]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/rt.c
Merge tag 'v3.11-rc2' into patchwork
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
637f5085 232static inline int rt_overloaded(struct rq *rq)
4fd29176 233{
637f5085 234 return atomic_read(&rq->rd->rto_count);
4fd29176 235}
84de4274 236
4fd29176
SR
237static inline void rt_set_overload(struct rq *rq)
238{
1f11eb6a
GH
239 if (!rq->online)
240 return;
241
c6c4927b 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
249 */
250 wmb();
637f5085 251 atomic_inc(&rq->rd->rto_count);
4fd29176 252}
84de4274 253
4fd29176
SR
254static inline void rt_clear_overload(struct rq *rq)
255{
1f11eb6a
GH
256 if (!rq->online)
257 return;
258
4fd29176 259 /* the order here really doesn't matter */
637f5085 260 atomic_dec(&rq->rd->rto_count);
c6c4927b 261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 262}
73fe6aae 263
398a153b 264static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 265{
a1ba4d8b 266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
267 if (!rt_rq->overloaded) {
268 rt_set_overload(rq_of_rt_rq(rt_rq));
269 rt_rq->overloaded = 1;
cdc8eb98 270 }
398a153b
GH
271 } else if (rt_rq->overloaded) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq));
273 rt_rq->overloaded = 0;
637f5085 274 }
73fe6aae 275}
4fd29176 276
398a153b
GH
277static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278{
29baa747
PZ
279 struct task_struct *p;
280
a1ba4d8b
PZ
281 if (!rt_entity_is_task(rt_se))
282 return;
283
29baa747 284 p = rt_task_of(rt_se);
a1ba4d8b
PZ
285 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286
287 rt_rq->rt_nr_total++;
29baa747 288 if (p->nr_cpus_allowed > 1)
398a153b
GH
289 rt_rq->rt_nr_migratory++;
290
291 update_rt_migration(rt_rq);
292}
293
294static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295{
29baa747
PZ
296 struct task_struct *p;
297
a1ba4d8b
PZ
298 if (!rt_entity_is_task(rt_se))
299 return;
300
29baa747 301 p = rt_task_of(rt_se);
a1ba4d8b
PZ
302 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303
304 rt_rq->rt_nr_total--;
29baa747 305 if (p->nr_cpus_allowed > 1)
398a153b
GH
306 rt_rq->rt_nr_migratory--;
307
308 update_rt_migration(rt_rq);
309}
310
5181f4a4
SR
311static inline int has_pushable_tasks(struct rq *rq)
312{
313 return !plist_head_empty(&rq->rt.pushable_tasks);
314}
315
917b627d
GH
316static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317{
318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 plist_node_init(&p->pushable_tasks, p->prio);
320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
321
322 /* Update the highest prio pushable task */
323 if (p->prio < rq->rt.highest_prio.next)
324 rq->rt.highest_prio.next = p->prio;
917b627d
GH
325}
326
327static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328{
329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 330
5181f4a4
SR
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq)) {
333 p = plist_first_entry(&rq->rt.pushable_tasks,
334 struct task_struct, pushable_tasks);
335 rq->rt.highest_prio.next = p->prio;
336 } else
337 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
338}
339
917b627d
GH
340#else
341
ceacc2c1 342static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 343{
6f505b16
PZ
344}
345
ceacc2c1
PZ
346static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348}
349
b07430ac 350static inline
ceacc2c1
PZ
351void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352{
353}
354
398a153b 355static inline
ceacc2c1
PZ
356void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357{
358}
917b627d 359
4fd29176
SR
360#endif /* CONFIG_SMP */
361
6f505b16
PZ
362static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363{
364 return !list_empty(&rt_se->run_list);
365}
366
052f1dc7 367#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 368
9f0c1e56 369static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
370{
371 if (!rt_rq->tg)
9f0c1e56 372 return RUNTIME_INF;
6f505b16 373
ac086bc2
PZ
374 return rt_rq->rt_runtime;
375}
376
377static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378{
379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
380}
381
ec514c48
CX
382typedef struct task_group *rt_rq_iter_t;
383
1c09ab0d
YZ
384static inline struct task_group *next_task_group(struct task_group *tg)
385{
386 do {
387 tg = list_entry_rcu(tg->list.next,
388 typeof(struct task_group), list);
389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390
391 if (&tg->list == &task_groups)
392 tg = NULL;
393
394 return tg;
395}
396
397#define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 401
6f505b16
PZ
402#define for_each_sched_rt_entity(rt_se) \
403 for (; rt_se; rt_se = rt_se->parent)
404
405static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
406{
407 return rt_se->my_q;
408}
409
37dad3fc 410static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
411static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
412
9f0c1e56 413static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 414{
f6121f4f 415 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
416 struct sched_rt_entity *rt_se;
417
0c3b9168
BS
418 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
419
420 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 421
f6121f4f
DF
422 if (rt_rq->rt_nr_running) {
423 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 424 enqueue_rt_entity(rt_se, false);
e864c499 425 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 426 resched_task(curr);
6f505b16
PZ
427 }
428}
429
9f0c1e56 430static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 431{
74b7eb58 432 struct sched_rt_entity *rt_se;
0c3b9168 433 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 434
0c3b9168 435 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
436
437 if (rt_se && on_rt_rq(rt_se))
438 dequeue_rt_entity(rt_se);
439}
440
23b0fdfc
PZ
441static inline int rt_rq_throttled(struct rt_rq *rt_rq)
442{
443 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
444}
445
446static int rt_se_boosted(struct sched_rt_entity *rt_se)
447{
448 struct rt_rq *rt_rq = group_rt_rq(rt_se);
449 struct task_struct *p;
450
451 if (rt_rq)
452 return !!rt_rq->rt_nr_boosted;
453
454 p = rt_task_of(rt_se);
455 return p->prio != p->normal_prio;
456}
457
d0b27fa7 458#ifdef CONFIG_SMP
c6c4927b 459static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 460{
424c93fe 461 return this_rq()->rd->span;
d0b27fa7 462}
6f505b16 463#else
c6c4927b 464static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 465{
c6c4927b 466 return cpu_online_mask;
d0b27fa7
PZ
467}
468#endif
6f505b16 469
d0b27fa7
PZ
470static inline
471struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 472{
d0b27fa7
PZ
473 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
474}
9f0c1e56 475
ac086bc2
PZ
476static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
477{
478 return &rt_rq->tg->rt_bandwidth;
479}
480
55e12e5e 481#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
482
483static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484{
ac086bc2
PZ
485 return rt_rq->rt_runtime;
486}
487
488static inline u64 sched_rt_period(struct rt_rq *rt_rq)
489{
490 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
491}
492
ec514c48
CX
493typedef struct rt_rq *rt_rq_iter_t;
494
495#define for_each_rt_rq(rt_rq, iter, rq) \
496 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
497
6f505b16
PZ
498#define for_each_sched_rt_entity(rt_se) \
499 for (; rt_se; rt_se = NULL)
500
501static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
502{
503 return NULL;
504}
505
9f0c1e56 506static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 507{
f3ade837
JB
508 if (rt_rq->rt_nr_running)
509 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
510}
511
9f0c1e56 512static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
513{
514}
515
23b0fdfc
PZ
516static inline int rt_rq_throttled(struct rt_rq *rt_rq)
517{
518 return rt_rq->rt_throttled;
519}
d0b27fa7 520
c6c4927b 521static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 522{
c6c4927b 523 return cpu_online_mask;
d0b27fa7
PZ
524}
525
526static inline
527struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528{
529 return &cpu_rq(cpu)->rt;
530}
531
ac086bc2
PZ
532static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533{
534 return &def_rt_bandwidth;
535}
536
55e12e5e 537#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 538
ac086bc2 539#ifdef CONFIG_SMP
78333cdd
PZ
540/*
541 * We ran out of runtime, see if we can borrow some from our neighbours.
542 */
b79f3833 543static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
544{
545 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 546 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
547 int i, weight, more = 0;
548 u64 rt_period;
549
c6c4927b 550 weight = cpumask_weight(rd->span);
ac086bc2 551
0986b11b 552 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 553 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 554 for_each_cpu(i, rd->span) {
ac086bc2
PZ
555 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
556 s64 diff;
557
558 if (iter == rt_rq)
559 continue;
560
0986b11b 561 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
562 /*
563 * Either all rqs have inf runtime and there's nothing to steal
564 * or __disable_runtime() below sets a specific rq to inf to
565 * indicate its been disabled and disalow stealing.
566 */
7def2be1
PZ
567 if (iter->rt_runtime == RUNTIME_INF)
568 goto next;
569
78333cdd
PZ
570 /*
571 * From runqueues with spare time, take 1/n part of their
572 * spare time, but no more than our period.
573 */
ac086bc2
PZ
574 diff = iter->rt_runtime - iter->rt_time;
575 if (diff > 0) {
58838cf3 576 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
577 if (rt_rq->rt_runtime + diff > rt_period)
578 diff = rt_period - rt_rq->rt_runtime;
579 iter->rt_runtime -= diff;
580 rt_rq->rt_runtime += diff;
581 more = 1;
582 if (rt_rq->rt_runtime == rt_period) {
0986b11b 583 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
584 break;
585 }
586 }
7def2be1 587next:
0986b11b 588 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 589 }
0986b11b 590 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
591
592 return more;
593}
7def2be1 594
78333cdd
PZ
595/*
596 * Ensure this RQ takes back all the runtime it lend to its neighbours.
597 */
7def2be1
PZ
598static void __disable_runtime(struct rq *rq)
599{
600 struct root_domain *rd = rq->rd;
ec514c48 601 rt_rq_iter_t iter;
7def2be1
PZ
602 struct rt_rq *rt_rq;
603
604 if (unlikely(!scheduler_running))
605 return;
606
ec514c48 607 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609 s64 want;
610 int i;
611
0986b11b
TG
612 raw_spin_lock(&rt_b->rt_runtime_lock);
613 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
614 /*
615 * Either we're all inf and nobody needs to borrow, or we're
616 * already disabled and thus have nothing to do, or we have
617 * exactly the right amount of runtime to take out.
618 */
7def2be1
PZ
619 if (rt_rq->rt_runtime == RUNTIME_INF ||
620 rt_rq->rt_runtime == rt_b->rt_runtime)
621 goto balanced;
0986b11b 622 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 623
78333cdd
PZ
624 /*
625 * Calculate the difference between what we started out with
626 * and what we current have, that's the amount of runtime
627 * we lend and now have to reclaim.
628 */
7def2be1
PZ
629 want = rt_b->rt_runtime - rt_rq->rt_runtime;
630
78333cdd
PZ
631 /*
632 * Greedy reclaim, take back as much as we can.
633 */
c6c4927b 634 for_each_cpu(i, rd->span) {
7def2be1
PZ
635 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
636 s64 diff;
637
78333cdd
PZ
638 /*
639 * Can't reclaim from ourselves or disabled runqueues.
640 */
f1679d08 641 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
642 continue;
643
0986b11b 644 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
645 if (want > 0) {
646 diff = min_t(s64, iter->rt_runtime, want);
647 iter->rt_runtime -= diff;
648 want -= diff;
649 } else {
650 iter->rt_runtime -= want;
651 want -= want;
652 }
0986b11b 653 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
654
655 if (!want)
656 break;
657 }
658
0986b11b 659 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
660 /*
661 * We cannot be left wanting - that would mean some runtime
662 * leaked out of the system.
663 */
7def2be1
PZ
664 BUG_ON(want);
665balanced:
78333cdd
PZ
666 /*
667 * Disable all the borrow logic by pretending we have inf
668 * runtime - in which case borrowing doesn't make sense.
669 */
7def2be1 670 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 671 rt_rq->rt_throttled = 0;
0986b11b
TG
672 raw_spin_unlock(&rt_rq->rt_runtime_lock);
673 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
674 }
675}
676
7def2be1
PZ
677static void __enable_runtime(struct rq *rq)
678{
ec514c48 679 rt_rq_iter_t iter;
7def2be1
PZ
680 struct rt_rq *rt_rq;
681
682 if (unlikely(!scheduler_running))
683 return;
684
78333cdd
PZ
685 /*
686 * Reset each runqueue's bandwidth settings
687 */
ec514c48 688 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690
0986b11b
TG
691 raw_spin_lock(&rt_b->rt_runtime_lock);
692 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
693 rt_rq->rt_runtime = rt_b->rt_runtime;
694 rt_rq->rt_time = 0;
baf25731 695 rt_rq->rt_throttled = 0;
0986b11b
TG
696 raw_spin_unlock(&rt_rq->rt_runtime_lock);
697 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
698 }
699}
700
eff6549b
PZ
701static int balance_runtime(struct rt_rq *rt_rq)
702{
703 int more = 0;
704
4a6184ce
PZ
705 if (!sched_feat(RT_RUNTIME_SHARE))
706 return more;
707
eff6549b 708 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 709 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 710 more = do_balance_runtime(rt_rq);
0986b11b 711 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
712 }
713
714 return more;
715}
55e12e5e 716#else /* !CONFIG_SMP */
eff6549b
PZ
717static inline int balance_runtime(struct rt_rq *rt_rq)
718{
719 return 0;
720}
55e12e5e 721#endif /* CONFIG_SMP */
ac086bc2 722
eff6549b
PZ
723static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
724{
42c62a58 725 int i, idle = 1, throttled = 0;
c6c4927b 726 const struct cpumask *span;
eff6549b 727
eff6549b 728 span = sched_rt_period_mask();
e221d028
MG
729#ifdef CONFIG_RT_GROUP_SCHED
730 /*
731 * FIXME: isolated CPUs should really leave the root task group,
732 * whether they are isolcpus or were isolated via cpusets, lest
733 * the timer run on a CPU which does not service all runqueues,
734 * potentially leaving other CPUs indefinitely throttled. If
735 * isolation is really required, the user will turn the throttle
736 * off to kill the perturbations it causes anyway. Meanwhile,
737 * this maintains functionality for boot and/or troubleshooting.
738 */
739 if (rt_b == &root_task_group.rt_bandwidth)
740 span = cpu_online_mask;
741#endif
c6c4927b 742 for_each_cpu(i, span) {
eff6549b
PZ
743 int enqueue = 0;
744 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
745 struct rq *rq = rq_of_rt_rq(rt_rq);
746
05fa785c 747 raw_spin_lock(&rq->lock);
eff6549b
PZ
748 if (rt_rq->rt_time) {
749 u64 runtime;
750
0986b11b 751 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
752 if (rt_rq->rt_throttled)
753 balance_runtime(rt_rq);
754 runtime = rt_rq->rt_runtime;
755 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
756 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
757 rt_rq->rt_throttled = 0;
758 enqueue = 1;
61eadef6
MG
759
760 /*
761 * Force a clock update if the CPU was idle,
762 * lest wakeup -> unthrottle time accumulate.
763 */
764 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
765 rq->skip_clock_update = -1;
eff6549b
PZ
766 }
767 if (rt_rq->rt_time || rt_rq->rt_nr_running)
768 idle = 0;
0986b11b 769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 770 } else if (rt_rq->rt_nr_running) {
6c3df255 771 idle = 0;
0c3b9168
BS
772 if (!rt_rq_throttled(rt_rq))
773 enqueue = 1;
774 }
42c62a58
PZ
775 if (rt_rq->rt_throttled)
776 throttled = 1;
eff6549b
PZ
777
778 if (enqueue)
779 sched_rt_rq_enqueue(rt_rq);
05fa785c 780 raw_spin_unlock(&rq->lock);
eff6549b
PZ
781 }
782
42c62a58
PZ
783 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
784 return 1;
785
eff6549b
PZ
786 return idle;
787}
ac086bc2 788
6f505b16
PZ
789static inline int rt_se_prio(struct sched_rt_entity *rt_se)
790{
052f1dc7 791#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
792 struct rt_rq *rt_rq = group_rt_rq(rt_se);
793
794 if (rt_rq)
e864c499 795 return rt_rq->highest_prio.curr;
6f505b16
PZ
796#endif
797
798 return rt_task_of(rt_se)->prio;
799}
800
9f0c1e56 801static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 802{
9f0c1e56 803 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 804
fa85ae24 805 if (rt_rq->rt_throttled)
23b0fdfc 806 return rt_rq_throttled(rt_rq);
fa85ae24 807
5b680fd6 808 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
809 return 0;
810
b79f3833
PZ
811 balance_runtime(rt_rq);
812 runtime = sched_rt_runtime(rt_rq);
813 if (runtime == RUNTIME_INF)
814 return 0;
ac086bc2 815
9f0c1e56 816 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
817 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
818
819 /*
820 * Don't actually throttle groups that have no runtime assigned
821 * but accrue some time due to boosting.
822 */
823 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
824 static bool once = false;
825
7abc63b1 826 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
827
828 if (!once) {
829 once = true;
830 printk_sched("sched: RT throttling activated\n");
831 }
7abc63b1
PZ
832 } else {
833 /*
834 * In case we did anyway, make it go away,
835 * replenishment is a joke, since it will replenish us
836 * with exactly 0 ns.
837 */
838 rt_rq->rt_time = 0;
839 }
840
23b0fdfc 841 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 842 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
843 return 1;
844 }
fa85ae24
PZ
845 }
846
847 return 0;
848}
849
bb44e5d1
IM
850/*
851 * Update the current task's runtime statistics. Skip current tasks that
852 * are not in our scheduling class.
853 */
a9957449 854static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
855{
856 struct task_struct *curr = rq->curr;
6f505b16
PZ
857 struct sched_rt_entity *rt_se = &curr->rt;
858 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
859 u64 delta_exec;
860
06c3bc65 861 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
862 return;
863
78becc27 864 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
865 if (unlikely((s64)delta_exec <= 0))
866 return;
6cfb0d5d 867
42c62a58
PZ
868 schedstat_set(curr->se.statistics.exec_max,
869 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
870
871 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
872 account_group_exec_runtime(curr, delta_exec);
873
78becc27 874 curr->se.exec_start = rq_clock_task(rq);
d842de87 875 cpuacct_charge(curr, delta_exec);
fa85ae24 876
e9e9250b
PZ
877 sched_rt_avg_update(rq, delta_exec);
878
0b148fa0
PZ
879 if (!rt_bandwidth_enabled())
880 return;
881
354d60c2
DG
882 for_each_sched_rt_entity(rt_se) {
883 rt_rq = rt_rq_of_se(rt_se);
884
cc2991cf 885 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 886 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
887 rt_rq->rt_time += delta_exec;
888 if (sched_rt_runtime_exceeded(rt_rq))
889 resched_task(curr);
0986b11b 890 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 891 }
354d60c2 892 }
bb44e5d1
IM
893}
894
398a153b 895#if defined CONFIG_SMP
e864c499 896
398a153b
GH
897static void
898inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 899{
4d984277 900 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 901
5181f4a4
SR
902 if (rq->online && prio < prev_prio)
903 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 904}
73fe6aae 905
398a153b
GH
906static void
907dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
908{
909 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 910
398a153b
GH
911 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
912 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
913}
914
398a153b
GH
915#else /* CONFIG_SMP */
916
6f505b16 917static inline
398a153b
GH
918void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
919static inline
920void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
921
922#endif /* CONFIG_SMP */
6e0534f2 923
052f1dc7 924#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
925static void
926inc_rt_prio(struct rt_rq *rt_rq, int prio)
927{
928 int prev_prio = rt_rq->highest_prio.curr;
929
930 if (prio < prev_prio)
931 rt_rq->highest_prio.curr = prio;
932
933 inc_rt_prio_smp(rt_rq, prio, prev_prio);
934}
935
936static void
937dec_rt_prio(struct rt_rq *rt_rq, int prio)
938{
939 int prev_prio = rt_rq->highest_prio.curr;
940
6f505b16 941 if (rt_rq->rt_nr_running) {
764a9d6f 942
398a153b 943 WARN_ON(prio < prev_prio);
764a9d6f 944
e864c499 945 /*
398a153b
GH
946 * This may have been our highest task, and therefore
947 * we may have some recomputation to do
e864c499 948 */
398a153b 949 if (prio == prev_prio) {
e864c499
GH
950 struct rt_prio_array *array = &rt_rq->active;
951
952 rt_rq->highest_prio.curr =
764a9d6f 953 sched_find_first_bit(array->bitmap);
e864c499
GH
954 }
955
764a9d6f 956 } else
e864c499 957 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 958
398a153b
GH
959 dec_rt_prio_smp(rt_rq, prio, prev_prio);
960}
1f11eb6a 961
398a153b
GH
962#else
963
964static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
965static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
966
967#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 968
052f1dc7 969#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
970
971static void
972inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
973{
974 if (rt_se_boosted(rt_se))
975 rt_rq->rt_nr_boosted++;
976
977 if (rt_rq->tg)
978 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
979}
980
981static void
982dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
983{
23b0fdfc
PZ
984 if (rt_se_boosted(rt_se))
985 rt_rq->rt_nr_boosted--;
986
987 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
988}
989
990#else /* CONFIG_RT_GROUP_SCHED */
991
992static void
993inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
994{
995 start_rt_bandwidth(&def_rt_bandwidth);
996}
997
998static inline
999void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1000
1001#endif /* CONFIG_RT_GROUP_SCHED */
1002
1003static inline
1004void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1005{
1006 int prio = rt_se_prio(rt_se);
1007
1008 WARN_ON(!rt_prio(prio));
1009 rt_rq->rt_nr_running++;
1010
1011 inc_rt_prio(rt_rq, prio);
1012 inc_rt_migration(rt_se, rt_rq);
1013 inc_rt_group(rt_se, rt_rq);
1014}
1015
1016static inline
1017void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1018{
1019 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1020 WARN_ON(!rt_rq->rt_nr_running);
1021 rt_rq->rt_nr_running--;
1022
1023 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1024 dec_rt_migration(rt_se, rt_rq);
1025 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1026}
1027
37dad3fc 1028static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1029{
6f505b16
PZ
1030 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1031 struct rt_prio_array *array = &rt_rq->active;
1032 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1033 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1034
ad2a3f13
PZ
1035 /*
1036 * Don't enqueue the group if its throttled, or when empty.
1037 * The latter is a consequence of the former when a child group
1038 * get throttled and the current group doesn't have any other
1039 * active members.
1040 */
1041 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1042 return;
63489e45 1043
37dad3fc
TG
1044 if (head)
1045 list_add(&rt_se->run_list, queue);
1046 else
1047 list_add_tail(&rt_se->run_list, queue);
6f505b16 1048 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1049
6f505b16
PZ
1050 inc_rt_tasks(rt_se, rt_rq);
1051}
1052
ad2a3f13 1053static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1054{
1055 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1056 struct rt_prio_array *array = &rt_rq->active;
1057
1058 list_del_init(&rt_se->run_list);
1059 if (list_empty(array->queue + rt_se_prio(rt_se)))
1060 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1061
1062 dec_rt_tasks(rt_se, rt_rq);
1063}
1064
1065/*
1066 * Because the prio of an upper entry depends on the lower
1067 * entries, we must remove entries top - down.
6f505b16 1068 */
ad2a3f13 1069static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1070{
ad2a3f13 1071 struct sched_rt_entity *back = NULL;
6f505b16 1072
58d6c2d7
PZ
1073 for_each_sched_rt_entity(rt_se) {
1074 rt_se->back = back;
1075 back = rt_se;
1076 }
1077
1078 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1079 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1080 __dequeue_rt_entity(rt_se);
1081 }
1082}
1083
37dad3fc 1084static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1085{
1086 dequeue_rt_stack(rt_se);
1087 for_each_sched_rt_entity(rt_se)
37dad3fc 1088 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1089}
1090
1091static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1092{
1093 dequeue_rt_stack(rt_se);
1094
1095 for_each_sched_rt_entity(rt_se) {
1096 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1097
1098 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1099 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1100 }
bb44e5d1
IM
1101}
1102
1103/*
1104 * Adding/removing a task to/from a priority array:
1105 */
ea87bb78 1106static void
371fd7e7 1107enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1108{
1109 struct sched_rt_entity *rt_se = &p->rt;
1110
371fd7e7 1111 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1112 rt_se->timeout = 0;
1113
371fd7e7 1114 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1115
29baa747 1116 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1117 enqueue_pushable_task(rq, p);
953bfcd1
PT
1118
1119 inc_nr_running(rq);
6f505b16
PZ
1120}
1121
371fd7e7 1122static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1123{
6f505b16 1124 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1125
f1e14ef6 1126 update_curr_rt(rq);
ad2a3f13 1127 dequeue_rt_entity(rt_se);
c09595f6 1128
917b627d 1129 dequeue_pushable_task(rq, p);
953bfcd1
PT
1130
1131 dec_nr_running(rq);
bb44e5d1
IM
1132}
1133
1134/*
60686317
RW
1135 * Put task to the head or the end of the run list without the overhead of
1136 * dequeue followed by enqueue.
bb44e5d1 1137 */
7ebefa8c
DA
1138static void
1139requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1140{
1cdad715 1141 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1142 struct rt_prio_array *array = &rt_rq->active;
1143 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1144
1145 if (head)
1146 list_move(&rt_se->run_list, queue);
1147 else
1148 list_move_tail(&rt_se->run_list, queue);
1cdad715 1149 }
6f505b16
PZ
1150}
1151
7ebefa8c 1152static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1153{
6f505b16
PZ
1154 struct sched_rt_entity *rt_se = &p->rt;
1155 struct rt_rq *rt_rq;
bb44e5d1 1156
6f505b16
PZ
1157 for_each_sched_rt_entity(rt_se) {
1158 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1159 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1160 }
bb44e5d1
IM
1161}
1162
6f505b16 1163static void yield_task_rt(struct rq *rq)
bb44e5d1 1164{
7ebefa8c 1165 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1166}
1167
e7693a36 1168#ifdef CONFIG_SMP
318e0893
GH
1169static int find_lowest_rq(struct task_struct *task);
1170
0017d735 1171static int
7608dec2 1172select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 1173{
7608dec2
PZ
1174 struct task_struct *curr;
1175 struct rq *rq;
1176 int cpu;
1177
7608dec2 1178 cpu = task_cpu(p);
c37495fd 1179
29baa747 1180 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1181 goto out;
1182
c37495fd
SR
1183 /* For anything but wake ups, just return the task_cpu */
1184 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1185 goto out;
1186
7608dec2
PZ
1187 rq = cpu_rq(cpu);
1188
1189 rcu_read_lock();
1190 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1191
318e0893 1192 /*
7608dec2 1193 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1194 * try to see if we can wake this RT task up on another
1195 * runqueue. Otherwise simply start this RT task
1196 * on its current runqueue.
1197 *
43fa5460
SR
1198 * We want to avoid overloading runqueues. If the woken
1199 * task is a higher priority, then it will stay on this CPU
1200 * and the lower prio task should be moved to another CPU.
1201 * Even though this will probably make the lower prio task
1202 * lose its cache, we do not want to bounce a higher task
1203 * around just because it gave up its CPU, perhaps for a
1204 * lock?
1205 *
1206 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1207 *
1208 * Otherwise, just let it ride on the affined RQ and the
1209 * post-schedule router will push the preempted task away
1210 *
1211 * This test is optimistic, if we get it wrong the load-balancer
1212 * will have to sort it out.
318e0893 1213 */
7608dec2 1214 if (curr && unlikely(rt_task(curr)) &&
29baa747 1215 (curr->nr_cpus_allowed < 2 ||
3be209a8 1216 curr->prio <= p->prio) &&
29baa747 1217 (p->nr_cpus_allowed > 1)) {
7608dec2 1218 int target = find_lowest_rq(p);
318e0893 1219
7608dec2
PZ
1220 if (target != -1)
1221 cpu = target;
318e0893 1222 }
7608dec2 1223 rcu_read_unlock();
318e0893 1224
c37495fd 1225out:
7608dec2 1226 return cpu;
e7693a36 1227}
7ebefa8c
DA
1228
1229static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1230{
29baa747 1231 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1232 return;
1233
29baa747 1234 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1235 && cpupri_find(&rq->rd->cpupri, p, NULL))
1236 return;
24600ce8 1237
13b8bd0a
RR
1238 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1239 return;
7ebefa8c
DA
1240
1241 /*
1242 * There appears to be other cpus that can accept
1243 * current and none to run 'p', so lets reschedule
1244 * to try and push current away:
1245 */
1246 requeue_task_rt(rq, p, 1);
1247 resched_task(rq->curr);
1248}
1249
e7693a36
GH
1250#endif /* CONFIG_SMP */
1251
bb44e5d1
IM
1252/*
1253 * Preempt the current task with a newly woken task if needed:
1254 */
7d478721 1255static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1256{
45c01e82 1257 if (p->prio < rq->curr->prio) {
bb44e5d1 1258 resched_task(rq->curr);
45c01e82
GH
1259 return;
1260 }
1261
1262#ifdef CONFIG_SMP
1263 /*
1264 * If:
1265 *
1266 * - the newly woken task is of equal priority to the current task
1267 * - the newly woken task is non-migratable while current is migratable
1268 * - current will be preempted on the next reschedule
1269 *
1270 * we should check to see if current can readily move to a different
1271 * cpu. If so, we will reschedule to allow the push logic to try
1272 * to move current somewhere else, making room for our non-migratable
1273 * task.
1274 */
8dd0de8b 1275 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1276 check_preempt_equal_prio(rq, p);
45c01e82 1277#endif
bb44e5d1
IM
1278}
1279
6f505b16
PZ
1280static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1281 struct rt_rq *rt_rq)
bb44e5d1 1282{
6f505b16
PZ
1283 struct rt_prio_array *array = &rt_rq->active;
1284 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1285 struct list_head *queue;
1286 int idx;
1287
1288 idx = sched_find_first_bit(array->bitmap);
6f505b16 1289 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1290
1291 queue = array->queue + idx;
6f505b16 1292 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1293
6f505b16
PZ
1294 return next;
1295}
bb44e5d1 1296
917b627d 1297static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1298{
1299 struct sched_rt_entity *rt_se;
1300 struct task_struct *p;
1301 struct rt_rq *rt_rq;
bb44e5d1 1302
6f505b16
PZ
1303 rt_rq = &rq->rt;
1304
8e54a2c0 1305 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1306 return NULL;
1307
23b0fdfc 1308 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1309 return NULL;
1310
1311 do {
1312 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1313 BUG_ON(!rt_se);
6f505b16
PZ
1314 rt_rq = group_rt_rq(rt_se);
1315 } while (rt_rq);
1316
1317 p = rt_task_of(rt_se);
78becc27 1318 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1319
1320 return p;
1321}
1322
1323static struct task_struct *pick_next_task_rt(struct rq *rq)
1324{
1325 struct task_struct *p = _pick_next_task_rt(rq);
1326
1327 /* The running task is never eligible for pushing */
1328 if (p)
1329 dequeue_pushable_task(rq, p);
1330
bcf08df3 1331#ifdef CONFIG_SMP
3f029d3c
GH
1332 /*
1333 * We detect this state here so that we can avoid taking the RQ
1334 * lock again later if there is no need to push
1335 */
1336 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1337#endif
3f029d3c 1338
6f505b16 1339 return p;
bb44e5d1
IM
1340}
1341
31ee529c 1342static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1343{
f1e14ef6 1344 update_curr_rt(rq);
917b627d
GH
1345
1346 /*
1347 * The previous task needs to be made eligible for pushing
1348 * if it is still active
1349 */
29baa747 1350 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1351 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1352}
1353
681f3e68 1354#ifdef CONFIG_SMP
6f505b16 1355
e8fa1362
SR
1356/* Only try algorithms three times */
1357#define RT_MAX_TRIES 3
1358
f65eda4f
SR
1359static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1360{
1361 if (!task_running(rq, p) &&
60334caf 1362 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1363 return 1;
1364 return 0;
1365}
1366
e23ee747
KT
1367/*
1368 * Return the highest pushable rq's task, which is suitable to be executed
1369 * on the cpu, NULL otherwise
1370 */
1371static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1372{
e23ee747
KT
1373 struct plist_head *head = &rq->rt.pushable_tasks;
1374 struct task_struct *p;
3d07467b 1375
e23ee747
KT
1376 if (!has_pushable_tasks(rq))
1377 return NULL;
3d07467b 1378
e23ee747
KT
1379 plist_for_each_entry(p, head, pushable_tasks) {
1380 if (pick_rt_task(rq, p, cpu))
1381 return p;
f65eda4f
SR
1382 }
1383
e23ee747 1384 return NULL;
e8fa1362
SR
1385}
1386
0e3900e6 1387static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1388
6e1254d2
GH
1389static int find_lowest_rq(struct task_struct *task)
1390{
1391 struct sched_domain *sd;
96f874e2 1392 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1393 int this_cpu = smp_processor_id();
1394 int cpu = task_cpu(task);
06f90dbd 1395
0da938c4
SR
1396 /* Make sure the mask is initialized first */
1397 if (unlikely(!lowest_mask))
1398 return -1;
1399
29baa747 1400 if (task->nr_cpus_allowed == 1)
6e0534f2 1401 return -1; /* No other targets possible */
6e1254d2 1402
6e0534f2
GH
1403 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1404 return -1; /* No targets found */
6e1254d2
GH
1405
1406 /*
1407 * At this point we have built a mask of cpus representing the
1408 * lowest priority tasks in the system. Now we want to elect
1409 * the best one based on our affinity and topology.
1410 *
1411 * We prioritize the last cpu that the task executed on since
1412 * it is most likely cache-hot in that location.
1413 */
96f874e2 1414 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1415 return cpu;
1416
1417 /*
1418 * Otherwise, we consult the sched_domains span maps to figure
1419 * out which cpu is logically closest to our hot cache data.
1420 */
e2c88063
RR
1421 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1422 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1423
cd4ae6ad 1424 rcu_read_lock();
e2c88063
RR
1425 for_each_domain(cpu, sd) {
1426 if (sd->flags & SD_WAKE_AFFINE) {
1427 int best_cpu;
6e1254d2 1428
e2c88063
RR
1429 /*
1430 * "this_cpu" is cheaper to preempt than a
1431 * remote processor.
1432 */
1433 if (this_cpu != -1 &&
cd4ae6ad
XF
1434 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1435 rcu_read_unlock();
e2c88063 1436 return this_cpu;
cd4ae6ad 1437 }
e2c88063
RR
1438
1439 best_cpu = cpumask_first_and(lowest_mask,
1440 sched_domain_span(sd));
cd4ae6ad
XF
1441 if (best_cpu < nr_cpu_ids) {
1442 rcu_read_unlock();
e2c88063 1443 return best_cpu;
cd4ae6ad 1444 }
6e1254d2
GH
1445 }
1446 }
cd4ae6ad 1447 rcu_read_unlock();
6e1254d2
GH
1448
1449 /*
1450 * And finally, if there were no matches within the domains
1451 * just give the caller *something* to work with from the compatible
1452 * locations.
1453 */
e2c88063
RR
1454 if (this_cpu != -1)
1455 return this_cpu;
1456
1457 cpu = cpumask_any(lowest_mask);
1458 if (cpu < nr_cpu_ids)
1459 return cpu;
1460 return -1;
07b4032c
GH
1461}
1462
1463/* Will lock the rq it finds */
4df64c0b 1464static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1465{
1466 struct rq *lowest_rq = NULL;
07b4032c 1467 int tries;
4df64c0b 1468 int cpu;
e8fa1362 1469
07b4032c
GH
1470 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1471 cpu = find_lowest_rq(task);
1472
2de0b463 1473 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1474 break;
1475
07b4032c
GH
1476 lowest_rq = cpu_rq(cpu);
1477
e8fa1362 1478 /* if the prio of this runqueue changed, try again */
07b4032c 1479 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1480 /*
1481 * We had to unlock the run queue. In
1482 * the mean time, task could have
1483 * migrated already or had its affinity changed.
1484 * Also make sure that it wasn't scheduled on its rq.
1485 */
07b4032c 1486 if (unlikely(task_rq(task) != rq ||
96f874e2 1487 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1488 tsk_cpus_allowed(task)) ||
07b4032c 1489 task_running(rq, task) ||
fd2f4419 1490 !task->on_rq)) {
4df64c0b 1491
7f1b4393 1492 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1493 lowest_rq = NULL;
1494 break;
1495 }
1496 }
1497
1498 /* If this rq is still suitable use it. */
e864c499 1499 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1500 break;
1501
1502 /* try again */
1b12bbc7 1503 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1504 lowest_rq = NULL;
1505 }
1506
1507 return lowest_rq;
1508}
1509
917b627d
GH
1510static struct task_struct *pick_next_pushable_task(struct rq *rq)
1511{
1512 struct task_struct *p;
1513
1514 if (!has_pushable_tasks(rq))
1515 return NULL;
1516
1517 p = plist_first_entry(&rq->rt.pushable_tasks,
1518 struct task_struct, pushable_tasks);
1519
1520 BUG_ON(rq->cpu != task_cpu(p));
1521 BUG_ON(task_current(rq, p));
29baa747 1522 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1523
fd2f4419 1524 BUG_ON(!p->on_rq);
917b627d
GH
1525 BUG_ON(!rt_task(p));
1526
1527 return p;
1528}
1529
e8fa1362
SR
1530/*
1531 * If the current CPU has more than one RT task, see if the non
1532 * running task can migrate over to a CPU that is running a task
1533 * of lesser priority.
1534 */
697f0a48 1535static int push_rt_task(struct rq *rq)
e8fa1362
SR
1536{
1537 struct task_struct *next_task;
1538 struct rq *lowest_rq;
311e800e 1539 int ret = 0;
e8fa1362 1540
a22d7fc1
GH
1541 if (!rq->rt.overloaded)
1542 return 0;
1543
917b627d 1544 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1545 if (!next_task)
1546 return 0;
1547
49246274 1548retry:
697f0a48 1549 if (unlikely(next_task == rq->curr)) {
f65eda4f 1550 WARN_ON(1);
e8fa1362 1551 return 0;
f65eda4f 1552 }
e8fa1362
SR
1553
1554 /*
1555 * It's possible that the next_task slipped in of
1556 * higher priority than current. If that's the case
1557 * just reschedule current.
1558 */
697f0a48
GH
1559 if (unlikely(next_task->prio < rq->curr->prio)) {
1560 resched_task(rq->curr);
e8fa1362
SR
1561 return 0;
1562 }
1563
697f0a48 1564 /* We might release rq lock */
e8fa1362
SR
1565 get_task_struct(next_task);
1566
1567 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1568 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1569 if (!lowest_rq) {
1570 struct task_struct *task;
1571 /*
311e800e 1572 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1573 * so it is possible that next_task has migrated.
1574 *
1575 * We need to make sure that the task is still on the same
1576 * run-queue and is also still the next task eligible for
1577 * pushing.
e8fa1362 1578 */
917b627d 1579 task = pick_next_pushable_task(rq);
1563513d
GH
1580 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1581 /*
311e800e
HD
1582 * The task hasn't migrated, and is still the next
1583 * eligible task, but we failed to find a run-queue
1584 * to push it to. Do not retry in this case, since
1585 * other cpus will pull from us when ready.
1563513d 1586 */
1563513d 1587 goto out;
e8fa1362 1588 }
917b627d 1589
1563513d
GH
1590 if (!task)
1591 /* No more tasks, just exit */
1592 goto out;
1593
917b627d 1594 /*
1563513d 1595 * Something has shifted, try again.
917b627d 1596 */
1563513d
GH
1597 put_task_struct(next_task);
1598 next_task = task;
1599 goto retry;
e8fa1362
SR
1600 }
1601
697f0a48 1602 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1603 set_task_cpu(next_task, lowest_rq->cpu);
1604 activate_task(lowest_rq, next_task, 0);
311e800e 1605 ret = 1;
e8fa1362
SR
1606
1607 resched_task(lowest_rq->curr);
1608
1b12bbc7 1609 double_unlock_balance(rq, lowest_rq);
e8fa1362 1610
e8fa1362
SR
1611out:
1612 put_task_struct(next_task);
1613
311e800e 1614 return ret;
e8fa1362
SR
1615}
1616
e8fa1362
SR
1617static void push_rt_tasks(struct rq *rq)
1618{
1619 /* push_rt_task will return true if it moved an RT */
1620 while (push_rt_task(rq))
1621 ;
1622}
1623
f65eda4f
SR
1624static int pull_rt_task(struct rq *this_rq)
1625{
80bf3171 1626 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1627 struct task_struct *p;
f65eda4f 1628 struct rq *src_rq;
f65eda4f 1629
637f5085 1630 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1631 return 0;
1632
c6c4927b 1633 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1634 if (this_cpu == cpu)
1635 continue;
1636
1637 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1638
1639 /*
1640 * Don't bother taking the src_rq->lock if the next highest
1641 * task is known to be lower-priority than our current task.
1642 * This may look racy, but if this value is about to go
1643 * logically higher, the src_rq will push this task away.
1644 * And if its going logically lower, we do not care
1645 */
1646 if (src_rq->rt.highest_prio.next >=
1647 this_rq->rt.highest_prio.curr)
1648 continue;
1649
f65eda4f
SR
1650 /*
1651 * We can potentially drop this_rq's lock in
1652 * double_lock_balance, and another CPU could
a8728944 1653 * alter this_rq
f65eda4f 1654 */
a8728944 1655 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1656
1657 /*
e23ee747
KT
1658 * We can pull only a task, which is pushable
1659 * on its rq, and no others.
f65eda4f 1660 */
e23ee747 1661 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1662
1663 /*
1664 * Do we have an RT task that preempts
1665 * the to-be-scheduled task?
1666 */
a8728944 1667 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1668 WARN_ON(p == src_rq->curr);
fd2f4419 1669 WARN_ON(!p->on_rq);
f65eda4f
SR
1670
1671 /*
1672 * There's a chance that p is higher in priority
1673 * than what's currently running on its cpu.
1674 * This is just that p is wakeing up and hasn't
1675 * had a chance to schedule. We only pull
1676 * p if it is lower in priority than the
a8728944 1677 * current task on the run queue
f65eda4f 1678 */
a8728944 1679 if (p->prio < src_rq->curr->prio)
614ee1f6 1680 goto skip;
f65eda4f
SR
1681
1682 ret = 1;
1683
1684 deactivate_task(src_rq, p, 0);
1685 set_task_cpu(p, this_cpu);
1686 activate_task(this_rq, p, 0);
1687 /*
1688 * We continue with the search, just in
1689 * case there's an even higher prio task
25985edc 1690 * in another runqueue. (low likelihood
f65eda4f 1691 * but possible)
f65eda4f 1692 */
f65eda4f 1693 }
49246274 1694skip:
1b12bbc7 1695 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1696 }
1697
1698 return ret;
1699}
1700
9a897c5a 1701static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1702{
1703 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1704 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1705 pull_rt_task(rq);
1706}
1707
9a897c5a 1708static void post_schedule_rt(struct rq *rq)
e8fa1362 1709{
967fc046 1710 push_rt_tasks(rq);
e8fa1362
SR
1711}
1712
8ae121ac
GH
1713/*
1714 * If we are not running and we are not going to reschedule soon, we should
1715 * try to push tasks away now
1716 */
efbbd05a 1717static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1718{
9a897c5a 1719 if (!task_running(rq, p) &&
8ae121ac 1720 !test_tsk_need_resched(rq->curr) &&
917b627d 1721 has_pushable_tasks(rq) &&
29baa747 1722 p->nr_cpus_allowed > 1 &&
43fa5460 1723 rt_task(rq->curr) &&
29baa747 1724 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1725 rq->curr->prio <= p->prio))
4642dafd
SR
1726 push_rt_tasks(rq);
1727}
1728
cd8ba7cd 1729static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1730 const struct cpumask *new_mask)
73fe6aae 1731{
8d3d5ada
KT
1732 struct rq *rq;
1733 int weight;
73fe6aae
GH
1734
1735 BUG_ON(!rt_task(p));
1736
8d3d5ada
KT
1737 if (!p->on_rq)
1738 return;
917b627d 1739
8d3d5ada 1740 weight = cpumask_weight(new_mask);
917b627d 1741
8d3d5ada
KT
1742 /*
1743 * Only update if the process changes its state from whether it
1744 * can migrate or not.
1745 */
29baa747 1746 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1747 return;
917b627d 1748
8d3d5ada 1749 rq = task_rq(p);
73fe6aae 1750
8d3d5ada
KT
1751 /*
1752 * The process used to be able to migrate OR it can now migrate
1753 */
1754 if (weight <= 1) {
1755 if (!task_current(rq, p))
1756 dequeue_pushable_task(rq, p);
1757 BUG_ON(!rq->rt.rt_nr_migratory);
1758 rq->rt.rt_nr_migratory--;
1759 } else {
1760 if (!task_current(rq, p))
1761 enqueue_pushable_task(rq, p);
1762 rq->rt.rt_nr_migratory++;
73fe6aae 1763 }
8d3d5ada
KT
1764
1765 update_rt_migration(&rq->rt);
73fe6aae 1766}
deeeccd4 1767
bdd7c81b 1768/* Assumes rq->lock is held */
1f11eb6a 1769static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1770{
1771 if (rq->rt.overloaded)
1772 rt_set_overload(rq);
6e0534f2 1773
7def2be1
PZ
1774 __enable_runtime(rq);
1775
e864c499 1776 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1777}
1778
1779/* Assumes rq->lock is held */
1f11eb6a 1780static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1781{
1782 if (rq->rt.overloaded)
1783 rt_clear_overload(rq);
6e0534f2 1784
7def2be1
PZ
1785 __disable_runtime(rq);
1786
6e0534f2 1787 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1788}
cb469845
SR
1789
1790/*
1791 * When switch from the rt queue, we bring ourselves to a position
1792 * that we might want to pull RT tasks from other runqueues.
1793 */
da7a735e 1794static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1795{
1796 /*
1797 * If there are other RT tasks then we will reschedule
1798 * and the scheduling of the other RT tasks will handle
1799 * the balancing. But if we are the last RT task
1800 * we may need to handle the pulling of RT tasks
1801 * now.
1802 */
1158ddb5
KT
1803 if (!p->on_rq || rq->rt.rt_nr_running)
1804 return;
1805
1806 if (pull_rt_task(rq))
1807 resched_task(rq->curr);
cb469845 1808}
3d8cbdf8 1809
029632fb 1810void init_sched_rt_class(void)
3d8cbdf8
RR
1811{
1812 unsigned int i;
1813
029632fb 1814 for_each_possible_cpu(i) {
eaa95840 1815 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1816 GFP_KERNEL, cpu_to_node(i));
029632fb 1817 }
3d8cbdf8 1818}
cb469845
SR
1819#endif /* CONFIG_SMP */
1820
1821/*
1822 * When switching a task to RT, we may overload the runqueue
1823 * with RT tasks. In this case we try to push them off to
1824 * other runqueues.
1825 */
da7a735e 1826static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1827{
1828 int check_resched = 1;
1829
1830 /*
1831 * If we are already running, then there's nothing
1832 * that needs to be done. But if we are not running
1833 * we may need to preempt the current running task.
1834 * If that current running task is also an RT task
1835 * then see if we can move to another run queue.
1836 */
fd2f4419 1837 if (p->on_rq && rq->curr != p) {
cb469845
SR
1838#ifdef CONFIG_SMP
1839 if (rq->rt.overloaded && push_rt_task(rq) &&
1840 /* Don't resched if we changed runqueues */
1841 rq != task_rq(p))
1842 check_resched = 0;
1843#endif /* CONFIG_SMP */
1844 if (check_resched && p->prio < rq->curr->prio)
1845 resched_task(rq->curr);
1846 }
1847}
1848
1849/*
1850 * Priority of the task has changed. This may cause
1851 * us to initiate a push or pull.
1852 */
da7a735e
PZ
1853static void
1854prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1855{
fd2f4419 1856 if (!p->on_rq)
da7a735e
PZ
1857 return;
1858
1859 if (rq->curr == p) {
cb469845
SR
1860#ifdef CONFIG_SMP
1861 /*
1862 * If our priority decreases while running, we
1863 * may need to pull tasks to this runqueue.
1864 */
1865 if (oldprio < p->prio)
1866 pull_rt_task(rq);
1867 /*
1868 * If there's a higher priority task waiting to run
6fa46fa5
SR
1869 * then reschedule. Note, the above pull_rt_task
1870 * can release the rq lock and p could migrate.
1871 * Only reschedule if p is still on the same runqueue.
cb469845 1872 */
e864c499 1873 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1874 resched_task(p);
1875#else
1876 /* For UP simply resched on drop of prio */
1877 if (oldprio < p->prio)
1878 resched_task(p);
e8fa1362 1879#endif /* CONFIG_SMP */
cb469845
SR
1880 } else {
1881 /*
1882 * This task is not running, but if it is
1883 * greater than the current running task
1884 * then reschedule.
1885 */
1886 if (p->prio < rq->curr->prio)
1887 resched_task(rq->curr);
1888 }
1889}
1890
78f2c7db
PZ
1891static void watchdog(struct rq *rq, struct task_struct *p)
1892{
1893 unsigned long soft, hard;
1894
78d7d407
JS
1895 /* max may change after cur was read, this will be fixed next tick */
1896 soft = task_rlimit(p, RLIMIT_RTTIME);
1897 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1898
1899 if (soft != RLIM_INFINITY) {
1900 unsigned long next;
1901
57d2aa00
YX
1902 if (p->rt.watchdog_stamp != jiffies) {
1903 p->rt.timeout++;
1904 p->rt.watchdog_stamp = jiffies;
1905 }
1906
78f2c7db 1907 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1908 if (p->rt.timeout > next)
f06febc9 1909 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1910 }
1911}
bb44e5d1 1912
8f4d37ec 1913static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1914{
454c7999
CC
1915 struct sched_rt_entity *rt_se = &p->rt;
1916
67e2be02
PZ
1917 update_curr_rt(rq);
1918
78f2c7db
PZ
1919 watchdog(rq, p);
1920
bb44e5d1
IM
1921 /*
1922 * RR tasks need a special form of timeslice management.
1923 * FIFO tasks have no timeslices.
1924 */
1925 if (p->policy != SCHED_RR)
1926 return;
1927
fa717060 1928 if (--p->rt.time_slice)
bb44e5d1
IM
1929 return;
1930
ce0dbbbb 1931 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1932
98fbc798 1933 /*
454c7999
CC
1934 * Requeue to the end of queue if we (and all of our ancestors) are the
1935 * only element on the queue
98fbc798 1936 */
454c7999
CC
1937 for_each_sched_rt_entity(rt_se) {
1938 if (rt_se->run_list.prev != rt_se->run_list.next) {
1939 requeue_task_rt(rq, p, 0);
1940 set_tsk_need_resched(p);
1941 return;
1942 }
98fbc798 1943 }
bb44e5d1
IM
1944}
1945
83b699ed
SV
1946static void set_curr_task_rt(struct rq *rq)
1947{
1948 struct task_struct *p = rq->curr;
1949
78becc27 1950 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1951
1952 /* The running task is never eligible for pushing */
1953 dequeue_pushable_task(rq, p);
83b699ed
SV
1954}
1955
6d686f45 1956static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1957{
1958 /*
1959 * Time slice is 0 for SCHED_FIFO tasks
1960 */
1961 if (task->policy == SCHED_RR)
ce0dbbbb 1962 return sched_rr_timeslice;
0d721cea
PW
1963 else
1964 return 0;
1965}
1966
029632fb 1967const struct sched_class rt_sched_class = {
5522d5d5 1968 .next = &fair_sched_class,
bb44e5d1
IM
1969 .enqueue_task = enqueue_task_rt,
1970 .dequeue_task = dequeue_task_rt,
1971 .yield_task = yield_task_rt,
1972
1973 .check_preempt_curr = check_preempt_curr_rt,
1974
1975 .pick_next_task = pick_next_task_rt,
1976 .put_prev_task = put_prev_task_rt,
1977
681f3e68 1978#ifdef CONFIG_SMP
4ce72a2c
LZ
1979 .select_task_rq = select_task_rq_rt,
1980
73fe6aae 1981 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1982 .rq_online = rq_online_rt,
1983 .rq_offline = rq_offline_rt,
9a897c5a
SR
1984 .pre_schedule = pre_schedule_rt,
1985 .post_schedule = post_schedule_rt,
efbbd05a 1986 .task_woken = task_woken_rt,
cb469845 1987 .switched_from = switched_from_rt,
681f3e68 1988#endif
bb44e5d1 1989
83b699ed 1990 .set_curr_task = set_curr_task_rt,
bb44e5d1 1991 .task_tick = task_tick_rt,
cb469845 1992
0d721cea
PW
1993 .get_rr_interval = get_rr_interval_rt,
1994
cb469845
SR
1995 .prio_changed = prio_changed_rt,
1996 .switched_to = switched_to_rt,
bb44e5d1 1997};
ada18de2
PZ
1998
1999#ifdef CONFIG_SCHED_DEBUG
2000extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2001
029632fb 2002void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2003{
ec514c48 2004 rt_rq_iter_t iter;
ada18de2
PZ
2005 struct rt_rq *rt_rq;
2006
2007 rcu_read_lock();
ec514c48 2008 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2009 print_rt_rq(m, cpu, rt_rq);
2010 rcu_read_unlock();
2011}
55e12e5e 2012#endif /* CONFIG_SCHED_DEBUG */