]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
cpufreq: Clean up default and fallback governor setup
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
758 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
759
760 if (entity_is_task(se)) {
761 p = task_of(se);
762 if (task_on_rq_migrating(p)) {
763 /*
764 * Preserve migrating task's wait time so wait_start
765 * time stamp can be adjusted to accumulate wait time
766 * prior to migration.
767 */
768 se->statistics.wait_start = delta;
769 return;
770 }
771 trace_sched_stat_wait(p, delta);
772 }
773
774 se->statistics.wait_max = max(se->statistics.wait_max, delta);
775 se->statistics.wait_count++;
776 se->statistics.wait_sum += delta;
777 se->statistics.wait_start = 0;
778}
779#else
780static inline void
781update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
782{
783}
784
785static inline void
786update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
787{
788}
789#endif
790
bf0f6f24
IM
791/*
792 * Task is being enqueued - update stats:
793 */
d2417e5a 794static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
bf0f6f24
IM
796 /*
797 * Are we enqueueing a waiting task? (for current tasks
798 * a dequeue/enqueue event is a NOP)
799 */
429d43bc 800 if (se != cfs_rq->curr)
5870db5b 801 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
802}
803
bf0f6f24 804static inline void
19b6a2e3 805update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 806{
bf0f6f24
IM
807 /*
808 * Mark the end of the wait period if dequeueing a
809 * waiting task:
810 */
429d43bc 811 if (se != cfs_rq->curr)
9ef0a961 812 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
813}
814
815/*
816 * We are picking a new current task - update its stats:
817 */
818static inline void
79303e9e 819update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
820{
821 /*
822 * We are starting a new run period:
823 */
78becc27 824 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
825}
826
bf0f6f24
IM
827/**************************************************
828 * Scheduling class queueing methods:
829 */
830
cbee9f88
PZ
831#ifdef CONFIG_NUMA_BALANCING
832/*
598f0ec0
MG
833 * Approximate time to scan a full NUMA task in ms. The task scan period is
834 * calculated based on the tasks virtual memory size and
835 * numa_balancing_scan_size.
cbee9f88 836 */
598f0ec0
MG
837unsigned int sysctl_numa_balancing_scan_period_min = 1000;
838unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
839
840/* Portion of address space to scan in MB */
841unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 842
4b96a29b
PZ
843/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
844unsigned int sysctl_numa_balancing_scan_delay = 1000;
845
598f0ec0
MG
846static unsigned int task_nr_scan_windows(struct task_struct *p)
847{
848 unsigned long rss = 0;
849 unsigned long nr_scan_pages;
850
851 /*
852 * Calculations based on RSS as non-present and empty pages are skipped
853 * by the PTE scanner and NUMA hinting faults should be trapped based
854 * on resident pages
855 */
856 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
857 rss = get_mm_rss(p->mm);
858 if (!rss)
859 rss = nr_scan_pages;
860
861 rss = round_up(rss, nr_scan_pages);
862 return rss / nr_scan_pages;
863}
864
865/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
866#define MAX_SCAN_WINDOW 2560
867
868static unsigned int task_scan_min(struct task_struct *p)
869{
316c1608 870 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
871 unsigned int scan, floor;
872 unsigned int windows = 1;
873
64192658
KT
874 if (scan_size < MAX_SCAN_WINDOW)
875 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
876 floor = 1000 / windows;
877
878 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
879 return max_t(unsigned int, floor, scan);
880}
881
882static unsigned int task_scan_max(struct task_struct *p)
883{
884 unsigned int smin = task_scan_min(p);
885 unsigned int smax;
886
887 /* Watch for min being lower than max due to floor calculations */
888 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
889 return max(smin, smax);
890}
891
0ec8aa00
PZ
892static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
893{
894 rq->nr_numa_running += (p->numa_preferred_nid != -1);
895 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
896}
897
898static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
902}
903
8c8a743c
PZ
904struct numa_group {
905 atomic_t refcount;
906
907 spinlock_t lock; /* nr_tasks, tasks */
908 int nr_tasks;
e29cf08b 909 pid_t gid;
8c8a743c
PZ
910
911 struct rcu_head rcu;
20e07dea 912 nodemask_t active_nodes;
989348b5 913 unsigned long total_faults;
7e2703e6
RR
914 /*
915 * Faults_cpu is used to decide whether memory should move
916 * towards the CPU. As a consequence, these stats are weighted
917 * more by CPU use than by memory faults.
918 */
50ec8a40 919 unsigned long *faults_cpu;
989348b5 920 unsigned long faults[0];
8c8a743c
PZ
921};
922
be1e4e76
RR
923/* Shared or private faults. */
924#define NR_NUMA_HINT_FAULT_TYPES 2
925
926/* Memory and CPU locality */
927#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
928
929/* Averaged statistics, and temporary buffers. */
930#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
931
e29cf08b
MG
932pid_t task_numa_group_id(struct task_struct *p)
933{
934 return p->numa_group ? p->numa_group->gid : 0;
935}
936
44dba3d5
IM
937/*
938 * The averaged statistics, shared & private, memory & cpu,
939 * occupy the first half of the array. The second half of the
940 * array is for current counters, which are averaged into the
941 * first set by task_numa_placement.
942 */
943static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 944{
44dba3d5 945 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
946}
947
948static inline unsigned long task_faults(struct task_struct *p, int nid)
949{
44dba3d5 950 if (!p->numa_faults)
ac8e895b
MG
951 return 0;
952
44dba3d5
IM
953 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
954 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
955}
956
83e1d2cd
MG
957static inline unsigned long group_faults(struct task_struct *p, int nid)
958{
959 if (!p->numa_group)
960 return 0;
961
44dba3d5
IM
962 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
963 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
964}
965
20e07dea
RR
966static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
967{
44dba3d5
IM
968 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
969 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
970}
971
6c6b1193
RR
972/* Handle placement on systems where not all nodes are directly connected. */
973static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
974 int maxdist, bool task)
975{
976 unsigned long score = 0;
977 int node;
978
979 /*
980 * All nodes are directly connected, and the same distance
981 * from each other. No need for fancy placement algorithms.
982 */
983 if (sched_numa_topology_type == NUMA_DIRECT)
984 return 0;
985
986 /*
987 * This code is called for each node, introducing N^2 complexity,
988 * which should be ok given the number of nodes rarely exceeds 8.
989 */
990 for_each_online_node(node) {
991 unsigned long faults;
992 int dist = node_distance(nid, node);
993
994 /*
995 * The furthest away nodes in the system are not interesting
996 * for placement; nid was already counted.
997 */
998 if (dist == sched_max_numa_distance || node == nid)
999 continue;
1000
1001 /*
1002 * On systems with a backplane NUMA topology, compare groups
1003 * of nodes, and move tasks towards the group with the most
1004 * memory accesses. When comparing two nodes at distance
1005 * "hoplimit", only nodes closer by than "hoplimit" are part
1006 * of each group. Skip other nodes.
1007 */
1008 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1009 dist > maxdist)
1010 continue;
1011
1012 /* Add up the faults from nearby nodes. */
1013 if (task)
1014 faults = task_faults(p, node);
1015 else
1016 faults = group_faults(p, node);
1017
1018 /*
1019 * On systems with a glueless mesh NUMA topology, there are
1020 * no fixed "groups of nodes". Instead, nodes that are not
1021 * directly connected bounce traffic through intermediate
1022 * nodes; a numa_group can occupy any set of nodes.
1023 * The further away a node is, the less the faults count.
1024 * This seems to result in good task placement.
1025 */
1026 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1027 faults *= (sched_max_numa_distance - dist);
1028 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1029 }
1030
1031 score += faults;
1032 }
1033
1034 return score;
1035}
1036
83e1d2cd
MG
1037/*
1038 * These return the fraction of accesses done by a particular task, or
1039 * task group, on a particular numa node. The group weight is given a
1040 * larger multiplier, in order to group tasks together that are almost
1041 * evenly spread out between numa nodes.
1042 */
7bd95320
RR
1043static inline unsigned long task_weight(struct task_struct *p, int nid,
1044 int dist)
83e1d2cd 1045{
7bd95320 1046 unsigned long faults, total_faults;
83e1d2cd 1047
44dba3d5 1048 if (!p->numa_faults)
83e1d2cd
MG
1049 return 0;
1050
1051 total_faults = p->total_numa_faults;
1052
1053 if (!total_faults)
1054 return 0;
1055
7bd95320 1056 faults = task_faults(p, nid);
6c6b1193
RR
1057 faults += score_nearby_nodes(p, nid, dist, true);
1058
7bd95320 1059 return 1000 * faults / total_faults;
83e1d2cd
MG
1060}
1061
7bd95320
RR
1062static inline unsigned long group_weight(struct task_struct *p, int nid,
1063 int dist)
83e1d2cd 1064{
7bd95320
RR
1065 unsigned long faults, total_faults;
1066
1067 if (!p->numa_group)
1068 return 0;
1069
1070 total_faults = p->numa_group->total_faults;
1071
1072 if (!total_faults)
83e1d2cd
MG
1073 return 0;
1074
7bd95320 1075 faults = group_faults(p, nid);
6c6b1193
RR
1076 faults += score_nearby_nodes(p, nid, dist, false);
1077
7bd95320 1078 return 1000 * faults / total_faults;
83e1d2cd
MG
1079}
1080
10f39042
RR
1081bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1082 int src_nid, int dst_cpu)
1083{
1084 struct numa_group *ng = p->numa_group;
1085 int dst_nid = cpu_to_node(dst_cpu);
1086 int last_cpupid, this_cpupid;
1087
1088 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1089
1090 /*
1091 * Multi-stage node selection is used in conjunction with a periodic
1092 * migration fault to build a temporal task<->page relation. By using
1093 * a two-stage filter we remove short/unlikely relations.
1094 *
1095 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1096 * a task's usage of a particular page (n_p) per total usage of this
1097 * page (n_t) (in a given time-span) to a probability.
1098 *
1099 * Our periodic faults will sample this probability and getting the
1100 * same result twice in a row, given these samples are fully
1101 * independent, is then given by P(n)^2, provided our sample period
1102 * is sufficiently short compared to the usage pattern.
1103 *
1104 * This quadric squishes small probabilities, making it less likely we
1105 * act on an unlikely task<->page relation.
1106 */
1107 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1108 if (!cpupid_pid_unset(last_cpupid) &&
1109 cpupid_to_nid(last_cpupid) != dst_nid)
1110 return false;
1111
1112 /* Always allow migrate on private faults */
1113 if (cpupid_match_pid(p, last_cpupid))
1114 return true;
1115
1116 /* A shared fault, but p->numa_group has not been set up yet. */
1117 if (!ng)
1118 return true;
1119
1120 /*
1121 * Do not migrate if the destination is not a node that
1122 * is actively used by this numa group.
1123 */
1124 if (!node_isset(dst_nid, ng->active_nodes))
1125 return false;
1126
1127 /*
1128 * Source is a node that is not actively used by this
1129 * numa group, while the destination is. Migrate.
1130 */
1131 if (!node_isset(src_nid, ng->active_nodes))
1132 return true;
1133
1134 /*
1135 * Both source and destination are nodes in active
1136 * use by this numa group. Maximize memory bandwidth
1137 * by migrating from more heavily used groups, to less
1138 * heavily used ones, spreading the load around.
1139 * Use a 1/4 hysteresis to avoid spurious page movement.
1140 */
1141 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1142}
1143
e6628d5b 1144static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1145static unsigned long source_load(int cpu, int type);
1146static unsigned long target_load(int cpu, int type);
ced549fa 1147static unsigned long capacity_of(int cpu);
58d081b5
MG
1148static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1149
fb13c7ee 1150/* Cached statistics for all CPUs within a node */
58d081b5 1151struct numa_stats {
fb13c7ee 1152 unsigned long nr_running;
58d081b5 1153 unsigned long load;
fb13c7ee
MG
1154
1155 /* Total compute capacity of CPUs on a node */
5ef20ca1 1156 unsigned long compute_capacity;
fb13c7ee
MG
1157
1158 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1159 unsigned long task_capacity;
1b6a7495 1160 int has_free_capacity;
58d081b5 1161};
e6628d5b 1162
fb13c7ee
MG
1163/*
1164 * XXX borrowed from update_sg_lb_stats
1165 */
1166static void update_numa_stats(struct numa_stats *ns, int nid)
1167{
83d7f242
RR
1168 int smt, cpu, cpus = 0;
1169 unsigned long capacity;
fb13c7ee
MG
1170
1171 memset(ns, 0, sizeof(*ns));
1172 for_each_cpu(cpu, cpumask_of_node(nid)) {
1173 struct rq *rq = cpu_rq(cpu);
1174
1175 ns->nr_running += rq->nr_running;
1176 ns->load += weighted_cpuload(cpu);
ced549fa 1177 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1178
1179 cpus++;
fb13c7ee
MG
1180 }
1181
5eca82a9
PZ
1182 /*
1183 * If we raced with hotplug and there are no CPUs left in our mask
1184 * the @ns structure is NULL'ed and task_numa_compare() will
1185 * not find this node attractive.
1186 *
1b6a7495
NP
1187 * We'll either bail at !has_free_capacity, or we'll detect a huge
1188 * imbalance and bail there.
5eca82a9
PZ
1189 */
1190 if (!cpus)
1191 return;
1192
83d7f242
RR
1193 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1194 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1195 capacity = cpus / smt; /* cores */
1196
1197 ns->task_capacity = min_t(unsigned, capacity,
1198 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1199 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1200}
1201
58d081b5
MG
1202struct task_numa_env {
1203 struct task_struct *p;
e6628d5b 1204
58d081b5
MG
1205 int src_cpu, src_nid;
1206 int dst_cpu, dst_nid;
e6628d5b 1207
58d081b5 1208 struct numa_stats src_stats, dst_stats;
e6628d5b 1209
40ea2b42 1210 int imbalance_pct;
7bd95320 1211 int dist;
fb13c7ee
MG
1212
1213 struct task_struct *best_task;
1214 long best_imp;
58d081b5
MG
1215 int best_cpu;
1216};
1217
fb13c7ee
MG
1218static void task_numa_assign(struct task_numa_env *env,
1219 struct task_struct *p, long imp)
1220{
1221 if (env->best_task)
1222 put_task_struct(env->best_task);
fb13c7ee
MG
1223
1224 env->best_task = p;
1225 env->best_imp = imp;
1226 env->best_cpu = env->dst_cpu;
1227}
1228
28a21745 1229static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1230 struct task_numa_env *env)
1231{
e4991b24
RR
1232 long imb, old_imb;
1233 long orig_src_load, orig_dst_load;
28a21745
RR
1234 long src_capacity, dst_capacity;
1235
1236 /*
1237 * The load is corrected for the CPU capacity available on each node.
1238 *
1239 * src_load dst_load
1240 * ------------ vs ---------
1241 * src_capacity dst_capacity
1242 */
1243 src_capacity = env->src_stats.compute_capacity;
1244 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1245
1246 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1247 if (dst_load < src_load)
1248 swap(dst_load, src_load);
e63da036
RR
1249
1250 /* Is the difference below the threshold? */
e4991b24
RR
1251 imb = dst_load * src_capacity * 100 -
1252 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1253 if (imb <= 0)
1254 return false;
1255
1256 /*
1257 * The imbalance is above the allowed threshold.
e4991b24 1258 * Compare it with the old imbalance.
e63da036 1259 */
28a21745 1260 orig_src_load = env->src_stats.load;
e4991b24 1261 orig_dst_load = env->dst_stats.load;
28a21745 1262
e4991b24
RR
1263 if (orig_dst_load < orig_src_load)
1264 swap(orig_dst_load, orig_src_load);
e63da036 1265
e4991b24
RR
1266 old_imb = orig_dst_load * src_capacity * 100 -
1267 orig_src_load * dst_capacity * env->imbalance_pct;
1268
1269 /* Would this change make things worse? */
1270 return (imb > old_imb);
e63da036
RR
1271}
1272
fb13c7ee
MG
1273/*
1274 * This checks if the overall compute and NUMA accesses of the system would
1275 * be improved if the source tasks was migrated to the target dst_cpu taking
1276 * into account that it might be best if task running on the dst_cpu should
1277 * be exchanged with the source task
1278 */
887c290e
RR
1279static void task_numa_compare(struct task_numa_env *env,
1280 long taskimp, long groupimp)
fb13c7ee
MG
1281{
1282 struct rq *src_rq = cpu_rq(env->src_cpu);
1283 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1284 struct task_struct *cur;
28a21745 1285 long src_load, dst_load;
fb13c7ee 1286 long load;
1c5d3eb3 1287 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1288 long moveimp = imp;
7bd95320 1289 int dist = env->dist;
1dff76b9 1290 bool assigned = false;
fb13c7ee
MG
1291
1292 rcu_read_lock();
1effd9f1
KT
1293
1294 raw_spin_lock_irq(&dst_rq->lock);
1295 cur = dst_rq->curr;
1296 /*
1dff76b9 1297 * No need to move the exiting task or idle task.
1effd9f1
KT
1298 */
1299 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1300 cur = NULL;
1dff76b9
GG
1301 else {
1302 /*
1303 * The task_struct must be protected here to protect the
1304 * p->numa_faults access in the task_weight since the
1305 * numa_faults could already be freed in the following path:
1306 * finish_task_switch()
1307 * --> put_task_struct()
1308 * --> __put_task_struct()
1309 * --> task_numa_free()
1310 */
1311 get_task_struct(cur);
1312 }
1313
1effd9f1 1314 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1315
7af68335
PZ
1316 /*
1317 * Because we have preemption enabled we can get migrated around and
1318 * end try selecting ourselves (current == env->p) as a swap candidate.
1319 */
1320 if (cur == env->p)
1321 goto unlock;
1322
fb13c7ee
MG
1323 /*
1324 * "imp" is the fault differential for the source task between the
1325 * source and destination node. Calculate the total differential for
1326 * the source task and potential destination task. The more negative
1327 * the value is, the more rmeote accesses that would be expected to
1328 * be incurred if the tasks were swapped.
1329 */
1330 if (cur) {
1331 /* Skip this swap candidate if cannot move to the source cpu */
1332 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1333 goto unlock;
1334
887c290e
RR
1335 /*
1336 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1337 * in any group then look only at task weights.
887c290e 1338 */
ca28aa53 1339 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1340 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1341 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1342 /*
1343 * Add some hysteresis to prevent swapping the
1344 * tasks within a group over tiny differences.
1345 */
1346 if (cur->numa_group)
1347 imp -= imp/16;
887c290e 1348 } else {
ca28aa53
RR
1349 /*
1350 * Compare the group weights. If a task is all by
1351 * itself (not part of a group), use the task weight
1352 * instead.
1353 */
ca28aa53 1354 if (cur->numa_group)
7bd95320
RR
1355 imp += group_weight(cur, env->src_nid, dist) -
1356 group_weight(cur, env->dst_nid, dist);
ca28aa53 1357 else
7bd95320
RR
1358 imp += task_weight(cur, env->src_nid, dist) -
1359 task_weight(cur, env->dst_nid, dist);
887c290e 1360 }
fb13c7ee
MG
1361 }
1362
0132c3e1 1363 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1364 goto unlock;
1365
1366 if (!cur) {
1367 /* Is there capacity at our destination? */
b932c03c 1368 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1369 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1370 goto unlock;
1371
1372 goto balance;
1373 }
1374
1375 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1376 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1377 dst_rq->nr_running == 1)
fb13c7ee
MG
1378 goto assign;
1379
1380 /*
1381 * In the overloaded case, try and keep the load balanced.
1382 */
1383balance:
e720fff6
PZ
1384 load = task_h_load(env->p);
1385 dst_load = env->dst_stats.load + load;
1386 src_load = env->src_stats.load - load;
fb13c7ee 1387
0132c3e1
RR
1388 if (moveimp > imp && moveimp > env->best_imp) {
1389 /*
1390 * If the improvement from just moving env->p direction is
1391 * better than swapping tasks around, check if a move is
1392 * possible. Store a slightly smaller score than moveimp,
1393 * so an actually idle CPU will win.
1394 */
1395 if (!load_too_imbalanced(src_load, dst_load, env)) {
1396 imp = moveimp - 1;
1dff76b9 1397 put_task_struct(cur);
0132c3e1
RR
1398 cur = NULL;
1399 goto assign;
1400 }
1401 }
1402
1403 if (imp <= env->best_imp)
1404 goto unlock;
1405
fb13c7ee 1406 if (cur) {
e720fff6
PZ
1407 load = task_h_load(cur);
1408 dst_load -= load;
1409 src_load += load;
fb13c7ee
MG
1410 }
1411
28a21745 1412 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1413 goto unlock;
1414
ba7e5a27
RR
1415 /*
1416 * One idle CPU per node is evaluated for a task numa move.
1417 * Call select_idle_sibling to maybe find a better one.
1418 */
1419 if (!cur)
1420 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1421
fb13c7ee 1422assign:
1dff76b9 1423 assigned = true;
fb13c7ee
MG
1424 task_numa_assign(env, cur, imp);
1425unlock:
1426 rcu_read_unlock();
1dff76b9
GG
1427 /*
1428 * The dst_rq->curr isn't assigned. The protection for task_struct is
1429 * finished.
1430 */
1431 if (cur && !assigned)
1432 put_task_struct(cur);
fb13c7ee
MG
1433}
1434
887c290e
RR
1435static void task_numa_find_cpu(struct task_numa_env *env,
1436 long taskimp, long groupimp)
2c8a50aa
MG
1437{
1438 int cpu;
1439
1440 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1441 /* Skip this CPU if the source task cannot migrate */
1442 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1443 continue;
1444
1445 env->dst_cpu = cpu;
887c290e 1446 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1447 }
1448}
1449
6f9aad0b
RR
1450/* Only move tasks to a NUMA node less busy than the current node. */
1451static bool numa_has_capacity(struct task_numa_env *env)
1452{
1453 struct numa_stats *src = &env->src_stats;
1454 struct numa_stats *dst = &env->dst_stats;
1455
1456 if (src->has_free_capacity && !dst->has_free_capacity)
1457 return false;
1458
1459 /*
1460 * Only consider a task move if the source has a higher load
1461 * than the destination, corrected for CPU capacity on each node.
1462 *
1463 * src->load dst->load
1464 * --------------------- vs ---------------------
1465 * src->compute_capacity dst->compute_capacity
1466 */
44dcb04f
SD
1467 if (src->load * dst->compute_capacity * env->imbalance_pct >
1468
1469 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1470 return true;
1471
1472 return false;
1473}
1474
58d081b5
MG
1475static int task_numa_migrate(struct task_struct *p)
1476{
58d081b5
MG
1477 struct task_numa_env env = {
1478 .p = p,
fb13c7ee 1479
58d081b5 1480 .src_cpu = task_cpu(p),
b32e86b4 1481 .src_nid = task_node(p),
fb13c7ee
MG
1482
1483 .imbalance_pct = 112,
1484
1485 .best_task = NULL,
1486 .best_imp = 0,
1487 .best_cpu = -1
58d081b5
MG
1488 };
1489 struct sched_domain *sd;
887c290e 1490 unsigned long taskweight, groupweight;
7bd95320 1491 int nid, ret, dist;
887c290e 1492 long taskimp, groupimp;
e6628d5b 1493
58d081b5 1494 /*
fb13c7ee
MG
1495 * Pick the lowest SD_NUMA domain, as that would have the smallest
1496 * imbalance and would be the first to start moving tasks about.
1497 *
1498 * And we want to avoid any moving of tasks about, as that would create
1499 * random movement of tasks -- counter the numa conditions we're trying
1500 * to satisfy here.
58d081b5
MG
1501 */
1502 rcu_read_lock();
fb13c7ee 1503 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1504 if (sd)
1505 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1506 rcu_read_unlock();
1507
46a73e8a
RR
1508 /*
1509 * Cpusets can break the scheduler domain tree into smaller
1510 * balance domains, some of which do not cross NUMA boundaries.
1511 * Tasks that are "trapped" in such domains cannot be migrated
1512 * elsewhere, so there is no point in (re)trying.
1513 */
1514 if (unlikely(!sd)) {
de1b301a 1515 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1516 return -EINVAL;
1517 }
1518
2c8a50aa 1519 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1520 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1521 taskweight = task_weight(p, env.src_nid, dist);
1522 groupweight = group_weight(p, env.src_nid, dist);
1523 update_numa_stats(&env.src_stats, env.src_nid);
1524 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1525 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1526 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1527
a43455a1 1528 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1529 if (numa_has_capacity(&env))
1530 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1531
9de05d48
RR
1532 /*
1533 * Look at other nodes in these cases:
1534 * - there is no space available on the preferred_nid
1535 * - the task is part of a numa_group that is interleaved across
1536 * multiple NUMA nodes; in order to better consolidate the group,
1537 * we need to check other locations.
1538 */
1539 if (env.best_cpu == -1 || (p->numa_group &&
1540 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1541 for_each_online_node(nid) {
1542 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1543 continue;
58d081b5 1544
7bd95320 1545 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1546 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1547 dist != env.dist) {
1548 taskweight = task_weight(p, env.src_nid, dist);
1549 groupweight = group_weight(p, env.src_nid, dist);
1550 }
7bd95320 1551
83e1d2cd 1552 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1553 taskimp = task_weight(p, nid, dist) - taskweight;
1554 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1555 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1556 continue;
1557
7bd95320 1558 env.dist = dist;
2c8a50aa
MG
1559 env.dst_nid = nid;
1560 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1561 if (numa_has_capacity(&env))
1562 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1563 }
1564 }
1565
68d1b02a
RR
1566 /*
1567 * If the task is part of a workload that spans multiple NUMA nodes,
1568 * and is migrating into one of the workload's active nodes, remember
1569 * this node as the task's preferred numa node, so the workload can
1570 * settle down.
1571 * A task that migrated to a second choice node will be better off
1572 * trying for a better one later. Do not set the preferred node here.
1573 */
db015dae
RR
1574 if (p->numa_group) {
1575 if (env.best_cpu == -1)
1576 nid = env.src_nid;
1577 else
1578 nid = env.dst_nid;
1579
1580 if (node_isset(nid, p->numa_group->active_nodes))
1581 sched_setnuma(p, env.dst_nid);
1582 }
1583
1584 /* No better CPU than the current one was found. */
1585 if (env.best_cpu == -1)
1586 return -EAGAIN;
0ec8aa00 1587
04bb2f94
RR
1588 /*
1589 * Reset the scan period if the task is being rescheduled on an
1590 * alternative node to recheck if the tasks is now properly placed.
1591 */
1592 p->numa_scan_period = task_scan_min(p);
1593
fb13c7ee 1594 if (env.best_task == NULL) {
286549dc
MG
1595 ret = migrate_task_to(p, env.best_cpu);
1596 if (ret != 0)
1597 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1598 return ret;
1599 }
1600
1601 ret = migrate_swap(p, env.best_task);
286549dc
MG
1602 if (ret != 0)
1603 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1604 put_task_struct(env.best_task);
1605 return ret;
e6628d5b
MG
1606}
1607
6b9a7460
MG
1608/* Attempt to migrate a task to a CPU on the preferred node. */
1609static void numa_migrate_preferred(struct task_struct *p)
1610{
5085e2a3
RR
1611 unsigned long interval = HZ;
1612
2739d3ee 1613 /* This task has no NUMA fault statistics yet */
44dba3d5 1614 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1615 return;
1616
2739d3ee 1617 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1618 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1619 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1620
1621 /* Success if task is already running on preferred CPU */
de1b301a 1622 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1623 return;
1624
1625 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1626 task_numa_migrate(p);
6b9a7460
MG
1627}
1628
20e07dea
RR
1629/*
1630 * Find the nodes on which the workload is actively running. We do this by
1631 * tracking the nodes from which NUMA hinting faults are triggered. This can
1632 * be different from the set of nodes where the workload's memory is currently
1633 * located.
1634 *
1635 * The bitmask is used to make smarter decisions on when to do NUMA page
1636 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1637 * are added when they cause over 6/16 of the maximum number of faults, but
1638 * only removed when they drop below 3/16.
1639 */
1640static void update_numa_active_node_mask(struct numa_group *numa_group)
1641{
1642 unsigned long faults, max_faults = 0;
1643 int nid;
1644
1645 for_each_online_node(nid) {
1646 faults = group_faults_cpu(numa_group, nid);
1647 if (faults > max_faults)
1648 max_faults = faults;
1649 }
1650
1651 for_each_online_node(nid) {
1652 faults = group_faults_cpu(numa_group, nid);
1653 if (!node_isset(nid, numa_group->active_nodes)) {
1654 if (faults > max_faults * 6 / 16)
1655 node_set(nid, numa_group->active_nodes);
1656 } else if (faults < max_faults * 3 / 16)
1657 node_clear(nid, numa_group->active_nodes);
1658 }
1659}
1660
04bb2f94
RR
1661/*
1662 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1663 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1664 * period will be for the next scan window. If local/(local+remote) ratio is
1665 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1666 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1667 */
1668#define NUMA_PERIOD_SLOTS 10
a22b4b01 1669#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1670
1671/*
1672 * Increase the scan period (slow down scanning) if the majority of
1673 * our memory is already on our local node, or if the majority of
1674 * the page accesses are shared with other processes.
1675 * Otherwise, decrease the scan period.
1676 */
1677static void update_task_scan_period(struct task_struct *p,
1678 unsigned long shared, unsigned long private)
1679{
1680 unsigned int period_slot;
1681 int ratio;
1682 int diff;
1683
1684 unsigned long remote = p->numa_faults_locality[0];
1685 unsigned long local = p->numa_faults_locality[1];
1686
1687 /*
1688 * If there were no record hinting faults then either the task is
1689 * completely idle or all activity is areas that are not of interest
074c2381
MG
1690 * to automatic numa balancing. Related to that, if there were failed
1691 * migration then it implies we are migrating too quickly or the local
1692 * node is overloaded. In either case, scan slower
04bb2f94 1693 */
074c2381 1694 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1695 p->numa_scan_period = min(p->numa_scan_period_max,
1696 p->numa_scan_period << 1);
1697
1698 p->mm->numa_next_scan = jiffies +
1699 msecs_to_jiffies(p->numa_scan_period);
1700
1701 return;
1702 }
1703
1704 /*
1705 * Prepare to scale scan period relative to the current period.
1706 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1707 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1708 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1709 */
1710 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1711 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1712 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1713 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1714 if (!slot)
1715 slot = 1;
1716 diff = slot * period_slot;
1717 } else {
1718 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1719
1720 /*
1721 * Scale scan rate increases based on sharing. There is an
1722 * inverse relationship between the degree of sharing and
1723 * the adjustment made to the scanning period. Broadly
1724 * speaking the intent is that there is little point
1725 * scanning faster if shared accesses dominate as it may
1726 * simply bounce migrations uselessly
1727 */
2847c90e 1728 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1729 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1730 }
1731
1732 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1733 task_scan_min(p), task_scan_max(p));
1734 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1735}
1736
7e2703e6
RR
1737/*
1738 * Get the fraction of time the task has been running since the last
1739 * NUMA placement cycle. The scheduler keeps similar statistics, but
1740 * decays those on a 32ms period, which is orders of magnitude off
1741 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1742 * stats only if the task is so new there are no NUMA statistics yet.
1743 */
1744static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1745{
1746 u64 runtime, delta, now;
1747 /* Use the start of this time slice to avoid calculations. */
1748 now = p->se.exec_start;
1749 runtime = p->se.sum_exec_runtime;
1750
1751 if (p->last_task_numa_placement) {
1752 delta = runtime - p->last_sum_exec_runtime;
1753 *period = now - p->last_task_numa_placement;
1754 } else {
9d89c257
YD
1755 delta = p->se.avg.load_sum / p->se.load.weight;
1756 *period = LOAD_AVG_MAX;
7e2703e6
RR
1757 }
1758
1759 p->last_sum_exec_runtime = runtime;
1760 p->last_task_numa_placement = now;
1761
1762 return delta;
1763}
1764
54009416
RR
1765/*
1766 * Determine the preferred nid for a task in a numa_group. This needs to
1767 * be done in a way that produces consistent results with group_weight,
1768 * otherwise workloads might not converge.
1769 */
1770static int preferred_group_nid(struct task_struct *p, int nid)
1771{
1772 nodemask_t nodes;
1773 int dist;
1774
1775 /* Direct connections between all NUMA nodes. */
1776 if (sched_numa_topology_type == NUMA_DIRECT)
1777 return nid;
1778
1779 /*
1780 * On a system with glueless mesh NUMA topology, group_weight
1781 * scores nodes according to the number of NUMA hinting faults on
1782 * both the node itself, and on nearby nodes.
1783 */
1784 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1785 unsigned long score, max_score = 0;
1786 int node, max_node = nid;
1787
1788 dist = sched_max_numa_distance;
1789
1790 for_each_online_node(node) {
1791 score = group_weight(p, node, dist);
1792 if (score > max_score) {
1793 max_score = score;
1794 max_node = node;
1795 }
1796 }
1797 return max_node;
1798 }
1799
1800 /*
1801 * Finding the preferred nid in a system with NUMA backplane
1802 * interconnect topology is more involved. The goal is to locate
1803 * tasks from numa_groups near each other in the system, and
1804 * untangle workloads from different sides of the system. This requires
1805 * searching down the hierarchy of node groups, recursively searching
1806 * inside the highest scoring group of nodes. The nodemask tricks
1807 * keep the complexity of the search down.
1808 */
1809 nodes = node_online_map;
1810 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1811 unsigned long max_faults = 0;
81907478 1812 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1813 int a, b;
1814
1815 /* Are there nodes at this distance from each other? */
1816 if (!find_numa_distance(dist))
1817 continue;
1818
1819 for_each_node_mask(a, nodes) {
1820 unsigned long faults = 0;
1821 nodemask_t this_group;
1822 nodes_clear(this_group);
1823
1824 /* Sum group's NUMA faults; includes a==b case. */
1825 for_each_node_mask(b, nodes) {
1826 if (node_distance(a, b) < dist) {
1827 faults += group_faults(p, b);
1828 node_set(b, this_group);
1829 node_clear(b, nodes);
1830 }
1831 }
1832
1833 /* Remember the top group. */
1834 if (faults > max_faults) {
1835 max_faults = faults;
1836 max_group = this_group;
1837 /*
1838 * subtle: at the smallest distance there is
1839 * just one node left in each "group", the
1840 * winner is the preferred nid.
1841 */
1842 nid = a;
1843 }
1844 }
1845 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1846 if (!max_faults)
1847 break;
54009416
RR
1848 nodes = max_group;
1849 }
1850 return nid;
1851}
1852
cbee9f88
PZ
1853static void task_numa_placement(struct task_struct *p)
1854{
83e1d2cd
MG
1855 int seq, nid, max_nid = -1, max_group_nid = -1;
1856 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1857 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1858 unsigned long total_faults;
1859 u64 runtime, period;
7dbd13ed 1860 spinlock_t *group_lock = NULL;
cbee9f88 1861
7e5a2c17
JL
1862 /*
1863 * The p->mm->numa_scan_seq field gets updated without
1864 * exclusive access. Use READ_ONCE() here to ensure
1865 * that the field is read in a single access:
1866 */
316c1608 1867 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1868 if (p->numa_scan_seq == seq)
1869 return;
1870 p->numa_scan_seq = seq;
598f0ec0 1871 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1872
7e2703e6
RR
1873 total_faults = p->numa_faults_locality[0] +
1874 p->numa_faults_locality[1];
1875 runtime = numa_get_avg_runtime(p, &period);
1876
7dbd13ed
MG
1877 /* If the task is part of a group prevent parallel updates to group stats */
1878 if (p->numa_group) {
1879 group_lock = &p->numa_group->lock;
60e69eed 1880 spin_lock_irq(group_lock);
7dbd13ed
MG
1881 }
1882
688b7585
MG
1883 /* Find the node with the highest number of faults */
1884 for_each_online_node(nid) {
44dba3d5
IM
1885 /* Keep track of the offsets in numa_faults array */
1886 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1887 unsigned long faults = 0, group_faults = 0;
44dba3d5 1888 int priv;
745d6147 1889
be1e4e76 1890 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1891 long diff, f_diff, f_weight;
8c8a743c 1892
44dba3d5
IM
1893 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1894 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1895 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1896 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1897
ac8e895b 1898 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1899 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1900 fault_types[priv] += p->numa_faults[membuf_idx];
1901 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1902
7e2703e6
RR
1903 /*
1904 * Normalize the faults_from, so all tasks in a group
1905 * count according to CPU use, instead of by the raw
1906 * number of faults. Tasks with little runtime have
1907 * little over-all impact on throughput, and thus their
1908 * faults are less important.
1909 */
1910 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1911 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1912 (total_faults + 1);
44dba3d5
IM
1913 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1914 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1915
44dba3d5
IM
1916 p->numa_faults[mem_idx] += diff;
1917 p->numa_faults[cpu_idx] += f_diff;
1918 faults += p->numa_faults[mem_idx];
83e1d2cd 1919 p->total_numa_faults += diff;
8c8a743c 1920 if (p->numa_group) {
44dba3d5
IM
1921 /*
1922 * safe because we can only change our own group
1923 *
1924 * mem_idx represents the offset for a given
1925 * nid and priv in a specific region because it
1926 * is at the beginning of the numa_faults array.
1927 */
1928 p->numa_group->faults[mem_idx] += diff;
1929 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1930 p->numa_group->total_faults += diff;
44dba3d5 1931 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1932 }
ac8e895b
MG
1933 }
1934
688b7585
MG
1935 if (faults > max_faults) {
1936 max_faults = faults;
1937 max_nid = nid;
1938 }
83e1d2cd
MG
1939
1940 if (group_faults > max_group_faults) {
1941 max_group_faults = group_faults;
1942 max_group_nid = nid;
1943 }
1944 }
1945
04bb2f94
RR
1946 update_task_scan_period(p, fault_types[0], fault_types[1]);
1947
7dbd13ed 1948 if (p->numa_group) {
20e07dea 1949 update_numa_active_node_mask(p->numa_group);
60e69eed 1950 spin_unlock_irq(group_lock);
54009416 1951 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1952 }
1953
bb97fc31
RR
1954 if (max_faults) {
1955 /* Set the new preferred node */
1956 if (max_nid != p->numa_preferred_nid)
1957 sched_setnuma(p, max_nid);
1958
1959 if (task_node(p) != p->numa_preferred_nid)
1960 numa_migrate_preferred(p);
3a7053b3 1961 }
cbee9f88
PZ
1962}
1963
8c8a743c
PZ
1964static inline int get_numa_group(struct numa_group *grp)
1965{
1966 return atomic_inc_not_zero(&grp->refcount);
1967}
1968
1969static inline void put_numa_group(struct numa_group *grp)
1970{
1971 if (atomic_dec_and_test(&grp->refcount))
1972 kfree_rcu(grp, rcu);
1973}
1974
3e6a9418
MG
1975static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1976 int *priv)
8c8a743c
PZ
1977{
1978 struct numa_group *grp, *my_grp;
1979 struct task_struct *tsk;
1980 bool join = false;
1981 int cpu = cpupid_to_cpu(cpupid);
1982 int i;
1983
1984 if (unlikely(!p->numa_group)) {
1985 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1986 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1987
1988 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1989 if (!grp)
1990 return;
1991
1992 atomic_set(&grp->refcount, 1);
1993 spin_lock_init(&grp->lock);
e29cf08b 1994 grp->gid = p->pid;
50ec8a40 1995 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1996 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1997 nr_node_ids;
8c8a743c 1998
20e07dea
RR
1999 node_set(task_node(current), grp->active_nodes);
2000
be1e4e76 2001 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2002 grp->faults[i] = p->numa_faults[i];
8c8a743c 2003
989348b5 2004 grp->total_faults = p->total_numa_faults;
83e1d2cd 2005
8c8a743c
PZ
2006 grp->nr_tasks++;
2007 rcu_assign_pointer(p->numa_group, grp);
2008 }
2009
2010 rcu_read_lock();
316c1608 2011 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2012
2013 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2014 goto no_join;
8c8a743c
PZ
2015
2016 grp = rcu_dereference(tsk->numa_group);
2017 if (!grp)
3354781a 2018 goto no_join;
8c8a743c
PZ
2019
2020 my_grp = p->numa_group;
2021 if (grp == my_grp)
3354781a 2022 goto no_join;
8c8a743c
PZ
2023
2024 /*
2025 * Only join the other group if its bigger; if we're the bigger group,
2026 * the other task will join us.
2027 */
2028 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2029 goto no_join;
8c8a743c
PZ
2030
2031 /*
2032 * Tie-break on the grp address.
2033 */
2034 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2035 goto no_join;
8c8a743c 2036
dabe1d99
RR
2037 /* Always join threads in the same process. */
2038 if (tsk->mm == current->mm)
2039 join = true;
2040
2041 /* Simple filter to avoid false positives due to PID collisions */
2042 if (flags & TNF_SHARED)
2043 join = true;
8c8a743c 2044
3e6a9418
MG
2045 /* Update priv based on whether false sharing was detected */
2046 *priv = !join;
2047
dabe1d99 2048 if (join && !get_numa_group(grp))
3354781a 2049 goto no_join;
8c8a743c 2050
8c8a743c
PZ
2051 rcu_read_unlock();
2052
2053 if (!join)
2054 return;
2055
60e69eed
MG
2056 BUG_ON(irqs_disabled());
2057 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2058
be1e4e76 2059 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2060 my_grp->faults[i] -= p->numa_faults[i];
2061 grp->faults[i] += p->numa_faults[i];
8c8a743c 2062 }
989348b5
MG
2063 my_grp->total_faults -= p->total_numa_faults;
2064 grp->total_faults += p->total_numa_faults;
8c8a743c 2065
8c8a743c
PZ
2066 my_grp->nr_tasks--;
2067 grp->nr_tasks++;
2068
2069 spin_unlock(&my_grp->lock);
60e69eed 2070 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2071
2072 rcu_assign_pointer(p->numa_group, grp);
2073
2074 put_numa_group(my_grp);
3354781a
PZ
2075 return;
2076
2077no_join:
2078 rcu_read_unlock();
2079 return;
8c8a743c
PZ
2080}
2081
2082void task_numa_free(struct task_struct *p)
2083{
2084 struct numa_group *grp = p->numa_group;
44dba3d5 2085 void *numa_faults = p->numa_faults;
e9dd685c
SR
2086 unsigned long flags;
2087 int i;
8c8a743c
PZ
2088
2089 if (grp) {
e9dd685c 2090 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2091 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2092 grp->faults[i] -= p->numa_faults[i];
989348b5 2093 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2094
8c8a743c 2095 grp->nr_tasks--;
e9dd685c 2096 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2097 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2098 put_numa_group(grp);
2099 }
2100
44dba3d5 2101 p->numa_faults = NULL;
82727018 2102 kfree(numa_faults);
8c8a743c
PZ
2103}
2104
cbee9f88
PZ
2105/*
2106 * Got a PROT_NONE fault for a page on @node.
2107 */
58b46da3 2108void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2109{
2110 struct task_struct *p = current;
6688cc05 2111 bool migrated = flags & TNF_MIGRATED;
58b46da3 2112 int cpu_node = task_node(current);
792568ec 2113 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2114 int priv;
cbee9f88 2115
2a595721 2116 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2117 return;
2118
9ff1d9ff
MG
2119 /* for example, ksmd faulting in a user's mm */
2120 if (!p->mm)
2121 return;
2122
f809ca9a 2123 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2124 if (unlikely(!p->numa_faults)) {
2125 int size = sizeof(*p->numa_faults) *
be1e4e76 2126 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2127
44dba3d5
IM
2128 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2129 if (!p->numa_faults)
f809ca9a 2130 return;
745d6147 2131
83e1d2cd 2132 p->total_numa_faults = 0;
04bb2f94 2133 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2134 }
cbee9f88 2135
8c8a743c
PZ
2136 /*
2137 * First accesses are treated as private, otherwise consider accesses
2138 * to be private if the accessing pid has not changed
2139 */
2140 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2141 priv = 1;
2142 } else {
2143 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2144 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2145 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2146 }
2147
792568ec
RR
2148 /*
2149 * If a workload spans multiple NUMA nodes, a shared fault that
2150 * occurs wholly within the set of nodes that the workload is
2151 * actively using should be counted as local. This allows the
2152 * scan rate to slow down when a workload has settled down.
2153 */
2154 if (!priv && !local && p->numa_group &&
2155 node_isset(cpu_node, p->numa_group->active_nodes) &&
2156 node_isset(mem_node, p->numa_group->active_nodes))
2157 local = 1;
2158
cbee9f88 2159 task_numa_placement(p);
f809ca9a 2160
2739d3ee
RR
2161 /*
2162 * Retry task to preferred node migration periodically, in case it
2163 * case it previously failed, or the scheduler moved us.
2164 */
2165 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2166 numa_migrate_preferred(p);
2167
b32e86b4
IM
2168 if (migrated)
2169 p->numa_pages_migrated += pages;
074c2381
MG
2170 if (flags & TNF_MIGRATE_FAIL)
2171 p->numa_faults_locality[2] += pages;
b32e86b4 2172
44dba3d5
IM
2173 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2174 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2175 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2176}
2177
6e5fb223
PZ
2178static void reset_ptenuma_scan(struct task_struct *p)
2179{
7e5a2c17
JL
2180 /*
2181 * We only did a read acquisition of the mmap sem, so
2182 * p->mm->numa_scan_seq is written to without exclusive access
2183 * and the update is not guaranteed to be atomic. That's not
2184 * much of an issue though, since this is just used for
2185 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2186 * expensive, to avoid any form of compiler optimizations:
2187 */
316c1608 2188 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2189 p->mm->numa_scan_offset = 0;
2190}
2191
cbee9f88
PZ
2192/*
2193 * The expensive part of numa migration is done from task_work context.
2194 * Triggered from task_tick_numa().
2195 */
2196void task_numa_work(struct callback_head *work)
2197{
2198 unsigned long migrate, next_scan, now = jiffies;
2199 struct task_struct *p = current;
2200 struct mm_struct *mm = p->mm;
51170840 2201 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2202 struct vm_area_struct *vma;
9f40604c 2203 unsigned long start, end;
598f0ec0 2204 unsigned long nr_pte_updates = 0;
4620f8c1 2205 long pages, virtpages;
cbee9f88
PZ
2206
2207 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2208
2209 work->next = work; /* protect against double add */
2210 /*
2211 * Who cares about NUMA placement when they're dying.
2212 *
2213 * NOTE: make sure not to dereference p->mm before this check,
2214 * exit_task_work() happens _after_ exit_mm() so we could be called
2215 * without p->mm even though we still had it when we enqueued this
2216 * work.
2217 */
2218 if (p->flags & PF_EXITING)
2219 return;
2220
930aa174 2221 if (!mm->numa_next_scan) {
7e8d16b6
MG
2222 mm->numa_next_scan = now +
2223 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2224 }
2225
cbee9f88
PZ
2226 /*
2227 * Enforce maximal scan/migration frequency..
2228 */
2229 migrate = mm->numa_next_scan;
2230 if (time_before(now, migrate))
2231 return;
2232
598f0ec0
MG
2233 if (p->numa_scan_period == 0) {
2234 p->numa_scan_period_max = task_scan_max(p);
2235 p->numa_scan_period = task_scan_min(p);
2236 }
cbee9f88 2237
fb003b80 2238 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2239 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2240 return;
2241
19a78d11
PZ
2242 /*
2243 * Delay this task enough that another task of this mm will likely win
2244 * the next time around.
2245 */
2246 p->node_stamp += 2 * TICK_NSEC;
2247
9f40604c
MG
2248 start = mm->numa_scan_offset;
2249 pages = sysctl_numa_balancing_scan_size;
2250 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2251 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2252 if (!pages)
2253 return;
cbee9f88 2254
4620f8c1 2255
6e5fb223 2256 down_read(&mm->mmap_sem);
9f40604c 2257 vma = find_vma(mm, start);
6e5fb223
PZ
2258 if (!vma) {
2259 reset_ptenuma_scan(p);
9f40604c 2260 start = 0;
6e5fb223
PZ
2261 vma = mm->mmap;
2262 }
9f40604c 2263 for (; vma; vma = vma->vm_next) {
6b79c57b 2264 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2265 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2266 continue;
6b79c57b 2267 }
6e5fb223 2268
4591ce4f
MG
2269 /*
2270 * Shared library pages mapped by multiple processes are not
2271 * migrated as it is expected they are cache replicated. Avoid
2272 * hinting faults in read-only file-backed mappings or the vdso
2273 * as migrating the pages will be of marginal benefit.
2274 */
2275 if (!vma->vm_mm ||
2276 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2277 continue;
2278
3c67f474
MG
2279 /*
2280 * Skip inaccessible VMAs to avoid any confusion between
2281 * PROT_NONE and NUMA hinting ptes
2282 */
2283 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2284 continue;
4591ce4f 2285
9f40604c
MG
2286 do {
2287 start = max(start, vma->vm_start);
2288 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2289 end = min(end, vma->vm_end);
4620f8c1 2290 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2291
2292 /*
4620f8c1
RR
2293 * Try to scan sysctl_numa_balancing_size worth of
2294 * hpages that have at least one present PTE that
2295 * is not already pte-numa. If the VMA contains
2296 * areas that are unused or already full of prot_numa
2297 * PTEs, scan up to virtpages, to skip through those
2298 * areas faster.
598f0ec0
MG
2299 */
2300 if (nr_pte_updates)
2301 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2302 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2303
9f40604c 2304 start = end;
4620f8c1 2305 if (pages <= 0 || virtpages <= 0)
9f40604c 2306 goto out;
3cf1962c
RR
2307
2308 cond_resched();
9f40604c 2309 } while (end != vma->vm_end);
cbee9f88 2310 }
6e5fb223 2311
9f40604c 2312out:
6e5fb223 2313 /*
c69307d5
PZ
2314 * It is possible to reach the end of the VMA list but the last few
2315 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2316 * would find the !migratable VMA on the next scan but not reset the
2317 * scanner to the start so check it now.
6e5fb223
PZ
2318 */
2319 if (vma)
9f40604c 2320 mm->numa_scan_offset = start;
6e5fb223
PZ
2321 else
2322 reset_ptenuma_scan(p);
2323 up_read(&mm->mmap_sem);
51170840
RR
2324
2325 /*
2326 * Make sure tasks use at least 32x as much time to run other code
2327 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2328 * Usually update_task_scan_period slows down scanning enough; on an
2329 * overloaded system we need to limit overhead on a per task basis.
2330 */
2331 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2332 u64 diff = p->se.sum_exec_runtime - runtime;
2333 p->node_stamp += 32 * diff;
2334 }
cbee9f88
PZ
2335}
2336
2337/*
2338 * Drive the periodic memory faults..
2339 */
2340void task_tick_numa(struct rq *rq, struct task_struct *curr)
2341{
2342 struct callback_head *work = &curr->numa_work;
2343 u64 period, now;
2344
2345 /*
2346 * We don't care about NUMA placement if we don't have memory.
2347 */
2348 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2349 return;
2350
2351 /*
2352 * Using runtime rather than walltime has the dual advantage that
2353 * we (mostly) drive the selection from busy threads and that the
2354 * task needs to have done some actual work before we bother with
2355 * NUMA placement.
2356 */
2357 now = curr->se.sum_exec_runtime;
2358 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2359
25b3e5a3 2360 if (now > curr->node_stamp + period) {
4b96a29b 2361 if (!curr->node_stamp)
598f0ec0 2362 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2363 curr->node_stamp += period;
cbee9f88
PZ
2364
2365 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2366 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2367 task_work_add(curr, work, true);
2368 }
2369 }
2370}
2371#else
2372static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374}
0ec8aa00
PZ
2375
2376static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2377{
2378}
2379
2380static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2381{
2382}
cbee9f88
PZ
2383#endif /* CONFIG_NUMA_BALANCING */
2384
30cfdcfc
DA
2385static void
2386account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2387{
2388 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2389 if (!parent_entity(se))
029632fb 2390 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2391#ifdef CONFIG_SMP
0ec8aa00
PZ
2392 if (entity_is_task(se)) {
2393 struct rq *rq = rq_of(cfs_rq);
2394
2395 account_numa_enqueue(rq, task_of(se));
2396 list_add(&se->group_node, &rq->cfs_tasks);
2397 }
367456c7 2398#endif
30cfdcfc 2399 cfs_rq->nr_running++;
30cfdcfc
DA
2400}
2401
2402static void
2403account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2404{
2405 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2406 if (!parent_entity(se))
029632fb 2407 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2408 if (entity_is_task(se)) {
2409 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2410 list_del_init(&se->group_node);
0ec8aa00 2411 }
30cfdcfc 2412 cfs_rq->nr_running--;
30cfdcfc
DA
2413}
2414
3ff6dcac
YZ
2415#ifdef CONFIG_FAIR_GROUP_SCHED
2416# ifdef CONFIG_SMP
cf5f0acf
PZ
2417static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2418{
2419 long tg_weight;
2420
2421 /*
9d89c257
YD
2422 * Use this CPU's real-time load instead of the last load contribution
2423 * as the updating of the contribution is delayed, and we will use the
2424 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2425 */
bf5b986e 2426 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2427 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2428 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2429
2430 return tg_weight;
2431}
2432
6d5ab293 2433static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2434{
cf5f0acf 2435 long tg_weight, load, shares;
3ff6dcac 2436
cf5f0acf 2437 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2438 load = cfs_rq->load.weight;
3ff6dcac 2439
3ff6dcac 2440 shares = (tg->shares * load);
cf5f0acf
PZ
2441 if (tg_weight)
2442 shares /= tg_weight;
3ff6dcac
YZ
2443
2444 if (shares < MIN_SHARES)
2445 shares = MIN_SHARES;
2446 if (shares > tg->shares)
2447 shares = tg->shares;
2448
2449 return shares;
2450}
3ff6dcac 2451# else /* CONFIG_SMP */
6d5ab293 2452static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2453{
2454 return tg->shares;
2455}
3ff6dcac 2456# endif /* CONFIG_SMP */
2069dd75
PZ
2457static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2458 unsigned long weight)
2459{
19e5eebb
PT
2460 if (se->on_rq) {
2461 /* commit outstanding execution time */
2462 if (cfs_rq->curr == se)
2463 update_curr(cfs_rq);
2069dd75 2464 account_entity_dequeue(cfs_rq, se);
19e5eebb 2465 }
2069dd75
PZ
2466
2467 update_load_set(&se->load, weight);
2468
2469 if (se->on_rq)
2470 account_entity_enqueue(cfs_rq, se);
2471}
2472
82958366
PT
2473static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2474
6d5ab293 2475static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2476{
2477 struct task_group *tg;
2478 struct sched_entity *se;
3ff6dcac 2479 long shares;
2069dd75 2480
2069dd75
PZ
2481 tg = cfs_rq->tg;
2482 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2483 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2484 return;
3ff6dcac
YZ
2485#ifndef CONFIG_SMP
2486 if (likely(se->load.weight == tg->shares))
2487 return;
2488#endif
6d5ab293 2489 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2490
2491 reweight_entity(cfs_rq_of(se), se, shares);
2492}
2493#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2494static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2495{
2496}
2497#endif /* CONFIG_FAIR_GROUP_SCHED */
2498
141965c7 2499#ifdef CONFIG_SMP
5b51f2f8
PT
2500/* Precomputed fixed inverse multiplies for multiplication by y^n */
2501static const u32 runnable_avg_yN_inv[] = {
2502 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2503 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2504 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2505 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2506 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2507 0x85aac367, 0x82cd8698,
2508};
2509
2510/*
2511 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2512 * over-estimates when re-combining.
2513 */
2514static const u32 runnable_avg_yN_sum[] = {
2515 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2516 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2517 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2518};
2519
9d85f21c
PT
2520/*
2521 * Approximate:
2522 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2523 */
2524static __always_inline u64 decay_load(u64 val, u64 n)
2525{
5b51f2f8
PT
2526 unsigned int local_n;
2527
2528 if (!n)
2529 return val;
2530 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2531 return 0;
2532
2533 /* after bounds checking we can collapse to 32-bit */
2534 local_n = n;
2535
2536 /*
2537 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2538 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2539 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2540 *
2541 * To achieve constant time decay_load.
2542 */
2543 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2544 val >>= local_n / LOAD_AVG_PERIOD;
2545 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2546 }
2547
9d89c257
YD
2548 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2549 return val;
5b51f2f8
PT
2550}
2551
2552/*
2553 * For updates fully spanning n periods, the contribution to runnable
2554 * average will be: \Sum 1024*y^n
2555 *
2556 * We can compute this reasonably efficiently by combining:
2557 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2558 */
2559static u32 __compute_runnable_contrib(u64 n)
2560{
2561 u32 contrib = 0;
2562
2563 if (likely(n <= LOAD_AVG_PERIOD))
2564 return runnable_avg_yN_sum[n];
2565 else if (unlikely(n >= LOAD_AVG_MAX_N))
2566 return LOAD_AVG_MAX;
2567
2568 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2569 do {
2570 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2571 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2572
2573 n -= LOAD_AVG_PERIOD;
2574 } while (n > LOAD_AVG_PERIOD);
2575
2576 contrib = decay_load(contrib, n);
2577 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2578}
2579
006cdf02
PZ
2580#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2581#error "load tracking assumes 2^10 as unit"
2582#endif
2583
54a21385 2584#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2585
9d85f21c
PT
2586/*
2587 * We can represent the historical contribution to runnable average as the
2588 * coefficients of a geometric series. To do this we sub-divide our runnable
2589 * history into segments of approximately 1ms (1024us); label the segment that
2590 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2591 *
2592 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2593 * p0 p1 p2
2594 * (now) (~1ms ago) (~2ms ago)
2595 *
2596 * Let u_i denote the fraction of p_i that the entity was runnable.
2597 *
2598 * We then designate the fractions u_i as our co-efficients, yielding the
2599 * following representation of historical load:
2600 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2601 *
2602 * We choose y based on the with of a reasonably scheduling period, fixing:
2603 * y^32 = 0.5
2604 *
2605 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2606 * approximately half as much as the contribution to load within the last ms
2607 * (u_0).
2608 *
2609 * When a period "rolls over" and we have new u_0`, multiplying the previous
2610 * sum again by y is sufficient to update:
2611 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2612 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2613 */
9d89c257
YD
2614static __always_inline int
2615__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2616 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2617{
e0f5f3af 2618 u64 delta, scaled_delta, periods;
9d89c257 2619 u32 contrib;
6115c793 2620 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2621 unsigned long scale_freq, scale_cpu;
9d85f21c 2622
9d89c257 2623 delta = now - sa->last_update_time;
9d85f21c
PT
2624 /*
2625 * This should only happen when time goes backwards, which it
2626 * unfortunately does during sched clock init when we swap over to TSC.
2627 */
2628 if ((s64)delta < 0) {
9d89c257 2629 sa->last_update_time = now;
9d85f21c
PT
2630 return 0;
2631 }
2632
2633 /*
2634 * Use 1024ns as the unit of measurement since it's a reasonable
2635 * approximation of 1us and fast to compute.
2636 */
2637 delta >>= 10;
2638 if (!delta)
2639 return 0;
9d89c257 2640 sa->last_update_time = now;
9d85f21c 2641
6f2b0452
DE
2642 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2643 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2644
9d85f21c 2645 /* delta_w is the amount already accumulated against our next period */
9d89c257 2646 delta_w = sa->period_contrib;
9d85f21c 2647 if (delta + delta_w >= 1024) {
9d85f21c
PT
2648 decayed = 1;
2649
9d89c257
YD
2650 /* how much left for next period will start over, we don't know yet */
2651 sa->period_contrib = 0;
2652
9d85f21c
PT
2653 /*
2654 * Now that we know we're crossing a period boundary, figure
2655 * out how much from delta we need to complete the current
2656 * period and accrue it.
2657 */
2658 delta_w = 1024 - delta_w;
54a21385 2659 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2660 if (weight) {
e0f5f3af
DE
2661 sa->load_sum += weight * scaled_delta_w;
2662 if (cfs_rq) {
2663 cfs_rq->runnable_load_sum +=
2664 weight * scaled_delta_w;
2665 }
13962234 2666 }
36ee28e4 2667 if (running)
006cdf02 2668 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2669
2670 delta -= delta_w;
2671
2672 /* Figure out how many additional periods this update spans */
2673 periods = delta / 1024;
2674 delta %= 1024;
2675
9d89c257 2676 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2677 if (cfs_rq) {
2678 cfs_rq->runnable_load_sum =
2679 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2680 }
9d89c257 2681 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2682
2683 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2684 contrib = __compute_runnable_contrib(periods);
54a21385 2685 contrib = cap_scale(contrib, scale_freq);
13962234 2686 if (weight) {
9d89c257 2687 sa->load_sum += weight * contrib;
13962234
YD
2688 if (cfs_rq)
2689 cfs_rq->runnable_load_sum += weight * contrib;
2690 }
36ee28e4 2691 if (running)
006cdf02 2692 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2693 }
2694
2695 /* Remainder of delta accrued against u_0` */
54a21385 2696 scaled_delta = cap_scale(delta, scale_freq);
13962234 2697 if (weight) {
e0f5f3af 2698 sa->load_sum += weight * scaled_delta;
13962234 2699 if (cfs_rq)
e0f5f3af 2700 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2701 }
36ee28e4 2702 if (running)
006cdf02 2703 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2704
9d89c257 2705 sa->period_contrib += delta;
9ee474f5 2706
9d89c257
YD
2707 if (decayed) {
2708 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_avg =
2711 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2712 }
006cdf02 2713 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2714 }
aff3e498 2715
9d89c257 2716 return decayed;
9ee474f5
PT
2717}
2718
c566e8e9 2719#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2720/*
9d89c257
YD
2721 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2722 * and effective_load (which is not done because it is too costly).
bb17f655 2723 */
9d89c257 2724static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2725{
9d89c257 2726 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2727
aa0b7ae0
WL
2728 /*
2729 * No need to update load_avg for root_task_group as it is not used.
2730 */
2731 if (cfs_rq->tg == &root_task_group)
2732 return;
2733
9d89c257
YD
2734 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2735 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2736 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2737 }
8165e145 2738}
f5f9739d 2739
ad936d86
BP
2740/*
2741 * Called within set_task_rq() right before setting a task's cpu. The
2742 * caller only guarantees p->pi_lock is held; no other assumptions,
2743 * including the state of rq->lock, should be made.
2744 */
2745void set_task_rq_fair(struct sched_entity *se,
2746 struct cfs_rq *prev, struct cfs_rq *next)
2747{
2748 if (!sched_feat(ATTACH_AGE_LOAD))
2749 return;
2750
2751 /*
2752 * We are supposed to update the task to "current" time, then its up to
2753 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2754 * getting what current time is, so simply throw away the out-of-date
2755 * time. This will result in the wakee task is less decayed, but giving
2756 * the wakee more load sounds not bad.
2757 */
2758 if (se->avg.last_update_time && prev) {
2759 u64 p_last_update_time;
2760 u64 n_last_update_time;
2761
2762#ifndef CONFIG_64BIT
2763 u64 p_last_update_time_copy;
2764 u64 n_last_update_time_copy;
2765
2766 do {
2767 p_last_update_time_copy = prev->load_last_update_time_copy;
2768 n_last_update_time_copy = next->load_last_update_time_copy;
2769
2770 smp_rmb();
2771
2772 p_last_update_time = prev->avg.last_update_time;
2773 n_last_update_time = next->avg.last_update_time;
2774
2775 } while (p_last_update_time != p_last_update_time_copy ||
2776 n_last_update_time != n_last_update_time_copy);
2777#else
2778 p_last_update_time = prev->avg.last_update_time;
2779 n_last_update_time = next->avg.last_update_time;
2780#endif
2781 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2782 &se->avg, 0, 0, NULL);
2783 se->avg.last_update_time = n_last_update_time;
2784 }
2785}
6e83125c 2786#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2787static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2788#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2789
9d89c257 2790static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2791
9d89c257
YD
2792/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2793static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2794{
9d89c257 2795 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2796 int decayed, removed = 0;
2dac754e 2797
9d89c257 2798 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2799 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2800 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2801 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2802 removed = 1;
8165e145 2803 }
2dac754e 2804
9d89c257
YD
2805 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2806 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2807 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2808 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2809 }
36ee28e4 2810
9d89c257 2811 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2812 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2813
9d89c257
YD
2814#ifndef CONFIG_64BIT
2815 smp_wmb();
2816 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2817#endif
36ee28e4 2818
3e386d56 2819 return decayed || removed;
9ee474f5
PT
2820}
2821
9d89c257
YD
2822/* Update task and its cfs_rq load average */
2823static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2824{
2dac754e 2825 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2826 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2827 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2828
f1b17280 2829 /*
9d89c257
YD
2830 * Track task load average for carrying it to new CPU after migrated, and
2831 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2832 */
9d89c257 2833 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2834 se->on_rq * scale_load_down(se->load.weight),
2835 cfs_rq->curr == se, NULL);
f1b17280 2836
9d89c257
YD
2837 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2838 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2839}
2840
a05e8c51
BP
2841static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2842{
a9280514
PZ
2843 if (!sched_feat(ATTACH_AGE_LOAD))
2844 goto skip_aging;
2845
6efdb105
BP
2846 /*
2847 * If we got migrated (either between CPUs or between cgroups) we'll
2848 * have aged the average right before clearing @last_update_time.
2849 */
2850 if (se->avg.last_update_time) {
2851 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2852 &se->avg, 0, 0, NULL);
2853
2854 /*
2855 * XXX: we could have just aged the entire load away if we've been
2856 * absent from the fair class for too long.
2857 */
2858 }
2859
a9280514 2860skip_aging:
a05e8c51
BP
2861 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2862 cfs_rq->avg.load_avg += se->avg.load_avg;
2863 cfs_rq->avg.load_sum += se->avg.load_sum;
2864 cfs_rq->avg.util_avg += se->avg.util_avg;
2865 cfs_rq->avg.util_sum += se->avg.util_sum;
2866}
2867
2868static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2869{
2870 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2871 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2872 cfs_rq->curr == se, NULL);
2873
2874 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2875 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2876 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2877 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2878}
2879
9d89c257
YD
2880/* Add the load generated by se into cfs_rq's load average */
2881static inline void
2882enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2883{
9d89c257
YD
2884 struct sched_avg *sa = &se->avg;
2885 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2886 int migrated, decayed;
9ee474f5 2887
a05e8c51
BP
2888 migrated = !sa->last_update_time;
2889 if (!migrated) {
9d89c257 2890 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2891 se->on_rq * scale_load_down(se->load.weight),
2892 cfs_rq->curr == se, NULL);
aff3e498 2893 }
c566e8e9 2894
9d89c257 2895 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2896
13962234
YD
2897 cfs_rq->runnable_load_avg += sa->load_avg;
2898 cfs_rq->runnable_load_sum += sa->load_sum;
2899
a05e8c51
BP
2900 if (migrated)
2901 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2902
9d89c257
YD
2903 if (decayed || migrated)
2904 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2905}
2906
13962234
YD
2907/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2908static inline void
2909dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2910{
2911 update_load_avg(se, 1);
2912
2913 cfs_rq->runnable_load_avg =
2914 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2915 cfs_rq->runnable_load_sum =
a05e8c51 2916 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2917}
2918
9d89c257 2919#ifndef CONFIG_64BIT
0905f04e
YD
2920static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2921{
9d89c257 2922 u64 last_update_time_copy;
0905f04e 2923 u64 last_update_time;
9ee474f5 2924
9d89c257
YD
2925 do {
2926 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2927 smp_rmb();
2928 last_update_time = cfs_rq->avg.last_update_time;
2929 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2930
2931 return last_update_time;
2932}
9d89c257 2933#else
0905f04e
YD
2934static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2935{
2936 return cfs_rq->avg.last_update_time;
2937}
9d89c257
YD
2938#endif
2939
0905f04e
YD
2940/*
2941 * Task first catches up with cfs_rq, and then subtract
2942 * itself from the cfs_rq (task must be off the queue now).
2943 */
2944void remove_entity_load_avg(struct sched_entity *se)
2945{
2946 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2947 u64 last_update_time;
2948
2949 /*
2950 * Newly created task or never used group entity should not be removed
2951 * from its (source) cfs_rq
2952 */
2953 if (se->avg.last_update_time == 0)
2954 return;
2955
2956 last_update_time = cfs_rq_last_update_time(cfs_rq);
2957
13962234 2958 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2959 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2960 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2961}
642dbc39 2962
7ea241af
YD
2963static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2964{
2965 return cfs_rq->runnable_load_avg;
2966}
2967
2968static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2969{
2970 return cfs_rq->avg.load_avg;
2971}
2972
6e83125c
PZ
2973static int idle_balance(struct rq *this_rq);
2974
38033c37
PZ
2975#else /* CONFIG_SMP */
2976
9d89c257
YD
2977static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2978static inline void
2979enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2980static inline void
2981dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2982static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2983
a05e8c51
BP
2984static inline void
2985attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2986static inline void
2987detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2988
6e83125c
PZ
2989static inline int idle_balance(struct rq *rq)
2990{
2991 return 0;
2992}
2993
38033c37 2994#endif /* CONFIG_SMP */
9d85f21c 2995
2396af69 2996static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2997{
bf0f6f24 2998#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2999 struct task_struct *tsk = NULL;
3000
3001 if (entity_is_task(se))
3002 tsk = task_of(se);
3003
41acab88 3004 if (se->statistics.sleep_start) {
78becc27 3005 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3006
3007 if ((s64)delta < 0)
3008 delta = 0;
3009
41acab88
LDM
3010 if (unlikely(delta > se->statistics.sleep_max))
3011 se->statistics.sleep_max = delta;
bf0f6f24 3012
8c79a045 3013 se->statistics.sleep_start = 0;
41acab88 3014 se->statistics.sum_sleep_runtime += delta;
9745512c 3015
768d0c27 3016 if (tsk) {
e414314c 3017 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3018 trace_sched_stat_sleep(tsk, delta);
3019 }
bf0f6f24 3020 }
41acab88 3021 if (se->statistics.block_start) {
78becc27 3022 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3023
3024 if ((s64)delta < 0)
3025 delta = 0;
3026
41acab88
LDM
3027 if (unlikely(delta > se->statistics.block_max))
3028 se->statistics.block_max = delta;
bf0f6f24 3029
8c79a045 3030 se->statistics.block_start = 0;
41acab88 3031 se->statistics.sum_sleep_runtime += delta;
30084fbd 3032
e414314c 3033 if (tsk) {
8f0dfc34 3034 if (tsk->in_iowait) {
41acab88
LDM
3035 se->statistics.iowait_sum += delta;
3036 se->statistics.iowait_count++;
768d0c27 3037 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3038 }
3039
b781a602
AV
3040 trace_sched_stat_blocked(tsk, delta);
3041
e414314c
PZ
3042 /*
3043 * Blocking time is in units of nanosecs, so shift by
3044 * 20 to get a milliseconds-range estimation of the
3045 * amount of time that the task spent sleeping:
3046 */
3047 if (unlikely(prof_on == SLEEP_PROFILING)) {
3048 profile_hits(SLEEP_PROFILING,
3049 (void *)get_wchan(tsk),
3050 delta >> 20);
3051 }
3052 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3053 }
bf0f6f24
IM
3054 }
3055#endif
3056}
3057
ddc97297
PZ
3058static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3059{
3060#ifdef CONFIG_SCHED_DEBUG
3061 s64 d = se->vruntime - cfs_rq->min_vruntime;
3062
3063 if (d < 0)
3064 d = -d;
3065
3066 if (d > 3*sysctl_sched_latency)
3067 schedstat_inc(cfs_rq, nr_spread_over);
3068#endif
3069}
3070
aeb73b04
PZ
3071static void
3072place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3073{
1af5f730 3074 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3075
2cb8600e
PZ
3076 /*
3077 * The 'current' period is already promised to the current tasks,
3078 * however the extra weight of the new task will slow them down a
3079 * little, place the new task so that it fits in the slot that
3080 * stays open at the end.
3081 */
94dfb5e7 3082 if (initial && sched_feat(START_DEBIT))
f9c0b095 3083 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3084
a2e7a7eb 3085 /* sleeps up to a single latency don't count. */
5ca9880c 3086 if (!initial) {
a2e7a7eb 3087 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3088
a2e7a7eb
MG
3089 /*
3090 * Halve their sleep time's effect, to allow
3091 * for a gentler effect of sleepers:
3092 */
3093 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3094 thresh >>= 1;
51e0304c 3095
a2e7a7eb 3096 vruntime -= thresh;
aeb73b04
PZ
3097 }
3098
b5d9d734 3099 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3100 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3101}
3102
d3d9dc33
PT
3103static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3104
bf0f6f24 3105static void
88ec22d3 3106enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3107{
88ec22d3
PZ
3108 /*
3109 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3110 * through calling update_curr().
88ec22d3 3111 */
371fd7e7 3112 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3113 se->vruntime += cfs_rq->min_vruntime;
3114
bf0f6f24 3115 /*
a2a2d680 3116 * Update run-time statistics of the 'current'.
bf0f6f24 3117 */
b7cc0896 3118 update_curr(cfs_rq);
9d89c257 3119 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3120 account_entity_enqueue(cfs_rq, se);
3121 update_cfs_shares(cfs_rq);
bf0f6f24 3122
88ec22d3 3123 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3124 place_entity(cfs_rq, se, 0);
2396af69 3125 enqueue_sleeper(cfs_rq, se);
e9acbff6 3126 }
bf0f6f24 3127
d2417e5a 3128 update_stats_enqueue(cfs_rq, se);
ddc97297 3129 check_spread(cfs_rq, se);
83b699ed
SV
3130 if (se != cfs_rq->curr)
3131 __enqueue_entity(cfs_rq, se);
2069dd75 3132 se->on_rq = 1;
3d4b47b4 3133
d3d9dc33 3134 if (cfs_rq->nr_running == 1) {
3d4b47b4 3135 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3136 check_enqueue_throttle(cfs_rq);
3137 }
bf0f6f24
IM
3138}
3139
2c13c919 3140static void __clear_buddies_last(struct sched_entity *se)
2002c695 3141{
2c13c919
RR
3142 for_each_sched_entity(se) {
3143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3144 if (cfs_rq->last != se)
2c13c919 3145 break;
f1044799
PZ
3146
3147 cfs_rq->last = NULL;
2c13c919
RR
3148 }
3149}
2002c695 3150
2c13c919
RR
3151static void __clear_buddies_next(struct sched_entity *se)
3152{
3153 for_each_sched_entity(se) {
3154 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3155 if (cfs_rq->next != se)
2c13c919 3156 break;
f1044799
PZ
3157
3158 cfs_rq->next = NULL;
2c13c919 3159 }
2002c695
PZ
3160}
3161
ac53db59
RR
3162static void __clear_buddies_skip(struct sched_entity *se)
3163{
3164 for_each_sched_entity(se) {
3165 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3166 if (cfs_rq->skip != se)
ac53db59 3167 break;
f1044799
PZ
3168
3169 cfs_rq->skip = NULL;
ac53db59
RR
3170 }
3171}
3172
a571bbea
PZ
3173static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3174{
2c13c919
RR
3175 if (cfs_rq->last == se)
3176 __clear_buddies_last(se);
3177
3178 if (cfs_rq->next == se)
3179 __clear_buddies_next(se);
ac53db59
RR
3180
3181 if (cfs_rq->skip == se)
3182 __clear_buddies_skip(se);
a571bbea
PZ
3183}
3184
6c16a6dc 3185static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3186
bf0f6f24 3187static void
371fd7e7 3188dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3189{
a2a2d680
DA
3190 /*
3191 * Update run-time statistics of the 'current'.
3192 */
3193 update_curr(cfs_rq);
13962234 3194 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3195
19b6a2e3 3196 update_stats_dequeue(cfs_rq, se);
371fd7e7 3197 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3198#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3199 if (entity_is_task(se)) {
3200 struct task_struct *tsk = task_of(se);
3201
3202 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3203 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3204 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3205 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3206 }
db36cc7d 3207#endif
67e9fb2a
PZ
3208 }
3209
2002c695 3210 clear_buddies(cfs_rq, se);
4793241b 3211
83b699ed 3212 if (se != cfs_rq->curr)
30cfdcfc 3213 __dequeue_entity(cfs_rq, se);
17bc14b7 3214 se->on_rq = 0;
30cfdcfc 3215 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3216
3217 /*
3218 * Normalize the entity after updating the min_vruntime because the
3219 * update can refer to the ->curr item and we need to reflect this
3220 * movement in our normalized position.
3221 */
371fd7e7 3222 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3223 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3224
d8b4986d
PT
3225 /* return excess runtime on last dequeue */
3226 return_cfs_rq_runtime(cfs_rq);
3227
1e876231 3228 update_min_vruntime(cfs_rq);
17bc14b7 3229 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3230}
3231
3232/*
3233 * Preempt the current task with a newly woken task if needed:
3234 */
7c92e54f 3235static void
2e09bf55 3236check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3237{
11697830 3238 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3239 struct sched_entity *se;
3240 s64 delta;
11697830 3241
6d0f0ebd 3242 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3243 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3244 if (delta_exec > ideal_runtime) {
8875125e 3245 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3246 /*
3247 * The current task ran long enough, ensure it doesn't get
3248 * re-elected due to buddy favours.
3249 */
3250 clear_buddies(cfs_rq, curr);
f685ceac
MG
3251 return;
3252 }
3253
3254 /*
3255 * Ensure that a task that missed wakeup preemption by a
3256 * narrow margin doesn't have to wait for a full slice.
3257 * This also mitigates buddy induced latencies under load.
3258 */
f685ceac
MG
3259 if (delta_exec < sysctl_sched_min_granularity)
3260 return;
3261
f4cfb33e
WX
3262 se = __pick_first_entity(cfs_rq);
3263 delta = curr->vruntime - se->vruntime;
f685ceac 3264
f4cfb33e
WX
3265 if (delta < 0)
3266 return;
d7d82944 3267
f4cfb33e 3268 if (delta > ideal_runtime)
8875125e 3269 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3270}
3271
83b699ed 3272static void
8494f412 3273set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3274{
83b699ed
SV
3275 /* 'current' is not kept within the tree. */
3276 if (se->on_rq) {
3277 /*
3278 * Any task has to be enqueued before it get to execute on
3279 * a CPU. So account for the time it spent waiting on the
3280 * runqueue.
3281 */
3282 update_stats_wait_end(cfs_rq, se);
3283 __dequeue_entity(cfs_rq, se);
9d89c257 3284 update_load_avg(se, 1);
83b699ed
SV
3285 }
3286
79303e9e 3287 update_stats_curr_start(cfs_rq, se);
429d43bc 3288 cfs_rq->curr = se;
eba1ed4b
IM
3289#ifdef CONFIG_SCHEDSTATS
3290 /*
3291 * Track our maximum slice length, if the CPU's load is at
3292 * least twice that of our own weight (i.e. dont track it
3293 * when there are only lesser-weight tasks around):
3294 */
495eca49 3295 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3296 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3297 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3298 }
3299#endif
4a55b450 3300 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3301}
3302
3f3a4904
PZ
3303static int
3304wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3305
ac53db59
RR
3306/*
3307 * Pick the next process, keeping these things in mind, in this order:
3308 * 1) keep things fair between processes/task groups
3309 * 2) pick the "next" process, since someone really wants that to run
3310 * 3) pick the "last" process, for cache locality
3311 * 4) do not run the "skip" process, if something else is available
3312 */
678d5718
PZ
3313static struct sched_entity *
3314pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3315{
678d5718
PZ
3316 struct sched_entity *left = __pick_first_entity(cfs_rq);
3317 struct sched_entity *se;
3318
3319 /*
3320 * If curr is set we have to see if its left of the leftmost entity
3321 * still in the tree, provided there was anything in the tree at all.
3322 */
3323 if (!left || (curr && entity_before(curr, left)))
3324 left = curr;
3325
3326 se = left; /* ideally we run the leftmost entity */
f4b6755f 3327
ac53db59
RR
3328 /*
3329 * Avoid running the skip buddy, if running something else can
3330 * be done without getting too unfair.
3331 */
3332 if (cfs_rq->skip == se) {
678d5718
PZ
3333 struct sched_entity *second;
3334
3335 if (se == curr) {
3336 second = __pick_first_entity(cfs_rq);
3337 } else {
3338 second = __pick_next_entity(se);
3339 if (!second || (curr && entity_before(curr, second)))
3340 second = curr;
3341 }
3342
ac53db59
RR
3343 if (second && wakeup_preempt_entity(second, left) < 1)
3344 se = second;
3345 }
aa2ac252 3346
f685ceac
MG
3347 /*
3348 * Prefer last buddy, try to return the CPU to a preempted task.
3349 */
3350 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3351 se = cfs_rq->last;
3352
ac53db59
RR
3353 /*
3354 * Someone really wants this to run. If it's not unfair, run it.
3355 */
3356 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3357 se = cfs_rq->next;
3358
f685ceac 3359 clear_buddies(cfs_rq, se);
4793241b
PZ
3360
3361 return se;
aa2ac252
PZ
3362}
3363
678d5718 3364static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3365
ab6cde26 3366static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3367{
3368 /*
3369 * If still on the runqueue then deactivate_task()
3370 * was not called and update_curr() has to be done:
3371 */
3372 if (prev->on_rq)
b7cc0896 3373 update_curr(cfs_rq);
bf0f6f24 3374
d3d9dc33
PT
3375 /* throttle cfs_rqs exceeding runtime */
3376 check_cfs_rq_runtime(cfs_rq);
3377
ddc97297 3378 check_spread(cfs_rq, prev);
30cfdcfc 3379 if (prev->on_rq) {
5870db5b 3380 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3381 /* Put 'current' back into the tree. */
3382 __enqueue_entity(cfs_rq, prev);
9d85f21c 3383 /* in !on_rq case, update occurred at dequeue */
9d89c257 3384 update_load_avg(prev, 0);
30cfdcfc 3385 }
429d43bc 3386 cfs_rq->curr = NULL;
bf0f6f24
IM
3387}
3388
8f4d37ec
PZ
3389static void
3390entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3391{
bf0f6f24 3392 /*
30cfdcfc 3393 * Update run-time statistics of the 'current'.
bf0f6f24 3394 */
30cfdcfc 3395 update_curr(cfs_rq);
bf0f6f24 3396
9d85f21c
PT
3397 /*
3398 * Ensure that runnable average is periodically updated.
3399 */
9d89c257 3400 update_load_avg(curr, 1);
bf0bd948 3401 update_cfs_shares(cfs_rq);
9d85f21c 3402
8f4d37ec
PZ
3403#ifdef CONFIG_SCHED_HRTICK
3404 /*
3405 * queued ticks are scheduled to match the slice, so don't bother
3406 * validating it and just reschedule.
3407 */
983ed7a6 3408 if (queued) {
8875125e 3409 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3410 return;
3411 }
8f4d37ec
PZ
3412 /*
3413 * don't let the period tick interfere with the hrtick preemption
3414 */
3415 if (!sched_feat(DOUBLE_TICK) &&
3416 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3417 return;
3418#endif
3419
2c2efaed 3420 if (cfs_rq->nr_running > 1)
2e09bf55 3421 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3422}
3423
ab84d31e
PT
3424
3425/**************************************************
3426 * CFS bandwidth control machinery
3427 */
3428
3429#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3430
3431#ifdef HAVE_JUMP_LABEL
c5905afb 3432static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3433
3434static inline bool cfs_bandwidth_used(void)
3435{
c5905afb 3436 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3437}
3438
1ee14e6c 3439void cfs_bandwidth_usage_inc(void)
029632fb 3440{
1ee14e6c
BS
3441 static_key_slow_inc(&__cfs_bandwidth_used);
3442}
3443
3444void cfs_bandwidth_usage_dec(void)
3445{
3446 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3447}
3448#else /* HAVE_JUMP_LABEL */
3449static bool cfs_bandwidth_used(void)
3450{
3451 return true;
3452}
3453
1ee14e6c
BS
3454void cfs_bandwidth_usage_inc(void) {}
3455void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3456#endif /* HAVE_JUMP_LABEL */
3457
ab84d31e
PT
3458/*
3459 * default period for cfs group bandwidth.
3460 * default: 0.1s, units: nanoseconds
3461 */
3462static inline u64 default_cfs_period(void)
3463{
3464 return 100000000ULL;
3465}
ec12cb7f
PT
3466
3467static inline u64 sched_cfs_bandwidth_slice(void)
3468{
3469 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3470}
3471
a9cf55b2
PT
3472/*
3473 * Replenish runtime according to assigned quota and update expiration time.
3474 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3475 * additional synchronization around rq->lock.
3476 *
3477 * requires cfs_b->lock
3478 */
029632fb 3479void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3480{
3481 u64 now;
3482
3483 if (cfs_b->quota == RUNTIME_INF)
3484 return;
3485
3486 now = sched_clock_cpu(smp_processor_id());
3487 cfs_b->runtime = cfs_b->quota;
3488 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3489}
3490
029632fb
PZ
3491static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3492{
3493 return &tg->cfs_bandwidth;
3494}
3495
f1b17280
PT
3496/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3497static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3498{
3499 if (unlikely(cfs_rq->throttle_count))
3500 return cfs_rq->throttled_clock_task;
3501
78becc27 3502 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3503}
3504
85dac906
PT
3505/* returns 0 on failure to allocate runtime */
3506static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3507{
3508 struct task_group *tg = cfs_rq->tg;
3509 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3510 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3511
3512 /* note: this is a positive sum as runtime_remaining <= 0 */
3513 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3514
3515 raw_spin_lock(&cfs_b->lock);
3516 if (cfs_b->quota == RUNTIME_INF)
3517 amount = min_amount;
58088ad0 3518 else {
77a4d1a1 3519 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3520
3521 if (cfs_b->runtime > 0) {
3522 amount = min(cfs_b->runtime, min_amount);
3523 cfs_b->runtime -= amount;
3524 cfs_b->idle = 0;
3525 }
ec12cb7f 3526 }
a9cf55b2 3527 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3528 raw_spin_unlock(&cfs_b->lock);
3529
3530 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3531 /*
3532 * we may have advanced our local expiration to account for allowed
3533 * spread between our sched_clock and the one on which runtime was
3534 * issued.
3535 */
3536 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3537 cfs_rq->runtime_expires = expires;
85dac906
PT
3538
3539 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3540}
3541
a9cf55b2
PT
3542/*
3543 * Note: This depends on the synchronization provided by sched_clock and the
3544 * fact that rq->clock snapshots this value.
3545 */
3546static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3547{
a9cf55b2 3548 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3549
3550 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3551 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3552 return;
3553
a9cf55b2
PT
3554 if (cfs_rq->runtime_remaining < 0)
3555 return;
3556
3557 /*
3558 * If the local deadline has passed we have to consider the
3559 * possibility that our sched_clock is 'fast' and the global deadline
3560 * has not truly expired.
3561 *
3562 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3563 * whether the global deadline has advanced. It is valid to compare
3564 * cfs_b->runtime_expires without any locks since we only care about
3565 * exact equality, so a partial write will still work.
a9cf55b2
PT
3566 */
3567
51f2176d 3568 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3569 /* extend local deadline, drift is bounded above by 2 ticks */
3570 cfs_rq->runtime_expires += TICK_NSEC;
3571 } else {
3572 /* global deadline is ahead, expiration has passed */
3573 cfs_rq->runtime_remaining = 0;
3574 }
3575}
3576
9dbdb155 3577static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3578{
3579 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3580 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3581 expire_cfs_rq_runtime(cfs_rq);
3582
3583 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3584 return;
3585
85dac906
PT
3586 /*
3587 * if we're unable to extend our runtime we resched so that the active
3588 * hierarchy can be throttled
3589 */
3590 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3591 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3592}
3593
6c16a6dc 3594static __always_inline
9dbdb155 3595void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3596{
56f570e5 3597 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3598 return;
3599
3600 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3601}
3602
85dac906
PT
3603static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3604{
56f570e5 3605 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3606}
3607
64660c86
PT
3608/* check whether cfs_rq, or any parent, is throttled */
3609static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3610{
56f570e5 3611 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3612}
3613
3614/*
3615 * Ensure that neither of the group entities corresponding to src_cpu or
3616 * dest_cpu are members of a throttled hierarchy when performing group
3617 * load-balance operations.
3618 */
3619static inline int throttled_lb_pair(struct task_group *tg,
3620 int src_cpu, int dest_cpu)
3621{
3622 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3623
3624 src_cfs_rq = tg->cfs_rq[src_cpu];
3625 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3626
3627 return throttled_hierarchy(src_cfs_rq) ||
3628 throttled_hierarchy(dest_cfs_rq);
3629}
3630
3631/* updated child weight may affect parent so we have to do this bottom up */
3632static int tg_unthrottle_up(struct task_group *tg, void *data)
3633{
3634 struct rq *rq = data;
3635 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3636
3637 cfs_rq->throttle_count--;
3638#ifdef CONFIG_SMP
3639 if (!cfs_rq->throttle_count) {
f1b17280 3640 /* adjust cfs_rq_clock_task() */
78becc27 3641 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3642 cfs_rq->throttled_clock_task;
64660c86
PT
3643 }
3644#endif
3645
3646 return 0;
3647}
3648
3649static int tg_throttle_down(struct task_group *tg, void *data)
3650{
3651 struct rq *rq = data;
3652 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3653
82958366
PT
3654 /* group is entering throttled state, stop time */
3655 if (!cfs_rq->throttle_count)
78becc27 3656 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3657 cfs_rq->throttle_count++;
3658
3659 return 0;
3660}
3661
d3d9dc33 3662static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3663{
3664 struct rq *rq = rq_of(cfs_rq);
3665 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3666 struct sched_entity *se;
3667 long task_delta, dequeue = 1;
77a4d1a1 3668 bool empty;
85dac906
PT
3669
3670 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3671
f1b17280 3672 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3673 rcu_read_lock();
3674 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3675 rcu_read_unlock();
85dac906
PT
3676
3677 task_delta = cfs_rq->h_nr_running;
3678 for_each_sched_entity(se) {
3679 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3680 /* throttled entity or throttle-on-deactivate */
3681 if (!se->on_rq)
3682 break;
3683
3684 if (dequeue)
3685 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3686 qcfs_rq->h_nr_running -= task_delta;
3687
3688 if (qcfs_rq->load.weight)
3689 dequeue = 0;
3690 }
3691
3692 if (!se)
72465447 3693 sub_nr_running(rq, task_delta);
85dac906
PT
3694
3695 cfs_rq->throttled = 1;
78becc27 3696 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3697 raw_spin_lock(&cfs_b->lock);
d49db342 3698 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3699
c06f04c7
BS
3700 /*
3701 * Add to the _head_ of the list, so that an already-started
3702 * distribute_cfs_runtime will not see us
3703 */
3704 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3705
3706 /*
3707 * If we're the first throttled task, make sure the bandwidth
3708 * timer is running.
3709 */
3710 if (empty)
3711 start_cfs_bandwidth(cfs_b);
3712
85dac906
PT
3713 raw_spin_unlock(&cfs_b->lock);
3714}
3715
029632fb 3716void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3717{
3718 struct rq *rq = rq_of(cfs_rq);
3719 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3720 struct sched_entity *se;
3721 int enqueue = 1;
3722 long task_delta;
3723
22b958d8 3724 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3725
3726 cfs_rq->throttled = 0;
1a55af2e
FW
3727
3728 update_rq_clock(rq);
3729
671fd9da 3730 raw_spin_lock(&cfs_b->lock);
78becc27 3731 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3732 list_del_rcu(&cfs_rq->throttled_list);
3733 raw_spin_unlock(&cfs_b->lock);
3734
64660c86
PT
3735 /* update hierarchical throttle state */
3736 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3737
671fd9da
PT
3738 if (!cfs_rq->load.weight)
3739 return;
3740
3741 task_delta = cfs_rq->h_nr_running;
3742 for_each_sched_entity(se) {
3743 if (se->on_rq)
3744 enqueue = 0;
3745
3746 cfs_rq = cfs_rq_of(se);
3747 if (enqueue)
3748 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3749 cfs_rq->h_nr_running += task_delta;
3750
3751 if (cfs_rq_throttled(cfs_rq))
3752 break;
3753 }
3754
3755 if (!se)
72465447 3756 add_nr_running(rq, task_delta);
671fd9da
PT
3757
3758 /* determine whether we need to wake up potentially idle cpu */
3759 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3760 resched_curr(rq);
671fd9da
PT
3761}
3762
3763static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3764 u64 remaining, u64 expires)
3765{
3766 struct cfs_rq *cfs_rq;
c06f04c7
BS
3767 u64 runtime;
3768 u64 starting_runtime = remaining;
671fd9da
PT
3769
3770 rcu_read_lock();
3771 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3772 throttled_list) {
3773 struct rq *rq = rq_of(cfs_rq);
3774
3775 raw_spin_lock(&rq->lock);
3776 if (!cfs_rq_throttled(cfs_rq))
3777 goto next;
3778
3779 runtime = -cfs_rq->runtime_remaining + 1;
3780 if (runtime > remaining)
3781 runtime = remaining;
3782 remaining -= runtime;
3783
3784 cfs_rq->runtime_remaining += runtime;
3785 cfs_rq->runtime_expires = expires;
3786
3787 /* we check whether we're throttled above */
3788 if (cfs_rq->runtime_remaining > 0)
3789 unthrottle_cfs_rq(cfs_rq);
3790
3791next:
3792 raw_spin_unlock(&rq->lock);
3793
3794 if (!remaining)
3795 break;
3796 }
3797 rcu_read_unlock();
3798
c06f04c7 3799 return starting_runtime - remaining;
671fd9da
PT
3800}
3801
58088ad0
PT
3802/*
3803 * Responsible for refilling a task_group's bandwidth and unthrottling its
3804 * cfs_rqs as appropriate. If there has been no activity within the last
3805 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3806 * used to track this state.
3807 */
3808static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3809{
671fd9da 3810 u64 runtime, runtime_expires;
51f2176d 3811 int throttled;
58088ad0 3812
58088ad0
PT
3813 /* no need to continue the timer with no bandwidth constraint */
3814 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3815 goto out_deactivate;
58088ad0 3816
671fd9da 3817 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3818 cfs_b->nr_periods += overrun;
671fd9da 3819
51f2176d
BS
3820 /*
3821 * idle depends on !throttled (for the case of a large deficit), and if
3822 * we're going inactive then everything else can be deferred
3823 */
3824 if (cfs_b->idle && !throttled)
3825 goto out_deactivate;
a9cf55b2
PT
3826
3827 __refill_cfs_bandwidth_runtime(cfs_b);
3828
671fd9da
PT
3829 if (!throttled) {
3830 /* mark as potentially idle for the upcoming period */
3831 cfs_b->idle = 1;
51f2176d 3832 return 0;
671fd9da
PT
3833 }
3834
e8da1b18
NR
3835 /* account preceding periods in which throttling occurred */
3836 cfs_b->nr_throttled += overrun;
3837
671fd9da 3838 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3839
3840 /*
c06f04c7
BS
3841 * This check is repeated as we are holding onto the new bandwidth while
3842 * we unthrottle. This can potentially race with an unthrottled group
3843 * trying to acquire new bandwidth from the global pool. This can result
3844 * in us over-using our runtime if it is all used during this loop, but
3845 * only by limited amounts in that extreme case.
671fd9da 3846 */
c06f04c7
BS
3847 while (throttled && cfs_b->runtime > 0) {
3848 runtime = cfs_b->runtime;
671fd9da
PT
3849 raw_spin_unlock(&cfs_b->lock);
3850 /* we can't nest cfs_b->lock while distributing bandwidth */
3851 runtime = distribute_cfs_runtime(cfs_b, runtime,
3852 runtime_expires);
3853 raw_spin_lock(&cfs_b->lock);
3854
3855 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3856
3857 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3858 }
58088ad0 3859
671fd9da
PT
3860 /*
3861 * While we are ensured activity in the period following an
3862 * unthrottle, this also covers the case in which the new bandwidth is
3863 * insufficient to cover the existing bandwidth deficit. (Forcing the
3864 * timer to remain active while there are any throttled entities.)
3865 */
3866 cfs_b->idle = 0;
58088ad0 3867
51f2176d
BS
3868 return 0;
3869
3870out_deactivate:
51f2176d 3871 return 1;
58088ad0 3872}
d3d9dc33 3873
d8b4986d
PT
3874/* a cfs_rq won't donate quota below this amount */
3875static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3876/* minimum remaining period time to redistribute slack quota */
3877static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3878/* how long we wait to gather additional slack before distributing */
3879static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3880
db06e78c
BS
3881/*
3882 * Are we near the end of the current quota period?
3883 *
3884 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3885 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3886 * migrate_hrtimers, base is never cleared, so we are fine.
3887 */
d8b4986d
PT
3888static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3889{
3890 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3891 u64 remaining;
3892
3893 /* if the call-back is running a quota refresh is already occurring */
3894 if (hrtimer_callback_running(refresh_timer))
3895 return 1;
3896
3897 /* is a quota refresh about to occur? */
3898 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3899 if (remaining < min_expire)
3900 return 1;
3901
3902 return 0;
3903}
3904
3905static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3906{
3907 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3908
3909 /* if there's a quota refresh soon don't bother with slack */
3910 if (runtime_refresh_within(cfs_b, min_left))
3911 return;
3912
4cfafd30
PZ
3913 hrtimer_start(&cfs_b->slack_timer,
3914 ns_to_ktime(cfs_bandwidth_slack_period),
3915 HRTIMER_MODE_REL);
d8b4986d
PT
3916}
3917
3918/* we know any runtime found here is valid as update_curr() precedes return */
3919static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3920{
3921 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3922 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3923
3924 if (slack_runtime <= 0)
3925 return;
3926
3927 raw_spin_lock(&cfs_b->lock);
3928 if (cfs_b->quota != RUNTIME_INF &&
3929 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3930 cfs_b->runtime += slack_runtime;
3931
3932 /* we are under rq->lock, defer unthrottling using a timer */
3933 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3934 !list_empty(&cfs_b->throttled_cfs_rq))
3935 start_cfs_slack_bandwidth(cfs_b);
3936 }
3937 raw_spin_unlock(&cfs_b->lock);
3938
3939 /* even if it's not valid for return we don't want to try again */
3940 cfs_rq->runtime_remaining -= slack_runtime;
3941}
3942
3943static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3944{
56f570e5
PT
3945 if (!cfs_bandwidth_used())
3946 return;
3947
fccfdc6f 3948 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3949 return;
3950
3951 __return_cfs_rq_runtime(cfs_rq);
3952}
3953
3954/*
3955 * This is done with a timer (instead of inline with bandwidth return) since
3956 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3957 */
3958static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3959{
3960 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3961 u64 expires;
3962
3963 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3964 raw_spin_lock(&cfs_b->lock);
3965 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3966 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3967 return;
db06e78c 3968 }
d8b4986d 3969
c06f04c7 3970 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3971 runtime = cfs_b->runtime;
c06f04c7 3972
d8b4986d
PT
3973 expires = cfs_b->runtime_expires;
3974 raw_spin_unlock(&cfs_b->lock);
3975
3976 if (!runtime)
3977 return;
3978
3979 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3980
3981 raw_spin_lock(&cfs_b->lock);
3982 if (expires == cfs_b->runtime_expires)
c06f04c7 3983 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3984 raw_spin_unlock(&cfs_b->lock);
3985}
3986
d3d9dc33
PT
3987/*
3988 * When a group wakes up we want to make sure that its quota is not already
3989 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3990 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3991 */
3992static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3993{
56f570e5
PT
3994 if (!cfs_bandwidth_used())
3995 return;
3996
d3d9dc33
PT
3997 /* an active group must be handled by the update_curr()->put() path */
3998 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3999 return;
4000
4001 /* ensure the group is not already throttled */
4002 if (cfs_rq_throttled(cfs_rq))
4003 return;
4004
4005 /* update runtime allocation */
4006 account_cfs_rq_runtime(cfs_rq, 0);
4007 if (cfs_rq->runtime_remaining <= 0)
4008 throttle_cfs_rq(cfs_rq);
4009}
4010
4011/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4012static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4013{
56f570e5 4014 if (!cfs_bandwidth_used())
678d5718 4015 return false;
56f570e5 4016
d3d9dc33 4017 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4018 return false;
d3d9dc33
PT
4019
4020 /*
4021 * it's possible for a throttled entity to be forced into a running
4022 * state (e.g. set_curr_task), in this case we're finished.
4023 */
4024 if (cfs_rq_throttled(cfs_rq))
678d5718 4025 return true;
d3d9dc33
PT
4026
4027 throttle_cfs_rq(cfs_rq);
678d5718 4028 return true;
d3d9dc33 4029}
029632fb 4030
029632fb
PZ
4031static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4032{
4033 struct cfs_bandwidth *cfs_b =
4034 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4035
029632fb
PZ
4036 do_sched_cfs_slack_timer(cfs_b);
4037
4038 return HRTIMER_NORESTART;
4039}
4040
4041static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4042{
4043 struct cfs_bandwidth *cfs_b =
4044 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4045 int overrun;
4046 int idle = 0;
4047
51f2176d 4048 raw_spin_lock(&cfs_b->lock);
029632fb 4049 for (;;) {
77a4d1a1 4050 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4051 if (!overrun)
4052 break;
4053
4054 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4055 }
4cfafd30
PZ
4056 if (idle)
4057 cfs_b->period_active = 0;
51f2176d 4058 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4059
4060 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4061}
4062
4063void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4064{
4065 raw_spin_lock_init(&cfs_b->lock);
4066 cfs_b->runtime = 0;
4067 cfs_b->quota = RUNTIME_INF;
4068 cfs_b->period = ns_to_ktime(default_cfs_period());
4069
4070 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4071 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4072 cfs_b->period_timer.function = sched_cfs_period_timer;
4073 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4074 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4075}
4076
4077static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4078{
4079 cfs_rq->runtime_enabled = 0;
4080 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4081}
4082
77a4d1a1 4083void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4084{
4cfafd30 4085 lockdep_assert_held(&cfs_b->lock);
029632fb 4086
4cfafd30
PZ
4087 if (!cfs_b->period_active) {
4088 cfs_b->period_active = 1;
4089 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4090 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4091 }
029632fb
PZ
4092}
4093
4094static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4095{
7f1a169b
TH
4096 /* init_cfs_bandwidth() was not called */
4097 if (!cfs_b->throttled_cfs_rq.next)
4098 return;
4099
029632fb
PZ
4100 hrtimer_cancel(&cfs_b->period_timer);
4101 hrtimer_cancel(&cfs_b->slack_timer);
4102}
4103
0e59bdae
KT
4104static void __maybe_unused update_runtime_enabled(struct rq *rq)
4105{
4106 struct cfs_rq *cfs_rq;
4107
4108 for_each_leaf_cfs_rq(rq, cfs_rq) {
4109 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4110
4111 raw_spin_lock(&cfs_b->lock);
4112 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4113 raw_spin_unlock(&cfs_b->lock);
4114 }
4115}
4116
38dc3348 4117static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4118{
4119 struct cfs_rq *cfs_rq;
4120
4121 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4122 if (!cfs_rq->runtime_enabled)
4123 continue;
4124
4125 /*
4126 * clock_task is not advancing so we just need to make sure
4127 * there's some valid quota amount
4128 */
51f2176d 4129 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4130 /*
4131 * Offline rq is schedulable till cpu is completely disabled
4132 * in take_cpu_down(), so we prevent new cfs throttling here.
4133 */
4134 cfs_rq->runtime_enabled = 0;
4135
029632fb
PZ
4136 if (cfs_rq_throttled(cfs_rq))
4137 unthrottle_cfs_rq(cfs_rq);
4138 }
4139}
4140
4141#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4142static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4143{
78becc27 4144 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4145}
4146
9dbdb155 4147static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4148static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4149static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4150static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4151
4152static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4153{
4154 return 0;
4155}
64660c86
PT
4156
4157static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4158{
4159 return 0;
4160}
4161
4162static inline int throttled_lb_pair(struct task_group *tg,
4163 int src_cpu, int dest_cpu)
4164{
4165 return 0;
4166}
029632fb
PZ
4167
4168void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4169
4170#ifdef CONFIG_FAIR_GROUP_SCHED
4171static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4172#endif
4173
029632fb
PZ
4174static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4175{
4176 return NULL;
4177}
4178static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4179static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4180static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4181
4182#endif /* CONFIG_CFS_BANDWIDTH */
4183
bf0f6f24
IM
4184/**************************************************
4185 * CFS operations on tasks:
4186 */
4187
8f4d37ec
PZ
4188#ifdef CONFIG_SCHED_HRTICK
4189static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4190{
8f4d37ec
PZ
4191 struct sched_entity *se = &p->se;
4192 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4193
4194 WARN_ON(task_rq(p) != rq);
4195
b39e66ea 4196 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4197 u64 slice = sched_slice(cfs_rq, se);
4198 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4199 s64 delta = slice - ran;
4200
4201 if (delta < 0) {
4202 if (rq->curr == p)
8875125e 4203 resched_curr(rq);
8f4d37ec
PZ
4204 return;
4205 }
31656519 4206 hrtick_start(rq, delta);
8f4d37ec
PZ
4207 }
4208}
a4c2f00f
PZ
4209
4210/*
4211 * called from enqueue/dequeue and updates the hrtick when the
4212 * current task is from our class and nr_running is low enough
4213 * to matter.
4214 */
4215static void hrtick_update(struct rq *rq)
4216{
4217 struct task_struct *curr = rq->curr;
4218
b39e66ea 4219 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4220 return;
4221
4222 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4223 hrtick_start_fair(rq, curr);
4224}
55e12e5e 4225#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4226static inline void
4227hrtick_start_fair(struct rq *rq, struct task_struct *p)
4228{
4229}
a4c2f00f
PZ
4230
4231static inline void hrtick_update(struct rq *rq)
4232{
4233}
8f4d37ec
PZ
4234#endif
4235
bf0f6f24
IM
4236/*
4237 * The enqueue_task method is called before nr_running is
4238 * increased. Here we update the fair scheduling stats and
4239 * then put the task into the rbtree:
4240 */
ea87bb78 4241static void
371fd7e7 4242enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4243{
4244 struct cfs_rq *cfs_rq;
62fb1851 4245 struct sched_entity *se = &p->se;
bf0f6f24
IM
4246
4247 for_each_sched_entity(se) {
62fb1851 4248 if (se->on_rq)
bf0f6f24
IM
4249 break;
4250 cfs_rq = cfs_rq_of(se);
88ec22d3 4251 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4252
4253 /*
4254 * end evaluation on encountering a throttled cfs_rq
4255 *
4256 * note: in the case of encountering a throttled cfs_rq we will
4257 * post the final h_nr_running increment below.
4258 */
4259 if (cfs_rq_throttled(cfs_rq))
4260 break;
953bfcd1 4261 cfs_rq->h_nr_running++;
85dac906 4262
88ec22d3 4263 flags = ENQUEUE_WAKEUP;
bf0f6f24 4264 }
8f4d37ec 4265
2069dd75 4266 for_each_sched_entity(se) {
0f317143 4267 cfs_rq = cfs_rq_of(se);
953bfcd1 4268 cfs_rq->h_nr_running++;
2069dd75 4269
85dac906
PT
4270 if (cfs_rq_throttled(cfs_rq))
4271 break;
4272
9d89c257 4273 update_load_avg(se, 1);
17bc14b7 4274 update_cfs_shares(cfs_rq);
2069dd75
PZ
4275 }
4276
cd126afe 4277 if (!se)
72465447 4278 add_nr_running(rq, 1);
cd126afe 4279
a4c2f00f 4280 hrtick_update(rq);
bf0f6f24
IM
4281}
4282
2f36825b
VP
4283static void set_next_buddy(struct sched_entity *se);
4284
bf0f6f24
IM
4285/*
4286 * The dequeue_task method is called before nr_running is
4287 * decreased. We remove the task from the rbtree and
4288 * update the fair scheduling stats:
4289 */
371fd7e7 4290static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4291{
4292 struct cfs_rq *cfs_rq;
62fb1851 4293 struct sched_entity *se = &p->se;
2f36825b 4294 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4295
4296 for_each_sched_entity(se) {
4297 cfs_rq = cfs_rq_of(se);
371fd7e7 4298 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4299
4300 /*
4301 * end evaluation on encountering a throttled cfs_rq
4302 *
4303 * note: in the case of encountering a throttled cfs_rq we will
4304 * post the final h_nr_running decrement below.
4305 */
4306 if (cfs_rq_throttled(cfs_rq))
4307 break;
953bfcd1 4308 cfs_rq->h_nr_running--;
2069dd75 4309
bf0f6f24 4310 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4311 if (cfs_rq->load.weight) {
4312 /*
4313 * Bias pick_next to pick a task from this cfs_rq, as
4314 * p is sleeping when it is within its sched_slice.
4315 */
4316 if (task_sleep && parent_entity(se))
4317 set_next_buddy(parent_entity(se));
9598c82d
PT
4318
4319 /* avoid re-evaluating load for this entity */
4320 se = parent_entity(se);
bf0f6f24 4321 break;
2f36825b 4322 }
371fd7e7 4323 flags |= DEQUEUE_SLEEP;
bf0f6f24 4324 }
8f4d37ec 4325
2069dd75 4326 for_each_sched_entity(se) {
0f317143 4327 cfs_rq = cfs_rq_of(se);
953bfcd1 4328 cfs_rq->h_nr_running--;
2069dd75 4329
85dac906
PT
4330 if (cfs_rq_throttled(cfs_rq))
4331 break;
4332
9d89c257 4333 update_load_avg(se, 1);
17bc14b7 4334 update_cfs_shares(cfs_rq);
2069dd75
PZ
4335 }
4336
cd126afe 4337 if (!se)
72465447 4338 sub_nr_running(rq, 1);
cd126afe 4339
a4c2f00f 4340 hrtick_update(rq);
bf0f6f24
IM
4341}
4342
e7693a36 4343#ifdef CONFIG_SMP
3289bdb4
PZ
4344
4345/*
4346 * per rq 'load' arrray crap; XXX kill this.
4347 */
4348
4349/*
d937cdc5 4350 * The exact cpuload calculated at every tick would be:
3289bdb4 4351 *
d937cdc5
PZ
4352 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4353 *
4354 * If a cpu misses updates for n ticks (as it was idle) and update gets
4355 * called on the n+1-th tick when cpu may be busy, then we have:
4356 *
4357 * load_n = (1 - 1/2^i)^n * load_0
4358 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4359 *
4360 * decay_load_missed() below does efficient calculation of
3289bdb4 4361 *
d937cdc5
PZ
4362 * load' = (1 - 1/2^i)^n * load
4363 *
4364 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4365 * This allows us to precompute the above in said factors, thereby allowing the
4366 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4367 * fixed_power_int())
3289bdb4 4368 *
d937cdc5 4369 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4370 */
4371#define DEGRADE_SHIFT 7
d937cdc5
PZ
4372
4373static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4374static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4375 { 0, 0, 0, 0, 0, 0, 0, 0 },
4376 { 64, 32, 8, 0, 0, 0, 0, 0 },
4377 { 96, 72, 40, 12, 1, 0, 0, 0 },
4378 { 112, 98, 75, 43, 15, 1, 0, 0 },
4379 { 120, 112, 98, 76, 45, 16, 2, 0 }
4380};
3289bdb4
PZ
4381
4382/*
4383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4384 * would be when CPU is idle and so we just decay the old load without
4385 * adding any new load.
4386 */
4387static unsigned long
4388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4389{
4390 int j = 0;
4391
4392 if (!missed_updates)
4393 return load;
4394
4395 if (missed_updates >= degrade_zero_ticks[idx])
4396 return 0;
4397
4398 if (idx == 1)
4399 return load >> missed_updates;
4400
4401 while (missed_updates) {
4402 if (missed_updates % 2)
4403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4404
4405 missed_updates >>= 1;
4406 j++;
4407 }
4408 return load;
4409}
4410
59543275
BP
4411/**
4412 * __update_cpu_load - update the rq->cpu_load[] statistics
4413 * @this_rq: The rq to update statistics for
4414 * @this_load: The current load
4415 * @pending_updates: The number of missed updates
4416 * @active: !0 for NOHZ_FULL
4417 *
3289bdb4 4418 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4419 * scheduler tick (TICK_NSEC).
4420 *
4421 * This function computes a decaying average:
4422 *
4423 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4424 *
4425 * Because of NOHZ it might not get called on every tick which gives need for
4426 * the @pending_updates argument.
4427 *
4428 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4429 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4430 * = A * (A * load[i]_n-2 + B) + B
4431 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4432 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4433 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4434 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4435 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4436 *
4437 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4438 * any change in load would have resulted in the tick being turned back on.
4439 *
4440 * For regular NOHZ, this reduces to:
4441 *
4442 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4443 *
4444 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4445 * term. See the @active paramter.
3289bdb4
PZ
4446 */
4447static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4448 unsigned long pending_updates, int active)
3289bdb4 4449{
59543275 4450 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4451 int i, scale;
4452
4453 this_rq->nr_load_updates++;
4454
4455 /* Update our load: */
4456 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4457 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4458 unsigned long old_load, new_load;
4459
4460 /* scale is effectively 1 << i now, and >> i divides by scale */
4461
59543275 4462 old_load = this_rq->cpu_load[i] - tickless_load;
3289bdb4 4463 old_load = decay_load_missed(old_load, pending_updates - 1, i);
59543275 4464 old_load += tickless_load;
3289bdb4
PZ
4465 new_load = this_load;
4466 /*
4467 * Round up the averaging division if load is increasing. This
4468 * prevents us from getting stuck on 9 if the load is 10, for
4469 * example.
4470 */
4471 if (new_load > old_load)
4472 new_load += scale - 1;
4473
4474 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4475 }
4476
4477 sched_avg_update(this_rq);
4478}
4479
7ea241af
YD
4480/* Used instead of source_load when we know the type == 0 */
4481static unsigned long weighted_cpuload(const int cpu)
4482{
4483 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4484}
4485
3289bdb4
PZ
4486#ifdef CONFIG_NO_HZ_COMMON
4487/*
4488 * There is no sane way to deal with nohz on smp when using jiffies because the
4489 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4490 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4491 *
4492 * Therefore we cannot use the delta approach from the regular tick since that
4493 * would seriously skew the load calculation. However we'll make do for those
4494 * updates happening while idle (nohz_idle_balance) or coming out of idle
4495 * (tick_nohz_idle_exit).
4496 *
4497 * This means we might still be one tick off for nohz periods.
4498 */
4499
4500/*
4501 * Called from nohz_idle_balance() to update the load ratings before doing the
4502 * idle balance.
4503 */
4504static void update_idle_cpu_load(struct rq *this_rq)
4505{
316c1608 4506 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4507 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4508 unsigned long pending_updates;
4509
4510 /*
4511 * bail if there's load or we're actually up-to-date.
4512 */
4513 if (load || curr_jiffies == this_rq->last_load_update_tick)
4514 return;
4515
4516 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4517 this_rq->last_load_update_tick = curr_jiffies;
4518
59543275 4519 __update_cpu_load(this_rq, load, pending_updates, 0);
3289bdb4
PZ
4520}
4521
4522/*
4523 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4524 */
525705d1 4525void update_cpu_load_nohz(int active)
3289bdb4
PZ
4526{
4527 struct rq *this_rq = this_rq();
316c1608 4528 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4529 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4530 unsigned long pending_updates;
4531
4532 if (curr_jiffies == this_rq->last_load_update_tick)
4533 return;
4534
4535 raw_spin_lock(&this_rq->lock);
4536 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4537 if (pending_updates) {
4538 this_rq->last_load_update_tick = curr_jiffies;
4539 /*
525705d1
BP
4540 * In the regular NOHZ case, we were idle, this means load 0.
4541 * In the NOHZ_FULL case, we were non-idle, we should consider
4542 * its weighted load.
3289bdb4 4543 */
525705d1 4544 __update_cpu_load(this_rq, load, pending_updates, active);
3289bdb4
PZ
4545 }
4546 raw_spin_unlock(&this_rq->lock);
4547}
4548#endif /* CONFIG_NO_HZ */
4549
4550/*
4551 * Called from scheduler_tick()
4552 */
4553void update_cpu_load_active(struct rq *this_rq)
4554{
7ea241af 4555 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4556 /*
4557 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4558 */
4559 this_rq->last_load_update_tick = jiffies;
59543275 4560 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4561}
4562
029632fb
PZ
4563/*
4564 * Return a low guess at the load of a migration-source cpu weighted
4565 * according to the scheduling class and "nice" value.
4566 *
4567 * We want to under-estimate the load of migration sources, to
4568 * balance conservatively.
4569 */
4570static unsigned long source_load(int cpu, int type)
4571{
4572 struct rq *rq = cpu_rq(cpu);
4573 unsigned long total = weighted_cpuload(cpu);
4574
4575 if (type == 0 || !sched_feat(LB_BIAS))
4576 return total;
4577
4578 return min(rq->cpu_load[type-1], total);
4579}
4580
4581/*
4582 * Return a high guess at the load of a migration-target cpu weighted
4583 * according to the scheduling class and "nice" value.
4584 */
4585static unsigned long target_load(int cpu, int type)
4586{
4587 struct rq *rq = cpu_rq(cpu);
4588 unsigned long total = weighted_cpuload(cpu);
4589
4590 if (type == 0 || !sched_feat(LB_BIAS))
4591 return total;
4592
4593 return max(rq->cpu_load[type-1], total);
4594}
4595
ced549fa 4596static unsigned long capacity_of(int cpu)
029632fb 4597{
ced549fa 4598 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4599}
4600
ca6d75e6
VG
4601static unsigned long capacity_orig_of(int cpu)
4602{
4603 return cpu_rq(cpu)->cpu_capacity_orig;
4604}
4605
029632fb
PZ
4606static unsigned long cpu_avg_load_per_task(int cpu)
4607{
4608 struct rq *rq = cpu_rq(cpu);
316c1608 4609 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4610 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4611
4612 if (nr_running)
b92486cb 4613 return load_avg / nr_running;
029632fb
PZ
4614
4615 return 0;
4616}
4617
62470419
MW
4618static void record_wakee(struct task_struct *p)
4619{
4620 /*
4621 * Rough decay (wiping) for cost saving, don't worry
4622 * about the boundary, really active task won't care
4623 * about the loss.
4624 */
2538d960 4625 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4626 current->wakee_flips >>= 1;
62470419
MW
4627 current->wakee_flip_decay_ts = jiffies;
4628 }
4629
4630 if (current->last_wakee != p) {
4631 current->last_wakee = p;
4632 current->wakee_flips++;
4633 }
4634}
098fb9db 4635
74f8e4b2 4636static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4637{
4638 struct sched_entity *se = &p->se;
4639 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4640 u64 min_vruntime;
4641
4642#ifndef CONFIG_64BIT
4643 u64 min_vruntime_copy;
88ec22d3 4644
3fe1698b
PZ
4645 do {
4646 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4647 smp_rmb();
4648 min_vruntime = cfs_rq->min_vruntime;
4649 } while (min_vruntime != min_vruntime_copy);
4650#else
4651 min_vruntime = cfs_rq->min_vruntime;
4652#endif
88ec22d3 4653
3fe1698b 4654 se->vruntime -= min_vruntime;
62470419 4655 record_wakee(p);
88ec22d3
PZ
4656}
4657
bb3469ac 4658#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4659/*
4660 * effective_load() calculates the load change as seen from the root_task_group
4661 *
4662 * Adding load to a group doesn't make a group heavier, but can cause movement
4663 * of group shares between cpus. Assuming the shares were perfectly aligned one
4664 * can calculate the shift in shares.
cf5f0acf
PZ
4665 *
4666 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4667 * on this @cpu and results in a total addition (subtraction) of @wg to the
4668 * total group weight.
4669 *
4670 * Given a runqueue weight distribution (rw_i) we can compute a shares
4671 * distribution (s_i) using:
4672 *
4673 * s_i = rw_i / \Sum rw_j (1)
4674 *
4675 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4676 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4677 * shares distribution (s_i):
4678 *
4679 * rw_i = { 2, 4, 1, 0 }
4680 * s_i = { 2/7, 4/7, 1/7, 0 }
4681 *
4682 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4683 * task used to run on and the CPU the waker is running on), we need to
4684 * compute the effect of waking a task on either CPU and, in case of a sync
4685 * wakeup, compute the effect of the current task going to sleep.
4686 *
4687 * So for a change of @wl to the local @cpu with an overall group weight change
4688 * of @wl we can compute the new shares distribution (s'_i) using:
4689 *
4690 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4691 *
4692 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4693 * differences in waking a task to CPU 0. The additional task changes the
4694 * weight and shares distributions like:
4695 *
4696 * rw'_i = { 3, 4, 1, 0 }
4697 * s'_i = { 3/8, 4/8, 1/8, 0 }
4698 *
4699 * We can then compute the difference in effective weight by using:
4700 *
4701 * dw_i = S * (s'_i - s_i) (3)
4702 *
4703 * Where 'S' is the group weight as seen by its parent.
4704 *
4705 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4706 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4707 * 4/7) times the weight of the group.
f5bfb7d9 4708 */
2069dd75 4709static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4710{
4be9daaa 4711 struct sched_entity *se = tg->se[cpu];
f1d239f7 4712
9722c2da 4713 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4714 return wl;
4715
4be9daaa 4716 for_each_sched_entity(se) {
cf5f0acf 4717 long w, W;
4be9daaa 4718
977dda7c 4719 tg = se->my_q->tg;
bb3469ac 4720
cf5f0acf
PZ
4721 /*
4722 * W = @wg + \Sum rw_j
4723 */
4724 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4725
cf5f0acf
PZ
4726 /*
4727 * w = rw_i + @wl
4728 */
7ea241af 4729 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4730
cf5f0acf
PZ
4731 /*
4732 * wl = S * s'_i; see (2)
4733 */
4734 if (W > 0 && w < W)
32a8df4e 4735 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4736 else
4737 wl = tg->shares;
940959e9 4738
cf5f0acf
PZ
4739 /*
4740 * Per the above, wl is the new se->load.weight value; since
4741 * those are clipped to [MIN_SHARES, ...) do so now. See
4742 * calc_cfs_shares().
4743 */
977dda7c
PT
4744 if (wl < MIN_SHARES)
4745 wl = MIN_SHARES;
cf5f0acf
PZ
4746
4747 /*
4748 * wl = dw_i = S * (s'_i - s_i); see (3)
4749 */
9d89c257 4750 wl -= se->avg.load_avg;
cf5f0acf
PZ
4751
4752 /*
4753 * Recursively apply this logic to all parent groups to compute
4754 * the final effective load change on the root group. Since
4755 * only the @tg group gets extra weight, all parent groups can
4756 * only redistribute existing shares. @wl is the shift in shares
4757 * resulting from this level per the above.
4758 */
4be9daaa 4759 wg = 0;
4be9daaa 4760 }
bb3469ac 4761
4be9daaa 4762 return wl;
bb3469ac
PZ
4763}
4764#else
4be9daaa 4765
58d081b5 4766static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4767{
83378269 4768 return wl;
bb3469ac 4769}
4be9daaa 4770
bb3469ac
PZ
4771#endif
4772
63b0e9ed
MG
4773/*
4774 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4775 * A waker of many should wake a different task than the one last awakened
4776 * at a frequency roughly N times higher than one of its wakees. In order
4777 * to determine whether we should let the load spread vs consolodating to
4778 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4779 * partner, and a factor of lls_size higher frequency in the other. With
4780 * both conditions met, we can be relatively sure that the relationship is
4781 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4782 * being client/server, worker/dispatcher, interrupt source or whatever is
4783 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4784 */
62470419
MW
4785static int wake_wide(struct task_struct *p)
4786{
63b0e9ed
MG
4787 unsigned int master = current->wakee_flips;
4788 unsigned int slave = p->wakee_flips;
7d9ffa89 4789 int factor = this_cpu_read(sd_llc_size);
62470419 4790
63b0e9ed
MG
4791 if (master < slave)
4792 swap(master, slave);
4793 if (slave < factor || master < slave * factor)
4794 return 0;
4795 return 1;
62470419
MW
4796}
4797
c88d5910 4798static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4799{
e37b6a7b 4800 s64 this_load, load;
bd61c98f 4801 s64 this_eff_load, prev_eff_load;
c88d5910 4802 int idx, this_cpu, prev_cpu;
c88d5910 4803 struct task_group *tg;
83378269 4804 unsigned long weight;
b3137bc8 4805 int balanced;
098fb9db 4806
c88d5910
PZ
4807 idx = sd->wake_idx;
4808 this_cpu = smp_processor_id();
4809 prev_cpu = task_cpu(p);
4810 load = source_load(prev_cpu, idx);
4811 this_load = target_load(this_cpu, idx);
098fb9db 4812
b3137bc8
MG
4813 /*
4814 * If sync wakeup then subtract the (maximum possible)
4815 * effect of the currently running task from the load
4816 * of the current CPU:
4817 */
83378269
PZ
4818 if (sync) {
4819 tg = task_group(current);
9d89c257 4820 weight = current->se.avg.load_avg;
83378269 4821
c88d5910 4822 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4823 load += effective_load(tg, prev_cpu, 0, -weight);
4824 }
b3137bc8 4825
83378269 4826 tg = task_group(p);
9d89c257 4827 weight = p->se.avg.load_avg;
b3137bc8 4828
71a29aa7
PZ
4829 /*
4830 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4831 * due to the sync cause above having dropped this_load to 0, we'll
4832 * always have an imbalance, but there's really nothing you can do
4833 * about that, so that's good too.
71a29aa7
PZ
4834 *
4835 * Otherwise check if either cpus are near enough in load to allow this
4836 * task to be woken on this_cpu.
4837 */
bd61c98f
VG
4838 this_eff_load = 100;
4839 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4840
bd61c98f
VG
4841 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4842 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4843
bd61c98f 4844 if (this_load > 0) {
e51fd5e2
PZ
4845 this_eff_load *= this_load +
4846 effective_load(tg, this_cpu, weight, weight);
4847
e51fd5e2 4848 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4849 }
e51fd5e2 4850
bd61c98f 4851 balanced = this_eff_load <= prev_eff_load;
098fb9db 4852
41acab88 4853 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4854
05bfb65f
VG
4855 if (!balanced)
4856 return 0;
098fb9db 4857
05bfb65f
VG
4858 schedstat_inc(sd, ttwu_move_affine);
4859 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4860
4861 return 1;
098fb9db
IM
4862}
4863
aaee1203
PZ
4864/*
4865 * find_idlest_group finds and returns the least busy CPU group within the
4866 * domain.
4867 */
4868static struct sched_group *
78e7ed53 4869find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4870 int this_cpu, int sd_flag)
e7693a36 4871{
b3bd3de6 4872 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4873 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4874 int load_idx = sd->forkexec_idx;
aaee1203 4875 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4876
c44f2a02
VG
4877 if (sd_flag & SD_BALANCE_WAKE)
4878 load_idx = sd->wake_idx;
4879
aaee1203
PZ
4880 do {
4881 unsigned long load, avg_load;
4882 int local_group;
4883 int i;
e7693a36 4884
aaee1203
PZ
4885 /* Skip over this group if it has no CPUs allowed */
4886 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4887 tsk_cpus_allowed(p)))
aaee1203
PZ
4888 continue;
4889
4890 local_group = cpumask_test_cpu(this_cpu,
4891 sched_group_cpus(group));
4892
4893 /* Tally up the load of all CPUs in the group */
4894 avg_load = 0;
4895
4896 for_each_cpu(i, sched_group_cpus(group)) {
4897 /* Bias balancing toward cpus of our domain */
4898 if (local_group)
4899 load = source_load(i, load_idx);
4900 else
4901 load = target_load(i, load_idx);
4902
4903 avg_load += load;
4904 }
4905
63b2ca30 4906 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4907 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4908
4909 if (local_group) {
4910 this_load = avg_load;
aaee1203
PZ
4911 } else if (avg_load < min_load) {
4912 min_load = avg_load;
4913 idlest = group;
4914 }
4915 } while (group = group->next, group != sd->groups);
4916
4917 if (!idlest || 100*this_load < imbalance*min_load)
4918 return NULL;
4919 return idlest;
4920}
4921
4922/*
4923 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4924 */
4925static int
4926find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4927{
4928 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4929 unsigned int min_exit_latency = UINT_MAX;
4930 u64 latest_idle_timestamp = 0;
4931 int least_loaded_cpu = this_cpu;
4932 int shallowest_idle_cpu = -1;
aaee1203
PZ
4933 int i;
4934
4935 /* Traverse only the allowed CPUs */
fa17b507 4936 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4937 if (idle_cpu(i)) {
4938 struct rq *rq = cpu_rq(i);
4939 struct cpuidle_state *idle = idle_get_state(rq);
4940 if (idle && idle->exit_latency < min_exit_latency) {
4941 /*
4942 * We give priority to a CPU whose idle state
4943 * has the smallest exit latency irrespective
4944 * of any idle timestamp.
4945 */
4946 min_exit_latency = idle->exit_latency;
4947 latest_idle_timestamp = rq->idle_stamp;
4948 shallowest_idle_cpu = i;
4949 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4950 rq->idle_stamp > latest_idle_timestamp) {
4951 /*
4952 * If equal or no active idle state, then
4953 * the most recently idled CPU might have
4954 * a warmer cache.
4955 */
4956 latest_idle_timestamp = rq->idle_stamp;
4957 shallowest_idle_cpu = i;
4958 }
9f96742a 4959 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4960 load = weighted_cpuload(i);
4961 if (load < min_load || (load == min_load && i == this_cpu)) {
4962 min_load = load;
4963 least_loaded_cpu = i;
4964 }
e7693a36
GH
4965 }
4966 }
4967
83a0a96a 4968 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4969}
e7693a36 4970
a50bde51
PZ
4971/*
4972 * Try and locate an idle CPU in the sched_domain.
4973 */
99bd5e2f 4974static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4975{
99bd5e2f 4976 struct sched_domain *sd;
37407ea7 4977 struct sched_group *sg;
e0a79f52 4978 int i = task_cpu(p);
a50bde51 4979
e0a79f52
MG
4980 if (idle_cpu(target))
4981 return target;
99bd5e2f
SS
4982
4983 /*
e0a79f52 4984 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4985 */
e0a79f52
MG
4986 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4987 return i;
a50bde51
PZ
4988
4989 /*
37407ea7 4990 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4991 */
518cd623 4992 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4993 for_each_lower_domain(sd) {
37407ea7
LT
4994 sg = sd->groups;
4995 do {
4996 if (!cpumask_intersects(sched_group_cpus(sg),
4997 tsk_cpus_allowed(p)))
4998 goto next;
4999
5000 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5001 if (i == target || !idle_cpu(i))
37407ea7
LT
5002 goto next;
5003 }
970e1789 5004
37407ea7
LT
5005 target = cpumask_first_and(sched_group_cpus(sg),
5006 tsk_cpus_allowed(p));
5007 goto done;
5008next:
5009 sg = sg->next;
5010 } while (sg != sd->groups);
5011 }
5012done:
a50bde51
PZ
5013 return target;
5014}
231678b7 5015
8bb5b00c 5016/*
9e91d61d 5017 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5018 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5019 * compare the utilization with the capacity of the CPU that is available for
5020 * CFS task (ie cpu_capacity).
231678b7
DE
5021 *
5022 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5023 * recent utilization of currently non-runnable tasks on a CPU. It represents
5024 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5025 * capacity_orig is the cpu_capacity available at the highest frequency
5026 * (arch_scale_freq_capacity()).
5027 * The utilization of a CPU converges towards a sum equal to or less than the
5028 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5029 * the running time on this CPU scaled by capacity_curr.
5030 *
5031 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5032 * higher than capacity_orig because of unfortunate rounding in
5033 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5034 * the average stabilizes with the new running time. We need to check that the
5035 * utilization stays within the range of [0..capacity_orig] and cap it if
5036 * necessary. Without utilization capping, a group could be seen as overloaded
5037 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5038 * available capacity. We allow utilization to overshoot capacity_curr (but not
5039 * capacity_orig) as it useful for predicting the capacity required after task
5040 * migrations (scheduler-driven DVFS).
8bb5b00c 5041 */
9e91d61d 5042static int cpu_util(int cpu)
8bb5b00c 5043{
9e91d61d 5044 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5045 unsigned long capacity = capacity_orig_of(cpu);
5046
231678b7 5047 return (util >= capacity) ? capacity : util;
8bb5b00c 5048}
a50bde51 5049
aaee1203 5050/*
de91b9cb
MR
5051 * select_task_rq_fair: Select target runqueue for the waking task in domains
5052 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5053 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5054 *
de91b9cb
MR
5055 * Balances load by selecting the idlest cpu in the idlest group, or under
5056 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5057 *
de91b9cb 5058 * Returns the target cpu number.
aaee1203
PZ
5059 *
5060 * preempt must be disabled.
5061 */
0017d735 5062static int
ac66f547 5063select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5064{
29cd8bae 5065 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5066 int cpu = smp_processor_id();
63b0e9ed 5067 int new_cpu = prev_cpu;
99bd5e2f 5068 int want_affine = 0;
5158f4e4 5069 int sync = wake_flags & WF_SYNC;
c88d5910 5070
a8edd075 5071 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5072 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5073
dce840a0 5074 rcu_read_lock();
aaee1203 5075 for_each_domain(cpu, tmp) {
e4f42888 5076 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5077 break;
e4f42888 5078
fe3bcfe1 5079 /*
99bd5e2f
SS
5080 * If both cpu and prev_cpu are part of this domain,
5081 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5082 */
99bd5e2f
SS
5083 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5084 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5085 affine_sd = tmp;
29cd8bae 5086 break;
f03542a7 5087 }
29cd8bae 5088
f03542a7 5089 if (tmp->flags & sd_flag)
29cd8bae 5090 sd = tmp;
63b0e9ed
MG
5091 else if (!want_affine)
5092 break;
29cd8bae
PZ
5093 }
5094
63b0e9ed
MG
5095 if (affine_sd) {
5096 sd = NULL; /* Prefer wake_affine over balance flags */
5097 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5098 new_cpu = cpu;
8b911acd 5099 }
e7693a36 5100
63b0e9ed
MG
5101 if (!sd) {
5102 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5103 new_cpu = select_idle_sibling(p, new_cpu);
5104
5105 } else while (sd) {
aaee1203 5106 struct sched_group *group;
c88d5910 5107 int weight;
098fb9db 5108
0763a660 5109 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5110 sd = sd->child;
5111 continue;
5112 }
098fb9db 5113
c44f2a02 5114 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5115 if (!group) {
5116 sd = sd->child;
5117 continue;
5118 }
4ae7d5ce 5119
d7c33c49 5120 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5121 if (new_cpu == -1 || new_cpu == cpu) {
5122 /* Now try balancing at a lower domain level of cpu */
5123 sd = sd->child;
5124 continue;
e7693a36 5125 }
aaee1203
PZ
5126
5127 /* Now try balancing at a lower domain level of new_cpu */
5128 cpu = new_cpu;
669c55e9 5129 weight = sd->span_weight;
aaee1203
PZ
5130 sd = NULL;
5131 for_each_domain(cpu, tmp) {
669c55e9 5132 if (weight <= tmp->span_weight)
aaee1203 5133 break;
0763a660 5134 if (tmp->flags & sd_flag)
aaee1203
PZ
5135 sd = tmp;
5136 }
5137 /* while loop will break here if sd == NULL */
e7693a36 5138 }
dce840a0 5139 rcu_read_unlock();
e7693a36 5140
c88d5910 5141 return new_cpu;
e7693a36 5142}
0a74bef8
PT
5143
5144/*
5145 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5146 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5147 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5148 */
5a4fd036 5149static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5150{
aff3e498 5151 /*
9d89c257
YD
5152 * We are supposed to update the task to "current" time, then its up to date
5153 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5154 * what current time is, so simply throw away the out-of-date time. This
5155 * will result in the wakee task is less decayed, but giving the wakee more
5156 * load sounds not bad.
aff3e498 5157 */
9d89c257
YD
5158 remove_entity_load_avg(&p->se);
5159
5160 /* Tell new CPU we are migrated */
5161 p->se.avg.last_update_time = 0;
3944a927
BS
5162
5163 /* We have migrated, no longer consider this task hot */
9d89c257 5164 p->se.exec_start = 0;
0a74bef8 5165}
12695578
YD
5166
5167static void task_dead_fair(struct task_struct *p)
5168{
5169 remove_entity_load_avg(&p->se);
5170}
e7693a36
GH
5171#endif /* CONFIG_SMP */
5172
e52fb7c0
PZ
5173static unsigned long
5174wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5175{
5176 unsigned long gran = sysctl_sched_wakeup_granularity;
5177
5178 /*
e52fb7c0
PZ
5179 * Since its curr running now, convert the gran from real-time
5180 * to virtual-time in his units.
13814d42
MG
5181 *
5182 * By using 'se' instead of 'curr' we penalize light tasks, so
5183 * they get preempted easier. That is, if 'se' < 'curr' then
5184 * the resulting gran will be larger, therefore penalizing the
5185 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5186 * be smaller, again penalizing the lighter task.
5187 *
5188 * This is especially important for buddies when the leftmost
5189 * task is higher priority than the buddy.
0bbd3336 5190 */
f4ad9bd2 5191 return calc_delta_fair(gran, se);
0bbd3336
PZ
5192}
5193
464b7527
PZ
5194/*
5195 * Should 'se' preempt 'curr'.
5196 *
5197 * |s1
5198 * |s2
5199 * |s3
5200 * g
5201 * |<--->|c
5202 *
5203 * w(c, s1) = -1
5204 * w(c, s2) = 0
5205 * w(c, s3) = 1
5206 *
5207 */
5208static int
5209wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5210{
5211 s64 gran, vdiff = curr->vruntime - se->vruntime;
5212
5213 if (vdiff <= 0)
5214 return -1;
5215
e52fb7c0 5216 gran = wakeup_gran(curr, se);
464b7527
PZ
5217 if (vdiff > gran)
5218 return 1;
5219
5220 return 0;
5221}
5222
02479099
PZ
5223static void set_last_buddy(struct sched_entity *se)
5224{
69c80f3e
VP
5225 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5226 return;
5227
5228 for_each_sched_entity(se)
5229 cfs_rq_of(se)->last = se;
02479099
PZ
5230}
5231
5232static void set_next_buddy(struct sched_entity *se)
5233{
69c80f3e
VP
5234 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5235 return;
5236
5237 for_each_sched_entity(se)
5238 cfs_rq_of(se)->next = se;
02479099
PZ
5239}
5240
ac53db59
RR
5241static void set_skip_buddy(struct sched_entity *se)
5242{
69c80f3e
VP
5243 for_each_sched_entity(se)
5244 cfs_rq_of(se)->skip = se;
ac53db59
RR
5245}
5246
bf0f6f24
IM
5247/*
5248 * Preempt the current task with a newly woken task if needed:
5249 */
5a9b86f6 5250static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5251{
5252 struct task_struct *curr = rq->curr;
8651a86c 5253 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5254 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5255 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5256 int next_buddy_marked = 0;
bf0f6f24 5257
4ae7d5ce
IM
5258 if (unlikely(se == pse))
5259 return;
5260
5238cdd3 5261 /*
163122b7 5262 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5263 * unconditionally check_prempt_curr() after an enqueue (which may have
5264 * lead to a throttle). This both saves work and prevents false
5265 * next-buddy nomination below.
5266 */
5267 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5268 return;
5269
2f36825b 5270 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5271 set_next_buddy(pse);
2f36825b
VP
5272 next_buddy_marked = 1;
5273 }
57fdc26d 5274
aec0a514
BR
5275 /*
5276 * We can come here with TIF_NEED_RESCHED already set from new task
5277 * wake up path.
5238cdd3
PT
5278 *
5279 * Note: this also catches the edge-case of curr being in a throttled
5280 * group (e.g. via set_curr_task), since update_curr() (in the
5281 * enqueue of curr) will have resulted in resched being set. This
5282 * prevents us from potentially nominating it as a false LAST_BUDDY
5283 * below.
aec0a514
BR
5284 */
5285 if (test_tsk_need_resched(curr))
5286 return;
5287
a2f5c9ab
DH
5288 /* Idle tasks are by definition preempted by non-idle tasks. */
5289 if (unlikely(curr->policy == SCHED_IDLE) &&
5290 likely(p->policy != SCHED_IDLE))
5291 goto preempt;
5292
91c234b4 5293 /*
a2f5c9ab
DH
5294 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5295 * is driven by the tick):
91c234b4 5296 */
8ed92e51 5297 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5298 return;
bf0f6f24 5299
464b7527 5300 find_matching_se(&se, &pse);
9bbd7374 5301 update_curr(cfs_rq_of(se));
002f128b 5302 BUG_ON(!pse);
2f36825b
VP
5303 if (wakeup_preempt_entity(se, pse) == 1) {
5304 /*
5305 * Bias pick_next to pick the sched entity that is
5306 * triggering this preemption.
5307 */
5308 if (!next_buddy_marked)
5309 set_next_buddy(pse);
3a7e73a2 5310 goto preempt;
2f36825b 5311 }
464b7527 5312
3a7e73a2 5313 return;
a65ac745 5314
3a7e73a2 5315preempt:
8875125e 5316 resched_curr(rq);
3a7e73a2
PZ
5317 /*
5318 * Only set the backward buddy when the current task is still
5319 * on the rq. This can happen when a wakeup gets interleaved
5320 * with schedule on the ->pre_schedule() or idle_balance()
5321 * point, either of which can * drop the rq lock.
5322 *
5323 * Also, during early boot the idle thread is in the fair class,
5324 * for obvious reasons its a bad idea to schedule back to it.
5325 */
5326 if (unlikely(!se->on_rq || curr == rq->idle))
5327 return;
5328
5329 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5330 set_last_buddy(se);
bf0f6f24
IM
5331}
5332
606dba2e
PZ
5333static struct task_struct *
5334pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5335{
5336 struct cfs_rq *cfs_rq = &rq->cfs;
5337 struct sched_entity *se;
678d5718 5338 struct task_struct *p;
37e117c0 5339 int new_tasks;
678d5718 5340
6e83125c 5341again:
678d5718
PZ
5342#ifdef CONFIG_FAIR_GROUP_SCHED
5343 if (!cfs_rq->nr_running)
38033c37 5344 goto idle;
678d5718 5345
3f1d2a31 5346 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5347 goto simple;
5348
5349 /*
5350 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5351 * likely that a next task is from the same cgroup as the current.
5352 *
5353 * Therefore attempt to avoid putting and setting the entire cgroup
5354 * hierarchy, only change the part that actually changes.
5355 */
5356
5357 do {
5358 struct sched_entity *curr = cfs_rq->curr;
5359
5360 /*
5361 * Since we got here without doing put_prev_entity() we also
5362 * have to consider cfs_rq->curr. If it is still a runnable
5363 * entity, update_curr() will update its vruntime, otherwise
5364 * forget we've ever seen it.
5365 */
54d27365
BS
5366 if (curr) {
5367 if (curr->on_rq)
5368 update_curr(cfs_rq);
5369 else
5370 curr = NULL;
678d5718 5371
54d27365
BS
5372 /*
5373 * This call to check_cfs_rq_runtime() will do the
5374 * throttle and dequeue its entity in the parent(s).
5375 * Therefore the 'simple' nr_running test will indeed
5376 * be correct.
5377 */
5378 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5379 goto simple;
5380 }
678d5718
PZ
5381
5382 se = pick_next_entity(cfs_rq, curr);
5383 cfs_rq = group_cfs_rq(se);
5384 } while (cfs_rq);
5385
5386 p = task_of(se);
5387
5388 /*
5389 * Since we haven't yet done put_prev_entity and if the selected task
5390 * is a different task than we started out with, try and touch the
5391 * least amount of cfs_rqs.
5392 */
5393 if (prev != p) {
5394 struct sched_entity *pse = &prev->se;
5395
5396 while (!(cfs_rq = is_same_group(se, pse))) {
5397 int se_depth = se->depth;
5398 int pse_depth = pse->depth;
5399
5400 if (se_depth <= pse_depth) {
5401 put_prev_entity(cfs_rq_of(pse), pse);
5402 pse = parent_entity(pse);
5403 }
5404 if (se_depth >= pse_depth) {
5405 set_next_entity(cfs_rq_of(se), se);
5406 se = parent_entity(se);
5407 }
5408 }
5409
5410 put_prev_entity(cfs_rq, pse);
5411 set_next_entity(cfs_rq, se);
5412 }
5413
5414 if (hrtick_enabled(rq))
5415 hrtick_start_fair(rq, p);
5416
5417 return p;
5418simple:
5419 cfs_rq = &rq->cfs;
5420#endif
bf0f6f24 5421
36ace27e 5422 if (!cfs_rq->nr_running)
38033c37 5423 goto idle;
bf0f6f24 5424
3f1d2a31 5425 put_prev_task(rq, prev);
606dba2e 5426
bf0f6f24 5427 do {
678d5718 5428 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5429 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5430 cfs_rq = group_cfs_rq(se);
5431 } while (cfs_rq);
5432
8f4d37ec 5433 p = task_of(se);
678d5718 5434
b39e66ea
MG
5435 if (hrtick_enabled(rq))
5436 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5437
5438 return p;
38033c37
PZ
5439
5440idle:
cbce1a68
PZ
5441 /*
5442 * This is OK, because current is on_cpu, which avoids it being picked
5443 * for load-balance and preemption/IRQs are still disabled avoiding
5444 * further scheduler activity on it and we're being very careful to
5445 * re-start the picking loop.
5446 */
5447 lockdep_unpin_lock(&rq->lock);
e4aa358b 5448 new_tasks = idle_balance(rq);
cbce1a68 5449 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5450 /*
5451 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5452 * possible for any higher priority task to appear. In that case we
5453 * must re-start the pick_next_entity() loop.
5454 */
e4aa358b 5455 if (new_tasks < 0)
37e117c0
PZ
5456 return RETRY_TASK;
5457
e4aa358b 5458 if (new_tasks > 0)
38033c37 5459 goto again;
38033c37
PZ
5460
5461 return NULL;
bf0f6f24
IM
5462}
5463
5464/*
5465 * Account for a descheduled task:
5466 */
31ee529c 5467static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5468{
5469 struct sched_entity *se = &prev->se;
5470 struct cfs_rq *cfs_rq;
5471
5472 for_each_sched_entity(se) {
5473 cfs_rq = cfs_rq_of(se);
ab6cde26 5474 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5475 }
5476}
5477
ac53db59
RR
5478/*
5479 * sched_yield() is very simple
5480 *
5481 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5482 */
5483static void yield_task_fair(struct rq *rq)
5484{
5485 struct task_struct *curr = rq->curr;
5486 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5487 struct sched_entity *se = &curr->se;
5488
5489 /*
5490 * Are we the only task in the tree?
5491 */
5492 if (unlikely(rq->nr_running == 1))
5493 return;
5494
5495 clear_buddies(cfs_rq, se);
5496
5497 if (curr->policy != SCHED_BATCH) {
5498 update_rq_clock(rq);
5499 /*
5500 * Update run-time statistics of the 'current'.
5501 */
5502 update_curr(cfs_rq);
916671c0
MG
5503 /*
5504 * Tell update_rq_clock() that we've just updated,
5505 * so we don't do microscopic update in schedule()
5506 * and double the fastpath cost.
5507 */
9edfbfed 5508 rq_clock_skip_update(rq, true);
ac53db59
RR
5509 }
5510
5511 set_skip_buddy(se);
5512}
5513
d95f4122
MG
5514static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5515{
5516 struct sched_entity *se = &p->se;
5517
5238cdd3
PT
5518 /* throttled hierarchies are not runnable */
5519 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5520 return false;
5521
5522 /* Tell the scheduler that we'd really like pse to run next. */
5523 set_next_buddy(se);
5524
d95f4122
MG
5525 yield_task_fair(rq);
5526
5527 return true;
5528}
5529
681f3e68 5530#ifdef CONFIG_SMP
bf0f6f24 5531/**************************************************
e9c84cb8
PZ
5532 * Fair scheduling class load-balancing methods.
5533 *
5534 * BASICS
5535 *
5536 * The purpose of load-balancing is to achieve the same basic fairness the
5537 * per-cpu scheduler provides, namely provide a proportional amount of compute
5538 * time to each task. This is expressed in the following equation:
5539 *
5540 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5541 *
5542 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5543 * W_i,0 is defined as:
5544 *
5545 * W_i,0 = \Sum_j w_i,j (2)
5546 *
5547 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5548 * is derived from the nice value as per prio_to_weight[].
5549 *
5550 * The weight average is an exponential decay average of the instantaneous
5551 * weight:
5552 *
5553 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5554 *
ced549fa 5555 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5556 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5557 * can also include other factors [XXX].
5558 *
5559 * To achieve this balance we define a measure of imbalance which follows
5560 * directly from (1):
5561 *
ced549fa 5562 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5563 *
5564 * We them move tasks around to minimize the imbalance. In the continuous
5565 * function space it is obvious this converges, in the discrete case we get
5566 * a few fun cases generally called infeasible weight scenarios.
5567 *
5568 * [XXX expand on:
5569 * - infeasible weights;
5570 * - local vs global optima in the discrete case. ]
5571 *
5572 *
5573 * SCHED DOMAINS
5574 *
5575 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5576 * for all i,j solution, we create a tree of cpus that follows the hardware
5577 * topology where each level pairs two lower groups (or better). This results
5578 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5579 * tree to only the first of the previous level and we decrease the frequency
5580 * of load-balance at each level inv. proportional to the number of cpus in
5581 * the groups.
5582 *
5583 * This yields:
5584 *
5585 * log_2 n 1 n
5586 * \Sum { --- * --- * 2^i } = O(n) (5)
5587 * i = 0 2^i 2^i
5588 * `- size of each group
5589 * | | `- number of cpus doing load-balance
5590 * | `- freq
5591 * `- sum over all levels
5592 *
5593 * Coupled with a limit on how many tasks we can migrate every balance pass,
5594 * this makes (5) the runtime complexity of the balancer.
5595 *
5596 * An important property here is that each CPU is still (indirectly) connected
5597 * to every other cpu in at most O(log n) steps:
5598 *
5599 * The adjacency matrix of the resulting graph is given by:
5600 *
5601 * log_2 n
5602 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5603 * k = 0
5604 *
5605 * And you'll find that:
5606 *
5607 * A^(log_2 n)_i,j != 0 for all i,j (7)
5608 *
5609 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5610 * The task movement gives a factor of O(m), giving a convergence complexity
5611 * of:
5612 *
5613 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5614 *
5615 *
5616 * WORK CONSERVING
5617 *
5618 * In order to avoid CPUs going idle while there's still work to do, new idle
5619 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5620 * tree itself instead of relying on other CPUs to bring it work.
5621 *
5622 * This adds some complexity to both (5) and (8) but it reduces the total idle
5623 * time.
5624 *
5625 * [XXX more?]
5626 *
5627 *
5628 * CGROUPS
5629 *
5630 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5631 *
5632 * s_k,i
5633 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5634 * S_k
5635 *
5636 * Where
5637 *
5638 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5639 *
5640 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5641 *
5642 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5643 * property.
5644 *
5645 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5646 * rewrite all of this once again.]
5647 */
bf0f6f24 5648
ed387b78
HS
5649static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5650
0ec8aa00
PZ
5651enum fbq_type { regular, remote, all };
5652
ddcdf6e7 5653#define LBF_ALL_PINNED 0x01
367456c7 5654#define LBF_NEED_BREAK 0x02
6263322c
PZ
5655#define LBF_DST_PINNED 0x04
5656#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5657
5658struct lb_env {
5659 struct sched_domain *sd;
5660
ddcdf6e7 5661 struct rq *src_rq;
85c1e7da 5662 int src_cpu;
ddcdf6e7
PZ
5663
5664 int dst_cpu;
5665 struct rq *dst_rq;
5666
88b8dac0
SV
5667 struct cpumask *dst_grpmask;
5668 int new_dst_cpu;
ddcdf6e7 5669 enum cpu_idle_type idle;
bd939f45 5670 long imbalance;
b9403130
MW
5671 /* The set of CPUs under consideration for load-balancing */
5672 struct cpumask *cpus;
5673
ddcdf6e7 5674 unsigned int flags;
367456c7
PZ
5675
5676 unsigned int loop;
5677 unsigned int loop_break;
5678 unsigned int loop_max;
0ec8aa00
PZ
5679
5680 enum fbq_type fbq_type;
163122b7 5681 struct list_head tasks;
ddcdf6e7
PZ
5682};
5683
029632fb
PZ
5684/*
5685 * Is this task likely cache-hot:
5686 */
5d5e2b1b 5687static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5688{
5689 s64 delta;
5690
e5673f28
KT
5691 lockdep_assert_held(&env->src_rq->lock);
5692
029632fb
PZ
5693 if (p->sched_class != &fair_sched_class)
5694 return 0;
5695
5696 if (unlikely(p->policy == SCHED_IDLE))
5697 return 0;
5698
5699 /*
5700 * Buddy candidates are cache hot:
5701 */
5d5e2b1b 5702 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5703 (&p->se == cfs_rq_of(&p->se)->next ||
5704 &p->se == cfs_rq_of(&p->se)->last))
5705 return 1;
5706
5707 if (sysctl_sched_migration_cost == -1)
5708 return 1;
5709 if (sysctl_sched_migration_cost == 0)
5710 return 0;
5711
5d5e2b1b 5712 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5713
5714 return delta < (s64)sysctl_sched_migration_cost;
5715}
5716
3a7053b3 5717#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5718/*
2a1ed24c
SD
5719 * Returns 1, if task migration degrades locality
5720 * Returns 0, if task migration improves locality i.e migration preferred.
5721 * Returns -1, if task migration is not affected by locality.
c1ceac62 5722 */
2a1ed24c 5723static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5724{
b1ad065e 5725 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5726 unsigned long src_faults, dst_faults;
3a7053b3
MG
5727 int src_nid, dst_nid;
5728
2a595721 5729 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5730 return -1;
5731
c3b9bc5b 5732 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5733 return -1;
7a0f3083
MG
5734
5735 src_nid = cpu_to_node(env->src_cpu);
5736 dst_nid = cpu_to_node(env->dst_cpu);
5737
83e1d2cd 5738 if (src_nid == dst_nid)
2a1ed24c 5739 return -1;
7a0f3083 5740
2a1ed24c
SD
5741 /* Migrating away from the preferred node is always bad. */
5742 if (src_nid == p->numa_preferred_nid) {
5743 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5744 return 1;
5745 else
5746 return -1;
5747 }
b1ad065e 5748
c1ceac62
RR
5749 /* Encourage migration to the preferred node. */
5750 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5751 return 0;
b1ad065e 5752
c1ceac62
RR
5753 if (numa_group) {
5754 src_faults = group_faults(p, src_nid);
5755 dst_faults = group_faults(p, dst_nid);
5756 } else {
5757 src_faults = task_faults(p, src_nid);
5758 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5759 }
5760
c1ceac62 5761 return dst_faults < src_faults;
7a0f3083
MG
5762}
5763
3a7053b3 5764#else
2a1ed24c 5765static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5766 struct lb_env *env)
5767{
2a1ed24c 5768 return -1;
7a0f3083 5769}
3a7053b3
MG
5770#endif
5771
1e3c88bd
PZ
5772/*
5773 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5774 */
5775static
8e45cb54 5776int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5777{
2a1ed24c 5778 int tsk_cache_hot;
e5673f28
KT
5779
5780 lockdep_assert_held(&env->src_rq->lock);
5781
1e3c88bd
PZ
5782 /*
5783 * We do not migrate tasks that are:
d3198084 5784 * 1) throttled_lb_pair, or
1e3c88bd 5785 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5786 * 3) running (obviously), or
5787 * 4) are cache-hot on their current CPU.
1e3c88bd 5788 */
d3198084
JK
5789 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5790 return 0;
5791
ddcdf6e7 5792 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5793 int cpu;
88b8dac0 5794
41acab88 5795 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5796
6263322c
PZ
5797 env->flags |= LBF_SOME_PINNED;
5798
88b8dac0
SV
5799 /*
5800 * Remember if this task can be migrated to any other cpu in
5801 * our sched_group. We may want to revisit it if we couldn't
5802 * meet load balance goals by pulling other tasks on src_cpu.
5803 *
5804 * Also avoid computing new_dst_cpu if we have already computed
5805 * one in current iteration.
5806 */
6263322c 5807 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5808 return 0;
5809
e02e60c1
JK
5810 /* Prevent to re-select dst_cpu via env's cpus */
5811 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5812 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5813 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5814 env->new_dst_cpu = cpu;
5815 break;
5816 }
88b8dac0 5817 }
e02e60c1 5818
1e3c88bd
PZ
5819 return 0;
5820 }
88b8dac0
SV
5821
5822 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5823 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5824
ddcdf6e7 5825 if (task_running(env->src_rq, p)) {
41acab88 5826 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5827 return 0;
5828 }
5829
5830 /*
5831 * Aggressive migration if:
3a7053b3
MG
5832 * 1) destination numa is preferred
5833 * 2) task is cache cold, or
5834 * 3) too many balance attempts have failed.
1e3c88bd 5835 */
2a1ed24c
SD
5836 tsk_cache_hot = migrate_degrades_locality(p, env);
5837 if (tsk_cache_hot == -1)
5838 tsk_cache_hot = task_hot(p, env);
3a7053b3 5839
2a1ed24c 5840 if (tsk_cache_hot <= 0 ||
7a96c231 5841 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5842 if (tsk_cache_hot == 1) {
3a7053b3
MG
5843 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5844 schedstat_inc(p, se.statistics.nr_forced_migrations);
5845 }
1e3c88bd
PZ
5846 return 1;
5847 }
5848
4e2dcb73
ZH
5849 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5850 return 0;
1e3c88bd
PZ
5851}
5852
897c395f 5853/*
163122b7
KT
5854 * detach_task() -- detach the task for the migration specified in env
5855 */
5856static void detach_task(struct task_struct *p, struct lb_env *env)
5857{
5858 lockdep_assert_held(&env->src_rq->lock);
5859
163122b7 5860 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5861 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5862 set_task_cpu(p, env->dst_cpu);
5863}
5864
897c395f 5865/*
e5673f28 5866 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5867 * part of active balancing operations within "domain".
897c395f 5868 *
e5673f28 5869 * Returns a task if successful and NULL otherwise.
897c395f 5870 */
e5673f28 5871static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5872{
5873 struct task_struct *p, *n;
897c395f 5874
e5673f28
KT
5875 lockdep_assert_held(&env->src_rq->lock);
5876
367456c7 5877 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5878 if (!can_migrate_task(p, env))
5879 continue;
897c395f 5880
163122b7 5881 detach_task(p, env);
e5673f28 5882
367456c7 5883 /*
e5673f28 5884 * Right now, this is only the second place where
163122b7 5885 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5886 * so we can safely collect stats here rather than
163122b7 5887 * inside detach_tasks().
367456c7
PZ
5888 */
5889 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5890 return p;
897c395f 5891 }
e5673f28 5892 return NULL;
897c395f
PZ
5893}
5894
eb95308e
PZ
5895static const unsigned int sched_nr_migrate_break = 32;
5896
5d6523eb 5897/*
163122b7
KT
5898 * detach_tasks() -- tries to detach up to imbalance weighted load from
5899 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5900 *
163122b7 5901 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5902 */
163122b7 5903static int detach_tasks(struct lb_env *env)
1e3c88bd 5904{
5d6523eb
PZ
5905 struct list_head *tasks = &env->src_rq->cfs_tasks;
5906 struct task_struct *p;
367456c7 5907 unsigned long load;
163122b7
KT
5908 int detached = 0;
5909
5910 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5911
bd939f45 5912 if (env->imbalance <= 0)
5d6523eb 5913 return 0;
1e3c88bd 5914
5d6523eb 5915 while (!list_empty(tasks)) {
985d3a4c
YD
5916 /*
5917 * We don't want to steal all, otherwise we may be treated likewise,
5918 * which could at worst lead to a livelock crash.
5919 */
5920 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5921 break;
5922
5d6523eb 5923 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5924
367456c7
PZ
5925 env->loop++;
5926 /* We've more or less seen every task there is, call it quits */
5d6523eb 5927 if (env->loop > env->loop_max)
367456c7 5928 break;
5d6523eb
PZ
5929
5930 /* take a breather every nr_migrate tasks */
367456c7 5931 if (env->loop > env->loop_break) {
eb95308e 5932 env->loop_break += sched_nr_migrate_break;
8e45cb54 5933 env->flags |= LBF_NEED_BREAK;
ee00e66f 5934 break;
a195f004 5935 }
1e3c88bd 5936
d3198084 5937 if (!can_migrate_task(p, env))
367456c7
PZ
5938 goto next;
5939
5940 load = task_h_load(p);
5d6523eb 5941
eb95308e 5942 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5943 goto next;
5944
bd939f45 5945 if ((load / 2) > env->imbalance)
367456c7 5946 goto next;
1e3c88bd 5947
163122b7
KT
5948 detach_task(p, env);
5949 list_add(&p->se.group_node, &env->tasks);
5950
5951 detached++;
bd939f45 5952 env->imbalance -= load;
1e3c88bd
PZ
5953
5954#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5955 /*
5956 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5957 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5958 * the critical section.
5959 */
5d6523eb 5960 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5961 break;
1e3c88bd
PZ
5962#endif
5963
ee00e66f
PZ
5964 /*
5965 * We only want to steal up to the prescribed amount of
5966 * weighted load.
5967 */
bd939f45 5968 if (env->imbalance <= 0)
ee00e66f 5969 break;
367456c7
PZ
5970
5971 continue;
5972next:
5d6523eb 5973 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5974 }
5d6523eb 5975
1e3c88bd 5976 /*
163122b7
KT
5977 * Right now, this is one of only two places we collect this stat
5978 * so we can safely collect detach_one_task() stats here rather
5979 * than inside detach_one_task().
1e3c88bd 5980 */
163122b7 5981 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5982
163122b7
KT
5983 return detached;
5984}
5985
5986/*
5987 * attach_task() -- attach the task detached by detach_task() to its new rq.
5988 */
5989static void attach_task(struct rq *rq, struct task_struct *p)
5990{
5991 lockdep_assert_held(&rq->lock);
5992
5993 BUG_ON(task_rq(p) != rq);
163122b7 5994 activate_task(rq, p, 0);
3ea94de1 5995 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
5996 check_preempt_curr(rq, p, 0);
5997}
5998
5999/*
6000 * attach_one_task() -- attaches the task returned from detach_one_task() to
6001 * its new rq.
6002 */
6003static void attach_one_task(struct rq *rq, struct task_struct *p)
6004{
6005 raw_spin_lock(&rq->lock);
6006 attach_task(rq, p);
6007 raw_spin_unlock(&rq->lock);
6008}
6009
6010/*
6011 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6012 * new rq.
6013 */
6014static void attach_tasks(struct lb_env *env)
6015{
6016 struct list_head *tasks = &env->tasks;
6017 struct task_struct *p;
6018
6019 raw_spin_lock(&env->dst_rq->lock);
6020
6021 while (!list_empty(tasks)) {
6022 p = list_first_entry(tasks, struct task_struct, se.group_node);
6023 list_del_init(&p->se.group_node);
1e3c88bd 6024
163122b7
KT
6025 attach_task(env->dst_rq, p);
6026 }
6027
6028 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6029}
6030
230059de 6031#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6032static void update_blocked_averages(int cpu)
9e3081ca 6033{
9e3081ca 6034 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6035 struct cfs_rq *cfs_rq;
6036 unsigned long flags;
9e3081ca 6037
48a16753
PT
6038 raw_spin_lock_irqsave(&rq->lock, flags);
6039 update_rq_clock(rq);
9d89c257 6040
9763b67f
PZ
6041 /*
6042 * Iterates the task_group tree in a bottom up fashion, see
6043 * list_add_leaf_cfs_rq() for details.
6044 */
64660c86 6045 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6046 /* throttled entities do not contribute to load */
6047 if (throttled_hierarchy(cfs_rq))
6048 continue;
48a16753 6049
9d89c257
YD
6050 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6051 update_tg_load_avg(cfs_rq, 0);
6052 }
48a16753 6053 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6054}
6055
9763b67f 6056/*
68520796 6057 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6058 * This needs to be done in a top-down fashion because the load of a child
6059 * group is a fraction of its parents load.
6060 */
68520796 6061static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6062{
68520796
VD
6063 struct rq *rq = rq_of(cfs_rq);
6064 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6065 unsigned long now = jiffies;
68520796 6066 unsigned long load;
a35b6466 6067
68520796 6068 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6069 return;
6070
68520796
VD
6071 cfs_rq->h_load_next = NULL;
6072 for_each_sched_entity(se) {
6073 cfs_rq = cfs_rq_of(se);
6074 cfs_rq->h_load_next = se;
6075 if (cfs_rq->last_h_load_update == now)
6076 break;
6077 }
a35b6466 6078
68520796 6079 if (!se) {
7ea241af 6080 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6081 cfs_rq->last_h_load_update = now;
6082 }
6083
6084 while ((se = cfs_rq->h_load_next) != NULL) {
6085 load = cfs_rq->h_load;
7ea241af
YD
6086 load = div64_ul(load * se->avg.load_avg,
6087 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6088 cfs_rq = group_cfs_rq(se);
6089 cfs_rq->h_load = load;
6090 cfs_rq->last_h_load_update = now;
6091 }
9763b67f
PZ
6092}
6093
367456c7 6094static unsigned long task_h_load(struct task_struct *p)
230059de 6095{
367456c7 6096 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6097
68520796 6098 update_cfs_rq_h_load(cfs_rq);
9d89c257 6099 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6100 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6101}
6102#else
48a16753 6103static inline void update_blocked_averages(int cpu)
9e3081ca 6104{
6c1d47c0
VG
6105 struct rq *rq = cpu_rq(cpu);
6106 struct cfs_rq *cfs_rq = &rq->cfs;
6107 unsigned long flags;
6108
6109 raw_spin_lock_irqsave(&rq->lock, flags);
6110 update_rq_clock(rq);
6111 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6112 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6113}
6114
367456c7 6115static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6116{
9d89c257 6117 return p->se.avg.load_avg;
1e3c88bd 6118}
230059de 6119#endif
1e3c88bd 6120
1e3c88bd 6121/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6122
6123enum group_type {
6124 group_other = 0,
6125 group_imbalanced,
6126 group_overloaded,
6127};
6128
1e3c88bd
PZ
6129/*
6130 * sg_lb_stats - stats of a sched_group required for load_balancing
6131 */
6132struct sg_lb_stats {
6133 unsigned long avg_load; /*Avg load across the CPUs of the group */
6134 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6135 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6136 unsigned long load_per_task;
63b2ca30 6137 unsigned long group_capacity;
9e91d61d 6138 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6139 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6140 unsigned int idle_cpus;
6141 unsigned int group_weight;
caeb178c 6142 enum group_type group_type;
ea67821b 6143 int group_no_capacity;
0ec8aa00
PZ
6144#ifdef CONFIG_NUMA_BALANCING
6145 unsigned int nr_numa_running;
6146 unsigned int nr_preferred_running;
6147#endif
1e3c88bd
PZ
6148};
6149
56cf515b
JK
6150/*
6151 * sd_lb_stats - Structure to store the statistics of a sched_domain
6152 * during load balancing.
6153 */
6154struct sd_lb_stats {
6155 struct sched_group *busiest; /* Busiest group in this sd */
6156 struct sched_group *local; /* Local group in this sd */
6157 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6158 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6159 unsigned long avg_load; /* Average load across all groups in sd */
6160
56cf515b 6161 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6162 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6163};
6164
147c5fc2
PZ
6165static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6166{
6167 /*
6168 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6169 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6170 * We must however clear busiest_stat::avg_load because
6171 * update_sd_pick_busiest() reads this before assignment.
6172 */
6173 *sds = (struct sd_lb_stats){
6174 .busiest = NULL,
6175 .local = NULL,
6176 .total_load = 0UL,
63b2ca30 6177 .total_capacity = 0UL,
147c5fc2
PZ
6178 .busiest_stat = {
6179 .avg_load = 0UL,
caeb178c
RR
6180 .sum_nr_running = 0,
6181 .group_type = group_other,
147c5fc2
PZ
6182 },
6183 };
6184}
6185
1e3c88bd
PZ
6186/**
6187 * get_sd_load_idx - Obtain the load index for a given sched domain.
6188 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6189 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6190 *
6191 * Return: The load index.
1e3c88bd
PZ
6192 */
6193static inline int get_sd_load_idx(struct sched_domain *sd,
6194 enum cpu_idle_type idle)
6195{
6196 int load_idx;
6197
6198 switch (idle) {
6199 case CPU_NOT_IDLE:
6200 load_idx = sd->busy_idx;
6201 break;
6202
6203 case CPU_NEWLY_IDLE:
6204 load_idx = sd->newidle_idx;
6205 break;
6206 default:
6207 load_idx = sd->idle_idx;
6208 break;
6209 }
6210
6211 return load_idx;
6212}
6213
ced549fa 6214static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6215{
6216 struct rq *rq = cpu_rq(cpu);
b5b4860d 6217 u64 total, used, age_stamp, avg;
cadefd3d 6218 s64 delta;
1e3c88bd 6219
b654f7de
PZ
6220 /*
6221 * Since we're reading these variables without serialization make sure
6222 * we read them once before doing sanity checks on them.
6223 */
316c1608
JL
6224 age_stamp = READ_ONCE(rq->age_stamp);
6225 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6226 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6227
cadefd3d
PZ
6228 if (unlikely(delta < 0))
6229 delta = 0;
6230
6231 total = sched_avg_period() + delta;
aa483808 6232
b5b4860d 6233 used = div_u64(avg, total);
1e3c88bd 6234
b5b4860d
VG
6235 if (likely(used < SCHED_CAPACITY_SCALE))
6236 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6237
b5b4860d 6238 return 1;
1e3c88bd
PZ
6239}
6240
ced549fa 6241static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6242{
8cd5601c 6243 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6244 struct sched_group *sdg = sd->groups;
6245
ca6d75e6 6246 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6247
ced549fa 6248 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6249 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6250
ced549fa
NP
6251 if (!capacity)
6252 capacity = 1;
1e3c88bd 6253
ced549fa
NP
6254 cpu_rq(cpu)->cpu_capacity = capacity;
6255 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6256}
6257
63b2ca30 6258void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6259{
6260 struct sched_domain *child = sd->child;
6261 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6262 unsigned long capacity;
4ec4412e
VG
6263 unsigned long interval;
6264
6265 interval = msecs_to_jiffies(sd->balance_interval);
6266 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6267 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6268
6269 if (!child) {
ced549fa 6270 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6271 return;
6272 }
6273
dc7ff76e 6274 capacity = 0;
1e3c88bd 6275
74a5ce20
PZ
6276 if (child->flags & SD_OVERLAP) {
6277 /*
6278 * SD_OVERLAP domains cannot assume that child groups
6279 * span the current group.
6280 */
6281
863bffc8 6282 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6283 struct sched_group_capacity *sgc;
9abf24d4 6284 struct rq *rq = cpu_rq(cpu);
863bffc8 6285
9abf24d4 6286 /*
63b2ca30 6287 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6288 * gets here before we've attached the domains to the
6289 * runqueues.
6290 *
ced549fa
NP
6291 * Use capacity_of(), which is set irrespective of domains
6292 * in update_cpu_capacity().
9abf24d4 6293 *
dc7ff76e 6294 * This avoids capacity from being 0 and
9abf24d4 6295 * causing divide-by-zero issues on boot.
9abf24d4
SD
6296 */
6297 if (unlikely(!rq->sd)) {
ced549fa 6298 capacity += capacity_of(cpu);
9abf24d4
SD
6299 continue;
6300 }
863bffc8 6301
63b2ca30 6302 sgc = rq->sd->groups->sgc;
63b2ca30 6303 capacity += sgc->capacity;
863bffc8 6304 }
74a5ce20
PZ
6305 } else {
6306 /*
6307 * !SD_OVERLAP domains can assume that child groups
6308 * span the current group.
6309 */
6310
6311 group = child->groups;
6312 do {
63b2ca30 6313 capacity += group->sgc->capacity;
74a5ce20
PZ
6314 group = group->next;
6315 } while (group != child->groups);
6316 }
1e3c88bd 6317
63b2ca30 6318 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6319}
6320
9d5efe05 6321/*
ea67821b
VG
6322 * Check whether the capacity of the rq has been noticeably reduced by side
6323 * activity. The imbalance_pct is used for the threshold.
6324 * Return true is the capacity is reduced
9d5efe05
SV
6325 */
6326static inline int
ea67821b 6327check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6328{
ea67821b
VG
6329 return ((rq->cpu_capacity * sd->imbalance_pct) <
6330 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6331}
6332
30ce5dab
PZ
6333/*
6334 * Group imbalance indicates (and tries to solve) the problem where balancing
6335 * groups is inadequate due to tsk_cpus_allowed() constraints.
6336 *
6337 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6338 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6339 * Something like:
6340 *
6341 * { 0 1 2 3 } { 4 5 6 7 }
6342 * * * * *
6343 *
6344 * If we were to balance group-wise we'd place two tasks in the first group and
6345 * two tasks in the second group. Clearly this is undesired as it will overload
6346 * cpu 3 and leave one of the cpus in the second group unused.
6347 *
6348 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6349 * by noticing the lower domain failed to reach balance and had difficulty
6350 * moving tasks due to affinity constraints.
30ce5dab
PZ
6351 *
6352 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6353 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6354 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6355 * to create an effective group imbalance.
6356 *
6357 * This is a somewhat tricky proposition since the next run might not find the
6358 * group imbalance and decide the groups need to be balanced again. A most
6359 * subtle and fragile situation.
6360 */
6361
6263322c 6362static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6363{
63b2ca30 6364 return group->sgc->imbalance;
30ce5dab
PZ
6365}
6366
b37d9316 6367/*
ea67821b
VG
6368 * group_has_capacity returns true if the group has spare capacity that could
6369 * be used by some tasks.
6370 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6371 * smaller than the number of CPUs or if the utilization is lower than the
6372 * available capacity for CFS tasks.
ea67821b
VG
6373 * For the latter, we use a threshold to stabilize the state, to take into
6374 * account the variance of the tasks' load and to return true if the available
6375 * capacity in meaningful for the load balancer.
6376 * As an example, an available capacity of 1% can appear but it doesn't make
6377 * any benefit for the load balance.
b37d9316 6378 */
ea67821b
VG
6379static inline bool
6380group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6381{
ea67821b
VG
6382 if (sgs->sum_nr_running < sgs->group_weight)
6383 return true;
c61037e9 6384
ea67821b 6385 if ((sgs->group_capacity * 100) >
9e91d61d 6386 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6387 return true;
b37d9316 6388
ea67821b
VG
6389 return false;
6390}
6391
6392/*
6393 * group_is_overloaded returns true if the group has more tasks than it can
6394 * handle.
6395 * group_is_overloaded is not equals to !group_has_capacity because a group
6396 * with the exact right number of tasks, has no more spare capacity but is not
6397 * overloaded so both group_has_capacity and group_is_overloaded return
6398 * false.
6399 */
6400static inline bool
6401group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6402{
6403 if (sgs->sum_nr_running <= sgs->group_weight)
6404 return false;
b37d9316 6405
ea67821b 6406 if ((sgs->group_capacity * 100) <
9e91d61d 6407 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6408 return true;
b37d9316 6409
ea67821b 6410 return false;
b37d9316
PZ
6411}
6412
79a89f92
LY
6413static inline enum
6414group_type group_classify(struct sched_group *group,
6415 struct sg_lb_stats *sgs)
caeb178c 6416{
ea67821b 6417 if (sgs->group_no_capacity)
caeb178c
RR
6418 return group_overloaded;
6419
6420 if (sg_imbalanced(group))
6421 return group_imbalanced;
6422
6423 return group_other;
6424}
6425
1e3c88bd
PZ
6426/**
6427 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6428 * @env: The load balancing environment.
1e3c88bd 6429 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6430 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6431 * @local_group: Does group contain this_cpu.
1e3c88bd 6432 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6433 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6434 */
bd939f45
PZ
6435static inline void update_sg_lb_stats(struct lb_env *env,
6436 struct sched_group *group, int load_idx,
4486edd1
TC
6437 int local_group, struct sg_lb_stats *sgs,
6438 bool *overload)
1e3c88bd 6439{
30ce5dab 6440 unsigned long load;
a426f99c 6441 int i, nr_running;
1e3c88bd 6442
b72ff13c
PZ
6443 memset(sgs, 0, sizeof(*sgs));
6444
b9403130 6445 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6446 struct rq *rq = cpu_rq(i);
6447
1e3c88bd 6448 /* Bias balancing toward cpus of our domain */
6263322c 6449 if (local_group)
04f733b4 6450 load = target_load(i, load_idx);
6263322c 6451 else
1e3c88bd 6452 load = source_load(i, load_idx);
1e3c88bd
PZ
6453
6454 sgs->group_load += load;
9e91d61d 6455 sgs->group_util += cpu_util(i);
65fdac08 6456 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6457
a426f99c
WL
6458 nr_running = rq->nr_running;
6459 if (nr_running > 1)
4486edd1
TC
6460 *overload = true;
6461
0ec8aa00
PZ
6462#ifdef CONFIG_NUMA_BALANCING
6463 sgs->nr_numa_running += rq->nr_numa_running;
6464 sgs->nr_preferred_running += rq->nr_preferred_running;
6465#endif
1e3c88bd 6466 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6467 /*
6468 * No need to call idle_cpu() if nr_running is not 0
6469 */
6470 if (!nr_running && idle_cpu(i))
aae6d3dd 6471 sgs->idle_cpus++;
1e3c88bd
PZ
6472 }
6473
63b2ca30
NP
6474 /* Adjust by relative CPU capacity of the group */
6475 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6476 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6477
dd5feea1 6478 if (sgs->sum_nr_running)
38d0f770 6479 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6480
aae6d3dd 6481 sgs->group_weight = group->group_weight;
b37d9316 6482
ea67821b 6483 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6484 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6485}
6486
532cb4c4
MN
6487/**
6488 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6489 * @env: The load balancing environment.
532cb4c4
MN
6490 * @sds: sched_domain statistics
6491 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6492 * @sgs: sched_group statistics
532cb4c4
MN
6493 *
6494 * Determine if @sg is a busier group than the previously selected
6495 * busiest group.
e69f6186
YB
6496 *
6497 * Return: %true if @sg is a busier group than the previously selected
6498 * busiest group. %false otherwise.
532cb4c4 6499 */
bd939f45 6500static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6501 struct sd_lb_stats *sds,
6502 struct sched_group *sg,
bd939f45 6503 struct sg_lb_stats *sgs)
532cb4c4 6504{
caeb178c 6505 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6506
caeb178c 6507 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6508 return true;
6509
caeb178c
RR
6510 if (sgs->group_type < busiest->group_type)
6511 return false;
6512
6513 if (sgs->avg_load <= busiest->avg_load)
6514 return false;
6515
6516 /* This is the busiest node in its class. */
6517 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6518 return true;
6519
6520 /*
6521 * ASYM_PACKING needs to move all the work to the lowest
6522 * numbered CPUs in the group, therefore mark all groups
6523 * higher than ourself as busy.
6524 */
caeb178c 6525 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6526 if (!sds->busiest)
6527 return true;
6528
6529 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6530 return true;
6531 }
6532
6533 return false;
6534}
6535
0ec8aa00
PZ
6536#ifdef CONFIG_NUMA_BALANCING
6537static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6538{
6539 if (sgs->sum_nr_running > sgs->nr_numa_running)
6540 return regular;
6541 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6542 return remote;
6543 return all;
6544}
6545
6546static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6547{
6548 if (rq->nr_running > rq->nr_numa_running)
6549 return regular;
6550 if (rq->nr_running > rq->nr_preferred_running)
6551 return remote;
6552 return all;
6553}
6554#else
6555static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6556{
6557 return all;
6558}
6559
6560static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6561{
6562 return regular;
6563}
6564#endif /* CONFIG_NUMA_BALANCING */
6565
1e3c88bd 6566/**
461819ac 6567 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6568 * @env: The load balancing environment.
1e3c88bd
PZ
6569 * @sds: variable to hold the statistics for this sched_domain.
6570 */
0ec8aa00 6571static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6572{
bd939f45
PZ
6573 struct sched_domain *child = env->sd->child;
6574 struct sched_group *sg = env->sd->groups;
56cf515b 6575 struct sg_lb_stats tmp_sgs;
1e3c88bd 6576 int load_idx, prefer_sibling = 0;
4486edd1 6577 bool overload = false;
1e3c88bd
PZ
6578
6579 if (child && child->flags & SD_PREFER_SIBLING)
6580 prefer_sibling = 1;
6581
bd939f45 6582 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6583
6584 do {
56cf515b 6585 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6586 int local_group;
6587
bd939f45 6588 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6589 if (local_group) {
6590 sds->local = sg;
6591 sgs = &sds->local_stat;
b72ff13c
PZ
6592
6593 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6594 time_after_eq(jiffies, sg->sgc->next_update))
6595 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6596 }
1e3c88bd 6597
4486edd1
TC
6598 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6599 &overload);
1e3c88bd 6600
b72ff13c
PZ
6601 if (local_group)
6602 goto next_group;
6603
1e3c88bd
PZ
6604 /*
6605 * In case the child domain prefers tasks go to siblings
ea67821b 6606 * first, lower the sg capacity so that we'll try
75dd321d
NR
6607 * and move all the excess tasks away. We lower the capacity
6608 * of a group only if the local group has the capacity to fit
ea67821b
VG
6609 * these excess tasks. The extra check prevents the case where
6610 * you always pull from the heaviest group when it is already
6611 * under-utilized (possible with a large weight task outweighs
6612 * the tasks on the system).
1e3c88bd 6613 */
b72ff13c 6614 if (prefer_sibling && sds->local &&
ea67821b
VG
6615 group_has_capacity(env, &sds->local_stat) &&
6616 (sgs->sum_nr_running > 1)) {
6617 sgs->group_no_capacity = 1;
79a89f92 6618 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6619 }
1e3c88bd 6620
b72ff13c 6621 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6622 sds->busiest = sg;
56cf515b 6623 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6624 }
6625
b72ff13c
PZ
6626next_group:
6627 /* Now, start updating sd_lb_stats */
6628 sds->total_load += sgs->group_load;
63b2ca30 6629 sds->total_capacity += sgs->group_capacity;
b72ff13c 6630
532cb4c4 6631 sg = sg->next;
bd939f45 6632 } while (sg != env->sd->groups);
0ec8aa00
PZ
6633
6634 if (env->sd->flags & SD_NUMA)
6635 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6636
6637 if (!env->sd->parent) {
6638 /* update overload indicator if we are at root domain */
6639 if (env->dst_rq->rd->overload != overload)
6640 env->dst_rq->rd->overload = overload;
6641 }
6642
532cb4c4
MN
6643}
6644
532cb4c4
MN
6645/**
6646 * check_asym_packing - Check to see if the group is packed into the
6647 * sched doman.
6648 *
6649 * This is primarily intended to used at the sibling level. Some
6650 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6651 * case of POWER7, it can move to lower SMT modes only when higher
6652 * threads are idle. When in lower SMT modes, the threads will
6653 * perform better since they share less core resources. Hence when we
6654 * have idle threads, we want them to be the higher ones.
6655 *
6656 * This packing function is run on idle threads. It checks to see if
6657 * the busiest CPU in this domain (core in the P7 case) has a higher
6658 * CPU number than the packing function is being run on. Here we are
6659 * assuming lower CPU number will be equivalent to lower a SMT thread
6660 * number.
6661 *
e69f6186 6662 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6663 * this CPU. The amount of the imbalance is returned in *imbalance.
6664 *
cd96891d 6665 * @env: The load balancing environment.
532cb4c4 6666 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6667 */
bd939f45 6668static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6669{
6670 int busiest_cpu;
6671
bd939f45 6672 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6673 return 0;
6674
6675 if (!sds->busiest)
6676 return 0;
6677
6678 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6679 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6680 return 0;
6681
bd939f45 6682 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6683 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6684 SCHED_CAPACITY_SCALE);
bd939f45 6685
532cb4c4 6686 return 1;
1e3c88bd
PZ
6687}
6688
6689/**
6690 * fix_small_imbalance - Calculate the minor imbalance that exists
6691 * amongst the groups of a sched_domain, during
6692 * load balancing.
cd96891d 6693 * @env: The load balancing environment.
1e3c88bd 6694 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6695 */
bd939f45
PZ
6696static inline
6697void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6698{
63b2ca30 6699 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6700 unsigned int imbn = 2;
dd5feea1 6701 unsigned long scaled_busy_load_per_task;
56cf515b 6702 struct sg_lb_stats *local, *busiest;
1e3c88bd 6703
56cf515b
JK
6704 local = &sds->local_stat;
6705 busiest = &sds->busiest_stat;
1e3c88bd 6706
56cf515b
JK
6707 if (!local->sum_nr_running)
6708 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6709 else if (busiest->load_per_task > local->load_per_task)
6710 imbn = 1;
dd5feea1 6711
56cf515b 6712 scaled_busy_load_per_task =
ca8ce3d0 6713 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6714 busiest->group_capacity;
56cf515b 6715
3029ede3
VD
6716 if (busiest->avg_load + scaled_busy_load_per_task >=
6717 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6718 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6719 return;
6720 }
6721
6722 /*
6723 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6724 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6725 * moving them.
6726 */
6727
63b2ca30 6728 capa_now += busiest->group_capacity *
56cf515b 6729 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6730 capa_now += local->group_capacity *
56cf515b 6731 min(local->load_per_task, local->avg_load);
ca8ce3d0 6732 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6733
6734 /* Amount of load we'd subtract */
a2cd4260 6735 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6736 capa_move += busiest->group_capacity *
56cf515b 6737 min(busiest->load_per_task,
a2cd4260 6738 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6739 }
1e3c88bd
PZ
6740
6741 /* Amount of load we'd add */
63b2ca30 6742 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6743 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6744 tmp = (busiest->avg_load * busiest->group_capacity) /
6745 local->group_capacity;
56cf515b 6746 } else {
ca8ce3d0 6747 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6748 local->group_capacity;
56cf515b 6749 }
63b2ca30 6750 capa_move += local->group_capacity *
3ae11c90 6751 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6752 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6753
6754 /* Move if we gain throughput */
63b2ca30 6755 if (capa_move > capa_now)
56cf515b 6756 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6757}
6758
6759/**
6760 * calculate_imbalance - Calculate the amount of imbalance present within the
6761 * groups of a given sched_domain during load balance.
bd939f45 6762 * @env: load balance environment
1e3c88bd 6763 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6764 */
bd939f45 6765static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6766{
dd5feea1 6767 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6768 struct sg_lb_stats *local, *busiest;
6769
6770 local = &sds->local_stat;
56cf515b 6771 busiest = &sds->busiest_stat;
dd5feea1 6772
caeb178c 6773 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6774 /*
6775 * In the group_imb case we cannot rely on group-wide averages
6776 * to ensure cpu-load equilibrium, look at wider averages. XXX
6777 */
56cf515b
JK
6778 busiest->load_per_task =
6779 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6780 }
6781
1e3c88bd
PZ
6782 /*
6783 * In the presence of smp nice balancing, certain scenarios can have
6784 * max load less than avg load(as we skip the groups at or below
ced549fa 6785 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6786 */
b1885550
VD
6787 if (busiest->avg_load <= sds->avg_load ||
6788 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6789 env->imbalance = 0;
6790 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6791 }
6792
9a5d9ba6
PZ
6793 /*
6794 * If there aren't any idle cpus, avoid creating some.
6795 */
6796 if (busiest->group_type == group_overloaded &&
6797 local->group_type == group_overloaded) {
ea67821b
VG
6798 load_above_capacity = busiest->sum_nr_running *
6799 SCHED_LOAD_SCALE;
6800 if (load_above_capacity > busiest->group_capacity)
6801 load_above_capacity -= busiest->group_capacity;
6802 else
6803 load_above_capacity = ~0UL;
dd5feea1
SS
6804 }
6805
6806 /*
6807 * We're trying to get all the cpus to the average_load, so we don't
6808 * want to push ourselves above the average load, nor do we wish to
6809 * reduce the max loaded cpu below the average load. At the same time,
6810 * we also don't want to reduce the group load below the group capacity
6811 * (so that we can implement power-savings policies etc). Thus we look
6812 * for the minimum possible imbalance.
dd5feea1 6813 */
30ce5dab 6814 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6815
6816 /* How much load to actually move to equalise the imbalance */
56cf515b 6817 env->imbalance = min(
63b2ca30
NP
6818 max_pull * busiest->group_capacity,
6819 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6820 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6821
6822 /*
6823 * if *imbalance is less than the average load per runnable task
25985edc 6824 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6825 * a think about bumping its value to force at least one task to be
6826 * moved
6827 */
56cf515b 6828 if (env->imbalance < busiest->load_per_task)
bd939f45 6829 return fix_small_imbalance(env, sds);
1e3c88bd 6830}
fab47622 6831
1e3c88bd
PZ
6832/******* find_busiest_group() helpers end here *********************/
6833
6834/**
6835 * find_busiest_group - Returns the busiest group within the sched_domain
6836 * if there is an imbalance. If there isn't an imbalance, and
6837 * the user has opted for power-savings, it returns a group whose
6838 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6839 * such a group exists.
6840 *
6841 * Also calculates the amount of weighted load which should be moved
6842 * to restore balance.
6843 *
cd96891d 6844 * @env: The load balancing environment.
1e3c88bd 6845 *
e69f6186 6846 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6847 * - If no imbalance and user has opted for power-savings balance,
6848 * return the least loaded group whose CPUs can be
6849 * put to idle by rebalancing its tasks onto our group.
6850 */
56cf515b 6851static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6852{
56cf515b 6853 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6854 struct sd_lb_stats sds;
6855
147c5fc2 6856 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6857
6858 /*
6859 * Compute the various statistics relavent for load balancing at
6860 * this level.
6861 */
23f0d209 6862 update_sd_lb_stats(env, &sds);
56cf515b
JK
6863 local = &sds.local_stat;
6864 busiest = &sds.busiest_stat;
1e3c88bd 6865
ea67821b 6866 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6867 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6868 check_asym_packing(env, &sds))
532cb4c4
MN
6869 return sds.busiest;
6870
cc57aa8f 6871 /* There is no busy sibling group to pull tasks from */
56cf515b 6872 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6873 goto out_balanced;
6874
ca8ce3d0
NP
6875 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6876 / sds.total_capacity;
b0432d8f 6877
866ab43e
PZ
6878 /*
6879 * If the busiest group is imbalanced the below checks don't
30ce5dab 6880 * work because they assume all things are equal, which typically
866ab43e
PZ
6881 * isn't true due to cpus_allowed constraints and the like.
6882 */
caeb178c 6883 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6884 goto force_balance;
6885
cc57aa8f 6886 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6887 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6888 busiest->group_no_capacity)
fab47622
NR
6889 goto force_balance;
6890
cc57aa8f 6891 /*
9c58c79a 6892 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6893 * don't try and pull any tasks.
6894 */
56cf515b 6895 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6896 goto out_balanced;
6897
cc57aa8f
PZ
6898 /*
6899 * Don't pull any tasks if this group is already above the domain
6900 * average load.
6901 */
56cf515b 6902 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6903 goto out_balanced;
6904
bd939f45 6905 if (env->idle == CPU_IDLE) {
aae6d3dd 6906 /*
43f4d666
VG
6907 * This cpu is idle. If the busiest group is not overloaded
6908 * and there is no imbalance between this and busiest group
6909 * wrt idle cpus, it is balanced. The imbalance becomes
6910 * significant if the diff is greater than 1 otherwise we
6911 * might end up to just move the imbalance on another group
aae6d3dd 6912 */
43f4d666
VG
6913 if ((busiest->group_type != group_overloaded) &&
6914 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6915 goto out_balanced;
c186fafe
PZ
6916 } else {
6917 /*
6918 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6919 * imbalance_pct to be conservative.
6920 */
56cf515b
JK
6921 if (100 * busiest->avg_load <=
6922 env->sd->imbalance_pct * local->avg_load)
c186fafe 6923 goto out_balanced;
aae6d3dd 6924 }
1e3c88bd 6925
fab47622 6926force_balance:
1e3c88bd 6927 /* Looks like there is an imbalance. Compute it */
bd939f45 6928 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6929 return sds.busiest;
6930
6931out_balanced:
bd939f45 6932 env->imbalance = 0;
1e3c88bd
PZ
6933 return NULL;
6934}
6935
6936/*
6937 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6938 */
bd939f45 6939static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6940 struct sched_group *group)
1e3c88bd
PZ
6941{
6942 struct rq *busiest = NULL, *rq;
ced549fa 6943 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6944 int i;
6945
6906a408 6946 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6947 unsigned long capacity, wl;
0ec8aa00
PZ
6948 enum fbq_type rt;
6949
6950 rq = cpu_rq(i);
6951 rt = fbq_classify_rq(rq);
1e3c88bd 6952
0ec8aa00
PZ
6953 /*
6954 * We classify groups/runqueues into three groups:
6955 * - regular: there are !numa tasks
6956 * - remote: there are numa tasks that run on the 'wrong' node
6957 * - all: there is no distinction
6958 *
6959 * In order to avoid migrating ideally placed numa tasks,
6960 * ignore those when there's better options.
6961 *
6962 * If we ignore the actual busiest queue to migrate another
6963 * task, the next balance pass can still reduce the busiest
6964 * queue by moving tasks around inside the node.
6965 *
6966 * If we cannot move enough load due to this classification
6967 * the next pass will adjust the group classification and
6968 * allow migration of more tasks.
6969 *
6970 * Both cases only affect the total convergence complexity.
6971 */
6972 if (rt > env->fbq_type)
6973 continue;
6974
ced549fa 6975 capacity = capacity_of(i);
9d5efe05 6976
6e40f5bb 6977 wl = weighted_cpuload(i);
1e3c88bd 6978
6e40f5bb
TG
6979 /*
6980 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6981 * which is not scaled with the cpu capacity.
6e40f5bb 6982 */
ea67821b
VG
6983
6984 if (rq->nr_running == 1 && wl > env->imbalance &&
6985 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6986 continue;
6987
6e40f5bb
TG
6988 /*
6989 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6990 * the weighted_cpuload() scaled with the cpu capacity, so
6991 * that the load can be moved away from the cpu that is
6992 * potentially running at a lower capacity.
95a79b80 6993 *
ced549fa 6994 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6995 * multiplication to rid ourselves of the division works out
ced549fa
NP
6996 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6997 * our previous maximum.
6e40f5bb 6998 */
ced549fa 6999 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7000 busiest_load = wl;
ced549fa 7001 busiest_capacity = capacity;
1e3c88bd
PZ
7002 busiest = rq;
7003 }
7004 }
7005
7006 return busiest;
7007}
7008
7009/*
7010 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7011 * so long as it is large enough.
7012 */
7013#define MAX_PINNED_INTERVAL 512
7014
7015/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7016DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7017
bd939f45 7018static int need_active_balance(struct lb_env *env)
1af3ed3d 7019{
bd939f45
PZ
7020 struct sched_domain *sd = env->sd;
7021
7022 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7023
7024 /*
7025 * ASYM_PACKING needs to force migrate tasks from busy but
7026 * higher numbered CPUs in order to pack all tasks in the
7027 * lowest numbered CPUs.
7028 */
bd939f45 7029 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7030 return 1;
1af3ed3d
PZ
7031 }
7032
1aaf90a4
VG
7033 /*
7034 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7035 * It's worth migrating the task if the src_cpu's capacity is reduced
7036 * because of other sched_class or IRQs if more capacity stays
7037 * available on dst_cpu.
7038 */
7039 if ((env->idle != CPU_NOT_IDLE) &&
7040 (env->src_rq->cfs.h_nr_running == 1)) {
7041 if ((check_cpu_capacity(env->src_rq, sd)) &&
7042 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7043 return 1;
7044 }
7045
1af3ed3d
PZ
7046 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7047}
7048
969c7921
TH
7049static int active_load_balance_cpu_stop(void *data);
7050
23f0d209
JK
7051static int should_we_balance(struct lb_env *env)
7052{
7053 struct sched_group *sg = env->sd->groups;
7054 struct cpumask *sg_cpus, *sg_mask;
7055 int cpu, balance_cpu = -1;
7056
7057 /*
7058 * In the newly idle case, we will allow all the cpu's
7059 * to do the newly idle load balance.
7060 */
7061 if (env->idle == CPU_NEWLY_IDLE)
7062 return 1;
7063
7064 sg_cpus = sched_group_cpus(sg);
7065 sg_mask = sched_group_mask(sg);
7066 /* Try to find first idle cpu */
7067 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7068 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7069 continue;
7070
7071 balance_cpu = cpu;
7072 break;
7073 }
7074
7075 if (balance_cpu == -1)
7076 balance_cpu = group_balance_cpu(sg);
7077
7078 /*
7079 * First idle cpu or the first cpu(busiest) in this sched group
7080 * is eligible for doing load balancing at this and above domains.
7081 */
b0cff9d8 7082 return balance_cpu == env->dst_cpu;
23f0d209
JK
7083}
7084
1e3c88bd
PZ
7085/*
7086 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7087 * tasks if there is an imbalance.
7088 */
7089static int load_balance(int this_cpu, struct rq *this_rq,
7090 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7091 int *continue_balancing)
1e3c88bd 7092{
88b8dac0 7093 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7094 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7095 struct sched_group *group;
1e3c88bd
PZ
7096 struct rq *busiest;
7097 unsigned long flags;
4ba29684 7098 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7099
8e45cb54
PZ
7100 struct lb_env env = {
7101 .sd = sd,
ddcdf6e7
PZ
7102 .dst_cpu = this_cpu,
7103 .dst_rq = this_rq,
88b8dac0 7104 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7105 .idle = idle,
eb95308e 7106 .loop_break = sched_nr_migrate_break,
b9403130 7107 .cpus = cpus,
0ec8aa00 7108 .fbq_type = all,
163122b7 7109 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7110 };
7111
cfc03118
JK
7112 /*
7113 * For NEWLY_IDLE load_balancing, we don't need to consider
7114 * other cpus in our group
7115 */
e02e60c1 7116 if (idle == CPU_NEWLY_IDLE)
cfc03118 7117 env.dst_grpmask = NULL;
cfc03118 7118
1e3c88bd
PZ
7119 cpumask_copy(cpus, cpu_active_mask);
7120
1e3c88bd
PZ
7121 schedstat_inc(sd, lb_count[idle]);
7122
7123redo:
23f0d209
JK
7124 if (!should_we_balance(&env)) {
7125 *continue_balancing = 0;
1e3c88bd 7126 goto out_balanced;
23f0d209 7127 }
1e3c88bd 7128
23f0d209 7129 group = find_busiest_group(&env);
1e3c88bd
PZ
7130 if (!group) {
7131 schedstat_inc(sd, lb_nobusyg[idle]);
7132 goto out_balanced;
7133 }
7134
b9403130 7135 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7136 if (!busiest) {
7137 schedstat_inc(sd, lb_nobusyq[idle]);
7138 goto out_balanced;
7139 }
7140
78feefc5 7141 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7142
bd939f45 7143 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7144
1aaf90a4
VG
7145 env.src_cpu = busiest->cpu;
7146 env.src_rq = busiest;
7147
1e3c88bd
PZ
7148 ld_moved = 0;
7149 if (busiest->nr_running > 1) {
7150 /*
7151 * Attempt to move tasks. If find_busiest_group has found
7152 * an imbalance but busiest->nr_running <= 1, the group is
7153 * still unbalanced. ld_moved simply stays zero, so it is
7154 * correctly treated as an imbalance.
7155 */
8e45cb54 7156 env.flags |= LBF_ALL_PINNED;
c82513e5 7157 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7158
5d6523eb 7159more_balance:
163122b7 7160 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7161
7162 /*
7163 * cur_ld_moved - load moved in current iteration
7164 * ld_moved - cumulative load moved across iterations
7165 */
163122b7 7166 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7167
7168 /*
163122b7
KT
7169 * We've detached some tasks from busiest_rq. Every
7170 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7171 * unlock busiest->lock, and we are able to be sure
7172 * that nobody can manipulate the tasks in parallel.
7173 * See task_rq_lock() family for the details.
1e3c88bd 7174 */
163122b7
KT
7175
7176 raw_spin_unlock(&busiest->lock);
7177
7178 if (cur_ld_moved) {
7179 attach_tasks(&env);
7180 ld_moved += cur_ld_moved;
7181 }
7182
1e3c88bd 7183 local_irq_restore(flags);
88b8dac0 7184
f1cd0858
JK
7185 if (env.flags & LBF_NEED_BREAK) {
7186 env.flags &= ~LBF_NEED_BREAK;
7187 goto more_balance;
7188 }
7189
88b8dac0
SV
7190 /*
7191 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7192 * us and move them to an alternate dst_cpu in our sched_group
7193 * where they can run. The upper limit on how many times we
7194 * iterate on same src_cpu is dependent on number of cpus in our
7195 * sched_group.
7196 *
7197 * This changes load balance semantics a bit on who can move
7198 * load to a given_cpu. In addition to the given_cpu itself
7199 * (or a ilb_cpu acting on its behalf where given_cpu is
7200 * nohz-idle), we now have balance_cpu in a position to move
7201 * load to given_cpu. In rare situations, this may cause
7202 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7203 * _independently_ and at _same_ time to move some load to
7204 * given_cpu) causing exceess load to be moved to given_cpu.
7205 * This however should not happen so much in practice and
7206 * moreover subsequent load balance cycles should correct the
7207 * excess load moved.
7208 */
6263322c 7209 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7210
7aff2e3a
VD
7211 /* Prevent to re-select dst_cpu via env's cpus */
7212 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7213
78feefc5 7214 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7215 env.dst_cpu = env.new_dst_cpu;
6263322c 7216 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7217 env.loop = 0;
7218 env.loop_break = sched_nr_migrate_break;
e02e60c1 7219
88b8dac0
SV
7220 /*
7221 * Go back to "more_balance" rather than "redo" since we
7222 * need to continue with same src_cpu.
7223 */
7224 goto more_balance;
7225 }
1e3c88bd 7226
6263322c
PZ
7227 /*
7228 * We failed to reach balance because of affinity.
7229 */
7230 if (sd_parent) {
63b2ca30 7231 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7232
afdeee05 7233 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7234 *group_imbalance = 1;
6263322c
PZ
7235 }
7236
1e3c88bd 7237 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7238 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7239 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7240 if (!cpumask_empty(cpus)) {
7241 env.loop = 0;
7242 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7243 goto redo;
bbf18b19 7244 }
afdeee05 7245 goto out_all_pinned;
1e3c88bd
PZ
7246 }
7247 }
7248
7249 if (!ld_moved) {
7250 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7251 /*
7252 * Increment the failure counter only on periodic balance.
7253 * We do not want newidle balance, which can be very
7254 * frequent, pollute the failure counter causing
7255 * excessive cache_hot migrations and active balances.
7256 */
7257 if (idle != CPU_NEWLY_IDLE)
7258 sd->nr_balance_failed++;
1e3c88bd 7259
bd939f45 7260 if (need_active_balance(&env)) {
1e3c88bd
PZ
7261 raw_spin_lock_irqsave(&busiest->lock, flags);
7262
969c7921
TH
7263 /* don't kick the active_load_balance_cpu_stop,
7264 * if the curr task on busiest cpu can't be
7265 * moved to this_cpu
1e3c88bd
PZ
7266 */
7267 if (!cpumask_test_cpu(this_cpu,
fa17b507 7268 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7269 raw_spin_unlock_irqrestore(&busiest->lock,
7270 flags);
8e45cb54 7271 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7272 goto out_one_pinned;
7273 }
7274
969c7921
TH
7275 /*
7276 * ->active_balance synchronizes accesses to
7277 * ->active_balance_work. Once set, it's cleared
7278 * only after active load balance is finished.
7279 */
1e3c88bd
PZ
7280 if (!busiest->active_balance) {
7281 busiest->active_balance = 1;
7282 busiest->push_cpu = this_cpu;
7283 active_balance = 1;
7284 }
7285 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7286
bd939f45 7287 if (active_balance) {
969c7921
TH
7288 stop_one_cpu_nowait(cpu_of(busiest),
7289 active_load_balance_cpu_stop, busiest,
7290 &busiest->active_balance_work);
bd939f45 7291 }
1e3c88bd
PZ
7292
7293 /*
7294 * We've kicked active balancing, reset the failure
7295 * counter.
7296 */
7297 sd->nr_balance_failed = sd->cache_nice_tries+1;
7298 }
7299 } else
7300 sd->nr_balance_failed = 0;
7301
7302 if (likely(!active_balance)) {
7303 /* We were unbalanced, so reset the balancing interval */
7304 sd->balance_interval = sd->min_interval;
7305 } else {
7306 /*
7307 * If we've begun active balancing, start to back off. This
7308 * case may not be covered by the all_pinned logic if there
7309 * is only 1 task on the busy runqueue (because we don't call
163122b7 7310 * detach_tasks).
1e3c88bd
PZ
7311 */
7312 if (sd->balance_interval < sd->max_interval)
7313 sd->balance_interval *= 2;
7314 }
7315
1e3c88bd
PZ
7316 goto out;
7317
7318out_balanced:
afdeee05
VG
7319 /*
7320 * We reach balance although we may have faced some affinity
7321 * constraints. Clear the imbalance flag if it was set.
7322 */
7323 if (sd_parent) {
7324 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7325
7326 if (*group_imbalance)
7327 *group_imbalance = 0;
7328 }
7329
7330out_all_pinned:
7331 /*
7332 * We reach balance because all tasks are pinned at this level so
7333 * we can't migrate them. Let the imbalance flag set so parent level
7334 * can try to migrate them.
7335 */
1e3c88bd
PZ
7336 schedstat_inc(sd, lb_balanced[idle]);
7337
7338 sd->nr_balance_failed = 0;
7339
7340out_one_pinned:
7341 /* tune up the balancing interval */
8e45cb54 7342 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7343 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7344 (sd->balance_interval < sd->max_interval))
7345 sd->balance_interval *= 2;
7346
46e49b38 7347 ld_moved = 0;
1e3c88bd 7348out:
1e3c88bd
PZ
7349 return ld_moved;
7350}
7351
52a08ef1
JL
7352static inline unsigned long
7353get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7354{
7355 unsigned long interval = sd->balance_interval;
7356
7357 if (cpu_busy)
7358 interval *= sd->busy_factor;
7359
7360 /* scale ms to jiffies */
7361 interval = msecs_to_jiffies(interval);
7362 interval = clamp(interval, 1UL, max_load_balance_interval);
7363
7364 return interval;
7365}
7366
7367static inline void
7368update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7369{
7370 unsigned long interval, next;
7371
7372 interval = get_sd_balance_interval(sd, cpu_busy);
7373 next = sd->last_balance + interval;
7374
7375 if (time_after(*next_balance, next))
7376 *next_balance = next;
7377}
7378
1e3c88bd
PZ
7379/*
7380 * idle_balance is called by schedule() if this_cpu is about to become
7381 * idle. Attempts to pull tasks from other CPUs.
7382 */
6e83125c 7383static int idle_balance(struct rq *this_rq)
1e3c88bd 7384{
52a08ef1
JL
7385 unsigned long next_balance = jiffies + HZ;
7386 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7387 struct sched_domain *sd;
7388 int pulled_task = 0;
9bd721c5 7389 u64 curr_cost = 0;
1e3c88bd 7390
6e83125c
PZ
7391 /*
7392 * We must set idle_stamp _before_ calling idle_balance(), such that we
7393 * measure the duration of idle_balance() as idle time.
7394 */
7395 this_rq->idle_stamp = rq_clock(this_rq);
7396
4486edd1
TC
7397 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7398 !this_rq->rd->overload) {
52a08ef1
JL
7399 rcu_read_lock();
7400 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7401 if (sd)
7402 update_next_balance(sd, 0, &next_balance);
7403 rcu_read_unlock();
7404
6e83125c 7405 goto out;
52a08ef1 7406 }
1e3c88bd 7407
f492e12e
PZ
7408 raw_spin_unlock(&this_rq->lock);
7409
48a16753 7410 update_blocked_averages(this_cpu);
dce840a0 7411 rcu_read_lock();
1e3c88bd 7412 for_each_domain(this_cpu, sd) {
23f0d209 7413 int continue_balancing = 1;
9bd721c5 7414 u64 t0, domain_cost;
1e3c88bd
PZ
7415
7416 if (!(sd->flags & SD_LOAD_BALANCE))
7417 continue;
7418
52a08ef1
JL
7419 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7420 update_next_balance(sd, 0, &next_balance);
9bd721c5 7421 break;
52a08ef1 7422 }
9bd721c5 7423
f492e12e 7424 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7425 t0 = sched_clock_cpu(this_cpu);
7426
f492e12e 7427 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7428 sd, CPU_NEWLY_IDLE,
7429 &continue_balancing);
9bd721c5
JL
7430
7431 domain_cost = sched_clock_cpu(this_cpu) - t0;
7432 if (domain_cost > sd->max_newidle_lb_cost)
7433 sd->max_newidle_lb_cost = domain_cost;
7434
7435 curr_cost += domain_cost;
f492e12e 7436 }
1e3c88bd 7437
52a08ef1 7438 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7439
7440 /*
7441 * Stop searching for tasks to pull if there are
7442 * now runnable tasks on this rq.
7443 */
7444 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7445 break;
1e3c88bd 7446 }
dce840a0 7447 rcu_read_unlock();
f492e12e
PZ
7448
7449 raw_spin_lock(&this_rq->lock);
7450
0e5b5337
JL
7451 if (curr_cost > this_rq->max_idle_balance_cost)
7452 this_rq->max_idle_balance_cost = curr_cost;
7453
e5fc6611 7454 /*
0e5b5337
JL
7455 * While browsing the domains, we released the rq lock, a task could
7456 * have been enqueued in the meantime. Since we're not going idle,
7457 * pretend we pulled a task.
e5fc6611 7458 */
0e5b5337 7459 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7460 pulled_task = 1;
e5fc6611 7461
52a08ef1
JL
7462out:
7463 /* Move the next balance forward */
7464 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7465 this_rq->next_balance = next_balance;
9bd721c5 7466
e4aa358b 7467 /* Is there a task of a high priority class? */
46383648 7468 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7469 pulled_task = -1;
7470
38c6ade2 7471 if (pulled_task)
6e83125c
PZ
7472 this_rq->idle_stamp = 0;
7473
3c4017c1 7474 return pulled_task;
1e3c88bd
PZ
7475}
7476
7477/*
969c7921
TH
7478 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7479 * running tasks off the busiest CPU onto idle CPUs. It requires at
7480 * least 1 task to be running on each physical CPU where possible, and
7481 * avoids physical / logical imbalances.
1e3c88bd 7482 */
969c7921 7483static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7484{
969c7921
TH
7485 struct rq *busiest_rq = data;
7486 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7487 int target_cpu = busiest_rq->push_cpu;
969c7921 7488 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7489 struct sched_domain *sd;
e5673f28 7490 struct task_struct *p = NULL;
969c7921
TH
7491
7492 raw_spin_lock_irq(&busiest_rq->lock);
7493
7494 /* make sure the requested cpu hasn't gone down in the meantime */
7495 if (unlikely(busiest_cpu != smp_processor_id() ||
7496 !busiest_rq->active_balance))
7497 goto out_unlock;
1e3c88bd
PZ
7498
7499 /* Is there any task to move? */
7500 if (busiest_rq->nr_running <= 1)
969c7921 7501 goto out_unlock;
1e3c88bd
PZ
7502
7503 /*
7504 * This condition is "impossible", if it occurs
7505 * we need to fix it. Originally reported by
7506 * Bjorn Helgaas on a 128-cpu setup.
7507 */
7508 BUG_ON(busiest_rq == target_rq);
7509
1e3c88bd 7510 /* Search for an sd spanning us and the target CPU. */
dce840a0 7511 rcu_read_lock();
1e3c88bd
PZ
7512 for_each_domain(target_cpu, sd) {
7513 if ((sd->flags & SD_LOAD_BALANCE) &&
7514 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7515 break;
7516 }
7517
7518 if (likely(sd)) {
8e45cb54
PZ
7519 struct lb_env env = {
7520 .sd = sd,
ddcdf6e7
PZ
7521 .dst_cpu = target_cpu,
7522 .dst_rq = target_rq,
7523 .src_cpu = busiest_rq->cpu,
7524 .src_rq = busiest_rq,
8e45cb54
PZ
7525 .idle = CPU_IDLE,
7526 };
7527
1e3c88bd
PZ
7528 schedstat_inc(sd, alb_count);
7529
e5673f28
KT
7530 p = detach_one_task(&env);
7531 if (p)
1e3c88bd
PZ
7532 schedstat_inc(sd, alb_pushed);
7533 else
7534 schedstat_inc(sd, alb_failed);
7535 }
dce840a0 7536 rcu_read_unlock();
969c7921
TH
7537out_unlock:
7538 busiest_rq->active_balance = 0;
e5673f28
KT
7539 raw_spin_unlock(&busiest_rq->lock);
7540
7541 if (p)
7542 attach_one_task(target_rq, p);
7543
7544 local_irq_enable();
7545
969c7921 7546 return 0;
1e3c88bd
PZ
7547}
7548
d987fc7f
MG
7549static inline int on_null_domain(struct rq *rq)
7550{
7551 return unlikely(!rcu_dereference_sched(rq->sd));
7552}
7553
3451d024 7554#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7555/*
7556 * idle load balancing details
83cd4fe2
VP
7557 * - When one of the busy CPUs notice that there may be an idle rebalancing
7558 * needed, they will kick the idle load balancer, which then does idle
7559 * load balancing for all the idle CPUs.
7560 */
1e3c88bd 7561static struct {
83cd4fe2 7562 cpumask_var_t idle_cpus_mask;
0b005cf5 7563 atomic_t nr_cpus;
83cd4fe2
VP
7564 unsigned long next_balance; /* in jiffy units */
7565} nohz ____cacheline_aligned;
1e3c88bd 7566
3dd0337d 7567static inline int find_new_ilb(void)
1e3c88bd 7568{
0b005cf5 7569 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7570
786d6dc7
SS
7571 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7572 return ilb;
7573
7574 return nr_cpu_ids;
1e3c88bd 7575}
1e3c88bd 7576
83cd4fe2
VP
7577/*
7578 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7579 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7580 * CPU (if there is one).
7581 */
0aeeeeba 7582static void nohz_balancer_kick(void)
83cd4fe2
VP
7583{
7584 int ilb_cpu;
7585
7586 nohz.next_balance++;
7587
3dd0337d 7588 ilb_cpu = find_new_ilb();
83cd4fe2 7589
0b005cf5
SS
7590 if (ilb_cpu >= nr_cpu_ids)
7591 return;
83cd4fe2 7592
cd490c5b 7593 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7594 return;
7595 /*
7596 * Use smp_send_reschedule() instead of resched_cpu().
7597 * This way we generate a sched IPI on the target cpu which
7598 * is idle. And the softirq performing nohz idle load balance
7599 * will be run before returning from the IPI.
7600 */
7601 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7602 return;
7603}
7604
c1cc017c 7605static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7606{
7607 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7608 /*
7609 * Completely isolated CPUs don't ever set, so we must test.
7610 */
7611 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7612 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7613 atomic_dec(&nohz.nr_cpus);
7614 }
71325960
SS
7615 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7616 }
7617}
7618
69e1e811
SS
7619static inline void set_cpu_sd_state_busy(void)
7620{
7621 struct sched_domain *sd;
37dc6b50 7622 int cpu = smp_processor_id();
69e1e811 7623
69e1e811 7624 rcu_read_lock();
37dc6b50 7625 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7626
7627 if (!sd || !sd->nohz_idle)
7628 goto unlock;
7629 sd->nohz_idle = 0;
7630
63b2ca30 7631 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7632unlock:
69e1e811
SS
7633 rcu_read_unlock();
7634}
7635
7636void set_cpu_sd_state_idle(void)
7637{
7638 struct sched_domain *sd;
37dc6b50 7639 int cpu = smp_processor_id();
69e1e811 7640
69e1e811 7641 rcu_read_lock();
37dc6b50 7642 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7643
7644 if (!sd || sd->nohz_idle)
7645 goto unlock;
7646 sd->nohz_idle = 1;
7647
63b2ca30 7648 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7649unlock:
69e1e811
SS
7650 rcu_read_unlock();
7651}
7652
1e3c88bd 7653/*
c1cc017c 7654 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7655 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7656 */
c1cc017c 7657void nohz_balance_enter_idle(int cpu)
1e3c88bd 7658{
71325960
SS
7659 /*
7660 * If this cpu is going down, then nothing needs to be done.
7661 */
7662 if (!cpu_active(cpu))
7663 return;
7664
c1cc017c
AS
7665 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7666 return;
1e3c88bd 7667
d987fc7f
MG
7668 /*
7669 * If we're a completely isolated CPU, we don't play.
7670 */
7671 if (on_null_domain(cpu_rq(cpu)))
7672 return;
7673
c1cc017c
AS
7674 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7675 atomic_inc(&nohz.nr_cpus);
7676 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7677}
71325960 7678
0db0628d 7679static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7680 unsigned long action, void *hcpu)
7681{
7682 switch (action & ~CPU_TASKS_FROZEN) {
7683 case CPU_DYING:
c1cc017c 7684 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7685 return NOTIFY_OK;
7686 default:
7687 return NOTIFY_DONE;
7688 }
7689}
1e3c88bd
PZ
7690#endif
7691
7692static DEFINE_SPINLOCK(balancing);
7693
49c022e6
PZ
7694/*
7695 * Scale the max load_balance interval with the number of CPUs in the system.
7696 * This trades load-balance latency on larger machines for less cross talk.
7697 */
029632fb 7698void update_max_interval(void)
49c022e6
PZ
7699{
7700 max_load_balance_interval = HZ*num_online_cpus()/10;
7701}
7702
1e3c88bd
PZ
7703/*
7704 * It checks each scheduling domain to see if it is due to be balanced,
7705 * and initiates a balancing operation if so.
7706 *
b9b0853a 7707 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7708 */
f7ed0a89 7709static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7710{
23f0d209 7711 int continue_balancing = 1;
f7ed0a89 7712 int cpu = rq->cpu;
1e3c88bd 7713 unsigned long interval;
04f733b4 7714 struct sched_domain *sd;
1e3c88bd
PZ
7715 /* Earliest time when we have to do rebalance again */
7716 unsigned long next_balance = jiffies + 60*HZ;
7717 int update_next_balance = 0;
f48627e6
JL
7718 int need_serialize, need_decay = 0;
7719 u64 max_cost = 0;
1e3c88bd 7720
48a16753 7721 update_blocked_averages(cpu);
2069dd75 7722
dce840a0 7723 rcu_read_lock();
1e3c88bd 7724 for_each_domain(cpu, sd) {
f48627e6
JL
7725 /*
7726 * Decay the newidle max times here because this is a regular
7727 * visit to all the domains. Decay ~1% per second.
7728 */
7729 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7730 sd->max_newidle_lb_cost =
7731 (sd->max_newidle_lb_cost * 253) / 256;
7732 sd->next_decay_max_lb_cost = jiffies + HZ;
7733 need_decay = 1;
7734 }
7735 max_cost += sd->max_newidle_lb_cost;
7736
1e3c88bd
PZ
7737 if (!(sd->flags & SD_LOAD_BALANCE))
7738 continue;
7739
f48627e6
JL
7740 /*
7741 * Stop the load balance at this level. There is another
7742 * CPU in our sched group which is doing load balancing more
7743 * actively.
7744 */
7745 if (!continue_balancing) {
7746 if (need_decay)
7747 continue;
7748 break;
7749 }
7750
52a08ef1 7751 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7752
7753 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7754 if (need_serialize) {
7755 if (!spin_trylock(&balancing))
7756 goto out;
7757 }
7758
7759 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7760 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7761 /*
6263322c 7762 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7763 * env->dst_cpu, so we can't know our idle
7764 * state even if we migrated tasks. Update it.
1e3c88bd 7765 */
de5eb2dd 7766 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7767 }
7768 sd->last_balance = jiffies;
52a08ef1 7769 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7770 }
7771 if (need_serialize)
7772 spin_unlock(&balancing);
7773out:
7774 if (time_after(next_balance, sd->last_balance + interval)) {
7775 next_balance = sd->last_balance + interval;
7776 update_next_balance = 1;
7777 }
f48627e6
JL
7778 }
7779 if (need_decay) {
1e3c88bd 7780 /*
f48627e6
JL
7781 * Ensure the rq-wide value also decays but keep it at a
7782 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7783 */
f48627e6
JL
7784 rq->max_idle_balance_cost =
7785 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7786 }
dce840a0 7787 rcu_read_unlock();
1e3c88bd
PZ
7788
7789 /*
7790 * next_balance will be updated only when there is a need.
7791 * When the cpu is attached to null domain for ex, it will not be
7792 * updated.
7793 */
c5afb6a8 7794 if (likely(update_next_balance)) {
1e3c88bd 7795 rq->next_balance = next_balance;
c5afb6a8
VG
7796
7797#ifdef CONFIG_NO_HZ_COMMON
7798 /*
7799 * If this CPU has been elected to perform the nohz idle
7800 * balance. Other idle CPUs have already rebalanced with
7801 * nohz_idle_balance() and nohz.next_balance has been
7802 * updated accordingly. This CPU is now running the idle load
7803 * balance for itself and we need to update the
7804 * nohz.next_balance accordingly.
7805 */
7806 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7807 nohz.next_balance = rq->next_balance;
7808#endif
7809 }
1e3c88bd
PZ
7810}
7811
3451d024 7812#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7813/*
3451d024 7814 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7815 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7816 */
208cb16b 7817static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7818{
208cb16b 7819 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7820 struct rq *rq;
7821 int balance_cpu;
c5afb6a8
VG
7822 /* Earliest time when we have to do rebalance again */
7823 unsigned long next_balance = jiffies + 60*HZ;
7824 int update_next_balance = 0;
83cd4fe2 7825
1c792db7
SS
7826 if (idle != CPU_IDLE ||
7827 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7828 goto end;
83cd4fe2
VP
7829
7830 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7831 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7832 continue;
7833
7834 /*
7835 * If this cpu gets work to do, stop the load balancing
7836 * work being done for other cpus. Next load
7837 * balancing owner will pick it up.
7838 */
1c792db7 7839 if (need_resched())
83cd4fe2 7840 break;
83cd4fe2 7841
5ed4f1d9
VG
7842 rq = cpu_rq(balance_cpu);
7843
ed61bbc6
TC
7844 /*
7845 * If time for next balance is due,
7846 * do the balance.
7847 */
7848 if (time_after_eq(jiffies, rq->next_balance)) {
7849 raw_spin_lock_irq(&rq->lock);
7850 update_rq_clock(rq);
7851 update_idle_cpu_load(rq);
7852 raw_spin_unlock_irq(&rq->lock);
7853 rebalance_domains(rq, CPU_IDLE);
7854 }
83cd4fe2 7855
c5afb6a8
VG
7856 if (time_after(next_balance, rq->next_balance)) {
7857 next_balance = rq->next_balance;
7858 update_next_balance = 1;
7859 }
83cd4fe2 7860 }
c5afb6a8
VG
7861
7862 /*
7863 * next_balance will be updated only when there is a need.
7864 * When the CPU is attached to null domain for ex, it will not be
7865 * updated.
7866 */
7867 if (likely(update_next_balance))
7868 nohz.next_balance = next_balance;
1c792db7
SS
7869end:
7870 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7871}
7872
7873/*
0b005cf5 7874 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7875 * of an idle cpu in the system.
0b005cf5 7876 * - This rq has more than one task.
1aaf90a4
VG
7877 * - This rq has at least one CFS task and the capacity of the CPU is
7878 * significantly reduced because of RT tasks or IRQs.
7879 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7880 * multiple busy cpu.
0b005cf5
SS
7881 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7882 * domain span are idle.
83cd4fe2 7883 */
1aaf90a4 7884static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7885{
7886 unsigned long now = jiffies;
0b005cf5 7887 struct sched_domain *sd;
63b2ca30 7888 struct sched_group_capacity *sgc;
4a725627 7889 int nr_busy, cpu = rq->cpu;
1aaf90a4 7890 bool kick = false;
83cd4fe2 7891
4a725627 7892 if (unlikely(rq->idle_balance))
1aaf90a4 7893 return false;
83cd4fe2 7894
1c792db7
SS
7895 /*
7896 * We may be recently in ticked or tickless idle mode. At the first
7897 * busy tick after returning from idle, we will update the busy stats.
7898 */
69e1e811 7899 set_cpu_sd_state_busy();
c1cc017c 7900 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7901
7902 /*
7903 * None are in tickless mode and hence no need for NOHZ idle load
7904 * balancing.
7905 */
7906 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7907 return false;
1c792db7
SS
7908
7909 if (time_before(now, nohz.next_balance))
1aaf90a4 7910 return false;
83cd4fe2 7911
0b005cf5 7912 if (rq->nr_running >= 2)
1aaf90a4 7913 return true;
83cd4fe2 7914
067491b7 7915 rcu_read_lock();
37dc6b50 7916 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7917 if (sd) {
63b2ca30
NP
7918 sgc = sd->groups->sgc;
7919 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7920
1aaf90a4
VG
7921 if (nr_busy > 1) {
7922 kick = true;
7923 goto unlock;
7924 }
7925
83cd4fe2 7926 }
37dc6b50 7927
1aaf90a4
VG
7928 sd = rcu_dereference(rq->sd);
7929 if (sd) {
7930 if ((rq->cfs.h_nr_running >= 1) &&
7931 check_cpu_capacity(rq, sd)) {
7932 kick = true;
7933 goto unlock;
7934 }
7935 }
37dc6b50 7936
1aaf90a4 7937 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7938 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7939 sched_domain_span(sd)) < cpu)) {
7940 kick = true;
7941 goto unlock;
7942 }
067491b7 7943
1aaf90a4 7944unlock:
067491b7 7945 rcu_read_unlock();
1aaf90a4 7946 return kick;
83cd4fe2
VP
7947}
7948#else
208cb16b 7949static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7950#endif
7951
7952/*
7953 * run_rebalance_domains is triggered when needed from the scheduler tick.
7954 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7955 */
1e3c88bd
PZ
7956static void run_rebalance_domains(struct softirq_action *h)
7957{
208cb16b 7958 struct rq *this_rq = this_rq();
6eb57e0d 7959 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7960 CPU_IDLE : CPU_NOT_IDLE;
7961
1e3c88bd 7962 /*
83cd4fe2 7963 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7964 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7965 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7966 * give the idle cpus a chance to load balance. Else we may
7967 * load balance only within the local sched_domain hierarchy
7968 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7969 */
208cb16b 7970 nohz_idle_balance(this_rq, idle);
d4573c3e 7971 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7972}
7973
1e3c88bd
PZ
7974/*
7975 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7976 */
7caff66f 7977void trigger_load_balance(struct rq *rq)
1e3c88bd 7978{
1e3c88bd 7979 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7980 if (unlikely(on_null_domain(rq)))
7981 return;
7982
7983 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7984 raise_softirq(SCHED_SOFTIRQ);
3451d024 7985#ifdef CONFIG_NO_HZ_COMMON
c726099e 7986 if (nohz_kick_needed(rq))
0aeeeeba 7987 nohz_balancer_kick();
83cd4fe2 7988#endif
1e3c88bd
PZ
7989}
7990
0bcdcf28
CE
7991static void rq_online_fair(struct rq *rq)
7992{
7993 update_sysctl();
0e59bdae
KT
7994
7995 update_runtime_enabled(rq);
0bcdcf28
CE
7996}
7997
7998static void rq_offline_fair(struct rq *rq)
7999{
8000 update_sysctl();
a4c96ae3
PB
8001
8002 /* Ensure any throttled groups are reachable by pick_next_task */
8003 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8004}
8005
55e12e5e 8006#endif /* CONFIG_SMP */
e1d1484f 8007
bf0f6f24
IM
8008/*
8009 * scheduler tick hitting a task of our scheduling class:
8010 */
8f4d37ec 8011static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8012{
8013 struct cfs_rq *cfs_rq;
8014 struct sched_entity *se = &curr->se;
8015
8016 for_each_sched_entity(se) {
8017 cfs_rq = cfs_rq_of(se);
8f4d37ec 8018 entity_tick(cfs_rq, se, queued);
bf0f6f24 8019 }
18bf2805 8020
b52da86e 8021 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8022 task_tick_numa(rq, curr);
bf0f6f24
IM
8023}
8024
8025/*
cd29fe6f
PZ
8026 * called on fork with the child task as argument from the parent's context
8027 * - child not yet on the tasklist
8028 * - preemption disabled
bf0f6f24 8029 */
cd29fe6f 8030static void task_fork_fair(struct task_struct *p)
bf0f6f24 8031{
4fc420c9
DN
8032 struct cfs_rq *cfs_rq;
8033 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8034 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8035 struct rq *rq = this_rq();
8036 unsigned long flags;
8037
05fa785c 8038 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8039
861d034e
PZ
8040 update_rq_clock(rq);
8041
4fc420c9
DN
8042 cfs_rq = task_cfs_rq(current);
8043 curr = cfs_rq->curr;
8044
6c9a27f5
DN
8045 /*
8046 * Not only the cpu but also the task_group of the parent might have
8047 * been changed after parent->se.parent,cfs_rq were copied to
8048 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8049 * of child point to valid ones.
8050 */
8051 rcu_read_lock();
8052 __set_task_cpu(p, this_cpu);
8053 rcu_read_unlock();
bf0f6f24 8054
7109c442 8055 update_curr(cfs_rq);
cd29fe6f 8056
b5d9d734
MG
8057 if (curr)
8058 se->vruntime = curr->vruntime;
aeb73b04 8059 place_entity(cfs_rq, se, 1);
4d78e7b6 8060
cd29fe6f 8061 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8062 /*
edcb60a3
IM
8063 * Upon rescheduling, sched_class::put_prev_task() will place
8064 * 'current' within the tree based on its new key value.
8065 */
4d78e7b6 8066 swap(curr->vruntime, se->vruntime);
8875125e 8067 resched_curr(rq);
4d78e7b6 8068 }
bf0f6f24 8069
88ec22d3
PZ
8070 se->vruntime -= cfs_rq->min_vruntime;
8071
05fa785c 8072 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8073}
8074
cb469845
SR
8075/*
8076 * Priority of the task has changed. Check to see if we preempt
8077 * the current task.
8078 */
da7a735e
PZ
8079static void
8080prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8081{
da0c1e65 8082 if (!task_on_rq_queued(p))
da7a735e
PZ
8083 return;
8084
cb469845
SR
8085 /*
8086 * Reschedule if we are currently running on this runqueue and
8087 * our priority decreased, or if we are not currently running on
8088 * this runqueue and our priority is higher than the current's
8089 */
da7a735e 8090 if (rq->curr == p) {
cb469845 8091 if (p->prio > oldprio)
8875125e 8092 resched_curr(rq);
cb469845 8093 } else
15afe09b 8094 check_preempt_curr(rq, p, 0);
cb469845
SR
8095}
8096
daa59407 8097static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8098{
8099 struct sched_entity *se = &p->se;
da7a735e
PZ
8100
8101 /*
daa59407
BP
8102 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8103 * the dequeue_entity(.flags=0) will already have normalized the
8104 * vruntime.
8105 */
8106 if (p->on_rq)
8107 return true;
8108
8109 /*
8110 * When !on_rq, vruntime of the task has usually NOT been normalized.
8111 * But there are some cases where it has already been normalized:
da7a735e 8112 *
daa59407
BP
8113 * - A forked child which is waiting for being woken up by
8114 * wake_up_new_task().
8115 * - A task which has been woken up by try_to_wake_up() and
8116 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8117 */
daa59407
BP
8118 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8119 return true;
8120
8121 return false;
8122}
8123
8124static void detach_task_cfs_rq(struct task_struct *p)
8125{
8126 struct sched_entity *se = &p->se;
8127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8128
8129 if (!vruntime_normalized(p)) {
da7a735e
PZ
8130 /*
8131 * Fix up our vruntime so that the current sleep doesn't
8132 * cause 'unlimited' sleep bonus.
8133 */
8134 place_entity(cfs_rq, se, 0);
8135 se->vruntime -= cfs_rq->min_vruntime;
8136 }
9ee474f5 8137
9d89c257 8138 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8139 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8140}
8141
daa59407 8142static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8143{
f36c019c 8144 struct sched_entity *se = &p->se;
daa59407 8145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8146
8147#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8148 /*
8149 * Since the real-depth could have been changed (only FAIR
8150 * class maintain depth value), reset depth properly.
8151 */
8152 se->depth = se->parent ? se->parent->depth + 1 : 0;
8153#endif
7855a35a 8154
6efdb105 8155 /* Synchronize task with its cfs_rq */
daa59407
BP
8156 attach_entity_load_avg(cfs_rq, se);
8157
8158 if (!vruntime_normalized(p))
8159 se->vruntime += cfs_rq->min_vruntime;
8160}
6efdb105 8161
daa59407
BP
8162static void switched_from_fair(struct rq *rq, struct task_struct *p)
8163{
8164 detach_task_cfs_rq(p);
8165}
8166
8167static void switched_to_fair(struct rq *rq, struct task_struct *p)
8168{
8169 attach_task_cfs_rq(p);
7855a35a 8170
daa59407 8171 if (task_on_rq_queued(p)) {
7855a35a 8172 /*
daa59407
BP
8173 * We were most likely switched from sched_rt, so
8174 * kick off the schedule if running, otherwise just see
8175 * if we can still preempt the current task.
7855a35a 8176 */
daa59407
BP
8177 if (rq->curr == p)
8178 resched_curr(rq);
8179 else
8180 check_preempt_curr(rq, p, 0);
7855a35a 8181 }
cb469845
SR
8182}
8183
83b699ed
SV
8184/* Account for a task changing its policy or group.
8185 *
8186 * This routine is mostly called to set cfs_rq->curr field when a task
8187 * migrates between groups/classes.
8188 */
8189static void set_curr_task_fair(struct rq *rq)
8190{
8191 struct sched_entity *se = &rq->curr->se;
8192
ec12cb7f
PT
8193 for_each_sched_entity(se) {
8194 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8195
8196 set_next_entity(cfs_rq, se);
8197 /* ensure bandwidth has been allocated on our new cfs_rq */
8198 account_cfs_rq_runtime(cfs_rq, 0);
8199 }
83b699ed
SV
8200}
8201
029632fb
PZ
8202void init_cfs_rq(struct cfs_rq *cfs_rq)
8203{
8204 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8205 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8206#ifndef CONFIG_64BIT
8207 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8208#endif
141965c7 8209#ifdef CONFIG_SMP
9d89c257
YD
8210 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8211 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8212#endif
029632fb
PZ
8213}
8214
810b3817 8215#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8216static void task_move_group_fair(struct task_struct *p)
810b3817 8217{
daa59407 8218 detach_task_cfs_rq(p);
b2b5ce02 8219 set_task_rq(p, task_cpu(p));
6efdb105
BP
8220
8221#ifdef CONFIG_SMP
8222 /* Tell se's cfs_rq has been changed -- migrated */
8223 p->se.avg.last_update_time = 0;
8224#endif
daa59407 8225 attach_task_cfs_rq(p);
810b3817 8226}
029632fb
PZ
8227
8228void free_fair_sched_group(struct task_group *tg)
8229{
8230 int i;
8231
8232 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8233
8234 for_each_possible_cpu(i) {
8235 if (tg->cfs_rq)
8236 kfree(tg->cfs_rq[i]);
12695578
YD
8237 if (tg->se) {
8238 if (tg->se[i])
8239 remove_entity_load_avg(tg->se[i]);
029632fb 8240 kfree(tg->se[i]);
12695578 8241 }
029632fb
PZ
8242 }
8243
8244 kfree(tg->cfs_rq);
8245 kfree(tg->se);
8246}
8247
8248int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8249{
8250 struct cfs_rq *cfs_rq;
8251 struct sched_entity *se;
8252 int i;
8253
8254 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8255 if (!tg->cfs_rq)
8256 goto err;
8257 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8258 if (!tg->se)
8259 goto err;
8260
8261 tg->shares = NICE_0_LOAD;
8262
8263 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8264
8265 for_each_possible_cpu(i) {
8266 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8267 GFP_KERNEL, cpu_to_node(i));
8268 if (!cfs_rq)
8269 goto err;
8270
8271 se = kzalloc_node(sizeof(struct sched_entity),
8272 GFP_KERNEL, cpu_to_node(i));
8273 if (!se)
8274 goto err_free_rq;
8275
8276 init_cfs_rq(cfs_rq);
8277 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8278 init_entity_runnable_average(se);
029632fb
PZ
8279 }
8280
8281 return 1;
8282
8283err_free_rq:
8284 kfree(cfs_rq);
8285err:
8286 return 0;
8287}
8288
8289void unregister_fair_sched_group(struct task_group *tg, int cpu)
8290{
8291 struct rq *rq = cpu_rq(cpu);
8292 unsigned long flags;
8293
8294 /*
8295 * Only empty task groups can be destroyed; so we can speculatively
8296 * check on_list without danger of it being re-added.
8297 */
8298 if (!tg->cfs_rq[cpu]->on_list)
8299 return;
8300
8301 raw_spin_lock_irqsave(&rq->lock, flags);
8302 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8303 raw_spin_unlock_irqrestore(&rq->lock, flags);
8304}
8305
8306void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8307 struct sched_entity *se, int cpu,
8308 struct sched_entity *parent)
8309{
8310 struct rq *rq = cpu_rq(cpu);
8311
8312 cfs_rq->tg = tg;
8313 cfs_rq->rq = rq;
029632fb
PZ
8314 init_cfs_rq_runtime(cfs_rq);
8315
8316 tg->cfs_rq[cpu] = cfs_rq;
8317 tg->se[cpu] = se;
8318
8319 /* se could be NULL for root_task_group */
8320 if (!se)
8321 return;
8322
fed14d45 8323 if (!parent) {
029632fb 8324 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8325 se->depth = 0;
8326 } else {
029632fb 8327 se->cfs_rq = parent->my_q;
fed14d45
PZ
8328 se->depth = parent->depth + 1;
8329 }
029632fb
PZ
8330
8331 se->my_q = cfs_rq;
0ac9b1c2
PT
8332 /* guarantee group entities always have weight */
8333 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8334 se->parent = parent;
8335}
8336
8337static DEFINE_MUTEX(shares_mutex);
8338
8339int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8340{
8341 int i;
8342 unsigned long flags;
8343
8344 /*
8345 * We can't change the weight of the root cgroup.
8346 */
8347 if (!tg->se[0])
8348 return -EINVAL;
8349
8350 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8351
8352 mutex_lock(&shares_mutex);
8353 if (tg->shares == shares)
8354 goto done;
8355
8356 tg->shares = shares;
8357 for_each_possible_cpu(i) {
8358 struct rq *rq = cpu_rq(i);
8359 struct sched_entity *se;
8360
8361 se = tg->se[i];
8362 /* Propagate contribution to hierarchy */
8363 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8364
8365 /* Possible calls to update_curr() need rq clock */
8366 update_rq_clock(rq);
17bc14b7 8367 for_each_sched_entity(se)
029632fb
PZ
8368 update_cfs_shares(group_cfs_rq(se));
8369 raw_spin_unlock_irqrestore(&rq->lock, flags);
8370 }
8371
8372done:
8373 mutex_unlock(&shares_mutex);
8374 return 0;
8375}
8376#else /* CONFIG_FAIR_GROUP_SCHED */
8377
8378void free_fair_sched_group(struct task_group *tg) { }
8379
8380int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8381{
8382 return 1;
8383}
8384
8385void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8386
8387#endif /* CONFIG_FAIR_GROUP_SCHED */
8388
810b3817 8389
6d686f45 8390static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8391{
8392 struct sched_entity *se = &task->se;
0d721cea
PW
8393 unsigned int rr_interval = 0;
8394
8395 /*
8396 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8397 * idle runqueue:
8398 */
0d721cea 8399 if (rq->cfs.load.weight)
a59f4e07 8400 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8401
8402 return rr_interval;
8403}
8404
bf0f6f24
IM
8405/*
8406 * All the scheduling class methods:
8407 */
029632fb 8408const struct sched_class fair_sched_class = {
5522d5d5 8409 .next = &idle_sched_class,
bf0f6f24
IM
8410 .enqueue_task = enqueue_task_fair,
8411 .dequeue_task = dequeue_task_fair,
8412 .yield_task = yield_task_fair,
d95f4122 8413 .yield_to_task = yield_to_task_fair,
bf0f6f24 8414
2e09bf55 8415 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8416
8417 .pick_next_task = pick_next_task_fair,
8418 .put_prev_task = put_prev_task_fair,
8419
681f3e68 8420#ifdef CONFIG_SMP
4ce72a2c 8421 .select_task_rq = select_task_rq_fair,
0a74bef8 8422 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8423
0bcdcf28
CE
8424 .rq_online = rq_online_fair,
8425 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8426
8427 .task_waking = task_waking_fair,
12695578 8428 .task_dead = task_dead_fair,
c5b28038 8429 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8430#endif
bf0f6f24 8431
83b699ed 8432 .set_curr_task = set_curr_task_fair,
bf0f6f24 8433 .task_tick = task_tick_fair,
cd29fe6f 8434 .task_fork = task_fork_fair,
cb469845
SR
8435
8436 .prio_changed = prio_changed_fair,
da7a735e 8437 .switched_from = switched_from_fair,
cb469845 8438 .switched_to = switched_to_fair,
810b3817 8439
0d721cea
PW
8440 .get_rr_interval = get_rr_interval_fair,
8441
6e998916
SG
8442 .update_curr = update_curr_fair,
8443
810b3817 8444#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8445 .task_move_group = task_move_group_fair,
810b3817 8446#endif
bf0f6f24
IM
8447};
8448
8449#ifdef CONFIG_SCHED_DEBUG
029632fb 8450void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8451{
bf0f6f24
IM
8452 struct cfs_rq *cfs_rq;
8453
5973e5b9 8454 rcu_read_lock();
c3b64f1e 8455 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8456 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8457 rcu_read_unlock();
bf0f6f24 8458}
397f2378
SD
8459
8460#ifdef CONFIG_NUMA_BALANCING
8461void show_numa_stats(struct task_struct *p, struct seq_file *m)
8462{
8463 int node;
8464 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8465
8466 for_each_online_node(node) {
8467 if (p->numa_faults) {
8468 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8469 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8470 }
8471 if (p->numa_group) {
8472 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8473 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8474 }
8475 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8476 }
8477}
8478#endif /* CONFIG_NUMA_BALANCING */
8479#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8480
8481__init void init_sched_fair_class(void)
8482{
8483#ifdef CONFIG_SMP
8484 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8485
3451d024 8486#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8487 nohz.next_balance = jiffies;
029632fb 8488 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8489 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8490#endif
8491#endif /* SMP */
8492
8493}