]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/fair: Make utilization tracking CPU scale-invariant
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
664 * Note: The tables below are dependent on this value.
665 */
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
a75cdaa9 669
540247fb
YD
670/* Give new sched_entity start runnable values to heavy its load in infant time */
671void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 672{
540247fb 673 struct sched_avg *sa = &se->avg;
a75cdaa9 674
9d89c257
YD
675 sa->last_update_time = 0;
676 /*
677 * sched_avg's period_contrib should be strictly less then 1024, so
678 * we give it 1023 to make sure it is almost a period (1024us), and
679 * will definitely be update (after enqueue).
680 */
681 sa->period_contrib = 1023;
540247fb 682 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 687}
7ea241af
YD
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 691#else
540247fb 692void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
693{
694}
695#endif
696
bf0f6f24 697/*
9dbdb155 698 * Update the current task's runtime statistics.
bf0f6f24 699 */
b7cc0896 700static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 701{
429d43bc 702 struct sched_entity *curr = cfs_rq->curr;
78becc27 703 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 704 u64 delta_exec;
bf0f6f24
IM
705
706 if (unlikely(!curr))
707 return;
708
9dbdb155
PZ
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
34f28ecd 711 return;
bf0f6f24 712
8ebc91d9 713 curr->exec_start = now;
d842de87 714
9dbdb155
PZ
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
d842de87
SV
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
f977bb49 727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 728 cpuacct_charge(curtask, delta_exec);
f06febc9 729 account_group_exec_runtime(curtask, delta_exec);
d842de87 730 }
ec12cb7f
PT
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
733}
734
6e998916
SG
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
bf0f6f24 740static inline void
5870db5b 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 742{
78becc27 743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
744}
745
bf0f6f24
IM
746/*
747 * Task is being enqueued - update stats:
748 */
d2417e5a 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
bf0f6f24
IM
751 /*
752 * Are we enqueueing a waiting task? (for current tasks
753 * a dequeue/enqueue event is a NOP)
754 */
429d43bc 755 if (se != cfs_rq->curr)
5870db5b 756 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
757}
758
bf0f6f24 759static void
9ef0a961 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 761{
41acab88 762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771 }
772#endif
41acab88 773 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
774}
775
776static inline void
19b6a2e3 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 778{
bf0f6f24
IM
779 /*
780 * Mark the end of the wait period if dequeueing a
781 * waiting task:
782 */
429d43bc 783 if (se != cfs_rq->curr)
9ef0a961 784 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
785}
786
787/*
788 * We are picking a new current task - update its stats:
789 */
790static inline void
79303e9e 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
792{
793 /*
794 * We are starting a new run period:
795 */
78becc27 796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
797}
798
bf0f6f24
IM
799/**************************************************
800 * Scheduling class queueing methods:
801 */
802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804/*
598f0ec0
MG
805 * Approximate time to scan a full NUMA task in ms. The task scan period is
806 * calculated based on the tasks virtual memory size and
807 * numa_balancing_scan_size.
cbee9f88 808 */
598f0ec0
MG
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
811
812/* Portion of address space to scan in MB */
813unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 814
4b96a29b
PZ
815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
598f0ec0
MG
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823 /*
824 * Calculations based on RSS as non-present and empty pages are skipped
825 * by the PTE scanner and NUMA hinting faults should be trapped based
826 * on resident pages
827 */
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
316c1608 842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
64192658
KT
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859 /* Watch for min being lower than max due to floor calculations */
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
0ec8aa00
PZ
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
8c8a743c
PZ
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock; /* nr_tasks, tasks */
880 int nr_tasks;
e29cf08b 881 pid_t gid;
8c8a743c
PZ
882
883 struct rcu_head rcu;
20e07dea 884 nodemask_t active_nodes;
989348b5 885 unsigned long total_faults;
7e2703e6
RR
886 /*
887 * Faults_cpu is used to decide whether memory should move
888 * towards the CPU. As a consequence, these stats are weighted
889 * more by CPU use than by memory faults.
890 */
50ec8a40 891 unsigned long *faults_cpu;
989348b5 892 unsigned long faults[0];
8c8a743c
PZ
893};
894
be1e4e76
RR
895/* Shared or private faults. */
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898/* Memory and CPU locality */
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901/* Averaged statistics, and temporary buffers. */
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
e29cf08b
MG
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
44dba3d5
IM
909/*
910 * The averaged statistics, shared & private, memory & cpu,
911 * occupy the first half of the array. The second half of the
912 * array is for current counters, which are averaged into the
913 * first set by task_numa_placement.
914 */
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 916{
44dba3d5 917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
44dba3d5 922 if (!p->numa_faults)
ac8e895b
MG
923 return 0;
924
44dba3d5
IM
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
927}
928
83e1d2cd
MG
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
44dba3d5
IM
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
936}
937
20e07dea
RR
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
44dba3d5
IM
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
942}
943
6c6b1193
RR
944/* Handle placement on systems where not all nodes are directly connected. */
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951 /*
952 * All nodes are directly connected, and the same distance
953 * from each other. No need for fancy placement algorithms.
954 */
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958 /*
959 * This code is called for each node, introducing N^2 complexity,
960 * which should be ok given the number of nodes rarely exceeds 8.
961 */
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966 /*
967 * The furthest away nodes in the system are not interesting
968 * for placement; nid was already counted.
969 */
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973 /*
974 * On systems with a backplane NUMA topology, compare groups
975 * of nodes, and move tasks towards the group with the most
976 * memory accesses. When comparing two nodes at distance
977 * "hoplimit", only nodes closer by than "hoplimit" are part
978 * of each group. Skip other nodes.
979 */
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984 /* Add up the faults from nearby nodes. */
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990 /*
991 * On systems with a glueless mesh NUMA topology, there are
992 * no fixed "groups of nodes". Instead, nodes that are not
993 * directly connected bounce traffic through intermediate
994 * nodes; a numa_group can occupy any set of nodes.
995 * The further away a node is, the less the faults count.
996 * This seems to result in good task placement.
997 */
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
83e1d2cd
MG
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node. The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
7bd95320
RR
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
83e1d2cd 1017{
7bd95320 1018 unsigned long faults, total_faults;
83e1d2cd 1019
44dba3d5 1020 if (!p->numa_faults)
83e1d2cd
MG
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
7bd95320 1028 faults = task_faults(p, nid);
6c6b1193
RR
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
7bd95320 1031 return 1000 * faults / total_faults;
83e1d2cd
MG
1032}
1033
7bd95320
RR
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
83e1d2cd 1036{
7bd95320
RR
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
83e1d2cd
MG
1045 return 0;
1046
7bd95320 1047 faults = group_faults(p, nid);
6c6b1193
RR
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
7bd95320 1050 return 1000 * faults / total_faults;
83e1d2cd
MG
1051}
1052
10f39042
RR
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062 /*
1063 * Multi-stage node selection is used in conjunction with a periodic
1064 * migration fault to build a temporal task<->page relation. By using
1065 * a two-stage filter we remove short/unlikely relations.
1066 *
1067 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 * a task's usage of a particular page (n_p) per total usage of this
1069 * page (n_t) (in a given time-span) to a probability.
1070 *
1071 * Our periodic faults will sample this probability and getting the
1072 * same result twice in a row, given these samples are fully
1073 * independent, is then given by P(n)^2, provided our sample period
1074 * is sufficiently short compared to the usage pattern.
1075 *
1076 * This quadric squishes small probabilities, making it less likely we
1077 * act on an unlikely task<->page relation.
1078 */
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084 /* Always allow migrate on private faults */
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088 /* A shared fault, but p->numa_group has not been set up yet. */
1089 if (!ng)
1090 return true;
1091
1092 /*
1093 * Do not migrate if the destination is not a node that
1094 * is actively used by this numa group.
1095 */
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099 /*
1100 * Source is a node that is not actively used by this
1101 * numa group, while the destination is. Migrate.
1102 */
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106 /*
1107 * Both source and destination are nodes in active
1108 * use by this numa group. Maximize memory bandwidth
1109 * by migrating from more heavily used groups, to less
1110 * heavily used ones, spreading the load around.
1111 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 */
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
e6628d5b 1116static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
ced549fa 1119static unsigned long capacity_of(int cpu);
58d081b5
MG
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
fb13c7ee 1122/* Cached statistics for all CPUs within a node */
58d081b5 1123struct numa_stats {
fb13c7ee 1124 unsigned long nr_running;
58d081b5 1125 unsigned long load;
fb13c7ee
MG
1126
1127 /* Total compute capacity of CPUs on a node */
5ef20ca1 1128 unsigned long compute_capacity;
fb13c7ee
MG
1129
1130 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1131 unsigned long task_capacity;
1b6a7495 1132 int has_free_capacity;
58d081b5 1133};
e6628d5b 1134
fb13c7ee
MG
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
83d7f242
RR
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
fb13c7ee
MG
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
ced549fa 1149 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1150
1151 cpus++;
fb13c7ee
MG
1152 }
1153
5eca82a9
PZ
1154 /*
1155 * If we raced with hotplug and there are no CPUs left in our mask
1156 * the @ns structure is NULL'ed and task_numa_compare() will
1157 * not find this node attractive.
1158 *
1b6a7495
NP
1159 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 * imbalance and bail there.
5eca82a9
PZ
1161 */
1162 if (!cpus)
1163 return;
1164
83d7f242
RR
1165 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt; /* cores */
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1172}
1173
58d081b5
MG
1174struct task_numa_env {
1175 struct task_struct *p;
e6628d5b 1176
58d081b5
MG
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
e6628d5b 1179
58d081b5 1180 struct numa_stats src_stats, dst_stats;
e6628d5b 1181
40ea2b42 1182 int imbalance_pct;
7bd95320 1183 int dist;
fb13c7ee
MG
1184
1185 struct task_struct *best_task;
1186 long best_imp;
58d081b5
MG
1187 int best_cpu;
1188};
1189
fb13c7ee
MG
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
28a21745 1203static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1204 struct task_numa_env *env)
1205{
e4991b24
RR
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
28a21745
RR
1208 long src_capacity, dst_capacity;
1209
1210 /*
1211 * The load is corrected for the CPU capacity available on each node.
1212 *
1213 * src_load dst_load
1214 * ------------ vs ---------
1215 * src_capacity dst_capacity
1216 */
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1219
1220 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
e63da036
RR
1223
1224 /* Is the difference below the threshold? */
e4991b24
RR
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1227 if (imb <= 0)
1228 return false;
1229
1230 /*
1231 * The imbalance is above the allowed threshold.
e4991b24 1232 * Compare it with the old imbalance.
e63da036 1233 */
28a21745 1234 orig_src_load = env->src_stats.load;
e4991b24 1235 orig_dst_load = env->dst_stats.load;
28a21745 1236
e4991b24
RR
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
e63da036 1239
e4991b24
RR
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243 /* Would this change make things worse? */
1244 return (imb > old_imb);
e63da036
RR
1245}
1246
fb13c7ee
MG
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
887c290e
RR
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
fb13c7ee
MG
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
28a21745 1259 long src_load, dst_load;
fb13c7ee 1260 long load;
1c5d3eb3 1261 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1262 long moveimp = imp;
7bd95320 1263 int dist = env->dist;
fb13c7ee
MG
1264
1265 rcu_read_lock();
1effd9f1
KT
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269 /*
1270 * No need to move the exiting task, and this ensures that ->curr
1271 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 * is safe under RCU read lock.
1273 * Note that rcu_read_lock() itself can't protect from the final
1274 * put_task_struct() after the last schedule().
1275 */
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1277 cur = NULL;
1effd9f1 1278 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1279
7af68335
PZ
1280 /*
1281 * Because we have preemption enabled we can get migrated around and
1282 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 */
1284 if (cur == env->p)
1285 goto unlock;
1286
fb13c7ee
MG
1287 /*
1288 * "imp" is the fault differential for the source task between the
1289 * source and destination node. Calculate the total differential for
1290 * the source task and potential destination task. The more negative
1291 * the value is, the more rmeote accesses that would be expected to
1292 * be incurred if the tasks were swapped.
1293 */
1294 if (cur) {
1295 /* Skip this swap candidate if cannot move to the source cpu */
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
887c290e
RR
1299 /*
1300 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1301 * in any group then look only at task weights.
887c290e 1302 */
ca28aa53 1303 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1306 /*
1307 * Add some hysteresis to prevent swapping the
1308 * tasks within a group over tiny differences.
1309 */
1310 if (cur->numa_group)
1311 imp -= imp/16;
887c290e 1312 } else {
ca28aa53
RR
1313 /*
1314 * Compare the group weights. If a task is all by
1315 * itself (not part of a group), use the task weight
1316 * instead.
1317 */
ca28aa53 1318 if (cur->numa_group)
7bd95320
RR
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
ca28aa53 1321 else
7bd95320
RR
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
887c290e 1324 }
fb13c7ee
MG
1325 }
1326
0132c3e1 1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1328 goto unlock;
1329
1330 if (!cur) {
1331 /* Is there capacity at our destination? */
b932c03c 1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1333 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
fb13c7ee
MG
1342 goto assign;
1343
1344 /*
1345 * In the overloaded case, try and keep the load balanced.
1346 */
1347balance:
e720fff6
PZ
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
fb13c7ee 1351
0132c3e1
RR
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353 /*
1354 * If the improvement from just moving env->p direction is
1355 * better than swapping tasks around, check if a move is
1356 * possible. Store a slightly smaller score than moveimp,
1357 * so an actually idle CPU will win.
1358 */
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
fb13c7ee 1369 if (cur) {
e720fff6
PZ
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
fb13c7ee
MG
1373 }
1374
28a21745 1375 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1376 goto unlock;
1377
ba7e5a27
RR
1378 /*
1379 * One idle CPU per node is evaluated for a task numa move.
1380 * Call select_idle_sibling to maybe find a better one.
1381 */
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
fb13c7ee
MG
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
887c290e
RR
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
2c8a50aa
MG
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 /* Skip this CPU if the source task cannot migrate */
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
887c290e 1402 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1403 }
1404}
1405
6f9aad0b
RR
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415 /*
1416 * Only consider a task move if the source has a higher load
1417 * than the destination, corrected for CPU capacity on each node.
1418 *
1419 * src->load dst->load
1420 * --------------------- vs ---------------------
1421 * src->compute_capacity dst->compute_capacity
1422 */
44dcb04f
SD
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1426 return true;
1427
1428 return false;
1429}
1430
58d081b5
MG
1431static int task_numa_migrate(struct task_struct *p)
1432{
58d081b5
MG
1433 struct task_numa_env env = {
1434 .p = p,
fb13c7ee 1435
58d081b5 1436 .src_cpu = task_cpu(p),
b32e86b4 1437 .src_nid = task_node(p),
fb13c7ee
MG
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
58d081b5
MG
1444 };
1445 struct sched_domain *sd;
887c290e 1446 unsigned long taskweight, groupweight;
7bd95320 1447 int nid, ret, dist;
887c290e 1448 long taskimp, groupimp;
e6628d5b 1449
58d081b5 1450 /*
fb13c7ee
MG
1451 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 * imbalance and would be the first to start moving tasks about.
1453 *
1454 * And we want to avoid any moving of tasks about, as that would create
1455 * random movement of tasks -- counter the numa conditions we're trying
1456 * to satisfy here.
58d081b5
MG
1457 */
1458 rcu_read_lock();
fb13c7ee 1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1462 rcu_read_unlock();
1463
46a73e8a
RR
1464 /*
1465 * Cpusets can break the scheduler domain tree into smaller
1466 * balance domains, some of which do not cross NUMA boundaries.
1467 * Tasks that are "trapped" in such domains cannot be migrated
1468 * elsewhere, so there is no point in (re)trying.
1469 */
1470 if (unlikely(!sd)) {
de1b301a 1471 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1472 return -EINVAL;
1473 }
1474
2c8a50aa 1475 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1482 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1483
a43455a1 1484 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1487
9de05d48
RR
1488 /*
1489 * Look at other nodes in these cases:
1490 * - there is no space available on the preferred_nid
1491 * - the task is part of a numa_group that is interleaved across
1492 * multiple NUMA nodes; in order to better consolidate the group,
1493 * we need to check other locations.
1494 */
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
58d081b5 1500
7bd95320 1501 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
7bd95320 1507
83e1d2cd 1508 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1511 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1512 continue;
1513
7bd95320 1514 env.dist = dist;
2c8a50aa
MG
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1519 }
1520 }
1521
68d1b02a
RR
1522 /*
1523 * If the task is part of a workload that spans multiple NUMA nodes,
1524 * and is migrating into one of the workload's active nodes, remember
1525 * this node as the task's preferred numa node, so the workload can
1526 * settle down.
1527 * A task that migrated to a second choice node will be better off
1528 * trying for a better one later. Do not set the preferred node here.
1529 */
db015dae
RR
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540 /* No better CPU than the current one was found. */
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
0ec8aa00 1543
04bb2f94
RR
1544 /*
1545 * Reset the scan period if the task is being rescheduled on an
1546 * alternative node to recheck if the tasks is now properly placed.
1547 */
1548 p->numa_scan_period = task_scan_min(p);
1549
fb13c7ee 1550 if (env.best_task == NULL) {
286549dc
MG
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
286549dc
MG
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1560 put_task_struct(env.best_task);
1561 return ret;
e6628d5b
MG
1562}
1563
6b9a7460
MG
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
5085e2a3
RR
1567 unsigned long interval = HZ;
1568
2739d3ee 1569 /* This task has no NUMA fault statistics yet */
44dba3d5 1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1571 return;
1572
2739d3ee 1573 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1576
1577 /* Success if task is already running on preferred CPU */
de1b301a 1578 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1579 return;
1580
1581 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1582 task_numa_migrate(p);
6b9a7460
MG
1583}
1584
20e07dea
RR
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
04bb2f94
RR
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1623 */
1624#define NUMA_PERIOD_SLOTS 10
a22b4b01 1625#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643 /*
1644 * If there were no record hinting faults then either the task is
1645 * completely idle or all activity is areas that are not of interest
074c2381
MG
1646 * to automatic numa balancing. Related to that, if there were failed
1647 * migration then it implies we are migrating too quickly or the local
1648 * node is overloaded. In either case, scan slower
04bb2f94 1649 */
074c2381 1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660 /*
1661 * Prepare to scale scan period relative to the current period.
1662 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 */
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676 /*
1677 * Scale scan rate increases based on sharing. There is an
1678 * inverse relationship between the degree of sharing and
1679 * the adjustment made to the scanning period. Broadly
1680 * speaking the intent is that there is little point
1681 * scanning faster if shared accesses dominate as it may
1682 * simply bounce migrations uselessly
1683 */
2847c90e 1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
7e2703e6
RR
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703 /* Use the start of this time slice to avoid calculations. */
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
9d89c257
YD
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
7e2703e6
RR
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
54009416
RR
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731 /* Direct connections between all NUMA nodes. */
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735 /*
1736 * On a system with glueless mesh NUMA topology, group_weight
1737 * scores nodes according to the number of NUMA hinting faults on
1738 * both the node itself, and on nearby nodes.
1739 */
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756 /*
1757 * Finding the preferred nid in a system with NUMA backplane
1758 * interconnect topology is more involved. The goal is to locate
1759 * tasks from numa_groups near each other in the system, and
1760 * untangle workloads from different sides of the system. This requires
1761 * searching down the hierarchy of node groups, recursively searching
1762 * inside the highest scoring group of nodes. The nodemask tricks
1763 * keep the complexity of the search down.
1764 */
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
81907478 1768 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1769 int a, b;
1770
1771 /* Are there nodes at this distance from each other? */
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780 /* Sum group's NUMA faults; includes a==b case. */
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789 /* Remember the top group. */
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793 /*
1794 * subtle: at the smallest distance there is
1795 * just one node left in each "group", the
1796 * winner is the preferred nid.
1797 */
1798 nid = a;
1799 }
1800 }
1801 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1802 if (!max_faults)
1803 break;
54009416
RR
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
cbee9f88
PZ
1809static void task_numa_placement(struct task_struct *p)
1810{
83e1d2cd
MG
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1813 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1814 unsigned long total_faults;
1815 u64 runtime, period;
7dbd13ed 1816 spinlock_t *group_lock = NULL;
cbee9f88 1817
7e5a2c17
JL
1818 /*
1819 * The p->mm->numa_scan_seq field gets updated without
1820 * exclusive access. Use READ_ONCE() here to ensure
1821 * that the field is read in a single access:
1822 */
316c1608 1823 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
598f0ec0 1827 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1828
7e2703e6
RR
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
7dbd13ed
MG
1833 /* If the task is part of a group prevent parallel updates to group stats */
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
60e69eed 1836 spin_lock_irq(group_lock);
7dbd13ed
MG
1837 }
1838
688b7585
MG
1839 /* Find the node with the highest number of faults */
1840 for_each_online_node(nid) {
44dba3d5
IM
1841 /* Keep track of the offsets in numa_faults array */
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1843 unsigned long faults = 0, group_faults = 0;
44dba3d5 1844 int priv;
745d6147 1845
be1e4e76 1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1847 long diff, f_diff, f_weight;
8c8a743c 1848
44dba3d5
IM
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1853
ac8e895b 1854 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1858
7e2703e6
RR
1859 /*
1860 * Normalize the faults_from, so all tasks in a group
1861 * count according to CPU use, instead of by the raw
1862 * number of faults. Tasks with little runtime have
1863 * little over-all impact on throughput, and thus their
1864 * faults are less important.
1865 */
1866 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1868 (total_faults + 1);
44dba3d5
IM
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1871
44dba3d5
IM
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
83e1d2cd 1875 p->total_numa_faults += diff;
8c8a743c 1876 if (p->numa_group) {
44dba3d5
IM
1877 /*
1878 * safe because we can only change our own group
1879 *
1880 * mem_idx represents the offset for a given
1881 * nid and priv in a specific region because it
1882 * is at the beginning of the numa_faults array.
1883 */
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1886 p->numa_group->total_faults += diff;
44dba3d5 1887 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1888 }
ac8e895b
MG
1889 }
1890
688b7585
MG
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
83e1d2cd
MG
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
04bb2f94
RR
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
7dbd13ed 1904 if (p->numa_group) {
20e07dea 1905 update_numa_active_node_mask(p->numa_group);
60e69eed 1906 spin_unlock_irq(group_lock);
54009416 1907 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1908 }
1909
bb97fc31
RR
1910 if (max_faults) {
1911 /* Set the new preferred node */
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
3a7053b3 1917 }
cbee9f88
PZ
1918}
1919
8c8a743c
PZ
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
3e6a9418
MG
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
8c8a743c
PZ
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1942 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
e29cf08b 1950 grp->gid = p->pid;
50ec8a40 1951 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
8c8a743c 1954
20e07dea
RR
1955 node_set(task_node(current), grp->active_nodes);
1956
be1e4e76 1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1958 grp->faults[i] = p->numa_faults[i];
8c8a743c 1959
989348b5 1960 grp->total_faults = p->total_numa_faults;
83e1d2cd 1961
8c8a743c
PZ
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
316c1608 1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1970 goto no_join;
8c8a743c
PZ
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
3354781a 1974 goto no_join;
8c8a743c
PZ
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
3354781a 1978 goto no_join;
8c8a743c
PZ
1979
1980 /*
1981 * Only join the other group if its bigger; if we're the bigger group,
1982 * the other task will join us.
1983 */
1984 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1985 goto no_join;
8c8a743c
PZ
1986
1987 /*
1988 * Tie-break on the grp address.
1989 */
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1991 goto no_join;
8c8a743c 1992
dabe1d99
RR
1993 /* Always join threads in the same process. */
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997 /* Simple filter to avoid false positives due to PID collisions */
1998 if (flags & TNF_SHARED)
1999 join = true;
8c8a743c 2000
3e6a9418
MG
2001 /* Update priv based on whether false sharing was detected */
2002 *priv = !join;
2003
dabe1d99 2004 if (join && !get_numa_group(grp))
3354781a 2005 goto no_join;
8c8a743c 2006
8c8a743c
PZ
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
60e69eed
MG
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2014
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
8c8a743c 2018 }
989348b5
MG
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
8c8a743c 2021
8c8a743c
PZ
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
60e69eed 2026 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
3354781a
PZ
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
8c8a743c
PZ
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
44dba3d5 2041 void *numa_faults = p->numa_faults;
e9dd685c
SR
2042 unsigned long flags;
2043 int i;
8c8a743c
PZ
2044
2045 if (grp) {
e9dd685c 2046 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2048 grp->faults[i] -= p->numa_faults[i];
989348b5 2049 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2050
8c8a743c 2051 grp->nr_tasks--;
e9dd685c 2052 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2053 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2054 put_numa_group(grp);
2055 }
2056
44dba3d5 2057 p->numa_faults = NULL;
82727018 2058 kfree(numa_faults);
8c8a743c
PZ
2059}
2060
cbee9f88
PZ
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
58b46da3 2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2065{
2066 struct task_struct *p = current;
6688cc05 2067 bool migrated = flags & TNF_MIGRATED;
58b46da3 2068 int cpu_node = task_node(current);
792568ec 2069 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2070 int priv;
cbee9f88 2071
2a595721 2072 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2073 return;
2074
9ff1d9ff
MG
2075 /* for example, ksmd faulting in a user's mm */
2076 if (!p->mm)
2077 return;
2078
f809ca9a 2079 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
be1e4e76 2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2083
44dba3d5
IM
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
f809ca9a 2086 return;
745d6147 2087
83e1d2cd 2088 p->total_numa_faults = 0;
04bb2f94 2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2090 }
cbee9f88 2091
8c8a743c
PZ
2092 /*
2093 * First accesses are treated as private, otherwise consider accesses
2094 * to be private if the accessing pid has not changed
2095 */
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2100 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2101 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2102 }
2103
792568ec
RR
2104 /*
2105 * If a workload spans multiple NUMA nodes, a shared fault that
2106 * occurs wholly within the set of nodes that the workload is
2107 * actively using should be counted as local. This allows the
2108 * scan rate to slow down when a workload has settled down.
2109 */
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
cbee9f88 2115 task_numa_placement(p);
f809ca9a 2116
2739d3ee
RR
2117 /*
2118 * Retry task to preferred node migration periodically, in case it
2119 * case it previously failed, or the scheduler moved us.
2120 */
2121 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2122 numa_migrate_preferred(p);
2123
b32e86b4
IM
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
074c2381
MG
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
b32e86b4 2128
44dba3d5
IM
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2131 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2132}
2133
6e5fb223
PZ
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
7e5a2c17
JL
2136 /*
2137 * We only did a read acquisition of the mmap sem, so
2138 * p->mm->numa_scan_seq is written to without exclusive access
2139 * and the update is not guaranteed to be atomic. That's not
2140 * much of an issue though, since this is just used for
2141 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 * expensive, to avoid any form of compiler optimizations:
2143 */
316c1608 2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2145 p->mm->numa_scan_offset = 0;
2146}
2147
cbee9f88
PZ
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
6e5fb223 2157 struct vm_area_struct *vma;
9f40604c 2158 unsigned long start, end;
598f0ec0 2159 unsigned long nr_pte_updates = 0;
9f40604c 2160 long pages;
cbee9f88
PZ
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work; /* protect against double add */
2165 /*
2166 * Who cares about NUMA placement when they're dying.
2167 *
2168 * NOTE: make sure not to dereference p->mm before this check,
2169 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 * without p->mm even though we still had it when we enqueued this
2171 * work.
2172 */
2173 if (p->flags & PF_EXITING)
2174 return;
2175
930aa174 2176 if (!mm->numa_next_scan) {
7e8d16b6
MG
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2179 }
2180
cbee9f88
PZ
2181 /*
2182 * Enforce maximal scan/migration frequency..
2183 */
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
598f0ec0
MG
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
cbee9f88 2192
fb003b80 2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
19a78d11
PZ
2197 /*
2198 * Delay this task enough that another task of this mm will likely win
2199 * the next time around.
2200 */
2201 p->node_stamp += 2 * TICK_NSEC;
2202
9f40604c
MG
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 if (!pages)
2207 return;
cbee9f88 2208
6e5fb223 2209 down_read(&mm->mmap_sem);
9f40604c 2210 vma = find_vma(mm, start);
6e5fb223
PZ
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
9f40604c 2213 start = 0;
6e5fb223
PZ
2214 vma = mm->mmap;
2215 }
9f40604c 2216 for (; vma; vma = vma->vm_next) {
6b79c57b 2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2219 continue;
6b79c57b 2220 }
6e5fb223 2221
4591ce4f
MG
2222 /*
2223 * Shared library pages mapped by multiple processes are not
2224 * migrated as it is expected they are cache replicated. Avoid
2225 * hinting faults in read-only file-backed mappings or the vdso
2226 * as migrating the pages will be of marginal benefit.
2227 */
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
3c67f474
MG
2232 /*
2233 * Skip inaccessible VMAs to avoid any confusion between
2234 * PROT_NONE and NUMA hinting ptes
2235 */
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
4591ce4f 2238
9f40604c
MG
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
598f0ec0
MG
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245 /*
2246 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 * at least one PTE is updated so that unused virtual
2248 * address space is quickly skipped.
2249 */
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2252
9f40604c
MG
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
3cf1962c
RR
2256
2257 cond_resched();
9f40604c 2258 } while (end != vma->vm_end);
cbee9f88 2259 }
6e5fb223 2260
9f40604c 2261out:
6e5fb223 2262 /*
c69307d5
PZ
2263 * It is possible to reach the end of the VMA list but the last few
2264 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 * would find the !migratable VMA on the next scan but not reset the
2266 * scanner to the start so check it now.
6e5fb223
PZ
2267 */
2268 if (vma)
9f40604c 2269 mm->numa_scan_offset = start;
6e5fb223
PZ
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
cbee9f88
PZ
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283 /*
2284 * We don't care about NUMA placement if we don't have memory.
2285 */
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289 /*
2290 * Using runtime rather than walltime has the dual advantage that
2291 * we (mostly) drive the selection from busy threads and that the
2292 * task needs to have done some actual work before we bother with
2293 * NUMA placement.
2294 */
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
4b96a29b 2299 if (!curr->node_stamp)
598f0ec0 2300 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2301 curr->node_stamp += period;
cbee9f88
PZ
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
0ec8aa00
PZ
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
cbee9f88
PZ
2321#endif /* CONFIG_NUMA_BALANCING */
2322
30cfdcfc
DA
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2327 if (!parent_entity(se))
029632fb 2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2329#ifdef CONFIG_SMP
0ec8aa00
PZ
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
367456c7 2336#endif
30cfdcfc 2337 cfs_rq->nr_running++;
30cfdcfc
DA
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2344 if (!parent_entity(se))
029632fb 2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2348 list_del_init(&se->group_node);
0ec8aa00 2349 }
30cfdcfc 2350 cfs_rq->nr_running--;
30cfdcfc
DA
2351}
2352
3ff6dcac
YZ
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
cf5f0acf
PZ
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359 /*
9d89c257
YD
2360 * Use this CPU's real-time load instead of the last load contribution
2361 * as the updating of the contribution is delayed, and we will use the
2362 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2363 */
bf5b986e 2364 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
7ea241af 2366 tg_weight += cfs_rq_load_avg(cfs_rq);
cf5f0acf
PZ
2367
2368 return tg_weight;
2369}
2370
6d5ab293 2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2372{
cf5f0acf 2373 long tg_weight, load, shares;
3ff6dcac 2374
cf5f0acf 2375 tg_weight = calc_tg_weight(tg, cfs_rq);
7ea241af 2376 load = cfs_rq_load_avg(cfs_rq);
3ff6dcac 2377
3ff6dcac 2378 shares = (tg->shares * load);
cf5f0acf
PZ
2379 if (tg_weight)
2380 shares /= tg_weight;
3ff6dcac
YZ
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
3ff6dcac 2389# else /* CONFIG_SMP */
6d5ab293 2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2391{
2392 return tg->shares;
2393}
3ff6dcac 2394# endif /* CONFIG_SMP */
2069dd75
PZ
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
19e5eebb
PT
2398 if (se->on_rq) {
2399 /* commit outstanding execution time */
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2069dd75 2402 account_entity_dequeue(cfs_rq, se);
19e5eebb 2403 }
2069dd75
PZ
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
82958366
PT
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
6d5ab293 2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
3ff6dcac 2417 long shares;
2069dd75 2418
2069dd75
PZ
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2421 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2422 return;
3ff6dcac
YZ
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
6d5ab293 2427 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
141965c7 2437#ifdef CONFIG_SMP
5b51f2f8
PT
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
9d85f21c
PT
2458/*
2459 * Approximate:
2460 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
5b51f2f8
PT
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471 /* after bounds checking we can collapse to 32-bit */
2472 local_n = n;
2473
2474 /*
2475 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2476 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2478 *
2479 * To achieve constant time decay_load.
2480 */
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2484 }
2485
9d89c257
YD
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
5b51f2f8
PT
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 do {
2508 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2516}
2517
e0f5f3af
DE
2518#define scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2519
9d85f21c
PT
2520/*
2521 * We can represent the historical contribution to runnable average as the
2522 * coefficients of a geometric series. To do this we sub-divide our runnable
2523 * history into segments of approximately 1ms (1024us); label the segment that
2524 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2525 *
2526 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2527 * p0 p1 p2
2528 * (now) (~1ms ago) (~2ms ago)
2529 *
2530 * Let u_i denote the fraction of p_i that the entity was runnable.
2531 *
2532 * We then designate the fractions u_i as our co-efficients, yielding the
2533 * following representation of historical load:
2534 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2535 *
2536 * We choose y based on the with of a reasonably scheduling period, fixing:
2537 * y^32 = 0.5
2538 *
2539 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2540 * approximately half as much as the contribution to load within the last ms
2541 * (u_0).
2542 *
2543 * When a period "rolls over" and we have new u_0`, multiplying the previous
2544 * sum again by y is sufficient to update:
2545 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2546 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2547 */
9d89c257
YD
2548static __always_inline int
2549__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2550 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2551{
e0f5f3af 2552 u64 delta, scaled_delta, periods;
9d89c257 2553 u32 contrib;
e0f5f3af 2554 int delta_w, scaled_delta_w, decayed = 0;
0c1dc6b2 2555 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
e3279a2e 2556 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
9d85f21c 2557
9d89c257 2558 delta = now - sa->last_update_time;
9d85f21c
PT
2559 /*
2560 * This should only happen when time goes backwards, which it
2561 * unfortunately does during sched clock init when we swap over to TSC.
2562 */
2563 if ((s64)delta < 0) {
9d89c257 2564 sa->last_update_time = now;
9d85f21c
PT
2565 return 0;
2566 }
2567
2568 /*
2569 * Use 1024ns as the unit of measurement since it's a reasonable
2570 * approximation of 1us and fast to compute.
2571 */
2572 delta >>= 10;
2573 if (!delta)
2574 return 0;
9d89c257 2575 sa->last_update_time = now;
9d85f21c
PT
2576
2577 /* delta_w is the amount already accumulated against our next period */
9d89c257 2578 delta_w = sa->period_contrib;
9d85f21c 2579 if (delta + delta_w >= 1024) {
9d85f21c
PT
2580 decayed = 1;
2581
9d89c257
YD
2582 /* how much left for next period will start over, we don't know yet */
2583 sa->period_contrib = 0;
2584
9d85f21c
PT
2585 /*
2586 * Now that we know we're crossing a period boundary, figure
2587 * out how much from delta we need to complete the current
2588 * period and accrue it.
2589 */
2590 delta_w = 1024 - delta_w;
e0f5f3af 2591 scaled_delta_w = scale(delta_w, scale_freq);
13962234 2592 if (weight) {
e0f5f3af
DE
2593 sa->load_sum += weight * scaled_delta_w;
2594 if (cfs_rq) {
2595 cfs_rq->runnable_load_sum +=
2596 weight * scaled_delta_w;
2597 }
13962234 2598 }
36ee28e4 2599 if (running)
e3279a2e 2600 sa->util_sum += scale(scaled_delta_w, scale_cpu);
5b51f2f8
PT
2601
2602 delta -= delta_w;
2603
2604 /* Figure out how many additional periods this update spans */
2605 periods = delta / 1024;
2606 delta %= 1024;
2607
9d89c257 2608 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2609 if (cfs_rq) {
2610 cfs_rq->runnable_load_sum =
2611 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2612 }
9d89c257 2613 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2614
2615 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2616 contrib = __compute_runnable_contrib(periods);
e0f5f3af 2617 contrib = scale(contrib, scale_freq);
13962234 2618 if (weight) {
9d89c257 2619 sa->load_sum += weight * contrib;
13962234
YD
2620 if (cfs_rq)
2621 cfs_rq->runnable_load_sum += weight * contrib;
2622 }
36ee28e4 2623 if (running)
e3279a2e 2624 sa->util_sum += scale(contrib, scale_cpu);
9d85f21c
PT
2625 }
2626
2627 /* Remainder of delta accrued against u_0` */
e0f5f3af 2628 scaled_delta = scale(delta, scale_freq);
13962234 2629 if (weight) {
e0f5f3af 2630 sa->load_sum += weight * scaled_delta;
13962234 2631 if (cfs_rq)
e0f5f3af 2632 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2633 }
36ee28e4 2634 if (running)
e3279a2e 2635 sa->util_sum += scale(scaled_delta, scale_cpu);
9ee474f5 2636
9d89c257 2637 sa->period_contrib += delta;
9ee474f5 2638
9d89c257
YD
2639 if (decayed) {
2640 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2641 if (cfs_rq) {
2642 cfs_rq->runnable_load_avg =
2643 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2644 }
9d89c257
YD
2645 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2646 }
aff3e498 2647
9d89c257 2648 return decayed;
9ee474f5
PT
2649}
2650
c566e8e9 2651#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2652/*
9d89c257
YD
2653 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2654 * and effective_load (which is not done because it is too costly).
bb17f655 2655 */
9d89c257 2656static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2657{
9d89c257 2658 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2659
9d89c257
YD
2660 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2661 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2662 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2663 }
8165e145 2664}
f5f9739d 2665
6e83125c 2666#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2667static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2668#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2669
9d89c257 2670static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2671
9d89c257
YD
2672/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2673static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2674{
9d89c257 2675 struct sched_avg *sa = &cfs_rq->avg;
a05e8c51 2676 int decayed;
2dac754e 2677
9d89c257
YD
2678 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2679 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2680 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2681 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
8165e145 2682 }
2dac754e 2683
9d89c257
YD
2684 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2685 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2686 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2687 sa->util_sum = max_t(s32, sa->util_sum -
2688 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2689 }
36ee28e4 2690
9d89c257 2691 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2692 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2693
9d89c257
YD
2694#ifndef CONFIG_64BIT
2695 smp_wmb();
2696 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2697#endif
36ee28e4 2698
9d89c257 2699 return decayed;
9ee474f5
PT
2700}
2701
9d89c257
YD
2702/* Update task and its cfs_rq load average */
2703static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2704{
2dac754e 2705 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2706 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2707 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2708
f1b17280 2709 /*
9d89c257
YD
2710 * Track task load average for carrying it to new CPU after migrated, and
2711 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2712 */
9d89c257 2713 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2714 se->on_rq * scale_load_down(se->load.weight),
2715 cfs_rq->curr == se, NULL);
f1b17280 2716
9d89c257
YD
2717 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2718 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2719}
2720
a05e8c51
BP
2721static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2722{
a9280514
PZ
2723 if (!sched_feat(ATTACH_AGE_LOAD))
2724 goto skip_aging;
2725
6efdb105
BP
2726 /*
2727 * If we got migrated (either between CPUs or between cgroups) we'll
2728 * have aged the average right before clearing @last_update_time.
2729 */
2730 if (se->avg.last_update_time) {
2731 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2732 &se->avg, 0, 0, NULL);
2733
2734 /*
2735 * XXX: we could have just aged the entire load away if we've been
2736 * absent from the fair class for too long.
2737 */
2738 }
2739
a9280514 2740skip_aging:
a05e8c51
BP
2741 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2742 cfs_rq->avg.load_avg += se->avg.load_avg;
2743 cfs_rq->avg.load_sum += se->avg.load_sum;
2744 cfs_rq->avg.util_avg += se->avg.util_avg;
2745 cfs_rq->avg.util_sum += se->avg.util_sum;
2746}
2747
2748static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749{
2750 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2751 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2752 cfs_rq->curr == se, NULL);
2753
2754 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2755 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2756 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2757 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2758}
2759
9d89c257
YD
2760/* Add the load generated by se into cfs_rq's load average */
2761static inline void
2762enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2763{
9d89c257
YD
2764 struct sched_avg *sa = &se->avg;
2765 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2766 int migrated, decayed;
9ee474f5 2767
a05e8c51
BP
2768 migrated = !sa->last_update_time;
2769 if (!migrated) {
9d89c257 2770 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2771 se->on_rq * scale_load_down(se->load.weight),
2772 cfs_rq->curr == se, NULL);
aff3e498 2773 }
c566e8e9 2774
9d89c257 2775 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2776
13962234
YD
2777 cfs_rq->runnable_load_avg += sa->load_avg;
2778 cfs_rq->runnable_load_sum += sa->load_sum;
2779
a05e8c51
BP
2780 if (migrated)
2781 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2782
9d89c257
YD
2783 if (decayed || migrated)
2784 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2785}
2786
13962234
YD
2787/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2788static inline void
2789dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2790{
2791 update_load_avg(se, 1);
2792
2793 cfs_rq->runnable_load_avg =
2794 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2795 cfs_rq->runnable_load_sum =
a05e8c51 2796 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2797}
2798
9ee474f5 2799/*
9d89c257
YD
2800 * Task first catches up with cfs_rq, and then subtract
2801 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2802 */
9d89c257 2803void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2804{
9d89c257
YD
2805 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2806 u64 last_update_time;
2807
2808#ifndef CONFIG_64BIT
2809 u64 last_update_time_copy;
9ee474f5 2810
9d89c257
YD
2811 do {
2812 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2813 smp_rmb();
2814 last_update_time = cfs_rq->avg.last_update_time;
2815 } while (last_update_time != last_update_time_copy);
2816#else
2817 last_update_time = cfs_rq->avg.last_update_time;
2818#endif
2819
13962234 2820 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2821 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2822 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2823}
642dbc39
VG
2824
2825/*
2826 * Update the rq's load with the elapsed running time before entering
2827 * idle. if the last scheduled task is not a CFS task, idle_enter will
2828 * be the only way to update the runnable statistic.
2829 */
2830void idle_enter_fair(struct rq *this_rq)
2831{
642dbc39
VG
2832}
2833
2834/*
2835 * Update the rq's load with the elapsed idle time before a task is
2836 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2837 * be the only way to update the runnable statistic.
2838 */
2839void idle_exit_fair(struct rq *this_rq)
2840{
642dbc39
VG
2841}
2842
7ea241af
YD
2843static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2844{
2845 return cfs_rq->runnable_load_avg;
2846}
2847
2848static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2849{
2850 return cfs_rq->avg.load_avg;
2851}
2852
6e83125c
PZ
2853static int idle_balance(struct rq *this_rq);
2854
38033c37
PZ
2855#else /* CONFIG_SMP */
2856
9d89c257
YD
2857static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2858static inline void
2859enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2860static inline void
2861dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2862static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2863
a05e8c51
BP
2864static inline void
2865attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2866static inline void
2867detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2868
6e83125c
PZ
2869static inline int idle_balance(struct rq *rq)
2870{
2871 return 0;
2872}
2873
38033c37 2874#endif /* CONFIG_SMP */
9d85f21c 2875
2396af69 2876static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2877{
bf0f6f24 2878#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2879 struct task_struct *tsk = NULL;
2880
2881 if (entity_is_task(se))
2882 tsk = task_of(se);
2883
41acab88 2884 if (se->statistics.sleep_start) {
78becc27 2885 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2886
2887 if ((s64)delta < 0)
2888 delta = 0;
2889
41acab88
LDM
2890 if (unlikely(delta > se->statistics.sleep_max))
2891 se->statistics.sleep_max = delta;
bf0f6f24 2892
8c79a045 2893 se->statistics.sleep_start = 0;
41acab88 2894 se->statistics.sum_sleep_runtime += delta;
9745512c 2895
768d0c27 2896 if (tsk) {
e414314c 2897 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2898 trace_sched_stat_sleep(tsk, delta);
2899 }
bf0f6f24 2900 }
41acab88 2901 if (se->statistics.block_start) {
78becc27 2902 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2903
2904 if ((s64)delta < 0)
2905 delta = 0;
2906
41acab88
LDM
2907 if (unlikely(delta > se->statistics.block_max))
2908 se->statistics.block_max = delta;
bf0f6f24 2909
8c79a045 2910 se->statistics.block_start = 0;
41acab88 2911 se->statistics.sum_sleep_runtime += delta;
30084fbd 2912
e414314c 2913 if (tsk) {
8f0dfc34 2914 if (tsk->in_iowait) {
41acab88
LDM
2915 se->statistics.iowait_sum += delta;
2916 se->statistics.iowait_count++;
768d0c27 2917 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2918 }
2919
b781a602
AV
2920 trace_sched_stat_blocked(tsk, delta);
2921
e414314c
PZ
2922 /*
2923 * Blocking time is in units of nanosecs, so shift by
2924 * 20 to get a milliseconds-range estimation of the
2925 * amount of time that the task spent sleeping:
2926 */
2927 if (unlikely(prof_on == SLEEP_PROFILING)) {
2928 profile_hits(SLEEP_PROFILING,
2929 (void *)get_wchan(tsk),
2930 delta >> 20);
2931 }
2932 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2933 }
bf0f6f24
IM
2934 }
2935#endif
2936}
2937
ddc97297
PZ
2938static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939{
2940#ifdef CONFIG_SCHED_DEBUG
2941 s64 d = se->vruntime - cfs_rq->min_vruntime;
2942
2943 if (d < 0)
2944 d = -d;
2945
2946 if (d > 3*sysctl_sched_latency)
2947 schedstat_inc(cfs_rq, nr_spread_over);
2948#endif
2949}
2950
aeb73b04
PZ
2951static void
2952place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2953{
1af5f730 2954 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2955
2cb8600e
PZ
2956 /*
2957 * The 'current' period is already promised to the current tasks,
2958 * however the extra weight of the new task will slow them down a
2959 * little, place the new task so that it fits in the slot that
2960 * stays open at the end.
2961 */
94dfb5e7 2962 if (initial && sched_feat(START_DEBIT))
f9c0b095 2963 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2964
a2e7a7eb 2965 /* sleeps up to a single latency don't count. */
5ca9880c 2966 if (!initial) {
a2e7a7eb 2967 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2968
a2e7a7eb
MG
2969 /*
2970 * Halve their sleep time's effect, to allow
2971 * for a gentler effect of sleepers:
2972 */
2973 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2974 thresh >>= 1;
51e0304c 2975
a2e7a7eb 2976 vruntime -= thresh;
aeb73b04
PZ
2977 }
2978
b5d9d734 2979 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2980 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2981}
2982
d3d9dc33
PT
2983static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2984
bf0f6f24 2985static void
88ec22d3 2986enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2987{
88ec22d3
PZ
2988 /*
2989 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2990 * through calling update_curr().
88ec22d3 2991 */
371fd7e7 2992 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2993 se->vruntime += cfs_rq->min_vruntime;
2994
bf0f6f24 2995 /*
a2a2d680 2996 * Update run-time statistics of the 'current'.
bf0f6f24 2997 */
b7cc0896 2998 update_curr(cfs_rq);
9d89c257 2999 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3000 account_entity_enqueue(cfs_rq, se);
3001 update_cfs_shares(cfs_rq);
bf0f6f24 3002
88ec22d3 3003 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3004 place_entity(cfs_rq, se, 0);
2396af69 3005 enqueue_sleeper(cfs_rq, se);
e9acbff6 3006 }
bf0f6f24 3007
d2417e5a 3008 update_stats_enqueue(cfs_rq, se);
ddc97297 3009 check_spread(cfs_rq, se);
83b699ed
SV
3010 if (se != cfs_rq->curr)
3011 __enqueue_entity(cfs_rq, se);
2069dd75 3012 se->on_rq = 1;
3d4b47b4 3013
d3d9dc33 3014 if (cfs_rq->nr_running == 1) {
3d4b47b4 3015 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3016 check_enqueue_throttle(cfs_rq);
3017 }
bf0f6f24
IM
3018}
3019
2c13c919 3020static void __clear_buddies_last(struct sched_entity *se)
2002c695 3021{
2c13c919
RR
3022 for_each_sched_entity(se) {
3023 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3024 if (cfs_rq->last != se)
2c13c919 3025 break;
f1044799
PZ
3026
3027 cfs_rq->last = NULL;
2c13c919
RR
3028 }
3029}
2002c695 3030
2c13c919
RR
3031static void __clear_buddies_next(struct sched_entity *se)
3032{
3033 for_each_sched_entity(se) {
3034 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3035 if (cfs_rq->next != se)
2c13c919 3036 break;
f1044799
PZ
3037
3038 cfs_rq->next = NULL;
2c13c919 3039 }
2002c695
PZ
3040}
3041
ac53db59
RR
3042static void __clear_buddies_skip(struct sched_entity *se)
3043{
3044 for_each_sched_entity(se) {
3045 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3046 if (cfs_rq->skip != se)
ac53db59 3047 break;
f1044799
PZ
3048
3049 cfs_rq->skip = NULL;
ac53db59
RR
3050 }
3051}
3052
a571bbea
PZ
3053static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3054{
2c13c919
RR
3055 if (cfs_rq->last == se)
3056 __clear_buddies_last(se);
3057
3058 if (cfs_rq->next == se)
3059 __clear_buddies_next(se);
ac53db59
RR
3060
3061 if (cfs_rq->skip == se)
3062 __clear_buddies_skip(se);
a571bbea
PZ
3063}
3064
6c16a6dc 3065static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3066
bf0f6f24 3067static void
371fd7e7 3068dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3069{
a2a2d680
DA
3070 /*
3071 * Update run-time statistics of the 'current'.
3072 */
3073 update_curr(cfs_rq);
13962234 3074 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3075
19b6a2e3 3076 update_stats_dequeue(cfs_rq, se);
371fd7e7 3077 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3078#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3079 if (entity_is_task(se)) {
3080 struct task_struct *tsk = task_of(se);
3081
3082 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3083 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3084 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3085 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3086 }
db36cc7d 3087#endif
67e9fb2a
PZ
3088 }
3089
2002c695 3090 clear_buddies(cfs_rq, se);
4793241b 3091
83b699ed 3092 if (se != cfs_rq->curr)
30cfdcfc 3093 __dequeue_entity(cfs_rq, se);
17bc14b7 3094 se->on_rq = 0;
30cfdcfc 3095 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3096
3097 /*
3098 * Normalize the entity after updating the min_vruntime because the
3099 * update can refer to the ->curr item and we need to reflect this
3100 * movement in our normalized position.
3101 */
371fd7e7 3102 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3103 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3104
d8b4986d
PT
3105 /* return excess runtime on last dequeue */
3106 return_cfs_rq_runtime(cfs_rq);
3107
1e876231 3108 update_min_vruntime(cfs_rq);
17bc14b7 3109 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3110}
3111
3112/*
3113 * Preempt the current task with a newly woken task if needed:
3114 */
7c92e54f 3115static void
2e09bf55 3116check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3117{
11697830 3118 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3119 struct sched_entity *se;
3120 s64 delta;
11697830 3121
6d0f0ebd 3122 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3123 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3124 if (delta_exec > ideal_runtime) {
8875125e 3125 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3126 /*
3127 * The current task ran long enough, ensure it doesn't get
3128 * re-elected due to buddy favours.
3129 */
3130 clear_buddies(cfs_rq, curr);
f685ceac
MG
3131 return;
3132 }
3133
3134 /*
3135 * Ensure that a task that missed wakeup preemption by a
3136 * narrow margin doesn't have to wait for a full slice.
3137 * This also mitigates buddy induced latencies under load.
3138 */
f685ceac
MG
3139 if (delta_exec < sysctl_sched_min_granularity)
3140 return;
3141
f4cfb33e
WX
3142 se = __pick_first_entity(cfs_rq);
3143 delta = curr->vruntime - se->vruntime;
f685ceac 3144
f4cfb33e
WX
3145 if (delta < 0)
3146 return;
d7d82944 3147
f4cfb33e 3148 if (delta > ideal_runtime)
8875125e 3149 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3150}
3151
83b699ed 3152static void
8494f412 3153set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3154{
83b699ed
SV
3155 /* 'current' is not kept within the tree. */
3156 if (se->on_rq) {
3157 /*
3158 * Any task has to be enqueued before it get to execute on
3159 * a CPU. So account for the time it spent waiting on the
3160 * runqueue.
3161 */
3162 update_stats_wait_end(cfs_rq, se);
3163 __dequeue_entity(cfs_rq, se);
9d89c257 3164 update_load_avg(se, 1);
83b699ed
SV
3165 }
3166
79303e9e 3167 update_stats_curr_start(cfs_rq, se);
429d43bc 3168 cfs_rq->curr = se;
eba1ed4b
IM
3169#ifdef CONFIG_SCHEDSTATS
3170 /*
3171 * Track our maximum slice length, if the CPU's load is at
3172 * least twice that of our own weight (i.e. dont track it
3173 * when there are only lesser-weight tasks around):
3174 */
495eca49 3175 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3176 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3177 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3178 }
3179#endif
4a55b450 3180 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3181}
3182
3f3a4904
PZ
3183static int
3184wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3185
ac53db59
RR
3186/*
3187 * Pick the next process, keeping these things in mind, in this order:
3188 * 1) keep things fair between processes/task groups
3189 * 2) pick the "next" process, since someone really wants that to run
3190 * 3) pick the "last" process, for cache locality
3191 * 4) do not run the "skip" process, if something else is available
3192 */
678d5718
PZ
3193static struct sched_entity *
3194pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3195{
678d5718
PZ
3196 struct sched_entity *left = __pick_first_entity(cfs_rq);
3197 struct sched_entity *se;
3198
3199 /*
3200 * If curr is set we have to see if its left of the leftmost entity
3201 * still in the tree, provided there was anything in the tree at all.
3202 */
3203 if (!left || (curr && entity_before(curr, left)))
3204 left = curr;
3205
3206 se = left; /* ideally we run the leftmost entity */
f4b6755f 3207
ac53db59
RR
3208 /*
3209 * Avoid running the skip buddy, if running something else can
3210 * be done without getting too unfair.
3211 */
3212 if (cfs_rq->skip == se) {
678d5718
PZ
3213 struct sched_entity *second;
3214
3215 if (se == curr) {
3216 second = __pick_first_entity(cfs_rq);
3217 } else {
3218 second = __pick_next_entity(se);
3219 if (!second || (curr && entity_before(curr, second)))
3220 second = curr;
3221 }
3222
ac53db59
RR
3223 if (second && wakeup_preempt_entity(second, left) < 1)
3224 se = second;
3225 }
aa2ac252 3226
f685ceac
MG
3227 /*
3228 * Prefer last buddy, try to return the CPU to a preempted task.
3229 */
3230 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3231 se = cfs_rq->last;
3232
ac53db59
RR
3233 /*
3234 * Someone really wants this to run. If it's not unfair, run it.
3235 */
3236 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3237 se = cfs_rq->next;
3238
f685ceac 3239 clear_buddies(cfs_rq, se);
4793241b
PZ
3240
3241 return se;
aa2ac252
PZ
3242}
3243
678d5718 3244static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3245
ab6cde26 3246static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3247{
3248 /*
3249 * If still on the runqueue then deactivate_task()
3250 * was not called and update_curr() has to be done:
3251 */
3252 if (prev->on_rq)
b7cc0896 3253 update_curr(cfs_rq);
bf0f6f24 3254
d3d9dc33
PT
3255 /* throttle cfs_rqs exceeding runtime */
3256 check_cfs_rq_runtime(cfs_rq);
3257
ddc97297 3258 check_spread(cfs_rq, prev);
30cfdcfc 3259 if (prev->on_rq) {
5870db5b 3260 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3261 /* Put 'current' back into the tree. */
3262 __enqueue_entity(cfs_rq, prev);
9d85f21c 3263 /* in !on_rq case, update occurred at dequeue */
9d89c257 3264 update_load_avg(prev, 0);
30cfdcfc 3265 }
429d43bc 3266 cfs_rq->curr = NULL;
bf0f6f24
IM
3267}
3268
8f4d37ec
PZ
3269static void
3270entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3271{
bf0f6f24 3272 /*
30cfdcfc 3273 * Update run-time statistics of the 'current'.
bf0f6f24 3274 */
30cfdcfc 3275 update_curr(cfs_rq);
bf0f6f24 3276
9d85f21c
PT
3277 /*
3278 * Ensure that runnable average is periodically updated.
3279 */
9d89c257 3280 update_load_avg(curr, 1);
bf0bd948 3281 update_cfs_shares(cfs_rq);
9d85f21c 3282
8f4d37ec
PZ
3283#ifdef CONFIG_SCHED_HRTICK
3284 /*
3285 * queued ticks are scheduled to match the slice, so don't bother
3286 * validating it and just reschedule.
3287 */
983ed7a6 3288 if (queued) {
8875125e 3289 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3290 return;
3291 }
8f4d37ec
PZ
3292 /*
3293 * don't let the period tick interfere with the hrtick preemption
3294 */
3295 if (!sched_feat(DOUBLE_TICK) &&
3296 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3297 return;
3298#endif
3299
2c2efaed 3300 if (cfs_rq->nr_running > 1)
2e09bf55 3301 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3302}
3303
ab84d31e
PT
3304
3305/**************************************************
3306 * CFS bandwidth control machinery
3307 */
3308
3309#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3310
3311#ifdef HAVE_JUMP_LABEL
c5905afb 3312static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3313
3314static inline bool cfs_bandwidth_used(void)
3315{
c5905afb 3316 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3317}
3318
1ee14e6c 3319void cfs_bandwidth_usage_inc(void)
029632fb 3320{
1ee14e6c
BS
3321 static_key_slow_inc(&__cfs_bandwidth_used);
3322}
3323
3324void cfs_bandwidth_usage_dec(void)
3325{
3326 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3327}
3328#else /* HAVE_JUMP_LABEL */
3329static bool cfs_bandwidth_used(void)
3330{
3331 return true;
3332}
3333
1ee14e6c
BS
3334void cfs_bandwidth_usage_inc(void) {}
3335void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3336#endif /* HAVE_JUMP_LABEL */
3337
ab84d31e
PT
3338/*
3339 * default period for cfs group bandwidth.
3340 * default: 0.1s, units: nanoseconds
3341 */
3342static inline u64 default_cfs_period(void)
3343{
3344 return 100000000ULL;
3345}
ec12cb7f
PT
3346
3347static inline u64 sched_cfs_bandwidth_slice(void)
3348{
3349 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3350}
3351
a9cf55b2
PT
3352/*
3353 * Replenish runtime according to assigned quota and update expiration time.
3354 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3355 * additional synchronization around rq->lock.
3356 *
3357 * requires cfs_b->lock
3358 */
029632fb 3359void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3360{
3361 u64 now;
3362
3363 if (cfs_b->quota == RUNTIME_INF)
3364 return;
3365
3366 now = sched_clock_cpu(smp_processor_id());
3367 cfs_b->runtime = cfs_b->quota;
3368 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3369}
3370
029632fb
PZ
3371static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3372{
3373 return &tg->cfs_bandwidth;
3374}
3375
f1b17280
PT
3376/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3377static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3378{
3379 if (unlikely(cfs_rq->throttle_count))
3380 return cfs_rq->throttled_clock_task;
3381
78becc27 3382 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3383}
3384
85dac906
PT
3385/* returns 0 on failure to allocate runtime */
3386static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3387{
3388 struct task_group *tg = cfs_rq->tg;
3389 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3390 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3391
3392 /* note: this is a positive sum as runtime_remaining <= 0 */
3393 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3394
3395 raw_spin_lock(&cfs_b->lock);
3396 if (cfs_b->quota == RUNTIME_INF)
3397 amount = min_amount;
58088ad0 3398 else {
77a4d1a1 3399 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3400
3401 if (cfs_b->runtime > 0) {
3402 amount = min(cfs_b->runtime, min_amount);
3403 cfs_b->runtime -= amount;
3404 cfs_b->idle = 0;
3405 }
ec12cb7f 3406 }
a9cf55b2 3407 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3408 raw_spin_unlock(&cfs_b->lock);
3409
3410 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3411 /*
3412 * we may have advanced our local expiration to account for allowed
3413 * spread between our sched_clock and the one on which runtime was
3414 * issued.
3415 */
3416 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3417 cfs_rq->runtime_expires = expires;
85dac906
PT
3418
3419 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3420}
3421
a9cf55b2
PT
3422/*
3423 * Note: This depends on the synchronization provided by sched_clock and the
3424 * fact that rq->clock snapshots this value.
3425 */
3426static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3427{
a9cf55b2 3428 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3429
3430 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3431 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3432 return;
3433
a9cf55b2
PT
3434 if (cfs_rq->runtime_remaining < 0)
3435 return;
3436
3437 /*
3438 * If the local deadline has passed we have to consider the
3439 * possibility that our sched_clock is 'fast' and the global deadline
3440 * has not truly expired.
3441 *
3442 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3443 * whether the global deadline has advanced. It is valid to compare
3444 * cfs_b->runtime_expires without any locks since we only care about
3445 * exact equality, so a partial write will still work.
a9cf55b2
PT
3446 */
3447
51f2176d 3448 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3449 /* extend local deadline, drift is bounded above by 2 ticks */
3450 cfs_rq->runtime_expires += TICK_NSEC;
3451 } else {
3452 /* global deadline is ahead, expiration has passed */
3453 cfs_rq->runtime_remaining = 0;
3454 }
3455}
3456
9dbdb155 3457static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3458{
3459 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3460 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3461 expire_cfs_rq_runtime(cfs_rq);
3462
3463 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3464 return;
3465
85dac906
PT
3466 /*
3467 * if we're unable to extend our runtime we resched so that the active
3468 * hierarchy can be throttled
3469 */
3470 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3471 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3472}
3473
6c16a6dc 3474static __always_inline
9dbdb155 3475void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3476{
56f570e5 3477 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3478 return;
3479
3480 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3481}
3482
85dac906
PT
3483static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3484{
56f570e5 3485 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3486}
3487
64660c86
PT
3488/* check whether cfs_rq, or any parent, is throttled */
3489static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3490{
56f570e5 3491 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3492}
3493
3494/*
3495 * Ensure that neither of the group entities corresponding to src_cpu or
3496 * dest_cpu are members of a throttled hierarchy when performing group
3497 * load-balance operations.
3498 */
3499static inline int throttled_lb_pair(struct task_group *tg,
3500 int src_cpu, int dest_cpu)
3501{
3502 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3503
3504 src_cfs_rq = tg->cfs_rq[src_cpu];
3505 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3506
3507 return throttled_hierarchy(src_cfs_rq) ||
3508 throttled_hierarchy(dest_cfs_rq);
3509}
3510
3511/* updated child weight may affect parent so we have to do this bottom up */
3512static int tg_unthrottle_up(struct task_group *tg, void *data)
3513{
3514 struct rq *rq = data;
3515 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3516
3517 cfs_rq->throttle_count--;
3518#ifdef CONFIG_SMP
3519 if (!cfs_rq->throttle_count) {
f1b17280 3520 /* adjust cfs_rq_clock_task() */
78becc27 3521 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3522 cfs_rq->throttled_clock_task;
64660c86
PT
3523 }
3524#endif
3525
3526 return 0;
3527}
3528
3529static int tg_throttle_down(struct task_group *tg, void *data)
3530{
3531 struct rq *rq = data;
3532 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3533
82958366
PT
3534 /* group is entering throttled state, stop time */
3535 if (!cfs_rq->throttle_count)
78becc27 3536 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3537 cfs_rq->throttle_count++;
3538
3539 return 0;
3540}
3541
d3d9dc33 3542static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3543{
3544 struct rq *rq = rq_of(cfs_rq);
3545 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3546 struct sched_entity *se;
3547 long task_delta, dequeue = 1;
77a4d1a1 3548 bool empty;
85dac906
PT
3549
3550 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3551
f1b17280 3552 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3553 rcu_read_lock();
3554 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3555 rcu_read_unlock();
85dac906
PT
3556
3557 task_delta = cfs_rq->h_nr_running;
3558 for_each_sched_entity(se) {
3559 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3560 /* throttled entity or throttle-on-deactivate */
3561 if (!se->on_rq)
3562 break;
3563
3564 if (dequeue)
3565 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3566 qcfs_rq->h_nr_running -= task_delta;
3567
3568 if (qcfs_rq->load.weight)
3569 dequeue = 0;
3570 }
3571
3572 if (!se)
72465447 3573 sub_nr_running(rq, task_delta);
85dac906
PT
3574
3575 cfs_rq->throttled = 1;
78becc27 3576 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3577 raw_spin_lock(&cfs_b->lock);
d49db342 3578 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3579
c06f04c7
BS
3580 /*
3581 * Add to the _head_ of the list, so that an already-started
3582 * distribute_cfs_runtime will not see us
3583 */
3584 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3585
3586 /*
3587 * If we're the first throttled task, make sure the bandwidth
3588 * timer is running.
3589 */
3590 if (empty)
3591 start_cfs_bandwidth(cfs_b);
3592
85dac906
PT
3593 raw_spin_unlock(&cfs_b->lock);
3594}
3595
029632fb 3596void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3597{
3598 struct rq *rq = rq_of(cfs_rq);
3599 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3600 struct sched_entity *se;
3601 int enqueue = 1;
3602 long task_delta;
3603
22b958d8 3604 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3605
3606 cfs_rq->throttled = 0;
1a55af2e
FW
3607
3608 update_rq_clock(rq);
3609
671fd9da 3610 raw_spin_lock(&cfs_b->lock);
78becc27 3611 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3612 list_del_rcu(&cfs_rq->throttled_list);
3613 raw_spin_unlock(&cfs_b->lock);
3614
64660c86
PT
3615 /* update hierarchical throttle state */
3616 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3617
671fd9da
PT
3618 if (!cfs_rq->load.weight)
3619 return;
3620
3621 task_delta = cfs_rq->h_nr_running;
3622 for_each_sched_entity(se) {
3623 if (se->on_rq)
3624 enqueue = 0;
3625
3626 cfs_rq = cfs_rq_of(se);
3627 if (enqueue)
3628 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3629 cfs_rq->h_nr_running += task_delta;
3630
3631 if (cfs_rq_throttled(cfs_rq))
3632 break;
3633 }
3634
3635 if (!se)
72465447 3636 add_nr_running(rq, task_delta);
671fd9da
PT
3637
3638 /* determine whether we need to wake up potentially idle cpu */
3639 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3640 resched_curr(rq);
671fd9da
PT
3641}
3642
3643static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3644 u64 remaining, u64 expires)
3645{
3646 struct cfs_rq *cfs_rq;
c06f04c7
BS
3647 u64 runtime;
3648 u64 starting_runtime = remaining;
671fd9da
PT
3649
3650 rcu_read_lock();
3651 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3652 throttled_list) {
3653 struct rq *rq = rq_of(cfs_rq);
3654
3655 raw_spin_lock(&rq->lock);
3656 if (!cfs_rq_throttled(cfs_rq))
3657 goto next;
3658
3659 runtime = -cfs_rq->runtime_remaining + 1;
3660 if (runtime > remaining)
3661 runtime = remaining;
3662 remaining -= runtime;
3663
3664 cfs_rq->runtime_remaining += runtime;
3665 cfs_rq->runtime_expires = expires;
3666
3667 /* we check whether we're throttled above */
3668 if (cfs_rq->runtime_remaining > 0)
3669 unthrottle_cfs_rq(cfs_rq);
3670
3671next:
3672 raw_spin_unlock(&rq->lock);
3673
3674 if (!remaining)
3675 break;
3676 }
3677 rcu_read_unlock();
3678
c06f04c7 3679 return starting_runtime - remaining;
671fd9da
PT
3680}
3681
58088ad0
PT
3682/*
3683 * Responsible for refilling a task_group's bandwidth and unthrottling its
3684 * cfs_rqs as appropriate. If there has been no activity within the last
3685 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3686 * used to track this state.
3687 */
3688static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3689{
671fd9da 3690 u64 runtime, runtime_expires;
51f2176d 3691 int throttled;
58088ad0 3692
58088ad0
PT
3693 /* no need to continue the timer with no bandwidth constraint */
3694 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3695 goto out_deactivate;
58088ad0 3696
671fd9da 3697 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3698 cfs_b->nr_periods += overrun;
671fd9da 3699
51f2176d
BS
3700 /*
3701 * idle depends on !throttled (for the case of a large deficit), and if
3702 * we're going inactive then everything else can be deferred
3703 */
3704 if (cfs_b->idle && !throttled)
3705 goto out_deactivate;
a9cf55b2
PT
3706
3707 __refill_cfs_bandwidth_runtime(cfs_b);
3708
671fd9da
PT
3709 if (!throttled) {
3710 /* mark as potentially idle for the upcoming period */
3711 cfs_b->idle = 1;
51f2176d 3712 return 0;
671fd9da
PT
3713 }
3714
e8da1b18
NR
3715 /* account preceding periods in which throttling occurred */
3716 cfs_b->nr_throttled += overrun;
3717
671fd9da 3718 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3719
3720 /*
c06f04c7
BS
3721 * This check is repeated as we are holding onto the new bandwidth while
3722 * we unthrottle. This can potentially race with an unthrottled group
3723 * trying to acquire new bandwidth from the global pool. This can result
3724 * in us over-using our runtime if it is all used during this loop, but
3725 * only by limited amounts in that extreme case.
671fd9da 3726 */
c06f04c7
BS
3727 while (throttled && cfs_b->runtime > 0) {
3728 runtime = cfs_b->runtime;
671fd9da
PT
3729 raw_spin_unlock(&cfs_b->lock);
3730 /* we can't nest cfs_b->lock while distributing bandwidth */
3731 runtime = distribute_cfs_runtime(cfs_b, runtime,
3732 runtime_expires);
3733 raw_spin_lock(&cfs_b->lock);
3734
3735 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3736
3737 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3738 }
58088ad0 3739
671fd9da
PT
3740 /*
3741 * While we are ensured activity in the period following an
3742 * unthrottle, this also covers the case in which the new bandwidth is
3743 * insufficient to cover the existing bandwidth deficit. (Forcing the
3744 * timer to remain active while there are any throttled entities.)
3745 */
3746 cfs_b->idle = 0;
58088ad0 3747
51f2176d
BS
3748 return 0;
3749
3750out_deactivate:
51f2176d 3751 return 1;
58088ad0 3752}
d3d9dc33 3753
d8b4986d
PT
3754/* a cfs_rq won't donate quota below this amount */
3755static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3756/* minimum remaining period time to redistribute slack quota */
3757static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3758/* how long we wait to gather additional slack before distributing */
3759static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3760
db06e78c
BS
3761/*
3762 * Are we near the end of the current quota period?
3763 *
3764 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3765 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3766 * migrate_hrtimers, base is never cleared, so we are fine.
3767 */
d8b4986d
PT
3768static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3769{
3770 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3771 u64 remaining;
3772
3773 /* if the call-back is running a quota refresh is already occurring */
3774 if (hrtimer_callback_running(refresh_timer))
3775 return 1;
3776
3777 /* is a quota refresh about to occur? */
3778 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3779 if (remaining < min_expire)
3780 return 1;
3781
3782 return 0;
3783}
3784
3785static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3786{
3787 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3788
3789 /* if there's a quota refresh soon don't bother with slack */
3790 if (runtime_refresh_within(cfs_b, min_left))
3791 return;
3792
4cfafd30
PZ
3793 hrtimer_start(&cfs_b->slack_timer,
3794 ns_to_ktime(cfs_bandwidth_slack_period),
3795 HRTIMER_MODE_REL);
d8b4986d
PT
3796}
3797
3798/* we know any runtime found here is valid as update_curr() precedes return */
3799static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3800{
3801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3802 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3803
3804 if (slack_runtime <= 0)
3805 return;
3806
3807 raw_spin_lock(&cfs_b->lock);
3808 if (cfs_b->quota != RUNTIME_INF &&
3809 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3810 cfs_b->runtime += slack_runtime;
3811
3812 /* we are under rq->lock, defer unthrottling using a timer */
3813 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3814 !list_empty(&cfs_b->throttled_cfs_rq))
3815 start_cfs_slack_bandwidth(cfs_b);
3816 }
3817 raw_spin_unlock(&cfs_b->lock);
3818
3819 /* even if it's not valid for return we don't want to try again */
3820 cfs_rq->runtime_remaining -= slack_runtime;
3821}
3822
3823static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3824{
56f570e5
PT
3825 if (!cfs_bandwidth_used())
3826 return;
3827
fccfdc6f 3828 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3829 return;
3830
3831 __return_cfs_rq_runtime(cfs_rq);
3832}
3833
3834/*
3835 * This is done with a timer (instead of inline with bandwidth return) since
3836 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3837 */
3838static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3839{
3840 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3841 u64 expires;
3842
3843 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3844 raw_spin_lock(&cfs_b->lock);
3845 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3846 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3847 return;
db06e78c 3848 }
d8b4986d 3849
c06f04c7 3850 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3851 runtime = cfs_b->runtime;
c06f04c7 3852
d8b4986d
PT
3853 expires = cfs_b->runtime_expires;
3854 raw_spin_unlock(&cfs_b->lock);
3855
3856 if (!runtime)
3857 return;
3858
3859 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3860
3861 raw_spin_lock(&cfs_b->lock);
3862 if (expires == cfs_b->runtime_expires)
c06f04c7 3863 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3864 raw_spin_unlock(&cfs_b->lock);
3865}
3866
d3d9dc33
PT
3867/*
3868 * When a group wakes up we want to make sure that its quota is not already
3869 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3870 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3871 */
3872static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3873{
56f570e5
PT
3874 if (!cfs_bandwidth_used())
3875 return;
3876
d3d9dc33
PT
3877 /* an active group must be handled by the update_curr()->put() path */
3878 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3879 return;
3880
3881 /* ensure the group is not already throttled */
3882 if (cfs_rq_throttled(cfs_rq))
3883 return;
3884
3885 /* update runtime allocation */
3886 account_cfs_rq_runtime(cfs_rq, 0);
3887 if (cfs_rq->runtime_remaining <= 0)
3888 throttle_cfs_rq(cfs_rq);
3889}
3890
3891/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3892static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3893{
56f570e5 3894 if (!cfs_bandwidth_used())
678d5718 3895 return false;
56f570e5 3896
d3d9dc33 3897 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3898 return false;
d3d9dc33
PT
3899
3900 /*
3901 * it's possible for a throttled entity to be forced into a running
3902 * state (e.g. set_curr_task), in this case we're finished.
3903 */
3904 if (cfs_rq_throttled(cfs_rq))
678d5718 3905 return true;
d3d9dc33
PT
3906
3907 throttle_cfs_rq(cfs_rq);
678d5718 3908 return true;
d3d9dc33 3909}
029632fb 3910
029632fb
PZ
3911static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3912{
3913 struct cfs_bandwidth *cfs_b =
3914 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3915
029632fb
PZ
3916 do_sched_cfs_slack_timer(cfs_b);
3917
3918 return HRTIMER_NORESTART;
3919}
3920
3921static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3922{
3923 struct cfs_bandwidth *cfs_b =
3924 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3925 int overrun;
3926 int idle = 0;
3927
51f2176d 3928 raw_spin_lock(&cfs_b->lock);
029632fb 3929 for (;;) {
77a4d1a1 3930 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3931 if (!overrun)
3932 break;
3933
3934 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3935 }
4cfafd30
PZ
3936 if (idle)
3937 cfs_b->period_active = 0;
51f2176d 3938 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3939
3940 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3941}
3942
3943void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3944{
3945 raw_spin_lock_init(&cfs_b->lock);
3946 cfs_b->runtime = 0;
3947 cfs_b->quota = RUNTIME_INF;
3948 cfs_b->period = ns_to_ktime(default_cfs_period());
3949
3950 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3951 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3952 cfs_b->period_timer.function = sched_cfs_period_timer;
3953 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3954 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3955}
3956
3957static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3958{
3959 cfs_rq->runtime_enabled = 0;
3960 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3961}
3962
77a4d1a1 3963void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3964{
4cfafd30 3965 lockdep_assert_held(&cfs_b->lock);
029632fb 3966
4cfafd30
PZ
3967 if (!cfs_b->period_active) {
3968 cfs_b->period_active = 1;
3969 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3970 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3971 }
029632fb
PZ
3972}
3973
3974static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3975{
7f1a169b
TH
3976 /* init_cfs_bandwidth() was not called */
3977 if (!cfs_b->throttled_cfs_rq.next)
3978 return;
3979
029632fb
PZ
3980 hrtimer_cancel(&cfs_b->period_timer);
3981 hrtimer_cancel(&cfs_b->slack_timer);
3982}
3983
0e59bdae
KT
3984static void __maybe_unused update_runtime_enabled(struct rq *rq)
3985{
3986 struct cfs_rq *cfs_rq;
3987
3988 for_each_leaf_cfs_rq(rq, cfs_rq) {
3989 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3990
3991 raw_spin_lock(&cfs_b->lock);
3992 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3993 raw_spin_unlock(&cfs_b->lock);
3994 }
3995}
3996
38dc3348 3997static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3998{
3999 struct cfs_rq *cfs_rq;
4000
4001 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4002 if (!cfs_rq->runtime_enabled)
4003 continue;
4004
4005 /*
4006 * clock_task is not advancing so we just need to make sure
4007 * there's some valid quota amount
4008 */
51f2176d 4009 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4010 /*
4011 * Offline rq is schedulable till cpu is completely disabled
4012 * in take_cpu_down(), so we prevent new cfs throttling here.
4013 */
4014 cfs_rq->runtime_enabled = 0;
4015
029632fb
PZ
4016 if (cfs_rq_throttled(cfs_rq))
4017 unthrottle_cfs_rq(cfs_rq);
4018 }
4019}
4020
4021#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4022static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4023{
78becc27 4024 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4025}
4026
9dbdb155 4027static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4028static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4029static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4030static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4031
4032static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4033{
4034 return 0;
4035}
64660c86
PT
4036
4037static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4038{
4039 return 0;
4040}
4041
4042static inline int throttled_lb_pair(struct task_group *tg,
4043 int src_cpu, int dest_cpu)
4044{
4045 return 0;
4046}
029632fb
PZ
4047
4048void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4049
4050#ifdef CONFIG_FAIR_GROUP_SCHED
4051static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4052#endif
4053
029632fb
PZ
4054static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4055{
4056 return NULL;
4057}
4058static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4059static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4060static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4061
4062#endif /* CONFIG_CFS_BANDWIDTH */
4063
bf0f6f24
IM
4064/**************************************************
4065 * CFS operations on tasks:
4066 */
4067
8f4d37ec
PZ
4068#ifdef CONFIG_SCHED_HRTICK
4069static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4070{
8f4d37ec
PZ
4071 struct sched_entity *se = &p->se;
4072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4073
4074 WARN_ON(task_rq(p) != rq);
4075
b39e66ea 4076 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4077 u64 slice = sched_slice(cfs_rq, se);
4078 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4079 s64 delta = slice - ran;
4080
4081 if (delta < 0) {
4082 if (rq->curr == p)
8875125e 4083 resched_curr(rq);
8f4d37ec
PZ
4084 return;
4085 }
31656519 4086 hrtick_start(rq, delta);
8f4d37ec
PZ
4087 }
4088}
a4c2f00f
PZ
4089
4090/*
4091 * called from enqueue/dequeue and updates the hrtick when the
4092 * current task is from our class and nr_running is low enough
4093 * to matter.
4094 */
4095static void hrtick_update(struct rq *rq)
4096{
4097 struct task_struct *curr = rq->curr;
4098
b39e66ea 4099 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4100 return;
4101
4102 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4103 hrtick_start_fair(rq, curr);
4104}
55e12e5e 4105#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4106static inline void
4107hrtick_start_fair(struct rq *rq, struct task_struct *p)
4108{
4109}
a4c2f00f
PZ
4110
4111static inline void hrtick_update(struct rq *rq)
4112{
4113}
8f4d37ec
PZ
4114#endif
4115
bf0f6f24
IM
4116/*
4117 * The enqueue_task method is called before nr_running is
4118 * increased. Here we update the fair scheduling stats and
4119 * then put the task into the rbtree:
4120 */
ea87bb78 4121static void
371fd7e7 4122enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4123{
4124 struct cfs_rq *cfs_rq;
62fb1851 4125 struct sched_entity *se = &p->se;
bf0f6f24
IM
4126
4127 for_each_sched_entity(se) {
62fb1851 4128 if (se->on_rq)
bf0f6f24
IM
4129 break;
4130 cfs_rq = cfs_rq_of(se);
88ec22d3 4131 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4132
4133 /*
4134 * end evaluation on encountering a throttled cfs_rq
4135 *
4136 * note: in the case of encountering a throttled cfs_rq we will
4137 * post the final h_nr_running increment below.
4138 */
4139 if (cfs_rq_throttled(cfs_rq))
4140 break;
953bfcd1 4141 cfs_rq->h_nr_running++;
85dac906 4142
88ec22d3 4143 flags = ENQUEUE_WAKEUP;
bf0f6f24 4144 }
8f4d37ec 4145
2069dd75 4146 for_each_sched_entity(se) {
0f317143 4147 cfs_rq = cfs_rq_of(se);
953bfcd1 4148 cfs_rq->h_nr_running++;
2069dd75 4149
85dac906
PT
4150 if (cfs_rq_throttled(cfs_rq))
4151 break;
4152
9d89c257 4153 update_load_avg(se, 1);
17bc14b7 4154 update_cfs_shares(cfs_rq);
2069dd75
PZ
4155 }
4156
cd126afe 4157 if (!se)
72465447 4158 add_nr_running(rq, 1);
cd126afe 4159
a4c2f00f 4160 hrtick_update(rq);
bf0f6f24
IM
4161}
4162
2f36825b
VP
4163static void set_next_buddy(struct sched_entity *se);
4164
bf0f6f24
IM
4165/*
4166 * The dequeue_task method is called before nr_running is
4167 * decreased. We remove the task from the rbtree and
4168 * update the fair scheduling stats:
4169 */
371fd7e7 4170static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4171{
4172 struct cfs_rq *cfs_rq;
62fb1851 4173 struct sched_entity *se = &p->se;
2f36825b 4174 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4175
4176 for_each_sched_entity(se) {
4177 cfs_rq = cfs_rq_of(se);
371fd7e7 4178 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4179
4180 /*
4181 * end evaluation on encountering a throttled cfs_rq
4182 *
4183 * note: in the case of encountering a throttled cfs_rq we will
4184 * post the final h_nr_running decrement below.
4185 */
4186 if (cfs_rq_throttled(cfs_rq))
4187 break;
953bfcd1 4188 cfs_rq->h_nr_running--;
2069dd75 4189
bf0f6f24 4190 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4191 if (cfs_rq->load.weight) {
4192 /*
4193 * Bias pick_next to pick a task from this cfs_rq, as
4194 * p is sleeping when it is within its sched_slice.
4195 */
4196 if (task_sleep && parent_entity(se))
4197 set_next_buddy(parent_entity(se));
9598c82d
PT
4198
4199 /* avoid re-evaluating load for this entity */
4200 se = parent_entity(se);
bf0f6f24 4201 break;
2f36825b 4202 }
371fd7e7 4203 flags |= DEQUEUE_SLEEP;
bf0f6f24 4204 }
8f4d37ec 4205
2069dd75 4206 for_each_sched_entity(se) {
0f317143 4207 cfs_rq = cfs_rq_of(se);
953bfcd1 4208 cfs_rq->h_nr_running--;
2069dd75 4209
85dac906
PT
4210 if (cfs_rq_throttled(cfs_rq))
4211 break;
4212
9d89c257 4213 update_load_avg(se, 1);
17bc14b7 4214 update_cfs_shares(cfs_rq);
2069dd75
PZ
4215 }
4216
cd126afe 4217 if (!se)
72465447 4218 sub_nr_running(rq, 1);
cd126afe 4219
a4c2f00f 4220 hrtick_update(rq);
bf0f6f24
IM
4221}
4222
e7693a36 4223#ifdef CONFIG_SMP
3289bdb4
PZ
4224
4225/*
4226 * per rq 'load' arrray crap; XXX kill this.
4227 */
4228
4229/*
4230 * The exact cpuload at various idx values, calculated at every tick would be
4231 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4232 *
4233 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4234 * on nth tick when cpu may be busy, then we have:
4235 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4236 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4237 *
4238 * decay_load_missed() below does efficient calculation of
4239 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4240 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4241 *
4242 * The calculation is approximated on a 128 point scale.
4243 * degrade_zero_ticks is the number of ticks after which load at any
4244 * particular idx is approximated to be zero.
4245 * degrade_factor is a precomputed table, a row for each load idx.
4246 * Each column corresponds to degradation factor for a power of two ticks,
4247 * based on 128 point scale.
4248 * Example:
4249 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4250 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4251 *
4252 * With this power of 2 load factors, we can degrade the load n times
4253 * by looking at 1 bits in n and doing as many mult/shift instead of
4254 * n mult/shifts needed by the exact degradation.
4255 */
4256#define DEGRADE_SHIFT 7
4257static const unsigned char
4258 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4259static const unsigned char
4260 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4261 {0, 0, 0, 0, 0, 0, 0, 0},
4262 {64, 32, 8, 0, 0, 0, 0, 0},
4263 {96, 72, 40, 12, 1, 0, 0},
4264 {112, 98, 75, 43, 15, 1, 0},
4265 {120, 112, 98, 76, 45, 16, 2} };
4266
4267/*
4268 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4269 * would be when CPU is idle and so we just decay the old load without
4270 * adding any new load.
4271 */
4272static unsigned long
4273decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4274{
4275 int j = 0;
4276
4277 if (!missed_updates)
4278 return load;
4279
4280 if (missed_updates >= degrade_zero_ticks[idx])
4281 return 0;
4282
4283 if (idx == 1)
4284 return load >> missed_updates;
4285
4286 while (missed_updates) {
4287 if (missed_updates % 2)
4288 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4289
4290 missed_updates >>= 1;
4291 j++;
4292 }
4293 return load;
4294}
4295
4296/*
4297 * Update rq->cpu_load[] statistics. This function is usually called every
4298 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4299 * every tick. We fix it up based on jiffies.
4300 */
4301static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4302 unsigned long pending_updates)
4303{
4304 int i, scale;
4305
4306 this_rq->nr_load_updates++;
4307
4308 /* Update our load: */
4309 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4310 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4311 unsigned long old_load, new_load;
4312
4313 /* scale is effectively 1 << i now, and >> i divides by scale */
4314
4315 old_load = this_rq->cpu_load[i];
4316 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4317 new_load = this_load;
4318 /*
4319 * Round up the averaging division if load is increasing. This
4320 * prevents us from getting stuck on 9 if the load is 10, for
4321 * example.
4322 */
4323 if (new_load > old_load)
4324 new_load += scale - 1;
4325
4326 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4327 }
4328
4329 sched_avg_update(this_rq);
4330}
4331
7ea241af
YD
4332/* Used instead of source_load when we know the type == 0 */
4333static unsigned long weighted_cpuload(const int cpu)
4334{
4335 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4336}
4337
3289bdb4
PZ
4338#ifdef CONFIG_NO_HZ_COMMON
4339/*
4340 * There is no sane way to deal with nohz on smp when using jiffies because the
4341 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4342 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4343 *
4344 * Therefore we cannot use the delta approach from the regular tick since that
4345 * would seriously skew the load calculation. However we'll make do for those
4346 * updates happening while idle (nohz_idle_balance) or coming out of idle
4347 * (tick_nohz_idle_exit).
4348 *
4349 * This means we might still be one tick off for nohz periods.
4350 */
4351
4352/*
4353 * Called from nohz_idle_balance() to update the load ratings before doing the
4354 * idle balance.
4355 */
4356static void update_idle_cpu_load(struct rq *this_rq)
4357{
316c1608 4358 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4359 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4360 unsigned long pending_updates;
4361
4362 /*
4363 * bail if there's load or we're actually up-to-date.
4364 */
4365 if (load || curr_jiffies == this_rq->last_load_update_tick)
4366 return;
4367
4368 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4369 this_rq->last_load_update_tick = curr_jiffies;
4370
4371 __update_cpu_load(this_rq, load, pending_updates);
4372}
4373
4374/*
4375 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4376 */
4377void update_cpu_load_nohz(void)
4378{
4379 struct rq *this_rq = this_rq();
316c1608 4380 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4381 unsigned long pending_updates;
4382
4383 if (curr_jiffies == this_rq->last_load_update_tick)
4384 return;
4385
4386 raw_spin_lock(&this_rq->lock);
4387 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4388 if (pending_updates) {
4389 this_rq->last_load_update_tick = curr_jiffies;
4390 /*
4391 * We were idle, this means load 0, the current load might be
4392 * !0 due to remote wakeups and the sort.
4393 */
4394 __update_cpu_load(this_rq, 0, pending_updates);
4395 }
4396 raw_spin_unlock(&this_rq->lock);
4397}
4398#endif /* CONFIG_NO_HZ */
4399
4400/*
4401 * Called from scheduler_tick()
4402 */
4403void update_cpu_load_active(struct rq *this_rq)
4404{
7ea241af 4405 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4406 /*
4407 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4408 */
4409 this_rq->last_load_update_tick = jiffies;
4410 __update_cpu_load(this_rq, load, 1);
4411}
4412
029632fb
PZ
4413/*
4414 * Return a low guess at the load of a migration-source cpu weighted
4415 * according to the scheduling class and "nice" value.
4416 *
4417 * We want to under-estimate the load of migration sources, to
4418 * balance conservatively.
4419 */
4420static unsigned long source_load(int cpu, int type)
4421{
4422 struct rq *rq = cpu_rq(cpu);
4423 unsigned long total = weighted_cpuload(cpu);
4424
4425 if (type == 0 || !sched_feat(LB_BIAS))
4426 return total;
4427
4428 return min(rq->cpu_load[type-1], total);
4429}
4430
4431/*
4432 * Return a high guess at the load of a migration-target cpu weighted
4433 * according to the scheduling class and "nice" value.
4434 */
4435static unsigned long target_load(int cpu, int type)
4436{
4437 struct rq *rq = cpu_rq(cpu);
4438 unsigned long total = weighted_cpuload(cpu);
4439
4440 if (type == 0 || !sched_feat(LB_BIAS))
4441 return total;
4442
4443 return max(rq->cpu_load[type-1], total);
4444}
4445
ced549fa 4446static unsigned long capacity_of(int cpu)
029632fb 4447{
ced549fa 4448 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4449}
4450
ca6d75e6
VG
4451static unsigned long capacity_orig_of(int cpu)
4452{
4453 return cpu_rq(cpu)->cpu_capacity_orig;
4454}
4455
029632fb
PZ
4456static unsigned long cpu_avg_load_per_task(int cpu)
4457{
4458 struct rq *rq = cpu_rq(cpu);
316c1608 4459 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4460 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4461
4462 if (nr_running)
b92486cb 4463 return load_avg / nr_running;
029632fb
PZ
4464
4465 return 0;
4466}
4467
62470419
MW
4468static void record_wakee(struct task_struct *p)
4469{
4470 /*
4471 * Rough decay (wiping) for cost saving, don't worry
4472 * about the boundary, really active task won't care
4473 * about the loss.
4474 */
2538d960 4475 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4476 current->wakee_flips >>= 1;
62470419
MW
4477 current->wakee_flip_decay_ts = jiffies;
4478 }
4479
4480 if (current->last_wakee != p) {
4481 current->last_wakee = p;
4482 current->wakee_flips++;
4483 }
4484}
098fb9db 4485
74f8e4b2 4486static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4487{
4488 struct sched_entity *se = &p->se;
4489 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4490 u64 min_vruntime;
4491
4492#ifndef CONFIG_64BIT
4493 u64 min_vruntime_copy;
88ec22d3 4494
3fe1698b
PZ
4495 do {
4496 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4497 smp_rmb();
4498 min_vruntime = cfs_rq->min_vruntime;
4499 } while (min_vruntime != min_vruntime_copy);
4500#else
4501 min_vruntime = cfs_rq->min_vruntime;
4502#endif
88ec22d3 4503
3fe1698b 4504 se->vruntime -= min_vruntime;
62470419 4505 record_wakee(p);
88ec22d3
PZ
4506}
4507
bb3469ac 4508#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4509/*
4510 * effective_load() calculates the load change as seen from the root_task_group
4511 *
4512 * Adding load to a group doesn't make a group heavier, but can cause movement
4513 * of group shares between cpus. Assuming the shares were perfectly aligned one
4514 * can calculate the shift in shares.
cf5f0acf
PZ
4515 *
4516 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4517 * on this @cpu and results in a total addition (subtraction) of @wg to the
4518 * total group weight.
4519 *
4520 * Given a runqueue weight distribution (rw_i) we can compute a shares
4521 * distribution (s_i) using:
4522 *
4523 * s_i = rw_i / \Sum rw_j (1)
4524 *
4525 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4526 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4527 * shares distribution (s_i):
4528 *
4529 * rw_i = { 2, 4, 1, 0 }
4530 * s_i = { 2/7, 4/7, 1/7, 0 }
4531 *
4532 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4533 * task used to run on and the CPU the waker is running on), we need to
4534 * compute the effect of waking a task on either CPU and, in case of a sync
4535 * wakeup, compute the effect of the current task going to sleep.
4536 *
4537 * So for a change of @wl to the local @cpu with an overall group weight change
4538 * of @wl we can compute the new shares distribution (s'_i) using:
4539 *
4540 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4541 *
4542 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4543 * differences in waking a task to CPU 0. The additional task changes the
4544 * weight and shares distributions like:
4545 *
4546 * rw'_i = { 3, 4, 1, 0 }
4547 * s'_i = { 3/8, 4/8, 1/8, 0 }
4548 *
4549 * We can then compute the difference in effective weight by using:
4550 *
4551 * dw_i = S * (s'_i - s_i) (3)
4552 *
4553 * Where 'S' is the group weight as seen by its parent.
4554 *
4555 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4556 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4557 * 4/7) times the weight of the group.
f5bfb7d9 4558 */
2069dd75 4559static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4560{
4be9daaa 4561 struct sched_entity *se = tg->se[cpu];
f1d239f7 4562
9722c2da 4563 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4564 return wl;
4565
4be9daaa 4566 for_each_sched_entity(se) {
cf5f0acf 4567 long w, W;
4be9daaa 4568
977dda7c 4569 tg = se->my_q->tg;
bb3469ac 4570
cf5f0acf
PZ
4571 /*
4572 * W = @wg + \Sum rw_j
4573 */
4574 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4575
cf5f0acf
PZ
4576 /*
4577 * w = rw_i + @wl
4578 */
7ea241af 4579 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4580
cf5f0acf
PZ
4581 /*
4582 * wl = S * s'_i; see (2)
4583 */
4584 if (W > 0 && w < W)
32a8df4e 4585 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4586 else
4587 wl = tg->shares;
940959e9 4588
cf5f0acf
PZ
4589 /*
4590 * Per the above, wl is the new se->load.weight value; since
4591 * those are clipped to [MIN_SHARES, ...) do so now. See
4592 * calc_cfs_shares().
4593 */
977dda7c
PT
4594 if (wl < MIN_SHARES)
4595 wl = MIN_SHARES;
cf5f0acf
PZ
4596
4597 /*
4598 * wl = dw_i = S * (s'_i - s_i); see (3)
4599 */
9d89c257 4600 wl -= se->avg.load_avg;
cf5f0acf
PZ
4601
4602 /*
4603 * Recursively apply this logic to all parent groups to compute
4604 * the final effective load change on the root group. Since
4605 * only the @tg group gets extra weight, all parent groups can
4606 * only redistribute existing shares. @wl is the shift in shares
4607 * resulting from this level per the above.
4608 */
4be9daaa 4609 wg = 0;
4be9daaa 4610 }
bb3469ac 4611
4be9daaa 4612 return wl;
bb3469ac
PZ
4613}
4614#else
4be9daaa 4615
58d081b5 4616static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4617{
83378269 4618 return wl;
bb3469ac 4619}
4be9daaa 4620
bb3469ac
PZ
4621#endif
4622
63b0e9ed
MG
4623/*
4624 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4625 * A waker of many should wake a different task than the one last awakened
4626 * at a frequency roughly N times higher than one of its wakees. In order
4627 * to determine whether we should let the load spread vs consolodating to
4628 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4629 * partner, and a factor of lls_size higher frequency in the other. With
4630 * both conditions met, we can be relatively sure that the relationship is
4631 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4632 * being client/server, worker/dispatcher, interrupt source or whatever is
4633 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4634 */
62470419
MW
4635static int wake_wide(struct task_struct *p)
4636{
63b0e9ed
MG
4637 unsigned int master = current->wakee_flips;
4638 unsigned int slave = p->wakee_flips;
7d9ffa89 4639 int factor = this_cpu_read(sd_llc_size);
62470419 4640
63b0e9ed
MG
4641 if (master < slave)
4642 swap(master, slave);
4643 if (slave < factor || master < slave * factor)
4644 return 0;
4645 return 1;
62470419
MW
4646}
4647
c88d5910 4648static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4649{
e37b6a7b 4650 s64 this_load, load;
bd61c98f 4651 s64 this_eff_load, prev_eff_load;
c88d5910 4652 int idx, this_cpu, prev_cpu;
c88d5910 4653 struct task_group *tg;
83378269 4654 unsigned long weight;
b3137bc8 4655 int balanced;
098fb9db 4656
c88d5910
PZ
4657 idx = sd->wake_idx;
4658 this_cpu = smp_processor_id();
4659 prev_cpu = task_cpu(p);
4660 load = source_load(prev_cpu, idx);
4661 this_load = target_load(this_cpu, idx);
098fb9db 4662
b3137bc8
MG
4663 /*
4664 * If sync wakeup then subtract the (maximum possible)
4665 * effect of the currently running task from the load
4666 * of the current CPU:
4667 */
83378269
PZ
4668 if (sync) {
4669 tg = task_group(current);
9d89c257 4670 weight = current->se.avg.load_avg;
83378269 4671
c88d5910 4672 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4673 load += effective_load(tg, prev_cpu, 0, -weight);
4674 }
b3137bc8 4675
83378269 4676 tg = task_group(p);
9d89c257 4677 weight = p->se.avg.load_avg;
b3137bc8 4678
71a29aa7
PZ
4679 /*
4680 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4681 * due to the sync cause above having dropped this_load to 0, we'll
4682 * always have an imbalance, but there's really nothing you can do
4683 * about that, so that's good too.
71a29aa7
PZ
4684 *
4685 * Otherwise check if either cpus are near enough in load to allow this
4686 * task to be woken on this_cpu.
4687 */
bd61c98f
VG
4688 this_eff_load = 100;
4689 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4690
bd61c98f
VG
4691 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4692 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4693
bd61c98f 4694 if (this_load > 0) {
e51fd5e2
PZ
4695 this_eff_load *= this_load +
4696 effective_load(tg, this_cpu, weight, weight);
4697
e51fd5e2 4698 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4699 }
e51fd5e2 4700
bd61c98f 4701 balanced = this_eff_load <= prev_eff_load;
098fb9db 4702
41acab88 4703 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4704
05bfb65f
VG
4705 if (!balanced)
4706 return 0;
098fb9db 4707
05bfb65f
VG
4708 schedstat_inc(sd, ttwu_move_affine);
4709 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4710
4711 return 1;
098fb9db
IM
4712}
4713
aaee1203
PZ
4714/*
4715 * find_idlest_group finds and returns the least busy CPU group within the
4716 * domain.
4717 */
4718static struct sched_group *
78e7ed53 4719find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4720 int this_cpu, int sd_flag)
e7693a36 4721{
b3bd3de6 4722 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4723 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4724 int load_idx = sd->forkexec_idx;
aaee1203 4725 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4726
c44f2a02
VG
4727 if (sd_flag & SD_BALANCE_WAKE)
4728 load_idx = sd->wake_idx;
4729
aaee1203
PZ
4730 do {
4731 unsigned long load, avg_load;
4732 int local_group;
4733 int i;
e7693a36 4734
aaee1203
PZ
4735 /* Skip over this group if it has no CPUs allowed */
4736 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4737 tsk_cpus_allowed(p)))
aaee1203
PZ
4738 continue;
4739
4740 local_group = cpumask_test_cpu(this_cpu,
4741 sched_group_cpus(group));
4742
4743 /* Tally up the load of all CPUs in the group */
4744 avg_load = 0;
4745
4746 for_each_cpu(i, sched_group_cpus(group)) {
4747 /* Bias balancing toward cpus of our domain */
4748 if (local_group)
4749 load = source_load(i, load_idx);
4750 else
4751 load = target_load(i, load_idx);
4752
4753 avg_load += load;
4754 }
4755
63b2ca30 4756 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4757 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4758
4759 if (local_group) {
4760 this_load = avg_load;
aaee1203
PZ
4761 } else if (avg_load < min_load) {
4762 min_load = avg_load;
4763 idlest = group;
4764 }
4765 } while (group = group->next, group != sd->groups);
4766
4767 if (!idlest || 100*this_load < imbalance*min_load)
4768 return NULL;
4769 return idlest;
4770}
4771
4772/*
4773 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4774 */
4775static int
4776find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4777{
4778 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4779 unsigned int min_exit_latency = UINT_MAX;
4780 u64 latest_idle_timestamp = 0;
4781 int least_loaded_cpu = this_cpu;
4782 int shallowest_idle_cpu = -1;
aaee1203
PZ
4783 int i;
4784
4785 /* Traverse only the allowed CPUs */
fa17b507 4786 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4787 if (idle_cpu(i)) {
4788 struct rq *rq = cpu_rq(i);
4789 struct cpuidle_state *idle = idle_get_state(rq);
4790 if (idle && idle->exit_latency < min_exit_latency) {
4791 /*
4792 * We give priority to a CPU whose idle state
4793 * has the smallest exit latency irrespective
4794 * of any idle timestamp.
4795 */
4796 min_exit_latency = idle->exit_latency;
4797 latest_idle_timestamp = rq->idle_stamp;
4798 shallowest_idle_cpu = i;
4799 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4800 rq->idle_stamp > latest_idle_timestamp) {
4801 /*
4802 * If equal or no active idle state, then
4803 * the most recently idled CPU might have
4804 * a warmer cache.
4805 */
4806 latest_idle_timestamp = rq->idle_stamp;
4807 shallowest_idle_cpu = i;
4808 }
9f96742a 4809 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4810 load = weighted_cpuload(i);
4811 if (load < min_load || (load == min_load && i == this_cpu)) {
4812 min_load = load;
4813 least_loaded_cpu = i;
4814 }
e7693a36
GH
4815 }
4816 }
4817
83a0a96a 4818 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4819}
e7693a36 4820
a50bde51
PZ
4821/*
4822 * Try and locate an idle CPU in the sched_domain.
4823 */
99bd5e2f 4824static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4825{
99bd5e2f 4826 struct sched_domain *sd;
37407ea7 4827 struct sched_group *sg;
e0a79f52 4828 int i = task_cpu(p);
a50bde51 4829
e0a79f52
MG
4830 if (idle_cpu(target))
4831 return target;
99bd5e2f
SS
4832
4833 /*
e0a79f52 4834 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4835 */
e0a79f52
MG
4836 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4837 return i;
a50bde51
PZ
4838
4839 /*
37407ea7 4840 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4841 */
518cd623 4842 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4843 for_each_lower_domain(sd) {
37407ea7
LT
4844 sg = sd->groups;
4845 do {
4846 if (!cpumask_intersects(sched_group_cpus(sg),
4847 tsk_cpus_allowed(p)))
4848 goto next;
4849
4850 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4851 if (i == target || !idle_cpu(i))
37407ea7
LT
4852 goto next;
4853 }
970e1789 4854
37407ea7
LT
4855 target = cpumask_first_and(sched_group_cpus(sg),
4856 tsk_cpus_allowed(p));
4857 goto done;
4858next:
4859 sg = sg->next;
4860 } while (sg != sd->groups);
4861 }
4862done:
a50bde51
PZ
4863 return target;
4864}
8bb5b00c
VG
4865/*
4866 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4867 * tasks. The unit of the return value must be the one of capacity so we can
4868 * compare the usage with the capacity of the CPU that is available for CFS
4869 * task (ie cpu_capacity).
9d89c257 4870 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
8bb5b00c
VG
4871 * CPU. It represents the amount of utilization of a CPU in the range
4872 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4873 * capacity of the CPU because it's about the running time on this CPU.
9d89c257
YD
4874 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4875 * because of unfortunate rounding in util_avg or just
8bb5b00c
VG
4876 * after migrating tasks until the average stabilizes with the new running
4877 * time. So we need to check that the usage stays into the range
4878 * [0..cpu_capacity_orig] and cap if necessary.
4879 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4880 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4881 */
4882static int get_cpu_usage(int cpu)
4883{
9d89c257 4884 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4885 unsigned long capacity = capacity_orig_of(cpu);
4886
4887 if (usage >= SCHED_LOAD_SCALE)
4888 return capacity;
4889
4890 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4891}
a50bde51 4892
aaee1203 4893/*
de91b9cb
MR
4894 * select_task_rq_fair: Select target runqueue for the waking task in domains
4895 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4896 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4897 *
de91b9cb
MR
4898 * Balances load by selecting the idlest cpu in the idlest group, or under
4899 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4900 *
de91b9cb 4901 * Returns the target cpu number.
aaee1203
PZ
4902 *
4903 * preempt must be disabled.
4904 */
0017d735 4905static int
ac66f547 4906select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4907{
29cd8bae 4908 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4909 int cpu = smp_processor_id();
63b0e9ed 4910 int new_cpu = prev_cpu;
99bd5e2f 4911 int want_affine = 0;
5158f4e4 4912 int sync = wake_flags & WF_SYNC;
c88d5910 4913
a8edd075 4914 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4915 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4916
dce840a0 4917 rcu_read_lock();
aaee1203 4918 for_each_domain(cpu, tmp) {
e4f42888 4919 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4920 break;
e4f42888 4921
fe3bcfe1 4922 /*
99bd5e2f
SS
4923 * If both cpu and prev_cpu are part of this domain,
4924 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4925 */
99bd5e2f
SS
4926 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4927 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4928 affine_sd = tmp;
29cd8bae 4929 break;
f03542a7 4930 }
29cd8bae 4931
f03542a7 4932 if (tmp->flags & sd_flag)
29cd8bae 4933 sd = tmp;
63b0e9ed
MG
4934 else if (!want_affine)
4935 break;
29cd8bae
PZ
4936 }
4937
63b0e9ed
MG
4938 if (affine_sd) {
4939 sd = NULL; /* Prefer wake_affine over balance flags */
4940 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4941 new_cpu = cpu;
8b911acd 4942 }
e7693a36 4943
63b0e9ed
MG
4944 if (!sd) {
4945 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4946 new_cpu = select_idle_sibling(p, new_cpu);
4947
4948 } else while (sd) {
aaee1203 4949 struct sched_group *group;
c88d5910 4950 int weight;
098fb9db 4951
0763a660 4952 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4953 sd = sd->child;
4954 continue;
4955 }
098fb9db 4956
c44f2a02 4957 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4958 if (!group) {
4959 sd = sd->child;
4960 continue;
4961 }
4ae7d5ce 4962
d7c33c49 4963 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4964 if (new_cpu == -1 || new_cpu == cpu) {
4965 /* Now try balancing at a lower domain level of cpu */
4966 sd = sd->child;
4967 continue;
e7693a36 4968 }
aaee1203
PZ
4969
4970 /* Now try balancing at a lower domain level of new_cpu */
4971 cpu = new_cpu;
669c55e9 4972 weight = sd->span_weight;
aaee1203
PZ
4973 sd = NULL;
4974 for_each_domain(cpu, tmp) {
669c55e9 4975 if (weight <= tmp->span_weight)
aaee1203 4976 break;
0763a660 4977 if (tmp->flags & sd_flag)
aaee1203
PZ
4978 sd = tmp;
4979 }
4980 /* while loop will break here if sd == NULL */
e7693a36 4981 }
dce840a0 4982 rcu_read_unlock();
e7693a36 4983
c88d5910 4984 return new_cpu;
e7693a36 4985}
0a74bef8
PT
4986
4987/*
4988 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4989 * cfs_rq_of(p) references at time of call are still valid and identify the
4990 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4991 * other assumptions, including the state of rq->lock, should be made.
4992 */
9d89c257 4993static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
0a74bef8 4994{
aff3e498 4995 /*
9d89c257
YD
4996 * We are supposed to update the task to "current" time, then its up to date
4997 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4998 * what current time is, so simply throw away the out-of-date time. This
4999 * will result in the wakee task is less decayed, but giving the wakee more
5000 * load sounds not bad.
aff3e498 5001 */
9d89c257
YD
5002 remove_entity_load_avg(&p->se);
5003
5004 /* Tell new CPU we are migrated */
5005 p->se.avg.last_update_time = 0;
3944a927
BS
5006
5007 /* We have migrated, no longer consider this task hot */
9d89c257 5008 p->se.exec_start = 0;
0a74bef8 5009}
12695578
YD
5010
5011static void task_dead_fair(struct task_struct *p)
5012{
5013 remove_entity_load_avg(&p->se);
5014}
e7693a36
GH
5015#endif /* CONFIG_SMP */
5016
e52fb7c0
PZ
5017static unsigned long
5018wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5019{
5020 unsigned long gran = sysctl_sched_wakeup_granularity;
5021
5022 /*
e52fb7c0
PZ
5023 * Since its curr running now, convert the gran from real-time
5024 * to virtual-time in his units.
13814d42
MG
5025 *
5026 * By using 'se' instead of 'curr' we penalize light tasks, so
5027 * they get preempted easier. That is, if 'se' < 'curr' then
5028 * the resulting gran will be larger, therefore penalizing the
5029 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5030 * be smaller, again penalizing the lighter task.
5031 *
5032 * This is especially important for buddies when the leftmost
5033 * task is higher priority than the buddy.
0bbd3336 5034 */
f4ad9bd2 5035 return calc_delta_fair(gran, se);
0bbd3336
PZ
5036}
5037
464b7527
PZ
5038/*
5039 * Should 'se' preempt 'curr'.
5040 *
5041 * |s1
5042 * |s2
5043 * |s3
5044 * g
5045 * |<--->|c
5046 *
5047 * w(c, s1) = -1
5048 * w(c, s2) = 0
5049 * w(c, s3) = 1
5050 *
5051 */
5052static int
5053wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5054{
5055 s64 gran, vdiff = curr->vruntime - se->vruntime;
5056
5057 if (vdiff <= 0)
5058 return -1;
5059
e52fb7c0 5060 gran = wakeup_gran(curr, se);
464b7527
PZ
5061 if (vdiff > gran)
5062 return 1;
5063
5064 return 0;
5065}
5066
02479099
PZ
5067static void set_last_buddy(struct sched_entity *se)
5068{
69c80f3e
VP
5069 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5070 return;
5071
5072 for_each_sched_entity(se)
5073 cfs_rq_of(se)->last = se;
02479099
PZ
5074}
5075
5076static void set_next_buddy(struct sched_entity *se)
5077{
69c80f3e
VP
5078 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5079 return;
5080
5081 for_each_sched_entity(se)
5082 cfs_rq_of(se)->next = se;
02479099
PZ
5083}
5084
ac53db59
RR
5085static void set_skip_buddy(struct sched_entity *se)
5086{
69c80f3e
VP
5087 for_each_sched_entity(se)
5088 cfs_rq_of(se)->skip = se;
ac53db59
RR
5089}
5090
bf0f6f24
IM
5091/*
5092 * Preempt the current task with a newly woken task if needed:
5093 */
5a9b86f6 5094static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5095{
5096 struct task_struct *curr = rq->curr;
8651a86c 5097 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5098 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5099 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5100 int next_buddy_marked = 0;
bf0f6f24 5101
4ae7d5ce
IM
5102 if (unlikely(se == pse))
5103 return;
5104
5238cdd3 5105 /*
163122b7 5106 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5107 * unconditionally check_prempt_curr() after an enqueue (which may have
5108 * lead to a throttle). This both saves work and prevents false
5109 * next-buddy nomination below.
5110 */
5111 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5112 return;
5113
2f36825b 5114 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5115 set_next_buddy(pse);
2f36825b
VP
5116 next_buddy_marked = 1;
5117 }
57fdc26d 5118
aec0a514
BR
5119 /*
5120 * We can come here with TIF_NEED_RESCHED already set from new task
5121 * wake up path.
5238cdd3
PT
5122 *
5123 * Note: this also catches the edge-case of curr being in a throttled
5124 * group (e.g. via set_curr_task), since update_curr() (in the
5125 * enqueue of curr) will have resulted in resched being set. This
5126 * prevents us from potentially nominating it as a false LAST_BUDDY
5127 * below.
aec0a514
BR
5128 */
5129 if (test_tsk_need_resched(curr))
5130 return;
5131
a2f5c9ab
DH
5132 /* Idle tasks are by definition preempted by non-idle tasks. */
5133 if (unlikely(curr->policy == SCHED_IDLE) &&
5134 likely(p->policy != SCHED_IDLE))
5135 goto preempt;
5136
91c234b4 5137 /*
a2f5c9ab
DH
5138 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5139 * is driven by the tick):
91c234b4 5140 */
8ed92e51 5141 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5142 return;
bf0f6f24 5143
464b7527 5144 find_matching_se(&se, &pse);
9bbd7374 5145 update_curr(cfs_rq_of(se));
002f128b 5146 BUG_ON(!pse);
2f36825b
VP
5147 if (wakeup_preempt_entity(se, pse) == 1) {
5148 /*
5149 * Bias pick_next to pick the sched entity that is
5150 * triggering this preemption.
5151 */
5152 if (!next_buddy_marked)
5153 set_next_buddy(pse);
3a7e73a2 5154 goto preempt;
2f36825b 5155 }
464b7527 5156
3a7e73a2 5157 return;
a65ac745 5158
3a7e73a2 5159preempt:
8875125e 5160 resched_curr(rq);
3a7e73a2
PZ
5161 /*
5162 * Only set the backward buddy when the current task is still
5163 * on the rq. This can happen when a wakeup gets interleaved
5164 * with schedule on the ->pre_schedule() or idle_balance()
5165 * point, either of which can * drop the rq lock.
5166 *
5167 * Also, during early boot the idle thread is in the fair class,
5168 * for obvious reasons its a bad idea to schedule back to it.
5169 */
5170 if (unlikely(!se->on_rq || curr == rq->idle))
5171 return;
5172
5173 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5174 set_last_buddy(se);
bf0f6f24
IM
5175}
5176
606dba2e
PZ
5177static struct task_struct *
5178pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5179{
5180 struct cfs_rq *cfs_rq = &rq->cfs;
5181 struct sched_entity *se;
678d5718 5182 struct task_struct *p;
37e117c0 5183 int new_tasks;
678d5718 5184
6e83125c 5185again:
678d5718
PZ
5186#ifdef CONFIG_FAIR_GROUP_SCHED
5187 if (!cfs_rq->nr_running)
38033c37 5188 goto idle;
678d5718 5189
3f1d2a31 5190 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5191 goto simple;
5192
5193 /*
5194 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5195 * likely that a next task is from the same cgroup as the current.
5196 *
5197 * Therefore attempt to avoid putting and setting the entire cgroup
5198 * hierarchy, only change the part that actually changes.
5199 */
5200
5201 do {
5202 struct sched_entity *curr = cfs_rq->curr;
5203
5204 /*
5205 * Since we got here without doing put_prev_entity() we also
5206 * have to consider cfs_rq->curr. If it is still a runnable
5207 * entity, update_curr() will update its vruntime, otherwise
5208 * forget we've ever seen it.
5209 */
54d27365
BS
5210 if (curr) {
5211 if (curr->on_rq)
5212 update_curr(cfs_rq);
5213 else
5214 curr = NULL;
678d5718 5215
54d27365
BS
5216 /*
5217 * This call to check_cfs_rq_runtime() will do the
5218 * throttle and dequeue its entity in the parent(s).
5219 * Therefore the 'simple' nr_running test will indeed
5220 * be correct.
5221 */
5222 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5223 goto simple;
5224 }
678d5718
PZ
5225
5226 se = pick_next_entity(cfs_rq, curr);
5227 cfs_rq = group_cfs_rq(se);
5228 } while (cfs_rq);
5229
5230 p = task_of(se);
5231
5232 /*
5233 * Since we haven't yet done put_prev_entity and if the selected task
5234 * is a different task than we started out with, try and touch the
5235 * least amount of cfs_rqs.
5236 */
5237 if (prev != p) {
5238 struct sched_entity *pse = &prev->se;
5239
5240 while (!(cfs_rq = is_same_group(se, pse))) {
5241 int se_depth = se->depth;
5242 int pse_depth = pse->depth;
5243
5244 if (se_depth <= pse_depth) {
5245 put_prev_entity(cfs_rq_of(pse), pse);
5246 pse = parent_entity(pse);
5247 }
5248 if (se_depth >= pse_depth) {
5249 set_next_entity(cfs_rq_of(se), se);
5250 se = parent_entity(se);
5251 }
5252 }
5253
5254 put_prev_entity(cfs_rq, pse);
5255 set_next_entity(cfs_rq, se);
5256 }
5257
5258 if (hrtick_enabled(rq))
5259 hrtick_start_fair(rq, p);
5260
5261 return p;
5262simple:
5263 cfs_rq = &rq->cfs;
5264#endif
bf0f6f24 5265
36ace27e 5266 if (!cfs_rq->nr_running)
38033c37 5267 goto idle;
bf0f6f24 5268
3f1d2a31 5269 put_prev_task(rq, prev);
606dba2e 5270
bf0f6f24 5271 do {
678d5718 5272 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5273 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5274 cfs_rq = group_cfs_rq(se);
5275 } while (cfs_rq);
5276
8f4d37ec 5277 p = task_of(se);
678d5718 5278
b39e66ea
MG
5279 if (hrtick_enabled(rq))
5280 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5281
5282 return p;
38033c37
PZ
5283
5284idle:
cbce1a68
PZ
5285 /*
5286 * This is OK, because current is on_cpu, which avoids it being picked
5287 * for load-balance and preemption/IRQs are still disabled avoiding
5288 * further scheduler activity on it and we're being very careful to
5289 * re-start the picking loop.
5290 */
5291 lockdep_unpin_lock(&rq->lock);
e4aa358b 5292 new_tasks = idle_balance(rq);
cbce1a68 5293 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5294 /*
5295 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5296 * possible for any higher priority task to appear. In that case we
5297 * must re-start the pick_next_entity() loop.
5298 */
e4aa358b 5299 if (new_tasks < 0)
37e117c0
PZ
5300 return RETRY_TASK;
5301
e4aa358b 5302 if (new_tasks > 0)
38033c37 5303 goto again;
38033c37
PZ
5304
5305 return NULL;
bf0f6f24
IM
5306}
5307
5308/*
5309 * Account for a descheduled task:
5310 */
31ee529c 5311static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5312{
5313 struct sched_entity *se = &prev->se;
5314 struct cfs_rq *cfs_rq;
5315
5316 for_each_sched_entity(se) {
5317 cfs_rq = cfs_rq_of(se);
ab6cde26 5318 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5319 }
5320}
5321
ac53db59
RR
5322/*
5323 * sched_yield() is very simple
5324 *
5325 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5326 */
5327static void yield_task_fair(struct rq *rq)
5328{
5329 struct task_struct *curr = rq->curr;
5330 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5331 struct sched_entity *se = &curr->se;
5332
5333 /*
5334 * Are we the only task in the tree?
5335 */
5336 if (unlikely(rq->nr_running == 1))
5337 return;
5338
5339 clear_buddies(cfs_rq, se);
5340
5341 if (curr->policy != SCHED_BATCH) {
5342 update_rq_clock(rq);
5343 /*
5344 * Update run-time statistics of the 'current'.
5345 */
5346 update_curr(cfs_rq);
916671c0
MG
5347 /*
5348 * Tell update_rq_clock() that we've just updated,
5349 * so we don't do microscopic update in schedule()
5350 * and double the fastpath cost.
5351 */
9edfbfed 5352 rq_clock_skip_update(rq, true);
ac53db59
RR
5353 }
5354
5355 set_skip_buddy(se);
5356}
5357
d95f4122
MG
5358static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5359{
5360 struct sched_entity *se = &p->se;
5361
5238cdd3
PT
5362 /* throttled hierarchies are not runnable */
5363 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5364 return false;
5365
5366 /* Tell the scheduler that we'd really like pse to run next. */
5367 set_next_buddy(se);
5368
d95f4122
MG
5369 yield_task_fair(rq);
5370
5371 return true;
5372}
5373
681f3e68 5374#ifdef CONFIG_SMP
bf0f6f24 5375/**************************************************
e9c84cb8
PZ
5376 * Fair scheduling class load-balancing methods.
5377 *
5378 * BASICS
5379 *
5380 * The purpose of load-balancing is to achieve the same basic fairness the
5381 * per-cpu scheduler provides, namely provide a proportional amount of compute
5382 * time to each task. This is expressed in the following equation:
5383 *
5384 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5385 *
5386 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5387 * W_i,0 is defined as:
5388 *
5389 * W_i,0 = \Sum_j w_i,j (2)
5390 *
5391 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5392 * is derived from the nice value as per prio_to_weight[].
5393 *
5394 * The weight average is an exponential decay average of the instantaneous
5395 * weight:
5396 *
5397 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5398 *
ced549fa 5399 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5400 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5401 * can also include other factors [XXX].
5402 *
5403 * To achieve this balance we define a measure of imbalance which follows
5404 * directly from (1):
5405 *
ced549fa 5406 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5407 *
5408 * We them move tasks around to minimize the imbalance. In the continuous
5409 * function space it is obvious this converges, in the discrete case we get
5410 * a few fun cases generally called infeasible weight scenarios.
5411 *
5412 * [XXX expand on:
5413 * - infeasible weights;
5414 * - local vs global optima in the discrete case. ]
5415 *
5416 *
5417 * SCHED DOMAINS
5418 *
5419 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5420 * for all i,j solution, we create a tree of cpus that follows the hardware
5421 * topology where each level pairs two lower groups (or better). This results
5422 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5423 * tree to only the first of the previous level and we decrease the frequency
5424 * of load-balance at each level inv. proportional to the number of cpus in
5425 * the groups.
5426 *
5427 * This yields:
5428 *
5429 * log_2 n 1 n
5430 * \Sum { --- * --- * 2^i } = O(n) (5)
5431 * i = 0 2^i 2^i
5432 * `- size of each group
5433 * | | `- number of cpus doing load-balance
5434 * | `- freq
5435 * `- sum over all levels
5436 *
5437 * Coupled with a limit on how many tasks we can migrate every balance pass,
5438 * this makes (5) the runtime complexity of the balancer.
5439 *
5440 * An important property here is that each CPU is still (indirectly) connected
5441 * to every other cpu in at most O(log n) steps:
5442 *
5443 * The adjacency matrix of the resulting graph is given by:
5444 *
5445 * log_2 n
5446 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5447 * k = 0
5448 *
5449 * And you'll find that:
5450 *
5451 * A^(log_2 n)_i,j != 0 for all i,j (7)
5452 *
5453 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5454 * The task movement gives a factor of O(m), giving a convergence complexity
5455 * of:
5456 *
5457 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5458 *
5459 *
5460 * WORK CONSERVING
5461 *
5462 * In order to avoid CPUs going idle while there's still work to do, new idle
5463 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5464 * tree itself instead of relying on other CPUs to bring it work.
5465 *
5466 * This adds some complexity to both (5) and (8) but it reduces the total idle
5467 * time.
5468 *
5469 * [XXX more?]
5470 *
5471 *
5472 * CGROUPS
5473 *
5474 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5475 *
5476 * s_k,i
5477 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5478 * S_k
5479 *
5480 * Where
5481 *
5482 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5483 *
5484 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5485 *
5486 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5487 * property.
5488 *
5489 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5490 * rewrite all of this once again.]
5491 */
bf0f6f24 5492
ed387b78
HS
5493static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5494
0ec8aa00
PZ
5495enum fbq_type { regular, remote, all };
5496
ddcdf6e7 5497#define LBF_ALL_PINNED 0x01
367456c7 5498#define LBF_NEED_BREAK 0x02
6263322c
PZ
5499#define LBF_DST_PINNED 0x04
5500#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5501
5502struct lb_env {
5503 struct sched_domain *sd;
5504
ddcdf6e7 5505 struct rq *src_rq;
85c1e7da 5506 int src_cpu;
ddcdf6e7
PZ
5507
5508 int dst_cpu;
5509 struct rq *dst_rq;
5510
88b8dac0
SV
5511 struct cpumask *dst_grpmask;
5512 int new_dst_cpu;
ddcdf6e7 5513 enum cpu_idle_type idle;
bd939f45 5514 long imbalance;
b9403130
MW
5515 /* The set of CPUs under consideration for load-balancing */
5516 struct cpumask *cpus;
5517
ddcdf6e7 5518 unsigned int flags;
367456c7
PZ
5519
5520 unsigned int loop;
5521 unsigned int loop_break;
5522 unsigned int loop_max;
0ec8aa00
PZ
5523
5524 enum fbq_type fbq_type;
163122b7 5525 struct list_head tasks;
ddcdf6e7
PZ
5526};
5527
029632fb
PZ
5528/*
5529 * Is this task likely cache-hot:
5530 */
5d5e2b1b 5531static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5532{
5533 s64 delta;
5534
e5673f28
KT
5535 lockdep_assert_held(&env->src_rq->lock);
5536
029632fb
PZ
5537 if (p->sched_class != &fair_sched_class)
5538 return 0;
5539
5540 if (unlikely(p->policy == SCHED_IDLE))
5541 return 0;
5542
5543 /*
5544 * Buddy candidates are cache hot:
5545 */
5d5e2b1b 5546 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5547 (&p->se == cfs_rq_of(&p->se)->next ||
5548 &p->se == cfs_rq_of(&p->se)->last))
5549 return 1;
5550
5551 if (sysctl_sched_migration_cost == -1)
5552 return 1;
5553 if (sysctl_sched_migration_cost == 0)
5554 return 0;
5555
5d5e2b1b 5556 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5557
5558 return delta < (s64)sysctl_sched_migration_cost;
5559}
5560
3a7053b3 5561#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5562/*
2a1ed24c
SD
5563 * Returns 1, if task migration degrades locality
5564 * Returns 0, if task migration improves locality i.e migration preferred.
5565 * Returns -1, if task migration is not affected by locality.
c1ceac62 5566 */
2a1ed24c 5567static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5568{
b1ad065e 5569 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5570 unsigned long src_faults, dst_faults;
3a7053b3
MG
5571 int src_nid, dst_nid;
5572
2a595721 5573 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5574 return -1;
5575
c3b9bc5b 5576 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5577 return -1;
7a0f3083
MG
5578
5579 src_nid = cpu_to_node(env->src_cpu);
5580 dst_nid = cpu_to_node(env->dst_cpu);
5581
83e1d2cd 5582 if (src_nid == dst_nid)
2a1ed24c 5583 return -1;
7a0f3083 5584
2a1ed24c
SD
5585 /* Migrating away from the preferred node is always bad. */
5586 if (src_nid == p->numa_preferred_nid) {
5587 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5588 return 1;
5589 else
5590 return -1;
5591 }
b1ad065e 5592
c1ceac62
RR
5593 /* Encourage migration to the preferred node. */
5594 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5595 return 0;
b1ad065e 5596
c1ceac62
RR
5597 if (numa_group) {
5598 src_faults = group_faults(p, src_nid);
5599 dst_faults = group_faults(p, dst_nid);
5600 } else {
5601 src_faults = task_faults(p, src_nid);
5602 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5603 }
5604
c1ceac62 5605 return dst_faults < src_faults;
7a0f3083
MG
5606}
5607
3a7053b3 5608#else
2a1ed24c 5609static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5610 struct lb_env *env)
5611{
2a1ed24c 5612 return -1;
7a0f3083 5613}
3a7053b3
MG
5614#endif
5615
1e3c88bd
PZ
5616/*
5617 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5618 */
5619static
8e45cb54 5620int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5621{
2a1ed24c 5622 int tsk_cache_hot;
e5673f28
KT
5623
5624 lockdep_assert_held(&env->src_rq->lock);
5625
1e3c88bd
PZ
5626 /*
5627 * We do not migrate tasks that are:
d3198084 5628 * 1) throttled_lb_pair, or
1e3c88bd 5629 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5630 * 3) running (obviously), or
5631 * 4) are cache-hot on their current CPU.
1e3c88bd 5632 */
d3198084
JK
5633 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5634 return 0;
5635
ddcdf6e7 5636 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5637 int cpu;
88b8dac0 5638
41acab88 5639 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5640
6263322c
PZ
5641 env->flags |= LBF_SOME_PINNED;
5642
88b8dac0
SV
5643 /*
5644 * Remember if this task can be migrated to any other cpu in
5645 * our sched_group. We may want to revisit it if we couldn't
5646 * meet load balance goals by pulling other tasks on src_cpu.
5647 *
5648 * Also avoid computing new_dst_cpu if we have already computed
5649 * one in current iteration.
5650 */
6263322c 5651 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5652 return 0;
5653
e02e60c1
JK
5654 /* Prevent to re-select dst_cpu via env's cpus */
5655 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5656 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5657 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5658 env->new_dst_cpu = cpu;
5659 break;
5660 }
88b8dac0 5661 }
e02e60c1 5662
1e3c88bd
PZ
5663 return 0;
5664 }
88b8dac0
SV
5665
5666 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5667 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5668
ddcdf6e7 5669 if (task_running(env->src_rq, p)) {
41acab88 5670 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5671 return 0;
5672 }
5673
5674 /*
5675 * Aggressive migration if:
3a7053b3
MG
5676 * 1) destination numa is preferred
5677 * 2) task is cache cold, or
5678 * 3) too many balance attempts have failed.
1e3c88bd 5679 */
2a1ed24c
SD
5680 tsk_cache_hot = migrate_degrades_locality(p, env);
5681 if (tsk_cache_hot == -1)
5682 tsk_cache_hot = task_hot(p, env);
3a7053b3 5683
2a1ed24c 5684 if (tsk_cache_hot <= 0 ||
7a96c231 5685 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5686 if (tsk_cache_hot == 1) {
3a7053b3
MG
5687 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5688 schedstat_inc(p, se.statistics.nr_forced_migrations);
5689 }
1e3c88bd
PZ
5690 return 1;
5691 }
5692
4e2dcb73
ZH
5693 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5694 return 0;
1e3c88bd
PZ
5695}
5696
897c395f 5697/*
163122b7
KT
5698 * detach_task() -- detach the task for the migration specified in env
5699 */
5700static void detach_task(struct task_struct *p, struct lb_env *env)
5701{
5702 lockdep_assert_held(&env->src_rq->lock);
5703
5704 deactivate_task(env->src_rq, p, 0);
5705 p->on_rq = TASK_ON_RQ_MIGRATING;
5706 set_task_cpu(p, env->dst_cpu);
5707}
5708
897c395f 5709/*
e5673f28 5710 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5711 * part of active balancing operations within "domain".
897c395f 5712 *
e5673f28 5713 * Returns a task if successful and NULL otherwise.
897c395f 5714 */
e5673f28 5715static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5716{
5717 struct task_struct *p, *n;
897c395f 5718
e5673f28
KT
5719 lockdep_assert_held(&env->src_rq->lock);
5720
367456c7 5721 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5722 if (!can_migrate_task(p, env))
5723 continue;
897c395f 5724
163122b7 5725 detach_task(p, env);
e5673f28 5726
367456c7 5727 /*
e5673f28 5728 * Right now, this is only the second place where
163122b7 5729 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5730 * so we can safely collect stats here rather than
163122b7 5731 * inside detach_tasks().
367456c7
PZ
5732 */
5733 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5734 return p;
897c395f 5735 }
e5673f28 5736 return NULL;
897c395f
PZ
5737}
5738
eb95308e
PZ
5739static const unsigned int sched_nr_migrate_break = 32;
5740
5d6523eb 5741/*
163122b7
KT
5742 * detach_tasks() -- tries to detach up to imbalance weighted load from
5743 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5744 *
163122b7 5745 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5746 */
163122b7 5747static int detach_tasks(struct lb_env *env)
1e3c88bd 5748{
5d6523eb
PZ
5749 struct list_head *tasks = &env->src_rq->cfs_tasks;
5750 struct task_struct *p;
367456c7 5751 unsigned long load;
163122b7
KT
5752 int detached = 0;
5753
5754 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5755
bd939f45 5756 if (env->imbalance <= 0)
5d6523eb 5757 return 0;
1e3c88bd 5758
5d6523eb 5759 while (!list_empty(tasks)) {
985d3a4c
YD
5760 /*
5761 * We don't want to steal all, otherwise we may be treated likewise,
5762 * which could at worst lead to a livelock crash.
5763 */
5764 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5765 break;
5766
5d6523eb 5767 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5768
367456c7
PZ
5769 env->loop++;
5770 /* We've more or less seen every task there is, call it quits */
5d6523eb 5771 if (env->loop > env->loop_max)
367456c7 5772 break;
5d6523eb
PZ
5773
5774 /* take a breather every nr_migrate tasks */
367456c7 5775 if (env->loop > env->loop_break) {
eb95308e 5776 env->loop_break += sched_nr_migrate_break;
8e45cb54 5777 env->flags |= LBF_NEED_BREAK;
ee00e66f 5778 break;
a195f004 5779 }
1e3c88bd 5780
d3198084 5781 if (!can_migrate_task(p, env))
367456c7
PZ
5782 goto next;
5783
5784 load = task_h_load(p);
5d6523eb 5785
eb95308e 5786 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5787 goto next;
5788
bd939f45 5789 if ((load / 2) > env->imbalance)
367456c7 5790 goto next;
1e3c88bd 5791
163122b7
KT
5792 detach_task(p, env);
5793 list_add(&p->se.group_node, &env->tasks);
5794
5795 detached++;
bd939f45 5796 env->imbalance -= load;
1e3c88bd
PZ
5797
5798#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5799 /*
5800 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5801 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5802 * the critical section.
5803 */
5d6523eb 5804 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5805 break;
1e3c88bd
PZ
5806#endif
5807
ee00e66f
PZ
5808 /*
5809 * We only want to steal up to the prescribed amount of
5810 * weighted load.
5811 */
bd939f45 5812 if (env->imbalance <= 0)
ee00e66f 5813 break;
367456c7
PZ
5814
5815 continue;
5816next:
5d6523eb 5817 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5818 }
5d6523eb 5819
1e3c88bd 5820 /*
163122b7
KT
5821 * Right now, this is one of only two places we collect this stat
5822 * so we can safely collect detach_one_task() stats here rather
5823 * than inside detach_one_task().
1e3c88bd 5824 */
163122b7 5825 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5826
163122b7
KT
5827 return detached;
5828}
5829
5830/*
5831 * attach_task() -- attach the task detached by detach_task() to its new rq.
5832 */
5833static void attach_task(struct rq *rq, struct task_struct *p)
5834{
5835 lockdep_assert_held(&rq->lock);
5836
5837 BUG_ON(task_rq(p) != rq);
5838 p->on_rq = TASK_ON_RQ_QUEUED;
5839 activate_task(rq, p, 0);
5840 check_preempt_curr(rq, p, 0);
5841}
5842
5843/*
5844 * attach_one_task() -- attaches the task returned from detach_one_task() to
5845 * its new rq.
5846 */
5847static void attach_one_task(struct rq *rq, struct task_struct *p)
5848{
5849 raw_spin_lock(&rq->lock);
5850 attach_task(rq, p);
5851 raw_spin_unlock(&rq->lock);
5852}
5853
5854/*
5855 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5856 * new rq.
5857 */
5858static void attach_tasks(struct lb_env *env)
5859{
5860 struct list_head *tasks = &env->tasks;
5861 struct task_struct *p;
5862
5863 raw_spin_lock(&env->dst_rq->lock);
5864
5865 while (!list_empty(tasks)) {
5866 p = list_first_entry(tasks, struct task_struct, se.group_node);
5867 list_del_init(&p->se.group_node);
1e3c88bd 5868
163122b7
KT
5869 attach_task(env->dst_rq, p);
5870 }
5871
5872 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5873}
5874
230059de 5875#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5876static void update_blocked_averages(int cpu)
9e3081ca 5877{
9e3081ca 5878 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5879 struct cfs_rq *cfs_rq;
5880 unsigned long flags;
9e3081ca 5881
48a16753
PT
5882 raw_spin_lock_irqsave(&rq->lock, flags);
5883 update_rq_clock(rq);
9d89c257 5884
9763b67f
PZ
5885 /*
5886 * Iterates the task_group tree in a bottom up fashion, see
5887 * list_add_leaf_cfs_rq() for details.
5888 */
64660c86 5889 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5890 /* throttled entities do not contribute to load */
5891 if (throttled_hierarchy(cfs_rq))
5892 continue;
48a16753 5893
9d89c257
YD
5894 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5895 update_tg_load_avg(cfs_rq, 0);
5896 }
48a16753 5897 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5898}
5899
9763b67f 5900/*
68520796 5901 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5902 * This needs to be done in a top-down fashion because the load of a child
5903 * group is a fraction of its parents load.
5904 */
68520796 5905static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5906{
68520796
VD
5907 struct rq *rq = rq_of(cfs_rq);
5908 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5909 unsigned long now = jiffies;
68520796 5910 unsigned long load;
a35b6466 5911
68520796 5912 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5913 return;
5914
68520796
VD
5915 cfs_rq->h_load_next = NULL;
5916 for_each_sched_entity(se) {
5917 cfs_rq = cfs_rq_of(se);
5918 cfs_rq->h_load_next = se;
5919 if (cfs_rq->last_h_load_update == now)
5920 break;
5921 }
a35b6466 5922
68520796 5923 if (!se) {
7ea241af 5924 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5925 cfs_rq->last_h_load_update = now;
5926 }
5927
5928 while ((se = cfs_rq->h_load_next) != NULL) {
5929 load = cfs_rq->h_load;
7ea241af
YD
5930 load = div64_ul(load * se->avg.load_avg,
5931 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5932 cfs_rq = group_cfs_rq(se);
5933 cfs_rq->h_load = load;
5934 cfs_rq->last_h_load_update = now;
5935 }
9763b67f
PZ
5936}
5937
367456c7 5938static unsigned long task_h_load(struct task_struct *p)
230059de 5939{
367456c7 5940 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5941
68520796 5942 update_cfs_rq_h_load(cfs_rq);
9d89c257 5943 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5944 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5945}
5946#else
48a16753 5947static inline void update_blocked_averages(int cpu)
9e3081ca 5948{
6c1d47c0
VG
5949 struct rq *rq = cpu_rq(cpu);
5950 struct cfs_rq *cfs_rq = &rq->cfs;
5951 unsigned long flags;
5952
5953 raw_spin_lock_irqsave(&rq->lock, flags);
5954 update_rq_clock(rq);
5955 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5956 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5957}
5958
367456c7 5959static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5960{
9d89c257 5961 return p->se.avg.load_avg;
1e3c88bd 5962}
230059de 5963#endif
1e3c88bd 5964
1e3c88bd 5965/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5966
5967enum group_type {
5968 group_other = 0,
5969 group_imbalanced,
5970 group_overloaded,
5971};
5972
1e3c88bd
PZ
5973/*
5974 * sg_lb_stats - stats of a sched_group required for load_balancing
5975 */
5976struct sg_lb_stats {
5977 unsigned long avg_load; /*Avg load across the CPUs of the group */
5978 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5979 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5980 unsigned long load_per_task;
63b2ca30 5981 unsigned long group_capacity;
8bb5b00c 5982 unsigned long group_usage; /* Total usage of the group */
147c5fc2 5983 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5984 unsigned int idle_cpus;
5985 unsigned int group_weight;
caeb178c 5986 enum group_type group_type;
ea67821b 5987 int group_no_capacity;
0ec8aa00
PZ
5988#ifdef CONFIG_NUMA_BALANCING
5989 unsigned int nr_numa_running;
5990 unsigned int nr_preferred_running;
5991#endif
1e3c88bd
PZ
5992};
5993
56cf515b
JK
5994/*
5995 * sd_lb_stats - Structure to store the statistics of a sched_domain
5996 * during load balancing.
5997 */
5998struct sd_lb_stats {
5999 struct sched_group *busiest; /* Busiest group in this sd */
6000 struct sched_group *local; /* Local group in this sd */
6001 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6002 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6003 unsigned long avg_load; /* Average load across all groups in sd */
6004
56cf515b 6005 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6006 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6007};
6008
147c5fc2
PZ
6009static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6010{
6011 /*
6012 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6013 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6014 * We must however clear busiest_stat::avg_load because
6015 * update_sd_pick_busiest() reads this before assignment.
6016 */
6017 *sds = (struct sd_lb_stats){
6018 .busiest = NULL,
6019 .local = NULL,
6020 .total_load = 0UL,
63b2ca30 6021 .total_capacity = 0UL,
147c5fc2
PZ
6022 .busiest_stat = {
6023 .avg_load = 0UL,
caeb178c
RR
6024 .sum_nr_running = 0,
6025 .group_type = group_other,
147c5fc2
PZ
6026 },
6027 };
6028}
6029
1e3c88bd
PZ
6030/**
6031 * get_sd_load_idx - Obtain the load index for a given sched domain.
6032 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6033 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6034 *
6035 * Return: The load index.
1e3c88bd
PZ
6036 */
6037static inline int get_sd_load_idx(struct sched_domain *sd,
6038 enum cpu_idle_type idle)
6039{
6040 int load_idx;
6041
6042 switch (idle) {
6043 case CPU_NOT_IDLE:
6044 load_idx = sd->busy_idx;
6045 break;
6046
6047 case CPU_NEWLY_IDLE:
6048 load_idx = sd->newidle_idx;
6049 break;
6050 default:
6051 load_idx = sd->idle_idx;
6052 break;
6053 }
6054
6055 return load_idx;
6056}
6057
ced549fa 6058static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6059{
6060 struct rq *rq = cpu_rq(cpu);
b5b4860d 6061 u64 total, used, age_stamp, avg;
cadefd3d 6062 s64 delta;
1e3c88bd 6063
b654f7de
PZ
6064 /*
6065 * Since we're reading these variables without serialization make sure
6066 * we read them once before doing sanity checks on them.
6067 */
316c1608
JL
6068 age_stamp = READ_ONCE(rq->age_stamp);
6069 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6070 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6071
cadefd3d
PZ
6072 if (unlikely(delta < 0))
6073 delta = 0;
6074
6075 total = sched_avg_period() + delta;
aa483808 6076
b5b4860d 6077 used = div_u64(avg, total);
1e3c88bd 6078
b5b4860d
VG
6079 if (likely(used < SCHED_CAPACITY_SCALE))
6080 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6081
b5b4860d 6082 return 1;
1e3c88bd
PZ
6083}
6084
ced549fa 6085static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6086{
8cd5601c 6087 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6088 struct sched_group *sdg = sd->groups;
6089
ca6d75e6 6090 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6091
ced549fa 6092 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6093 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6094
ced549fa
NP
6095 if (!capacity)
6096 capacity = 1;
1e3c88bd 6097
ced549fa
NP
6098 cpu_rq(cpu)->cpu_capacity = capacity;
6099 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6100}
6101
63b2ca30 6102void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6103{
6104 struct sched_domain *child = sd->child;
6105 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6106 unsigned long capacity;
4ec4412e
VG
6107 unsigned long interval;
6108
6109 interval = msecs_to_jiffies(sd->balance_interval);
6110 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6111 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6112
6113 if (!child) {
ced549fa 6114 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6115 return;
6116 }
6117
dc7ff76e 6118 capacity = 0;
1e3c88bd 6119
74a5ce20
PZ
6120 if (child->flags & SD_OVERLAP) {
6121 /*
6122 * SD_OVERLAP domains cannot assume that child groups
6123 * span the current group.
6124 */
6125
863bffc8 6126 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6127 struct sched_group_capacity *sgc;
9abf24d4 6128 struct rq *rq = cpu_rq(cpu);
863bffc8 6129
9abf24d4 6130 /*
63b2ca30 6131 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6132 * gets here before we've attached the domains to the
6133 * runqueues.
6134 *
ced549fa
NP
6135 * Use capacity_of(), which is set irrespective of domains
6136 * in update_cpu_capacity().
9abf24d4 6137 *
dc7ff76e 6138 * This avoids capacity from being 0 and
9abf24d4 6139 * causing divide-by-zero issues on boot.
9abf24d4
SD
6140 */
6141 if (unlikely(!rq->sd)) {
ced549fa 6142 capacity += capacity_of(cpu);
9abf24d4
SD
6143 continue;
6144 }
863bffc8 6145
63b2ca30 6146 sgc = rq->sd->groups->sgc;
63b2ca30 6147 capacity += sgc->capacity;
863bffc8 6148 }
74a5ce20
PZ
6149 } else {
6150 /*
6151 * !SD_OVERLAP domains can assume that child groups
6152 * span the current group.
6153 */
6154
6155 group = child->groups;
6156 do {
63b2ca30 6157 capacity += group->sgc->capacity;
74a5ce20
PZ
6158 group = group->next;
6159 } while (group != child->groups);
6160 }
1e3c88bd 6161
63b2ca30 6162 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6163}
6164
9d5efe05 6165/*
ea67821b
VG
6166 * Check whether the capacity of the rq has been noticeably reduced by side
6167 * activity. The imbalance_pct is used for the threshold.
6168 * Return true is the capacity is reduced
9d5efe05
SV
6169 */
6170static inline int
ea67821b 6171check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6172{
ea67821b
VG
6173 return ((rq->cpu_capacity * sd->imbalance_pct) <
6174 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6175}
6176
30ce5dab
PZ
6177/*
6178 * Group imbalance indicates (and tries to solve) the problem where balancing
6179 * groups is inadequate due to tsk_cpus_allowed() constraints.
6180 *
6181 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6182 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6183 * Something like:
6184 *
6185 * { 0 1 2 3 } { 4 5 6 7 }
6186 * * * * *
6187 *
6188 * If we were to balance group-wise we'd place two tasks in the first group and
6189 * two tasks in the second group. Clearly this is undesired as it will overload
6190 * cpu 3 and leave one of the cpus in the second group unused.
6191 *
6192 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6193 * by noticing the lower domain failed to reach balance and had difficulty
6194 * moving tasks due to affinity constraints.
30ce5dab
PZ
6195 *
6196 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6197 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6198 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6199 * to create an effective group imbalance.
6200 *
6201 * This is a somewhat tricky proposition since the next run might not find the
6202 * group imbalance and decide the groups need to be balanced again. A most
6203 * subtle and fragile situation.
6204 */
6205
6263322c 6206static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6207{
63b2ca30 6208 return group->sgc->imbalance;
30ce5dab
PZ
6209}
6210
b37d9316 6211/*
ea67821b
VG
6212 * group_has_capacity returns true if the group has spare capacity that could
6213 * be used by some tasks.
6214 * We consider that a group has spare capacity if the * number of task is
6215 * smaller than the number of CPUs or if the usage is lower than the available
6216 * capacity for CFS tasks.
6217 * For the latter, we use a threshold to stabilize the state, to take into
6218 * account the variance of the tasks' load and to return true if the available
6219 * capacity in meaningful for the load balancer.
6220 * As an example, an available capacity of 1% can appear but it doesn't make
6221 * any benefit for the load balance.
b37d9316 6222 */
ea67821b
VG
6223static inline bool
6224group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6225{
ea67821b
VG
6226 if (sgs->sum_nr_running < sgs->group_weight)
6227 return true;
c61037e9 6228
ea67821b
VG
6229 if ((sgs->group_capacity * 100) >
6230 (sgs->group_usage * env->sd->imbalance_pct))
6231 return true;
b37d9316 6232
ea67821b
VG
6233 return false;
6234}
6235
6236/*
6237 * group_is_overloaded returns true if the group has more tasks than it can
6238 * handle.
6239 * group_is_overloaded is not equals to !group_has_capacity because a group
6240 * with the exact right number of tasks, has no more spare capacity but is not
6241 * overloaded so both group_has_capacity and group_is_overloaded return
6242 * false.
6243 */
6244static inline bool
6245group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6246{
6247 if (sgs->sum_nr_running <= sgs->group_weight)
6248 return false;
b37d9316 6249
ea67821b
VG
6250 if ((sgs->group_capacity * 100) <
6251 (sgs->group_usage * env->sd->imbalance_pct))
6252 return true;
b37d9316 6253
ea67821b 6254 return false;
b37d9316
PZ
6255}
6256
ea67821b
VG
6257static enum group_type group_classify(struct lb_env *env,
6258 struct sched_group *group,
6259 struct sg_lb_stats *sgs)
caeb178c 6260{
ea67821b 6261 if (sgs->group_no_capacity)
caeb178c
RR
6262 return group_overloaded;
6263
6264 if (sg_imbalanced(group))
6265 return group_imbalanced;
6266
6267 return group_other;
6268}
6269
1e3c88bd
PZ
6270/**
6271 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6272 * @env: The load balancing environment.
1e3c88bd 6273 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6274 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6275 * @local_group: Does group contain this_cpu.
1e3c88bd 6276 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6277 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6278 */
bd939f45
PZ
6279static inline void update_sg_lb_stats(struct lb_env *env,
6280 struct sched_group *group, int load_idx,
4486edd1
TC
6281 int local_group, struct sg_lb_stats *sgs,
6282 bool *overload)
1e3c88bd 6283{
30ce5dab 6284 unsigned long load;
bd939f45 6285 int i;
1e3c88bd 6286
b72ff13c
PZ
6287 memset(sgs, 0, sizeof(*sgs));
6288
b9403130 6289 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6290 struct rq *rq = cpu_rq(i);
6291
1e3c88bd 6292 /* Bias balancing toward cpus of our domain */
6263322c 6293 if (local_group)
04f733b4 6294 load = target_load(i, load_idx);
6263322c 6295 else
1e3c88bd 6296 load = source_load(i, load_idx);
1e3c88bd
PZ
6297
6298 sgs->group_load += load;
8bb5b00c 6299 sgs->group_usage += get_cpu_usage(i);
65fdac08 6300 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6301
6302 if (rq->nr_running > 1)
6303 *overload = true;
6304
0ec8aa00
PZ
6305#ifdef CONFIG_NUMA_BALANCING
6306 sgs->nr_numa_running += rq->nr_numa_running;
6307 sgs->nr_preferred_running += rq->nr_preferred_running;
6308#endif
1e3c88bd 6309 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6310 if (idle_cpu(i))
6311 sgs->idle_cpus++;
1e3c88bd
PZ
6312 }
6313
63b2ca30
NP
6314 /* Adjust by relative CPU capacity of the group */
6315 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6316 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6317
dd5feea1 6318 if (sgs->sum_nr_running)
38d0f770 6319 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6320
aae6d3dd 6321 sgs->group_weight = group->group_weight;
b37d9316 6322
ea67821b
VG
6323 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6324 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6325}
6326
532cb4c4
MN
6327/**
6328 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6329 * @env: The load balancing environment.
532cb4c4
MN
6330 * @sds: sched_domain statistics
6331 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6332 * @sgs: sched_group statistics
532cb4c4
MN
6333 *
6334 * Determine if @sg is a busier group than the previously selected
6335 * busiest group.
e69f6186
YB
6336 *
6337 * Return: %true if @sg is a busier group than the previously selected
6338 * busiest group. %false otherwise.
532cb4c4 6339 */
bd939f45 6340static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6341 struct sd_lb_stats *sds,
6342 struct sched_group *sg,
bd939f45 6343 struct sg_lb_stats *sgs)
532cb4c4 6344{
caeb178c 6345 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6346
caeb178c 6347 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6348 return true;
6349
caeb178c
RR
6350 if (sgs->group_type < busiest->group_type)
6351 return false;
6352
6353 if (sgs->avg_load <= busiest->avg_load)
6354 return false;
6355
6356 /* This is the busiest node in its class. */
6357 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6358 return true;
6359
6360 /*
6361 * ASYM_PACKING needs to move all the work to the lowest
6362 * numbered CPUs in the group, therefore mark all groups
6363 * higher than ourself as busy.
6364 */
caeb178c 6365 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6366 if (!sds->busiest)
6367 return true;
6368
6369 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6370 return true;
6371 }
6372
6373 return false;
6374}
6375
0ec8aa00
PZ
6376#ifdef CONFIG_NUMA_BALANCING
6377static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6378{
6379 if (sgs->sum_nr_running > sgs->nr_numa_running)
6380 return regular;
6381 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6382 return remote;
6383 return all;
6384}
6385
6386static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6387{
6388 if (rq->nr_running > rq->nr_numa_running)
6389 return regular;
6390 if (rq->nr_running > rq->nr_preferred_running)
6391 return remote;
6392 return all;
6393}
6394#else
6395static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6396{
6397 return all;
6398}
6399
6400static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6401{
6402 return regular;
6403}
6404#endif /* CONFIG_NUMA_BALANCING */
6405
1e3c88bd 6406/**
461819ac 6407 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6408 * @env: The load balancing environment.
1e3c88bd
PZ
6409 * @sds: variable to hold the statistics for this sched_domain.
6410 */
0ec8aa00 6411static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6412{
bd939f45
PZ
6413 struct sched_domain *child = env->sd->child;
6414 struct sched_group *sg = env->sd->groups;
56cf515b 6415 struct sg_lb_stats tmp_sgs;
1e3c88bd 6416 int load_idx, prefer_sibling = 0;
4486edd1 6417 bool overload = false;
1e3c88bd
PZ
6418
6419 if (child && child->flags & SD_PREFER_SIBLING)
6420 prefer_sibling = 1;
6421
bd939f45 6422 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6423
6424 do {
56cf515b 6425 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6426 int local_group;
6427
bd939f45 6428 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6429 if (local_group) {
6430 sds->local = sg;
6431 sgs = &sds->local_stat;
b72ff13c
PZ
6432
6433 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6434 time_after_eq(jiffies, sg->sgc->next_update))
6435 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6436 }
1e3c88bd 6437
4486edd1
TC
6438 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6439 &overload);
1e3c88bd 6440
b72ff13c
PZ
6441 if (local_group)
6442 goto next_group;
6443
1e3c88bd
PZ
6444 /*
6445 * In case the child domain prefers tasks go to siblings
ea67821b 6446 * first, lower the sg capacity so that we'll try
75dd321d
NR
6447 * and move all the excess tasks away. We lower the capacity
6448 * of a group only if the local group has the capacity to fit
ea67821b
VG
6449 * these excess tasks. The extra check prevents the case where
6450 * you always pull from the heaviest group when it is already
6451 * under-utilized (possible with a large weight task outweighs
6452 * the tasks on the system).
1e3c88bd 6453 */
b72ff13c 6454 if (prefer_sibling && sds->local &&
ea67821b
VG
6455 group_has_capacity(env, &sds->local_stat) &&
6456 (sgs->sum_nr_running > 1)) {
6457 sgs->group_no_capacity = 1;
6458 sgs->group_type = group_overloaded;
cb0b9f24 6459 }
1e3c88bd 6460
b72ff13c 6461 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6462 sds->busiest = sg;
56cf515b 6463 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6464 }
6465
b72ff13c
PZ
6466next_group:
6467 /* Now, start updating sd_lb_stats */
6468 sds->total_load += sgs->group_load;
63b2ca30 6469 sds->total_capacity += sgs->group_capacity;
b72ff13c 6470
532cb4c4 6471 sg = sg->next;
bd939f45 6472 } while (sg != env->sd->groups);
0ec8aa00
PZ
6473
6474 if (env->sd->flags & SD_NUMA)
6475 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6476
6477 if (!env->sd->parent) {
6478 /* update overload indicator if we are at root domain */
6479 if (env->dst_rq->rd->overload != overload)
6480 env->dst_rq->rd->overload = overload;
6481 }
6482
532cb4c4
MN
6483}
6484
532cb4c4
MN
6485/**
6486 * check_asym_packing - Check to see if the group is packed into the
6487 * sched doman.
6488 *
6489 * This is primarily intended to used at the sibling level. Some
6490 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6491 * case of POWER7, it can move to lower SMT modes only when higher
6492 * threads are idle. When in lower SMT modes, the threads will
6493 * perform better since they share less core resources. Hence when we
6494 * have idle threads, we want them to be the higher ones.
6495 *
6496 * This packing function is run on idle threads. It checks to see if
6497 * the busiest CPU in this domain (core in the P7 case) has a higher
6498 * CPU number than the packing function is being run on. Here we are
6499 * assuming lower CPU number will be equivalent to lower a SMT thread
6500 * number.
6501 *
e69f6186 6502 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6503 * this CPU. The amount of the imbalance is returned in *imbalance.
6504 *
cd96891d 6505 * @env: The load balancing environment.
532cb4c4 6506 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6507 */
bd939f45 6508static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6509{
6510 int busiest_cpu;
6511
bd939f45 6512 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6513 return 0;
6514
6515 if (!sds->busiest)
6516 return 0;
6517
6518 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6519 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6520 return 0;
6521
bd939f45 6522 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6523 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6524 SCHED_CAPACITY_SCALE);
bd939f45 6525
532cb4c4 6526 return 1;
1e3c88bd
PZ
6527}
6528
6529/**
6530 * fix_small_imbalance - Calculate the minor imbalance that exists
6531 * amongst the groups of a sched_domain, during
6532 * load balancing.
cd96891d 6533 * @env: The load balancing environment.
1e3c88bd 6534 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6535 */
bd939f45
PZ
6536static inline
6537void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6538{
63b2ca30 6539 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6540 unsigned int imbn = 2;
dd5feea1 6541 unsigned long scaled_busy_load_per_task;
56cf515b 6542 struct sg_lb_stats *local, *busiest;
1e3c88bd 6543
56cf515b
JK
6544 local = &sds->local_stat;
6545 busiest = &sds->busiest_stat;
1e3c88bd 6546
56cf515b
JK
6547 if (!local->sum_nr_running)
6548 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6549 else if (busiest->load_per_task > local->load_per_task)
6550 imbn = 1;
dd5feea1 6551
56cf515b 6552 scaled_busy_load_per_task =
ca8ce3d0 6553 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6554 busiest->group_capacity;
56cf515b 6555
3029ede3
VD
6556 if (busiest->avg_load + scaled_busy_load_per_task >=
6557 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6558 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6559 return;
6560 }
6561
6562 /*
6563 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6564 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6565 * moving them.
6566 */
6567
63b2ca30 6568 capa_now += busiest->group_capacity *
56cf515b 6569 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6570 capa_now += local->group_capacity *
56cf515b 6571 min(local->load_per_task, local->avg_load);
ca8ce3d0 6572 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6573
6574 /* Amount of load we'd subtract */
a2cd4260 6575 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6576 capa_move += busiest->group_capacity *
56cf515b 6577 min(busiest->load_per_task,
a2cd4260 6578 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6579 }
1e3c88bd
PZ
6580
6581 /* Amount of load we'd add */
63b2ca30 6582 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6583 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6584 tmp = (busiest->avg_load * busiest->group_capacity) /
6585 local->group_capacity;
56cf515b 6586 } else {
ca8ce3d0 6587 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6588 local->group_capacity;
56cf515b 6589 }
63b2ca30 6590 capa_move += local->group_capacity *
3ae11c90 6591 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6592 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6593
6594 /* Move if we gain throughput */
63b2ca30 6595 if (capa_move > capa_now)
56cf515b 6596 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6597}
6598
6599/**
6600 * calculate_imbalance - Calculate the amount of imbalance present within the
6601 * groups of a given sched_domain during load balance.
bd939f45 6602 * @env: load balance environment
1e3c88bd 6603 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6604 */
bd939f45 6605static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6606{
dd5feea1 6607 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6608 struct sg_lb_stats *local, *busiest;
6609
6610 local = &sds->local_stat;
56cf515b 6611 busiest = &sds->busiest_stat;
dd5feea1 6612
caeb178c 6613 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6614 /*
6615 * In the group_imb case we cannot rely on group-wide averages
6616 * to ensure cpu-load equilibrium, look at wider averages. XXX
6617 */
56cf515b
JK
6618 busiest->load_per_task =
6619 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6620 }
6621
1e3c88bd
PZ
6622 /*
6623 * In the presence of smp nice balancing, certain scenarios can have
6624 * max load less than avg load(as we skip the groups at or below
ced549fa 6625 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6626 */
b1885550
VD
6627 if (busiest->avg_load <= sds->avg_load ||
6628 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6629 env->imbalance = 0;
6630 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6631 }
6632
9a5d9ba6
PZ
6633 /*
6634 * If there aren't any idle cpus, avoid creating some.
6635 */
6636 if (busiest->group_type == group_overloaded &&
6637 local->group_type == group_overloaded) {
ea67821b
VG
6638 load_above_capacity = busiest->sum_nr_running *
6639 SCHED_LOAD_SCALE;
6640 if (load_above_capacity > busiest->group_capacity)
6641 load_above_capacity -= busiest->group_capacity;
6642 else
6643 load_above_capacity = ~0UL;
dd5feea1
SS
6644 }
6645
6646 /*
6647 * We're trying to get all the cpus to the average_load, so we don't
6648 * want to push ourselves above the average load, nor do we wish to
6649 * reduce the max loaded cpu below the average load. At the same time,
6650 * we also don't want to reduce the group load below the group capacity
6651 * (so that we can implement power-savings policies etc). Thus we look
6652 * for the minimum possible imbalance.
dd5feea1 6653 */
30ce5dab 6654 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6655
6656 /* How much load to actually move to equalise the imbalance */
56cf515b 6657 env->imbalance = min(
63b2ca30
NP
6658 max_pull * busiest->group_capacity,
6659 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6660 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6661
6662 /*
6663 * if *imbalance is less than the average load per runnable task
25985edc 6664 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6665 * a think about bumping its value to force at least one task to be
6666 * moved
6667 */
56cf515b 6668 if (env->imbalance < busiest->load_per_task)
bd939f45 6669 return fix_small_imbalance(env, sds);
1e3c88bd 6670}
fab47622 6671
1e3c88bd
PZ
6672/******* find_busiest_group() helpers end here *********************/
6673
6674/**
6675 * find_busiest_group - Returns the busiest group within the sched_domain
6676 * if there is an imbalance. If there isn't an imbalance, and
6677 * the user has opted for power-savings, it returns a group whose
6678 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6679 * such a group exists.
6680 *
6681 * Also calculates the amount of weighted load which should be moved
6682 * to restore balance.
6683 *
cd96891d 6684 * @env: The load balancing environment.
1e3c88bd 6685 *
e69f6186 6686 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6687 * - If no imbalance and user has opted for power-savings balance,
6688 * return the least loaded group whose CPUs can be
6689 * put to idle by rebalancing its tasks onto our group.
6690 */
56cf515b 6691static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6692{
56cf515b 6693 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6694 struct sd_lb_stats sds;
6695
147c5fc2 6696 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6697
6698 /*
6699 * Compute the various statistics relavent for load balancing at
6700 * this level.
6701 */
23f0d209 6702 update_sd_lb_stats(env, &sds);
56cf515b
JK
6703 local = &sds.local_stat;
6704 busiest = &sds.busiest_stat;
1e3c88bd 6705
ea67821b 6706 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6707 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6708 check_asym_packing(env, &sds))
532cb4c4
MN
6709 return sds.busiest;
6710
cc57aa8f 6711 /* There is no busy sibling group to pull tasks from */
56cf515b 6712 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6713 goto out_balanced;
6714
ca8ce3d0
NP
6715 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6716 / sds.total_capacity;
b0432d8f 6717
866ab43e
PZ
6718 /*
6719 * If the busiest group is imbalanced the below checks don't
30ce5dab 6720 * work because they assume all things are equal, which typically
866ab43e
PZ
6721 * isn't true due to cpus_allowed constraints and the like.
6722 */
caeb178c 6723 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6724 goto force_balance;
6725
cc57aa8f 6726 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6727 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6728 busiest->group_no_capacity)
fab47622
NR
6729 goto force_balance;
6730
cc57aa8f 6731 /*
9c58c79a 6732 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6733 * don't try and pull any tasks.
6734 */
56cf515b 6735 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6736 goto out_balanced;
6737
cc57aa8f
PZ
6738 /*
6739 * Don't pull any tasks if this group is already above the domain
6740 * average load.
6741 */
56cf515b 6742 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6743 goto out_balanced;
6744
bd939f45 6745 if (env->idle == CPU_IDLE) {
aae6d3dd 6746 /*
43f4d666
VG
6747 * This cpu is idle. If the busiest group is not overloaded
6748 * and there is no imbalance between this and busiest group
6749 * wrt idle cpus, it is balanced. The imbalance becomes
6750 * significant if the diff is greater than 1 otherwise we
6751 * might end up to just move the imbalance on another group
aae6d3dd 6752 */
43f4d666
VG
6753 if ((busiest->group_type != group_overloaded) &&
6754 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6755 goto out_balanced;
c186fafe
PZ
6756 } else {
6757 /*
6758 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6759 * imbalance_pct to be conservative.
6760 */
56cf515b
JK
6761 if (100 * busiest->avg_load <=
6762 env->sd->imbalance_pct * local->avg_load)
c186fafe 6763 goto out_balanced;
aae6d3dd 6764 }
1e3c88bd 6765
fab47622 6766force_balance:
1e3c88bd 6767 /* Looks like there is an imbalance. Compute it */
bd939f45 6768 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6769 return sds.busiest;
6770
6771out_balanced:
bd939f45 6772 env->imbalance = 0;
1e3c88bd
PZ
6773 return NULL;
6774}
6775
6776/*
6777 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6778 */
bd939f45 6779static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6780 struct sched_group *group)
1e3c88bd
PZ
6781{
6782 struct rq *busiest = NULL, *rq;
ced549fa 6783 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6784 int i;
6785
6906a408 6786 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6787 unsigned long capacity, wl;
0ec8aa00
PZ
6788 enum fbq_type rt;
6789
6790 rq = cpu_rq(i);
6791 rt = fbq_classify_rq(rq);
1e3c88bd 6792
0ec8aa00
PZ
6793 /*
6794 * We classify groups/runqueues into three groups:
6795 * - regular: there are !numa tasks
6796 * - remote: there are numa tasks that run on the 'wrong' node
6797 * - all: there is no distinction
6798 *
6799 * In order to avoid migrating ideally placed numa tasks,
6800 * ignore those when there's better options.
6801 *
6802 * If we ignore the actual busiest queue to migrate another
6803 * task, the next balance pass can still reduce the busiest
6804 * queue by moving tasks around inside the node.
6805 *
6806 * If we cannot move enough load due to this classification
6807 * the next pass will adjust the group classification and
6808 * allow migration of more tasks.
6809 *
6810 * Both cases only affect the total convergence complexity.
6811 */
6812 if (rt > env->fbq_type)
6813 continue;
6814
ced549fa 6815 capacity = capacity_of(i);
9d5efe05 6816
6e40f5bb 6817 wl = weighted_cpuload(i);
1e3c88bd 6818
6e40f5bb
TG
6819 /*
6820 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6821 * which is not scaled with the cpu capacity.
6e40f5bb 6822 */
ea67821b
VG
6823
6824 if (rq->nr_running == 1 && wl > env->imbalance &&
6825 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6826 continue;
6827
6e40f5bb
TG
6828 /*
6829 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6830 * the weighted_cpuload() scaled with the cpu capacity, so
6831 * that the load can be moved away from the cpu that is
6832 * potentially running at a lower capacity.
95a79b80 6833 *
ced549fa 6834 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6835 * multiplication to rid ourselves of the division works out
ced549fa
NP
6836 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6837 * our previous maximum.
6e40f5bb 6838 */
ced549fa 6839 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6840 busiest_load = wl;
ced549fa 6841 busiest_capacity = capacity;
1e3c88bd
PZ
6842 busiest = rq;
6843 }
6844 }
6845
6846 return busiest;
6847}
6848
6849/*
6850 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6851 * so long as it is large enough.
6852 */
6853#define MAX_PINNED_INTERVAL 512
6854
6855/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6856DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6857
bd939f45 6858static int need_active_balance(struct lb_env *env)
1af3ed3d 6859{
bd939f45
PZ
6860 struct sched_domain *sd = env->sd;
6861
6862 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6863
6864 /*
6865 * ASYM_PACKING needs to force migrate tasks from busy but
6866 * higher numbered CPUs in order to pack all tasks in the
6867 * lowest numbered CPUs.
6868 */
bd939f45 6869 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6870 return 1;
1af3ed3d
PZ
6871 }
6872
1aaf90a4
VG
6873 /*
6874 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6875 * It's worth migrating the task if the src_cpu's capacity is reduced
6876 * because of other sched_class or IRQs if more capacity stays
6877 * available on dst_cpu.
6878 */
6879 if ((env->idle != CPU_NOT_IDLE) &&
6880 (env->src_rq->cfs.h_nr_running == 1)) {
6881 if ((check_cpu_capacity(env->src_rq, sd)) &&
6882 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6883 return 1;
6884 }
6885
1af3ed3d
PZ
6886 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6887}
6888
969c7921
TH
6889static int active_load_balance_cpu_stop(void *data);
6890
23f0d209
JK
6891static int should_we_balance(struct lb_env *env)
6892{
6893 struct sched_group *sg = env->sd->groups;
6894 struct cpumask *sg_cpus, *sg_mask;
6895 int cpu, balance_cpu = -1;
6896
6897 /*
6898 * In the newly idle case, we will allow all the cpu's
6899 * to do the newly idle load balance.
6900 */
6901 if (env->idle == CPU_NEWLY_IDLE)
6902 return 1;
6903
6904 sg_cpus = sched_group_cpus(sg);
6905 sg_mask = sched_group_mask(sg);
6906 /* Try to find first idle cpu */
6907 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6908 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6909 continue;
6910
6911 balance_cpu = cpu;
6912 break;
6913 }
6914
6915 if (balance_cpu == -1)
6916 balance_cpu = group_balance_cpu(sg);
6917
6918 /*
6919 * First idle cpu or the first cpu(busiest) in this sched group
6920 * is eligible for doing load balancing at this and above domains.
6921 */
b0cff9d8 6922 return balance_cpu == env->dst_cpu;
23f0d209
JK
6923}
6924
1e3c88bd
PZ
6925/*
6926 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6927 * tasks if there is an imbalance.
6928 */
6929static int load_balance(int this_cpu, struct rq *this_rq,
6930 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6931 int *continue_balancing)
1e3c88bd 6932{
88b8dac0 6933 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6934 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6935 struct sched_group *group;
1e3c88bd
PZ
6936 struct rq *busiest;
6937 unsigned long flags;
4ba29684 6938 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6939
8e45cb54
PZ
6940 struct lb_env env = {
6941 .sd = sd,
ddcdf6e7
PZ
6942 .dst_cpu = this_cpu,
6943 .dst_rq = this_rq,
88b8dac0 6944 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6945 .idle = idle,
eb95308e 6946 .loop_break = sched_nr_migrate_break,
b9403130 6947 .cpus = cpus,
0ec8aa00 6948 .fbq_type = all,
163122b7 6949 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6950 };
6951
cfc03118
JK
6952 /*
6953 * For NEWLY_IDLE load_balancing, we don't need to consider
6954 * other cpus in our group
6955 */
e02e60c1 6956 if (idle == CPU_NEWLY_IDLE)
cfc03118 6957 env.dst_grpmask = NULL;
cfc03118 6958
1e3c88bd
PZ
6959 cpumask_copy(cpus, cpu_active_mask);
6960
1e3c88bd
PZ
6961 schedstat_inc(sd, lb_count[idle]);
6962
6963redo:
23f0d209
JK
6964 if (!should_we_balance(&env)) {
6965 *continue_balancing = 0;
1e3c88bd 6966 goto out_balanced;
23f0d209 6967 }
1e3c88bd 6968
23f0d209 6969 group = find_busiest_group(&env);
1e3c88bd
PZ
6970 if (!group) {
6971 schedstat_inc(sd, lb_nobusyg[idle]);
6972 goto out_balanced;
6973 }
6974
b9403130 6975 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6976 if (!busiest) {
6977 schedstat_inc(sd, lb_nobusyq[idle]);
6978 goto out_balanced;
6979 }
6980
78feefc5 6981 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6982
bd939f45 6983 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6984
1aaf90a4
VG
6985 env.src_cpu = busiest->cpu;
6986 env.src_rq = busiest;
6987
1e3c88bd
PZ
6988 ld_moved = 0;
6989 if (busiest->nr_running > 1) {
6990 /*
6991 * Attempt to move tasks. If find_busiest_group has found
6992 * an imbalance but busiest->nr_running <= 1, the group is
6993 * still unbalanced. ld_moved simply stays zero, so it is
6994 * correctly treated as an imbalance.
6995 */
8e45cb54 6996 env.flags |= LBF_ALL_PINNED;
c82513e5 6997 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6998
5d6523eb 6999more_balance:
163122b7 7000 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7001
7002 /*
7003 * cur_ld_moved - load moved in current iteration
7004 * ld_moved - cumulative load moved across iterations
7005 */
163122b7 7006 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7007
7008 /*
163122b7
KT
7009 * We've detached some tasks from busiest_rq. Every
7010 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7011 * unlock busiest->lock, and we are able to be sure
7012 * that nobody can manipulate the tasks in parallel.
7013 * See task_rq_lock() family for the details.
1e3c88bd 7014 */
163122b7
KT
7015
7016 raw_spin_unlock(&busiest->lock);
7017
7018 if (cur_ld_moved) {
7019 attach_tasks(&env);
7020 ld_moved += cur_ld_moved;
7021 }
7022
1e3c88bd 7023 local_irq_restore(flags);
88b8dac0 7024
f1cd0858
JK
7025 if (env.flags & LBF_NEED_BREAK) {
7026 env.flags &= ~LBF_NEED_BREAK;
7027 goto more_balance;
7028 }
7029
88b8dac0
SV
7030 /*
7031 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7032 * us and move them to an alternate dst_cpu in our sched_group
7033 * where they can run. The upper limit on how many times we
7034 * iterate on same src_cpu is dependent on number of cpus in our
7035 * sched_group.
7036 *
7037 * This changes load balance semantics a bit on who can move
7038 * load to a given_cpu. In addition to the given_cpu itself
7039 * (or a ilb_cpu acting on its behalf where given_cpu is
7040 * nohz-idle), we now have balance_cpu in a position to move
7041 * load to given_cpu. In rare situations, this may cause
7042 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7043 * _independently_ and at _same_ time to move some load to
7044 * given_cpu) causing exceess load to be moved to given_cpu.
7045 * This however should not happen so much in practice and
7046 * moreover subsequent load balance cycles should correct the
7047 * excess load moved.
7048 */
6263322c 7049 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7050
7aff2e3a
VD
7051 /* Prevent to re-select dst_cpu via env's cpus */
7052 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7053
78feefc5 7054 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7055 env.dst_cpu = env.new_dst_cpu;
6263322c 7056 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7057 env.loop = 0;
7058 env.loop_break = sched_nr_migrate_break;
e02e60c1 7059
88b8dac0
SV
7060 /*
7061 * Go back to "more_balance" rather than "redo" since we
7062 * need to continue with same src_cpu.
7063 */
7064 goto more_balance;
7065 }
1e3c88bd 7066
6263322c
PZ
7067 /*
7068 * We failed to reach balance because of affinity.
7069 */
7070 if (sd_parent) {
63b2ca30 7071 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7072
afdeee05 7073 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7074 *group_imbalance = 1;
6263322c
PZ
7075 }
7076
1e3c88bd 7077 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7078 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7079 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7080 if (!cpumask_empty(cpus)) {
7081 env.loop = 0;
7082 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7083 goto redo;
bbf18b19 7084 }
afdeee05 7085 goto out_all_pinned;
1e3c88bd
PZ
7086 }
7087 }
7088
7089 if (!ld_moved) {
7090 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7091 /*
7092 * Increment the failure counter only on periodic balance.
7093 * We do not want newidle balance, which can be very
7094 * frequent, pollute the failure counter causing
7095 * excessive cache_hot migrations and active balances.
7096 */
7097 if (idle != CPU_NEWLY_IDLE)
7098 sd->nr_balance_failed++;
1e3c88bd 7099
bd939f45 7100 if (need_active_balance(&env)) {
1e3c88bd
PZ
7101 raw_spin_lock_irqsave(&busiest->lock, flags);
7102
969c7921
TH
7103 /* don't kick the active_load_balance_cpu_stop,
7104 * if the curr task on busiest cpu can't be
7105 * moved to this_cpu
1e3c88bd
PZ
7106 */
7107 if (!cpumask_test_cpu(this_cpu,
fa17b507 7108 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7109 raw_spin_unlock_irqrestore(&busiest->lock,
7110 flags);
8e45cb54 7111 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7112 goto out_one_pinned;
7113 }
7114
969c7921
TH
7115 /*
7116 * ->active_balance synchronizes accesses to
7117 * ->active_balance_work. Once set, it's cleared
7118 * only after active load balance is finished.
7119 */
1e3c88bd
PZ
7120 if (!busiest->active_balance) {
7121 busiest->active_balance = 1;
7122 busiest->push_cpu = this_cpu;
7123 active_balance = 1;
7124 }
7125 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7126
bd939f45 7127 if (active_balance) {
969c7921
TH
7128 stop_one_cpu_nowait(cpu_of(busiest),
7129 active_load_balance_cpu_stop, busiest,
7130 &busiest->active_balance_work);
bd939f45 7131 }
1e3c88bd
PZ
7132
7133 /*
7134 * We've kicked active balancing, reset the failure
7135 * counter.
7136 */
7137 sd->nr_balance_failed = sd->cache_nice_tries+1;
7138 }
7139 } else
7140 sd->nr_balance_failed = 0;
7141
7142 if (likely(!active_balance)) {
7143 /* We were unbalanced, so reset the balancing interval */
7144 sd->balance_interval = sd->min_interval;
7145 } else {
7146 /*
7147 * If we've begun active balancing, start to back off. This
7148 * case may not be covered by the all_pinned logic if there
7149 * is only 1 task on the busy runqueue (because we don't call
163122b7 7150 * detach_tasks).
1e3c88bd
PZ
7151 */
7152 if (sd->balance_interval < sd->max_interval)
7153 sd->balance_interval *= 2;
7154 }
7155
1e3c88bd
PZ
7156 goto out;
7157
7158out_balanced:
afdeee05
VG
7159 /*
7160 * We reach balance although we may have faced some affinity
7161 * constraints. Clear the imbalance flag if it was set.
7162 */
7163 if (sd_parent) {
7164 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7165
7166 if (*group_imbalance)
7167 *group_imbalance = 0;
7168 }
7169
7170out_all_pinned:
7171 /*
7172 * We reach balance because all tasks are pinned at this level so
7173 * we can't migrate them. Let the imbalance flag set so parent level
7174 * can try to migrate them.
7175 */
1e3c88bd
PZ
7176 schedstat_inc(sd, lb_balanced[idle]);
7177
7178 sd->nr_balance_failed = 0;
7179
7180out_one_pinned:
7181 /* tune up the balancing interval */
8e45cb54 7182 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7183 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7184 (sd->balance_interval < sd->max_interval))
7185 sd->balance_interval *= 2;
7186
46e49b38 7187 ld_moved = 0;
1e3c88bd 7188out:
1e3c88bd
PZ
7189 return ld_moved;
7190}
7191
52a08ef1
JL
7192static inline unsigned long
7193get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7194{
7195 unsigned long interval = sd->balance_interval;
7196
7197 if (cpu_busy)
7198 interval *= sd->busy_factor;
7199
7200 /* scale ms to jiffies */
7201 interval = msecs_to_jiffies(interval);
7202 interval = clamp(interval, 1UL, max_load_balance_interval);
7203
7204 return interval;
7205}
7206
7207static inline void
7208update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7209{
7210 unsigned long interval, next;
7211
7212 interval = get_sd_balance_interval(sd, cpu_busy);
7213 next = sd->last_balance + interval;
7214
7215 if (time_after(*next_balance, next))
7216 *next_balance = next;
7217}
7218
1e3c88bd
PZ
7219/*
7220 * idle_balance is called by schedule() if this_cpu is about to become
7221 * idle. Attempts to pull tasks from other CPUs.
7222 */
6e83125c 7223static int idle_balance(struct rq *this_rq)
1e3c88bd 7224{
52a08ef1
JL
7225 unsigned long next_balance = jiffies + HZ;
7226 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7227 struct sched_domain *sd;
7228 int pulled_task = 0;
9bd721c5 7229 u64 curr_cost = 0;
1e3c88bd 7230
6e83125c 7231 idle_enter_fair(this_rq);
0e5b5337 7232
6e83125c
PZ
7233 /*
7234 * We must set idle_stamp _before_ calling idle_balance(), such that we
7235 * measure the duration of idle_balance() as idle time.
7236 */
7237 this_rq->idle_stamp = rq_clock(this_rq);
7238
4486edd1
TC
7239 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7240 !this_rq->rd->overload) {
52a08ef1
JL
7241 rcu_read_lock();
7242 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7243 if (sd)
7244 update_next_balance(sd, 0, &next_balance);
7245 rcu_read_unlock();
7246
6e83125c 7247 goto out;
52a08ef1 7248 }
1e3c88bd 7249
f492e12e
PZ
7250 raw_spin_unlock(&this_rq->lock);
7251
48a16753 7252 update_blocked_averages(this_cpu);
dce840a0 7253 rcu_read_lock();
1e3c88bd 7254 for_each_domain(this_cpu, sd) {
23f0d209 7255 int continue_balancing = 1;
9bd721c5 7256 u64 t0, domain_cost;
1e3c88bd
PZ
7257
7258 if (!(sd->flags & SD_LOAD_BALANCE))
7259 continue;
7260
52a08ef1
JL
7261 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7262 update_next_balance(sd, 0, &next_balance);
9bd721c5 7263 break;
52a08ef1 7264 }
9bd721c5 7265
f492e12e 7266 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7267 t0 = sched_clock_cpu(this_cpu);
7268
f492e12e 7269 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7270 sd, CPU_NEWLY_IDLE,
7271 &continue_balancing);
9bd721c5
JL
7272
7273 domain_cost = sched_clock_cpu(this_cpu) - t0;
7274 if (domain_cost > sd->max_newidle_lb_cost)
7275 sd->max_newidle_lb_cost = domain_cost;
7276
7277 curr_cost += domain_cost;
f492e12e 7278 }
1e3c88bd 7279
52a08ef1 7280 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7281
7282 /*
7283 * Stop searching for tasks to pull if there are
7284 * now runnable tasks on this rq.
7285 */
7286 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7287 break;
1e3c88bd 7288 }
dce840a0 7289 rcu_read_unlock();
f492e12e
PZ
7290
7291 raw_spin_lock(&this_rq->lock);
7292
0e5b5337
JL
7293 if (curr_cost > this_rq->max_idle_balance_cost)
7294 this_rq->max_idle_balance_cost = curr_cost;
7295
e5fc6611 7296 /*
0e5b5337
JL
7297 * While browsing the domains, we released the rq lock, a task could
7298 * have been enqueued in the meantime. Since we're not going idle,
7299 * pretend we pulled a task.
e5fc6611 7300 */
0e5b5337 7301 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7302 pulled_task = 1;
e5fc6611 7303
52a08ef1
JL
7304out:
7305 /* Move the next balance forward */
7306 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7307 this_rq->next_balance = next_balance;
9bd721c5 7308
e4aa358b 7309 /* Is there a task of a high priority class? */
46383648 7310 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7311 pulled_task = -1;
7312
7313 if (pulled_task) {
7314 idle_exit_fair(this_rq);
6e83125c 7315 this_rq->idle_stamp = 0;
e4aa358b 7316 }
6e83125c 7317
3c4017c1 7318 return pulled_task;
1e3c88bd
PZ
7319}
7320
7321/*
969c7921
TH
7322 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7323 * running tasks off the busiest CPU onto idle CPUs. It requires at
7324 * least 1 task to be running on each physical CPU where possible, and
7325 * avoids physical / logical imbalances.
1e3c88bd 7326 */
969c7921 7327static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7328{
969c7921
TH
7329 struct rq *busiest_rq = data;
7330 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7331 int target_cpu = busiest_rq->push_cpu;
969c7921 7332 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7333 struct sched_domain *sd;
e5673f28 7334 struct task_struct *p = NULL;
969c7921
TH
7335
7336 raw_spin_lock_irq(&busiest_rq->lock);
7337
7338 /* make sure the requested cpu hasn't gone down in the meantime */
7339 if (unlikely(busiest_cpu != smp_processor_id() ||
7340 !busiest_rq->active_balance))
7341 goto out_unlock;
1e3c88bd
PZ
7342
7343 /* Is there any task to move? */
7344 if (busiest_rq->nr_running <= 1)
969c7921 7345 goto out_unlock;
1e3c88bd
PZ
7346
7347 /*
7348 * This condition is "impossible", if it occurs
7349 * we need to fix it. Originally reported by
7350 * Bjorn Helgaas on a 128-cpu setup.
7351 */
7352 BUG_ON(busiest_rq == target_rq);
7353
1e3c88bd 7354 /* Search for an sd spanning us and the target CPU. */
dce840a0 7355 rcu_read_lock();
1e3c88bd
PZ
7356 for_each_domain(target_cpu, sd) {
7357 if ((sd->flags & SD_LOAD_BALANCE) &&
7358 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7359 break;
7360 }
7361
7362 if (likely(sd)) {
8e45cb54
PZ
7363 struct lb_env env = {
7364 .sd = sd,
ddcdf6e7
PZ
7365 .dst_cpu = target_cpu,
7366 .dst_rq = target_rq,
7367 .src_cpu = busiest_rq->cpu,
7368 .src_rq = busiest_rq,
8e45cb54
PZ
7369 .idle = CPU_IDLE,
7370 };
7371
1e3c88bd
PZ
7372 schedstat_inc(sd, alb_count);
7373
e5673f28
KT
7374 p = detach_one_task(&env);
7375 if (p)
1e3c88bd
PZ
7376 schedstat_inc(sd, alb_pushed);
7377 else
7378 schedstat_inc(sd, alb_failed);
7379 }
dce840a0 7380 rcu_read_unlock();
969c7921
TH
7381out_unlock:
7382 busiest_rq->active_balance = 0;
e5673f28
KT
7383 raw_spin_unlock(&busiest_rq->lock);
7384
7385 if (p)
7386 attach_one_task(target_rq, p);
7387
7388 local_irq_enable();
7389
969c7921 7390 return 0;
1e3c88bd
PZ
7391}
7392
d987fc7f
MG
7393static inline int on_null_domain(struct rq *rq)
7394{
7395 return unlikely(!rcu_dereference_sched(rq->sd));
7396}
7397
3451d024 7398#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7399/*
7400 * idle load balancing details
83cd4fe2
VP
7401 * - When one of the busy CPUs notice that there may be an idle rebalancing
7402 * needed, they will kick the idle load balancer, which then does idle
7403 * load balancing for all the idle CPUs.
7404 */
1e3c88bd 7405static struct {
83cd4fe2 7406 cpumask_var_t idle_cpus_mask;
0b005cf5 7407 atomic_t nr_cpus;
83cd4fe2
VP
7408 unsigned long next_balance; /* in jiffy units */
7409} nohz ____cacheline_aligned;
1e3c88bd 7410
3dd0337d 7411static inline int find_new_ilb(void)
1e3c88bd 7412{
0b005cf5 7413 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7414
786d6dc7
SS
7415 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7416 return ilb;
7417
7418 return nr_cpu_ids;
1e3c88bd 7419}
1e3c88bd 7420
83cd4fe2
VP
7421/*
7422 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7423 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7424 * CPU (if there is one).
7425 */
0aeeeeba 7426static void nohz_balancer_kick(void)
83cd4fe2
VP
7427{
7428 int ilb_cpu;
7429
7430 nohz.next_balance++;
7431
3dd0337d 7432 ilb_cpu = find_new_ilb();
83cd4fe2 7433
0b005cf5
SS
7434 if (ilb_cpu >= nr_cpu_ids)
7435 return;
83cd4fe2 7436
cd490c5b 7437 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7438 return;
7439 /*
7440 * Use smp_send_reschedule() instead of resched_cpu().
7441 * This way we generate a sched IPI on the target cpu which
7442 * is idle. And the softirq performing nohz idle load balance
7443 * will be run before returning from the IPI.
7444 */
7445 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7446 return;
7447}
7448
c1cc017c 7449static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7450{
7451 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7452 /*
7453 * Completely isolated CPUs don't ever set, so we must test.
7454 */
7455 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7456 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7457 atomic_dec(&nohz.nr_cpus);
7458 }
71325960
SS
7459 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7460 }
7461}
7462
69e1e811
SS
7463static inline void set_cpu_sd_state_busy(void)
7464{
7465 struct sched_domain *sd;
37dc6b50 7466 int cpu = smp_processor_id();
69e1e811 7467
69e1e811 7468 rcu_read_lock();
37dc6b50 7469 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7470
7471 if (!sd || !sd->nohz_idle)
7472 goto unlock;
7473 sd->nohz_idle = 0;
7474
63b2ca30 7475 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7476unlock:
69e1e811
SS
7477 rcu_read_unlock();
7478}
7479
7480void set_cpu_sd_state_idle(void)
7481{
7482 struct sched_domain *sd;
37dc6b50 7483 int cpu = smp_processor_id();
69e1e811 7484
69e1e811 7485 rcu_read_lock();
37dc6b50 7486 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7487
7488 if (!sd || sd->nohz_idle)
7489 goto unlock;
7490 sd->nohz_idle = 1;
7491
63b2ca30 7492 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7493unlock:
69e1e811
SS
7494 rcu_read_unlock();
7495}
7496
1e3c88bd 7497/*
c1cc017c 7498 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7499 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7500 */
c1cc017c 7501void nohz_balance_enter_idle(int cpu)
1e3c88bd 7502{
71325960
SS
7503 /*
7504 * If this cpu is going down, then nothing needs to be done.
7505 */
7506 if (!cpu_active(cpu))
7507 return;
7508
c1cc017c
AS
7509 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7510 return;
1e3c88bd 7511
d987fc7f
MG
7512 /*
7513 * If we're a completely isolated CPU, we don't play.
7514 */
7515 if (on_null_domain(cpu_rq(cpu)))
7516 return;
7517
c1cc017c
AS
7518 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7519 atomic_inc(&nohz.nr_cpus);
7520 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7521}
71325960 7522
0db0628d 7523static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7524 unsigned long action, void *hcpu)
7525{
7526 switch (action & ~CPU_TASKS_FROZEN) {
7527 case CPU_DYING:
c1cc017c 7528 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7529 return NOTIFY_OK;
7530 default:
7531 return NOTIFY_DONE;
7532 }
7533}
1e3c88bd
PZ
7534#endif
7535
7536static DEFINE_SPINLOCK(balancing);
7537
49c022e6
PZ
7538/*
7539 * Scale the max load_balance interval with the number of CPUs in the system.
7540 * This trades load-balance latency on larger machines for less cross talk.
7541 */
029632fb 7542void update_max_interval(void)
49c022e6
PZ
7543{
7544 max_load_balance_interval = HZ*num_online_cpus()/10;
7545}
7546
1e3c88bd
PZ
7547/*
7548 * It checks each scheduling domain to see if it is due to be balanced,
7549 * and initiates a balancing operation if so.
7550 *
b9b0853a 7551 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7552 */
f7ed0a89 7553static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7554{
23f0d209 7555 int continue_balancing = 1;
f7ed0a89 7556 int cpu = rq->cpu;
1e3c88bd 7557 unsigned long interval;
04f733b4 7558 struct sched_domain *sd;
1e3c88bd
PZ
7559 /* Earliest time when we have to do rebalance again */
7560 unsigned long next_balance = jiffies + 60*HZ;
7561 int update_next_balance = 0;
f48627e6
JL
7562 int need_serialize, need_decay = 0;
7563 u64 max_cost = 0;
1e3c88bd 7564
48a16753 7565 update_blocked_averages(cpu);
2069dd75 7566
dce840a0 7567 rcu_read_lock();
1e3c88bd 7568 for_each_domain(cpu, sd) {
f48627e6
JL
7569 /*
7570 * Decay the newidle max times here because this is a regular
7571 * visit to all the domains. Decay ~1% per second.
7572 */
7573 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7574 sd->max_newidle_lb_cost =
7575 (sd->max_newidle_lb_cost * 253) / 256;
7576 sd->next_decay_max_lb_cost = jiffies + HZ;
7577 need_decay = 1;
7578 }
7579 max_cost += sd->max_newidle_lb_cost;
7580
1e3c88bd
PZ
7581 if (!(sd->flags & SD_LOAD_BALANCE))
7582 continue;
7583
f48627e6
JL
7584 /*
7585 * Stop the load balance at this level. There is another
7586 * CPU in our sched group which is doing load balancing more
7587 * actively.
7588 */
7589 if (!continue_balancing) {
7590 if (need_decay)
7591 continue;
7592 break;
7593 }
7594
52a08ef1 7595 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7596
7597 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7598 if (need_serialize) {
7599 if (!spin_trylock(&balancing))
7600 goto out;
7601 }
7602
7603 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7604 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7605 /*
6263322c 7606 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7607 * env->dst_cpu, so we can't know our idle
7608 * state even if we migrated tasks. Update it.
1e3c88bd 7609 */
de5eb2dd 7610 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7611 }
7612 sd->last_balance = jiffies;
52a08ef1 7613 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7614 }
7615 if (need_serialize)
7616 spin_unlock(&balancing);
7617out:
7618 if (time_after(next_balance, sd->last_balance + interval)) {
7619 next_balance = sd->last_balance + interval;
7620 update_next_balance = 1;
7621 }
f48627e6
JL
7622 }
7623 if (need_decay) {
1e3c88bd 7624 /*
f48627e6
JL
7625 * Ensure the rq-wide value also decays but keep it at a
7626 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7627 */
f48627e6
JL
7628 rq->max_idle_balance_cost =
7629 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7630 }
dce840a0 7631 rcu_read_unlock();
1e3c88bd
PZ
7632
7633 /*
7634 * next_balance will be updated only when there is a need.
7635 * When the cpu is attached to null domain for ex, it will not be
7636 * updated.
7637 */
c5afb6a8 7638 if (likely(update_next_balance)) {
1e3c88bd 7639 rq->next_balance = next_balance;
c5afb6a8
VG
7640
7641#ifdef CONFIG_NO_HZ_COMMON
7642 /*
7643 * If this CPU has been elected to perform the nohz idle
7644 * balance. Other idle CPUs have already rebalanced with
7645 * nohz_idle_balance() and nohz.next_balance has been
7646 * updated accordingly. This CPU is now running the idle load
7647 * balance for itself and we need to update the
7648 * nohz.next_balance accordingly.
7649 */
7650 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7651 nohz.next_balance = rq->next_balance;
7652#endif
7653 }
1e3c88bd
PZ
7654}
7655
3451d024 7656#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7657/*
3451d024 7658 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7659 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7660 */
208cb16b 7661static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7662{
208cb16b 7663 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7664 struct rq *rq;
7665 int balance_cpu;
c5afb6a8
VG
7666 /* Earliest time when we have to do rebalance again */
7667 unsigned long next_balance = jiffies + 60*HZ;
7668 int update_next_balance = 0;
83cd4fe2 7669
1c792db7
SS
7670 if (idle != CPU_IDLE ||
7671 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7672 goto end;
83cd4fe2
VP
7673
7674 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7675 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7676 continue;
7677
7678 /*
7679 * If this cpu gets work to do, stop the load balancing
7680 * work being done for other cpus. Next load
7681 * balancing owner will pick it up.
7682 */
1c792db7 7683 if (need_resched())
83cd4fe2 7684 break;
83cd4fe2 7685
5ed4f1d9
VG
7686 rq = cpu_rq(balance_cpu);
7687
ed61bbc6
TC
7688 /*
7689 * If time for next balance is due,
7690 * do the balance.
7691 */
7692 if (time_after_eq(jiffies, rq->next_balance)) {
7693 raw_spin_lock_irq(&rq->lock);
7694 update_rq_clock(rq);
7695 update_idle_cpu_load(rq);
7696 raw_spin_unlock_irq(&rq->lock);
7697 rebalance_domains(rq, CPU_IDLE);
7698 }
83cd4fe2 7699
c5afb6a8
VG
7700 if (time_after(next_balance, rq->next_balance)) {
7701 next_balance = rq->next_balance;
7702 update_next_balance = 1;
7703 }
83cd4fe2 7704 }
c5afb6a8
VG
7705
7706 /*
7707 * next_balance will be updated only when there is a need.
7708 * When the CPU is attached to null domain for ex, it will not be
7709 * updated.
7710 */
7711 if (likely(update_next_balance))
7712 nohz.next_balance = next_balance;
1c792db7
SS
7713end:
7714 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7715}
7716
7717/*
0b005cf5 7718 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7719 * of an idle cpu in the system.
0b005cf5 7720 * - This rq has more than one task.
1aaf90a4
VG
7721 * - This rq has at least one CFS task and the capacity of the CPU is
7722 * significantly reduced because of RT tasks or IRQs.
7723 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7724 * multiple busy cpu.
0b005cf5
SS
7725 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7726 * domain span are idle.
83cd4fe2 7727 */
1aaf90a4 7728static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7729{
7730 unsigned long now = jiffies;
0b005cf5 7731 struct sched_domain *sd;
63b2ca30 7732 struct sched_group_capacity *sgc;
4a725627 7733 int nr_busy, cpu = rq->cpu;
1aaf90a4 7734 bool kick = false;
83cd4fe2 7735
4a725627 7736 if (unlikely(rq->idle_balance))
1aaf90a4 7737 return false;
83cd4fe2 7738
1c792db7
SS
7739 /*
7740 * We may be recently in ticked or tickless idle mode. At the first
7741 * busy tick after returning from idle, we will update the busy stats.
7742 */
69e1e811 7743 set_cpu_sd_state_busy();
c1cc017c 7744 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7745
7746 /*
7747 * None are in tickless mode and hence no need for NOHZ idle load
7748 * balancing.
7749 */
7750 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7751 return false;
1c792db7
SS
7752
7753 if (time_before(now, nohz.next_balance))
1aaf90a4 7754 return false;
83cd4fe2 7755
0b005cf5 7756 if (rq->nr_running >= 2)
1aaf90a4 7757 return true;
83cd4fe2 7758
067491b7 7759 rcu_read_lock();
37dc6b50 7760 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7761 if (sd) {
63b2ca30
NP
7762 sgc = sd->groups->sgc;
7763 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7764
1aaf90a4
VG
7765 if (nr_busy > 1) {
7766 kick = true;
7767 goto unlock;
7768 }
7769
83cd4fe2 7770 }
37dc6b50 7771
1aaf90a4
VG
7772 sd = rcu_dereference(rq->sd);
7773 if (sd) {
7774 if ((rq->cfs.h_nr_running >= 1) &&
7775 check_cpu_capacity(rq, sd)) {
7776 kick = true;
7777 goto unlock;
7778 }
7779 }
37dc6b50 7780
1aaf90a4 7781 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7782 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7783 sched_domain_span(sd)) < cpu)) {
7784 kick = true;
7785 goto unlock;
7786 }
067491b7 7787
1aaf90a4 7788unlock:
067491b7 7789 rcu_read_unlock();
1aaf90a4 7790 return kick;
83cd4fe2
VP
7791}
7792#else
208cb16b 7793static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7794#endif
7795
7796/*
7797 * run_rebalance_domains is triggered when needed from the scheduler tick.
7798 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7799 */
1e3c88bd
PZ
7800static void run_rebalance_domains(struct softirq_action *h)
7801{
208cb16b 7802 struct rq *this_rq = this_rq();
6eb57e0d 7803 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7804 CPU_IDLE : CPU_NOT_IDLE;
7805
1e3c88bd 7806 /*
83cd4fe2 7807 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7808 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7809 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7810 * give the idle cpus a chance to load balance. Else we may
7811 * load balance only within the local sched_domain hierarchy
7812 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7813 */
208cb16b 7814 nohz_idle_balance(this_rq, idle);
d4573c3e 7815 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7816}
7817
1e3c88bd
PZ
7818/*
7819 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7820 */
7caff66f 7821void trigger_load_balance(struct rq *rq)
1e3c88bd 7822{
1e3c88bd 7823 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7824 if (unlikely(on_null_domain(rq)))
7825 return;
7826
7827 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7828 raise_softirq(SCHED_SOFTIRQ);
3451d024 7829#ifdef CONFIG_NO_HZ_COMMON
c726099e 7830 if (nohz_kick_needed(rq))
0aeeeeba 7831 nohz_balancer_kick();
83cd4fe2 7832#endif
1e3c88bd
PZ
7833}
7834
0bcdcf28
CE
7835static void rq_online_fair(struct rq *rq)
7836{
7837 update_sysctl();
0e59bdae
KT
7838
7839 update_runtime_enabled(rq);
0bcdcf28
CE
7840}
7841
7842static void rq_offline_fair(struct rq *rq)
7843{
7844 update_sysctl();
a4c96ae3
PB
7845
7846 /* Ensure any throttled groups are reachable by pick_next_task */
7847 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7848}
7849
55e12e5e 7850#endif /* CONFIG_SMP */
e1d1484f 7851
bf0f6f24
IM
7852/*
7853 * scheduler tick hitting a task of our scheduling class:
7854 */
8f4d37ec 7855static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7856{
7857 struct cfs_rq *cfs_rq;
7858 struct sched_entity *se = &curr->se;
7859
7860 for_each_sched_entity(se) {
7861 cfs_rq = cfs_rq_of(se);
8f4d37ec 7862 entity_tick(cfs_rq, se, queued);
bf0f6f24 7863 }
18bf2805 7864
2a595721 7865 if (!static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7866 task_tick_numa(rq, curr);
bf0f6f24
IM
7867}
7868
7869/*
cd29fe6f
PZ
7870 * called on fork with the child task as argument from the parent's context
7871 * - child not yet on the tasklist
7872 * - preemption disabled
bf0f6f24 7873 */
cd29fe6f 7874static void task_fork_fair(struct task_struct *p)
bf0f6f24 7875{
4fc420c9
DN
7876 struct cfs_rq *cfs_rq;
7877 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7878 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7879 struct rq *rq = this_rq();
7880 unsigned long flags;
7881
05fa785c 7882 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7883
861d034e
PZ
7884 update_rq_clock(rq);
7885
4fc420c9
DN
7886 cfs_rq = task_cfs_rq(current);
7887 curr = cfs_rq->curr;
7888
6c9a27f5
DN
7889 /*
7890 * Not only the cpu but also the task_group of the parent might have
7891 * been changed after parent->se.parent,cfs_rq were copied to
7892 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7893 * of child point to valid ones.
7894 */
7895 rcu_read_lock();
7896 __set_task_cpu(p, this_cpu);
7897 rcu_read_unlock();
bf0f6f24 7898
7109c442 7899 update_curr(cfs_rq);
cd29fe6f 7900
b5d9d734
MG
7901 if (curr)
7902 se->vruntime = curr->vruntime;
aeb73b04 7903 place_entity(cfs_rq, se, 1);
4d78e7b6 7904
cd29fe6f 7905 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7906 /*
edcb60a3
IM
7907 * Upon rescheduling, sched_class::put_prev_task() will place
7908 * 'current' within the tree based on its new key value.
7909 */
4d78e7b6 7910 swap(curr->vruntime, se->vruntime);
8875125e 7911 resched_curr(rq);
4d78e7b6 7912 }
bf0f6f24 7913
88ec22d3
PZ
7914 se->vruntime -= cfs_rq->min_vruntime;
7915
05fa785c 7916 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7917}
7918
cb469845
SR
7919/*
7920 * Priority of the task has changed. Check to see if we preempt
7921 * the current task.
7922 */
da7a735e
PZ
7923static void
7924prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7925{
da0c1e65 7926 if (!task_on_rq_queued(p))
da7a735e
PZ
7927 return;
7928
cb469845
SR
7929 /*
7930 * Reschedule if we are currently running on this runqueue and
7931 * our priority decreased, or if we are not currently running on
7932 * this runqueue and our priority is higher than the current's
7933 */
da7a735e 7934 if (rq->curr == p) {
cb469845 7935 if (p->prio > oldprio)
8875125e 7936 resched_curr(rq);
cb469845 7937 } else
15afe09b 7938 check_preempt_curr(rq, p, 0);
cb469845
SR
7939}
7940
daa59407 7941static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7942{
7943 struct sched_entity *se = &p->se;
da7a735e
PZ
7944
7945 /*
daa59407
BP
7946 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7947 * the dequeue_entity(.flags=0) will already have normalized the
7948 * vruntime.
7949 */
7950 if (p->on_rq)
7951 return true;
7952
7953 /*
7954 * When !on_rq, vruntime of the task has usually NOT been normalized.
7955 * But there are some cases where it has already been normalized:
da7a735e 7956 *
daa59407
BP
7957 * - A forked child which is waiting for being woken up by
7958 * wake_up_new_task().
7959 * - A task which has been woken up by try_to_wake_up() and
7960 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7961 */
daa59407
BP
7962 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7963 return true;
7964
7965 return false;
7966}
7967
7968static void detach_task_cfs_rq(struct task_struct *p)
7969{
7970 struct sched_entity *se = &p->se;
7971 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7972
7973 if (!vruntime_normalized(p)) {
da7a735e
PZ
7974 /*
7975 * Fix up our vruntime so that the current sleep doesn't
7976 * cause 'unlimited' sleep bonus.
7977 */
7978 place_entity(cfs_rq, se, 0);
7979 se->vruntime -= cfs_rq->min_vruntime;
7980 }
9ee474f5 7981
9d89c257 7982 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 7983 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
7984}
7985
daa59407 7986static void attach_task_cfs_rq(struct task_struct *p)
cb469845 7987{
f36c019c 7988 struct sched_entity *se = &p->se;
daa59407 7989 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
7990
7991#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
7992 /*
7993 * Since the real-depth could have been changed (only FAIR
7994 * class maintain depth value), reset depth properly.
7995 */
7996 se->depth = se->parent ? se->parent->depth + 1 : 0;
7997#endif
7855a35a 7998
6efdb105 7999 /* Synchronize task with its cfs_rq */
daa59407
BP
8000 attach_entity_load_avg(cfs_rq, se);
8001
8002 if (!vruntime_normalized(p))
8003 se->vruntime += cfs_rq->min_vruntime;
8004}
6efdb105 8005
daa59407
BP
8006static void switched_from_fair(struct rq *rq, struct task_struct *p)
8007{
8008 detach_task_cfs_rq(p);
8009}
8010
8011static void switched_to_fair(struct rq *rq, struct task_struct *p)
8012{
8013 attach_task_cfs_rq(p);
7855a35a 8014
daa59407 8015 if (task_on_rq_queued(p)) {
7855a35a 8016 /*
daa59407
BP
8017 * We were most likely switched from sched_rt, so
8018 * kick off the schedule if running, otherwise just see
8019 * if we can still preempt the current task.
7855a35a 8020 */
daa59407
BP
8021 if (rq->curr == p)
8022 resched_curr(rq);
8023 else
8024 check_preempt_curr(rq, p, 0);
7855a35a 8025 }
cb469845
SR
8026}
8027
83b699ed
SV
8028/* Account for a task changing its policy or group.
8029 *
8030 * This routine is mostly called to set cfs_rq->curr field when a task
8031 * migrates between groups/classes.
8032 */
8033static void set_curr_task_fair(struct rq *rq)
8034{
8035 struct sched_entity *se = &rq->curr->se;
8036
ec12cb7f
PT
8037 for_each_sched_entity(se) {
8038 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8039
8040 set_next_entity(cfs_rq, se);
8041 /* ensure bandwidth has been allocated on our new cfs_rq */
8042 account_cfs_rq_runtime(cfs_rq, 0);
8043 }
83b699ed
SV
8044}
8045
029632fb
PZ
8046void init_cfs_rq(struct cfs_rq *cfs_rq)
8047{
8048 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8049 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8050#ifndef CONFIG_64BIT
8051 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8052#endif
141965c7 8053#ifdef CONFIG_SMP
9d89c257
YD
8054 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8055 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8056#endif
029632fb
PZ
8057}
8058
810b3817 8059#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8060static void task_move_group_fair(struct task_struct *p)
810b3817 8061{
daa59407 8062 detach_task_cfs_rq(p);
b2b5ce02 8063 set_task_rq(p, task_cpu(p));
6efdb105
BP
8064
8065#ifdef CONFIG_SMP
8066 /* Tell se's cfs_rq has been changed -- migrated */
8067 p->se.avg.last_update_time = 0;
8068#endif
daa59407 8069 attach_task_cfs_rq(p);
810b3817 8070}
029632fb
PZ
8071
8072void free_fair_sched_group(struct task_group *tg)
8073{
8074 int i;
8075
8076 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8077
8078 for_each_possible_cpu(i) {
8079 if (tg->cfs_rq)
8080 kfree(tg->cfs_rq[i]);
12695578
YD
8081 if (tg->se) {
8082 if (tg->se[i])
8083 remove_entity_load_avg(tg->se[i]);
029632fb 8084 kfree(tg->se[i]);
12695578 8085 }
029632fb
PZ
8086 }
8087
8088 kfree(tg->cfs_rq);
8089 kfree(tg->se);
8090}
8091
8092int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8093{
8094 struct cfs_rq *cfs_rq;
8095 struct sched_entity *se;
8096 int i;
8097
8098 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8099 if (!tg->cfs_rq)
8100 goto err;
8101 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8102 if (!tg->se)
8103 goto err;
8104
8105 tg->shares = NICE_0_LOAD;
8106
8107 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8108
8109 for_each_possible_cpu(i) {
8110 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8111 GFP_KERNEL, cpu_to_node(i));
8112 if (!cfs_rq)
8113 goto err;
8114
8115 se = kzalloc_node(sizeof(struct sched_entity),
8116 GFP_KERNEL, cpu_to_node(i));
8117 if (!se)
8118 goto err_free_rq;
8119
8120 init_cfs_rq(cfs_rq);
8121 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8122 init_entity_runnable_average(se);
029632fb
PZ
8123 }
8124
8125 return 1;
8126
8127err_free_rq:
8128 kfree(cfs_rq);
8129err:
8130 return 0;
8131}
8132
8133void unregister_fair_sched_group(struct task_group *tg, int cpu)
8134{
8135 struct rq *rq = cpu_rq(cpu);
8136 unsigned long flags;
8137
8138 /*
8139 * Only empty task groups can be destroyed; so we can speculatively
8140 * check on_list without danger of it being re-added.
8141 */
8142 if (!tg->cfs_rq[cpu]->on_list)
8143 return;
8144
8145 raw_spin_lock_irqsave(&rq->lock, flags);
8146 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8147 raw_spin_unlock_irqrestore(&rq->lock, flags);
8148}
8149
8150void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8151 struct sched_entity *se, int cpu,
8152 struct sched_entity *parent)
8153{
8154 struct rq *rq = cpu_rq(cpu);
8155
8156 cfs_rq->tg = tg;
8157 cfs_rq->rq = rq;
029632fb
PZ
8158 init_cfs_rq_runtime(cfs_rq);
8159
8160 tg->cfs_rq[cpu] = cfs_rq;
8161 tg->se[cpu] = se;
8162
8163 /* se could be NULL for root_task_group */
8164 if (!se)
8165 return;
8166
fed14d45 8167 if (!parent) {
029632fb 8168 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8169 se->depth = 0;
8170 } else {
029632fb 8171 se->cfs_rq = parent->my_q;
fed14d45
PZ
8172 se->depth = parent->depth + 1;
8173 }
029632fb
PZ
8174
8175 se->my_q = cfs_rq;
0ac9b1c2
PT
8176 /* guarantee group entities always have weight */
8177 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8178 se->parent = parent;
8179}
8180
8181static DEFINE_MUTEX(shares_mutex);
8182
8183int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8184{
8185 int i;
8186 unsigned long flags;
8187
8188 /*
8189 * We can't change the weight of the root cgroup.
8190 */
8191 if (!tg->se[0])
8192 return -EINVAL;
8193
8194 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8195
8196 mutex_lock(&shares_mutex);
8197 if (tg->shares == shares)
8198 goto done;
8199
8200 tg->shares = shares;
8201 for_each_possible_cpu(i) {
8202 struct rq *rq = cpu_rq(i);
8203 struct sched_entity *se;
8204
8205 se = tg->se[i];
8206 /* Propagate contribution to hierarchy */
8207 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8208
8209 /* Possible calls to update_curr() need rq clock */
8210 update_rq_clock(rq);
17bc14b7 8211 for_each_sched_entity(se)
029632fb
PZ
8212 update_cfs_shares(group_cfs_rq(se));
8213 raw_spin_unlock_irqrestore(&rq->lock, flags);
8214 }
8215
8216done:
8217 mutex_unlock(&shares_mutex);
8218 return 0;
8219}
8220#else /* CONFIG_FAIR_GROUP_SCHED */
8221
8222void free_fair_sched_group(struct task_group *tg) { }
8223
8224int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8225{
8226 return 1;
8227}
8228
8229void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8230
8231#endif /* CONFIG_FAIR_GROUP_SCHED */
8232
810b3817 8233
6d686f45 8234static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8235{
8236 struct sched_entity *se = &task->se;
0d721cea
PW
8237 unsigned int rr_interval = 0;
8238
8239 /*
8240 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8241 * idle runqueue:
8242 */
0d721cea 8243 if (rq->cfs.load.weight)
a59f4e07 8244 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8245
8246 return rr_interval;
8247}
8248
bf0f6f24
IM
8249/*
8250 * All the scheduling class methods:
8251 */
029632fb 8252const struct sched_class fair_sched_class = {
5522d5d5 8253 .next = &idle_sched_class,
bf0f6f24
IM
8254 .enqueue_task = enqueue_task_fair,
8255 .dequeue_task = dequeue_task_fair,
8256 .yield_task = yield_task_fair,
d95f4122 8257 .yield_to_task = yield_to_task_fair,
bf0f6f24 8258
2e09bf55 8259 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8260
8261 .pick_next_task = pick_next_task_fair,
8262 .put_prev_task = put_prev_task_fair,
8263
681f3e68 8264#ifdef CONFIG_SMP
4ce72a2c 8265 .select_task_rq = select_task_rq_fair,
0a74bef8 8266 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8267
0bcdcf28
CE
8268 .rq_online = rq_online_fair,
8269 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8270
8271 .task_waking = task_waking_fair,
12695578 8272 .task_dead = task_dead_fair,
c5b28038 8273 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8274#endif
bf0f6f24 8275
83b699ed 8276 .set_curr_task = set_curr_task_fair,
bf0f6f24 8277 .task_tick = task_tick_fair,
cd29fe6f 8278 .task_fork = task_fork_fair,
cb469845
SR
8279
8280 .prio_changed = prio_changed_fair,
da7a735e 8281 .switched_from = switched_from_fair,
cb469845 8282 .switched_to = switched_to_fair,
810b3817 8283
0d721cea
PW
8284 .get_rr_interval = get_rr_interval_fair,
8285
6e998916
SG
8286 .update_curr = update_curr_fair,
8287
810b3817 8288#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8289 .task_move_group = task_move_group_fair,
810b3817 8290#endif
bf0f6f24
IM
8291};
8292
8293#ifdef CONFIG_SCHED_DEBUG
029632fb 8294void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8295{
bf0f6f24
IM
8296 struct cfs_rq *cfs_rq;
8297
5973e5b9 8298 rcu_read_lock();
c3b64f1e 8299 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8300 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8301 rcu_read_unlock();
bf0f6f24 8302}
397f2378
SD
8303
8304#ifdef CONFIG_NUMA_BALANCING
8305void show_numa_stats(struct task_struct *p, struct seq_file *m)
8306{
8307 int node;
8308 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8309
8310 for_each_online_node(node) {
8311 if (p->numa_faults) {
8312 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8313 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8314 }
8315 if (p->numa_group) {
8316 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8317 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8318 }
8319 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8320 }
8321}
8322#endif /* CONFIG_NUMA_BALANCING */
8323#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8324
8325__init void init_sched_fair_class(void)
8326{
8327#ifdef CONFIG_SMP
8328 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8329
3451d024 8330#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8331 nohz.next_balance = jiffies;
029632fb 8332 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8333 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8334#endif
8335#endif /* SMP */
8336
8337}