7739 cfs_rq->tg = tg;
7740 cfs_rq->rq = rq;
029632fb
PZ
7741 init_cfs_rq_runtime(cfs_rq);
7742
7743 tg->cfs_rq[cpu] = cfs_rq;
7744 tg->se[cpu] = se;
7745
7746 /* se could be NULL for root_task_group */
7747 if (!se)
7748 return;
7749
fed14d45 7750 if (!parent) {
029632fb 7751 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7752 se->depth = 0;
7753 } else {
029632fb 7754 se->cfs_rq = parent->my_q;
fed14d45
PZ
7755 se->depth = parent->depth + 1;
7756 }
029632fb
PZ
7757
7758 se->my_q = cfs_rq;
0ac9b1c2
PT
7759 /* guarantee group entities always have weight */
7760 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7761 se->parent = parent;
7762}
7763
7764static DEFINE_MUTEX(shares_mutex);
7765
7766int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7767{
7768 int i;
7769 unsigned long flags;
7770
7771 /*
7772 * We can't change the weight of the root cgroup.
7773 */
7774 if (!tg->se[0])
7775 return -EINVAL;
7776
7777 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7778
7779 mutex_lock(&shares_mutex);
7780 if (tg->shares == shares)
7781 goto done;
7782
7783 tg->shares = shares;
7784 for_each_possible_cpu(i) {
7785 struct rq *rq = cpu_rq(i);
7786 struct sched_entity *se;
7787
7788 se = tg->se[i];
7789 /* Propagate contribution to hierarchy */
7790 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7791
7792 /* Possible calls to update_curr() need rq clock */
7793 update_rq_clock(rq);
17bc14b7 7794 for_each_sched_entity(se)
029632fb
PZ
7795 update_cfs_shares(group_cfs_rq(se));
7796 raw_spin_unlock_irqrestore(&rq->lock, flags);
7797 }
7798
7799done:
7800 mutex_unlock(&shares_mutex);
7801 return 0;
7802}
7803#else /* CONFIG_FAIR_GROUP_SCHED */
7804
7805void free_fair_sched_group(struct task_group *tg) { }
7806
7807int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7808{
7809 return 1;
7810}
7811
7812void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7813
7814#endif /* CONFIG_FAIR_GROUP_SCHED */
7815
810b3817 7816
6d686f45 7817static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7818{
7819 struct sched_entity *se = &task->se;
0d721cea
PW
7820 unsigned int rr_interval = 0;
7821
7822 /*
7823 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7824 * idle runqueue:
7825 */
0d721cea 7826 if (rq->cfs.load.weight)
a59f4e07 7827 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7828
7829 return rr_interval;
7830}
7831
bf0f6f24
IM
7832/*
7833 * All the scheduling class methods:
7834 */
029632fb 7835const struct sched_class fair_sched_class = {
5522d5d5 7836 .next = &idle_sched_class,
bf0f6f24
IM
7837 .enqueue_task = enqueue_task_fair,
7838 .dequeue_task = dequeue_task_fair,
7839 .yield_task = yield_task_fair,
d95f4122 7840 .yield_to_task = yield_to_task_fair,
bf0f6f24 7841
2e09bf55 7842 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7843
7844 .pick_next_task = pick_next_task_fair,
7845 .put_prev_task = put_prev_task_fair,
7846
681f3e68 7847#ifdef CONFIG_SMP
4ce72a2c 7848 .select_task_rq = select_task_rq_fair,
0a74bef8 7849 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7850
0bcdcf28
CE
7851 .rq_online = rq_online_fair,
7852 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7853
7854 .task_waking = task_waking_fair,
681f3e68 7855#endif
bf0f6f24 7856
83b699ed 7857 .set_curr_task = set_curr_task_fair,
bf0f6f24 7858 .task_tick = task_tick_fair,
cd29fe6f 7859 .task_fork = task_fork_fair,
cb469845
SR
7860
7861 .prio_changed = prio_changed_fair,
da7a735e 7862 .switched_from = switched_from_fair,
cb469845 7863 .switched_to = switched_to_fair,
810b3817 7864
0d721cea
PW
7865 .get_rr_interval = get_rr_interval_fair,
7866
810b3817 7867#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7868 .task_move_group = task_move_group_fair,
810b3817 7869#endif
bf0f6f24
IM
7870};
7871
7872#ifdef CONFIG_SCHED_DEBUG
029632fb 7873void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7874{
bf0f6f24
IM
7875 struct cfs_rq *cfs_rq;
7876
5973e5b9 7877 rcu_read_lock();
c3b64f1e 7878 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7879 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7880 rcu_read_unlock();
bf0f6f24
IM
7881}
7882#endif
029632fb
PZ
7883
7884__init void init_sched_fair_class(void)
7885{
7886#ifdef CONFIG_SMP
7887 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7888
3451d024 7889#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7890 nohz.next_balance = jiffies;
029632fb 7891 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7892 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7893#endif
7894#endif /* SMP */
7895
7896}