]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/fair.c
sched/numa: Rename p->numa_faults to numa_faults_memory
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
598f0ec0
MG
822static unsigned int task_nr_scan_windows(struct task_struct *p)
823{
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839}
840
841/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842#define MAX_SCAN_WINDOW 2560
843
844static unsigned int task_scan_min(struct task_struct *p)
845{
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855}
856
857static unsigned int task_scan_max(struct task_struct *p)
858{
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865}
866
0ec8aa00
PZ
867static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871}
872
873static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874{
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877}
878
8c8a743c
PZ
879struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
e29cf08b 884 pid_t gid;
8c8a743c
PZ
885 struct list_head task_list;
886
887 struct rcu_head rcu;
989348b5
MG
888 unsigned long total_faults;
889 unsigned long faults[0];
8c8a743c
PZ
890};
891
e29cf08b
MG
892pid_t task_numa_group_id(struct task_struct *p)
893{
894 return p->numa_group ? p->numa_group->gid : 0;
895}
896
ac8e895b
MG
897static inline int task_faults_idx(int nid, int priv)
898{
899 return 2 * nid + priv;
900}
901
902static inline unsigned long task_faults(struct task_struct *p, int nid)
903{
ff1df896 904 if (!p->numa_faults_memory)
ac8e895b
MG
905 return 0;
906
ff1df896
RR
907 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
908 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
909}
910
83e1d2cd
MG
911static inline unsigned long group_faults(struct task_struct *p, int nid)
912{
913 if (!p->numa_group)
914 return 0;
915
82897b4f
WL
916 return p->numa_group->faults[task_faults_idx(nid, 0)] +
917 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
918}
919
920/*
921 * These return the fraction of accesses done by a particular task, or
922 * task group, on a particular numa node. The group weight is given a
923 * larger multiplier, in order to group tasks together that are almost
924 * evenly spread out between numa nodes.
925 */
926static inline unsigned long task_weight(struct task_struct *p, int nid)
927{
928 unsigned long total_faults;
929
ff1df896 930 if (!p->numa_faults_memory)
83e1d2cd
MG
931 return 0;
932
933 total_faults = p->total_numa_faults;
934
935 if (!total_faults)
936 return 0;
937
938 return 1000 * task_faults(p, nid) / total_faults;
939}
940
941static inline unsigned long group_weight(struct task_struct *p, int nid)
942{
989348b5 943 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
944 return 0;
945
989348b5 946 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
947}
948
e6628d5b 949static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
950static unsigned long source_load(int cpu, int type);
951static unsigned long target_load(int cpu, int type);
952static unsigned long power_of(int cpu);
953static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
954
fb13c7ee 955/* Cached statistics for all CPUs within a node */
58d081b5 956struct numa_stats {
fb13c7ee 957 unsigned long nr_running;
58d081b5 958 unsigned long load;
fb13c7ee
MG
959
960 /* Total compute capacity of CPUs on a node */
961 unsigned long power;
962
963 /* Approximate capacity in terms of runnable tasks on a node */
964 unsigned long capacity;
965 int has_capacity;
58d081b5 966};
e6628d5b 967
fb13c7ee
MG
968/*
969 * XXX borrowed from update_sg_lb_stats
970 */
971static void update_numa_stats(struct numa_stats *ns, int nid)
972{
5eca82a9 973 int cpu, cpus = 0;
fb13c7ee
MG
974
975 memset(ns, 0, sizeof(*ns));
976 for_each_cpu(cpu, cpumask_of_node(nid)) {
977 struct rq *rq = cpu_rq(cpu);
978
979 ns->nr_running += rq->nr_running;
980 ns->load += weighted_cpuload(cpu);
981 ns->power += power_of(cpu);
5eca82a9
PZ
982
983 cpus++;
fb13c7ee
MG
984 }
985
5eca82a9
PZ
986 /*
987 * If we raced with hotplug and there are no CPUs left in our mask
988 * the @ns structure is NULL'ed and task_numa_compare() will
989 * not find this node attractive.
990 *
991 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
992 * and bail there.
993 */
994 if (!cpus)
995 return;
996
fb13c7ee
MG
997 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
998 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
999 ns->has_capacity = (ns->nr_running < ns->capacity);
1000}
1001
58d081b5
MG
1002struct task_numa_env {
1003 struct task_struct *p;
e6628d5b 1004
58d081b5
MG
1005 int src_cpu, src_nid;
1006 int dst_cpu, dst_nid;
e6628d5b 1007
58d081b5 1008 struct numa_stats src_stats, dst_stats;
e6628d5b 1009
40ea2b42 1010 int imbalance_pct;
fb13c7ee
MG
1011
1012 struct task_struct *best_task;
1013 long best_imp;
58d081b5
MG
1014 int best_cpu;
1015};
1016
fb13c7ee
MG
1017static void task_numa_assign(struct task_numa_env *env,
1018 struct task_struct *p, long imp)
1019{
1020 if (env->best_task)
1021 put_task_struct(env->best_task);
1022 if (p)
1023 get_task_struct(p);
1024
1025 env->best_task = p;
1026 env->best_imp = imp;
1027 env->best_cpu = env->dst_cpu;
1028}
1029
1030/*
1031 * This checks if the overall compute and NUMA accesses of the system would
1032 * be improved if the source tasks was migrated to the target dst_cpu taking
1033 * into account that it might be best if task running on the dst_cpu should
1034 * be exchanged with the source task
1035 */
887c290e
RR
1036static void task_numa_compare(struct task_numa_env *env,
1037 long taskimp, long groupimp)
fb13c7ee
MG
1038{
1039 struct rq *src_rq = cpu_rq(env->src_cpu);
1040 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1041 struct task_struct *cur;
1042 long dst_load, src_load;
1043 long load;
887c290e 1044 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1045
1046 rcu_read_lock();
1047 cur = ACCESS_ONCE(dst_rq->curr);
1048 if (cur->pid == 0) /* idle */
1049 cur = NULL;
1050
1051 /*
1052 * "imp" is the fault differential for the source task between the
1053 * source and destination node. Calculate the total differential for
1054 * the source task and potential destination task. The more negative
1055 * the value is, the more rmeote accesses that would be expected to
1056 * be incurred if the tasks were swapped.
1057 */
1058 if (cur) {
1059 /* Skip this swap candidate if cannot move to the source cpu */
1060 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1061 goto unlock;
1062
887c290e
RR
1063 /*
1064 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1065 * in any group then look only at task weights.
887c290e 1066 */
ca28aa53 1067 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1068 imp = taskimp + task_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid);
ca28aa53
RR
1070 /*
1071 * Add some hysteresis to prevent swapping the
1072 * tasks within a group over tiny differences.
1073 */
1074 if (cur->numa_group)
1075 imp -= imp/16;
887c290e 1076 } else {
ca28aa53
RR
1077 /*
1078 * Compare the group weights. If a task is all by
1079 * itself (not part of a group), use the task weight
1080 * instead.
1081 */
1082 if (env->p->numa_group)
1083 imp = groupimp;
1084 else
1085 imp = taskimp;
1086
1087 if (cur->numa_group)
1088 imp += group_weight(cur, env->src_nid) -
1089 group_weight(cur, env->dst_nid);
1090 else
1091 imp += task_weight(cur, env->src_nid) -
1092 task_weight(cur, env->dst_nid);
887c290e 1093 }
fb13c7ee
MG
1094 }
1095
1096 if (imp < env->best_imp)
1097 goto unlock;
1098
1099 if (!cur) {
1100 /* Is there capacity at our destination? */
1101 if (env->src_stats.has_capacity &&
1102 !env->dst_stats.has_capacity)
1103 goto unlock;
1104
1105 goto balance;
1106 }
1107
1108 /* Balance doesn't matter much if we're running a task per cpu */
1109 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1110 goto assign;
1111
1112 /*
1113 * In the overloaded case, try and keep the load balanced.
1114 */
1115balance:
1116 dst_load = env->dst_stats.load;
1117 src_load = env->src_stats.load;
1118
1119 /* XXX missing power terms */
1120 load = task_h_load(env->p);
1121 dst_load += load;
1122 src_load -= load;
1123
1124 if (cur) {
1125 load = task_h_load(cur);
1126 dst_load -= load;
1127 src_load += load;
1128 }
1129
1130 /* make src_load the smaller */
1131 if (dst_load < src_load)
1132 swap(dst_load, src_load);
1133
1134 if (src_load * env->imbalance_pct < dst_load * 100)
1135 goto unlock;
1136
1137assign:
1138 task_numa_assign(env, cur, imp);
1139unlock:
1140 rcu_read_unlock();
1141}
1142
887c290e
RR
1143static void task_numa_find_cpu(struct task_numa_env *env,
1144 long taskimp, long groupimp)
2c8a50aa
MG
1145{
1146 int cpu;
1147
1148 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1149 /* Skip this CPU if the source task cannot migrate */
1150 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1151 continue;
1152
1153 env->dst_cpu = cpu;
887c290e 1154 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1155 }
1156}
1157
58d081b5
MG
1158static int task_numa_migrate(struct task_struct *p)
1159{
58d081b5
MG
1160 struct task_numa_env env = {
1161 .p = p,
fb13c7ee 1162
58d081b5 1163 .src_cpu = task_cpu(p),
b32e86b4 1164 .src_nid = task_node(p),
fb13c7ee
MG
1165
1166 .imbalance_pct = 112,
1167
1168 .best_task = NULL,
1169 .best_imp = 0,
1170 .best_cpu = -1
58d081b5
MG
1171 };
1172 struct sched_domain *sd;
887c290e 1173 unsigned long taskweight, groupweight;
2c8a50aa 1174 int nid, ret;
887c290e 1175 long taskimp, groupimp;
e6628d5b 1176
58d081b5 1177 /*
fb13c7ee
MG
1178 * Pick the lowest SD_NUMA domain, as that would have the smallest
1179 * imbalance and would be the first to start moving tasks about.
1180 *
1181 * And we want to avoid any moving of tasks about, as that would create
1182 * random movement of tasks -- counter the numa conditions we're trying
1183 * to satisfy here.
58d081b5
MG
1184 */
1185 rcu_read_lock();
fb13c7ee 1186 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1187 if (sd)
1188 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1189 rcu_read_unlock();
1190
46a73e8a
RR
1191 /*
1192 * Cpusets can break the scheduler domain tree into smaller
1193 * balance domains, some of which do not cross NUMA boundaries.
1194 * Tasks that are "trapped" in such domains cannot be migrated
1195 * elsewhere, so there is no point in (re)trying.
1196 */
1197 if (unlikely(!sd)) {
de1b301a 1198 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1199 return -EINVAL;
1200 }
1201
887c290e
RR
1202 taskweight = task_weight(p, env.src_nid);
1203 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1204 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1205 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1206 taskimp = task_weight(p, env.dst_nid) - taskweight;
1207 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1208 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1209
e1dda8a7
RR
1210 /* If the preferred nid has capacity, try to use it. */
1211 if (env.dst_stats.has_capacity)
887c290e 1212 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1213
1214 /* No space available on the preferred nid. Look elsewhere. */
1215 if (env.best_cpu == -1) {
2c8a50aa
MG
1216 for_each_online_node(nid) {
1217 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1218 continue;
58d081b5 1219
83e1d2cd 1220 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1221 taskimp = task_weight(p, nid) - taskweight;
1222 groupimp = group_weight(p, nid) - groupweight;
1223 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1224 continue;
1225
2c8a50aa
MG
1226 env.dst_nid = nid;
1227 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1228 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1229 }
1230 }
1231
fb13c7ee
MG
1232 /* No better CPU than the current one was found. */
1233 if (env.best_cpu == -1)
1234 return -EAGAIN;
1235
0ec8aa00
PZ
1236 sched_setnuma(p, env.dst_nid);
1237
04bb2f94
RR
1238 /*
1239 * Reset the scan period if the task is being rescheduled on an
1240 * alternative node to recheck if the tasks is now properly placed.
1241 */
1242 p->numa_scan_period = task_scan_min(p);
1243
fb13c7ee
MG
1244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
e6628d5b
MG
1252}
1253
6b9a7460
MG
1254/* Attempt to migrate a task to a CPU on the preferred node. */
1255static void numa_migrate_preferred(struct task_struct *p)
1256{
2739d3ee 1257 /* This task has no NUMA fault statistics yet */
ff1df896 1258 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1259 return;
1260
2739d3ee
RR
1261 /* Periodically retry migrating the task to the preferred node */
1262 p->numa_migrate_retry = jiffies + HZ;
1263
1264 /* Success if task is already running on preferred CPU */
de1b301a 1265 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1266 return;
1267
1268 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1269 task_numa_migrate(p);
6b9a7460
MG
1270}
1271
04bb2f94
RR
1272/*
1273 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1274 * increments. The more local the fault statistics are, the higher the scan
1275 * period will be for the next scan window. If local/remote ratio is below
1276 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1277 * scan period will decrease
1278 */
1279#define NUMA_PERIOD_SLOTS 10
1280#define NUMA_PERIOD_THRESHOLD 3
1281
1282/*
1283 * Increase the scan period (slow down scanning) if the majority of
1284 * our memory is already on our local node, or if the majority of
1285 * the page accesses are shared with other processes.
1286 * Otherwise, decrease the scan period.
1287 */
1288static void update_task_scan_period(struct task_struct *p,
1289 unsigned long shared, unsigned long private)
1290{
1291 unsigned int period_slot;
1292 int ratio;
1293 int diff;
1294
1295 unsigned long remote = p->numa_faults_locality[0];
1296 unsigned long local = p->numa_faults_locality[1];
1297
1298 /*
1299 * If there were no record hinting faults then either the task is
1300 * completely idle or all activity is areas that are not of interest
1301 * to automatic numa balancing. Scan slower
1302 */
1303 if (local + shared == 0) {
1304 p->numa_scan_period = min(p->numa_scan_period_max,
1305 p->numa_scan_period << 1);
1306
1307 p->mm->numa_next_scan = jiffies +
1308 msecs_to_jiffies(p->numa_scan_period);
1309
1310 return;
1311 }
1312
1313 /*
1314 * Prepare to scale scan period relative to the current period.
1315 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1316 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1317 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1318 */
1319 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1320 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1321 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1322 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1323 if (!slot)
1324 slot = 1;
1325 diff = slot * period_slot;
1326 } else {
1327 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1328
1329 /*
1330 * Scale scan rate increases based on sharing. There is an
1331 * inverse relationship between the degree of sharing and
1332 * the adjustment made to the scanning period. Broadly
1333 * speaking the intent is that there is little point
1334 * scanning faster if shared accesses dominate as it may
1335 * simply bounce migrations uselessly
1336 */
04bb2f94
RR
1337 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1338 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1339 }
1340
1341 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1342 task_scan_min(p), task_scan_max(p));
1343 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1344}
1345
cbee9f88
PZ
1346static void task_numa_placement(struct task_struct *p)
1347{
83e1d2cd
MG
1348 int seq, nid, max_nid = -1, max_group_nid = -1;
1349 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1350 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1351 spinlock_t *group_lock = NULL;
cbee9f88 1352
2832bc19 1353 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1354 if (p->numa_scan_seq == seq)
1355 return;
1356 p->numa_scan_seq = seq;
598f0ec0 1357 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1358
7dbd13ed
MG
1359 /* If the task is part of a group prevent parallel updates to group stats */
1360 if (p->numa_group) {
1361 group_lock = &p->numa_group->lock;
1362 spin_lock(group_lock);
1363 }
1364
688b7585
MG
1365 /* Find the node with the highest number of faults */
1366 for_each_online_node(nid) {
83e1d2cd 1367 unsigned long faults = 0, group_faults = 0;
ac8e895b 1368 int priv, i;
745d6147 1369
ac8e895b 1370 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1371 long diff;
1372
ac8e895b 1373 i = task_faults_idx(nid, priv);
ff1df896 1374 diff = -p->numa_faults_memory[i];
745d6147 1375
ac8e895b 1376 /* Decay existing window, copy faults since last scan */
ff1df896
RR
1377 p->numa_faults_memory[i] >>= 1;
1378 p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
1379 fault_types[priv] += p->numa_faults_buffer_memory[i];
1380 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1381
ff1df896
RR
1382 faults += p->numa_faults_memory[i];
1383 diff += p->numa_faults_memory[i];
83e1d2cd 1384 p->total_numa_faults += diff;
8c8a743c
PZ
1385 if (p->numa_group) {
1386 /* safe because we can only change our own group */
989348b5
MG
1387 p->numa_group->faults[i] += diff;
1388 p->numa_group->total_faults += diff;
1389 group_faults += p->numa_group->faults[i];
8c8a743c 1390 }
ac8e895b
MG
1391 }
1392
688b7585
MG
1393 if (faults > max_faults) {
1394 max_faults = faults;
1395 max_nid = nid;
1396 }
83e1d2cd
MG
1397
1398 if (group_faults > max_group_faults) {
1399 max_group_faults = group_faults;
1400 max_group_nid = nid;
1401 }
1402 }
1403
04bb2f94
RR
1404 update_task_scan_period(p, fault_types[0], fault_types[1]);
1405
7dbd13ed
MG
1406 if (p->numa_group) {
1407 /*
1408 * If the preferred task and group nids are different,
1409 * iterate over the nodes again to find the best place.
1410 */
1411 if (max_nid != max_group_nid) {
1412 unsigned long weight, max_weight = 0;
1413
1414 for_each_online_node(nid) {
1415 weight = task_weight(p, nid) + group_weight(p, nid);
1416 if (weight > max_weight) {
1417 max_weight = weight;
1418 max_nid = nid;
1419 }
83e1d2cd
MG
1420 }
1421 }
7dbd13ed
MG
1422
1423 spin_unlock(group_lock);
688b7585
MG
1424 }
1425
6b9a7460 1426 /* Preferred node as the node with the most faults */
3a7053b3 1427 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1428 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1429 sched_setnuma(p, max_nid);
6b9a7460 1430 numa_migrate_preferred(p);
3a7053b3 1431 }
cbee9f88
PZ
1432}
1433
8c8a743c
PZ
1434static inline int get_numa_group(struct numa_group *grp)
1435{
1436 return atomic_inc_not_zero(&grp->refcount);
1437}
1438
1439static inline void put_numa_group(struct numa_group *grp)
1440{
1441 if (atomic_dec_and_test(&grp->refcount))
1442 kfree_rcu(grp, rcu);
1443}
1444
3e6a9418
MG
1445static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1446 int *priv)
8c8a743c
PZ
1447{
1448 struct numa_group *grp, *my_grp;
1449 struct task_struct *tsk;
1450 bool join = false;
1451 int cpu = cpupid_to_cpu(cpupid);
1452 int i;
1453
1454 if (unlikely(!p->numa_group)) {
1455 unsigned int size = sizeof(struct numa_group) +
989348b5 1456 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1457
1458 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1459 if (!grp)
1460 return;
1461
1462 atomic_set(&grp->refcount, 1);
1463 spin_lock_init(&grp->lock);
1464 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1465 grp->gid = p->pid;
8c8a743c
PZ
1466
1467 for (i = 0; i < 2*nr_node_ids; i++)
ff1df896 1468 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1469
989348b5 1470 grp->total_faults = p->total_numa_faults;
83e1d2cd 1471
8c8a743c
PZ
1472 list_add(&p->numa_entry, &grp->task_list);
1473 grp->nr_tasks++;
1474 rcu_assign_pointer(p->numa_group, grp);
1475 }
1476
1477 rcu_read_lock();
1478 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1479
1480 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1481 goto no_join;
8c8a743c
PZ
1482
1483 grp = rcu_dereference(tsk->numa_group);
1484 if (!grp)
3354781a 1485 goto no_join;
8c8a743c
PZ
1486
1487 my_grp = p->numa_group;
1488 if (grp == my_grp)
3354781a 1489 goto no_join;
8c8a743c
PZ
1490
1491 /*
1492 * Only join the other group if its bigger; if we're the bigger group,
1493 * the other task will join us.
1494 */
1495 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1496 goto no_join;
8c8a743c
PZ
1497
1498 /*
1499 * Tie-break on the grp address.
1500 */
1501 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1502 goto no_join;
8c8a743c 1503
dabe1d99
RR
1504 /* Always join threads in the same process. */
1505 if (tsk->mm == current->mm)
1506 join = true;
1507
1508 /* Simple filter to avoid false positives due to PID collisions */
1509 if (flags & TNF_SHARED)
1510 join = true;
8c8a743c 1511
3e6a9418
MG
1512 /* Update priv based on whether false sharing was detected */
1513 *priv = !join;
1514
dabe1d99 1515 if (join && !get_numa_group(grp))
3354781a 1516 goto no_join;
8c8a743c 1517
8c8a743c
PZ
1518 rcu_read_unlock();
1519
1520 if (!join)
1521 return;
1522
989348b5
MG
1523 double_lock(&my_grp->lock, &grp->lock);
1524
8c8a743c 1525 for (i = 0; i < 2*nr_node_ids; i++) {
ff1df896
RR
1526 my_grp->faults[i] -= p->numa_faults_memory[i];
1527 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1528 }
989348b5
MG
1529 my_grp->total_faults -= p->total_numa_faults;
1530 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1531
1532 list_move(&p->numa_entry, &grp->task_list);
1533 my_grp->nr_tasks--;
1534 grp->nr_tasks++;
1535
1536 spin_unlock(&my_grp->lock);
1537 spin_unlock(&grp->lock);
1538
1539 rcu_assign_pointer(p->numa_group, grp);
1540
1541 put_numa_group(my_grp);
3354781a
PZ
1542 return;
1543
1544no_join:
1545 rcu_read_unlock();
1546 return;
8c8a743c
PZ
1547}
1548
1549void task_numa_free(struct task_struct *p)
1550{
1551 struct numa_group *grp = p->numa_group;
1552 int i;
ff1df896 1553 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1554
1555 if (grp) {
989348b5 1556 spin_lock(&grp->lock);
8c8a743c 1557 for (i = 0; i < 2*nr_node_ids; i++)
ff1df896 1558 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1559 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1560
8c8a743c
PZ
1561 list_del(&p->numa_entry);
1562 grp->nr_tasks--;
1563 spin_unlock(&grp->lock);
1564 rcu_assign_pointer(p->numa_group, NULL);
1565 put_numa_group(grp);
1566 }
1567
ff1df896
RR
1568 p->numa_faults_memory = NULL;
1569 p->numa_faults_buffer_memory = NULL;
82727018 1570 kfree(numa_faults);
8c8a743c
PZ
1571}
1572
cbee9f88
PZ
1573/*
1574 * Got a PROT_NONE fault for a page on @node.
1575 */
6688cc05 1576void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1577{
1578 struct task_struct *p = current;
6688cc05 1579 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1580 int priv;
cbee9f88 1581
10e84b97 1582 if (!numabalancing_enabled)
1a687c2e
MG
1583 return;
1584
9ff1d9ff
MG
1585 /* for example, ksmd faulting in a user's mm */
1586 if (!p->mm)
1587 return;
1588
82727018
RR
1589 /* Do not worry about placement if exiting */
1590 if (p->state == TASK_DEAD)
1591 return;
1592
f809ca9a 1593 /* Allocate buffer to track faults on a per-node basis */
ff1df896
RR
1594 if (unlikely(!p->numa_faults_memory)) {
1595 int size = sizeof(*p->numa_faults_memory) * 2 * nr_node_ids;
f809ca9a 1596
745d6147 1597 /* numa_faults and numa_faults_buffer share the allocation */
ff1df896
RR
1598 p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1599 if (!p->numa_faults_memory)
f809ca9a 1600 return;
745d6147 1601
ff1df896
RR
1602 BUG_ON(p->numa_faults_buffer_memory);
1603 p->numa_faults_buffer_memory = p->numa_faults_memory + (2 * nr_node_ids);
83e1d2cd 1604 p->total_numa_faults = 0;
04bb2f94 1605 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1606 }
cbee9f88 1607
8c8a743c
PZ
1608 /*
1609 * First accesses are treated as private, otherwise consider accesses
1610 * to be private if the accessing pid has not changed
1611 */
1612 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1613 priv = 1;
1614 } else {
1615 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1616 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1617 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1618 }
1619
cbee9f88 1620 task_numa_placement(p);
f809ca9a 1621
2739d3ee
RR
1622 /*
1623 * Retry task to preferred node migration periodically, in case it
1624 * case it previously failed, or the scheduler moved us.
1625 */
1626 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1627 numa_migrate_preferred(p);
1628
b32e86b4
IM
1629 if (migrated)
1630 p->numa_pages_migrated += pages;
1631
ff1df896 1632 p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
04bb2f94 1633 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1634}
1635
6e5fb223
PZ
1636static void reset_ptenuma_scan(struct task_struct *p)
1637{
1638 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1639 p->mm->numa_scan_offset = 0;
1640}
1641
cbee9f88
PZ
1642/*
1643 * The expensive part of numa migration is done from task_work context.
1644 * Triggered from task_tick_numa().
1645 */
1646void task_numa_work(struct callback_head *work)
1647{
1648 unsigned long migrate, next_scan, now = jiffies;
1649 struct task_struct *p = current;
1650 struct mm_struct *mm = p->mm;
6e5fb223 1651 struct vm_area_struct *vma;
9f40604c 1652 unsigned long start, end;
598f0ec0 1653 unsigned long nr_pte_updates = 0;
9f40604c 1654 long pages;
cbee9f88
PZ
1655
1656 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1657
1658 work->next = work; /* protect against double add */
1659 /*
1660 * Who cares about NUMA placement when they're dying.
1661 *
1662 * NOTE: make sure not to dereference p->mm before this check,
1663 * exit_task_work() happens _after_ exit_mm() so we could be called
1664 * without p->mm even though we still had it when we enqueued this
1665 * work.
1666 */
1667 if (p->flags & PF_EXITING)
1668 return;
1669
930aa174 1670 if (!mm->numa_next_scan) {
7e8d16b6
MG
1671 mm->numa_next_scan = now +
1672 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1673 }
1674
cbee9f88
PZ
1675 /*
1676 * Enforce maximal scan/migration frequency..
1677 */
1678 migrate = mm->numa_next_scan;
1679 if (time_before(now, migrate))
1680 return;
1681
598f0ec0
MG
1682 if (p->numa_scan_period == 0) {
1683 p->numa_scan_period_max = task_scan_max(p);
1684 p->numa_scan_period = task_scan_min(p);
1685 }
cbee9f88 1686
fb003b80 1687 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1688 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1689 return;
1690
19a78d11
PZ
1691 /*
1692 * Delay this task enough that another task of this mm will likely win
1693 * the next time around.
1694 */
1695 p->node_stamp += 2 * TICK_NSEC;
1696
9f40604c
MG
1697 start = mm->numa_scan_offset;
1698 pages = sysctl_numa_balancing_scan_size;
1699 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1700 if (!pages)
1701 return;
cbee9f88 1702
6e5fb223 1703 down_read(&mm->mmap_sem);
9f40604c 1704 vma = find_vma(mm, start);
6e5fb223
PZ
1705 if (!vma) {
1706 reset_ptenuma_scan(p);
9f40604c 1707 start = 0;
6e5fb223
PZ
1708 vma = mm->mmap;
1709 }
9f40604c 1710 for (; vma; vma = vma->vm_next) {
fc314724 1711 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1712 continue;
1713
4591ce4f
MG
1714 /*
1715 * Shared library pages mapped by multiple processes are not
1716 * migrated as it is expected they are cache replicated. Avoid
1717 * hinting faults in read-only file-backed mappings or the vdso
1718 * as migrating the pages will be of marginal benefit.
1719 */
1720 if (!vma->vm_mm ||
1721 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1722 continue;
1723
3c67f474
MG
1724 /*
1725 * Skip inaccessible VMAs to avoid any confusion between
1726 * PROT_NONE and NUMA hinting ptes
1727 */
1728 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1729 continue;
4591ce4f 1730
9f40604c
MG
1731 do {
1732 start = max(start, vma->vm_start);
1733 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1734 end = min(end, vma->vm_end);
598f0ec0
MG
1735 nr_pte_updates += change_prot_numa(vma, start, end);
1736
1737 /*
1738 * Scan sysctl_numa_balancing_scan_size but ensure that
1739 * at least one PTE is updated so that unused virtual
1740 * address space is quickly skipped.
1741 */
1742 if (nr_pte_updates)
1743 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1744
9f40604c
MG
1745 start = end;
1746 if (pages <= 0)
1747 goto out;
1748 } while (end != vma->vm_end);
cbee9f88 1749 }
6e5fb223 1750
9f40604c 1751out:
6e5fb223 1752 /*
c69307d5
PZ
1753 * It is possible to reach the end of the VMA list but the last few
1754 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1755 * would find the !migratable VMA on the next scan but not reset the
1756 * scanner to the start so check it now.
6e5fb223
PZ
1757 */
1758 if (vma)
9f40604c 1759 mm->numa_scan_offset = start;
6e5fb223
PZ
1760 else
1761 reset_ptenuma_scan(p);
1762 up_read(&mm->mmap_sem);
cbee9f88
PZ
1763}
1764
1765/*
1766 * Drive the periodic memory faults..
1767 */
1768void task_tick_numa(struct rq *rq, struct task_struct *curr)
1769{
1770 struct callback_head *work = &curr->numa_work;
1771 u64 period, now;
1772
1773 /*
1774 * We don't care about NUMA placement if we don't have memory.
1775 */
1776 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1777 return;
1778
1779 /*
1780 * Using runtime rather than walltime has the dual advantage that
1781 * we (mostly) drive the selection from busy threads and that the
1782 * task needs to have done some actual work before we bother with
1783 * NUMA placement.
1784 */
1785 now = curr->se.sum_exec_runtime;
1786 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1787
1788 if (now - curr->node_stamp > period) {
4b96a29b 1789 if (!curr->node_stamp)
598f0ec0 1790 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1791 curr->node_stamp += period;
cbee9f88
PZ
1792
1793 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1794 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1795 task_work_add(curr, work, true);
1796 }
1797 }
1798}
1799#else
1800static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1801{
1802}
0ec8aa00
PZ
1803
1804static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1805{
1806}
1807
1808static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1809{
1810}
cbee9f88
PZ
1811#endif /* CONFIG_NUMA_BALANCING */
1812
30cfdcfc
DA
1813static void
1814account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1815{
1816 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1817 if (!parent_entity(se))
029632fb 1818 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1819#ifdef CONFIG_SMP
0ec8aa00
PZ
1820 if (entity_is_task(se)) {
1821 struct rq *rq = rq_of(cfs_rq);
1822
1823 account_numa_enqueue(rq, task_of(se));
1824 list_add(&se->group_node, &rq->cfs_tasks);
1825 }
367456c7 1826#endif
30cfdcfc 1827 cfs_rq->nr_running++;
30cfdcfc
DA
1828}
1829
1830static void
1831account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1834 if (!parent_entity(se))
029632fb 1835 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1836 if (entity_is_task(se)) {
1837 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1838 list_del_init(&se->group_node);
0ec8aa00 1839 }
30cfdcfc 1840 cfs_rq->nr_running--;
30cfdcfc
DA
1841}
1842
3ff6dcac
YZ
1843#ifdef CONFIG_FAIR_GROUP_SCHED
1844# ifdef CONFIG_SMP
cf5f0acf
PZ
1845static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1846{
1847 long tg_weight;
1848
1849 /*
1850 * Use this CPU's actual weight instead of the last load_contribution
1851 * to gain a more accurate current total weight. See
1852 * update_cfs_rq_load_contribution().
1853 */
bf5b986e 1854 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1855 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1856 tg_weight += cfs_rq->load.weight;
1857
1858 return tg_weight;
1859}
1860
6d5ab293 1861static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1862{
cf5f0acf 1863 long tg_weight, load, shares;
3ff6dcac 1864
cf5f0acf 1865 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1866 load = cfs_rq->load.weight;
3ff6dcac 1867
3ff6dcac 1868 shares = (tg->shares * load);
cf5f0acf
PZ
1869 if (tg_weight)
1870 shares /= tg_weight;
3ff6dcac
YZ
1871
1872 if (shares < MIN_SHARES)
1873 shares = MIN_SHARES;
1874 if (shares > tg->shares)
1875 shares = tg->shares;
1876
1877 return shares;
1878}
3ff6dcac 1879# else /* CONFIG_SMP */
6d5ab293 1880static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1881{
1882 return tg->shares;
1883}
3ff6dcac 1884# endif /* CONFIG_SMP */
2069dd75
PZ
1885static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1886 unsigned long weight)
1887{
19e5eebb
PT
1888 if (se->on_rq) {
1889 /* commit outstanding execution time */
1890 if (cfs_rq->curr == se)
1891 update_curr(cfs_rq);
2069dd75 1892 account_entity_dequeue(cfs_rq, se);
19e5eebb 1893 }
2069dd75
PZ
1894
1895 update_load_set(&se->load, weight);
1896
1897 if (se->on_rq)
1898 account_entity_enqueue(cfs_rq, se);
1899}
1900
82958366
PT
1901static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1902
6d5ab293 1903static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1904{
1905 struct task_group *tg;
1906 struct sched_entity *se;
3ff6dcac 1907 long shares;
2069dd75 1908
2069dd75
PZ
1909 tg = cfs_rq->tg;
1910 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1911 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1912 return;
3ff6dcac
YZ
1913#ifndef CONFIG_SMP
1914 if (likely(se->load.weight == tg->shares))
1915 return;
1916#endif
6d5ab293 1917 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1918
1919 reweight_entity(cfs_rq_of(se), se, shares);
1920}
1921#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1922static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1923{
1924}
1925#endif /* CONFIG_FAIR_GROUP_SCHED */
1926
141965c7 1927#ifdef CONFIG_SMP
5b51f2f8
PT
1928/*
1929 * We choose a half-life close to 1 scheduling period.
1930 * Note: The tables below are dependent on this value.
1931 */
1932#define LOAD_AVG_PERIOD 32
1933#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1934#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1935
1936/* Precomputed fixed inverse multiplies for multiplication by y^n */
1937static const u32 runnable_avg_yN_inv[] = {
1938 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1939 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1940 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1941 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1942 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1943 0x85aac367, 0x82cd8698,
1944};
1945
1946/*
1947 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1948 * over-estimates when re-combining.
1949 */
1950static const u32 runnable_avg_yN_sum[] = {
1951 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1952 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1953 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1954};
1955
9d85f21c
PT
1956/*
1957 * Approximate:
1958 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1959 */
1960static __always_inline u64 decay_load(u64 val, u64 n)
1961{
5b51f2f8
PT
1962 unsigned int local_n;
1963
1964 if (!n)
1965 return val;
1966 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1967 return 0;
1968
1969 /* after bounds checking we can collapse to 32-bit */
1970 local_n = n;
1971
1972 /*
1973 * As y^PERIOD = 1/2, we can combine
1974 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1975 * With a look-up table which covers k^n (n<PERIOD)
1976 *
1977 * To achieve constant time decay_load.
1978 */
1979 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1980 val >>= local_n / LOAD_AVG_PERIOD;
1981 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1982 }
1983
5b51f2f8
PT
1984 val *= runnable_avg_yN_inv[local_n];
1985 /* We don't use SRR here since we always want to round down. */
1986 return val >> 32;
1987}
1988
1989/*
1990 * For updates fully spanning n periods, the contribution to runnable
1991 * average will be: \Sum 1024*y^n
1992 *
1993 * We can compute this reasonably efficiently by combining:
1994 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1995 */
1996static u32 __compute_runnable_contrib(u64 n)
1997{
1998 u32 contrib = 0;
1999
2000 if (likely(n <= LOAD_AVG_PERIOD))
2001 return runnable_avg_yN_sum[n];
2002 else if (unlikely(n >= LOAD_AVG_MAX_N))
2003 return LOAD_AVG_MAX;
2004
2005 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2006 do {
2007 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2008 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2009
2010 n -= LOAD_AVG_PERIOD;
2011 } while (n > LOAD_AVG_PERIOD);
2012
2013 contrib = decay_load(contrib, n);
2014 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2015}
2016
2017/*
2018 * We can represent the historical contribution to runnable average as the
2019 * coefficients of a geometric series. To do this we sub-divide our runnable
2020 * history into segments of approximately 1ms (1024us); label the segment that
2021 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2022 *
2023 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2024 * p0 p1 p2
2025 * (now) (~1ms ago) (~2ms ago)
2026 *
2027 * Let u_i denote the fraction of p_i that the entity was runnable.
2028 *
2029 * We then designate the fractions u_i as our co-efficients, yielding the
2030 * following representation of historical load:
2031 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2032 *
2033 * We choose y based on the with of a reasonably scheduling period, fixing:
2034 * y^32 = 0.5
2035 *
2036 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2037 * approximately half as much as the contribution to load within the last ms
2038 * (u_0).
2039 *
2040 * When a period "rolls over" and we have new u_0`, multiplying the previous
2041 * sum again by y is sufficient to update:
2042 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2043 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2044 */
2045static __always_inline int __update_entity_runnable_avg(u64 now,
2046 struct sched_avg *sa,
2047 int runnable)
2048{
5b51f2f8
PT
2049 u64 delta, periods;
2050 u32 runnable_contrib;
9d85f21c
PT
2051 int delta_w, decayed = 0;
2052
2053 delta = now - sa->last_runnable_update;
2054 /*
2055 * This should only happen when time goes backwards, which it
2056 * unfortunately does during sched clock init when we swap over to TSC.
2057 */
2058 if ((s64)delta < 0) {
2059 sa->last_runnable_update = now;
2060 return 0;
2061 }
2062
2063 /*
2064 * Use 1024ns as the unit of measurement since it's a reasonable
2065 * approximation of 1us and fast to compute.
2066 */
2067 delta >>= 10;
2068 if (!delta)
2069 return 0;
2070 sa->last_runnable_update = now;
2071
2072 /* delta_w is the amount already accumulated against our next period */
2073 delta_w = sa->runnable_avg_period % 1024;
2074 if (delta + delta_w >= 1024) {
2075 /* period roll-over */
2076 decayed = 1;
2077
2078 /*
2079 * Now that we know we're crossing a period boundary, figure
2080 * out how much from delta we need to complete the current
2081 * period and accrue it.
2082 */
2083 delta_w = 1024 - delta_w;
5b51f2f8
PT
2084 if (runnable)
2085 sa->runnable_avg_sum += delta_w;
2086 sa->runnable_avg_period += delta_w;
2087
2088 delta -= delta_w;
2089
2090 /* Figure out how many additional periods this update spans */
2091 periods = delta / 1024;
2092 delta %= 1024;
2093
2094 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2095 periods + 1);
2096 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2097 periods + 1);
2098
2099 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2100 runnable_contrib = __compute_runnable_contrib(periods);
2101 if (runnable)
2102 sa->runnable_avg_sum += runnable_contrib;
2103 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2104 }
2105
2106 /* Remainder of delta accrued against u_0` */
2107 if (runnable)
2108 sa->runnable_avg_sum += delta;
2109 sa->runnable_avg_period += delta;
2110
2111 return decayed;
2112}
2113
9ee474f5 2114/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2115static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2116{
2117 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2118 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2119
2120 decays -= se->avg.decay_count;
2121 if (!decays)
aff3e498 2122 return 0;
9ee474f5
PT
2123
2124 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2125 se->avg.decay_count = 0;
aff3e498
PT
2126
2127 return decays;
9ee474f5
PT
2128}
2129
c566e8e9
PT
2130#ifdef CONFIG_FAIR_GROUP_SCHED
2131static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2132 int force_update)
2133{
2134 struct task_group *tg = cfs_rq->tg;
bf5b986e 2135 long tg_contrib;
c566e8e9
PT
2136
2137 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2138 tg_contrib -= cfs_rq->tg_load_contrib;
2139
bf5b986e
AS
2140 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2141 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2142 cfs_rq->tg_load_contrib += tg_contrib;
2143 }
2144}
8165e145 2145
bb17f655
PT
2146/*
2147 * Aggregate cfs_rq runnable averages into an equivalent task_group
2148 * representation for computing load contributions.
2149 */
2150static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2151 struct cfs_rq *cfs_rq)
2152{
2153 struct task_group *tg = cfs_rq->tg;
2154 long contrib;
2155
2156 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2157 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2158 sa->runnable_avg_period + 1);
2159 contrib -= cfs_rq->tg_runnable_contrib;
2160
2161 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2162 atomic_add(contrib, &tg->runnable_avg);
2163 cfs_rq->tg_runnable_contrib += contrib;
2164 }
2165}
2166
8165e145
PT
2167static inline void __update_group_entity_contrib(struct sched_entity *se)
2168{
2169 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2170 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2171 int runnable_avg;
2172
8165e145
PT
2173 u64 contrib;
2174
2175 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2176 se->avg.load_avg_contrib = div_u64(contrib,
2177 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2178
2179 /*
2180 * For group entities we need to compute a correction term in the case
2181 * that they are consuming <1 cpu so that we would contribute the same
2182 * load as a task of equal weight.
2183 *
2184 * Explicitly co-ordinating this measurement would be expensive, but
2185 * fortunately the sum of each cpus contribution forms a usable
2186 * lower-bound on the true value.
2187 *
2188 * Consider the aggregate of 2 contributions. Either they are disjoint
2189 * (and the sum represents true value) or they are disjoint and we are
2190 * understating by the aggregate of their overlap.
2191 *
2192 * Extending this to N cpus, for a given overlap, the maximum amount we
2193 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2194 * cpus that overlap for this interval and w_i is the interval width.
2195 *
2196 * On a small machine; the first term is well-bounded which bounds the
2197 * total error since w_i is a subset of the period. Whereas on a
2198 * larger machine, while this first term can be larger, if w_i is the
2199 * of consequential size guaranteed to see n_i*w_i quickly converge to
2200 * our upper bound of 1-cpu.
2201 */
2202 runnable_avg = atomic_read(&tg->runnable_avg);
2203 if (runnable_avg < NICE_0_LOAD) {
2204 se->avg.load_avg_contrib *= runnable_avg;
2205 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2206 }
8165e145 2207}
c566e8e9
PT
2208#else
2209static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2210 int force_update) {}
bb17f655
PT
2211static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2212 struct cfs_rq *cfs_rq) {}
8165e145 2213static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2214#endif
2215
8165e145
PT
2216static inline void __update_task_entity_contrib(struct sched_entity *se)
2217{
2218 u32 contrib;
2219
2220 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2221 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2222 contrib /= (se->avg.runnable_avg_period + 1);
2223 se->avg.load_avg_contrib = scale_load(contrib);
2224}
2225
2dac754e
PT
2226/* Compute the current contribution to load_avg by se, return any delta */
2227static long __update_entity_load_avg_contrib(struct sched_entity *se)
2228{
2229 long old_contrib = se->avg.load_avg_contrib;
2230
8165e145
PT
2231 if (entity_is_task(se)) {
2232 __update_task_entity_contrib(se);
2233 } else {
bb17f655 2234 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2235 __update_group_entity_contrib(se);
2236 }
2dac754e
PT
2237
2238 return se->avg.load_avg_contrib - old_contrib;
2239}
2240
9ee474f5
PT
2241static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2242 long load_contrib)
2243{
2244 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2245 cfs_rq->blocked_load_avg -= load_contrib;
2246 else
2247 cfs_rq->blocked_load_avg = 0;
2248}
2249
f1b17280
PT
2250static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2251
9d85f21c 2252/* Update a sched_entity's runnable average */
9ee474f5
PT
2253static inline void update_entity_load_avg(struct sched_entity *se,
2254 int update_cfs_rq)
9d85f21c 2255{
2dac754e
PT
2256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2257 long contrib_delta;
f1b17280 2258 u64 now;
2dac754e 2259
f1b17280
PT
2260 /*
2261 * For a group entity we need to use their owned cfs_rq_clock_task() in
2262 * case they are the parent of a throttled hierarchy.
2263 */
2264 if (entity_is_task(se))
2265 now = cfs_rq_clock_task(cfs_rq);
2266 else
2267 now = cfs_rq_clock_task(group_cfs_rq(se));
2268
2269 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2270 return;
2271
2272 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2273
2274 if (!update_cfs_rq)
2275 return;
2276
2dac754e
PT
2277 if (se->on_rq)
2278 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2279 else
2280 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2281}
2282
2283/*
2284 * Decay the load contributed by all blocked children and account this so that
2285 * their contribution may appropriately discounted when they wake up.
2286 */
aff3e498 2287static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2288{
f1b17280 2289 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2290 u64 decays;
2291
2292 decays = now - cfs_rq->last_decay;
aff3e498 2293 if (!decays && !force_update)
9ee474f5
PT
2294 return;
2295
2509940f
AS
2296 if (atomic_long_read(&cfs_rq->removed_load)) {
2297 unsigned long removed_load;
2298 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2299 subtract_blocked_load_contrib(cfs_rq, removed_load);
2300 }
9ee474f5 2301
aff3e498
PT
2302 if (decays) {
2303 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2304 decays);
2305 atomic64_add(decays, &cfs_rq->decay_counter);
2306 cfs_rq->last_decay = now;
2307 }
c566e8e9
PT
2308
2309 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2310}
18bf2805
BS
2311
2312static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2313{
78becc27 2314 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2315 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2316}
2dac754e
PT
2317
2318/* Add the load generated by se into cfs_rq's child load-average */
2319static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2320 struct sched_entity *se,
2321 int wakeup)
2dac754e 2322{
aff3e498
PT
2323 /*
2324 * We track migrations using entity decay_count <= 0, on a wake-up
2325 * migration we use a negative decay count to track the remote decays
2326 * accumulated while sleeping.
a75cdaa9
AS
2327 *
2328 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2329 * are seen by enqueue_entity_load_avg() as a migration with an already
2330 * constructed load_avg_contrib.
aff3e498
PT
2331 */
2332 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2333 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2334 if (se->avg.decay_count) {
2335 /*
2336 * In a wake-up migration we have to approximate the
2337 * time sleeping. This is because we can't synchronize
2338 * clock_task between the two cpus, and it is not
2339 * guaranteed to be read-safe. Instead, we can
2340 * approximate this using our carried decays, which are
2341 * explicitly atomically readable.
2342 */
2343 se->avg.last_runnable_update -= (-se->avg.decay_count)
2344 << 20;
2345 update_entity_load_avg(se, 0);
2346 /* Indicate that we're now synchronized and on-rq */
2347 se->avg.decay_count = 0;
2348 }
9ee474f5
PT
2349 wakeup = 0;
2350 } else {
9390675a 2351 __synchronize_entity_decay(se);
9ee474f5
PT
2352 }
2353
aff3e498
PT
2354 /* migrated tasks did not contribute to our blocked load */
2355 if (wakeup) {
9ee474f5 2356 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2357 update_entity_load_avg(se, 0);
2358 }
9ee474f5 2359
2dac754e 2360 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2361 /* we force update consideration on load-balancer moves */
2362 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2363}
2364
9ee474f5
PT
2365/*
2366 * Remove se's load from this cfs_rq child load-average, if the entity is
2367 * transitioning to a blocked state we track its projected decay using
2368 * blocked_load_avg.
2369 */
2dac754e 2370static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2371 struct sched_entity *se,
2372 int sleep)
2dac754e 2373{
9ee474f5 2374 update_entity_load_avg(se, 1);
aff3e498
PT
2375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2377
2dac754e 2378 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2379 if (sleep) {
2380 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2381 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2382 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2383}
642dbc39
VG
2384
2385/*
2386 * Update the rq's load with the elapsed running time before entering
2387 * idle. if the last scheduled task is not a CFS task, idle_enter will
2388 * be the only way to update the runnable statistic.
2389 */
2390void idle_enter_fair(struct rq *this_rq)
2391{
2392 update_rq_runnable_avg(this_rq, 1);
2393}
2394
2395/*
2396 * Update the rq's load with the elapsed idle time before a task is
2397 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2398 * be the only way to update the runnable statistic.
2399 */
2400void idle_exit_fair(struct rq *this_rq)
2401{
2402 update_rq_runnable_avg(this_rq, 0);
2403}
2404
9d85f21c 2405#else
9ee474f5
PT
2406static inline void update_entity_load_avg(struct sched_entity *se,
2407 int update_cfs_rq) {}
18bf2805 2408static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2409static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2410 struct sched_entity *se,
2411 int wakeup) {}
2dac754e 2412static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2413 struct sched_entity *se,
2414 int sleep) {}
aff3e498
PT
2415static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2416 int force_update) {}
9d85f21c
PT
2417#endif
2418
2396af69 2419static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2420{
bf0f6f24 2421#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2422 struct task_struct *tsk = NULL;
2423
2424 if (entity_is_task(se))
2425 tsk = task_of(se);
2426
41acab88 2427 if (se->statistics.sleep_start) {
78becc27 2428 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2429
2430 if ((s64)delta < 0)
2431 delta = 0;
2432
41acab88
LDM
2433 if (unlikely(delta > se->statistics.sleep_max))
2434 se->statistics.sleep_max = delta;
bf0f6f24 2435
8c79a045 2436 se->statistics.sleep_start = 0;
41acab88 2437 se->statistics.sum_sleep_runtime += delta;
9745512c 2438
768d0c27 2439 if (tsk) {
e414314c 2440 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2441 trace_sched_stat_sleep(tsk, delta);
2442 }
bf0f6f24 2443 }
41acab88 2444 if (se->statistics.block_start) {
78becc27 2445 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2446
2447 if ((s64)delta < 0)
2448 delta = 0;
2449
41acab88
LDM
2450 if (unlikely(delta > se->statistics.block_max))
2451 se->statistics.block_max = delta;
bf0f6f24 2452
8c79a045 2453 se->statistics.block_start = 0;
41acab88 2454 se->statistics.sum_sleep_runtime += delta;
30084fbd 2455
e414314c 2456 if (tsk) {
8f0dfc34 2457 if (tsk->in_iowait) {
41acab88
LDM
2458 se->statistics.iowait_sum += delta;
2459 se->statistics.iowait_count++;
768d0c27 2460 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2461 }
2462
b781a602
AV
2463 trace_sched_stat_blocked(tsk, delta);
2464
e414314c
PZ
2465 /*
2466 * Blocking time is in units of nanosecs, so shift by
2467 * 20 to get a milliseconds-range estimation of the
2468 * amount of time that the task spent sleeping:
2469 */
2470 if (unlikely(prof_on == SLEEP_PROFILING)) {
2471 profile_hits(SLEEP_PROFILING,
2472 (void *)get_wchan(tsk),
2473 delta >> 20);
2474 }
2475 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2476 }
bf0f6f24
IM
2477 }
2478#endif
2479}
2480
ddc97297
PZ
2481static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2482{
2483#ifdef CONFIG_SCHED_DEBUG
2484 s64 d = se->vruntime - cfs_rq->min_vruntime;
2485
2486 if (d < 0)
2487 d = -d;
2488
2489 if (d > 3*sysctl_sched_latency)
2490 schedstat_inc(cfs_rq, nr_spread_over);
2491#endif
2492}
2493
aeb73b04
PZ
2494static void
2495place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2496{
1af5f730 2497 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2498
2cb8600e
PZ
2499 /*
2500 * The 'current' period is already promised to the current tasks,
2501 * however the extra weight of the new task will slow them down a
2502 * little, place the new task so that it fits in the slot that
2503 * stays open at the end.
2504 */
94dfb5e7 2505 if (initial && sched_feat(START_DEBIT))
f9c0b095 2506 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2507
a2e7a7eb 2508 /* sleeps up to a single latency don't count. */
5ca9880c 2509 if (!initial) {
a2e7a7eb 2510 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2511
a2e7a7eb
MG
2512 /*
2513 * Halve their sleep time's effect, to allow
2514 * for a gentler effect of sleepers:
2515 */
2516 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2517 thresh >>= 1;
51e0304c 2518
a2e7a7eb 2519 vruntime -= thresh;
aeb73b04
PZ
2520 }
2521
b5d9d734 2522 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2523 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2524}
2525
d3d9dc33
PT
2526static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2527
bf0f6f24 2528static void
88ec22d3 2529enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2530{
88ec22d3
PZ
2531 /*
2532 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2533 * through calling update_curr().
88ec22d3 2534 */
371fd7e7 2535 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2536 se->vruntime += cfs_rq->min_vruntime;
2537
bf0f6f24 2538 /*
a2a2d680 2539 * Update run-time statistics of the 'current'.
bf0f6f24 2540 */
b7cc0896 2541 update_curr(cfs_rq);
f269ae04 2542 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2543 account_entity_enqueue(cfs_rq, se);
2544 update_cfs_shares(cfs_rq);
bf0f6f24 2545
88ec22d3 2546 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2547 place_entity(cfs_rq, se, 0);
2396af69 2548 enqueue_sleeper(cfs_rq, se);
e9acbff6 2549 }
bf0f6f24 2550
d2417e5a 2551 update_stats_enqueue(cfs_rq, se);
ddc97297 2552 check_spread(cfs_rq, se);
83b699ed
SV
2553 if (se != cfs_rq->curr)
2554 __enqueue_entity(cfs_rq, se);
2069dd75 2555 se->on_rq = 1;
3d4b47b4 2556
d3d9dc33 2557 if (cfs_rq->nr_running == 1) {
3d4b47b4 2558 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2559 check_enqueue_throttle(cfs_rq);
2560 }
bf0f6f24
IM
2561}
2562
2c13c919 2563static void __clear_buddies_last(struct sched_entity *se)
2002c695 2564{
2c13c919
RR
2565 for_each_sched_entity(se) {
2566 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2567 if (cfs_rq->last == se)
2568 cfs_rq->last = NULL;
2569 else
2570 break;
2571 }
2572}
2002c695 2573
2c13c919
RR
2574static void __clear_buddies_next(struct sched_entity *se)
2575{
2576 for_each_sched_entity(se) {
2577 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2578 if (cfs_rq->next == se)
2579 cfs_rq->next = NULL;
2580 else
2581 break;
2582 }
2002c695
PZ
2583}
2584
ac53db59
RR
2585static void __clear_buddies_skip(struct sched_entity *se)
2586{
2587 for_each_sched_entity(se) {
2588 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2589 if (cfs_rq->skip == se)
2590 cfs_rq->skip = NULL;
2591 else
2592 break;
2593 }
2594}
2595
a571bbea
PZ
2596static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2597{
2c13c919
RR
2598 if (cfs_rq->last == se)
2599 __clear_buddies_last(se);
2600
2601 if (cfs_rq->next == se)
2602 __clear_buddies_next(se);
ac53db59
RR
2603
2604 if (cfs_rq->skip == se)
2605 __clear_buddies_skip(se);
a571bbea
PZ
2606}
2607
6c16a6dc 2608static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2609
bf0f6f24 2610static void
371fd7e7 2611dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2612{
a2a2d680
DA
2613 /*
2614 * Update run-time statistics of the 'current'.
2615 */
2616 update_curr(cfs_rq);
17bc14b7 2617 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2618
19b6a2e3 2619 update_stats_dequeue(cfs_rq, se);
371fd7e7 2620 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2621#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2622 if (entity_is_task(se)) {
2623 struct task_struct *tsk = task_of(se);
2624
2625 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2626 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2627 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2628 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2629 }
db36cc7d 2630#endif
67e9fb2a
PZ
2631 }
2632
2002c695 2633 clear_buddies(cfs_rq, se);
4793241b 2634
83b699ed 2635 if (se != cfs_rq->curr)
30cfdcfc 2636 __dequeue_entity(cfs_rq, se);
17bc14b7 2637 se->on_rq = 0;
30cfdcfc 2638 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2639
2640 /*
2641 * Normalize the entity after updating the min_vruntime because the
2642 * update can refer to the ->curr item and we need to reflect this
2643 * movement in our normalized position.
2644 */
371fd7e7 2645 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2646 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2647
d8b4986d
PT
2648 /* return excess runtime on last dequeue */
2649 return_cfs_rq_runtime(cfs_rq);
2650
1e876231 2651 update_min_vruntime(cfs_rq);
17bc14b7 2652 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2653}
2654
2655/*
2656 * Preempt the current task with a newly woken task if needed:
2657 */
7c92e54f 2658static void
2e09bf55 2659check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2660{
11697830 2661 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2662 struct sched_entity *se;
2663 s64 delta;
11697830 2664
6d0f0ebd 2665 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2666 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2667 if (delta_exec > ideal_runtime) {
bf0f6f24 2668 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2669 /*
2670 * The current task ran long enough, ensure it doesn't get
2671 * re-elected due to buddy favours.
2672 */
2673 clear_buddies(cfs_rq, curr);
f685ceac
MG
2674 return;
2675 }
2676
2677 /*
2678 * Ensure that a task that missed wakeup preemption by a
2679 * narrow margin doesn't have to wait for a full slice.
2680 * This also mitigates buddy induced latencies under load.
2681 */
f685ceac
MG
2682 if (delta_exec < sysctl_sched_min_granularity)
2683 return;
2684
f4cfb33e
WX
2685 se = __pick_first_entity(cfs_rq);
2686 delta = curr->vruntime - se->vruntime;
f685ceac 2687
f4cfb33e
WX
2688 if (delta < 0)
2689 return;
d7d82944 2690
f4cfb33e
WX
2691 if (delta > ideal_runtime)
2692 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2693}
2694
83b699ed 2695static void
8494f412 2696set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2697{
83b699ed
SV
2698 /* 'current' is not kept within the tree. */
2699 if (se->on_rq) {
2700 /*
2701 * Any task has to be enqueued before it get to execute on
2702 * a CPU. So account for the time it spent waiting on the
2703 * runqueue.
2704 */
2705 update_stats_wait_end(cfs_rq, se);
2706 __dequeue_entity(cfs_rq, se);
2707 }
2708
79303e9e 2709 update_stats_curr_start(cfs_rq, se);
429d43bc 2710 cfs_rq->curr = se;
eba1ed4b
IM
2711#ifdef CONFIG_SCHEDSTATS
2712 /*
2713 * Track our maximum slice length, if the CPU's load is at
2714 * least twice that of our own weight (i.e. dont track it
2715 * when there are only lesser-weight tasks around):
2716 */
495eca49 2717 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2718 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2719 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2720 }
2721#endif
4a55b450 2722 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2723}
2724
3f3a4904
PZ
2725static int
2726wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2727
ac53db59
RR
2728/*
2729 * Pick the next process, keeping these things in mind, in this order:
2730 * 1) keep things fair between processes/task groups
2731 * 2) pick the "next" process, since someone really wants that to run
2732 * 3) pick the "last" process, for cache locality
2733 * 4) do not run the "skip" process, if something else is available
2734 */
f4b6755f 2735static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2736{
ac53db59 2737 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2738 struct sched_entity *left = se;
f4b6755f 2739
ac53db59
RR
2740 /*
2741 * Avoid running the skip buddy, if running something else can
2742 * be done without getting too unfair.
2743 */
2744 if (cfs_rq->skip == se) {
2745 struct sched_entity *second = __pick_next_entity(se);
2746 if (second && wakeup_preempt_entity(second, left) < 1)
2747 se = second;
2748 }
aa2ac252 2749
f685ceac
MG
2750 /*
2751 * Prefer last buddy, try to return the CPU to a preempted task.
2752 */
2753 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2754 se = cfs_rq->last;
2755
ac53db59
RR
2756 /*
2757 * Someone really wants this to run. If it's not unfair, run it.
2758 */
2759 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2760 se = cfs_rq->next;
2761
f685ceac 2762 clear_buddies(cfs_rq, se);
4793241b
PZ
2763
2764 return se;
aa2ac252
PZ
2765}
2766
d3d9dc33
PT
2767static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2768
ab6cde26 2769static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2770{
2771 /*
2772 * If still on the runqueue then deactivate_task()
2773 * was not called and update_curr() has to be done:
2774 */
2775 if (prev->on_rq)
b7cc0896 2776 update_curr(cfs_rq);
bf0f6f24 2777
d3d9dc33
PT
2778 /* throttle cfs_rqs exceeding runtime */
2779 check_cfs_rq_runtime(cfs_rq);
2780
ddc97297 2781 check_spread(cfs_rq, prev);
30cfdcfc 2782 if (prev->on_rq) {
5870db5b 2783 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2784 /* Put 'current' back into the tree. */
2785 __enqueue_entity(cfs_rq, prev);
9d85f21c 2786 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2787 update_entity_load_avg(prev, 1);
30cfdcfc 2788 }
429d43bc 2789 cfs_rq->curr = NULL;
bf0f6f24
IM
2790}
2791
8f4d37ec
PZ
2792static void
2793entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2794{
bf0f6f24 2795 /*
30cfdcfc 2796 * Update run-time statistics of the 'current'.
bf0f6f24 2797 */
30cfdcfc 2798 update_curr(cfs_rq);
bf0f6f24 2799
9d85f21c
PT
2800 /*
2801 * Ensure that runnable average is periodically updated.
2802 */
9ee474f5 2803 update_entity_load_avg(curr, 1);
aff3e498 2804 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2805 update_cfs_shares(cfs_rq);
9d85f21c 2806
8f4d37ec
PZ
2807#ifdef CONFIG_SCHED_HRTICK
2808 /*
2809 * queued ticks are scheduled to match the slice, so don't bother
2810 * validating it and just reschedule.
2811 */
983ed7a6
HH
2812 if (queued) {
2813 resched_task(rq_of(cfs_rq)->curr);
2814 return;
2815 }
8f4d37ec
PZ
2816 /*
2817 * don't let the period tick interfere with the hrtick preemption
2818 */
2819 if (!sched_feat(DOUBLE_TICK) &&
2820 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2821 return;
2822#endif
2823
2c2efaed 2824 if (cfs_rq->nr_running > 1)
2e09bf55 2825 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2826}
2827
ab84d31e
PT
2828
2829/**************************************************
2830 * CFS bandwidth control machinery
2831 */
2832
2833#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2834
2835#ifdef HAVE_JUMP_LABEL
c5905afb 2836static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2837
2838static inline bool cfs_bandwidth_used(void)
2839{
c5905afb 2840 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2841}
2842
1ee14e6c 2843void cfs_bandwidth_usage_inc(void)
029632fb 2844{
1ee14e6c
BS
2845 static_key_slow_inc(&__cfs_bandwidth_used);
2846}
2847
2848void cfs_bandwidth_usage_dec(void)
2849{
2850 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2851}
2852#else /* HAVE_JUMP_LABEL */
2853static bool cfs_bandwidth_used(void)
2854{
2855 return true;
2856}
2857
1ee14e6c
BS
2858void cfs_bandwidth_usage_inc(void) {}
2859void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2860#endif /* HAVE_JUMP_LABEL */
2861
ab84d31e
PT
2862/*
2863 * default period for cfs group bandwidth.
2864 * default: 0.1s, units: nanoseconds
2865 */
2866static inline u64 default_cfs_period(void)
2867{
2868 return 100000000ULL;
2869}
ec12cb7f
PT
2870
2871static inline u64 sched_cfs_bandwidth_slice(void)
2872{
2873 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2874}
2875
a9cf55b2
PT
2876/*
2877 * Replenish runtime according to assigned quota and update expiration time.
2878 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2879 * additional synchronization around rq->lock.
2880 *
2881 * requires cfs_b->lock
2882 */
029632fb 2883void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2884{
2885 u64 now;
2886
2887 if (cfs_b->quota == RUNTIME_INF)
2888 return;
2889
2890 now = sched_clock_cpu(smp_processor_id());
2891 cfs_b->runtime = cfs_b->quota;
2892 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2893}
2894
029632fb
PZ
2895static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2896{
2897 return &tg->cfs_bandwidth;
2898}
2899
f1b17280
PT
2900/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2901static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2902{
2903 if (unlikely(cfs_rq->throttle_count))
2904 return cfs_rq->throttled_clock_task;
2905
78becc27 2906 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2907}
2908
85dac906
PT
2909/* returns 0 on failure to allocate runtime */
2910static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2911{
2912 struct task_group *tg = cfs_rq->tg;
2913 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2914 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2915
2916 /* note: this is a positive sum as runtime_remaining <= 0 */
2917 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2918
2919 raw_spin_lock(&cfs_b->lock);
2920 if (cfs_b->quota == RUNTIME_INF)
2921 amount = min_amount;
58088ad0 2922 else {
a9cf55b2
PT
2923 /*
2924 * If the bandwidth pool has become inactive, then at least one
2925 * period must have elapsed since the last consumption.
2926 * Refresh the global state and ensure bandwidth timer becomes
2927 * active.
2928 */
2929 if (!cfs_b->timer_active) {
2930 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2931 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2932 }
58088ad0
PT
2933
2934 if (cfs_b->runtime > 0) {
2935 amount = min(cfs_b->runtime, min_amount);
2936 cfs_b->runtime -= amount;
2937 cfs_b->idle = 0;
2938 }
ec12cb7f 2939 }
a9cf55b2 2940 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2941 raw_spin_unlock(&cfs_b->lock);
2942
2943 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2944 /*
2945 * we may have advanced our local expiration to account for allowed
2946 * spread between our sched_clock and the one on which runtime was
2947 * issued.
2948 */
2949 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2950 cfs_rq->runtime_expires = expires;
85dac906
PT
2951
2952 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2953}
2954
a9cf55b2
PT
2955/*
2956 * Note: This depends on the synchronization provided by sched_clock and the
2957 * fact that rq->clock snapshots this value.
2958 */
2959static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2960{
a9cf55b2 2961 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2962
2963 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2964 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2965 return;
2966
a9cf55b2
PT
2967 if (cfs_rq->runtime_remaining < 0)
2968 return;
2969
2970 /*
2971 * If the local deadline has passed we have to consider the
2972 * possibility that our sched_clock is 'fast' and the global deadline
2973 * has not truly expired.
2974 *
2975 * Fortunately we can check determine whether this the case by checking
2976 * whether the global deadline has advanced.
2977 */
2978
2979 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2980 /* extend local deadline, drift is bounded above by 2 ticks */
2981 cfs_rq->runtime_expires += TICK_NSEC;
2982 } else {
2983 /* global deadline is ahead, expiration has passed */
2984 cfs_rq->runtime_remaining = 0;
2985 }
2986}
2987
9dbdb155 2988static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
2989{
2990 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2991 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2992 expire_cfs_rq_runtime(cfs_rq);
2993
2994 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2995 return;
2996
85dac906
PT
2997 /*
2998 * if we're unable to extend our runtime we resched so that the active
2999 * hierarchy can be throttled
3000 */
3001 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3002 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3003}
3004
6c16a6dc 3005static __always_inline
9dbdb155 3006void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3007{
56f570e5 3008 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3009 return;
3010
3011 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3012}
3013
85dac906
PT
3014static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3015{
56f570e5 3016 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3017}
3018
64660c86
PT
3019/* check whether cfs_rq, or any parent, is throttled */
3020static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3021{
56f570e5 3022 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3023}
3024
3025/*
3026 * Ensure that neither of the group entities corresponding to src_cpu or
3027 * dest_cpu are members of a throttled hierarchy when performing group
3028 * load-balance operations.
3029 */
3030static inline int throttled_lb_pair(struct task_group *tg,
3031 int src_cpu, int dest_cpu)
3032{
3033 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3034
3035 src_cfs_rq = tg->cfs_rq[src_cpu];
3036 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3037
3038 return throttled_hierarchy(src_cfs_rq) ||
3039 throttled_hierarchy(dest_cfs_rq);
3040}
3041
3042/* updated child weight may affect parent so we have to do this bottom up */
3043static int tg_unthrottle_up(struct task_group *tg, void *data)
3044{
3045 struct rq *rq = data;
3046 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3047
3048 cfs_rq->throttle_count--;
3049#ifdef CONFIG_SMP
3050 if (!cfs_rq->throttle_count) {
f1b17280 3051 /* adjust cfs_rq_clock_task() */
78becc27 3052 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3053 cfs_rq->throttled_clock_task;
64660c86
PT
3054 }
3055#endif
3056
3057 return 0;
3058}
3059
3060static int tg_throttle_down(struct task_group *tg, void *data)
3061{
3062 struct rq *rq = data;
3063 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3064
82958366
PT
3065 /* group is entering throttled state, stop time */
3066 if (!cfs_rq->throttle_count)
78becc27 3067 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3068 cfs_rq->throttle_count++;
3069
3070 return 0;
3071}
3072
d3d9dc33 3073static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3074{
3075 struct rq *rq = rq_of(cfs_rq);
3076 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3077 struct sched_entity *se;
3078 long task_delta, dequeue = 1;
3079
3080 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3081
f1b17280 3082 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3083 rcu_read_lock();
3084 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3085 rcu_read_unlock();
85dac906
PT
3086
3087 task_delta = cfs_rq->h_nr_running;
3088 for_each_sched_entity(se) {
3089 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3090 /* throttled entity or throttle-on-deactivate */
3091 if (!se->on_rq)
3092 break;
3093
3094 if (dequeue)
3095 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3096 qcfs_rq->h_nr_running -= task_delta;
3097
3098 if (qcfs_rq->load.weight)
3099 dequeue = 0;
3100 }
3101
3102 if (!se)
3103 rq->nr_running -= task_delta;
3104
3105 cfs_rq->throttled = 1;
78becc27 3106 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3107 raw_spin_lock(&cfs_b->lock);
3108 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3109 if (!cfs_b->timer_active)
3110 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3111 raw_spin_unlock(&cfs_b->lock);
3112}
3113
029632fb 3114void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3115{
3116 struct rq *rq = rq_of(cfs_rq);
3117 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3118 struct sched_entity *se;
3119 int enqueue = 1;
3120 long task_delta;
3121
22b958d8 3122 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3123
3124 cfs_rq->throttled = 0;
1a55af2e
FW
3125
3126 update_rq_clock(rq);
3127
671fd9da 3128 raw_spin_lock(&cfs_b->lock);
78becc27 3129 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3130 list_del_rcu(&cfs_rq->throttled_list);
3131 raw_spin_unlock(&cfs_b->lock);
3132
64660c86
PT
3133 /* update hierarchical throttle state */
3134 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3135
671fd9da
PT
3136 if (!cfs_rq->load.weight)
3137 return;
3138
3139 task_delta = cfs_rq->h_nr_running;
3140 for_each_sched_entity(se) {
3141 if (se->on_rq)
3142 enqueue = 0;
3143
3144 cfs_rq = cfs_rq_of(se);
3145 if (enqueue)
3146 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3147 cfs_rq->h_nr_running += task_delta;
3148
3149 if (cfs_rq_throttled(cfs_rq))
3150 break;
3151 }
3152
3153 if (!se)
3154 rq->nr_running += task_delta;
3155
3156 /* determine whether we need to wake up potentially idle cpu */
3157 if (rq->curr == rq->idle && rq->cfs.nr_running)
3158 resched_task(rq->curr);
3159}
3160
3161static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3162 u64 remaining, u64 expires)
3163{
3164 struct cfs_rq *cfs_rq;
3165 u64 runtime = remaining;
3166
3167 rcu_read_lock();
3168 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3169 throttled_list) {
3170 struct rq *rq = rq_of(cfs_rq);
3171
3172 raw_spin_lock(&rq->lock);
3173 if (!cfs_rq_throttled(cfs_rq))
3174 goto next;
3175
3176 runtime = -cfs_rq->runtime_remaining + 1;
3177 if (runtime > remaining)
3178 runtime = remaining;
3179 remaining -= runtime;
3180
3181 cfs_rq->runtime_remaining += runtime;
3182 cfs_rq->runtime_expires = expires;
3183
3184 /* we check whether we're throttled above */
3185 if (cfs_rq->runtime_remaining > 0)
3186 unthrottle_cfs_rq(cfs_rq);
3187
3188next:
3189 raw_spin_unlock(&rq->lock);
3190
3191 if (!remaining)
3192 break;
3193 }
3194 rcu_read_unlock();
3195
3196 return remaining;
3197}
3198
58088ad0
PT
3199/*
3200 * Responsible for refilling a task_group's bandwidth and unthrottling its
3201 * cfs_rqs as appropriate. If there has been no activity within the last
3202 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3203 * used to track this state.
3204 */
3205static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3206{
671fd9da
PT
3207 u64 runtime, runtime_expires;
3208 int idle = 1, throttled;
58088ad0
PT
3209
3210 raw_spin_lock(&cfs_b->lock);
3211 /* no need to continue the timer with no bandwidth constraint */
3212 if (cfs_b->quota == RUNTIME_INF)
3213 goto out_unlock;
3214
671fd9da
PT
3215 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3216 /* idle depends on !throttled (for the case of a large deficit) */
3217 idle = cfs_b->idle && !throttled;
e8da1b18 3218 cfs_b->nr_periods += overrun;
671fd9da 3219
a9cf55b2
PT
3220 /* if we're going inactive then everything else can be deferred */
3221 if (idle)
3222 goto out_unlock;
3223
927b54fc
BS
3224 /*
3225 * if we have relooped after returning idle once, we need to update our
3226 * status as actually running, so that other cpus doing
3227 * __start_cfs_bandwidth will stop trying to cancel us.
3228 */
3229 cfs_b->timer_active = 1;
3230
a9cf55b2
PT
3231 __refill_cfs_bandwidth_runtime(cfs_b);
3232
671fd9da
PT
3233 if (!throttled) {
3234 /* mark as potentially idle for the upcoming period */
3235 cfs_b->idle = 1;
3236 goto out_unlock;
3237 }
3238
e8da1b18
NR
3239 /* account preceding periods in which throttling occurred */
3240 cfs_b->nr_throttled += overrun;
3241
671fd9da
PT
3242 /*
3243 * There are throttled entities so we must first use the new bandwidth
3244 * to unthrottle them before making it generally available. This
3245 * ensures that all existing debts will be paid before a new cfs_rq is
3246 * allowed to run.
3247 */
3248 runtime = cfs_b->runtime;
3249 runtime_expires = cfs_b->runtime_expires;
3250 cfs_b->runtime = 0;
3251
3252 /*
3253 * This check is repeated as we are holding onto the new bandwidth
3254 * while we unthrottle. This can potentially race with an unthrottled
3255 * group trying to acquire new bandwidth from the global pool.
3256 */
3257 while (throttled && runtime > 0) {
3258 raw_spin_unlock(&cfs_b->lock);
3259 /* we can't nest cfs_b->lock while distributing bandwidth */
3260 runtime = distribute_cfs_runtime(cfs_b, runtime,
3261 runtime_expires);
3262 raw_spin_lock(&cfs_b->lock);
3263
3264 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3265 }
58088ad0 3266
671fd9da
PT
3267 /* return (any) remaining runtime */
3268 cfs_b->runtime = runtime;
3269 /*
3270 * While we are ensured activity in the period following an
3271 * unthrottle, this also covers the case in which the new bandwidth is
3272 * insufficient to cover the existing bandwidth deficit. (Forcing the
3273 * timer to remain active while there are any throttled entities.)
3274 */
3275 cfs_b->idle = 0;
58088ad0
PT
3276out_unlock:
3277 if (idle)
3278 cfs_b->timer_active = 0;
3279 raw_spin_unlock(&cfs_b->lock);
3280
3281 return idle;
3282}
d3d9dc33 3283
d8b4986d
PT
3284/* a cfs_rq won't donate quota below this amount */
3285static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3286/* minimum remaining period time to redistribute slack quota */
3287static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3288/* how long we wait to gather additional slack before distributing */
3289static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3290
db06e78c
BS
3291/*
3292 * Are we near the end of the current quota period?
3293 *
3294 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3295 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3296 * migrate_hrtimers, base is never cleared, so we are fine.
3297 */
d8b4986d
PT
3298static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3299{
3300 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3301 u64 remaining;
3302
3303 /* if the call-back is running a quota refresh is already occurring */
3304 if (hrtimer_callback_running(refresh_timer))
3305 return 1;
3306
3307 /* is a quota refresh about to occur? */
3308 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3309 if (remaining < min_expire)
3310 return 1;
3311
3312 return 0;
3313}
3314
3315static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3316{
3317 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3318
3319 /* if there's a quota refresh soon don't bother with slack */
3320 if (runtime_refresh_within(cfs_b, min_left))
3321 return;
3322
3323 start_bandwidth_timer(&cfs_b->slack_timer,
3324 ns_to_ktime(cfs_bandwidth_slack_period));
3325}
3326
3327/* we know any runtime found here is valid as update_curr() precedes return */
3328static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3329{
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3332
3333 if (slack_runtime <= 0)
3334 return;
3335
3336 raw_spin_lock(&cfs_b->lock);
3337 if (cfs_b->quota != RUNTIME_INF &&
3338 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3339 cfs_b->runtime += slack_runtime;
3340
3341 /* we are under rq->lock, defer unthrottling using a timer */
3342 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3343 !list_empty(&cfs_b->throttled_cfs_rq))
3344 start_cfs_slack_bandwidth(cfs_b);
3345 }
3346 raw_spin_unlock(&cfs_b->lock);
3347
3348 /* even if it's not valid for return we don't want to try again */
3349 cfs_rq->runtime_remaining -= slack_runtime;
3350}
3351
3352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353{
56f570e5
PT
3354 if (!cfs_bandwidth_used())
3355 return;
3356
fccfdc6f 3357 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3358 return;
3359
3360 __return_cfs_rq_runtime(cfs_rq);
3361}
3362
3363/*
3364 * This is done with a timer (instead of inline with bandwidth return) since
3365 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3366 */
3367static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3368{
3369 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3370 u64 expires;
3371
3372 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3373 raw_spin_lock(&cfs_b->lock);
3374 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3375 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3376 return;
db06e78c 3377 }
d8b4986d 3378
d8b4986d
PT
3379 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3380 runtime = cfs_b->runtime;
3381 cfs_b->runtime = 0;
3382 }
3383 expires = cfs_b->runtime_expires;
3384 raw_spin_unlock(&cfs_b->lock);
3385
3386 if (!runtime)
3387 return;
3388
3389 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3390
3391 raw_spin_lock(&cfs_b->lock);
3392 if (expires == cfs_b->runtime_expires)
3393 cfs_b->runtime = runtime;
3394 raw_spin_unlock(&cfs_b->lock);
3395}
3396
d3d9dc33
PT
3397/*
3398 * When a group wakes up we want to make sure that its quota is not already
3399 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3400 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3401 */
3402static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3403{
56f570e5
PT
3404 if (!cfs_bandwidth_used())
3405 return;
3406
d3d9dc33
PT
3407 /* an active group must be handled by the update_curr()->put() path */
3408 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3409 return;
3410
3411 /* ensure the group is not already throttled */
3412 if (cfs_rq_throttled(cfs_rq))
3413 return;
3414
3415 /* update runtime allocation */
3416 account_cfs_rq_runtime(cfs_rq, 0);
3417 if (cfs_rq->runtime_remaining <= 0)
3418 throttle_cfs_rq(cfs_rq);
3419}
3420
3421/* conditionally throttle active cfs_rq's from put_prev_entity() */
3422static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3423{
56f570e5
PT
3424 if (!cfs_bandwidth_used())
3425 return;
3426
d3d9dc33
PT
3427 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3428 return;
3429
3430 /*
3431 * it's possible for a throttled entity to be forced into a running
3432 * state (e.g. set_curr_task), in this case we're finished.
3433 */
3434 if (cfs_rq_throttled(cfs_rq))
3435 return;
3436
3437 throttle_cfs_rq(cfs_rq);
3438}
029632fb 3439
029632fb
PZ
3440static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3441{
3442 struct cfs_bandwidth *cfs_b =
3443 container_of(timer, struct cfs_bandwidth, slack_timer);
3444 do_sched_cfs_slack_timer(cfs_b);
3445
3446 return HRTIMER_NORESTART;
3447}
3448
3449static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3450{
3451 struct cfs_bandwidth *cfs_b =
3452 container_of(timer, struct cfs_bandwidth, period_timer);
3453 ktime_t now;
3454 int overrun;
3455 int idle = 0;
3456
3457 for (;;) {
3458 now = hrtimer_cb_get_time(timer);
3459 overrun = hrtimer_forward(timer, now, cfs_b->period);
3460
3461 if (!overrun)
3462 break;
3463
3464 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3465 }
3466
3467 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3468}
3469
3470void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3471{
3472 raw_spin_lock_init(&cfs_b->lock);
3473 cfs_b->runtime = 0;
3474 cfs_b->quota = RUNTIME_INF;
3475 cfs_b->period = ns_to_ktime(default_cfs_period());
3476
3477 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3478 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3479 cfs_b->period_timer.function = sched_cfs_period_timer;
3480 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3481 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3482}
3483
3484static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3485{
3486 cfs_rq->runtime_enabled = 0;
3487 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3488}
3489
3490/* requires cfs_b->lock, may release to reprogram timer */
3491void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3492{
3493 /*
3494 * The timer may be active because we're trying to set a new bandwidth
3495 * period or because we're racing with the tear-down path
3496 * (timer_active==0 becomes visible before the hrtimer call-back
3497 * terminates). In either case we ensure that it's re-programmed
3498 */
927b54fc
BS
3499 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3500 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3501 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3502 raw_spin_unlock(&cfs_b->lock);
927b54fc 3503 cpu_relax();
029632fb
PZ
3504 raw_spin_lock(&cfs_b->lock);
3505 /* if someone else restarted the timer then we're done */
3506 if (cfs_b->timer_active)
3507 return;
3508 }
3509
3510 cfs_b->timer_active = 1;
3511 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3512}
3513
3514static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3515{
3516 hrtimer_cancel(&cfs_b->period_timer);
3517 hrtimer_cancel(&cfs_b->slack_timer);
3518}
3519
38dc3348 3520static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3521{
3522 struct cfs_rq *cfs_rq;
3523
3524 for_each_leaf_cfs_rq(rq, cfs_rq) {
3525 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3526
3527 if (!cfs_rq->runtime_enabled)
3528 continue;
3529
3530 /*
3531 * clock_task is not advancing so we just need to make sure
3532 * there's some valid quota amount
3533 */
3534 cfs_rq->runtime_remaining = cfs_b->quota;
3535 if (cfs_rq_throttled(cfs_rq))
3536 unthrottle_cfs_rq(cfs_rq);
3537 }
3538}
3539
3540#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3541static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3542{
78becc27 3543 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3544}
3545
9dbdb155 3546static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3547static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3548static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3549static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3550
3551static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3552{
3553 return 0;
3554}
64660c86
PT
3555
3556static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3557{
3558 return 0;
3559}
3560
3561static inline int throttled_lb_pair(struct task_group *tg,
3562 int src_cpu, int dest_cpu)
3563{
3564 return 0;
3565}
029632fb
PZ
3566
3567void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3568
3569#ifdef CONFIG_FAIR_GROUP_SCHED
3570static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3571#endif
3572
029632fb
PZ
3573static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3574{
3575 return NULL;
3576}
3577static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3578static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3579
3580#endif /* CONFIG_CFS_BANDWIDTH */
3581
bf0f6f24
IM
3582/**************************************************
3583 * CFS operations on tasks:
3584 */
3585
8f4d37ec
PZ
3586#ifdef CONFIG_SCHED_HRTICK
3587static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3588{
8f4d37ec
PZ
3589 struct sched_entity *se = &p->se;
3590 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3591
3592 WARN_ON(task_rq(p) != rq);
3593
b39e66ea 3594 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3595 u64 slice = sched_slice(cfs_rq, se);
3596 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3597 s64 delta = slice - ran;
3598
3599 if (delta < 0) {
3600 if (rq->curr == p)
3601 resched_task(p);
3602 return;
3603 }
3604
3605 /*
3606 * Don't schedule slices shorter than 10000ns, that just
3607 * doesn't make sense. Rely on vruntime for fairness.
3608 */
31656519 3609 if (rq->curr != p)
157124c1 3610 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3611
31656519 3612 hrtick_start(rq, delta);
8f4d37ec
PZ
3613 }
3614}
a4c2f00f
PZ
3615
3616/*
3617 * called from enqueue/dequeue and updates the hrtick when the
3618 * current task is from our class and nr_running is low enough
3619 * to matter.
3620 */
3621static void hrtick_update(struct rq *rq)
3622{
3623 struct task_struct *curr = rq->curr;
3624
b39e66ea 3625 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3626 return;
3627
3628 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3629 hrtick_start_fair(rq, curr);
3630}
55e12e5e 3631#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3632static inline void
3633hrtick_start_fair(struct rq *rq, struct task_struct *p)
3634{
3635}
a4c2f00f
PZ
3636
3637static inline void hrtick_update(struct rq *rq)
3638{
3639}
8f4d37ec
PZ
3640#endif
3641
bf0f6f24
IM
3642/*
3643 * The enqueue_task method is called before nr_running is
3644 * increased. Here we update the fair scheduling stats and
3645 * then put the task into the rbtree:
3646 */
ea87bb78 3647static void
371fd7e7 3648enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3649{
3650 struct cfs_rq *cfs_rq;
62fb1851 3651 struct sched_entity *se = &p->se;
bf0f6f24
IM
3652
3653 for_each_sched_entity(se) {
62fb1851 3654 if (se->on_rq)
bf0f6f24
IM
3655 break;
3656 cfs_rq = cfs_rq_of(se);
88ec22d3 3657 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3658
3659 /*
3660 * end evaluation on encountering a throttled cfs_rq
3661 *
3662 * note: in the case of encountering a throttled cfs_rq we will
3663 * post the final h_nr_running increment below.
3664 */
3665 if (cfs_rq_throttled(cfs_rq))
3666 break;
953bfcd1 3667 cfs_rq->h_nr_running++;
85dac906 3668
88ec22d3 3669 flags = ENQUEUE_WAKEUP;
bf0f6f24 3670 }
8f4d37ec 3671
2069dd75 3672 for_each_sched_entity(se) {
0f317143 3673 cfs_rq = cfs_rq_of(se);
953bfcd1 3674 cfs_rq->h_nr_running++;
2069dd75 3675
85dac906
PT
3676 if (cfs_rq_throttled(cfs_rq))
3677 break;
3678
17bc14b7 3679 update_cfs_shares(cfs_rq);
9ee474f5 3680 update_entity_load_avg(se, 1);
2069dd75
PZ
3681 }
3682
18bf2805
BS
3683 if (!se) {
3684 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3685 inc_nr_running(rq);
18bf2805 3686 }
a4c2f00f 3687 hrtick_update(rq);
bf0f6f24
IM
3688}
3689
2f36825b
VP
3690static void set_next_buddy(struct sched_entity *se);
3691
bf0f6f24
IM
3692/*
3693 * The dequeue_task method is called before nr_running is
3694 * decreased. We remove the task from the rbtree and
3695 * update the fair scheduling stats:
3696 */
371fd7e7 3697static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3698{
3699 struct cfs_rq *cfs_rq;
62fb1851 3700 struct sched_entity *se = &p->se;
2f36825b 3701 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3702
3703 for_each_sched_entity(se) {
3704 cfs_rq = cfs_rq_of(se);
371fd7e7 3705 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3706
3707 /*
3708 * end evaluation on encountering a throttled cfs_rq
3709 *
3710 * note: in the case of encountering a throttled cfs_rq we will
3711 * post the final h_nr_running decrement below.
3712 */
3713 if (cfs_rq_throttled(cfs_rq))
3714 break;
953bfcd1 3715 cfs_rq->h_nr_running--;
2069dd75 3716
bf0f6f24 3717 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3718 if (cfs_rq->load.weight) {
3719 /*
3720 * Bias pick_next to pick a task from this cfs_rq, as
3721 * p is sleeping when it is within its sched_slice.
3722 */
3723 if (task_sleep && parent_entity(se))
3724 set_next_buddy(parent_entity(se));
9598c82d
PT
3725
3726 /* avoid re-evaluating load for this entity */
3727 se = parent_entity(se);
bf0f6f24 3728 break;
2f36825b 3729 }
371fd7e7 3730 flags |= DEQUEUE_SLEEP;
bf0f6f24 3731 }
8f4d37ec 3732
2069dd75 3733 for_each_sched_entity(se) {
0f317143 3734 cfs_rq = cfs_rq_of(se);
953bfcd1 3735 cfs_rq->h_nr_running--;
2069dd75 3736
85dac906
PT
3737 if (cfs_rq_throttled(cfs_rq))
3738 break;
3739
17bc14b7 3740 update_cfs_shares(cfs_rq);
9ee474f5 3741 update_entity_load_avg(se, 1);
2069dd75
PZ
3742 }
3743
18bf2805 3744 if (!se) {
85dac906 3745 dec_nr_running(rq);
18bf2805
BS
3746 update_rq_runnable_avg(rq, 1);
3747 }
a4c2f00f 3748 hrtick_update(rq);
bf0f6f24
IM
3749}
3750
e7693a36 3751#ifdef CONFIG_SMP
029632fb
PZ
3752/* Used instead of source_load when we know the type == 0 */
3753static unsigned long weighted_cpuload(const int cpu)
3754{
b92486cb 3755 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3756}
3757
3758/*
3759 * Return a low guess at the load of a migration-source cpu weighted
3760 * according to the scheduling class and "nice" value.
3761 *
3762 * We want to under-estimate the load of migration sources, to
3763 * balance conservatively.
3764 */
3765static unsigned long source_load(int cpu, int type)
3766{
3767 struct rq *rq = cpu_rq(cpu);
3768 unsigned long total = weighted_cpuload(cpu);
3769
3770 if (type == 0 || !sched_feat(LB_BIAS))
3771 return total;
3772
3773 return min(rq->cpu_load[type-1], total);
3774}
3775
3776/*
3777 * Return a high guess at the load of a migration-target cpu weighted
3778 * according to the scheduling class and "nice" value.
3779 */
3780static unsigned long target_load(int cpu, int type)
3781{
3782 struct rq *rq = cpu_rq(cpu);
3783 unsigned long total = weighted_cpuload(cpu);
3784
3785 if (type == 0 || !sched_feat(LB_BIAS))
3786 return total;
3787
3788 return max(rq->cpu_load[type-1], total);
3789}
3790
3791static unsigned long power_of(int cpu)
3792{
3793 return cpu_rq(cpu)->cpu_power;
3794}
3795
3796static unsigned long cpu_avg_load_per_task(int cpu)
3797{
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3800 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3801
3802 if (nr_running)
b92486cb 3803 return load_avg / nr_running;
029632fb
PZ
3804
3805 return 0;
3806}
3807
62470419
MW
3808static void record_wakee(struct task_struct *p)
3809{
3810 /*
3811 * Rough decay (wiping) for cost saving, don't worry
3812 * about the boundary, really active task won't care
3813 * about the loss.
3814 */
3815 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3816 current->wakee_flips = 0;
3817 current->wakee_flip_decay_ts = jiffies;
3818 }
3819
3820 if (current->last_wakee != p) {
3821 current->last_wakee = p;
3822 current->wakee_flips++;
3823 }
3824}
098fb9db 3825
74f8e4b2 3826static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3827{
3828 struct sched_entity *se = &p->se;
3829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3830 u64 min_vruntime;
3831
3832#ifndef CONFIG_64BIT
3833 u64 min_vruntime_copy;
88ec22d3 3834
3fe1698b
PZ
3835 do {
3836 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3837 smp_rmb();
3838 min_vruntime = cfs_rq->min_vruntime;
3839 } while (min_vruntime != min_vruntime_copy);
3840#else
3841 min_vruntime = cfs_rq->min_vruntime;
3842#endif
88ec22d3 3843
3fe1698b 3844 se->vruntime -= min_vruntime;
62470419 3845 record_wakee(p);
88ec22d3
PZ
3846}
3847
bb3469ac 3848#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3849/*
3850 * effective_load() calculates the load change as seen from the root_task_group
3851 *
3852 * Adding load to a group doesn't make a group heavier, but can cause movement
3853 * of group shares between cpus. Assuming the shares were perfectly aligned one
3854 * can calculate the shift in shares.
cf5f0acf
PZ
3855 *
3856 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3857 * on this @cpu and results in a total addition (subtraction) of @wg to the
3858 * total group weight.
3859 *
3860 * Given a runqueue weight distribution (rw_i) we can compute a shares
3861 * distribution (s_i) using:
3862 *
3863 * s_i = rw_i / \Sum rw_j (1)
3864 *
3865 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3866 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3867 * shares distribution (s_i):
3868 *
3869 * rw_i = { 2, 4, 1, 0 }
3870 * s_i = { 2/7, 4/7, 1/7, 0 }
3871 *
3872 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3873 * task used to run on and the CPU the waker is running on), we need to
3874 * compute the effect of waking a task on either CPU and, in case of a sync
3875 * wakeup, compute the effect of the current task going to sleep.
3876 *
3877 * So for a change of @wl to the local @cpu with an overall group weight change
3878 * of @wl we can compute the new shares distribution (s'_i) using:
3879 *
3880 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3881 *
3882 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3883 * differences in waking a task to CPU 0. The additional task changes the
3884 * weight and shares distributions like:
3885 *
3886 * rw'_i = { 3, 4, 1, 0 }
3887 * s'_i = { 3/8, 4/8, 1/8, 0 }
3888 *
3889 * We can then compute the difference in effective weight by using:
3890 *
3891 * dw_i = S * (s'_i - s_i) (3)
3892 *
3893 * Where 'S' is the group weight as seen by its parent.
3894 *
3895 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3896 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3897 * 4/7) times the weight of the group.
f5bfb7d9 3898 */
2069dd75 3899static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3900{
4be9daaa 3901 struct sched_entity *se = tg->se[cpu];
f1d239f7 3902
9722c2da 3903 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3904 return wl;
3905
4be9daaa 3906 for_each_sched_entity(se) {
cf5f0acf 3907 long w, W;
4be9daaa 3908
977dda7c 3909 tg = se->my_q->tg;
bb3469ac 3910
cf5f0acf
PZ
3911 /*
3912 * W = @wg + \Sum rw_j
3913 */
3914 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3915
cf5f0acf
PZ
3916 /*
3917 * w = rw_i + @wl
3918 */
3919 w = se->my_q->load.weight + wl;
940959e9 3920
cf5f0acf
PZ
3921 /*
3922 * wl = S * s'_i; see (2)
3923 */
3924 if (W > 0 && w < W)
3925 wl = (w * tg->shares) / W;
977dda7c
PT
3926 else
3927 wl = tg->shares;
940959e9 3928
cf5f0acf
PZ
3929 /*
3930 * Per the above, wl is the new se->load.weight value; since
3931 * those are clipped to [MIN_SHARES, ...) do so now. See
3932 * calc_cfs_shares().
3933 */
977dda7c
PT
3934 if (wl < MIN_SHARES)
3935 wl = MIN_SHARES;
cf5f0acf
PZ
3936
3937 /*
3938 * wl = dw_i = S * (s'_i - s_i); see (3)
3939 */
977dda7c 3940 wl -= se->load.weight;
cf5f0acf
PZ
3941
3942 /*
3943 * Recursively apply this logic to all parent groups to compute
3944 * the final effective load change on the root group. Since
3945 * only the @tg group gets extra weight, all parent groups can
3946 * only redistribute existing shares. @wl is the shift in shares
3947 * resulting from this level per the above.
3948 */
4be9daaa 3949 wg = 0;
4be9daaa 3950 }
bb3469ac 3951
4be9daaa 3952 return wl;
bb3469ac
PZ
3953}
3954#else
4be9daaa 3955
58d081b5 3956static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3957{
83378269 3958 return wl;
bb3469ac 3959}
4be9daaa 3960
bb3469ac
PZ
3961#endif
3962
62470419
MW
3963static int wake_wide(struct task_struct *p)
3964{
7d9ffa89 3965 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3966
3967 /*
3968 * Yeah, it's the switching-frequency, could means many wakee or
3969 * rapidly switch, use factor here will just help to automatically
3970 * adjust the loose-degree, so bigger node will lead to more pull.
3971 */
3972 if (p->wakee_flips > factor) {
3973 /*
3974 * wakee is somewhat hot, it needs certain amount of cpu
3975 * resource, so if waker is far more hot, prefer to leave
3976 * it alone.
3977 */
3978 if (current->wakee_flips > (factor * p->wakee_flips))
3979 return 1;
3980 }
3981
3982 return 0;
3983}
3984
c88d5910 3985static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3986{
e37b6a7b 3987 s64 this_load, load;
c88d5910 3988 int idx, this_cpu, prev_cpu;
098fb9db 3989 unsigned long tl_per_task;
c88d5910 3990 struct task_group *tg;
83378269 3991 unsigned long weight;
b3137bc8 3992 int balanced;
098fb9db 3993
62470419
MW
3994 /*
3995 * If we wake multiple tasks be careful to not bounce
3996 * ourselves around too much.
3997 */
3998 if (wake_wide(p))
3999 return 0;
4000
c88d5910
PZ
4001 idx = sd->wake_idx;
4002 this_cpu = smp_processor_id();
4003 prev_cpu = task_cpu(p);
4004 load = source_load(prev_cpu, idx);
4005 this_load = target_load(this_cpu, idx);
098fb9db 4006
b3137bc8
MG
4007 /*
4008 * If sync wakeup then subtract the (maximum possible)
4009 * effect of the currently running task from the load
4010 * of the current CPU:
4011 */
83378269
PZ
4012 if (sync) {
4013 tg = task_group(current);
4014 weight = current->se.load.weight;
4015
c88d5910 4016 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4017 load += effective_load(tg, prev_cpu, 0, -weight);
4018 }
b3137bc8 4019
83378269
PZ
4020 tg = task_group(p);
4021 weight = p->se.load.weight;
b3137bc8 4022
71a29aa7
PZ
4023 /*
4024 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4025 * due to the sync cause above having dropped this_load to 0, we'll
4026 * always have an imbalance, but there's really nothing you can do
4027 * about that, so that's good too.
71a29aa7
PZ
4028 *
4029 * Otherwise check if either cpus are near enough in load to allow this
4030 * task to be woken on this_cpu.
4031 */
e37b6a7b
PT
4032 if (this_load > 0) {
4033 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4034
4035 this_eff_load = 100;
4036 this_eff_load *= power_of(prev_cpu);
4037 this_eff_load *= this_load +
4038 effective_load(tg, this_cpu, weight, weight);
4039
4040 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4041 prev_eff_load *= power_of(this_cpu);
4042 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4043
4044 balanced = this_eff_load <= prev_eff_load;
4045 } else
4046 balanced = true;
b3137bc8 4047
098fb9db 4048 /*
4ae7d5ce
IM
4049 * If the currently running task will sleep within
4050 * a reasonable amount of time then attract this newly
4051 * woken task:
098fb9db 4052 */
2fb7635c
PZ
4053 if (sync && balanced)
4054 return 1;
098fb9db 4055
41acab88 4056 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4057 tl_per_task = cpu_avg_load_per_task(this_cpu);
4058
c88d5910
PZ
4059 if (balanced ||
4060 (this_load <= load &&
4061 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4062 /*
4063 * This domain has SD_WAKE_AFFINE and
4064 * p is cache cold in this domain, and
4065 * there is no bad imbalance.
4066 */
c88d5910 4067 schedstat_inc(sd, ttwu_move_affine);
41acab88 4068 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4069
4070 return 1;
4071 }
4072 return 0;
4073}
4074
aaee1203
PZ
4075/*
4076 * find_idlest_group finds and returns the least busy CPU group within the
4077 * domain.
4078 */
4079static struct sched_group *
78e7ed53 4080find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4081 int this_cpu, int sd_flag)
e7693a36 4082{
b3bd3de6 4083 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4084 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4085 int load_idx = sd->forkexec_idx;
aaee1203 4086 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4087
c44f2a02
VG
4088 if (sd_flag & SD_BALANCE_WAKE)
4089 load_idx = sd->wake_idx;
4090
aaee1203
PZ
4091 do {
4092 unsigned long load, avg_load;
4093 int local_group;
4094 int i;
e7693a36 4095
aaee1203
PZ
4096 /* Skip over this group if it has no CPUs allowed */
4097 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4098 tsk_cpus_allowed(p)))
aaee1203
PZ
4099 continue;
4100
4101 local_group = cpumask_test_cpu(this_cpu,
4102 sched_group_cpus(group));
4103
4104 /* Tally up the load of all CPUs in the group */
4105 avg_load = 0;
4106
4107 for_each_cpu(i, sched_group_cpus(group)) {
4108 /* Bias balancing toward cpus of our domain */
4109 if (local_group)
4110 load = source_load(i, load_idx);
4111 else
4112 load = target_load(i, load_idx);
4113
4114 avg_load += load;
4115 }
4116
4117 /* Adjust by relative CPU power of the group */
9c3f75cb 4118 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4119
4120 if (local_group) {
4121 this_load = avg_load;
aaee1203
PZ
4122 } else if (avg_load < min_load) {
4123 min_load = avg_load;
4124 idlest = group;
4125 }
4126 } while (group = group->next, group != sd->groups);
4127
4128 if (!idlest || 100*this_load < imbalance*min_load)
4129 return NULL;
4130 return idlest;
4131}
4132
4133/*
4134 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4135 */
4136static int
4137find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4138{
4139 unsigned long load, min_load = ULONG_MAX;
4140 int idlest = -1;
4141 int i;
4142
4143 /* Traverse only the allowed CPUs */
fa17b507 4144 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4145 load = weighted_cpuload(i);
4146
4147 if (load < min_load || (load == min_load && i == this_cpu)) {
4148 min_load = load;
4149 idlest = i;
e7693a36
GH
4150 }
4151 }
4152
aaee1203
PZ
4153 return idlest;
4154}
e7693a36 4155
a50bde51
PZ
4156/*
4157 * Try and locate an idle CPU in the sched_domain.
4158 */
99bd5e2f 4159static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4160{
99bd5e2f 4161 struct sched_domain *sd;
37407ea7 4162 struct sched_group *sg;
e0a79f52 4163 int i = task_cpu(p);
a50bde51 4164
e0a79f52
MG
4165 if (idle_cpu(target))
4166 return target;
99bd5e2f
SS
4167
4168 /*
e0a79f52 4169 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4170 */
e0a79f52
MG
4171 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4172 return i;
a50bde51
PZ
4173
4174 /*
37407ea7 4175 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4176 */
518cd623 4177 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4178 for_each_lower_domain(sd) {
37407ea7
LT
4179 sg = sd->groups;
4180 do {
4181 if (!cpumask_intersects(sched_group_cpus(sg),
4182 tsk_cpus_allowed(p)))
4183 goto next;
4184
4185 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4186 if (i == target || !idle_cpu(i))
37407ea7
LT
4187 goto next;
4188 }
970e1789 4189
37407ea7
LT
4190 target = cpumask_first_and(sched_group_cpus(sg),
4191 tsk_cpus_allowed(p));
4192 goto done;
4193next:
4194 sg = sg->next;
4195 } while (sg != sd->groups);
4196 }
4197done:
a50bde51
PZ
4198 return target;
4199}
4200
aaee1203
PZ
4201/*
4202 * sched_balance_self: balance the current task (running on cpu) in domains
4203 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4204 * SD_BALANCE_EXEC.
4205 *
4206 * Balance, ie. select the least loaded group.
4207 *
4208 * Returns the target CPU number, or the same CPU if no balancing is needed.
4209 *
4210 * preempt must be disabled.
4211 */
0017d735 4212static int
ac66f547 4213select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4214{
29cd8bae 4215 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4216 int cpu = smp_processor_id();
c88d5910 4217 int new_cpu = cpu;
99bd5e2f 4218 int want_affine = 0;
5158f4e4 4219 int sync = wake_flags & WF_SYNC;
c88d5910 4220
29baa747 4221 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4222 return prev_cpu;
4223
0763a660 4224 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4225 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4226 want_affine = 1;
4227 new_cpu = prev_cpu;
4228 }
aaee1203 4229
dce840a0 4230 rcu_read_lock();
aaee1203 4231 for_each_domain(cpu, tmp) {
e4f42888
PZ
4232 if (!(tmp->flags & SD_LOAD_BALANCE))
4233 continue;
4234
fe3bcfe1 4235 /*
99bd5e2f
SS
4236 * If both cpu and prev_cpu are part of this domain,
4237 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4238 */
99bd5e2f
SS
4239 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4240 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4241 affine_sd = tmp;
29cd8bae 4242 break;
f03542a7 4243 }
29cd8bae 4244
f03542a7 4245 if (tmp->flags & sd_flag)
29cd8bae
PZ
4246 sd = tmp;
4247 }
4248
8b911acd 4249 if (affine_sd) {
f03542a7 4250 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4251 prev_cpu = cpu;
4252
4253 new_cpu = select_idle_sibling(p, prev_cpu);
4254 goto unlock;
8b911acd 4255 }
e7693a36 4256
aaee1203
PZ
4257 while (sd) {
4258 struct sched_group *group;
c88d5910 4259 int weight;
098fb9db 4260
0763a660 4261 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4262 sd = sd->child;
4263 continue;
4264 }
098fb9db 4265
c44f2a02 4266 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4267 if (!group) {
4268 sd = sd->child;
4269 continue;
4270 }
4ae7d5ce 4271
d7c33c49 4272 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4273 if (new_cpu == -1 || new_cpu == cpu) {
4274 /* Now try balancing at a lower domain level of cpu */
4275 sd = sd->child;
4276 continue;
e7693a36 4277 }
aaee1203
PZ
4278
4279 /* Now try balancing at a lower domain level of new_cpu */
4280 cpu = new_cpu;
669c55e9 4281 weight = sd->span_weight;
aaee1203
PZ
4282 sd = NULL;
4283 for_each_domain(cpu, tmp) {
669c55e9 4284 if (weight <= tmp->span_weight)
aaee1203 4285 break;
0763a660 4286 if (tmp->flags & sd_flag)
aaee1203
PZ
4287 sd = tmp;
4288 }
4289 /* while loop will break here if sd == NULL */
e7693a36 4290 }
dce840a0
PZ
4291unlock:
4292 rcu_read_unlock();
e7693a36 4293
c88d5910 4294 return new_cpu;
e7693a36 4295}
0a74bef8
PT
4296
4297/*
4298 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4299 * cfs_rq_of(p) references at time of call are still valid and identify the
4300 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4301 * other assumptions, including the state of rq->lock, should be made.
4302 */
4303static void
4304migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4305{
aff3e498
PT
4306 struct sched_entity *se = &p->se;
4307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4308
4309 /*
4310 * Load tracking: accumulate removed load so that it can be processed
4311 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4312 * to blocked load iff they have a positive decay-count. It can never
4313 * be negative here since on-rq tasks have decay-count == 0.
4314 */
4315 if (se->avg.decay_count) {
4316 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4317 atomic_long_add(se->avg.load_avg_contrib,
4318 &cfs_rq->removed_load);
aff3e498 4319 }
0a74bef8 4320}
e7693a36
GH
4321#endif /* CONFIG_SMP */
4322
e52fb7c0
PZ
4323static unsigned long
4324wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4325{
4326 unsigned long gran = sysctl_sched_wakeup_granularity;
4327
4328 /*
e52fb7c0
PZ
4329 * Since its curr running now, convert the gran from real-time
4330 * to virtual-time in his units.
13814d42
MG
4331 *
4332 * By using 'se' instead of 'curr' we penalize light tasks, so
4333 * they get preempted easier. That is, if 'se' < 'curr' then
4334 * the resulting gran will be larger, therefore penalizing the
4335 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4336 * be smaller, again penalizing the lighter task.
4337 *
4338 * This is especially important for buddies when the leftmost
4339 * task is higher priority than the buddy.
0bbd3336 4340 */
f4ad9bd2 4341 return calc_delta_fair(gran, se);
0bbd3336
PZ
4342}
4343
464b7527
PZ
4344/*
4345 * Should 'se' preempt 'curr'.
4346 *
4347 * |s1
4348 * |s2
4349 * |s3
4350 * g
4351 * |<--->|c
4352 *
4353 * w(c, s1) = -1
4354 * w(c, s2) = 0
4355 * w(c, s3) = 1
4356 *
4357 */
4358static int
4359wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4360{
4361 s64 gran, vdiff = curr->vruntime - se->vruntime;
4362
4363 if (vdiff <= 0)
4364 return -1;
4365
e52fb7c0 4366 gran = wakeup_gran(curr, se);
464b7527
PZ
4367 if (vdiff > gran)
4368 return 1;
4369
4370 return 0;
4371}
4372
02479099
PZ
4373static void set_last_buddy(struct sched_entity *se)
4374{
69c80f3e
VP
4375 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4376 return;
4377
4378 for_each_sched_entity(se)
4379 cfs_rq_of(se)->last = se;
02479099
PZ
4380}
4381
4382static void set_next_buddy(struct sched_entity *se)
4383{
69c80f3e
VP
4384 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4385 return;
4386
4387 for_each_sched_entity(se)
4388 cfs_rq_of(se)->next = se;
02479099
PZ
4389}
4390
ac53db59
RR
4391static void set_skip_buddy(struct sched_entity *se)
4392{
69c80f3e
VP
4393 for_each_sched_entity(se)
4394 cfs_rq_of(se)->skip = se;
ac53db59
RR
4395}
4396
bf0f6f24
IM
4397/*
4398 * Preempt the current task with a newly woken task if needed:
4399 */
5a9b86f6 4400static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4401{
4402 struct task_struct *curr = rq->curr;
8651a86c 4403 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4404 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4405 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4406 int next_buddy_marked = 0;
bf0f6f24 4407
4ae7d5ce
IM
4408 if (unlikely(se == pse))
4409 return;
4410
5238cdd3 4411 /*
ddcdf6e7 4412 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4413 * unconditionally check_prempt_curr() after an enqueue (which may have
4414 * lead to a throttle). This both saves work and prevents false
4415 * next-buddy nomination below.
4416 */
4417 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4418 return;
4419
2f36825b 4420 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4421 set_next_buddy(pse);
2f36825b
VP
4422 next_buddy_marked = 1;
4423 }
57fdc26d 4424
aec0a514
BR
4425 /*
4426 * We can come here with TIF_NEED_RESCHED already set from new task
4427 * wake up path.
5238cdd3
PT
4428 *
4429 * Note: this also catches the edge-case of curr being in a throttled
4430 * group (e.g. via set_curr_task), since update_curr() (in the
4431 * enqueue of curr) will have resulted in resched being set. This
4432 * prevents us from potentially nominating it as a false LAST_BUDDY
4433 * below.
aec0a514
BR
4434 */
4435 if (test_tsk_need_resched(curr))
4436 return;
4437
a2f5c9ab
DH
4438 /* Idle tasks are by definition preempted by non-idle tasks. */
4439 if (unlikely(curr->policy == SCHED_IDLE) &&
4440 likely(p->policy != SCHED_IDLE))
4441 goto preempt;
4442
91c234b4 4443 /*
a2f5c9ab
DH
4444 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4445 * is driven by the tick):
91c234b4 4446 */
8ed92e51 4447 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4448 return;
bf0f6f24 4449
464b7527 4450 find_matching_se(&se, &pse);
9bbd7374 4451 update_curr(cfs_rq_of(se));
002f128b 4452 BUG_ON(!pse);
2f36825b
VP
4453 if (wakeup_preempt_entity(se, pse) == 1) {
4454 /*
4455 * Bias pick_next to pick the sched entity that is
4456 * triggering this preemption.
4457 */
4458 if (!next_buddy_marked)
4459 set_next_buddy(pse);
3a7e73a2 4460 goto preempt;
2f36825b 4461 }
464b7527 4462
3a7e73a2 4463 return;
a65ac745 4464
3a7e73a2
PZ
4465preempt:
4466 resched_task(curr);
4467 /*
4468 * Only set the backward buddy when the current task is still
4469 * on the rq. This can happen when a wakeup gets interleaved
4470 * with schedule on the ->pre_schedule() or idle_balance()
4471 * point, either of which can * drop the rq lock.
4472 *
4473 * Also, during early boot the idle thread is in the fair class,
4474 * for obvious reasons its a bad idea to schedule back to it.
4475 */
4476 if (unlikely(!se->on_rq || curr == rq->idle))
4477 return;
4478
4479 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4480 set_last_buddy(se);
bf0f6f24
IM
4481}
4482
fb8d4724 4483static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4484{
8f4d37ec 4485 struct task_struct *p;
bf0f6f24
IM
4486 struct cfs_rq *cfs_rq = &rq->cfs;
4487 struct sched_entity *se;
4488
36ace27e 4489 if (!cfs_rq->nr_running)
bf0f6f24
IM
4490 return NULL;
4491
4492 do {
9948f4b2 4493 se = pick_next_entity(cfs_rq);
f4b6755f 4494 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4495 cfs_rq = group_cfs_rq(se);
4496 } while (cfs_rq);
4497
8f4d37ec 4498 p = task_of(se);
b39e66ea
MG
4499 if (hrtick_enabled(rq))
4500 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4501
4502 return p;
bf0f6f24
IM
4503}
4504
4505/*
4506 * Account for a descheduled task:
4507 */
31ee529c 4508static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4509{
4510 struct sched_entity *se = &prev->se;
4511 struct cfs_rq *cfs_rq;
4512
4513 for_each_sched_entity(se) {
4514 cfs_rq = cfs_rq_of(se);
ab6cde26 4515 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4516 }
4517}
4518
ac53db59
RR
4519/*
4520 * sched_yield() is very simple
4521 *
4522 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4523 */
4524static void yield_task_fair(struct rq *rq)
4525{
4526 struct task_struct *curr = rq->curr;
4527 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4528 struct sched_entity *se = &curr->se;
4529
4530 /*
4531 * Are we the only task in the tree?
4532 */
4533 if (unlikely(rq->nr_running == 1))
4534 return;
4535
4536 clear_buddies(cfs_rq, se);
4537
4538 if (curr->policy != SCHED_BATCH) {
4539 update_rq_clock(rq);
4540 /*
4541 * Update run-time statistics of the 'current'.
4542 */
4543 update_curr(cfs_rq);
916671c0
MG
4544 /*
4545 * Tell update_rq_clock() that we've just updated,
4546 * so we don't do microscopic update in schedule()
4547 * and double the fastpath cost.
4548 */
4549 rq->skip_clock_update = 1;
ac53db59
RR
4550 }
4551
4552 set_skip_buddy(se);
4553}
4554
d95f4122
MG
4555static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4556{
4557 struct sched_entity *se = &p->se;
4558
5238cdd3
PT
4559 /* throttled hierarchies are not runnable */
4560 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4561 return false;
4562
4563 /* Tell the scheduler that we'd really like pse to run next. */
4564 set_next_buddy(se);
4565
d95f4122
MG
4566 yield_task_fair(rq);
4567
4568 return true;
4569}
4570
681f3e68 4571#ifdef CONFIG_SMP
bf0f6f24 4572/**************************************************
e9c84cb8
PZ
4573 * Fair scheduling class load-balancing methods.
4574 *
4575 * BASICS
4576 *
4577 * The purpose of load-balancing is to achieve the same basic fairness the
4578 * per-cpu scheduler provides, namely provide a proportional amount of compute
4579 * time to each task. This is expressed in the following equation:
4580 *
4581 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4582 *
4583 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4584 * W_i,0 is defined as:
4585 *
4586 * W_i,0 = \Sum_j w_i,j (2)
4587 *
4588 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4589 * is derived from the nice value as per prio_to_weight[].
4590 *
4591 * The weight average is an exponential decay average of the instantaneous
4592 * weight:
4593 *
4594 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4595 *
4596 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4597 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4598 * can also include other factors [XXX].
4599 *
4600 * To achieve this balance we define a measure of imbalance which follows
4601 * directly from (1):
4602 *
4603 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4604 *
4605 * We them move tasks around to minimize the imbalance. In the continuous
4606 * function space it is obvious this converges, in the discrete case we get
4607 * a few fun cases generally called infeasible weight scenarios.
4608 *
4609 * [XXX expand on:
4610 * - infeasible weights;
4611 * - local vs global optima in the discrete case. ]
4612 *
4613 *
4614 * SCHED DOMAINS
4615 *
4616 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4617 * for all i,j solution, we create a tree of cpus that follows the hardware
4618 * topology where each level pairs two lower groups (or better). This results
4619 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4620 * tree to only the first of the previous level and we decrease the frequency
4621 * of load-balance at each level inv. proportional to the number of cpus in
4622 * the groups.
4623 *
4624 * This yields:
4625 *
4626 * log_2 n 1 n
4627 * \Sum { --- * --- * 2^i } = O(n) (5)
4628 * i = 0 2^i 2^i
4629 * `- size of each group
4630 * | | `- number of cpus doing load-balance
4631 * | `- freq
4632 * `- sum over all levels
4633 *
4634 * Coupled with a limit on how many tasks we can migrate every balance pass,
4635 * this makes (5) the runtime complexity of the balancer.
4636 *
4637 * An important property here is that each CPU is still (indirectly) connected
4638 * to every other cpu in at most O(log n) steps:
4639 *
4640 * The adjacency matrix of the resulting graph is given by:
4641 *
4642 * log_2 n
4643 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4644 * k = 0
4645 *
4646 * And you'll find that:
4647 *
4648 * A^(log_2 n)_i,j != 0 for all i,j (7)
4649 *
4650 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4651 * The task movement gives a factor of O(m), giving a convergence complexity
4652 * of:
4653 *
4654 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4655 *
4656 *
4657 * WORK CONSERVING
4658 *
4659 * In order to avoid CPUs going idle while there's still work to do, new idle
4660 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4661 * tree itself instead of relying on other CPUs to bring it work.
4662 *
4663 * This adds some complexity to both (5) and (8) but it reduces the total idle
4664 * time.
4665 *
4666 * [XXX more?]
4667 *
4668 *
4669 * CGROUPS
4670 *
4671 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4672 *
4673 * s_k,i
4674 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4675 * S_k
4676 *
4677 * Where
4678 *
4679 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4680 *
4681 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4682 *
4683 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4684 * property.
4685 *
4686 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4687 * rewrite all of this once again.]
4688 */
bf0f6f24 4689
ed387b78
HS
4690static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4691
0ec8aa00
PZ
4692enum fbq_type { regular, remote, all };
4693
ddcdf6e7 4694#define LBF_ALL_PINNED 0x01
367456c7 4695#define LBF_NEED_BREAK 0x02
6263322c
PZ
4696#define LBF_DST_PINNED 0x04
4697#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4698
4699struct lb_env {
4700 struct sched_domain *sd;
4701
ddcdf6e7 4702 struct rq *src_rq;
85c1e7da 4703 int src_cpu;
ddcdf6e7
PZ
4704
4705 int dst_cpu;
4706 struct rq *dst_rq;
4707
88b8dac0
SV
4708 struct cpumask *dst_grpmask;
4709 int new_dst_cpu;
ddcdf6e7 4710 enum cpu_idle_type idle;
bd939f45 4711 long imbalance;
b9403130
MW
4712 /* The set of CPUs under consideration for load-balancing */
4713 struct cpumask *cpus;
4714
ddcdf6e7 4715 unsigned int flags;
367456c7
PZ
4716
4717 unsigned int loop;
4718 unsigned int loop_break;
4719 unsigned int loop_max;
0ec8aa00
PZ
4720
4721 enum fbq_type fbq_type;
ddcdf6e7
PZ
4722};
4723
1e3c88bd 4724/*
ddcdf6e7 4725 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4726 * Both runqueues must be locked.
4727 */
ddcdf6e7 4728static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4729{
ddcdf6e7
PZ
4730 deactivate_task(env->src_rq, p, 0);
4731 set_task_cpu(p, env->dst_cpu);
4732 activate_task(env->dst_rq, p, 0);
4733 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4734}
4735
029632fb
PZ
4736/*
4737 * Is this task likely cache-hot:
4738 */
4739static int
4740task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4741{
4742 s64 delta;
4743
4744 if (p->sched_class != &fair_sched_class)
4745 return 0;
4746
4747 if (unlikely(p->policy == SCHED_IDLE))
4748 return 0;
4749
4750 /*
4751 * Buddy candidates are cache hot:
4752 */
4753 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4754 (&p->se == cfs_rq_of(&p->se)->next ||
4755 &p->se == cfs_rq_of(&p->se)->last))
4756 return 1;
4757
4758 if (sysctl_sched_migration_cost == -1)
4759 return 1;
4760 if (sysctl_sched_migration_cost == 0)
4761 return 0;
4762
4763 delta = now - p->se.exec_start;
4764
4765 return delta < (s64)sysctl_sched_migration_cost;
4766}
4767
3a7053b3
MG
4768#ifdef CONFIG_NUMA_BALANCING
4769/* Returns true if the destination node has incurred more faults */
4770static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4771{
4772 int src_nid, dst_nid;
4773
ff1df896 4774 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
4775 !(env->sd->flags & SD_NUMA)) {
4776 return false;
4777 }
4778
4779 src_nid = cpu_to_node(env->src_cpu);
4780 dst_nid = cpu_to_node(env->dst_cpu);
4781
83e1d2cd 4782 if (src_nid == dst_nid)
3a7053b3
MG
4783 return false;
4784
83e1d2cd
MG
4785 /* Always encourage migration to the preferred node. */
4786 if (dst_nid == p->numa_preferred_nid)
4787 return true;
4788
887c290e
RR
4789 /* If both task and group weight improve, this move is a winner. */
4790 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4791 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4792 return true;
4793
4794 return false;
4795}
7a0f3083
MG
4796
4797
4798static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4799{
4800 int src_nid, dst_nid;
4801
4802 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4803 return false;
4804
ff1df896 4805 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
4806 return false;
4807
4808 src_nid = cpu_to_node(env->src_cpu);
4809 dst_nid = cpu_to_node(env->dst_cpu);
4810
83e1d2cd 4811 if (src_nid == dst_nid)
7a0f3083
MG
4812 return false;
4813
83e1d2cd
MG
4814 /* Migrating away from the preferred node is always bad. */
4815 if (src_nid == p->numa_preferred_nid)
4816 return true;
4817
887c290e
RR
4818 /* If either task or group weight get worse, don't do it. */
4819 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4820 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4821 return true;
4822
4823 return false;
4824}
4825
3a7053b3
MG
4826#else
4827static inline bool migrate_improves_locality(struct task_struct *p,
4828 struct lb_env *env)
4829{
4830 return false;
4831}
7a0f3083
MG
4832
4833static inline bool migrate_degrades_locality(struct task_struct *p,
4834 struct lb_env *env)
4835{
4836 return false;
4837}
3a7053b3
MG
4838#endif
4839
1e3c88bd
PZ
4840/*
4841 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4842 */
4843static
8e45cb54 4844int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4845{
4846 int tsk_cache_hot = 0;
4847 /*
4848 * We do not migrate tasks that are:
d3198084 4849 * 1) throttled_lb_pair, or
1e3c88bd 4850 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4851 * 3) running (obviously), or
4852 * 4) are cache-hot on their current CPU.
1e3c88bd 4853 */
d3198084
JK
4854 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4855 return 0;
4856
ddcdf6e7 4857 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4858 int cpu;
88b8dac0 4859
41acab88 4860 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4861
6263322c
PZ
4862 env->flags |= LBF_SOME_PINNED;
4863
88b8dac0
SV
4864 /*
4865 * Remember if this task can be migrated to any other cpu in
4866 * our sched_group. We may want to revisit it if we couldn't
4867 * meet load balance goals by pulling other tasks on src_cpu.
4868 *
4869 * Also avoid computing new_dst_cpu if we have already computed
4870 * one in current iteration.
4871 */
6263322c 4872 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4873 return 0;
4874
e02e60c1
JK
4875 /* Prevent to re-select dst_cpu via env's cpus */
4876 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4877 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4878 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4879 env->new_dst_cpu = cpu;
4880 break;
4881 }
88b8dac0 4882 }
e02e60c1 4883
1e3c88bd
PZ
4884 return 0;
4885 }
88b8dac0
SV
4886
4887 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4888 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4889
ddcdf6e7 4890 if (task_running(env->src_rq, p)) {
41acab88 4891 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4892 return 0;
4893 }
4894
4895 /*
4896 * Aggressive migration if:
3a7053b3
MG
4897 * 1) destination numa is preferred
4898 * 2) task is cache cold, or
4899 * 3) too many balance attempts have failed.
1e3c88bd 4900 */
78becc27 4901 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4902 if (!tsk_cache_hot)
4903 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4904
4905 if (migrate_improves_locality(p, env)) {
4906#ifdef CONFIG_SCHEDSTATS
4907 if (tsk_cache_hot) {
4908 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4909 schedstat_inc(p, se.statistics.nr_forced_migrations);
4910 }
4911#endif
4912 return 1;
4913 }
4914
1e3c88bd 4915 if (!tsk_cache_hot ||
8e45cb54 4916 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4917
1e3c88bd 4918 if (tsk_cache_hot) {
8e45cb54 4919 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4920 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4921 }
4e2dcb73 4922
1e3c88bd
PZ
4923 return 1;
4924 }
4925
4e2dcb73
ZH
4926 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4927 return 0;
1e3c88bd
PZ
4928}
4929
897c395f
PZ
4930/*
4931 * move_one_task tries to move exactly one task from busiest to this_rq, as
4932 * part of active balancing operations within "domain".
4933 * Returns 1 if successful and 0 otherwise.
4934 *
4935 * Called with both runqueues locked.
4936 */
8e45cb54 4937static int move_one_task(struct lb_env *env)
897c395f
PZ
4938{
4939 struct task_struct *p, *n;
897c395f 4940
367456c7 4941 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4942 if (!can_migrate_task(p, env))
4943 continue;
897c395f 4944
367456c7
PZ
4945 move_task(p, env);
4946 /*
4947 * Right now, this is only the second place move_task()
4948 * is called, so we can safely collect move_task()
4949 * stats here rather than inside move_task().
4950 */
4951 schedstat_inc(env->sd, lb_gained[env->idle]);
4952 return 1;
897c395f 4953 }
897c395f
PZ
4954 return 0;
4955}
4956
eb95308e
PZ
4957static const unsigned int sched_nr_migrate_break = 32;
4958
5d6523eb 4959/*
bd939f45 4960 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4961 * this_rq, as part of a balancing operation within domain "sd".
4962 * Returns 1 if successful and 0 otherwise.
4963 *
4964 * Called with both runqueues locked.
4965 */
4966static int move_tasks(struct lb_env *env)
1e3c88bd 4967{
5d6523eb
PZ
4968 struct list_head *tasks = &env->src_rq->cfs_tasks;
4969 struct task_struct *p;
367456c7
PZ
4970 unsigned long load;
4971 int pulled = 0;
1e3c88bd 4972
bd939f45 4973 if (env->imbalance <= 0)
5d6523eb 4974 return 0;
1e3c88bd 4975
5d6523eb
PZ
4976 while (!list_empty(tasks)) {
4977 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4978
367456c7
PZ
4979 env->loop++;
4980 /* We've more or less seen every task there is, call it quits */
5d6523eb 4981 if (env->loop > env->loop_max)
367456c7 4982 break;
5d6523eb
PZ
4983
4984 /* take a breather every nr_migrate tasks */
367456c7 4985 if (env->loop > env->loop_break) {
eb95308e 4986 env->loop_break += sched_nr_migrate_break;
8e45cb54 4987 env->flags |= LBF_NEED_BREAK;
ee00e66f 4988 break;
a195f004 4989 }
1e3c88bd 4990
d3198084 4991 if (!can_migrate_task(p, env))
367456c7
PZ
4992 goto next;
4993
4994 load = task_h_load(p);
5d6523eb 4995
eb95308e 4996 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4997 goto next;
4998
bd939f45 4999 if ((load / 2) > env->imbalance)
367456c7 5000 goto next;
1e3c88bd 5001
ddcdf6e7 5002 move_task(p, env);
ee00e66f 5003 pulled++;
bd939f45 5004 env->imbalance -= load;
1e3c88bd
PZ
5005
5006#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5007 /*
5008 * NEWIDLE balancing is a source of latency, so preemptible
5009 * kernels will stop after the first task is pulled to minimize
5010 * the critical section.
5011 */
5d6523eb 5012 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5013 break;
1e3c88bd
PZ
5014#endif
5015
ee00e66f
PZ
5016 /*
5017 * We only want to steal up to the prescribed amount of
5018 * weighted load.
5019 */
bd939f45 5020 if (env->imbalance <= 0)
ee00e66f 5021 break;
367456c7
PZ
5022
5023 continue;
5024next:
5d6523eb 5025 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5026 }
5d6523eb 5027
1e3c88bd 5028 /*
ddcdf6e7
PZ
5029 * Right now, this is one of only two places move_task() is called,
5030 * so we can safely collect move_task() stats here rather than
5031 * inside move_task().
1e3c88bd 5032 */
8e45cb54 5033 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5034
5d6523eb 5035 return pulled;
1e3c88bd
PZ
5036}
5037
230059de 5038#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5039/*
5040 * update tg->load_weight by folding this cpu's load_avg
5041 */
48a16753 5042static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5043{
48a16753
PT
5044 struct sched_entity *se = tg->se[cpu];
5045 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5046
48a16753
PT
5047 /* throttled entities do not contribute to load */
5048 if (throttled_hierarchy(cfs_rq))
5049 return;
9e3081ca 5050
aff3e498 5051 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5052
82958366
PT
5053 if (se) {
5054 update_entity_load_avg(se, 1);
5055 /*
5056 * We pivot on our runnable average having decayed to zero for
5057 * list removal. This generally implies that all our children
5058 * have also been removed (modulo rounding error or bandwidth
5059 * control); however, such cases are rare and we can fix these
5060 * at enqueue.
5061 *
5062 * TODO: fix up out-of-order children on enqueue.
5063 */
5064 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5065 list_del_leaf_cfs_rq(cfs_rq);
5066 } else {
48a16753 5067 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5068 update_rq_runnable_avg(rq, rq->nr_running);
5069 }
9e3081ca
PZ
5070}
5071
48a16753 5072static void update_blocked_averages(int cpu)
9e3081ca 5073{
9e3081ca 5074 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5075 struct cfs_rq *cfs_rq;
5076 unsigned long flags;
9e3081ca 5077
48a16753
PT
5078 raw_spin_lock_irqsave(&rq->lock, flags);
5079 update_rq_clock(rq);
9763b67f
PZ
5080 /*
5081 * Iterates the task_group tree in a bottom up fashion, see
5082 * list_add_leaf_cfs_rq() for details.
5083 */
64660c86 5084 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5085 /*
5086 * Note: We may want to consider periodically releasing
5087 * rq->lock about these updates so that creating many task
5088 * groups does not result in continually extending hold time.
5089 */
5090 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5091 }
48a16753
PT
5092
5093 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5094}
5095
9763b67f 5096/*
68520796 5097 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5098 * This needs to be done in a top-down fashion because the load of a child
5099 * group is a fraction of its parents load.
5100 */
68520796 5101static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5102{
68520796
VD
5103 struct rq *rq = rq_of(cfs_rq);
5104 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5105 unsigned long now = jiffies;
68520796 5106 unsigned long load;
a35b6466 5107
68520796 5108 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5109 return;
5110
68520796
VD
5111 cfs_rq->h_load_next = NULL;
5112 for_each_sched_entity(se) {
5113 cfs_rq = cfs_rq_of(se);
5114 cfs_rq->h_load_next = se;
5115 if (cfs_rq->last_h_load_update == now)
5116 break;
5117 }
a35b6466 5118
68520796 5119 if (!se) {
7e3115ef 5120 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5121 cfs_rq->last_h_load_update = now;
5122 }
5123
5124 while ((se = cfs_rq->h_load_next) != NULL) {
5125 load = cfs_rq->h_load;
5126 load = div64_ul(load * se->avg.load_avg_contrib,
5127 cfs_rq->runnable_load_avg + 1);
5128 cfs_rq = group_cfs_rq(se);
5129 cfs_rq->h_load = load;
5130 cfs_rq->last_h_load_update = now;
5131 }
9763b67f
PZ
5132}
5133
367456c7 5134static unsigned long task_h_load(struct task_struct *p)
230059de 5135{
367456c7 5136 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5137
68520796 5138 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5139 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5140 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5141}
5142#else
48a16753 5143static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5144{
5145}
5146
367456c7 5147static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5148{
a003a25b 5149 return p->se.avg.load_avg_contrib;
1e3c88bd 5150}
230059de 5151#endif
1e3c88bd 5152
1e3c88bd 5153/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5154/*
5155 * sg_lb_stats - stats of a sched_group required for load_balancing
5156 */
5157struct sg_lb_stats {
5158 unsigned long avg_load; /*Avg load across the CPUs of the group */
5159 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5160 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5161 unsigned long load_per_task;
3ae11c90 5162 unsigned long group_power;
147c5fc2
PZ
5163 unsigned int sum_nr_running; /* Nr tasks running in the group */
5164 unsigned int group_capacity;
5165 unsigned int idle_cpus;
5166 unsigned int group_weight;
1e3c88bd 5167 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5168 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5169#ifdef CONFIG_NUMA_BALANCING
5170 unsigned int nr_numa_running;
5171 unsigned int nr_preferred_running;
5172#endif
1e3c88bd
PZ
5173};
5174
56cf515b
JK
5175/*
5176 * sd_lb_stats - Structure to store the statistics of a sched_domain
5177 * during load balancing.
5178 */
5179struct sd_lb_stats {
5180 struct sched_group *busiest; /* Busiest group in this sd */
5181 struct sched_group *local; /* Local group in this sd */
5182 unsigned long total_load; /* Total load of all groups in sd */
5183 unsigned long total_pwr; /* Total power of all groups in sd */
5184 unsigned long avg_load; /* Average load across all groups in sd */
5185
56cf515b 5186 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5187 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5188};
5189
147c5fc2
PZ
5190static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5191{
5192 /*
5193 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5194 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5195 * We must however clear busiest_stat::avg_load because
5196 * update_sd_pick_busiest() reads this before assignment.
5197 */
5198 *sds = (struct sd_lb_stats){
5199 .busiest = NULL,
5200 .local = NULL,
5201 .total_load = 0UL,
5202 .total_pwr = 0UL,
5203 .busiest_stat = {
5204 .avg_load = 0UL,
5205 },
5206 };
5207}
5208
1e3c88bd
PZ
5209/**
5210 * get_sd_load_idx - Obtain the load index for a given sched domain.
5211 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5212 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5213 *
5214 * Return: The load index.
1e3c88bd
PZ
5215 */
5216static inline int get_sd_load_idx(struct sched_domain *sd,
5217 enum cpu_idle_type idle)
5218{
5219 int load_idx;
5220
5221 switch (idle) {
5222 case CPU_NOT_IDLE:
5223 load_idx = sd->busy_idx;
5224 break;
5225
5226 case CPU_NEWLY_IDLE:
5227 load_idx = sd->newidle_idx;
5228 break;
5229 default:
5230 load_idx = sd->idle_idx;
5231 break;
5232 }
5233
5234 return load_idx;
5235}
5236
15f803c9 5237static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5238{
1399fa78 5239 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5240}
5241
5242unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5243{
5244 return default_scale_freq_power(sd, cpu);
5245}
5246
15f803c9 5247static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5248{
669c55e9 5249 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5250 unsigned long smt_gain = sd->smt_gain;
5251
5252 smt_gain /= weight;
5253
5254 return smt_gain;
5255}
5256
5257unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5258{
5259 return default_scale_smt_power(sd, cpu);
5260}
5261
15f803c9 5262static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5263{
5264 struct rq *rq = cpu_rq(cpu);
b654f7de 5265 u64 total, available, age_stamp, avg;
1e3c88bd 5266
b654f7de
PZ
5267 /*
5268 * Since we're reading these variables without serialization make sure
5269 * we read them once before doing sanity checks on them.
5270 */
5271 age_stamp = ACCESS_ONCE(rq->age_stamp);
5272 avg = ACCESS_ONCE(rq->rt_avg);
5273
78becc27 5274 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5275
b654f7de 5276 if (unlikely(total < avg)) {
aa483808
VP
5277 /* Ensures that power won't end up being negative */
5278 available = 0;
5279 } else {
b654f7de 5280 available = total - avg;
aa483808 5281 }
1e3c88bd 5282
1399fa78
NR
5283 if (unlikely((s64)total < SCHED_POWER_SCALE))
5284 total = SCHED_POWER_SCALE;
1e3c88bd 5285
1399fa78 5286 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5287
5288 return div_u64(available, total);
5289}
5290
5291static void update_cpu_power(struct sched_domain *sd, int cpu)
5292{
669c55e9 5293 unsigned long weight = sd->span_weight;
1399fa78 5294 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5295 struct sched_group *sdg = sd->groups;
5296
1e3c88bd
PZ
5297 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5298 if (sched_feat(ARCH_POWER))
5299 power *= arch_scale_smt_power(sd, cpu);
5300 else
5301 power *= default_scale_smt_power(sd, cpu);
5302
1399fa78 5303 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5304 }
5305
9c3f75cb 5306 sdg->sgp->power_orig = power;
9d5efe05
SV
5307
5308 if (sched_feat(ARCH_POWER))
5309 power *= arch_scale_freq_power(sd, cpu);
5310 else
5311 power *= default_scale_freq_power(sd, cpu);
5312
1399fa78 5313 power >>= SCHED_POWER_SHIFT;
9d5efe05 5314
1e3c88bd 5315 power *= scale_rt_power(cpu);
1399fa78 5316 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5317
5318 if (!power)
5319 power = 1;
5320
e51fd5e2 5321 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5322 sdg->sgp->power = power;
1e3c88bd
PZ
5323}
5324
029632fb 5325void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5326{
5327 struct sched_domain *child = sd->child;
5328 struct sched_group *group, *sdg = sd->groups;
863bffc8 5329 unsigned long power, power_orig;
4ec4412e
VG
5330 unsigned long interval;
5331
5332 interval = msecs_to_jiffies(sd->balance_interval);
5333 interval = clamp(interval, 1UL, max_load_balance_interval);
5334 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5335
5336 if (!child) {
5337 update_cpu_power(sd, cpu);
5338 return;
5339 }
5340
863bffc8 5341 power_orig = power = 0;
1e3c88bd 5342
74a5ce20
PZ
5343 if (child->flags & SD_OVERLAP) {
5344 /*
5345 * SD_OVERLAP domains cannot assume that child groups
5346 * span the current group.
5347 */
5348
863bffc8 5349 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5350 struct sched_group_power *sgp;
5351 struct rq *rq = cpu_rq(cpu);
863bffc8 5352
9abf24d4
SD
5353 /*
5354 * build_sched_domains() -> init_sched_groups_power()
5355 * gets here before we've attached the domains to the
5356 * runqueues.
5357 *
5358 * Use power_of(), which is set irrespective of domains
5359 * in update_cpu_power().
5360 *
5361 * This avoids power/power_orig from being 0 and
5362 * causing divide-by-zero issues on boot.
5363 *
5364 * Runtime updates will correct power_orig.
5365 */
5366 if (unlikely(!rq->sd)) {
5367 power_orig += power_of(cpu);
5368 power += power_of(cpu);
5369 continue;
5370 }
863bffc8 5371
9abf24d4
SD
5372 sgp = rq->sd->groups->sgp;
5373 power_orig += sgp->power_orig;
5374 power += sgp->power;
863bffc8 5375 }
74a5ce20
PZ
5376 } else {
5377 /*
5378 * !SD_OVERLAP domains can assume that child groups
5379 * span the current group.
5380 */
5381
5382 group = child->groups;
5383 do {
863bffc8 5384 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5385 power += group->sgp->power;
5386 group = group->next;
5387 } while (group != child->groups);
5388 }
1e3c88bd 5389
863bffc8
PZ
5390 sdg->sgp->power_orig = power_orig;
5391 sdg->sgp->power = power;
1e3c88bd
PZ
5392}
5393
9d5efe05
SV
5394/*
5395 * Try and fix up capacity for tiny siblings, this is needed when
5396 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5397 * which on its own isn't powerful enough.
5398 *
5399 * See update_sd_pick_busiest() and check_asym_packing().
5400 */
5401static inline int
5402fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5403{
5404 /*
1399fa78 5405 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5406 */
a6c75f2f 5407 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5408 return 0;
5409
5410 /*
5411 * If ~90% of the cpu_power is still there, we're good.
5412 */
9c3f75cb 5413 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5414 return 1;
5415
5416 return 0;
5417}
5418
30ce5dab
PZ
5419/*
5420 * Group imbalance indicates (and tries to solve) the problem where balancing
5421 * groups is inadequate due to tsk_cpus_allowed() constraints.
5422 *
5423 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5424 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5425 * Something like:
5426 *
5427 * { 0 1 2 3 } { 4 5 6 7 }
5428 * * * * *
5429 *
5430 * If we were to balance group-wise we'd place two tasks in the first group and
5431 * two tasks in the second group. Clearly this is undesired as it will overload
5432 * cpu 3 and leave one of the cpus in the second group unused.
5433 *
5434 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5435 * by noticing the lower domain failed to reach balance and had difficulty
5436 * moving tasks due to affinity constraints.
30ce5dab
PZ
5437 *
5438 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5439 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5440 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5441 * to create an effective group imbalance.
5442 *
5443 * This is a somewhat tricky proposition since the next run might not find the
5444 * group imbalance and decide the groups need to be balanced again. A most
5445 * subtle and fragile situation.
5446 */
5447
6263322c 5448static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5449{
6263322c 5450 return group->sgp->imbalance;
30ce5dab
PZ
5451}
5452
b37d9316
PZ
5453/*
5454 * Compute the group capacity.
5455 *
c61037e9
PZ
5456 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5457 * first dividing out the smt factor and computing the actual number of cores
5458 * and limit power unit capacity with that.
b37d9316
PZ
5459 */
5460static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5461{
c61037e9
PZ
5462 unsigned int capacity, smt, cpus;
5463 unsigned int power, power_orig;
5464
5465 power = group->sgp->power;
5466 power_orig = group->sgp->power_orig;
5467 cpus = group->group_weight;
b37d9316 5468
c61037e9
PZ
5469 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5470 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5471 capacity = cpus / smt; /* cores */
b37d9316 5472
c61037e9 5473 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5474 if (!capacity)
5475 capacity = fix_small_capacity(env->sd, group);
5476
5477 return capacity;
5478}
5479
1e3c88bd
PZ
5480/**
5481 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5482 * @env: The load balancing environment.
1e3c88bd 5483 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5484 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5485 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5486 * @sgs: variable to hold the statistics for this group.
5487 */
bd939f45
PZ
5488static inline void update_sg_lb_stats(struct lb_env *env,
5489 struct sched_group *group, int load_idx,
23f0d209 5490 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5491{
30ce5dab 5492 unsigned long load;
bd939f45 5493 int i;
1e3c88bd 5494
b72ff13c
PZ
5495 memset(sgs, 0, sizeof(*sgs));
5496
b9403130 5497 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5498 struct rq *rq = cpu_rq(i);
5499
1e3c88bd 5500 /* Bias balancing toward cpus of our domain */
6263322c 5501 if (local_group)
04f733b4 5502 load = target_load(i, load_idx);
6263322c 5503 else
1e3c88bd 5504 load = source_load(i, load_idx);
1e3c88bd
PZ
5505
5506 sgs->group_load += load;
380c9077 5507 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5508#ifdef CONFIG_NUMA_BALANCING
5509 sgs->nr_numa_running += rq->nr_numa_running;
5510 sgs->nr_preferred_running += rq->nr_preferred_running;
5511#endif
1e3c88bd 5512 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5513 if (idle_cpu(i))
5514 sgs->idle_cpus++;
1e3c88bd
PZ
5515 }
5516
1e3c88bd 5517 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5518 sgs->group_power = group->sgp->power;
5519 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5520
dd5feea1 5521 if (sgs->sum_nr_running)
38d0f770 5522 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5523
aae6d3dd 5524 sgs->group_weight = group->group_weight;
fab47622 5525
b37d9316
PZ
5526 sgs->group_imb = sg_imbalanced(group);
5527 sgs->group_capacity = sg_capacity(env, group);
5528
fab47622
NR
5529 if (sgs->group_capacity > sgs->sum_nr_running)
5530 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5531}
5532
532cb4c4
MN
5533/**
5534 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5535 * @env: The load balancing environment.
532cb4c4
MN
5536 * @sds: sched_domain statistics
5537 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5538 * @sgs: sched_group statistics
532cb4c4
MN
5539 *
5540 * Determine if @sg is a busier group than the previously selected
5541 * busiest group.
e69f6186
YB
5542 *
5543 * Return: %true if @sg is a busier group than the previously selected
5544 * busiest group. %false otherwise.
532cb4c4 5545 */
bd939f45 5546static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5547 struct sd_lb_stats *sds,
5548 struct sched_group *sg,
bd939f45 5549 struct sg_lb_stats *sgs)
532cb4c4 5550{
56cf515b 5551 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5552 return false;
5553
5554 if (sgs->sum_nr_running > sgs->group_capacity)
5555 return true;
5556
5557 if (sgs->group_imb)
5558 return true;
5559
5560 /*
5561 * ASYM_PACKING needs to move all the work to the lowest
5562 * numbered CPUs in the group, therefore mark all groups
5563 * higher than ourself as busy.
5564 */
bd939f45
PZ
5565 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5566 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5567 if (!sds->busiest)
5568 return true;
5569
5570 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5571 return true;
5572 }
5573
5574 return false;
5575}
5576
0ec8aa00
PZ
5577#ifdef CONFIG_NUMA_BALANCING
5578static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5579{
5580 if (sgs->sum_nr_running > sgs->nr_numa_running)
5581 return regular;
5582 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5583 return remote;
5584 return all;
5585}
5586
5587static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5588{
5589 if (rq->nr_running > rq->nr_numa_running)
5590 return regular;
5591 if (rq->nr_running > rq->nr_preferred_running)
5592 return remote;
5593 return all;
5594}
5595#else
5596static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5597{
5598 return all;
5599}
5600
5601static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5602{
5603 return regular;
5604}
5605#endif /* CONFIG_NUMA_BALANCING */
5606
1e3c88bd 5607/**
461819ac 5608 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5609 * @env: The load balancing environment.
1e3c88bd
PZ
5610 * @sds: variable to hold the statistics for this sched_domain.
5611 */
0ec8aa00 5612static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5613{
bd939f45
PZ
5614 struct sched_domain *child = env->sd->child;
5615 struct sched_group *sg = env->sd->groups;
56cf515b 5616 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5617 int load_idx, prefer_sibling = 0;
5618
5619 if (child && child->flags & SD_PREFER_SIBLING)
5620 prefer_sibling = 1;
5621
bd939f45 5622 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5623
5624 do {
56cf515b 5625 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5626 int local_group;
5627
bd939f45 5628 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5629 if (local_group) {
5630 sds->local = sg;
5631 sgs = &sds->local_stat;
b72ff13c
PZ
5632
5633 if (env->idle != CPU_NEWLY_IDLE ||
5634 time_after_eq(jiffies, sg->sgp->next_update))
5635 update_group_power(env->sd, env->dst_cpu);
56cf515b 5636 }
1e3c88bd 5637
56cf515b 5638 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5639
b72ff13c
PZ
5640 if (local_group)
5641 goto next_group;
5642
1e3c88bd
PZ
5643 /*
5644 * In case the child domain prefers tasks go to siblings
532cb4c4 5645 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5646 * and move all the excess tasks away. We lower the capacity
5647 * of a group only if the local group has the capacity to fit
5648 * these excess tasks, i.e. nr_running < group_capacity. The
5649 * extra check prevents the case where you always pull from the
5650 * heaviest group when it is already under-utilized (possible
5651 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5652 */
b72ff13c
PZ
5653 if (prefer_sibling && sds->local &&
5654 sds->local_stat.group_has_capacity)
147c5fc2 5655 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5656
b72ff13c 5657 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5658 sds->busiest = sg;
56cf515b 5659 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5660 }
5661
b72ff13c
PZ
5662next_group:
5663 /* Now, start updating sd_lb_stats */
5664 sds->total_load += sgs->group_load;
5665 sds->total_pwr += sgs->group_power;
5666
532cb4c4 5667 sg = sg->next;
bd939f45 5668 } while (sg != env->sd->groups);
0ec8aa00
PZ
5669
5670 if (env->sd->flags & SD_NUMA)
5671 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5672}
5673
532cb4c4
MN
5674/**
5675 * check_asym_packing - Check to see if the group is packed into the
5676 * sched doman.
5677 *
5678 * This is primarily intended to used at the sibling level. Some
5679 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5680 * case of POWER7, it can move to lower SMT modes only when higher
5681 * threads are idle. When in lower SMT modes, the threads will
5682 * perform better since they share less core resources. Hence when we
5683 * have idle threads, we want them to be the higher ones.
5684 *
5685 * This packing function is run on idle threads. It checks to see if
5686 * the busiest CPU in this domain (core in the P7 case) has a higher
5687 * CPU number than the packing function is being run on. Here we are
5688 * assuming lower CPU number will be equivalent to lower a SMT thread
5689 * number.
5690 *
e69f6186 5691 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5692 * this CPU. The amount of the imbalance is returned in *imbalance.
5693 *
cd96891d 5694 * @env: The load balancing environment.
532cb4c4 5695 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5696 */
bd939f45 5697static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5698{
5699 int busiest_cpu;
5700
bd939f45 5701 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5702 return 0;
5703
5704 if (!sds->busiest)
5705 return 0;
5706
5707 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5708 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5709 return 0;
5710
bd939f45 5711 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5712 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5713 SCHED_POWER_SCALE);
bd939f45 5714
532cb4c4 5715 return 1;
1e3c88bd
PZ
5716}
5717
5718/**
5719 * fix_small_imbalance - Calculate the minor imbalance that exists
5720 * amongst the groups of a sched_domain, during
5721 * load balancing.
cd96891d 5722 * @env: The load balancing environment.
1e3c88bd 5723 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5724 */
bd939f45
PZ
5725static inline
5726void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5727{
5728 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5729 unsigned int imbn = 2;
dd5feea1 5730 unsigned long scaled_busy_load_per_task;
56cf515b 5731 struct sg_lb_stats *local, *busiest;
1e3c88bd 5732
56cf515b
JK
5733 local = &sds->local_stat;
5734 busiest = &sds->busiest_stat;
1e3c88bd 5735
56cf515b
JK
5736 if (!local->sum_nr_running)
5737 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5738 else if (busiest->load_per_task > local->load_per_task)
5739 imbn = 1;
dd5feea1 5740
56cf515b
JK
5741 scaled_busy_load_per_task =
5742 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5743 busiest->group_power;
56cf515b 5744
3029ede3
VD
5745 if (busiest->avg_load + scaled_busy_load_per_task >=
5746 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5747 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5748 return;
5749 }
5750
5751 /*
5752 * OK, we don't have enough imbalance to justify moving tasks,
5753 * however we may be able to increase total CPU power used by
5754 * moving them.
5755 */
5756
3ae11c90 5757 pwr_now += busiest->group_power *
56cf515b 5758 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5759 pwr_now += local->group_power *
56cf515b 5760 min(local->load_per_task, local->avg_load);
1399fa78 5761 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5762
5763 /* Amount of load we'd subtract */
56cf515b 5764 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5765 busiest->group_power;
56cf515b 5766 if (busiest->avg_load > tmp) {
3ae11c90 5767 pwr_move += busiest->group_power *
56cf515b
JK
5768 min(busiest->load_per_task,
5769 busiest->avg_load - tmp);
5770 }
1e3c88bd
PZ
5771
5772 /* Amount of load we'd add */
3ae11c90 5773 if (busiest->avg_load * busiest->group_power <
56cf515b 5774 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5775 tmp = (busiest->avg_load * busiest->group_power) /
5776 local->group_power;
56cf515b
JK
5777 } else {
5778 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5779 local->group_power;
56cf515b 5780 }
3ae11c90
PZ
5781 pwr_move += local->group_power *
5782 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5783 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5784
5785 /* Move if we gain throughput */
5786 if (pwr_move > pwr_now)
56cf515b 5787 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5788}
5789
5790/**
5791 * calculate_imbalance - Calculate the amount of imbalance present within the
5792 * groups of a given sched_domain during load balance.
bd939f45 5793 * @env: load balance environment
1e3c88bd 5794 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5795 */
bd939f45 5796static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5797{
dd5feea1 5798 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5799 struct sg_lb_stats *local, *busiest;
5800
5801 local = &sds->local_stat;
56cf515b 5802 busiest = &sds->busiest_stat;
dd5feea1 5803
56cf515b 5804 if (busiest->group_imb) {
30ce5dab
PZ
5805 /*
5806 * In the group_imb case we cannot rely on group-wide averages
5807 * to ensure cpu-load equilibrium, look at wider averages. XXX
5808 */
56cf515b
JK
5809 busiest->load_per_task =
5810 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5811 }
5812
1e3c88bd
PZ
5813 /*
5814 * In the presence of smp nice balancing, certain scenarios can have
5815 * max load less than avg load(as we skip the groups at or below
5816 * its cpu_power, while calculating max_load..)
5817 */
b1885550
VD
5818 if (busiest->avg_load <= sds->avg_load ||
5819 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5820 env->imbalance = 0;
5821 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5822 }
5823
56cf515b 5824 if (!busiest->group_imb) {
dd5feea1
SS
5825 /*
5826 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5827 * Except of course for the group_imb case, since then we might
5828 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5829 */
56cf515b
JK
5830 load_above_capacity =
5831 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5832
1399fa78 5833 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5834 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5835 }
5836
5837 /*
5838 * We're trying to get all the cpus to the average_load, so we don't
5839 * want to push ourselves above the average load, nor do we wish to
5840 * reduce the max loaded cpu below the average load. At the same time,
5841 * we also don't want to reduce the group load below the group capacity
5842 * (so that we can implement power-savings policies etc). Thus we look
5843 * for the minimum possible imbalance.
dd5feea1 5844 */
30ce5dab 5845 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5846
5847 /* How much load to actually move to equalise the imbalance */
56cf515b 5848 env->imbalance = min(
3ae11c90
PZ
5849 max_pull * busiest->group_power,
5850 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5851 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5852
5853 /*
5854 * if *imbalance is less than the average load per runnable task
25985edc 5855 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5856 * a think about bumping its value to force at least one task to be
5857 * moved
5858 */
56cf515b 5859 if (env->imbalance < busiest->load_per_task)
bd939f45 5860 return fix_small_imbalance(env, sds);
1e3c88bd 5861}
fab47622 5862
1e3c88bd
PZ
5863/******* find_busiest_group() helpers end here *********************/
5864
5865/**
5866 * find_busiest_group - Returns the busiest group within the sched_domain
5867 * if there is an imbalance. If there isn't an imbalance, and
5868 * the user has opted for power-savings, it returns a group whose
5869 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5870 * such a group exists.
5871 *
5872 * Also calculates the amount of weighted load which should be moved
5873 * to restore balance.
5874 *
cd96891d 5875 * @env: The load balancing environment.
1e3c88bd 5876 *
e69f6186 5877 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5878 * - If no imbalance and user has opted for power-savings balance,
5879 * return the least loaded group whose CPUs can be
5880 * put to idle by rebalancing its tasks onto our group.
5881 */
56cf515b 5882static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5883{
56cf515b 5884 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5885 struct sd_lb_stats sds;
5886
147c5fc2 5887 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5888
5889 /*
5890 * Compute the various statistics relavent for load balancing at
5891 * this level.
5892 */
23f0d209 5893 update_sd_lb_stats(env, &sds);
56cf515b
JK
5894 local = &sds.local_stat;
5895 busiest = &sds.busiest_stat;
1e3c88bd 5896
bd939f45
PZ
5897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5898 check_asym_packing(env, &sds))
532cb4c4
MN
5899 return sds.busiest;
5900
cc57aa8f 5901 /* There is no busy sibling group to pull tasks from */
56cf515b 5902 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5903 goto out_balanced;
5904
1399fa78 5905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5906
866ab43e
PZ
5907 /*
5908 * If the busiest group is imbalanced the below checks don't
30ce5dab 5909 * work because they assume all things are equal, which typically
866ab43e
PZ
5910 * isn't true due to cpus_allowed constraints and the like.
5911 */
56cf515b 5912 if (busiest->group_imb)
866ab43e
PZ
5913 goto force_balance;
5914
cc57aa8f 5915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5916 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5917 !busiest->group_has_capacity)
fab47622
NR
5918 goto force_balance;
5919
cc57aa8f
PZ
5920 /*
5921 * If the local group is more busy than the selected busiest group
5922 * don't try and pull any tasks.
5923 */
56cf515b 5924 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5925 goto out_balanced;
5926
cc57aa8f
PZ
5927 /*
5928 * Don't pull any tasks if this group is already above the domain
5929 * average load.
5930 */
56cf515b 5931 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5932 goto out_balanced;
5933
bd939f45 5934 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5935 /*
5936 * This cpu is idle. If the busiest group load doesn't
5937 * have more tasks than the number of available cpu's and
5938 * there is no imbalance between this and busiest group
5939 * wrt to idle cpu's, it is balanced.
5940 */
56cf515b
JK
5941 if ((local->idle_cpus < busiest->idle_cpus) &&
5942 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5943 goto out_balanced;
c186fafe
PZ
5944 } else {
5945 /*
5946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5947 * imbalance_pct to be conservative.
5948 */
56cf515b
JK
5949 if (100 * busiest->avg_load <=
5950 env->sd->imbalance_pct * local->avg_load)
c186fafe 5951 goto out_balanced;
aae6d3dd 5952 }
1e3c88bd 5953
fab47622 5954force_balance:
1e3c88bd 5955 /* Looks like there is an imbalance. Compute it */
bd939f45 5956 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5957 return sds.busiest;
5958
5959out_balanced:
bd939f45 5960 env->imbalance = 0;
1e3c88bd
PZ
5961 return NULL;
5962}
5963
5964/*
5965 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5966 */
bd939f45 5967static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5968 struct sched_group *group)
1e3c88bd
PZ
5969{
5970 struct rq *busiest = NULL, *rq;
95a79b80 5971 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5972 int i;
5973
6906a408 5974 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5975 unsigned long power, capacity, wl;
5976 enum fbq_type rt;
5977
5978 rq = cpu_rq(i);
5979 rt = fbq_classify_rq(rq);
1e3c88bd 5980
0ec8aa00
PZ
5981 /*
5982 * We classify groups/runqueues into three groups:
5983 * - regular: there are !numa tasks
5984 * - remote: there are numa tasks that run on the 'wrong' node
5985 * - all: there is no distinction
5986 *
5987 * In order to avoid migrating ideally placed numa tasks,
5988 * ignore those when there's better options.
5989 *
5990 * If we ignore the actual busiest queue to migrate another
5991 * task, the next balance pass can still reduce the busiest
5992 * queue by moving tasks around inside the node.
5993 *
5994 * If we cannot move enough load due to this classification
5995 * the next pass will adjust the group classification and
5996 * allow migration of more tasks.
5997 *
5998 * Both cases only affect the total convergence complexity.
5999 */
6000 if (rt > env->fbq_type)
6001 continue;
6002
6003 power = power_of(i);
6004 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6005 if (!capacity)
bd939f45 6006 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6007
6e40f5bb 6008 wl = weighted_cpuload(i);
1e3c88bd 6009
6e40f5bb
TG
6010 /*
6011 * When comparing with imbalance, use weighted_cpuload()
6012 * which is not scaled with the cpu power.
6013 */
bd939f45 6014 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6015 continue;
6016
6e40f5bb
TG
6017 /*
6018 * For the load comparisons with the other cpu's, consider
6019 * the weighted_cpuload() scaled with the cpu power, so that
6020 * the load can be moved away from the cpu that is potentially
6021 * running at a lower capacity.
95a79b80
JK
6022 *
6023 * Thus we're looking for max(wl_i / power_i), crosswise
6024 * multiplication to rid ourselves of the division works out
6025 * to: wl_i * power_j > wl_j * power_i; where j is our
6026 * previous maximum.
6e40f5bb 6027 */
95a79b80
JK
6028 if (wl * busiest_power > busiest_load * power) {
6029 busiest_load = wl;
6030 busiest_power = power;
1e3c88bd
PZ
6031 busiest = rq;
6032 }
6033 }
6034
6035 return busiest;
6036}
6037
6038/*
6039 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6040 * so long as it is large enough.
6041 */
6042#define MAX_PINNED_INTERVAL 512
6043
6044/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6045DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6046
bd939f45 6047static int need_active_balance(struct lb_env *env)
1af3ed3d 6048{
bd939f45
PZ
6049 struct sched_domain *sd = env->sd;
6050
6051 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6052
6053 /*
6054 * ASYM_PACKING needs to force migrate tasks from busy but
6055 * higher numbered CPUs in order to pack all tasks in the
6056 * lowest numbered CPUs.
6057 */
bd939f45 6058 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6059 return 1;
1af3ed3d
PZ
6060 }
6061
6062 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6063}
6064
969c7921
TH
6065static int active_load_balance_cpu_stop(void *data);
6066
23f0d209
JK
6067static int should_we_balance(struct lb_env *env)
6068{
6069 struct sched_group *sg = env->sd->groups;
6070 struct cpumask *sg_cpus, *sg_mask;
6071 int cpu, balance_cpu = -1;
6072
6073 /*
6074 * In the newly idle case, we will allow all the cpu's
6075 * to do the newly idle load balance.
6076 */
6077 if (env->idle == CPU_NEWLY_IDLE)
6078 return 1;
6079
6080 sg_cpus = sched_group_cpus(sg);
6081 sg_mask = sched_group_mask(sg);
6082 /* Try to find first idle cpu */
6083 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6084 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6085 continue;
6086
6087 balance_cpu = cpu;
6088 break;
6089 }
6090
6091 if (balance_cpu == -1)
6092 balance_cpu = group_balance_cpu(sg);
6093
6094 /*
6095 * First idle cpu or the first cpu(busiest) in this sched group
6096 * is eligible for doing load balancing at this and above domains.
6097 */
b0cff9d8 6098 return balance_cpu == env->dst_cpu;
23f0d209
JK
6099}
6100
1e3c88bd
PZ
6101/*
6102 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6103 * tasks if there is an imbalance.
6104 */
6105static int load_balance(int this_cpu, struct rq *this_rq,
6106 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6107 int *continue_balancing)
1e3c88bd 6108{
88b8dac0 6109 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6110 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6111 struct sched_group *group;
1e3c88bd
PZ
6112 struct rq *busiest;
6113 unsigned long flags;
e6252c3e 6114 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6115
8e45cb54
PZ
6116 struct lb_env env = {
6117 .sd = sd,
ddcdf6e7
PZ
6118 .dst_cpu = this_cpu,
6119 .dst_rq = this_rq,
88b8dac0 6120 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6121 .idle = idle,
eb95308e 6122 .loop_break = sched_nr_migrate_break,
b9403130 6123 .cpus = cpus,
0ec8aa00 6124 .fbq_type = all,
8e45cb54
PZ
6125 };
6126
cfc03118
JK
6127 /*
6128 * For NEWLY_IDLE load_balancing, we don't need to consider
6129 * other cpus in our group
6130 */
e02e60c1 6131 if (idle == CPU_NEWLY_IDLE)
cfc03118 6132 env.dst_grpmask = NULL;
cfc03118 6133
1e3c88bd
PZ
6134 cpumask_copy(cpus, cpu_active_mask);
6135
1e3c88bd
PZ
6136 schedstat_inc(sd, lb_count[idle]);
6137
6138redo:
23f0d209
JK
6139 if (!should_we_balance(&env)) {
6140 *continue_balancing = 0;
1e3c88bd 6141 goto out_balanced;
23f0d209 6142 }
1e3c88bd 6143
23f0d209 6144 group = find_busiest_group(&env);
1e3c88bd
PZ
6145 if (!group) {
6146 schedstat_inc(sd, lb_nobusyg[idle]);
6147 goto out_balanced;
6148 }
6149
b9403130 6150 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6151 if (!busiest) {
6152 schedstat_inc(sd, lb_nobusyq[idle]);
6153 goto out_balanced;
6154 }
6155
78feefc5 6156 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6157
bd939f45 6158 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6159
6160 ld_moved = 0;
6161 if (busiest->nr_running > 1) {
6162 /*
6163 * Attempt to move tasks. If find_busiest_group has found
6164 * an imbalance but busiest->nr_running <= 1, the group is
6165 * still unbalanced. ld_moved simply stays zero, so it is
6166 * correctly treated as an imbalance.
6167 */
8e45cb54 6168 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6169 env.src_cpu = busiest->cpu;
6170 env.src_rq = busiest;
6171 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6172
5d6523eb 6173more_balance:
1e3c88bd 6174 local_irq_save(flags);
78feefc5 6175 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6176
6177 /*
6178 * cur_ld_moved - load moved in current iteration
6179 * ld_moved - cumulative load moved across iterations
6180 */
6181 cur_ld_moved = move_tasks(&env);
6182 ld_moved += cur_ld_moved;
78feefc5 6183 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6184 local_irq_restore(flags);
6185
6186 /*
6187 * some other cpu did the load balance for us.
6188 */
88b8dac0
SV
6189 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6190 resched_cpu(env.dst_cpu);
6191
f1cd0858
JK
6192 if (env.flags & LBF_NEED_BREAK) {
6193 env.flags &= ~LBF_NEED_BREAK;
6194 goto more_balance;
6195 }
6196
88b8dac0
SV
6197 /*
6198 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6199 * us and move them to an alternate dst_cpu in our sched_group
6200 * where they can run. The upper limit on how many times we
6201 * iterate on same src_cpu is dependent on number of cpus in our
6202 * sched_group.
6203 *
6204 * This changes load balance semantics a bit on who can move
6205 * load to a given_cpu. In addition to the given_cpu itself
6206 * (or a ilb_cpu acting on its behalf where given_cpu is
6207 * nohz-idle), we now have balance_cpu in a position to move
6208 * load to given_cpu. In rare situations, this may cause
6209 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6210 * _independently_ and at _same_ time to move some load to
6211 * given_cpu) causing exceess load to be moved to given_cpu.
6212 * This however should not happen so much in practice and
6213 * moreover subsequent load balance cycles should correct the
6214 * excess load moved.
6215 */
6263322c 6216 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6217
7aff2e3a
VD
6218 /* Prevent to re-select dst_cpu via env's cpus */
6219 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6220
78feefc5 6221 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6222 env.dst_cpu = env.new_dst_cpu;
6263322c 6223 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6224 env.loop = 0;
6225 env.loop_break = sched_nr_migrate_break;
e02e60c1 6226
88b8dac0
SV
6227 /*
6228 * Go back to "more_balance" rather than "redo" since we
6229 * need to continue with same src_cpu.
6230 */
6231 goto more_balance;
6232 }
1e3c88bd 6233
6263322c
PZ
6234 /*
6235 * We failed to reach balance because of affinity.
6236 */
6237 if (sd_parent) {
6238 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6239
6240 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6241 *group_imbalance = 1;
6242 } else if (*group_imbalance)
6243 *group_imbalance = 0;
6244 }
6245
1e3c88bd 6246 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6247 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6248 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6249 if (!cpumask_empty(cpus)) {
6250 env.loop = 0;
6251 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6252 goto redo;
bbf18b19 6253 }
1e3c88bd
PZ
6254 goto out_balanced;
6255 }
6256 }
6257
6258 if (!ld_moved) {
6259 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6260 /*
6261 * Increment the failure counter only on periodic balance.
6262 * We do not want newidle balance, which can be very
6263 * frequent, pollute the failure counter causing
6264 * excessive cache_hot migrations and active balances.
6265 */
6266 if (idle != CPU_NEWLY_IDLE)
6267 sd->nr_balance_failed++;
1e3c88bd 6268
bd939f45 6269 if (need_active_balance(&env)) {
1e3c88bd
PZ
6270 raw_spin_lock_irqsave(&busiest->lock, flags);
6271
969c7921
TH
6272 /* don't kick the active_load_balance_cpu_stop,
6273 * if the curr task on busiest cpu can't be
6274 * moved to this_cpu
1e3c88bd
PZ
6275 */
6276 if (!cpumask_test_cpu(this_cpu,
fa17b507 6277 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6278 raw_spin_unlock_irqrestore(&busiest->lock,
6279 flags);
8e45cb54 6280 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6281 goto out_one_pinned;
6282 }
6283
969c7921
TH
6284 /*
6285 * ->active_balance synchronizes accesses to
6286 * ->active_balance_work. Once set, it's cleared
6287 * only after active load balance is finished.
6288 */
1e3c88bd
PZ
6289 if (!busiest->active_balance) {
6290 busiest->active_balance = 1;
6291 busiest->push_cpu = this_cpu;
6292 active_balance = 1;
6293 }
6294 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6295
bd939f45 6296 if (active_balance) {
969c7921
TH
6297 stop_one_cpu_nowait(cpu_of(busiest),
6298 active_load_balance_cpu_stop, busiest,
6299 &busiest->active_balance_work);
bd939f45 6300 }
1e3c88bd
PZ
6301
6302 /*
6303 * We've kicked active balancing, reset the failure
6304 * counter.
6305 */
6306 sd->nr_balance_failed = sd->cache_nice_tries+1;
6307 }
6308 } else
6309 sd->nr_balance_failed = 0;
6310
6311 if (likely(!active_balance)) {
6312 /* We were unbalanced, so reset the balancing interval */
6313 sd->balance_interval = sd->min_interval;
6314 } else {
6315 /*
6316 * If we've begun active balancing, start to back off. This
6317 * case may not be covered by the all_pinned logic if there
6318 * is only 1 task on the busy runqueue (because we don't call
6319 * move_tasks).
6320 */
6321 if (sd->balance_interval < sd->max_interval)
6322 sd->balance_interval *= 2;
6323 }
6324
1e3c88bd
PZ
6325 goto out;
6326
6327out_balanced:
6328 schedstat_inc(sd, lb_balanced[idle]);
6329
6330 sd->nr_balance_failed = 0;
6331
6332out_one_pinned:
6333 /* tune up the balancing interval */
8e45cb54 6334 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6335 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6336 (sd->balance_interval < sd->max_interval))
6337 sd->balance_interval *= 2;
6338
46e49b38 6339 ld_moved = 0;
1e3c88bd 6340out:
1e3c88bd
PZ
6341 return ld_moved;
6342}
6343
1e3c88bd
PZ
6344/*
6345 * idle_balance is called by schedule() if this_cpu is about to become
6346 * idle. Attempts to pull tasks from other CPUs.
6347 */
029632fb 6348void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6349{
6350 struct sched_domain *sd;
6351 int pulled_task = 0;
6352 unsigned long next_balance = jiffies + HZ;
9bd721c5 6353 u64 curr_cost = 0;
1e3c88bd 6354
78becc27 6355 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6356
6357 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6358 return;
6359
f492e12e
PZ
6360 /*
6361 * Drop the rq->lock, but keep IRQ/preempt disabled.
6362 */
6363 raw_spin_unlock(&this_rq->lock);
6364
48a16753 6365 update_blocked_averages(this_cpu);
dce840a0 6366 rcu_read_lock();
1e3c88bd
PZ
6367 for_each_domain(this_cpu, sd) {
6368 unsigned long interval;
23f0d209 6369 int continue_balancing = 1;
9bd721c5 6370 u64 t0, domain_cost;
1e3c88bd
PZ
6371
6372 if (!(sd->flags & SD_LOAD_BALANCE))
6373 continue;
6374
9bd721c5
JL
6375 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6376 break;
6377
f492e12e 6378 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6379 t0 = sched_clock_cpu(this_cpu);
6380
1e3c88bd 6381 /* If we've pulled tasks over stop searching: */
f492e12e 6382 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6383 sd, CPU_NEWLY_IDLE,
6384 &continue_balancing);
9bd721c5
JL
6385
6386 domain_cost = sched_clock_cpu(this_cpu) - t0;
6387 if (domain_cost > sd->max_newidle_lb_cost)
6388 sd->max_newidle_lb_cost = domain_cost;
6389
6390 curr_cost += domain_cost;
f492e12e 6391 }
1e3c88bd
PZ
6392
6393 interval = msecs_to_jiffies(sd->balance_interval);
6394 if (time_after(next_balance, sd->last_balance + interval))
6395 next_balance = sd->last_balance + interval;
d5ad140b
NR
6396 if (pulled_task) {
6397 this_rq->idle_stamp = 0;
1e3c88bd 6398 break;
d5ad140b 6399 }
1e3c88bd 6400 }
dce840a0 6401 rcu_read_unlock();
f492e12e
PZ
6402
6403 raw_spin_lock(&this_rq->lock);
6404
1e3c88bd
PZ
6405 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6406 /*
6407 * We are going idle. next_balance may be set based on
6408 * a busy processor. So reset next_balance.
6409 */
6410 this_rq->next_balance = next_balance;
6411 }
9bd721c5
JL
6412
6413 if (curr_cost > this_rq->max_idle_balance_cost)
6414 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6415}
6416
6417/*
969c7921
TH
6418 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6419 * running tasks off the busiest CPU onto idle CPUs. It requires at
6420 * least 1 task to be running on each physical CPU where possible, and
6421 * avoids physical / logical imbalances.
1e3c88bd 6422 */
969c7921 6423static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6424{
969c7921
TH
6425 struct rq *busiest_rq = data;
6426 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6427 int target_cpu = busiest_rq->push_cpu;
969c7921 6428 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6429 struct sched_domain *sd;
969c7921
TH
6430
6431 raw_spin_lock_irq(&busiest_rq->lock);
6432
6433 /* make sure the requested cpu hasn't gone down in the meantime */
6434 if (unlikely(busiest_cpu != smp_processor_id() ||
6435 !busiest_rq->active_balance))
6436 goto out_unlock;
1e3c88bd
PZ
6437
6438 /* Is there any task to move? */
6439 if (busiest_rq->nr_running <= 1)
969c7921 6440 goto out_unlock;
1e3c88bd
PZ
6441
6442 /*
6443 * This condition is "impossible", if it occurs
6444 * we need to fix it. Originally reported by
6445 * Bjorn Helgaas on a 128-cpu setup.
6446 */
6447 BUG_ON(busiest_rq == target_rq);
6448
6449 /* move a task from busiest_rq to target_rq */
6450 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6451
6452 /* Search for an sd spanning us and the target CPU. */
dce840a0 6453 rcu_read_lock();
1e3c88bd
PZ
6454 for_each_domain(target_cpu, sd) {
6455 if ((sd->flags & SD_LOAD_BALANCE) &&
6456 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6457 break;
6458 }
6459
6460 if (likely(sd)) {
8e45cb54
PZ
6461 struct lb_env env = {
6462 .sd = sd,
ddcdf6e7
PZ
6463 .dst_cpu = target_cpu,
6464 .dst_rq = target_rq,
6465 .src_cpu = busiest_rq->cpu,
6466 .src_rq = busiest_rq,
8e45cb54
PZ
6467 .idle = CPU_IDLE,
6468 };
6469
1e3c88bd
PZ
6470 schedstat_inc(sd, alb_count);
6471
8e45cb54 6472 if (move_one_task(&env))
1e3c88bd
PZ
6473 schedstat_inc(sd, alb_pushed);
6474 else
6475 schedstat_inc(sd, alb_failed);
6476 }
dce840a0 6477 rcu_read_unlock();
1e3c88bd 6478 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6479out_unlock:
6480 busiest_rq->active_balance = 0;
6481 raw_spin_unlock_irq(&busiest_rq->lock);
6482 return 0;
1e3c88bd
PZ
6483}
6484
3451d024 6485#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6486/*
6487 * idle load balancing details
83cd4fe2
VP
6488 * - When one of the busy CPUs notice that there may be an idle rebalancing
6489 * needed, they will kick the idle load balancer, which then does idle
6490 * load balancing for all the idle CPUs.
6491 */
1e3c88bd 6492static struct {
83cd4fe2 6493 cpumask_var_t idle_cpus_mask;
0b005cf5 6494 atomic_t nr_cpus;
83cd4fe2
VP
6495 unsigned long next_balance; /* in jiffy units */
6496} nohz ____cacheline_aligned;
1e3c88bd 6497
3dd0337d 6498static inline int find_new_ilb(void)
1e3c88bd 6499{
0b005cf5 6500 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6501
786d6dc7
SS
6502 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6503 return ilb;
6504
6505 return nr_cpu_ids;
1e3c88bd 6506}
1e3c88bd 6507
83cd4fe2
VP
6508/*
6509 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6510 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6511 * CPU (if there is one).
6512 */
0aeeeeba 6513static void nohz_balancer_kick(void)
83cd4fe2
VP
6514{
6515 int ilb_cpu;
6516
6517 nohz.next_balance++;
6518
3dd0337d 6519 ilb_cpu = find_new_ilb();
83cd4fe2 6520
0b005cf5
SS
6521 if (ilb_cpu >= nr_cpu_ids)
6522 return;
83cd4fe2 6523
cd490c5b 6524 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6525 return;
6526 /*
6527 * Use smp_send_reschedule() instead of resched_cpu().
6528 * This way we generate a sched IPI on the target cpu which
6529 * is idle. And the softirq performing nohz idle load balance
6530 * will be run before returning from the IPI.
6531 */
6532 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6533 return;
6534}
6535
c1cc017c 6536static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6537{
6538 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6539 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6540 atomic_dec(&nohz.nr_cpus);
6541 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6542 }
6543}
6544
69e1e811
SS
6545static inline void set_cpu_sd_state_busy(void)
6546{
6547 struct sched_domain *sd;
37dc6b50 6548 int cpu = smp_processor_id();
69e1e811 6549
69e1e811 6550 rcu_read_lock();
37dc6b50 6551 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6552
6553 if (!sd || !sd->nohz_idle)
6554 goto unlock;
6555 sd->nohz_idle = 0;
6556
37dc6b50 6557 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6558unlock:
69e1e811
SS
6559 rcu_read_unlock();
6560}
6561
6562void set_cpu_sd_state_idle(void)
6563{
6564 struct sched_domain *sd;
37dc6b50 6565 int cpu = smp_processor_id();
69e1e811 6566
69e1e811 6567 rcu_read_lock();
37dc6b50 6568 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6569
6570 if (!sd || sd->nohz_idle)
6571 goto unlock;
6572 sd->nohz_idle = 1;
6573
37dc6b50 6574 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6575unlock:
69e1e811
SS
6576 rcu_read_unlock();
6577}
6578
1e3c88bd 6579/*
c1cc017c 6580 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6581 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6582 */
c1cc017c 6583void nohz_balance_enter_idle(int cpu)
1e3c88bd 6584{
71325960
SS
6585 /*
6586 * If this cpu is going down, then nothing needs to be done.
6587 */
6588 if (!cpu_active(cpu))
6589 return;
6590
c1cc017c
AS
6591 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6592 return;
1e3c88bd 6593
c1cc017c
AS
6594 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6595 atomic_inc(&nohz.nr_cpus);
6596 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6597}
71325960 6598
0db0628d 6599static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6600 unsigned long action, void *hcpu)
6601{
6602 switch (action & ~CPU_TASKS_FROZEN) {
6603 case CPU_DYING:
c1cc017c 6604 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6605 return NOTIFY_OK;
6606 default:
6607 return NOTIFY_DONE;
6608 }
6609}
1e3c88bd
PZ
6610#endif
6611
6612static DEFINE_SPINLOCK(balancing);
6613
49c022e6
PZ
6614/*
6615 * Scale the max load_balance interval with the number of CPUs in the system.
6616 * This trades load-balance latency on larger machines for less cross talk.
6617 */
029632fb 6618void update_max_interval(void)
49c022e6
PZ
6619{
6620 max_load_balance_interval = HZ*num_online_cpus()/10;
6621}
6622
1e3c88bd
PZ
6623/*
6624 * It checks each scheduling domain to see if it is due to be balanced,
6625 * and initiates a balancing operation if so.
6626 *
b9b0853a 6627 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6628 */
f7ed0a89 6629static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6630{
23f0d209 6631 int continue_balancing = 1;
f7ed0a89 6632 int cpu = rq->cpu;
1e3c88bd 6633 unsigned long interval;
04f733b4 6634 struct sched_domain *sd;
1e3c88bd
PZ
6635 /* Earliest time when we have to do rebalance again */
6636 unsigned long next_balance = jiffies + 60*HZ;
6637 int update_next_balance = 0;
f48627e6
JL
6638 int need_serialize, need_decay = 0;
6639 u64 max_cost = 0;
1e3c88bd 6640
48a16753 6641 update_blocked_averages(cpu);
2069dd75 6642
dce840a0 6643 rcu_read_lock();
1e3c88bd 6644 for_each_domain(cpu, sd) {
f48627e6
JL
6645 /*
6646 * Decay the newidle max times here because this is a regular
6647 * visit to all the domains. Decay ~1% per second.
6648 */
6649 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6650 sd->max_newidle_lb_cost =
6651 (sd->max_newidle_lb_cost * 253) / 256;
6652 sd->next_decay_max_lb_cost = jiffies + HZ;
6653 need_decay = 1;
6654 }
6655 max_cost += sd->max_newidle_lb_cost;
6656
1e3c88bd
PZ
6657 if (!(sd->flags & SD_LOAD_BALANCE))
6658 continue;
6659
f48627e6
JL
6660 /*
6661 * Stop the load balance at this level. There is another
6662 * CPU in our sched group which is doing load balancing more
6663 * actively.
6664 */
6665 if (!continue_balancing) {
6666 if (need_decay)
6667 continue;
6668 break;
6669 }
6670
1e3c88bd
PZ
6671 interval = sd->balance_interval;
6672 if (idle != CPU_IDLE)
6673 interval *= sd->busy_factor;
6674
6675 /* scale ms to jiffies */
6676 interval = msecs_to_jiffies(interval);
49c022e6 6677 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6678
6679 need_serialize = sd->flags & SD_SERIALIZE;
6680
6681 if (need_serialize) {
6682 if (!spin_trylock(&balancing))
6683 goto out;
6684 }
6685
6686 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6687 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6688 /*
6263322c 6689 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6690 * env->dst_cpu, so we can't know our idle
6691 * state even if we migrated tasks. Update it.
1e3c88bd 6692 */
de5eb2dd 6693 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6694 }
6695 sd->last_balance = jiffies;
6696 }
6697 if (need_serialize)
6698 spin_unlock(&balancing);
6699out:
6700 if (time_after(next_balance, sd->last_balance + interval)) {
6701 next_balance = sd->last_balance + interval;
6702 update_next_balance = 1;
6703 }
f48627e6
JL
6704 }
6705 if (need_decay) {
1e3c88bd 6706 /*
f48627e6
JL
6707 * Ensure the rq-wide value also decays but keep it at a
6708 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6709 */
f48627e6
JL
6710 rq->max_idle_balance_cost =
6711 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6712 }
dce840a0 6713 rcu_read_unlock();
1e3c88bd
PZ
6714
6715 /*
6716 * next_balance will be updated only when there is a need.
6717 * When the cpu is attached to null domain for ex, it will not be
6718 * updated.
6719 */
6720 if (likely(update_next_balance))
6721 rq->next_balance = next_balance;
6722}
6723
3451d024 6724#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6725/*
3451d024 6726 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6727 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6728 */
208cb16b 6729static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 6730{
208cb16b 6731 int this_cpu = this_rq->cpu;
83cd4fe2
VP
6732 struct rq *rq;
6733 int balance_cpu;
6734
1c792db7
SS
6735 if (idle != CPU_IDLE ||
6736 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6737 goto end;
83cd4fe2
VP
6738
6739 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6740 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6741 continue;
6742
6743 /*
6744 * If this cpu gets work to do, stop the load balancing
6745 * work being done for other cpus. Next load
6746 * balancing owner will pick it up.
6747 */
1c792db7 6748 if (need_resched())
83cd4fe2 6749 break;
83cd4fe2 6750
5ed4f1d9
VG
6751 rq = cpu_rq(balance_cpu);
6752
6753 raw_spin_lock_irq(&rq->lock);
6754 update_rq_clock(rq);
6755 update_idle_cpu_load(rq);
6756 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6757
f7ed0a89 6758 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6759
83cd4fe2
VP
6760 if (time_after(this_rq->next_balance, rq->next_balance))
6761 this_rq->next_balance = rq->next_balance;
6762 }
6763 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6764end:
6765 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6766}
6767
6768/*
0b005cf5
SS
6769 * Current heuristic for kicking the idle load balancer in the presence
6770 * of an idle cpu is the system.
6771 * - This rq has more than one task.
6772 * - At any scheduler domain level, this cpu's scheduler group has multiple
6773 * busy cpu's exceeding the group's power.
6774 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6775 * domain span are idle.
83cd4fe2 6776 */
4a725627 6777static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6778{
6779 unsigned long now = jiffies;
0b005cf5 6780 struct sched_domain *sd;
37dc6b50 6781 struct sched_group_power *sgp;
4a725627 6782 int nr_busy, cpu = rq->cpu;
83cd4fe2 6783
4a725627 6784 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6785 return 0;
6786
1c792db7
SS
6787 /*
6788 * We may be recently in ticked or tickless idle mode. At the first
6789 * busy tick after returning from idle, we will update the busy stats.
6790 */
69e1e811 6791 set_cpu_sd_state_busy();
c1cc017c 6792 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6793
6794 /*
6795 * None are in tickless mode and hence no need for NOHZ idle load
6796 * balancing.
6797 */
6798 if (likely(!atomic_read(&nohz.nr_cpus)))
6799 return 0;
1c792db7
SS
6800
6801 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6802 return 0;
6803
0b005cf5
SS
6804 if (rq->nr_running >= 2)
6805 goto need_kick;
83cd4fe2 6806
067491b7 6807 rcu_read_lock();
37dc6b50 6808 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6809
37dc6b50
PM
6810 if (sd) {
6811 sgp = sd->groups->sgp;
6812 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6813
37dc6b50 6814 if (nr_busy > 1)
067491b7 6815 goto need_kick_unlock;
83cd4fe2 6816 }
37dc6b50
PM
6817
6818 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6819
6820 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6821 sched_domain_span(sd)) < cpu))
6822 goto need_kick_unlock;
6823
067491b7 6824 rcu_read_unlock();
83cd4fe2 6825 return 0;
067491b7
PZ
6826
6827need_kick_unlock:
6828 rcu_read_unlock();
0b005cf5
SS
6829need_kick:
6830 return 1;
83cd4fe2
VP
6831}
6832#else
208cb16b 6833static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
6834#endif
6835
6836/*
6837 * run_rebalance_domains is triggered when needed from the scheduler tick.
6838 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6839 */
1e3c88bd
PZ
6840static void run_rebalance_domains(struct softirq_action *h)
6841{
208cb16b 6842 struct rq *this_rq = this_rq();
6eb57e0d 6843 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6844 CPU_IDLE : CPU_NOT_IDLE;
6845
f7ed0a89 6846 rebalance_domains(this_rq, idle);
1e3c88bd 6847
1e3c88bd 6848 /*
83cd4fe2 6849 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6850 * balancing on behalf of the other idle cpus whose ticks are
6851 * stopped.
6852 */
208cb16b 6853 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
6854}
6855
63f609b1 6856static inline int on_null_domain(struct rq *rq)
1e3c88bd 6857{
63f609b1 6858 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
6859}
6860
6861/*
6862 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6863 */
7caff66f 6864void trigger_load_balance(struct rq *rq)
1e3c88bd 6865{
1e3c88bd 6866 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
6867 if (unlikely(on_null_domain(rq)))
6868 return;
6869
6870 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 6871 raise_softirq(SCHED_SOFTIRQ);
3451d024 6872#ifdef CONFIG_NO_HZ_COMMON
c726099e 6873 if (nohz_kick_needed(rq))
0aeeeeba 6874 nohz_balancer_kick();
83cd4fe2 6875#endif
1e3c88bd
PZ
6876}
6877
0bcdcf28
CE
6878static void rq_online_fair(struct rq *rq)
6879{
6880 update_sysctl();
6881}
6882
6883static void rq_offline_fair(struct rq *rq)
6884{
6885 update_sysctl();
a4c96ae3
PB
6886
6887 /* Ensure any throttled groups are reachable by pick_next_task */
6888 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6889}
6890
55e12e5e 6891#endif /* CONFIG_SMP */
e1d1484f 6892
bf0f6f24
IM
6893/*
6894 * scheduler tick hitting a task of our scheduling class:
6895 */
8f4d37ec 6896static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6897{
6898 struct cfs_rq *cfs_rq;
6899 struct sched_entity *se = &curr->se;
6900
6901 for_each_sched_entity(se) {
6902 cfs_rq = cfs_rq_of(se);
8f4d37ec 6903 entity_tick(cfs_rq, se, queued);
bf0f6f24 6904 }
18bf2805 6905
10e84b97 6906 if (numabalancing_enabled)
cbee9f88 6907 task_tick_numa(rq, curr);
3d59eebc 6908
18bf2805 6909 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6910}
6911
6912/*
cd29fe6f
PZ
6913 * called on fork with the child task as argument from the parent's context
6914 * - child not yet on the tasklist
6915 * - preemption disabled
bf0f6f24 6916 */
cd29fe6f 6917static void task_fork_fair(struct task_struct *p)
bf0f6f24 6918{
4fc420c9
DN
6919 struct cfs_rq *cfs_rq;
6920 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6921 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6922 struct rq *rq = this_rq();
6923 unsigned long flags;
6924
05fa785c 6925 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6926
861d034e
PZ
6927 update_rq_clock(rq);
6928
4fc420c9
DN
6929 cfs_rq = task_cfs_rq(current);
6930 curr = cfs_rq->curr;
6931
6c9a27f5
DN
6932 /*
6933 * Not only the cpu but also the task_group of the parent might have
6934 * been changed after parent->se.parent,cfs_rq were copied to
6935 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6936 * of child point to valid ones.
6937 */
6938 rcu_read_lock();
6939 __set_task_cpu(p, this_cpu);
6940 rcu_read_unlock();
bf0f6f24 6941
7109c442 6942 update_curr(cfs_rq);
cd29fe6f 6943
b5d9d734
MG
6944 if (curr)
6945 se->vruntime = curr->vruntime;
aeb73b04 6946 place_entity(cfs_rq, se, 1);
4d78e7b6 6947
cd29fe6f 6948 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6949 /*
edcb60a3
IM
6950 * Upon rescheduling, sched_class::put_prev_task() will place
6951 * 'current' within the tree based on its new key value.
6952 */
4d78e7b6 6953 swap(curr->vruntime, se->vruntime);
aec0a514 6954 resched_task(rq->curr);
4d78e7b6 6955 }
bf0f6f24 6956
88ec22d3
PZ
6957 se->vruntime -= cfs_rq->min_vruntime;
6958
05fa785c 6959 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6960}
6961
cb469845
SR
6962/*
6963 * Priority of the task has changed. Check to see if we preempt
6964 * the current task.
6965 */
da7a735e
PZ
6966static void
6967prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6968{
da7a735e
PZ
6969 if (!p->se.on_rq)
6970 return;
6971
cb469845
SR
6972 /*
6973 * Reschedule if we are currently running on this runqueue and
6974 * our priority decreased, or if we are not currently running on
6975 * this runqueue and our priority is higher than the current's
6976 */
da7a735e 6977 if (rq->curr == p) {
cb469845
SR
6978 if (p->prio > oldprio)
6979 resched_task(rq->curr);
6980 } else
15afe09b 6981 check_preempt_curr(rq, p, 0);
cb469845
SR
6982}
6983
da7a735e
PZ
6984static void switched_from_fair(struct rq *rq, struct task_struct *p)
6985{
6986 struct sched_entity *se = &p->se;
6987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6988
6989 /*
6990 * Ensure the task's vruntime is normalized, so that when its
6991 * switched back to the fair class the enqueue_entity(.flags=0) will
6992 * do the right thing.
6993 *
6994 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6995 * have normalized the vruntime, if it was !on_rq, then only when
6996 * the task is sleeping will it still have non-normalized vruntime.
6997 */
6998 if (!se->on_rq && p->state != TASK_RUNNING) {
6999 /*
7000 * Fix up our vruntime so that the current sleep doesn't
7001 * cause 'unlimited' sleep bonus.
7002 */
7003 place_entity(cfs_rq, se, 0);
7004 se->vruntime -= cfs_rq->min_vruntime;
7005 }
9ee474f5 7006
141965c7 7007#ifdef CONFIG_SMP
9ee474f5
PT
7008 /*
7009 * Remove our load from contribution when we leave sched_fair
7010 * and ensure we don't carry in an old decay_count if we
7011 * switch back.
7012 */
87e3c8ae
KT
7013 if (se->avg.decay_count) {
7014 __synchronize_entity_decay(se);
7015 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7016 }
7017#endif
da7a735e
PZ
7018}
7019
cb469845
SR
7020/*
7021 * We switched to the sched_fair class.
7022 */
da7a735e 7023static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7024{
da7a735e
PZ
7025 if (!p->se.on_rq)
7026 return;
7027
cb469845
SR
7028 /*
7029 * We were most likely switched from sched_rt, so
7030 * kick off the schedule if running, otherwise just see
7031 * if we can still preempt the current task.
7032 */
da7a735e 7033 if (rq->curr == p)
cb469845
SR
7034 resched_task(rq->curr);
7035 else
15afe09b 7036 check_preempt_curr(rq, p, 0);
cb469845
SR
7037}
7038
83b699ed
SV
7039/* Account for a task changing its policy or group.
7040 *
7041 * This routine is mostly called to set cfs_rq->curr field when a task
7042 * migrates between groups/classes.
7043 */
7044static void set_curr_task_fair(struct rq *rq)
7045{
7046 struct sched_entity *se = &rq->curr->se;
7047
ec12cb7f
PT
7048 for_each_sched_entity(se) {
7049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7050
7051 set_next_entity(cfs_rq, se);
7052 /* ensure bandwidth has been allocated on our new cfs_rq */
7053 account_cfs_rq_runtime(cfs_rq, 0);
7054 }
83b699ed
SV
7055}
7056
029632fb
PZ
7057void init_cfs_rq(struct cfs_rq *cfs_rq)
7058{
7059 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7060 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7061#ifndef CONFIG_64BIT
7062 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7063#endif
141965c7 7064#ifdef CONFIG_SMP
9ee474f5 7065 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7066 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7067#endif
029632fb
PZ
7068}
7069
810b3817 7070#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7071static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7072{
aff3e498 7073 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7074 /*
7075 * If the task was not on the rq at the time of this cgroup movement
7076 * it must have been asleep, sleeping tasks keep their ->vruntime
7077 * absolute on their old rq until wakeup (needed for the fair sleeper
7078 * bonus in place_entity()).
7079 *
7080 * If it was on the rq, we've just 'preempted' it, which does convert
7081 * ->vruntime to a relative base.
7082 *
7083 * Make sure both cases convert their relative position when migrating
7084 * to another cgroup's rq. This does somewhat interfere with the
7085 * fair sleeper stuff for the first placement, but who cares.
7086 */
7ceff013
DN
7087 /*
7088 * When !on_rq, vruntime of the task has usually NOT been normalized.
7089 * But there are some cases where it has already been normalized:
7090 *
7091 * - Moving a forked child which is waiting for being woken up by
7092 * wake_up_new_task().
62af3783
DN
7093 * - Moving a task which has been woken up by try_to_wake_up() and
7094 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7095 *
7096 * To prevent boost or penalty in the new cfs_rq caused by delta
7097 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7098 */
62af3783 7099 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7100 on_rq = 1;
7101
b2b5ce02
PZ
7102 if (!on_rq)
7103 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7104 set_task_rq(p, task_cpu(p));
aff3e498
PT
7105 if (!on_rq) {
7106 cfs_rq = cfs_rq_of(&p->se);
7107 p->se.vruntime += cfs_rq->min_vruntime;
7108#ifdef CONFIG_SMP
7109 /*
7110 * migrate_task_rq_fair() will have removed our previous
7111 * contribution, but we must synchronize for ongoing future
7112 * decay.
7113 */
7114 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7115 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7116#endif
7117 }
810b3817 7118}
029632fb
PZ
7119
7120void free_fair_sched_group(struct task_group *tg)
7121{
7122 int i;
7123
7124 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7125
7126 for_each_possible_cpu(i) {
7127 if (tg->cfs_rq)
7128 kfree(tg->cfs_rq[i]);
7129 if (tg->se)
7130 kfree(tg->se[i]);
7131 }
7132
7133 kfree(tg->cfs_rq);
7134 kfree(tg->se);
7135}
7136
7137int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7138{
7139 struct cfs_rq *cfs_rq;
7140 struct sched_entity *se;
7141 int i;
7142
7143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7144 if (!tg->cfs_rq)
7145 goto err;
7146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7147 if (!tg->se)
7148 goto err;
7149
7150 tg->shares = NICE_0_LOAD;
7151
7152 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7153
7154 for_each_possible_cpu(i) {
7155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7156 GFP_KERNEL, cpu_to_node(i));
7157 if (!cfs_rq)
7158 goto err;
7159
7160 se = kzalloc_node(sizeof(struct sched_entity),
7161 GFP_KERNEL, cpu_to_node(i));
7162 if (!se)
7163 goto err_free_rq;
7164
7165 init_cfs_rq(cfs_rq);
7166 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7167 }
7168
7169 return 1;
7170
7171err_free_rq:
7172 kfree(cfs_rq);
7173err:
7174 return 0;
7175}
7176
7177void unregister_fair_sched_group(struct task_group *tg, int cpu)
7178{
7179 struct rq *rq = cpu_rq(cpu);
7180 unsigned long flags;
7181
7182 /*
7183 * Only empty task groups can be destroyed; so we can speculatively
7184 * check on_list without danger of it being re-added.
7185 */
7186 if (!tg->cfs_rq[cpu]->on_list)
7187 return;
7188
7189 raw_spin_lock_irqsave(&rq->lock, flags);
7190 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7191 raw_spin_unlock_irqrestore(&rq->lock, flags);
7192}
7193
7194void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7195 struct sched_entity *se, int cpu,
7196 struct sched_entity *parent)
7197{
7198 struct rq *rq = cpu_rq(cpu);
7199
7200 cfs_rq->tg = tg;
7201 cfs_rq->rq = rq;
029632fb
PZ
7202 init_cfs_rq_runtime(cfs_rq);
7203
7204 tg->cfs_rq[cpu] = cfs_rq;
7205 tg->se[cpu] = se;
7206
7207 /* se could be NULL for root_task_group */
7208 if (!se)
7209 return;
7210
7211 if (!parent)
7212 se->cfs_rq = &rq->cfs;
7213 else
7214 se->cfs_rq = parent->my_q;
7215
7216 se->my_q = cfs_rq;
0ac9b1c2
PT
7217 /* guarantee group entities always have weight */
7218 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7219 se->parent = parent;
7220}
7221
7222static DEFINE_MUTEX(shares_mutex);
7223
7224int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7225{
7226 int i;
7227 unsigned long flags;
7228
7229 /*
7230 * We can't change the weight of the root cgroup.
7231 */
7232 if (!tg->se[0])
7233 return -EINVAL;
7234
7235 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7236
7237 mutex_lock(&shares_mutex);
7238 if (tg->shares == shares)
7239 goto done;
7240
7241 tg->shares = shares;
7242 for_each_possible_cpu(i) {
7243 struct rq *rq = cpu_rq(i);
7244 struct sched_entity *se;
7245
7246 se = tg->se[i];
7247 /* Propagate contribution to hierarchy */
7248 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7249
7250 /* Possible calls to update_curr() need rq clock */
7251 update_rq_clock(rq);
17bc14b7 7252 for_each_sched_entity(se)
029632fb
PZ
7253 update_cfs_shares(group_cfs_rq(se));
7254 raw_spin_unlock_irqrestore(&rq->lock, flags);
7255 }
7256
7257done:
7258 mutex_unlock(&shares_mutex);
7259 return 0;
7260}
7261#else /* CONFIG_FAIR_GROUP_SCHED */
7262
7263void free_fair_sched_group(struct task_group *tg) { }
7264
7265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7266{
7267 return 1;
7268}
7269
7270void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7271
7272#endif /* CONFIG_FAIR_GROUP_SCHED */
7273
810b3817 7274
6d686f45 7275static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7276{
7277 struct sched_entity *se = &task->se;
0d721cea
PW
7278 unsigned int rr_interval = 0;
7279
7280 /*
7281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7282 * idle runqueue:
7283 */
0d721cea 7284 if (rq->cfs.load.weight)
a59f4e07 7285 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7286
7287 return rr_interval;
7288}
7289
bf0f6f24
IM
7290/*
7291 * All the scheduling class methods:
7292 */
029632fb 7293const struct sched_class fair_sched_class = {
5522d5d5 7294 .next = &idle_sched_class,
bf0f6f24
IM
7295 .enqueue_task = enqueue_task_fair,
7296 .dequeue_task = dequeue_task_fair,
7297 .yield_task = yield_task_fair,
d95f4122 7298 .yield_to_task = yield_to_task_fair,
bf0f6f24 7299
2e09bf55 7300 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7301
7302 .pick_next_task = pick_next_task_fair,
7303 .put_prev_task = put_prev_task_fair,
7304
681f3e68 7305#ifdef CONFIG_SMP
4ce72a2c 7306 .select_task_rq = select_task_rq_fair,
0a74bef8 7307 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7308
0bcdcf28
CE
7309 .rq_online = rq_online_fair,
7310 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7311
7312 .task_waking = task_waking_fair,
681f3e68 7313#endif
bf0f6f24 7314
83b699ed 7315 .set_curr_task = set_curr_task_fair,
bf0f6f24 7316 .task_tick = task_tick_fair,
cd29fe6f 7317 .task_fork = task_fork_fair,
cb469845
SR
7318
7319 .prio_changed = prio_changed_fair,
da7a735e 7320 .switched_from = switched_from_fair,
cb469845 7321 .switched_to = switched_to_fair,
810b3817 7322
0d721cea
PW
7323 .get_rr_interval = get_rr_interval_fair,
7324
810b3817 7325#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7326 .task_move_group = task_move_group_fair,
810b3817 7327#endif
bf0f6f24
IM
7328};
7329
7330#ifdef CONFIG_SCHED_DEBUG
029632fb 7331void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7332{
bf0f6f24
IM
7333 struct cfs_rq *cfs_rq;
7334
5973e5b9 7335 rcu_read_lock();
c3b64f1e 7336 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7337 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7338 rcu_read_unlock();
bf0f6f24
IM
7339}
7340#endif
029632fb
PZ
7341
7342__init void init_sched_fair_class(void)
7343{
7344#ifdef CONFIG_SMP
7345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7346
3451d024 7347#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7348 nohz.next_balance = jiffies;
029632fb 7349 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7350 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7351#endif
7352#endif /* SMP */
7353
7354}