]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/rt.c
sched,rt: Remove return value from pull_rt_task()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
b6366f04 9#include <linux/irq_work.h>
029632fb 10
ce0dbbbb
CW
11int sched_rr_timeslice = RR_TIMESLICE;
12
029632fb
PZ
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 21 int idle = 0;
77a4d1a1 22 int overrun;
029632fb 23
77a4d1a1 24 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 25 for (;;) {
77a4d1a1 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
27 if (!overrun)
28 break;
29
77a4d1a1 30 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 31 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 32 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 33 }
4cfafd30
PZ
34 if (idle)
35 rt_b->rt_period_active = 0;
77a4d1a1 36 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
029632fb 58 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63 }
029632fb
PZ
64 raw_spin_unlock(&rt_b->rt_runtime_lock);
65}
66
b6366f04
SR
67#ifdef CONFIG_SMP
68static void push_irq_work_func(struct irq_work *work);
69#endif
70
07c54f7a 71void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
72{
73 struct rt_prio_array *array;
74 int i;
75
76 array = &rt_rq->active;
77 for (i = 0; i < MAX_RT_PRIO; i++) {
78 INIT_LIST_HEAD(array->queue + i);
79 __clear_bit(i, array->bitmap);
80 }
81 /* delimiter for bitsearch: */
82 __set_bit(MAX_RT_PRIO, array->bitmap);
83
84#if defined CONFIG_SMP
85 rt_rq->highest_prio.curr = MAX_RT_PRIO;
86 rt_rq->highest_prio.next = MAX_RT_PRIO;
87 rt_rq->rt_nr_migratory = 0;
88 rt_rq->overloaded = 0;
89 plist_head_init(&rt_rq->pushable_tasks);
b6366f04
SR
90
91#ifdef HAVE_RT_PUSH_IPI
92 rt_rq->push_flags = 0;
93 rt_rq->push_cpu = nr_cpu_ids;
94 raw_spin_lock_init(&rt_rq->push_lock);
95 init_irq_work(&rt_rq->push_work, push_irq_work_func);
029632fb 96#endif
b6366f04 97#endif /* CONFIG_SMP */
f4ebcbc0
KT
98 /* We start is dequeued state, because no RT tasks are queued */
99 rt_rq->rt_queued = 0;
029632fb
PZ
100
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105}
106
8f48894f 107#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109{
110 hrtimer_cancel(&rt_b->rt_period_timer);
111}
8f48894f
PZ
112
113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
398a153b
GH
115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116{
8f48894f
PZ
117#ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119#endif
398a153b
GH
120 return container_of(rt_se, struct task_struct, rt);
121}
122
398a153b
GH
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125 return rt_rq->rq;
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130 return rt_se->rt_rq;
131}
132
653d07a6
KT
133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134{
135 struct rt_rq *rt_rq = rt_se->rt_rq;
136
137 return rt_rq->rq;
138}
139
029632fb
PZ
140void free_rt_sched_group(struct task_group *tg)
141{
142 int i;
143
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
152 }
153
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
156}
157
158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
161{
162 struct rq *rq = cpu_rq(cpu);
163
164 rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
168
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
171
172 if (!rt_se)
173 return;
174
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
179
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
183}
184
185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186{
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
190
191 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
197
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
206
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
211
07c54f7a 212 init_rt_rq(rt_rq);
029632fb
PZ
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 }
216
217 return 1;
218
219err_free_rq:
220 kfree(rt_rq);
221err:
222 return 0;
223}
224
398a153b
GH
225#else /* CONFIG_RT_GROUP_SCHED */
226
a1ba4d8b
PZ
227#define rt_entity_is_task(rt_se) (1)
228
8f48894f
PZ
229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230{
231 return container_of(rt_se, struct task_struct, rt);
232}
233
398a153b
GH
234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235{
236 return container_of(rt_rq, struct rq, rt);
237}
238
653d07a6 239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
240{
241 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
242
243 return task_rq(p);
244}
245
246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247{
248 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
249
250 return &rq->rt;
251}
252
029632fb
PZ
253void free_rt_sched_group(struct task_group *tg) { }
254
255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256{
257 return 1;
258}
398a153b
GH
259#endif /* CONFIG_RT_GROUP_SCHED */
260
4fd29176 261#ifdef CONFIG_SMP
84de4274 262
8046d680 263static void pull_rt_task(struct rq *this_rq);
38033c37 264
dc877341
PZ
265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266{
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq->rt.highest_prio.curr > prev->prio;
269}
270
637f5085 271static inline int rt_overloaded(struct rq *rq)
4fd29176 272{
637f5085 273 return atomic_read(&rq->rd->rto_count);
4fd29176 274}
84de4274 275
4fd29176
SR
276static inline void rt_set_overload(struct rq *rq)
277{
1f11eb6a
GH
278 if (!rq->online)
279 return;
280
c6c4927b 281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
282 /*
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
287 * updated yet.
7c3f2ab7
PZ
288 *
289 * Matched by the barrier in pull_rt_task().
4fd29176 290 */
7c3f2ab7 291 smp_wmb();
637f5085 292 atomic_inc(&rq->rd->rto_count);
4fd29176 293}
84de4274 294
4fd29176
SR
295static inline void rt_clear_overload(struct rq *rq)
296{
1f11eb6a
GH
297 if (!rq->online)
298 return;
299
4fd29176 300 /* the order here really doesn't matter */
637f5085 301 atomic_dec(&rq->rd->rto_count);
c6c4927b 302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 303}
73fe6aae 304
398a153b 305static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 306{
a1ba4d8b 307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
cdc8eb98 311 }
398a153b
GH
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
637f5085 315 }
73fe6aae 316}
4fd29176 317
398a153b
GH
318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319{
29baa747
PZ
320 struct task_struct *p;
321
a1ba4d8b
PZ
322 if (!rt_entity_is_task(rt_se))
323 return;
324
29baa747 325 p = rt_task_of(rt_se);
a1ba4d8b
PZ
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328 rt_rq->rt_nr_total++;
29baa747 329 if (p->nr_cpus_allowed > 1)
398a153b
GH
330 rt_rq->rt_nr_migratory++;
331
332 update_rt_migration(rt_rq);
333}
334
335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336{
29baa747
PZ
337 struct task_struct *p;
338
a1ba4d8b
PZ
339 if (!rt_entity_is_task(rt_se))
340 return;
341
29baa747 342 p = rt_task_of(rt_se);
a1ba4d8b
PZ
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345 rt_rq->rt_nr_total--;
29baa747 346 if (p->nr_cpus_allowed > 1)
398a153b
GH
347 rt_rq->rt_nr_migratory--;
348
349 update_rt_migration(rt_rq);
350}
351
5181f4a4
SR
352static inline int has_pushable_tasks(struct rq *rq)
353{
354 return !plist_head_empty(&rq->rt.pushable_tasks);
355}
356
e3fca9e7
PZ
357static DEFINE_PER_CPU(struct callback_head, rt_balance_head);
358
359static void push_rt_tasks(struct rq *);
360
361static inline void queue_push_tasks(struct rq *rq)
dc877341 362{
e3fca9e7
PZ
363 if (!has_pushable_tasks(rq))
364 return;
365
366 queue_balance_callback(rq, &per_cpu(rt_balance_head, rq->cpu), push_rt_tasks);
dc877341
PZ
367}
368
917b627d
GH
369static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
370{
371 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
372 plist_node_init(&p->pushable_tasks, p->prio);
373 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
374
375 /* Update the highest prio pushable task */
376 if (p->prio < rq->rt.highest_prio.next)
377 rq->rt.highest_prio.next = p->prio;
917b627d
GH
378}
379
380static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381{
382 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 383
5181f4a4
SR
384 /* Update the new highest prio pushable task */
385 if (has_pushable_tasks(rq)) {
386 p = plist_first_entry(&rq->rt.pushable_tasks,
387 struct task_struct, pushable_tasks);
388 rq->rt.highest_prio.next = p->prio;
389 } else
390 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
391}
392
917b627d
GH
393#else
394
ceacc2c1 395static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 396{
6f505b16
PZ
397}
398
ceacc2c1
PZ
399static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
400{
401}
402
b07430ac 403static inline
ceacc2c1
PZ
404void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
405{
406}
407
398a153b 408static inline
ceacc2c1
PZ
409void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410{
411}
917b627d 412
dc877341
PZ
413static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
414{
415 return false;
416}
417
8046d680 418static inline void pull_rt_task(struct rq *this_rq)
dc877341 419{
dc877341
PZ
420}
421
e3fca9e7 422static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
423{
424}
4fd29176
SR
425#endif /* CONFIG_SMP */
426
f4ebcbc0
KT
427static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
428static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
429
6f505b16
PZ
430static inline int on_rt_rq(struct sched_rt_entity *rt_se)
431{
432 return !list_empty(&rt_se->run_list);
433}
434
052f1dc7 435#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 436
9f0c1e56 437static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
438{
439 if (!rt_rq->tg)
9f0c1e56 440 return RUNTIME_INF;
6f505b16 441
ac086bc2
PZ
442 return rt_rq->rt_runtime;
443}
444
445static inline u64 sched_rt_period(struct rt_rq *rt_rq)
446{
447 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
448}
449
ec514c48
CX
450typedef struct task_group *rt_rq_iter_t;
451
1c09ab0d
YZ
452static inline struct task_group *next_task_group(struct task_group *tg)
453{
454 do {
455 tg = list_entry_rcu(tg->list.next,
456 typeof(struct task_group), list);
457 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
458
459 if (&tg->list == &task_groups)
460 tg = NULL;
461
462 return tg;
463}
464
465#define for_each_rt_rq(rt_rq, iter, rq) \
466 for (iter = container_of(&task_groups, typeof(*iter), list); \
467 (iter = next_task_group(iter)) && \
468 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 469
6f505b16
PZ
470#define for_each_sched_rt_entity(rt_se) \
471 for (; rt_se; rt_se = rt_se->parent)
472
473static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
474{
475 return rt_se->my_q;
476}
477
37dad3fc 478static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
479static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
480
9f0c1e56 481static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 482{
f6121f4f 483 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 484 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
485 struct sched_rt_entity *rt_se;
486
8875125e 487 int cpu = cpu_of(rq);
0c3b9168
BS
488
489 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 490
f6121f4f 491 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
492 if (!rt_se)
493 enqueue_top_rt_rq(rt_rq);
494 else if (!on_rt_rq(rt_se))
37dad3fc 495 enqueue_rt_entity(rt_se, false);
f4ebcbc0 496
e864c499 497 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 498 resched_curr(rq);
6f505b16
PZ
499 }
500}
501
9f0c1e56 502static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 503{
74b7eb58 504 struct sched_rt_entity *rt_se;
0c3b9168 505 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 506
0c3b9168 507 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 508
f4ebcbc0
KT
509 if (!rt_se)
510 dequeue_top_rt_rq(rt_rq);
511 else if (on_rt_rq(rt_se))
6f505b16
PZ
512 dequeue_rt_entity(rt_se);
513}
514
46383648
KT
515static inline int rt_rq_throttled(struct rt_rq *rt_rq)
516{
517 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
518}
519
23b0fdfc
PZ
520static int rt_se_boosted(struct sched_rt_entity *rt_se)
521{
522 struct rt_rq *rt_rq = group_rt_rq(rt_se);
523 struct task_struct *p;
524
525 if (rt_rq)
526 return !!rt_rq->rt_nr_boosted;
527
528 p = rt_task_of(rt_se);
529 return p->prio != p->normal_prio;
530}
531
d0b27fa7 532#ifdef CONFIG_SMP
c6c4927b 533static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 534{
424c93fe 535 return this_rq()->rd->span;
d0b27fa7 536}
6f505b16 537#else
c6c4927b 538static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 539{
c6c4927b 540 return cpu_online_mask;
d0b27fa7
PZ
541}
542#endif
6f505b16 543
d0b27fa7
PZ
544static inline
545struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 546{
d0b27fa7
PZ
547 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
548}
9f0c1e56 549
ac086bc2
PZ
550static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
551{
552 return &rt_rq->tg->rt_bandwidth;
553}
554
55e12e5e 555#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
556
557static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
558{
ac086bc2
PZ
559 return rt_rq->rt_runtime;
560}
561
562static inline u64 sched_rt_period(struct rt_rq *rt_rq)
563{
564 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
565}
566
ec514c48
CX
567typedef struct rt_rq *rt_rq_iter_t;
568
569#define for_each_rt_rq(rt_rq, iter, rq) \
570 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
571
6f505b16
PZ
572#define for_each_sched_rt_entity(rt_se) \
573 for (; rt_se; rt_se = NULL)
574
575static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
576{
577 return NULL;
578}
579
9f0c1e56 580static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 581{
f4ebcbc0
KT
582 struct rq *rq = rq_of_rt_rq(rt_rq);
583
584 if (!rt_rq->rt_nr_running)
585 return;
586
587 enqueue_top_rt_rq(rt_rq);
8875125e 588 resched_curr(rq);
6f505b16
PZ
589}
590
9f0c1e56 591static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 592{
f4ebcbc0 593 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
594}
595
46383648
KT
596static inline int rt_rq_throttled(struct rt_rq *rt_rq)
597{
598 return rt_rq->rt_throttled;
599}
600
c6c4927b 601static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 602{
c6c4927b 603 return cpu_online_mask;
d0b27fa7
PZ
604}
605
606static inline
607struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
608{
609 return &cpu_rq(cpu)->rt;
610}
611
ac086bc2
PZ
612static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
613{
614 return &def_rt_bandwidth;
615}
616
55e12e5e 617#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 618
faa59937
JL
619bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
620{
621 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
622
623 return (hrtimer_active(&rt_b->rt_period_timer) ||
624 rt_rq->rt_time < rt_b->rt_runtime);
625}
626
ac086bc2 627#ifdef CONFIG_SMP
78333cdd
PZ
628/*
629 * We ran out of runtime, see if we can borrow some from our neighbours.
630 */
b79f3833 631static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
632{
633 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 634 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
635 int i, weight, more = 0;
636 u64 rt_period;
637
c6c4927b 638 weight = cpumask_weight(rd->span);
ac086bc2 639
0986b11b 640 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 641 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 642 for_each_cpu(i, rd->span) {
ac086bc2
PZ
643 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
644 s64 diff;
645
646 if (iter == rt_rq)
647 continue;
648
0986b11b 649 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
650 /*
651 * Either all rqs have inf runtime and there's nothing to steal
652 * or __disable_runtime() below sets a specific rq to inf to
653 * indicate its been disabled and disalow stealing.
654 */
7def2be1
PZ
655 if (iter->rt_runtime == RUNTIME_INF)
656 goto next;
657
78333cdd
PZ
658 /*
659 * From runqueues with spare time, take 1/n part of their
660 * spare time, but no more than our period.
661 */
ac086bc2
PZ
662 diff = iter->rt_runtime - iter->rt_time;
663 if (diff > 0) {
58838cf3 664 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
665 if (rt_rq->rt_runtime + diff > rt_period)
666 diff = rt_period - rt_rq->rt_runtime;
667 iter->rt_runtime -= diff;
668 rt_rq->rt_runtime += diff;
669 more = 1;
670 if (rt_rq->rt_runtime == rt_period) {
0986b11b 671 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
672 break;
673 }
674 }
7def2be1 675next:
0986b11b 676 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 677 }
0986b11b 678 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
679
680 return more;
681}
7def2be1 682
78333cdd
PZ
683/*
684 * Ensure this RQ takes back all the runtime it lend to its neighbours.
685 */
7def2be1
PZ
686static void __disable_runtime(struct rq *rq)
687{
688 struct root_domain *rd = rq->rd;
ec514c48 689 rt_rq_iter_t iter;
7def2be1
PZ
690 struct rt_rq *rt_rq;
691
692 if (unlikely(!scheduler_running))
693 return;
694
ec514c48 695 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
696 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
697 s64 want;
698 int i;
699
0986b11b
TG
700 raw_spin_lock(&rt_b->rt_runtime_lock);
701 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
702 /*
703 * Either we're all inf and nobody needs to borrow, or we're
704 * already disabled and thus have nothing to do, or we have
705 * exactly the right amount of runtime to take out.
706 */
7def2be1
PZ
707 if (rt_rq->rt_runtime == RUNTIME_INF ||
708 rt_rq->rt_runtime == rt_b->rt_runtime)
709 goto balanced;
0986b11b 710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 711
78333cdd
PZ
712 /*
713 * Calculate the difference between what we started out with
714 * and what we current have, that's the amount of runtime
715 * we lend and now have to reclaim.
716 */
7def2be1
PZ
717 want = rt_b->rt_runtime - rt_rq->rt_runtime;
718
78333cdd
PZ
719 /*
720 * Greedy reclaim, take back as much as we can.
721 */
c6c4927b 722 for_each_cpu(i, rd->span) {
7def2be1
PZ
723 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
724 s64 diff;
725
78333cdd
PZ
726 /*
727 * Can't reclaim from ourselves or disabled runqueues.
728 */
f1679d08 729 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
730 continue;
731
0986b11b 732 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
733 if (want > 0) {
734 diff = min_t(s64, iter->rt_runtime, want);
735 iter->rt_runtime -= diff;
736 want -= diff;
737 } else {
738 iter->rt_runtime -= want;
739 want -= want;
740 }
0986b11b 741 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
742
743 if (!want)
744 break;
745 }
746
0986b11b 747 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
748 /*
749 * We cannot be left wanting - that would mean some runtime
750 * leaked out of the system.
751 */
7def2be1
PZ
752 BUG_ON(want);
753balanced:
78333cdd
PZ
754 /*
755 * Disable all the borrow logic by pretending we have inf
756 * runtime - in which case borrowing doesn't make sense.
757 */
7def2be1 758 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 759 rt_rq->rt_throttled = 0;
0986b11b
TG
760 raw_spin_unlock(&rt_rq->rt_runtime_lock);
761 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
762
763 /* Make rt_rq available for pick_next_task() */
764 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
765 }
766}
767
7def2be1
PZ
768static void __enable_runtime(struct rq *rq)
769{
ec514c48 770 rt_rq_iter_t iter;
7def2be1
PZ
771 struct rt_rq *rt_rq;
772
773 if (unlikely(!scheduler_running))
774 return;
775
78333cdd
PZ
776 /*
777 * Reset each runqueue's bandwidth settings
778 */
ec514c48 779 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
780 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
781
0986b11b
TG
782 raw_spin_lock(&rt_b->rt_runtime_lock);
783 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
784 rt_rq->rt_runtime = rt_b->rt_runtime;
785 rt_rq->rt_time = 0;
baf25731 786 rt_rq->rt_throttled = 0;
0986b11b
TG
787 raw_spin_unlock(&rt_rq->rt_runtime_lock);
788 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
789 }
790}
791
eff6549b
PZ
792static int balance_runtime(struct rt_rq *rt_rq)
793{
794 int more = 0;
795
4a6184ce
PZ
796 if (!sched_feat(RT_RUNTIME_SHARE))
797 return more;
798
eff6549b 799 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 800 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 801 more = do_balance_runtime(rt_rq);
0986b11b 802 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
803 }
804
805 return more;
806}
55e12e5e 807#else /* !CONFIG_SMP */
eff6549b
PZ
808static inline int balance_runtime(struct rt_rq *rt_rq)
809{
810 return 0;
811}
55e12e5e 812#endif /* CONFIG_SMP */
ac086bc2 813
eff6549b
PZ
814static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
815{
42c62a58 816 int i, idle = 1, throttled = 0;
c6c4927b 817 const struct cpumask *span;
eff6549b 818
eff6549b 819 span = sched_rt_period_mask();
e221d028
MG
820#ifdef CONFIG_RT_GROUP_SCHED
821 /*
822 * FIXME: isolated CPUs should really leave the root task group,
823 * whether they are isolcpus or were isolated via cpusets, lest
824 * the timer run on a CPU which does not service all runqueues,
825 * potentially leaving other CPUs indefinitely throttled. If
826 * isolation is really required, the user will turn the throttle
827 * off to kill the perturbations it causes anyway. Meanwhile,
828 * this maintains functionality for boot and/or troubleshooting.
829 */
830 if (rt_b == &root_task_group.rt_bandwidth)
831 span = cpu_online_mask;
832#endif
c6c4927b 833 for_each_cpu(i, span) {
eff6549b
PZ
834 int enqueue = 0;
835 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
836 struct rq *rq = rq_of_rt_rq(rt_rq);
837
05fa785c 838 raw_spin_lock(&rq->lock);
eff6549b
PZ
839 if (rt_rq->rt_time) {
840 u64 runtime;
841
0986b11b 842 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
843 if (rt_rq->rt_throttled)
844 balance_runtime(rt_rq);
845 runtime = rt_rq->rt_runtime;
846 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
847 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
848 rt_rq->rt_throttled = 0;
849 enqueue = 1;
61eadef6
MG
850
851 /*
9edfbfed
PZ
852 * When we're idle and a woken (rt) task is
853 * throttled check_preempt_curr() will set
854 * skip_update and the time between the wakeup
855 * and this unthrottle will get accounted as
856 * 'runtime'.
61eadef6
MG
857 */
858 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 859 rq_clock_skip_update(rq, false);
eff6549b
PZ
860 }
861 if (rt_rq->rt_time || rt_rq->rt_nr_running)
862 idle = 0;
0986b11b 863 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 864 } else if (rt_rq->rt_nr_running) {
6c3df255 865 idle = 0;
0c3b9168
BS
866 if (!rt_rq_throttled(rt_rq))
867 enqueue = 1;
868 }
42c62a58
PZ
869 if (rt_rq->rt_throttled)
870 throttled = 1;
eff6549b
PZ
871
872 if (enqueue)
873 sched_rt_rq_enqueue(rt_rq);
05fa785c 874 raw_spin_unlock(&rq->lock);
eff6549b
PZ
875 }
876
42c62a58
PZ
877 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
878 return 1;
879
eff6549b
PZ
880 return idle;
881}
ac086bc2 882
6f505b16
PZ
883static inline int rt_se_prio(struct sched_rt_entity *rt_se)
884{
052f1dc7 885#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
886 struct rt_rq *rt_rq = group_rt_rq(rt_se);
887
888 if (rt_rq)
e864c499 889 return rt_rq->highest_prio.curr;
6f505b16
PZ
890#endif
891
892 return rt_task_of(rt_se)->prio;
893}
894
9f0c1e56 895static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 896{
9f0c1e56 897 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 898
fa85ae24 899 if (rt_rq->rt_throttled)
23b0fdfc 900 return rt_rq_throttled(rt_rq);
fa85ae24 901
5b680fd6 902 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
903 return 0;
904
b79f3833
PZ
905 balance_runtime(rt_rq);
906 runtime = sched_rt_runtime(rt_rq);
907 if (runtime == RUNTIME_INF)
908 return 0;
ac086bc2 909
9f0c1e56 910 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
911 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
912
913 /*
914 * Don't actually throttle groups that have no runtime assigned
915 * but accrue some time due to boosting.
916 */
917 if (likely(rt_b->rt_runtime)) {
918 rt_rq->rt_throttled = 1;
c224815d 919 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
920 } else {
921 /*
922 * In case we did anyway, make it go away,
923 * replenishment is a joke, since it will replenish us
924 * with exactly 0 ns.
925 */
926 rt_rq->rt_time = 0;
927 }
928
23b0fdfc 929 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 930 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
931 return 1;
932 }
fa85ae24
PZ
933 }
934
935 return 0;
936}
937
bb44e5d1
IM
938/*
939 * Update the current task's runtime statistics. Skip current tasks that
940 * are not in our scheduling class.
941 */
a9957449 942static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
943{
944 struct task_struct *curr = rq->curr;
6f505b16 945 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
946 u64 delta_exec;
947
06c3bc65 948 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
949 return;
950
78becc27 951 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
952 if (unlikely((s64)delta_exec <= 0))
953 return;
6cfb0d5d 954
42c62a58
PZ
955 schedstat_set(curr->se.statistics.exec_max,
956 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
957
958 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
959 account_group_exec_runtime(curr, delta_exec);
960
78becc27 961 curr->se.exec_start = rq_clock_task(rq);
d842de87 962 cpuacct_charge(curr, delta_exec);
fa85ae24 963
e9e9250b
PZ
964 sched_rt_avg_update(rq, delta_exec);
965
0b148fa0
PZ
966 if (!rt_bandwidth_enabled())
967 return;
968
354d60c2 969 for_each_sched_rt_entity(rt_se) {
0b07939c 970 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 971
cc2991cf 972 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 973 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
974 rt_rq->rt_time += delta_exec;
975 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 976 resched_curr(rq);
0986b11b 977 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 978 }
354d60c2 979 }
bb44e5d1
IM
980}
981
f4ebcbc0
KT
982static void
983dequeue_top_rt_rq(struct rt_rq *rt_rq)
984{
985 struct rq *rq = rq_of_rt_rq(rt_rq);
986
987 BUG_ON(&rq->rt != rt_rq);
988
989 if (!rt_rq->rt_queued)
990 return;
991
992 BUG_ON(!rq->nr_running);
993
72465447 994 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
995 rt_rq->rt_queued = 0;
996}
997
998static void
999enqueue_top_rt_rq(struct rt_rq *rt_rq)
1000{
1001 struct rq *rq = rq_of_rt_rq(rt_rq);
1002
1003 BUG_ON(&rq->rt != rt_rq);
1004
1005 if (rt_rq->rt_queued)
1006 return;
1007 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1008 return;
1009
72465447 1010 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1011 rt_rq->rt_queued = 1;
1012}
1013
398a153b 1014#if defined CONFIG_SMP
e864c499 1015
398a153b
GH
1016static void
1017inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1018{
4d984277 1019 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1020
757dfcaa
KT
1021#ifdef CONFIG_RT_GROUP_SCHED
1022 /*
1023 * Change rq's cpupri only if rt_rq is the top queue.
1024 */
1025 if (&rq->rt != rt_rq)
1026 return;
1027#endif
5181f4a4
SR
1028 if (rq->online && prio < prev_prio)
1029 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1030}
73fe6aae 1031
398a153b
GH
1032static void
1033dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1034{
1035 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1036
757dfcaa
KT
1037#ifdef CONFIG_RT_GROUP_SCHED
1038 /*
1039 * Change rq's cpupri only if rt_rq is the top queue.
1040 */
1041 if (&rq->rt != rt_rq)
1042 return;
1043#endif
398a153b
GH
1044 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1045 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1046}
1047
398a153b
GH
1048#else /* CONFIG_SMP */
1049
6f505b16 1050static inline
398a153b
GH
1051void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1052static inline
1053void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1054
1055#endif /* CONFIG_SMP */
6e0534f2 1056
052f1dc7 1057#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1058static void
1059inc_rt_prio(struct rt_rq *rt_rq, int prio)
1060{
1061 int prev_prio = rt_rq->highest_prio.curr;
1062
1063 if (prio < prev_prio)
1064 rt_rq->highest_prio.curr = prio;
1065
1066 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1067}
1068
1069static void
1070dec_rt_prio(struct rt_rq *rt_rq, int prio)
1071{
1072 int prev_prio = rt_rq->highest_prio.curr;
1073
6f505b16 1074 if (rt_rq->rt_nr_running) {
764a9d6f 1075
398a153b 1076 WARN_ON(prio < prev_prio);
764a9d6f 1077
e864c499 1078 /*
398a153b
GH
1079 * This may have been our highest task, and therefore
1080 * we may have some recomputation to do
e864c499 1081 */
398a153b 1082 if (prio == prev_prio) {
e864c499
GH
1083 struct rt_prio_array *array = &rt_rq->active;
1084
1085 rt_rq->highest_prio.curr =
764a9d6f 1086 sched_find_first_bit(array->bitmap);
e864c499
GH
1087 }
1088
764a9d6f 1089 } else
e864c499 1090 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1091
398a153b
GH
1092 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1093}
1f11eb6a 1094
398a153b
GH
1095#else
1096
1097static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1098static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1099
1100#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1101
052f1dc7 1102#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1103
1104static void
1105inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1106{
1107 if (rt_se_boosted(rt_se))
1108 rt_rq->rt_nr_boosted++;
1109
1110 if (rt_rq->tg)
1111 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1112}
1113
1114static void
1115dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1116{
23b0fdfc
PZ
1117 if (rt_se_boosted(rt_se))
1118 rt_rq->rt_nr_boosted--;
1119
1120 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1121}
1122
1123#else /* CONFIG_RT_GROUP_SCHED */
1124
1125static void
1126inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127{
1128 start_rt_bandwidth(&def_rt_bandwidth);
1129}
1130
1131static inline
1132void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1133
1134#endif /* CONFIG_RT_GROUP_SCHED */
1135
22abdef3
KT
1136static inline
1137unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1138{
1139 struct rt_rq *group_rq = group_rt_rq(rt_se);
1140
1141 if (group_rq)
1142 return group_rq->rt_nr_running;
1143 else
1144 return 1;
1145}
1146
398a153b
GH
1147static inline
1148void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1149{
1150 int prio = rt_se_prio(rt_se);
1151
1152 WARN_ON(!rt_prio(prio));
22abdef3 1153 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
398a153b
GH
1154
1155 inc_rt_prio(rt_rq, prio);
1156 inc_rt_migration(rt_se, rt_rq);
1157 inc_rt_group(rt_se, rt_rq);
1158}
1159
1160static inline
1161void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1162{
1163 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1164 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1165 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
398a153b
GH
1166
1167 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1168 dec_rt_migration(rt_se, rt_rq);
1169 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1170}
1171
37dad3fc 1172static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1173{
6f505b16
PZ
1174 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1175 struct rt_prio_array *array = &rt_rq->active;
1176 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1177 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1178
ad2a3f13
PZ
1179 /*
1180 * Don't enqueue the group if its throttled, or when empty.
1181 * The latter is a consequence of the former when a child group
1182 * get throttled and the current group doesn't have any other
1183 * active members.
1184 */
1185 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1186 return;
63489e45 1187
37dad3fc
TG
1188 if (head)
1189 list_add(&rt_se->run_list, queue);
1190 else
1191 list_add_tail(&rt_se->run_list, queue);
6f505b16 1192 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1193
6f505b16
PZ
1194 inc_rt_tasks(rt_se, rt_rq);
1195}
1196
ad2a3f13 1197static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1198{
1199 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1200 struct rt_prio_array *array = &rt_rq->active;
1201
1202 list_del_init(&rt_se->run_list);
1203 if (list_empty(array->queue + rt_se_prio(rt_se)))
1204 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1205
1206 dec_rt_tasks(rt_se, rt_rq);
1207}
1208
1209/*
1210 * Because the prio of an upper entry depends on the lower
1211 * entries, we must remove entries top - down.
6f505b16 1212 */
ad2a3f13 1213static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1214{
ad2a3f13 1215 struct sched_rt_entity *back = NULL;
6f505b16 1216
58d6c2d7
PZ
1217 for_each_sched_rt_entity(rt_se) {
1218 rt_se->back = back;
1219 back = rt_se;
1220 }
1221
f4ebcbc0
KT
1222 dequeue_top_rt_rq(rt_rq_of_se(back));
1223
58d6c2d7
PZ
1224 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1225 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1226 __dequeue_rt_entity(rt_se);
1227 }
1228}
1229
37dad3fc 1230static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13 1231{
f4ebcbc0
KT
1232 struct rq *rq = rq_of_rt_se(rt_se);
1233
ad2a3f13
PZ
1234 dequeue_rt_stack(rt_se);
1235 for_each_sched_rt_entity(rt_se)
37dad3fc 1236 __enqueue_rt_entity(rt_se, head);
f4ebcbc0 1237 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1238}
1239
1240static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1241{
f4ebcbc0
KT
1242 struct rq *rq = rq_of_rt_se(rt_se);
1243
ad2a3f13
PZ
1244 dequeue_rt_stack(rt_se);
1245
1246 for_each_sched_rt_entity(rt_se) {
1247 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1248
1249 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1250 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1251 }
f4ebcbc0 1252 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1253}
1254
1255/*
1256 * Adding/removing a task to/from a priority array:
1257 */
ea87bb78 1258static void
371fd7e7 1259enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1260{
1261 struct sched_rt_entity *rt_se = &p->rt;
1262
371fd7e7 1263 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1264 rt_se->timeout = 0;
1265
371fd7e7 1266 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1267
29baa747 1268 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1269 enqueue_pushable_task(rq, p);
6f505b16
PZ
1270}
1271
371fd7e7 1272static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1273{
6f505b16 1274 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1275
f1e14ef6 1276 update_curr_rt(rq);
ad2a3f13 1277 dequeue_rt_entity(rt_se);
c09595f6 1278
917b627d 1279 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1280}
1281
1282/*
60686317
RW
1283 * Put task to the head or the end of the run list without the overhead of
1284 * dequeue followed by enqueue.
bb44e5d1 1285 */
7ebefa8c
DA
1286static void
1287requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1288{
1cdad715 1289 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1290 struct rt_prio_array *array = &rt_rq->active;
1291 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1292
1293 if (head)
1294 list_move(&rt_se->run_list, queue);
1295 else
1296 list_move_tail(&rt_se->run_list, queue);
1cdad715 1297 }
6f505b16
PZ
1298}
1299
7ebefa8c 1300static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1301{
6f505b16
PZ
1302 struct sched_rt_entity *rt_se = &p->rt;
1303 struct rt_rq *rt_rq;
bb44e5d1 1304
6f505b16
PZ
1305 for_each_sched_rt_entity(rt_se) {
1306 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1307 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1308 }
bb44e5d1
IM
1309}
1310
6f505b16 1311static void yield_task_rt(struct rq *rq)
bb44e5d1 1312{
7ebefa8c 1313 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1314}
1315
e7693a36 1316#ifdef CONFIG_SMP
318e0893
GH
1317static int find_lowest_rq(struct task_struct *task);
1318
0017d735 1319static int
ac66f547 1320select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1321{
7608dec2
PZ
1322 struct task_struct *curr;
1323 struct rq *rq;
c37495fd
SR
1324
1325 /* For anything but wake ups, just return the task_cpu */
1326 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1327 goto out;
1328
7608dec2
PZ
1329 rq = cpu_rq(cpu);
1330
1331 rcu_read_lock();
316c1608 1332 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1333
318e0893 1334 /*
7608dec2 1335 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1336 * try to see if we can wake this RT task up on another
1337 * runqueue. Otherwise simply start this RT task
1338 * on its current runqueue.
1339 *
43fa5460
SR
1340 * We want to avoid overloading runqueues. If the woken
1341 * task is a higher priority, then it will stay on this CPU
1342 * and the lower prio task should be moved to another CPU.
1343 * Even though this will probably make the lower prio task
1344 * lose its cache, we do not want to bounce a higher task
1345 * around just because it gave up its CPU, perhaps for a
1346 * lock?
1347 *
1348 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1349 *
1350 * Otherwise, just let it ride on the affined RQ and the
1351 * post-schedule router will push the preempted task away
1352 *
1353 * This test is optimistic, if we get it wrong the load-balancer
1354 * will have to sort it out.
318e0893 1355 */
7608dec2 1356 if (curr && unlikely(rt_task(curr)) &&
29baa747 1357 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1358 curr->prio <= p->prio)) {
7608dec2 1359 int target = find_lowest_rq(p);
318e0893 1360
80e3d87b
TC
1361 /*
1362 * Don't bother moving it if the destination CPU is
1363 * not running a lower priority task.
1364 */
1365 if (target != -1 &&
1366 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1367 cpu = target;
318e0893 1368 }
7608dec2 1369 rcu_read_unlock();
318e0893 1370
c37495fd 1371out:
7608dec2 1372 return cpu;
e7693a36 1373}
7ebefa8c
DA
1374
1375static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1376{
308a623a
WL
1377 /*
1378 * Current can't be migrated, useless to reschedule,
1379 * let's hope p can move out.
1380 */
1381 if (rq->curr->nr_cpus_allowed == 1 ||
1382 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1383 return;
1384
308a623a
WL
1385 /*
1386 * p is migratable, so let's not schedule it and
1387 * see if it is pushed or pulled somewhere else.
1388 */
29baa747 1389 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1390 && cpupri_find(&rq->rd->cpupri, p, NULL))
1391 return;
24600ce8 1392
7ebefa8c
DA
1393 /*
1394 * There appears to be other cpus that can accept
1395 * current and none to run 'p', so lets reschedule
1396 * to try and push current away:
1397 */
1398 requeue_task_rt(rq, p, 1);
8875125e 1399 resched_curr(rq);
7ebefa8c
DA
1400}
1401
e7693a36
GH
1402#endif /* CONFIG_SMP */
1403
bb44e5d1
IM
1404/*
1405 * Preempt the current task with a newly woken task if needed:
1406 */
7d478721 1407static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1408{
45c01e82 1409 if (p->prio < rq->curr->prio) {
8875125e 1410 resched_curr(rq);
45c01e82
GH
1411 return;
1412 }
1413
1414#ifdef CONFIG_SMP
1415 /*
1416 * If:
1417 *
1418 * - the newly woken task is of equal priority to the current task
1419 * - the newly woken task is non-migratable while current is migratable
1420 * - current will be preempted on the next reschedule
1421 *
1422 * we should check to see if current can readily move to a different
1423 * cpu. If so, we will reschedule to allow the push logic to try
1424 * to move current somewhere else, making room for our non-migratable
1425 * task.
1426 */
8dd0de8b 1427 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1428 check_preempt_equal_prio(rq, p);
45c01e82 1429#endif
bb44e5d1
IM
1430}
1431
6f505b16
PZ
1432static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1433 struct rt_rq *rt_rq)
bb44e5d1 1434{
6f505b16
PZ
1435 struct rt_prio_array *array = &rt_rq->active;
1436 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1437 struct list_head *queue;
1438 int idx;
1439
1440 idx = sched_find_first_bit(array->bitmap);
6f505b16 1441 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1442
1443 queue = array->queue + idx;
6f505b16 1444 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1445
6f505b16
PZ
1446 return next;
1447}
bb44e5d1 1448
917b627d 1449static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1450{
1451 struct sched_rt_entity *rt_se;
1452 struct task_struct *p;
606dba2e 1453 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1454
1455 do {
1456 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1457 BUG_ON(!rt_se);
6f505b16
PZ
1458 rt_rq = group_rt_rq(rt_se);
1459 } while (rt_rq);
1460
1461 p = rt_task_of(rt_se);
78becc27 1462 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1463
1464 return p;
1465}
1466
606dba2e
PZ
1467static struct task_struct *
1468pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1469{
606dba2e
PZ
1470 struct task_struct *p;
1471 struct rt_rq *rt_rq = &rq->rt;
1472
37e117c0 1473 if (need_pull_rt_task(rq, prev)) {
38033c37 1474 pull_rt_task(rq);
37e117c0
PZ
1475 /*
1476 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1477 * means a dl or stop task can slip in, in which case we need
1478 * to re-start task selection.
37e117c0 1479 */
da0c1e65 1480 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1481 rq->dl.dl_nr_running))
37e117c0
PZ
1482 return RETRY_TASK;
1483 }
38033c37 1484
734ff2a7
KT
1485 /*
1486 * We may dequeue prev's rt_rq in put_prev_task().
1487 * So, we update time before rt_nr_running check.
1488 */
1489 if (prev->sched_class == &rt_sched_class)
1490 update_curr_rt(rq);
1491
f4ebcbc0 1492 if (!rt_rq->rt_queued)
606dba2e
PZ
1493 return NULL;
1494
3f1d2a31 1495 put_prev_task(rq, prev);
606dba2e
PZ
1496
1497 p = _pick_next_task_rt(rq);
917b627d
GH
1498
1499 /* The running task is never eligible for pushing */
f3f1768f 1500 dequeue_pushable_task(rq, p);
917b627d 1501
e3fca9e7 1502 queue_push_tasks(rq);
3f029d3c 1503
6f505b16 1504 return p;
bb44e5d1
IM
1505}
1506
31ee529c 1507static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1508{
f1e14ef6 1509 update_curr_rt(rq);
917b627d
GH
1510
1511 /*
1512 * The previous task needs to be made eligible for pushing
1513 * if it is still active
1514 */
29baa747 1515 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1516 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1517}
1518
681f3e68 1519#ifdef CONFIG_SMP
6f505b16 1520
e8fa1362
SR
1521/* Only try algorithms three times */
1522#define RT_MAX_TRIES 3
1523
f65eda4f
SR
1524static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1525{
1526 if (!task_running(rq, p) &&
60334caf 1527 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1528 return 1;
1529 return 0;
1530}
1531
e23ee747
KT
1532/*
1533 * Return the highest pushable rq's task, which is suitable to be executed
1534 * on the cpu, NULL otherwise
1535 */
1536static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1537{
e23ee747
KT
1538 struct plist_head *head = &rq->rt.pushable_tasks;
1539 struct task_struct *p;
3d07467b 1540
e23ee747
KT
1541 if (!has_pushable_tasks(rq))
1542 return NULL;
3d07467b 1543
e23ee747
KT
1544 plist_for_each_entry(p, head, pushable_tasks) {
1545 if (pick_rt_task(rq, p, cpu))
1546 return p;
f65eda4f
SR
1547 }
1548
e23ee747 1549 return NULL;
e8fa1362
SR
1550}
1551
0e3900e6 1552static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1553
6e1254d2
GH
1554static int find_lowest_rq(struct task_struct *task)
1555{
1556 struct sched_domain *sd;
4ba29684 1557 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1558 int this_cpu = smp_processor_id();
1559 int cpu = task_cpu(task);
06f90dbd 1560
0da938c4
SR
1561 /* Make sure the mask is initialized first */
1562 if (unlikely(!lowest_mask))
1563 return -1;
1564
29baa747 1565 if (task->nr_cpus_allowed == 1)
6e0534f2 1566 return -1; /* No other targets possible */
6e1254d2 1567
6e0534f2
GH
1568 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1569 return -1; /* No targets found */
6e1254d2
GH
1570
1571 /*
1572 * At this point we have built a mask of cpus representing the
1573 * lowest priority tasks in the system. Now we want to elect
1574 * the best one based on our affinity and topology.
1575 *
1576 * We prioritize the last cpu that the task executed on since
1577 * it is most likely cache-hot in that location.
1578 */
96f874e2 1579 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1580 return cpu;
1581
1582 /*
1583 * Otherwise, we consult the sched_domains span maps to figure
1584 * out which cpu is logically closest to our hot cache data.
1585 */
e2c88063
RR
1586 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1587 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1588
cd4ae6ad 1589 rcu_read_lock();
e2c88063
RR
1590 for_each_domain(cpu, sd) {
1591 if (sd->flags & SD_WAKE_AFFINE) {
1592 int best_cpu;
6e1254d2 1593
e2c88063
RR
1594 /*
1595 * "this_cpu" is cheaper to preempt than a
1596 * remote processor.
1597 */
1598 if (this_cpu != -1 &&
cd4ae6ad
XF
1599 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1600 rcu_read_unlock();
e2c88063 1601 return this_cpu;
cd4ae6ad 1602 }
e2c88063
RR
1603
1604 best_cpu = cpumask_first_and(lowest_mask,
1605 sched_domain_span(sd));
cd4ae6ad
XF
1606 if (best_cpu < nr_cpu_ids) {
1607 rcu_read_unlock();
e2c88063 1608 return best_cpu;
cd4ae6ad 1609 }
6e1254d2
GH
1610 }
1611 }
cd4ae6ad 1612 rcu_read_unlock();
6e1254d2
GH
1613
1614 /*
1615 * And finally, if there were no matches within the domains
1616 * just give the caller *something* to work with from the compatible
1617 * locations.
1618 */
e2c88063
RR
1619 if (this_cpu != -1)
1620 return this_cpu;
1621
1622 cpu = cpumask_any(lowest_mask);
1623 if (cpu < nr_cpu_ids)
1624 return cpu;
1625 return -1;
07b4032c
GH
1626}
1627
1628/* Will lock the rq it finds */
4df64c0b 1629static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1630{
1631 struct rq *lowest_rq = NULL;
07b4032c 1632 int tries;
4df64c0b 1633 int cpu;
e8fa1362 1634
07b4032c
GH
1635 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1636 cpu = find_lowest_rq(task);
1637
2de0b463 1638 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1639 break;
1640
07b4032c
GH
1641 lowest_rq = cpu_rq(cpu);
1642
80e3d87b
TC
1643 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1644 /*
1645 * Target rq has tasks of equal or higher priority,
1646 * retrying does not release any lock and is unlikely
1647 * to yield a different result.
1648 */
1649 lowest_rq = NULL;
1650 break;
1651 }
1652
e8fa1362 1653 /* if the prio of this runqueue changed, try again */
07b4032c 1654 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1655 /*
1656 * We had to unlock the run queue. In
1657 * the mean time, task could have
1658 * migrated already or had its affinity changed.
1659 * Also make sure that it wasn't scheduled on its rq.
1660 */
07b4032c 1661 if (unlikely(task_rq(task) != rq ||
96f874e2 1662 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1663 tsk_cpus_allowed(task)) ||
07b4032c 1664 task_running(rq, task) ||
da0c1e65 1665 !task_on_rq_queued(task))) {
4df64c0b 1666
7f1b4393 1667 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1668 lowest_rq = NULL;
1669 break;
1670 }
1671 }
1672
1673 /* If this rq is still suitable use it. */
e864c499 1674 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1675 break;
1676
1677 /* try again */
1b12bbc7 1678 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1679 lowest_rq = NULL;
1680 }
1681
1682 return lowest_rq;
1683}
1684
917b627d
GH
1685static struct task_struct *pick_next_pushable_task(struct rq *rq)
1686{
1687 struct task_struct *p;
1688
1689 if (!has_pushable_tasks(rq))
1690 return NULL;
1691
1692 p = plist_first_entry(&rq->rt.pushable_tasks,
1693 struct task_struct, pushable_tasks);
1694
1695 BUG_ON(rq->cpu != task_cpu(p));
1696 BUG_ON(task_current(rq, p));
29baa747 1697 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1698
da0c1e65 1699 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1700 BUG_ON(!rt_task(p));
1701
1702 return p;
1703}
1704
e8fa1362
SR
1705/*
1706 * If the current CPU has more than one RT task, see if the non
1707 * running task can migrate over to a CPU that is running a task
1708 * of lesser priority.
1709 */
697f0a48 1710static int push_rt_task(struct rq *rq)
e8fa1362
SR
1711{
1712 struct task_struct *next_task;
1713 struct rq *lowest_rq;
311e800e 1714 int ret = 0;
e8fa1362 1715
a22d7fc1
GH
1716 if (!rq->rt.overloaded)
1717 return 0;
1718
917b627d 1719 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1720 if (!next_task)
1721 return 0;
1722
49246274 1723retry:
697f0a48 1724 if (unlikely(next_task == rq->curr)) {
f65eda4f 1725 WARN_ON(1);
e8fa1362 1726 return 0;
f65eda4f 1727 }
e8fa1362
SR
1728
1729 /*
1730 * It's possible that the next_task slipped in of
1731 * higher priority than current. If that's the case
1732 * just reschedule current.
1733 */
697f0a48 1734 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1735 resched_curr(rq);
e8fa1362
SR
1736 return 0;
1737 }
1738
697f0a48 1739 /* We might release rq lock */
e8fa1362
SR
1740 get_task_struct(next_task);
1741
1742 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1743 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1744 if (!lowest_rq) {
1745 struct task_struct *task;
1746 /*
311e800e 1747 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1748 * so it is possible that next_task has migrated.
1749 *
1750 * We need to make sure that the task is still on the same
1751 * run-queue and is also still the next task eligible for
1752 * pushing.
e8fa1362 1753 */
917b627d 1754 task = pick_next_pushable_task(rq);
1563513d
GH
1755 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1756 /*
311e800e
HD
1757 * The task hasn't migrated, and is still the next
1758 * eligible task, but we failed to find a run-queue
1759 * to push it to. Do not retry in this case, since
1760 * other cpus will pull from us when ready.
1563513d 1761 */
1563513d 1762 goto out;
e8fa1362 1763 }
917b627d 1764
1563513d
GH
1765 if (!task)
1766 /* No more tasks, just exit */
1767 goto out;
1768
917b627d 1769 /*
1563513d 1770 * Something has shifted, try again.
917b627d 1771 */
1563513d
GH
1772 put_task_struct(next_task);
1773 next_task = task;
1774 goto retry;
e8fa1362
SR
1775 }
1776
697f0a48 1777 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1778 set_task_cpu(next_task, lowest_rq->cpu);
1779 activate_task(lowest_rq, next_task, 0);
311e800e 1780 ret = 1;
e8fa1362 1781
8875125e 1782 resched_curr(lowest_rq);
e8fa1362 1783
1b12bbc7 1784 double_unlock_balance(rq, lowest_rq);
e8fa1362 1785
e8fa1362
SR
1786out:
1787 put_task_struct(next_task);
1788
311e800e 1789 return ret;
e8fa1362
SR
1790}
1791
e8fa1362
SR
1792static void push_rt_tasks(struct rq *rq)
1793{
1794 /* push_rt_task will return true if it moved an RT */
1795 while (push_rt_task(rq))
1796 ;
1797}
1798
b6366f04
SR
1799#ifdef HAVE_RT_PUSH_IPI
1800/*
1801 * The search for the next cpu always starts at rq->cpu and ends
1802 * when we reach rq->cpu again. It will never return rq->cpu.
1803 * This returns the next cpu to check, or nr_cpu_ids if the loop
1804 * is complete.
1805 *
1806 * rq->rt.push_cpu holds the last cpu returned by this function,
1807 * or if this is the first instance, it must hold rq->cpu.
1808 */
1809static int rto_next_cpu(struct rq *rq)
1810{
1811 int prev_cpu = rq->rt.push_cpu;
1812 int cpu;
1813
1814 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1815
1816 /*
1817 * If the previous cpu is less than the rq's CPU, then it already
1818 * passed the end of the mask, and has started from the beginning.
1819 * We end if the next CPU is greater or equal to rq's CPU.
1820 */
1821 if (prev_cpu < rq->cpu) {
1822 if (cpu >= rq->cpu)
1823 return nr_cpu_ids;
1824
1825 } else if (cpu >= nr_cpu_ids) {
1826 /*
1827 * We passed the end of the mask, start at the beginning.
1828 * If the result is greater or equal to the rq's CPU, then
1829 * the loop is finished.
1830 */
1831 cpu = cpumask_first(rq->rd->rto_mask);
1832 if (cpu >= rq->cpu)
1833 return nr_cpu_ids;
1834 }
1835 rq->rt.push_cpu = cpu;
1836
1837 /* Return cpu to let the caller know if the loop is finished or not */
1838 return cpu;
1839}
1840
1841static int find_next_push_cpu(struct rq *rq)
1842{
1843 struct rq *next_rq;
1844 int cpu;
1845
1846 while (1) {
1847 cpu = rto_next_cpu(rq);
1848 if (cpu >= nr_cpu_ids)
1849 break;
1850 next_rq = cpu_rq(cpu);
1851
1852 /* Make sure the next rq can push to this rq */
1853 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1854 break;
1855 }
1856
1857 return cpu;
1858}
1859
1860#define RT_PUSH_IPI_EXECUTING 1
1861#define RT_PUSH_IPI_RESTART 2
1862
1863static void tell_cpu_to_push(struct rq *rq)
1864{
1865 int cpu;
1866
1867 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1868 raw_spin_lock(&rq->rt.push_lock);
1869 /* Make sure it's still executing */
1870 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1871 /*
1872 * Tell the IPI to restart the loop as things have
1873 * changed since it started.
1874 */
1875 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1876 raw_spin_unlock(&rq->rt.push_lock);
1877 return;
1878 }
1879 raw_spin_unlock(&rq->rt.push_lock);
1880 }
1881
1882 /* When here, there's no IPI going around */
1883
1884 rq->rt.push_cpu = rq->cpu;
1885 cpu = find_next_push_cpu(rq);
1886 if (cpu >= nr_cpu_ids)
1887 return;
1888
1889 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1890
1891 irq_work_queue_on(&rq->rt.push_work, cpu);
1892}
1893
1894/* Called from hardirq context */
1895static void try_to_push_tasks(void *arg)
1896{
1897 struct rt_rq *rt_rq = arg;
1898 struct rq *rq, *src_rq;
1899 int this_cpu;
1900 int cpu;
1901
1902 this_cpu = rt_rq->push_cpu;
1903
1904 /* Paranoid check */
1905 BUG_ON(this_cpu != smp_processor_id());
1906
1907 rq = cpu_rq(this_cpu);
1908 src_rq = rq_of_rt_rq(rt_rq);
1909
1910again:
1911 if (has_pushable_tasks(rq)) {
1912 raw_spin_lock(&rq->lock);
1913 push_rt_task(rq);
1914 raw_spin_unlock(&rq->lock);
1915 }
1916
1917 /* Pass the IPI to the next rt overloaded queue */
1918 raw_spin_lock(&rt_rq->push_lock);
1919 /*
1920 * If the source queue changed since the IPI went out,
1921 * we need to restart the search from that CPU again.
1922 */
1923 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1924 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1925 rt_rq->push_cpu = src_rq->cpu;
1926 }
1927
1928 cpu = find_next_push_cpu(src_rq);
1929
1930 if (cpu >= nr_cpu_ids)
1931 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1932 raw_spin_unlock(&rt_rq->push_lock);
1933
1934 if (cpu >= nr_cpu_ids)
1935 return;
1936
1937 /*
1938 * It is possible that a restart caused this CPU to be
1939 * chosen again. Don't bother with an IPI, just see if we
1940 * have more to push.
1941 */
1942 if (unlikely(cpu == rq->cpu))
1943 goto again;
1944
1945 /* Try the next RT overloaded CPU */
1946 irq_work_queue_on(&rt_rq->push_work, cpu);
1947}
1948
1949static void push_irq_work_func(struct irq_work *work)
1950{
1951 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1952
1953 try_to_push_tasks(rt_rq);
1954}
1955#endif /* HAVE_RT_PUSH_IPI */
1956
8046d680 1957static void pull_rt_task(struct rq *this_rq)
f65eda4f 1958{
8046d680
PZ
1959 int this_cpu = this_rq->cpu, cpu;
1960 bool resched = false;
a8728944 1961 struct task_struct *p;
f65eda4f 1962 struct rq *src_rq;
f65eda4f 1963
637f5085 1964 if (likely(!rt_overloaded(this_rq)))
8046d680 1965 return;
f65eda4f 1966
7c3f2ab7
PZ
1967 /*
1968 * Match the barrier from rt_set_overloaded; this guarantees that if we
1969 * see overloaded we must also see the rto_mask bit.
1970 */
1971 smp_rmb();
1972
b6366f04
SR
1973#ifdef HAVE_RT_PUSH_IPI
1974 if (sched_feat(RT_PUSH_IPI)) {
1975 tell_cpu_to_push(this_rq);
8046d680 1976 return;
b6366f04
SR
1977 }
1978#endif
1979
c6c4927b 1980 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1981 if (this_cpu == cpu)
1982 continue;
1983
1984 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1985
1986 /*
1987 * Don't bother taking the src_rq->lock if the next highest
1988 * task is known to be lower-priority than our current task.
1989 * This may look racy, but if this value is about to go
1990 * logically higher, the src_rq will push this task away.
1991 * And if its going logically lower, we do not care
1992 */
1993 if (src_rq->rt.highest_prio.next >=
1994 this_rq->rt.highest_prio.curr)
1995 continue;
1996
f65eda4f
SR
1997 /*
1998 * We can potentially drop this_rq's lock in
1999 * double_lock_balance, and another CPU could
a8728944 2000 * alter this_rq
f65eda4f 2001 */
a8728944 2002 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2003
2004 /*
e23ee747
KT
2005 * We can pull only a task, which is pushable
2006 * on its rq, and no others.
f65eda4f 2007 */
e23ee747 2008 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2009
2010 /*
2011 * Do we have an RT task that preempts
2012 * the to-be-scheduled task?
2013 */
a8728944 2014 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2015 WARN_ON(p == src_rq->curr);
da0c1e65 2016 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2017
2018 /*
2019 * There's a chance that p is higher in priority
2020 * than what's currently running on its cpu.
2021 * This is just that p is wakeing up and hasn't
2022 * had a chance to schedule. We only pull
2023 * p if it is lower in priority than the
a8728944 2024 * current task on the run queue
f65eda4f 2025 */
a8728944 2026 if (p->prio < src_rq->curr->prio)
614ee1f6 2027 goto skip;
f65eda4f 2028
8046d680 2029 resched = true;
f65eda4f
SR
2030
2031 deactivate_task(src_rq, p, 0);
2032 set_task_cpu(p, this_cpu);
2033 activate_task(this_rq, p, 0);
2034 /*
2035 * We continue with the search, just in
2036 * case there's an even higher prio task
25985edc 2037 * in another runqueue. (low likelihood
f65eda4f 2038 * but possible)
f65eda4f 2039 */
f65eda4f 2040 }
49246274 2041skip:
1b12bbc7 2042 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2043 }
2044
8046d680
PZ
2045 if (resched)
2046 resched_curr(this_rq);
f65eda4f
SR
2047}
2048
8ae121ac
GH
2049/*
2050 * If we are not running and we are not going to reschedule soon, we should
2051 * try to push tasks away now
2052 */
efbbd05a 2053static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2054{
9a897c5a 2055 if (!task_running(rq, p) &&
8ae121ac 2056 !test_tsk_need_resched(rq->curr) &&
917b627d 2057 has_pushable_tasks(rq) &&
29baa747 2058 p->nr_cpus_allowed > 1 &&
1baca4ce 2059 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 2060 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2061 rq->curr->prio <= p->prio))
4642dafd
SR
2062 push_rt_tasks(rq);
2063}
2064
cd8ba7cd 2065static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 2066 const struct cpumask *new_mask)
73fe6aae 2067{
8d3d5ada
KT
2068 struct rq *rq;
2069 int weight;
73fe6aae
GH
2070
2071 BUG_ON(!rt_task(p));
2072
da0c1e65 2073 if (!task_on_rq_queued(p))
8d3d5ada 2074 return;
917b627d 2075
8d3d5ada 2076 weight = cpumask_weight(new_mask);
917b627d 2077
8d3d5ada
KT
2078 /*
2079 * Only update if the process changes its state from whether it
2080 * can migrate or not.
2081 */
29baa747 2082 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 2083 return;
917b627d 2084
8d3d5ada 2085 rq = task_rq(p);
73fe6aae 2086
8d3d5ada
KT
2087 /*
2088 * The process used to be able to migrate OR it can now migrate
2089 */
2090 if (weight <= 1) {
2091 if (!task_current(rq, p))
2092 dequeue_pushable_task(rq, p);
2093 BUG_ON(!rq->rt.rt_nr_migratory);
2094 rq->rt.rt_nr_migratory--;
2095 } else {
2096 if (!task_current(rq, p))
2097 enqueue_pushable_task(rq, p);
2098 rq->rt.rt_nr_migratory++;
73fe6aae 2099 }
8d3d5ada
KT
2100
2101 update_rt_migration(&rq->rt);
73fe6aae 2102}
deeeccd4 2103
bdd7c81b 2104/* Assumes rq->lock is held */
1f11eb6a 2105static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2106{
2107 if (rq->rt.overloaded)
2108 rt_set_overload(rq);
6e0534f2 2109
7def2be1
PZ
2110 __enable_runtime(rq);
2111
e864c499 2112 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2113}
2114
2115/* Assumes rq->lock is held */
1f11eb6a 2116static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2117{
2118 if (rq->rt.overloaded)
2119 rt_clear_overload(rq);
6e0534f2 2120
7def2be1
PZ
2121 __disable_runtime(rq);
2122
6e0534f2 2123 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2124}
cb469845
SR
2125
2126/*
2127 * When switch from the rt queue, we bring ourselves to a position
2128 * that we might want to pull RT tasks from other runqueues.
2129 */
da7a735e 2130static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2131{
2132 /*
2133 * If there are other RT tasks then we will reschedule
2134 * and the scheduling of the other RT tasks will handle
2135 * the balancing. But if we are the last RT task
2136 * we may need to handle the pulling of RT tasks
2137 * now.
2138 */
da0c1e65 2139 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2140 return;
2141
8046d680 2142 pull_rt_task(rq);
cb469845 2143}
3d8cbdf8 2144
11c785b7 2145void __init init_sched_rt_class(void)
3d8cbdf8
RR
2146{
2147 unsigned int i;
2148
029632fb 2149 for_each_possible_cpu(i) {
eaa95840 2150 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2151 GFP_KERNEL, cpu_to_node(i));
029632fb 2152 }
3d8cbdf8 2153}
cb469845
SR
2154#endif /* CONFIG_SMP */
2155
2156/*
2157 * When switching a task to RT, we may overload the runqueue
2158 * with RT tasks. In this case we try to push them off to
2159 * other runqueues.
2160 */
da7a735e 2161static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2162{
2163 int check_resched = 1;
2164
2165 /*
2166 * If we are already running, then there's nothing
2167 * that needs to be done. But if we are not running
2168 * we may need to preempt the current running task.
2169 * If that current running task is also an RT task
2170 * then see if we can move to another run queue.
2171 */
da0c1e65 2172 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2173#ifdef CONFIG_SMP
10447917 2174 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
cb469845 2175 /* Don't resched if we changed runqueues */
10447917 2176 push_rt_task(rq) && rq != task_rq(p))
cb469845
SR
2177 check_resched = 0;
2178#endif /* CONFIG_SMP */
2179 if (check_resched && p->prio < rq->curr->prio)
8875125e 2180 resched_curr(rq);
cb469845
SR
2181 }
2182}
2183
2184/*
2185 * Priority of the task has changed. This may cause
2186 * us to initiate a push or pull.
2187 */
da7a735e
PZ
2188static void
2189prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2190{
da0c1e65 2191 if (!task_on_rq_queued(p))
da7a735e
PZ
2192 return;
2193
2194 if (rq->curr == p) {
cb469845
SR
2195#ifdef CONFIG_SMP
2196 /*
2197 * If our priority decreases while running, we
2198 * may need to pull tasks to this runqueue.
2199 */
2200 if (oldprio < p->prio)
2201 pull_rt_task(rq);
2202 /*
2203 * If there's a higher priority task waiting to run
6fa46fa5
SR
2204 * then reschedule. Note, the above pull_rt_task
2205 * can release the rq lock and p could migrate.
2206 * Only reschedule if p is still on the same runqueue.
cb469845 2207 */
e864c499 2208 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
8875125e 2209 resched_curr(rq);
cb469845
SR
2210#else
2211 /* For UP simply resched on drop of prio */
2212 if (oldprio < p->prio)
8875125e 2213 resched_curr(rq);
e8fa1362 2214#endif /* CONFIG_SMP */
cb469845
SR
2215 } else {
2216 /*
2217 * This task is not running, but if it is
2218 * greater than the current running task
2219 * then reschedule.
2220 */
2221 if (p->prio < rq->curr->prio)
8875125e 2222 resched_curr(rq);
cb469845
SR
2223 }
2224}
2225
78f2c7db
PZ
2226static void watchdog(struct rq *rq, struct task_struct *p)
2227{
2228 unsigned long soft, hard;
2229
78d7d407
JS
2230 /* max may change after cur was read, this will be fixed next tick */
2231 soft = task_rlimit(p, RLIMIT_RTTIME);
2232 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2233
2234 if (soft != RLIM_INFINITY) {
2235 unsigned long next;
2236
57d2aa00
YX
2237 if (p->rt.watchdog_stamp != jiffies) {
2238 p->rt.timeout++;
2239 p->rt.watchdog_stamp = jiffies;
2240 }
2241
78f2c7db 2242 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2243 if (p->rt.timeout > next)
f06febc9 2244 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2245 }
2246}
bb44e5d1 2247
8f4d37ec 2248static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2249{
454c7999
CC
2250 struct sched_rt_entity *rt_se = &p->rt;
2251
67e2be02
PZ
2252 update_curr_rt(rq);
2253
78f2c7db
PZ
2254 watchdog(rq, p);
2255
bb44e5d1
IM
2256 /*
2257 * RR tasks need a special form of timeslice management.
2258 * FIFO tasks have no timeslices.
2259 */
2260 if (p->policy != SCHED_RR)
2261 return;
2262
fa717060 2263 if (--p->rt.time_slice)
bb44e5d1
IM
2264 return;
2265
ce0dbbbb 2266 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2267
98fbc798 2268 /*
e9aa39bb
LB
2269 * Requeue to the end of queue if we (and all of our ancestors) are not
2270 * the only element on the queue
98fbc798 2271 */
454c7999
CC
2272 for_each_sched_rt_entity(rt_se) {
2273 if (rt_se->run_list.prev != rt_se->run_list.next) {
2274 requeue_task_rt(rq, p, 0);
8aa6f0eb 2275 resched_curr(rq);
454c7999
CC
2276 return;
2277 }
98fbc798 2278 }
bb44e5d1
IM
2279}
2280
83b699ed
SV
2281static void set_curr_task_rt(struct rq *rq)
2282{
2283 struct task_struct *p = rq->curr;
2284
78becc27 2285 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2286
2287 /* The running task is never eligible for pushing */
2288 dequeue_pushable_task(rq, p);
83b699ed
SV
2289}
2290
6d686f45 2291static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2292{
2293 /*
2294 * Time slice is 0 for SCHED_FIFO tasks
2295 */
2296 if (task->policy == SCHED_RR)
ce0dbbbb 2297 return sched_rr_timeslice;
0d721cea
PW
2298 else
2299 return 0;
2300}
2301
029632fb 2302const struct sched_class rt_sched_class = {
5522d5d5 2303 .next = &fair_sched_class,
bb44e5d1
IM
2304 .enqueue_task = enqueue_task_rt,
2305 .dequeue_task = dequeue_task_rt,
2306 .yield_task = yield_task_rt,
2307
2308 .check_preempt_curr = check_preempt_curr_rt,
2309
2310 .pick_next_task = pick_next_task_rt,
2311 .put_prev_task = put_prev_task_rt,
2312
681f3e68 2313#ifdef CONFIG_SMP
4ce72a2c
LZ
2314 .select_task_rq = select_task_rq_rt,
2315
73fe6aae 2316 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2317 .rq_online = rq_online_rt,
2318 .rq_offline = rq_offline_rt,
efbbd05a 2319 .task_woken = task_woken_rt,
cb469845 2320 .switched_from = switched_from_rt,
681f3e68 2321#endif
bb44e5d1 2322
83b699ed 2323 .set_curr_task = set_curr_task_rt,
bb44e5d1 2324 .task_tick = task_tick_rt,
cb469845 2325
0d721cea
PW
2326 .get_rr_interval = get_rr_interval_rt,
2327
cb469845
SR
2328 .prio_changed = prio_changed_rt,
2329 .switched_to = switched_to_rt,
6e998916
SG
2330
2331 .update_curr = update_curr_rt,
bb44e5d1 2332};
ada18de2
PZ
2333
2334#ifdef CONFIG_SCHED_DEBUG
2335extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2336
029632fb 2337void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2338{
ec514c48 2339 rt_rq_iter_t iter;
ada18de2
PZ
2340 struct rt_rq *rt_rq;
2341
2342 rcu_read_lock();
ec514c48 2343 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2344 print_rt_rq(m, cpu, rt_rq);
2345 rcu_read_unlock();
2346}
55e12e5e 2347#endif /* CONFIG_SCHED_DEBUG */