]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/fair.c
sched/fair: Make load tracking frequency scale-invariant
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
2a595721 2072 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
e0f5f3af
DE
2518#define scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2519
9d85f21c
PT
2520/*
2521 * We can represent the historical contribution to runnable average as the
2522 * coefficients of a geometric series. To do this we sub-divide our runnable
2523 * history into segments of approximately 1ms (1024us); label the segment that
2524 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2525 *
2526 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2527 * p0 p1 p2
2528 * (now) (~1ms ago) (~2ms ago)
2529 *
2530 * Let u_i denote the fraction of p_i that the entity was runnable.
2531 *
2532 * We then designate the fractions u_i as our co-efficients, yielding the
2533 * following representation of historical load:
2534 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2535 *
2536 * We choose y based on the with of a reasonably scheduling period, fixing:
2537 * y^32 = 0.5
2538 *
2539 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2540 * approximately half as much as the contribution to load within the last ms
2541 * (u_0).
2542 *
2543 * When a period "rolls over" and we have new u_0`, multiplying the previous
2544 * sum again by y is sufficient to update:
2545 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2546 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2547 */
9d89c257
YD
2548static __always_inline int
2549__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2550 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2551{
e0f5f3af 2552 u64 delta, scaled_delta, periods;
9d89c257 2553 u32 contrib;
e0f5f3af 2554 int delta_w, scaled_delta_w, decayed = 0;
0c1dc6b2 2555 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c 2556
9d89c257 2557 delta = now - sa->last_update_time;
9d85f21c
PT
2558 /*
2559 * This should only happen when time goes backwards, which it
2560 * unfortunately does during sched clock init when we swap over to TSC.
2561 */
2562 if ((s64)delta < 0) {
9d89c257 2563 sa->last_update_time = now;
9d85f21c
PT
2564 return 0;
2565 }
2566
2567 /*
2568 * Use 1024ns as the unit of measurement since it's a reasonable
2569 * approximation of 1us and fast to compute.
2570 */
2571 delta >>= 10;
2572 if (!delta)
2573 return 0;
9d89c257 2574 sa->last_update_time = now;
9d85f21c
PT
2575
2576 /* delta_w is the amount already accumulated against our next period */
9d89c257 2577 delta_w = sa->period_contrib;
9d85f21c 2578 if (delta + delta_w >= 1024) {
9d85f21c
PT
2579 decayed = 1;
2580
9d89c257
YD
2581 /* how much left for next period will start over, we don't know yet */
2582 sa->period_contrib = 0;
2583
9d85f21c
PT
2584 /*
2585 * Now that we know we're crossing a period boundary, figure
2586 * out how much from delta we need to complete the current
2587 * period and accrue it.
2588 */
2589 delta_w = 1024 - delta_w;
e0f5f3af 2590 scaled_delta_w = scale(delta_w, scale_freq);
13962234 2591 if (weight) {
e0f5f3af
DE
2592 sa->load_sum += weight * scaled_delta_w;
2593 if (cfs_rq) {
2594 cfs_rq->runnable_load_sum +=
2595 weight * scaled_delta_w;
2596 }
13962234 2597 }
36ee28e4 2598 if (running)
e0f5f3af 2599 sa->util_sum += scaled_delta_w;
5b51f2f8
PT
2600
2601 delta -= delta_w;
2602
2603 /* Figure out how many additional periods this update spans */
2604 periods = delta / 1024;
2605 delta %= 1024;
2606
9d89c257 2607 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2608 if (cfs_rq) {
2609 cfs_rq->runnable_load_sum =
2610 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2611 }
9d89c257 2612 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2613
2614 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2615 contrib = __compute_runnable_contrib(periods);
e0f5f3af 2616 contrib = scale(contrib, scale_freq);
13962234 2617 if (weight) {
9d89c257 2618 sa->load_sum += weight * contrib;
13962234
YD
2619 if (cfs_rq)
2620 cfs_rq->runnable_load_sum += weight * contrib;
2621 }
36ee28e4 2622 if (running)
e0f5f3af 2623 sa->util_sum += contrib;
9d85f21c
PT
2624 }
2625
2626 /* Remainder of delta accrued against u_0` */
e0f5f3af 2627 scaled_delta = scale(delta, scale_freq);
13962234 2628 if (weight) {
e0f5f3af 2629 sa->load_sum += weight * scaled_delta;
13962234 2630 if (cfs_rq)
e0f5f3af 2631 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2632 }
36ee28e4 2633 if (running)
e0f5f3af 2634 sa->util_sum += scaled_delta;
9ee474f5 2635
9d89c257 2636 sa->period_contrib += delta;
9ee474f5 2637
9d89c257
YD
2638 if (decayed) {
2639 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2640 if (cfs_rq) {
2641 cfs_rq->runnable_load_avg =
2642 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2643 }
9d89c257
YD
2644 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2645 }
aff3e498 2646
9d89c257 2647 return decayed;
9ee474f5
PT
2648}
2649
c566e8e9 2650#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2651/*
9d89c257
YD
2652 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2653 * and effective_load (which is not done because it is too costly).
bb17f655 2654 */
9d89c257 2655static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2656{
9d89c257 2657 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2658
9d89c257
YD
2659 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2660 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2661 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2662 }
8165e145 2663}
f5f9739d 2664
6e83125c 2665#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2666static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2667#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2668
9d89c257 2669static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2670
9d89c257
YD
2671/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2672static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2673{
9d89c257 2674 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2675 int decayed;
2dac754e 2676
9d89c257
YD
2677 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2678 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2679 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2680 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2681 }
2dac754e 2682
9d89c257
YD
2683 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2684 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2685 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2686 sa->util_sum = max_t(s32, sa->util_sum -
2687 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2688 }
36ee28e4 2689
9d89c257 2690 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2691 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2692
9d89c257
YD
2693#ifndef CONFIG_64BIT
2694 smp_wmb();
2695 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2696#endif
36ee28e4 2697
9d89c257 2698 return decayed;
9ee474f5
PT
2699}
2700
9d89c257
YD
2701/* Update task and its cfs_rq load average */
2702static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2703{
2dac754e 2704 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2705 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2706 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2707
f1b17280 2708 /*
9d89c257
YD
2709 * Track task load average for carrying it to new CPU after migrated, and
2710 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2711 */
9d89c257 2712 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2713 se->on_rq * scale_load_down(se->load.weight),
2714 cfs_rq->curr == se, NULL);
f1b17280 2715
9d89c257
YD
2716 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2717 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2718}
2719
a05e8c51
BP
2720static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2721{
a9280514
PZ
2722 if (!sched_feat(ATTACH_AGE_LOAD))
2723 goto skip_aging;
2724
6efdb105
BP
2725 /*
2726 * If we got migrated (either between CPUs or between cgroups) we'll
2727 * have aged the average right before clearing @last_update_time.
2728 */
2729 if (se->avg.last_update_time) {
2730 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2731 &se->avg, 0, 0, NULL);
2732
2733 /*
2734 * XXX: we could have just aged the entire load away if we've been
2735 * absent from the fair class for too long.
2736 */
2737 }
2738
a9280514 2739skip_aging:
a05e8c51
BP
2740 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2741 cfs_rq->avg.load_avg += se->avg.load_avg;
2742 cfs_rq->avg.load_sum += se->avg.load_sum;
2743 cfs_rq->avg.util_avg += se->avg.util_avg;
2744 cfs_rq->avg.util_sum += se->avg.util_sum;
2745}
2746
2747static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2748{
2749 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2750 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2751 cfs_rq->curr == se, NULL);
2752
2753 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2754 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2755 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2756 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2757}
2758
9d89c257
YD
2759/* Add the load generated by se into cfs_rq's load average */
2760static inline void
2761enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2762{
9d89c257
YD
2763 struct sched_avg *sa = &se->avg;
2764 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2765 int migrated, decayed;
9ee474f5 2766
a05e8c51
BP
2767 migrated = !sa->last_update_time;
2768 if (!migrated) {
9d89c257 2769 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2770 se->on_rq * scale_load_down(se->load.weight),
2771 cfs_rq->curr == se, NULL);
aff3e498 2772 }
c566e8e9 2773
9d89c257 2774 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2775
13962234
YD
2776 cfs_rq->runnable_load_avg += sa->load_avg;
2777 cfs_rq->runnable_load_sum += sa->load_sum;
2778
a05e8c51
BP
2779 if (migrated)
2780 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2781
9d89c257
YD
2782 if (decayed || migrated)
2783 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2784}
2785
13962234
YD
2786/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2787static inline void
2788dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2789{
2790 update_load_avg(se, 1);
2791
2792 cfs_rq->runnable_load_avg =
2793 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2794 cfs_rq->runnable_load_sum =
a05e8c51 2795 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2796}
2797
9ee474f5 2798/*
9d89c257
YD
2799 * Task first catches up with cfs_rq, and then subtract
2800 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2801 */
9d89c257 2802void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2803{
9d89c257
YD
2804 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2805 u64 last_update_time;
2806
2807#ifndef CONFIG_64BIT
2808 u64 last_update_time_copy;
9ee474f5 2809
9d89c257
YD
2810 do {
2811 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2812 smp_rmb();
2813 last_update_time = cfs_rq->avg.last_update_time;
2814 } while (last_update_time != last_update_time_copy);
2815#else
2816 last_update_time = cfs_rq->avg.last_update_time;
2817#endif
2818
13962234 2819 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2820 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2821 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2822}
642dbc39
VG
2823
2824/*
2825 * Update the rq's load with the elapsed running time before entering
2826 * idle. if the last scheduled task is not a CFS task, idle_enter will
2827 * be the only way to update the runnable statistic.
2828 */
2829void idle_enter_fair(struct rq *this_rq)
2830{
642dbc39
VG
2831}
2832
2833/*
2834 * Update the rq's load with the elapsed idle time before a task is
2835 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2836 * be the only way to update the runnable statistic.
2837 */
2838void idle_exit_fair(struct rq *this_rq)
2839{
642dbc39
VG
2840}
2841
7ea241af
YD
2842static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2843{
2844 return cfs_rq->runnable_load_avg;
2845}
2846
2847static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2848{
2849 return cfs_rq->avg.load_avg;
2850}
2851
6e83125c
PZ
2852static int idle_balance(struct rq *this_rq);
2853
38033c37
PZ
2854#else /* CONFIG_SMP */
2855
9d89c257
YD
2856static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2857static inline void
2858enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2859static inline void
2860dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2861static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2862
a05e8c51
BP
2863static inline void
2864attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2865static inline void
2866detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2867
6e83125c
PZ
2868static inline int idle_balance(struct rq *rq)
2869{
2870 return 0;
2871}
2872
38033c37 2873#endif /* CONFIG_SMP */
9d85f21c 2874
2396af69 2875static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2876{
bf0f6f24 2877#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2878 struct task_struct *tsk = NULL;
2879
2880 if (entity_is_task(se))
2881 tsk = task_of(se);
2882
41acab88 2883 if (se->statistics.sleep_start) {
78becc27 2884 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2885
2886 if ((s64)delta < 0)
2887 delta = 0;
2888
41acab88
LDM
2889 if (unlikely(delta > se->statistics.sleep_max))
2890 se->statistics.sleep_max = delta;
bf0f6f24 2891
8c79a045 2892 se->statistics.sleep_start = 0;
41acab88 2893 se->statistics.sum_sleep_runtime += delta;
9745512c 2894
768d0c27 2895 if (tsk) {
e414314c 2896 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2897 trace_sched_stat_sleep(tsk, delta);
2898 }
bf0f6f24 2899 }
41acab88 2900 if (se->statistics.block_start) {
78becc27 2901 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2902
2903 if ((s64)delta < 0)
2904 delta = 0;
2905
41acab88
LDM
2906 if (unlikely(delta > se->statistics.block_max))
2907 se->statistics.block_max = delta;
bf0f6f24 2908
8c79a045 2909 se->statistics.block_start = 0;
41acab88 2910 se->statistics.sum_sleep_runtime += delta;
30084fbd 2911
e414314c 2912 if (tsk) {
8f0dfc34 2913 if (tsk->in_iowait) {
41acab88
LDM
2914 se->statistics.iowait_sum += delta;
2915 se->statistics.iowait_count++;
768d0c27 2916 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2917 }
2918
b781a602
AV
2919 trace_sched_stat_blocked(tsk, delta);
2920
e414314c
PZ
2921 /*
2922 * Blocking time is in units of nanosecs, so shift by
2923 * 20 to get a milliseconds-range estimation of the
2924 * amount of time that the task spent sleeping:
2925 */
2926 if (unlikely(prof_on == SLEEP_PROFILING)) {
2927 profile_hits(SLEEP_PROFILING,
2928 (void *)get_wchan(tsk),
2929 delta >> 20);
2930 }
2931 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2932 }
bf0f6f24
IM
2933 }
2934#endif
2935}
2936
ddc97297
PZ
2937static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2938{
2939#ifdef CONFIG_SCHED_DEBUG
2940 s64 d = se->vruntime - cfs_rq->min_vruntime;
2941
2942 if (d < 0)
2943 d = -d;
2944
2945 if (d > 3*sysctl_sched_latency)
2946 schedstat_inc(cfs_rq, nr_spread_over);
2947#endif
2948}
2949
aeb73b04
PZ
2950static void
2951place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2952{
1af5f730 2953 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2954
2cb8600e
PZ
2955 /*
2956 * The 'current' period is already promised to the current tasks,
2957 * however the extra weight of the new task will slow them down a
2958 * little, place the new task so that it fits in the slot that
2959 * stays open at the end.
2960 */
94dfb5e7 2961 if (initial && sched_feat(START_DEBIT))
f9c0b095 2962 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2963
a2e7a7eb 2964 /* sleeps up to a single latency don't count. */
5ca9880c 2965 if (!initial) {
a2e7a7eb 2966 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2967
a2e7a7eb
MG
2968 /*
2969 * Halve their sleep time's effect, to allow
2970 * for a gentler effect of sleepers:
2971 */
2972 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2973 thresh >>= 1;
51e0304c 2974
a2e7a7eb 2975 vruntime -= thresh;
aeb73b04
PZ
2976 }
2977
b5d9d734 2978 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2979 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2980}
2981
d3d9dc33
PT
2982static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2983
bf0f6f24 2984static void
88ec22d3 2985enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2986{
88ec22d3
PZ
2987 /*
2988 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2989 * through calling update_curr().
88ec22d3 2990 */
371fd7e7 2991 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2992 se->vruntime += cfs_rq->min_vruntime;
2993
bf0f6f24 2994 /*
a2a2d680 2995 * Update run-time statistics of the 'current'.
bf0f6f24 2996 */
b7cc0896 2997 update_curr(cfs_rq);
9d89c257 2998 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2999 account_entity_enqueue(cfs_rq, se);
3000 update_cfs_shares(cfs_rq);
bf0f6f24 3001
88ec22d3 3002 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3003 place_entity(cfs_rq, se, 0);
2396af69 3004 enqueue_sleeper(cfs_rq, se);
e9acbff6 3005 }
bf0f6f24 3006
d2417e5a 3007 update_stats_enqueue(cfs_rq, se);
ddc97297 3008 check_spread(cfs_rq, se);
83b699ed
SV
3009 if (se != cfs_rq->curr)
3010 __enqueue_entity(cfs_rq, se);
2069dd75 3011 se->on_rq = 1;
3d4b47b4 3012
d3d9dc33 3013 if (cfs_rq->nr_running == 1) {
3d4b47b4 3014 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3015 check_enqueue_throttle(cfs_rq);
3016 }
bf0f6f24
IM
3017}
3018
2c13c919 3019static void __clear_buddies_last(struct sched_entity *se)
2002c695 3020{
2c13c919
RR
3021 for_each_sched_entity(se) {
3022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3023 if (cfs_rq->last != se)
2c13c919 3024 break;
f1044799
PZ
3025
3026 cfs_rq->last = NULL;
2c13c919
RR
3027 }
3028}
2002c695 3029
2c13c919
RR
3030static void __clear_buddies_next(struct sched_entity *se)
3031{
3032 for_each_sched_entity(se) {
3033 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3034 if (cfs_rq->next != se)
2c13c919 3035 break;
f1044799
PZ
3036
3037 cfs_rq->next = NULL;
2c13c919 3038 }
2002c695
PZ
3039}
3040
ac53db59
RR
3041static void __clear_buddies_skip(struct sched_entity *se)
3042{
3043 for_each_sched_entity(se) {
3044 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3045 if (cfs_rq->skip != se)
ac53db59 3046 break;
f1044799
PZ
3047
3048 cfs_rq->skip = NULL;
ac53db59
RR
3049 }
3050}
3051
a571bbea
PZ
3052static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3053{
2c13c919
RR
3054 if (cfs_rq->last == se)
3055 __clear_buddies_last(se);
3056
3057 if (cfs_rq->next == se)
3058 __clear_buddies_next(se);
ac53db59
RR
3059
3060 if (cfs_rq->skip == se)
3061 __clear_buddies_skip(se);
a571bbea
PZ
3062}
3063
6c16a6dc 3064static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3065
bf0f6f24 3066static void
371fd7e7 3067dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3068{
a2a2d680
DA
3069 /*
3070 * Update run-time statistics of the 'current'.
3071 */
3072 update_curr(cfs_rq);
13962234 3073 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3074
19b6a2e3 3075 update_stats_dequeue(cfs_rq, se);
371fd7e7 3076 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3077#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3078 if (entity_is_task(se)) {
3079 struct task_struct *tsk = task_of(se);
3080
3081 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3082 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3083 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3084 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3085 }
db36cc7d 3086#endif
67e9fb2a
PZ
3087 }
3088
2002c695 3089 clear_buddies(cfs_rq, se);
4793241b 3090
83b699ed 3091 if (se != cfs_rq->curr)
30cfdcfc 3092 __dequeue_entity(cfs_rq, se);
17bc14b7 3093 se->on_rq = 0;
30cfdcfc 3094 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3095
3096 /*
3097 * Normalize the entity after updating the min_vruntime because the
3098 * update can refer to the ->curr item and we need to reflect this
3099 * movement in our normalized position.
3100 */
371fd7e7 3101 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3102 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3103
d8b4986d
PT
3104 /* return excess runtime on last dequeue */
3105 return_cfs_rq_runtime(cfs_rq);
3106
1e876231 3107 update_min_vruntime(cfs_rq);
17bc14b7 3108 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3109}
3110
3111/*
3112 * Preempt the current task with a newly woken task if needed:
3113 */
7c92e54f 3114static void
2e09bf55 3115check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3116{
11697830 3117 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3118 struct sched_entity *se;
3119 s64 delta;
11697830 3120
6d0f0ebd 3121 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3122 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3123 if (delta_exec > ideal_runtime) {
8875125e 3124 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3125 /*
3126 * The current task ran long enough, ensure it doesn't get
3127 * re-elected due to buddy favours.
3128 */
3129 clear_buddies(cfs_rq, curr);
f685ceac
MG
3130 return;
3131 }
3132
3133 /*
3134 * Ensure that a task that missed wakeup preemption by a
3135 * narrow margin doesn't have to wait for a full slice.
3136 * This also mitigates buddy induced latencies under load.
3137 */
f685ceac
MG
3138 if (delta_exec < sysctl_sched_min_granularity)
3139 return;
3140
f4cfb33e
WX
3141 se = __pick_first_entity(cfs_rq);
3142 delta = curr->vruntime - se->vruntime;
f685ceac 3143
f4cfb33e
WX
3144 if (delta < 0)
3145 return;
d7d82944 3146
f4cfb33e 3147 if (delta > ideal_runtime)
8875125e 3148 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3149}
3150
83b699ed 3151static void
8494f412 3152set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3153{
83b699ed
SV
3154 /* 'current' is not kept within the tree. */
3155 if (se->on_rq) {
3156 /*
3157 * Any task has to be enqueued before it get to execute on
3158 * a CPU. So account for the time it spent waiting on the
3159 * runqueue.
3160 */
3161 update_stats_wait_end(cfs_rq, se);
3162 __dequeue_entity(cfs_rq, se);
9d89c257 3163 update_load_avg(se, 1);
83b699ed
SV
3164 }
3165
79303e9e 3166 update_stats_curr_start(cfs_rq, se);
429d43bc 3167 cfs_rq->curr = se;
eba1ed4b
IM
3168#ifdef CONFIG_SCHEDSTATS
3169 /*
3170 * Track our maximum slice length, if the CPU's load is at
3171 * least twice that of our own weight (i.e. dont track it
3172 * when there are only lesser-weight tasks around):
3173 */
495eca49 3174 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3175 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3176 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3177 }
3178#endif
4a55b450 3179 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3180}
3181
3f3a4904
PZ
3182static int
3183wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3184
ac53db59
RR
3185/*
3186 * Pick the next process, keeping these things in mind, in this order:
3187 * 1) keep things fair between processes/task groups
3188 * 2) pick the "next" process, since someone really wants that to run
3189 * 3) pick the "last" process, for cache locality
3190 * 4) do not run the "skip" process, if something else is available
3191 */
678d5718
PZ
3192static struct sched_entity *
3193pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3194{
678d5718
PZ
3195 struct sched_entity *left = __pick_first_entity(cfs_rq);
3196 struct sched_entity *se;
3197
3198 /*
3199 * If curr is set we have to see if its left of the leftmost entity
3200 * still in the tree, provided there was anything in the tree at all.
3201 */
3202 if (!left || (curr && entity_before(curr, left)))
3203 left = curr;
3204
3205 se = left; /* ideally we run the leftmost entity */
f4b6755f 3206
ac53db59
RR
3207 /*
3208 * Avoid running the skip buddy, if running something else can
3209 * be done without getting too unfair.
3210 */
3211 if (cfs_rq->skip == se) {
678d5718
PZ
3212 struct sched_entity *second;
3213
3214 if (se == curr) {
3215 second = __pick_first_entity(cfs_rq);
3216 } else {
3217 second = __pick_next_entity(se);
3218 if (!second || (curr && entity_before(curr, second)))
3219 second = curr;
3220 }
3221
ac53db59
RR
3222 if (second && wakeup_preempt_entity(second, left) < 1)
3223 se = second;
3224 }
aa2ac252 3225
f685ceac
MG
3226 /*
3227 * Prefer last buddy, try to return the CPU to a preempted task.
3228 */
3229 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3230 se = cfs_rq->last;
3231
ac53db59
RR
3232 /*
3233 * Someone really wants this to run. If it's not unfair, run it.
3234 */
3235 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3236 se = cfs_rq->next;
3237
f685ceac 3238 clear_buddies(cfs_rq, se);
4793241b
PZ
3239
3240 return se;
aa2ac252
PZ
3241}
3242
678d5718 3243static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3244
ab6cde26 3245static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3246{
3247 /*
3248 * If still on the runqueue then deactivate_task()
3249 * was not called and update_curr() has to be done:
3250 */
3251 if (prev->on_rq)
b7cc0896 3252 update_curr(cfs_rq);
bf0f6f24 3253
d3d9dc33
PT
3254 /* throttle cfs_rqs exceeding runtime */
3255 check_cfs_rq_runtime(cfs_rq);
3256
ddc97297 3257 check_spread(cfs_rq, prev);
30cfdcfc 3258 if (prev->on_rq) {
5870db5b 3259 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3260 /* Put 'current' back into the tree. */
3261 __enqueue_entity(cfs_rq, prev);
9d85f21c 3262 /* in !on_rq case, update occurred at dequeue */
9d89c257 3263 update_load_avg(prev, 0);
30cfdcfc 3264 }
429d43bc 3265 cfs_rq->curr = NULL;
bf0f6f24
IM
3266}
3267
8f4d37ec
PZ
3268static void
3269entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3270{
bf0f6f24 3271 /*
30cfdcfc 3272 * Update run-time statistics of the 'current'.
bf0f6f24 3273 */
30cfdcfc 3274 update_curr(cfs_rq);
bf0f6f24 3275
9d85f21c
PT
3276 /*
3277 * Ensure that runnable average is periodically updated.
3278 */
9d89c257 3279 update_load_avg(curr, 1);
bf0bd948 3280 update_cfs_shares(cfs_rq);
9d85f21c 3281
8f4d37ec
PZ
3282#ifdef CONFIG_SCHED_HRTICK
3283 /*
3284 * queued ticks are scheduled to match the slice, so don't bother
3285 * validating it and just reschedule.
3286 */
983ed7a6 3287 if (queued) {
8875125e 3288 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3289 return;
3290 }
8f4d37ec
PZ
3291 /*
3292 * don't let the period tick interfere with the hrtick preemption
3293 */
3294 if (!sched_feat(DOUBLE_TICK) &&
3295 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3296 return;
3297#endif
3298
2c2efaed 3299 if (cfs_rq->nr_running > 1)
2e09bf55 3300 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3301}
3302
ab84d31e
PT
3303
3304/**************************************************
3305 * CFS bandwidth control machinery
3306 */
3307
3308#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3309
3310#ifdef HAVE_JUMP_LABEL
c5905afb 3311static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3312
3313static inline bool cfs_bandwidth_used(void)
3314{
c5905afb 3315 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3316}
3317
1ee14e6c 3318void cfs_bandwidth_usage_inc(void)
029632fb 3319{
1ee14e6c
BS
3320 static_key_slow_inc(&__cfs_bandwidth_used);
3321}
3322
3323void cfs_bandwidth_usage_dec(void)
3324{
3325 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3326}
3327#else /* HAVE_JUMP_LABEL */
3328static bool cfs_bandwidth_used(void)
3329{
3330 return true;
3331}
3332
1ee14e6c
BS
3333void cfs_bandwidth_usage_inc(void) {}
3334void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3335#endif /* HAVE_JUMP_LABEL */
3336
ab84d31e
PT
3337/*
3338 * default period for cfs group bandwidth.
3339 * default: 0.1s, units: nanoseconds
3340 */
3341static inline u64 default_cfs_period(void)
3342{
3343 return 100000000ULL;
3344}
ec12cb7f
PT
3345
3346static inline u64 sched_cfs_bandwidth_slice(void)
3347{
3348 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3349}
3350
a9cf55b2
PT
3351/*
3352 * Replenish runtime according to assigned quota and update expiration time.
3353 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3354 * additional synchronization around rq->lock.
3355 *
3356 * requires cfs_b->lock
3357 */
029632fb 3358void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3359{
3360 u64 now;
3361
3362 if (cfs_b->quota == RUNTIME_INF)
3363 return;
3364
3365 now = sched_clock_cpu(smp_processor_id());
3366 cfs_b->runtime = cfs_b->quota;
3367 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3368}
3369
029632fb
PZ
3370static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3371{
3372 return &tg->cfs_bandwidth;
3373}
3374
f1b17280
PT
3375/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3376static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3377{
3378 if (unlikely(cfs_rq->throttle_count))
3379 return cfs_rq->throttled_clock_task;
3380
78becc27 3381 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3382}
3383
85dac906
PT
3384/* returns 0 on failure to allocate runtime */
3385static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3386{
3387 struct task_group *tg = cfs_rq->tg;
3388 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3389 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3390
3391 /* note: this is a positive sum as runtime_remaining <= 0 */
3392 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3393
3394 raw_spin_lock(&cfs_b->lock);
3395 if (cfs_b->quota == RUNTIME_INF)
3396 amount = min_amount;
58088ad0 3397 else {
77a4d1a1 3398 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3399
3400 if (cfs_b->runtime > 0) {
3401 amount = min(cfs_b->runtime, min_amount);
3402 cfs_b->runtime -= amount;
3403 cfs_b->idle = 0;
3404 }
ec12cb7f 3405 }
a9cf55b2 3406 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3407 raw_spin_unlock(&cfs_b->lock);
3408
3409 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3410 /*
3411 * we may have advanced our local expiration to account for allowed
3412 * spread between our sched_clock and the one on which runtime was
3413 * issued.
3414 */
3415 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3416 cfs_rq->runtime_expires = expires;
85dac906
PT
3417
3418 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3419}
3420
a9cf55b2
PT
3421/*
3422 * Note: This depends on the synchronization provided by sched_clock and the
3423 * fact that rq->clock snapshots this value.
3424 */
3425static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3426{
a9cf55b2 3427 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3428
3429 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3430 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3431 return;
3432
a9cf55b2
PT
3433 if (cfs_rq->runtime_remaining < 0)
3434 return;
3435
3436 /*
3437 * If the local deadline has passed we have to consider the
3438 * possibility that our sched_clock is 'fast' and the global deadline
3439 * has not truly expired.
3440 *
3441 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3442 * whether the global deadline has advanced. It is valid to compare
3443 * cfs_b->runtime_expires without any locks since we only care about
3444 * exact equality, so a partial write will still work.
a9cf55b2
PT
3445 */
3446
51f2176d 3447 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3448 /* extend local deadline, drift is bounded above by 2 ticks */
3449 cfs_rq->runtime_expires += TICK_NSEC;
3450 } else {
3451 /* global deadline is ahead, expiration has passed */
3452 cfs_rq->runtime_remaining = 0;
3453 }
3454}
3455
9dbdb155 3456static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3457{
3458 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3459 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3460 expire_cfs_rq_runtime(cfs_rq);
3461
3462 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3463 return;
3464
85dac906
PT
3465 /*
3466 * if we're unable to extend our runtime we resched so that the active
3467 * hierarchy can be throttled
3468 */
3469 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3470 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3471}
3472
6c16a6dc 3473static __always_inline
9dbdb155 3474void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3475{
56f570e5 3476 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3477 return;
3478
3479 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3480}
3481
85dac906
PT
3482static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3483{
56f570e5 3484 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3485}
3486
64660c86
PT
3487/* check whether cfs_rq, or any parent, is throttled */
3488static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3489{
56f570e5 3490 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3491}
3492
3493/*
3494 * Ensure that neither of the group entities corresponding to src_cpu or
3495 * dest_cpu are members of a throttled hierarchy when performing group
3496 * load-balance operations.
3497 */
3498static inline int throttled_lb_pair(struct task_group *tg,
3499 int src_cpu, int dest_cpu)
3500{
3501 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3502
3503 src_cfs_rq = tg->cfs_rq[src_cpu];
3504 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3505
3506 return throttled_hierarchy(src_cfs_rq) ||
3507 throttled_hierarchy(dest_cfs_rq);
3508}
3509
3510/* updated child weight may affect parent so we have to do this bottom up */
3511static int tg_unthrottle_up(struct task_group *tg, void *data)
3512{
3513 struct rq *rq = data;
3514 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3515
3516 cfs_rq->throttle_count--;
3517#ifdef CONFIG_SMP
3518 if (!cfs_rq->throttle_count) {
f1b17280 3519 /* adjust cfs_rq_clock_task() */
78becc27 3520 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3521 cfs_rq->throttled_clock_task;
64660c86
PT
3522 }
3523#endif
3524
3525 return 0;
3526}
3527
3528static int tg_throttle_down(struct task_group *tg, void *data)
3529{
3530 struct rq *rq = data;
3531 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3532
82958366
PT
3533 /* group is entering throttled state, stop time */
3534 if (!cfs_rq->throttle_count)
78becc27 3535 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3536 cfs_rq->throttle_count++;
3537
3538 return 0;
3539}
3540
d3d9dc33 3541static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3542{
3543 struct rq *rq = rq_of(cfs_rq);
3544 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3545 struct sched_entity *se;
3546 long task_delta, dequeue = 1;
77a4d1a1 3547 bool empty;
85dac906
PT
3548
3549 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3550
f1b17280 3551 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3552 rcu_read_lock();
3553 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3554 rcu_read_unlock();
85dac906
PT
3555
3556 task_delta = cfs_rq->h_nr_running;
3557 for_each_sched_entity(se) {
3558 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3559 /* throttled entity or throttle-on-deactivate */
3560 if (!se->on_rq)
3561 break;
3562
3563 if (dequeue)
3564 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3565 qcfs_rq->h_nr_running -= task_delta;
3566
3567 if (qcfs_rq->load.weight)
3568 dequeue = 0;
3569 }
3570
3571 if (!se)
72465447 3572 sub_nr_running(rq, task_delta);
85dac906
PT
3573
3574 cfs_rq->throttled = 1;
78becc27 3575 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3576 raw_spin_lock(&cfs_b->lock);
d49db342 3577 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3578
c06f04c7
BS
3579 /*
3580 * Add to the _head_ of the list, so that an already-started
3581 * distribute_cfs_runtime will not see us
3582 */
3583 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3584
3585 /*
3586 * If we're the first throttled task, make sure the bandwidth
3587 * timer is running.
3588 */
3589 if (empty)
3590 start_cfs_bandwidth(cfs_b);
3591
85dac906
PT
3592 raw_spin_unlock(&cfs_b->lock);
3593}
3594
029632fb 3595void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3596{
3597 struct rq *rq = rq_of(cfs_rq);
3598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3599 struct sched_entity *se;
3600 int enqueue = 1;
3601 long task_delta;
3602
22b958d8 3603 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3604
3605 cfs_rq->throttled = 0;
1a55af2e
FW
3606
3607 update_rq_clock(rq);
3608
671fd9da 3609 raw_spin_lock(&cfs_b->lock);
78becc27 3610 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3611 list_del_rcu(&cfs_rq->throttled_list);
3612 raw_spin_unlock(&cfs_b->lock);
3613
64660c86
PT
3614 /* update hierarchical throttle state */
3615 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3616
671fd9da
PT
3617 if (!cfs_rq->load.weight)
3618 return;
3619
3620 task_delta = cfs_rq->h_nr_running;
3621 for_each_sched_entity(se) {
3622 if (se->on_rq)
3623 enqueue = 0;
3624
3625 cfs_rq = cfs_rq_of(se);
3626 if (enqueue)
3627 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3628 cfs_rq->h_nr_running += task_delta;
3629
3630 if (cfs_rq_throttled(cfs_rq))
3631 break;
3632 }
3633
3634 if (!se)
72465447 3635 add_nr_running(rq, task_delta);
671fd9da
PT
3636
3637 /* determine whether we need to wake up potentially idle cpu */
3638 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3639 resched_curr(rq);
671fd9da
PT
3640}
3641
3642static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3643 u64 remaining, u64 expires)
3644{
3645 struct cfs_rq *cfs_rq;
c06f04c7
BS
3646 u64 runtime;
3647 u64 starting_runtime = remaining;
671fd9da
PT
3648
3649 rcu_read_lock();
3650 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3651 throttled_list) {
3652 struct rq *rq = rq_of(cfs_rq);
3653
3654 raw_spin_lock(&rq->lock);
3655 if (!cfs_rq_throttled(cfs_rq))
3656 goto next;
3657
3658 runtime = -cfs_rq->runtime_remaining + 1;
3659 if (runtime > remaining)
3660 runtime = remaining;
3661 remaining -= runtime;
3662
3663 cfs_rq->runtime_remaining += runtime;
3664 cfs_rq->runtime_expires = expires;
3665
3666 /* we check whether we're throttled above */
3667 if (cfs_rq->runtime_remaining > 0)
3668 unthrottle_cfs_rq(cfs_rq);
3669
3670next:
3671 raw_spin_unlock(&rq->lock);
3672
3673 if (!remaining)
3674 break;
3675 }
3676 rcu_read_unlock();
3677
c06f04c7 3678 return starting_runtime - remaining;
671fd9da
PT
3679}
3680
58088ad0
PT
3681/*
3682 * Responsible for refilling a task_group's bandwidth and unthrottling its
3683 * cfs_rqs as appropriate. If there has been no activity within the last
3684 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3685 * used to track this state.
3686 */
3687static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3688{
671fd9da 3689 u64 runtime, runtime_expires;
51f2176d 3690 int throttled;
58088ad0 3691
58088ad0
PT
3692 /* no need to continue the timer with no bandwidth constraint */
3693 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3694 goto out_deactivate;
58088ad0 3695
671fd9da 3696 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3697 cfs_b->nr_periods += overrun;
671fd9da 3698
51f2176d
BS
3699 /*
3700 * idle depends on !throttled (for the case of a large deficit), and if
3701 * we're going inactive then everything else can be deferred
3702 */
3703 if (cfs_b->idle && !throttled)
3704 goto out_deactivate;
a9cf55b2
PT
3705
3706 __refill_cfs_bandwidth_runtime(cfs_b);
3707
671fd9da
PT
3708 if (!throttled) {
3709 /* mark as potentially idle for the upcoming period */
3710 cfs_b->idle = 1;
51f2176d 3711 return 0;
671fd9da
PT
3712 }
3713
e8da1b18
NR
3714 /* account preceding periods in which throttling occurred */
3715 cfs_b->nr_throttled += overrun;
3716
671fd9da 3717 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3718
3719 /*
c06f04c7
BS
3720 * This check is repeated as we are holding onto the new bandwidth while
3721 * we unthrottle. This can potentially race with an unthrottled group
3722 * trying to acquire new bandwidth from the global pool. This can result
3723 * in us over-using our runtime if it is all used during this loop, but
3724 * only by limited amounts in that extreme case.
671fd9da 3725 */
c06f04c7
BS
3726 while (throttled && cfs_b->runtime > 0) {
3727 runtime = cfs_b->runtime;
671fd9da
PT
3728 raw_spin_unlock(&cfs_b->lock);
3729 /* we can't nest cfs_b->lock while distributing bandwidth */
3730 runtime = distribute_cfs_runtime(cfs_b, runtime,
3731 runtime_expires);
3732 raw_spin_lock(&cfs_b->lock);
3733
3734 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3735
3736 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3737 }
58088ad0 3738
671fd9da
PT
3739 /*
3740 * While we are ensured activity in the period following an
3741 * unthrottle, this also covers the case in which the new bandwidth is
3742 * insufficient to cover the existing bandwidth deficit. (Forcing the
3743 * timer to remain active while there are any throttled entities.)
3744 */
3745 cfs_b->idle = 0;
58088ad0 3746
51f2176d
BS
3747 return 0;
3748
3749out_deactivate:
51f2176d 3750 return 1;
58088ad0 3751}
d3d9dc33 3752
d8b4986d
PT
3753/* a cfs_rq won't donate quota below this amount */
3754static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3755/* minimum remaining period time to redistribute slack quota */
3756static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3757/* how long we wait to gather additional slack before distributing */
3758static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3759
db06e78c
BS
3760/*
3761 * Are we near the end of the current quota period?
3762 *
3763 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3764 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3765 * migrate_hrtimers, base is never cleared, so we are fine.
3766 */
d8b4986d
PT
3767static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3768{
3769 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3770 u64 remaining;
3771
3772 /* if the call-back is running a quota refresh is already occurring */
3773 if (hrtimer_callback_running(refresh_timer))
3774 return 1;
3775
3776 /* is a quota refresh about to occur? */
3777 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3778 if (remaining < min_expire)
3779 return 1;
3780
3781 return 0;
3782}
3783
3784static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3785{
3786 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3787
3788 /* if there's a quota refresh soon don't bother with slack */
3789 if (runtime_refresh_within(cfs_b, min_left))
3790 return;
3791
4cfafd30
PZ
3792 hrtimer_start(&cfs_b->slack_timer,
3793 ns_to_ktime(cfs_bandwidth_slack_period),
3794 HRTIMER_MODE_REL);
d8b4986d
PT
3795}
3796
3797/* we know any runtime found here is valid as update_curr() precedes return */
3798static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3799{
3800 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3801 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3802
3803 if (slack_runtime <= 0)
3804 return;
3805
3806 raw_spin_lock(&cfs_b->lock);
3807 if (cfs_b->quota != RUNTIME_INF &&
3808 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3809 cfs_b->runtime += slack_runtime;
3810
3811 /* we are under rq->lock, defer unthrottling using a timer */
3812 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3813 !list_empty(&cfs_b->throttled_cfs_rq))
3814 start_cfs_slack_bandwidth(cfs_b);
3815 }
3816 raw_spin_unlock(&cfs_b->lock);
3817
3818 /* even if it's not valid for return we don't want to try again */
3819 cfs_rq->runtime_remaining -= slack_runtime;
3820}
3821
3822static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3823{
56f570e5
PT
3824 if (!cfs_bandwidth_used())
3825 return;
3826
fccfdc6f 3827 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3828 return;
3829
3830 __return_cfs_rq_runtime(cfs_rq);
3831}
3832
3833/*
3834 * This is done with a timer (instead of inline with bandwidth return) since
3835 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3836 */
3837static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3838{
3839 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3840 u64 expires;
3841
3842 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3843 raw_spin_lock(&cfs_b->lock);
3844 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3845 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3846 return;
db06e78c 3847 }
d8b4986d 3848
c06f04c7 3849 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3850 runtime = cfs_b->runtime;
c06f04c7 3851
d8b4986d
PT
3852 expires = cfs_b->runtime_expires;
3853 raw_spin_unlock(&cfs_b->lock);
3854
3855 if (!runtime)
3856 return;
3857
3858 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3859
3860 raw_spin_lock(&cfs_b->lock);
3861 if (expires == cfs_b->runtime_expires)
c06f04c7 3862 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3863 raw_spin_unlock(&cfs_b->lock);
3864}
3865
d3d9dc33
PT
3866/*
3867 * When a group wakes up we want to make sure that its quota is not already
3868 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3869 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3870 */
3871static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3872{
56f570e5
PT
3873 if (!cfs_bandwidth_used())
3874 return;
3875
d3d9dc33
PT
3876 /* an active group must be handled by the update_curr()->put() path */
3877 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3878 return;
3879
3880 /* ensure the group is not already throttled */
3881 if (cfs_rq_throttled(cfs_rq))
3882 return;
3883
3884 /* update runtime allocation */
3885 account_cfs_rq_runtime(cfs_rq, 0);
3886 if (cfs_rq->runtime_remaining <= 0)
3887 throttle_cfs_rq(cfs_rq);
3888}
3889
3890/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3891static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3892{
56f570e5 3893 if (!cfs_bandwidth_used())
678d5718 3894 return false;
56f570e5 3895
d3d9dc33 3896 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3897 return false;
d3d9dc33
PT
3898
3899 /*
3900 * it's possible for a throttled entity to be forced into a running
3901 * state (e.g. set_curr_task), in this case we're finished.
3902 */
3903 if (cfs_rq_throttled(cfs_rq))
678d5718 3904 return true;
d3d9dc33
PT
3905
3906 throttle_cfs_rq(cfs_rq);
678d5718 3907 return true;
d3d9dc33 3908}
029632fb 3909
029632fb
PZ
3910static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3911{
3912 struct cfs_bandwidth *cfs_b =
3913 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3914
029632fb
PZ
3915 do_sched_cfs_slack_timer(cfs_b);
3916
3917 return HRTIMER_NORESTART;
3918}
3919
3920static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3921{
3922 struct cfs_bandwidth *cfs_b =
3923 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3924 int overrun;
3925 int idle = 0;
3926
51f2176d 3927 raw_spin_lock(&cfs_b->lock);
029632fb 3928 for (;;) {
77a4d1a1 3929 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3930 if (!overrun)
3931 break;
3932
3933 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3934 }
4cfafd30
PZ
3935 if (idle)
3936 cfs_b->period_active = 0;
51f2176d 3937 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3938
3939 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3940}
3941
3942void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3943{
3944 raw_spin_lock_init(&cfs_b->lock);
3945 cfs_b->runtime = 0;
3946 cfs_b->quota = RUNTIME_INF;
3947 cfs_b->period = ns_to_ktime(default_cfs_period());
3948
3949 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3950 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3951 cfs_b->period_timer.function = sched_cfs_period_timer;
3952 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3953 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3954}
3955
3956static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3957{
3958 cfs_rq->runtime_enabled = 0;
3959 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3960}
3961
77a4d1a1 3962void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3963{
4cfafd30 3964 lockdep_assert_held(&cfs_b->lock);
029632fb 3965
4cfafd30
PZ
3966 if (!cfs_b->period_active) {
3967 cfs_b->period_active = 1;
3968 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3969 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3970 }
029632fb
PZ
3971}
3972
3973static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3974{
7f1a169b
TH
3975 /* init_cfs_bandwidth() was not called */
3976 if (!cfs_b->throttled_cfs_rq.next)
3977 return;
3978
029632fb
PZ
3979 hrtimer_cancel(&cfs_b->period_timer);
3980 hrtimer_cancel(&cfs_b->slack_timer);
3981}
3982
0e59bdae
KT
3983static void __maybe_unused update_runtime_enabled(struct rq *rq)
3984{
3985 struct cfs_rq *cfs_rq;
3986
3987 for_each_leaf_cfs_rq(rq, cfs_rq) {
3988 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3989
3990 raw_spin_lock(&cfs_b->lock);
3991 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3992 raw_spin_unlock(&cfs_b->lock);
3993 }
3994}
3995
38dc3348 3996static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3997{
3998 struct cfs_rq *cfs_rq;
3999
4000 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4001 if (!cfs_rq->runtime_enabled)
4002 continue;
4003
4004 /*
4005 * clock_task is not advancing so we just need to make sure
4006 * there's some valid quota amount
4007 */
51f2176d 4008 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4009 /*
4010 * Offline rq is schedulable till cpu is completely disabled
4011 * in take_cpu_down(), so we prevent new cfs throttling here.
4012 */
4013 cfs_rq->runtime_enabled = 0;
4014
029632fb
PZ
4015 if (cfs_rq_throttled(cfs_rq))
4016 unthrottle_cfs_rq(cfs_rq);
4017 }
4018}
4019
4020#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4021static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4022{
78becc27 4023 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4024}
4025
9dbdb155 4026static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4027static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4028static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4029static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4030
4031static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4032{
4033 return 0;
4034}
64660c86
PT
4035
4036static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4037{
4038 return 0;
4039}
4040
4041static inline int throttled_lb_pair(struct task_group *tg,
4042 int src_cpu, int dest_cpu)
4043{
4044 return 0;
4045}
029632fb
PZ
4046
4047void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4048
4049#ifdef CONFIG_FAIR_GROUP_SCHED
4050static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4051#endif
4052
029632fb
PZ
4053static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4054{
4055 return NULL;
4056}
4057static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4058static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4059static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4060
4061#endif /* CONFIG_CFS_BANDWIDTH */
4062
bf0f6f24
IM
4063/**************************************************
4064 * CFS operations on tasks:
4065 */
4066
8f4d37ec
PZ
4067#ifdef CONFIG_SCHED_HRTICK
4068static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4069{
8f4d37ec
PZ
4070 struct sched_entity *se = &p->se;
4071 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4072
4073 WARN_ON(task_rq(p) != rq);
4074
b39e66ea 4075 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4076 u64 slice = sched_slice(cfs_rq, se);
4077 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4078 s64 delta = slice - ran;
4079
4080 if (delta < 0) {
4081 if (rq->curr == p)
8875125e 4082 resched_curr(rq);
8f4d37ec
PZ
4083 return;
4084 }
31656519 4085 hrtick_start(rq, delta);
8f4d37ec
PZ
4086 }
4087}
a4c2f00f
PZ
4088
4089/*
4090 * called from enqueue/dequeue and updates the hrtick when the
4091 * current task is from our class and nr_running is low enough
4092 * to matter.
4093 */
4094static void hrtick_update(struct rq *rq)
4095{
4096 struct task_struct *curr = rq->curr;
4097
b39e66ea 4098 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4099 return;
4100
4101 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4102 hrtick_start_fair(rq, curr);
4103}
55e12e5e 4104#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4105static inline void
4106hrtick_start_fair(struct rq *rq, struct task_struct *p)
4107{
4108}
a4c2f00f
PZ
4109
4110static inline void hrtick_update(struct rq *rq)
4111{
4112}
8f4d37ec
PZ
4113#endif
4114
bf0f6f24
IM
4115/*
4116 * The enqueue_task method is called before nr_running is
4117 * increased. Here we update the fair scheduling stats and
4118 * then put the task into the rbtree:
4119 */
ea87bb78 4120static void
371fd7e7 4121enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4122{
4123 struct cfs_rq *cfs_rq;
62fb1851 4124 struct sched_entity *se = &p->se;
bf0f6f24
IM
4125
4126 for_each_sched_entity(se) {
62fb1851 4127 if (se->on_rq)
bf0f6f24
IM
4128 break;
4129 cfs_rq = cfs_rq_of(se);
88ec22d3 4130 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4131
4132 /*
4133 * end evaluation on encountering a throttled cfs_rq
4134 *
4135 * note: in the case of encountering a throttled cfs_rq we will
4136 * post the final h_nr_running increment below.
4137 */
4138 if (cfs_rq_throttled(cfs_rq))
4139 break;
953bfcd1 4140 cfs_rq->h_nr_running++;
85dac906 4141
88ec22d3 4142 flags = ENQUEUE_WAKEUP;
bf0f6f24 4143 }
8f4d37ec 4144
2069dd75 4145 for_each_sched_entity(se) {
0f317143 4146 cfs_rq = cfs_rq_of(se);
953bfcd1 4147 cfs_rq->h_nr_running++;
2069dd75 4148
85dac906
PT
4149 if (cfs_rq_throttled(cfs_rq))
4150 break;
4151
9d89c257 4152 update_load_avg(se, 1);
17bc14b7 4153 update_cfs_shares(cfs_rq);
2069dd75
PZ
4154 }
4155
cd126afe 4156 if (!se)
72465447 4157 add_nr_running(rq, 1);
cd126afe 4158
a4c2f00f 4159 hrtick_update(rq);
bf0f6f24
IM
4160}
4161
2f36825b
VP
4162static void set_next_buddy(struct sched_entity *se);
4163
bf0f6f24
IM
4164/*
4165 * The dequeue_task method is called before nr_running is
4166 * decreased. We remove the task from the rbtree and
4167 * update the fair scheduling stats:
4168 */
371fd7e7 4169static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4170{
4171 struct cfs_rq *cfs_rq;
62fb1851 4172 struct sched_entity *se = &p->se;
2f36825b 4173 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4174
4175 for_each_sched_entity(se) {
4176 cfs_rq = cfs_rq_of(se);
371fd7e7 4177 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4178
4179 /*
4180 * end evaluation on encountering a throttled cfs_rq
4181 *
4182 * note: in the case of encountering a throttled cfs_rq we will
4183 * post the final h_nr_running decrement below.
4184 */
4185 if (cfs_rq_throttled(cfs_rq))
4186 break;
953bfcd1 4187 cfs_rq->h_nr_running--;
2069dd75 4188
bf0f6f24 4189 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4190 if (cfs_rq->load.weight) {
4191 /*
4192 * Bias pick_next to pick a task from this cfs_rq, as
4193 * p is sleeping when it is within its sched_slice.
4194 */
4195 if (task_sleep && parent_entity(se))
4196 set_next_buddy(parent_entity(se));
9598c82d
PT
4197
4198 /* avoid re-evaluating load for this entity */
4199 se = parent_entity(se);
bf0f6f24 4200 break;
2f36825b 4201 }
371fd7e7 4202 flags |= DEQUEUE_SLEEP;
bf0f6f24 4203 }
8f4d37ec 4204
2069dd75 4205 for_each_sched_entity(se) {
0f317143 4206 cfs_rq = cfs_rq_of(se);
953bfcd1 4207 cfs_rq->h_nr_running--;
2069dd75 4208
85dac906
PT
4209 if (cfs_rq_throttled(cfs_rq))
4210 break;
4211
9d89c257 4212 update_load_avg(se, 1);
17bc14b7 4213 update_cfs_shares(cfs_rq);
2069dd75
PZ
4214 }
4215
cd126afe 4216 if (!se)
72465447 4217 sub_nr_running(rq, 1);
cd126afe 4218
a4c2f00f 4219 hrtick_update(rq);
bf0f6f24
IM
4220}
4221
e7693a36 4222#ifdef CONFIG_SMP
3289bdb4
PZ
4223
4224/*
4225 * per rq 'load' arrray crap; XXX kill this.
4226 */
4227
4228/*
4229 * The exact cpuload at various idx values, calculated at every tick would be
4230 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4231 *
4232 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4233 * on nth tick when cpu may be busy, then we have:
4234 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4235 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4236 *
4237 * decay_load_missed() below does efficient calculation of
4238 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4239 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4240 *
4241 * The calculation is approximated on a 128 point scale.
4242 * degrade_zero_ticks is the number of ticks after which load at any
4243 * particular idx is approximated to be zero.
4244 * degrade_factor is a precomputed table, a row for each load idx.
4245 * Each column corresponds to degradation factor for a power of two ticks,
4246 * based on 128 point scale.
4247 * Example:
4248 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4249 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4250 *
4251 * With this power of 2 load factors, we can degrade the load n times
4252 * by looking at 1 bits in n and doing as many mult/shift instead of
4253 * n mult/shifts needed by the exact degradation.
4254 */
4255#define DEGRADE_SHIFT 7
4256static const unsigned char
4257 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4258static const unsigned char
4259 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4260 {0, 0, 0, 0, 0, 0, 0, 0},
4261 {64, 32, 8, 0, 0, 0, 0, 0},
4262 {96, 72, 40, 12, 1, 0, 0},
4263 {112, 98, 75, 43, 15, 1, 0},
4264 {120, 112, 98, 76, 45, 16, 2} };
4265
4266/*
4267 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4268 * would be when CPU is idle and so we just decay the old load without
4269 * adding any new load.
4270 */
4271static unsigned long
4272decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4273{
4274 int j = 0;
4275
4276 if (!missed_updates)
4277 return load;
4278
4279 if (missed_updates >= degrade_zero_ticks[idx])
4280 return 0;
4281
4282 if (idx == 1)
4283 return load >> missed_updates;
4284
4285 while (missed_updates) {
4286 if (missed_updates % 2)
4287 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4288
4289 missed_updates >>= 1;
4290 j++;
4291 }
4292 return load;
4293}
4294
4295/*
4296 * Update rq->cpu_load[] statistics. This function is usually called every
4297 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4298 * every tick. We fix it up based on jiffies.
4299 */
4300static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4301 unsigned long pending_updates)
4302{
4303 int i, scale;
4304
4305 this_rq->nr_load_updates++;
4306
4307 /* Update our load: */
4308 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4309 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4310 unsigned long old_load, new_load;
4311
4312 /* scale is effectively 1 << i now, and >> i divides by scale */
4313
4314 old_load = this_rq->cpu_load[i];
4315 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4316 new_load = this_load;
4317 /*
4318 * Round up the averaging division if load is increasing. This
4319 * prevents us from getting stuck on 9 if the load is 10, for
4320 * example.
4321 */
4322 if (new_load > old_load)
4323 new_load += scale - 1;
4324
4325 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4326 }
4327
4328 sched_avg_update(this_rq);
4329}
4330
7ea241af
YD
4331/* Used instead of source_load when we know the type == 0 */
4332static unsigned long weighted_cpuload(const int cpu)
4333{
4334 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4335}
4336
3289bdb4
PZ
4337#ifdef CONFIG_NO_HZ_COMMON
4338/*
4339 * There is no sane way to deal with nohz on smp when using jiffies because the
4340 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4341 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4342 *
4343 * Therefore we cannot use the delta approach from the regular tick since that
4344 * would seriously skew the load calculation. However we'll make do for those
4345 * updates happening while idle (nohz_idle_balance) or coming out of idle
4346 * (tick_nohz_idle_exit).
4347 *
4348 * This means we might still be one tick off for nohz periods.
4349 */
4350
4351/*
4352 * Called from nohz_idle_balance() to update the load ratings before doing the
4353 * idle balance.
4354 */
4355static void update_idle_cpu_load(struct rq *this_rq)
4356{
316c1608 4357 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4358 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4359 unsigned long pending_updates;
4360
4361 /*
4362 * bail if there's load or we're actually up-to-date.
4363 */
4364 if (load || curr_jiffies == this_rq->last_load_update_tick)
4365 return;
4366
4367 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4368 this_rq->last_load_update_tick = curr_jiffies;
4369
4370 __update_cpu_load(this_rq, load, pending_updates);
4371}
4372
4373/*
4374 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4375 */
4376void update_cpu_load_nohz(void)
4377{
4378 struct rq *this_rq = this_rq();
316c1608 4379 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4380 unsigned long pending_updates;
4381
4382 if (curr_jiffies == this_rq->last_load_update_tick)
4383 return;
4384
4385 raw_spin_lock(&this_rq->lock);
4386 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4387 if (pending_updates) {
4388 this_rq->last_load_update_tick = curr_jiffies;
4389 /*
4390 * We were idle, this means load 0, the current load might be
4391 * !0 due to remote wakeups and the sort.
4392 */
4393 __update_cpu_load(this_rq, 0, pending_updates);
4394 }
4395 raw_spin_unlock(&this_rq->lock);
4396}
4397#endif /* CONFIG_NO_HZ */
4398
4399/*
4400 * Called from scheduler_tick()
4401 */
4402void update_cpu_load_active(struct rq *this_rq)
4403{
7ea241af 4404 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4405 /*
4406 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4407 */
4408 this_rq->last_load_update_tick = jiffies;
4409 __update_cpu_load(this_rq, load, 1);
4410}
4411
029632fb
PZ
4412/*
4413 * Return a low guess at the load of a migration-source cpu weighted
4414 * according to the scheduling class and "nice" value.
4415 *
4416 * We want to under-estimate the load of migration sources, to
4417 * balance conservatively.
4418 */
4419static unsigned long source_load(int cpu, int type)
4420{
4421 struct rq *rq = cpu_rq(cpu);
4422 unsigned long total = weighted_cpuload(cpu);
4423
4424 if (type == 0 || !sched_feat(LB_BIAS))
4425 return total;
4426
4427 return min(rq->cpu_load[type-1], total);
4428}
4429
4430/*
4431 * Return a high guess at the load of a migration-target cpu weighted
4432 * according to the scheduling class and "nice" value.
4433 */
4434static unsigned long target_load(int cpu, int type)
4435{
4436 struct rq *rq = cpu_rq(cpu);
4437 unsigned long total = weighted_cpuload(cpu);
4438
4439 if (type == 0 || !sched_feat(LB_BIAS))
4440 return total;
4441
4442 return max(rq->cpu_load[type-1], total);
4443}
4444
ced549fa 4445static unsigned long capacity_of(int cpu)
029632fb 4446{
ced549fa 4447 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4448}
4449
ca6d75e6
VG
4450static unsigned long capacity_orig_of(int cpu)
4451{
4452 return cpu_rq(cpu)->cpu_capacity_orig;
4453}
4454
029632fb
PZ
4455static unsigned long cpu_avg_load_per_task(int cpu)
4456{
4457 struct rq *rq = cpu_rq(cpu);
316c1608 4458 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4459 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4460
4461 if (nr_running)
b92486cb 4462 return load_avg / nr_running;
029632fb
PZ
4463
4464 return 0;
4465}
4466
62470419
MW
4467static void record_wakee(struct task_struct *p)
4468{
4469 /*
4470 * Rough decay (wiping) for cost saving, don't worry
4471 * about the boundary, really active task won't care
4472 * about the loss.
4473 */
2538d960 4474 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4475 current->wakee_flips >>= 1;
62470419
MW
4476 current->wakee_flip_decay_ts = jiffies;
4477 }
4478
4479 if (current->last_wakee != p) {
4480 current->last_wakee = p;
4481 current->wakee_flips++;
4482 }
4483}
098fb9db 4484
74f8e4b2 4485static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4486{
4487 struct sched_entity *se = &p->se;
4488 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4489 u64 min_vruntime;
4490
4491#ifndef CONFIG_64BIT
4492 u64 min_vruntime_copy;
88ec22d3 4493
3fe1698b
PZ
4494 do {
4495 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4496 smp_rmb();
4497 min_vruntime = cfs_rq->min_vruntime;
4498 } while (min_vruntime != min_vruntime_copy);
4499#else
4500 min_vruntime = cfs_rq->min_vruntime;
4501#endif
88ec22d3 4502
3fe1698b 4503 se->vruntime -= min_vruntime;
62470419 4504 record_wakee(p);
88ec22d3
PZ
4505}
4506
bb3469ac 4507#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4508/*
4509 * effective_load() calculates the load change as seen from the root_task_group
4510 *
4511 * Adding load to a group doesn't make a group heavier, but can cause movement
4512 * of group shares between cpus. Assuming the shares were perfectly aligned one
4513 * can calculate the shift in shares.
cf5f0acf
PZ
4514 *
4515 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4516 * on this @cpu and results in a total addition (subtraction) of @wg to the
4517 * total group weight.
4518 *
4519 * Given a runqueue weight distribution (rw_i) we can compute a shares
4520 * distribution (s_i) using:
4521 *
4522 * s_i = rw_i / \Sum rw_j (1)
4523 *
4524 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4525 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4526 * shares distribution (s_i):
4527 *
4528 * rw_i = { 2, 4, 1, 0 }
4529 * s_i = { 2/7, 4/7, 1/7, 0 }
4530 *
4531 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4532 * task used to run on and the CPU the waker is running on), we need to
4533 * compute the effect of waking a task on either CPU and, in case of a sync
4534 * wakeup, compute the effect of the current task going to sleep.
4535 *
4536 * So for a change of @wl to the local @cpu with an overall group weight change
4537 * of @wl we can compute the new shares distribution (s'_i) using:
4538 *
4539 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4540 *
4541 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4542 * differences in waking a task to CPU 0. The additional task changes the
4543 * weight and shares distributions like:
4544 *
4545 * rw'_i = { 3, 4, 1, 0 }
4546 * s'_i = { 3/8, 4/8, 1/8, 0 }
4547 *
4548 * We can then compute the difference in effective weight by using:
4549 *
4550 * dw_i = S * (s'_i - s_i) (3)
4551 *
4552 * Where 'S' is the group weight as seen by its parent.
4553 *
4554 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4555 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4556 * 4/7) times the weight of the group.
f5bfb7d9 4557 */
2069dd75 4558static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4559{
4be9daaa 4560 struct sched_entity *se = tg->se[cpu];
f1d239f7 4561
9722c2da 4562 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4563 return wl;
4564
4be9daaa 4565 for_each_sched_entity(se) {
cf5f0acf 4566 long w, W;
4be9daaa 4567
977dda7c 4568 tg = se->my_q->tg;
bb3469ac 4569
cf5f0acf
PZ
4570 /*
4571 * W = @wg + \Sum rw_j
4572 */
4573 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4574
cf5f0acf
PZ
4575 /*
4576 * w = rw_i + @wl
4577 */
7ea241af 4578 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4579
cf5f0acf
PZ
4580 /*
4581 * wl = S * s'_i; see (2)
4582 */
4583 if (W > 0 && w < W)
32a8df4e 4584 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4585 else
4586 wl = tg->shares;
940959e9 4587
cf5f0acf
PZ
4588 /*
4589 * Per the above, wl is the new se->load.weight value; since
4590 * those are clipped to [MIN_SHARES, ...) do so now. See
4591 * calc_cfs_shares().
4592 */
977dda7c
PT
4593 if (wl < MIN_SHARES)
4594 wl = MIN_SHARES;
cf5f0acf
PZ
4595
4596 /*
4597 * wl = dw_i = S * (s'_i - s_i); see (3)
4598 */
9d89c257 4599 wl -= se->avg.load_avg;
cf5f0acf
PZ
4600
4601 /*
4602 * Recursively apply this logic to all parent groups to compute
4603 * the final effective load change on the root group. Since
4604 * only the @tg group gets extra weight, all parent groups can
4605 * only redistribute existing shares. @wl is the shift in shares
4606 * resulting from this level per the above.
4607 */
4be9daaa 4608 wg = 0;
4be9daaa 4609 }
bb3469ac 4610
4be9daaa 4611 return wl;
bb3469ac
PZ
4612}
4613#else
4be9daaa 4614
58d081b5 4615static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4616{
83378269 4617 return wl;
bb3469ac 4618}
4be9daaa 4619
bb3469ac
PZ
4620#endif
4621
63b0e9ed
MG
4622/*
4623 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4624 * A waker of many should wake a different task than the one last awakened
4625 * at a frequency roughly N times higher than one of its wakees. In order
4626 * to determine whether we should let the load spread vs consolodating to
4627 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4628 * partner, and a factor of lls_size higher frequency in the other. With
4629 * both conditions met, we can be relatively sure that the relationship is
4630 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4631 * being client/server, worker/dispatcher, interrupt source or whatever is
4632 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4633 */
62470419
MW
4634static int wake_wide(struct task_struct *p)
4635{
63b0e9ed
MG
4636 unsigned int master = current->wakee_flips;
4637 unsigned int slave = p->wakee_flips;
7d9ffa89 4638 int factor = this_cpu_read(sd_llc_size);
62470419 4639
63b0e9ed
MG
4640 if (master < slave)
4641 swap(master, slave);
4642 if (slave < factor || master < slave * factor)
4643 return 0;
4644 return 1;
62470419
MW
4645}
4646
c88d5910 4647static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4648{
e37b6a7b 4649 s64 this_load, load;
bd61c98f 4650 s64 this_eff_load, prev_eff_load;
c88d5910 4651 int idx, this_cpu, prev_cpu;
c88d5910 4652 struct task_group *tg;
83378269 4653 unsigned long weight;
b3137bc8 4654 int balanced;
098fb9db 4655
c88d5910
PZ
4656 idx = sd->wake_idx;
4657 this_cpu = smp_processor_id();
4658 prev_cpu = task_cpu(p);
4659 load = source_load(prev_cpu, idx);
4660 this_load = target_load(this_cpu, idx);
098fb9db 4661
b3137bc8
MG
4662 /*
4663 * If sync wakeup then subtract the (maximum possible)
4664 * effect of the currently running task from the load
4665 * of the current CPU:
4666 */
83378269
PZ
4667 if (sync) {
4668 tg = task_group(current);
9d89c257 4669 weight = current->se.avg.load_avg;
83378269 4670
c88d5910 4671 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4672 load += effective_load(tg, prev_cpu, 0, -weight);
4673 }
b3137bc8 4674
83378269 4675 tg = task_group(p);
9d89c257 4676 weight = p->se.avg.load_avg;
b3137bc8 4677
71a29aa7
PZ
4678 /*
4679 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4680 * due to the sync cause above having dropped this_load to 0, we'll
4681 * always have an imbalance, but there's really nothing you can do
4682 * about that, so that's good too.
71a29aa7
PZ
4683 *
4684 * Otherwise check if either cpus are near enough in load to allow this
4685 * task to be woken on this_cpu.
4686 */
bd61c98f
VG
4687 this_eff_load = 100;
4688 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4689
bd61c98f
VG
4690 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4691 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4692
bd61c98f 4693 if (this_load > 0) {
e51fd5e2
PZ
4694 this_eff_load *= this_load +
4695 effective_load(tg, this_cpu, weight, weight);
4696
e51fd5e2 4697 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4698 }
e51fd5e2 4699
bd61c98f 4700 balanced = this_eff_load <= prev_eff_load;
098fb9db 4701
41acab88 4702 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4703
05bfb65f
VG
4704 if (!balanced)
4705 return 0;
098fb9db 4706
05bfb65f
VG
4707 schedstat_inc(sd, ttwu_move_affine);
4708 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4709
4710 return 1;
098fb9db
IM
4711}
4712
aaee1203
PZ
4713/*
4714 * find_idlest_group finds and returns the least busy CPU group within the
4715 * domain.
4716 */
4717static struct sched_group *
78e7ed53 4718find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4719 int this_cpu, int sd_flag)
e7693a36 4720{
b3bd3de6 4721 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4722 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4723 int load_idx = sd->forkexec_idx;
aaee1203 4724 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4725
c44f2a02
VG
4726 if (sd_flag & SD_BALANCE_WAKE)
4727 load_idx = sd->wake_idx;
4728
aaee1203
PZ
4729 do {
4730 unsigned long load, avg_load;
4731 int local_group;
4732 int i;
e7693a36 4733
aaee1203
PZ
4734 /* Skip over this group if it has no CPUs allowed */
4735 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4736 tsk_cpus_allowed(p)))
aaee1203
PZ
4737 continue;
4738
4739 local_group = cpumask_test_cpu(this_cpu,
4740 sched_group_cpus(group));
4741
4742 /* Tally up the load of all CPUs in the group */
4743 avg_load = 0;
4744
4745 for_each_cpu(i, sched_group_cpus(group)) {
4746 /* Bias balancing toward cpus of our domain */
4747 if (local_group)
4748 load = source_load(i, load_idx);
4749 else
4750 load = target_load(i, load_idx);
4751
4752 avg_load += load;
4753 }
4754
63b2ca30 4755 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4756 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4757
4758 if (local_group) {
4759 this_load = avg_load;
aaee1203
PZ
4760 } else if (avg_load < min_load) {
4761 min_load = avg_load;
4762 idlest = group;
4763 }
4764 } while (group = group->next, group != sd->groups);
4765
4766 if (!idlest || 100*this_load < imbalance*min_load)
4767 return NULL;
4768 return idlest;
4769}
4770
4771/*
4772 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4773 */
4774static int
4775find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4776{
4777 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4778 unsigned int min_exit_latency = UINT_MAX;
4779 u64 latest_idle_timestamp = 0;
4780 int least_loaded_cpu = this_cpu;
4781 int shallowest_idle_cpu = -1;
aaee1203
PZ
4782 int i;
4783
4784 /* Traverse only the allowed CPUs */
fa17b507 4785 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4786 if (idle_cpu(i)) {
4787 struct rq *rq = cpu_rq(i);
4788 struct cpuidle_state *idle = idle_get_state(rq);
4789 if (idle && idle->exit_latency < min_exit_latency) {
4790 /*
4791 * We give priority to a CPU whose idle state
4792 * has the smallest exit latency irrespective
4793 * of any idle timestamp.
4794 */
4795 min_exit_latency = idle->exit_latency;
4796 latest_idle_timestamp = rq->idle_stamp;
4797 shallowest_idle_cpu = i;
4798 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4799 rq->idle_stamp > latest_idle_timestamp) {
4800 /*
4801 * If equal or no active idle state, then
4802 * the most recently idled CPU might have
4803 * a warmer cache.
4804 */
4805 latest_idle_timestamp = rq->idle_stamp;
4806 shallowest_idle_cpu = i;
4807 }
9f96742a 4808 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4809 load = weighted_cpuload(i);
4810 if (load < min_load || (load == min_load && i == this_cpu)) {
4811 min_load = load;
4812 least_loaded_cpu = i;
4813 }
e7693a36
GH
4814 }
4815 }
4816
83a0a96a 4817 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4818}
e7693a36 4819
a50bde51
PZ
4820/*
4821 * Try and locate an idle CPU in the sched_domain.
4822 */
99bd5e2f 4823static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4824{
99bd5e2f 4825 struct sched_domain *sd;
37407ea7 4826 struct sched_group *sg;
e0a79f52 4827 int i = task_cpu(p);
a50bde51 4828
e0a79f52
MG
4829 if (idle_cpu(target))
4830 return target;
99bd5e2f
SS
4831
4832 /*
e0a79f52 4833 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4834 */
e0a79f52
MG
4835 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4836 return i;
a50bde51
PZ
4837
4838 /*
37407ea7 4839 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4840 */
518cd623 4841 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4842 for_each_lower_domain(sd) {
37407ea7
LT
4843 sg = sd->groups;
4844 do {
4845 if (!cpumask_intersects(sched_group_cpus(sg),
4846 tsk_cpus_allowed(p)))
4847 goto next;
4848
4849 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4850 if (i == target || !idle_cpu(i))
37407ea7
LT
4851 goto next;
4852 }
970e1789 4853
37407ea7
LT
4854 target = cpumask_first_and(sched_group_cpus(sg),
4855 tsk_cpus_allowed(p));
4856 goto done;
4857next:
4858 sg = sg->next;
4859 } while (sg != sd->groups);
4860 }
4861done:
a50bde51
PZ
4862 return target;
4863}
8bb5b00c
VG
4864/*
4865 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4866 * tasks. The unit of the return value must be the one of capacity so we can
4867 * compare the usage with the capacity of the CPU that is available for CFS
4868 * task (ie cpu_capacity).
9d89c257 4869 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4870 * CPU. It represents the amount of utilization of a CPU in the range
4871 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4872 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4873 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4874 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4875 * after migrating tasks until the average stabilizes with the new running
4876 * time. So we need to check that the usage stays into the range
4877 * [0..cpu_capacity_orig] and cap if necessary.
4878 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4879 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4880 */
4881static int get_cpu_usage(int cpu)
4882{
9d89c257 4883 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4884 unsigned long capacity = capacity_orig_of(cpu);
4885
4886 if (usage >= SCHED_LOAD_SCALE)
4887 return capacity;
4888
4889 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4890}
a50bde51 4891
aaee1203 4892/*
de91b9cb
MR
4893 * select_task_rq_fair: Select target runqueue for the waking task in domains
4894 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4895 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4896 *
de91b9cb
MR
4897 * Balances load by selecting the idlest cpu in the idlest group, or under
4898 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4899 *
de91b9cb 4900 * Returns the target cpu number.
aaee1203
PZ
4901 *
4902 * preempt must be disabled.
4903 */
0017d735 4904static int
ac66f547 4905select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4906{
29cd8bae 4907 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4908 int cpu = smp_processor_id();
63b0e9ed 4909 int new_cpu = prev_cpu;
99bd5e2f 4910 int want_affine = 0;
5158f4e4 4911 int sync = wake_flags & WF_SYNC;
c88d5910 4912
a8edd075 4913 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4914 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4915
dce840a0 4916 rcu_read_lock();
aaee1203 4917 for_each_domain(cpu, tmp) {
e4f42888 4918 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4919 break;
e4f42888 4920
fe3bcfe1 4921 /*
99bd5e2f
SS
4922 * If both cpu and prev_cpu are part of this domain,
4923 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4924 */
99bd5e2f
SS
4925 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4926 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4927 affine_sd = tmp;
29cd8bae 4928 break;
f03542a7 4929 }
29cd8bae 4930
f03542a7 4931 if (tmp->flags & sd_flag)
29cd8bae 4932 sd = tmp;
63b0e9ed
MG
4933 else if (!want_affine)
4934 break;
29cd8bae
PZ
4935 }
4936
63b0e9ed
MG
4937 if (affine_sd) {
4938 sd = NULL; /* Prefer wake_affine over balance flags */
4939 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4940 new_cpu = cpu;
8b911acd 4941 }
e7693a36 4942
63b0e9ed
MG
4943 if (!sd) {
4944 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4945 new_cpu = select_idle_sibling(p, new_cpu);
4946
4947 } else while (sd) {
aaee1203 4948 struct sched_group *group;
c88d5910 4949 int weight;
098fb9db 4950
0763a660 4951 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4952 sd = sd->child;
4953 continue;
4954 }
098fb9db 4955
c44f2a02 4956 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4957 if (!group) {
4958 sd = sd->child;
4959 continue;
4960 }
4ae7d5ce 4961
d7c33c49 4962 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4963 if (new_cpu == -1 || new_cpu == cpu) {
4964 /* Now try balancing at a lower domain level of cpu */
4965 sd = sd->child;
4966 continue;
e7693a36 4967 }
aaee1203
PZ
4968
4969 /* Now try balancing at a lower domain level of new_cpu */
4970 cpu = new_cpu;
669c55e9 4971 weight = sd->span_weight;
aaee1203
PZ
4972 sd = NULL;
4973 for_each_domain(cpu, tmp) {
669c55e9 4974 if (weight <= tmp->span_weight)
aaee1203 4975 break;
0763a660 4976 if (tmp->flags & sd_flag)
aaee1203
PZ
4977 sd = tmp;
4978 }
4979 /* while loop will break here if sd == NULL */
e7693a36 4980 }
dce840a0 4981 rcu_read_unlock();
e7693a36 4982
c88d5910 4983 return new_cpu;
e7693a36 4984}
0a74bef8
PT
4985
4986/*
4987 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4988 * cfs_rq_of(p) references at time of call are still valid and identify the
4989 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4990 * other assumptions, including the state of rq->lock, should be made.
4991 */
9d89c257 4992static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4993{
aff3e498 4994 /*
9d89c257
YD
4995 * We are supposed to update the task to "current" time, then its up to date
4996 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4997 * what current time is, so simply throw away the out-of-date time. This
4998 * will result in the wakee task is less decayed, but giving the wakee more
4999 * load sounds not bad.
aff3e498 5000 */
9d89c257
YD
5001 remove_entity_load_avg(&p->se);
5002
5003 /* Tell new CPU we are migrated */
5004 p->se.avg.last_update_time = 0;
3944a927
BS
5005
5006 /* We have migrated, no longer consider this task hot */
9d89c257 5007 p->se.exec_start = 0;
0a74bef8 5008}
12695578
YD
5009
5010static void task_dead_fair(struct task_struct *p)
5011{
5012 remove_entity_load_avg(&p->se);
5013}
e7693a36
GH
5014#endif /* CONFIG_SMP */
5015
e52fb7c0
PZ
5016static unsigned long
5017wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5018{
5019 unsigned long gran = sysctl_sched_wakeup_granularity;
5020
5021 /*
e52fb7c0
PZ
5022 * Since its curr running now, convert the gran from real-time
5023 * to virtual-time in his units.
13814d42
MG
5024 *
5025 * By using 'se' instead of 'curr' we penalize light tasks, so
5026 * they get preempted easier. That is, if 'se' < 'curr' then
5027 * the resulting gran will be larger, therefore penalizing the
5028 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5029 * be smaller, again penalizing the lighter task.
5030 *
5031 * This is especially important for buddies when the leftmost
5032 * task is higher priority than the buddy.
0bbd3336 5033 */
f4ad9bd2 5034 return calc_delta_fair(gran, se);
0bbd3336
PZ
5035}
5036
464b7527
PZ
5037/*
5038 * Should 'se' preempt 'curr'.
5039 *
5040 * |s1
5041 * |s2
5042 * |s3
5043 * g
5044 * |<--->|c
5045 *
5046 * w(c, s1) = -1
5047 * w(c, s2) = 0
5048 * w(c, s3) = 1
5049 *
5050 */
5051static int
5052wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5053{
5054 s64 gran, vdiff = curr->vruntime - se->vruntime;
5055
5056 if (vdiff <= 0)
5057 return -1;
5058
e52fb7c0 5059 gran = wakeup_gran(curr, se);
464b7527
PZ
5060 if (vdiff > gran)
5061 return 1;
5062
5063 return 0;
5064}
5065
02479099
PZ
5066static void set_last_buddy(struct sched_entity *se)
5067{
69c80f3e
VP
5068 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5069 return;
5070
5071 for_each_sched_entity(se)
5072 cfs_rq_of(se)->last = se;
02479099
PZ
5073}
5074
5075static void set_next_buddy(struct sched_entity *se)
5076{
69c80f3e
VP
5077 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5078 return;
5079
5080 for_each_sched_entity(se)
5081 cfs_rq_of(se)->next = se;
02479099
PZ
5082}
5083
ac53db59
RR
5084static void set_skip_buddy(struct sched_entity *se)
5085{
69c80f3e
VP
5086 for_each_sched_entity(se)
5087 cfs_rq_of(se)->skip = se;
ac53db59
RR
5088}
5089
bf0f6f24
IM
5090/*
5091 * Preempt the current task with a newly woken task if needed:
5092 */
5a9b86f6 5093static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5094{
5095 struct task_struct *curr = rq->curr;
8651a86c 5096 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5097 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5098 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5099 int next_buddy_marked = 0;
bf0f6f24 5100
4ae7d5ce
IM
5101 if (unlikely(se == pse))
5102 return;
5103
5238cdd3 5104 /*
163122b7 5105 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5106 * unconditionally check_prempt_curr() after an enqueue (which may have
5107 * lead to a throttle). This both saves work and prevents false
5108 * next-buddy nomination below.
5109 */
5110 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5111 return;
5112
2f36825b 5113 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5114 set_next_buddy(pse);
2f36825b
VP
5115 next_buddy_marked = 1;
5116 }
57fdc26d 5117
aec0a514
BR
5118 /*
5119 * We can come here with TIF_NEED_RESCHED already set from new task
5120 * wake up path.
5238cdd3
PT
5121 *
5122 * Note: this also catches the edge-case of curr being in a throttled
5123 * group (e.g. via set_curr_task), since update_curr() (in the
5124 * enqueue of curr) will have resulted in resched being set. This
5125 * prevents us from potentially nominating it as a false LAST_BUDDY
5126 * below.
aec0a514
BR
5127 */
5128 if (test_tsk_need_resched(curr))
5129 return;
5130
a2f5c9ab
DH
5131 /* Idle tasks are by definition preempted by non-idle tasks. */
5132 if (unlikely(curr->policy == SCHED_IDLE) &&
5133 likely(p->policy != SCHED_IDLE))
5134 goto preempt;
5135
91c234b4 5136 /*
a2f5c9ab
DH
5137 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5138 * is driven by the tick):
91c234b4 5139 */
8ed92e51 5140 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5141 return;
bf0f6f24 5142
464b7527 5143 find_matching_se(&se, &pse);
9bbd7374 5144 update_curr(cfs_rq_of(se));
002f128b 5145 BUG_ON(!pse);
2f36825b
VP
5146 if (wakeup_preempt_entity(se, pse) == 1) {
5147 /*
5148 * Bias pick_next to pick the sched entity that is
5149 * triggering this preemption.
5150 */
5151 if (!next_buddy_marked)
5152 set_next_buddy(pse);
3a7e73a2 5153 goto preempt;
2f36825b 5154 }
464b7527 5155
3a7e73a2 5156 return;
a65ac745 5157
3a7e73a2 5158preempt:
8875125e 5159 resched_curr(rq);
3a7e73a2
PZ
5160 /*
5161 * Only set the backward buddy when the current task is still
5162 * on the rq. This can happen when a wakeup gets interleaved
5163 * with schedule on the ->pre_schedule() or idle_balance()
5164 * point, either of which can * drop the rq lock.
5165 *
5166 * Also, during early boot the idle thread is in the fair class,
5167 * for obvious reasons its a bad idea to schedule back to it.
5168 */
5169 if (unlikely(!se->on_rq || curr == rq->idle))
5170 return;
5171
5172 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5173 set_last_buddy(se);
bf0f6f24
IM
5174}
5175
606dba2e
PZ
5176static struct task_struct *
5177pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5178{
5179 struct cfs_rq *cfs_rq = &rq->cfs;
5180 struct sched_entity *se;
678d5718 5181 struct task_struct *p;
37e117c0 5182 int new_tasks;
678d5718 5183
6e83125c 5184again:
678d5718
PZ
5185#ifdef CONFIG_FAIR_GROUP_SCHED
5186 if (!cfs_rq->nr_running)
38033c37 5187 goto idle;
678d5718 5188
3f1d2a31 5189 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5190 goto simple;
5191
5192 /*
5193 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5194 * likely that a next task is from the same cgroup as the current.
5195 *
5196 * Therefore attempt to avoid putting and setting the entire cgroup
5197 * hierarchy, only change the part that actually changes.
5198 */
5199
5200 do {
5201 struct sched_entity *curr = cfs_rq->curr;
5202
5203 /*
5204 * Since we got here without doing put_prev_entity() we also
5205 * have to consider cfs_rq->curr. If it is still a runnable
5206 * entity, update_curr() will update its vruntime, otherwise
5207 * forget we've ever seen it.
5208 */
54d27365
BS
5209 if (curr) {
5210 if (curr->on_rq)
5211 update_curr(cfs_rq);
5212 else
5213 curr = NULL;
678d5718 5214
54d27365
BS
5215 /*
5216 * This call to check_cfs_rq_runtime() will do the
5217 * throttle and dequeue its entity in the parent(s).
5218 * Therefore the 'simple' nr_running test will indeed
5219 * be correct.
5220 */
5221 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5222 goto simple;
5223 }
678d5718
PZ
5224
5225 se = pick_next_entity(cfs_rq, curr);
5226 cfs_rq = group_cfs_rq(se);
5227 } while (cfs_rq);
5228
5229 p = task_of(se);
5230
5231 /*
5232 * Since we haven't yet done put_prev_entity and if the selected task
5233 * is a different task than we started out with, try and touch the
5234 * least amount of cfs_rqs.
5235 */
5236 if (prev != p) {
5237 struct sched_entity *pse = &prev->se;
5238
5239 while (!(cfs_rq = is_same_group(se, pse))) {
5240 int se_depth = se->depth;
5241 int pse_depth = pse->depth;
5242
5243 if (se_depth <= pse_depth) {
5244 put_prev_entity(cfs_rq_of(pse), pse);
5245 pse = parent_entity(pse);
5246 }
5247 if (se_depth >= pse_depth) {
5248 set_next_entity(cfs_rq_of(se), se);
5249 se = parent_entity(se);
5250 }
5251 }
5252
5253 put_prev_entity(cfs_rq, pse);
5254 set_next_entity(cfs_rq, se);
5255 }
5256
5257 if (hrtick_enabled(rq))
5258 hrtick_start_fair(rq, p);
5259
5260 return p;
5261simple:
5262 cfs_rq = &rq->cfs;
5263#endif
bf0f6f24 5264
36ace27e 5265 if (!cfs_rq->nr_running)
38033c37 5266 goto idle;
bf0f6f24 5267
3f1d2a31 5268 put_prev_task(rq, prev);
606dba2e 5269
bf0f6f24 5270 do {
678d5718 5271 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5272 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5273 cfs_rq = group_cfs_rq(se);
5274 } while (cfs_rq);
5275
8f4d37ec 5276 p = task_of(se);
678d5718 5277
b39e66ea
MG
5278 if (hrtick_enabled(rq))
5279 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5280
5281 return p;
38033c37
PZ
5282
5283idle:
cbce1a68
PZ
5284 /*
5285 * This is OK, because current is on_cpu, which avoids it being picked
5286 * for load-balance and preemption/IRQs are still disabled avoiding
5287 * further scheduler activity on it and we're being very careful to
5288 * re-start the picking loop.
5289 */
5290 lockdep_unpin_lock(&rq->lock);
e4aa358b 5291 new_tasks = idle_balance(rq);
cbce1a68 5292 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5293 /*
5294 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5295 * possible for any higher priority task to appear. In that case we
5296 * must re-start the pick_next_entity() loop.
5297 */
e4aa358b 5298 if (new_tasks < 0)
37e117c0
PZ
5299 return RETRY_TASK;
5300
e4aa358b 5301 if (new_tasks > 0)
38033c37 5302 goto again;
38033c37
PZ
5303
5304 return NULL;
bf0f6f24
IM
5305}
5306
5307/*
5308 * Account for a descheduled task:
5309 */
31ee529c 5310static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5311{
5312 struct sched_entity *se = &prev->se;
5313 struct cfs_rq *cfs_rq;
5314
5315 for_each_sched_entity(se) {
5316 cfs_rq = cfs_rq_of(se);
ab6cde26 5317 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5318 }
5319}
5320
ac53db59
RR
5321/*
5322 * sched_yield() is very simple
5323 *
5324 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5325 */
5326static void yield_task_fair(struct rq *rq)
5327{
5328 struct task_struct *curr = rq->curr;
5329 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5330 struct sched_entity *se = &curr->se;
5331
5332 /*
5333 * Are we the only task in the tree?
5334 */
5335 if (unlikely(rq->nr_running == 1))
5336 return;
5337
5338 clear_buddies(cfs_rq, se);
5339
5340 if (curr->policy != SCHED_BATCH) {
5341 update_rq_clock(rq);
5342 /*
5343 * Update run-time statistics of the 'current'.
5344 */
5345 update_curr(cfs_rq);
916671c0
MG
5346 /*
5347 * Tell update_rq_clock() that we've just updated,
5348 * so we don't do microscopic update in schedule()
5349 * and double the fastpath cost.
5350 */
9edfbfed 5351 rq_clock_skip_update(rq, true);
ac53db59
RR
5352 }
5353
5354 set_skip_buddy(se);
5355}
5356
d95f4122
MG
5357static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5358{
5359 struct sched_entity *se = &p->se;
5360
5238cdd3
PT
5361 /* throttled hierarchies are not runnable */
5362 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5363 return false;
5364
5365 /* Tell the scheduler that we'd really like pse to run next. */
5366 set_next_buddy(se);
5367
d95f4122
MG
5368 yield_task_fair(rq);
5369
5370 return true;
5371}
5372
681f3e68 5373#ifdef CONFIG_SMP
bf0f6f24 5374/**************************************************
e9c84cb8
PZ
5375 * Fair scheduling class load-balancing methods.
5376 *
5377 * BASICS
5378 *
5379 * The purpose of load-balancing is to achieve the same basic fairness the
5380 * per-cpu scheduler provides, namely provide a proportional amount of compute
5381 * time to each task. This is expressed in the following equation:
5382 *
5383 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5384 *
5385 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5386 * W_i,0 is defined as:
5387 *
5388 * W_i,0 = \Sum_j w_i,j (2)
5389 *
5390 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5391 * is derived from the nice value as per prio_to_weight[].
5392 *
5393 * The weight average is an exponential decay average of the instantaneous
5394 * weight:
5395 *
5396 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5397 *
ced549fa 5398 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5399 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5400 * can also include other factors [XXX].
5401 *
5402 * To achieve this balance we define a measure of imbalance which follows
5403 * directly from (1):
5404 *
ced549fa 5405 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5406 *
5407 * We them move tasks around to minimize the imbalance. In the continuous
5408 * function space it is obvious this converges, in the discrete case we get
5409 * a few fun cases generally called infeasible weight scenarios.
5410 *
5411 * [XXX expand on:
5412 * - infeasible weights;
5413 * - local vs global optima in the discrete case. ]
5414 *
5415 *
5416 * SCHED DOMAINS
5417 *
5418 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5419 * for all i,j solution, we create a tree of cpus that follows the hardware
5420 * topology where each level pairs two lower groups (or better). This results
5421 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5422 * tree to only the first of the previous level and we decrease the frequency
5423 * of load-balance at each level inv. proportional to the number of cpus in
5424 * the groups.
5425 *
5426 * This yields:
5427 *
5428 * log_2 n 1 n
5429 * \Sum { --- * --- * 2^i } = O(n) (5)
5430 * i = 0 2^i 2^i
5431 * `- size of each group
5432 * | | `- number of cpus doing load-balance
5433 * | `- freq
5434 * `- sum over all levels
5435 *
5436 * Coupled with a limit on how many tasks we can migrate every balance pass,
5437 * this makes (5) the runtime complexity of the balancer.
5438 *
5439 * An important property here is that each CPU is still (indirectly) connected
5440 * to every other cpu in at most O(log n) steps:
5441 *
5442 * The adjacency matrix of the resulting graph is given by:
5443 *
5444 * log_2 n
5445 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5446 * k = 0
5447 *
5448 * And you'll find that:
5449 *
5450 * A^(log_2 n)_i,j != 0 for all i,j (7)
5451 *
5452 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5453 * The task movement gives a factor of O(m), giving a convergence complexity
5454 * of:
5455 *
5456 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5457 *
5458 *
5459 * WORK CONSERVING
5460 *
5461 * In order to avoid CPUs going idle while there's still work to do, new idle
5462 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5463 * tree itself instead of relying on other CPUs to bring it work.
5464 *
5465 * This adds some complexity to both (5) and (8) but it reduces the total idle
5466 * time.
5467 *
5468 * [XXX more?]
5469 *
5470 *
5471 * CGROUPS
5472 *
5473 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5474 *
5475 * s_k,i
5476 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5477 * S_k
5478 *
5479 * Where
5480 *
5481 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5482 *
5483 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5484 *
5485 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5486 * property.
5487 *
5488 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5489 * rewrite all of this once again.]
5490 */
bf0f6f24 5491
ed387b78
HS
5492static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5493
0ec8aa00
PZ
5494enum fbq_type { regular, remote, all };
5495
ddcdf6e7 5496#define LBF_ALL_PINNED 0x01
367456c7 5497#define LBF_NEED_BREAK 0x02
6263322c
PZ
5498#define LBF_DST_PINNED 0x04
5499#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5500
5501struct lb_env {
5502 struct sched_domain *sd;
5503
ddcdf6e7 5504 struct rq *src_rq;
85c1e7da 5505 int src_cpu;
ddcdf6e7
PZ
5506
5507 int dst_cpu;
5508 struct rq *dst_rq;
5509
88b8dac0
SV
5510 struct cpumask *dst_grpmask;
5511 int new_dst_cpu;
ddcdf6e7 5512 enum cpu_idle_type idle;
bd939f45 5513 long imbalance;
b9403130
MW
5514 /* The set of CPUs under consideration for load-balancing */
5515 struct cpumask *cpus;
5516
ddcdf6e7 5517 unsigned int flags;
367456c7
PZ
5518
5519 unsigned int loop;
5520 unsigned int loop_break;
5521 unsigned int loop_max;
0ec8aa00
PZ
5522
5523 enum fbq_type fbq_type;
163122b7 5524 struct list_head tasks;
ddcdf6e7
PZ
5525};
5526
029632fb
PZ
5527/*
5528 * Is this task likely cache-hot:
5529 */
5d5e2b1b 5530static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5531{
5532 s64 delta;
5533
e5673f28
KT
5534 lockdep_assert_held(&env->src_rq->lock);
5535
029632fb
PZ
5536 if (p->sched_class != &fair_sched_class)
5537 return 0;
5538
5539 if (unlikely(p->policy == SCHED_IDLE))
5540 return 0;
5541
5542 /*
5543 * Buddy candidates are cache hot:
5544 */
5d5e2b1b 5545 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5546 (&p->se == cfs_rq_of(&p->se)->next ||
5547 &p->se == cfs_rq_of(&p->se)->last))
5548 return 1;
5549
5550 if (sysctl_sched_migration_cost == -1)
5551 return 1;
5552 if (sysctl_sched_migration_cost == 0)
5553 return 0;
5554
5d5e2b1b 5555 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5556
5557 return delta < (s64)sysctl_sched_migration_cost;
5558}
5559
3a7053b3 5560#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5561/*
2a1ed24c
SD
5562 * Returns 1, if task migration degrades locality
5563 * Returns 0, if task migration improves locality i.e migration preferred.
5564 * Returns -1, if task migration is not affected by locality.
c1ceac62 5565 */
2a1ed24c 5566static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5567{
b1ad065e 5568 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5569 unsigned long src_faults, dst_faults;
3a7053b3
MG
5570 int src_nid, dst_nid;
5571
2a595721 5572 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5573 return -1;
5574
c3b9bc5b 5575 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5576 return -1;
7a0f3083
MG
5577
5578 src_nid = cpu_to_node(env->src_cpu);
5579 dst_nid = cpu_to_node(env->dst_cpu);
5580
83e1d2cd 5581 if (src_nid == dst_nid)
2a1ed24c 5582 return -1;
7a0f3083 5583
2a1ed24c
SD
5584 /* Migrating away from the preferred node is always bad. */
5585 if (src_nid == p->numa_preferred_nid) {
5586 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5587 return 1;
5588 else
5589 return -1;
5590 }
b1ad065e 5591
c1ceac62
RR
5592 /* Encourage migration to the preferred node. */
5593 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5594 return 0;
b1ad065e 5595
c1ceac62
RR
5596 if (numa_group) {
5597 src_faults = group_faults(p, src_nid);
5598 dst_faults = group_faults(p, dst_nid);
5599 } else {
5600 src_faults = task_faults(p, src_nid);
5601 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5602 }
5603
c1ceac62 5604 return dst_faults < src_faults;
7a0f3083
MG
5605}
5606
3a7053b3 5607#else
2a1ed24c 5608static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5609 struct lb_env *env)
5610{
2a1ed24c 5611 return -1;
7a0f3083 5612}
3a7053b3
MG
5613#endif
5614
1e3c88bd
PZ
5615/*
5616 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5617 */
5618static
8e45cb54 5619int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5620{
2a1ed24c 5621 int tsk_cache_hot;
e5673f28
KT
5622
5623 lockdep_assert_held(&env->src_rq->lock);
5624
1e3c88bd
PZ
5625 /*
5626 * We do not migrate tasks that are:
d3198084 5627 * 1) throttled_lb_pair, or
1e3c88bd 5628 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5629 * 3) running (obviously), or
5630 * 4) are cache-hot on their current CPU.
1e3c88bd 5631 */
d3198084
JK
5632 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5633 return 0;
5634
ddcdf6e7 5635 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5636 int cpu;
88b8dac0 5637
41acab88 5638 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5639
6263322c
PZ
5640 env->flags |= LBF_SOME_PINNED;
5641
88b8dac0
SV
5642 /*
5643 * Remember if this task can be migrated to any other cpu in
5644 * our sched_group. We may want to revisit it if we couldn't
5645 * meet load balance goals by pulling other tasks on src_cpu.
5646 *
5647 * Also avoid computing new_dst_cpu if we have already computed
5648 * one in current iteration.
5649 */
6263322c 5650 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5651 return 0;
5652
e02e60c1
JK
5653 /* Prevent to re-select dst_cpu via env's cpus */
5654 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5655 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5656 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5657 env->new_dst_cpu = cpu;
5658 break;
5659 }
88b8dac0 5660 }
e02e60c1 5661
1e3c88bd
PZ
5662 return 0;
5663 }
88b8dac0
SV
5664
5665 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5666 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5667
ddcdf6e7 5668 if (task_running(env->src_rq, p)) {
41acab88 5669 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5670 return 0;
5671 }
5672
5673 /*
5674 * Aggressive migration if:
3a7053b3
MG
5675 * 1) destination numa is preferred
5676 * 2) task is cache cold, or
5677 * 3) too many balance attempts have failed.
1e3c88bd 5678 */
2a1ed24c
SD
5679 tsk_cache_hot = migrate_degrades_locality(p, env);
5680 if (tsk_cache_hot == -1)
5681 tsk_cache_hot = task_hot(p, env);
3a7053b3 5682
2a1ed24c 5683 if (tsk_cache_hot <= 0 ||
7a96c231 5684 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5685 if (tsk_cache_hot == 1) {
3a7053b3
MG
5686 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5687 schedstat_inc(p, se.statistics.nr_forced_migrations);
5688 }
1e3c88bd
PZ
5689 return 1;
5690 }
5691
4e2dcb73
ZH
5692 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5693 return 0;
1e3c88bd
PZ
5694}
5695
897c395f 5696/*
163122b7
KT
5697 * detach_task() -- detach the task for the migration specified in env
5698 */
5699static void detach_task(struct task_struct *p, struct lb_env *env)
5700{
5701 lockdep_assert_held(&env->src_rq->lock);
5702
5703 deactivate_task(env->src_rq, p, 0);
5704 p->on_rq = TASK_ON_RQ_MIGRATING;
5705 set_task_cpu(p, env->dst_cpu);
5706}
5707
897c395f 5708/*
e5673f28 5709 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5710 * part of active balancing operations within "domain".
897c395f 5711 *
e5673f28 5712 * Returns a task if successful and NULL otherwise.
897c395f 5713 */
e5673f28 5714static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5715{
5716 struct task_struct *p, *n;
897c395f 5717
e5673f28
KT
5718 lockdep_assert_held(&env->src_rq->lock);
5719
367456c7 5720 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5721 if (!can_migrate_task(p, env))
5722 continue;
897c395f 5723
163122b7 5724 detach_task(p, env);
e5673f28 5725
367456c7 5726 /*
e5673f28 5727 * Right now, this is only the second place where
163122b7 5728 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5729 * so we can safely collect stats here rather than
163122b7 5730 * inside detach_tasks().
367456c7
PZ
5731 */
5732 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5733 return p;
897c395f 5734 }
e5673f28 5735 return NULL;
897c395f
PZ
5736}
5737
eb95308e
PZ
5738static const unsigned int sched_nr_migrate_break = 32;
5739
5d6523eb 5740/*
163122b7
KT
5741 * detach_tasks() -- tries to detach up to imbalance weighted load from
5742 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5743 *
163122b7 5744 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5745 */
163122b7 5746static int detach_tasks(struct lb_env *env)
1e3c88bd 5747{
5d6523eb
PZ
5748 struct list_head *tasks = &env->src_rq->cfs_tasks;
5749 struct task_struct *p;
367456c7 5750 unsigned long load;
163122b7
KT
5751 int detached = 0;
5752
5753 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5754
bd939f45 5755 if (env->imbalance <= 0)
5d6523eb 5756 return 0;
1e3c88bd 5757
5d6523eb 5758 while (!list_empty(tasks)) {
985d3a4c
YD
5759 /*
5760 * We don't want to steal all, otherwise we may be treated likewise,
5761 * which could at worst lead to a livelock crash.
5762 */
5763 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5764 break;
5765
5d6523eb 5766 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5767
367456c7
PZ
5768 env->loop++;
5769 /* We've more or less seen every task there is, call it quits */
5d6523eb 5770 if (env->loop > env->loop_max)
367456c7 5771 break;
5d6523eb
PZ
5772
5773 /* take a breather every nr_migrate tasks */
367456c7 5774 if (env->loop > env->loop_break) {
eb95308e 5775 env->loop_break += sched_nr_migrate_break;
8e45cb54 5776 env->flags |= LBF_NEED_BREAK;
ee00e66f 5777 break;
a195f004 5778 }
1e3c88bd 5779
d3198084 5780 if (!can_migrate_task(p, env))
367456c7
PZ
5781 goto next;
5782
5783 load = task_h_load(p);
5d6523eb 5784
eb95308e 5785 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5786 goto next;
5787
bd939f45 5788 if ((load / 2) > env->imbalance)
367456c7 5789 goto next;
1e3c88bd 5790
163122b7
KT
5791 detach_task(p, env);
5792 list_add(&p->se.group_node, &env->tasks);
5793
5794 detached++;
bd939f45 5795 env->imbalance -= load;
1e3c88bd
PZ
5796
5797#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5798 /*
5799 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5800 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5801 * the critical section.
5802 */
5d6523eb 5803 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5804 break;
1e3c88bd
PZ
5805#endif
5806
ee00e66f
PZ
5807 /*
5808 * We only want to steal up to the prescribed amount of
5809 * weighted load.
5810 */
bd939f45 5811 if (env->imbalance <= 0)
ee00e66f 5812 break;
367456c7
PZ
5813
5814 continue;
5815next:
5d6523eb 5816 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5817 }
5d6523eb 5818
1e3c88bd 5819 /*
163122b7
KT
5820 * Right now, this is one of only two places we collect this stat
5821 * so we can safely collect detach_one_task() stats here rather
5822 * than inside detach_one_task().
1e3c88bd 5823 */
163122b7 5824 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5825
163122b7
KT
5826 return detached;
5827}
5828
5829/*
5830 * attach_task() -- attach the task detached by detach_task() to its new rq.
5831 */
5832static void attach_task(struct rq *rq, struct task_struct *p)
5833{
5834 lockdep_assert_held(&rq->lock);
5835
5836 BUG_ON(task_rq(p) != rq);
5837 p->on_rq = TASK_ON_RQ_QUEUED;
5838 activate_task(rq, p, 0);
5839 check_preempt_curr(rq, p, 0);
5840}
5841
5842/*
5843 * attach_one_task() -- attaches the task returned from detach_one_task() to
5844 * its new rq.
5845 */
5846static void attach_one_task(struct rq *rq, struct task_struct *p)
5847{
5848 raw_spin_lock(&rq->lock);
5849 attach_task(rq, p);
5850 raw_spin_unlock(&rq->lock);
5851}
5852
5853/*
5854 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5855 * new rq.
5856 */
5857static void attach_tasks(struct lb_env *env)
5858{
5859 struct list_head *tasks = &env->tasks;
5860 struct task_struct *p;
5861
5862 raw_spin_lock(&env->dst_rq->lock);
5863
5864 while (!list_empty(tasks)) {
5865 p = list_first_entry(tasks, struct task_struct, se.group_node);
5866 list_del_init(&p->se.group_node);
1e3c88bd 5867
163122b7
KT
5868 attach_task(env->dst_rq, p);
5869 }
5870
5871 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5872}
5873
230059de 5874#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5875static void update_blocked_averages(int cpu)
9e3081ca 5876{
9e3081ca 5877 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5878 struct cfs_rq *cfs_rq;
5879 unsigned long flags;
9e3081ca 5880
48a16753
PT
5881 raw_spin_lock_irqsave(&rq->lock, flags);
5882 update_rq_clock(rq);
9d89c257 5883
9763b67f
PZ
5884 /*
5885 * Iterates the task_group tree in a bottom up fashion, see
5886 * list_add_leaf_cfs_rq() for details.
5887 */
64660c86 5888 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5889 /* throttled entities do not contribute to load */
5890 if (throttled_hierarchy(cfs_rq))
5891 continue;
48a16753 5892
9d89c257
YD
5893 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5894 update_tg_load_avg(cfs_rq, 0);
5895 }
48a16753 5896 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5897}
5898
9763b67f 5899/*
68520796 5900 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5901 * This needs to be done in a top-down fashion because the load of a child
5902 * group is a fraction of its parents load.
5903 */
68520796 5904static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5905{
68520796
VD
5906 struct rq *rq = rq_of(cfs_rq);
5907 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5908 unsigned long now = jiffies;
68520796 5909 unsigned long load;
a35b6466 5910
68520796 5911 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5912 return;
5913
68520796
VD
5914 cfs_rq->h_load_next = NULL;
5915 for_each_sched_entity(se) {
5916 cfs_rq = cfs_rq_of(se);
5917 cfs_rq->h_load_next = se;
5918 if (cfs_rq->last_h_load_update == now)
5919 break;
5920 }
a35b6466 5921
68520796 5922 if (!se) {
7ea241af 5923 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5924 cfs_rq->last_h_load_update = now;
5925 }
5926
5927 while ((se = cfs_rq->h_load_next) != NULL) {
5928 load = cfs_rq->h_load;
7ea241af
YD
5929 load = div64_ul(load * se->avg.load_avg,
5930 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5931 cfs_rq = group_cfs_rq(se);
5932 cfs_rq->h_load = load;
5933 cfs_rq->last_h_load_update = now;
5934 }
9763b67f
PZ
5935}
5936
367456c7 5937static unsigned long task_h_load(struct task_struct *p)
230059de 5938{
367456c7 5939 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5940
68520796 5941 update_cfs_rq_h_load(cfs_rq);
9d89c257 5942 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5943 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5944}
5945#else
48a16753 5946static inline void update_blocked_averages(int cpu)
9e3081ca 5947{
6c1d47c0
VG
5948 struct rq *rq = cpu_rq(cpu);
5949 struct cfs_rq *cfs_rq = &rq->cfs;
5950 unsigned long flags;
5951
5952 raw_spin_lock_irqsave(&rq->lock, flags);
5953 update_rq_clock(rq);
5954 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5955 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5956}
5957
367456c7 5958static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5959{
9d89c257 5960 return p->se.avg.load_avg;
1e3c88bd 5961}
230059de 5962#endif
1e3c88bd 5963
1e3c88bd 5964/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5965
5966enum group_type {
5967 group_other = 0,
5968 group_imbalanced,
5969 group_overloaded,
5970};
5971
1e3c88bd
PZ
5972/*
5973 * sg_lb_stats - stats of a sched_group required for load_balancing
5974 */
5975struct sg_lb_stats {
5976 unsigned long avg_load; /*Avg load across the CPUs of the group */
5977 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5978 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5979 unsigned long load_per_task;
63b2ca30 5980 unsigned long group_capacity;
8bb5b00c 5981 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5982 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5983 unsigned int idle_cpus;
5984 unsigned int group_weight;
caeb178c 5985 enum group_type group_type;
ea67821b 5986 int group_no_capacity;
0ec8aa00
PZ
5987#ifdef CONFIG_NUMA_BALANCING
5988 unsigned int nr_numa_running;
5989 unsigned int nr_preferred_running;
5990#endif
1e3c88bd
PZ
5991};
5992
56cf515b
JK
5993/*
5994 * sd_lb_stats - Structure to store the statistics of a sched_domain
5995 * during load balancing.
5996 */
5997struct sd_lb_stats {
5998 struct sched_group *busiest; /* Busiest group in this sd */
5999 struct sched_group *local; /* Local group in this sd */
6000 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6001 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6002 unsigned long avg_load; /* Average load across all groups in sd */
6003
56cf515b 6004 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6005 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6006};
6007
147c5fc2
PZ
6008static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6009{
6010 /*
6011 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6012 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6013 * We must however clear busiest_stat::avg_load because
6014 * update_sd_pick_busiest() reads this before assignment.
6015 */
6016 *sds = (struct sd_lb_stats){
6017 .busiest = NULL,
6018 .local = NULL,
6019 .total_load = 0UL,
63b2ca30 6020 .total_capacity = 0UL,
147c5fc2
PZ
6021 .busiest_stat = {
6022 .avg_load = 0UL,
caeb178c
RR
6023 .sum_nr_running = 0,
6024 .group_type = group_other,
147c5fc2
PZ
6025 },
6026 };
6027}
6028
1e3c88bd
PZ
6029/**
6030 * get_sd_load_idx - Obtain the load index for a given sched domain.
6031 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6032 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6033 *
6034 * Return: The load index.
1e3c88bd
PZ
6035 */
6036static inline int get_sd_load_idx(struct sched_domain *sd,
6037 enum cpu_idle_type idle)
6038{
6039 int load_idx;
6040
6041 switch (idle) {
6042 case CPU_NOT_IDLE:
6043 load_idx = sd->busy_idx;
6044 break;
6045
6046 case CPU_NEWLY_IDLE:
6047 load_idx = sd->newidle_idx;
6048 break;
6049 default:
6050 load_idx = sd->idle_idx;
6051 break;
6052 }
6053
6054 return load_idx;
6055}
6056
26bc3c50 6057static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6058{
26bc3c50
VG
6059 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6060 return sd->smt_gain / sd->span_weight;
1e3c88bd 6061
26bc3c50 6062 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6063}
6064
26bc3c50 6065unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6066{
26bc3c50 6067 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6068}
6069
ced549fa 6070static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6071{
6072 struct rq *rq = cpu_rq(cpu);
b5b4860d 6073 u64 total, used, age_stamp, avg;
cadefd3d 6074 s64 delta;
1e3c88bd 6075
b654f7de
PZ
6076 /*
6077 * Since we're reading these variables without serialization make sure
6078 * we read them once before doing sanity checks on them.
6079 */
316c1608
JL
6080 age_stamp = READ_ONCE(rq->age_stamp);
6081 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6082 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6083
cadefd3d
PZ
6084 if (unlikely(delta < 0))
6085 delta = 0;
6086
6087 total = sched_avg_period() + delta;
aa483808 6088
b5b4860d 6089 used = div_u64(avg, total);
1e3c88bd 6090
b5b4860d
VG
6091 if (likely(used < SCHED_CAPACITY_SCALE))
6092 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6093
b5b4860d 6094 return 1;
1e3c88bd
PZ
6095}
6096
ced549fa 6097static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6098{
ca8ce3d0 6099 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6100 struct sched_group *sdg = sd->groups;
6101
26bc3c50
VG
6102 if (sched_feat(ARCH_CAPACITY))
6103 capacity *= arch_scale_cpu_capacity(sd, cpu);
6104 else
6105 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6106
26bc3c50 6107 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6108
ca6d75e6 6109 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6110
ced549fa 6111 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6112 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6113
ced549fa
NP
6114 if (!capacity)
6115 capacity = 1;
1e3c88bd 6116
ced549fa
NP
6117 cpu_rq(cpu)->cpu_capacity = capacity;
6118 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6119}
6120
63b2ca30 6121void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6122{
6123 struct sched_domain *child = sd->child;
6124 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6125 unsigned long capacity;
4ec4412e
VG
6126 unsigned long interval;
6127
6128 interval = msecs_to_jiffies(sd->balance_interval);
6129 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6130 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6131
6132 if (!child) {
ced549fa 6133 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6134 return;
6135 }
6136
dc7ff76e 6137 capacity = 0;
1e3c88bd 6138
74a5ce20
PZ
6139 if (child->flags & SD_OVERLAP) {
6140 /*
6141 * SD_OVERLAP domains cannot assume that child groups
6142 * span the current group.
6143 */
6144
863bffc8 6145 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6146 struct sched_group_capacity *sgc;
9abf24d4 6147 struct rq *rq = cpu_rq(cpu);
863bffc8 6148
9abf24d4 6149 /*
63b2ca30 6150 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6151 * gets here before we've attached the domains to the
6152 * runqueues.
6153 *
ced549fa
NP
6154 * Use capacity_of(), which is set irrespective of domains
6155 * in update_cpu_capacity().
9abf24d4 6156 *
dc7ff76e 6157 * This avoids capacity from being 0 and
9abf24d4 6158 * causing divide-by-zero issues on boot.
9abf24d4
SD
6159 */
6160 if (unlikely(!rq->sd)) {
ced549fa 6161 capacity += capacity_of(cpu);
9abf24d4
SD
6162 continue;
6163 }
863bffc8 6164
63b2ca30 6165 sgc = rq->sd->groups->sgc;
63b2ca30 6166 capacity += sgc->capacity;
863bffc8 6167 }
74a5ce20
PZ
6168 } else {
6169 /*
6170 * !SD_OVERLAP domains can assume that child groups
6171 * span the current group.
6172 */
6173
6174 group = child->groups;
6175 do {
63b2ca30 6176 capacity += group->sgc->capacity;
74a5ce20
PZ
6177 group = group->next;
6178 } while (group != child->groups);
6179 }
1e3c88bd 6180
63b2ca30 6181 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6182}
6183
9d5efe05 6184/*
ea67821b
VG
6185 * Check whether the capacity of the rq has been noticeably reduced by side
6186 * activity. The imbalance_pct is used for the threshold.
6187 * Return true is the capacity is reduced
9d5efe05
SV
6188 */
6189static inline int
ea67821b 6190check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6191{
ea67821b
VG
6192 return ((rq->cpu_capacity * sd->imbalance_pct) <
6193 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6194}
6195
30ce5dab
PZ
6196/*
6197 * Group imbalance indicates (and tries to solve) the problem where balancing
6198 * groups is inadequate due to tsk_cpus_allowed() constraints.
6199 *
6200 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6201 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6202 * Something like:
6203 *
6204 * { 0 1 2 3 } { 4 5 6 7 }
6205 * * * * *
6206 *
6207 * If we were to balance group-wise we'd place two tasks in the first group and
6208 * two tasks in the second group. Clearly this is undesired as it will overload
6209 * cpu 3 and leave one of the cpus in the second group unused.
6210 *
6211 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6212 * by noticing the lower domain failed to reach balance and had difficulty
6213 * moving tasks due to affinity constraints.
30ce5dab
PZ
6214 *
6215 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6216 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6217 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6218 * to create an effective group imbalance.
6219 *
6220 * This is a somewhat tricky proposition since the next run might not find the
6221 * group imbalance and decide the groups need to be balanced again. A most
6222 * subtle and fragile situation.
6223 */
6224
6263322c 6225static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6226{
63b2ca30 6227 return group->sgc->imbalance;
30ce5dab
PZ
6228}
6229
b37d9316 6230/*
ea67821b
VG
6231 * group_has_capacity returns true if the group has spare capacity that could
6232 * be used by some tasks.
6233 * We consider that a group has spare capacity if the * number of task is
6234 * smaller than the number of CPUs or if the usage is lower than the available
6235 * capacity for CFS tasks.
6236 * For the latter, we use a threshold to stabilize the state, to take into
6237 * account the variance of the tasks' load and to return true if the available
6238 * capacity in meaningful for the load balancer.
6239 * As an example, an available capacity of 1% can appear but it doesn't make
6240 * any benefit for the load balance.
b37d9316 6241 */
ea67821b
VG
6242static inline bool
6243group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6244{
ea67821b
VG
6245 if (sgs->sum_nr_running < sgs->group_weight)
6246 return true;
c61037e9 6247
ea67821b
VG
6248 if ((sgs->group_capacity * 100) >
6249 (sgs->group_usage * env->sd->imbalance_pct))
6250 return true;
b37d9316 6251
ea67821b
VG
6252 return false;
6253}
6254
6255/*
6256 * group_is_overloaded returns true if the group has more tasks than it can
6257 * handle.
6258 * group_is_overloaded is not equals to !group_has_capacity because a group
6259 * with the exact right number of tasks, has no more spare capacity but is not
6260 * overloaded so both group_has_capacity and group_is_overloaded return
6261 * false.
6262 */
6263static inline bool
6264group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6265{
6266 if (sgs->sum_nr_running <= sgs->group_weight)
6267 return false;
b37d9316 6268
ea67821b
VG
6269 if ((sgs->group_capacity * 100) <
6270 (sgs->group_usage * env->sd->imbalance_pct))
6271 return true;
b37d9316 6272
ea67821b 6273 return false;
b37d9316
PZ
6274}
6275
ea67821b
VG
6276static enum group_type group_classify(struct lb_env *env,
6277 struct sched_group *group,
6278 struct sg_lb_stats *sgs)
caeb178c 6279{
ea67821b 6280 if (sgs->group_no_capacity)
caeb178c
RR
6281 return group_overloaded;
6282
6283 if (sg_imbalanced(group))
6284 return group_imbalanced;
6285
6286 return group_other;
6287}
6288
1e3c88bd
PZ
6289/**
6290 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6291 * @env: The load balancing environment.
1e3c88bd 6292 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6293 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6294 * @local_group: Does group contain this_cpu.
1e3c88bd 6295 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6296 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6297 */
bd939f45
PZ
6298static inline void update_sg_lb_stats(struct lb_env *env,
6299 struct sched_group *group, int load_idx,
4486edd1
TC
6300 int local_group, struct sg_lb_stats *sgs,
6301 bool *overload)
1e3c88bd 6302{
30ce5dab 6303 unsigned long load;
bd939f45 6304 int i;
1e3c88bd 6305
b72ff13c
PZ
6306 memset(sgs, 0, sizeof(*sgs));
6307
b9403130 6308 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6309 struct rq *rq = cpu_rq(i);
6310
1e3c88bd 6311 /* Bias balancing toward cpus of our domain */
6263322c 6312 if (local_group)
04f733b4 6313 load = target_load(i, load_idx);
6263322c 6314 else
1e3c88bd 6315 load = source_load(i, load_idx);
1e3c88bd
PZ
6316
6317 sgs->group_load += load;
8bb5b00c 6318 sgs->group_usage += get_cpu_usage(i);
65fdac08 6319 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6320
6321 if (rq->nr_running > 1)
6322 *overload = true;
6323
0ec8aa00
PZ
6324#ifdef CONFIG_NUMA_BALANCING
6325 sgs->nr_numa_running += rq->nr_numa_running;
6326 sgs->nr_preferred_running += rq->nr_preferred_running;
6327#endif
1e3c88bd 6328 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6329 if (idle_cpu(i))
6330 sgs->idle_cpus++;
1e3c88bd
PZ
6331 }
6332
63b2ca30
NP
6333 /* Adjust by relative CPU capacity of the group */
6334 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6335 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6336
dd5feea1 6337 if (sgs->sum_nr_running)
38d0f770 6338 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6339
aae6d3dd 6340 sgs->group_weight = group->group_weight;
b37d9316 6341
ea67821b
VG
6342 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6343 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6344}
6345
532cb4c4
MN
6346/**
6347 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6348 * @env: The load balancing environment.
532cb4c4
MN
6349 * @sds: sched_domain statistics
6350 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6351 * @sgs: sched_group statistics
532cb4c4
MN
6352 *
6353 * Determine if @sg is a busier group than the previously selected
6354 * busiest group.
e69f6186
YB
6355 *
6356 * Return: %true if @sg is a busier group than the previously selected
6357 * busiest group. %false otherwise.
532cb4c4 6358 */
bd939f45 6359static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6360 struct sd_lb_stats *sds,
6361 struct sched_group *sg,
bd939f45 6362 struct sg_lb_stats *sgs)
532cb4c4 6363{
caeb178c 6364 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6365
caeb178c 6366 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6367 return true;
6368
caeb178c
RR
6369 if (sgs->group_type < busiest->group_type)
6370 return false;
6371
6372 if (sgs->avg_load <= busiest->avg_load)
6373 return false;
6374
6375 /* This is the busiest node in its class. */
6376 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6377 return true;
6378
6379 /*
6380 * ASYM_PACKING needs to move all the work to the lowest
6381 * numbered CPUs in the group, therefore mark all groups
6382 * higher than ourself as busy.
6383 */
caeb178c 6384 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6385 if (!sds->busiest)
6386 return true;
6387
6388 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6389 return true;
6390 }
6391
6392 return false;
6393}
6394
0ec8aa00
PZ
6395#ifdef CONFIG_NUMA_BALANCING
6396static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6397{
6398 if (sgs->sum_nr_running > sgs->nr_numa_running)
6399 return regular;
6400 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6401 return remote;
6402 return all;
6403}
6404
6405static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6406{
6407 if (rq->nr_running > rq->nr_numa_running)
6408 return regular;
6409 if (rq->nr_running > rq->nr_preferred_running)
6410 return remote;
6411 return all;
6412}
6413#else
6414static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6415{
6416 return all;
6417}
6418
6419static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6420{
6421 return regular;
6422}
6423#endif /* CONFIG_NUMA_BALANCING */
6424
1e3c88bd 6425/**
461819ac 6426 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6427 * @env: The load balancing environment.
1e3c88bd
PZ
6428 * @sds: variable to hold the statistics for this sched_domain.
6429 */
0ec8aa00 6430static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6431{
bd939f45
PZ
6432 struct sched_domain *child = env->sd->child;
6433 struct sched_group *sg = env->sd->groups;
56cf515b 6434 struct sg_lb_stats tmp_sgs;
1e3c88bd 6435 int load_idx, prefer_sibling = 0;
4486edd1 6436 bool overload = false;
1e3c88bd
PZ
6437
6438 if (child && child->flags & SD_PREFER_SIBLING)
6439 prefer_sibling = 1;
6440
bd939f45 6441 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6442
6443 do {
56cf515b 6444 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6445 int local_group;
6446
bd939f45 6447 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6448 if (local_group) {
6449 sds->local = sg;
6450 sgs = &sds->local_stat;
b72ff13c
PZ
6451
6452 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6453 time_after_eq(jiffies, sg->sgc->next_update))
6454 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6455 }
1e3c88bd 6456
4486edd1
TC
6457 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6458 &overload);
1e3c88bd 6459
b72ff13c
PZ
6460 if (local_group)
6461 goto next_group;
6462
1e3c88bd
PZ
6463 /*
6464 * In case the child domain prefers tasks go to siblings
ea67821b 6465 * first, lower the sg capacity so that we'll try
75dd321d
NR
6466 * and move all the excess tasks away. We lower the capacity
6467 * of a group only if the local group has the capacity to fit
ea67821b
VG
6468 * these excess tasks. The extra check prevents the case where
6469 * you always pull from the heaviest group when it is already
6470 * under-utilized (possible with a large weight task outweighs
6471 * the tasks on the system).
1e3c88bd 6472 */
b72ff13c 6473 if (prefer_sibling && sds->local &&
ea67821b
VG
6474 group_has_capacity(env, &sds->local_stat) &&
6475 (sgs->sum_nr_running > 1)) {
6476 sgs->group_no_capacity = 1;
6477 sgs->group_type = group_overloaded;
cb0b9f24 6478 }
1e3c88bd 6479
b72ff13c 6480 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6481 sds->busiest = sg;
56cf515b 6482 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6483 }
6484
b72ff13c
PZ
6485next_group:
6486 /* Now, start updating sd_lb_stats */
6487 sds->total_load += sgs->group_load;
63b2ca30 6488 sds->total_capacity += sgs->group_capacity;
b72ff13c 6489
532cb4c4 6490 sg = sg->next;
bd939f45 6491 } while (sg != env->sd->groups);
0ec8aa00
PZ
6492
6493 if (env->sd->flags & SD_NUMA)
6494 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6495
6496 if (!env->sd->parent) {
6497 /* update overload indicator if we are at root domain */
6498 if (env->dst_rq->rd->overload != overload)
6499 env->dst_rq->rd->overload = overload;
6500 }
6501
532cb4c4
MN
6502}
6503
532cb4c4
MN
6504/**
6505 * check_asym_packing - Check to see if the group is packed into the
6506 * sched doman.
6507 *
6508 * This is primarily intended to used at the sibling level. Some
6509 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6510 * case of POWER7, it can move to lower SMT modes only when higher
6511 * threads are idle. When in lower SMT modes, the threads will
6512 * perform better since they share less core resources. Hence when we
6513 * have idle threads, we want them to be the higher ones.
6514 *
6515 * This packing function is run on idle threads. It checks to see if
6516 * the busiest CPU in this domain (core in the P7 case) has a higher
6517 * CPU number than the packing function is being run on. Here we are
6518 * assuming lower CPU number will be equivalent to lower a SMT thread
6519 * number.
6520 *
e69f6186 6521 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6522 * this CPU. The amount of the imbalance is returned in *imbalance.
6523 *
cd96891d 6524 * @env: The load balancing environment.
532cb4c4 6525 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6526 */
bd939f45 6527static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6528{
6529 int busiest_cpu;
6530
bd939f45 6531 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6532 return 0;
6533
6534 if (!sds->busiest)
6535 return 0;
6536
6537 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6538 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6539 return 0;
6540
bd939f45 6541 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6542 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6543 SCHED_CAPACITY_SCALE);
bd939f45 6544
532cb4c4 6545 return 1;
1e3c88bd
PZ
6546}
6547
6548/**
6549 * fix_small_imbalance - Calculate the minor imbalance that exists
6550 * amongst the groups of a sched_domain, during
6551 * load balancing.
cd96891d 6552 * @env: The load balancing environment.
1e3c88bd 6553 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6554 */
bd939f45
PZ
6555static inline
6556void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6557{
63b2ca30 6558 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6559 unsigned int imbn = 2;
dd5feea1 6560 unsigned long scaled_busy_load_per_task;
56cf515b 6561 struct sg_lb_stats *local, *busiest;
1e3c88bd 6562
56cf515b
JK
6563 local = &sds->local_stat;
6564 busiest = &sds->busiest_stat;
1e3c88bd 6565
56cf515b
JK
6566 if (!local->sum_nr_running)
6567 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6568 else if (busiest->load_per_task > local->load_per_task)
6569 imbn = 1;
dd5feea1 6570
56cf515b 6571 scaled_busy_load_per_task =
ca8ce3d0 6572 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6573 busiest->group_capacity;
56cf515b 6574
3029ede3
VD
6575 if (busiest->avg_load + scaled_busy_load_per_task >=
6576 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6577 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6578 return;
6579 }
6580
6581 /*
6582 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6583 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6584 * moving them.
6585 */
6586
63b2ca30 6587 capa_now += busiest->group_capacity *
56cf515b 6588 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6589 capa_now += local->group_capacity *
56cf515b 6590 min(local->load_per_task, local->avg_load);
ca8ce3d0 6591 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6592
6593 /* Amount of load we'd subtract */
a2cd4260 6594 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6595 capa_move += busiest->group_capacity *
56cf515b 6596 min(busiest->load_per_task,
a2cd4260 6597 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6598 }
1e3c88bd
PZ
6599
6600 /* Amount of load we'd add */
63b2ca30 6601 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6602 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6603 tmp = (busiest->avg_load * busiest->group_capacity) /
6604 local->group_capacity;
56cf515b 6605 } else {
ca8ce3d0 6606 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6607 local->group_capacity;
56cf515b 6608 }
63b2ca30 6609 capa_move += local->group_capacity *
3ae11c90 6610 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6611 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6612
6613 /* Move if we gain throughput */
63b2ca30 6614 if (capa_move > capa_now)
56cf515b 6615 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6616}
6617
6618/**
6619 * calculate_imbalance - Calculate the amount of imbalance present within the
6620 * groups of a given sched_domain during load balance.
bd939f45 6621 * @env: load balance environment
1e3c88bd 6622 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6623 */
bd939f45 6624static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6625{
dd5feea1 6626 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6627 struct sg_lb_stats *local, *busiest;
6628
6629 local = &sds->local_stat;
56cf515b 6630 busiest = &sds->busiest_stat;
dd5feea1 6631
caeb178c 6632 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6633 /*
6634 * In the group_imb case we cannot rely on group-wide averages
6635 * to ensure cpu-load equilibrium, look at wider averages. XXX
6636 */
56cf515b
JK
6637 busiest->load_per_task =
6638 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6639 }
6640
1e3c88bd
PZ
6641 /*
6642 * In the presence of smp nice balancing, certain scenarios can have
6643 * max load less than avg load(as we skip the groups at or below
ced549fa 6644 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6645 */
b1885550
VD
6646 if (busiest->avg_load <= sds->avg_load ||
6647 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6648 env->imbalance = 0;
6649 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6650 }
6651
9a5d9ba6
PZ
6652 /*
6653 * If there aren't any idle cpus, avoid creating some.
6654 */
6655 if (busiest->group_type == group_overloaded &&
6656 local->group_type == group_overloaded) {
ea67821b
VG
6657 load_above_capacity = busiest->sum_nr_running *
6658 SCHED_LOAD_SCALE;
6659 if (load_above_capacity > busiest->group_capacity)
6660 load_above_capacity -= busiest->group_capacity;
6661 else
6662 load_above_capacity = ~0UL;
dd5feea1
SS
6663 }
6664
6665 /*
6666 * We're trying to get all the cpus to the average_load, so we don't
6667 * want to push ourselves above the average load, nor do we wish to
6668 * reduce the max loaded cpu below the average load. At the same time,
6669 * we also don't want to reduce the group load below the group capacity
6670 * (so that we can implement power-savings policies etc). Thus we look
6671 * for the minimum possible imbalance.
dd5feea1 6672 */
30ce5dab 6673 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6674
6675 /* How much load to actually move to equalise the imbalance */
56cf515b 6676 env->imbalance = min(
63b2ca30
NP
6677 max_pull * busiest->group_capacity,
6678 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6679 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6680
6681 /*
6682 * if *imbalance is less than the average load per runnable task
25985edc 6683 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6684 * a think about bumping its value to force at least one task to be
6685 * moved
6686 */
56cf515b 6687 if (env->imbalance < busiest->load_per_task)
bd939f45 6688 return fix_small_imbalance(env, sds);
1e3c88bd 6689}
fab47622 6690
1e3c88bd
PZ
6691/******* find_busiest_group() helpers end here *********************/
6692
6693/**
6694 * find_busiest_group - Returns the busiest group within the sched_domain
6695 * if there is an imbalance. If there isn't an imbalance, and
6696 * the user has opted for power-savings, it returns a group whose
6697 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6698 * such a group exists.
6699 *
6700 * Also calculates the amount of weighted load which should be moved
6701 * to restore balance.
6702 *
cd96891d 6703 * @env: The load balancing environment.
1e3c88bd 6704 *
e69f6186 6705 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6706 * - If no imbalance and user has opted for power-savings balance,
6707 * return the least loaded group whose CPUs can be
6708 * put to idle by rebalancing its tasks onto our group.
6709 */
56cf515b 6710static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6711{
56cf515b 6712 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6713 struct sd_lb_stats sds;
6714
147c5fc2 6715 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6716
6717 /*
6718 * Compute the various statistics relavent for load balancing at
6719 * this level.
6720 */
23f0d209 6721 update_sd_lb_stats(env, &sds);
56cf515b
JK
6722 local = &sds.local_stat;
6723 busiest = &sds.busiest_stat;
1e3c88bd 6724
ea67821b 6725 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6726 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6727 check_asym_packing(env, &sds))
532cb4c4
MN
6728 return sds.busiest;
6729
cc57aa8f 6730 /* There is no busy sibling group to pull tasks from */
56cf515b 6731 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6732 goto out_balanced;
6733
ca8ce3d0
NP
6734 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6735 / sds.total_capacity;
b0432d8f 6736
866ab43e
PZ
6737 /*
6738 * If the busiest group is imbalanced the below checks don't
30ce5dab 6739 * work because they assume all things are equal, which typically
866ab43e
PZ
6740 * isn't true due to cpus_allowed constraints and the like.
6741 */
caeb178c 6742 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6743 goto force_balance;
6744
cc57aa8f 6745 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6746 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6747 busiest->group_no_capacity)
fab47622
NR
6748 goto force_balance;
6749
cc57aa8f 6750 /*
9c58c79a 6751 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6752 * don't try and pull any tasks.
6753 */
56cf515b 6754 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6755 goto out_balanced;
6756
cc57aa8f
PZ
6757 /*
6758 * Don't pull any tasks if this group is already above the domain
6759 * average load.
6760 */
56cf515b 6761 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6762 goto out_balanced;
6763
bd939f45 6764 if (env->idle == CPU_IDLE) {
aae6d3dd 6765 /*
43f4d666
VG
6766 * This cpu is idle. If the busiest group is not overloaded
6767 * and there is no imbalance between this and busiest group
6768 * wrt idle cpus, it is balanced. The imbalance becomes
6769 * significant if the diff is greater than 1 otherwise we
6770 * might end up to just move the imbalance on another group
aae6d3dd 6771 */
43f4d666
VG
6772 if ((busiest->group_type != group_overloaded) &&
6773 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6774 goto out_balanced;
c186fafe
PZ
6775 } else {
6776 /*
6777 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6778 * imbalance_pct to be conservative.
6779 */
56cf515b
JK
6780 if (100 * busiest->avg_load <=
6781 env->sd->imbalance_pct * local->avg_load)
c186fafe 6782 goto out_balanced;
aae6d3dd 6783 }
1e3c88bd 6784
fab47622 6785force_balance:
1e3c88bd 6786 /* Looks like there is an imbalance. Compute it */
bd939f45 6787 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6788 return sds.busiest;
6789
6790out_balanced:
bd939f45 6791 env->imbalance = 0;
1e3c88bd
PZ
6792 return NULL;
6793}
6794
6795/*
6796 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6797 */
bd939f45 6798static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6799 struct sched_group *group)
1e3c88bd
PZ
6800{
6801 struct rq *busiest = NULL, *rq;
ced549fa 6802 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6803 int i;
6804
6906a408 6805 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6806 unsigned long capacity, wl;
0ec8aa00
PZ
6807 enum fbq_type rt;
6808
6809 rq = cpu_rq(i);
6810 rt = fbq_classify_rq(rq);
1e3c88bd 6811
0ec8aa00
PZ
6812 /*
6813 * We classify groups/runqueues into three groups:
6814 * - regular: there are !numa tasks
6815 * - remote: there are numa tasks that run on the 'wrong' node
6816 * - all: there is no distinction
6817 *
6818 * In order to avoid migrating ideally placed numa tasks,
6819 * ignore those when there's better options.
6820 *
6821 * If we ignore the actual busiest queue to migrate another
6822 * task, the next balance pass can still reduce the busiest
6823 * queue by moving tasks around inside the node.
6824 *
6825 * If we cannot move enough load due to this classification
6826 * the next pass will adjust the group classification and
6827 * allow migration of more tasks.
6828 *
6829 * Both cases only affect the total convergence complexity.
6830 */
6831 if (rt > env->fbq_type)
6832 continue;
6833
ced549fa 6834 capacity = capacity_of(i);
9d5efe05 6835
6e40f5bb 6836 wl = weighted_cpuload(i);
1e3c88bd 6837
6e40f5bb
TG
6838 /*
6839 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6840 * which is not scaled with the cpu capacity.
6e40f5bb 6841 */
ea67821b
VG
6842
6843 if (rq->nr_running == 1 && wl > env->imbalance &&
6844 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6845 continue;
6846
6e40f5bb
TG
6847 /*
6848 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6849 * the weighted_cpuload() scaled with the cpu capacity, so
6850 * that the load can be moved away from the cpu that is
6851 * potentially running at a lower capacity.
95a79b80 6852 *
ced549fa 6853 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6854 * multiplication to rid ourselves of the division works out
ced549fa
NP
6855 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6856 * our previous maximum.
6e40f5bb 6857 */
ced549fa 6858 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6859 busiest_load = wl;
ced549fa 6860 busiest_capacity = capacity;
1e3c88bd
PZ
6861 busiest = rq;
6862 }
6863 }
6864
6865 return busiest;
6866}
6867
6868/*
6869 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6870 * so long as it is large enough.
6871 */
6872#define MAX_PINNED_INTERVAL 512
6873
6874/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6875DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6876
bd939f45 6877static int need_active_balance(struct lb_env *env)
1af3ed3d 6878{
bd939f45
PZ
6879 struct sched_domain *sd = env->sd;
6880
6881 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6882
6883 /*
6884 * ASYM_PACKING needs to force migrate tasks from busy but
6885 * higher numbered CPUs in order to pack all tasks in the
6886 * lowest numbered CPUs.
6887 */
bd939f45 6888 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6889 return 1;
1af3ed3d
PZ
6890 }
6891
1aaf90a4
VG
6892 /*
6893 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6894 * It's worth migrating the task if the src_cpu's capacity is reduced
6895 * because of other sched_class or IRQs if more capacity stays
6896 * available on dst_cpu.
6897 */
6898 if ((env->idle != CPU_NOT_IDLE) &&
6899 (env->src_rq->cfs.h_nr_running == 1)) {
6900 if ((check_cpu_capacity(env->src_rq, sd)) &&
6901 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6902 return 1;
6903 }
6904
1af3ed3d
PZ
6905 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6906}
6907
969c7921
TH
6908static int active_load_balance_cpu_stop(void *data);
6909
23f0d209
JK
6910static int should_we_balance(struct lb_env *env)
6911{
6912 struct sched_group *sg = env->sd->groups;
6913 struct cpumask *sg_cpus, *sg_mask;
6914 int cpu, balance_cpu = -1;
6915
6916 /*
6917 * In the newly idle case, we will allow all the cpu's
6918 * to do the newly idle load balance.
6919 */
6920 if (env->idle == CPU_NEWLY_IDLE)
6921 return 1;
6922
6923 sg_cpus = sched_group_cpus(sg);
6924 sg_mask = sched_group_mask(sg);
6925 /* Try to find first idle cpu */
6926 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6927 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6928 continue;
6929
6930 balance_cpu = cpu;
6931 break;
6932 }
6933
6934 if (balance_cpu == -1)
6935 balance_cpu = group_balance_cpu(sg);
6936
6937 /*
6938 * First idle cpu or the first cpu(busiest) in this sched group
6939 * is eligible for doing load balancing at this and above domains.
6940 */
b0cff9d8 6941 return balance_cpu == env->dst_cpu;
23f0d209
JK
6942}
6943
1e3c88bd
PZ
6944/*
6945 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6946 * tasks if there is an imbalance.
6947 */
6948static int load_balance(int this_cpu, struct rq *this_rq,
6949 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6950 int *continue_balancing)
1e3c88bd 6951{
88b8dac0 6952 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6953 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6954 struct sched_group *group;
1e3c88bd
PZ
6955 struct rq *busiest;
6956 unsigned long flags;
4ba29684 6957 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6958
8e45cb54
PZ
6959 struct lb_env env = {
6960 .sd = sd,
ddcdf6e7
PZ
6961 .dst_cpu = this_cpu,
6962 .dst_rq = this_rq,
88b8dac0 6963 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6964 .idle = idle,
eb95308e 6965 .loop_break = sched_nr_migrate_break,
b9403130 6966 .cpus = cpus,
0ec8aa00 6967 .fbq_type = all,
163122b7 6968 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6969 };
6970
cfc03118
JK
6971 /*
6972 * For NEWLY_IDLE load_balancing, we don't need to consider
6973 * other cpus in our group
6974 */
e02e60c1 6975 if (idle == CPU_NEWLY_IDLE)
cfc03118 6976 env.dst_grpmask = NULL;
cfc03118 6977
1e3c88bd
PZ
6978 cpumask_copy(cpus, cpu_active_mask);
6979
1e3c88bd
PZ
6980 schedstat_inc(sd, lb_count[idle]);
6981
6982redo:
23f0d209
JK
6983 if (!should_we_balance(&env)) {
6984 *continue_balancing = 0;
1e3c88bd 6985 goto out_balanced;
23f0d209 6986 }
1e3c88bd 6987
23f0d209 6988 group = find_busiest_group(&env);
1e3c88bd
PZ
6989 if (!group) {
6990 schedstat_inc(sd, lb_nobusyg[idle]);
6991 goto out_balanced;
6992 }
6993
b9403130 6994 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6995 if (!busiest) {
6996 schedstat_inc(sd, lb_nobusyq[idle]);
6997 goto out_balanced;
6998 }
6999
78feefc5 7000 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7001
bd939f45 7002 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7003
1aaf90a4
VG
7004 env.src_cpu = busiest->cpu;
7005 env.src_rq = busiest;
7006
1e3c88bd
PZ
7007 ld_moved = 0;
7008 if (busiest->nr_running > 1) {
7009 /*
7010 * Attempt to move tasks. If find_busiest_group has found
7011 * an imbalance but busiest->nr_running <= 1, the group is
7012 * still unbalanced. ld_moved simply stays zero, so it is
7013 * correctly treated as an imbalance.
7014 */
8e45cb54 7015 env.flags |= LBF_ALL_PINNED;
c82513e5 7016 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7017
5d6523eb 7018more_balance:
163122b7 7019 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7020
7021 /*
7022 * cur_ld_moved - load moved in current iteration
7023 * ld_moved - cumulative load moved across iterations
7024 */
163122b7 7025 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7026
7027 /*
163122b7
KT
7028 * We've detached some tasks from busiest_rq. Every
7029 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7030 * unlock busiest->lock, and we are able to be sure
7031 * that nobody can manipulate the tasks in parallel.
7032 * See task_rq_lock() family for the details.
1e3c88bd 7033 */
163122b7
KT
7034
7035 raw_spin_unlock(&busiest->lock);
7036
7037 if (cur_ld_moved) {
7038 attach_tasks(&env);
7039 ld_moved += cur_ld_moved;
7040 }
7041
1e3c88bd 7042 local_irq_restore(flags);
88b8dac0 7043
f1cd0858
JK
7044 if (env.flags & LBF_NEED_BREAK) {
7045 env.flags &= ~LBF_NEED_BREAK;
7046 goto more_balance;
7047 }
7048
88b8dac0
SV
7049 /*
7050 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7051 * us and move them to an alternate dst_cpu in our sched_group
7052 * where they can run. The upper limit on how many times we
7053 * iterate on same src_cpu is dependent on number of cpus in our
7054 * sched_group.
7055 *
7056 * This changes load balance semantics a bit on who can move
7057 * load to a given_cpu. In addition to the given_cpu itself
7058 * (or a ilb_cpu acting on its behalf where given_cpu is
7059 * nohz-idle), we now have balance_cpu in a position to move
7060 * load to given_cpu. In rare situations, this may cause
7061 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7062 * _independently_ and at _same_ time to move some load to
7063 * given_cpu) causing exceess load to be moved to given_cpu.
7064 * This however should not happen so much in practice and
7065 * moreover subsequent load balance cycles should correct the
7066 * excess load moved.
7067 */
6263322c 7068 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7069
7aff2e3a
VD
7070 /* Prevent to re-select dst_cpu via env's cpus */
7071 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7072
78feefc5 7073 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7074 env.dst_cpu = env.new_dst_cpu;
6263322c 7075 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7076 env.loop = 0;
7077 env.loop_break = sched_nr_migrate_break;
e02e60c1 7078
88b8dac0
SV
7079 /*
7080 * Go back to "more_balance" rather than "redo" since we
7081 * need to continue with same src_cpu.
7082 */
7083 goto more_balance;
7084 }
1e3c88bd 7085
6263322c
PZ
7086 /*
7087 * We failed to reach balance because of affinity.
7088 */
7089 if (sd_parent) {
63b2ca30 7090 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7091
afdeee05 7092 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7093 *group_imbalance = 1;
6263322c
PZ
7094 }
7095
1e3c88bd 7096 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7097 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7098 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7099 if (!cpumask_empty(cpus)) {
7100 env.loop = 0;
7101 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7102 goto redo;
bbf18b19 7103 }
afdeee05 7104 goto out_all_pinned;
1e3c88bd
PZ
7105 }
7106 }
7107
7108 if (!ld_moved) {
7109 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7110 /*
7111 * Increment the failure counter only on periodic balance.
7112 * We do not want newidle balance, which can be very
7113 * frequent, pollute the failure counter causing
7114 * excessive cache_hot migrations and active balances.
7115 */
7116 if (idle != CPU_NEWLY_IDLE)
7117 sd->nr_balance_failed++;
1e3c88bd 7118
bd939f45 7119 if (need_active_balance(&env)) {
1e3c88bd
PZ
7120 raw_spin_lock_irqsave(&busiest->lock, flags);
7121
969c7921
TH
7122 /* don't kick the active_load_balance_cpu_stop,
7123 * if the curr task on busiest cpu can't be
7124 * moved to this_cpu
1e3c88bd
PZ
7125 */
7126 if (!cpumask_test_cpu(this_cpu,
fa17b507 7127 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7128 raw_spin_unlock_irqrestore(&busiest->lock,
7129 flags);
8e45cb54 7130 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7131 goto out_one_pinned;
7132 }
7133
969c7921
TH
7134 /*
7135 * ->active_balance synchronizes accesses to
7136 * ->active_balance_work. Once set, it's cleared
7137 * only after active load balance is finished.
7138 */
1e3c88bd
PZ
7139 if (!busiest->active_balance) {
7140 busiest->active_balance = 1;
7141 busiest->push_cpu = this_cpu;
7142 active_balance = 1;
7143 }
7144 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7145
bd939f45 7146 if (active_balance) {
969c7921
TH
7147 stop_one_cpu_nowait(cpu_of(busiest),
7148 active_load_balance_cpu_stop, busiest,
7149 &busiest->active_balance_work);
bd939f45 7150 }
1e3c88bd
PZ
7151
7152 /*
7153 * We've kicked active balancing, reset the failure
7154 * counter.
7155 */
7156 sd->nr_balance_failed = sd->cache_nice_tries+1;
7157 }
7158 } else
7159 sd->nr_balance_failed = 0;
7160
7161 if (likely(!active_balance)) {
7162 /* We were unbalanced, so reset the balancing interval */
7163 sd->balance_interval = sd->min_interval;
7164 } else {
7165 /*
7166 * If we've begun active balancing, start to back off. This
7167 * case may not be covered by the all_pinned logic if there
7168 * is only 1 task on the busy runqueue (because we don't call
163122b7 7169 * detach_tasks).
1e3c88bd
PZ
7170 */
7171 if (sd->balance_interval < sd->max_interval)
7172 sd->balance_interval *= 2;
7173 }
7174
1e3c88bd
PZ
7175 goto out;
7176
7177out_balanced:
afdeee05
VG
7178 /*
7179 * We reach balance although we may have faced some affinity
7180 * constraints. Clear the imbalance flag if it was set.
7181 */
7182 if (sd_parent) {
7183 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7184
7185 if (*group_imbalance)
7186 *group_imbalance = 0;
7187 }
7188
7189out_all_pinned:
7190 /*
7191 * We reach balance because all tasks are pinned at this level so
7192 * we can't migrate them. Let the imbalance flag set so parent level
7193 * can try to migrate them.
7194 */
1e3c88bd
PZ
7195 schedstat_inc(sd, lb_balanced[idle]);
7196
7197 sd->nr_balance_failed = 0;
7198
7199out_one_pinned:
7200 /* tune up the balancing interval */
8e45cb54 7201 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7202 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7203 (sd->balance_interval < sd->max_interval))
7204 sd->balance_interval *= 2;
7205
46e49b38 7206 ld_moved = 0;
1e3c88bd 7207out:
1e3c88bd
PZ
7208 return ld_moved;
7209}
7210
52a08ef1
JL
7211static inline unsigned long
7212get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7213{
7214 unsigned long interval = sd->balance_interval;
7215
7216 if (cpu_busy)
7217 interval *= sd->busy_factor;
7218
7219 /* scale ms to jiffies */
7220 interval = msecs_to_jiffies(interval);
7221 interval = clamp(interval, 1UL, max_load_balance_interval);
7222
7223 return interval;
7224}
7225
7226static inline void
7227update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7228{
7229 unsigned long interval, next;
7230
7231 interval = get_sd_balance_interval(sd, cpu_busy);
7232 next = sd->last_balance + interval;
7233
7234 if (time_after(*next_balance, next))
7235 *next_balance = next;
7236}
7237
1e3c88bd
PZ
7238/*
7239 * idle_balance is called by schedule() if this_cpu is about to become
7240 * idle. Attempts to pull tasks from other CPUs.
7241 */
6e83125c 7242static int idle_balance(struct rq *this_rq)
1e3c88bd 7243{
52a08ef1
JL
7244 unsigned long next_balance = jiffies + HZ;
7245 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7246 struct sched_domain *sd;
7247 int pulled_task = 0;
9bd721c5 7248 u64 curr_cost = 0;
1e3c88bd 7249
6e83125c 7250 idle_enter_fair(this_rq);
0e5b5337 7251
6e83125c
PZ
7252 /*
7253 * We must set idle_stamp _before_ calling idle_balance(), such that we
7254 * measure the duration of idle_balance() as idle time.
7255 */
7256 this_rq->idle_stamp = rq_clock(this_rq);
7257
4486edd1
TC
7258 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7259 !this_rq->rd->overload) {
52a08ef1
JL
7260 rcu_read_lock();
7261 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7262 if (sd)
7263 update_next_balance(sd, 0, &next_balance);
7264 rcu_read_unlock();
7265
6e83125c 7266 goto out;
52a08ef1 7267 }
1e3c88bd 7268
f492e12e
PZ
7269 raw_spin_unlock(&this_rq->lock);
7270
48a16753 7271 update_blocked_averages(this_cpu);
dce840a0 7272 rcu_read_lock();
1e3c88bd 7273 for_each_domain(this_cpu, sd) {
23f0d209 7274 int continue_balancing = 1;
9bd721c5 7275 u64 t0, domain_cost;
1e3c88bd
PZ
7276
7277 if (!(sd->flags & SD_LOAD_BALANCE))
7278 continue;
7279
52a08ef1
JL
7280 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7281 update_next_balance(sd, 0, &next_balance);
9bd721c5 7282 break;
52a08ef1 7283 }
9bd721c5 7284
f492e12e 7285 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7286 t0 = sched_clock_cpu(this_cpu);
7287
f492e12e 7288 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7289 sd, CPU_NEWLY_IDLE,
7290 &continue_balancing);
9bd721c5
JL
7291
7292 domain_cost = sched_clock_cpu(this_cpu) - t0;
7293 if (domain_cost > sd->max_newidle_lb_cost)
7294 sd->max_newidle_lb_cost = domain_cost;
7295
7296 curr_cost += domain_cost;
f492e12e 7297 }
1e3c88bd 7298
52a08ef1 7299 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7300
7301 /*
7302 * Stop searching for tasks to pull if there are
7303 * now runnable tasks on this rq.
7304 */
7305 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7306 break;
1e3c88bd 7307 }
dce840a0 7308 rcu_read_unlock();
f492e12e
PZ
7309
7310 raw_spin_lock(&this_rq->lock);
7311
0e5b5337
JL
7312 if (curr_cost > this_rq->max_idle_balance_cost)
7313 this_rq->max_idle_balance_cost = curr_cost;
7314
e5fc6611 7315 /*
0e5b5337
JL
7316 * While browsing the domains, we released the rq lock, a task could
7317 * have been enqueued in the meantime. Since we're not going idle,
7318 * pretend we pulled a task.
e5fc6611 7319 */
0e5b5337 7320 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7321 pulled_task = 1;
e5fc6611 7322
52a08ef1
JL
7323out:
7324 /* Move the next balance forward */
7325 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7326 this_rq->next_balance = next_balance;
9bd721c5 7327
e4aa358b 7328 /* Is there a task of a high priority class? */
46383648 7329 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7330 pulled_task = -1;
7331
7332 if (pulled_task) {
7333 idle_exit_fair(this_rq);
6e83125c 7334 this_rq->idle_stamp = 0;
e4aa358b 7335 }
6e83125c 7336
3c4017c1 7337 return pulled_task;
1e3c88bd
PZ
7338}
7339
7340/*
969c7921
TH
7341 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7342 * running tasks off the busiest CPU onto idle CPUs. It requires at
7343 * least 1 task to be running on each physical CPU where possible, and
7344 * avoids physical / logical imbalances.
1e3c88bd 7345 */
969c7921 7346static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7347{
969c7921
TH
7348 struct rq *busiest_rq = data;
7349 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7350 int target_cpu = busiest_rq->push_cpu;
969c7921 7351 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7352 struct sched_domain *sd;
e5673f28 7353 struct task_struct *p = NULL;
969c7921
TH
7354
7355 raw_spin_lock_irq(&busiest_rq->lock);
7356
7357 /* make sure the requested cpu hasn't gone down in the meantime */
7358 if (unlikely(busiest_cpu != smp_processor_id() ||
7359 !busiest_rq->active_balance))
7360 goto out_unlock;
1e3c88bd
PZ
7361
7362 /* Is there any task to move? */
7363 if (busiest_rq->nr_running <= 1)
969c7921 7364 goto out_unlock;
1e3c88bd
PZ
7365
7366 /*
7367 * This condition is "impossible", if it occurs
7368 * we need to fix it. Originally reported by
7369 * Bjorn Helgaas on a 128-cpu setup.
7370 */
7371 BUG_ON(busiest_rq == target_rq);
7372
1e3c88bd 7373 /* Search for an sd spanning us and the target CPU. */
dce840a0 7374 rcu_read_lock();
1e3c88bd
PZ
7375 for_each_domain(target_cpu, sd) {
7376 if ((sd->flags & SD_LOAD_BALANCE) &&
7377 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7378 break;
7379 }
7380
7381 if (likely(sd)) {
8e45cb54
PZ
7382 struct lb_env env = {
7383 .sd = sd,
ddcdf6e7
PZ
7384 .dst_cpu = target_cpu,
7385 .dst_rq = target_rq,
7386 .src_cpu = busiest_rq->cpu,
7387 .src_rq = busiest_rq,
8e45cb54
PZ
7388 .idle = CPU_IDLE,
7389 };
7390
1e3c88bd
PZ
7391 schedstat_inc(sd, alb_count);
7392
e5673f28
KT
7393 p = detach_one_task(&env);
7394 if (p)
1e3c88bd
PZ
7395 schedstat_inc(sd, alb_pushed);
7396 else
7397 schedstat_inc(sd, alb_failed);
7398 }
dce840a0 7399 rcu_read_unlock();
969c7921
TH
7400out_unlock:
7401 busiest_rq->active_balance = 0;
e5673f28
KT
7402 raw_spin_unlock(&busiest_rq->lock);
7403
7404 if (p)
7405 attach_one_task(target_rq, p);
7406
7407 local_irq_enable();
7408
969c7921 7409 return 0;
1e3c88bd
PZ
7410}
7411
d987fc7f
MG
7412static inline int on_null_domain(struct rq *rq)
7413{
7414 return unlikely(!rcu_dereference_sched(rq->sd));
7415}
7416
3451d024 7417#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7418/*
7419 * idle load balancing details
83cd4fe2
VP
7420 * - When one of the busy CPUs notice that there may be an idle rebalancing
7421 * needed, they will kick the idle load balancer, which then does idle
7422 * load balancing for all the idle CPUs.
7423 */
1e3c88bd 7424static struct {
83cd4fe2 7425 cpumask_var_t idle_cpus_mask;
0b005cf5 7426 atomic_t nr_cpus;
83cd4fe2
VP
7427 unsigned long next_balance; /* in jiffy units */
7428} nohz ____cacheline_aligned;
1e3c88bd 7429
3dd0337d 7430static inline int find_new_ilb(void)
1e3c88bd 7431{
0b005cf5 7432 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7433
786d6dc7
SS
7434 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7435 return ilb;
7436
7437 return nr_cpu_ids;
1e3c88bd 7438}
1e3c88bd 7439
83cd4fe2
VP
7440/*
7441 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7442 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7443 * CPU (if there is one).
7444 */
0aeeeeba 7445static void nohz_balancer_kick(void)
83cd4fe2
VP
7446{
7447 int ilb_cpu;
7448
7449 nohz.next_balance++;
7450
3dd0337d 7451 ilb_cpu = find_new_ilb();
83cd4fe2 7452
0b005cf5
SS
7453 if (ilb_cpu >= nr_cpu_ids)
7454 return;
83cd4fe2 7455
cd490c5b 7456 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7457 return;
7458 /*
7459 * Use smp_send_reschedule() instead of resched_cpu().
7460 * This way we generate a sched IPI on the target cpu which
7461 * is idle. And the softirq performing nohz idle load balance
7462 * will be run before returning from the IPI.
7463 */
7464 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7465 return;
7466}
7467
c1cc017c 7468static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7469{
7470 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7471 /*
7472 * Completely isolated CPUs don't ever set, so we must test.
7473 */
7474 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7475 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7476 atomic_dec(&nohz.nr_cpus);
7477 }
71325960
SS
7478 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7479 }
7480}
7481
69e1e811
SS
7482static inline void set_cpu_sd_state_busy(void)
7483{
7484 struct sched_domain *sd;
37dc6b50 7485 int cpu = smp_processor_id();
69e1e811 7486
69e1e811 7487 rcu_read_lock();
37dc6b50 7488 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7489
7490 if (!sd || !sd->nohz_idle)
7491 goto unlock;
7492 sd->nohz_idle = 0;
7493
63b2ca30 7494 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7495unlock:
69e1e811
SS
7496 rcu_read_unlock();
7497}
7498
7499void set_cpu_sd_state_idle(void)
7500{
7501 struct sched_domain *sd;
37dc6b50 7502 int cpu = smp_processor_id();
69e1e811 7503
69e1e811 7504 rcu_read_lock();
37dc6b50 7505 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7506
7507 if (!sd || sd->nohz_idle)
7508 goto unlock;
7509 sd->nohz_idle = 1;
7510
63b2ca30 7511 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7512unlock:
69e1e811
SS
7513 rcu_read_unlock();
7514}
7515
1e3c88bd 7516/*
c1cc017c 7517 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7518 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7519 */
c1cc017c 7520void nohz_balance_enter_idle(int cpu)
1e3c88bd 7521{
71325960
SS
7522 /*
7523 * If this cpu is going down, then nothing needs to be done.
7524 */
7525 if (!cpu_active(cpu))
7526 return;
7527
c1cc017c
AS
7528 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7529 return;
1e3c88bd 7530
d987fc7f
MG
7531 /*
7532 * If we're a completely isolated CPU, we don't play.
7533 */
7534 if (on_null_domain(cpu_rq(cpu)))
7535 return;
7536
c1cc017c
AS
7537 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7538 atomic_inc(&nohz.nr_cpus);
7539 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7540}
71325960 7541
0db0628d 7542static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7543 unsigned long action, void *hcpu)
7544{
7545 switch (action & ~CPU_TASKS_FROZEN) {
7546 case CPU_DYING:
c1cc017c 7547 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7548 return NOTIFY_OK;
7549 default:
7550 return NOTIFY_DONE;
7551 }
7552}
1e3c88bd
PZ
7553#endif
7554
7555static DEFINE_SPINLOCK(balancing);
7556
49c022e6
PZ
7557/*
7558 * Scale the max load_balance interval with the number of CPUs in the system.
7559 * This trades load-balance latency on larger machines for less cross talk.
7560 */
029632fb 7561void update_max_interval(void)
49c022e6
PZ
7562{
7563 max_load_balance_interval = HZ*num_online_cpus()/10;
7564}
7565
1e3c88bd
PZ
7566/*
7567 * It checks each scheduling domain to see if it is due to be balanced,
7568 * and initiates a balancing operation if so.
7569 *
b9b0853a 7570 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7571 */
f7ed0a89 7572static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7573{
23f0d209 7574 int continue_balancing = 1;
f7ed0a89 7575 int cpu = rq->cpu;
1e3c88bd 7576 unsigned long interval;
04f733b4 7577 struct sched_domain *sd;
1e3c88bd
PZ
7578 /* Earliest time when we have to do rebalance again */
7579 unsigned long next_balance = jiffies + 60*HZ;
7580 int update_next_balance = 0;
f48627e6
JL
7581 int need_serialize, need_decay = 0;
7582 u64 max_cost = 0;
1e3c88bd 7583
48a16753 7584 update_blocked_averages(cpu);
2069dd75 7585
dce840a0 7586 rcu_read_lock();
1e3c88bd 7587 for_each_domain(cpu, sd) {
f48627e6
JL
7588 /*
7589 * Decay the newidle max times here because this is a regular
7590 * visit to all the domains. Decay ~1% per second.
7591 */
7592 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7593 sd->max_newidle_lb_cost =
7594 (sd->max_newidle_lb_cost * 253) / 256;
7595 sd->next_decay_max_lb_cost = jiffies + HZ;
7596 need_decay = 1;
7597 }
7598 max_cost += sd->max_newidle_lb_cost;
7599
1e3c88bd
PZ
7600 if (!(sd->flags & SD_LOAD_BALANCE))
7601 continue;
7602
f48627e6
JL
7603 /*
7604 * Stop the load balance at this level. There is another
7605 * CPU in our sched group which is doing load balancing more
7606 * actively.
7607 */
7608 if (!continue_balancing) {
7609 if (need_decay)
7610 continue;
7611 break;
7612 }
7613
52a08ef1 7614 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7615
7616 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7617 if (need_serialize) {
7618 if (!spin_trylock(&balancing))
7619 goto out;
7620 }
7621
7622 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7623 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7624 /*
6263322c 7625 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7626 * env->dst_cpu, so we can't know our idle
7627 * state even if we migrated tasks. Update it.
1e3c88bd 7628 */
de5eb2dd 7629 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7630 }
7631 sd->last_balance = jiffies;
52a08ef1 7632 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7633 }
7634 if (need_serialize)
7635 spin_unlock(&balancing);
7636out:
7637 if (time_after(next_balance, sd->last_balance + interval)) {
7638 next_balance = sd->last_balance + interval;
7639 update_next_balance = 1;
7640 }
f48627e6
JL
7641 }
7642 if (need_decay) {
1e3c88bd 7643 /*
f48627e6
JL
7644 * Ensure the rq-wide value also decays but keep it at a
7645 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7646 */
f48627e6
JL
7647 rq->max_idle_balance_cost =
7648 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7649 }
dce840a0 7650 rcu_read_unlock();
1e3c88bd
PZ
7651
7652 /*
7653 * next_balance will be updated only when there is a need.
7654 * When the cpu is attached to null domain for ex, it will not be
7655 * updated.
7656 */
c5afb6a8 7657 if (likely(update_next_balance)) {
1e3c88bd 7658 rq->next_balance = next_balance;
c5afb6a8
VG
7659
7660#ifdef CONFIG_NO_HZ_COMMON
7661 /*
7662 * If this CPU has been elected to perform the nohz idle
7663 * balance. Other idle CPUs have already rebalanced with
7664 * nohz_idle_balance() and nohz.next_balance has been
7665 * updated accordingly. This CPU is now running the idle load
7666 * balance for itself and we need to update the
7667 * nohz.next_balance accordingly.
7668 */
7669 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7670 nohz.next_balance = rq->next_balance;
7671#endif
7672 }
1e3c88bd
PZ
7673}
7674
3451d024 7675#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7676/*
3451d024 7677 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7678 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7679 */
208cb16b 7680static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7681{
208cb16b 7682 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7683 struct rq *rq;
7684 int balance_cpu;
c5afb6a8
VG
7685 /* Earliest time when we have to do rebalance again */
7686 unsigned long next_balance = jiffies + 60*HZ;
7687 int update_next_balance = 0;
83cd4fe2 7688
1c792db7
SS
7689 if (idle != CPU_IDLE ||
7690 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7691 goto end;
83cd4fe2
VP
7692
7693 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7694 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7695 continue;
7696
7697 /*
7698 * If this cpu gets work to do, stop the load balancing
7699 * work being done for other cpus. Next load
7700 * balancing owner will pick it up.
7701 */
1c792db7 7702 if (need_resched())
83cd4fe2 7703 break;
83cd4fe2 7704
5ed4f1d9
VG
7705 rq = cpu_rq(balance_cpu);
7706
ed61bbc6
TC
7707 /*
7708 * If time for next balance is due,
7709 * do the balance.
7710 */
7711 if (time_after_eq(jiffies, rq->next_balance)) {
7712 raw_spin_lock_irq(&rq->lock);
7713 update_rq_clock(rq);
7714 update_idle_cpu_load(rq);
7715 raw_spin_unlock_irq(&rq->lock);
7716 rebalance_domains(rq, CPU_IDLE);
7717 }
83cd4fe2 7718
c5afb6a8
VG
7719 if (time_after(next_balance, rq->next_balance)) {
7720 next_balance = rq->next_balance;
7721 update_next_balance = 1;
7722 }
83cd4fe2 7723 }
c5afb6a8
VG
7724
7725 /*
7726 * next_balance will be updated only when there is a need.
7727 * When the CPU is attached to null domain for ex, it will not be
7728 * updated.
7729 */
7730 if (likely(update_next_balance))
7731 nohz.next_balance = next_balance;
1c792db7
SS
7732end:
7733 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7734}
7735
7736/*
0b005cf5 7737 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7738 * of an idle cpu in the system.
0b005cf5 7739 * - This rq has more than one task.
1aaf90a4
VG
7740 * - This rq has at least one CFS task and the capacity of the CPU is
7741 * significantly reduced because of RT tasks or IRQs.
7742 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7743 * multiple busy cpu.
0b005cf5
SS
7744 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7745 * domain span are idle.
83cd4fe2 7746 */
1aaf90a4 7747static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7748{
7749 unsigned long now = jiffies;
0b005cf5 7750 struct sched_domain *sd;
63b2ca30 7751 struct sched_group_capacity *sgc;
4a725627 7752 int nr_busy, cpu = rq->cpu;
1aaf90a4 7753 bool kick = false;
83cd4fe2 7754
4a725627 7755 if (unlikely(rq->idle_balance))
1aaf90a4 7756 return false;
83cd4fe2 7757
1c792db7
SS
7758 /*
7759 * We may be recently in ticked or tickless idle mode. At the first
7760 * busy tick after returning from idle, we will update the busy stats.
7761 */
69e1e811 7762 set_cpu_sd_state_busy();
c1cc017c 7763 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7764
7765 /*
7766 * None are in tickless mode and hence no need for NOHZ idle load
7767 * balancing.
7768 */
7769 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7770 return false;
1c792db7
SS
7771
7772 if (time_before(now, nohz.next_balance))
1aaf90a4 7773 return false;
83cd4fe2 7774
0b005cf5 7775 if (rq->nr_running >= 2)
1aaf90a4 7776 return true;
83cd4fe2 7777
067491b7 7778 rcu_read_lock();
37dc6b50 7779 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7780 if (sd) {
63b2ca30
NP
7781 sgc = sd->groups->sgc;
7782 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7783
1aaf90a4
VG
7784 if (nr_busy > 1) {
7785 kick = true;
7786 goto unlock;
7787 }
7788
83cd4fe2 7789 }
37dc6b50 7790
1aaf90a4
VG
7791 sd = rcu_dereference(rq->sd);
7792 if (sd) {
7793 if ((rq->cfs.h_nr_running >= 1) &&
7794 check_cpu_capacity(rq, sd)) {
7795 kick = true;
7796 goto unlock;
7797 }
7798 }
37dc6b50 7799
1aaf90a4 7800 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7801 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7802 sched_domain_span(sd)) < cpu)) {
7803 kick = true;
7804 goto unlock;
7805 }
067491b7 7806
1aaf90a4 7807unlock:
067491b7 7808 rcu_read_unlock();
1aaf90a4 7809 return kick;
83cd4fe2
VP
7810}
7811#else
208cb16b 7812static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7813#endif
7814
7815/*
7816 * run_rebalance_domains is triggered when needed from the scheduler tick.
7817 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7818 */
1e3c88bd
PZ
7819static void run_rebalance_domains(struct softirq_action *h)
7820{
208cb16b 7821 struct rq *this_rq = this_rq();
6eb57e0d 7822 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7823 CPU_IDLE : CPU_NOT_IDLE;
7824
1e3c88bd 7825 /*
83cd4fe2 7826 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7827 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7828 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7829 * give the idle cpus a chance to load balance. Else we may
7830 * load balance only within the local sched_domain hierarchy
7831 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7832 */
208cb16b 7833 nohz_idle_balance(this_rq, idle);
d4573c3e 7834 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7835}
7836
1e3c88bd
PZ
7837/*
7838 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7839 */
7caff66f 7840void trigger_load_balance(struct rq *rq)
1e3c88bd 7841{
1e3c88bd 7842 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7843 if (unlikely(on_null_domain(rq)))
7844 return;
7845
7846 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7847 raise_softirq(SCHED_SOFTIRQ);
3451d024 7848#ifdef CONFIG_NO_HZ_COMMON
c726099e 7849 if (nohz_kick_needed(rq))
0aeeeeba 7850 nohz_balancer_kick();
83cd4fe2 7851#endif
1e3c88bd
PZ
7852}
7853
0bcdcf28
CE
7854static void rq_online_fair(struct rq *rq)
7855{
7856 update_sysctl();
0e59bdae
KT
7857
7858 update_runtime_enabled(rq);
0bcdcf28
CE
7859}
7860
7861static void rq_offline_fair(struct rq *rq)
7862{
7863 update_sysctl();
a4c96ae3
PB
7864
7865 /* Ensure any throttled groups are reachable by pick_next_task */
7866 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7867}
7868
55e12e5e 7869#endif /* CONFIG_SMP */
e1d1484f 7870
bf0f6f24
IM
7871/*
7872 * scheduler tick hitting a task of our scheduling class:
7873 */
8f4d37ec 7874static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7875{
7876 struct cfs_rq *cfs_rq;
7877 struct sched_entity *se = &curr->se;
7878
7879 for_each_sched_entity(se) {
7880 cfs_rq = cfs_rq_of(se);
8f4d37ec 7881 entity_tick(cfs_rq, se, queued);
bf0f6f24 7882 }
18bf2805 7883
2a595721 7884 if (!static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7885 task_tick_numa(rq, curr);
bf0f6f24
IM
7886}
7887
7888/*
cd29fe6f
PZ
7889 * called on fork with the child task as argument from the parent's context
7890 * - child not yet on the tasklist
7891 * - preemption disabled
bf0f6f24 7892 */
cd29fe6f 7893static void task_fork_fair(struct task_struct *p)
bf0f6f24 7894{
4fc420c9
DN
7895 struct cfs_rq *cfs_rq;
7896 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7897 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7898 struct rq *rq = this_rq();
7899 unsigned long flags;
7900
05fa785c 7901 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7902
861d034e
PZ
7903 update_rq_clock(rq);
7904
4fc420c9
DN
7905 cfs_rq = task_cfs_rq(current);
7906 curr = cfs_rq->curr;
7907
6c9a27f5
DN
7908 /*
7909 * Not only the cpu but also the task_group of the parent might have
7910 * been changed after parent->se.parent,cfs_rq were copied to
7911 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7912 * of child point to valid ones.
7913 */
7914 rcu_read_lock();
7915 __set_task_cpu(p, this_cpu);
7916 rcu_read_unlock();
bf0f6f24 7917
7109c442 7918 update_curr(cfs_rq);
cd29fe6f 7919
b5d9d734
MG
7920 if (curr)
7921 se->vruntime = curr->vruntime;
aeb73b04 7922 place_entity(cfs_rq, se, 1);
4d78e7b6 7923
cd29fe6f 7924 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7925 /*
edcb60a3
IM
7926 * Upon rescheduling, sched_class::put_prev_task() will place
7927 * 'current' within the tree based on its new key value.
7928 */
4d78e7b6 7929 swap(curr->vruntime, se->vruntime);
8875125e 7930 resched_curr(rq);
4d78e7b6 7931 }
bf0f6f24 7932
88ec22d3
PZ
7933 se->vruntime -= cfs_rq->min_vruntime;
7934
05fa785c 7935 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7936}
7937
cb469845
SR
7938/*
7939 * Priority of the task has changed. Check to see if we preempt
7940 * the current task.
7941 */
da7a735e
PZ
7942static void
7943prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7944{
da0c1e65 7945 if (!task_on_rq_queued(p))
da7a735e
PZ
7946 return;
7947
cb469845
SR
7948 /*
7949 * Reschedule if we are currently running on this runqueue and
7950 * our priority decreased, or if we are not currently running on
7951 * this runqueue and our priority is higher than the current's
7952 */
da7a735e 7953 if (rq->curr == p) {
cb469845 7954 if (p->prio > oldprio)
8875125e 7955 resched_curr(rq);
cb469845 7956 } else
15afe09b 7957 check_preempt_curr(rq, p, 0);
cb469845
SR
7958}
7959
daa59407 7960static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7961{
7962 struct sched_entity *se = &p->se;
da7a735e
PZ
7963
7964 /*
daa59407
BP
7965 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7966 * the dequeue_entity(.flags=0) will already have normalized the
7967 * vruntime.
7968 */
7969 if (p->on_rq)
7970 return true;
7971
7972 /*
7973 * When !on_rq, vruntime of the task has usually NOT been normalized.
7974 * But there are some cases where it has already been normalized:
da7a735e 7975 *
daa59407
BP
7976 * - A forked child which is waiting for being woken up by
7977 * wake_up_new_task().
7978 * - A task which has been woken up by try_to_wake_up() and
7979 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7980 */
daa59407
BP
7981 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7982 return true;
7983
7984 return false;
7985}
7986
7987static void detach_task_cfs_rq(struct task_struct *p)
7988{
7989 struct sched_entity *se = &p->se;
7990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7991
7992 if (!vruntime_normalized(p)) {
da7a735e
PZ
7993 /*
7994 * Fix up our vruntime so that the current sleep doesn't
7995 * cause 'unlimited' sleep bonus.
7996 */
7997 place_entity(cfs_rq, se, 0);
7998 se->vruntime -= cfs_rq->min_vruntime;
7999 }
9ee474f5 8000
9d89c257 8001 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8002 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8003}
8004
daa59407 8005static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8006{
f36c019c 8007 struct sched_entity *se = &p->se;
daa59407 8008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8009
8010#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8011 /*
8012 * Since the real-depth could have been changed (only FAIR
8013 * class maintain depth value), reset depth properly.
8014 */
8015 se->depth = se->parent ? se->parent->depth + 1 : 0;
8016#endif
7855a35a 8017
6efdb105 8018 /* Synchronize task with its cfs_rq */
daa59407
BP
8019 attach_entity_load_avg(cfs_rq, se);
8020
8021 if (!vruntime_normalized(p))
8022 se->vruntime += cfs_rq->min_vruntime;
8023}
6efdb105 8024
daa59407
BP
8025static void switched_from_fair(struct rq *rq, struct task_struct *p)
8026{
8027 detach_task_cfs_rq(p);
8028}
8029
8030static void switched_to_fair(struct rq *rq, struct task_struct *p)
8031{
8032 attach_task_cfs_rq(p);
7855a35a 8033
daa59407 8034 if (task_on_rq_queued(p)) {
7855a35a 8035 /*
daa59407
BP
8036 * We were most likely switched from sched_rt, so
8037 * kick off the schedule if running, otherwise just see
8038 * if we can still preempt the current task.
7855a35a 8039 */
daa59407
BP
8040 if (rq->curr == p)
8041 resched_curr(rq);
8042 else
8043 check_preempt_curr(rq, p, 0);
7855a35a 8044 }
cb469845
SR
8045}
8046
83b699ed
SV
8047/* Account for a task changing its policy or group.
8048 *
8049 * This routine is mostly called to set cfs_rq->curr field when a task
8050 * migrates between groups/classes.
8051 */
8052static void set_curr_task_fair(struct rq *rq)
8053{
8054 struct sched_entity *se = &rq->curr->se;
8055
ec12cb7f
PT
8056 for_each_sched_entity(se) {
8057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8058
8059 set_next_entity(cfs_rq, se);
8060 /* ensure bandwidth has been allocated on our new cfs_rq */
8061 account_cfs_rq_runtime(cfs_rq, 0);
8062 }
83b699ed
SV
8063}
8064
029632fb
PZ
8065void init_cfs_rq(struct cfs_rq *cfs_rq)
8066{
8067 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8068 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8069#ifndef CONFIG_64BIT
8070 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8071#endif
141965c7 8072#ifdef CONFIG_SMP
9d89c257
YD
8073 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8074 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8075#endif
029632fb
PZ
8076}
8077
810b3817 8078#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8079static void task_move_group_fair(struct task_struct *p)
810b3817 8080{
daa59407 8081 detach_task_cfs_rq(p);
b2b5ce02 8082 set_task_rq(p, task_cpu(p));
6efdb105
BP
8083
8084#ifdef CONFIG_SMP
8085 /* Tell se's cfs_rq has been changed -- migrated */
8086 p->se.avg.last_update_time = 0;
8087#endif
daa59407 8088 attach_task_cfs_rq(p);
810b3817 8089}
029632fb
PZ
8090
8091void free_fair_sched_group(struct task_group *tg)
8092{
8093 int i;
8094
8095 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8096
8097 for_each_possible_cpu(i) {
8098 if (tg->cfs_rq)
8099 kfree(tg->cfs_rq[i]);
12695578
YD
8100 if (tg->se) {
8101 if (tg->se[i])
8102 remove_entity_load_avg(tg->se[i]);
029632fb 8103 kfree(tg->se[i]);
12695578 8104 }
029632fb
PZ
8105 }
8106
8107 kfree(tg->cfs_rq);
8108 kfree(tg->se);
8109}
8110
8111int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8112{
8113 struct cfs_rq *cfs_rq;
8114 struct sched_entity *se;
8115 int i;
8116
8117 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8118 if (!tg->cfs_rq)
8119 goto err;
8120 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8121 if (!tg->se)
8122 goto err;
8123
8124 tg->shares = NICE_0_LOAD;
8125
8126 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8127
8128 for_each_possible_cpu(i) {
8129 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8130 GFP_KERNEL, cpu_to_node(i));
8131 if (!cfs_rq)
8132 goto err;
8133
8134 se = kzalloc_node(sizeof(struct sched_entity),
8135 GFP_KERNEL, cpu_to_node(i));
8136 if (!se)
8137 goto err_free_rq;
8138
8139 init_cfs_rq(cfs_rq);
8140 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8141 init_entity_runnable_average(se);
029632fb
PZ
8142 }
8143
8144 return 1;
8145
8146err_free_rq:
8147 kfree(cfs_rq);
8148err:
8149 return 0;
8150}
8151
8152void unregister_fair_sched_group(struct task_group *tg, int cpu)
8153{
8154 struct rq *rq = cpu_rq(cpu);
8155 unsigned long flags;
8156
8157 /*
8158 * Only empty task groups can be destroyed; so we can speculatively
8159 * check on_list without danger of it being re-added.
8160 */
8161 if (!tg->cfs_rq[cpu]->on_list)
8162 return;
8163
8164 raw_spin_lock_irqsave(&rq->lock, flags);
8165 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8166 raw_spin_unlock_irqrestore(&rq->lock, flags);
8167}
8168
8169void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8170 struct sched_entity *se, int cpu,
8171 struct sched_entity *parent)
8172{
8173 struct rq *rq = cpu_rq(cpu);
8174
8175 cfs_rq->tg = tg;
8176 cfs_rq->rq = rq;
029632fb
PZ
8177 init_cfs_rq_runtime(cfs_rq);
8178
8179 tg->cfs_rq[cpu] = cfs_rq;
8180 tg->se[cpu] = se;
8181
8182 /* se could be NULL for root_task_group */
8183 if (!se)
8184 return;
8185
fed14d45 8186 if (!parent) {
029632fb 8187 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8188 se->depth = 0;
8189 } else {
029632fb 8190 se->cfs_rq = parent->my_q;
fed14d45
PZ
8191 se->depth = parent->depth + 1;
8192 }
029632fb
PZ
8193
8194 se->my_q = cfs_rq;
0ac9b1c2
PT
8195 /* guarantee group entities always have weight */
8196 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8197 se->parent = parent;
8198}
8199
8200static DEFINE_MUTEX(shares_mutex);
8201
8202int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8203{
8204 int i;
8205 unsigned long flags;
8206
8207 /*
8208 * We can't change the weight of the root cgroup.
8209 */
8210 if (!tg->se[0])
8211 return -EINVAL;
8212
8213 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8214
8215 mutex_lock(&shares_mutex);
8216 if (tg->shares == shares)
8217 goto done;
8218
8219 tg->shares = shares;
8220 for_each_possible_cpu(i) {
8221 struct rq *rq = cpu_rq(i);
8222 struct sched_entity *se;
8223
8224 se = tg->se[i];
8225 /* Propagate contribution to hierarchy */
8226 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8227
8228 /* Possible calls to update_curr() need rq clock */
8229 update_rq_clock(rq);
17bc14b7 8230 for_each_sched_entity(se)
029632fb
PZ
8231 update_cfs_shares(group_cfs_rq(se));
8232 raw_spin_unlock_irqrestore(&rq->lock, flags);
8233 }
8234
8235done:
8236 mutex_unlock(&shares_mutex);
8237 return 0;
8238}
8239#else /* CONFIG_FAIR_GROUP_SCHED */
8240
8241void free_fair_sched_group(struct task_group *tg) { }
8242
8243int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8244{
8245 return 1;
8246}
8247
8248void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8249
8250#endif /* CONFIG_FAIR_GROUP_SCHED */
8251
810b3817 8252
6d686f45 8253static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8254{
8255 struct sched_entity *se = &task->se;
0d721cea
PW
8256 unsigned int rr_interval = 0;
8257
8258 /*
8259 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8260 * idle runqueue:
8261 */
0d721cea 8262 if (rq->cfs.load.weight)
a59f4e07 8263 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8264
8265 return rr_interval;
8266}
8267
bf0f6f24
IM
8268/*
8269 * All the scheduling class methods:
8270 */
029632fb 8271const struct sched_class fair_sched_class = {
5522d5d5 8272 .next = &idle_sched_class,
bf0f6f24
IM
8273 .enqueue_task = enqueue_task_fair,
8274 .dequeue_task = dequeue_task_fair,
8275 .yield_task = yield_task_fair,
d95f4122 8276 .yield_to_task = yield_to_task_fair,
bf0f6f24 8277
2e09bf55 8278 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8279
8280 .pick_next_task = pick_next_task_fair,
8281 .put_prev_task = put_prev_task_fair,
8282
681f3e68 8283#ifdef CONFIG_SMP
4ce72a2c 8284 .select_task_rq = select_task_rq_fair,
0a74bef8 8285 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8286
0bcdcf28
CE
8287 .rq_online = rq_online_fair,
8288 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8289
8290 .task_waking = task_waking_fair,
12695578 8291 .task_dead = task_dead_fair,
c5b28038 8292 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8293#endif
bf0f6f24 8294
83b699ed 8295 .set_curr_task = set_curr_task_fair,
bf0f6f24 8296 .task_tick = task_tick_fair,
cd29fe6f 8297 .task_fork = task_fork_fair,
cb469845
SR
8298
8299 .prio_changed = prio_changed_fair,
da7a735e 8300 .switched_from = switched_from_fair,
cb469845 8301 .switched_to = switched_to_fair,
810b3817 8302
0d721cea
PW
8303 .get_rr_interval = get_rr_interval_fair,
8304
6e998916
SG
8305 .update_curr = update_curr_fair,
8306
810b3817 8307#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8308 .task_move_group = task_move_group_fair,
810b3817 8309#endif
bf0f6f24
IM
8310};
8311
8312#ifdef CONFIG_SCHED_DEBUG
029632fb 8313void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8314{
bf0f6f24
IM
8315 struct cfs_rq *cfs_rq;
8316
5973e5b9 8317 rcu_read_lock();
c3b64f1e 8318 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8319 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8320 rcu_read_unlock();
bf0f6f24 8321}
397f2378
SD
8322
8323#ifdef CONFIG_NUMA_BALANCING
8324void show_numa_stats(struct task_struct *p, struct seq_file *m)
8325{
8326 int node;
8327 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8328
8329 for_each_online_node(node) {
8330 if (p->numa_faults) {
8331 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8332 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8333 }
8334 if (p->numa_group) {
8335 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8336 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8337 }
8338 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8339 }
8340}
8341#endif /* CONFIG_NUMA_BALANCING */
8342#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8343
8344__init void init_sched_fair_class(void)
8345{
8346#ifdef CONFIG_SMP
8347 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8348
3451d024 8349#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8350 nohz.next_balance = jiffies;
029632fb 8351 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8352 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8353#endif
8354#endif /* SMP */
8355
8356}