]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/psi.c
psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / psi.c
CommitLineData
eb414681
JW
1/*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
0e94682b
SB
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
9 *
eb414681
JW
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
14 *
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
18 *
19 * Model
20 *
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
24 *
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
28 *
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
32 *
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
36 *
eb414681 37 * SOME = nr_delayed_tasks != 0
221276cb
BC
38 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
39 *
40 * What it means for a task to be productive is defined differently
41 * for each resource. For IO, productive means a running task. For
42 * memory, productive means a running task that isn't a reclaimer. For
43 * CPU, productive means an oncpu task.
44 *
45 * Naturally, the FULL state doesn't exist for the CPU resource at the
46 * system level, but exist at the cgroup level. At the cgroup level,
47 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
48 * resource which is being used by others outside of the cgroup or
49 * throttled by the cgroup cpu.max configuration.
eb414681
JW
50 *
51 * The percentage of wallclock time spent in those compound stall
52 * states gives pressure numbers between 0 and 100 for each resource,
53 * where the SOME percentage indicates workload slowdowns and the FULL
54 * percentage indicates reduced CPU utilization:
55 *
56 * %SOME = time(SOME) / period
57 * %FULL = time(FULL) / period
58 *
59 * Multiple CPUs
60 *
61 * The more tasks and available CPUs there are, the more work can be
62 * performed concurrently. This means that the potential that can go
63 * unrealized due to resource contention *also* scales with non-idle
64 * tasks and CPUs.
65 *
66 * Consider a scenario where 257 number crunching tasks are trying to
67 * run concurrently on 256 CPUs. If we simply aggregated the task
68 * states, we would have to conclude a CPU SOME pressure number of
69 * 100%, since *somebody* is waiting on a runqueue at all
70 * times. However, that is clearly not the amount of contention the
3b03706f 71 * workload is experiencing: only one out of 256 possible execution
eb414681
JW
72 * threads will be contended at any given time, or about 0.4%.
73 *
74 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
75 * given time *one* of the tasks is delayed due to a lack of memory.
76 * Again, looking purely at the task state would yield a memory FULL
77 * pressure number of 0%, since *somebody* is always making forward
78 * progress. But again this wouldn't capture the amount of execution
79 * potential lost, which is 1 out of 4 CPUs, or 25%.
80 *
81 * To calculate wasted potential (pressure) with multiple processors,
82 * we have to base our calculation on the number of non-idle tasks in
83 * conjunction with the number of available CPUs, which is the number
84 * of potential execution threads. SOME becomes then the proportion of
3b03706f 85 * delayed tasks to possible threads, and FULL is the share of possible
eb414681
JW
86 * threads that are unproductive due to delays:
87 *
88 * threads = min(nr_nonidle_tasks, nr_cpus)
89 * SOME = min(nr_delayed_tasks / threads, 1)
221276cb 90 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
eb414681
JW
91 *
92 * For the 257 number crunchers on 256 CPUs, this yields:
93 *
94 * threads = min(257, 256)
95 * SOME = min(1 / 256, 1) = 0.4%
221276cb 96 * FULL = (256 - min(256, 256)) / 256 = 0%
eb414681
JW
97 *
98 * For the 1 out of 4 memory-delayed tasks, this yields:
99 *
100 * threads = min(4, 4)
101 * SOME = min(1 / 4, 1) = 25%
102 * FULL = (4 - min(3, 4)) / 4 = 25%
103 *
104 * [ Substitute nr_cpus with 1, and you can see that it's a natural
105 * extension of the single-CPU model. ]
106 *
107 * Implementation
108 *
109 * To assess the precise time spent in each such state, we would have
110 * to freeze the system on task changes and start/stop the state
111 * clocks accordingly. Obviously that doesn't scale in practice.
112 *
113 * Because the scheduler aims to distribute the compute load evenly
114 * among the available CPUs, we can track task state locally to each
115 * CPU and, at much lower frequency, extrapolate the global state for
116 * the cumulative stall times and the running averages.
117 *
118 * For each runqueue, we track:
119 *
120 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
221276cb 121 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
eb414681
JW
122 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
123 *
124 * and then periodically aggregate:
125 *
126 * tNONIDLE = sum(tNONIDLE[i])
127 *
128 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
129 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
130 *
131 * %SOME = tSOME / period
132 * %FULL = tFULL / period
133 *
134 * This gives us an approximation of pressure that is practical
135 * cost-wise, yet way more sensitive and accurate than periodic
136 * sampling of the aggregate task states would be.
137 */
138
1b69ac6b 139#include "../workqueue_internal.h"
eb414681
JW
140#include <linux/sched/loadavg.h>
141#include <linux/seq_file.h>
142#include <linux/proc_fs.h>
143#include <linux/seqlock.h>
0e94682b 144#include <linux/uaccess.h>
eb414681
JW
145#include <linux/cgroup.h>
146#include <linux/module.h>
147#include <linux/sched.h>
0e94682b
SB
148#include <linux/ctype.h>
149#include <linux/file.h>
150#include <linux/poll.h>
eb414681
JW
151#include <linux/psi.h>
152#include "sched.h"
153
154static int psi_bug __read_mostly;
155
e0c27447 156DEFINE_STATIC_KEY_FALSE(psi_disabled);
3958e2d0 157DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
e0c27447
JW
158
159#ifdef CONFIG_PSI_DEFAULT_DISABLED
9289c5e6 160static bool psi_enable;
e0c27447 161#else
9289c5e6 162static bool psi_enable = true;
e0c27447
JW
163#endif
164static int __init setup_psi(char *str)
165{
166 return kstrtobool(str, &psi_enable) == 0;
167}
168__setup("psi=", setup_psi);
eb414681
JW
169
170/* Running averages - we need to be higher-res than loadavg */
171#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
172#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
173#define EXP_60s 1981 /* 1/exp(2s/60s) */
174#define EXP_300s 2034 /* 1/exp(2s/300s) */
175
0e94682b
SB
176/* PSI trigger definitions */
177#define WINDOW_MIN_US 500000 /* Min window size is 500ms */
178#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
179#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
180
eb414681
JW
181/* Sampling frequency in nanoseconds */
182static u64 psi_period __read_mostly;
183
184/* System-level pressure and stall tracking */
185static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
df5ba5be 186struct psi_group psi_system = {
eb414681
JW
187 .pcpu = &system_group_pcpu,
188};
189
bcc78db6 190static void psi_avgs_work(struct work_struct *work);
eb414681 191
8f91efd8
ZH
192static void poll_timer_fn(struct timer_list *t);
193
eb414681
JW
194static void group_init(struct psi_group *group)
195{
196 int cpu;
197
198 for_each_possible_cpu(cpu)
199 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
3dfbe25c
JW
200 group->avg_last_update = sched_clock();
201 group->avg_next_update = group->avg_last_update + psi_period;
bcc78db6
SB
202 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
203 mutex_init(&group->avgs_lock);
0e94682b 204 /* Init trigger-related members */
0e94682b
SB
205 mutex_init(&group->trigger_lock);
206 INIT_LIST_HEAD(&group->triggers);
207 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
208 group->poll_states = 0;
209 group->poll_min_period = U32_MAX;
210 memset(group->polling_total, 0, sizeof(group->polling_total));
211 group->polling_next_update = ULLONG_MAX;
212 group->polling_until = 0;
8f91efd8
ZH
213 init_waitqueue_head(&group->poll_wait);
214 timer_setup(&group->poll_timer, poll_timer_fn, 0);
461daba0 215 rcu_assign_pointer(group->poll_task, NULL);
eb414681
JW
216}
217
218void __init psi_init(void)
219{
e0c27447
JW
220 if (!psi_enable) {
221 static_branch_enable(&psi_disabled);
eb414681 222 return;
e0c27447 223 }
eb414681 224
3958e2d0
SB
225 if (!cgroup_psi_enabled())
226 static_branch_disable(&psi_cgroups_enabled);
227
eb414681
JW
228 psi_period = jiffies_to_nsecs(PSI_FREQ);
229 group_init(&psi_system);
230}
231
232static bool test_state(unsigned int *tasks, enum psi_states state)
233{
234 switch (state) {
235 case PSI_IO_SOME:
fddc8bab 236 return unlikely(tasks[NR_IOWAIT]);
eb414681 237 case PSI_IO_FULL:
fddc8bab 238 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
eb414681 239 case PSI_MEM_SOME:
fddc8bab 240 return unlikely(tasks[NR_MEMSTALL]);
eb414681 241 case PSI_MEM_FULL:
221276cb
BC
242 return unlikely(tasks[NR_MEMSTALL] &&
243 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
eb414681 244 case PSI_CPU_SOME:
fddc8bab 245 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
e7fcd762 246 case PSI_CPU_FULL:
fddc8bab 247 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
eb414681
JW
248 case PSI_NONIDLE:
249 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
250 tasks[NR_RUNNING];
251 default:
252 return false;
253 }
254}
255
0e94682b
SB
256static void get_recent_times(struct psi_group *group, int cpu,
257 enum psi_aggregators aggregator, u32 *times,
333f3017 258 u32 *pchanged_states)
eb414681
JW
259{
260 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
eb414681 261 u64 now, state_start;
33b2d630 262 enum psi_states s;
eb414681 263 unsigned int seq;
33b2d630 264 u32 state_mask;
eb414681 265
333f3017
SB
266 *pchanged_states = 0;
267
eb414681
JW
268 /* Snapshot a coherent view of the CPU state */
269 do {
270 seq = read_seqcount_begin(&groupc->seq);
271 now = cpu_clock(cpu);
272 memcpy(times, groupc->times, sizeof(groupc->times));
33b2d630 273 state_mask = groupc->state_mask;
eb414681
JW
274 state_start = groupc->state_start;
275 } while (read_seqcount_retry(&groupc->seq, seq));
276
277 /* Calculate state time deltas against the previous snapshot */
278 for (s = 0; s < NR_PSI_STATES; s++) {
279 u32 delta;
280 /*
281 * In addition to already concluded states, we also
282 * incorporate currently active states on the CPU,
283 * since states may last for many sampling periods.
284 *
285 * This way we keep our delta sampling buckets small
286 * (u32) and our reported pressure close to what's
287 * actually happening.
288 */
33b2d630 289 if (state_mask & (1 << s))
eb414681
JW
290 times[s] += now - state_start;
291
0e94682b
SB
292 delta = times[s] - groupc->times_prev[aggregator][s];
293 groupc->times_prev[aggregator][s] = times[s];
eb414681
JW
294
295 times[s] = delta;
333f3017
SB
296 if (delta)
297 *pchanged_states |= (1 << s);
eb414681
JW
298 }
299}
300
301static void calc_avgs(unsigned long avg[3], int missed_periods,
302 u64 time, u64 period)
303{
304 unsigned long pct;
305
306 /* Fill in zeroes for periods of no activity */
307 if (missed_periods) {
308 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
309 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
310 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
311 }
312
313 /* Sample the most recent active period */
314 pct = div_u64(time * 100, period);
315 pct *= FIXED_1;
316 avg[0] = calc_load(avg[0], EXP_10s, pct);
317 avg[1] = calc_load(avg[1], EXP_60s, pct);
318 avg[2] = calc_load(avg[2], EXP_300s, pct);
319}
320
0e94682b
SB
321static void collect_percpu_times(struct psi_group *group,
322 enum psi_aggregators aggregator,
323 u32 *pchanged_states)
eb414681
JW
324{
325 u64 deltas[NR_PSI_STATES - 1] = { 0, };
eb414681 326 unsigned long nonidle_total = 0;
333f3017 327 u32 changed_states = 0;
eb414681
JW
328 int cpu;
329 int s;
330
eb414681
JW
331 /*
332 * Collect the per-cpu time buckets and average them into a
333 * single time sample that is normalized to wallclock time.
334 *
335 * For averaging, each CPU is weighted by its non-idle time in
336 * the sampling period. This eliminates artifacts from uneven
337 * loading, or even entirely idle CPUs.
338 */
339 for_each_possible_cpu(cpu) {
340 u32 times[NR_PSI_STATES];
341 u32 nonidle;
333f3017 342 u32 cpu_changed_states;
eb414681 343
0e94682b 344 get_recent_times(group, cpu, aggregator, times,
333f3017
SB
345 &cpu_changed_states);
346 changed_states |= cpu_changed_states;
eb414681
JW
347
348 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
349 nonidle_total += nonidle;
350
351 for (s = 0; s < PSI_NONIDLE; s++)
352 deltas[s] += (u64)times[s] * nonidle;
353 }
354
355 /*
356 * Integrate the sample into the running statistics that are
357 * reported to userspace: the cumulative stall times and the
358 * decaying averages.
359 *
360 * Pressure percentages are sampled at PSI_FREQ. We might be
361 * called more often when the user polls more frequently than
362 * that; we might be called less often when there is no task
363 * activity, thus no data, and clock ticks are sporadic. The
364 * below handles both.
365 */
366
367 /* total= */
368 for (s = 0; s < NR_PSI_STATES - 1; s++)
0e94682b
SB
369 group->total[aggregator][s] +=
370 div_u64(deltas[s], max(nonidle_total, 1UL));
eb414681 371
333f3017
SB
372 if (pchanged_states)
373 *pchanged_states = changed_states;
7fc70a39
SB
374}
375
376static u64 update_averages(struct psi_group *group, u64 now)
377{
378 unsigned long missed_periods = 0;
379 u64 expires, period;
380 u64 avg_next_update;
381 int s;
382
eb414681 383 /* avgX= */
bcc78db6 384 expires = group->avg_next_update;
4e37504d 385 if (now - expires >= psi_period)
eb414681
JW
386 missed_periods = div_u64(now - expires, psi_period);
387
388 /*
389 * The periodic clock tick can get delayed for various
390 * reasons, especially on loaded systems. To avoid clock
391 * drift, we schedule the clock in fixed psi_period intervals.
392 * But the deltas we sample out of the per-cpu buckets above
393 * are based on the actual time elapsing between clock ticks.
394 */
7fc70a39 395 avg_next_update = expires + ((1 + missed_periods) * psi_period);
bcc78db6
SB
396 period = now - (group->avg_last_update + (missed_periods * psi_period));
397 group->avg_last_update = now;
eb414681
JW
398
399 for (s = 0; s < NR_PSI_STATES - 1; s++) {
400 u32 sample;
401
0e94682b 402 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
eb414681
JW
403 /*
404 * Due to the lockless sampling of the time buckets,
405 * recorded time deltas can slip into the next period,
406 * which under full pressure can result in samples in
407 * excess of the period length.
408 *
409 * We don't want to report non-sensical pressures in
410 * excess of 100%, nor do we want to drop such events
411 * on the floor. Instead we punt any overage into the
412 * future until pressure subsides. By doing this we
413 * don't underreport the occurring pressure curve, we
414 * just report it delayed by one period length.
415 *
416 * The error isn't cumulative. As soon as another
417 * delta slips from a period P to P+1, by definition
418 * it frees up its time T in P.
419 */
420 if (sample > period)
421 sample = period;
bcc78db6 422 group->avg_total[s] += sample;
eb414681
JW
423 calc_avgs(group->avg[s], missed_periods, sample, period);
424 }
7fc70a39
SB
425
426 return avg_next_update;
eb414681
JW
427}
428
bcc78db6 429static void psi_avgs_work(struct work_struct *work)
eb414681
JW
430{
431 struct delayed_work *dwork;
432 struct psi_group *group;
333f3017 433 u32 changed_states;
eb414681 434 bool nonidle;
7fc70a39 435 u64 now;
eb414681
JW
436
437 dwork = to_delayed_work(work);
bcc78db6 438 group = container_of(dwork, struct psi_group, avgs_work);
eb414681 439
7fc70a39
SB
440 mutex_lock(&group->avgs_lock);
441
442 now = sched_clock();
443
0e94682b 444 collect_percpu_times(group, PSI_AVGS, &changed_states);
333f3017 445 nonidle = changed_states & (1 << PSI_NONIDLE);
eb414681
JW
446 /*
447 * If there is task activity, periodically fold the per-cpu
448 * times and feed samples into the running averages. If things
449 * are idle and there is no data to process, stop the clock.
450 * Once restarted, we'll catch up the running averages in one
451 * go - see calc_avgs() and missed_periods.
452 */
7fc70a39
SB
453 if (now >= group->avg_next_update)
454 group->avg_next_update = update_averages(group, now);
eb414681
JW
455
456 if (nonidle) {
7fc70a39
SB
457 schedule_delayed_work(dwork, nsecs_to_jiffies(
458 group->avg_next_update - now) + 1);
eb414681 459 }
7fc70a39
SB
460
461 mutex_unlock(&group->avgs_lock);
eb414681
JW
462}
463
3b03706f 464/* Trigger tracking window manipulations */
0e94682b
SB
465static void window_reset(struct psi_window *win, u64 now, u64 value,
466 u64 prev_growth)
467{
468 win->start_time = now;
469 win->start_value = value;
470 win->prev_growth = prev_growth;
471}
472
473/*
474 * PSI growth tracking window update and growth calculation routine.
475 *
476 * This approximates a sliding tracking window by interpolating
477 * partially elapsed windows using historical growth data from the
478 * previous intervals. This minimizes memory requirements (by not storing
479 * all the intermediate values in the previous window) and simplifies
480 * the calculations. It works well because PSI signal changes only in
481 * positive direction and over relatively small window sizes the growth
482 * is close to linear.
483 */
484static u64 window_update(struct psi_window *win, u64 now, u64 value)
485{
486 u64 elapsed;
487 u64 growth;
488
489 elapsed = now - win->start_time;
490 growth = value - win->start_value;
491 /*
492 * After each tracking window passes win->start_value and
493 * win->start_time get reset and win->prev_growth stores
494 * the average per-window growth of the previous window.
495 * win->prev_growth is then used to interpolate additional
496 * growth from the previous window assuming it was linear.
497 */
498 if (elapsed > win->size)
499 window_reset(win, now, value, growth);
500 else {
501 u32 remaining;
502
503 remaining = win->size - elapsed;
c3466952 504 growth += div64_u64(win->prev_growth * remaining, win->size);
0e94682b
SB
505 }
506
507 return growth;
508}
509
510static void init_triggers(struct psi_group *group, u64 now)
511{
512 struct psi_trigger *t;
513
514 list_for_each_entry(t, &group->triggers, node)
515 window_reset(&t->win, now,
516 group->total[PSI_POLL][t->state], 0);
517 memcpy(group->polling_total, group->total[PSI_POLL],
518 sizeof(group->polling_total));
519 group->polling_next_update = now + group->poll_min_period;
520}
521
522static u64 update_triggers(struct psi_group *group, u64 now)
523{
524 struct psi_trigger *t;
525 bool new_stall = false;
526 u64 *total = group->total[PSI_POLL];
527
528 /*
529 * On subsequent updates, calculate growth deltas and let
530 * watchers know when their specified thresholds are exceeded.
531 */
532 list_for_each_entry(t, &group->triggers, node) {
533 u64 growth;
534
535 /* Check for stall activity */
536 if (group->polling_total[t->state] == total[t->state])
537 continue;
538
539 /*
540 * Multiple triggers might be looking at the same state,
541 * remember to update group->polling_total[] once we've
542 * been through all of them. Also remember to extend the
543 * polling time if we see new stall activity.
544 */
545 new_stall = true;
546
547 /* Calculate growth since last update */
548 growth = window_update(&t->win, now, total[t->state]);
549 if (growth < t->threshold)
550 continue;
551
552 /* Limit event signaling to once per window */
553 if (now < t->last_event_time + t->win.size)
554 continue;
555
556 /* Generate an event */
557 if (cmpxchg(&t->event, 0, 1) == 0)
558 wake_up_interruptible(&t->event_wait);
559 t->last_event_time = now;
560 }
561
562 if (new_stall)
563 memcpy(group->polling_total, total,
564 sizeof(group->polling_total));
565
566 return now + group->poll_min_period;
567}
568
461daba0 569/* Schedule polling if it's not already scheduled. */
0e94682b
SB
570static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
571{
461daba0 572 struct task_struct *task;
0e94682b 573
461daba0
SB
574 /*
575 * Do not reschedule if already scheduled.
576 * Possible race with a timer scheduled after this check but before
577 * mod_timer below can be tolerated because group->polling_next_update
578 * will keep updates on schedule.
579 */
580 if (timer_pending(&group->poll_timer))
0e94682b
SB
581 return;
582
583 rcu_read_lock();
584
461daba0 585 task = rcu_dereference(group->poll_task);
0e94682b
SB
586 /*
587 * kworker might be NULL in case psi_trigger_destroy races with
588 * psi_task_change (hotpath) which can't use locks
589 */
461daba0
SB
590 if (likely(task))
591 mod_timer(&group->poll_timer, jiffies + delay);
0e94682b
SB
592
593 rcu_read_unlock();
594}
595
461daba0 596static void psi_poll_work(struct psi_group *group)
0e94682b 597{
0e94682b
SB
598 u32 changed_states;
599 u64 now;
600
0e94682b
SB
601 mutex_lock(&group->trigger_lock);
602
603 now = sched_clock();
604
605 collect_percpu_times(group, PSI_POLL, &changed_states);
606
607 if (changed_states & group->poll_states) {
608 /* Initialize trigger windows when entering polling mode */
609 if (now > group->polling_until)
610 init_triggers(group, now);
611
612 /*
613 * Keep the monitor active for at least the duration of the
614 * minimum tracking window as long as monitor states are
615 * changing.
616 */
617 group->polling_until = now +
618 group->poll_min_period * UPDATES_PER_WINDOW;
619 }
620
621 if (now > group->polling_until) {
622 group->polling_next_update = ULLONG_MAX;
623 goto out;
624 }
625
626 if (now >= group->polling_next_update)
627 group->polling_next_update = update_triggers(group, now);
628
629 psi_schedule_poll_work(group,
630 nsecs_to_jiffies(group->polling_next_update - now) + 1);
631
632out:
633 mutex_unlock(&group->trigger_lock);
634}
635
461daba0
SB
636static int psi_poll_worker(void *data)
637{
638 struct psi_group *group = (struct psi_group *)data;
461daba0 639
2cca5426 640 sched_set_fifo_low(current);
461daba0
SB
641
642 while (true) {
643 wait_event_interruptible(group->poll_wait,
644 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
645 kthread_should_stop());
646 if (kthread_should_stop())
647 break;
648
649 psi_poll_work(group);
650 }
651 return 0;
652}
653
654static void poll_timer_fn(struct timer_list *t)
655{
656 struct psi_group *group = from_timer(group, t, poll_timer);
657
658 atomic_set(&group->poll_wakeup, 1);
659 wake_up_interruptible(&group->poll_wait);
660}
661
df774306 662static void record_times(struct psi_group_cpu *groupc, u64 now)
eb414681
JW
663{
664 u32 delta;
eb414681 665
eb414681
JW
666 delta = now - groupc->state_start;
667 groupc->state_start = now;
668
33b2d630 669 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
eb414681 670 groupc->times[PSI_IO_SOME] += delta;
33b2d630 671 if (groupc->state_mask & (1 << PSI_IO_FULL))
eb414681
JW
672 groupc->times[PSI_IO_FULL] += delta;
673 }
674
33b2d630 675 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
eb414681 676 groupc->times[PSI_MEM_SOME] += delta;
33b2d630 677 if (groupc->state_mask & (1 << PSI_MEM_FULL))
eb414681 678 groupc->times[PSI_MEM_FULL] += delta;
eb414681
JW
679 }
680
e7fcd762 681 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
eb414681 682 groupc->times[PSI_CPU_SOME] += delta;
e7fcd762
CZ
683 if (groupc->state_mask & (1 << PSI_CPU_FULL))
684 groupc->times[PSI_CPU_FULL] += delta;
685 }
eb414681 686
33b2d630 687 if (groupc->state_mask & (1 << PSI_NONIDLE))
eb414681
JW
688 groupc->times[PSI_NONIDLE] += delta;
689}
690
36b238d5 691static void psi_group_change(struct psi_group *group, int cpu,
df774306 692 unsigned int clear, unsigned int set, u64 now,
36b238d5 693 bool wake_clock)
eb414681
JW
694{
695 struct psi_group_cpu *groupc;
36b238d5 696 u32 state_mask = 0;
eb414681 697 unsigned int t, m;
33b2d630 698 enum psi_states s;
eb414681
JW
699
700 groupc = per_cpu_ptr(group->pcpu, cpu);
701
702 /*
703 * First we assess the aggregate resource states this CPU's
704 * tasks have been in since the last change, and account any
705 * SOME and FULL time these may have resulted in.
706 *
707 * Then we update the task counts according to the state
708 * change requested through the @clear and @set bits.
709 */
710 write_seqcount_begin(&groupc->seq);
711
df774306 712 record_times(groupc, now);
eb414681
JW
713
714 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
715 if (!(m & (1 << t)))
716 continue;
9d10a13d
CTR
717 if (groupc->tasks[t]) {
718 groupc->tasks[t]--;
719 } else if (!psi_bug) {
221276cb 720 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n",
eb414681
JW
721 cpu, t, groupc->tasks[0],
722 groupc->tasks[1], groupc->tasks[2],
221276cb
BC
723 groupc->tasks[3], groupc->tasks[4],
724 clear, set);
eb414681
JW
725 psi_bug = 1;
726 }
eb414681
JW
727 }
728
729 for (t = 0; set; set &= ~(1 << t), t++)
730 if (set & (1 << t))
731 groupc->tasks[t]++;
732
33b2d630
SB
733 /* Calculate state mask representing active states */
734 for (s = 0; s < NR_PSI_STATES; s++) {
735 if (test_state(groupc->tasks, s))
736 state_mask |= (1 << s);
737 }
7fae6c81
CZ
738
739 /*
740 * Since we care about lost potential, a memstall is FULL
741 * when there are no other working tasks, but also when
742 * the CPU is actively reclaiming and nothing productive
743 * could run even if it were runnable. So when the current
744 * task in a cgroup is in_memstall, the corresponding groupc
745 * on that cpu is in PSI_MEM_FULL state.
746 */
fddc8bab 747 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
7fae6c81
CZ
748 state_mask |= (1 << PSI_MEM_FULL);
749
33b2d630
SB
750 groupc->state_mask = state_mask;
751
eb414681 752 write_seqcount_end(&groupc->seq);
0e94682b 753
36b238d5
JW
754 if (state_mask & group->poll_states)
755 psi_schedule_poll_work(group, 1);
756
757 if (wake_clock && !delayed_work_pending(&group->avgs_work))
758 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
eb414681
JW
759}
760
2ce7135a
JW
761static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
762{
3958e2d0
SB
763 if (*iter == &psi_system)
764 return NULL;
765
2ce7135a 766#ifdef CONFIG_CGROUPS
3958e2d0
SB
767 if (static_branch_likely(&psi_cgroups_enabled)) {
768 struct cgroup *cgroup = NULL;
2ce7135a 769
3958e2d0
SB
770 if (!*iter)
771 cgroup = task->cgroups->dfl_cgrp;
772 else
773 cgroup = cgroup_parent(*iter);
2ce7135a 774
3958e2d0
SB
775 if (cgroup && cgroup_parent(cgroup)) {
776 *iter = cgroup;
777 return cgroup_psi(cgroup);
778 }
2ce7135a 779 }
2ce7135a
JW
780#endif
781 *iter = &psi_system;
782 return &psi_system;
783}
784
36b238d5 785static void psi_flags_change(struct task_struct *task, int clear, int set)
eb414681 786{
eb414681
JW
787 if (((task->psi_flags & set) ||
788 (task->psi_flags & clear) != clear) &&
789 !psi_bug) {
790 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
36b238d5 791 task->pid, task->comm, task_cpu(task),
eb414681
JW
792 task->psi_flags, clear, set);
793 psi_bug = 1;
794 }
795
796 task->psi_flags &= ~clear;
797 task->psi_flags |= set;
36b238d5
JW
798}
799
800void psi_task_change(struct task_struct *task, int clear, int set)
801{
802 int cpu = task_cpu(task);
803 struct psi_group *group;
804 bool wake_clock = true;
805 void *iter = NULL;
df774306 806 u64 now;
36b238d5
JW
807
808 if (!task->pid)
809 return;
810
811 psi_flags_change(task, clear, set);
eb414681 812
df774306 813 now = cpu_clock(cpu);
1b69ac6b
JW
814 /*
815 * Periodic aggregation shuts off if there is a period of no
816 * task changes, so we wake it back up if necessary. However,
817 * don't do this if the task change is the aggregation worker
818 * itself going to sleep, or we'll ping-pong forever.
819 */
820 if (unlikely((clear & TSK_RUNNING) &&
821 (task->flags & PF_WQ_WORKER) &&
bcc78db6 822 wq_worker_last_func(task) == psi_avgs_work))
1b69ac6b
JW
823 wake_clock = false;
824
36b238d5 825 while ((group = iterate_groups(task, &iter)))
df774306 826 psi_group_change(group, cpu, clear, set, now, wake_clock);
36b238d5
JW
827}
828
829void psi_task_switch(struct task_struct *prev, struct task_struct *next,
830 bool sleep)
831{
832 struct psi_group *group, *common = NULL;
833 int cpu = task_cpu(prev);
834 void *iter;
df774306 835 u64 now = cpu_clock(cpu);
36b238d5
JW
836
837 if (next->pid) {
7fae6c81
CZ
838 bool identical_state;
839
36b238d5
JW
840 psi_flags_change(next, 0, TSK_ONCPU);
841 /*
7fae6c81
CZ
842 * When switching between tasks that have an identical
843 * runtime state, the cgroup that contains both tasks
844 * runtime state, the cgroup that contains both tasks
845 * we reach the first common ancestor. Iterate @next's
846 * ancestors only until we encounter @prev's ONCPU.
36b238d5 847 */
7fae6c81 848 identical_state = prev->psi_flags == next->psi_flags;
36b238d5
JW
849 iter = NULL;
850 while ((group = iterate_groups(next, &iter))) {
7fae6c81
CZ
851 if (identical_state &&
852 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
36b238d5
JW
853 common = group;
854 break;
855 }
856
df774306 857 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
36b238d5
JW
858 }
859 }
860
36b238d5 861 if (prev->pid) {
4117cebf
CZ
862 int clear = TSK_ONCPU, set = 0;
863
864 /*
221276cb
BC
865 * When we're going to sleep, psi_dequeue() lets us
866 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
867 * TSK_IOWAIT here, where we can combine it with
868 * TSK_ONCPU and save walking common ancestors twice.
4117cebf
CZ
869 */
870 if (sleep) {
871 clear |= TSK_RUNNING;
221276cb
BC
872 if (prev->in_memstall)
873 clear |= TSK_MEMSTALL_RUNNING;
4117cebf
CZ
874 if (prev->in_iowait)
875 set |= TSK_IOWAIT;
876 }
877
878 psi_flags_change(prev, clear, set);
0e94682b 879
36b238d5
JW
880 iter = NULL;
881 while ((group = iterate_groups(prev, &iter)) && group != common)
df774306 882 psi_group_change(group, cpu, clear, set, now, true);
4117cebf
CZ
883
884 /*
885 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
886 * with dequeuing too, finish that for the rest of the hierarchy.
887 */
888 if (sleep) {
889 clear &= ~TSK_ONCPU;
890 for (; group; group = iterate_groups(prev, &iter))
df774306 891 psi_group_change(group, cpu, clear, set, now, true);
4117cebf 892 }
1b69ac6b 893 }
eb414681
JW
894}
895
eb414681
JW
896/**
897 * psi_memstall_enter - mark the beginning of a memory stall section
898 * @flags: flags to handle nested sections
899 *
900 * Marks the calling task as being stalled due to a lack of memory,
901 * such as waiting for a refault or performing reclaim.
902 */
903void psi_memstall_enter(unsigned long *flags)
904{
905 struct rq_flags rf;
906 struct rq *rq;
907
e0c27447 908 if (static_branch_likely(&psi_disabled))
eb414681
JW
909 return;
910
1066d1b6 911 *flags = current->in_memstall;
eb414681
JW
912 if (*flags)
913 return;
914 /*
1066d1b6 915 * in_memstall setting & accounting needs to be atomic wrt
eb414681
JW
916 * changes to the task's scheduling state, otherwise we can
917 * race with CPU migration.
918 */
919 rq = this_rq_lock_irq(&rf);
920
1066d1b6 921 current->in_memstall = 1;
221276cb 922 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
eb414681
JW
923
924 rq_unlock_irq(rq, &rf);
925}
926
927/**
928 * psi_memstall_leave - mark the end of an memory stall section
929 * @flags: flags to handle nested memdelay sections
930 *
931 * Marks the calling task as no longer stalled due to lack of memory.
932 */
933void psi_memstall_leave(unsigned long *flags)
934{
935 struct rq_flags rf;
936 struct rq *rq;
937
e0c27447 938 if (static_branch_likely(&psi_disabled))
eb414681
JW
939 return;
940
941 if (*flags)
942 return;
943 /*
1066d1b6 944 * in_memstall clearing & accounting needs to be atomic wrt
eb414681
JW
945 * changes to the task's scheduling state, otherwise we could
946 * race with CPU migration.
947 */
948 rq = this_rq_lock_irq(&rf);
949
1066d1b6 950 current->in_memstall = 0;
221276cb 951 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
eb414681
JW
952
953 rq_unlock_irq(rq, &rf);
954}
955
2ce7135a
JW
956#ifdef CONFIG_CGROUPS
957int psi_cgroup_alloc(struct cgroup *cgroup)
958{
e0c27447 959 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
960 return 0;
961
962 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
963 if (!cgroup->psi.pcpu)
964 return -ENOMEM;
965 group_init(&cgroup->psi);
966 return 0;
967}
968
969void psi_cgroup_free(struct cgroup *cgroup)
970{
e0c27447 971 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
972 return;
973
bcc78db6 974 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
2ce7135a 975 free_percpu(cgroup->psi.pcpu);
0e94682b
SB
976 /* All triggers must be removed by now */
977 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
2ce7135a
JW
978}
979
980/**
981 * cgroup_move_task - move task to a different cgroup
982 * @task: the task
983 * @to: the target css_set
984 *
985 * Move task to a new cgroup and safely migrate its associated stall
986 * state between the different groups.
987 *
988 * This function acquires the task's rq lock to lock out concurrent
989 * changes to the task's scheduling state and - in case the task is
990 * running - concurrent changes to its stall state.
991 */
992void cgroup_move_task(struct task_struct *task, struct css_set *to)
993{
d583d360 994 unsigned int task_flags;
2ce7135a
JW
995 struct rq_flags rf;
996 struct rq *rq;
997
e0c27447 998 if (static_branch_likely(&psi_disabled)) {
8fcb2312
OJ
999 /*
1000 * Lame to do this here, but the scheduler cannot be locked
1001 * from the outside, so we move cgroups from inside sched/.
1002 */
1003 rcu_assign_pointer(task->cgroups, to);
1004 return;
1005 }
2ce7135a 1006
8fcb2312 1007 rq = task_rq_lock(task, &rf);
2ce7135a 1008
d583d360
JW
1009 /*
1010 * We may race with schedule() dropping the rq lock between
1011 * deactivating prev and switching to next. Because the psi
1012 * updates from the deactivation are deferred to the switch
1013 * callback to save cgroup tree updates, the task's scheduling
1014 * state here is not coherent with its psi state:
1015 *
1016 * schedule() cgroup_move_task()
1017 * rq_lock()
1018 * deactivate_task()
1019 * p->on_rq = 0
1020 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1021 * pick_next_task()
1022 * rq_unlock()
1023 * rq_lock()
1024 * psi_task_change() // old cgroup
1025 * task->cgroups = to
1026 * psi_task_change() // new cgroup
1027 * rq_unlock()
1028 * rq_lock()
1029 * psi_sched_switch() // does deferred updates in new cgroup
1030 *
1031 * Don't rely on the scheduling state. Use psi_flags instead.
1032 */
1033 task_flags = task->psi_flags;
2ce7135a 1034
8fcb2312
OJ
1035 if (task_flags)
1036 psi_task_change(task, task_flags, 0);
1037
1038 /* See comment above */
2ce7135a
JW
1039 rcu_assign_pointer(task->cgroups, to);
1040
8fcb2312
OJ
1041 if (task_flags)
1042 psi_task_change(task, 0, task_flags);
2ce7135a 1043
8fcb2312 1044 task_rq_unlock(rq, task, &rf);
2ce7135a
JW
1045}
1046#endif /* CONFIG_CGROUPS */
1047
1048int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
eb414681
JW
1049{
1050 int full;
7fc70a39 1051 u64 now;
eb414681 1052
e0c27447 1053 if (static_branch_likely(&psi_disabled))
eb414681
JW
1054 return -EOPNOTSUPP;
1055
7fc70a39
SB
1056 /* Update averages before reporting them */
1057 mutex_lock(&group->avgs_lock);
1058 now = sched_clock();
0e94682b 1059 collect_percpu_times(group, PSI_AVGS, NULL);
7fc70a39
SB
1060 if (now >= group->avg_next_update)
1061 group->avg_next_update = update_averages(group, now);
1062 mutex_unlock(&group->avgs_lock);
eb414681 1063
e7fcd762 1064 for (full = 0; full < 2; full++) {
eb414681
JW
1065 unsigned long avg[3];
1066 u64 total;
1067 int w;
1068
1069 for (w = 0; w < 3; w++)
1070 avg[w] = group->avg[res * 2 + full][w];
0e94682b
SB
1071 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1072 NSEC_PER_USEC);
eb414681
JW
1073
1074 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1075 full ? "full" : "some",
1076 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1077 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1078 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1079 total);
1080 }
1081
1082 return 0;
1083}
1084
0e94682b
SB
1085struct psi_trigger *psi_trigger_create(struct psi_group *group,
1086 char *buf, size_t nbytes, enum psi_res res)
1087{
1088 struct psi_trigger *t;
1089 enum psi_states state;
1090 u32 threshold_us;
1091 u32 window_us;
1092
1093 if (static_branch_likely(&psi_disabled))
1094 return ERR_PTR(-EOPNOTSUPP);
1095
1096 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1097 state = PSI_IO_SOME + res * 2;
1098 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1099 state = PSI_IO_FULL + res * 2;
1100 else
1101 return ERR_PTR(-EINVAL);
1102
1103 if (state >= PSI_NONIDLE)
1104 return ERR_PTR(-EINVAL);
1105
1106 if (window_us < WINDOW_MIN_US ||
1107 window_us > WINDOW_MAX_US)
1108 return ERR_PTR(-EINVAL);
1109
1110 /* Check threshold */
1111 if (threshold_us == 0 || threshold_us > window_us)
1112 return ERR_PTR(-EINVAL);
1113
1114 t = kmalloc(sizeof(*t), GFP_KERNEL);
1115 if (!t)
1116 return ERR_PTR(-ENOMEM);
1117
1118 t->group = group;
1119 t->state = state;
1120 t->threshold = threshold_us * NSEC_PER_USEC;
1121 t->win.size = window_us * NSEC_PER_USEC;
1122 window_reset(&t->win, 0, 0, 0);
1123
1124 t->event = 0;
1125 t->last_event_time = 0;
1126 init_waitqueue_head(&t->event_wait);
0e94682b
SB
1127
1128 mutex_lock(&group->trigger_lock);
1129
461daba0
SB
1130 if (!rcu_access_pointer(group->poll_task)) {
1131 struct task_struct *task;
0e94682b 1132
461daba0
SB
1133 task = kthread_create(psi_poll_worker, group, "psimon");
1134 if (IS_ERR(task)) {
0e94682b
SB
1135 kfree(t);
1136 mutex_unlock(&group->trigger_lock);
461daba0 1137 return ERR_CAST(task);
0e94682b 1138 }
461daba0 1139 atomic_set(&group->poll_wakeup, 0);
461daba0 1140 wake_up_process(task);
461daba0 1141 rcu_assign_pointer(group->poll_task, task);
0e94682b
SB
1142 }
1143
1144 list_add(&t->node, &group->triggers);
1145 group->poll_min_period = min(group->poll_min_period,
1146 div_u64(t->win.size, UPDATES_PER_WINDOW));
1147 group->nr_triggers[t->state]++;
1148 group->poll_states |= (1 << t->state);
1149
1150 mutex_unlock(&group->trigger_lock);
1151
1152 return t;
1153}
1154
cccc8aa4 1155void psi_trigger_destroy(struct psi_trigger *t)
0e94682b 1156{
cccc8aa4 1157 struct psi_group *group;
461daba0 1158 struct task_struct *task_to_destroy = NULL;
0e94682b 1159
cccc8aa4
SB
1160 /*
1161 * We do not check psi_disabled since it might have been disabled after
1162 * the trigger got created.
1163 */
1164 if (!t)
0e94682b
SB
1165 return;
1166
cccc8aa4 1167 group = t->group;
0e94682b
SB
1168 /*
1169 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1170 * from under a polling process.
1171 */
1172 wake_up_interruptible(&t->event_wait);
1173
1174 mutex_lock(&group->trigger_lock);
1175
1176 if (!list_empty(&t->node)) {
1177 struct psi_trigger *tmp;
1178 u64 period = ULLONG_MAX;
1179
1180 list_del(&t->node);
1181 group->nr_triggers[t->state]--;
1182 if (!group->nr_triggers[t->state])
1183 group->poll_states &= ~(1 << t->state);
1184 /* reset min update period for the remaining triggers */
1185 list_for_each_entry(tmp, &group->triggers, node)
1186 period = min(period, div_u64(tmp->win.size,
1187 UPDATES_PER_WINDOW));
1188 group->poll_min_period = period;
461daba0 1189 /* Destroy poll_task when the last trigger is destroyed */
0e94682b
SB
1190 if (group->poll_states == 0) {
1191 group->polling_until = 0;
461daba0
SB
1192 task_to_destroy = rcu_dereference_protected(
1193 group->poll_task,
0e94682b 1194 lockdep_is_held(&group->trigger_lock));
461daba0 1195 rcu_assign_pointer(group->poll_task, NULL);
8f91efd8 1196 del_timer(&group->poll_timer);
0e94682b
SB
1197 }
1198 }
1199
1200 mutex_unlock(&group->trigger_lock);
1201
1202 /*
cccc8aa4
SB
1203 * Wait for psi_schedule_poll_work RCU to complete its read-side
1204 * critical section before destroying the trigger and optionally the
1205 * poll_task.
0e94682b
SB
1206 */
1207 synchronize_rcu();
1208 /*
8f91efd8 1209 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
0e94682b
SB
1210 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1211 */
461daba0 1212 if (task_to_destroy) {
7b2b55da
JX
1213 /*
1214 * After the RCU grace period has expired, the worker
461daba0 1215 * can no longer be found through group->poll_task.
7b2b55da 1216 */
461daba0 1217 kthread_stop(task_to_destroy);
0e94682b
SB
1218 }
1219 kfree(t);
1220}
1221
0e94682b
SB
1222__poll_t psi_trigger_poll(void **trigger_ptr,
1223 struct file *file, poll_table *wait)
1224{
1225 __poll_t ret = DEFAULT_POLLMASK;
1226 struct psi_trigger *t;
1227
1228 if (static_branch_likely(&psi_disabled))
1229 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1230
cccc8aa4
SB
1231 t = smp_load_acquire(trigger_ptr);
1232 if (!t)
0e94682b 1233 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
0e94682b
SB
1234
1235 poll_wait(file, &t->event_wait, wait);
1236
1237 if (cmpxchg(&t->event, 1, 0) == 1)
1238 ret |= EPOLLPRI;
1239
0e94682b
SB
1240 return ret;
1241}
1242
f1c2eef5
SB
1243#ifdef CONFIG_PROC_FS
1244static int psi_io_show(struct seq_file *m, void *v)
1245{
1246 return psi_show(m, &psi_system, PSI_IO);
1247}
1248
1249static int psi_memory_show(struct seq_file *m, void *v)
1250{
1251 return psi_show(m, &psi_system, PSI_MEM);
1252}
1253
1254static int psi_cpu_show(struct seq_file *m, void *v)
1255{
1256 return psi_show(m, &psi_system, PSI_CPU);
1257}
1258
1259static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1260{
1261 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1262 return -EPERM;
1263
1264 return single_open(file, psi_show, NULL);
1265}
1266
1267static int psi_io_open(struct inode *inode, struct file *file)
1268{
1269 return psi_open(file, psi_io_show);
1270}
1271
1272static int psi_memory_open(struct inode *inode, struct file *file)
1273{
1274 return psi_open(file, psi_memory_show);
1275}
1276
1277static int psi_cpu_open(struct inode *inode, struct file *file)
1278{
1279 return psi_open(file, psi_cpu_show);
1280}
1281
0e94682b
SB
1282static ssize_t psi_write(struct file *file, const char __user *user_buf,
1283 size_t nbytes, enum psi_res res)
1284{
1285 char buf[32];
1286 size_t buf_size;
1287 struct seq_file *seq;
1288 struct psi_trigger *new;
1289
1290 if (static_branch_likely(&psi_disabled))
1291 return -EOPNOTSUPP;
1292
6fcca0fa
SB
1293 if (!nbytes)
1294 return -EINVAL;
1295
4adcdcea 1296 buf_size = min(nbytes, sizeof(buf));
0e94682b
SB
1297 if (copy_from_user(buf, user_buf, buf_size))
1298 return -EFAULT;
1299
1300 buf[buf_size - 1] = '\0';
1301
0e94682b 1302 seq = file->private_data;
cccc8aa4 1303
0e94682b
SB
1304 /* Take seq->lock to protect seq->private from concurrent writes */
1305 mutex_lock(&seq->lock);
cccc8aa4
SB
1306
1307 /* Allow only one trigger per file descriptor */
1308 if (seq->private) {
1309 mutex_unlock(&seq->lock);
1310 return -EBUSY;
1311 }
1312
1313 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1314 if (IS_ERR(new)) {
1315 mutex_unlock(&seq->lock);
1316 return PTR_ERR(new);
1317 }
1318
1319 smp_store_release(&seq->private, new);
0e94682b
SB
1320 mutex_unlock(&seq->lock);
1321
1322 return nbytes;
1323}
1324
1325static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1326 size_t nbytes, loff_t *ppos)
1327{
1328 return psi_write(file, user_buf, nbytes, PSI_IO);
1329}
1330
1331static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1332 size_t nbytes, loff_t *ppos)
1333{
1334 return psi_write(file, user_buf, nbytes, PSI_MEM);
1335}
1336
1337static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1338 size_t nbytes, loff_t *ppos)
1339{
1340 return psi_write(file, user_buf, nbytes, PSI_CPU);
1341}
1342
1343static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1344{
1345 struct seq_file *seq = file->private_data;
1346
1347 return psi_trigger_poll(&seq->private, file, wait);
1348}
1349
1350static int psi_fop_release(struct inode *inode, struct file *file)
1351{
1352 struct seq_file *seq = file->private_data;
1353
cccc8aa4 1354 psi_trigger_destroy(seq->private);
0e94682b
SB
1355 return single_release(inode, file);
1356}
1357
97a32539
AD
1358static const struct proc_ops psi_io_proc_ops = {
1359 .proc_open = psi_io_open,
1360 .proc_read = seq_read,
1361 .proc_lseek = seq_lseek,
1362 .proc_write = psi_io_write,
1363 .proc_poll = psi_fop_poll,
1364 .proc_release = psi_fop_release,
eb414681
JW
1365};
1366
97a32539
AD
1367static const struct proc_ops psi_memory_proc_ops = {
1368 .proc_open = psi_memory_open,
1369 .proc_read = seq_read,
1370 .proc_lseek = seq_lseek,
1371 .proc_write = psi_memory_write,
1372 .proc_poll = psi_fop_poll,
1373 .proc_release = psi_fop_release,
eb414681
JW
1374};
1375
97a32539
AD
1376static const struct proc_ops psi_cpu_proc_ops = {
1377 .proc_open = psi_cpu_open,
1378 .proc_read = seq_read,
1379 .proc_lseek = seq_lseek,
1380 .proc_write = psi_cpu_write,
1381 .proc_poll = psi_fop_poll,
1382 .proc_release = psi_fop_release,
eb414681
JW
1383};
1384
1385static int __init psi_proc_init(void)
1386{
3d817689
WL
1387 if (psi_enable) {
1388 proc_mkdir("pressure", NULL);
6db12ee0
JH
1389 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1390 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1391 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
3d817689 1392 }
eb414681
JW
1393 return 0;
1394}
1395module_init(psi_proc_init);
f1c2eef5
SB
1396
1397#endif /* CONFIG_PROC_FS */