]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/numa: Skip some page migrations after a shared fault
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
83e1d2cd 919 atomic_long_t total_faults;
8c8a743c
PZ
920 atomic_long_t faults[0];
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
947 return atomic_long_read(&p->numa_group->faults[2*nid]) +
948 atomic_long_read(&p->numa_group->faults[2*nid+1]);
949}
950
951/*
952 * These return the fraction of accesses done by a particular task, or
953 * task group, on a particular numa node. The group weight is given a
954 * larger multiplier, in order to group tasks together that are almost
955 * evenly spread out between numa nodes.
956 */
957static inline unsigned long task_weight(struct task_struct *p, int nid)
958{
959 unsigned long total_faults;
960
961 if (!p->numa_faults)
962 return 0;
963
964 total_faults = p->total_numa_faults;
965
966 if (!total_faults)
967 return 0;
968
969 return 1000 * task_faults(p, nid) / total_faults;
970}
971
972static inline unsigned long group_weight(struct task_struct *p, int nid)
973{
974 unsigned long total_faults;
975
976 if (!p->numa_group)
977 return 0;
978
979 total_faults = atomic_long_read(&p->numa_group->total_faults);
980
981 if (!total_faults)
982 return 0;
983
ca28aa53 984 return 1000 * group_faults(p, nid) / total_faults;
83e1d2cd
MG
985}
986
e6628d5b 987static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
988static unsigned long source_load(int cpu, int type);
989static unsigned long target_load(int cpu, int type);
990static unsigned long power_of(int cpu);
991static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
992
fb13c7ee 993/* Cached statistics for all CPUs within a node */
58d081b5 994struct numa_stats {
fb13c7ee 995 unsigned long nr_running;
58d081b5 996 unsigned long load;
fb13c7ee
MG
997
998 /* Total compute capacity of CPUs on a node */
999 unsigned long power;
1000
1001 /* Approximate capacity in terms of runnable tasks on a node */
1002 unsigned long capacity;
1003 int has_capacity;
58d081b5 1004};
e6628d5b 1005
fb13c7ee
MG
1006/*
1007 * XXX borrowed from update_sg_lb_stats
1008 */
1009static void update_numa_stats(struct numa_stats *ns, int nid)
1010{
1011 int cpu;
1012
1013 memset(ns, 0, sizeof(*ns));
1014 for_each_cpu(cpu, cpumask_of_node(nid)) {
1015 struct rq *rq = cpu_rq(cpu);
1016
1017 ns->nr_running += rq->nr_running;
1018 ns->load += weighted_cpuload(cpu);
1019 ns->power += power_of(cpu);
1020 }
1021
1022 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1023 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1024 ns->has_capacity = (ns->nr_running < ns->capacity);
1025}
1026
58d081b5
MG
1027struct task_numa_env {
1028 struct task_struct *p;
e6628d5b 1029
58d081b5
MG
1030 int src_cpu, src_nid;
1031 int dst_cpu, dst_nid;
e6628d5b 1032
58d081b5 1033 struct numa_stats src_stats, dst_stats;
e6628d5b 1034
fb13c7ee
MG
1035 int imbalance_pct, idx;
1036
1037 struct task_struct *best_task;
1038 long best_imp;
58d081b5
MG
1039 int best_cpu;
1040};
1041
fb13c7ee
MG
1042static void task_numa_assign(struct task_numa_env *env,
1043 struct task_struct *p, long imp)
1044{
1045 if (env->best_task)
1046 put_task_struct(env->best_task);
1047 if (p)
1048 get_task_struct(p);
1049
1050 env->best_task = p;
1051 env->best_imp = imp;
1052 env->best_cpu = env->dst_cpu;
1053}
1054
1055/*
1056 * This checks if the overall compute and NUMA accesses of the system would
1057 * be improved if the source tasks was migrated to the target dst_cpu taking
1058 * into account that it might be best if task running on the dst_cpu should
1059 * be exchanged with the source task
1060 */
887c290e
RR
1061static void task_numa_compare(struct task_numa_env *env,
1062 long taskimp, long groupimp)
fb13c7ee
MG
1063{
1064 struct rq *src_rq = cpu_rq(env->src_cpu);
1065 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1066 struct task_struct *cur;
1067 long dst_load, src_load;
1068 long load;
887c290e 1069 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1070
1071 rcu_read_lock();
1072 cur = ACCESS_ONCE(dst_rq->curr);
1073 if (cur->pid == 0) /* idle */
1074 cur = NULL;
1075
1076 /*
1077 * "imp" is the fault differential for the source task between the
1078 * source and destination node. Calculate the total differential for
1079 * the source task and potential destination task. The more negative
1080 * the value is, the more rmeote accesses that would be expected to
1081 * be incurred if the tasks were swapped.
1082 */
1083 if (cur) {
1084 /* Skip this swap candidate if cannot move to the source cpu */
1085 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1086 goto unlock;
1087
887c290e
RR
1088 /*
1089 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1090 * in any group then look only at task weights.
887c290e 1091 */
ca28aa53 1092 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1093 imp = taskimp + task_weight(cur, env->src_nid) -
1094 task_weight(cur, env->dst_nid);
ca28aa53
RR
1095 /*
1096 * Add some hysteresis to prevent swapping the
1097 * tasks within a group over tiny differences.
1098 */
1099 if (cur->numa_group)
1100 imp -= imp/16;
887c290e 1101 } else {
ca28aa53
RR
1102 /*
1103 * Compare the group weights. If a task is all by
1104 * itself (not part of a group), use the task weight
1105 * instead.
1106 */
1107 if (env->p->numa_group)
1108 imp = groupimp;
1109 else
1110 imp = taskimp;
1111
1112 if (cur->numa_group)
1113 imp += group_weight(cur, env->src_nid) -
1114 group_weight(cur, env->dst_nid);
1115 else
1116 imp += task_weight(cur, env->src_nid) -
1117 task_weight(cur, env->dst_nid);
887c290e 1118 }
fb13c7ee
MG
1119 }
1120
1121 if (imp < env->best_imp)
1122 goto unlock;
1123
1124 if (!cur) {
1125 /* Is there capacity at our destination? */
1126 if (env->src_stats.has_capacity &&
1127 !env->dst_stats.has_capacity)
1128 goto unlock;
1129
1130 goto balance;
1131 }
1132
1133 /* Balance doesn't matter much if we're running a task per cpu */
1134 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1135 goto assign;
1136
1137 /*
1138 * In the overloaded case, try and keep the load balanced.
1139 */
1140balance:
1141 dst_load = env->dst_stats.load;
1142 src_load = env->src_stats.load;
1143
1144 /* XXX missing power terms */
1145 load = task_h_load(env->p);
1146 dst_load += load;
1147 src_load -= load;
1148
1149 if (cur) {
1150 load = task_h_load(cur);
1151 dst_load -= load;
1152 src_load += load;
1153 }
1154
1155 /* make src_load the smaller */
1156 if (dst_load < src_load)
1157 swap(dst_load, src_load);
1158
1159 if (src_load * env->imbalance_pct < dst_load * 100)
1160 goto unlock;
1161
1162assign:
1163 task_numa_assign(env, cur, imp);
1164unlock:
1165 rcu_read_unlock();
1166}
1167
887c290e
RR
1168static void task_numa_find_cpu(struct task_numa_env *env,
1169 long taskimp, long groupimp)
2c8a50aa
MG
1170{
1171 int cpu;
1172
1173 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1174 /* Skip this CPU if the source task cannot migrate */
1175 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1176 continue;
1177
1178 env->dst_cpu = cpu;
887c290e 1179 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1180 }
1181}
1182
58d081b5
MG
1183static int task_numa_migrate(struct task_struct *p)
1184{
58d081b5
MG
1185 struct task_numa_env env = {
1186 .p = p,
fb13c7ee 1187
58d081b5 1188 .src_cpu = task_cpu(p),
b32e86b4 1189 .src_nid = task_node(p),
fb13c7ee
MG
1190
1191 .imbalance_pct = 112,
1192
1193 .best_task = NULL,
1194 .best_imp = 0,
1195 .best_cpu = -1
58d081b5
MG
1196 };
1197 struct sched_domain *sd;
887c290e 1198 unsigned long taskweight, groupweight;
2c8a50aa 1199 int nid, ret;
887c290e 1200 long taskimp, groupimp;
e6628d5b 1201
58d081b5 1202 /*
fb13c7ee
MG
1203 * Pick the lowest SD_NUMA domain, as that would have the smallest
1204 * imbalance and would be the first to start moving tasks about.
1205 *
1206 * And we want to avoid any moving of tasks about, as that would create
1207 * random movement of tasks -- counter the numa conditions we're trying
1208 * to satisfy here.
58d081b5
MG
1209 */
1210 rcu_read_lock();
fb13c7ee
MG
1211 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1212 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1213 rcu_read_unlock();
1214
887c290e
RR
1215 taskweight = task_weight(p, env.src_nid);
1216 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1217 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1218 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1219 taskimp = task_weight(p, env.dst_nid) - taskweight;
1220 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1221 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1222
e1dda8a7
RR
1223 /* If the preferred nid has capacity, try to use it. */
1224 if (env.dst_stats.has_capacity)
887c290e 1225 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1226
1227 /* No space available on the preferred nid. Look elsewhere. */
1228 if (env.best_cpu == -1) {
2c8a50aa
MG
1229 for_each_online_node(nid) {
1230 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1231 continue;
58d081b5 1232
83e1d2cd 1233 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1234 taskimp = task_weight(p, nid) - taskweight;
1235 groupimp = group_weight(p, nid) - groupweight;
1236 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1237 continue;
1238
2c8a50aa
MG
1239 env.dst_nid = nid;
1240 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1241 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1242 }
1243 }
1244
fb13c7ee
MG
1245 /* No better CPU than the current one was found. */
1246 if (env.best_cpu == -1)
1247 return -EAGAIN;
1248
0ec8aa00
PZ
1249 sched_setnuma(p, env.dst_nid);
1250
04bb2f94
RR
1251 /*
1252 * Reset the scan period if the task is being rescheduled on an
1253 * alternative node to recheck if the tasks is now properly placed.
1254 */
1255 p->numa_scan_period = task_scan_min(p);
1256
fb13c7ee
MG
1257 if (env.best_task == NULL) {
1258 int ret = migrate_task_to(p, env.best_cpu);
1259 return ret;
1260 }
1261
1262 ret = migrate_swap(p, env.best_task);
1263 put_task_struct(env.best_task);
1264 return ret;
e6628d5b
MG
1265}
1266
6b9a7460
MG
1267/* Attempt to migrate a task to a CPU on the preferred node. */
1268static void numa_migrate_preferred(struct task_struct *p)
1269{
1270 /* Success if task is already running on preferred CPU */
1271 p->numa_migrate_retry = 0;
1e3646ff 1272 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1273 return;
1274
1275 /* This task has no NUMA fault statistics yet */
1276 if (unlikely(p->numa_preferred_nid == -1))
1277 return;
1278
1279 /* Otherwise, try migrate to a CPU on the preferred node */
1280 if (task_numa_migrate(p) != 0)
1281 p->numa_migrate_retry = jiffies + HZ*5;
1282}
1283
04bb2f94
RR
1284/*
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1290 */
1291#define NUMA_PERIOD_SLOTS 10
1292#define NUMA_PERIOD_THRESHOLD 3
1293
1294/*
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1299 */
1300static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1302{
1303 unsigned int period_slot;
1304 int ratio;
1305 int diff;
1306
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1309
1310 /*
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1314 */
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1318
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1330 */
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1335 if (!slot)
1336 slot = 1;
1337 diff = slot * period_slot;
1338 } else {
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1340
1341 /*
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1348 */
1349 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1350 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1351 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1352 }
1353
1354 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1355 task_scan_min(p), task_scan_max(p));
1356 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1357}
1358
cbee9f88
PZ
1359static void task_numa_placement(struct task_struct *p)
1360{
83e1d2cd
MG
1361 int seq, nid, max_nid = -1, max_group_nid = -1;
1362 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1363 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1364 spinlock_t *group_lock = NULL;
cbee9f88 1365
2832bc19 1366 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1367 if (p->numa_scan_seq == seq)
1368 return;
1369 p->numa_scan_seq = seq;
598f0ec0 1370 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1371
7dbd13ed
MG
1372 /* If the task is part of a group prevent parallel updates to group stats */
1373 if (p->numa_group) {
1374 group_lock = &p->numa_group->lock;
1375 spin_lock(group_lock);
1376 }
1377
688b7585
MG
1378 /* Find the node with the highest number of faults */
1379 for_each_online_node(nid) {
83e1d2cd 1380 unsigned long faults = 0, group_faults = 0;
ac8e895b 1381 int priv, i;
745d6147 1382
ac8e895b 1383 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1384 long diff;
1385
ac8e895b 1386 i = task_faults_idx(nid, priv);
8c8a743c 1387 diff = -p->numa_faults[i];
745d6147 1388
ac8e895b
MG
1389 /* Decay existing window, copy faults since last scan */
1390 p->numa_faults[i] >>= 1;
1391 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1392 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1393 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1394
1395 faults += p->numa_faults[i];
8c8a743c 1396 diff += p->numa_faults[i];
83e1d2cd 1397 p->total_numa_faults += diff;
8c8a743c
PZ
1398 if (p->numa_group) {
1399 /* safe because we can only change our own group */
1400 atomic_long_add(diff, &p->numa_group->faults[i]);
83e1d2cd
MG
1401 atomic_long_add(diff, &p->numa_group->total_faults);
1402 group_faults += atomic_long_read(&p->numa_group->faults[i]);
8c8a743c 1403 }
ac8e895b
MG
1404 }
1405
688b7585
MG
1406 if (faults > max_faults) {
1407 max_faults = faults;
1408 max_nid = nid;
1409 }
83e1d2cd
MG
1410
1411 if (group_faults > max_group_faults) {
1412 max_group_faults = group_faults;
1413 max_group_nid = nid;
1414 }
1415 }
1416
04bb2f94
RR
1417 update_task_scan_period(p, fault_types[0], fault_types[1]);
1418
7dbd13ed
MG
1419 if (p->numa_group) {
1420 /*
1421 * If the preferred task and group nids are different,
1422 * iterate over the nodes again to find the best place.
1423 */
1424 if (max_nid != max_group_nid) {
1425 unsigned long weight, max_weight = 0;
1426
1427 for_each_online_node(nid) {
1428 weight = task_weight(p, nid) + group_weight(p, nid);
1429 if (weight > max_weight) {
1430 max_weight = weight;
1431 max_nid = nid;
1432 }
83e1d2cd
MG
1433 }
1434 }
7dbd13ed
MG
1435
1436 spin_unlock(group_lock);
688b7585
MG
1437 }
1438
6b9a7460 1439 /* Preferred node as the node with the most faults */
3a7053b3 1440 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1441 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1442 sched_setnuma(p, max_nid);
6b9a7460 1443 numa_migrate_preferred(p);
3a7053b3 1444 }
cbee9f88
PZ
1445}
1446
8c8a743c
PZ
1447static inline int get_numa_group(struct numa_group *grp)
1448{
1449 return atomic_inc_not_zero(&grp->refcount);
1450}
1451
1452static inline void put_numa_group(struct numa_group *grp)
1453{
1454 if (atomic_dec_and_test(&grp->refcount))
1455 kfree_rcu(grp, rcu);
1456}
1457
1458static void double_lock(spinlock_t *l1, spinlock_t *l2)
1459{
1460 if (l1 > l2)
1461 swap(l1, l2);
1462
1463 spin_lock(l1);
1464 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1465}
1466
3e6a9418
MG
1467static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1468 int *priv)
8c8a743c
PZ
1469{
1470 struct numa_group *grp, *my_grp;
1471 struct task_struct *tsk;
1472 bool join = false;
1473 int cpu = cpupid_to_cpu(cpupid);
1474 int i;
1475
1476 if (unlikely(!p->numa_group)) {
1477 unsigned int size = sizeof(struct numa_group) +
1478 2*nr_node_ids*sizeof(atomic_long_t);
1479
1480 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1481 if (!grp)
1482 return;
1483
1484 atomic_set(&grp->refcount, 1);
1485 spin_lock_init(&grp->lock);
1486 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1487 grp->gid = p->pid;
8c8a743c
PZ
1488
1489 for (i = 0; i < 2*nr_node_ids; i++)
1490 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1491
83e1d2cd
MG
1492 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1493
8c8a743c
PZ
1494 list_add(&p->numa_entry, &grp->task_list);
1495 grp->nr_tasks++;
1496 rcu_assign_pointer(p->numa_group, grp);
1497 }
1498
1499 rcu_read_lock();
1500 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1501
1502 if (!cpupid_match_pid(tsk, cpupid))
1503 goto unlock;
1504
1505 grp = rcu_dereference(tsk->numa_group);
1506 if (!grp)
1507 goto unlock;
1508
1509 my_grp = p->numa_group;
1510 if (grp == my_grp)
1511 goto unlock;
1512
1513 /*
1514 * Only join the other group if its bigger; if we're the bigger group,
1515 * the other task will join us.
1516 */
1517 if (my_grp->nr_tasks > grp->nr_tasks)
1518 goto unlock;
1519
1520 /*
1521 * Tie-break on the grp address.
1522 */
1523 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1524 goto unlock;
1525
dabe1d99
RR
1526 /* Always join threads in the same process. */
1527 if (tsk->mm == current->mm)
1528 join = true;
1529
1530 /* Simple filter to avoid false positives due to PID collisions */
1531 if (flags & TNF_SHARED)
1532 join = true;
8c8a743c 1533
3e6a9418
MG
1534 /* Update priv based on whether false sharing was detected */
1535 *priv = !join;
1536
dabe1d99
RR
1537 if (join && !get_numa_group(grp))
1538 join = false;
8c8a743c
PZ
1539
1540unlock:
1541 rcu_read_unlock();
1542
1543 if (!join)
1544 return;
1545
1546 for (i = 0; i < 2*nr_node_ids; i++) {
1547 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1548 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1549 }
83e1d2cd
MG
1550 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1551 atomic_long_add(p->total_numa_faults, &grp->total_faults);
8c8a743c
PZ
1552
1553 double_lock(&my_grp->lock, &grp->lock);
1554
1555 list_move(&p->numa_entry, &grp->task_list);
1556 my_grp->nr_tasks--;
1557 grp->nr_tasks++;
1558
1559 spin_unlock(&my_grp->lock);
1560 spin_unlock(&grp->lock);
1561
1562 rcu_assign_pointer(p->numa_group, grp);
1563
1564 put_numa_group(my_grp);
1565}
1566
1567void task_numa_free(struct task_struct *p)
1568{
1569 struct numa_group *grp = p->numa_group;
1570 int i;
82727018 1571 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1572
1573 if (grp) {
1574 for (i = 0; i < 2*nr_node_ids; i++)
1575 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1576
83e1d2cd
MG
1577 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1578
8c8a743c
PZ
1579 spin_lock(&grp->lock);
1580 list_del(&p->numa_entry);
1581 grp->nr_tasks--;
1582 spin_unlock(&grp->lock);
1583 rcu_assign_pointer(p->numa_group, NULL);
1584 put_numa_group(grp);
1585 }
1586
82727018
RR
1587 p->numa_faults = NULL;
1588 p->numa_faults_buffer = NULL;
1589 kfree(numa_faults);
8c8a743c
PZ
1590}
1591
cbee9f88
PZ
1592/*
1593 * Got a PROT_NONE fault for a page on @node.
1594 */
6688cc05 1595void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1596{
1597 struct task_struct *p = current;
6688cc05 1598 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1599 int priv;
cbee9f88 1600
10e84b97 1601 if (!numabalancing_enabled)
1a687c2e
MG
1602 return;
1603
9ff1d9ff
MG
1604 /* for example, ksmd faulting in a user's mm */
1605 if (!p->mm)
1606 return;
1607
82727018
RR
1608 /* Do not worry about placement if exiting */
1609 if (p->state == TASK_DEAD)
1610 return;
1611
f809ca9a
MG
1612 /* Allocate buffer to track faults on a per-node basis */
1613 if (unlikely(!p->numa_faults)) {
ac8e895b 1614 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1615
745d6147
MG
1616 /* numa_faults and numa_faults_buffer share the allocation */
1617 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1618 if (!p->numa_faults)
1619 return;
745d6147
MG
1620
1621 BUG_ON(p->numa_faults_buffer);
ac8e895b 1622 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1623 p->total_numa_faults = 0;
04bb2f94 1624 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1625 }
cbee9f88 1626
8c8a743c
PZ
1627 /*
1628 * First accesses are treated as private, otherwise consider accesses
1629 * to be private if the accessing pid has not changed
1630 */
1631 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1632 priv = 1;
1633 } else {
1634 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1635 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1636 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1637 }
1638
cbee9f88 1639 task_numa_placement(p);
f809ca9a 1640
6b9a7460
MG
1641 /* Retry task to preferred node migration if it previously failed */
1642 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1643 numa_migrate_preferred(p);
1644
b32e86b4
IM
1645 if (migrated)
1646 p->numa_pages_migrated += pages;
1647
ac8e895b 1648 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1649 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1650}
1651
6e5fb223
PZ
1652static void reset_ptenuma_scan(struct task_struct *p)
1653{
1654 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1655 p->mm->numa_scan_offset = 0;
1656}
1657
cbee9f88
PZ
1658/*
1659 * The expensive part of numa migration is done from task_work context.
1660 * Triggered from task_tick_numa().
1661 */
1662void task_numa_work(struct callback_head *work)
1663{
1664 unsigned long migrate, next_scan, now = jiffies;
1665 struct task_struct *p = current;
1666 struct mm_struct *mm = p->mm;
6e5fb223 1667 struct vm_area_struct *vma;
9f40604c 1668 unsigned long start, end;
598f0ec0 1669 unsigned long nr_pte_updates = 0;
9f40604c 1670 long pages;
cbee9f88
PZ
1671
1672 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1673
1674 work->next = work; /* protect against double add */
1675 /*
1676 * Who cares about NUMA placement when they're dying.
1677 *
1678 * NOTE: make sure not to dereference p->mm before this check,
1679 * exit_task_work() happens _after_ exit_mm() so we could be called
1680 * without p->mm even though we still had it when we enqueued this
1681 * work.
1682 */
1683 if (p->flags & PF_EXITING)
1684 return;
1685
930aa174 1686 if (!mm->numa_next_scan) {
7e8d16b6
MG
1687 mm->numa_next_scan = now +
1688 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1689 }
1690
cbee9f88
PZ
1691 /*
1692 * Enforce maximal scan/migration frequency..
1693 */
1694 migrate = mm->numa_next_scan;
1695 if (time_before(now, migrate))
1696 return;
1697
598f0ec0
MG
1698 if (p->numa_scan_period == 0) {
1699 p->numa_scan_period_max = task_scan_max(p);
1700 p->numa_scan_period = task_scan_min(p);
1701 }
cbee9f88 1702
fb003b80 1703 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1704 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1705 return;
1706
19a78d11
PZ
1707 /*
1708 * Delay this task enough that another task of this mm will likely win
1709 * the next time around.
1710 */
1711 p->node_stamp += 2 * TICK_NSEC;
1712
9f40604c
MG
1713 start = mm->numa_scan_offset;
1714 pages = sysctl_numa_balancing_scan_size;
1715 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1716 if (!pages)
1717 return;
cbee9f88 1718
6e5fb223 1719 down_read(&mm->mmap_sem);
9f40604c 1720 vma = find_vma(mm, start);
6e5fb223
PZ
1721 if (!vma) {
1722 reset_ptenuma_scan(p);
9f40604c 1723 start = 0;
6e5fb223
PZ
1724 vma = mm->mmap;
1725 }
9f40604c 1726 for (; vma; vma = vma->vm_next) {
fc314724 1727 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1728 continue;
1729
4591ce4f
MG
1730 /*
1731 * Shared library pages mapped by multiple processes are not
1732 * migrated as it is expected they are cache replicated. Avoid
1733 * hinting faults in read-only file-backed mappings or the vdso
1734 * as migrating the pages will be of marginal benefit.
1735 */
1736 if (!vma->vm_mm ||
1737 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1738 continue;
1739
9f40604c
MG
1740 do {
1741 start = max(start, vma->vm_start);
1742 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1743 end = min(end, vma->vm_end);
598f0ec0
MG
1744 nr_pte_updates += change_prot_numa(vma, start, end);
1745
1746 /*
1747 * Scan sysctl_numa_balancing_scan_size but ensure that
1748 * at least one PTE is updated so that unused virtual
1749 * address space is quickly skipped.
1750 */
1751 if (nr_pte_updates)
1752 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1753
9f40604c
MG
1754 start = end;
1755 if (pages <= 0)
1756 goto out;
1757 } while (end != vma->vm_end);
cbee9f88 1758 }
6e5fb223 1759
9f40604c 1760out:
6e5fb223 1761 /*
c69307d5
PZ
1762 * It is possible to reach the end of the VMA list but the last few
1763 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1764 * would find the !migratable VMA on the next scan but not reset the
1765 * scanner to the start so check it now.
6e5fb223
PZ
1766 */
1767 if (vma)
9f40604c 1768 mm->numa_scan_offset = start;
6e5fb223
PZ
1769 else
1770 reset_ptenuma_scan(p);
1771 up_read(&mm->mmap_sem);
cbee9f88
PZ
1772}
1773
1774/*
1775 * Drive the periodic memory faults..
1776 */
1777void task_tick_numa(struct rq *rq, struct task_struct *curr)
1778{
1779 struct callback_head *work = &curr->numa_work;
1780 u64 period, now;
1781
1782 /*
1783 * We don't care about NUMA placement if we don't have memory.
1784 */
1785 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1786 return;
1787
1788 /*
1789 * Using runtime rather than walltime has the dual advantage that
1790 * we (mostly) drive the selection from busy threads and that the
1791 * task needs to have done some actual work before we bother with
1792 * NUMA placement.
1793 */
1794 now = curr->se.sum_exec_runtime;
1795 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1796
1797 if (now - curr->node_stamp > period) {
4b96a29b 1798 if (!curr->node_stamp)
598f0ec0 1799 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1800 curr->node_stamp += period;
cbee9f88
PZ
1801
1802 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1803 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1804 task_work_add(curr, work, true);
1805 }
1806 }
1807}
1808#else
1809static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1810{
1811}
0ec8aa00
PZ
1812
1813static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1814{
1815}
1816
1817static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1818{
1819}
cbee9f88
PZ
1820#endif /* CONFIG_NUMA_BALANCING */
1821
30cfdcfc
DA
1822static void
1823account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1824{
1825 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1826 if (!parent_entity(se))
029632fb 1827 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1828#ifdef CONFIG_SMP
0ec8aa00
PZ
1829 if (entity_is_task(se)) {
1830 struct rq *rq = rq_of(cfs_rq);
1831
1832 account_numa_enqueue(rq, task_of(se));
1833 list_add(&se->group_node, &rq->cfs_tasks);
1834 }
367456c7 1835#endif
30cfdcfc 1836 cfs_rq->nr_running++;
30cfdcfc
DA
1837}
1838
1839static void
1840account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1841{
1842 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1843 if (!parent_entity(se))
029632fb 1844 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1845 if (entity_is_task(se)) {
1846 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1847 list_del_init(&se->group_node);
0ec8aa00 1848 }
30cfdcfc 1849 cfs_rq->nr_running--;
30cfdcfc
DA
1850}
1851
3ff6dcac
YZ
1852#ifdef CONFIG_FAIR_GROUP_SCHED
1853# ifdef CONFIG_SMP
cf5f0acf
PZ
1854static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1855{
1856 long tg_weight;
1857
1858 /*
1859 * Use this CPU's actual weight instead of the last load_contribution
1860 * to gain a more accurate current total weight. See
1861 * update_cfs_rq_load_contribution().
1862 */
bf5b986e 1863 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1864 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1865 tg_weight += cfs_rq->load.weight;
1866
1867 return tg_weight;
1868}
1869
6d5ab293 1870static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1871{
cf5f0acf 1872 long tg_weight, load, shares;
3ff6dcac 1873
cf5f0acf 1874 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1875 load = cfs_rq->load.weight;
3ff6dcac 1876
3ff6dcac 1877 shares = (tg->shares * load);
cf5f0acf
PZ
1878 if (tg_weight)
1879 shares /= tg_weight;
3ff6dcac
YZ
1880
1881 if (shares < MIN_SHARES)
1882 shares = MIN_SHARES;
1883 if (shares > tg->shares)
1884 shares = tg->shares;
1885
1886 return shares;
1887}
3ff6dcac 1888# else /* CONFIG_SMP */
6d5ab293 1889static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1890{
1891 return tg->shares;
1892}
3ff6dcac 1893# endif /* CONFIG_SMP */
2069dd75
PZ
1894static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1895 unsigned long weight)
1896{
19e5eebb
PT
1897 if (se->on_rq) {
1898 /* commit outstanding execution time */
1899 if (cfs_rq->curr == se)
1900 update_curr(cfs_rq);
2069dd75 1901 account_entity_dequeue(cfs_rq, se);
19e5eebb 1902 }
2069dd75
PZ
1903
1904 update_load_set(&se->load, weight);
1905
1906 if (se->on_rq)
1907 account_entity_enqueue(cfs_rq, se);
1908}
1909
82958366
PT
1910static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1911
6d5ab293 1912static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1913{
1914 struct task_group *tg;
1915 struct sched_entity *se;
3ff6dcac 1916 long shares;
2069dd75 1917
2069dd75
PZ
1918 tg = cfs_rq->tg;
1919 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1920 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1921 return;
3ff6dcac
YZ
1922#ifndef CONFIG_SMP
1923 if (likely(se->load.weight == tg->shares))
1924 return;
1925#endif
6d5ab293 1926 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1927
1928 reweight_entity(cfs_rq_of(se), se, shares);
1929}
1930#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1931static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1932{
1933}
1934#endif /* CONFIG_FAIR_GROUP_SCHED */
1935
141965c7 1936#ifdef CONFIG_SMP
5b51f2f8
PT
1937/*
1938 * We choose a half-life close to 1 scheduling period.
1939 * Note: The tables below are dependent on this value.
1940 */
1941#define LOAD_AVG_PERIOD 32
1942#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1943#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1944
1945/* Precomputed fixed inverse multiplies for multiplication by y^n */
1946static const u32 runnable_avg_yN_inv[] = {
1947 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1948 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1949 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1950 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1951 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1952 0x85aac367, 0x82cd8698,
1953};
1954
1955/*
1956 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1957 * over-estimates when re-combining.
1958 */
1959static const u32 runnable_avg_yN_sum[] = {
1960 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1961 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1962 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1963};
1964
9d85f21c
PT
1965/*
1966 * Approximate:
1967 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1968 */
1969static __always_inline u64 decay_load(u64 val, u64 n)
1970{
5b51f2f8
PT
1971 unsigned int local_n;
1972
1973 if (!n)
1974 return val;
1975 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1976 return 0;
1977
1978 /* after bounds checking we can collapse to 32-bit */
1979 local_n = n;
1980
1981 /*
1982 * As y^PERIOD = 1/2, we can combine
1983 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1984 * With a look-up table which covers k^n (n<PERIOD)
1985 *
1986 * To achieve constant time decay_load.
1987 */
1988 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1989 val >>= local_n / LOAD_AVG_PERIOD;
1990 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1991 }
1992
5b51f2f8
PT
1993 val *= runnable_avg_yN_inv[local_n];
1994 /* We don't use SRR here since we always want to round down. */
1995 return val >> 32;
1996}
1997
1998/*
1999 * For updates fully spanning n periods, the contribution to runnable
2000 * average will be: \Sum 1024*y^n
2001 *
2002 * We can compute this reasonably efficiently by combining:
2003 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2004 */
2005static u32 __compute_runnable_contrib(u64 n)
2006{
2007 u32 contrib = 0;
2008
2009 if (likely(n <= LOAD_AVG_PERIOD))
2010 return runnable_avg_yN_sum[n];
2011 else if (unlikely(n >= LOAD_AVG_MAX_N))
2012 return LOAD_AVG_MAX;
2013
2014 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2015 do {
2016 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2017 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2018
2019 n -= LOAD_AVG_PERIOD;
2020 } while (n > LOAD_AVG_PERIOD);
2021
2022 contrib = decay_load(contrib, n);
2023 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2024}
2025
2026/*
2027 * We can represent the historical contribution to runnable average as the
2028 * coefficients of a geometric series. To do this we sub-divide our runnable
2029 * history into segments of approximately 1ms (1024us); label the segment that
2030 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2031 *
2032 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2033 * p0 p1 p2
2034 * (now) (~1ms ago) (~2ms ago)
2035 *
2036 * Let u_i denote the fraction of p_i that the entity was runnable.
2037 *
2038 * We then designate the fractions u_i as our co-efficients, yielding the
2039 * following representation of historical load:
2040 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2041 *
2042 * We choose y based on the with of a reasonably scheduling period, fixing:
2043 * y^32 = 0.5
2044 *
2045 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2046 * approximately half as much as the contribution to load within the last ms
2047 * (u_0).
2048 *
2049 * When a period "rolls over" and we have new u_0`, multiplying the previous
2050 * sum again by y is sufficient to update:
2051 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2052 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2053 */
2054static __always_inline int __update_entity_runnable_avg(u64 now,
2055 struct sched_avg *sa,
2056 int runnable)
2057{
5b51f2f8
PT
2058 u64 delta, periods;
2059 u32 runnable_contrib;
9d85f21c
PT
2060 int delta_w, decayed = 0;
2061
2062 delta = now - sa->last_runnable_update;
2063 /*
2064 * This should only happen when time goes backwards, which it
2065 * unfortunately does during sched clock init when we swap over to TSC.
2066 */
2067 if ((s64)delta < 0) {
2068 sa->last_runnable_update = now;
2069 return 0;
2070 }
2071
2072 /*
2073 * Use 1024ns as the unit of measurement since it's a reasonable
2074 * approximation of 1us and fast to compute.
2075 */
2076 delta >>= 10;
2077 if (!delta)
2078 return 0;
2079 sa->last_runnable_update = now;
2080
2081 /* delta_w is the amount already accumulated against our next period */
2082 delta_w = sa->runnable_avg_period % 1024;
2083 if (delta + delta_w >= 1024) {
2084 /* period roll-over */
2085 decayed = 1;
2086
2087 /*
2088 * Now that we know we're crossing a period boundary, figure
2089 * out how much from delta we need to complete the current
2090 * period and accrue it.
2091 */
2092 delta_w = 1024 - delta_w;
5b51f2f8
PT
2093 if (runnable)
2094 sa->runnable_avg_sum += delta_w;
2095 sa->runnable_avg_period += delta_w;
2096
2097 delta -= delta_w;
2098
2099 /* Figure out how many additional periods this update spans */
2100 periods = delta / 1024;
2101 delta %= 1024;
2102
2103 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2104 periods + 1);
2105 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2106 periods + 1);
2107
2108 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2109 runnable_contrib = __compute_runnable_contrib(periods);
2110 if (runnable)
2111 sa->runnable_avg_sum += runnable_contrib;
2112 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2113 }
2114
2115 /* Remainder of delta accrued against u_0` */
2116 if (runnable)
2117 sa->runnable_avg_sum += delta;
2118 sa->runnable_avg_period += delta;
2119
2120 return decayed;
2121}
2122
9ee474f5 2123/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2124static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2125{
2126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2127 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2128
2129 decays -= se->avg.decay_count;
2130 if (!decays)
aff3e498 2131 return 0;
9ee474f5
PT
2132
2133 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2134 se->avg.decay_count = 0;
aff3e498
PT
2135
2136 return decays;
9ee474f5
PT
2137}
2138
c566e8e9
PT
2139#ifdef CONFIG_FAIR_GROUP_SCHED
2140static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2141 int force_update)
2142{
2143 struct task_group *tg = cfs_rq->tg;
bf5b986e 2144 long tg_contrib;
c566e8e9
PT
2145
2146 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2147 tg_contrib -= cfs_rq->tg_load_contrib;
2148
bf5b986e
AS
2149 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2150 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2151 cfs_rq->tg_load_contrib += tg_contrib;
2152 }
2153}
8165e145 2154
bb17f655
PT
2155/*
2156 * Aggregate cfs_rq runnable averages into an equivalent task_group
2157 * representation for computing load contributions.
2158 */
2159static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2160 struct cfs_rq *cfs_rq)
2161{
2162 struct task_group *tg = cfs_rq->tg;
2163 long contrib;
2164
2165 /* The fraction of a cpu used by this cfs_rq */
2166 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2167 sa->runnable_avg_period + 1);
2168 contrib -= cfs_rq->tg_runnable_contrib;
2169
2170 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2171 atomic_add(contrib, &tg->runnable_avg);
2172 cfs_rq->tg_runnable_contrib += contrib;
2173 }
2174}
2175
8165e145
PT
2176static inline void __update_group_entity_contrib(struct sched_entity *se)
2177{
2178 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2179 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2180 int runnable_avg;
2181
8165e145
PT
2182 u64 contrib;
2183
2184 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2185 se->avg.load_avg_contrib = div_u64(contrib,
2186 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2187
2188 /*
2189 * For group entities we need to compute a correction term in the case
2190 * that they are consuming <1 cpu so that we would contribute the same
2191 * load as a task of equal weight.
2192 *
2193 * Explicitly co-ordinating this measurement would be expensive, but
2194 * fortunately the sum of each cpus contribution forms a usable
2195 * lower-bound on the true value.
2196 *
2197 * Consider the aggregate of 2 contributions. Either they are disjoint
2198 * (and the sum represents true value) or they are disjoint and we are
2199 * understating by the aggregate of their overlap.
2200 *
2201 * Extending this to N cpus, for a given overlap, the maximum amount we
2202 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2203 * cpus that overlap for this interval and w_i is the interval width.
2204 *
2205 * On a small machine; the first term is well-bounded which bounds the
2206 * total error since w_i is a subset of the period. Whereas on a
2207 * larger machine, while this first term can be larger, if w_i is the
2208 * of consequential size guaranteed to see n_i*w_i quickly converge to
2209 * our upper bound of 1-cpu.
2210 */
2211 runnable_avg = atomic_read(&tg->runnable_avg);
2212 if (runnable_avg < NICE_0_LOAD) {
2213 se->avg.load_avg_contrib *= runnable_avg;
2214 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2215 }
8165e145 2216}
c566e8e9
PT
2217#else
2218static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2219 int force_update) {}
bb17f655
PT
2220static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2221 struct cfs_rq *cfs_rq) {}
8165e145 2222static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2223#endif
2224
8165e145
PT
2225static inline void __update_task_entity_contrib(struct sched_entity *se)
2226{
2227 u32 contrib;
2228
2229 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2230 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2231 contrib /= (se->avg.runnable_avg_period + 1);
2232 se->avg.load_avg_contrib = scale_load(contrib);
2233}
2234
2dac754e
PT
2235/* Compute the current contribution to load_avg by se, return any delta */
2236static long __update_entity_load_avg_contrib(struct sched_entity *se)
2237{
2238 long old_contrib = se->avg.load_avg_contrib;
2239
8165e145
PT
2240 if (entity_is_task(se)) {
2241 __update_task_entity_contrib(se);
2242 } else {
bb17f655 2243 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2244 __update_group_entity_contrib(se);
2245 }
2dac754e
PT
2246
2247 return se->avg.load_avg_contrib - old_contrib;
2248}
2249
9ee474f5
PT
2250static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2251 long load_contrib)
2252{
2253 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2254 cfs_rq->blocked_load_avg -= load_contrib;
2255 else
2256 cfs_rq->blocked_load_avg = 0;
2257}
2258
f1b17280
PT
2259static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2260
9d85f21c 2261/* Update a sched_entity's runnable average */
9ee474f5
PT
2262static inline void update_entity_load_avg(struct sched_entity *se,
2263 int update_cfs_rq)
9d85f21c 2264{
2dac754e
PT
2265 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2266 long contrib_delta;
f1b17280 2267 u64 now;
2dac754e 2268
f1b17280
PT
2269 /*
2270 * For a group entity we need to use their owned cfs_rq_clock_task() in
2271 * case they are the parent of a throttled hierarchy.
2272 */
2273 if (entity_is_task(se))
2274 now = cfs_rq_clock_task(cfs_rq);
2275 else
2276 now = cfs_rq_clock_task(group_cfs_rq(se));
2277
2278 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2279 return;
2280
2281 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2282
2283 if (!update_cfs_rq)
2284 return;
2285
2dac754e
PT
2286 if (se->on_rq)
2287 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2288 else
2289 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2290}
2291
2292/*
2293 * Decay the load contributed by all blocked children and account this so that
2294 * their contribution may appropriately discounted when they wake up.
2295 */
aff3e498 2296static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2297{
f1b17280 2298 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2299 u64 decays;
2300
2301 decays = now - cfs_rq->last_decay;
aff3e498 2302 if (!decays && !force_update)
9ee474f5
PT
2303 return;
2304
2509940f
AS
2305 if (atomic_long_read(&cfs_rq->removed_load)) {
2306 unsigned long removed_load;
2307 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2308 subtract_blocked_load_contrib(cfs_rq, removed_load);
2309 }
9ee474f5 2310
aff3e498
PT
2311 if (decays) {
2312 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2313 decays);
2314 atomic64_add(decays, &cfs_rq->decay_counter);
2315 cfs_rq->last_decay = now;
2316 }
c566e8e9
PT
2317
2318 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2319}
18bf2805
BS
2320
2321static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2322{
78becc27 2323 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2324 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2325}
2dac754e
PT
2326
2327/* Add the load generated by se into cfs_rq's child load-average */
2328static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2329 struct sched_entity *se,
2330 int wakeup)
2dac754e 2331{
aff3e498
PT
2332 /*
2333 * We track migrations using entity decay_count <= 0, on a wake-up
2334 * migration we use a negative decay count to track the remote decays
2335 * accumulated while sleeping.
a75cdaa9
AS
2336 *
2337 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2338 * are seen by enqueue_entity_load_avg() as a migration with an already
2339 * constructed load_avg_contrib.
aff3e498
PT
2340 */
2341 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2342 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2343 if (se->avg.decay_count) {
2344 /*
2345 * In a wake-up migration we have to approximate the
2346 * time sleeping. This is because we can't synchronize
2347 * clock_task between the two cpus, and it is not
2348 * guaranteed to be read-safe. Instead, we can
2349 * approximate this using our carried decays, which are
2350 * explicitly atomically readable.
2351 */
2352 se->avg.last_runnable_update -= (-se->avg.decay_count)
2353 << 20;
2354 update_entity_load_avg(se, 0);
2355 /* Indicate that we're now synchronized and on-rq */
2356 se->avg.decay_count = 0;
2357 }
9ee474f5
PT
2358 wakeup = 0;
2359 } else {
282cf499
AS
2360 /*
2361 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2362 * would have made count negative); we must be careful to avoid
2363 * double-accounting blocked time after synchronizing decays.
2364 */
2365 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2366 << 20;
9ee474f5
PT
2367 }
2368
aff3e498
PT
2369 /* migrated tasks did not contribute to our blocked load */
2370 if (wakeup) {
9ee474f5 2371 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2372 update_entity_load_avg(se, 0);
2373 }
9ee474f5 2374
2dac754e 2375 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2376 /* we force update consideration on load-balancer moves */
2377 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2378}
2379
9ee474f5
PT
2380/*
2381 * Remove se's load from this cfs_rq child load-average, if the entity is
2382 * transitioning to a blocked state we track its projected decay using
2383 * blocked_load_avg.
2384 */
2dac754e 2385static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2386 struct sched_entity *se,
2387 int sleep)
2dac754e 2388{
9ee474f5 2389 update_entity_load_avg(se, 1);
aff3e498
PT
2390 /* we force update consideration on load-balancer moves */
2391 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2392
2dac754e 2393 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2394 if (sleep) {
2395 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2396 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2397 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2398}
642dbc39
VG
2399
2400/*
2401 * Update the rq's load with the elapsed running time before entering
2402 * idle. if the last scheduled task is not a CFS task, idle_enter will
2403 * be the only way to update the runnable statistic.
2404 */
2405void idle_enter_fair(struct rq *this_rq)
2406{
2407 update_rq_runnable_avg(this_rq, 1);
2408}
2409
2410/*
2411 * Update the rq's load with the elapsed idle time before a task is
2412 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2413 * be the only way to update the runnable statistic.
2414 */
2415void idle_exit_fair(struct rq *this_rq)
2416{
2417 update_rq_runnable_avg(this_rq, 0);
2418}
2419
9d85f21c 2420#else
9ee474f5
PT
2421static inline void update_entity_load_avg(struct sched_entity *se,
2422 int update_cfs_rq) {}
18bf2805 2423static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2424static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2425 struct sched_entity *se,
2426 int wakeup) {}
2dac754e 2427static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2428 struct sched_entity *se,
2429 int sleep) {}
aff3e498
PT
2430static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2431 int force_update) {}
9d85f21c
PT
2432#endif
2433
2396af69 2434static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2435{
bf0f6f24 2436#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2437 struct task_struct *tsk = NULL;
2438
2439 if (entity_is_task(se))
2440 tsk = task_of(se);
2441
41acab88 2442 if (se->statistics.sleep_start) {
78becc27 2443 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2444
2445 if ((s64)delta < 0)
2446 delta = 0;
2447
41acab88
LDM
2448 if (unlikely(delta > se->statistics.sleep_max))
2449 se->statistics.sleep_max = delta;
bf0f6f24 2450
8c79a045 2451 se->statistics.sleep_start = 0;
41acab88 2452 se->statistics.sum_sleep_runtime += delta;
9745512c 2453
768d0c27 2454 if (tsk) {
e414314c 2455 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2456 trace_sched_stat_sleep(tsk, delta);
2457 }
bf0f6f24 2458 }
41acab88 2459 if (se->statistics.block_start) {
78becc27 2460 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2461
2462 if ((s64)delta < 0)
2463 delta = 0;
2464
41acab88
LDM
2465 if (unlikely(delta > se->statistics.block_max))
2466 se->statistics.block_max = delta;
bf0f6f24 2467
8c79a045 2468 se->statistics.block_start = 0;
41acab88 2469 se->statistics.sum_sleep_runtime += delta;
30084fbd 2470
e414314c 2471 if (tsk) {
8f0dfc34 2472 if (tsk->in_iowait) {
41acab88
LDM
2473 se->statistics.iowait_sum += delta;
2474 se->statistics.iowait_count++;
768d0c27 2475 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2476 }
2477
b781a602
AV
2478 trace_sched_stat_blocked(tsk, delta);
2479
e414314c
PZ
2480 /*
2481 * Blocking time is in units of nanosecs, so shift by
2482 * 20 to get a milliseconds-range estimation of the
2483 * amount of time that the task spent sleeping:
2484 */
2485 if (unlikely(prof_on == SLEEP_PROFILING)) {
2486 profile_hits(SLEEP_PROFILING,
2487 (void *)get_wchan(tsk),
2488 delta >> 20);
2489 }
2490 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2491 }
bf0f6f24
IM
2492 }
2493#endif
2494}
2495
ddc97297
PZ
2496static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497{
2498#ifdef CONFIG_SCHED_DEBUG
2499 s64 d = se->vruntime - cfs_rq->min_vruntime;
2500
2501 if (d < 0)
2502 d = -d;
2503
2504 if (d > 3*sysctl_sched_latency)
2505 schedstat_inc(cfs_rq, nr_spread_over);
2506#endif
2507}
2508
aeb73b04
PZ
2509static void
2510place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2511{
1af5f730 2512 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2513
2cb8600e
PZ
2514 /*
2515 * The 'current' period is already promised to the current tasks,
2516 * however the extra weight of the new task will slow them down a
2517 * little, place the new task so that it fits in the slot that
2518 * stays open at the end.
2519 */
94dfb5e7 2520 if (initial && sched_feat(START_DEBIT))
f9c0b095 2521 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2522
a2e7a7eb 2523 /* sleeps up to a single latency don't count. */
5ca9880c 2524 if (!initial) {
a2e7a7eb 2525 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2526
a2e7a7eb
MG
2527 /*
2528 * Halve their sleep time's effect, to allow
2529 * for a gentler effect of sleepers:
2530 */
2531 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2532 thresh >>= 1;
51e0304c 2533
a2e7a7eb 2534 vruntime -= thresh;
aeb73b04
PZ
2535 }
2536
b5d9d734 2537 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2538 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2539}
2540
d3d9dc33
PT
2541static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2542
bf0f6f24 2543static void
88ec22d3 2544enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2545{
88ec22d3
PZ
2546 /*
2547 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2548 * through calling update_curr().
88ec22d3 2549 */
371fd7e7 2550 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2551 se->vruntime += cfs_rq->min_vruntime;
2552
bf0f6f24 2553 /*
a2a2d680 2554 * Update run-time statistics of the 'current'.
bf0f6f24 2555 */
b7cc0896 2556 update_curr(cfs_rq);
f269ae04 2557 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2558 account_entity_enqueue(cfs_rq, se);
2559 update_cfs_shares(cfs_rq);
bf0f6f24 2560
88ec22d3 2561 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2562 place_entity(cfs_rq, se, 0);
2396af69 2563 enqueue_sleeper(cfs_rq, se);
e9acbff6 2564 }
bf0f6f24 2565
d2417e5a 2566 update_stats_enqueue(cfs_rq, se);
ddc97297 2567 check_spread(cfs_rq, se);
83b699ed
SV
2568 if (se != cfs_rq->curr)
2569 __enqueue_entity(cfs_rq, se);
2069dd75 2570 se->on_rq = 1;
3d4b47b4 2571
d3d9dc33 2572 if (cfs_rq->nr_running == 1) {
3d4b47b4 2573 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2574 check_enqueue_throttle(cfs_rq);
2575 }
bf0f6f24
IM
2576}
2577
2c13c919 2578static void __clear_buddies_last(struct sched_entity *se)
2002c695 2579{
2c13c919
RR
2580 for_each_sched_entity(se) {
2581 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2582 if (cfs_rq->last == se)
2583 cfs_rq->last = NULL;
2584 else
2585 break;
2586 }
2587}
2002c695 2588
2c13c919
RR
2589static void __clear_buddies_next(struct sched_entity *se)
2590{
2591 for_each_sched_entity(se) {
2592 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2593 if (cfs_rq->next == se)
2594 cfs_rq->next = NULL;
2595 else
2596 break;
2597 }
2002c695
PZ
2598}
2599
ac53db59
RR
2600static void __clear_buddies_skip(struct sched_entity *se)
2601{
2602 for_each_sched_entity(se) {
2603 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2604 if (cfs_rq->skip == se)
2605 cfs_rq->skip = NULL;
2606 else
2607 break;
2608 }
2609}
2610
a571bbea
PZ
2611static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2612{
2c13c919
RR
2613 if (cfs_rq->last == se)
2614 __clear_buddies_last(se);
2615
2616 if (cfs_rq->next == se)
2617 __clear_buddies_next(se);
ac53db59
RR
2618
2619 if (cfs_rq->skip == se)
2620 __clear_buddies_skip(se);
a571bbea
PZ
2621}
2622
6c16a6dc 2623static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2624
bf0f6f24 2625static void
371fd7e7 2626dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2627{
a2a2d680
DA
2628 /*
2629 * Update run-time statistics of the 'current'.
2630 */
2631 update_curr(cfs_rq);
17bc14b7 2632 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2633
19b6a2e3 2634 update_stats_dequeue(cfs_rq, se);
371fd7e7 2635 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2636#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2637 if (entity_is_task(se)) {
2638 struct task_struct *tsk = task_of(se);
2639
2640 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2641 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2642 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2643 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2644 }
db36cc7d 2645#endif
67e9fb2a
PZ
2646 }
2647
2002c695 2648 clear_buddies(cfs_rq, se);
4793241b 2649
83b699ed 2650 if (se != cfs_rq->curr)
30cfdcfc 2651 __dequeue_entity(cfs_rq, se);
17bc14b7 2652 se->on_rq = 0;
30cfdcfc 2653 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2654
2655 /*
2656 * Normalize the entity after updating the min_vruntime because the
2657 * update can refer to the ->curr item and we need to reflect this
2658 * movement in our normalized position.
2659 */
371fd7e7 2660 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2661 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2662
d8b4986d
PT
2663 /* return excess runtime on last dequeue */
2664 return_cfs_rq_runtime(cfs_rq);
2665
1e876231 2666 update_min_vruntime(cfs_rq);
17bc14b7 2667 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2668}
2669
2670/*
2671 * Preempt the current task with a newly woken task if needed:
2672 */
7c92e54f 2673static void
2e09bf55 2674check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2675{
11697830 2676 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2677 struct sched_entity *se;
2678 s64 delta;
11697830 2679
6d0f0ebd 2680 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2681 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2682 if (delta_exec > ideal_runtime) {
bf0f6f24 2683 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2684 /*
2685 * The current task ran long enough, ensure it doesn't get
2686 * re-elected due to buddy favours.
2687 */
2688 clear_buddies(cfs_rq, curr);
f685ceac
MG
2689 return;
2690 }
2691
2692 /*
2693 * Ensure that a task that missed wakeup preemption by a
2694 * narrow margin doesn't have to wait for a full slice.
2695 * This also mitigates buddy induced latencies under load.
2696 */
f685ceac
MG
2697 if (delta_exec < sysctl_sched_min_granularity)
2698 return;
2699
f4cfb33e
WX
2700 se = __pick_first_entity(cfs_rq);
2701 delta = curr->vruntime - se->vruntime;
f685ceac 2702
f4cfb33e
WX
2703 if (delta < 0)
2704 return;
d7d82944 2705
f4cfb33e
WX
2706 if (delta > ideal_runtime)
2707 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2708}
2709
83b699ed 2710static void
8494f412 2711set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2712{
83b699ed
SV
2713 /* 'current' is not kept within the tree. */
2714 if (se->on_rq) {
2715 /*
2716 * Any task has to be enqueued before it get to execute on
2717 * a CPU. So account for the time it spent waiting on the
2718 * runqueue.
2719 */
2720 update_stats_wait_end(cfs_rq, se);
2721 __dequeue_entity(cfs_rq, se);
2722 }
2723
79303e9e 2724 update_stats_curr_start(cfs_rq, se);
429d43bc 2725 cfs_rq->curr = se;
eba1ed4b
IM
2726#ifdef CONFIG_SCHEDSTATS
2727 /*
2728 * Track our maximum slice length, if the CPU's load is at
2729 * least twice that of our own weight (i.e. dont track it
2730 * when there are only lesser-weight tasks around):
2731 */
495eca49 2732 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2733 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2734 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2735 }
2736#endif
4a55b450 2737 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2738}
2739
3f3a4904
PZ
2740static int
2741wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2742
ac53db59
RR
2743/*
2744 * Pick the next process, keeping these things in mind, in this order:
2745 * 1) keep things fair between processes/task groups
2746 * 2) pick the "next" process, since someone really wants that to run
2747 * 3) pick the "last" process, for cache locality
2748 * 4) do not run the "skip" process, if something else is available
2749 */
f4b6755f 2750static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2751{
ac53db59 2752 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2753 struct sched_entity *left = se;
f4b6755f 2754
ac53db59
RR
2755 /*
2756 * Avoid running the skip buddy, if running something else can
2757 * be done without getting too unfair.
2758 */
2759 if (cfs_rq->skip == se) {
2760 struct sched_entity *second = __pick_next_entity(se);
2761 if (second && wakeup_preempt_entity(second, left) < 1)
2762 se = second;
2763 }
aa2ac252 2764
f685ceac
MG
2765 /*
2766 * Prefer last buddy, try to return the CPU to a preempted task.
2767 */
2768 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2769 se = cfs_rq->last;
2770
ac53db59
RR
2771 /*
2772 * Someone really wants this to run. If it's not unfair, run it.
2773 */
2774 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2775 se = cfs_rq->next;
2776
f685ceac 2777 clear_buddies(cfs_rq, se);
4793241b
PZ
2778
2779 return se;
aa2ac252
PZ
2780}
2781
d3d9dc33
PT
2782static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2783
ab6cde26 2784static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2785{
2786 /*
2787 * If still on the runqueue then deactivate_task()
2788 * was not called and update_curr() has to be done:
2789 */
2790 if (prev->on_rq)
b7cc0896 2791 update_curr(cfs_rq);
bf0f6f24 2792
d3d9dc33
PT
2793 /* throttle cfs_rqs exceeding runtime */
2794 check_cfs_rq_runtime(cfs_rq);
2795
ddc97297 2796 check_spread(cfs_rq, prev);
30cfdcfc 2797 if (prev->on_rq) {
5870db5b 2798 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2799 /* Put 'current' back into the tree. */
2800 __enqueue_entity(cfs_rq, prev);
9d85f21c 2801 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2802 update_entity_load_avg(prev, 1);
30cfdcfc 2803 }
429d43bc 2804 cfs_rq->curr = NULL;
bf0f6f24
IM
2805}
2806
8f4d37ec
PZ
2807static void
2808entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2809{
bf0f6f24 2810 /*
30cfdcfc 2811 * Update run-time statistics of the 'current'.
bf0f6f24 2812 */
30cfdcfc 2813 update_curr(cfs_rq);
bf0f6f24 2814
9d85f21c
PT
2815 /*
2816 * Ensure that runnable average is periodically updated.
2817 */
9ee474f5 2818 update_entity_load_avg(curr, 1);
aff3e498 2819 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2820 update_cfs_shares(cfs_rq);
9d85f21c 2821
8f4d37ec
PZ
2822#ifdef CONFIG_SCHED_HRTICK
2823 /*
2824 * queued ticks are scheduled to match the slice, so don't bother
2825 * validating it and just reschedule.
2826 */
983ed7a6
HH
2827 if (queued) {
2828 resched_task(rq_of(cfs_rq)->curr);
2829 return;
2830 }
8f4d37ec
PZ
2831 /*
2832 * don't let the period tick interfere with the hrtick preemption
2833 */
2834 if (!sched_feat(DOUBLE_TICK) &&
2835 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2836 return;
2837#endif
2838
2c2efaed 2839 if (cfs_rq->nr_running > 1)
2e09bf55 2840 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2841}
2842
ab84d31e
PT
2843
2844/**************************************************
2845 * CFS bandwidth control machinery
2846 */
2847
2848#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2849
2850#ifdef HAVE_JUMP_LABEL
c5905afb 2851static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2852
2853static inline bool cfs_bandwidth_used(void)
2854{
c5905afb 2855 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2856}
2857
2858void account_cfs_bandwidth_used(int enabled, int was_enabled)
2859{
2860 /* only need to count groups transitioning between enabled/!enabled */
2861 if (enabled && !was_enabled)
c5905afb 2862 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2863 else if (!enabled && was_enabled)
c5905afb 2864 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2865}
2866#else /* HAVE_JUMP_LABEL */
2867static bool cfs_bandwidth_used(void)
2868{
2869 return true;
2870}
2871
2872void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2873#endif /* HAVE_JUMP_LABEL */
2874
ab84d31e
PT
2875/*
2876 * default period for cfs group bandwidth.
2877 * default: 0.1s, units: nanoseconds
2878 */
2879static inline u64 default_cfs_period(void)
2880{
2881 return 100000000ULL;
2882}
ec12cb7f
PT
2883
2884static inline u64 sched_cfs_bandwidth_slice(void)
2885{
2886 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2887}
2888
a9cf55b2
PT
2889/*
2890 * Replenish runtime according to assigned quota and update expiration time.
2891 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2892 * additional synchronization around rq->lock.
2893 *
2894 * requires cfs_b->lock
2895 */
029632fb 2896void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2897{
2898 u64 now;
2899
2900 if (cfs_b->quota == RUNTIME_INF)
2901 return;
2902
2903 now = sched_clock_cpu(smp_processor_id());
2904 cfs_b->runtime = cfs_b->quota;
2905 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2906}
2907
029632fb
PZ
2908static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2909{
2910 return &tg->cfs_bandwidth;
2911}
2912
f1b17280
PT
2913/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2914static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2915{
2916 if (unlikely(cfs_rq->throttle_count))
2917 return cfs_rq->throttled_clock_task;
2918
78becc27 2919 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2920}
2921
85dac906
PT
2922/* returns 0 on failure to allocate runtime */
2923static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2924{
2925 struct task_group *tg = cfs_rq->tg;
2926 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2927 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2928
2929 /* note: this is a positive sum as runtime_remaining <= 0 */
2930 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2931
2932 raw_spin_lock(&cfs_b->lock);
2933 if (cfs_b->quota == RUNTIME_INF)
2934 amount = min_amount;
58088ad0 2935 else {
a9cf55b2
PT
2936 /*
2937 * If the bandwidth pool has become inactive, then at least one
2938 * period must have elapsed since the last consumption.
2939 * Refresh the global state and ensure bandwidth timer becomes
2940 * active.
2941 */
2942 if (!cfs_b->timer_active) {
2943 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2944 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2945 }
58088ad0
PT
2946
2947 if (cfs_b->runtime > 0) {
2948 amount = min(cfs_b->runtime, min_amount);
2949 cfs_b->runtime -= amount;
2950 cfs_b->idle = 0;
2951 }
ec12cb7f 2952 }
a9cf55b2 2953 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2954 raw_spin_unlock(&cfs_b->lock);
2955
2956 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2957 /*
2958 * we may have advanced our local expiration to account for allowed
2959 * spread between our sched_clock and the one on which runtime was
2960 * issued.
2961 */
2962 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2963 cfs_rq->runtime_expires = expires;
85dac906
PT
2964
2965 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2966}
2967
a9cf55b2
PT
2968/*
2969 * Note: This depends on the synchronization provided by sched_clock and the
2970 * fact that rq->clock snapshots this value.
2971 */
2972static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2973{
a9cf55b2 2974 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2975
2976 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2977 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2978 return;
2979
a9cf55b2
PT
2980 if (cfs_rq->runtime_remaining < 0)
2981 return;
2982
2983 /*
2984 * If the local deadline has passed we have to consider the
2985 * possibility that our sched_clock is 'fast' and the global deadline
2986 * has not truly expired.
2987 *
2988 * Fortunately we can check determine whether this the case by checking
2989 * whether the global deadline has advanced.
2990 */
2991
2992 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2993 /* extend local deadline, drift is bounded above by 2 ticks */
2994 cfs_rq->runtime_expires += TICK_NSEC;
2995 } else {
2996 /* global deadline is ahead, expiration has passed */
2997 cfs_rq->runtime_remaining = 0;
2998 }
2999}
3000
3001static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3002 unsigned long delta_exec)
3003{
3004 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3005 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3006 expire_cfs_rq_runtime(cfs_rq);
3007
3008 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3009 return;
3010
85dac906
PT
3011 /*
3012 * if we're unable to extend our runtime we resched so that the active
3013 * hierarchy can be throttled
3014 */
3015 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3016 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3017}
3018
6c16a6dc
PZ
3019static __always_inline
3020void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3021{
56f570e5 3022 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3023 return;
3024
3025 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3026}
3027
85dac906
PT
3028static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3029{
56f570e5 3030 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3031}
3032
64660c86
PT
3033/* check whether cfs_rq, or any parent, is throttled */
3034static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3035{
56f570e5 3036 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3037}
3038
3039/*
3040 * Ensure that neither of the group entities corresponding to src_cpu or
3041 * dest_cpu are members of a throttled hierarchy when performing group
3042 * load-balance operations.
3043 */
3044static inline int throttled_lb_pair(struct task_group *tg,
3045 int src_cpu, int dest_cpu)
3046{
3047 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3048
3049 src_cfs_rq = tg->cfs_rq[src_cpu];
3050 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3051
3052 return throttled_hierarchy(src_cfs_rq) ||
3053 throttled_hierarchy(dest_cfs_rq);
3054}
3055
3056/* updated child weight may affect parent so we have to do this bottom up */
3057static int tg_unthrottle_up(struct task_group *tg, void *data)
3058{
3059 struct rq *rq = data;
3060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3061
3062 cfs_rq->throttle_count--;
3063#ifdef CONFIG_SMP
3064 if (!cfs_rq->throttle_count) {
f1b17280 3065 /* adjust cfs_rq_clock_task() */
78becc27 3066 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3067 cfs_rq->throttled_clock_task;
64660c86
PT
3068 }
3069#endif
3070
3071 return 0;
3072}
3073
3074static int tg_throttle_down(struct task_group *tg, void *data)
3075{
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
82958366
PT
3079 /* group is entering throttled state, stop time */
3080 if (!cfs_rq->throttle_count)
78becc27 3081 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3082 cfs_rq->throttle_count++;
3083
3084 return 0;
3085}
3086
d3d9dc33 3087static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3088{
3089 struct rq *rq = rq_of(cfs_rq);
3090 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3091 struct sched_entity *se;
3092 long task_delta, dequeue = 1;
3093
3094 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3095
f1b17280 3096 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3097 rcu_read_lock();
3098 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3099 rcu_read_unlock();
85dac906
PT
3100
3101 task_delta = cfs_rq->h_nr_running;
3102 for_each_sched_entity(se) {
3103 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3104 /* throttled entity or throttle-on-deactivate */
3105 if (!se->on_rq)
3106 break;
3107
3108 if (dequeue)
3109 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3110 qcfs_rq->h_nr_running -= task_delta;
3111
3112 if (qcfs_rq->load.weight)
3113 dequeue = 0;
3114 }
3115
3116 if (!se)
3117 rq->nr_running -= task_delta;
3118
3119 cfs_rq->throttled = 1;
78becc27 3120 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3121 raw_spin_lock(&cfs_b->lock);
3122 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3123 raw_spin_unlock(&cfs_b->lock);
3124}
3125
029632fb 3126void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3127{
3128 struct rq *rq = rq_of(cfs_rq);
3129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3130 struct sched_entity *se;
3131 int enqueue = 1;
3132 long task_delta;
3133
22b958d8 3134 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3135
3136 cfs_rq->throttled = 0;
1a55af2e
FW
3137
3138 update_rq_clock(rq);
3139
671fd9da 3140 raw_spin_lock(&cfs_b->lock);
78becc27 3141 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3142 list_del_rcu(&cfs_rq->throttled_list);
3143 raw_spin_unlock(&cfs_b->lock);
3144
64660c86
PT
3145 /* update hierarchical throttle state */
3146 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3147
671fd9da
PT
3148 if (!cfs_rq->load.weight)
3149 return;
3150
3151 task_delta = cfs_rq->h_nr_running;
3152 for_each_sched_entity(se) {
3153 if (se->on_rq)
3154 enqueue = 0;
3155
3156 cfs_rq = cfs_rq_of(se);
3157 if (enqueue)
3158 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3159 cfs_rq->h_nr_running += task_delta;
3160
3161 if (cfs_rq_throttled(cfs_rq))
3162 break;
3163 }
3164
3165 if (!se)
3166 rq->nr_running += task_delta;
3167
3168 /* determine whether we need to wake up potentially idle cpu */
3169 if (rq->curr == rq->idle && rq->cfs.nr_running)
3170 resched_task(rq->curr);
3171}
3172
3173static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3174 u64 remaining, u64 expires)
3175{
3176 struct cfs_rq *cfs_rq;
3177 u64 runtime = remaining;
3178
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3181 throttled_list) {
3182 struct rq *rq = rq_of(cfs_rq);
3183
3184 raw_spin_lock(&rq->lock);
3185 if (!cfs_rq_throttled(cfs_rq))
3186 goto next;
3187
3188 runtime = -cfs_rq->runtime_remaining + 1;
3189 if (runtime > remaining)
3190 runtime = remaining;
3191 remaining -= runtime;
3192
3193 cfs_rq->runtime_remaining += runtime;
3194 cfs_rq->runtime_expires = expires;
3195
3196 /* we check whether we're throttled above */
3197 if (cfs_rq->runtime_remaining > 0)
3198 unthrottle_cfs_rq(cfs_rq);
3199
3200next:
3201 raw_spin_unlock(&rq->lock);
3202
3203 if (!remaining)
3204 break;
3205 }
3206 rcu_read_unlock();
3207
3208 return remaining;
3209}
3210
58088ad0
PT
3211/*
3212 * Responsible for refilling a task_group's bandwidth and unthrottling its
3213 * cfs_rqs as appropriate. If there has been no activity within the last
3214 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3215 * used to track this state.
3216 */
3217static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3218{
671fd9da
PT
3219 u64 runtime, runtime_expires;
3220 int idle = 1, throttled;
58088ad0
PT
3221
3222 raw_spin_lock(&cfs_b->lock);
3223 /* no need to continue the timer with no bandwidth constraint */
3224 if (cfs_b->quota == RUNTIME_INF)
3225 goto out_unlock;
3226
671fd9da
PT
3227 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3228 /* idle depends on !throttled (for the case of a large deficit) */
3229 idle = cfs_b->idle && !throttled;
e8da1b18 3230 cfs_b->nr_periods += overrun;
671fd9da 3231
a9cf55b2
PT
3232 /* if we're going inactive then everything else can be deferred */
3233 if (idle)
3234 goto out_unlock;
3235
3236 __refill_cfs_bandwidth_runtime(cfs_b);
3237
671fd9da
PT
3238 if (!throttled) {
3239 /* mark as potentially idle for the upcoming period */
3240 cfs_b->idle = 1;
3241 goto out_unlock;
3242 }
3243
e8da1b18
NR
3244 /* account preceding periods in which throttling occurred */
3245 cfs_b->nr_throttled += overrun;
3246
671fd9da
PT
3247 /*
3248 * There are throttled entities so we must first use the new bandwidth
3249 * to unthrottle them before making it generally available. This
3250 * ensures that all existing debts will be paid before a new cfs_rq is
3251 * allowed to run.
3252 */
3253 runtime = cfs_b->runtime;
3254 runtime_expires = cfs_b->runtime_expires;
3255 cfs_b->runtime = 0;
3256
3257 /*
3258 * This check is repeated as we are holding onto the new bandwidth
3259 * while we unthrottle. This can potentially race with an unthrottled
3260 * group trying to acquire new bandwidth from the global pool.
3261 */
3262 while (throttled && runtime > 0) {
3263 raw_spin_unlock(&cfs_b->lock);
3264 /* we can't nest cfs_b->lock while distributing bandwidth */
3265 runtime = distribute_cfs_runtime(cfs_b, runtime,
3266 runtime_expires);
3267 raw_spin_lock(&cfs_b->lock);
3268
3269 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3270 }
58088ad0 3271
671fd9da
PT
3272 /* return (any) remaining runtime */
3273 cfs_b->runtime = runtime;
3274 /*
3275 * While we are ensured activity in the period following an
3276 * unthrottle, this also covers the case in which the new bandwidth is
3277 * insufficient to cover the existing bandwidth deficit. (Forcing the
3278 * timer to remain active while there are any throttled entities.)
3279 */
3280 cfs_b->idle = 0;
58088ad0
PT
3281out_unlock:
3282 if (idle)
3283 cfs_b->timer_active = 0;
3284 raw_spin_unlock(&cfs_b->lock);
3285
3286 return idle;
3287}
d3d9dc33 3288
d8b4986d
PT
3289/* a cfs_rq won't donate quota below this amount */
3290static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3291/* minimum remaining period time to redistribute slack quota */
3292static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3293/* how long we wait to gather additional slack before distributing */
3294static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3295
3296/* are we near the end of the current quota period? */
3297static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3298{
3299 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3300 u64 remaining;
3301
3302 /* if the call-back is running a quota refresh is already occurring */
3303 if (hrtimer_callback_running(refresh_timer))
3304 return 1;
3305
3306 /* is a quota refresh about to occur? */
3307 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3308 if (remaining < min_expire)
3309 return 1;
3310
3311 return 0;
3312}
3313
3314static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3315{
3316 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3317
3318 /* if there's a quota refresh soon don't bother with slack */
3319 if (runtime_refresh_within(cfs_b, min_left))
3320 return;
3321
3322 start_bandwidth_timer(&cfs_b->slack_timer,
3323 ns_to_ktime(cfs_bandwidth_slack_period));
3324}
3325
3326/* we know any runtime found here is valid as update_curr() precedes return */
3327static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3328{
3329 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3330 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3331
3332 if (slack_runtime <= 0)
3333 return;
3334
3335 raw_spin_lock(&cfs_b->lock);
3336 if (cfs_b->quota != RUNTIME_INF &&
3337 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3338 cfs_b->runtime += slack_runtime;
3339
3340 /* we are under rq->lock, defer unthrottling using a timer */
3341 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3342 !list_empty(&cfs_b->throttled_cfs_rq))
3343 start_cfs_slack_bandwidth(cfs_b);
3344 }
3345 raw_spin_unlock(&cfs_b->lock);
3346
3347 /* even if it's not valid for return we don't want to try again */
3348 cfs_rq->runtime_remaining -= slack_runtime;
3349}
3350
3351static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3352{
56f570e5
PT
3353 if (!cfs_bandwidth_used())
3354 return;
3355
fccfdc6f 3356 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3357 return;
3358
3359 __return_cfs_rq_runtime(cfs_rq);
3360}
3361
3362/*
3363 * This is done with a timer (instead of inline with bandwidth return) since
3364 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3365 */
3366static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3367{
3368 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3369 u64 expires;
3370
3371 /* confirm we're still not at a refresh boundary */
3372 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3373 return;
3374
3375 raw_spin_lock(&cfs_b->lock);
3376 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3377 runtime = cfs_b->runtime;
3378 cfs_b->runtime = 0;
3379 }
3380 expires = cfs_b->runtime_expires;
3381 raw_spin_unlock(&cfs_b->lock);
3382
3383 if (!runtime)
3384 return;
3385
3386 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3387
3388 raw_spin_lock(&cfs_b->lock);
3389 if (expires == cfs_b->runtime_expires)
3390 cfs_b->runtime = runtime;
3391 raw_spin_unlock(&cfs_b->lock);
3392}
3393
d3d9dc33
PT
3394/*
3395 * When a group wakes up we want to make sure that its quota is not already
3396 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3397 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3398 */
3399static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3400{
56f570e5
PT
3401 if (!cfs_bandwidth_used())
3402 return;
3403
d3d9dc33
PT
3404 /* an active group must be handled by the update_curr()->put() path */
3405 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3406 return;
3407
3408 /* ensure the group is not already throttled */
3409 if (cfs_rq_throttled(cfs_rq))
3410 return;
3411
3412 /* update runtime allocation */
3413 account_cfs_rq_runtime(cfs_rq, 0);
3414 if (cfs_rq->runtime_remaining <= 0)
3415 throttle_cfs_rq(cfs_rq);
3416}
3417
3418/* conditionally throttle active cfs_rq's from put_prev_entity() */
3419static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3420{
56f570e5
PT
3421 if (!cfs_bandwidth_used())
3422 return;
3423
d3d9dc33
PT
3424 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3425 return;
3426
3427 /*
3428 * it's possible for a throttled entity to be forced into a running
3429 * state (e.g. set_curr_task), in this case we're finished.
3430 */
3431 if (cfs_rq_throttled(cfs_rq))
3432 return;
3433
3434 throttle_cfs_rq(cfs_rq);
3435}
029632fb 3436
029632fb
PZ
3437static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3438{
3439 struct cfs_bandwidth *cfs_b =
3440 container_of(timer, struct cfs_bandwidth, slack_timer);
3441 do_sched_cfs_slack_timer(cfs_b);
3442
3443 return HRTIMER_NORESTART;
3444}
3445
3446static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3447{
3448 struct cfs_bandwidth *cfs_b =
3449 container_of(timer, struct cfs_bandwidth, period_timer);
3450 ktime_t now;
3451 int overrun;
3452 int idle = 0;
3453
3454 for (;;) {
3455 now = hrtimer_cb_get_time(timer);
3456 overrun = hrtimer_forward(timer, now, cfs_b->period);
3457
3458 if (!overrun)
3459 break;
3460
3461 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3462 }
3463
3464 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3465}
3466
3467void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3468{
3469 raw_spin_lock_init(&cfs_b->lock);
3470 cfs_b->runtime = 0;
3471 cfs_b->quota = RUNTIME_INF;
3472 cfs_b->period = ns_to_ktime(default_cfs_period());
3473
3474 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3475 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3476 cfs_b->period_timer.function = sched_cfs_period_timer;
3477 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3478 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3479}
3480
3481static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3482{
3483 cfs_rq->runtime_enabled = 0;
3484 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3485}
3486
3487/* requires cfs_b->lock, may release to reprogram timer */
3488void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3489{
3490 /*
3491 * The timer may be active because we're trying to set a new bandwidth
3492 * period or because we're racing with the tear-down path
3493 * (timer_active==0 becomes visible before the hrtimer call-back
3494 * terminates). In either case we ensure that it's re-programmed
3495 */
3496 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3497 raw_spin_unlock(&cfs_b->lock);
3498 /* ensure cfs_b->lock is available while we wait */
3499 hrtimer_cancel(&cfs_b->period_timer);
3500
3501 raw_spin_lock(&cfs_b->lock);
3502 /* if someone else restarted the timer then we're done */
3503 if (cfs_b->timer_active)
3504 return;
3505 }
3506
3507 cfs_b->timer_active = 1;
3508 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3509}
3510
3511static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3512{
3513 hrtimer_cancel(&cfs_b->period_timer);
3514 hrtimer_cancel(&cfs_b->slack_timer);
3515}
3516
38dc3348 3517static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3518{
3519 struct cfs_rq *cfs_rq;
3520
3521 for_each_leaf_cfs_rq(rq, cfs_rq) {
3522 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3523
3524 if (!cfs_rq->runtime_enabled)
3525 continue;
3526
3527 /*
3528 * clock_task is not advancing so we just need to make sure
3529 * there's some valid quota amount
3530 */
3531 cfs_rq->runtime_remaining = cfs_b->quota;
3532 if (cfs_rq_throttled(cfs_rq))
3533 unthrottle_cfs_rq(cfs_rq);
3534 }
3535}
3536
3537#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3538static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3539{
78becc27 3540 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3541}
3542
3543static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3544 unsigned long delta_exec) {}
d3d9dc33
PT
3545static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3546static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3547static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3548
3549static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3550{
3551 return 0;
3552}
64660c86
PT
3553
3554static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3555{
3556 return 0;
3557}
3558
3559static inline int throttled_lb_pair(struct task_group *tg,
3560 int src_cpu, int dest_cpu)
3561{
3562 return 0;
3563}
029632fb
PZ
3564
3565void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3566
3567#ifdef CONFIG_FAIR_GROUP_SCHED
3568static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3569#endif
3570
029632fb
PZ
3571static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3572{
3573 return NULL;
3574}
3575static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3576static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3577
3578#endif /* CONFIG_CFS_BANDWIDTH */
3579
bf0f6f24
IM
3580/**************************************************
3581 * CFS operations on tasks:
3582 */
3583
8f4d37ec
PZ
3584#ifdef CONFIG_SCHED_HRTICK
3585static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3586{
8f4d37ec
PZ
3587 struct sched_entity *se = &p->se;
3588 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3589
3590 WARN_ON(task_rq(p) != rq);
3591
b39e66ea 3592 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3593 u64 slice = sched_slice(cfs_rq, se);
3594 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3595 s64 delta = slice - ran;
3596
3597 if (delta < 0) {
3598 if (rq->curr == p)
3599 resched_task(p);
3600 return;
3601 }
3602
3603 /*
3604 * Don't schedule slices shorter than 10000ns, that just
3605 * doesn't make sense. Rely on vruntime for fairness.
3606 */
31656519 3607 if (rq->curr != p)
157124c1 3608 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3609
31656519 3610 hrtick_start(rq, delta);
8f4d37ec
PZ
3611 }
3612}
a4c2f00f
PZ
3613
3614/*
3615 * called from enqueue/dequeue and updates the hrtick when the
3616 * current task is from our class and nr_running is low enough
3617 * to matter.
3618 */
3619static void hrtick_update(struct rq *rq)
3620{
3621 struct task_struct *curr = rq->curr;
3622
b39e66ea 3623 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3624 return;
3625
3626 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3627 hrtick_start_fair(rq, curr);
3628}
55e12e5e 3629#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3630static inline void
3631hrtick_start_fair(struct rq *rq, struct task_struct *p)
3632{
3633}
a4c2f00f
PZ
3634
3635static inline void hrtick_update(struct rq *rq)
3636{
3637}
8f4d37ec
PZ
3638#endif
3639
bf0f6f24
IM
3640/*
3641 * The enqueue_task method is called before nr_running is
3642 * increased. Here we update the fair scheduling stats and
3643 * then put the task into the rbtree:
3644 */
ea87bb78 3645static void
371fd7e7 3646enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3647{
3648 struct cfs_rq *cfs_rq;
62fb1851 3649 struct sched_entity *se = &p->se;
bf0f6f24
IM
3650
3651 for_each_sched_entity(se) {
62fb1851 3652 if (se->on_rq)
bf0f6f24
IM
3653 break;
3654 cfs_rq = cfs_rq_of(se);
88ec22d3 3655 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3656
3657 /*
3658 * end evaluation on encountering a throttled cfs_rq
3659 *
3660 * note: in the case of encountering a throttled cfs_rq we will
3661 * post the final h_nr_running increment below.
3662 */
3663 if (cfs_rq_throttled(cfs_rq))
3664 break;
953bfcd1 3665 cfs_rq->h_nr_running++;
85dac906 3666
88ec22d3 3667 flags = ENQUEUE_WAKEUP;
bf0f6f24 3668 }
8f4d37ec 3669
2069dd75 3670 for_each_sched_entity(se) {
0f317143 3671 cfs_rq = cfs_rq_of(se);
953bfcd1 3672 cfs_rq->h_nr_running++;
2069dd75 3673
85dac906
PT
3674 if (cfs_rq_throttled(cfs_rq))
3675 break;
3676
17bc14b7 3677 update_cfs_shares(cfs_rq);
9ee474f5 3678 update_entity_load_avg(se, 1);
2069dd75
PZ
3679 }
3680
18bf2805
BS
3681 if (!se) {
3682 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3683 inc_nr_running(rq);
18bf2805 3684 }
a4c2f00f 3685 hrtick_update(rq);
bf0f6f24
IM
3686}
3687
2f36825b
VP
3688static void set_next_buddy(struct sched_entity *se);
3689
bf0f6f24
IM
3690/*
3691 * The dequeue_task method is called before nr_running is
3692 * decreased. We remove the task from the rbtree and
3693 * update the fair scheduling stats:
3694 */
371fd7e7 3695static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3696{
3697 struct cfs_rq *cfs_rq;
62fb1851 3698 struct sched_entity *se = &p->se;
2f36825b 3699 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3700
3701 for_each_sched_entity(se) {
3702 cfs_rq = cfs_rq_of(se);
371fd7e7 3703 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3704
3705 /*
3706 * end evaluation on encountering a throttled cfs_rq
3707 *
3708 * note: in the case of encountering a throttled cfs_rq we will
3709 * post the final h_nr_running decrement below.
3710 */
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
953bfcd1 3713 cfs_rq->h_nr_running--;
2069dd75 3714
bf0f6f24 3715 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3716 if (cfs_rq->load.weight) {
3717 /*
3718 * Bias pick_next to pick a task from this cfs_rq, as
3719 * p is sleeping when it is within its sched_slice.
3720 */
3721 if (task_sleep && parent_entity(se))
3722 set_next_buddy(parent_entity(se));
9598c82d
PT
3723
3724 /* avoid re-evaluating load for this entity */
3725 se = parent_entity(se);
bf0f6f24 3726 break;
2f36825b 3727 }
371fd7e7 3728 flags |= DEQUEUE_SLEEP;
bf0f6f24 3729 }
8f4d37ec 3730
2069dd75 3731 for_each_sched_entity(se) {
0f317143 3732 cfs_rq = cfs_rq_of(se);
953bfcd1 3733 cfs_rq->h_nr_running--;
2069dd75 3734
85dac906
PT
3735 if (cfs_rq_throttled(cfs_rq))
3736 break;
3737
17bc14b7 3738 update_cfs_shares(cfs_rq);
9ee474f5 3739 update_entity_load_avg(se, 1);
2069dd75
PZ
3740 }
3741
18bf2805 3742 if (!se) {
85dac906 3743 dec_nr_running(rq);
18bf2805
BS
3744 update_rq_runnable_avg(rq, 1);
3745 }
a4c2f00f 3746 hrtick_update(rq);
bf0f6f24
IM
3747}
3748
e7693a36 3749#ifdef CONFIG_SMP
029632fb
PZ
3750/* Used instead of source_load when we know the type == 0 */
3751static unsigned long weighted_cpuload(const int cpu)
3752{
b92486cb 3753 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3754}
3755
3756/*
3757 * Return a low guess at the load of a migration-source cpu weighted
3758 * according to the scheduling class and "nice" value.
3759 *
3760 * We want to under-estimate the load of migration sources, to
3761 * balance conservatively.
3762 */
3763static unsigned long source_load(int cpu, int type)
3764{
3765 struct rq *rq = cpu_rq(cpu);
3766 unsigned long total = weighted_cpuload(cpu);
3767
3768 if (type == 0 || !sched_feat(LB_BIAS))
3769 return total;
3770
3771 return min(rq->cpu_load[type-1], total);
3772}
3773
3774/*
3775 * Return a high guess at the load of a migration-target cpu weighted
3776 * according to the scheduling class and "nice" value.
3777 */
3778static unsigned long target_load(int cpu, int type)
3779{
3780 struct rq *rq = cpu_rq(cpu);
3781 unsigned long total = weighted_cpuload(cpu);
3782
3783 if (type == 0 || !sched_feat(LB_BIAS))
3784 return total;
3785
3786 return max(rq->cpu_load[type-1], total);
3787}
3788
3789static unsigned long power_of(int cpu)
3790{
3791 return cpu_rq(cpu)->cpu_power;
3792}
3793
3794static unsigned long cpu_avg_load_per_task(int cpu)
3795{
3796 struct rq *rq = cpu_rq(cpu);
3797 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3798 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3799
3800 if (nr_running)
b92486cb 3801 return load_avg / nr_running;
029632fb
PZ
3802
3803 return 0;
3804}
3805
62470419
MW
3806static void record_wakee(struct task_struct *p)
3807{
3808 /*
3809 * Rough decay (wiping) for cost saving, don't worry
3810 * about the boundary, really active task won't care
3811 * about the loss.
3812 */
3813 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3814 current->wakee_flips = 0;
3815 current->wakee_flip_decay_ts = jiffies;
3816 }
3817
3818 if (current->last_wakee != p) {
3819 current->last_wakee = p;
3820 current->wakee_flips++;
3821 }
3822}
098fb9db 3823
74f8e4b2 3824static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3825{
3826 struct sched_entity *se = &p->se;
3827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3828 u64 min_vruntime;
3829
3830#ifndef CONFIG_64BIT
3831 u64 min_vruntime_copy;
88ec22d3 3832
3fe1698b
PZ
3833 do {
3834 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3835 smp_rmb();
3836 min_vruntime = cfs_rq->min_vruntime;
3837 } while (min_vruntime != min_vruntime_copy);
3838#else
3839 min_vruntime = cfs_rq->min_vruntime;
3840#endif
88ec22d3 3841
3fe1698b 3842 se->vruntime -= min_vruntime;
62470419 3843 record_wakee(p);
88ec22d3
PZ
3844}
3845
bb3469ac 3846#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3847/*
3848 * effective_load() calculates the load change as seen from the root_task_group
3849 *
3850 * Adding load to a group doesn't make a group heavier, but can cause movement
3851 * of group shares between cpus. Assuming the shares were perfectly aligned one
3852 * can calculate the shift in shares.
cf5f0acf
PZ
3853 *
3854 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3855 * on this @cpu and results in a total addition (subtraction) of @wg to the
3856 * total group weight.
3857 *
3858 * Given a runqueue weight distribution (rw_i) we can compute a shares
3859 * distribution (s_i) using:
3860 *
3861 * s_i = rw_i / \Sum rw_j (1)
3862 *
3863 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3864 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3865 * shares distribution (s_i):
3866 *
3867 * rw_i = { 2, 4, 1, 0 }
3868 * s_i = { 2/7, 4/7, 1/7, 0 }
3869 *
3870 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3871 * task used to run on and the CPU the waker is running on), we need to
3872 * compute the effect of waking a task on either CPU and, in case of a sync
3873 * wakeup, compute the effect of the current task going to sleep.
3874 *
3875 * So for a change of @wl to the local @cpu with an overall group weight change
3876 * of @wl we can compute the new shares distribution (s'_i) using:
3877 *
3878 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3879 *
3880 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3881 * differences in waking a task to CPU 0. The additional task changes the
3882 * weight and shares distributions like:
3883 *
3884 * rw'_i = { 3, 4, 1, 0 }
3885 * s'_i = { 3/8, 4/8, 1/8, 0 }
3886 *
3887 * We can then compute the difference in effective weight by using:
3888 *
3889 * dw_i = S * (s'_i - s_i) (3)
3890 *
3891 * Where 'S' is the group weight as seen by its parent.
3892 *
3893 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3894 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3895 * 4/7) times the weight of the group.
f5bfb7d9 3896 */
2069dd75 3897static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3898{
4be9daaa 3899 struct sched_entity *se = tg->se[cpu];
f1d239f7 3900
58d081b5 3901 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3902 return wl;
3903
4be9daaa 3904 for_each_sched_entity(se) {
cf5f0acf 3905 long w, W;
4be9daaa 3906
977dda7c 3907 tg = se->my_q->tg;
bb3469ac 3908
cf5f0acf
PZ
3909 /*
3910 * W = @wg + \Sum rw_j
3911 */
3912 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3913
cf5f0acf
PZ
3914 /*
3915 * w = rw_i + @wl
3916 */
3917 w = se->my_q->load.weight + wl;
940959e9 3918
cf5f0acf
PZ
3919 /*
3920 * wl = S * s'_i; see (2)
3921 */
3922 if (W > 0 && w < W)
3923 wl = (w * tg->shares) / W;
977dda7c
PT
3924 else
3925 wl = tg->shares;
940959e9 3926
cf5f0acf
PZ
3927 /*
3928 * Per the above, wl is the new se->load.weight value; since
3929 * those are clipped to [MIN_SHARES, ...) do so now. See
3930 * calc_cfs_shares().
3931 */
977dda7c
PT
3932 if (wl < MIN_SHARES)
3933 wl = MIN_SHARES;
cf5f0acf
PZ
3934
3935 /*
3936 * wl = dw_i = S * (s'_i - s_i); see (3)
3937 */
977dda7c 3938 wl -= se->load.weight;
cf5f0acf
PZ
3939
3940 /*
3941 * Recursively apply this logic to all parent groups to compute
3942 * the final effective load change on the root group. Since
3943 * only the @tg group gets extra weight, all parent groups can
3944 * only redistribute existing shares. @wl is the shift in shares
3945 * resulting from this level per the above.
3946 */
4be9daaa 3947 wg = 0;
4be9daaa 3948 }
bb3469ac 3949
4be9daaa 3950 return wl;
bb3469ac
PZ
3951}
3952#else
4be9daaa 3953
58d081b5 3954static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3955{
83378269 3956 return wl;
bb3469ac 3957}
4be9daaa 3958
bb3469ac
PZ
3959#endif
3960
62470419
MW
3961static int wake_wide(struct task_struct *p)
3962{
7d9ffa89 3963 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3964
3965 /*
3966 * Yeah, it's the switching-frequency, could means many wakee or
3967 * rapidly switch, use factor here will just help to automatically
3968 * adjust the loose-degree, so bigger node will lead to more pull.
3969 */
3970 if (p->wakee_flips > factor) {
3971 /*
3972 * wakee is somewhat hot, it needs certain amount of cpu
3973 * resource, so if waker is far more hot, prefer to leave
3974 * it alone.
3975 */
3976 if (current->wakee_flips > (factor * p->wakee_flips))
3977 return 1;
3978 }
3979
3980 return 0;
3981}
3982
c88d5910 3983static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3984{
e37b6a7b 3985 s64 this_load, load;
c88d5910 3986 int idx, this_cpu, prev_cpu;
098fb9db 3987 unsigned long tl_per_task;
c88d5910 3988 struct task_group *tg;
83378269 3989 unsigned long weight;
b3137bc8 3990 int balanced;
098fb9db 3991
62470419
MW
3992 /*
3993 * If we wake multiple tasks be careful to not bounce
3994 * ourselves around too much.
3995 */
3996 if (wake_wide(p))
3997 return 0;
3998
c88d5910
PZ
3999 idx = sd->wake_idx;
4000 this_cpu = smp_processor_id();
4001 prev_cpu = task_cpu(p);
4002 load = source_load(prev_cpu, idx);
4003 this_load = target_load(this_cpu, idx);
098fb9db 4004
b3137bc8
MG
4005 /*
4006 * If sync wakeup then subtract the (maximum possible)
4007 * effect of the currently running task from the load
4008 * of the current CPU:
4009 */
83378269
PZ
4010 if (sync) {
4011 tg = task_group(current);
4012 weight = current->se.load.weight;
4013
c88d5910 4014 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4015 load += effective_load(tg, prev_cpu, 0, -weight);
4016 }
b3137bc8 4017
83378269
PZ
4018 tg = task_group(p);
4019 weight = p->se.load.weight;
b3137bc8 4020
71a29aa7
PZ
4021 /*
4022 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4023 * due to the sync cause above having dropped this_load to 0, we'll
4024 * always have an imbalance, but there's really nothing you can do
4025 * about that, so that's good too.
71a29aa7
PZ
4026 *
4027 * Otherwise check if either cpus are near enough in load to allow this
4028 * task to be woken on this_cpu.
4029 */
e37b6a7b
PT
4030 if (this_load > 0) {
4031 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4032
4033 this_eff_load = 100;
4034 this_eff_load *= power_of(prev_cpu);
4035 this_eff_load *= this_load +
4036 effective_load(tg, this_cpu, weight, weight);
4037
4038 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4039 prev_eff_load *= power_of(this_cpu);
4040 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4041
4042 balanced = this_eff_load <= prev_eff_load;
4043 } else
4044 balanced = true;
b3137bc8 4045
098fb9db 4046 /*
4ae7d5ce
IM
4047 * If the currently running task will sleep within
4048 * a reasonable amount of time then attract this newly
4049 * woken task:
098fb9db 4050 */
2fb7635c
PZ
4051 if (sync && balanced)
4052 return 1;
098fb9db 4053
41acab88 4054 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4055 tl_per_task = cpu_avg_load_per_task(this_cpu);
4056
c88d5910
PZ
4057 if (balanced ||
4058 (this_load <= load &&
4059 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4060 /*
4061 * This domain has SD_WAKE_AFFINE and
4062 * p is cache cold in this domain, and
4063 * there is no bad imbalance.
4064 */
c88d5910 4065 schedstat_inc(sd, ttwu_move_affine);
41acab88 4066 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4067
4068 return 1;
4069 }
4070 return 0;
4071}
4072
aaee1203
PZ
4073/*
4074 * find_idlest_group finds and returns the least busy CPU group within the
4075 * domain.
4076 */
4077static struct sched_group *
78e7ed53 4078find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4079 int this_cpu, int load_idx)
e7693a36 4080{
b3bd3de6 4081 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4082 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4083 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4084
aaee1203
PZ
4085 do {
4086 unsigned long load, avg_load;
4087 int local_group;
4088 int i;
e7693a36 4089
aaee1203
PZ
4090 /* Skip over this group if it has no CPUs allowed */
4091 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4092 tsk_cpus_allowed(p)))
aaee1203
PZ
4093 continue;
4094
4095 local_group = cpumask_test_cpu(this_cpu,
4096 sched_group_cpus(group));
4097
4098 /* Tally up the load of all CPUs in the group */
4099 avg_load = 0;
4100
4101 for_each_cpu(i, sched_group_cpus(group)) {
4102 /* Bias balancing toward cpus of our domain */
4103 if (local_group)
4104 load = source_load(i, load_idx);
4105 else
4106 load = target_load(i, load_idx);
4107
4108 avg_load += load;
4109 }
4110
4111 /* Adjust by relative CPU power of the group */
9c3f75cb 4112 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4113
4114 if (local_group) {
4115 this_load = avg_load;
aaee1203
PZ
4116 } else if (avg_load < min_load) {
4117 min_load = avg_load;
4118 idlest = group;
4119 }
4120 } while (group = group->next, group != sd->groups);
4121
4122 if (!idlest || 100*this_load < imbalance*min_load)
4123 return NULL;
4124 return idlest;
4125}
4126
4127/*
4128 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4129 */
4130static int
4131find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4132{
4133 unsigned long load, min_load = ULONG_MAX;
4134 int idlest = -1;
4135 int i;
4136
4137 /* Traverse only the allowed CPUs */
fa17b507 4138 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4139 load = weighted_cpuload(i);
4140
4141 if (load < min_load || (load == min_load && i == this_cpu)) {
4142 min_load = load;
4143 idlest = i;
e7693a36
GH
4144 }
4145 }
4146
aaee1203
PZ
4147 return idlest;
4148}
e7693a36 4149
a50bde51
PZ
4150/*
4151 * Try and locate an idle CPU in the sched_domain.
4152 */
99bd5e2f 4153static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4154{
99bd5e2f 4155 struct sched_domain *sd;
37407ea7 4156 struct sched_group *sg;
e0a79f52 4157 int i = task_cpu(p);
a50bde51 4158
e0a79f52
MG
4159 if (idle_cpu(target))
4160 return target;
99bd5e2f
SS
4161
4162 /*
e0a79f52 4163 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4164 */
e0a79f52
MG
4165 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4166 return i;
a50bde51
PZ
4167
4168 /*
37407ea7 4169 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4170 */
518cd623 4171 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4172 for_each_lower_domain(sd) {
37407ea7
LT
4173 sg = sd->groups;
4174 do {
4175 if (!cpumask_intersects(sched_group_cpus(sg),
4176 tsk_cpus_allowed(p)))
4177 goto next;
4178
4179 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4180 if (i == target || !idle_cpu(i))
37407ea7
LT
4181 goto next;
4182 }
970e1789 4183
37407ea7
LT
4184 target = cpumask_first_and(sched_group_cpus(sg),
4185 tsk_cpus_allowed(p));
4186 goto done;
4187next:
4188 sg = sg->next;
4189 } while (sg != sd->groups);
4190 }
4191done:
a50bde51
PZ
4192 return target;
4193}
4194
aaee1203
PZ
4195/*
4196 * sched_balance_self: balance the current task (running on cpu) in domains
4197 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4198 * SD_BALANCE_EXEC.
4199 *
4200 * Balance, ie. select the least loaded group.
4201 *
4202 * Returns the target CPU number, or the same CPU if no balancing is needed.
4203 *
4204 * preempt must be disabled.
4205 */
0017d735 4206static int
ac66f547 4207select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4208{
29cd8bae 4209 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4210 int cpu = smp_processor_id();
c88d5910 4211 int new_cpu = cpu;
99bd5e2f 4212 int want_affine = 0;
5158f4e4 4213 int sync = wake_flags & WF_SYNC;
c88d5910 4214
29baa747 4215 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4216 return prev_cpu;
4217
0763a660 4218 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4219 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4220 want_affine = 1;
4221 new_cpu = prev_cpu;
4222 }
aaee1203 4223
dce840a0 4224 rcu_read_lock();
aaee1203 4225 for_each_domain(cpu, tmp) {
e4f42888
PZ
4226 if (!(tmp->flags & SD_LOAD_BALANCE))
4227 continue;
4228
fe3bcfe1 4229 /*
99bd5e2f
SS
4230 * If both cpu and prev_cpu are part of this domain,
4231 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4232 */
99bd5e2f
SS
4233 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4234 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4235 affine_sd = tmp;
29cd8bae 4236 break;
f03542a7 4237 }
29cd8bae 4238
f03542a7 4239 if (tmp->flags & sd_flag)
29cd8bae
PZ
4240 sd = tmp;
4241 }
4242
8b911acd 4243 if (affine_sd) {
f03542a7 4244 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4245 prev_cpu = cpu;
4246
4247 new_cpu = select_idle_sibling(p, prev_cpu);
4248 goto unlock;
8b911acd 4249 }
e7693a36 4250
aaee1203 4251 while (sd) {
5158f4e4 4252 int load_idx = sd->forkexec_idx;
aaee1203 4253 struct sched_group *group;
c88d5910 4254 int weight;
098fb9db 4255
0763a660 4256 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4257 sd = sd->child;
4258 continue;
4259 }
098fb9db 4260
5158f4e4
PZ
4261 if (sd_flag & SD_BALANCE_WAKE)
4262 load_idx = sd->wake_idx;
098fb9db 4263
5158f4e4 4264 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4265 if (!group) {
4266 sd = sd->child;
4267 continue;
4268 }
4ae7d5ce 4269
d7c33c49 4270 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4271 if (new_cpu == -1 || new_cpu == cpu) {
4272 /* Now try balancing at a lower domain level of cpu */
4273 sd = sd->child;
4274 continue;
e7693a36 4275 }
aaee1203
PZ
4276
4277 /* Now try balancing at a lower domain level of new_cpu */
4278 cpu = new_cpu;
669c55e9 4279 weight = sd->span_weight;
aaee1203
PZ
4280 sd = NULL;
4281 for_each_domain(cpu, tmp) {
669c55e9 4282 if (weight <= tmp->span_weight)
aaee1203 4283 break;
0763a660 4284 if (tmp->flags & sd_flag)
aaee1203
PZ
4285 sd = tmp;
4286 }
4287 /* while loop will break here if sd == NULL */
e7693a36 4288 }
dce840a0
PZ
4289unlock:
4290 rcu_read_unlock();
e7693a36 4291
c88d5910 4292 return new_cpu;
e7693a36 4293}
0a74bef8
PT
4294
4295/*
4296 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4297 * cfs_rq_of(p) references at time of call are still valid and identify the
4298 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4299 * other assumptions, including the state of rq->lock, should be made.
4300 */
4301static void
4302migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4303{
aff3e498
PT
4304 struct sched_entity *se = &p->se;
4305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4306
4307 /*
4308 * Load tracking: accumulate removed load so that it can be processed
4309 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4310 * to blocked load iff they have a positive decay-count. It can never
4311 * be negative here since on-rq tasks have decay-count == 0.
4312 */
4313 if (se->avg.decay_count) {
4314 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4315 atomic_long_add(se->avg.load_avg_contrib,
4316 &cfs_rq->removed_load);
aff3e498 4317 }
0a74bef8 4318}
e7693a36
GH
4319#endif /* CONFIG_SMP */
4320
e52fb7c0
PZ
4321static unsigned long
4322wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4323{
4324 unsigned long gran = sysctl_sched_wakeup_granularity;
4325
4326 /*
e52fb7c0
PZ
4327 * Since its curr running now, convert the gran from real-time
4328 * to virtual-time in his units.
13814d42
MG
4329 *
4330 * By using 'se' instead of 'curr' we penalize light tasks, so
4331 * they get preempted easier. That is, if 'se' < 'curr' then
4332 * the resulting gran will be larger, therefore penalizing the
4333 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4334 * be smaller, again penalizing the lighter task.
4335 *
4336 * This is especially important for buddies when the leftmost
4337 * task is higher priority than the buddy.
0bbd3336 4338 */
f4ad9bd2 4339 return calc_delta_fair(gran, se);
0bbd3336
PZ
4340}
4341
464b7527
PZ
4342/*
4343 * Should 'se' preempt 'curr'.
4344 *
4345 * |s1
4346 * |s2
4347 * |s3
4348 * g
4349 * |<--->|c
4350 *
4351 * w(c, s1) = -1
4352 * w(c, s2) = 0
4353 * w(c, s3) = 1
4354 *
4355 */
4356static int
4357wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4358{
4359 s64 gran, vdiff = curr->vruntime - se->vruntime;
4360
4361 if (vdiff <= 0)
4362 return -1;
4363
e52fb7c0 4364 gran = wakeup_gran(curr, se);
464b7527
PZ
4365 if (vdiff > gran)
4366 return 1;
4367
4368 return 0;
4369}
4370
02479099
PZ
4371static void set_last_buddy(struct sched_entity *se)
4372{
69c80f3e
VP
4373 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4374 return;
4375
4376 for_each_sched_entity(se)
4377 cfs_rq_of(se)->last = se;
02479099
PZ
4378}
4379
4380static void set_next_buddy(struct sched_entity *se)
4381{
69c80f3e
VP
4382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->next = se;
02479099
PZ
4387}
4388
ac53db59
RR
4389static void set_skip_buddy(struct sched_entity *se)
4390{
69c80f3e
VP
4391 for_each_sched_entity(se)
4392 cfs_rq_of(se)->skip = se;
ac53db59
RR
4393}
4394
bf0f6f24
IM
4395/*
4396 * Preempt the current task with a newly woken task if needed:
4397 */
5a9b86f6 4398static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4399{
4400 struct task_struct *curr = rq->curr;
8651a86c 4401 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4402 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4403 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4404 int next_buddy_marked = 0;
bf0f6f24 4405
4ae7d5ce
IM
4406 if (unlikely(se == pse))
4407 return;
4408
5238cdd3 4409 /*
ddcdf6e7 4410 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4411 * unconditionally check_prempt_curr() after an enqueue (which may have
4412 * lead to a throttle). This both saves work and prevents false
4413 * next-buddy nomination below.
4414 */
4415 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4416 return;
4417
2f36825b 4418 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4419 set_next_buddy(pse);
2f36825b
VP
4420 next_buddy_marked = 1;
4421 }
57fdc26d 4422
aec0a514
BR
4423 /*
4424 * We can come here with TIF_NEED_RESCHED already set from new task
4425 * wake up path.
5238cdd3
PT
4426 *
4427 * Note: this also catches the edge-case of curr being in a throttled
4428 * group (e.g. via set_curr_task), since update_curr() (in the
4429 * enqueue of curr) will have resulted in resched being set. This
4430 * prevents us from potentially nominating it as a false LAST_BUDDY
4431 * below.
aec0a514
BR
4432 */
4433 if (test_tsk_need_resched(curr))
4434 return;
4435
a2f5c9ab
DH
4436 /* Idle tasks are by definition preempted by non-idle tasks. */
4437 if (unlikely(curr->policy == SCHED_IDLE) &&
4438 likely(p->policy != SCHED_IDLE))
4439 goto preempt;
4440
91c234b4 4441 /*
a2f5c9ab
DH
4442 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4443 * is driven by the tick):
91c234b4 4444 */
8ed92e51 4445 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4446 return;
bf0f6f24 4447
464b7527 4448 find_matching_se(&se, &pse);
9bbd7374 4449 update_curr(cfs_rq_of(se));
002f128b 4450 BUG_ON(!pse);
2f36825b
VP
4451 if (wakeup_preempt_entity(se, pse) == 1) {
4452 /*
4453 * Bias pick_next to pick the sched entity that is
4454 * triggering this preemption.
4455 */
4456 if (!next_buddy_marked)
4457 set_next_buddy(pse);
3a7e73a2 4458 goto preempt;
2f36825b 4459 }
464b7527 4460
3a7e73a2 4461 return;
a65ac745 4462
3a7e73a2
PZ
4463preempt:
4464 resched_task(curr);
4465 /*
4466 * Only set the backward buddy when the current task is still
4467 * on the rq. This can happen when a wakeup gets interleaved
4468 * with schedule on the ->pre_schedule() or idle_balance()
4469 * point, either of which can * drop the rq lock.
4470 *
4471 * Also, during early boot the idle thread is in the fair class,
4472 * for obvious reasons its a bad idea to schedule back to it.
4473 */
4474 if (unlikely(!se->on_rq || curr == rq->idle))
4475 return;
4476
4477 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4478 set_last_buddy(se);
bf0f6f24
IM
4479}
4480
fb8d4724 4481static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4482{
8f4d37ec 4483 struct task_struct *p;
bf0f6f24
IM
4484 struct cfs_rq *cfs_rq = &rq->cfs;
4485 struct sched_entity *se;
4486
36ace27e 4487 if (!cfs_rq->nr_running)
bf0f6f24
IM
4488 return NULL;
4489
4490 do {
9948f4b2 4491 se = pick_next_entity(cfs_rq);
f4b6755f 4492 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4493 cfs_rq = group_cfs_rq(se);
4494 } while (cfs_rq);
4495
8f4d37ec 4496 p = task_of(se);
b39e66ea
MG
4497 if (hrtick_enabled(rq))
4498 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4499
4500 return p;
bf0f6f24
IM
4501}
4502
4503/*
4504 * Account for a descheduled task:
4505 */
31ee529c 4506static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4507{
4508 struct sched_entity *se = &prev->se;
4509 struct cfs_rq *cfs_rq;
4510
4511 for_each_sched_entity(se) {
4512 cfs_rq = cfs_rq_of(se);
ab6cde26 4513 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4514 }
4515}
4516
ac53db59
RR
4517/*
4518 * sched_yield() is very simple
4519 *
4520 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4521 */
4522static void yield_task_fair(struct rq *rq)
4523{
4524 struct task_struct *curr = rq->curr;
4525 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4526 struct sched_entity *se = &curr->se;
4527
4528 /*
4529 * Are we the only task in the tree?
4530 */
4531 if (unlikely(rq->nr_running == 1))
4532 return;
4533
4534 clear_buddies(cfs_rq, se);
4535
4536 if (curr->policy != SCHED_BATCH) {
4537 update_rq_clock(rq);
4538 /*
4539 * Update run-time statistics of the 'current'.
4540 */
4541 update_curr(cfs_rq);
916671c0
MG
4542 /*
4543 * Tell update_rq_clock() that we've just updated,
4544 * so we don't do microscopic update in schedule()
4545 * and double the fastpath cost.
4546 */
4547 rq->skip_clock_update = 1;
ac53db59
RR
4548 }
4549
4550 set_skip_buddy(se);
4551}
4552
d95f4122
MG
4553static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4554{
4555 struct sched_entity *se = &p->se;
4556
5238cdd3
PT
4557 /* throttled hierarchies are not runnable */
4558 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4559 return false;
4560
4561 /* Tell the scheduler that we'd really like pse to run next. */
4562 set_next_buddy(se);
4563
d95f4122
MG
4564 yield_task_fair(rq);
4565
4566 return true;
4567}
4568
681f3e68 4569#ifdef CONFIG_SMP
bf0f6f24 4570/**************************************************
e9c84cb8
PZ
4571 * Fair scheduling class load-balancing methods.
4572 *
4573 * BASICS
4574 *
4575 * The purpose of load-balancing is to achieve the same basic fairness the
4576 * per-cpu scheduler provides, namely provide a proportional amount of compute
4577 * time to each task. This is expressed in the following equation:
4578 *
4579 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4580 *
4581 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4582 * W_i,0 is defined as:
4583 *
4584 * W_i,0 = \Sum_j w_i,j (2)
4585 *
4586 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4587 * is derived from the nice value as per prio_to_weight[].
4588 *
4589 * The weight average is an exponential decay average of the instantaneous
4590 * weight:
4591 *
4592 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4593 *
4594 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4595 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4596 * can also include other factors [XXX].
4597 *
4598 * To achieve this balance we define a measure of imbalance which follows
4599 * directly from (1):
4600 *
4601 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4602 *
4603 * We them move tasks around to minimize the imbalance. In the continuous
4604 * function space it is obvious this converges, in the discrete case we get
4605 * a few fun cases generally called infeasible weight scenarios.
4606 *
4607 * [XXX expand on:
4608 * - infeasible weights;
4609 * - local vs global optima in the discrete case. ]
4610 *
4611 *
4612 * SCHED DOMAINS
4613 *
4614 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4615 * for all i,j solution, we create a tree of cpus that follows the hardware
4616 * topology where each level pairs two lower groups (or better). This results
4617 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4618 * tree to only the first of the previous level and we decrease the frequency
4619 * of load-balance at each level inv. proportional to the number of cpus in
4620 * the groups.
4621 *
4622 * This yields:
4623 *
4624 * log_2 n 1 n
4625 * \Sum { --- * --- * 2^i } = O(n) (5)
4626 * i = 0 2^i 2^i
4627 * `- size of each group
4628 * | | `- number of cpus doing load-balance
4629 * | `- freq
4630 * `- sum over all levels
4631 *
4632 * Coupled with a limit on how many tasks we can migrate every balance pass,
4633 * this makes (5) the runtime complexity of the balancer.
4634 *
4635 * An important property here is that each CPU is still (indirectly) connected
4636 * to every other cpu in at most O(log n) steps:
4637 *
4638 * The adjacency matrix of the resulting graph is given by:
4639 *
4640 * log_2 n
4641 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4642 * k = 0
4643 *
4644 * And you'll find that:
4645 *
4646 * A^(log_2 n)_i,j != 0 for all i,j (7)
4647 *
4648 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4649 * The task movement gives a factor of O(m), giving a convergence complexity
4650 * of:
4651 *
4652 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4653 *
4654 *
4655 * WORK CONSERVING
4656 *
4657 * In order to avoid CPUs going idle while there's still work to do, new idle
4658 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4659 * tree itself instead of relying on other CPUs to bring it work.
4660 *
4661 * This adds some complexity to both (5) and (8) but it reduces the total idle
4662 * time.
4663 *
4664 * [XXX more?]
4665 *
4666 *
4667 * CGROUPS
4668 *
4669 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4670 *
4671 * s_k,i
4672 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4673 * S_k
4674 *
4675 * Where
4676 *
4677 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4678 *
4679 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4680 *
4681 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4682 * property.
4683 *
4684 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4685 * rewrite all of this once again.]
4686 */
bf0f6f24 4687
ed387b78
HS
4688static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4689
0ec8aa00
PZ
4690enum fbq_type { regular, remote, all };
4691
ddcdf6e7 4692#define LBF_ALL_PINNED 0x01
367456c7 4693#define LBF_NEED_BREAK 0x02
6263322c
PZ
4694#define LBF_DST_PINNED 0x04
4695#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4696
4697struct lb_env {
4698 struct sched_domain *sd;
4699
ddcdf6e7 4700 struct rq *src_rq;
85c1e7da 4701 int src_cpu;
ddcdf6e7
PZ
4702
4703 int dst_cpu;
4704 struct rq *dst_rq;
4705
88b8dac0
SV
4706 struct cpumask *dst_grpmask;
4707 int new_dst_cpu;
ddcdf6e7 4708 enum cpu_idle_type idle;
bd939f45 4709 long imbalance;
b9403130
MW
4710 /* The set of CPUs under consideration for load-balancing */
4711 struct cpumask *cpus;
4712
ddcdf6e7 4713 unsigned int flags;
367456c7
PZ
4714
4715 unsigned int loop;
4716 unsigned int loop_break;
4717 unsigned int loop_max;
0ec8aa00
PZ
4718
4719 enum fbq_type fbq_type;
ddcdf6e7
PZ
4720};
4721
1e3c88bd 4722/*
ddcdf6e7 4723 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4724 * Both runqueues must be locked.
4725 */
ddcdf6e7 4726static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4727{
ddcdf6e7
PZ
4728 deactivate_task(env->src_rq, p, 0);
4729 set_task_cpu(p, env->dst_cpu);
4730 activate_task(env->dst_rq, p, 0);
4731 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4732}
4733
029632fb
PZ
4734/*
4735 * Is this task likely cache-hot:
4736 */
4737static int
4738task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4739{
4740 s64 delta;
4741
4742 if (p->sched_class != &fair_sched_class)
4743 return 0;
4744
4745 if (unlikely(p->policy == SCHED_IDLE))
4746 return 0;
4747
4748 /*
4749 * Buddy candidates are cache hot:
4750 */
4751 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4752 (&p->se == cfs_rq_of(&p->se)->next ||
4753 &p->se == cfs_rq_of(&p->se)->last))
4754 return 1;
4755
4756 if (sysctl_sched_migration_cost == -1)
4757 return 1;
4758 if (sysctl_sched_migration_cost == 0)
4759 return 0;
4760
4761 delta = now - p->se.exec_start;
4762
4763 return delta < (s64)sysctl_sched_migration_cost;
4764}
4765
3a7053b3
MG
4766#ifdef CONFIG_NUMA_BALANCING
4767/* Returns true if the destination node has incurred more faults */
4768static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4769{
4770 int src_nid, dst_nid;
4771
4772 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4773 !(env->sd->flags & SD_NUMA)) {
4774 return false;
4775 }
4776
4777 src_nid = cpu_to_node(env->src_cpu);
4778 dst_nid = cpu_to_node(env->dst_cpu);
4779
83e1d2cd 4780 if (src_nid == dst_nid)
3a7053b3
MG
4781 return false;
4782
83e1d2cd
MG
4783 /* Always encourage migration to the preferred node. */
4784 if (dst_nid == p->numa_preferred_nid)
4785 return true;
4786
887c290e
RR
4787 /* If both task and group weight improve, this move is a winner. */
4788 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4789 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4790 return true;
4791
4792 return false;
4793}
7a0f3083
MG
4794
4795
4796static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4797{
4798 int src_nid, dst_nid;
4799
4800 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4801 return false;
4802
4803 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4804 return false;
4805
4806 src_nid = cpu_to_node(env->src_cpu);
4807 dst_nid = cpu_to_node(env->dst_cpu);
4808
83e1d2cd 4809 if (src_nid == dst_nid)
7a0f3083
MG
4810 return false;
4811
83e1d2cd
MG
4812 /* Migrating away from the preferred node is always bad. */
4813 if (src_nid == p->numa_preferred_nid)
4814 return true;
4815
887c290e
RR
4816 /* If either task or group weight get worse, don't do it. */
4817 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4818 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4819 return true;
4820
4821 return false;
4822}
4823
3a7053b3
MG
4824#else
4825static inline bool migrate_improves_locality(struct task_struct *p,
4826 struct lb_env *env)
4827{
4828 return false;
4829}
7a0f3083
MG
4830
4831static inline bool migrate_degrades_locality(struct task_struct *p,
4832 struct lb_env *env)
4833{
4834 return false;
4835}
3a7053b3
MG
4836#endif
4837
1e3c88bd
PZ
4838/*
4839 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4840 */
4841static
8e45cb54 4842int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4843{
4844 int tsk_cache_hot = 0;
4845 /*
4846 * We do not migrate tasks that are:
d3198084 4847 * 1) throttled_lb_pair, or
1e3c88bd 4848 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4849 * 3) running (obviously), or
4850 * 4) are cache-hot on their current CPU.
1e3c88bd 4851 */
d3198084
JK
4852 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4853 return 0;
4854
ddcdf6e7 4855 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4856 int cpu;
88b8dac0 4857
41acab88 4858 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4859
6263322c
PZ
4860 env->flags |= LBF_SOME_PINNED;
4861
88b8dac0
SV
4862 /*
4863 * Remember if this task can be migrated to any other cpu in
4864 * our sched_group. We may want to revisit it if we couldn't
4865 * meet load balance goals by pulling other tasks on src_cpu.
4866 *
4867 * Also avoid computing new_dst_cpu if we have already computed
4868 * one in current iteration.
4869 */
6263322c 4870 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4871 return 0;
4872
e02e60c1
JK
4873 /* Prevent to re-select dst_cpu via env's cpus */
4874 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4875 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4876 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4877 env->new_dst_cpu = cpu;
4878 break;
4879 }
88b8dac0 4880 }
e02e60c1 4881
1e3c88bd
PZ
4882 return 0;
4883 }
88b8dac0
SV
4884
4885 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4886 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4887
ddcdf6e7 4888 if (task_running(env->src_rq, p)) {
41acab88 4889 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4890 return 0;
4891 }
4892
4893 /*
4894 * Aggressive migration if:
3a7053b3
MG
4895 * 1) destination numa is preferred
4896 * 2) task is cache cold, or
4897 * 3) too many balance attempts have failed.
1e3c88bd 4898 */
78becc27 4899 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4900 if (!tsk_cache_hot)
4901 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4902
4903 if (migrate_improves_locality(p, env)) {
4904#ifdef CONFIG_SCHEDSTATS
4905 if (tsk_cache_hot) {
4906 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4907 schedstat_inc(p, se.statistics.nr_forced_migrations);
4908 }
4909#endif
4910 return 1;
4911 }
4912
1e3c88bd 4913 if (!tsk_cache_hot ||
8e45cb54 4914 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4915
1e3c88bd 4916 if (tsk_cache_hot) {
8e45cb54 4917 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4918 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4919 }
4e2dcb73 4920
1e3c88bd
PZ
4921 return 1;
4922 }
4923
4e2dcb73
ZH
4924 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4925 return 0;
1e3c88bd
PZ
4926}
4927
897c395f
PZ
4928/*
4929 * move_one_task tries to move exactly one task from busiest to this_rq, as
4930 * part of active balancing operations within "domain".
4931 * Returns 1 if successful and 0 otherwise.
4932 *
4933 * Called with both runqueues locked.
4934 */
8e45cb54 4935static int move_one_task(struct lb_env *env)
897c395f
PZ
4936{
4937 struct task_struct *p, *n;
897c395f 4938
367456c7 4939 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4940 if (!can_migrate_task(p, env))
4941 continue;
897c395f 4942
367456c7
PZ
4943 move_task(p, env);
4944 /*
4945 * Right now, this is only the second place move_task()
4946 * is called, so we can safely collect move_task()
4947 * stats here rather than inside move_task().
4948 */
4949 schedstat_inc(env->sd, lb_gained[env->idle]);
4950 return 1;
897c395f 4951 }
897c395f
PZ
4952 return 0;
4953}
4954
eb95308e
PZ
4955static const unsigned int sched_nr_migrate_break = 32;
4956
5d6523eb 4957/*
bd939f45 4958 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4959 * this_rq, as part of a balancing operation within domain "sd".
4960 * Returns 1 if successful and 0 otherwise.
4961 *
4962 * Called with both runqueues locked.
4963 */
4964static int move_tasks(struct lb_env *env)
1e3c88bd 4965{
5d6523eb
PZ
4966 struct list_head *tasks = &env->src_rq->cfs_tasks;
4967 struct task_struct *p;
367456c7
PZ
4968 unsigned long load;
4969 int pulled = 0;
1e3c88bd 4970
bd939f45 4971 if (env->imbalance <= 0)
5d6523eb 4972 return 0;
1e3c88bd 4973
5d6523eb
PZ
4974 while (!list_empty(tasks)) {
4975 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4976
367456c7
PZ
4977 env->loop++;
4978 /* We've more or less seen every task there is, call it quits */
5d6523eb 4979 if (env->loop > env->loop_max)
367456c7 4980 break;
5d6523eb
PZ
4981
4982 /* take a breather every nr_migrate tasks */
367456c7 4983 if (env->loop > env->loop_break) {
eb95308e 4984 env->loop_break += sched_nr_migrate_break;
8e45cb54 4985 env->flags |= LBF_NEED_BREAK;
ee00e66f 4986 break;
a195f004 4987 }
1e3c88bd 4988
d3198084 4989 if (!can_migrate_task(p, env))
367456c7
PZ
4990 goto next;
4991
4992 load = task_h_load(p);
5d6523eb 4993
eb95308e 4994 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4995 goto next;
4996
bd939f45 4997 if ((load / 2) > env->imbalance)
367456c7 4998 goto next;
1e3c88bd 4999
ddcdf6e7 5000 move_task(p, env);
ee00e66f 5001 pulled++;
bd939f45 5002 env->imbalance -= load;
1e3c88bd
PZ
5003
5004#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5005 /*
5006 * NEWIDLE balancing is a source of latency, so preemptible
5007 * kernels will stop after the first task is pulled to minimize
5008 * the critical section.
5009 */
5d6523eb 5010 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5011 break;
1e3c88bd
PZ
5012#endif
5013
ee00e66f
PZ
5014 /*
5015 * We only want to steal up to the prescribed amount of
5016 * weighted load.
5017 */
bd939f45 5018 if (env->imbalance <= 0)
ee00e66f 5019 break;
367456c7
PZ
5020
5021 continue;
5022next:
5d6523eb 5023 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5024 }
5d6523eb 5025
1e3c88bd 5026 /*
ddcdf6e7
PZ
5027 * Right now, this is one of only two places move_task() is called,
5028 * so we can safely collect move_task() stats here rather than
5029 * inside move_task().
1e3c88bd 5030 */
8e45cb54 5031 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5032
5d6523eb 5033 return pulled;
1e3c88bd
PZ
5034}
5035
230059de 5036#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5037/*
5038 * update tg->load_weight by folding this cpu's load_avg
5039 */
48a16753 5040static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5041{
48a16753
PT
5042 struct sched_entity *se = tg->se[cpu];
5043 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5044
48a16753
PT
5045 /* throttled entities do not contribute to load */
5046 if (throttled_hierarchy(cfs_rq))
5047 return;
9e3081ca 5048
aff3e498 5049 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5050
82958366
PT
5051 if (se) {
5052 update_entity_load_avg(se, 1);
5053 /*
5054 * We pivot on our runnable average having decayed to zero for
5055 * list removal. This generally implies that all our children
5056 * have also been removed (modulo rounding error or bandwidth
5057 * control); however, such cases are rare and we can fix these
5058 * at enqueue.
5059 *
5060 * TODO: fix up out-of-order children on enqueue.
5061 */
5062 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5063 list_del_leaf_cfs_rq(cfs_rq);
5064 } else {
48a16753 5065 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5066 update_rq_runnable_avg(rq, rq->nr_running);
5067 }
9e3081ca
PZ
5068}
5069
48a16753 5070static void update_blocked_averages(int cpu)
9e3081ca 5071{
9e3081ca 5072 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5073 struct cfs_rq *cfs_rq;
5074 unsigned long flags;
9e3081ca 5075
48a16753
PT
5076 raw_spin_lock_irqsave(&rq->lock, flags);
5077 update_rq_clock(rq);
9763b67f
PZ
5078 /*
5079 * Iterates the task_group tree in a bottom up fashion, see
5080 * list_add_leaf_cfs_rq() for details.
5081 */
64660c86 5082 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5083 /*
5084 * Note: We may want to consider periodically releasing
5085 * rq->lock about these updates so that creating many task
5086 * groups does not result in continually extending hold time.
5087 */
5088 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5089 }
48a16753
PT
5090
5091 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5092}
5093
9763b67f 5094/*
68520796 5095 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5096 * This needs to be done in a top-down fashion because the load of a child
5097 * group is a fraction of its parents load.
5098 */
68520796 5099static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5100{
68520796
VD
5101 struct rq *rq = rq_of(cfs_rq);
5102 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5103 unsigned long now = jiffies;
68520796 5104 unsigned long load;
a35b6466 5105
68520796 5106 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5107 return;
5108
68520796
VD
5109 cfs_rq->h_load_next = NULL;
5110 for_each_sched_entity(se) {
5111 cfs_rq = cfs_rq_of(se);
5112 cfs_rq->h_load_next = se;
5113 if (cfs_rq->last_h_load_update == now)
5114 break;
5115 }
a35b6466 5116
68520796 5117 if (!se) {
7e3115ef 5118 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5119 cfs_rq->last_h_load_update = now;
5120 }
5121
5122 while ((se = cfs_rq->h_load_next) != NULL) {
5123 load = cfs_rq->h_load;
5124 load = div64_ul(load * se->avg.load_avg_contrib,
5125 cfs_rq->runnable_load_avg + 1);
5126 cfs_rq = group_cfs_rq(se);
5127 cfs_rq->h_load = load;
5128 cfs_rq->last_h_load_update = now;
5129 }
9763b67f
PZ
5130}
5131
367456c7 5132static unsigned long task_h_load(struct task_struct *p)
230059de 5133{
367456c7 5134 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5135
68520796 5136 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5137 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5138 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5139}
5140#else
48a16753 5141static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5142{
5143}
5144
367456c7 5145static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5146{
a003a25b 5147 return p->se.avg.load_avg_contrib;
1e3c88bd 5148}
230059de 5149#endif
1e3c88bd 5150
1e3c88bd 5151/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5152/*
5153 * sg_lb_stats - stats of a sched_group required for load_balancing
5154 */
5155struct sg_lb_stats {
5156 unsigned long avg_load; /*Avg load across the CPUs of the group */
5157 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5158 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5159 unsigned long load_per_task;
3ae11c90 5160 unsigned long group_power;
147c5fc2
PZ
5161 unsigned int sum_nr_running; /* Nr tasks running in the group */
5162 unsigned int group_capacity;
5163 unsigned int idle_cpus;
5164 unsigned int group_weight;
1e3c88bd 5165 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5166 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5167#ifdef CONFIG_NUMA_BALANCING
5168 unsigned int nr_numa_running;
5169 unsigned int nr_preferred_running;
5170#endif
1e3c88bd
PZ
5171};
5172
56cf515b
JK
5173/*
5174 * sd_lb_stats - Structure to store the statistics of a sched_domain
5175 * during load balancing.
5176 */
5177struct sd_lb_stats {
5178 struct sched_group *busiest; /* Busiest group in this sd */
5179 struct sched_group *local; /* Local group in this sd */
5180 unsigned long total_load; /* Total load of all groups in sd */
5181 unsigned long total_pwr; /* Total power of all groups in sd */
5182 unsigned long avg_load; /* Average load across all groups in sd */
5183
56cf515b 5184 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5185 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5186};
5187
147c5fc2
PZ
5188static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5189{
5190 /*
5191 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5192 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5193 * We must however clear busiest_stat::avg_load because
5194 * update_sd_pick_busiest() reads this before assignment.
5195 */
5196 *sds = (struct sd_lb_stats){
5197 .busiest = NULL,
5198 .local = NULL,
5199 .total_load = 0UL,
5200 .total_pwr = 0UL,
5201 .busiest_stat = {
5202 .avg_load = 0UL,
5203 },
5204 };
5205}
5206
1e3c88bd
PZ
5207/**
5208 * get_sd_load_idx - Obtain the load index for a given sched domain.
5209 * @sd: The sched_domain whose load_idx is to be obtained.
5210 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5211 *
5212 * Return: The load index.
1e3c88bd
PZ
5213 */
5214static inline int get_sd_load_idx(struct sched_domain *sd,
5215 enum cpu_idle_type idle)
5216{
5217 int load_idx;
5218
5219 switch (idle) {
5220 case CPU_NOT_IDLE:
5221 load_idx = sd->busy_idx;
5222 break;
5223
5224 case CPU_NEWLY_IDLE:
5225 load_idx = sd->newidle_idx;
5226 break;
5227 default:
5228 load_idx = sd->idle_idx;
5229 break;
5230 }
5231
5232 return load_idx;
5233}
5234
15f803c9 5235static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5236{
1399fa78 5237 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5238}
5239
5240unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5241{
5242 return default_scale_freq_power(sd, cpu);
5243}
5244
15f803c9 5245static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5246{
669c55e9 5247 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5248 unsigned long smt_gain = sd->smt_gain;
5249
5250 smt_gain /= weight;
5251
5252 return smt_gain;
5253}
5254
5255unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5256{
5257 return default_scale_smt_power(sd, cpu);
5258}
5259
15f803c9 5260static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5261{
5262 struct rq *rq = cpu_rq(cpu);
b654f7de 5263 u64 total, available, age_stamp, avg;
1e3c88bd 5264
b654f7de
PZ
5265 /*
5266 * Since we're reading these variables without serialization make sure
5267 * we read them once before doing sanity checks on them.
5268 */
5269 age_stamp = ACCESS_ONCE(rq->age_stamp);
5270 avg = ACCESS_ONCE(rq->rt_avg);
5271
78becc27 5272 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5273
b654f7de 5274 if (unlikely(total < avg)) {
aa483808
VP
5275 /* Ensures that power won't end up being negative */
5276 available = 0;
5277 } else {
b654f7de 5278 available = total - avg;
aa483808 5279 }
1e3c88bd 5280
1399fa78
NR
5281 if (unlikely((s64)total < SCHED_POWER_SCALE))
5282 total = SCHED_POWER_SCALE;
1e3c88bd 5283
1399fa78 5284 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5285
5286 return div_u64(available, total);
5287}
5288
5289static void update_cpu_power(struct sched_domain *sd, int cpu)
5290{
669c55e9 5291 unsigned long weight = sd->span_weight;
1399fa78 5292 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5293 struct sched_group *sdg = sd->groups;
5294
1e3c88bd
PZ
5295 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5296 if (sched_feat(ARCH_POWER))
5297 power *= arch_scale_smt_power(sd, cpu);
5298 else
5299 power *= default_scale_smt_power(sd, cpu);
5300
1399fa78 5301 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5302 }
5303
9c3f75cb 5304 sdg->sgp->power_orig = power;
9d5efe05
SV
5305
5306 if (sched_feat(ARCH_POWER))
5307 power *= arch_scale_freq_power(sd, cpu);
5308 else
5309 power *= default_scale_freq_power(sd, cpu);
5310
1399fa78 5311 power >>= SCHED_POWER_SHIFT;
9d5efe05 5312
1e3c88bd 5313 power *= scale_rt_power(cpu);
1399fa78 5314 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5315
5316 if (!power)
5317 power = 1;
5318
e51fd5e2 5319 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5320 sdg->sgp->power = power;
1e3c88bd
PZ
5321}
5322
029632fb 5323void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5324{
5325 struct sched_domain *child = sd->child;
5326 struct sched_group *group, *sdg = sd->groups;
863bffc8 5327 unsigned long power, power_orig;
4ec4412e
VG
5328 unsigned long interval;
5329
5330 interval = msecs_to_jiffies(sd->balance_interval);
5331 interval = clamp(interval, 1UL, max_load_balance_interval);
5332 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5333
5334 if (!child) {
5335 update_cpu_power(sd, cpu);
5336 return;
5337 }
5338
863bffc8 5339 power_orig = power = 0;
1e3c88bd 5340
74a5ce20
PZ
5341 if (child->flags & SD_OVERLAP) {
5342 /*
5343 * SD_OVERLAP domains cannot assume that child groups
5344 * span the current group.
5345 */
5346
863bffc8
PZ
5347 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5348 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5349
5350 power_orig += sg->sgp->power_orig;
5351 power += sg->sgp->power;
5352 }
74a5ce20
PZ
5353 } else {
5354 /*
5355 * !SD_OVERLAP domains can assume that child groups
5356 * span the current group.
5357 */
5358
5359 group = child->groups;
5360 do {
863bffc8 5361 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5362 power += group->sgp->power;
5363 group = group->next;
5364 } while (group != child->groups);
5365 }
1e3c88bd 5366
863bffc8
PZ
5367 sdg->sgp->power_orig = power_orig;
5368 sdg->sgp->power = power;
1e3c88bd
PZ
5369}
5370
9d5efe05
SV
5371/*
5372 * Try and fix up capacity for tiny siblings, this is needed when
5373 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5374 * which on its own isn't powerful enough.
5375 *
5376 * See update_sd_pick_busiest() and check_asym_packing().
5377 */
5378static inline int
5379fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5380{
5381 /*
1399fa78 5382 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5383 */
a6c75f2f 5384 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5385 return 0;
5386
5387 /*
5388 * If ~90% of the cpu_power is still there, we're good.
5389 */
9c3f75cb 5390 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5391 return 1;
5392
5393 return 0;
5394}
5395
30ce5dab
PZ
5396/*
5397 * Group imbalance indicates (and tries to solve) the problem where balancing
5398 * groups is inadequate due to tsk_cpus_allowed() constraints.
5399 *
5400 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5401 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5402 * Something like:
5403 *
5404 * { 0 1 2 3 } { 4 5 6 7 }
5405 * * * * *
5406 *
5407 * If we were to balance group-wise we'd place two tasks in the first group and
5408 * two tasks in the second group. Clearly this is undesired as it will overload
5409 * cpu 3 and leave one of the cpus in the second group unused.
5410 *
5411 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5412 * by noticing the lower domain failed to reach balance and had difficulty
5413 * moving tasks due to affinity constraints.
30ce5dab
PZ
5414 *
5415 * When this is so detected; this group becomes a candidate for busiest; see
5416 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5417 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5418 * to create an effective group imbalance.
5419 *
5420 * This is a somewhat tricky proposition since the next run might not find the
5421 * group imbalance and decide the groups need to be balanced again. A most
5422 * subtle and fragile situation.
5423 */
5424
6263322c 5425static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5426{
6263322c 5427 return group->sgp->imbalance;
30ce5dab
PZ
5428}
5429
b37d9316
PZ
5430/*
5431 * Compute the group capacity.
5432 *
c61037e9
PZ
5433 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5434 * first dividing out the smt factor and computing the actual number of cores
5435 * and limit power unit capacity with that.
b37d9316
PZ
5436 */
5437static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5438{
c61037e9
PZ
5439 unsigned int capacity, smt, cpus;
5440 unsigned int power, power_orig;
5441
5442 power = group->sgp->power;
5443 power_orig = group->sgp->power_orig;
5444 cpus = group->group_weight;
b37d9316 5445
c61037e9
PZ
5446 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5447 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5448 capacity = cpus / smt; /* cores */
b37d9316 5449
c61037e9 5450 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5451 if (!capacity)
5452 capacity = fix_small_capacity(env->sd, group);
5453
5454 return capacity;
5455}
5456
1e3c88bd
PZ
5457/**
5458 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5459 * @env: The load balancing environment.
1e3c88bd 5460 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5461 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5462 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5463 * @sgs: variable to hold the statistics for this group.
5464 */
bd939f45
PZ
5465static inline void update_sg_lb_stats(struct lb_env *env,
5466 struct sched_group *group, int load_idx,
23f0d209 5467 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5468{
30ce5dab
PZ
5469 unsigned long nr_running;
5470 unsigned long load;
bd939f45 5471 int i;
1e3c88bd 5472
b72ff13c
PZ
5473 memset(sgs, 0, sizeof(*sgs));
5474
b9403130 5475 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5476 struct rq *rq = cpu_rq(i);
5477
e44bc5c5
PZ
5478 nr_running = rq->nr_running;
5479
1e3c88bd 5480 /* Bias balancing toward cpus of our domain */
6263322c 5481 if (local_group)
04f733b4 5482 load = target_load(i, load_idx);
6263322c 5483 else
1e3c88bd 5484 load = source_load(i, load_idx);
1e3c88bd
PZ
5485
5486 sgs->group_load += load;
e44bc5c5 5487 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5488#ifdef CONFIG_NUMA_BALANCING
5489 sgs->nr_numa_running += rq->nr_numa_running;
5490 sgs->nr_preferred_running += rq->nr_preferred_running;
5491#endif
1e3c88bd 5492 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5493 if (idle_cpu(i))
5494 sgs->idle_cpus++;
1e3c88bd
PZ
5495 }
5496
1e3c88bd 5497 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5498 sgs->group_power = group->sgp->power;
5499 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5500
dd5feea1 5501 if (sgs->sum_nr_running)
38d0f770 5502 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5503
aae6d3dd 5504 sgs->group_weight = group->group_weight;
fab47622 5505
b37d9316
PZ
5506 sgs->group_imb = sg_imbalanced(group);
5507 sgs->group_capacity = sg_capacity(env, group);
5508
fab47622
NR
5509 if (sgs->group_capacity > sgs->sum_nr_running)
5510 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5511}
5512
532cb4c4
MN
5513/**
5514 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5515 * @env: The load balancing environment.
532cb4c4
MN
5516 * @sds: sched_domain statistics
5517 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5518 * @sgs: sched_group statistics
532cb4c4
MN
5519 *
5520 * Determine if @sg is a busier group than the previously selected
5521 * busiest group.
e69f6186
YB
5522 *
5523 * Return: %true if @sg is a busier group than the previously selected
5524 * busiest group. %false otherwise.
532cb4c4 5525 */
bd939f45 5526static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5527 struct sd_lb_stats *sds,
5528 struct sched_group *sg,
bd939f45 5529 struct sg_lb_stats *sgs)
532cb4c4 5530{
56cf515b 5531 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5532 return false;
5533
5534 if (sgs->sum_nr_running > sgs->group_capacity)
5535 return true;
5536
5537 if (sgs->group_imb)
5538 return true;
5539
5540 /*
5541 * ASYM_PACKING needs to move all the work to the lowest
5542 * numbered CPUs in the group, therefore mark all groups
5543 * higher than ourself as busy.
5544 */
bd939f45
PZ
5545 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5546 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5547 if (!sds->busiest)
5548 return true;
5549
5550 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5551 return true;
5552 }
5553
5554 return false;
5555}
5556
0ec8aa00
PZ
5557#ifdef CONFIG_NUMA_BALANCING
5558static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5559{
5560 if (sgs->sum_nr_running > sgs->nr_numa_running)
5561 return regular;
5562 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5563 return remote;
5564 return all;
5565}
5566
5567static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5568{
5569 if (rq->nr_running > rq->nr_numa_running)
5570 return regular;
5571 if (rq->nr_running > rq->nr_preferred_running)
5572 return remote;
5573 return all;
5574}
5575#else
5576static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5577{
5578 return all;
5579}
5580
5581static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5582{
5583 return regular;
5584}
5585#endif /* CONFIG_NUMA_BALANCING */
5586
1e3c88bd 5587/**
461819ac 5588 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5589 * @env: The load balancing environment.
1e3c88bd
PZ
5590 * @balance: Should we balance.
5591 * @sds: variable to hold the statistics for this sched_domain.
5592 */
0ec8aa00 5593static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5594{
bd939f45
PZ
5595 struct sched_domain *child = env->sd->child;
5596 struct sched_group *sg = env->sd->groups;
56cf515b 5597 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5598 int load_idx, prefer_sibling = 0;
5599
5600 if (child && child->flags & SD_PREFER_SIBLING)
5601 prefer_sibling = 1;
5602
bd939f45 5603 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5604
5605 do {
56cf515b 5606 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5607 int local_group;
5608
bd939f45 5609 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5610 if (local_group) {
5611 sds->local = sg;
5612 sgs = &sds->local_stat;
b72ff13c
PZ
5613
5614 if (env->idle != CPU_NEWLY_IDLE ||
5615 time_after_eq(jiffies, sg->sgp->next_update))
5616 update_group_power(env->sd, env->dst_cpu);
56cf515b 5617 }
1e3c88bd 5618
56cf515b 5619 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5620
b72ff13c
PZ
5621 if (local_group)
5622 goto next_group;
5623
1e3c88bd
PZ
5624 /*
5625 * In case the child domain prefers tasks go to siblings
532cb4c4 5626 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5627 * and move all the excess tasks away. We lower the capacity
5628 * of a group only if the local group has the capacity to fit
5629 * these excess tasks, i.e. nr_running < group_capacity. The
5630 * extra check prevents the case where you always pull from the
5631 * heaviest group when it is already under-utilized (possible
5632 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5633 */
b72ff13c
PZ
5634 if (prefer_sibling && sds->local &&
5635 sds->local_stat.group_has_capacity)
147c5fc2 5636 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5637
b72ff13c 5638 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5639 sds->busiest = sg;
56cf515b 5640 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5641 }
5642
b72ff13c
PZ
5643next_group:
5644 /* Now, start updating sd_lb_stats */
5645 sds->total_load += sgs->group_load;
5646 sds->total_pwr += sgs->group_power;
5647
532cb4c4 5648 sg = sg->next;
bd939f45 5649 } while (sg != env->sd->groups);
0ec8aa00
PZ
5650
5651 if (env->sd->flags & SD_NUMA)
5652 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5653}
5654
532cb4c4
MN
5655/**
5656 * check_asym_packing - Check to see if the group is packed into the
5657 * sched doman.
5658 *
5659 * This is primarily intended to used at the sibling level. Some
5660 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5661 * case of POWER7, it can move to lower SMT modes only when higher
5662 * threads are idle. When in lower SMT modes, the threads will
5663 * perform better since they share less core resources. Hence when we
5664 * have idle threads, we want them to be the higher ones.
5665 *
5666 * This packing function is run on idle threads. It checks to see if
5667 * the busiest CPU in this domain (core in the P7 case) has a higher
5668 * CPU number than the packing function is being run on. Here we are
5669 * assuming lower CPU number will be equivalent to lower a SMT thread
5670 * number.
5671 *
e69f6186 5672 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5673 * this CPU. The amount of the imbalance is returned in *imbalance.
5674 *
cd96891d 5675 * @env: The load balancing environment.
532cb4c4 5676 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5677 */
bd939f45 5678static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5679{
5680 int busiest_cpu;
5681
bd939f45 5682 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5683 return 0;
5684
5685 if (!sds->busiest)
5686 return 0;
5687
5688 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5689 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5690 return 0;
5691
bd939f45 5692 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5693 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5694 SCHED_POWER_SCALE);
bd939f45 5695
532cb4c4 5696 return 1;
1e3c88bd
PZ
5697}
5698
5699/**
5700 * fix_small_imbalance - Calculate the minor imbalance that exists
5701 * amongst the groups of a sched_domain, during
5702 * load balancing.
cd96891d 5703 * @env: The load balancing environment.
1e3c88bd 5704 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5705 */
bd939f45
PZ
5706static inline
5707void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5708{
5709 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5710 unsigned int imbn = 2;
dd5feea1 5711 unsigned long scaled_busy_load_per_task;
56cf515b 5712 struct sg_lb_stats *local, *busiest;
1e3c88bd 5713
56cf515b
JK
5714 local = &sds->local_stat;
5715 busiest = &sds->busiest_stat;
1e3c88bd 5716
56cf515b
JK
5717 if (!local->sum_nr_running)
5718 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5719 else if (busiest->load_per_task > local->load_per_task)
5720 imbn = 1;
dd5feea1 5721
56cf515b
JK
5722 scaled_busy_load_per_task =
5723 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5724 busiest->group_power;
56cf515b 5725
3029ede3
VD
5726 if (busiest->avg_load + scaled_busy_load_per_task >=
5727 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5728 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5729 return;
5730 }
5731
5732 /*
5733 * OK, we don't have enough imbalance to justify moving tasks,
5734 * however we may be able to increase total CPU power used by
5735 * moving them.
5736 */
5737
3ae11c90 5738 pwr_now += busiest->group_power *
56cf515b 5739 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5740 pwr_now += local->group_power *
56cf515b 5741 min(local->load_per_task, local->avg_load);
1399fa78 5742 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5743
5744 /* Amount of load we'd subtract */
56cf515b 5745 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5746 busiest->group_power;
56cf515b 5747 if (busiest->avg_load > tmp) {
3ae11c90 5748 pwr_move += busiest->group_power *
56cf515b
JK
5749 min(busiest->load_per_task,
5750 busiest->avg_load - tmp);
5751 }
1e3c88bd
PZ
5752
5753 /* Amount of load we'd add */
3ae11c90 5754 if (busiest->avg_load * busiest->group_power <
56cf515b 5755 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5756 tmp = (busiest->avg_load * busiest->group_power) /
5757 local->group_power;
56cf515b
JK
5758 } else {
5759 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5760 local->group_power;
56cf515b 5761 }
3ae11c90
PZ
5762 pwr_move += local->group_power *
5763 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5764 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5765
5766 /* Move if we gain throughput */
5767 if (pwr_move > pwr_now)
56cf515b 5768 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5769}
5770
5771/**
5772 * calculate_imbalance - Calculate the amount of imbalance present within the
5773 * groups of a given sched_domain during load balance.
bd939f45 5774 * @env: load balance environment
1e3c88bd 5775 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5776 */
bd939f45 5777static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5778{
dd5feea1 5779 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5780 struct sg_lb_stats *local, *busiest;
5781
5782 local = &sds->local_stat;
56cf515b 5783 busiest = &sds->busiest_stat;
dd5feea1 5784
56cf515b 5785 if (busiest->group_imb) {
30ce5dab
PZ
5786 /*
5787 * In the group_imb case we cannot rely on group-wide averages
5788 * to ensure cpu-load equilibrium, look at wider averages. XXX
5789 */
56cf515b
JK
5790 busiest->load_per_task =
5791 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5792 }
5793
1e3c88bd
PZ
5794 /*
5795 * In the presence of smp nice balancing, certain scenarios can have
5796 * max load less than avg load(as we skip the groups at or below
5797 * its cpu_power, while calculating max_load..)
5798 */
b1885550
VD
5799 if (busiest->avg_load <= sds->avg_load ||
5800 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5801 env->imbalance = 0;
5802 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5803 }
5804
56cf515b 5805 if (!busiest->group_imb) {
dd5feea1
SS
5806 /*
5807 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5808 * Except of course for the group_imb case, since then we might
5809 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5810 */
56cf515b
JK
5811 load_above_capacity =
5812 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5813
1399fa78 5814 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5815 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5816 }
5817
5818 /*
5819 * We're trying to get all the cpus to the average_load, so we don't
5820 * want to push ourselves above the average load, nor do we wish to
5821 * reduce the max loaded cpu below the average load. At the same time,
5822 * we also don't want to reduce the group load below the group capacity
5823 * (so that we can implement power-savings policies etc). Thus we look
5824 * for the minimum possible imbalance.
dd5feea1 5825 */
30ce5dab 5826 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5827
5828 /* How much load to actually move to equalise the imbalance */
56cf515b 5829 env->imbalance = min(
3ae11c90
PZ
5830 max_pull * busiest->group_power,
5831 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5832 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5833
5834 /*
5835 * if *imbalance is less than the average load per runnable task
25985edc 5836 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5837 * a think about bumping its value to force at least one task to be
5838 * moved
5839 */
56cf515b 5840 if (env->imbalance < busiest->load_per_task)
bd939f45 5841 return fix_small_imbalance(env, sds);
1e3c88bd 5842}
fab47622 5843
1e3c88bd
PZ
5844/******* find_busiest_group() helpers end here *********************/
5845
5846/**
5847 * find_busiest_group - Returns the busiest group within the sched_domain
5848 * if there is an imbalance. If there isn't an imbalance, and
5849 * the user has opted for power-savings, it returns a group whose
5850 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5851 * such a group exists.
5852 *
5853 * Also calculates the amount of weighted load which should be moved
5854 * to restore balance.
5855 *
cd96891d 5856 * @env: The load balancing environment.
1e3c88bd 5857 *
e69f6186 5858 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5859 * - If no imbalance and user has opted for power-savings balance,
5860 * return the least loaded group whose CPUs can be
5861 * put to idle by rebalancing its tasks onto our group.
5862 */
56cf515b 5863static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5864{
56cf515b 5865 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5866 struct sd_lb_stats sds;
5867
147c5fc2 5868 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5869
5870 /*
5871 * Compute the various statistics relavent for load balancing at
5872 * this level.
5873 */
23f0d209 5874 update_sd_lb_stats(env, &sds);
56cf515b
JK
5875 local = &sds.local_stat;
5876 busiest = &sds.busiest_stat;
1e3c88bd 5877
bd939f45
PZ
5878 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5879 check_asym_packing(env, &sds))
532cb4c4
MN
5880 return sds.busiest;
5881
cc57aa8f 5882 /* There is no busy sibling group to pull tasks from */
56cf515b 5883 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5884 goto out_balanced;
5885
1399fa78 5886 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5887
866ab43e
PZ
5888 /*
5889 * If the busiest group is imbalanced the below checks don't
30ce5dab 5890 * work because they assume all things are equal, which typically
866ab43e
PZ
5891 * isn't true due to cpus_allowed constraints and the like.
5892 */
56cf515b 5893 if (busiest->group_imb)
866ab43e
PZ
5894 goto force_balance;
5895
cc57aa8f 5896 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5897 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5898 !busiest->group_has_capacity)
fab47622
NR
5899 goto force_balance;
5900
cc57aa8f
PZ
5901 /*
5902 * If the local group is more busy than the selected busiest group
5903 * don't try and pull any tasks.
5904 */
56cf515b 5905 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5906 goto out_balanced;
5907
cc57aa8f
PZ
5908 /*
5909 * Don't pull any tasks if this group is already above the domain
5910 * average load.
5911 */
56cf515b 5912 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5913 goto out_balanced;
5914
bd939f45 5915 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5916 /*
5917 * This cpu is idle. If the busiest group load doesn't
5918 * have more tasks than the number of available cpu's and
5919 * there is no imbalance between this and busiest group
5920 * wrt to idle cpu's, it is balanced.
5921 */
56cf515b
JK
5922 if ((local->idle_cpus < busiest->idle_cpus) &&
5923 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5924 goto out_balanced;
c186fafe
PZ
5925 } else {
5926 /*
5927 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5928 * imbalance_pct to be conservative.
5929 */
56cf515b
JK
5930 if (100 * busiest->avg_load <=
5931 env->sd->imbalance_pct * local->avg_load)
c186fafe 5932 goto out_balanced;
aae6d3dd 5933 }
1e3c88bd 5934
fab47622 5935force_balance:
1e3c88bd 5936 /* Looks like there is an imbalance. Compute it */
bd939f45 5937 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5938 return sds.busiest;
5939
5940out_balanced:
bd939f45 5941 env->imbalance = 0;
1e3c88bd
PZ
5942 return NULL;
5943}
5944
5945/*
5946 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5947 */
bd939f45 5948static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5949 struct sched_group *group)
1e3c88bd
PZ
5950{
5951 struct rq *busiest = NULL, *rq;
95a79b80 5952 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5953 int i;
5954
6906a408 5955 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5956 unsigned long power, capacity, wl;
5957 enum fbq_type rt;
5958
5959 rq = cpu_rq(i);
5960 rt = fbq_classify_rq(rq);
1e3c88bd 5961
0ec8aa00
PZ
5962 /*
5963 * We classify groups/runqueues into three groups:
5964 * - regular: there are !numa tasks
5965 * - remote: there are numa tasks that run on the 'wrong' node
5966 * - all: there is no distinction
5967 *
5968 * In order to avoid migrating ideally placed numa tasks,
5969 * ignore those when there's better options.
5970 *
5971 * If we ignore the actual busiest queue to migrate another
5972 * task, the next balance pass can still reduce the busiest
5973 * queue by moving tasks around inside the node.
5974 *
5975 * If we cannot move enough load due to this classification
5976 * the next pass will adjust the group classification and
5977 * allow migration of more tasks.
5978 *
5979 * Both cases only affect the total convergence complexity.
5980 */
5981 if (rt > env->fbq_type)
5982 continue;
5983
5984 power = power_of(i);
5985 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5986 if (!capacity)
bd939f45 5987 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5988
6e40f5bb 5989 wl = weighted_cpuload(i);
1e3c88bd 5990
6e40f5bb
TG
5991 /*
5992 * When comparing with imbalance, use weighted_cpuload()
5993 * which is not scaled with the cpu power.
5994 */
bd939f45 5995 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5996 continue;
5997
6e40f5bb
TG
5998 /*
5999 * For the load comparisons with the other cpu's, consider
6000 * the weighted_cpuload() scaled with the cpu power, so that
6001 * the load can be moved away from the cpu that is potentially
6002 * running at a lower capacity.
95a79b80
JK
6003 *
6004 * Thus we're looking for max(wl_i / power_i), crosswise
6005 * multiplication to rid ourselves of the division works out
6006 * to: wl_i * power_j > wl_j * power_i; where j is our
6007 * previous maximum.
6e40f5bb 6008 */
95a79b80
JK
6009 if (wl * busiest_power > busiest_load * power) {
6010 busiest_load = wl;
6011 busiest_power = power;
1e3c88bd
PZ
6012 busiest = rq;
6013 }
6014 }
6015
6016 return busiest;
6017}
6018
6019/*
6020 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6021 * so long as it is large enough.
6022 */
6023#define MAX_PINNED_INTERVAL 512
6024
6025/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6026DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6027
bd939f45 6028static int need_active_balance(struct lb_env *env)
1af3ed3d 6029{
bd939f45
PZ
6030 struct sched_domain *sd = env->sd;
6031
6032 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6033
6034 /*
6035 * ASYM_PACKING needs to force migrate tasks from busy but
6036 * higher numbered CPUs in order to pack all tasks in the
6037 * lowest numbered CPUs.
6038 */
bd939f45 6039 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6040 return 1;
1af3ed3d
PZ
6041 }
6042
6043 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6044}
6045
969c7921
TH
6046static int active_load_balance_cpu_stop(void *data);
6047
23f0d209
JK
6048static int should_we_balance(struct lb_env *env)
6049{
6050 struct sched_group *sg = env->sd->groups;
6051 struct cpumask *sg_cpus, *sg_mask;
6052 int cpu, balance_cpu = -1;
6053
6054 /*
6055 * In the newly idle case, we will allow all the cpu's
6056 * to do the newly idle load balance.
6057 */
6058 if (env->idle == CPU_NEWLY_IDLE)
6059 return 1;
6060
6061 sg_cpus = sched_group_cpus(sg);
6062 sg_mask = sched_group_mask(sg);
6063 /* Try to find first idle cpu */
6064 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6065 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6066 continue;
6067
6068 balance_cpu = cpu;
6069 break;
6070 }
6071
6072 if (balance_cpu == -1)
6073 balance_cpu = group_balance_cpu(sg);
6074
6075 /*
6076 * First idle cpu or the first cpu(busiest) in this sched group
6077 * is eligible for doing load balancing at this and above domains.
6078 */
b0cff9d8 6079 return balance_cpu == env->dst_cpu;
23f0d209
JK
6080}
6081
1e3c88bd
PZ
6082/*
6083 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6084 * tasks if there is an imbalance.
6085 */
6086static int load_balance(int this_cpu, struct rq *this_rq,
6087 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6088 int *continue_balancing)
1e3c88bd 6089{
88b8dac0 6090 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6091 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6092 struct sched_group *group;
1e3c88bd
PZ
6093 struct rq *busiest;
6094 unsigned long flags;
e6252c3e 6095 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6096
8e45cb54
PZ
6097 struct lb_env env = {
6098 .sd = sd,
ddcdf6e7
PZ
6099 .dst_cpu = this_cpu,
6100 .dst_rq = this_rq,
88b8dac0 6101 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6102 .idle = idle,
eb95308e 6103 .loop_break = sched_nr_migrate_break,
b9403130 6104 .cpus = cpus,
0ec8aa00 6105 .fbq_type = all,
8e45cb54
PZ
6106 };
6107
cfc03118
JK
6108 /*
6109 * For NEWLY_IDLE load_balancing, we don't need to consider
6110 * other cpus in our group
6111 */
e02e60c1 6112 if (idle == CPU_NEWLY_IDLE)
cfc03118 6113 env.dst_grpmask = NULL;
cfc03118 6114
1e3c88bd
PZ
6115 cpumask_copy(cpus, cpu_active_mask);
6116
1e3c88bd
PZ
6117 schedstat_inc(sd, lb_count[idle]);
6118
6119redo:
23f0d209
JK
6120 if (!should_we_balance(&env)) {
6121 *continue_balancing = 0;
1e3c88bd 6122 goto out_balanced;
23f0d209 6123 }
1e3c88bd 6124
23f0d209 6125 group = find_busiest_group(&env);
1e3c88bd
PZ
6126 if (!group) {
6127 schedstat_inc(sd, lb_nobusyg[idle]);
6128 goto out_balanced;
6129 }
6130
b9403130 6131 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6132 if (!busiest) {
6133 schedstat_inc(sd, lb_nobusyq[idle]);
6134 goto out_balanced;
6135 }
6136
78feefc5 6137 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6138
bd939f45 6139 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6140
6141 ld_moved = 0;
6142 if (busiest->nr_running > 1) {
6143 /*
6144 * Attempt to move tasks. If find_busiest_group has found
6145 * an imbalance but busiest->nr_running <= 1, the group is
6146 * still unbalanced. ld_moved simply stays zero, so it is
6147 * correctly treated as an imbalance.
6148 */
8e45cb54 6149 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6150 env.src_cpu = busiest->cpu;
6151 env.src_rq = busiest;
6152 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6153
5d6523eb 6154more_balance:
1e3c88bd 6155 local_irq_save(flags);
78feefc5 6156 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6157
6158 /*
6159 * cur_ld_moved - load moved in current iteration
6160 * ld_moved - cumulative load moved across iterations
6161 */
6162 cur_ld_moved = move_tasks(&env);
6163 ld_moved += cur_ld_moved;
78feefc5 6164 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6165 local_irq_restore(flags);
6166
6167 /*
6168 * some other cpu did the load balance for us.
6169 */
88b8dac0
SV
6170 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6171 resched_cpu(env.dst_cpu);
6172
f1cd0858
JK
6173 if (env.flags & LBF_NEED_BREAK) {
6174 env.flags &= ~LBF_NEED_BREAK;
6175 goto more_balance;
6176 }
6177
88b8dac0
SV
6178 /*
6179 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6180 * us and move them to an alternate dst_cpu in our sched_group
6181 * where they can run. The upper limit on how many times we
6182 * iterate on same src_cpu is dependent on number of cpus in our
6183 * sched_group.
6184 *
6185 * This changes load balance semantics a bit on who can move
6186 * load to a given_cpu. In addition to the given_cpu itself
6187 * (or a ilb_cpu acting on its behalf where given_cpu is
6188 * nohz-idle), we now have balance_cpu in a position to move
6189 * load to given_cpu. In rare situations, this may cause
6190 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6191 * _independently_ and at _same_ time to move some load to
6192 * given_cpu) causing exceess load to be moved to given_cpu.
6193 * This however should not happen so much in practice and
6194 * moreover subsequent load balance cycles should correct the
6195 * excess load moved.
6196 */
6263322c 6197 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6198
7aff2e3a
VD
6199 /* Prevent to re-select dst_cpu via env's cpus */
6200 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6201
78feefc5 6202 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6203 env.dst_cpu = env.new_dst_cpu;
6263322c 6204 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6205 env.loop = 0;
6206 env.loop_break = sched_nr_migrate_break;
e02e60c1 6207
88b8dac0
SV
6208 /*
6209 * Go back to "more_balance" rather than "redo" since we
6210 * need to continue with same src_cpu.
6211 */
6212 goto more_balance;
6213 }
1e3c88bd 6214
6263322c
PZ
6215 /*
6216 * We failed to reach balance because of affinity.
6217 */
6218 if (sd_parent) {
6219 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6220
6221 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6222 *group_imbalance = 1;
6223 } else if (*group_imbalance)
6224 *group_imbalance = 0;
6225 }
6226
1e3c88bd 6227 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6228 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6229 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6230 if (!cpumask_empty(cpus)) {
6231 env.loop = 0;
6232 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6233 goto redo;
bbf18b19 6234 }
1e3c88bd
PZ
6235 goto out_balanced;
6236 }
6237 }
6238
6239 if (!ld_moved) {
6240 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6241 /*
6242 * Increment the failure counter only on periodic balance.
6243 * We do not want newidle balance, which can be very
6244 * frequent, pollute the failure counter causing
6245 * excessive cache_hot migrations and active balances.
6246 */
6247 if (idle != CPU_NEWLY_IDLE)
6248 sd->nr_balance_failed++;
1e3c88bd 6249
bd939f45 6250 if (need_active_balance(&env)) {
1e3c88bd
PZ
6251 raw_spin_lock_irqsave(&busiest->lock, flags);
6252
969c7921
TH
6253 /* don't kick the active_load_balance_cpu_stop,
6254 * if the curr task on busiest cpu can't be
6255 * moved to this_cpu
1e3c88bd
PZ
6256 */
6257 if (!cpumask_test_cpu(this_cpu,
fa17b507 6258 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6259 raw_spin_unlock_irqrestore(&busiest->lock,
6260 flags);
8e45cb54 6261 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6262 goto out_one_pinned;
6263 }
6264
969c7921
TH
6265 /*
6266 * ->active_balance synchronizes accesses to
6267 * ->active_balance_work. Once set, it's cleared
6268 * only after active load balance is finished.
6269 */
1e3c88bd
PZ
6270 if (!busiest->active_balance) {
6271 busiest->active_balance = 1;
6272 busiest->push_cpu = this_cpu;
6273 active_balance = 1;
6274 }
6275 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6276
bd939f45 6277 if (active_balance) {
969c7921
TH
6278 stop_one_cpu_nowait(cpu_of(busiest),
6279 active_load_balance_cpu_stop, busiest,
6280 &busiest->active_balance_work);
bd939f45 6281 }
1e3c88bd
PZ
6282
6283 /*
6284 * We've kicked active balancing, reset the failure
6285 * counter.
6286 */
6287 sd->nr_balance_failed = sd->cache_nice_tries+1;
6288 }
6289 } else
6290 sd->nr_balance_failed = 0;
6291
6292 if (likely(!active_balance)) {
6293 /* We were unbalanced, so reset the balancing interval */
6294 sd->balance_interval = sd->min_interval;
6295 } else {
6296 /*
6297 * If we've begun active balancing, start to back off. This
6298 * case may not be covered by the all_pinned logic if there
6299 * is only 1 task on the busy runqueue (because we don't call
6300 * move_tasks).
6301 */
6302 if (sd->balance_interval < sd->max_interval)
6303 sd->balance_interval *= 2;
6304 }
6305
1e3c88bd
PZ
6306 goto out;
6307
6308out_balanced:
6309 schedstat_inc(sd, lb_balanced[idle]);
6310
6311 sd->nr_balance_failed = 0;
6312
6313out_one_pinned:
6314 /* tune up the balancing interval */
8e45cb54 6315 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6316 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6317 (sd->balance_interval < sd->max_interval))
6318 sd->balance_interval *= 2;
6319
46e49b38 6320 ld_moved = 0;
1e3c88bd 6321out:
1e3c88bd
PZ
6322 return ld_moved;
6323}
6324
1e3c88bd
PZ
6325/*
6326 * idle_balance is called by schedule() if this_cpu is about to become
6327 * idle. Attempts to pull tasks from other CPUs.
6328 */
029632fb 6329void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6330{
6331 struct sched_domain *sd;
6332 int pulled_task = 0;
6333 unsigned long next_balance = jiffies + HZ;
9bd721c5 6334 u64 curr_cost = 0;
1e3c88bd 6335
78becc27 6336 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6337
6338 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6339 return;
6340
f492e12e
PZ
6341 /*
6342 * Drop the rq->lock, but keep IRQ/preempt disabled.
6343 */
6344 raw_spin_unlock(&this_rq->lock);
6345
48a16753 6346 update_blocked_averages(this_cpu);
dce840a0 6347 rcu_read_lock();
1e3c88bd
PZ
6348 for_each_domain(this_cpu, sd) {
6349 unsigned long interval;
23f0d209 6350 int continue_balancing = 1;
9bd721c5 6351 u64 t0, domain_cost;
1e3c88bd
PZ
6352
6353 if (!(sd->flags & SD_LOAD_BALANCE))
6354 continue;
6355
9bd721c5
JL
6356 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6357 break;
6358
f492e12e 6359 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6360 t0 = sched_clock_cpu(this_cpu);
6361
1e3c88bd 6362 /* If we've pulled tasks over stop searching: */
f492e12e 6363 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6364 sd, CPU_NEWLY_IDLE,
6365 &continue_balancing);
9bd721c5
JL
6366
6367 domain_cost = sched_clock_cpu(this_cpu) - t0;
6368 if (domain_cost > sd->max_newidle_lb_cost)
6369 sd->max_newidle_lb_cost = domain_cost;
6370
6371 curr_cost += domain_cost;
f492e12e 6372 }
1e3c88bd
PZ
6373
6374 interval = msecs_to_jiffies(sd->balance_interval);
6375 if (time_after(next_balance, sd->last_balance + interval))
6376 next_balance = sd->last_balance + interval;
d5ad140b
NR
6377 if (pulled_task) {
6378 this_rq->idle_stamp = 0;
1e3c88bd 6379 break;
d5ad140b 6380 }
1e3c88bd 6381 }
dce840a0 6382 rcu_read_unlock();
f492e12e
PZ
6383
6384 raw_spin_lock(&this_rq->lock);
6385
1e3c88bd
PZ
6386 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6387 /*
6388 * We are going idle. next_balance may be set based on
6389 * a busy processor. So reset next_balance.
6390 */
6391 this_rq->next_balance = next_balance;
6392 }
9bd721c5
JL
6393
6394 if (curr_cost > this_rq->max_idle_balance_cost)
6395 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6396}
6397
6398/*
969c7921
TH
6399 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6400 * running tasks off the busiest CPU onto idle CPUs. It requires at
6401 * least 1 task to be running on each physical CPU where possible, and
6402 * avoids physical / logical imbalances.
1e3c88bd 6403 */
969c7921 6404static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6405{
969c7921
TH
6406 struct rq *busiest_rq = data;
6407 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6408 int target_cpu = busiest_rq->push_cpu;
969c7921 6409 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6410 struct sched_domain *sd;
969c7921
TH
6411
6412 raw_spin_lock_irq(&busiest_rq->lock);
6413
6414 /* make sure the requested cpu hasn't gone down in the meantime */
6415 if (unlikely(busiest_cpu != smp_processor_id() ||
6416 !busiest_rq->active_balance))
6417 goto out_unlock;
1e3c88bd
PZ
6418
6419 /* Is there any task to move? */
6420 if (busiest_rq->nr_running <= 1)
969c7921 6421 goto out_unlock;
1e3c88bd
PZ
6422
6423 /*
6424 * This condition is "impossible", if it occurs
6425 * we need to fix it. Originally reported by
6426 * Bjorn Helgaas on a 128-cpu setup.
6427 */
6428 BUG_ON(busiest_rq == target_rq);
6429
6430 /* move a task from busiest_rq to target_rq */
6431 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6432
6433 /* Search for an sd spanning us and the target CPU. */
dce840a0 6434 rcu_read_lock();
1e3c88bd
PZ
6435 for_each_domain(target_cpu, sd) {
6436 if ((sd->flags & SD_LOAD_BALANCE) &&
6437 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6438 break;
6439 }
6440
6441 if (likely(sd)) {
8e45cb54
PZ
6442 struct lb_env env = {
6443 .sd = sd,
ddcdf6e7
PZ
6444 .dst_cpu = target_cpu,
6445 .dst_rq = target_rq,
6446 .src_cpu = busiest_rq->cpu,
6447 .src_rq = busiest_rq,
8e45cb54
PZ
6448 .idle = CPU_IDLE,
6449 };
6450
1e3c88bd
PZ
6451 schedstat_inc(sd, alb_count);
6452
8e45cb54 6453 if (move_one_task(&env))
1e3c88bd
PZ
6454 schedstat_inc(sd, alb_pushed);
6455 else
6456 schedstat_inc(sd, alb_failed);
6457 }
dce840a0 6458 rcu_read_unlock();
1e3c88bd 6459 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6460out_unlock:
6461 busiest_rq->active_balance = 0;
6462 raw_spin_unlock_irq(&busiest_rq->lock);
6463 return 0;
1e3c88bd
PZ
6464}
6465
3451d024 6466#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6467/*
6468 * idle load balancing details
83cd4fe2
VP
6469 * - When one of the busy CPUs notice that there may be an idle rebalancing
6470 * needed, they will kick the idle load balancer, which then does idle
6471 * load balancing for all the idle CPUs.
6472 */
1e3c88bd 6473static struct {
83cd4fe2 6474 cpumask_var_t idle_cpus_mask;
0b005cf5 6475 atomic_t nr_cpus;
83cd4fe2
VP
6476 unsigned long next_balance; /* in jiffy units */
6477} nohz ____cacheline_aligned;
1e3c88bd 6478
8e7fbcbc 6479static inline int find_new_ilb(int call_cpu)
1e3c88bd 6480{
0b005cf5 6481 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6482
786d6dc7
SS
6483 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6484 return ilb;
6485
6486 return nr_cpu_ids;
1e3c88bd 6487}
1e3c88bd 6488
83cd4fe2
VP
6489/*
6490 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6491 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6492 * CPU (if there is one).
6493 */
6494static void nohz_balancer_kick(int cpu)
6495{
6496 int ilb_cpu;
6497
6498 nohz.next_balance++;
6499
0b005cf5 6500 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6501
0b005cf5
SS
6502 if (ilb_cpu >= nr_cpu_ids)
6503 return;
83cd4fe2 6504
cd490c5b 6505 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6506 return;
6507 /*
6508 * Use smp_send_reschedule() instead of resched_cpu().
6509 * This way we generate a sched IPI on the target cpu which
6510 * is idle. And the softirq performing nohz idle load balance
6511 * will be run before returning from the IPI.
6512 */
6513 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6514 return;
6515}
6516
c1cc017c 6517static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6518{
6519 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6520 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6521 atomic_dec(&nohz.nr_cpus);
6522 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6523 }
6524}
6525
69e1e811
SS
6526static inline void set_cpu_sd_state_busy(void)
6527{
6528 struct sched_domain *sd;
69e1e811 6529
69e1e811 6530 rcu_read_lock();
424c93fe 6531 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6532
6533 if (!sd || !sd->nohz_idle)
6534 goto unlock;
6535 sd->nohz_idle = 0;
6536
6537 for (; sd; sd = sd->parent)
69e1e811 6538 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6539unlock:
69e1e811
SS
6540 rcu_read_unlock();
6541}
6542
6543void set_cpu_sd_state_idle(void)
6544{
6545 struct sched_domain *sd;
69e1e811 6546
69e1e811 6547 rcu_read_lock();
424c93fe 6548 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6549
6550 if (!sd || sd->nohz_idle)
6551 goto unlock;
6552 sd->nohz_idle = 1;
6553
6554 for (; sd; sd = sd->parent)
69e1e811 6555 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6556unlock:
69e1e811
SS
6557 rcu_read_unlock();
6558}
6559
1e3c88bd 6560/*
c1cc017c 6561 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6562 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6563 */
c1cc017c 6564void nohz_balance_enter_idle(int cpu)
1e3c88bd 6565{
71325960
SS
6566 /*
6567 * If this cpu is going down, then nothing needs to be done.
6568 */
6569 if (!cpu_active(cpu))
6570 return;
6571
c1cc017c
AS
6572 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6573 return;
1e3c88bd 6574
c1cc017c
AS
6575 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6576 atomic_inc(&nohz.nr_cpus);
6577 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6578}
71325960 6579
0db0628d 6580static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6581 unsigned long action, void *hcpu)
6582{
6583 switch (action & ~CPU_TASKS_FROZEN) {
6584 case CPU_DYING:
c1cc017c 6585 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6586 return NOTIFY_OK;
6587 default:
6588 return NOTIFY_DONE;
6589 }
6590}
1e3c88bd
PZ
6591#endif
6592
6593static DEFINE_SPINLOCK(balancing);
6594
49c022e6
PZ
6595/*
6596 * Scale the max load_balance interval with the number of CPUs in the system.
6597 * This trades load-balance latency on larger machines for less cross talk.
6598 */
029632fb 6599void update_max_interval(void)
49c022e6
PZ
6600{
6601 max_load_balance_interval = HZ*num_online_cpus()/10;
6602}
6603
1e3c88bd
PZ
6604/*
6605 * It checks each scheduling domain to see if it is due to be balanced,
6606 * and initiates a balancing operation if so.
6607 *
b9b0853a 6608 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6609 */
6610static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6611{
23f0d209 6612 int continue_balancing = 1;
1e3c88bd
PZ
6613 struct rq *rq = cpu_rq(cpu);
6614 unsigned long interval;
04f733b4 6615 struct sched_domain *sd;
1e3c88bd
PZ
6616 /* Earliest time when we have to do rebalance again */
6617 unsigned long next_balance = jiffies + 60*HZ;
6618 int update_next_balance = 0;
f48627e6
JL
6619 int need_serialize, need_decay = 0;
6620 u64 max_cost = 0;
1e3c88bd 6621
48a16753 6622 update_blocked_averages(cpu);
2069dd75 6623
dce840a0 6624 rcu_read_lock();
1e3c88bd 6625 for_each_domain(cpu, sd) {
f48627e6
JL
6626 /*
6627 * Decay the newidle max times here because this is a regular
6628 * visit to all the domains. Decay ~1% per second.
6629 */
6630 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6631 sd->max_newidle_lb_cost =
6632 (sd->max_newidle_lb_cost * 253) / 256;
6633 sd->next_decay_max_lb_cost = jiffies + HZ;
6634 need_decay = 1;
6635 }
6636 max_cost += sd->max_newidle_lb_cost;
6637
1e3c88bd
PZ
6638 if (!(sd->flags & SD_LOAD_BALANCE))
6639 continue;
6640
f48627e6
JL
6641 /*
6642 * Stop the load balance at this level. There is another
6643 * CPU in our sched group which is doing load balancing more
6644 * actively.
6645 */
6646 if (!continue_balancing) {
6647 if (need_decay)
6648 continue;
6649 break;
6650 }
6651
1e3c88bd
PZ
6652 interval = sd->balance_interval;
6653 if (idle != CPU_IDLE)
6654 interval *= sd->busy_factor;
6655
6656 /* scale ms to jiffies */
6657 interval = msecs_to_jiffies(interval);
49c022e6 6658 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6659
6660 need_serialize = sd->flags & SD_SERIALIZE;
6661
6662 if (need_serialize) {
6663 if (!spin_trylock(&balancing))
6664 goto out;
6665 }
6666
6667 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6668 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6669 /*
6263322c 6670 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6671 * env->dst_cpu, so we can't know our idle
6672 * state even if we migrated tasks. Update it.
1e3c88bd 6673 */
de5eb2dd 6674 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6675 }
6676 sd->last_balance = jiffies;
6677 }
6678 if (need_serialize)
6679 spin_unlock(&balancing);
6680out:
6681 if (time_after(next_balance, sd->last_balance + interval)) {
6682 next_balance = sd->last_balance + interval;
6683 update_next_balance = 1;
6684 }
f48627e6
JL
6685 }
6686 if (need_decay) {
1e3c88bd 6687 /*
f48627e6
JL
6688 * Ensure the rq-wide value also decays but keep it at a
6689 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6690 */
f48627e6
JL
6691 rq->max_idle_balance_cost =
6692 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6693 }
dce840a0 6694 rcu_read_unlock();
1e3c88bd
PZ
6695
6696 /*
6697 * next_balance will be updated only when there is a need.
6698 * When the cpu is attached to null domain for ex, it will not be
6699 * updated.
6700 */
6701 if (likely(update_next_balance))
6702 rq->next_balance = next_balance;
6703}
6704
3451d024 6705#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6706/*
3451d024 6707 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6708 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6709 */
83cd4fe2
VP
6710static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6711{
6712 struct rq *this_rq = cpu_rq(this_cpu);
6713 struct rq *rq;
6714 int balance_cpu;
6715
1c792db7
SS
6716 if (idle != CPU_IDLE ||
6717 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6718 goto end;
83cd4fe2
VP
6719
6720 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6721 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6722 continue;
6723
6724 /*
6725 * If this cpu gets work to do, stop the load balancing
6726 * work being done for other cpus. Next load
6727 * balancing owner will pick it up.
6728 */
1c792db7 6729 if (need_resched())
83cd4fe2 6730 break;
83cd4fe2 6731
5ed4f1d9
VG
6732 rq = cpu_rq(balance_cpu);
6733
6734 raw_spin_lock_irq(&rq->lock);
6735 update_rq_clock(rq);
6736 update_idle_cpu_load(rq);
6737 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6738
6739 rebalance_domains(balance_cpu, CPU_IDLE);
6740
83cd4fe2
VP
6741 if (time_after(this_rq->next_balance, rq->next_balance))
6742 this_rq->next_balance = rq->next_balance;
6743 }
6744 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6745end:
6746 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6747}
6748
6749/*
0b005cf5
SS
6750 * Current heuristic for kicking the idle load balancer in the presence
6751 * of an idle cpu is the system.
6752 * - This rq has more than one task.
6753 * - At any scheduler domain level, this cpu's scheduler group has multiple
6754 * busy cpu's exceeding the group's power.
6755 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6756 * domain span are idle.
83cd4fe2
VP
6757 */
6758static inline int nohz_kick_needed(struct rq *rq, int cpu)
6759{
6760 unsigned long now = jiffies;
0b005cf5 6761 struct sched_domain *sd;
83cd4fe2 6762
1c792db7 6763 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6764 return 0;
6765
1c792db7
SS
6766 /*
6767 * We may be recently in ticked or tickless idle mode. At the first
6768 * busy tick after returning from idle, we will update the busy stats.
6769 */
69e1e811 6770 set_cpu_sd_state_busy();
c1cc017c 6771 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6772
6773 /*
6774 * None are in tickless mode and hence no need for NOHZ idle load
6775 * balancing.
6776 */
6777 if (likely(!atomic_read(&nohz.nr_cpus)))
6778 return 0;
1c792db7
SS
6779
6780 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6781 return 0;
6782
0b005cf5
SS
6783 if (rq->nr_running >= 2)
6784 goto need_kick;
83cd4fe2 6785
067491b7 6786 rcu_read_lock();
0b005cf5
SS
6787 for_each_domain(cpu, sd) {
6788 struct sched_group *sg = sd->groups;
6789 struct sched_group_power *sgp = sg->sgp;
6790 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6791
0b005cf5 6792 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6793 goto need_kick_unlock;
0b005cf5
SS
6794
6795 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6796 && (cpumask_first_and(nohz.idle_cpus_mask,
6797 sched_domain_span(sd)) < cpu))
067491b7 6798 goto need_kick_unlock;
0b005cf5
SS
6799
6800 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6801 break;
83cd4fe2 6802 }
067491b7 6803 rcu_read_unlock();
83cd4fe2 6804 return 0;
067491b7
PZ
6805
6806need_kick_unlock:
6807 rcu_read_unlock();
0b005cf5
SS
6808need_kick:
6809 return 1;
83cd4fe2
VP
6810}
6811#else
6812static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6813#endif
6814
6815/*
6816 * run_rebalance_domains is triggered when needed from the scheduler tick.
6817 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6818 */
1e3c88bd
PZ
6819static void run_rebalance_domains(struct softirq_action *h)
6820{
6821 int this_cpu = smp_processor_id();
6822 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6823 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6824 CPU_IDLE : CPU_NOT_IDLE;
6825
6826 rebalance_domains(this_cpu, idle);
6827
1e3c88bd 6828 /*
83cd4fe2 6829 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6830 * balancing on behalf of the other idle cpus whose ticks are
6831 * stopped.
6832 */
83cd4fe2 6833 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6834}
6835
6836static inline int on_null_domain(int cpu)
6837{
90a6501f 6838 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6839}
6840
6841/*
6842 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6843 */
029632fb 6844void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6845{
1e3c88bd
PZ
6846 /* Don't need to rebalance while attached to NULL domain */
6847 if (time_after_eq(jiffies, rq->next_balance) &&
6848 likely(!on_null_domain(cpu)))
6849 raise_softirq(SCHED_SOFTIRQ);
3451d024 6850#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6851 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6852 nohz_balancer_kick(cpu);
6853#endif
1e3c88bd
PZ
6854}
6855
0bcdcf28
CE
6856static void rq_online_fair(struct rq *rq)
6857{
6858 update_sysctl();
6859}
6860
6861static void rq_offline_fair(struct rq *rq)
6862{
6863 update_sysctl();
a4c96ae3
PB
6864
6865 /* Ensure any throttled groups are reachable by pick_next_task */
6866 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6867}
6868
55e12e5e 6869#endif /* CONFIG_SMP */
e1d1484f 6870
bf0f6f24
IM
6871/*
6872 * scheduler tick hitting a task of our scheduling class:
6873 */
8f4d37ec 6874static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6875{
6876 struct cfs_rq *cfs_rq;
6877 struct sched_entity *se = &curr->se;
6878
6879 for_each_sched_entity(se) {
6880 cfs_rq = cfs_rq_of(se);
8f4d37ec 6881 entity_tick(cfs_rq, se, queued);
bf0f6f24 6882 }
18bf2805 6883
10e84b97 6884 if (numabalancing_enabled)
cbee9f88 6885 task_tick_numa(rq, curr);
3d59eebc 6886
18bf2805 6887 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6888}
6889
6890/*
cd29fe6f
PZ
6891 * called on fork with the child task as argument from the parent's context
6892 * - child not yet on the tasklist
6893 * - preemption disabled
bf0f6f24 6894 */
cd29fe6f 6895static void task_fork_fair(struct task_struct *p)
bf0f6f24 6896{
4fc420c9
DN
6897 struct cfs_rq *cfs_rq;
6898 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6899 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6900 struct rq *rq = this_rq();
6901 unsigned long flags;
6902
05fa785c 6903 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6904
861d034e
PZ
6905 update_rq_clock(rq);
6906
4fc420c9
DN
6907 cfs_rq = task_cfs_rq(current);
6908 curr = cfs_rq->curr;
6909
6c9a27f5
DN
6910 /*
6911 * Not only the cpu but also the task_group of the parent might have
6912 * been changed after parent->se.parent,cfs_rq were copied to
6913 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6914 * of child point to valid ones.
6915 */
6916 rcu_read_lock();
6917 __set_task_cpu(p, this_cpu);
6918 rcu_read_unlock();
bf0f6f24 6919
7109c442 6920 update_curr(cfs_rq);
cd29fe6f 6921
b5d9d734
MG
6922 if (curr)
6923 se->vruntime = curr->vruntime;
aeb73b04 6924 place_entity(cfs_rq, se, 1);
4d78e7b6 6925
cd29fe6f 6926 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6927 /*
edcb60a3
IM
6928 * Upon rescheduling, sched_class::put_prev_task() will place
6929 * 'current' within the tree based on its new key value.
6930 */
4d78e7b6 6931 swap(curr->vruntime, se->vruntime);
aec0a514 6932 resched_task(rq->curr);
4d78e7b6 6933 }
bf0f6f24 6934
88ec22d3
PZ
6935 se->vruntime -= cfs_rq->min_vruntime;
6936
05fa785c 6937 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6938}
6939
cb469845
SR
6940/*
6941 * Priority of the task has changed. Check to see if we preempt
6942 * the current task.
6943 */
da7a735e
PZ
6944static void
6945prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6946{
da7a735e
PZ
6947 if (!p->se.on_rq)
6948 return;
6949
cb469845
SR
6950 /*
6951 * Reschedule if we are currently running on this runqueue and
6952 * our priority decreased, or if we are not currently running on
6953 * this runqueue and our priority is higher than the current's
6954 */
da7a735e 6955 if (rq->curr == p) {
cb469845
SR
6956 if (p->prio > oldprio)
6957 resched_task(rq->curr);
6958 } else
15afe09b 6959 check_preempt_curr(rq, p, 0);
cb469845
SR
6960}
6961
da7a735e
PZ
6962static void switched_from_fair(struct rq *rq, struct task_struct *p)
6963{
6964 struct sched_entity *se = &p->se;
6965 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6966
6967 /*
6968 * Ensure the task's vruntime is normalized, so that when its
6969 * switched back to the fair class the enqueue_entity(.flags=0) will
6970 * do the right thing.
6971 *
6972 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6973 * have normalized the vruntime, if it was !on_rq, then only when
6974 * the task is sleeping will it still have non-normalized vruntime.
6975 */
6976 if (!se->on_rq && p->state != TASK_RUNNING) {
6977 /*
6978 * Fix up our vruntime so that the current sleep doesn't
6979 * cause 'unlimited' sleep bonus.
6980 */
6981 place_entity(cfs_rq, se, 0);
6982 se->vruntime -= cfs_rq->min_vruntime;
6983 }
9ee474f5 6984
141965c7 6985#ifdef CONFIG_SMP
9ee474f5
PT
6986 /*
6987 * Remove our load from contribution when we leave sched_fair
6988 * and ensure we don't carry in an old decay_count if we
6989 * switch back.
6990 */
87e3c8ae
KT
6991 if (se->avg.decay_count) {
6992 __synchronize_entity_decay(se);
6993 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6994 }
6995#endif
da7a735e
PZ
6996}
6997
cb469845
SR
6998/*
6999 * We switched to the sched_fair class.
7000 */
da7a735e 7001static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7002{
da7a735e
PZ
7003 if (!p->se.on_rq)
7004 return;
7005
cb469845
SR
7006 /*
7007 * We were most likely switched from sched_rt, so
7008 * kick off the schedule if running, otherwise just see
7009 * if we can still preempt the current task.
7010 */
da7a735e 7011 if (rq->curr == p)
cb469845
SR
7012 resched_task(rq->curr);
7013 else
15afe09b 7014 check_preempt_curr(rq, p, 0);
cb469845
SR
7015}
7016
83b699ed
SV
7017/* Account for a task changing its policy or group.
7018 *
7019 * This routine is mostly called to set cfs_rq->curr field when a task
7020 * migrates between groups/classes.
7021 */
7022static void set_curr_task_fair(struct rq *rq)
7023{
7024 struct sched_entity *se = &rq->curr->se;
7025
ec12cb7f
PT
7026 for_each_sched_entity(se) {
7027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7028
7029 set_next_entity(cfs_rq, se);
7030 /* ensure bandwidth has been allocated on our new cfs_rq */
7031 account_cfs_rq_runtime(cfs_rq, 0);
7032 }
83b699ed
SV
7033}
7034
029632fb
PZ
7035void init_cfs_rq(struct cfs_rq *cfs_rq)
7036{
7037 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7038 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7039#ifndef CONFIG_64BIT
7040 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7041#endif
141965c7 7042#ifdef CONFIG_SMP
9ee474f5 7043 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7044 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7045#endif
029632fb
PZ
7046}
7047
810b3817 7048#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7049static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7050{
aff3e498 7051 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7052 /*
7053 * If the task was not on the rq at the time of this cgroup movement
7054 * it must have been asleep, sleeping tasks keep their ->vruntime
7055 * absolute on their old rq until wakeup (needed for the fair sleeper
7056 * bonus in place_entity()).
7057 *
7058 * If it was on the rq, we've just 'preempted' it, which does convert
7059 * ->vruntime to a relative base.
7060 *
7061 * Make sure both cases convert their relative position when migrating
7062 * to another cgroup's rq. This does somewhat interfere with the
7063 * fair sleeper stuff for the first placement, but who cares.
7064 */
7ceff013
DN
7065 /*
7066 * When !on_rq, vruntime of the task has usually NOT been normalized.
7067 * But there are some cases where it has already been normalized:
7068 *
7069 * - Moving a forked child which is waiting for being woken up by
7070 * wake_up_new_task().
62af3783
DN
7071 * - Moving a task which has been woken up by try_to_wake_up() and
7072 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7073 *
7074 * To prevent boost or penalty in the new cfs_rq caused by delta
7075 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7076 */
62af3783 7077 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7078 on_rq = 1;
7079
b2b5ce02
PZ
7080 if (!on_rq)
7081 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7082 set_task_rq(p, task_cpu(p));
aff3e498
PT
7083 if (!on_rq) {
7084 cfs_rq = cfs_rq_of(&p->se);
7085 p->se.vruntime += cfs_rq->min_vruntime;
7086#ifdef CONFIG_SMP
7087 /*
7088 * migrate_task_rq_fair() will have removed our previous
7089 * contribution, but we must synchronize for ongoing future
7090 * decay.
7091 */
7092 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7093 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7094#endif
7095 }
810b3817 7096}
029632fb
PZ
7097
7098void free_fair_sched_group(struct task_group *tg)
7099{
7100 int i;
7101
7102 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7103
7104 for_each_possible_cpu(i) {
7105 if (tg->cfs_rq)
7106 kfree(tg->cfs_rq[i]);
7107 if (tg->se)
7108 kfree(tg->se[i]);
7109 }
7110
7111 kfree(tg->cfs_rq);
7112 kfree(tg->se);
7113}
7114
7115int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7116{
7117 struct cfs_rq *cfs_rq;
7118 struct sched_entity *se;
7119 int i;
7120
7121 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7122 if (!tg->cfs_rq)
7123 goto err;
7124 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7125 if (!tg->se)
7126 goto err;
7127
7128 tg->shares = NICE_0_LOAD;
7129
7130 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7131
7132 for_each_possible_cpu(i) {
7133 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7134 GFP_KERNEL, cpu_to_node(i));
7135 if (!cfs_rq)
7136 goto err;
7137
7138 se = kzalloc_node(sizeof(struct sched_entity),
7139 GFP_KERNEL, cpu_to_node(i));
7140 if (!se)
7141 goto err_free_rq;
7142
7143 init_cfs_rq(cfs_rq);
7144 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7145 }
7146
7147 return 1;
7148
7149err_free_rq:
7150 kfree(cfs_rq);
7151err:
7152 return 0;
7153}
7154
7155void unregister_fair_sched_group(struct task_group *tg, int cpu)
7156{
7157 struct rq *rq = cpu_rq(cpu);
7158 unsigned long flags;
7159
7160 /*
7161 * Only empty task groups can be destroyed; so we can speculatively
7162 * check on_list without danger of it being re-added.
7163 */
7164 if (!tg->cfs_rq[cpu]->on_list)
7165 return;
7166
7167 raw_spin_lock_irqsave(&rq->lock, flags);
7168 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7169 raw_spin_unlock_irqrestore(&rq->lock, flags);
7170}
7171
7172void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7173 struct sched_entity *se, int cpu,
7174 struct sched_entity *parent)
7175{
7176 struct rq *rq = cpu_rq(cpu);
7177
7178 cfs_rq->tg = tg;
7179 cfs_rq->rq = rq;
029632fb
PZ
7180 init_cfs_rq_runtime(cfs_rq);
7181
7182 tg->cfs_rq[cpu] = cfs_rq;
7183 tg->se[cpu] = se;
7184
7185 /* se could be NULL for root_task_group */
7186 if (!se)
7187 return;
7188
7189 if (!parent)
7190 se->cfs_rq = &rq->cfs;
7191 else
7192 se->cfs_rq = parent->my_q;
7193
7194 se->my_q = cfs_rq;
7195 update_load_set(&se->load, 0);
7196 se->parent = parent;
7197}
7198
7199static DEFINE_MUTEX(shares_mutex);
7200
7201int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7202{
7203 int i;
7204 unsigned long flags;
7205
7206 /*
7207 * We can't change the weight of the root cgroup.
7208 */
7209 if (!tg->se[0])
7210 return -EINVAL;
7211
7212 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7213
7214 mutex_lock(&shares_mutex);
7215 if (tg->shares == shares)
7216 goto done;
7217
7218 tg->shares = shares;
7219 for_each_possible_cpu(i) {
7220 struct rq *rq = cpu_rq(i);
7221 struct sched_entity *se;
7222
7223 se = tg->se[i];
7224 /* Propagate contribution to hierarchy */
7225 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7226
7227 /* Possible calls to update_curr() need rq clock */
7228 update_rq_clock(rq);
17bc14b7 7229 for_each_sched_entity(se)
029632fb
PZ
7230 update_cfs_shares(group_cfs_rq(se));
7231 raw_spin_unlock_irqrestore(&rq->lock, flags);
7232 }
7233
7234done:
7235 mutex_unlock(&shares_mutex);
7236 return 0;
7237}
7238#else /* CONFIG_FAIR_GROUP_SCHED */
7239
7240void free_fair_sched_group(struct task_group *tg) { }
7241
7242int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7243{
7244 return 1;
7245}
7246
7247void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7248
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250
810b3817 7251
6d686f45 7252static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7253{
7254 struct sched_entity *se = &task->se;
0d721cea
PW
7255 unsigned int rr_interval = 0;
7256
7257 /*
7258 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7259 * idle runqueue:
7260 */
0d721cea 7261 if (rq->cfs.load.weight)
a59f4e07 7262 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7263
7264 return rr_interval;
7265}
7266
bf0f6f24
IM
7267/*
7268 * All the scheduling class methods:
7269 */
029632fb 7270const struct sched_class fair_sched_class = {
5522d5d5 7271 .next = &idle_sched_class,
bf0f6f24
IM
7272 .enqueue_task = enqueue_task_fair,
7273 .dequeue_task = dequeue_task_fair,
7274 .yield_task = yield_task_fair,
d95f4122 7275 .yield_to_task = yield_to_task_fair,
bf0f6f24 7276
2e09bf55 7277 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7278
7279 .pick_next_task = pick_next_task_fair,
7280 .put_prev_task = put_prev_task_fair,
7281
681f3e68 7282#ifdef CONFIG_SMP
4ce72a2c 7283 .select_task_rq = select_task_rq_fair,
0a74bef8 7284 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7285
0bcdcf28
CE
7286 .rq_online = rq_online_fair,
7287 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7288
7289 .task_waking = task_waking_fair,
681f3e68 7290#endif
bf0f6f24 7291
83b699ed 7292 .set_curr_task = set_curr_task_fair,
bf0f6f24 7293 .task_tick = task_tick_fair,
cd29fe6f 7294 .task_fork = task_fork_fair,
cb469845
SR
7295
7296 .prio_changed = prio_changed_fair,
da7a735e 7297 .switched_from = switched_from_fair,
cb469845 7298 .switched_to = switched_to_fair,
810b3817 7299
0d721cea
PW
7300 .get_rr_interval = get_rr_interval_fair,
7301
810b3817 7302#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7303 .task_move_group = task_move_group_fair,
810b3817 7304#endif
bf0f6f24
IM
7305};
7306
7307#ifdef CONFIG_SCHED_DEBUG
029632fb 7308void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7309{
bf0f6f24
IM
7310 struct cfs_rq *cfs_rq;
7311
5973e5b9 7312 rcu_read_lock();
c3b64f1e 7313 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7314 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7315 rcu_read_unlock();
bf0f6f24
IM
7316}
7317#endif
029632fb
PZ
7318
7319__init void init_sched_fair_class(void)
7320{
7321#ifdef CONFIG_SMP
7322 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7323
3451d024 7324#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7325 nohz.next_balance = jiffies;
029632fb 7326 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7327 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7328#endif
7329#endif /* SMP */
7330
7331}