]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/fair.c
Merge tag 'trace-v4.4-rc4-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
bf0f6f24 741static inline void
5870db5b 742update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
78becc27 744 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
745}
746
bf0f6f24
IM
747/*
748 * Task is being enqueued - update stats:
749 */
d2417e5a 750static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 751{
bf0f6f24
IM
752 /*
753 * Are we enqueueing a waiting task? (for current tasks
754 * a dequeue/enqueue event is a NOP)
755 */
429d43bc 756 if (se != cfs_rq->curr)
5870db5b 757 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
758}
759
bf0f6f24 760static void
9ef0a961 761update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 762{
41acab88 763 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
765 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
766 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
768#ifdef CONFIG_SCHEDSTATS
769 if (entity_is_task(se)) {
770 trace_sched_stat_wait(task_of(se),
78becc27 771 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
772 }
773#endif
41acab88 774 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
775}
776
777static inline void
19b6a2e3 778update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
bf0f6f24
IM
780 /*
781 * Mark the end of the wait period if dequeueing a
782 * waiting task:
783 */
429d43bc 784 if (se != cfs_rq->curr)
9ef0a961 785 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
786}
787
788/*
789 * We are picking a new current task - update its stats:
790 */
791static inline void
79303e9e 792update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
793{
794 /*
795 * We are starting a new run period:
796 */
78becc27 797 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
798}
799
bf0f6f24
IM
800/**************************************************
801 * Scheduling class queueing methods:
802 */
803
cbee9f88
PZ
804#ifdef CONFIG_NUMA_BALANCING
805/*
598f0ec0
MG
806 * Approximate time to scan a full NUMA task in ms. The task scan period is
807 * calculated based on the tasks virtual memory size and
808 * numa_balancing_scan_size.
cbee9f88 809 */
598f0ec0
MG
810unsigned int sysctl_numa_balancing_scan_period_min = 1000;
811unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
812
813/* Portion of address space to scan in MB */
814unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 815
4b96a29b
PZ
816/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
817unsigned int sysctl_numa_balancing_scan_delay = 1000;
818
598f0ec0
MG
819static unsigned int task_nr_scan_windows(struct task_struct *p)
820{
821 unsigned long rss = 0;
822 unsigned long nr_scan_pages;
823
824 /*
825 * Calculations based on RSS as non-present and empty pages are skipped
826 * by the PTE scanner and NUMA hinting faults should be trapped based
827 * on resident pages
828 */
829 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
830 rss = get_mm_rss(p->mm);
831 if (!rss)
832 rss = nr_scan_pages;
833
834 rss = round_up(rss, nr_scan_pages);
835 return rss / nr_scan_pages;
836}
837
838/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
839#define MAX_SCAN_WINDOW 2560
840
841static unsigned int task_scan_min(struct task_struct *p)
842{
316c1608 843 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
844 unsigned int scan, floor;
845 unsigned int windows = 1;
846
64192658
KT
847 if (scan_size < MAX_SCAN_WINDOW)
848 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
849 floor = 1000 / windows;
850
851 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
852 return max_t(unsigned int, floor, scan);
853}
854
855static unsigned int task_scan_max(struct task_struct *p)
856{
857 unsigned int smin = task_scan_min(p);
858 unsigned int smax;
859
860 /* Watch for min being lower than max due to floor calculations */
861 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
862 return max(smin, smax);
863}
864
0ec8aa00
PZ
865static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running += (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
869}
870
871static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
872{
873 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
874 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
875}
876
8c8a743c
PZ
877struct numa_group {
878 atomic_t refcount;
879
880 spinlock_t lock; /* nr_tasks, tasks */
881 int nr_tasks;
e29cf08b 882 pid_t gid;
8c8a743c
PZ
883
884 struct rcu_head rcu;
20e07dea 885 nodemask_t active_nodes;
989348b5 886 unsigned long total_faults;
7e2703e6
RR
887 /*
888 * Faults_cpu is used to decide whether memory should move
889 * towards the CPU. As a consequence, these stats are weighted
890 * more by CPU use than by memory faults.
891 */
50ec8a40 892 unsigned long *faults_cpu;
989348b5 893 unsigned long faults[0];
8c8a743c
PZ
894};
895
be1e4e76
RR
896/* Shared or private faults. */
897#define NR_NUMA_HINT_FAULT_TYPES 2
898
899/* Memory and CPU locality */
900#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
901
902/* Averaged statistics, and temporary buffers. */
903#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
904
e29cf08b
MG
905pid_t task_numa_group_id(struct task_struct *p)
906{
907 return p->numa_group ? p->numa_group->gid : 0;
908}
909
44dba3d5
IM
910/*
911 * The averaged statistics, shared & private, memory & cpu,
912 * occupy the first half of the array. The second half of the
913 * array is for current counters, which are averaged into the
914 * first set by task_numa_placement.
915 */
916static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 917{
44dba3d5 918 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
919}
920
921static inline unsigned long task_faults(struct task_struct *p, int nid)
922{
44dba3d5 923 if (!p->numa_faults)
ac8e895b
MG
924 return 0;
925
44dba3d5
IM
926 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
927 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
928}
929
83e1d2cd
MG
930static inline unsigned long group_faults(struct task_struct *p, int nid)
931{
932 if (!p->numa_group)
933 return 0;
934
44dba3d5
IM
935 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
936 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
937}
938
20e07dea
RR
939static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
940{
44dba3d5
IM
941 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
942 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
943}
944
6c6b1193
RR
945/* Handle placement on systems where not all nodes are directly connected. */
946static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
947 int maxdist, bool task)
948{
949 unsigned long score = 0;
950 int node;
951
952 /*
953 * All nodes are directly connected, and the same distance
954 * from each other. No need for fancy placement algorithms.
955 */
956 if (sched_numa_topology_type == NUMA_DIRECT)
957 return 0;
958
959 /*
960 * This code is called for each node, introducing N^2 complexity,
961 * which should be ok given the number of nodes rarely exceeds 8.
962 */
963 for_each_online_node(node) {
964 unsigned long faults;
965 int dist = node_distance(nid, node);
966
967 /*
968 * The furthest away nodes in the system are not interesting
969 * for placement; nid was already counted.
970 */
971 if (dist == sched_max_numa_distance || node == nid)
972 continue;
973
974 /*
975 * On systems with a backplane NUMA topology, compare groups
976 * of nodes, and move tasks towards the group with the most
977 * memory accesses. When comparing two nodes at distance
978 * "hoplimit", only nodes closer by than "hoplimit" are part
979 * of each group. Skip other nodes.
980 */
981 if (sched_numa_topology_type == NUMA_BACKPLANE &&
982 dist > maxdist)
983 continue;
984
985 /* Add up the faults from nearby nodes. */
986 if (task)
987 faults = task_faults(p, node);
988 else
989 faults = group_faults(p, node);
990
991 /*
992 * On systems with a glueless mesh NUMA topology, there are
993 * no fixed "groups of nodes". Instead, nodes that are not
994 * directly connected bounce traffic through intermediate
995 * nodes; a numa_group can occupy any set of nodes.
996 * The further away a node is, the less the faults count.
997 * This seems to result in good task placement.
998 */
999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1000 faults *= (sched_max_numa_distance - dist);
1001 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1002 }
1003
1004 score += faults;
1005 }
1006
1007 return score;
1008}
1009
83e1d2cd
MG
1010/*
1011 * These return the fraction of accesses done by a particular task, or
1012 * task group, on a particular numa node. The group weight is given a
1013 * larger multiplier, in order to group tasks together that are almost
1014 * evenly spread out between numa nodes.
1015 */
7bd95320
RR
1016static inline unsigned long task_weight(struct task_struct *p, int nid,
1017 int dist)
83e1d2cd 1018{
7bd95320 1019 unsigned long faults, total_faults;
83e1d2cd 1020
44dba3d5 1021 if (!p->numa_faults)
83e1d2cd
MG
1022 return 0;
1023
1024 total_faults = p->total_numa_faults;
1025
1026 if (!total_faults)
1027 return 0;
1028
7bd95320 1029 faults = task_faults(p, nid);
6c6b1193
RR
1030 faults += score_nearby_nodes(p, nid, dist, true);
1031
7bd95320 1032 return 1000 * faults / total_faults;
83e1d2cd
MG
1033}
1034
7bd95320
RR
1035static inline unsigned long group_weight(struct task_struct *p, int nid,
1036 int dist)
83e1d2cd 1037{
7bd95320
RR
1038 unsigned long faults, total_faults;
1039
1040 if (!p->numa_group)
1041 return 0;
1042
1043 total_faults = p->numa_group->total_faults;
1044
1045 if (!total_faults)
83e1d2cd
MG
1046 return 0;
1047
7bd95320 1048 faults = group_faults(p, nid);
6c6b1193
RR
1049 faults += score_nearby_nodes(p, nid, dist, false);
1050
7bd95320 1051 return 1000 * faults / total_faults;
83e1d2cd
MG
1052}
1053
10f39042
RR
1054bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1055 int src_nid, int dst_cpu)
1056{
1057 struct numa_group *ng = p->numa_group;
1058 int dst_nid = cpu_to_node(dst_cpu);
1059 int last_cpupid, this_cpupid;
1060
1061 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1062
1063 /*
1064 * Multi-stage node selection is used in conjunction with a periodic
1065 * migration fault to build a temporal task<->page relation. By using
1066 * a two-stage filter we remove short/unlikely relations.
1067 *
1068 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1069 * a task's usage of a particular page (n_p) per total usage of this
1070 * page (n_t) (in a given time-span) to a probability.
1071 *
1072 * Our periodic faults will sample this probability and getting the
1073 * same result twice in a row, given these samples are fully
1074 * independent, is then given by P(n)^2, provided our sample period
1075 * is sufficiently short compared to the usage pattern.
1076 *
1077 * This quadric squishes small probabilities, making it less likely we
1078 * act on an unlikely task<->page relation.
1079 */
1080 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1081 if (!cpupid_pid_unset(last_cpupid) &&
1082 cpupid_to_nid(last_cpupid) != dst_nid)
1083 return false;
1084
1085 /* Always allow migrate on private faults */
1086 if (cpupid_match_pid(p, last_cpupid))
1087 return true;
1088
1089 /* A shared fault, but p->numa_group has not been set up yet. */
1090 if (!ng)
1091 return true;
1092
1093 /*
1094 * Do not migrate if the destination is not a node that
1095 * is actively used by this numa group.
1096 */
1097 if (!node_isset(dst_nid, ng->active_nodes))
1098 return false;
1099
1100 /*
1101 * Source is a node that is not actively used by this
1102 * numa group, while the destination is. Migrate.
1103 */
1104 if (!node_isset(src_nid, ng->active_nodes))
1105 return true;
1106
1107 /*
1108 * Both source and destination are nodes in active
1109 * use by this numa group. Maximize memory bandwidth
1110 * by migrating from more heavily used groups, to less
1111 * heavily used ones, spreading the load around.
1112 * Use a 1/4 hysteresis to avoid spurious page movement.
1113 */
1114 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1115}
1116
e6628d5b 1117static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1118static unsigned long source_load(int cpu, int type);
1119static unsigned long target_load(int cpu, int type);
ced549fa 1120static unsigned long capacity_of(int cpu);
58d081b5
MG
1121static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1122
fb13c7ee 1123/* Cached statistics for all CPUs within a node */
58d081b5 1124struct numa_stats {
fb13c7ee 1125 unsigned long nr_running;
58d081b5 1126 unsigned long load;
fb13c7ee
MG
1127
1128 /* Total compute capacity of CPUs on a node */
5ef20ca1 1129 unsigned long compute_capacity;
fb13c7ee
MG
1130
1131 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1132 unsigned long task_capacity;
1b6a7495 1133 int has_free_capacity;
58d081b5 1134};
e6628d5b 1135
fb13c7ee
MG
1136/*
1137 * XXX borrowed from update_sg_lb_stats
1138 */
1139static void update_numa_stats(struct numa_stats *ns, int nid)
1140{
83d7f242
RR
1141 int smt, cpu, cpus = 0;
1142 unsigned long capacity;
fb13c7ee
MG
1143
1144 memset(ns, 0, sizeof(*ns));
1145 for_each_cpu(cpu, cpumask_of_node(nid)) {
1146 struct rq *rq = cpu_rq(cpu);
1147
1148 ns->nr_running += rq->nr_running;
1149 ns->load += weighted_cpuload(cpu);
ced549fa 1150 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1151
1152 cpus++;
fb13c7ee
MG
1153 }
1154
5eca82a9
PZ
1155 /*
1156 * If we raced with hotplug and there are no CPUs left in our mask
1157 * the @ns structure is NULL'ed and task_numa_compare() will
1158 * not find this node attractive.
1159 *
1b6a7495
NP
1160 * We'll either bail at !has_free_capacity, or we'll detect a huge
1161 * imbalance and bail there.
5eca82a9
PZ
1162 */
1163 if (!cpus)
1164 return;
1165
83d7f242
RR
1166 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1167 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1168 capacity = cpus / smt; /* cores */
1169
1170 ns->task_capacity = min_t(unsigned, capacity,
1171 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1172 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1173}
1174
58d081b5
MG
1175struct task_numa_env {
1176 struct task_struct *p;
e6628d5b 1177
58d081b5
MG
1178 int src_cpu, src_nid;
1179 int dst_cpu, dst_nid;
e6628d5b 1180
58d081b5 1181 struct numa_stats src_stats, dst_stats;
e6628d5b 1182
40ea2b42 1183 int imbalance_pct;
7bd95320 1184 int dist;
fb13c7ee
MG
1185
1186 struct task_struct *best_task;
1187 long best_imp;
58d081b5
MG
1188 int best_cpu;
1189};
1190
fb13c7ee
MG
1191static void task_numa_assign(struct task_numa_env *env,
1192 struct task_struct *p, long imp)
1193{
1194 if (env->best_task)
1195 put_task_struct(env->best_task);
1196 if (p)
1197 get_task_struct(p);
1198
1199 env->best_task = p;
1200 env->best_imp = imp;
1201 env->best_cpu = env->dst_cpu;
1202}
1203
28a21745 1204static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1205 struct task_numa_env *env)
1206{
e4991b24
RR
1207 long imb, old_imb;
1208 long orig_src_load, orig_dst_load;
28a21745
RR
1209 long src_capacity, dst_capacity;
1210
1211 /*
1212 * The load is corrected for the CPU capacity available on each node.
1213 *
1214 * src_load dst_load
1215 * ------------ vs ---------
1216 * src_capacity dst_capacity
1217 */
1218 src_capacity = env->src_stats.compute_capacity;
1219 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1220
1221 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1222 if (dst_load < src_load)
1223 swap(dst_load, src_load);
e63da036
RR
1224
1225 /* Is the difference below the threshold? */
e4991b24
RR
1226 imb = dst_load * src_capacity * 100 -
1227 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1228 if (imb <= 0)
1229 return false;
1230
1231 /*
1232 * The imbalance is above the allowed threshold.
e4991b24 1233 * Compare it with the old imbalance.
e63da036 1234 */
28a21745 1235 orig_src_load = env->src_stats.load;
e4991b24 1236 orig_dst_load = env->dst_stats.load;
28a21745 1237
e4991b24
RR
1238 if (orig_dst_load < orig_src_load)
1239 swap(orig_dst_load, orig_src_load);
e63da036 1240
e4991b24
RR
1241 old_imb = orig_dst_load * src_capacity * 100 -
1242 orig_src_load * dst_capacity * env->imbalance_pct;
1243
1244 /* Would this change make things worse? */
1245 return (imb > old_imb);
e63da036
RR
1246}
1247
fb13c7ee
MG
1248/*
1249 * This checks if the overall compute and NUMA accesses of the system would
1250 * be improved if the source tasks was migrated to the target dst_cpu taking
1251 * into account that it might be best if task running on the dst_cpu should
1252 * be exchanged with the source task
1253 */
887c290e
RR
1254static void task_numa_compare(struct task_numa_env *env,
1255 long taskimp, long groupimp)
fb13c7ee
MG
1256{
1257 struct rq *src_rq = cpu_rq(env->src_cpu);
1258 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1259 struct task_struct *cur;
28a21745 1260 long src_load, dst_load;
fb13c7ee 1261 long load;
1c5d3eb3 1262 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1263 long moveimp = imp;
7bd95320 1264 int dist = env->dist;
fb13c7ee
MG
1265
1266 rcu_read_lock();
1effd9f1
KT
1267
1268 raw_spin_lock_irq(&dst_rq->lock);
1269 cur = dst_rq->curr;
1270 /*
1271 * No need to move the exiting task, and this ensures that ->curr
1272 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1273 * is safe under RCU read lock.
1274 * Note that rcu_read_lock() itself can't protect from the final
1275 * put_task_struct() after the last schedule().
1276 */
1277 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1278 cur = NULL;
1effd9f1 1279 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1280
7af68335
PZ
1281 /*
1282 * Because we have preemption enabled we can get migrated around and
1283 * end try selecting ourselves (current == env->p) as a swap candidate.
1284 */
1285 if (cur == env->p)
1286 goto unlock;
1287
fb13c7ee
MG
1288 /*
1289 * "imp" is the fault differential for the source task between the
1290 * source and destination node. Calculate the total differential for
1291 * the source task and potential destination task. The more negative
1292 * the value is, the more rmeote accesses that would be expected to
1293 * be incurred if the tasks were swapped.
1294 */
1295 if (cur) {
1296 /* Skip this swap candidate if cannot move to the source cpu */
1297 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1298 goto unlock;
1299
887c290e
RR
1300 /*
1301 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1302 * in any group then look only at task weights.
887c290e 1303 */
ca28aa53 1304 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1305 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1306 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1307 /*
1308 * Add some hysteresis to prevent swapping the
1309 * tasks within a group over tiny differences.
1310 */
1311 if (cur->numa_group)
1312 imp -= imp/16;
887c290e 1313 } else {
ca28aa53
RR
1314 /*
1315 * Compare the group weights. If a task is all by
1316 * itself (not part of a group), use the task weight
1317 * instead.
1318 */
ca28aa53 1319 if (cur->numa_group)
7bd95320
RR
1320 imp += group_weight(cur, env->src_nid, dist) -
1321 group_weight(cur, env->dst_nid, dist);
ca28aa53 1322 else
7bd95320
RR
1323 imp += task_weight(cur, env->src_nid, dist) -
1324 task_weight(cur, env->dst_nid, dist);
887c290e 1325 }
fb13c7ee
MG
1326 }
1327
0132c3e1 1328 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1329 goto unlock;
1330
1331 if (!cur) {
1332 /* Is there capacity at our destination? */
b932c03c 1333 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1334 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1335 goto unlock;
1336
1337 goto balance;
1338 }
1339
1340 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1341 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1342 dst_rq->nr_running == 1)
fb13c7ee
MG
1343 goto assign;
1344
1345 /*
1346 * In the overloaded case, try and keep the load balanced.
1347 */
1348balance:
e720fff6
PZ
1349 load = task_h_load(env->p);
1350 dst_load = env->dst_stats.load + load;
1351 src_load = env->src_stats.load - load;
fb13c7ee 1352
0132c3e1
RR
1353 if (moveimp > imp && moveimp > env->best_imp) {
1354 /*
1355 * If the improvement from just moving env->p direction is
1356 * better than swapping tasks around, check if a move is
1357 * possible. Store a slightly smaller score than moveimp,
1358 * so an actually idle CPU will win.
1359 */
1360 if (!load_too_imbalanced(src_load, dst_load, env)) {
1361 imp = moveimp - 1;
1362 cur = NULL;
1363 goto assign;
1364 }
1365 }
1366
1367 if (imp <= env->best_imp)
1368 goto unlock;
1369
fb13c7ee 1370 if (cur) {
e720fff6
PZ
1371 load = task_h_load(cur);
1372 dst_load -= load;
1373 src_load += load;
fb13c7ee
MG
1374 }
1375
28a21745 1376 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1377 goto unlock;
1378
ba7e5a27
RR
1379 /*
1380 * One idle CPU per node is evaluated for a task numa move.
1381 * Call select_idle_sibling to maybe find a better one.
1382 */
1383 if (!cur)
1384 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1385
fb13c7ee
MG
1386assign:
1387 task_numa_assign(env, cur, imp);
1388unlock:
1389 rcu_read_unlock();
1390}
1391
887c290e
RR
1392static void task_numa_find_cpu(struct task_numa_env *env,
1393 long taskimp, long groupimp)
2c8a50aa
MG
1394{
1395 int cpu;
1396
1397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1398 /* Skip this CPU if the source task cannot migrate */
1399 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1400 continue;
1401
1402 env->dst_cpu = cpu;
887c290e 1403 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1404 }
1405}
1406
6f9aad0b
RR
1407/* Only move tasks to a NUMA node less busy than the current node. */
1408static bool numa_has_capacity(struct task_numa_env *env)
1409{
1410 struct numa_stats *src = &env->src_stats;
1411 struct numa_stats *dst = &env->dst_stats;
1412
1413 if (src->has_free_capacity && !dst->has_free_capacity)
1414 return false;
1415
1416 /*
1417 * Only consider a task move if the source has a higher load
1418 * than the destination, corrected for CPU capacity on each node.
1419 *
1420 * src->load dst->load
1421 * --------------------- vs ---------------------
1422 * src->compute_capacity dst->compute_capacity
1423 */
44dcb04f
SD
1424 if (src->load * dst->compute_capacity * env->imbalance_pct >
1425
1426 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1427 return true;
1428
1429 return false;
1430}
1431
58d081b5
MG
1432static int task_numa_migrate(struct task_struct *p)
1433{
58d081b5
MG
1434 struct task_numa_env env = {
1435 .p = p,
fb13c7ee 1436
58d081b5 1437 .src_cpu = task_cpu(p),
b32e86b4 1438 .src_nid = task_node(p),
fb13c7ee
MG
1439
1440 .imbalance_pct = 112,
1441
1442 .best_task = NULL,
1443 .best_imp = 0,
1444 .best_cpu = -1
58d081b5
MG
1445 };
1446 struct sched_domain *sd;
887c290e 1447 unsigned long taskweight, groupweight;
7bd95320 1448 int nid, ret, dist;
887c290e 1449 long taskimp, groupimp;
e6628d5b 1450
58d081b5 1451 /*
fb13c7ee
MG
1452 * Pick the lowest SD_NUMA domain, as that would have the smallest
1453 * imbalance and would be the first to start moving tasks about.
1454 *
1455 * And we want to avoid any moving of tasks about, as that would create
1456 * random movement of tasks -- counter the numa conditions we're trying
1457 * to satisfy here.
58d081b5
MG
1458 */
1459 rcu_read_lock();
fb13c7ee 1460 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1461 if (sd)
1462 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1463 rcu_read_unlock();
1464
46a73e8a
RR
1465 /*
1466 * Cpusets can break the scheduler domain tree into smaller
1467 * balance domains, some of which do not cross NUMA boundaries.
1468 * Tasks that are "trapped" in such domains cannot be migrated
1469 * elsewhere, so there is no point in (re)trying.
1470 */
1471 if (unlikely(!sd)) {
de1b301a 1472 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1473 return -EINVAL;
1474 }
1475
2c8a50aa 1476 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1477 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1478 taskweight = task_weight(p, env.src_nid, dist);
1479 groupweight = group_weight(p, env.src_nid, dist);
1480 update_numa_stats(&env.src_stats, env.src_nid);
1481 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1482 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1483 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1484
a43455a1 1485 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1486 if (numa_has_capacity(&env))
1487 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1488
9de05d48
RR
1489 /*
1490 * Look at other nodes in these cases:
1491 * - there is no space available on the preferred_nid
1492 * - the task is part of a numa_group that is interleaved across
1493 * multiple NUMA nodes; in order to better consolidate the group,
1494 * we need to check other locations.
1495 */
1496 if (env.best_cpu == -1 || (p->numa_group &&
1497 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1498 for_each_online_node(nid) {
1499 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1500 continue;
58d081b5 1501
7bd95320 1502 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1503 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1504 dist != env.dist) {
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 }
7bd95320 1508
83e1d2cd 1509 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1510 taskimp = task_weight(p, nid, dist) - taskweight;
1511 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1512 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1513 continue;
1514
7bd95320 1515 env.dist = dist;
2c8a50aa
MG
1516 env.dst_nid = nid;
1517 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1518 if (numa_has_capacity(&env))
1519 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1520 }
1521 }
1522
68d1b02a
RR
1523 /*
1524 * If the task is part of a workload that spans multiple NUMA nodes,
1525 * and is migrating into one of the workload's active nodes, remember
1526 * this node as the task's preferred numa node, so the workload can
1527 * settle down.
1528 * A task that migrated to a second choice node will be better off
1529 * trying for a better one later. Do not set the preferred node here.
1530 */
db015dae
RR
1531 if (p->numa_group) {
1532 if (env.best_cpu == -1)
1533 nid = env.src_nid;
1534 else
1535 nid = env.dst_nid;
1536
1537 if (node_isset(nid, p->numa_group->active_nodes))
1538 sched_setnuma(p, env.dst_nid);
1539 }
1540
1541 /* No better CPU than the current one was found. */
1542 if (env.best_cpu == -1)
1543 return -EAGAIN;
0ec8aa00 1544
04bb2f94
RR
1545 /*
1546 * Reset the scan period if the task is being rescheduled on an
1547 * alternative node to recheck if the tasks is now properly placed.
1548 */
1549 p->numa_scan_period = task_scan_min(p);
1550
fb13c7ee 1551 if (env.best_task == NULL) {
286549dc
MG
1552 ret = migrate_task_to(p, env.best_cpu);
1553 if (ret != 0)
1554 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1555 return ret;
1556 }
1557
1558 ret = migrate_swap(p, env.best_task);
286549dc
MG
1559 if (ret != 0)
1560 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1561 put_task_struct(env.best_task);
1562 return ret;
e6628d5b
MG
1563}
1564
6b9a7460
MG
1565/* Attempt to migrate a task to a CPU on the preferred node. */
1566static void numa_migrate_preferred(struct task_struct *p)
1567{
5085e2a3
RR
1568 unsigned long interval = HZ;
1569
2739d3ee 1570 /* This task has no NUMA fault statistics yet */
44dba3d5 1571 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1572 return;
1573
2739d3ee 1574 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1575 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1576 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1577
1578 /* Success if task is already running on preferred CPU */
de1b301a 1579 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1580 return;
1581
1582 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1583 task_numa_migrate(p);
6b9a7460
MG
1584}
1585
20e07dea
RR
1586/*
1587 * Find the nodes on which the workload is actively running. We do this by
1588 * tracking the nodes from which NUMA hinting faults are triggered. This can
1589 * be different from the set of nodes where the workload's memory is currently
1590 * located.
1591 *
1592 * The bitmask is used to make smarter decisions on when to do NUMA page
1593 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1594 * are added when they cause over 6/16 of the maximum number of faults, but
1595 * only removed when they drop below 3/16.
1596 */
1597static void update_numa_active_node_mask(struct numa_group *numa_group)
1598{
1599 unsigned long faults, max_faults = 0;
1600 int nid;
1601
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (faults > max_faults)
1605 max_faults = faults;
1606 }
1607
1608 for_each_online_node(nid) {
1609 faults = group_faults_cpu(numa_group, nid);
1610 if (!node_isset(nid, numa_group->active_nodes)) {
1611 if (faults > max_faults * 6 / 16)
1612 node_set(nid, numa_group->active_nodes);
1613 } else if (faults < max_faults * 3 / 16)
1614 node_clear(nid, numa_group->active_nodes);
1615 }
1616}
1617
04bb2f94
RR
1618/*
1619 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1620 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1621 * period will be for the next scan window. If local/(local+remote) ratio is
1622 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1623 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1624 */
1625#define NUMA_PERIOD_SLOTS 10
a22b4b01 1626#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1627
1628/*
1629 * Increase the scan period (slow down scanning) if the majority of
1630 * our memory is already on our local node, or if the majority of
1631 * the page accesses are shared with other processes.
1632 * Otherwise, decrease the scan period.
1633 */
1634static void update_task_scan_period(struct task_struct *p,
1635 unsigned long shared, unsigned long private)
1636{
1637 unsigned int period_slot;
1638 int ratio;
1639 int diff;
1640
1641 unsigned long remote = p->numa_faults_locality[0];
1642 unsigned long local = p->numa_faults_locality[1];
1643
1644 /*
1645 * If there were no record hinting faults then either the task is
1646 * completely idle or all activity is areas that are not of interest
074c2381
MG
1647 * to automatic numa balancing. Related to that, if there were failed
1648 * migration then it implies we are migrating too quickly or the local
1649 * node is overloaded. In either case, scan slower
04bb2f94 1650 */
074c2381 1651 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1652 p->numa_scan_period = min(p->numa_scan_period_max,
1653 p->numa_scan_period << 1);
1654
1655 p->mm->numa_next_scan = jiffies +
1656 msecs_to_jiffies(p->numa_scan_period);
1657
1658 return;
1659 }
1660
1661 /*
1662 * Prepare to scale scan period relative to the current period.
1663 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1664 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1665 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1666 */
1667 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1668 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1669 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1670 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1671 if (!slot)
1672 slot = 1;
1673 diff = slot * period_slot;
1674 } else {
1675 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1676
1677 /*
1678 * Scale scan rate increases based on sharing. There is an
1679 * inverse relationship between the degree of sharing and
1680 * the adjustment made to the scanning period. Broadly
1681 * speaking the intent is that there is little point
1682 * scanning faster if shared accesses dominate as it may
1683 * simply bounce migrations uselessly
1684 */
2847c90e 1685 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1686 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1687 }
1688
1689 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1690 task_scan_min(p), task_scan_max(p));
1691 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1692}
1693
7e2703e6
RR
1694/*
1695 * Get the fraction of time the task has been running since the last
1696 * NUMA placement cycle. The scheduler keeps similar statistics, but
1697 * decays those on a 32ms period, which is orders of magnitude off
1698 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1699 * stats only if the task is so new there are no NUMA statistics yet.
1700 */
1701static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1702{
1703 u64 runtime, delta, now;
1704 /* Use the start of this time slice to avoid calculations. */
1705 now = p->se.exec_start;
1706 runtime = p->se.sum_exec_runtime;
1707
1708 if (p->last_task_numa_placement) {
1709 delta = runtime - p->last_sum_exec_runtime;
1710 *period = now - p->last_task_numa_placement;
1711 } else {
9d89c257
YD
1712 delta = p->se.avg.load_sum / p->se.load.weight;
1713 *period = LOAD_AVG_MAX;
7e2703e6
RR
1714 }
1715
1716 p->last_sum_exec_runtime = runtime;
1717 p->last_task_numa_placement = now;
1718
1719 return delta;
1720}
1721
54009416
RR
1722/*
1723 * Determine the preferred nid for a task in a numa_group. This needs to
1724 * be done in a way that produces consistent results with group_weight,
1725 * otherwise workloads might not converge.
1726 */
1727static int preferred_group_nid(struct task_struct *p, int nid)
1728{
1729 nodemask_t nodes;
1730 int dist;
1731
1732 /* Direct connections between all NUMA nodes. */
1733 if (sched_numa_topology_type == NUMA_DIRECT)
1734 return nid;
1735
1736 /*
1737 * On a system with glueless mesh NUMA topology, group_weight
1738 * scores nodes according to the number of NUMA hinting faults on
1739 * both the node itself, and on nearby nodes.
1740 */
1741 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1742 unsigned long score, max_score = 0;
1743 int node, max_node = nid;
1744
1745 dist = sched_max_numa_distance;
1746
1747 for_each_online_node(node) {
1748 score = group_weight(p, node, dist);
1749 if (score > max_score) {
1750 max_score = score;
1751 max_node = node;
1752 }
1753 }
1754 return max_node;
1755 }
1756
1757 /*
1758 * Finding the preferred nid in a system with NUMA backplane
1759 * interconnect topology is more involved. The goal is to locate
1760 * tasks from numa_groups near each other in the system, and
1761 * untangle workloads from different sides of the system. This requires
1762 * searching down the hierarchy of node groups, recursively searching
1763 * inside the highest scoring group of nodes. The nodemask tricks
1764 * keep the complexity of the search down.
1765 */
1766 nodes = node_online_map;
1767 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1768 unsigned long max_faults = 0;
81907478 1769 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1770 int a, b;
1771
1772 /* Are there nodes at this distance from each other? */
1773 if (!find_numa_distance(dist))
1774 continue;
1775
1776 for_each_node_mask(a, nodes) {
1777 unsigned long faults = 0;
1778 nodemask_t this_group;
1779 nodes_clear(this_group);
1780
1781 /* Sum group's NUMA faults; includes a==b case. */
1782 for_each_node_mask(b, nodes) {
1783 if (node_distance(a, b) < dist) {
1784 faults += group_faults(p, b);
1785 node_set(b, this_group);
1786 node_clear(b, nodes);
1787 }
1788 }
1789
1790 /* Remember the top group. */
1791 if (faults > max_faults) {
1792 max_faults = faults;
1793 max_group = this_group;
1794 /*
1795 * subtle: at the smallest distance there is
1796 * just one node left in each "group", the
1797 * winner is the preferred nid.
1798 */
1799 nid = a;
1800 }
1801 }
1802 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1803 if (!max_faults)
1804 break;
54009416
RR
1805 nodes = max_group;
1806 }
1807 return nid;
1808}
1809
cbee9f88
PZ
1810static void task_numa_placement(struct task_struct *p)
1811{
83e1d2cd
MG
1812 int seq, nid, max_nid = -1, max_group_nid = -1;
1813 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1814 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1815 unsigned long total_faults;
1816 u64 runtime, period;
7dbd13ed 1817 spinlock_t *group_lock = NULL;
cbee9f88 1818
7e5a2c17
JL
1819 /*
1820 * The p->mm->numa_scan_seq field gets updated without
1821 * exclusive access. Use READ_ONCE() here to ensure
1822 * that the field is read in a single access:
1823 */
316c1608 1824 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1825 if (p->numa_scan_seq == seq)
1826 return;
1827 p->numa_scan_seq = seq;
598f0ec0 1828 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1829
7e2703e6
RR
1830 total_faults = p->numa_faults_locality[0] +
1831 p->numa_faults_locality[1];
1832 runtime = numa_get_avg_runtime(p, &period);
1833
7dbd13ed
MG
1834 /* If the task is part of a group prevent parallel updates to group stats */
1835 if (p->numa_group) {
1836 group_lock = &p->numa_group->lock;
60e69eed 1837 spin_lock_irq(group_lock);
7dbd13ed
MG
1838 }
1839
688b7585
MG
1840 /* Find the node with the highest number of faults */
1841 for_each_online_node(nid) {
44dba3d5
IM
1842 /* Keep track of the offsets in numa_faults array */
1843 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1844 unsigned long faults = 0, group_faults = 0;
44dba3d5 1845 int priv;
745d6147 1846
be1e4e76 1847 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1848 long diff, f_diff, f_weight;
8c8a743c 1849
44dba3d5
IM
1850 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1851 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1852 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1853 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1854
ac8e895b 1855 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1856 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1857 fault_types[priv] += p->numa_faults[membuf_idx];
1858 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1859
7e2703e6
RR
1860 /*
1861 * Normalize the faults_from, so all tasks in a group
1862 * count according to CPU use, instead of by the raw
1863 * number of faults. Tasks with little runtime have
1864 * little over-all impact on throughput, and thus their
1865 * faults are less important.
1866 */
1867 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1868 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1869 (total_faults + 1);
44dba3d5
IM
1870 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1871 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1872
44dba3d5
IM
1873 p->numa_faults[mem_idx] += diff;
1874 p->numa_faults[cpu_idx] += f_diff;
1875 faults += p->numa_faults[mem_idx];
83e1d2cd 1876 p->total_numa_faults += diff;
8c8a743c 1877 if (p->numa_group) {
44dba3d5
IM
1878 /*
1879 * safe because we can only change our own group
1880 *
1881 * mem_idx represents the offset for a given
1882 * nid and priv in a specific region because it
1883 * is at the beginning of the numa_faults array.
1884 */
1885 p->numa_group->faults[mem_idx] += diff;
1886 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1887 p->numa_group->total_faults += diff;
44dba3d5 1888 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1889 }
ac8e895b
MG
1890 }
1891
688b7585
MG
1892 if (faults > max_faults) {
1893 max_faults = faults;
1894 max_nid = nid;
1895 }
83e1d2cd
MG
1896
1897 if (group_faults > max_group_faults) {
1898 max_group_faults = group_faults;
1899 max_group_nid = nid;
1900 }
1901 }
1902
04bb2f94
RR
1903 update_task_scan_period(p, fault_types[0], fault_types[1]);
1904
7dbd13ed 1905 if (p->numa_group) {
20e07dea 1906 update_numa_active_node_mask(p->numa_group);
60e69eed 1907 spin_unlock_irq(group_lock);
54009416 1908 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1909 }
1910
bb97fc31
RR
1911 if (max_faults) {
1912 /* Set the new preferred node */
1913 if (max_nid != p->numa_preferred_nid)
1914 sched_setnuma(p, max_nid);
1915
1916 if (task_node(p) != p->numa_preferred_nid)
1917 numa_migrate_preferred(p);
3a7053b3 1918 }
cbee9f88
PZ
1919}
1920
8c8a743c
PZ
1921static inline int get_numa_group(struct numa_group *grp)
1922{
1923 return atomic_inc_not_zero(&grp->refcount);
1924}
1925
1926static inline void put_numa_group(struct numa_group *grp)
1927{
1928 if (atomic_dec_and_test(&grp->refcount))
1929 kfree_rcu(grp, rcu);
1930}
1931
3e6a9418
MG
1932static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1933 int *priv)
8c8a743c
PZ
1934{
1935 struct numa_group *grp, *my_grp;
1936 struct task_struct *tsk;
1937 bool join = false;
1938 int cpu = cpupid_to_cpu(cpupid);
1939 int i;
1940
1941 if (unlikely(!p->numa_group)) {
1942 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1943 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1944
1945 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1946 if (!grp)
1947 return;
1948
1949 atomic_set(&grp->refcount, 1);
1950 spin_lock_init(&grp->lock);
e29cf08b 1951 grp->gid = p->pid;
50ec8a40 1952 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1953 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1954 nr_node_ids;
8c8a743c 1955
20e07dea
RR
1956 node_set(task_node(current), grp->active_nodes);
1957
be1e4e76 1958 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1959 grp->faults[i] = p->numa_faults[i];
8c8a743c 1960
989348b5 1961 grp->total_faults = p->total_numa_faults;
83e1d2cd 1962
8c8a743c
PZ
1963 grp->nr_tasks++;
1964 rcu_assign_pointer(p->numa_group, grp);
1965 }
1966
1967 rcu_read_lock();
316c1608 1968 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1969
1970 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1971 goto no_join;
8c8a743c
PZ
1972
1973 grp = rcu_dereference(tsk->numa_group);
1974 if (!grp)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 my_grp = p->numa_group;
1978 if (grp == my_grp)
3354781a 1979 goto no_join;
8c8a743c
PZ
1980
1981 /*
1982 * Only join the other group if its bigger; if we're the bigger group,
1983 * the other task will join us.
1984 */
1985 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1986 goto no_join;
8c8a743c
PZ
1987
1988 /*
1989 * Tie-break on the grp address.
1990 */
1991 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1992 goto no_join;
8c8a743c 1993
dabe1d99
RR
1994 /* Always join threads in the same process. */
1995 if (tsk->mm == current->mm)
1996 join = true;
1997
1998 /* Simple filter to avoid false positives due to PID collisions */
1999 if (flags & TNF_SHARED)
2000 join = true;
8c8a743c 2001
3e6a9418
MG
2002 /* Update priv based on whether false sharing was detected */
2003 *priv = !join;
2004
dabe1d99 2005 if (join && !get_numa_group(grp))
3354781a 2006 goto no_join;
8c8a743c 2007
8c8a743c
PZ
2008 rcu_read_unlock();
2009
2010 if (!join)
2011 return;
2012
60e69eed
MG
2013 BUG_ON(irqs_disabled());
2014 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2015
be1e4e76 2016 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2017 my_grp->faults[i] -= p->numa_faults[i];
2018 grp->faults[i] += p->numa_faults[i];
8c8a743c 2019 }
989348b5
MG
2020 my_grp->total_faults -= p->total_numa_faults;
2021 grp->total_faults += p->total_numa_faults;
8c8a743c 2022
8c8a743c
PZ
2023 my_grp->nr_tasks--;
2024 grp->nr_tasks++;
2025
2026 spin_unlock(&my_grp->lock);
60e69eed 2027 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2028
2029 rcu_assign_pointer(p->numa_group, grp);
2030
2031 put_numa_group(my_grp);
3354781a
PZ
2032 return;
2033
2034no_join:
2035 rcu_read_unlock();
2036 return;
8c8a743c
PZ
2037}
2038
2039void task_numa_free(struct task_struct *p)
2040{
2041 struct numa_group *grp = p->numa_group;
44dba3d5 2042 void *numa_faults = p->numa_faults;
e9dd685c
SR
2043 unsigned long flags;
2044 int i;
8c8a743c
PZ
2045
2046 if (grp) {
e9dd685c 2047 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2049 grp->faults[i] -= p->numa_faults[i];
989348b5 2050 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2051
8c8a743c 2052 grp->nr_tasks--;
e9dd685c 2053 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2054 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2055 put_numa_group(grp);
2056 }
2057
44dba3d5 2058 p->numa_faults = NULL;
82727018 2059 kfree(numa_faults);
8c8a743c
PZ
2060}
2061
cbee9f88
PZ
2062/*
2063 * Got a PROT_NONE fault for a page on @node.
2064 */
58b46da3 2065void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2066{
2067 struct task_struct *p = current;
6688cc05 2068 bool migrated = flags & TNF_MIGRATED;
58b46da3 2069 int cpu_node = task_node(current);
792568ec 2070 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2071 int priv;
cbee9f88 2072
2a595721 2073 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2074 return;
2075
9ff1d9ff
MG
2076 /* for example, ksmd faulting in a user's mm */
2077 if (!p->mm)
2078 return;
2079
f809ca9a 2080 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2081 if (unlikely(!p->numa_faults)) {
2082 int size = sizeof(*p->numa_faults) *
be1e4e76 2083 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2084
44dba3d5
IM
2085 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2086 if (!p->numa_faults)
f809ca9a 2087 return;
745d6147 2088
83e1d2cd 2089 p->total_numa_faults = 0;
04bb2f94 2090 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2091 }
cbee9f88 2092
8c8a743c
PZ
2093 /*
2094 * First accesses are treated as private, otherwise consider accesses
2095 * to be private if the accessing pid has not changed
2096 */
2097 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2098 priv = 1;
2099 } else {
2100 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2101 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2102 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2103 }
2104
792568ec
RR
2105 /*
2106 * If a workload spans multiple NUMA nodes, a shared fault that
2107 * occurs wholly within the set of nodes that the workload is
2108 * actively using should be counted as local. This allows the
2109 * scan rate to slow down when a workload has settled down.
2110 */
2111 if (!priv && !local && p->numa_group &&
2112 node_isset(cpu_node, p->numa_group->active_nodes) &&
2113 node_isset(mem_node, p->numa_group->active_nodes))
2114 local = 1;
2115
cbee9f88 2116 task_numa_placement(p);
f809ca9a 2117
2739d3ee
RR
2118 /*
2119 * Retry task to preferred node migration periodically, in case it
2120 * case it previously failed, or the scheduler moved us.
2121 */
2122 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2123 numa_migrate_preferred(p);
2124
b32e86b4
IM
2125 if (migrated)
2126 p->numa_pages_migrated += pages;
074c2381
MG
2127 if (flags & TNF_MIGRATE_FAIL)
2128 p->numa_faults_locality[2] += pages;
b32e86b4 2129
44dba3d5
IM
2130 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2131 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2132 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2133}
2134
6e5fb223
PZ
2135static void reset_ptenuma_scan(struct task_struct *p)
2136{
7e5a2c17
JL
2137 /*
2138 * We only did a read acquisition of the mmap sem, so
2139 * p->mm->numa_scan_seq is written to without exclusive access
2140 * and the update is not guaranteed to be atomic. That's not
2141 * much of an issue though, since this is just used for
2142 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2143 * expensive, to avoid any form of compiler optimizations:
2144 */
316c1608 2145 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2146 p->mm->numa_scan_offset = 0;
2147}
2148
cbee9f88
PZ
2149/*
2150 * The expensive part of numa migration is done from task_work context.
2151 * Triggered from task_tick_numa().
2152 */
2153void task_numa_work(struct callback_head *work)
2154{
2155 unsigned long migrate, next_scan, now = jiffies;
2156 struct task_struct *p = current;
2157 struct mm_struct *mm = p->mm;
6e5fb223 2158 struct vm_area_struct *vma;
9f40604c 2159 unsigned long start, end;
598f0ec0 2160 unsigned long nr_pte_updates = 0;
4620f8c1 2161 long pages, virtpages;
cbee9f88
PZ
2162
2163 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2164
2165 work->next = work; /* protect against double add */
2166 /*
2167 * Who cares about NUMA placement when they're dying.
2168 *
2169 * NOTE: make sure not to dereference p->mm before this check,
2170 * exit_task_work() happens _after_ exit_mm() so we could be called
2171 * without p->mm even though we still had it when we enqueued this
2172 * work.
2173 */
2174 if (p->flags & PF_EXITING)
2175 return;
2176
930aa174 2177 if (!mm->numa_next_scan) {
7e8d16b6
MG
2178 mm->numa_next_scan = now +
2179 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2180 }
2181
cbee9f88
PZ
2182 /*
2183 * Enforce maximal scan/migration frequency..
2184 */
2185 migrate = mm->numa_next_scan;
2186 if (time_before(now, migrate))
2187 return;
2188
598f0ec0
MG
2189 if (p->numa_scan_period == 0) {
2190 p->numa_scan_period_max = task_scan_max(p);
2191 p->numa_scan_period = task_scan_min(p);
2192 }
cbee9f88 2193
fb003b80 2194 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2195 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2196 return;
2197
19a78d11
PZ
2198 /*
2199 * Delay this task enough that another task of this mm will likely win
2200 * the next time around.
2201 */
2202 p->node_stamp += 2 * TICK_NSEC;
2203
9f40604c
MG
2204 start = mm->numa_scan_offset;
2205 pages = sysctl_numa_balancing_scan_size;
2206 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2207 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2208 if (!pages)
2209 return;
cbee9f88 2210
4620f8c1 2211
6e5fb223 2212 down_read(&mm->mmap_sem);
9f40604c 2213 vma = find_vma(mm, start);
6e5fb223
PZ
2214 if (!vma) {
2215 reset_ptenuma_scan(p);
9f40604c 2216 start = 0;
6e5fb223
PZ
2217 vma = mm->mmap;
2218 }
9f40604c 2219 for (; vma; vma = vma->vm_next) {
6b79c57b 2220 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2221 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2222 continue;
6b79c57b 2223 }
6e5fb223 2224
4591ce4f
MG
2225 /*
2226 * Shared library pages mapped by multiple processes are not
2227 * migrated as it is expected they are cache replicated. Avoid
2228 * hinting faults in read-only file-backed mappings or the vdso
2229 * as migrating the pages will be of marginal benefit.
2230 */
2231 if (!vma->vm_mm ||
2232 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2233 continue;
2234
3c67f474
MG
2235 /*
2236 * Skip inaccessible VMAs to avoid any confusion between
2237 * PROT_NONE and NUMA hinting ptes
2238 */
2239 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2240 continue;
4591ce4f 2241
9f40604c
MG
2242 do {
2243 start = max(start, vma->vm_start);
2244 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2245 end = min(end, vma->vm_end);
4620f8c1 2246 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2247
2248 /*
4620f8c1
RR
2249 * Try to scan sysctl_numa_balancing_size worth of
2250 * hpages that have at least one present PTE that
2251 * is not already pte-numa. If the VMA contains
2252 * areas that are unused or already full of prot_numa
2253 * PTEs, scan up to virtpages, to skip through those
2254 * areas faster.
598f0ec0
MG
2255 */
2256 if (nr_pte_updates)
2257 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2258 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2259
9f40604c 2260 start = end;
4620f8c1 2261 if (pages <= 0 || virtpages <= 0)
9f40604c 2262 goto out;
3cf1962c
RR
2263
2264 cond_resched();
9f40604c 2265 } while (end != vma->vm_end);
cbee9f88 2266 }
6e5fb223 2267
9f40604c 2268out:
6e5fb223 2269 /*
c69307d5
PZ
2270 * It is possible to reach the end of the VMA list but the last few
2271 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2272 * would find the !migratable VMA on the next scan but not reset the
2273 * scanner to the start so check it now.
6e5fb223
PZ
2274 */
2275 if (vma)
9f40604c 2276 mm->numa_scan_offset = start;
6e5fb223
PZ
2277 else
2278 reset_ptenuma_scan(p);
2279 up_read(&mm->mmap_sem);
cbee9f88
PZ
2280}
2281
2282/*
2283 * Drive the periodic memory faults..
2284 */
2285void task_tick_numa(struct rq *rq, struct task_struct *curr)
2286{
2287 struct callback_head *work = &curr->numa_work;
2288 u64 period, now;
2289
2290 /*
2291 * We don't care about NUMA placement if we don't have memory.
2292 */
2293 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2294 return;
2295
2296 /*
2297 * Using runtime rather than walltime has the dual advantage that
2298 * we (mostly) drive the selection from busy threads and that the
2299 * task needs to have done some actual work before we bother with
2300 * NUMA placement.
2301 */
2302 now = curr->se.sum_exec_runtime;
2303 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2304
25b3e5a3 2305 if (now > curr->node_stamp + period) {
4b96a29b 2306 if (!curr->node_stamp)
598f0ec0 2307 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2308 curr->node_stamp += period;
cbee9f88
PZ
2309
2310 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2311 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2312 task_work_add(curr, work, true);
2313 }
2314 }
2315}
2316#else
2317static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2318{
2319}
0ec8aa00
PZ
2320
2321static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2322{
2323}
2324
2325static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2326{
2327}
cbee9f88
PZ
2328#endif /* CONFIG_NUMA_BALANCING */
2329
30cfdcfc
DA
2330static void
2331account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2332{
2333 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2334 if (!parent_entity(se))
029632fb 2335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2336#ifdef CONFIG_SMP
0ec8aa00
PZ
2337 if (entity_is_task(se)) {
2338 struct rq *rq = rq_of(cfs_rq);
2339
2340 account_numa_enqueue(rq, task_of(se));
2341 list_add(&se->group_node, &rq->cfs_tasks);
2342 }
367456c7 2343#endif
30cfdcfc 2344 cfs_rq->nr_running++;
30cfdcfc
DA
2345}
2346
2347static void
2348account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2349{
2350 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2351 if (!parent_entity(se))
029632fb 2352 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2353 if (entity_is_task(se)) {
2354 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2355 list_del_init(&se->group_node);
0ec8aa00 2356 }
30cfdcfc 2357 cfs_rq->nr_running--;
30cfdcfc
DA
2358}
2359
3ff6dcac
YZ
2360#ifdef CONFIG_FAIR_GROUP_SCHED
2361# ifdef CONFIG_SMP
cf5f0acf
PZ
2362static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2363{
2364 long tg_weight;
2365
2366 /*
9d89c257
YD
2367 * Use this CPU's real-time load instead of the last load contribution
2368 * as the updating of the contribution is delayed, and we will use the
2369 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2370 */
bf5b986e 2371 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2372 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2373 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2374
2375 return tg_weight;
2376}
2377
6d5ab293 2378static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2379{
cf5f0acf 2380 long tg_weight, load, shares;
3ff6dcac 2381
cf5f0acf 2382 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2383 load = cfs_rq->load.weight;
3ff6dcac 2384
3ff6dcac 2385 shares = (tg->shares * load);
cf5f0acf
PZ
2386 if (tg_weight)
2387 shares /= tg_weight;
3ff6dcac
YZ
2388
2389 if (shares < MIN_SHARES)
2390 shares = MIN_SHARES;
2391 if (shares > tg->shares)
2392 shares = tg->shares;
2393
2394 return shares;
2395}
3ff6dcac 2396# else /* CONFIG_SMP */
6d5ab293 2397static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2398{
2399 return tg->shares;
2400}
3ff6dcac 2401# endif /* CONFIG_SMP */
2069dd75
PZ
2402static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2403 unsigned long weight)
2404{
19e5eebb
PT
2405 if (se->on_rq) {
2406 /* commit outstanding execution time */
2407 if (cfs_rq->curr == se)
2408 update_curr(cfs_rq);
2069dd75 2409 account_entity_dequeue(cfs_rq, se);
19e5eebb 2410 }
2069dd75
PZ
2411
2412 update_load_set(&se->load, weight);
2413
2414 if (se->on_rq)
2415 account_entity_enqueue(cfs_rq, se);
2416}
2417
82958366
PT
2418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2419
6d5ab293 2420static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2421{
2422 struct task_group *tg;
2423 struct sched_entity *se;
3ff6dcac 2424 long shares;
2069dd75 2425
2069dd75
PZ
2426 tg = cfs_rq->tg;
2427 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2428 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2429 return;
3ff6dcac
YZ
2430#ifndef CONFIG_SMP
2431 if (likely(se->load.weight == tg->shares))
2432 return;
2433#endif
6d5ab293 2434 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2435
2436 reweight_entity(cfs_rq_of(se), se, shares);
2437}
2438#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2439static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2440{
2441}
2442#endif /* CONFIG_FAIR_GROUP_SCHED */
2443
141965c7 2444#ifdef CONFIG_SMP
5b51f2f8
PT
2445/* Precomputed fixed inverse multiplies for multiplication by y^n */
2446static const u32 runnable_avg_yN_inv[] = {
2447 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2448 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2449 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2450 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2451 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2452 0x85aac367, 0x82cd8698,
2453};
2454
2455/*
2456 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2457 * over-estimates when re-combining.
2458 */
2459static const u32 runnable_avg_yN_sum[] = {
2460 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2461 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2462 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2463};
2464
9d85f21c
PT
2465/*
2466 * Approximate:
2467 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2468 */
2469static __always_inline u64 decay_load(u64 val, u64 n)
2470{
5b51f2f8
PT
2471 unsigned int local_n;
2472
2473 if (!n)
2474 return val;
2475 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2476 return 0;
2477
2478 /* after bounds checking we can collapse to 32-bit */
2479 local_n = n;
2480
2481 /*
2482 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2483 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2484 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2485 *
2486 * To achieve constant time decay_load.
2487 */
2488 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2489 val >>= local_n / LOAD_AVG_PERIOD;
2490 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2491 }
2492
9d89c257
YD
2493 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2494 return val;
5b51f2f8
PT
2495}
2496
2497/*
2498 * For updates fully spanning n periods, the contribution to runnable
2499 * average will be: \Sum 1024*y^n
2500 *
2501 * We can compute this reasonably efficiently by combining:
2502 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2503 */
2504static u32 __compute_runnable_contrib(u64 n)
2505{
2506 u32 contrib = 0;
2507
2508 if (likely(n <= LOAD_AVG_PERIOD))
2509 return runnable_avg_yN_sum[n];
2510 else if (unlikely(n >= LOAD_AVG_MAX_N))
2511 return LOAD_AVG_MAX;
2512
2513 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2514 do {
2515 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2516 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2517
2518 n -= LOAD_AVG_PERIOD;
2519 } while (n > LOAD_AVG_PERIOD);
2520
2521 contrib = decay_load(contrib, n);
2522 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2523}
2524
006cdf02
PZ
2525#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2526#error "load tracking assumes 2^10 as unit"
2527#endif
2528
54a21385 2529#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2530
9d85f21c
PT
2531/*
2532 * We can represent the historical contribution to runnable average as the
2533 * coefficients of a geometric series. To do this we sub-divide our runnable
2534 * history into segments of approximately 1ms (1024us); label the segment that
2535 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2536 *
2537 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2538 * p0 p1 p2
2539 * (now) (~1ms ago) (~2ms ago)
2540 *
2541 * Let u_i denote the fraction of p_i that the entity was runnable.
2542 *
2543 * We then designate the fractions u_i as our co-efficients, yielding the
2544 * following representation of historical load:
2545 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2546 *
2547 * We choose y based on the with of a reasonably scheduling period, fixing:
2548 * y^32 = 0.5
2549 *
2550 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2551 * approximately half as much as the contribution to load within the last ms
2552 * (u_0).
2553 *
2554 * When a period "rolls over" and we have new u_0`, multiplying the previous
2555 * sum again by y is sufficient to update:
2556 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2557 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2558 */
9d89c257
YD
2559static __always_inline int
2560__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2561 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2562{
e0f5f3af 2563 u64 delta, scaled_delta, periods;
9d89c257 2564 u32 contrib;
6115c793 2565 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2566 unsigned long scale_freq, scale_cpu;
9d85f21c 2567
9d89c257 2568 delta = now - sa->last_update_time;
9d85f21c
PT
2569 /*
2570 * This should only happen when time goes backwards, which it
2571 * unfortunately does during sched clock init when we swap over to TSC.
2572 */
2573 if ((s64)delta < 0) {
9d89c257 2574 sa->last_update_time = now;
9d85f21c
PT
2575 return 0;
2576 }
2577
2578 /*
2579 * Use 1024ns as the unit of measurement since it's a reasonable
2580 * approximation of 1us and fast to compute.
2581 */
2582 delta >>= 10;
2583 if (!delta)
2584 return 0;
9d89c257 2585 sa->last_update_time = now;
9d85f21c 2586
6f2b0452
DE
2587 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2588 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2589
9d85f21c 2590 /* delta_w is the amount already accumulated against our next period */
9d89c257 2591 delta_w = sa->period_contrib;
9d85f21c 2592 if (delta + delta_w >= 1024) {
9d85f21c
PT
2593 decayed = 1;
2594
9d89c257
YD
2595 /* how much left for next period will start over, we don't know yet */
2596 sa->period_contrib = 0;
2597
9d85f21c
PT
2598 /*
2599 * Now that we know we're crossing a period boundary, figure
2600 * out how much from delta we need to complete the current
2601 * period and accrue it.
2602 */
2603 delta_w = 1024 - delta_w;
54a21385 2604 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2605 if (weight) {
e0f5f3af
DE
2606 sa->load_sum += weight * scaled_delta_w;
2607 if (cfs_rq) {
2608 cfs_rq->runnable_load_sum +=
2609 weight * scaled_delta_w;
2610 }
13962234 2611 }
36ee28e4 2612 if (running)
006cdf02 2613 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2614
2615 delta -= delta_w;
2616
2617 /* Figure out how many additional periods this update spans */
2618 periods = delta / 1024;
2619 delta %= 1024;
2620
9d89c257 2621 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2622 if (cfs_rq) {
2623 cfs_rq->runnable_load_sum =
2624 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2625 }
9d89c257 2626 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2627
2628 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2629 contrib = __compute_runnable_contrib(periods);
54a21385 2630 contrib = cap_scale(contrib, scale_freq);
13962234 2631 if (weight) {
9d89c257 2632 sa->load_sum += weight * contrib;
13962234
YD
2633 if (cfs_rq)
2634 cfs_rq->runnable_load_sum += weight * contrib;
2635 }
36ee28e4 2636 if (running)
006cdf02 2637 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2638 }
2639
2640 /* Remainder of delta accrued against u_0` */
54a21385 2641 scaled_delta = cap_scale(delta, scale_freq);
13962234 2642 if (weight) {
e0f5f3af 2643 sa->load_sum += weight * scaled_delta;
13962234 2644 if (cfs_rq)
e0f5f3af 2645 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2646 }
36ee28e4 2647 if (running)
006cdf02 2648 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2649
9d89c257 2650 sa->period_contrib += delta;
9ee474f5 2651
9d89c257
YD
2652 if (decayed) {
2653 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2654 if (cfs_rq) {
2655 cfs_rq->runnable_load_avg =
2656 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2657 }
006cdf02 2658 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2659 }
aff3e498 2660
9d89c257 2661 return decayed;
9ee474f5
PT
2662}
2663
c566e8e9 2664#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2665/*
9d89c257
YD
2666 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2667 * and effective_load (which is not done because it is too costly).
bb17f655 2668 */
9d89c257 2669static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2670{
9d89c257 2671 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2672
9d89c257
YD
2673 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2674 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2675 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2676 }
8165e145 2677}
f5f9739d 2678
6e83125c 2679#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2680static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2681#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2682
9d89c257 2683static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2684
9d89c257
YD
2685/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2686static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2687{
9d89c257 2688 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2689 int decayed, removed = 0;
2dac754e 2690
9d89c257
YD
2691 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2692 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2693 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2694 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2695 removed = 1;
8165e145 2696 }
2dac754e 2697
9d89c257
YD
2698 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2699 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2700 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2701 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2702 }
36ee28e4 2703
9d89c257 2704 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2705 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2706
9d89c257
YD
2707#ifndef CONFIG_64BIT
2708 smp_wmb();
2709 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2710#endif
36ee28e4 2711
3e386d56 2712 return decayed || removed;
9ee474f5
PT
2713}
2714
9d89c257
YD
2715/* Update task and its cfs_rq load average */
2716static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2717{
2dac754e 2718 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2719 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2720 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2721
f1b17280 2722 /*
9d89c257
YD
2723 * Track task load average for carrying it to new CPU after migrated, and
2724 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2725 */
9d89c257 2726 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
f1b17280 2729
9d89c257
YD
2730 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2731 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2732}
2733
a05e8c51
BP
2734static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2735{
a9280514
PZ
2736 if (!sched_feat(ATTACH_AGE_LOAD))
2737 goto skip_aging;
2738
6efdb105
BP
2739 /*
2740 * If we got migrated (either between CPUs or between cgroups) we'll
2741 * have aged the average right before clearing @last_update_time.
2742 */
2743 if (se->avg.last_update_time) {
2744 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2745 &se->avg, 0, 0, NULL);
2746
2747 /*
2748 * XXX: we could have just aged the entire load away if we've been
2749 * absent from the fair class for too long.
2750 */
2751 }
2752
a9280514 2753skip_aging:
a05e8c51
BP
2754 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2755 cfs_rq->avg.load_avg += se->avg.load_avg;
2756 cfs_rq->avg.load_sum += se->avg.load_sum;
2757 cfs_rq->avg.util_avg += se->avg.util_avg;
2758 cfs_rq->avg.util_sum += se->avg.util_sum;
2759}
2760
2761static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762{
2763 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2764 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2765 cfs_rq->curr == se, NULL);
2766
2767 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2768 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2769 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2770 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2771}
2772
9d89c257
YD
2773/* Add the load generated by se into cfs_rq's load average */
2774static inline void
2775enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2776{
9d89c257
YD
2777 struct sched_avg *sa = &se->avg;
2778 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2779 int migrated, decayed;
9ee474f5 2780
a05e8c51
BP
2781 migrated = !sa->last_update_time;
2782 if (!migrated) {
9d89c257 2783 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2784 se->on_rq * scale_load_down(se->load.weight),
2785 cfs_rq->curr == se, NULL);
aff3e498 2786 }
c566e8e9 2787
9d89c257 2788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2789
13962234
YD
2790 cfs_rq->runnable_load_avg += sa->load_avg;
2791 cfs_rq->runnable_load_sum += sa->load_sum;
2792
a05e8c51
BP
2793 if (migrated)
2794 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2795
9d89c257
YD
2796 if (decayed || migrated)
2797 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2798}
2799
13962234
YD
2800/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2801static inline void
2802dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2803{
2804 update_load_avg(se, 1);
2805
2806 cfs_rq->runnable_load_avg =
2807 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2808 cfs_rq->runnable_load_sum =
a05e8c51 2809 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2810}
2811
9ee474f5 2812/*
9d89c257
YD
2813 * Task first catches up with cfs_rq, and then subtract
2814 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2815 */
9d89c257 2816void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2817{
9d89c257
YD
2818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2819 u64 last_update_time;
2820
2821#ifndef CONFIG_64BIT
2822 u64 last_update_time_copy;
9ee474f5 2823
9d89c257
YD
2824 do {
2825 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2826 smp_rmb();
2827 last_update_time = cfs_rq->avg.last_update_time;
2828 } while (last_update_time != last_update_time_copy);
2829#else
2830 last_update_time = cfs_rq->avg.last_update_time;
2831#endif
2832
13962234 2833 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2834 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2835 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2836}
642dbc39
VG
2837
2838/*
2839 * Update the rq's load with the elapsed running time before entering
2840 * idle. if the last scheduled task is not a CFS task, idle_enter will
2841 * be the only way to update the runnable statistic.
2842 */
2843void idle_enter_fair(struct rq *this_rq)
2844{
642dbc39
VG
2845}
2846
2847/*
2848 * Update the rq's load with the elapsed idle time before a task is
2849 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2850 * be the only way to update the runnable statistic.
2851 */
2852void idle_exit_fair(struct rq *this_rq)
2853{
642dbc39
VG
2854}
2855
7ea241af
YD
2856static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2857{
2858 return cfs_rq->runnable_load_avg;
2859}
2860
2861static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2862{
2863 return cfs_rq->avg.load_avg;
2864}
2865
6e83125c
PZ
2866static int idle_balance(struct rq *this_rq);
2867
38033c37
PZ
2868#else /* CONFIG_SMP */
2869
9d89c257
YD
2870static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2871static inline void
2872enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2873static inline void
2874dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2875static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2876
a05e8c51
BP
2877static inline void
2878attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2879static inline void
2880detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2881
6e83125c
PZ
2882static inline int idle_balance(struct rq *rq)
2883{
2884 return 0;
2885}
2886
38033c37 2887#endif /* CONFIG_SMP */
9d85f21c 2888
2396af69 2889static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2890{
bf0f6f24 2891#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2892 struct task_struct *tsk = NULL;
2893
2894 if (entity_is_task(se))
2895 tsk = task_of(se);
2896
41acab88 2897 if (se->statistics.sleep_start) {
78becc27 2898 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2899
2900 if ((s64)delta < 0)
2901 delta = 0;
2902
41acab88
LDM
2903 if (unlikely(delta > se->statistics.sleep_max))
2904 se->statistics.sleep_max = delta;
bf0f6f24 2905
8c79a045 2906 se->statistics.sleep_start = 0;
41acab88 2907 se->statistics.sum_sleep_runtime += delta;
9745512c 2908
768d0c27 2909 if (tsk) {
e414314c 2910 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2911 trace_sched_stat_sleep(tsk, delta);
2912 }
bf0f6f24 2913 }
41acab88 2914 if (se->statistics.block_start) {
78becc27 2915 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2916
2917 if ((s64)delta < 0)
2918 delta = 0;
2919
41acab88
LDM
2920 if (unlikely(delta > se->statistics.block_max))
2921 se->statistics.block_max = delta;
bf0f6f24 2922
8c79a045 2923 se->statistics.block_start = 0;
41acab88 2924 se->statistics.sum_sleep_runtime += delta;
30084fbd 2925
e414314c 2926 if (tsk) {
8f0dfc34 2927 if (tsk->in_iowait) {
41acab88
LDM
2928 se->statistics.iowait_sum += delta;
2929 se->statistics.iowait_count++;
768d0c27 2930 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2931 }
2932
b781a602
AV
2933 trace_sched_stat_blocked(tsk, delta);
2934
e414314c
PZ
2935 /*
2936 * Blocking time is in units of nanosecs, so shift by
2937 * 20 to get a milliseconds-range estimation of the
2938 * amount of time that the task spent sleeping:
2939 */
2940 if (unlikely(prof_on == SLEEP_PROFILING)) {
2941 profile_hits(SLEEP_PROFILING,
2942 (void *)get_wchan(tsk),
2943 delta >> 20);
2944 }
2945 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2946 }
bf0f6f24
IM
2947 }
2948#endif
2949}
2950
ddc97297
PZ
2951static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2952{
2953#ifdef CONFIG_SCHED_DEBUG
2954 s64 d = se->vruntime - cfs_rq->min_vruntime;
2955
2956 if (d < 0)
2957 d = -d;
2958
2959 if (d > 3*sysctl_sched_latency)
2960 schedstat_inc(cfs_rq, nr_spread_over);
2961#endif
2962}
2963
aeb73b04
PZ
2964static void
2965place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2966{
1af5f730 2967 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2968
2cb8600e
PZ
2969 /*
2970 * The 'current' period is already promised to the current tasks,
2971 * however the extra weight of the new task will slow them down a
2972 * little, place the new task so that it fits in the slot that
2973 * stays open at the end.
2974 */
94dfb5e7 2975 if (initial && sched_feat(START_DEBIT))
f9c0b095 2976 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2977
a2e7a7eb 2978 /* sleeps up to a single latency don't count. */
5ca9880c 2979 if (!initial) {
a2e7a7eb 2980 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2981
a2e7a7eb
MG
2982 /*
2983 * Halve their sleep time's effect, to allow
2984 * for a gentler effect of sleepers:
2985 */
2986 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2987 thresh >>= 1;
51e0304c 2988
a2e7a7eb 2989 vruntime -= thresh;
aeb73b04
PZ
2990 }
2991
b5d9d734 2992 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2993 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2994}
2995
d3d9dc33
PT
2996static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2997
bf0f6f24 2998static void
88ec22d3 2999enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3000{
88ec22d3
PZ
3001 /*
3002 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3003 * through calling update_curr().
88ec22d3 3004 */
371fd7e7 3005 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3006 se->vruntime += cfs_rq->min_vruntime;
3007
bf0f6f24 3008 /*
a2a2d680 3009 * Update run-time statistics of the 'current'.
bf0f6f24 3010 */
b7cc0896 3011 update_curr(cfs_rq);
9d89c257 3012 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3013 account_entity_enqueue(cfs_rq, se);
3014 update_cfs_shares(cfs_rq);
bf0f6f24 3015
88ec22d3 3016 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3017 place_entity(cfs_rq, se, 0);
2396af69 3018 enqueue_sleeper(cfs_rq, se);
e9acbff6 3019 }
bf0f6f24 3020
d2417e5a 3021 update_stats_enqueue(cfs_rq, se);
ddc97297 3022 check_spread(cfs_rq, se);
83b699ed
SV
3023 if (se != cfs_rq->curr)
3024 __enqueue_entity(cfs_rq, se);
2069dd75 3025 se->on_rq = 1;
3d4b47b4 3026
d3d9dc33 3027 if (cfs_rq->nr_running == 1) {
3d4b47b4 3028 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3029 check_enqueue_throttle(cfs_rq);
3030 }
bf0f6f24
IM
3031}
3032
2c13c919 3033static void __clear_buddies_last(struct sched_entity *se)
2002c695 3034{
2c13c919
RR
3035 for_each_sched_entity(se) {
3036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3037 if (cfs_rq->last != se)
2c13c919 3038 break;
f1044799
PZ
3039
3040 cfs_rq->last = NULL;
2c13c919
RR
3041 }
3042}
2002c695 3043
2c13c919
RR
3044static void __clear_buddies_next(struct sched_entity *se)
3045{
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3048 if (cfs_rq->next != se)
2c13c919 3049 break;
f1044799
PZ
3050
3051 cfs_rq->next = NULL;
2c13c919 3052 }
2002c695
PZ
3053}
3054
ac53db59
RR
3055static void __clear_buddies_skip(struct sched_entity *se)
3056{
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3059 if (cfs_rq->skip != se)
ac53db59 3060 break;
f1044799
PZ
3061
3062 cfs_rq->skip = NULL;
ac53db59
RR
3063 }
3064}
3065
a571bbea
PZ
3066static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067{
2c13c919
RR
3068 if (cfs_rq->last == se)
3069 __clear_buddies_last(se);
3070
3071 if (cfs_rq->next == se)
3072 __clear_buddies_next(se);
ac53db59
RR
3073
3074 if (cfs_rq->skip == se)
3075 __clear_buddies_skip(se);
a571bbea
PZ
3076}
3077
6c16a6dc 3078static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3079
bf0f6f24 3080static void
371fd7e7 3081dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3082{
a2a2d680
DA
3083 /*
3084 * Update run-time statistics of the 'current'.
3085 */
3086 update_curr(cfs_rq);
13962234 3087 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3088
19b6a2e3 3089 update_stats_dequeue(cfs_rq, se);
371fd7e7 3090 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3091#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3092 if (entity_is_task(se)) {
3093 struct task_struct *tsk = task_of(se);
3094
3095 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3096 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3097 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3098 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3099 }
db36cc7d 3100#endif
67e9fb2a
PZ
3101 }
3102
2002c695 3103 clear_buddies(cfs_rq, se);
4793241b 3104
83b699ed 3105 if (se != cfs_rq->curr)
30cfdcfc 3106 __dequeue_entity(cfs_rq, se);
17bc14b7 3107 se->on_rq = 0;
30cfdcfc 3108 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3109
3110 /*
3111 * Normalize the entity after updating the min_vruntime because the
3112 * update can refer to the ->curr item and we need to reflect this
3113 * movement in our normalized position.
3114 */
371fd7e7 3115 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3116 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3117
d8b4986d
PT
3118 /* return excess runtime on last dequeue */
3119 return_cfs_rq_runtime(cfs_rq);
3120
1e876231 3121 update_min_vruntime(cfs_rq);
17bc14b7 3122 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3123}
3124
3125/*
3126 * Preempt the current task with a newly woken task if needed:
3127 */
7c92e54f 3128static void
2e09bf55 3129check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3130{
11697830 3131 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3132 struct sched_entity *se;
3133 s64 delta;
11697830 3134
6d0f0ebd 3135 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3136 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3137 if (delta_exec > ideal_runtime) {
8875125e 3138 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3139 /*
3140 * The current task ran long enough, ensure it doesn't get
3141 * re-elected due to buddy favours.
3142 */
3143 clear_buddies(cfs_rq, curr);
f685ceac
MG
3144 return;
3145 }
3146
3147 /*
3148 * Ensure that a task that missed wakeup preemption by a
3149 * narrow margin doesn't have to wait for a full slice.
3150 * This also mitigates buddy induced latencies under load.
3151 */
f685ceac
MG
3152 if (delta_exec < sysctl_sched_min_granularity)
3153 return;
3154
f4cfb33e
WX
3155 se = __pick_first_entity(cfs_rq);
3156 delta = curr->vruntime - se->vruntime;
f685ceac 3157
f4cfb33e
WX
3158 if (delta < 0)
3159 return;
d7d82944 3160
f4cfb33e 3161 if (delta > ideal_runtime)
8875125e 3162 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3163}
3164
83b699ed 3165static void
8494f412 3166set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3167{
83b699ed
SV
3168 /* 'current' is not kept within the tree. */
3169 if (se->on_rq) {
3170 /*
3171 * Any task has to be enqueued before it get to execute on
3172 * a CPU. So account for the time it spent waiting on the
3173 * runqueue.
3174 */
3175 update_stats_wait_end(cfs_rq, se);
3176 __dequeue_entity(cfs_rq, se);
9d89c257 3177 update_load_avg(se, 1);
83b699ed
SV
3178 }
3179
79303e9e 3180 update_stats_curr_start(cfs_rq, se);
429d43bc 3181 cfs_rq->curr = se;
eba1ed4b
IM
3182#ifdef CONFIG_SCHEDSTATS
3183 /*
3184 * Track our maximum slice length, if the CPU's load is at
3185 * least twice that of our own weight (i.e. dont track it
3186 * when there are only lesser-weight tasks around):
3187 */
495eca49 3188 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3189 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3190 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3191 }
3192#endif
4a55b450 3193 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3194}
3195
3f3a4904
PZ
3196static int
3197wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3198
ac53db59
RR
3199/*
3200 * Pick the next process, keeping these things in mind, in this order:
3201 * 1) keep things fair between processes/task groups
3202 * 2) pick the "next" process, since someone really wants that to run
3203 * 3) pick the "last" process, for cache locality
3204 * 4) do not run the "skip" process, if something else is available
3205 */
678d5718
PZ
3206static struct sched_entity *
3207pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3208{
678d5718
PZ
3209 struct sched_entity *left = __pick_first_entity(cfs_rq);
3210 struct sched_entity *se;
3211
3212 /*
3213 * If curr is set we have to see if its left of the leftmost entity
3214 * still in the tree, provided there was anything in the tree at all.
3215 */
3216 if (!left || (curr && entity_before(curr, left)))
3217 left = curr;
3218
3219 se = left; /* ideally we run the leftmost entity */
f4b6755f 3220
ac53db59
RR
3221 /*
3222 * Avoid running the skip buddy, if running something else can
3223 * be done without getting too unfair.
3224 */
3225 if (cfs_rq->skip == se) {
678d5718
PZ
3226 struct sched_entity *second;
3227
3228 if (se == curr) {
3229 second = __pick_first_entity(cfs_rq);
3230 } else {
3231 second = __pick_next_entity(se);
3232 if (!second || (curr && entity_before(curr, second)))
3233 second = curr;
3234 }
3235
ac53db59
RR
3236 if (second && wakeup_preempt_entity(second, left) < 1)
3237 se = second;
3238 }
aa2ac252 3239
f685ceac
MG
3240 /*
3241 * Prefer last buddy, try to return the CPU to a preempted task.
3242 */
3243 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3244 se = cfs_rq->last;
3245
ac53db59
RR
3246 /*
3247 * Someone really wants this to run. If it's not unfair, run it.
3248 */
3249 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3250 se = cfs_rq->next;
3251
f685ceac 3252 clear_buddies(cfs_rq, se);
4793241b
PZ
3253
3254 return se;
aa2ac252
PZ
3255}
3256
678d5718 3257static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3258
ab6cde26 3259static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3260{
3261 /*
3262 * If still on the runqueue then deactivate_task()
3263 * was not called and update_curr() has to be done:
3264 */
3265 if (prev->on_rq)
b7cc0896 3266 update_curr(cfs_rq);
bf0f6f24 3267
d3d9dc33
PT
3268 /* throttle cfs_rqs exceeding runtime */
3269 check_cfs_rq_runtime(cfs_rq);
3270
ddc97297 3271 check_spread(cfs_rq, prev);
30cfdcfc 3272 if (prev->on_rq) {
5870db5b 3273 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3274 /* Put 'current' back into the tree. */
3275 __enqueue_entity(cfs_rq, prev);
9d85f21c 3276 /* in !on_rq case, update occurred at dequeue */
9d89c257 3277 update_load_avg(prev, 0);
30cfdcfc 3278 }
429d43bc 3279 cfs_rq->curr = NULL;
bf0f6f24
IM
3280}
3281
8f4d37ec
PZ
3282static void
3283entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3284{
bf0f6f24 3285 /*
30cfdcfc 3286 * Update run-time statistics of the 'current'.
bf0f6f24 3287 */
30cfdcfc 3288 update_curr(cfs_rq);
bf0f6f24 3289
9d85f21c
PT
3290 /*
3291 * Ensure that runnable average is periodically updated.
3292 */
9d89c257 3293 update_load_avg(curr, 1);
bf0bd948 3294 update_cfs_shares(cfs_rq);
9d85f21c 3295
8f4d37ec
PZ
3296#ifdef CONFIG_SCHED_HRTICK
3297 /*
3298 * queued ticks are scheduled to match the slice, so don't bother
3299 * validating it and just reschedule.
3300 */
983ed7a6 3301 if (queued) {
8875125e 3302 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3303 return;
3304 }
8f4d37ec
PZ
3305 /*
3306 * don't let the period tick interfere with the hrtick preemption
3307 */
3308 if (!sched_feat(DOUBLE_TICK) &&
3309 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3310 return;
3311#endif
3312
2c2efaed 3313 if (cfs_rq->nr_running > 1)
2e09bf55 3314 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3315}
3316
ab84d31e
PT
3317
3318/**************************************************
3319 * CFS bandwidth control machinery
3320 */
3321
3322#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3323
3324#ifdef HAVE_JUMP_LABEL
c5905afb 3325static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3326
3327static inline bool cfs_bandwidth_used(void)
3328{
c5905afb 3329 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3330}
3331
1ee14e6c 3332void cfs_bandwidth_usage_inc(void)
029632fb 3333{
1ee14e6c
BS
3334 static_key_slow_inc(&__cfs_bandwidth_used);
3335}
3336
3337void cfs_bandwidth_usage_dec(void)
3338{
3339 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3340}
3341#else /* HAVE_JUMP_LABEL */
3342static bool cfs_bandwidth_used(void)
3343{
3344 return true;
3345}
3346
1ee14e6c
BS
3347void cfs_bandwidth_usage_inc(void) {}
3348void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3349#endif /* HAVE_JUMP_LABEL */
3350
ab84d31e
PT
3351/*
3352 * default period for cfs group bandwidth.
3353 * default: 0.1s, units: nanoseconds
3354 */
3355static inline u64 default_cfs_period(void)
3356{
3357 return 100000000ULL;
3358}
ec12cb7f
PT
3359
3360static inline u64 sched_cfs_bandwidth_slice(void)
3361{
3362 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3363}
3364
a9cf55b2
PT
3365/*
3366 * Replenish runtime according to assigned quota and update expiration time.
3367 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3368 * additional synchronization around rq->lock.
3369 *
3370 * requires cfs_b->lock
3371 */
029632fb 3372void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3373{
3374 u64 now;
3375
3376 if (cfs_b->quota == RUNTIME_INF)
3377 return;
3378
3379 now = sched_clock_cpu(smp_processor_id());
3380 cfs_b->runtime = cfs_b->quota;
3381 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3382}
3383
029632fb
PZ
3384static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3385{
3386 return &tg->cfs_bandwidth;
3387}
3388
f1b17280
PT
3389/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3390static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3391{
3392 if (unlikely(cfs_rq->throttle_count))
3393 return cfs_rq->throttled_clock_task;
3394
78becc27 3395 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3396}
3397
85dac906
PT
3398/* returns 0 on failure to allocate runtime */
3399static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3400{
3401 struct task_group *tg = cfs_rq->tg;
3402 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3403 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3404
3405 /* note: this is a positive sum as runtime_remaining <= 0 */
3406 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3407
3408 raw_spin_lock(&cfs_b->lock);
3409 if (cfs_b->quota == RUNTIME_INF)
3410 amount = min_amount;
58088ad0 3411 else {
77a4d1a1 3412 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3413
3414 if (cfs_b->runtime > 0) {
3415 amount = min(cfs_b->runtime, min_amount);
3416 cfs_b->runtime -= amount;
3417 cfs_b->idle = 0;
3418 }
ec12cb7f 3419 }
a9cf55b2 3420 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3421 raw_spin_unlock(&cfs_b->lock);
3422
3423 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3424 /*
3425 * we may have advanced our local expiration to account for allowed
3426 * spread between our sched_clock and the one on which runtime was
3427 * issued.
3428 */
3429 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3430 cfs_rq->runtime_expires = expires;
85dac906
PT
3431
3432 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3433}
3434
a9cf55b2
PT
3435/*
3436 * Note: This depends on the synchronization provided by sched_clock and the
3437 * fact that rq->clock snapshots this value.
3438 */
3439static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3440{
a9cf55b2 3441 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3442
3443 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3444 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3445 return;
3446
a9cf55b2
PT
3447 if (cfs_rq->runtime_remaining < 0)
3448 return;
3449
3450 /*
3451 * If the local deadline has passed we have to consider the
3452 * possibility that our sched_clock is 'fast' and the global deadline
3453 * has not truly expired.
3454 *
3455 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3456 * whether the global deadline has advanced. It is valid to compare
3457 * cfs_b->runtime_expires without any locks since we only care about
3458 * exact equality, so a partial write will still work.
a9cf55b2
PT
3459 */
3460
51f2176d 3461 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3462 /* extend local deadline, drift is bounded above by 2 ticks */
3463 cfs_rq->runtime_expires += TICK_NSEC;
3464 } else {
3465 /* global deadline is ahead, expiration has passed */
3466 cfs_rq->runtime_remaining = 0;
3467 }
3468}
3469
9dbdb155 3470static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3471{
3472 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3473 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3474 expire_cfs_rq_runtime(cfs_rq);
3475
3476 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3477 return;
3478
85dac906
PT
3479 /*
3480 * if we're unable to extend our runtime we resched so that the active
3481 * hierarchy can be throttled
3482 */
3483 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3484 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3485}
3486
6c16a6dc 3487static __always_inline
9dbdb155 3488void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3489{
56f570e5 3490 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3491 return;
3492
3493 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3494}
3495
85dac906
PT
3496static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3497{
56f570e5 3498 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3499}
3500
64660c86
PT
3501/* check whether cfs_rq, or any parent, is throttled */
3502static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3503{
56f570e5 3504 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3505}
3506
3507/*
3508 * Ensure that neither of the group entities corresponding to src_cpu or
3509 * dest_cpu are members of a throttled hierarchy when performing group
3510 * load-balance operations.
3511 */
3512static inline int throttled_lb_pair(struct task_group *tg,
3513 int src_cpu, int dest_cpu)
3514{
3515 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3516
3517 src_cfs_rq = tg->cfs_rq[src_cpu];
3518 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3519
3520 return throttled_hierarchy(src_cfs_rq) ||
3521 throttled_hierarchy(dest_cfs_rq);
3522}
3523
3524/* updated child weight may affect parent so we have to do this bottom up */
3525static int tg_unthrottle_up(struct task_group *tg, void *data)
3526{
3527 struct rq *rq = data;
3528 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3529
3530 cfs_rq->throttle_count--;
3531#ifdef CONFIG_SMP
3532 if (!cfs_rq->throttle_count) {
f1b17280 3533 /* adjust cfs_rq_clock_task() */
78becc27 3534 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3535 cfs_rq->throttled_clock_task;
64660c86
PT
3536 }
3537#endif
3538
3539 return 0;
3540}
3541
3542static int tg_throttle_down(struct task_group *tg, void *data)
3543{
3544 struct rq *rq = data;
3545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3546
82958366
PT
3547 /* group is entering throttled state, stop time */
3548 if (!cfs_rq->throttle_count)
78becc27 3549 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3550 cfs_rq->throttle_count++;
3551
3552 return 0;
3553}
3554
d3d9dc33 3555static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3556{
3557 struct rq *rq = rq_of(cfs_rq);
3558 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3559 struct sched_entity *se;
3560 long task_delta, dequeue = 1;
77a4d1a1 3561 bool empty;
85dac906
PT
3562
3563 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3564
f1b17280 3565 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3566 rcu_read_lock();
3567 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3568 rcu_read_unlock();
85dac906
PT
3569
3570 task_delta = cfs_rq->h_nr_running;
3571 for_each_sched_entity(se) {
3572 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3573 /* throttled entity or throttle-on-deactivate */
3574 if (!se->on_rq)
3575 break;
3576
3577 if (dequeue)
3578 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3579 qcfs_rq->h_nr_running -= task_delta;
3580
3581 if (qcfs_rq->load.weight)
3582 dequeue = 0;
3583 }
3584
3585 if (!se)
72465447 3586 sub_nr_running(rq, task_delta);
85dac906
PT
3587
3588 cfs_rq->throttled = 1;
78becc27 3589 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3590 raw_spin_lock(&cfs_b->lock);
d49db342 3591 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3592
c06f04c7
BS
3593 /*
3594 * Add to the _head_ of the list, so that an already-started
3595 * distribute_cfs_runtime will not see us
3596 */
3597 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3598
3599 /*
3600 * If we're the first throttled task, make sure the bandwidth
3601 * timer is running.
3602 */
3603 if (empty)
3604 start_cfs_bandwidth(cfs_b);
3605
85dac906
PT
3606 raw_spin_unlock(&cfs_b->lock);
3607}
3608
029632fb 3609void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3610{
3611 struct rq *rq = rq_of(cfs_rq);
3612 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3613 struct sched_entity *se;
3614 int enqueue = 1;
3615 long task_delta;
3616
22b958d8 3617 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3618
3619 cfs_rq->throttled = 0;
1a55af2e
FW
3620
3621 update_rq_clock(rq);
3622
671fd9da 3623 raw_spin_lock(&cfs_b->lock);
78becc27 3624 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3625 list_del_rcu(&cfs_rq->throttled_list);
3626 raw_spin_unlock(&cfs_b->lock);
3627
64660c86
PT
3628 /* update hierarchical throttle state */
3629 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3630
671fd9da
PT
3631 if (!cfs_rq->load.weight)
3632 return;
3633
3634 task_delta = cfs_rq->h_nr_running;
3635 for_each_sched_entity(se) {
3636 if (se->on_rq)
3637 enqueue = 0;
3638
3639 cfs_rq = cfs_rq_of(se);
3640 if (enqueue)
3641 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3642 cfs_rq->h_nr_running += task_delta;
3643
3644 if (cfs_rq_throttled(cfs_rq))
3645 break;
3646 }
3647
3648 if (!se)
72465447 3649 add_nr_running(rq, task_delta);
671fd9da
PT
3650
3651 /* determine whether we need to wake up potentially idle cpu */
3652 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3653 resched_curr(rq);
671fd9da
PT
3654}
3655
3656static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3657 u64 remaining, u64 expires)
3658{
3659 struct cfs_rq *cfs_rq;
c06f04c7
BS
3660 u64 runtime;
3661 u64 starting_runtime = remaining;
671fd9da
PT
3662
3663 rcu_read_lock();
3664 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3665 throttled_list) {
3666 struct rq *rq = rq_of(cfs_rq);
3667
3668 raw_spin_lock(&rq->lock);
3669 if (!cfs_rq_throttled(cfs_rq))
3670 goto next;
3671
3672 runtime = -cfs_rq->runtime_remaining + 1;
3673 if (runtime > remaining)
3674 runtime = remaining;
3675 remaining -= runtime;
3676
3677 cfs_rq->runtime_remaining += runtime;
3678 cfs_rq->runtime_expires = expires;
3679
3680 /* we check whether we're throttled above */
3681 if (cfs_rq->runtime_remaining > 0)
3682 unthrottle_cfs_rq(cfs_rq);
3683
3684next:
3685 raw_spin_unlock(&rq->lock);
3686
3687 if (!remaining)
3688 break;
3689 }
3690 rcu_read_unlock();
3691
c06f04c7 3692 return starting_runtime - remaining;
671fd9da
PT
3693}
3694
58088ad0
PT
3695/*
3696 * Responsible for refilling a task_group's bandwidth and unthrottling its
3697 * cfs_rqs as appropriate. If there has been no activity within the last
3698 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3699 * used to track this state.
3700 */
3701static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3702{
671fd9da 3703 u64 runtime, runtime_expires;
51f2176d 3704 int throttled;
58088ad0 3705
58088ad0
PT
3706 /* no need to continue the timer with no bandwidth constraint */
3707 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3708 goto out_deactivate;
58088ad0 3709
671fd9da 3710 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3711 cfs_b->nr_periods += overrun;
671fd9da 3712
51f2176d
BS
3713 /*
3714 * idle depends on !throttled (for the case of a large deficit), and if
3715 * we're going inactive then everything else can be deferred
3716 */
3717 if (cfs_b->idle && !throttled)
3718 goto out_deactivate;
a9cf55b2
PT
3719
3720 __refill_cfs_bandwidth_runtime(cfs_b);
3721
671fd9da
PT
3722 if (!throttled) {
3723 /* mark as potentially idle for the upcoming period */
3724 cfs_b->idle = 1;
51f2176d 3725 return 0;
671fd9da
PT
3726 }
3727
e8da1b18
NR
3728 /* account preceding periods in which throttling occurred */
3729 cfs_b->nr_throttled += overrun;
3730
671fd9da 3731 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3732
3733 /*
c06f04c7
BS
3734 * This check is repeated as we are holding onto the new bandwidth while
3735 * we unthrottle. This can potentially race with an unthrottled group
3736 * trying to acquire new bandwidth from the global pool. This can result
3737 * in us over-using our runtime if it is all used during this loop, but
3738 * only by limited amounts in that extreme case.
671fd9da 3739 */
c06f04c7
BS
3740 while (throttled && cfs_b->runtime > 0) {
3741 runtime = cfs_b->runtime;
671fd9da
PT
3742 raw_spin_unlock(&cfs_b->lock);
3743 /* we can't nest cfs_b->lock while distributing bandwidth */
3744 runtime = distribute_cfs_runtime(cfs_b, runtime,
3745 runtime_expires);
3746 raw_spin_lock(&cfs_b->lock);
3747
3748 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3749
3750 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3751 }
58088ad0 3752
671fd9da
PT
3753 /*
3754 * While we are ensured activity in the period following an
3755 * unthrottle, this also covers the case in which the new bandwidth is
3756 * insufficient to cover the existing bandwidth deficit. (Forcing the
3757 * timer to remain active while there are any throttled entities.)
3758 */
3759 cfs_b->idle = 0;
58088ad0 3760
51f2176d
BS
3761 return 0;
3762
3763out_deactivate:
51f2176d 3764 return 1;
58088ad0 3765}
d3d9dc33 3766
d8b4986d
PT
3767/* a cfs_rq won't donate quota below this amount */
3768static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3769/* minimum remaining period time to redistribute slack quota */
3770static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3771/* how long we wait to gather additional slack before distributing */
3772static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3773
db06e78c
BS
3774/*
3775 * Are we near the end of the current quota period?
3776 *
3777 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3778 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3779 * migrate_hrtimers, base is never cleared, so we are fine.
3780 */
d8b4986d
PT
3781static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3782{
3783 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3784 u64 remaining;
3785
3786 /* if the call-back is running a quota refresh is already occurring */
3787 if (hrtimer_callback_running(refresh_timer))
3788 return 1;
3789
3790 /* is a quota refresh about to occur? */
3791 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3792 if (remaining < min_expire)
3793 return 1;
3794
3795 return 0;
3796}
3797
3798static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3799{
3800 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3801
3802 /* if there's a quota refresh soon don't bother with slack */
3803 if (runtime_refresh_within(cfs_b, min_left))
3804 return;
3805
4cfafd30
PZ
3806 hrtimer_start(&cfs_b->slack_timer,
3807 ns_to_ktime(cfs_bandwidth_slack_period),
3808 HRTIMER_MODE_REL);
d8b4986d
PT
3809}
3810
3811/* we know any runtime found here is valid as update_curr() precedes return */
3812static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3813{
3814 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3815 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3816
3817 if (slack_runtime <= 0)
3818 return;
3819
3820 raw_spin_lock(&cfs_b->lock);
3821 if (cfs_b->quota != RUNTIME_INF &&
3822 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3823 cfs_b->runtime += slack_runtime;
3824
3825 /* we are under rq->lock, defer unthrottling using a timer */
3826 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3827 !list_empty(&cfs_b->throttled_cfs_rq))
3828 start_cfs_slack_bandwidth(cfs_b);
3829 }
3830 raw_spin_unlock(&cfs_b->lock);
3831
3832 /* even if it's not valid for return we don't want to try again */
3833 cfs_rq->runtime_remaining -= slack_runtime;
3834}
3835
3836static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3837{
56f570e5
PT
3838 if (!cfs_bandwidth_used())
3839 return;
3840
fccfdc6f 3841 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3842 return;
3843
3844 __return_cfs_rq_runtime(cfs_rq);
3845}
3846
3847/*
3848 * This is done with a timer (instead of inline with bandwidth return) since
3849 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3850 */
3851static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3852{
3853 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3854 u64 expires;
3855
3856 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3857 raw_spin_lock(&cfs_b->lock);
3858 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3859 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3860 return;
db06e78c 3861 }
d8b4986d 3862
c06f04c7 3863 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3864 runtime = cfs_b->runtime;
c06f04c7 3865
d8b4986d
PT
3866 expires = cfs_b->runtime_expires;
3867 raw_spin_unlock(&cfs_b->lock);
3868
3869 if (!runtime)
3870 return;
3871
3872 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3873
3874 raw_spin_lock(&cfs_b->lock);
3875 if (expires == cfs_b->runtime_expires)
c06f04c7 3876 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3877 raw_spin_unlock(&cfs_b->lock);
3878}
3879
d3d9dc33
PT
3880/*
3881 * When a group wakes up we want to make sure that its quota is not already
3882 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3883 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3884 */
3885static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3886{
56f570e5
PT
3887 if (!cfs_bandwidth_used())
3888 return;
3889
d3d9dc33
PT
3890 /* an active group must be handled by the update_curr()->put() path */
3891 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3892 return;
3893
3894 /* ensure the group is not already throttled */
3895 if (cfs_rq_throttled(cfs_rq))
3896 return;
3897
3898 /* update runtime allocation */
3899 account_cfs_rq_runtime(cfs_rq, 0);
3900 if (cfs_rq->runtime_remaining <= 0)
3901 throttle_cfs_rq(cfs_rq);
3902}
3903
3904/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3905static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3906{
56f570e5 3907 if (!cfs_bandwidth_used())
678d5718 3908 return false;
56f570e5 3909
d3d9dc33 3910 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3911 return false;
d3d9dc33
PT
3912
3913 /*
3914 * it's possible for a throttled entity to be forced into a running
3915 * state (e.g. set_curr_task), in this case we're finished.
3916 */
3917 if (cfs_rq_throttled(cfs_rq))
678d5718 3918 return true;
d3d9dc33
PT
3919
3920 throttle_cfs_rq(cfs_rq);
678d5718 3921 return true;
d3d9dc33 3922}
029632fb 3923
029632fb
PZ
3924static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3925{
3926 struct cfs_bandwidth *cfs_b =
3927 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3928
029632fb
PZ
3929 do_sched_cfs_slack_timer(cfs_b);
3930
3931 return HRTIMER_NORESTART;
3932}
3933
3934static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3935{
3936 struct cfs_bandwidth *cfs_b =
3937 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3938 int overrun;
3939 int idle = 0;
3940
51f2176d 3941 raw_spin_lock(&cfs_b->lock);
029632fb 3942 for (;;) {
77a4d1a1 3943 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3944 if (!overrun)
3945 break;
3946
3947 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3948 }
4cfafd30
PZ
3949 if (idle)
3950 cfs_b->period_active = 0;
51f2176d 3951 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3952
3953 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3954}
3955
3956void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3957{
3958 raw_spin_lock_init(&cfs_b->lock);
3959 cfs_b->runtime = 0;
3960 cfs_b->quota = RUNTIME_INF;
3961 cfs_b->period = ns_to_ktime(default_cfs_period());
3962
3963 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3964 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3965 cfs_b->period_timer.function = sched_cfs_period_timer;
3966 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3967 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3968}
3969
3970static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3971{
3972 cfs_rq->runtime_enabled = 0;
3973 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3974}
3975
77a4d1a1 3976void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3977{
4cfafd30 3978 lockdep_assert_held(&cfs_b->lock);
029632fb 3979
4cfafd30
PZ
3980 if (!cfs_b->period_active) {
3981 cfs_b->period_active = 1;
3982 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3983 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3984 }
029632fb
PZ
3985}
3986
3987static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3988{
7f1a169b
TH
3989 /* init_cfs_bandwidth() was not called */
3990 if (!cfs_b->throttled_cfs_rq.next)
3991 return;
3992
029632fb
PZ
3993 hrtimer_cancel(&cfs_b->period_timer);
3994 hrtimer_cancel(&cfs_b->slack_timer);
3995}
3996
0e59bdae
KT
3997static void __maybe_unused update_runtime_enabled(struct rq *rq)
3998{
3999 struct cfs_rq *cfs_rq;
4000
4001 for_each_leaf_cfs_rq(rq, cfs_rq) {
4002 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4003
4004 raw_spin_lock(&cfs_b->lock);
4005 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4006 raw_spin_unlock(&cfs_b->lock);
4007 }
4008}
4009
38dc3348 4010static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4011{
4012 struct cfs_rq *cfs_rq;
4013
4014 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4015 if (!cfs_rq->runtime_enabled)
4016 continue;
4017
4018 /*
4019 * clock_task is not advancing so we just need to make sure
4020 * there's some valid quota amount
4021 */
51f2176d 4022 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4023 /*
4024 * Offline rq is schedulable till cpu is completely disabled
4025 * in take_cpu_down(), so we prevent new cfs throttling here.
4026 */
4027 cfs_rq->runtime_enabled = 0;
4028
029632fb
PZ
4029 if (cfs_rq_throttled(cfs_rq))
4030 unthrottle_cfs_rq(cfs_rq);
4031 }
4032}
4033
4034#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4035static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4036{
78becc27 4037 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4038}
4039
9dbdb155 4040static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4041static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4042static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4043static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4044
4045static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4046{
4047 return 0;
4048}
64660c86
PT
4049
4050static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4051{
4052 return 0;
4053}
4054
4055static inline int throttled_lb_pair(struct task_group *tg,
4056 int src_cpu, int dest_cpu)
4057{
4058 return 0;
4059}
029632fb
PZ
4060
4061void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4062
4063#ifdef CONFIG_FAIR_GROUP_SCHED
4064static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4065#endif
4066
029632fb
PZ
4067static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4068{
4069 return NULL;
4070}
4071static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4072static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4073static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4074
4075#endif /* CONFIG_CFS_BANDWIDTH */
4076
bf0f6f24
IM
4077/**************************************************
4078 * CFS operations on tasks:
4079 */
4080
8f4d37ec
PZ
4081#ifdef CONFIG_SCHED_HRTICK
4082static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4083{
8f4d37ec
PZ
4084 struct sched_entity *se = &p->se;
4085 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4086
4087 WARN_ON(task_rq(p) != rq);
4088
b39e66ea 4089 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4090 u64 slice = sched_slice(cfs_rq, se);
4091 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4092 s64 delta = slice - ran;
4093
4094 if (delta < 0) {
4095 if (rq->curr == p)
8875125e 4096 resched_curr(rq);
8f4d37ec
PZ
4097 return;
4098 }
31656519 4099 hrtick_start(rq, delta);
8f4d37ec
PZ
4100 }
4101}
a4c2f00f
PZ
4102
4103/*
4104 * called from enqueue/dequeue and updates the hrtick when the
4105 * current task is from our class and nr_running is low enough
4106 * to matter.
4107 */
4108static void hrtick_update(struct rq *rq)
4109{
4110 struct task_struct *curr = rq->curr;
4111
b39e66ea 4112 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4113 return;
4114
4115 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4116 hrtick_start_fair(rq, curr);
4117}
55e12e5e 4118#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4119static inline void
4120hrtick_start_fair(struct rq *rq, struct task_struct *p)
4121{
4122}
a4c2f00f
PZ
4123
4124static inline void hrtick_update(struct rq *rq)
4125{
4126}
8f4d37ec
PZ
4127#endif
4128
bf0f6f24
IM
4129/*
4130 * The enqueue_task method is called before nr_running is
4131 * increased. Here we update the fair scheduling stats and
4132 * then put the task into the rbtree:
4133 */
ea87bb78 4134static void
371fd7e7 4135enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4136{
4137 struct cfs_rq *cfs_rq;
62fb1851 4138 struct sched_entity *se = &p->se;
bf0f6f24
IM
4139
4140 for_each_sched_entity(se) {
62fb1851 4141 if (se->on_rq)
bf0f6f24
IM
4142 break;
4143 cfs_rq = cfs_rq_of(se);
88ec22d3 4144 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4145
4146 /*
4147 * end evaluation on encountering a throttled cfs_rq
4148 *
4149 * note: in the case of encountering a throttled cfs_rq we will
4150 * post the final h_nr_running increment below.
4151 */
4152 if (cfs_rq_throttled(cfs_rq))
4153 break;
953bfcd1 4154 cfs_rq->h_nr_running++;
85dac906 4155
88ec22d3 4156 flags = ENQUEUE_WAKEUP;
bf0f6f24 4157 }
8f4d37ec 4158
2069dd75 4159 for_each_sched_entity(se) {
0f317143 4160 cfs_rq = cfs_rq_of(se);
953bfcd1 4161 cfs_rq->h_nr_running++;
2069dd75 4162
85dac906
PT
4163 if (cfs_rq_throttled(cfs_rq))
4164 break;
4165
9d89c257 4166 update_load_avg(se, 1);
17bc14b7 4167 update_cfs_shares(cfs_rq);
2069dd75
PZ
4168 }
4169
cd126afe 4170 if (!se)
72465447 4171 add_nr_running(rq, 1);
cd126afe 4172
a4c2f00f 4173 hrtick_update(rq);
bf0f6f24
IM
4174}
4175
2f36825b
VP
4176static void set_next_buddy(struct sched_entity *se);
4177
bf0f6f24
IM
4178/*
4179 * The dequeue_task method is called before nr_running is
4180 * decreased. We remove the task from the rbtree and
4181 * update the fair scheduling stats:
4182 */
371fd7e7 4183static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4184{
4185 struct cfs_rq *cfs_rq;
62fb1851 4186 struct sched_entity *se = &p->se;
2f36825b 4187 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4188
4189 for_each_sched_entity(se) {
4190 cfs_rq = cfs_rq_of(se);
371fd7e7 4191 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4192
4193 /*
4194 * end evaluation on encountering a throttled cfs_rq
4195 *
4196 * note: in the case of encountering a throttled cfs_rq we will
4197 * post the final h_nr_running decrement below.
4198 */
4199 if (cfs_rq_throttled(cfs_rq))
4200 break;
953bfcd1 4201 cfs_rq->h_nr_running--;
2069dd75 4202
bf0f6f24 4203 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4204 if (cfs_rq->load.weight) {
4205 /*
4206 * Bias pick_next to pick a task from this cfs_rq, as
4207 * p is sleeping when it is within its sched_slice.
4208 */
4209 if (task_sleep && parent_entity(se))
4210 set_next_buddy(parent_entity(se));
9598c82d
PT
4211
4212 /* avoid re-evaluating load for this entity */
4213 se = parent_entity(se);
bf0f6f24 4214 break;
2f36825b 4215 }
371fd7e7 4216 flags |= DEQUEUE_SLEEP;
bf0f6f24 4217 }
8f4d37ec 4218
2069dd75 4219 for_each_sched_entity(se) {
0f317143 4220 cfs_rq = cfs_rq_of(se);
953bfcd1 4221 cfs_rq->h_nr_running--;
2069dd75 4222
85dac906
PT
4223 if (cfs_rq_throttled(cfs_rq))
4224 break;
4225
9d89c257 4226 update_load_avg(se, 1);
17bc14b7 4227 update_cfs_shares(cfs_rq);
2069dd75
PZ
4228 }
4229
cd126afe 4230 if (!se)
72465447 4231 sub_nr_running(rq, 1);
cd126afe 4232
a4c2f00f 4233 hrtick_update(rq);
bf0f6f24
IM
4234}
4235
e7693a36 4236#ifdef CONFIG_SMP
3289bdb4
PZ
4237
4238/*
4239 * per rq 'load' arrray crap; XXX kill this.
4240 */
4241
4242/*
4243 * The exact cpuload at various idx values, calculated at every tick would be
4244 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4245 *
4246 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4247 * on nth tick when cpu may be busy, then we have:
4248 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4249 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4250 *
4251 * decay_load_missed() below does efficient calculation of
4252 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4253 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4254 *
4255 * The calculation is approximated on a 128 point scale.
4256 * degrade_zero_ticks is the number of ticks after which load at any
4257 * particular idx is approximated to be zero.
4258 * degrade_factor is a precomputed table, a row for each load idx.
4259 * Each column corresponds to degradation factor for a power of two ticks,
4260 * based on 128 point scale.
4261 * Example:
4262 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4263 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4264 *
4265 * With this power of 2 load factors, we can degrade the load n times
4266 * by looking at 1 bits in n and doing as many mult/shift instead of
4267 * n mult/shifts needed by the exact degradation.
4268 */
4269#define DEGRADE_SHIFT 7
4270static const unsigned char
4271 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4272static const unsigned char
4273 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4274 {0, 0, 0, 0, 0, 0, 0, 0},
4275 {64, 32, 8, 0, 0, 0, 0, 0},
4276 {96, 72, 40, 12, 1, 0, 0},
4277 {112, 98, 75, 43, 15, 1, 0},
4278 {120, 112, 98, 76, 45, 16, 2} };
4279
4280/*
4281 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4282 * would be when CPU is idle and so we just decay the old load without
4283 * adding any new load.
4284 */
4285static unsigned long
4286decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4287{
4288 int j = 0;
4289
4290 if (!missed_updates)
4291 return load;
4292
4293 if (missed_updates >= degrade_zero_ticks[idx])
4294 return 0;
4295
4296 if (idx == 1)
4297 return load >> missed_updates;
4298
4299 while (missed_updates) {
4300 if (missed_updates % 2)
4301 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4302
4303 missed_updates >>= 1;
4304 j++;
4305 }
4306 return load;
4307}
4308
4309/*
4310 * Update rq->cpu_load[] statistics. This function is usually called every
4311 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4312 * every tick. We fix it up based on jiffies.
4313 */
4314static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4315 unsigned long pending_updates)
4316{
4317 int i, scale;
4318
4319 this_rq->nr_load_updates++;
4320
4321 /* Update our load: */
4322 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4323 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4324 unsigned long old_load, new_load;
4325
4326 /* scale is effectively 1 << i now, and >> i divides by scale */
4327
4328 old_load = this_rq->cpu_load[i];
4329 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4330 new_load = this_load;
4331 /*
4332 * Round up the averaging division if load is increasing. This
4333 * prevents us from getting stuck on 9 if the load is 10, for
4334 * example.
4335 */
4336 if (new_load > old_load)
4337 new_load += scale - 1;
4338
4339 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4340 }
4341
4342 sched_avg_update(this_rq);
4343}
4344
7ea241af
YD
4345/* Used instead of source_load when we know the type == 0 */
4346static unsigned long weighted_cpuload(const int cpu)
4347{
4348 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4349}
4350
3289bdb4
PZ
4351#ifdef CONFIG_NO_HZ_COMMON
4352/*
4353 * There is no sane way to deal with nohz on smp when using jiffies because the
4354 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4355 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4356 *
4357 * Therefore we cannot use the delta approach from the regular tick since that
4358 * would seriously skew the load calculation. However we'll make do for those
4359 * updates happening while idle (nohz_idle_balance) or coming out of idle
4360 * (tick_nohz_idle_exit).
4361 *
4362 * This means we might still be one tick off for nohz periods.
4363 */
4364
4365/*
4366 * Called from nohz_idle_balance() to update the load ratings before doing the
4367 * idle balance.
4368 */
4369static void update_idle_cpu_load(struct rq *this_rq)
4370{
316c1608 4371 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4372 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4373 unsigned long pending_updates;
4374
4375 /*
4376 * bail if there's load or we're actually up-to-date.
4377 */
4378 if (load || curr_jiffies == this_rq->last_load_update_tick)
4379 return;
4380
4381 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4382 this_rq->last_load_update_tick = curr_jiffies;
4383
4384 __update_cpu_load(this_rq, load, pending_updates);
4385}
4386
4387/*
4388 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4389 */
4390void update_cpu_load_nohz(void)
4391{
4392 struct rq *this_rq = this_rq();
316c1608 4393 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4394 unsigned long pending_updates;
4395
4396 if (curr_jiffies == this_rq->last_load_update_tick)
4397 return;
4398
4399 raw_spin_lock(&this_rq->lock);
4400 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4401 if (pending_updates) {
4402 this_rq->last_load_update_tick = curr_jiffies;
4403 /*
4404 * We were idle, this means load 0, the current load might be
4405 * !0 due to remote wakeups and the sort.
4406 */
4407 __update_cpu_load(this_rq, 0, pending_updates);
4408 }
4409 raw_spin_unlock(&this_rq->lock);
4410}
4411#endif /* CONFIG_NO_HZ */
4412
4413/*
4414 * Called from scheduler_tick()
4415 */
4416void update_cpu_load_active(struct rq *this_rq)
4417{
7ea241af 4418 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4419 /*
4420 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4421 */
4422 this_rq->last_load_update_tick = jiffies;
4423 __update_cpu_load(this_rq, load, 1);
4424}
4425
029632fb
PZ
4426/*
4427 * Return a low guess at the load of a migration-source cpu weighted
4428 * according to the scheduling class and "nice" value.
4429 *
4430 * We want to under-estimate the load of migration sources, to
4431 * balance conservatively.
4432 */
4433static unsigned long source_load(int cpu, int type)
4434{
4435 struct rq *rq = cpu_rq(cpu);
4436 unsigned long total = weighted_cpuload(cpu);
4437
4438 if (type == 0 || !sched_feat(LB_BIAS))
4439 return total;
4440
4441 return min(rq->cpu_load[type-1], total);
4442}
4443
4444/*
4445 * Return a high guess at the load of a migration-target cpu weighted
4446 * according to the scheduling class and "nice" value.
4447 */
4448static unsigned long target_load(int cpu, int type)
4449{
4450 struct rq *rq = cpu_rq(cpu);
4451 unsigned long total = weighted_cpuload(cpu);
4452
4453 if (type == 0 || !sched_feat(LB_BIAS))
4454 return total;
4455
4456 return max(rq->cpu_load[type-1], total);
4457}
4458
ced549fa 4459static unsigned long capacity_of(int cpu)
029632fb 4460{
ced549fa 4461 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4462}
4463
ca6d75e6
VG
4464static unsigned long capacity_orig_of(int cpu)
4465{
4466 return cpu_rq(cpu)->cpu_capacity_orig;
4467}
4468
029632fb
PZ
4469static unsigned long cpu_avg_load_per_task(int cpu)
4470{
4471 struct rq *rq = cpu_rq(cpu);
316c1608 4472 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4473 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4474
4475 if (nr_running)
b92486cb 4476 return load_avg / nr_running;
029632fb
PZ
4477
4478 return 0;
4479}
4480
62470419
MW
4481static void record_wakee(struct task_struct *p)
4482{
4483 /*
4484 * Rough decay (wiping) for cost saving, don't worry
4485 * about the boundary, really active task won't care
4486 * about the loss.
4487 */
2538d960 4488 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4489 current->wakee_flips >>= 1;
62470419
MW
4490 current->wakee_flip_decay_ts = jiffies;
4491 }
4492
4493 if (current->last_wakee != p) {
4494 current->last_wakee = p;
4495 current->wakee_flips++;
4496 }
4497}
098fb9db 4498
74f8e4b2 4499static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4500{
4501 struct sched_entity *se = &p->se;
4502 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4503 u64 min_vruntime;
4504
4505#ifndef CONFIG_64BIT
4506 u64 min_vruntime_copy;
88ec22d3 4507
3fe1698b
PZ
4508 do {
4509 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4510 smp_rmb();
4511 min_vruntime = cfs_rq->min_vruntime;
4512 } while (min_vruntime != min_vruntime_copy);
4513#else
4514 min_vruntime = cfs_rq->min_vruntime;
4515#endif
88ec22d3 4516
3fe1698b 4517 se->vruntime -= min_vruntime;
62470419 4518 record_wakee(p);
88ec22d3
PZ
4519}
4520
bb3469ac 4521#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4522/*
4523 * effective_load() calculates the load change as seen from the root_task_group
4524 *
4525 * Adding load to a group doesn't make a group heavier, but can cause movement
4526 * of group shares between cpus. Assuming the shares were perfectly aligned one
4527 * can calculate the shift in shares.
cf5f0acf
PZ
4528 *
4529 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4530 * on this @cpu and results in a total addition (subtraction) of @wg to the
4531 * total group weight.
4532 *
4533 * Given a runqueue weight distribution (rw_i) we can compute a shares
4534 * distribution (s_i) using:
4535 *
4536 * s_i = rw_i / \Sum rw_j (1)
4537 *
4538 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4539 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4540 * shares distribution (s_i):
4541 *
4542 * rw_i = { 2, 4, 1, 0 }
4543 * s_i = { 2/7, 4/7, 1/7, 0 }
4544 *
4545 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4546 * task used to run on and the CPU the waker is running on), we need to
4547 * compute the effect of waking a task on either CPU and, in case of a sync
4548 * wakeup, compute the effect of the current task going to sleep.
4549 *
4550 * So for a change of @wl to the local @cpu with an overall group weight change
4551 * of @wl we can compute the new shares distribution (s'_i) using:
4552 *
4553 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4554 *
4555 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4556 * differences in waking a task to CPU 0. The additional task changes the
4557 * weight and shares distributions like:
4558 *
4559 * rw'_i = { 3, 4, 1, 0 }
4560 * s'_i = { 3/8, 4/8, 1/8, 0 }
4561 *
4562 * We can then compute the difference in effective weight by using:
4563 *
4564 * dw_i = S * (s'_i - s_i) (3)
4565 *
4566 * Where 'S' is the group weight as seen by its parent.
4567 *
4568 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4569 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4570 * 4/7) times the weight of the group.
f5bfb7d9 4571 */
2069dd75 4572static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4573{
4be9daaa 4574 struct sched_entity *se = tg->se[cpu];
f1d239f7 4575
9722c2da 4576 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4577 return wl;
4578
4be9daaa 4579 for_each_sched_entity(se) {
cf5f0acf 4580 long w, W;
4be9daaa 4581
977dda7c 4582 tg = se->my_q->tg;
bb3469ac 4583
cf5f0acf
PZ
4584 /*
4585 * W = @wg + \Sum rw_j
4586 */
4587 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4588
cf5f0acf
PZ
4589 /*
4590 * w = rw_i + @wl
4591 */
7ea241af 4592 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4593
cf5f0acf
PZ
4594 /*
4595 * wl = S * s'_i; see (2)
4596 */
4597 if (W > 0 && w < W)
32a8df4e 4598 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4599 else
4600 wl = tg->shares;
940959e9 4601
cf5f0acf
PZ
4602 /*
4603 * Per the above, wl is the new se->load.weight value; since
4604 * those are clipped to [MIN_SHARES, ...) do so now. See
4605 * calc_cfs_shares().
4606 */
977dda7c
PT
4607 if (wl < MIN_SHARES)
4608 wl = MIN_SHARES;
cf5f0acf
PZ
4609
4610 /*
4611 * wl = dw_i = S * (s'_i - s_i); see (3)
4612 */
9d89c257 4613 wl -= se->avg.load_avg;
cf5f0acf
PZ
4614
4615 /*
4616 * Recursively apply this logic to all parent groups to compute
4617 * the final effective load change on the root group. Since
4618 * only the @tg group gets extra weight, all parent groups can
4619 * only redistribute existing shares. @wl is the shift in shares
4620 * resulting from this level per the above.
4621 */
4be9daaa 4622 wg = 0;
4be9daaa 4623 }
bb3469ac 4624
4be9daaa 4625 return wl;
bb3469ac
PZ
4626}
4627#else
4be9daaa 4628
58d081b5 4629static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4630{
83378269 4631 return wl;
bb3469ac 4632}
4be9daaa 4633
bb3469ac
PZ
4634#endif
4635
63b0e9ed
MG
4636/*
4637 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4638 * A waker of many should wake a different task than the one last awakened
4639 * at a frequency roughly N times higher than one of its wakees. In order
4640 * to determine whether we should let the load spread vs consolodating to
4641 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4642 * partner, and a factor of lls_size higher frequency in the other. With
4643 * both conditions met, we can be relatively sure that the relationship is
4644 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4645 * being client/server, worker/dispatcher, interrupt source or whatever is
4646 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4647 */
62470419
MW
4648static int wake_wide(struct task_struct *p)
4649{
63b0e9ed
MG
4650 unsigned int master = current->wakee_flips;
4651 unsigned int slave = p->wakee_flips;
7d9ffa89 4652 int factor = this_cpu_read(sd_llc_size);
62470419 4653
63b0e9ed
MG
4654 if (master < slave)
4655 swap(master, slave);
4656 if (slave < factor || master < slave * factor)
4657 return 0;
4658 return 1;
62470419
MW
4659}
4660
c88d5910 4661static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4662{
e37b6a7b 4663 s64 this_load, load;
bd61c98f 4664 s64 this_eff_load, prev_eff_load;
c88d5910 4665 int idx, this_cpu, prev_cpu;
c88d5910 4666 struct task_group *tg;
83378269 4667 unsigned long weight;
b3137bc8 4668 int balanced;
098fb9db 4669
c88d5910
PZ
4670 idx = sd->wake_idx;
4671 this_cpu = smp_processor_id();
4672 prev_cpu = task_cpu(p);
4673 load = source_load(prev_cpu, idx);
4674 this_load = target_load(this_cpu, idx);
098fb9db 4675
b3137bc8
MG
4676 /*
4677 * If sync wakeup then subtract the (maximum possible)
4678 * effect of the currently running task from the load
4679 * of the current CPU:
4680 */
83378269
PZ
4681 if (sync) {
4682 tg = task_group(current);
9d89c257 4683 weight = current->se.avg.load_avg;
83378269 4684
c88d5910 4685 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4686 load += effective_load(tg, prev_cpu, 0, -weight);
4687 }
b3137bc8 4688
83378269 4689 tg = task_group(p);
9d89c257 4690 weight = p->se.avg.load_avg;
b3137bc8 4691
71a29aa7
PZ
4692 /*
4693 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4694 * due to the sync cause above having dropped this_load to 0, we'll
4695 * always have an imbalance, but there's really nothing you can do
4696 * about that, so that's good too.
71a29aa7
PZ
4697 *
4698 * Otherwise check if either cpus are near enough in load to allow this
4699 * task to be woken on this_cpu.
4700 */
bd61c98f
VG
4701 this_eff_load = 100;
4702 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4703
bd61c98f
VG
4704 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4705 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4706
bd61c98f 4707 if (this_load > 0) {
e51fd5e2
PZ
4708 this_eff_load *= this_load +
4709 effective_load(tg, this_cpu, weight, weight);
4710
e51fd5e2 4711 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4712 }
e51fd5e2 4713
bd61c98f 4714 balanced = this_eff_load <= prev_eff_load;
098fb9db 4715
41acab88 4716 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4717
05bfb65f
VG
4718 if (!balanced)
4719 return 0;
098fb9db 4720
05bfb65f
VG
4721 schedstat_inc(sd, ttwu_move_affine);
4722 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4723
4724 return 1;
098fb9db
IM
4725}
4726
aaee1203
PZ
4727/*
4728 * find_idlest_group finds and returns the least busy CPU group within the
4729 * domain.
4730 */
4731static struct sched_group *
78e7ed53 4732find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4733 int this_cpu, int sd_flag)
e7693a36 4734{
b3bd3de6 4735 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4736 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4737 int load_idx = sd->forkexec_idx;
aaee1203 4738 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4739
c44f2a02
VG
4740 if (sd_flag & SD_BALANCE_WAKE)
4741 load_idx = sd->wake_idx;
4742
aaee1203
PZ
4743 do {
4744 unsigned long load, avg_load;
4745 int local_group;
4746 int i;
e7693a36 4747
aaee1203
PZ
4748 /* Skip over this group if it has no CPUs allowed */
4749 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4750 tsk_cpus_allowed(p)))
aaee1203
PZ
4751 continue;
4752
4753 local_group = cpumask_test_cpu(this_cpu,
4754 sched_group_cpus(group));
4755
4756 /* Tally up the load of all CPUs in the group */
4757 avg_load = 0;
4758
4759 for_each_cpu(i, sched_group_cpus(group)) {
4760 /* Bias balancing toward cpus of our domain */
4761 if (local_group)
4762 load = source_load(i, load_idx);
4763 else
4764 load = target_load(i, load_idx);
4765
4766 avg_load += load;
4767 }
4768
63b2ca30 4769 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4770 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4771
4772 if (local_group) {
4773 this_load = avg_load;
aaee1203
PZ
4774 } else if (avg_load < min_load) {
4775 min_load = avg_load;
4776 idlest = group;
4777 }
4778 } while (group = group->next, group != sd->groups);
4779
4780 if (!idlest || 100*this_load < imbalance*min_load)
4781 return NULL;
4782 return idlest;
4783}
4784
4785/*
4786 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4787 */
4788static int
4789find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4790{
4791 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4792 unsigned int min_exit_latency = UINT_MAX;
4793 u64 latest_idle_timestamp = 0;
4794 int least_loaded_cpu = this_cpu;
4795 int shallowest_idle_cpu = -1;
aaee1203
PZ
4796 int i;
4797
4798 /* Traverse only the allowed CPUs */
fa17b507 4799 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4800 if (idle_cpu(i)) {
4801 struct rq *rq = cpu_rq(i);
4802 struct cpuidle_state *idle = idle_get_state(rq);
4803 if (idle && idle->exit_latency < min_exit_latency) {
4804 /*
4805 * We give priority to a CPU whose idle state
4806 * has the smallest exit latency irrespective
4807 * of any idle timestamp.
4808 */
4809 min_exit_latency = idle->exit_latency;
4810 latest_idle_timestamp = rq->idle_stamp;
4811 shallowest_idle_cpu = i;
4812 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4813 rq->idle_stamp > latest_idle_timestamp) {
4814 /*
4815 * If equal or no active idle state, then
4816 * the most recently idled CPU might have
4817 * a warmer cache.
4818 */
4819 latest_idle_timestamp = rq->idle_stamp;
4820 shallowest_idle_cpu = i;
4821 }
9f96742a 4822 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4823 load = weighted_cpuload(i);
4824 if (load < min_load || (load == min_load && i == this_cpu)) {
4825 min_load = load;
4826 least_loaded_cpu = i;
4827 }
e7693a36
GH
4828 }
4829 }
4830
83a0a96a 4831 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4832}
e7693a36 4833
a50bde51
PZ
4834/*
4835 * Try and locate an idle CPU in the sched_domain.
4836 */
99bd5e2f 4837static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4838{
99bd5e2f 4839 struct sched_domain *sd;
37407ea7 4840 struct sched_group *sg;
e0a79f52 4841 int i = task_cpu(p);
a50bde51 4842
e0a79f52
MG
4843 if (idle_cpu(target))
4844 return target;
99bd5e2f
SS
4845
4846 /*
e0a79f52 4847 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4848 */
e0a79f52
MG
4849 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4850 return i;
a50bde51
PZ
4851
4852 /*
37407ea7 4853 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4854 */
518cd623 4855 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4856 for_each_lower_domain(sd) {
37407ea7
LT
4857 sg = sd->groups;
4858 do {
4859 if (!cpumask_intersects(sched_group_cpus(sg),
4860 tsk_cpus_allowed(p)))
4861 goto next;
4862
4863 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4864 if (i == target || !idle_cpu(i))
37407ea7
LT
4865 goto next;
4866 }
970e1789 4867
37407ea7
LT
4868 target = cpumask_first_and(sched_group_cpus(sg),
4869 tsk_cpus_allowed(p));
4870 goto done;
4871next:
4872 sg = sg->next;
4873 } while (sg != sd->groups);
4874 }
4875done:
a50bde51
PZ
4876 return target;
4877}
231678b7 4878
8bb5b00c 4879/*
9e91d61d 4880 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4881 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4882 * compare the utilization with the capacity of the CPU that is available for
4883 * CFS task (ie cpu_capacity).
231678b7
DE
4884 *
4885 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4886 * recent utilization of currently non-runnable tasks on a CPU. It represents
4887 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4888 * capacity_orig is the cpu_capacity available at the highest frequency
4889 * (arch_scale_freq_capacity()).
4890 * The utilization of a CPU converges towards a sum equal to or less than the
4891 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4892 * the running time on this CPU scaled by capacity_curr.
4893 *
4894 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4895 * higher than capacity_orig because of unfortunate rounding in
4896 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4897 * the average stabilizes with the new running time. We need to check that the
4898 * utilization stays within the range of [0..capacity_orig] and cap it if
4899 * necessary. Without utilization capping, a group could be seen as overloaded
4900 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4901 * available capacity. We allow utilization to overshoot capacity_curr (but not
4902 * capacity_orig) as it useful for predicting the capacity required after task
4903 * migrations (scheduler-driven DVFS).
8bb5b00c 4904 */
9e91d61d 4905static int cpu_util(int cpu)
8bb5b00c 4906{
9e91d61d 4907 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4908 unsigned long capacity = capacity_orig_of(cpu);
4909
231678b7 4910 return (util >= capacity) ? capacity : util;
8bb5b00c 4911}
a50bde51 4912
aaee1203 4913/*
de91b9cb
MR
4914 * select_task_rq_fair: Select target runqueue for the waking task in domains
4915 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4916 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4917 *
de91b9cb
MR
4918 * Balances load by selecting the idlest cpu in the idlest group, or under
4919 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4920 *
de91b9cb 4921 * Returns the target cpu number.
aaee1203
PZ
4922 *
4923 * preempt must be disabled.
4924 */
0017d735 4925static int
ac66f547 4926select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4927{
29cd8bae 4928 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4929 int cpu = smp_processor_id();
63b0e9ed 4930 int new_cpu = prev_cpu;
99bd5e2f 4931 int want_affine = 0;
5158f4e4 4932 int sync = wake_flags & WF_SYNC;
c88d5910 4933
a8edd075 4934 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4935 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4936
dce840a0 4937 rcu_read_lock();
aaee1203 4938 for_each_domain(cpu, tmp) {
e4f42888 4939 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4940 break;
e4f42888 4941
fe3bcfe1 4942 /*
99bd5e2f
SS
4943 * If both cpu and prev_cpu are part of this domain,
4944 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4945 */
99bd5e2f
SS
4946 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4947 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4948 affine_sd = tmp;
29cd8bae 4949 break;
f03542a7 4950 }
29cd8bae 4951
f03542a7 4952 if (tmp->flags & sd_flag)
29cd8bae 4953 sd = tmp;
63b0e9ed
MG
4954 else if (!want_affine)
4955 break;
29cd8bae
PZ
4956 }
4957
63b0e9ed
MG
4958 if (affine_sd) {
4959 sd = NULL; /* Prefer wake_affine over balance flags */
4960 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4961 new_cpu = cpu;
8b911acd 4962 }
e7693a36 4963
63b0e9ed
MG
4964 if (!sd) {
4965 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4966 new_cpu = select_idle_sibling(p, new_cpu);
4967
4968 } else while (sd) {
aaee1203 4969 struct sched_group *group;
c88d5910 4970 int weight;
098fb9db 4971
0763a660 4972 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4973 sd = sd->child;
4974 continue;
4975 }
098fb9db 4976
c44f2a02 4977 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4978 if (!group) {
4979 sd = sd->child;
4980 continue;
4981 }
4ae7d5ce 4982
d7c33c49 4983 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4984 if (new_cpu == -1 || new_cpu == cpu) {
4985 /* Now try balancing at a lower domain level of cpu */
4986 sd = sd->child;
4987 continue;
e7693a36 4988 }
aaee1203
PZ
4989
4990 /* Now try balancing at a lower domain level of new_cpu */
4991 cpu = new_cpu;
669c55e9 4992 weight = sd->span_weight;
aaee1203
PZ
4993 sd = NULL;
4994 for_each_domain(cpu, tmp) {
669c55e9 4995 if (weight <= tmp->span_weight)
aaee1203 4996 break;
0763a660 4997 if (tmp->flags & sd_flag)
aaee1203
PZ
4998 sd = tmp;
4999 }
5000 /* while loop will break here if sd == NULL */
e7693a36 5001 }
dce840a0 5002 rcu_read_unlock();
e7693a36 5003
c88d5910 5004 return new_cpu;
e7693a36 5005}
0a74bef8
PT
5006
5007/*
5008 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5009 * cfs_rq_of(p) references at time of call are still valid and identify the
5010 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5011 * other assumptions, including the state of rq->lock, should be made.
5012 */
5a4fd036 5013static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5014{
aff3e498 5015 /*
9d89c257
YD
5016 * We are supposed to update the task to "current" time, then its up to date
5017 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5018 * what current time is, so simply throw away the out-of-date time. This
5019 * will result in the wakee task is less decayed, but giving the wakee more
5020 * load sounds not bad.
aff3e498 5021 */
9d89c257
YD
5022 remove_entity_load_avg(&p->se);
5023
5024 /* Tell new CPU we are migrated */
5025 p->se.avg.last_update_time = 0;
3944a927
BS
5026
5027 /* We have migrated, no longer consider this task hot */
9d89c257 5028 p->se.exec_start = 0;
0a74bef8 5029}
12695578
YD
5030
5031static void task_dead_fair(struct task_struct *p)
5032{
5033 remove_entity_load_avg(&p->se);
5034}
e7693a36
GH
5035#endif /* CONFIG_SMP */
5036
e52fb7c0
PZ
5037static unsigned long
5038wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5039{
5040 unsigned long gran = sysctl_sched_wakeup_granularity;
5041
5042 /*
e52fb7c0
PZ
5043 * Since its curr running now, convert the gran from real-time
5044 * to virtual-time in his units.
13814d42
MG
5045 *
5046 * By using 'se' instead of 'curr' we penalize light tasks, so
5047 * they get preempted easier. That is, if 'se' < 'curr' then
5048 * the resulting gran will be larger, therefore penalizing the
5049 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5050 * be smaller, again penalizing the lighter task.
5051 *
5052 * This is especially important for buddies when the leftmost
5053 * task is higher priority than the buddy.
0bbd3336 5054 */
f4ad9bd2 5055 return calc_delta_fair(gran, se);
0bbd3336
PZ
5056}
5057
464b7527
PZ
5058/*
5059 * Should 'se' preempt 'curr'.
5060 *
5061 * |s1
5062 * |s2
5063 * |s3
5064 * g
5065 * |<--->|c
5066 *
5067 * w(c, s1) = -1
5068 * w(c, s2) = 0
5069 * w(c, s3) = 1
5070 *
5071 */
5072static int
5073wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5074{
5075 s64 gran, vdiff = curr->vruntime - se->vruntime;
5076
5077 if (vdiff <= 0)
5078 return -1;
5079
e52fb7c0 5080 gran = wakeup_gran(curr, se);
464b7527
PZ
5081 if (vdiff > gran)
5082 return 1;
5083
5084 return 0;
5085}
5086
02479099
PZ
5087static void set_last_buddy(struct sched_entity *se)
5088{
69c80f3e
VP
5089 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5090 return;
5091
5092 for_each_sched_entity(se)
5093 cfs_rq_of(se)->last = se;
02479099
PZ
5094}
5095
5096static void set_next_buddy(struct sched_entity *se)
5097{
69c80f3e
VP
5098 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5099 return;
5100
5101 for_each_sched_entity(se)
5102 cfs_rq_of(se)->next = se;
02479099
PZ
5103}
5104
ac53db59
RR
5105static void set_skip_buddy(struct sched_entity *se)
5106{
69c80f3e
VP
5107 for_each_sched_entity(se)
5108 cfs_rq_of(se)->skip = se;
ac53db59
RR
5109}
5110
bf0f6f24
IM
5111/*
5112 * Preempt the current task with a newly woken task if needed:
5113 */
5a9b86f6 5114static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5115{
5116 struct task_struct *curr = rq->curr;
8651a86c 5117 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5118 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5119 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5120 int next_buddy_marked = 0;
bf0f6f24 5121
4ae7d5ce
IM
5122 if (unlikely(se == pse))
5123 return;
5124
5238cdd3 5125 /*
163122b7 5126 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5127 * unconditionally check_prempt_curr() after an enqueue (which may have
5128 * lead to a throttle). This both saves work and prevents false
5129 * next-buddy nomination below.
5130 */
5131 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5132 return;
5133
2f36825b 5134 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5135 set_next_buddy(pse);
2f36825b
VP
5136 next_buddy_marked = 1;
5137 }
57fdc26d 5138
aec0a514
BR
5139 /*
5140 * We can come here with TIF_NEED_RESCHED already set from new task
5141 * wake up path.
5238cdd3
PT
5142 *
5143 * Note: this also catches the edge-case of curr being in a throttled
5144 * group (e.g. via set_curr_task), since update_curr() (in the
5145 * enqueue of curr) will have resulted in resched being set. This
5146 * prevents us from potentially nominating it as a false LAST_BUDDY
5147 * below.
aec0a514
BR
5148 */
5149 if (test_tsk_need_resched(curr))
5150 return;
5151
a2f5c9ab
DH
5152 /* Idle tasks are by definition preempted by non-idle tasks. */
5153 if (unlikely(curr->policy == SCHED_IDLE) &&
5154 likely(p->policy != SCHED_IDLE))
5155 goto preempt;
5156
91c234b4 5157 /*
a2f5c9ab
DH
5158 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5159 * is driven by the tick):
91c234b4 5160 */
8ed92e51 5161 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5162 return;
bf0f6f24 5163
464b7527 5164 find_matching_se(&se, &pse);
9bbd7374 5165 update_curr(cfs_rq_of(se));
002f128b 5166 BUG_ON(!pse);
2f36825b
VP
5167 if (wakeup_preempt_entity(se, pse) == 1) {
5168 /*
5169 * Bias pick_next to pick the sched entity that is
5170 * triggering this preemption.
5171 */
5172 if (!next_buddy_marked)
5173 set_next_buddy(pse);
3a7e73a2 5174 goto preempt;
2f36825b 5175 }
464b7527 5176
3a7e73a2 5177 return;
a65ac745 5178
3a7e73a2 5179preempt:
8875125e 5180 resched_curr(rq);
3a7e73a2
PZ
5181 /*
5182 * Only set the backward buddy when the current task is still
5183 * on the rq. This can happen when a wakeup gets interleaved
5184 * with schedule on the ->pre_schedule() or idle_balance()
5185 * point, either of which can * drop the rq lock.
5186 *
5187 * Also, during early boot the idle thread is in the fair class,
5188 * for obvious reasons its a bad idea to schedule back to it.
5189 */
5190 if (unlikely(!se->on_rq || curr == rq->idle))
5191 return;
5192
5193 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5194 set_last_buddy(se);
bf0f6f24
IM
5195}
5196
606dba2e
PZ
5197static struct task_struct *
5198pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5199{
5200 struct cfs_rq *cfs_rq = &rq->cfs;
5201 struct sched_entity *se;
678d5718 5202 struct task_struct *p;
37e117c0 5203 int new_tasks;
678d5718 5204
6e83125c 5205again:
678d5718
PZ
5206#ifdef CONFIG_FAIR_GROUP_SCHED
5207 if (!cfs_rq->nr_running)
38033c37 5208 goto idle;
678d5718 5209
3f1d2a31 5210 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5211 goto simple;
5212
5213 /*
5214 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5215 * likely that a next task is from the same cgroup as the current.
5216 *
5217 * Therefore attempt to avoid putting and setting the entire cgroup
5218 * hierarchy, only change the part that actually changes.
5219 */
5220
5221 do {
5222 struct sched_entity *curr = cfs_rq->curr;
5223
5224 /*
5225 * Since we got here without doing put_prev_entity() we also
5226 * have to consider cfs_rq->curr. If it is still a runnable
5227 * entity, update_curr() will update its vruntime, otherwise
5228 * forget we've ever seen it.
5229 */
54d27365
BS
5230 if (curr) {
5231 if (curr->on_rq)
5232 update_curr(cfs_rq);
5233 else
5234 curr = NULL;
678d5718 5235
54d27365
BS
5236 /*
5237 * This call to check_cfs_rq_runtime() will do the
5238 * throttle and dequeue its entity in the parent(s).
5239 * Therefore the 'simple' nr_running test will indeed
5240 * be correct.
5241 */
5242 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5243 goto simple;
5244 }
678d5718
PZ
5245
5246 se = pick_next_entity(cfs_rq, curr);
5247 cfs_rq = group_cfs_rq(se);
5248 } while (cfs_rq);
5249
5250 p = task_of(se);
5251
5252 /*
5253 * Since we haven't yet done put_prev_entity and if the selected task
5254 * is a different task than we started out with, try and touch the
5255 * least amount of cfs_rqs.
5256 */
5257 if (prev != p) {
5258 struct sched_entity *pse = &prev->se;
5259
5260 while (!(cfs_rq = is_same_group(se, pse))) {
5261 int se_depth = se->depth;
5262 int pse_depth = pse->depth;
5263
5264 if (se_depth <= pse_depth) {
5265 put_prev_entity(cfs_rq_of(pse), pse);
5266 pse = parent_entity(pse);
5267 }
5268 if (se_depth >= pse_depth) {
5269 set_next_entity(cfs_rq_of(se), se);
5270 se = parent_entity(se);
5271 }
5272 }
5273
5274 put_prev_entity(cfs_rq, pse);
5275 set_next_entity(cfs_rq, se);
5276 }
5277
5278 if (hrtick_enabled(rq))
5279 hrtick_start_fair(rq, p);
5280
5281 return p;
5282simple:
5283 cfs_rq = &rq->cfs;
5284#endif
bf0f6f24 5285
36ace27e 5286 if (!cfs_rq->nr_running)
38033c37 5287 goto idle;
bf0f6f24 5288
3f1d2a31 5289 put_prev_task(rq, prev);
606dba2e 5290
bf0f6f24 5291 do {
678d5718 5292 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5293 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5294 cfs_rq = group_cfs_rq(se);
5295 } while (cfs_rq);
5296
8f4d37ec 5297 p = task_of(se);
678d5718 5298
b39e66ea
MG
5299 if (hrtick_enabled(rq))
5300 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5301
5302 return p;
38033c37
PZ
5303
5304idle:
cbce1a68
PZ
5305 /*
5306 * This is OK, because current is on_cpu, which avoids it being picked
5307 * for load-balance and preemption/IRQs are still disabled avoiding
5308 * further scheduler activity on it and we're being very careful to
5309 * re-start the picking loop.
5310 */
5311 lockdep_unpin_lock(&rq->lock);
e4aa358b 5312 new_tasks = idle_balance(rq);
cbce1a68 5313 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5314 /*
5315 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5316 * possible for any higher priority task to appear. In that case we
5317 * must re-start the pick_next_entity() loop.
5318 */
e4aa358b 5319 if (new_tasks < 0)
37e117c0
PZ
5320 return RETRY_TASK;
5321
e4aa358b 5322 if (new_tasks > 0)
38033c37 5323 goto again;
38033c37
PZ
5324
5325 return NULL;
bf0f6f24
IM
5326}
5327
5328/*
5329 * Account for a descheduled task:
5330 */
31ee529c 5331static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5332{
5333 struct sched_entity *se = &prev->se;
5334 struct cfs_rq *cfs_rq;
5335
5336 for_each_sched_entity(se) {
5337 cfs_rq = cfs_rq_of(se);
ab6cde26 5338 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5339 }
5340}
5341
ac53db59
RR
5342/*
5343 * sched_yield() is very simple
5344 *
5345 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5346 */
5347static void yield_task_fair(struct rq *rq)
5348{
5349 struct task_struct *curr = rq->curr;
5350 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5351 struct sched_entity *se = &curr->se;
5352
5353 /*
5354 * Are we the only task in the tree?
5355 */
5356 if (unlikely(rq->nr_running == 1))
5357 return;
5358
5359 clear_buddies(cfs_rq, se);
5360
5361 if (curr->policy != SCHED_BATCH) {
5362 update_rq_clock(rq);
5363 /*
5364 * Update run-time statistics of the 'current'.
5365 */
5366 update_curr(cfs_rq);
916671c0
MG
5367 /*
5368 * Tell update_rq_clock() that we've just updated,
5369 * so we don't do microscopic update in schedule()
5370 * and double the fastpath cost.
5371 */
9edfbfed 5372 rq_clock_skip_update(rq, true);
ac53db59
RR
5373 }
5374
5375 set_skip_buddy(se);
5376}
5377
d95f4122
MG
5378static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5379{
5380 struct sched_entity *se = &p->se;
5381
5238cdd3
PT
5382 /* throttled hierarchies are not runnable */
5383 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5384 return false;
5385
5386 /* Tell the scheduler that we'd really like pse to run next. */
5387 set_next_buddy(se);
5388
d95f4122
MG
5389 yield_task_fair(rq);
5390
5391 return true;
5392}
5393
681f3e68 5394#ifdef CONFIG_SMP
bf0f6f24 5395/**************************************************
e9c84cb8
PZ
5396 * Fair scheduling class load-balancing methods.
5397 *
5398 * BASICS
5399 *
5400 * The purpose of load-balancing is to achieve the same basic fairness the
5401 * per-cpu scheduler provides, namely provide a proportional amount of compute
5402 * time to each task. This is expressed in the following equation:
5403 *
5404 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5405 *
5406 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5407 * W_i,0 is defined as:
5408 *
5409 * W_i,0 = \Sum_j w_i,j (2)
5410 *
5411 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5412 * is derived from the nice value as per prio_to_weight[].
5413 *
5414 * The weight average is an exponential decay average of the instantaneous
5415 * weight:
5416 *
5417 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5418 *
ced549fa 5419 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5420 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5421 * can also include other factors [XXX].
5422 *
5423 * To achieve this balance we define a measure of imbalance which follows
5424 * directly from (1):
5425 *
ced549fa 5426 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5427 *
5428 * We them move tasks around to minimize the imbalance. In the continuous
5429 * function space it is obvious this converges, in the discrete case we get
5430 * a few fun cases generally called infeasible weight scenarios.
5431 *
5432 * [XXX expand on:
5433 * - infeasible weights;
5434 * - local vs global optima in the discrete case. ]
5435 *
5436 *
5437 * SCHED DOMAINS
5438 *
5439 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5440 * for all i,j solution, we create a tree of cpus that follows the hardware
5441 * topology where each level pairs two lower groups (or better). This results
5442 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5443 * tree to only the first of the previous level and we decrease the frequency
5444 * of load-balance at each level inv. proportional to the number of cpus in
5445 * the groups.
5446 *
5447 * This yields:
5448 *
5449 * log_2 n 1 n
5450 * \Sum { --- * --- * 2^i } = O(n) (5)
5451 * i = 0 2^i 2^i
5452 * `- size of each group
5453 * | | `- number of cpus doing load-balance
5454 * | `- freq
5455 * `- sum over all levels
5456 *
5457 * Coupled with a limit on how many tasks we can migrate every balance pass,
5458 * this makes (5) the runtime complexity of the balancer.
5459 *
5460 * An important property here is that each CPU is still (indirectly) connected
5461 * to every other cpu in at most O(log n) steps:
5462 *
5463 * The adjacency matrix of the resulting graph is given by:
5464 *
5465 * log_2 n
5466 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5467 * k = 0
5468 *
5469 * And you'll find that:
5470 *
5471 * A^(log_2 n)_i,j != 0 for all i,j (7)
5472 *
5473 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5474 * The task movement gives a factor of O(m), giving a convergence complexity
5475 * of:
5476 *
5477 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5478 *
5479 *
5480 * WORK CONSERVING
5481 *
5482 * In order to avoid CPUs going idle while there's still work to do, new idle
5483 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5484 * tree itself instead of relying on other CPUs to bring it work.
5485 *
5486 * This adds some complexity to both (5) and (8) but it reduces the total idle
5487 * time.
5488 *
5489 * [XXX more?]
5490 *
5491 *
5492 * CGROUPS
5493 *
5494 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5495 *
5496 * s_k,i
5497 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5498 * S_k
5499 *
5500 * Where
5501 *
5502 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5503 *
5504 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5505 *
5506 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5507 * property.
5508 *
5509 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5510 * rewrite all of this once again.]
5511 */
bf0f6f24 5512
ed387b78
HS
5513static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5514
0ec8aa00
PZ
5515enum fbq_type { regular, remote, all };
5516
ddcdf6e7 5517#define LBF_ALL_PINNED 0x01
367456c7 5518#define LBF_NEED_BREAK 0x02
6263322c
PZ
5519#define LBF_DST_PINNED 0x04
5520#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5521
5522struct lb_env {
5523 struct sched_domain *sd;
5524
ddcdf6e7 5525 struct rq *src_rq;
85c1e7da 5526 int src_cpu;
ddcdf6e7
PZ
5527
5528 int dst_cpu;
5529 struct rq *dst_rq;
5530
88b8dac0
SV
5531 struct cpumask *dst_grpmask;
5532 int new_dst_cpu;
ddcdf6e7 5533 enum cpu_idle_type idle;
bd939f45 5534 long imbalance;
b9403130
MW
5535 /* The set of CPUs under consideration for load-balancing */
5536 struct cpumask *cpus;
5537
ddcdf6e7 5538 unsigned int flags;
367456c7
PZ
5539
5540 unsigned int loop;
5541 unsigned int loop_break;
5542 unsigned int loop_max;
0ec8aa00
PZ
5543
5544 enum fbq_type fbq_type;
163122b7 5545 struct list_head tasks;
ddcdf6e7
PZ
5546};
5547
029632fb
PZ
5548/*
5549 * Is this task likely cache-hot:
5550 */
5d5e2b1b 5551static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5552{
5553 s64 delta;
5554
e5673f28
KT
5555 lockdep_assert_held(&env->src_rq->lock);
5556
029632fb
PZ
5557 if (p->sched_class != &fair_sched_class)
5558 return 0;
5559
5560 if (unlikely(p->policy == SCHED_IDLE))
5561 return 0;
5562
5563 /*
5564 * Buddy candidates are cache hot:
5565 */
5d5e2b1b 5566 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5567 (&p->se == cfs_rq_of(&p->se)->next ||
5568 &p->se == cfs_rq_of(&p->se)->last))
5569 return 1;
5570
5571 if (sysctl_sched_migration_cost == -1)
5572 return 1;
5573 if (sysctl_sched_migration_cost == 0)
5574 return 0;
5575
5d5e2b1b 5576 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5577
5578 return delta < (s64)sysctl_sched_migration_cost;
5579}
5580
3a7053b3 5581#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5582/*
2a1ed24c
SD
5583 * Returns 1, if task migration degrades locality
5584 * Returns 0, if task migration improves locality i.e migration preferred.
5585 * Returns -1, if task migration is not affected by locality.
c1ceac62 5586 */
2a1ed24c 5587static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5588{
b1ad065e 5589 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5590 unsigned long src_faults, dst_faults;
3a7053b3
MG
5591 int src_nid, dst_nid;
5592
2a595721 5593 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5594 return -1;
5595
c3b9bc5b 5596 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5597 return -1;
7a0f3083
MG
5598
5599 src_nid = cpu_to_node(env->src_cpu);
5600 dst_nid = cpu_to_node(env->dst_cpu);
5601
83e1d2cd 5602 if (src_nid == dst_nid)
2a1ed24c 5603 return -1;
7a0f3083 5604
2a1ed24c
SD
5605 /* Migrating away from the preferred node is always bad. */
5606 if (src_nid == p->numa_preferred_nid) {
5607 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5608 return 1;
5609 else
5610 return -1;
5611 }
b1ad065e 5612
c1ceac62
RR
5613 /* Encourage migration to the preferred node. */
5614 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5615 return 0;
b1ad065e 5616
c1ceac62
RR
5617 if (numa_group) {
5618 src_faults = group_faults(p, src_nid);
5619 dst_faults = group_faults(p, dst_nid);
5620 } else {
5621 src_faults = task_faults(p, src_nid);
5622 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5623 }
5624
c1ceac62 5625 return dst_faults < src_faults;
7a0f3083
MG
5626}
5627
3a7053b3 5628#else
2a1ed24c 5629static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5630 struct lb_env *env)
5631{
2a1ed24c 5632 return -1;
7a0f3083 5633}
3a7053b3
MG
5634#endif
5635
1e3c88bd
PZ
5636/*
5637 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5638 */
5639static
8e45cb54 5640int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5641{
2a1ed24c 5642 int tsk_cache_hot;
e5673f28
KT
5643
5644 lockdep_assert_held(&env->src_rq->lock);
5645
1e3c88bd
PZ
5646 /*
5647 * We do not migrate tasks that are:
d3198084 5648 * 1) throttled_lb_pair, or
1e3c88bd 5649 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5650 * 3) running (obviously), or
5651 * 4) are cache-hot on their current CPU.
1e3c88bd 5652 */
d3198084
JK
5653 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5654 return 0;
5655
ddcdf6e7 5656 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5657 int cpu;
88b8dac0 5658
41acab88 5659 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5660
6263322c
PZ
5661 env->flags |= LBF_SOME_PINNED;
5662
88b8dac0
SV
5663 /*
5664 * Remember if this task can be migrated to any other cpu in
5665 * our sched_group. We may want to revisit it if we couldn't
5666 * meet load balance goals by pulling other tasks on src_cpu.
5667 *
5668 * Also avoid computing new_dst_cpu if we have already computed
5669 * one in current iteration.
5670 */
6263322c 5671 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5672 return 0;
5673
e02e60c1
JK
5674 /* Prevent to re-select dst_cpu via env's cpus */
5675 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5676 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5677 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5678 env->new_dst_cpu = cpu;
5679 break;
5680 }
88b8dac0 5681 }
e02e60c1 5682
1e3c88bd
PZ
5683 return 0;
5684 }
88b8dac0
SV
5685
5686 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5687 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5688
ddcdf6e7 5689 if (task_running(env->src_rq, p)) {
41acab88 5690 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5691 return 0;
5692 }
5693
5694 /*
5695 * Aggressive migration if:
3a7053b3
MG
5696 * 1) destination numa is preferred
5697 * 2) task is cache cold, or
5698 * 3) too many balance attempts have failed.
1e3c88bd 5699 */
2a1ed24c
SD
5700 tsk_cache_hot = migrate_degrades_locality(p, env);
5701 if (tsk_cache_hot == -1)
5702 tsk_cache_hot = task_hot(p, env);
3a7053b3 5703
2a1ed24c 5704 if (tsk_cache_hot <= 0 ||
7a96c231 5705 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5706 if (tsk_cache_hot == 1) {
3a7053b3
MG
5707 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5708 schedstat_inc(p, se.statistics.nr_forced_migrations);
5709 }
1e3c88bd
PZ
5710 return 1;
5711 }
5712
4e2dcb73
ZH
5713 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5714 return 0;
1e3c88bd
PZ
5715}
5716
897c395f 5717/*
163122b7
KT
5718 * detach_task() -- detach the task for the migration specified in env
5719 */
5720static void detach_task(struct task_struct *p, struct lb_env *env)
5721{
5722 lockdep_assert_held(&env->src_rq->lock);
5723
5724 deactivate_task(env->src_rq, p, 0);
5725 p->on_rq = TASK_ON_RQ_MIGRATING;
5726 set_task_cpu(p, env->dst_cpu);
5727}
5728
897c395f 5729/*
e5673f28 5730 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5731 * part of active balancing operations within "domain".
897c395f 5732 *
e5673f28 5733 * Returns a task if successful and NULL otherwise.
897c395f 5734 */
e5673f28 5735static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5736{
5737 struct task_struct *p, *n;
897c395f 5738
e5673f28
KT
5739 lockdep_assert_held(&env->src_rq->lock);
5740
367456c7 5741 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5742 if (!can_migrate_task(p, env))
5743 continue;
897c395f 5744
163122b7 5745 detach_task(p, env);
e5673f28 5746
367456c7 5747 /*
e5673f28 5748 * Right now, this is only the second place where
163122b7 5749 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5750 * so we can safely collect stats here rather than
163122b7 5751 * inside detach_tasks().
367456c7
PZ
5752 */
5753 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5754 return p;
897c395f 5755 }
e5673f28 5756 return NULL;
897c395f
PZ
5757}
5758
eb95308e
PZ
5759static const unsigned int sched_nr_migrate_break = 32;
5760
5d6523eb 5761/*
163122b7
KT
5762 * detach_tasks() -- tries to detach up to imbalance weighted load from
5763 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5764 *
163122b7 5765 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5766 */
163122b7 5767static int detach_tasks(struct lb_env *env)
1e3c88bd 5768{
5d6523eb
PZ
5769 struct list_head *tasks = &env->src_rq->cfs_tasks;
5770 struct task_struct *p;
367456c7 5771 unsigned long load;
163122b7
KT
5772 int detached = 0;
5773
5774 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5775
bd939f45 5776 if (env->imbalance <= 0)
5d6523eb 5777 return 0;
1e3c88bd 5778
5d6523eb 5779 while (!list_empty(tasks)) {
985d3a4c
YD
5780 /*
5781 * We don't want to steal all, otherwise we may be treated likewise,
5782 * which could at worst lead to a livelock crash.
5783 */
5784 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5785 break;
5786
5d6523eb 5787 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5788
367456c7
PZ
5789 env->loop++;
5790 /* We've more or less seen every task there is, call it quits */
5d6523eb 5791 if (env->loop > env->loop_max)
367456c7 5792 break;
5d6523eb
PZ
5793
5794 /* take a breather every nr_migrate tasks */
367456c7 5795 if (env->loop > env->loop_break) {
eb95308e 5796 env->loop_break += sched_nr_migrate_break;
8e45cb54 5797 env->flags |= LBF_NEED_BREAK;
ee00e66f 5798 break;
a195f004 5799 }
1e3c88bd 5800
d3198084 5801 if (!can_migrate_task(p, env))
367456c7
PZ
5802 goto next;
5803
5804 load = task_h_load(p);
5d6523eb 5805
eb95308e 5806 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5807 goto next;
5808
bd939f45 5809 if ((load / 2) > env->imbalance)
367456c7 5810 goto next;
1e3c88bd 5811
163122b7
KT
5812 detach_task(p, env);
5813 list_add(&p->se.group_node, &env->tasks);
5814
5815 detached++;
bd939f45 5816 env->imbalance -= load;
1e3c88bd
PZ
5817
5818#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5819 /*
5820 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5821 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5822 * the critical section.
5823 */
5d6523eb 5824 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5825 break;
1e3c88bd
PZ
5826#endif
5827
ee00e66f
PZ
5828 /*
5829 * We only want to steal up to the prescribed amount of
5830 * weighted load.
5831 */
bd939f45 5832 if (env->imbalance <= 0)
ee00e66f 5833 break;
367456c7
PZ
5834
5835 continue;
5836next:
5d6523eb 5837 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5838 }
5d6523eb 5839
1e3c88bd 5840 /*
163122b7
KT
5841 * Right now, this is one of only two places we collect this stat
5842 * so we can safely collect detach_one_task() stats here rather
5843 * than inside detach_one_task().
1e3c88bd 5844 */
163122b7 5845 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5846
163122b7
KT
5847 return detached;
5848}
5849
5850/*
5851 * attach_task() -- attach the task detached by detach_task() to its new rq.
5852 */
5853static void attach_task(struct rq *rq, struct task_struct *p)
5854{
5855 lockdep_assert_held(&rq->lock);
5856
5857 BUG_ON(task_rq(p) != rq);
5858 p->on_rq = TASK_ON_RQ_QUEUED;
5859 activate_task(rq, p, 0);
5860 check_preempt_curr(rq, p, 0);
5861}
5862
5863/*
5864 * attach_one_task() -- attaches the task returned from detach_one_task() to
5865 * its new rq.
5866 */
5867static void attach_one_task(struct rq *rq, struct task_struct *p)
5868{
5869 raw_spin_lock(&rq->lock);
5870 attach_task(rq, p);
5871 raw_spin_unlock(&rq->lock);
5872}
5873
5874/*
5875 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5876 * new rq.
5877 */
5878static void attach_tasks(struct lb_env *env)
5879{
5880 struct list_head *tasks = &env->tasks;
5881 struct task_struct *p;
5882
5883 raw_spin_lock(&env->dst_rq->lock);
5884
5885 while (!list_empty(tasks)) {
5886 p = list_first_entry(tasks, struct task_struct, se.group_node);
5887 list_del_init(&p->se.group_node);
1e3c88bd 5888
163122b7
KT
5889 attach_task(env->dst_rq, p);
5890 }
5891
5892 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5893}
5894
230059de 5895#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5896static void update_blocked_averages(int cpu)
9e3081ca 5897{
9e3081ca 5898 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5899 struct cfs_rq *cfs_rq;
5900 unsigned long flags;
9e3081ca 5901
48a16753
PT
5902 raw_spin_lock_irqsave(&rq->lock, flags);
5903 update_rq_clock(rq);
9d89c257 5904
9763b67f
PZ
5905 /*
5906 * Iterates the task_group tree in a bottom up fashion, see
5907 * list_add_leaf_cfs_rq() for details.
5908 */
64660c86 5909 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5910 /* throttled entities do not contribute to load */
5911 if (throttled_hierarchy(cfs_rq))
5912 continue;
48a16753 5913
9d89c257
YD
5914 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5915 update_tg_load_avg(cfs_rq, 0);
5916 }
48a16753 5917 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5918}
5919
9763b67f 5920/*
68520796 5921 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5922 * This needs to be done in a top-down fashion because the load of a child
5923 * group is a fraction of its parents load.
5924 */
68520796 5925static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5926{
68520796
VD
5927 struct rq *rq = rq_of(cfs_rq);
5928 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5929 unsigned long now = jiffies;
68520796 5930 unsigned long load;
a35b6466 5931
68520796 5932 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5933 return;
5934
68520796
VD
5935 cfs_rq->h_load_next = NULL;
5936 for_each_sched_entity(se) {
5937 cfs_rq = cfs_rq_of(se);
5938 cfs_rq->h_load_next = se;
5939 if (cfs_rq->last_h_load_update == now)
5940 break;
5941 }
a35b6466 5942
68520796 5943 if (!se) {
7ea241af 5944 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5945 cfs_rq->last_h_load_update = now;
5946 }
5947
5948 while ((se = cfs_rq->h_load_next) != NULL) {
5949 load = cfs_rq->h_load;
7ea241af
YD
5950 load = div64_ul(load * se->avg.load_avg,
5951 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5952 cfs_rq = group_cfs_rq(se);
5953 cfs_rq->h_load = load;
5954 cfs_rq->last_h_load_update = now;
5955 }
9763b67f
PZ
5956}
5957
367456c7 5958static unsigned long task_h_load(struct task_struct *p)
230059de 5959{
367456c7 5960 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5961
68520796 5962 update_cfs_rq_h_load(cfs_rq);
9d89c257 5963 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5964 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5965}
5966#else
48a16753 5967static inline void update_blocked_averages(int cpu)
9e3081ca 5968{
6c1d47c0
VG
5969 struct rq *rq = cpu_rq(cpu);
5970 struct cfs_rq *cfs_rq = &rq->cfs;
5971 unsigned long flags;
5972
5973 raw_spin_lock_irqsave(&rq->lock, flags);
5974 update_rq_clock(rq);
5975 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5976 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5977}
5978
367456c7 5979static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5980{
9d89c257 5981 return p->se.avg.load_avg;
1e3c88bd 5982}
230059de 5983#endif
1e3c88bd 5984
1e3c88bd 5985/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5986
5987enum group_type {
5988 group_other = 0,
5989 group_imbalanced,
5990 group_overloaded,
5991};
5992
1e3c88bd
PZ
5993/*
5994 * sg_lb_stats - stats of a sched_group required for load_balancing
5995 */
5996struct sg_lb_stats {
5997 unsigned long avg_load; /*Avg load across the CPUs of the group */
5998 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5999 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6000 unsigned long load_per_task;
63b2ca30 6001 unsigned long group_capacity;
9e91d61d 6002 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6003 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6004 unsigned int idle_cpus;
6005 unsigned int group_weight;
caeb178c 6006 enum group_type group_type;
ea67821b 6007 int group_no_capacity;
0ec8aa00
PZ
6008#ifdef CONFIG_NUMA_BALANCING
6009 unsigned int nr_numa_running;
6010 unsigned int nr_preferred_running;
6011#endif
1e3c88bd
PZ
6012};
6013
56cf515b
JK
6014/*
6015 * sd_lb_stats - Structure to store the statistics of a sched_domain
6016 * during load balancing.
6017 */
6018struct sd_lb_stats {
6019 struct sched_group *busiest; /* Busiest group in this sd */
6020 struct sched_group *local; /* Local group in this sd */
6021 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6022 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6023 unsigned long avg_load; /* Average load across all groups in sd */
6024
56cf515b 6025 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6026 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6027};
6028
147c5fc2
PZ
6029static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6030{
6031 /*
6032 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6033 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6034 * We must however clear busiest_stat::avg_load because
6035 * update_sd_pick_busiest() reads this before assignment.
6036 */
6037 *sds = (struct sd_lb_stats){
6038 .busiest = NULL,
6039 .local = NULL,
6040 .total_load = 0UL,
63b2ca30 6041 .total_capacity = 0UL,
147c5fc2
PZ
6042 .busiest_stat = {
6043 .avg_load = 0UL,
caeb178c
RR
6044 .sum_nr_running = 0,
6045 .group_type = group_other,
147c5fc2
PZ
6046 },
6047 };
6048}
6049
1e3c88bd
PZ
6050/**
6051 * get_sd_load_idx - Obtain the load index for a given sched domain.
6052 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6053 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6054 *
6055 * Return: The load index.
1e3c88bd
PZ
6056 */
6057static inline int get_sd_load_idx(struct sched_domain *sd,
6058 enum cpu_idle_type idle)
6059{
6060 int load_idx;
6061
6062 switch (idle) {
6063 case CPU_NOT_IDLE:
6064 load_idx = sd->busy_idx;
6065 break;
6066
6067 case CPU_NEWLY_IDLE:
6068 load_idx = sd->newidle_idx;
6069 break;
6070 default:
6071 load_idx = sd->idle_idx;
6072 break;
6073 }
6074
6075 return load_idx;
6076}
6077
ced549fa 6078static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6079{
6080 struct rq *rq = cpu_rq(cpu);
b5b4860d 6081 u64 total, used, age_stamp, avg;
cadefd3d 6082 s64 delta;
1e3c88bd 6083
b654f7de
PZ
6084 /*
6085 * Since we're reading these variables without serialization make sure
6086 * we read them once before doing sanity checks on them.
6087 */
316c1608
JL
6088 age_stamp = READ_ONCE(rq->age_stamp);
6089 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6090 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6091
cadefd3d
PZ
6092 if (unlikely(delta < 0))
6093 delta = 0;
6094
6095 total = sched_avg_period() + delta;
aa483808 6096
b5b4860d 6097 used = div_u64(avg, total);
1e3c88bd 6098
b5b4860d
VG
6099 if (likely(used < SCHED_CAPACITY_SCALE))
6100 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6101
b5b4860d 6102 return 1;
1e3c88bd
PZ
6103}
6104
ced549fa 6105static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6106{
8cd5601c 6107 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6108 struct sched_group *sdg = sd->groups;
6109
ca6d75e6 6110 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6111
ced549fa 6112 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6113 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6114
ced549fa
NP
6115 if (!capacity)
6116 capacity = 1;
1e3c88bd 6117
ced549fa
NP
6118 cpu_rq(cpu)->cpu_capacity = capacity;
6119 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6120}
6121
63b2ca30 6122void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6123{
6124 struct sched_domain *child = sd->child;
6125 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6126 unsigned long capacity;
4ec4412e
VG
6127 unsigned long interval;
6128
6129 interval = msecs_to_jiffies(sd->balance_interval);
6130 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6131 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6132
6133 if (!child) {
ced549fa 6134 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6135 return;
6136 }
6137
dc7ff76e 6138 capacity = 0;
1e3c88bd 6139
74a5ce20
PZ
6140 if (child->flags & SD_OVERLAP) {
6141 /*
6142 * SD_OVERLAP domains cannot assume that child groups
6143 * span the current group.
6144 */
6145
863bffc8 6146 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6147 struct sched_group_capacity *sgc;
9abf24d4 6148 struct rq *rq = cpu_rq(cpu);
863bffc8 6149
9abf24d4 6150 /*
63b2ca30 6151 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6152 * gets here before we've attached the domains to the
6153 * runqueues.
6154 *
ced549fa
NP
6155 * Use capacity_of(), which is set irrespective of domains
6156 * in update_cpu_capacity().
9abf24d4 6157 *
dc7ff76e 6158 * This avoids capacity from being 0 and
9abf24d4 6159 * causing divide-by-zero issues on boot.
9abf24d4
SD
6160 */
6161 if (unlikely(!rq->sd)) {
ced549fa 6162 capacity += capacity_of(cpu);
9abf24d4
SD
6163 continue;
6164 }
863bffc8 6165
63b2ca30 6166 sgc = rq->sd->groups->sgc;
63b2ca30 6167 capacity += sgc->capacity;
863bffc8 6168 }
74a5ce20
PZ
6169 } else {
6170 /*
6171 * !SD_OVERLAP domains can assume that child groups
6172 * span the current group.
6173 */
6174
6175 group = child->groups;
6176 do {
63b2ca30 6177 capacity += group->sgc->capacity;
74a5ce20
PZ
6178 group = group->next;
6179 } while (group != child->groups);
6180 }
1e3c88bd 6181
63b2ca30 6182 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6183}
6184
9d5efe05 6185/*
ea67821b
VG
6186 * Check whether the capacity of the rq has been noticeably reduced by side
6187 * activity. The imbalance_pct is used for the threshold.
6188 * Return true is the capacity is reduced
9d5efe05
SV
6189 */
6190static inline int
ea67821b 6191check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6192{
ea67821b
VG
6193 return ((rq->cpu_capacity * sd->imbalance_pct) <
6194 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6195}
6196
30ce5dab
PZ
6197/*
6198 * Group imbalance indicates (and tries to solve) the problem where balancing
6199 * groups is inadequate due to tsk_cpus_allowed() constraints.
6200 *
6201 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6202 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6203 * Something like:
6204 *
6205 * { 0 1 2 3 } { 4 5 6 7 }
6206 * * * * *
6207 *
6208 * If we were to balance group-wise we'd place two tasks in the first group and
6209 * two tasks in the second group. Clearly this is undesired as it will overload
6210 * cpu 3 and leave one of the cpus in the second group unused.
6211 *
6212 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6213 * by noticing the lower domain failed to reach balance and had difficulty
6214 * moving tasks due to affinity constraints.
30ce5dab
PZ
6215 *
6216 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6217 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6218 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6219 * to create an effective group imbalance.
6220 *
6221 * This is a somewhat tricky proposition since the next run might not find the
6222 * group imbalance and decide the groups need to be balanced again. A most
6223 * subtle and fragile situation.
6224 */
6225
6263322c 6226static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6227{
63b2ca30 6228 return group->sgc->imbalance;
30ce5dab
PZ
6229}
6230
b37d9316 6231/*
ea67821b
VG
6232 * group_has_capacity returns true if the group has spare capacity that could
6233 * be used by some tasks.
6234 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6235 * smaller than the number of CPUs or if the utilization is lower than the
6236 * available capacity for CFS tasks.
ea67821b
VG
6237 * For the latter, we use a threshold to stabilize the state, to take into
6238 * account the variance of the tasks' load and to return true if the available
6239 * capacity in meaningful for the load balancer.
6240 * As an example, an available capacity of 1% can appear but it doesn't make
6241 * any benefit for the load balance.
b37d9316 6242 */
ea67821b
VG
6243static inline bool
6244group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6245{
ea67821b
VG
6246 if (sgs->sum_nr_running < sgs->group_weight)
6247 return true;
c61037e9 6248
ea67821b 6249 if ((sgs->group_capacity * 100) >
9e91d61d 6250 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6251 return true;
b37d9316 6252
ea67821b
VG
6253 return false;
6254}
6255
6256/*
6257 * group_is_overloaded returns true if the group has more tasks than it can
6258 * handle.
6259 * group_is_overloaded is not equals to !group_has_capacity because a group
6260 * with the exact right number of tasks, has no more spare capacity but is not
6261 * overloaded so both group_has_capacity and group_is_overloaded return
6262 * false.
6263 */
6264static inline bool
6265group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6266{
6267 if (sgs->sum_nr_running <= sgs->group_weight)
6268 return false;
b37d9316 6269
ea67821b 6270 if ((sgs->group_capacity * 100) <
9e91d61d 6271 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6272 return true;
b37d9316 6273
ea67821b 6274 return false;
b37d9316
PZ
6275}
6276
79a89f92
LY
6277static inline enum
6278group_type group_classify(struct sched_group *group,
6279 struct sg_lb_stats *sgs)
caeb178c 6280{
ea67821b 6281 if (sgs->group_no_capacity)
caeb178c
RR
6282 return group_overloaded;
6283
6284 if (sg_imbalanced(group))
6285 return group_imbalanced;
6286
6287 return group_other;
6288}
6289
1e3c88bd
PZ
6290/**
6291 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6292 * @env: The load balancing environment.
1e3c88bd 6293 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6294 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6295 * @local_group: Does group contain this_cpu.
1e3c88bd 6296 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6297 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6298 */
bd939f45
PZ
6299static inline void update_sg_lb_stats(struct lb_env *env,
6300 struct sched_group *group, int load_idx,
4486edd1
TC
6301 int local_group, struct sg_lb_stats *sgs,
6302 bool *overload)
1e3c88bd 6303{
30ce5dab 6304 unsigned long load;
bd939f45 6305 int i;
1e3c88bd 6306
b72ff13c
PZ
6307 memset(sgs, 0, sizeof(*sgs));
6308
b9403130 6309 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6310 struct rq *rq = cpu_rq(i);
6311
1e3c88bd 6312 /* Bias balancing toward cpus of our domain */
6263322c 6313 if (local_group)
04f733b4 6314 load = target_load(i, load_idx);
6263322c 6315 else
1e3c88bd 6316 load = source_load(i, load_idx);
1e3c88bd
PZ
6317
6318 sgs->group_load += load;
9e91d61d 6319 sgs->group_util += cpu_util(i);
65fdac08 6320 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6321
6322 if (rq->nr_running > 1)
6323 *overload = true;
6324
0ec8aa00
PZ
6325#ifdef CONFIG_NUMA_BALANCING
6326 sgs->nr_numa_running += rq->nr_numa_running;
6327 sgs->nr_preferred_running += rq->nr_preferred_running;
6328#endif
1e3c88bd 6329 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6330 if (idle_cpu(i))
6331 sgs->idle_cpus++;
1e3c88bd
PZ
6332 }
6333
63b2ca30
NP
6334 /* Adjust by relative CPU capacity of the group */
6335 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6336 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6337
dd5feea1 6338 if (sgs->sum_nr_running)
38d0f770 6339 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6340
aae6d3dd 6341 sgs->group_weight = group->group_weight;
b37d9316 6342
ea67821b 6343 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6344 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6345}
6346
532cb4c4
MN
6347/**
6348 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6349 * @env: The load balancing environment.
532cb4c4
MN
6350 * @sds: sched_domain statistics
6351 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6352 * @sgs: sched_group statistics
532cb4c4
MN
6353 *
6354 * Determine if @sg is a busier group than the previously selected
6355 * busiest group.
e69f6186
YB
6356 *
6357 * Return: %true if @sg is a busier group than the previously selected
6358 * busiest group. %false otherwise.
532cb4c4 6359 */
bd939f45 6360static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6361 struct sd_lb_stats *sds,
6362 struct sched_group *sg,
bd939f45 6363 struct sg_lb_stats *sgs)
532cb4c4 6364{
caeb178c 6365 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6366
caeb178c 6367 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6368 return true;
6369
caeb178c
RR
6370 if (sgs->group_type < busiest->group_type)
6371 return false;
6372
6373 if (sgs->avg_load <= busiest->avg_load)
6374 return false;
6375
6376 /* This is the busiest node in its class. */
6377 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6378 return true;
6379
6380 /*
6381 * ASYM_PACKING needs to move all the work to the lowest
6382 * numbered CPUs in the group, therefore mark all groups
6383 * higher than ourself as busy.
6384 */
caeb178c 6385 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6386 if (!sds->busiest)
6387 return true;
6388
6389 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6390 return true;
6391 }
6392
6393 return false;
6394}
6395
0ec8aa00
PZ
6396#ifdef CONFIG_NUMA_BALANCING
6397static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6398{
6399 if (sgs->sum_nr_running > sgs->nr_numa_running)
6400 return regular;
6401 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6402 return remote;
6403 return all;
6404}
6405
6406static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6407{
6408 if (rq->nr_running > rq->nr_numa_running)
6409 return regular;
6410 if (rq->nr_running > rq->nr_preferred_running)
6411 return remote;
6412 return all;
6413}
6414#else
6415static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6416{
6417 return all;
6418}
6419
6420static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6421{
6422 return regular;
6423}
6424#endif /* CONFIG_NUMA_BALANCING */
6425
1e3c88bd 6426/**
461819ac 6427 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6428 * @env: The load balancing environment.
1e3c88bd
PZ
6429 * @sds: variable to hold the statistics for this sched_domain.
6430 */
0ec8aa00 6431static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6432{
bd939f45
PZ
6433 struct sched_domain *child = env->sd->child;
6434 struct sched_group *sg = env->sd->groups;
56cf515b 6435 struct sg_lb_stats tmp_sgs;
1e3c88bd 6436 int load_idx, prefer_sibling = 0;
4486edd1 6437 bool overload = false;
1e3c88bd
PZ
6438
6439 if (child && child->flags & SD_PREFER_SIBLING)
6440 prefer_sibling = 1;
6441
bd939f45 6442 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6443
6444 do {
56cf515b 6445 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6446 int local_group;
6447
bd939f45 6448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6449 if (local_group) {
6450 sds->local = sg;
6451 sgs = &sds->local_stat;
b72ff13c
PZ
6452
6453 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6454 time_after_eq(jiffies, sg->sgc->next_update))
6455 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6456 }
1e3c88bd 6457
4486edd1
TC
6458 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6459 &overload);
1e3c88bd 6460
b72ff13c
PZ
6461 if (local_group)
6462 goto next_group;
6463
1e3c88bd
PZ
6464 /*
6465 * In case the child domain prefers tasks go to siblings
ea67821b 6466 * first, lower the sg capacity so that we'll try
75dd321d
NR
6467 * and move all the excess tasks away. We lower the capacity
6468 * of a group only if the local group has the capacity to fit
ea67821b
VG
6469 * these excess tasks. The extra check prevents the case where
6470 * you always pull from the heaviest group when it is already
6471 * under-utilized (possible with a large weight task outweighs
6472 * the tasks on the system).
1e3c88bd 6473 */
b72ff13c 6474 if (prefer_sibling && sds->local &&
ea67821b
VG
6475 group_has_capacity(env, &sds->local_stat) &&
6476 (sgs->sum_nr_running > 1)) {
6477 sgs->group_no_capacity = 1;
79a89f92 6478 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6479 }
1e3c88bd 6480
b72ff13c 6481 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6482 sds->busiest = sg;
56cf515b 6483 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6484 }
6485
b72ff13c
PZ
6486next_group:
6487 /* Now, start updating sd_lb_stats */
6488 sds->total_load += sgs->group_load;
63b2ca30 6489 sds->total_capacity += sgs->group_capacity;
b72ff13c 6490
532cb4c4 6491 sg = sg->next;
bd939f45 6492 } while (sg != env->sd->groups);
0ec8aa00
PZ
6493
6494 if (env->sd->flags & SD_NUMA)
6495 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6496
6497 if (!env->sd->parent) {
6498 /* update overload indicator if we are at root domain */
6499 if (env->dst_rq->rd->overload != overload)
6500 env->dst_rq->rd->overload = overload;
6501 }
6502
532cb4c4
MN
6503}
6504
532cb4c4
MN
6505/**
6506 * check_asym_packing - Check to see if the group is packed into the
6507 * sched doman.
6508 *
6509 * This is primarily intended to used at the sibling level. Some
6510 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6511 * case of POWER7, it can move to lower SMT modes only when higher
6512 * threads are idle. When in lower SMT modes, the threads will
6513 * perform better since they share less core resources. Hence when we
6514 * have idle threads, we want them to be the higher ones.
6515 *
6516 * This packing function is run on idle threads. It checks to see if
6517 * the busiest CPU in this domain (core in the P7 case) has a higher
6518 * CPU number than the packing function is being run on. Here we are
6519 * assuming lower CPU number will be equivalent to lower a SMT thread
6520 * number.
6521 *
e69f6186 6522 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6523 * this CPU. The amount of the imbalance is returned in *imbalance.
6524 *
cd96891d 6525 * @env: The load balancing environment.
532cb4c4 6526 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6527 */
bd939f45 6528static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6529{
6530 int busiest_cpu;
6531
bd939f45 6532 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6533 return 0;
6534
6535 if (!sds->busiest)
6536 return 0;
6537
6538 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6539 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6540 return 0;
6541
bd939f45 6542 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6543 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6544 SCHED_CAPACITY_SCALE);
bd939f45 6545
532cb4c4 6546 return 1;
1e3c88bd
PZ
6547}
6548
6549/**
6550 * fix_small_imbalance - Calculate the minor imbalance that exists
6551 * amongst the groups of a sched_domain, during
6552 * load balancing.
cd96891d 6553 * @env: The load balancing environment.
1e3c88bd 6554 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6555 */
bd939f45
PZ
6556static inline
6557void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6558{
63b2ca30 6559 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6560 unsigned int imbn = 2;
dd5feea1 6561 unsigned long scaled_busy_load_per_task;
56cf515b 6562 struct sg_lb_stats *local, *busiest;
1e3c88bd 6563
56cf515b
JK
6564 local = &sds->local_stat;
6565 busiest = &sds->busiest_stat;
1e3c88bd 6566
56cf515b
JK
6567 if (!local->sum_nr_running)
6568 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6569 else if (busiest->load_per_task > local->load_per_task)
6570 imbn = 1;
dd5feea1 6571
56cf515b 6572 scaled_busy_load_per_task =
ca8ce3d0 6573 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6574 busiest->group_capacity;
56cf515b 6575
3029ede3
VD
6576 if (busiest->avg_load + scaled_busy_load_per_task >=
6577 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6578 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6579 return;
6580 }
6581
6582 /*
6583 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6584 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6585 * moving them.
6586 */
6587
63b2ca30 6588 capa_now += busiest->group_capacity *
56cf515b 6589 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6590 capa_now += local->group_capacity *
56cf515b 6591 min(local->load_per_task, local->avg_load);
ca8ce3d0 6592 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6593
6594 /* Amount of load we'd subtract */
a2cd4260 6595 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6596 capa_move += busiest->group_capacity *
56cf515b 6597 min(busiest->load_per_task,
a2cd4260 6598 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6599 }
1e3c88bd
PZ
6600
6601 /* Amount of load we'd add */
63b2ca30 6602 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6603 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6604 tmp = (busiest->avg_load * busiest->group_capacity) /
6605 local->group_capacity;
56cf515b 6606 } else {
ca8ce3d0 6607 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6608 local->group_capacity;
56cf515b 6609 }
63b2ca30 6610 capa_move += local->group_capacity *
3ae11c90 6611 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6612 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6613
6614 /* Move if we gain throughput */
63b2ca30 6615 if (capa_move > capa_now)
56cf515b 6616 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6617}
6618
6619/**
6620 * calculate_imbalance - Calculate the amount of imbalance present within the
6621 * groups of a given sched_domain during load balance.
bd939f45 6622 * @env: load balance environment
1e3c88bd 6623 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6624 */
bd939f45 6625static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6626{
dd5feea1 6627 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6628 struct sg_lb_stats *local, *busiest;
6629
6630 local = &sds->local_stat;
56cf515b 6631 busiest = &sds->busiest_stat;
dd5feea1 6632
caeb178c 6633 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6634 /*
6635 * In the group_imb case we cannot rely on group-wide averages
6636 * to ensure cpu-load equilibrium, look at wider averages. XXX
6637 */
56cf515b
JK
6638 busiest->load_per_task =
6639 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6640 }
6641
1e3c88bd
PZ
6642 /*
6643 * In the presence of smp nice balancing, certain scenarios can have
6644 * max load less than avg load(as we skip the groups at or below
ced549fa 6645 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6646 */
b1885550
VD
6647 if (busiest->avg_load <= sds->avg_load ||
6648 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6649 env->imbalance = 0;
6650 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6651 }
6652
9a5d9ba6
PZ
6653 /*
6654 * If there aren't any idle cpus, avoid creating some.
6655 */
6656 if (busiest->group_type == group_overloaded &&
6657 local->group_type == group_overloaded) {
ea67821b
VG
6658 load_above_capacity = busiest->sum_nr_running *
6659 SCHED_LOAD_SCALE;
6660 if (load_above_capacity > busiest->group_capacity)
6661 load_above_capacity -= busiest->group_capacity;
6662 else
6663 load_above_capacity = ~0UL;
dd5feea1
SS
6664 }
6665
6666 /*
6667 * We're trying to get all the cpus to the average_load, so we don't
6668 * want to push ourselves above the average load, nor do we wish to
6669 * reduce the max loaded cpu below the average load. At the same time,
6670 * we also don't want to reduce the group load below the group capacity
6671 * (so that we can implement power-savings policies etc). Thus we look
6672 * for the minimum possible imbalance.
dd5feea1 6673 */
30ce5dab 6674 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6675
6676 /* How much load to actually move to equalise the imbalance */
56cf515b 6677 env->imbalance = min(
63b2ca30
NP
6678 max_pull * busiest->group_capacity,
6679 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6680 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6681
6682 /*
6683 * if *imbalance is less than the average load per runnable task
25985edc 6684 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6685 * a think about bumping its value to force at least one task to be
6686 * moved
6687 */
56cf515b 6688 if (env->imbalance < busiest->load_per_task)
bd939f45 6689 return fix_small_imbalance(env, sds);
1e3c88bd 6690}
fab47622 6691
1e3c88bd
PZ
6692/******* find_busiest_group() helpers end here *********************/
6693
6694/**
6695 * find_busiest_group - Returns the busiest group within the sched_domain
6696 * if there is an imbalance. If there isn't an imbalance, and
6697 * the user has opted for power-savings, it returns a group whose
6698 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6699 * such a group exists.
6700 *
6701 * Also calculates the amount of weighted load which should be moved
6702 * to restore balance.
6703 *
cd96891d 6704 * @env: The load balancing environment.
1e3c88bd 6705 *
e69f6186 6706 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6707 * - If no imbalance and user has opted for power-savings balance,
6708 * return the least loaded group whose CPUs can be
6709 * put to idle by rebalancing its tasks onto our group.
6710 */
56cf515b 6711static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6712{
56cf515b 6713 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6714 struct sd_lb_stats sds;
6715
147c5fc2 6716 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6717
6718 /*
6719 * Compute the various statistics relavent for load balancing at
6720 * this level.
6721 */
23f0d209 6722 update_sd_lb_stats(env, &sds);
56cf515b
JK
6723 local = &sds.local_stat;
6724 busiest = &sds.busiest_stat;
1e3c88bd 6725
ea67821b 6726 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6727 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6728 check_asym_packing(env, &sds))
532cb4c4
MN
6729 return sds.busiest;
6730
cc57aa8f 6731 /* There is no busy sibling group to pull tasks from */
56cf515b 6732 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6733 goto out_balanced;
6734
ca8ce3d0
NP
6735 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6736 / sds.total_capacity;
b0432d8f 6737
866ab43e
PZ
6738 /*
6739 * If the busiest group is imbalanced the below checks don't
30ce5dab 6740 * work because they assume all things are equal, which typically
866ab43e
PZ
6741 * isn't true due to cpus_allowed constraints and the like.
6742 */
caeb178c 6743 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6744 goto force_balance;
6745
cc57aa8f 6746 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6747 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6748 busiest->group_no_capacity)
fab47622
NR
6749 goto force_balance;
6750
cc57aa8f 6751 /*
9c58c79a 6752 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6753 * don't try and pull any tasks.
6754 */
56cf515b 6755 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6756 goto out_balanced;
6757
cc57aa8f
PZ
6758 /*
6759 * Don't pull any tasks if this group is already above the domain
6760 * average load.
6761 */
56cf515b 6762 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6763 goto out_balanced;
6764
bd939f45 6765 if (env->idle == CPU_IDLE) {
aae6d3dd 6766 /*
43f4d666
VG
6767 * This cpu is idle. If the busiest group is not overloaded
6768 * and there is no imbalance between this and busiest group
6769 * wrt idle cpus, it is balanced. The imbalance becomes
6770 * significant if the diff is greater than 1 otherwise we
6771 * might end up to just move the imbalance on another group
aae6d3dd 6772 */
43f4d666
VG
6773 if ((busiest->group_type != group_overloaded) &&
6774 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6775 goto out_balanced;
c186fafe
PZ
6776 } else {
6777 /*
6778 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6779 * imbalance_pct to be conservative.
6780 */
56cf515b
JK
6781 if (100 * busiest->avg_load <=
6782 env->sd->imbalance_pct * local->avg_load)
c186fafe 6783 goto out_balanced;
aae6d3dd 6784 }
1e3c88bd 6785
fab47622 6786force_balance:
1e3c88bd 6787 /* Looks like there is an imbalance. Compute it */
bd939f45 6788 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6789 return sds.busiest;
6790
6791out_balanced:
bd939f45 6792 env->imbalance = 0;
1e3c88bd
PZ
6793 return NULL;
6794}
6795
6796/*
6797 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6798 */
bd939f45 6799static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6800 struct sched_group *group)
1e3c88bd
PZ
6801{
6802 struct rq *busiest = NULL, *rq;
ced549fa 6803 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6804 int i;
6805
6906a408 6806 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6807 unsigned long capacity, wl;
0ec8aa00
PZ
6808 enum fbq_type rt;
6809
6810 rq = cpu_rq(i);
6811 rt = fbq_classify_rq(rq);
1e3c88bd 6812
0ec8aa00
PZ
6813 /*
6814 * We classify groups/runqueues into three groups:
6815 * - regular: there are !numa tasks
6816 * - remote: there are numa tasks that run on the 'wrong' node
6817 * - all: there is no distinction
6818 *
6819 * In order to avoid migrating ideally placed numa tasks,
6820 * ignore those when there's better options.
6821 *
6822 * If we ignore the actual busiest queue to migrate another
6823 * task, the next balance pass can still reduce the busiest
6824 * queue by moving tasks around inside the node.
6825 *
6826 * If we cannot move enough load due to this classification
6827 * the next pass will adjust the group classification and
6828 * allow migration of more tasks.
6829 *
6830 * Both cases only affect the total convergence complexity.
6831 */
6832 if (rt > env->fbq_type)
6833 continue;
6834
ced549fa 6835 capacity = capacity_of(i);
9d5efe05 6836
6e40f5bb 6837 wl = weighted_cpuload(i);
1e3c88bd 6838
6e40f5bb
TG
6839 /*
6840 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6841 * which is not scaled with the cpu capacity.
6e40f5bb 6842 */
ea67821b
VG
6843
6844 if (rq->nr_running == 1 && wl > env->imbalance &&
6845 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6846 continue;
6847
6e40f5bb
TG
6848 /*
6849 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6850 * the weighted_cpuload() scaled with the cpu capacity, so
6851 * that the load can be moved away from the cpu that is
6852 * potentially running at a lower capacity.
95a79b80 6853 *
ced549fa 6854 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6855 * multiplication to rid ourselves of the division works out
ced549fa
NP
6856 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6857 * our previous maximum.
6e40f5bb 6858 */
ced549fa 6859 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6860 busiest_load = wl;
ced549fa 6861 busiest_capacity = capacity;
1e3c88bd
PZ
6862 busiest = rq;
6863 }
6864 }
6865
6866 return busiest;
6867}
6868
6869/*
6870 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6871 * so long as it is large enough.
6872 */
6873#define MAX_PINNED_INTERVAL 512
6874
6875/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6876DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6877
bd939f45 6878static int need_active_balance(struct lb_env *env)
1af3ed3d 6879{
bd939f45
PZ
6880 struct sched_domain *sd = env->sd;
6881
6882 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6883
6884 /*
6885 * ASYM_PACKING needs to force migrate tasks from busy but
6886 * higher numbered CPUs in order to pack all tasks in the
6887 * lowest numbered CPUs.
6888 */
bd939f45 6889 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6890 return 1;
1af3ed3d
PZ
6891 }
6892
1aaf90a4
VG
6893 /*
6894 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6895 * It's worth migrating the task if the src_cpu's capacity is reduced
6896 * because of other sched_class or IRQs if more capacity stays
6897 * available on dst_cpu.
6898 */
6899 if ((env->idle != CPU_NOT_IDLE) &&
6900 (env->src_rq->cfs.h_nr_running == 1)) {
6901 if ((check_cpu_capacity(env->src_rq, sd)) &&
6902 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6903 return 1;
6904 }
6905
1af3ed3d
PZ
6906 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6907}
6908
969c7921
TH
6909static int active_load_balance_cpu_stop(void *data);
6910
23f0d209
JK
6911static int should_we_balance(struct lb_env *env)
6912{
6913 struct sched_group *sg = env->sd->groups;
6914 struct cpumask *sg_cpus, *sg_mask;
6915 int cpu, balance_cpu = -1;
6916
6917 /*
6918 * In the newly idle case, we will allow all the cpu's
6919 * to do the newly idle load balance.
6920 */
6921 if (env->idle == CPU_NEWLY_IDLE)
6922 return 1;
6923
6924 sg_cpus = sched_group_cpus(sg);
6925 sg_mask = sched_group_mask(sg);
6926 /* Try to find first idle cpu */
6927 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6928 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6929 continue;
6930
6931 balance_cpu = cpu;
6932 break;
6933 }
6934
6935 if (balance_cpu == -1)
6936 balance_cpu = group_balance_cpu(sg);
6937
6938 /*
6939 * First idle cpu or the first cpu(busiest) in this sched group
6940 * is eligible for doing load balancing at this and above domains.
6941 */
b0cff9d8 6942 return balance_cpu == env->dst_cpu;
23f0d209
JK
6943}
6944
1e3c88bd
PZ
6945/*
6946 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6947 * tasks if there is an imbalance.
6948 */
6949static int load_balance(int this_cpu, struct rq *this_rq,
6950 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6951 int *continue_balancing)
1e3c88bd 6952{
88b8dac0 6953 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6954 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6955 struct sched_group *group;
1e3c88bd
PZ
6956 struct rq *busiest;
6957 unsigned long flags;
4ba29684 6958 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6959
8e45cb54
PZ
6960 struct lb_env env = {
6961 .sd = sd,
ddcdf6e7
PZ
6962 .dst_cpu = this_cpu,
6963 .dst_rq = this_rq,
88b8dac0 6964 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6965 .idle = idle,
eb95308e 6966 .loop_break = sched_nr_migrate_break,
b9403130 6967 .cpus = cpus,
0ec8aa00 6968 .fbq_type = all,
163122b7 6969 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6970 };
6971
cfc03118
JK
6972 /*
6973 * For NEWLY_IDLE load_balancing, we don't need to consider
6974 * other cpus in our group
6975 */
e02e60c1 6976 if (idle == CPU_NEWLY_IDLE)
cfc03118 6977 env.dst_grpmask = NULL;
cfc03118 6978
1e3c88bd
PZ
6979 cpumask_copy(cpus, cpu_active_mask);
6980
1e3c88bd
PZ
6981 schedstat_inc(sd, lb_count[idle]);
6982
6983redo:
23f0d209
JK
6984 if (!should_we_balance(&env)) {
6985 *continue_balancing = 0;
1e3c88bd 6986 goto out_balanced;
23f0d209 6987 }
1e3c88bd 6988
23f0d209 6989 group = find_busiest_group(&env);
1e3c88bd
PZ
6990 if (!group) {
6991 schedstat_inc(sd, lb_nobusyg[idle]);
6992 goto out_balanced;
6993 }
6994
b9403130 6995 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6996 if (!busiest) {
6997 schedstat_inc(sd, lb_nobusyq[idle]);
6998 goto out_balanced;
6999 }
7000
78feefc5 7001 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7002
bd939f45 7003 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7004
1aaf90a4
VG
7005 env.src_cpu = busiest->cpu;
7006 env.src_rq = busiest;
7007
1e3c88bd
PZ
7008 ld_moved = 0;
7009 if (busiest->nr_running > 1) {
7010 /*
7011 * Attempt to move tasks. If find_busiest_group has found
7012 * an imbalance but busiest->nr_running <= 1, the group is
7013 * still unbalanced. ld_moved simply stays zero, so it is
7014 * correctly treated as an imbalance.
7015 */
8e45cb54 7016 env.flags |= LBF_ALL_PINNED;
c82513e5 7017 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7018
5d6523eb 7019more_balance:
163122b7 7020 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7021
7022 /*
7023 * cur_ld_moved - load moved in current iteration
7024 * ld_moved - cumulative load moved across iterations
7025 */
163122b7 7026 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7027
7028 /*
163122b7
KT
7029 * We've detached some tasks from busiest_rq. Every
7030 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7031 * unlock busiest->lock, and we are able to be sure
7032 * that nobody can manipulate the tasks in parallel.
7033 * See task_rq_lock() family for the details.
1e3c88bd 7034 */
163122b7
KT
7035
7036 raw_spin_unlock(&busiest->lock);
7037
7038 if (cur_ld_moved) {
7039 attach_tasks(&env);
7040 ld_moved += cur_ld_moved;
7041 }
7042
1e3c88bd 7043 local_irq_restore(flags);
88b8dac0 7044
f1cd0858
JK
7045 if (env.flags & LBF_NEED_BREAK) {
7046 env.flags &= ~LBF_NEED_BREAK;
7047 goto more_balance;
7048 }
7049
88b8dac0
SV
7050 /*
7051 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7052 * us and move them to an alternate dst_cpu in our sched_group
7053 * where they can run. The upper limit on how many times we
7054 * iterate on same src_cpu is dependent on number of cpus in our
7055 * sched_group.
7056 *
7057 * This changes load balance semantics a bit on who can move
7058 * load to a given_cpu. In addition to the given_cpu itself
7059 * (or a ilb_cpu acting on its behalf where given_cpu is
7060 * nohz-idle), we now have balance_cpu in a position to move
7061 * load to given_cpu. In rare situations, this may cause
7062 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7063 * _independently_ and at _same_ time to move some load to
7064 * given_cpu) causing exceess load to be moved to given_cpu.
7065 * This however should not happen so much in practice and
7066 * moreover subsequent load balance cycles should correct the
7067 * excess load moved.
7068 */
6263322c 7069 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7070
7aff2e3a
VD
7071 /* Prevent to re-select dst_cpu via env's cpus */
7072 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7073
78feefc5 7074 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7075 env.dst_cpu = env.new_dst_cpu;
6263322c 7076 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7077 env.loop = 0;
7078 env.loop_break = sched_nr_migrate_break;
e02e60c1 7079
88b8dac0
SV
7080 /*
7081 * Go back to "more_balance" rather than "redo" since we
7082 * need to continue with same src_cpu.
7083 */
7084 goto more_balance;
7085 }
1e3c88bd 7086
6263322c
PZ
7087 /*
7088 * We failed to reach balance because of affinity.
7089 */
7090 if (sd_parent) {
63b2ca30 7091 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7092
afdeee05 7093 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7094 *group_imbalance = 1;
6263322c
PZ
7095 }
7096
1e3c88bd 7097 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7098 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7099 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7100 if (!cpumask_empty(cpus)) {
7101 env.loop = 0;
7102 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7103 goto redo;
bbf18b19 7104 }
afdeee05 7105 goto out_all_pinned;
1e3c88bd
PZ
7106 }
7107 }
7108
7109 if (!ld_moved) {
7110 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7111 /*
7112 * Increment the failure counter only on periodic balance.
7113 * We do not want newidle balance, which can be very
7114 * frequent, pollute the failure counter causing
7115 * excessive cache_hot migrations and active balances.
7116 */
7117 if (idle != CPU_NEWLY_IDLE)
7118 sd->nr_balance_failed++;
1e3c88bd 7119
bd939f45 7120 if (need_active_balance(&env)) {
1e3c88bd
PZ
7121 raw_spin_lock_irqsave(&busiest->lock, flags);
7122
969c7921
TH
7123 /* don't kick the active_load_balance_cpu_stop,
7124 * if the curr task on busiest cpu can't be
7125 * moved to this_cpu
1e3c88bd
PZ
7126 */
7127 if (!cpumask_test_cpu(this_cpu,
fa17b507 7128 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7129 raw_spin_unlock_irqrestore(&busiest->lock,
7130 flags);
8e45cb54 7131 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7132 goto out_one_pinned;
7133 }
7134
969c7921
TH
7135 /*
7136 * ->active_balance synchronizes accesses to
7137 * ->active_balance_work. Once set, it's cleared
7138 * only after active load balance is finished.
7139 */
1e3c88bd
PZ
7140 if (!busiest->active_balance) {
7141 busiest->active_balance = 1;
7142 busiest->push_cpu = this_cpu;
7143 active_balance = 1;
7144 }
7145 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7146
bd939f45 7147 if (active_balance) {
969c7921
TH
7148 stop_one_cpu_nowait(cpu_of(busiest),
7149 active_load_balance_cpu_stop, busiest,
7150 &busiest->active_balance_work);
bd939f45 7151 }
1e3c88bd
PZ
7152
7153 /*
7154 * We've kicked active balancing, reset the failure
7155 * counter.
7156 */
7157 sd->nr_balance_failed = sd->cache_nice_tries+1;
7158 }
7159 } else
7160 sd->nr_balance_failed = 0;
7161
7162 if (likely(!active_balance)) {
7163 /* We were unbalanced, so reset the balancing interval */
7164 sd->balance_interval = sd->min_interval;
7165 } else {
7166 /*
7167 * If we've begun active balancing, start to back off. This
7168 * case may not be covered by the all_pinned logic if there
7169 * is only 1 task on the busy runqueue (because we don't call
163122b7 7170 * detach_tasks).
1e3c88bd
PZ
7171 */
7172 if (sd->balance_interval < sd->max_interval)
7173 sd->balance_interval *= 2;
7174 }
7175
1e3c88bd
PZ
7176 goto out;
7177
7178out_balanced:
afdeee05
VG
7179 /*
7180 * We reach balance although we may have faced some affinity
7181 * constraints. Clear the imbalance flag if it was set.
7182 */
7183 if (sd_parent) {
7184 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7185
7186 if (*group_imbalance)
7187 *group_imbalance = 0;
7188 }
7189
7190out_all_pinned:
7191 /*
7192 * We reach balance because all tasks are pinned at this level so
7193 * we can't migrate them. Let the imbalance flag set so parent level
7194 * can try to migrate them.
7195 */
1e3c88bd
PZ
7196 schedstat_inc(sd, lb_balanced[idle]);
7197
7198 sd->nr_balance_failed = 0;
7199
7200out_one_pinned:
7201 /* tune up the balancing interval */
8e45cb54 7202 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7203 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7204 (sd->balance_interval < sd->max_interval))
7205 sd->balance_interval *= 2;
7206
46e49b38 7207 ld_moved = 0;
1e3c88bd 7208out:
1e3c88bd
PZ
7209 return ld_moved;
7210}
7211
52a08ef1
JL
7212static inline unsigned long
7213get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7214{
7215 unsigned long interval = sd->balance_interval;
7216
7217 if (cpu_busy)
7218 interval *= sd->busy_factor;
7219
7220 /* scale ms to jiffies */
7221 interval = msecs_to_jiffies(interval);
7222 interval = clamp(interval, 1UL, max_load_balance_interval);
7223
7224 return interval;
7225}
7226
7227static inline void
7228update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7229{
7230 unsigned long interval, next;
7231
7232 interval = get_sd_balance_interval(sd, cpu_busy);
7233 next = sd->last_balance + interval;
7234
7235 if (time_after(*next_balance, next))
7236 *next_balance = next;
7237}
7238
1e3c88bd
PZ
7239/*
7240 * idle_balance is called by schedule() if this_cpu is about to become
7241 * idle. Attempts to pull tasks from other CPUs.
7242 */
6e83125c 7243static int idle_balance(struct rq *this_rq)
1e3c88bd 7244{
52a08ef1
JL
7245 unsigned long next_balance = jiffies + HZ;
7246 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7247 struct sched_domain *sd;
7248 int pulled_task = 0;
9bd721c5 7249 u64 curr_cost = 0;
1e3c88bd 7250
6e83125c 7251 idle_enter_fair(this_rq);
0e5b5337 7252
6e83125c
PZ
7253 /*
7254 * We must set idle_stamp _before_ calling idle_balance(), such that we
7255 * measure the duration of idle_balance() as idle time.
7256 */
7257 this_rq->idle_stamp = rq_clock(this_rq);
7258
4486edd1
TC
7259 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7260 !this_rq->rd->overload) {
52a08ef1
JL
7261 rcu_read_lock();
7262 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7263 if (sd)
7264 update_next_balance(sd, 0, &next_balance);
7265 rcu_read_unlock();
7266
6e83125c 7267 goto out;
52a08ef1 7268 }
1e3c88bd 7269
f492e12e
PZ
7270 raw_spin_unlock(&this_rq->lock);
7271
48a16753 7272 update_blocked_averages(this_cpu);
dce840a0 7273 rcu_read_lock();
1e3c88bd 7274 for_each_domain(this_cpu, sd) {
23f0d209 7275 int continue_balancing = 1;
9bd721c5 7276 u64 t0, domain_cost;
1e3c88bd
PZ
7277
7278 if (!(sd->flags & SD_LOAD_BALANCE))
7279 continue;
7280
52a08ef1
JL
7281 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7282 update_next_balance(sd, 0, &next_balance);
9bd721c5 7283 break;
52a08ef1 7284 }
9bd721c5 7285
f492e12e 7286 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7287 t0 = sched_clock_cpu(this_cpu);
7288
f492e12e 7289 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7290 sd, CPU_NEWLY_IDLE,
7291 &continue_balancing);
9bd721c5
JL
7292
7293 domain_cost = sched_clock_cpu(this_cpu) - t0;
7294 if (domain_cost > sd->max_newidle_lb_cost)
7295 sd->max_newidle_lb_cost = domain_cost;
7296
7297 curr_cost += domain_cost;
f492e12e 7298 }
1e3c88bd 7299
52a08ef1 7300 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7301
7302 /*
7303 * Stop searching for tasks to pull if there are
7304 * now runnable tasks on this rq.
7305 */
7306 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7307 break;
1e3c88bd 7308 }
dce840a0 7309 rcu_read_unlock();
f492e12e
PZ
7310
7311 raw_spin_lock(&this_rq->lock);
7312
0e5b5337
JL
7313 if (curr_cost > this_rq->max_idle_balance_cost)
7314 this_rq->max_idle_balance_cost = curr_cost;
7315
e5fc6611 7316 /*
0e5b5337
JL
7317 * While browsing the domains, we released the rq lock, a task could
7318 * have been enqueued in the meantime. Since we're not going idle,
7319 * pretend we pulled a task.
e5fc6611 7320 */
0e5b5337 7321 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7322 pulled_task = 1;
e5fc6611 7323
52a08ef1
JL
7324out:
7325 /* Move the next balance forward */
7326 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7327 this_rq->next_balance = next_balance;
9bd721c5 7328
e4aa358b 7329 /* Is there a task of a high priority class? */
46383648 7330 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7331 pulled_task = -1;
7332
7333 if (pulled_task) {
7334 idle_exit_fair(this_rq);
6e83125c 7335 this_rq->idle_stamp = 0;
e4aa358b 7336 }
6e83125c 7337
3c4017c1 7338 return pulled_task;
1e3c88bd
PZ
7339}
7340
7341/*
969c7921
TH
7342 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7343 * running tasks off the busiest CPU onto idle CPUs. It requires at
7344 * least 1 task to be running on each physical CPU where possible, and
7345 * avoids physical / logical imbalances.
1e3c88bd 7346 */
969c7921 7347static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7348{
969c7921
TH
7349 struct rq *busiest_rq = data;
7350 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7351 int target_cpu = busiest_rq->push_cpu;
969c7921 7352 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7353 struct sched_domain *sd;
e5673f28 7354 struct task_struct *p = NULL;
969c7921
TH
7355
7356 raw_spin_lock_irq(&busiest_rq->lock);
7357
7358 /* make sure the requested cpu hasn't gone down in the meantime */
7359 if (unlikely(busiest_cpu != smp_processor_id() ||
7360 !busiest_rq->active_balance))
7361 goto out_unlock;
1e3c88bd
PZ
7362
7363 /* Is there any task to move? */
7364 if (busiest_rq->nr_running <= 1)
969c7921 7365 goto out_unlock;
1e3c88bd
PZ
7366
7367 /*
7368 * This condition is "impossible", if it occurs
7369 * we need to fix it. Originally reported by
7370 * Bjorn Helgaas on a 128-cpu setup.
7371 */
7372 BUG_ON(busiest_rq == target_rq);
7373
1e3c88bd 7374 /* Search for an sd spanning us and the target CPU. */
dce840a0 7375 rcu_read_lock();
1e3c88bd
PZ
7376 for_each_domain(target_cpu, sd) {
7377 if ((sd->flags & SD_LOAD_BALANCE) &&
7378 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7379 break;
7380 }
7381
7382 if (likely(sd)) {
8e45cb54
PZ
7383 struct lb_env env = {
7384 .sd = sd,
ddcdf6e7
PZ
7385 .dst_cpu = target_cpu,
7386 .dst_rq = target_rq,
7387 .src_cpu = busiest_rq->cpu,
7388 .src_rq = busiest_rq,
8e45cb54
PZ
7389 .idle = CPU_IDLE,
7390 };
7391
1e3c88bd
PZ
7392 schedstat_inc(sd, alb_count);
7393
e5673f28
KT
7394 p = detach_one_task(&env);
7395 if (p)
1e3c88bd
PZ
7396 schedstat_inc(sd, alb_pushed);
7397 else
7398 schedstat_inc(sd, alb_failed);
7399 }
dce840a0 7400 rcu_read_unlock();
969c7921
TH
7401out_unlock:
7402 busiest_rq->active_balance = 0;
e5673f28
KT
7403 raw_spin_unlock(&busiest_rq->lock);
7404
7405 if (p)
7406 attach_one_task(target_rq, p);
7407
7408 local_irq_enable();
7409
969c7921 7410 return 0;
1e3c88bd
PZ
7411}
7412
d987fc7f
MG
7413static inline int on_null_domain(struct rq *rq)
7414{
7415 return unlikely(!rcu_dereference_sched(rq->sd));
7416}
7417
3451d024 7418#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7419/*
7420 * idle load balancing details
83cd4fe2
VP
7421 * - When one of the busy CPUs notice that there may be an idle rebalancing
7422 * needed, they will kick the idle load balancer, which then does idle
7423 * load balancing for all the idle CPUs.
7424 */
1e3c88bd 7425static struct {
83cd4fe2 7426 cpumask_var_t idle_cpus_mask;
0b005cf5 7427 atomic_t nr_cpus;
83cd4fe2
VP
7428 unsigned long next_balance; /* in jiffy units */
7429} nohz ____cacheline_aligned;
1e3c88bd 7430
3dd0337d 7431static inline int find_new_ilb(void)
1e3c88bd 7432{
0b005cf5 7433 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7434
786d6dc7
SS
7435 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7436 return ilb;
7437
7438 return nr_cpu_ids;
1e3c88bd 7439}
1e3c88bd 7440
83cd4fe2
VP
7441/*
7442 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7443 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7444 * CPU (if there is one).
7445 */
0aeeeeba 7446static void nohz_balancer_kick(void)
83cd4fe2
VP
7447{
7448 int ilb_cpu;
7449
7450 nohz.next_balance++;
7451
3dd0337d 7452 ilb_cpu = find_new_ilb();
83cd4fe2 7453
0b005cf5
SS
7454 if (ilb_cpu >= nr_cpu_ids)
7455 return;
83cd4fe2 7456
cd490c5b 7457 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7458 return;
7459 /*
7460 * Use smp_send_reschedule() instead of resched_cpu().
7461 * This way we generate a sched IPI on the target cpu which
7462 * is idle. And the softirq performing nohz idle load balance
7463 * will be run before returning from the IPI.
7464 */
7465 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7466 return;
7467}
7468
c1cc017c 7469static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7470{
7471 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7472 /*
7473 * Completely isolated CPUs don't ever set, so we must test.
7474 */
7475 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7476 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7477 atomic_dec(&nohz.nr_cpus);
7478 }
71325960
SS
7479 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7480 }
7481}
7482
69e1e811
SS
7483static inline void set_cpu_sd_state_busy(void)
7484{
7485 struct sched_domain *sd;
37dc6b50 7486 int cpu = smp_processor_id();
69e1e811 7487
69e1e811 7488 rcu_read_lock();
37dc6b50 7489 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7490
7491 if (!sd || !sd->nohz_idle)
7492 goto unlock;
7493 sd->nohz_idle = 0;
7494
63b2ca30 7495 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7496unlock:
69e1e811
SS
7497 rcu_read_unlock();
7498}
7499
7500void set_cpu_sd_state_idle(void)
7501{
7502 struct sched_domain *sd;
37dc6b50 7503 int cpu = smp_processor_id();
69e1e811 7504
69e1e811 7505 rcu_read_lock();
37dc6b50 7506 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7507
7508 if (!sd || sd->nohz_idle)
7509 goto unlock;
7510 sd->nohz_idle = 1;
7511
63b2ca30 7512 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7513unlock:
69e1e811
SS
7514 rcu_read_unlock();
7515}
7516
1e3c88bd 7517/*
c1cc017c 7518 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7519 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7520 */
c1cc017c 7521void nohz_balance_enter_idle(int cpu)
1e3c88bd 7522{
71325960
SS
7523 /*
7524 * If this cpu is going down, then nothing needs to be done.
7525 */
7526 if (!cpu_active(cpu))
7527 return;
7528
c1cc017c
AS
7529 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7530 return;
1e3c88bd 7531
d987fc7f
MG
7532 /*
7533 * If we're a completely isolated CPU, we don't play.
7534 */
7535 if (on_null_domain(cpu_rq(cpu)))
7536 return;
7537
c1cc017c
AS
7538 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7539 atomic_inc(&nohz.nr_cpus);
7540 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7541}
71325960 7542
0db0628d 7543static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7544 unsigned long action, void *hcpu)
7545{
7546 switch (action & ~CPU_TASKS_FROZEN) {
7547 case CPU_DYING:
c1cc017c 7548 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7549 return NOTIFY_OK;
7550 default:
7551 return NOTIFY_DONE;
7552 }
7553}
1e3c88bd
PZ
7554#endif
7555
7556static DEFINE_SPINLOCK(balancing);
7557
49c022e6
PZ
7558/*
7559 * Scale the max load_balance interval with the number of CPUs in the system.
7560 * This trades load-balance latency on larger machines for less cross talk.
7561 */
029632fb 7562void update_max_interval(void)
49c022e6
PZ
7563{
7564 max_load_balance_interval = HZ*num_online_cpus()/10;
7565}
7566
1e3c88bd
PZ
7567/*
7568 * It checks each scheduling domain to see if it is due to be balanced,
7569 * and initiates a balancing operation if so.
7570 *
b9b0853a 7571 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7572 */
f7ed0a89 7573static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7574{
23f0d209 7575 int continue_balancing = 1;
f7ed0a89 7576 int cpu = rq->cpu;
1e3c88bd 7577 unsigned long interval;
04f733b4 7578 struct sched_domain *sd;
1e3c88bd
PZ
7579 /* Earliest time when we have to do rebalance again */
7580 unsigned long next_balance = jiffies + 60*HZ;
7581 int update_next_balance = 0;
f48627e6
JL
7582 int need_serialize, need_decay = 0;
7583 u64 max_cost = 0;
1e3c88bd 7584
48a16753 7585 update_blocked_averages(cpu);
2069dd75 7586
dce840a0 7587 rcu_read_lock();
1e3c88bd 7588 for_each_domain(cpu, sd) {
f48627e6
JL
7589 /*
7590 * Decay the newidle max times here because this is a regular
7591 * visit to all the domains. Decay ~1% per second.
7592 */
7593 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7594 sd->max_newidle_lb_cost =
7595 (sd->max_newidle_lb_cost * 253) / 256;
7596 sd->next_decay_max_lb_cost = jiffies + HZ;
7597 need_decay = 1;
7598 }
7599 max_cost += sd->max_newidle_lb_cost;
7600
1e3c88bd
PZ
7601 if (!(sd->flags & SD_LOAD_BALANCE))
7602 continue;
7603
f48627e6
JL
7604 /*
7605 * Stop the load balance at this level. There is another
7606 * CPU in our sched group which is doing load balancing more
7607 * actively.
7608 */
7609 if (!continue_balancing) {
7610 if (need_decay)
7611 continue;
7612 break;
7613 }
7614
52a08ef1 7615 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7616
7617 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7618 if (need_serialize) {
7619 if (!spin_trylock(&balancing))
7620 goto out;
7621 }
7622
7623 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7624 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7625 /*
6263322c 7626 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7627 * env->dst_cpu, so we can't know our idle
7628 * state even if we migrated tasks. Update it.
1e3c88bd 7629 */
de5eb2dd 7630 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7631 }
7632 sd->last_balance = jiffies;
52a08ef1 7633 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7634 }
7635 if (need_serialize)
7636 spin_unlock(&balancing);
7637out:
7638 if (time_after(next_balance, sd->last_balance + interval)) {
7639 next_balance = sd->last_balance + interval;
7640 update_next_balance = 1;
7641 }
f48627e6
JL
7642 }
7643 if (need_decay) {
1e3c88bd 7644 /*
f48627e6
JL
7645 * Ensure the rq-wide value also decays but keep it at a
7646 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7647 */
f48627e6
JL
7648 rq->max_idle_balance_cost =
7649 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7650 }
dce840a0 7651 rcu_read_unlock();
1e3c88bd
PZ
7652
7653 /*
7654 * next_balance will be updated only when there is a need.
7655 * When the cpu is attached to null domain for ex, it will not be
7656 * updated.
7657 */
c5afb6a8 7658 if (likely(update_next_balance)) {
1e3c88bd 7659 rq->next_balance = next_balance;
c5afb6a8
VG
7660
7661#ifdef CONFIG_NO_HZ_COMMON
7662 /*
7663 * If this CPU has been elected to perform the nohz idle
7664 * balance. Other idle CPUs have already rebalanced with
7665 * nohz_idle_balance() and nohz.next_balance has been
7666 * updated accordingly. This CPU is now running the idle load
7667 * balance for itself and we need to update the
7668 * nohz.next_balance accordingly.
7669 */
7670 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7671 nohz.next_balance = rq->next_balance;
7672#endif
7673 }
1e3c88bd
PZ
7674}
7675
3451d024 7676#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7677/*
3451d024 7678 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7679 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7680 */
208cb16b 7681static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7682{
208cb16b 7683 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7684 struct rq *rq;
7685 int balance_cpu;
c5afb6a8
VG
7686 /* Earliest time when we have to do rebalance again */
7687 unsigned long next_balance = jiffies + 60*HZ;
7688 int update_next_balance = 0;
83cd4fe2 7689
1c792db7
SS
7690 if (idle != CPU_IDLE ||
7691 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7692 goto end;
83cd4fe2
VP
7693
7694 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7695 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7696 continue;
7697
7698 /*
7699 * If this cpu gets work to do, stop the load balancing
7700 * work being done for other cpus. Next load
7701 * balancing owner will pick it up.
7702 */
1c792db7 7703 if (need_resched())
83cd4fe2 7704 break;
83cd4fe2 7705
5ed4f1d9
VG
7706 rq = cpu_rq(balance_cpu);
7707
ed61bbc6
TC
7708 /*
7709 * If time for next balance is due,
7710 * do the balance.
7711 */
7712 if (time_after_eq(jiffies, rq->next_balance)) {
7713 raw_spin_lock_irq(&rq->lock);
7714 update_rq_clock(rq);
7715 update_idle_cpu_load(rq);
7716 raw_spin_unlock_irq(&rq->lock);
7717 rebalance_domains(rq, CPU_IDLE);
7718 }
83cd4fe2 7719
c5afb6a8
VG
7720 if (time_after(next_balance, rq->next_balance)) {
7721 next_balance = rq->next_balance;
7722 update_next_balance = 1;
7723 }
83cd4fe2 7724 }
c5afb6a8
VG
7725
7726 /*
7727 * next_balance will be updated only when there is a need.
7728 * When the CPU is attached to null domain for ex, it will not be
7729 * updated.
7730 */
7731 if (likely(update_next_balance))
7732 nohz.next_balance = next_balance;
1c792db7
SS
7733end:
7734 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7735}
7736
7737/*
0b005cf5 7738 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7739 * of an idle cpu in the system.
0b005cf5 7740 * - This rq has more than one task.
1aaf90a4
VG
7741 * - This rq has at least one CFS task and the capacity of the CPU is
7742 * significantly reduced because of RT tasks or IRQs.
7743 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7744 * multiple busy cpu.
0b005cf5
SS
7745 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7746 * domain span are idle.
83cd4fe2 7747 */
1aaf90a4 7748static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7749{
7750 unsigned long now = jiffies;
0b005cf5 7751 struct sched_domain *sd;
63b2ca30 7752 struct sched_group_capacity *sgc;
4a725627 7753 int nr_busy, cpu = rq->cpu;
1aaf90a4 7754 bool kick = false;
83cd4fe2 7755
4a725627 7756 if (unlikely(rq->idle_balance))
1aaf90a4 7757 return false;
83cd4fe2 7758
1c792db7
SS
7759 /*
7760 * We may be recently in ticked or tickless idle mode. At the first
7761 * busy tick after returning from idle, we will update the busy stats.
7762 */
69e1e811 7763 set_cpu_sd_state_busy();
c1cc017c 7764 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7765
7766 /*
7767 * None are in tickless mode and hence no need for NOHZ idle load
7768 * balancing.
7769 */
7770 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7771 return false;
1c792db7
SS
7772
7773 if (time_before(now, nohz.next_balance))
1aaf90a4 7774 return false;
83cd4fe2 7775
0b005cf5 7776 if (rq->nr_running >= 2)
1aaf90a4 7777 return true;
83cd4fe2 7778
067491b7 7779 rcu_read_lock();
37dc6b50 7780 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7781 if (sd) {
63b2ca30
NP
7782 sgc = sd->groups->sgc;
7783 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7784
1aaf90a4
VG
7785 if (nr_busy > 1) {
7786 kick = true;
7787 goto unlock;
7788 }
7789
83cd4fe2 7790 }
37dc6b50 7791
1aaf90a4
VG
7792 sd = rcu_dereference(rq->sd);
7793 if (sd) {
7794 if ((rq->cfs.h_nr_running >= 1) &&
7795 check_cpu_capacity(rq, sd)) {
7796 kick = true;
7797 goto unlock;
7798 }
7799 }
37dc6b50 7800
1aaf90a4 7801 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7802 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7803 sched_domain_span(sd)) < cpu)) {
7804 kick = true;
7805 goto unlock;
7806 }
067491b7 7807
1aaf90a4 7808unlock:
067491b7 7809 rcu_read_unlock();
1aaf90a4 7810 return kick;
83cd4fe2
VP
7811}
7812#else
208cb16b 7813static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7814#endif
7815
7816/*
7817 * run_rebalance_domains is triggered when needed from the scheduler tick.
7818 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7819 */
1e3c88bd
PZ
7820static void run_rebalance_domains(struct softirq_action *h)
7821{
208cb16b 7822 struct rq *this_rq = this_rq();
6eb57e0d 7823 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7824 CPU_IDLE : CPU_NOT_IDLE;
7825
1e3c88bd 7826 /*
83cd4fe2 7827 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7828 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7829 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7830 * give the idle cpus a chance to load balance. Else we may
7831 * load balance only within the local sched_domain hierarchy
7832 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7833 */
208cb16b 7834 nohz_idle_balance(this_rq, idle);
d4573c3e 7835 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7836}
7837
1e3c88bd
PZ
7838/*
7839 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7840 */
7caff66f 7841void trigger_load_balance(struct rq *rq)
1e3c88bd 7842{
1e3c88bd 7843 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7844 if (unlikely(on_null_domain(rq)))
7845 return;
7846
7847 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7848 raise_softirq(SCHED_SOFTIRQ);
3451d024 7849#ifdef CONFIG_NO_HZ_COMMON
c726099e 7850 if (nohz_kick_needed(rq))
0aeeeeba 7851 nohz_balancer_kick();
83cd4fe2 7852#endif
1e3c88bd
PZ
7853}
7854
0bcdcf28
CE
7855static void rq_online_fair(struct rq *rq)
7856{
7857 update_sysctl();
0e59bdae
KT
7858
7859 update_runtime_enabled(rq);
0bcdcf28
CE
7860}
7861
7862static void rq_offline_fair(struct rq *rq)
7863{
7864 update_sysctl();
a4c96ae3
PB
7865
7866 /* Ensure any throttled groups are reachable by pick_next_task */
7867 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7868}
7869
55e12e5e 7870#endif /* CONFIG_SMP */
e1d1484f 7871
bf0f6f24
IM
7872/*
7873 * scheduler tick hitting a task of our scheduling class:
7874 */
8f4d37ec 7875static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7876{
7877 struct cfs_rq *cfs_rq;
7878 struct sched_entity *se = &curr->se;
7879
7880 for_each_sched_entity(se) {
7881 cfs_rq = cfs_rq_of(se);
8f4d37ec 7882 entity_tick(cfs_rq, se, queued);
bf0f6f24 7883 }
18bf2805 7884
b52da86e 7885 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7886 task_tick_numa(rq, curr);
bf0f6f24
IM
7887}
7888
7889/*
cd29fe6f
PZ
7890 * called on fork with the child task as argument from the parent's context
7891 * - child not yet on the tasklist
7892 * - preemption disabled
bf0f6f24 7893 */
cd29fe6f 7894static void task_fork_fair(struct task_struct *p)
bf0f6f24 7895{
4fc420c9
DN
7896 struct cfs_rq *cfs_rq;
7897 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7898 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7899 struct rq *rq = this_rq();
7900 unsigned long flags;
7901
05fa785c 7902 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7903
861d034e
PZ
7904 update_rq_clock(rq);
7905
4fc420c9
DN
7906 cfs_rq = task_cfs_rq(current);
7907 curr = cfs_rq->curr;
7908
6c9a27f5
DN
7909 /*
7910 * Not only the cpu but also the task_group of the parent might have
7911 * been changed after parent->se.parent,cfs_rq were copied to
7912 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7913 * of child point to valid ones.
7914 */
7915 rcu_read_lock();
7916 __set_task_cpu(p, this_cpu);
7917 rcu_read_unlock();
bf0f6f24 7918
7109c442 7919 update_curr(cfs_rq);
cd29fe6f 7920
b5d9d734
MG
7921 if (curr)
7922 se->vruntime = curr->vruntime;
aeb73b04 7923 place_entity(cfs_rq, se, 1);
4d78e7b6 7924
cd29fe6f 7925 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7926 /*
edcb60a3
IM
7927 * Upon rescheduling, sched_class::put_prev_task() will place
7928 * 'current' within the tree based on its new key value.
7929 */
4d78e7b6 7930 swap(curr->vruntime, se->vruntime);
8875125e 7931 resched_curr(rq);
4d78e7b6 7932 }
bf0f6f24 7933
88ec22d3
PZ
7934 se->vruntime -= cfs_rq->min_vruntime;
7935
05fa785c 7936 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7937}
7938
cb469845
SR
7939/*
7940 * Priority of the task has changed. Check to see if we preempt
7941 * the current task.
7942 */
da7a735e
PZ
7943static void
7944prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7945{
da0c1e65 7946 if (!task_on_rq_queued(p))
da7a735e
PZ
7947 return;
7948
cb469845
SR
7949 /*
7950 * Reschedule if we are currently running on this runqueue and
7951 * our priority decreased, or if we are not currently running on
7952 * this runqueue and our priority is higher than the current's
7953 */
da7a735e 7954 if (rq->curr == p) {
cb469845 7955 if (p->prio > oldprio)
8875125e 7956 resched_curr(rq);
cb469845 7957 } else
15afe09b 7958 check_preempt_curr(rq, p, 0);
cb469845
SR
7959}
7960
daa59407 7961static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7962{
7963 struct sched_entity *se = &p->se;
da7a735e
PZ
7964
7965 /*
daa59407
BP
7966 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7967 * the dequeue_entity(.flags=0) will already have normalized the
7968 * vruntime.
7969 */
7970 if (p->on_rq)
7971 return true;
7972
7973 /*
7974 * When !on_rq, vruntime of the task has usually NOT been normalized.
7975 * But there are some cases where it has already been normalized:
da7a735e 7976 *
daa59407
BP
7977 * - A forked child which is waiting for being woken up by
7978 * wake_up_new_task().
7979 * - A task which has been woken up by try_to_wake_up() and
7980 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7981 */
daa59407
BP
7982 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7983 return true;
7984
7985 return false;
7986}
7987
7988static void detach_task_cfs_rq(struct task_struct *p)
7989{
7990 struct sched_entity *se = &p->se;
7991 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7992
7993 if (!vruntime_normalized(p)) {
da7a735e
PZ
7994 /*
7995 * Fix up our vruntime so that the current sleep doesn't
7996 * cause 'unlimited' sleep bonus.
7997 */
7998 place_entity(cfs_rq, se, 0);
7999 se->vruntime -= cfs_rq->min_vruntime;
8000 }
9ee474f5 8001
9d89c257 8002 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8003 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8004}
8005
daa59407 8006static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8007{
f36c019c 8008 struct sched_entity *se = &p->se;
daa59407 8009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8010
8011#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8012 /*
8013 * Since the real-depth could have been changed (only FAIR
8014 * class maintain depth value), reset depth properly.
8015 */
8016 se->depth = se->parent ? se->parent->depth + 1 : 0;
8017#endif
7855a35a 8018
6efdb105 8019 /* Synchronize task with its cfs_rq */
daa59407
BP
8020 attach_entity_load_avg(cfs_rq, se);
8021
8022 if (!vruntime_normalized(p))
8023 se->vruntime += cfs_rq->min_vruntime;
8024}
6efdb105 8025
daa59407
BP
8026static void switched_from_fair(struct rq *rq, struct task_struct *p)
8027{
8028 detach_task_cfs_rq(p);
8029}
8030
8031static void switched_to_fair(struct rq *rq, struct task_struct *p)
8032{
8033 attach_task_cfs_rq(p);
7855a35a 8034
daa59407 8035 if (task_on_rq_queued(p)) {
7855a35a 8036 /*
daa59407
BP
8037 * We were most likely switched from sched_rt, so
8038 * kick off the schedule if running, otherwise just see
8039 * if we can still preempt the current task.
7855a35a 8040 */
daa59407
BP
8041 if (rq->curr == p)
8042 resched_curr(rq);
8043 else
8044 check_preempt_curr(rq, p, 0);
7855a35a 8045 }
cb469845
SR
8046}
8047
83b699ed
SV
8048/* Account for a task changing its policy or group.
8049 *
8050 * This routine is mostly called to set cfs_rq->curr field when a task
8051 * migrates between groups/classes.
8052 */
8053static void set_curr_task_fair(struct rq *rq)
8054{
8055 struct sched_entity *se = &rq->curr->se;
8056
ec12cb7f
PT
8057 for_each_sched_entity(se) {
8058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8059
8060 set_next_entity(cfs_rq, se);
8061 /* ensure bandwidth has been allocated on our new cfs_rq */
8062 account_cfs_rq_runtime(cfs_rq, 0);
8063 }
83b699ed
SV
8064}
8065
029632fb
PZ
8066void init_cfs_rq(struct cfs_rq *cfs_rq)
8067{
8068 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8070#ifndef CONFIG_64BIT
8071 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8072#endif
141965c7 8073#ifdef CONFIG_SMP
9d89c257
YD
8074 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8075 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8076#endif
029632fb
PZ
8077}
8078
810b3817 8079#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8080static void task_move_group_fair(struct task_struct *p)
810b3817 8081{
daa59407 8082 detach_task_cfs_rq(p);
b2b5ce02 8083 set_task_rq(p, task_cpu(p));
6efdb105
BP
8084
8085#ifdef CONFIG_SMP
8086 /* Tell se's cfs_rq has been changed -- migrated */
8087 p->se.avg.last_update_time = 0;
8088#endif
daa59407 8089 attach_task_cfs_rq(p);
810b3817 8090}
029632fb
PZ
8091
8092void free_fair_sched_group(struct task_group *tg)
8093{
8094 int i;
8095
8096 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8097
8098 for_each_possible_cpu(i) {
8099 if (tg->cfs_rq)
8100 kfree(tg->cfs_rq[i]);
12695578
YD
8101 if (tg->se) {
8102 if (tg->se[i])
8103 remove_entity_load_avg(tg->se[i]);
029632fb 8104 kfree(tg->se[i]);
12695578 8105 }
029632fb
PZ
8106 }
8107
8108 kfree(tg->cfs_rq);
8109 kfree(tg->se);
8110}
8111
8112int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8113{
8114 struct cfs_rq *cfs_rq;
8115 struct sched_entity *se;
8116 int i;
8117
8118 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8119 if (!tg->cfs_rq)
8120 goto err;
8121 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8122 if (!tg->se)
8123 goto err;
8124
8125 tg->shares = NICE_0_LOAD;
8126
8127 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8128
8129 for_each_possible_cpu(i) {
8130 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8131 GFP_KERNEL, cpu_to_node(i));
8132 if (!cfs_rq)
8133 goto err;
8134
8135 se = kzalloc_node(sizeof(struct sched_entity),
8136 GFP_KERNEL, cpu_to_node(i));
8137 if (!se)
8138 goto err_free_rq;
8139
8140 init_cfs_rq(cfs_rq);
8141 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8142 init_entity_runnable_average(se);
029632fb
PZ
8143 }
8144
8145 return 1;
8146
8147err_free_rq:
8148 kfree(cfs_rq);
8149err:
8150 return 0;
8151}
8152
8153void unregister_fair_sched_group(struct task_group *tg, int cpu)
8154{
8155 struct rq *rq = cpu_rq(cpu);
8156 unsigned long flags;
8157
8158 /*
8159 * Only empty task groups can be destroyed; so we can speculatively
8160 * check on_list without danger of it being re-added.
8161 */
8162 if (!tg->cfs_rq[cpu]->on_list)
8163 return;
8164
8165 raw_spin_lock_irqsave(&rq->lock, flags);
8166 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8167 raw_spin_unlock_irqrestore(&rq->lock, flags);
8168}
8169
8170void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8171 struct sched_entity *se, int cpu,
8172 struct sched_entity *parent)
8173{
8174 struct rq *rq = cpu_rq(cpu);
8175
8176 cfs_rq->tg = tg;
8177 cfs_rq->rq = rq;
029632fb
PZ
8178 init_cfs_rq_runtime(cfs_rq);
8179
8180 tg->cfs_rq[cpu] = cfs_rq;
8181 tg->se[cpu] = se;
8182
8183 /* se could be NULL for root_task_group */
8184 if (!se)
8185 return;
8186
fed14d45 8187 if (!parent) {
029632fb 8188 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8189 se->depth = 0;
8190 } else {
029632fb 8191 se->cfs_rq = parent->my_q;
fed14d45
PZ
8192 se->depth = parent->depth + 1;
8193 }
029632fb
PZ
8194
8195 se->my_q = cfs_rq;
0ac9b1c2
PT
8196 /* guarantee group entities always have weight */
8197 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8198 se->parent = parent;
8199}
8200
8201static DEFINE_MUTEX(shares_mutex);
8202
8203int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8204{
8205 int i;
8206 unsigned long flags;
8207
8208 /*
8209 * We can't change the weight of the root cgroup.
8210 */
8211 if (!tg->se[0])
8212 return -EINVAL;
8213
8214 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8215
8216 mutex_lock(&shares_mutex);
8217 if (tg->shares == shares)
8218 goto done;
8219
8220 tg->shares = shares;
8221 for_each_possible_cpu(i) {
8222 struct rq *rq = cpu_rq(i);
8223 struct sched_entity *se;
8224
8225 se = tg->se[i];
8226 /* Propagate contribution to hierarchy */
8227 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8228
8229 /* Possible calls to update_curr() need rq clock */
8230 update_rq_clock(rq);
17bc14b7 8231 for_each_sched_entity(se)
029632fb
PZ
8232 update_cfs_shares(group_cfs_rq(se));
8233 raw_spin_unlock_irqrestore(&rq->lock, flags);
8234 }
8235
8236done:
8237 mutex_unlock(&shares_mutex);
8238 return 0;
8239}
8240#else /* CONFIG_FAIR_GROUP_SCHED */
8241
8242void free_fair_sched_group(struct task_group *tg) { }
8243
8244int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8245{
8246 return 1;
8247}
8248
8249void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8250
8251#endif /* CONFIG_FAIR_GROUP_SCHED */
8252
810b3817 8253
6d686f45 8254static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8255{
8256 struct sched_entity *se = &task->se;
0d721cea
PW
8257 unsigned int rr_interval = 0;
8258
8259 /*
8260 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8261 * idle runqueue:
8262 */
0d721cea 8263 if (rq->cfs.load.weight)
a59f4e07 8264 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8265
8266 return rr_interval;
8267}
8268
bf0f6f24
IM
8269/*
8270 * All the scheduling class methods:
8271 */
029632fb 8272const struct sched_class fair_sched_class = {
5522d5d5 8273 .next = &idle_sched_class,
bf0f6f24
IM
8274 .enqueue_task = enqueue_task_fair,
8275 .dequeue_task = dequeue_task_fair,
8276 .yield_task = yield_task_fair,
d95f4122 8277 .yield_to_task = yield_to_task_fair,
bf0f6f24 8278
2e09bf55 8279 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8280
8281 .pick_next_task = pick_next_task_fair,
8282 .put_prev_task = put_prev_task_fair,
8283
681f3e68 8284#ifdef CONFIG_SMP
4ce72a2c 8285 .select_task_rq = select_task_rq_fair,
0a74bef8 8286 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8287
0bcdcf28
CE
8288 .rq_online = rq_online_fair,
8289 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8290
8291 .task_waking = task_waking_fair,
12695578 8292 .task_dead = task_dead_fair,
c5b28038 8293 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8294#endif
bf0f6f24 8295
83b699ed 8296 .set_curr_task = set_curr_task_fair,
bf0f6f24 8297 .task_tick = task_tick_fair,
cd29fe6f 8298 .task_fork = task_fork_fair,
cb469845
SR
8299
8300 .prio_changed = prio_changed_fair,
da7a735e 8301 .switched_from = switched_from_fair,
cb469845 8302 .switched_to = switched_to_fair,
810b3817 8303
0d721cea
PW
8304 .get_rr_interval = get_rr_interval_fair,
8305
6e998916
SG
8306 .update_curr = update_curr_fair,
8307
810b3817 8308#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8309 .task_move_group = task_move_group_fair,
810b3817 8310#endif
bf0f6f24
IM
8311};
8312
8313#ifdef CONFIG_SCHED_DEBUG
029632fb 8314void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8315{
bf0f6f24
IM
8316 struct cfs_rq *cfs_rq;
8317
5973e5b9 8318 rcu_read_lock();
c3b64f1e 8319 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8320 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8321 rcu_read_unlock();
bf0f6f24 8322}
397f2378
SD
8323
8324#ifdef CONFIG_NUMA_BALANCING
8325void show_numa_stats(struct task_struct *p, struct seq_file *m)
8326{
8327 int node;
8328 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8329
8330 for_each_online_node(node) {
8331 if (p->numa_faults) {
8332 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8333 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8334 }
8335 if (p->numa_group) {
8336 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8337 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8338 }
8339 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8340 }
8341}
8342#endif /* CONFIG_NUMA_BALANCING */
8343#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8344
8345__init void init_sched_fair_class(void)
8346{
8347#ifdef CONFIG_SMP
8348 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8349
3451d024 8350#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8351 nohz.next_balance = jiffies;
029632fb 8352 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8353 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8354#endif
8355#endif /* SMP */
8356
8357}