]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/sched.h
ARM: dts: sun8i: replace enable-sdio-wakeup with wakeup-source for BananaPi M1+
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
19d23dbf 5#include <linux/u64_stats_sync.h>
aab03e05 6#include <linux/sched/deadline.h>
3866e845 7#include <linux/binfmts.h>
029632fb
PZ
8#include <linux/mutex.h>
9#include <linux/spinlock.h>
10#include <linux/stop_machine.h>
b6366f04 11#include <linux/irq_work.h>
9f3660c2 12#include <linux/tick.h>
f809ca9a 13#include <linux/slab.h>
029632fb 14
391e43da 15#include "cpupri.h"
6bfd6d72 16#include "cpudeadline.h"
60fed789 17#include "cpuacct.h"
029632fb 18
9148a3a1
PZ
19#ifdef CONFIG_SCHED_DEBUG
20#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
21#else
22#define SCHED_WARN_ON(x) ((void)(x))
23#endif
24
45ceebf7 25struct rq;
442bf3aa 26struct cpuidle_state;
45ceebf7 27
da0c1e65
KT
28/* task_struct::on_rq states: */
29#define TASK_ON_RQ_QUEUED 1
cca26e80 30#define TASK_ON_RQ_MIGRATING 2
da0c1e65 31
029632fb
PZ
32extern __read_mostly int scheduler_running;
33
45ceebf7
PG
34extern unsigned long calc_load_update;
35extern atomic_long_t calc_load_tasks;
36
3289bdb4 37extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 38extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
39
40#ifdef CONFIG_SMP
cee1afce 41extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 42#else
cee1afce 43static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 44#endif
45ceebf7 45
029632fb
PZ
46/*
47 * Helpers for converting nanosecond timing to jiffy resolution
48 */
49#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
50
cc1f4b1f
LZ
51/*
52 * Increase resolution of nice-level calculations for 64-bit architectures.
53 * The extra resolution improves shares distribution and load balancing of
54 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
55 * hierarchies, especially on larger systems. This is not a user-visible change
56 * and does not change the user-interface for setting shares/weights.
57 *
58 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
59 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
60 * pretty high and the returns do not justify the increased costs.
61 *
62 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
63 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 64 */
2159197d 65#ifdef CONFIG_64BIT
172895e6 66# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
67# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
68# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 69#else
172895e6 70# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
71# define scale_load(w) (w)
72# define scale_load_down(w) (w)
73#endif
74
6ecdd749 75/*
172895e6
YD
76 * Task weight (visible to users) and its load (invisible to users) have
77 * independent resolution, but they should be well calibrated. We use
78 * scale_load() and scale_load_down(w) to convert between them. The
79 * following must be true:
80 *
81 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
82 *
6ecdd749 83 */
172895e6 84#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 85
332ac17e
DF
86/*
87 * Single value that decides SCHED_DEADLINE internal math precision.
88 * 10 -> just above 1us
89 * 9 -> just above 0.5us
90 */
91#define DL_SCALE (10)
92
029632fb
PZ
93/*
94 * These are the 'tuning knobs' of the scheduler:
029632fb 95 */
029632fb
PZ
96
97/*
98 * single value that denotes runtime == period, ie unlimited time.
99 */
100#define RUNTIME_INF ((u64)~0ULL)
101
20f9cd2a
HA
102static inline int idle_policy(int policy)
103{
104 return policy == SCHED_IDLE;
105}
d50dde5a
DF
106static inline int fair_policy(int policy)
107{
108 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
109}
110
029632fb
PZ
111static inline int rt_policy(int policy)
112{
d50dde5a 113 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
114}
115
aab03e05
DF
116static inline int dl_policy(int policy)
117{
118 return policy == SCHED_DEADLINE;
119}
20f9cd2a
HA
120static inline bool valid_policy(int policy)
121{
122 return idle_policy(policy) || fair_policy(policy) ||
123 rt_policy(policy) || dl_policy(policy);
124}
aab03e05 125
029632fb
PZ
126static inline int task_has_rt_policy(struct task_struct *p)
127{
128 return rt_policy(p->policy);
129}
130
aab03e05
DF
131static inline int task_has_dl_policy(struct task_struct *p)
132{
133 return dl_policy(p->policy);
134}
135
2d3d891d
DF
136/*
137 * Tells if entity @a should preempt entity @b.
138 */
332ac17e
DF
139static inline bool
140dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
141{
142 return dl_time_before(a->deadline, b->deadline);
143}
144
029632fb
PZ
145/*
146 * This is the priority-queue data structure of the RT scheduling class:
147 */
148struct rt_prio_array {
149 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
150 struct list_head queue[MAX_RT_PRIO];
151};
152
153struct rt_bandwidth {
154 /* nests inside the rq lock: */
155 raw_spinlock_t rt_runtime_lock;
156 ktime_t rt_period;
157 u64 rt_runtime;
158 struct hrtimer rt_period_timer;
4cfafd30 159 unsigned int rt_period_active;
029632fb 160};
a5e7be3b
JL
161
162void __dl_clear_params(struct task_struct *p);
163
332ac17e
DF
164/*
165 * To keep the bandwidth of -deadline tasks and groups under control
166 * we need some place where:
167 * - store the maximum -deadline bandwidth of the system (the group);
168 * - cache the fraction of that bandwidth that is currently allocated.
169 *
170 * This is all done in the data structure below. It is similar to the
171 * one used for RT-throttling (rt_bandwidth), with the main difference
172 * that, since here we are only interested in admission control, we
173 * do not decrease any runtime while the group "executes", neither we
174 * need a timer to replenish it.
175 *
176 * With respect to SMP, the bandwidth is given on a per-CPU basis,
177 * meaning that:
178 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
179 * - dl_total_bw array contains, in the i-eth element, the currently
180 * allocated bandwidth on the i-eth CPU.
181 * Moreover, groups consume bandwidth on each CPU, while tasks only
182 * consume bandwidth on the CPU they're running on.
183 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
184 * that will be shown the next time the proc or cgroup controls will
185 * be red. It on its turn can be changed by writing on its own
186 * control.
187 */
188struct dl_bandwidth {
189 raw_spinlock_t dl_runtime_lock;
190 u64 dl_runtime;
191 u64 dl_period;
192};
193
194static inline int dl_bandwidth_enabled(void)
195{
1724813d 196 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
197}
198
199extern struct dl_bw *dl_bw_of(int i);
200
201struct dl_bw {
202 raw_spinlock_t lock;
203 u64 bw, total_bw;
204};
205
7f51412a
JL
206static inline
207void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
208{
209 dl_b->total_bw -= tsk_bw;
210}
211
212static inline
213void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
214{
215 dl_b->total_bw += tsk_bw;
216}
217
218static inline
219bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
220{
221 return dl_b->bw != -1 &&
222 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
223}
224
029632fb
PZ
225extern struct mutex sched_domains_mutex;
226
227#ifdef CONFIG_CGROUP_SCHED
228
229#include <linux/cgroup.h>
230
231struct cfs_rq;
232struct rt_rq;
233
35cf4e50 234extern struct list_head task_groups;
029632fb
PZ
235
236struct cfs_bandwidth {
237#ifdef CONFIG_CFS_BANDWIDTH
238 raw_spinlock_t lock;
239 ktime_t period;
240 u64 quota, runtime;
9c58c79a 241 s64 hierarchical_quota;
029632fb
PZ
242 u64 runtime_expires;
243
4cfafd30 244 int idle, period_active;
029632fb
PZ
245 struct hrtimer period_timer, slack_timer;
246 struct list_head throttled_cfs_rq;
247
248 /* statistics */
249 int nr_periods, nr_throttled;
250 u64 throttled_time;
251#endif
252};
253
254/* task group related information */
255struct task_group {
256 struct cgroup_subsys_state css;
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264
fa6bddeb 265#ifdef CONFIG_SMP
b0367629
WL
266 /*
267 * load_avg can be heavily contended at clock tick time, so put
268 * it in its own cacheline separated from the fields above which
269 * will also be accessed at each tick.
270 */
271 atomic_long_t load_avg ____cacheline_aligned;
029632fb 272#endif
fa6bddeb 273#endif
029632fb
PZ
274
275#ifdef CONFIG_RT_GROUP_SCHED
276 struct sched_rt_entity **rt_se;
277 struct rt_rq **rt_rq;
278
279 struct rt_bandwidth rt_bandwidth;
280#endif
281
282 struct rcu_head rcu;
283 struct list_head list;
284
285 struct task_group *parent;
286 struct list_head siblings;
287 struct list_head children;
288
289#ifdef CONFIG_SCHED_AUTOGROUP
290 struct autogroup *autogroup;
291#endif
292
293 struct cfs_bandwidth cfs_bandwidth;
294};
295
296#ifdef CONFIG_FAIR_GROUP_SCHED
297#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
298
299/*
300 * A weight of 0 or 1 can cause arithmetics problems.
301 * A weight of a cfs_rq is the sum of weights of which entities
302 * are queued on this cfs_rq, so a weight of a entity should not be
303 * too large, so as the shares value of a task group.
304 * (The default weight is 1024 - so there's no practical
305 * limitation from this.)
306 */
307#define MIN_SHARES (1UL << 1)
308#define MAX_SHARES (1UL << 18)
309#endif
310
029632fb
PZ
311typedef int (*tg_visitor)(struct task_group *, void *);
312
313extern int walk_tg_tree_from(struct task_group *from,
314 tg_visitor down, tg_visitor up, void *data);
315
316/*
317 * Iterate the full tree, calling @down when first entering a node and @up when
318 * leaving it for the final time.
319 *
320 * Caller must hold rcu_lock or sufficient equivalent.
321 */
322static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
323{
324 return walk_tg_tree_from(&root_task_group, down, up, data);
325}
326
327extern int tg_nop(struct task_group *tg, void *data);
328
329extern void free_fair_sched_group(struct task_group *tg);
330extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 331extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 332extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
333extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
334 struct sched_entity *se, int cpu,
335 struct sched_entity *parent);
336extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
337
338extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 339extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
340extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
341
342extern void free_rt_sched_group(struct task_group *tg);
343extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
344extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
345 struct sched_rt_entity *rt_se, int cpu,
346 struct sched_rt_entity *parent);
347
25cc7da7
LZ
348extern struct task_group *sched_create_group(struct task_group *parent);
349extern void sched_online_group(struct task_group *tg,
350 struct task_group *parent);
351extern void sched_destroy_group(struct task_group *tg);
352extern void sched_offline_group(struct task_group *tg);
353
354extern void sched_move_task(struct task_struct *tsk);
355
356#ifdef CONFIG_FAIR_GROUP_SCHED
357extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
358
359#ifdef CONFIG_SMP
360extern void set_task_rq_fair(struct sched_entity *se,
361 struct cfs_rq *prev, struct cfs_rq *next);
362#else /* !CONFIG_SMP */
363static inline void set_task_rq_fair(struct sched_entity *se,
364 struct cfs_rq *prev, struct cfs_rq *next) { }
365#endif /* CONFIG_SMP */
366#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 367
029632fb
PZ
368#else /* CONFIG_CGROUP_SCHED */
369
370struct cfs_bandwidth { };
371
372#endif /* CONFIG_CGROUP_SCHED */
373
374/* CFS-related fields in a runqueue */
375struct cfs_rq {
376 struct load_weight load;
c82513e5 377 unsigned int nr_running, h_nr_running;
029632fb
PZ
378
379 u64 exec_clock;
380 u64 min_vruntime;
381#ifndef CONFIG_64BIT
382 u64 min_vruntime_copy;
383#endif
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387
029632fb
PZ
388 /*
389 * 'curr' points to currently running entity on this cfs_rq.
390 * It is set to NULL otherwise (i.e when none are currently running).
391 */
392 struct sched_entity *curr, *next, *last, *skip;
393
394#ifdef CONFIG_SCHED_DEBUG
395 unsigned int nr_spread_over;
396#endif
397
2dac754e
PT
398#ifdef CONFIG_SMP
399 /*
9d89c257 400 * CFS load tracking
2dac754e 401 */
9d89c257 402 struct sched_avg avg;
13962234
YD
403 u64 runnable_load_sum;
404 unsigned long runnable_load_avg;
c566e8e9 405#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
406 unsigned long tg_load_avg_contrib;
407#endif
408 atomic_long_t removed_load_avg, removed_util_avg;
409#ifndef CONFIG_64BIT
410 u64 load_last_update_time_copy;
411#endif
82958366 412
9d89c257 413#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
68520796
VD
421 u64 last_h_load_update;
422 struct sched_entity *h_load_next;
423#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
424#endif /* CONFIG_SMP */
425
029632fb
PZ
426#ifdef CONFIG_FAIR_GROUP_SCHED
427 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428
429 /*
430 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
431 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
432 * (like users, containers etc.)
433 *
434 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
435 * list is used during load balance.
436 */
437 int on_list;
438 struct list_head leaf_cfs_rq_list;
439 struct task_group *tg; /* group that "owns" this runqueue */
440
029632fb
PZ
441#ifdef CONFIG_CFS_BANDWIDTH
442 int runtime_enabled;
443 u64 runtime_expires;
444 s64 runtime_remaining;
445
f1b17280
PT
446 u64 throttled_clock, throttled_clock_task;
447 u64 throttled_clock_task_time;
55e16d30 448 int throttled, throttle_count;
029632fb
PZ
449 struct list_head throttled_list;
450#endif /* CONFIG_CFS_BANDWIDTH */
451#endif /* CONFIG_FAIR_GROUP_SCHED */
452};
453
454static inline int rt_bandwidth_enabled(void)
455{
456 return sysctl_sched_rt_runtime >= 0;
457}
458
b6366f04
SR
459/* RT IPI pull logic requires IRQ_WORK */
460#ifdef CONFIG_IRQ_WORK
461# define HAVE_RT_PUSH_IPI
462#endif
463
029632fb
PZ
464/* Real-Time classes' related field in a runqueue: */
465struct rt_rq {
466 struct rt_prio_array active;
c82513e5 467 unsigned int rt_nr_running;
01d36d0a 468 unsigned int rr_nr_running;
029632fb
PZ
469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 struct {
471 int curr; /* highest queued rt task prio */
472#ifdef CONFIG_SMP
473 int next; /* next highest */
474#endif
475 } highest_prio;
476#endif
477#ifdef CONFIG_SMP
478 unsigned long rt_nr_migratory;
479 unsigned long rt_nr_total;
480 int overloaded;
481 struct plist_head pushable_tasks;
b6366f04
SR
482#ifdef HAVE_RT_PUSH_IPI
483 int push_flags;
484 int push_cpu;
485 struct irq_work push_work;
486 raw_spinlock_t push_lock;
029632fb 487#endif
b6366f04 488#endif /* CONFIG_SMP */
f4ebcbc0
KT
489 int rt_queued;
490
029632fb
PZ
491 int rt_throttled;
492 u64 rt_time;
493 u64 rt_runtime;
494 /* Nests inside the rq lock: */
495 raw_spinlock_t rt_runtime_lock;
496
497#ifdef CONFIG_RT_GROUP_SCHED
498 unsigned long rt_nr_boosted;
499
500 struct rq *rq;
029632fb
PZ
501 struct task_group *tg;
502#endif
503};
504
aab03e05
DF
505/* Deadline class' related fields in a runqueue */
506struct dl_rq {
507 /* runqueue is an rbtree, ordered by deadline */
508 struct rb_root rb_root;
509 struct rb_node *rb_leftmost;
510
511 unsigned long dl_nr_running;
1baca4ce
JL
512
513#ifdef CONFIG_SMP
514 /*
515 * Deadline values of the currently executing and the
516 * earliest ready task on this rq. Caching these facilitates
517 * the decision wether or not a ready but not running task
518 * should migrate somewhere else.
519 */
520 struct {
521 u64 curr;
522 u64 next;
523 } earliest_dl;
524
525 unsigned long dl_nr_migratory;
1baca4ce
JL
526 int overloaded;
527
528 /*
529 * Tasks on this rq that can be pushed away. They are kept in
530 * an rb-tree, ordered by tasks' deadlines, with caching
531 * of the leftmost (earliest deadline) element.
532 */
533 struct rb_root pushable_dl_tasks_root;
534 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
535#else
536 struct dl_bw dl_bw;
1baca4ce 537#endif
aab03e05
DF
538};
539
029632fb
PZ
540#ifdef CONFIG_SMP
541
542/*
543 * We add the notion of a root-domain which will be used to define per-domain
544 * variables. Each exclusive cpuset essentially defines an island domain by
545 * fully partitioning the member cpus from any other cpuset. Whenever a new
546 * exclusive cpuset is created, we also create and attach a new root-domain
547 * object.
548 *
549 */
550struct root_domain {
551 atomic_t refcount;
552 atomic_t rto_count;
553 struct rcu_head rcu;
554 cpumask_var_t span;
555 cpumask_var_t online;
556
4486edd1
TC
557 /* Indicate more than one runnable task for any CPU */
558 bool overload;
559
1baca4ce
JL
560 /*
561 * The bit corresponding to a CPU gets set here if such CPU has more
562 * than one runnable -deadline task (as it is below for RT tasks).
563 */
564 cpumask_var_t dlo_mask;
565 atomic_t dlo_count;
332ac17e 566 struct dl_bw dl_bw;
6bfd6d72 567 struct cpudl cpudl;
1baca4ce 568
029632fb
PZ
569 /*
570 * The "RT overload" flag: it gets set if a CPU has more than
571 * one runnable RT task.
572 */
573 cpumask_var_t rto_mask;
574 struct cpupri cpupri;
cd92bfd3
DE
575
576 unsigned long max_cpu_capacity;
029632fb
PZ
577};
578
579extern struct root_domain def_root_domain;
580
581#endif /* CONFIG_SMP */
582
583/*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
c82513e5 598 unsigned int nr_running;
0ec8aa00
PZ
599#ifdef CONFIG_NUMA_BALANCING
600 unsigned int nr_numa_running;
601 unsigned int nr_preferred_running;
602#endif
029632fb
PZ
603 #define CPU_LOAD_IDX_MAX 5
604 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 605#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
606#ifdef CONFIG_SMP
607 unsigned long last_load_update_tick;
608#endif /* CONFIG_SMP */
1c792db7 609 unsigned long nohz_flags;
9fd81dd5 610#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
611#ifdef CONFIG_NO_HZ_FULL
612 unsigned long last_sched_tick;
029632fb 613#endif
029632fb
PZ
614 /* capture load from *all* tasks on this cpu: */
615 struct load_weight load;
616 unsigned long nr_load_updates;
617 u64 nr_switches;
618
619 struct cfs_rq cfs;
620 struct rt_rq rt;
aab03e05 621 struct dl_rq dl;
029632fb
PZ
622
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 /* list of leaf cfs_rq on this cpu: */
625 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
626#endif /* CONFIG_FAIR_GROUP_SCHED */
627
029632fb
PZ
628 /*
629 * This is part of a global counter where only the total sum
630 * over all CPUs matters. A task can increase this counter on
631 * one CPU and if it got migrated afterwards it may decrease
632 * it on another CPU. Always updated under the runqueue lock:
633 */
634 unsigned long nr_uninterruptible;
635
636 struct task_struct *curr, *idle, *stop;
637 unsigned long next_balance;
638 struct mm_struct *prev_mm;
639
9edfbfed 640 unsigned int clock_skip_update;
029632fb
PZ
641 u64 clock;
642 u64 clock_task;
643
644 atomic_t nr_iowait;
645
646#ifdef CONFIG_SMP
647 struct root_domain *rd;
648 struct sched_domain *sd;
649
ced549fa 650 unsigned long cpu_capacity;
ca6d75e6 651 unsigned long cpu_capacity_orig;
029632fb 652
e3fca9e7
PZ
653 struct callback_head *balance_callback;
654
029632fb
PZ
655 unsigned char idle_balance;
656 /* For active balancing */
029632fb
PZ
657 int active_balance;
658 int push_cpu;
659 struct cpu_stop_work active_balance_work;
660 /* cpu of this runqueue: */
661 int cpu;
662 int online;
663
367456c7
PZ
664 struct list_head cfs_tasks;
665
029632fb
PZ
666 u64 rt_avg;
667 u64 age_stamp;
668 u64 idle_stamp;
669 u64 avg_idle;
9bd721c5
JL
670
671 /* This is used to determine avg_idle's max value */
672 u64 max_idle_balance_cost;
029632fb
PZ
673#endif
674
675#ifdef CONFIG_IRQ_TIME_ACCOUNTING
676 u64 prev_irq_time;
677#endif
678#ifdef CONFIG_PARAVIRT
679 u64 prev_steal_time;
680#endif
681#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
682 u64 prev_steal_time_rq;
683#endif
684
685 /* calc_load related fields */
686 unsigned long calc_load_update;
687 long calc_load_active;
688
689#ifdef CONFIG_SCHED_HRTICK
690#ifdef CONFIG_SMP
691 int hrtick_csd_pending;
692 struct call_single_data hrtick_csd;
693#endif
694 struct hrtimer hrtick_timer;
695#endif
696
697#ifdef CONFIG_SCHEDSTATS
698 /* latency stats */
699 struct sched_info rq_sched_info;
700 unsigned long long rq_cpu_time;
701 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
702
703 /* sys_sched_yield() stats */
704 unsigned int yld_count;
705
706 /* schedule() stats */
029632fb
PZ
707 unsigned int sched_count;
708 unsigned int sched_goidle;
709
710 /* try_to_wake_up() stats */
711 unsigned int ttwu_count;
712 unsigned int ttwu_local;
713#endif
714
715#ifdef CONFIG_SMP
716 struct llist_head wake_list;
717#endif
442bf3aa
DL
718
719#ifdef CONFIG_CPU_IDLE
720 /* Must be inspected within a rcu lock section */
721 struct cpuidle_state *idle_state;
722#endif
029632fb
PZ
723};
724
725static inline int cpu_of(struct rq *rq)
726{
727#ifdef CONFIG_SMP
728 return rq->cpu;
729#else
730 return 0;
731#endif
732}
733
1b568f0a
PZ
734
735#ifdef CONFIG_SCHED_SMT
736
737extern struct static_key_false sched_smt_present;
738
739extern void __update_idle_core(struct rq *rq);
740
741static inline void update_idle_core(struct rq *rq)
742{
743 if (static_branch_unlikely(&sched_smt_present))
744 __update_idle_core(rq);
745}
746
747#else
748static inline void update_idle_core(struct rq *rq) { }
749#endif
750
8b06c55b 751DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 752
518cd623 753#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 754#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
755#define task_rq(p) cpu_rq(task_cpu(p))
756#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 757#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 758
cebde6d6
PZ
759static inline u64 __rq_clock_broken(struct rq *rq)
760{
316c1608 761 return READ_ONCE(rq->clock);
cebde6d6
PZ
762}
763
78becc27
FW
764static inline u64 rq_clock(struct rq *rq)
765{
cebde6d6 766 lockdep_assert_held(&rq->lock);
78becc27
FW
767 return rq->clock;
768}
769
770static inline u64 rq_clock_task(struct rq *rq)
771{
cebde6d6 772 lockdep_assert_held(&rq->lock);
78becc27
FW
773 return rq->clock_task;
774}
775
9edfbfed
PZ
776#define RQCF_REQ_SKIP 0x01
777#define RQCF_ACT_SKIP 0x02
778
779static inline void rq_clock_skip_update(struct rq *rq, bool skip)
780{
781 lockdep_assert_held(&rq->lock);
782 if (skip)
783 rq->clock_skip_update |= RQCF_REQ_SKIP;
784 else
785 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
786}
787
9942f79b 788#ifdef CONFIG_NUMA
e3fe70b1
RR
789enum numa_topology_type {
790 NUMA_DIRECT,
791 NUMA_GLUELESS_MESH,
792 NUMA_BACKPLANE,
793};
794extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
795extern int sched_max_numa_distance;
796extern bool find_numa_distance(int distance);
797#endif
798
f809ca9a 799#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
800/* The regions in numa_faults array from task_struct */
801enum numa_faults_stats {
802 NUMA_MEM = 0,
803 NUMA_CPU,
804 NUMA_MEMBUF,
805 NUMA_CPUBUF
806};
0ec8aa00 807extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 808extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 809extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
810#endif /* CONFIG_NUMA_BALANCING */
811
518cd623
PZ
812#ifdef CONFIG_SMP
813
e3fca9e7
PZ
814static inline void
815queue_balance_callback(struct rq *rq,
816 struct callback_head *head,
817 void (*func)(struct rq *rq))
818{
819 lockdep_assert_held(&rq->lock);
820
821 if (unlikely(head->next))
822 return;
823
824 head->func = (void (*)(struct callback_head *))func;
825 head->next = rq->balance_callback;
826 rq->balance_callback = head;
827}
828
e3baac47
PZ
829extern void sched_ttwu_pending(void);
830
029632fb
PZ
831#define rcu_dereference_check_sched_domain(p) \
832 rcu_dereference_check((p), \
833 lockdep_is_held(&sched_domains_mutex))
834
835/*
836 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
837 * See detach_destroy_domains: synchronize_sched for details.
838 *
839 * The domain tree of any CPU may only be accessed from within
840 * preempt-disabled sections.
841 */
842#define for_each_domain(cpu, __sd) \
518cd623
PZ
843 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
844 __sd; __sd = __sd->parent)
029632fb 845
77e81365
SS
846#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
847
518cd623
PZ
848/**
849 * highest_flag_domain - Return highest sched_domain containing flag.
850 * @cpu: The cpu whose highest level of sched domain is to
851 * be returned.
852 * @flag: The flag to check for the highest sched_domain
853 * for the given cpu.
854 *
855 * Returns the highest sched_domain of a cpu which contains the given flag.
856 */
857static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
858{
859 struct sched_domain *sd, *hsd = NULL;
860
861 for_each_domain(cpu, sd) {
862 if (!(sd->flags & flag))
863 break;
864 hsd = sd;
865 }
866
867 return hsd;
868}
869
fb13c7ee
MG
870static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
871{
872 struct sched_domain *sd;
873
874 for_each_domain(cpu, sd) {
875 if (sd->flags & flag)
876 break;
877 }
878
879 return sd;
880}
881
518cd623 882DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 883DECLARE_PER_CPU(int, sd_llc_size);
518cd623 884DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 885DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 886DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 887DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 888
63b2ca30 889struct sched_group_capacity {
5e6521ea
LZ
890 atomic_t ref;
891 /*
172895e6 892 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 893 * for a single CPU.
5e6521ea 894 */
dc7ff76e 895 unsigned int capacity;
5e6521ea 896 unsigned long next_update;
63b2ca30 897 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
898
899 unsigned long cpumask[0]; /* iteration mask */
900};
901
902struct sched_group {
903 struct sched_group *next; /* Must be a circular list */
904 atomic_t ref;
905
906 unsigned int group_weight;
63b2ca30 907 struct sched_group_capacity *sgc;
5e6521ea
LZ
908
909 /*
910 * The CPUs this group covers.
911 *
912 * NOTE: this field is variable length. (Allocated dynamically
913 * by attaching extra space to the end of the structure,
914 * depending on how many CPUs the kernel has booted up with)
915 */
916 unsigned long cpumask[0];
917};
918
919static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
920{
921 return to_cpumask(sg->cpumask);
922}
923
924/*
925 * cpumask masking which cpus in the group are allowed to iterate up the domain
926 * tree.
927 */
928static inline struct cpumask *sched_group_mask(struct sched_group *sg)
929{
63b2ca30 930 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
931}
932
933/**
934 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
935 * @group: The group whose first cpu is to be returned.
936 */
937static inline unsigned int group_first_cpu(struct sched_group *group)
938{
939 return cpumask_first(sched_group_cpus(group));
940}
941
c1174876
PZ
942extern int group_balance_cpu(struct sched_group *sg);
943
3866e845
SRRH
944#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
945void register_sched_domain_sysctl(void);
946void unregister_sched_domain_sysctl(void);
947#else
948static inline void register_sched_domain_sysctl(void)
949{
950}
951static inline void unregister_sched_domain_sysctl(void)
952{
953}
954#endif
955
e3baac47
PZ
956#else
957
958static inline void sched_ttwu_pending(void) { }
959
518cd623 960#endif /* CONFIG_SMP */
029632fb 961
391e43da
PZ
962#include "stats.h"
963#include "auto_group.h"
029632fb
PZ
964
965#ifdef CONFIG_CGROUP_SCHED
966
967/*
968 * Return the group to which this tasks belongs.
969 *
8af01f56
TH
970 * We cannot use task_css() and friends because the cgroup subsystem
971 * changes that value before the cgroup_subsys::attach() method is called,
972 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
973 *
974 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
975 * core changes this before calling sched_move_task().
976 *
977 * Instead we use a 'copy' which is updated from sched_move_task() while
978 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
979 */
980static inline struct task_group *task_group(struct task_struct *p)
981{
8323f26c 982 return p->sched_task_group;
029632fb
PZ
983}
984
985/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
986static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
987{
988#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
989 struct task_group *tg = task_group(p);
990#endif
991
992#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 993 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
994 p->se.cfs_rq = tg->cfs_rq[cpu];
995 p->se.parent = tg->se[cpu];
996#endif
997
998#ifdef CONFIG_RT_GROUP_SCHED
999 p->rt.rt_rq = tg->rt_rq[cpu];
1000 p->rt.parent = tg->rt_se[cpu];
1001#endif
1002}
1003
1004#else /* CONFIG_CGROUP_SCHED */
1005
1006static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1007static inline struct task_group *task_group(struct task_struct *p)
1008{
1009 return NULL;
1010}
1011
1012#endif /* CONFIG_CGROUP_SCHED */
1013
1014static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1015{
1016 set_task_rq(p, cpu);
1017#ifdef CONFIG_SMP
1018 /*
1019 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1020 * successfuly executed on another CPU. We must ensure that updates of
1021 * per-task data have been completed by this moment.
1022 */
1023 smp_wmb();
c65eacbe
AL
1024#ifdef CONFIG_THREAD_INFO_IN_TASK
1025 p->cpu = cpu;
1026#else
029632fb 1027 task_thread_info(p)->cpu = cpu;
c65eacbe 1028#endif
ac66f547 1029 p->wake_cpu = cpu;
029632fb
PZ
1030#endif
1031}
1032
1033/*
1034 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1035 */
1036#ifdef CONFIG_SCHED_DEBUG
c5905afb 1037# include <linux/static_key.h>
029632fb
PZ
1038# define const_debug __read_mostly
1039#else
1040# define const_debug const
1041#endif
1042
1043extern const_debug unsigned int sysctl_sched_features;
1044
1045#define SCHED_FEAT(name, enabled) \
1046 __SCHED_FEAT_##name ,
1047
1048enum {
391e43da 1049#include "features.h"
f8b6d1cc 1050 __SCHED_FEAT_NR,
029632fb
PZ
1051};
1052
1053#undef SCHED_FEAT
1054
f8b6d1cc 1055#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1056#define SCHED_FEAT(name, enabled) \
c5905afb 1057static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1058{ \
6e76ea8a 1059 return static_key_##enabled(key); \
f8b6d1cc
PZ
1060}
1061
1062#include "features.h"
1063
1064#undef SCHED_FEAT
1065
c5905afb 1066extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1067#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1068#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1069#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1070#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1071
2a595721 1072extern struct static_key_false sched_numa_balancing;
cb251765 1073extern struct static_key_false sched_schedstats;
cbee9f88 1074
029632fb
PZ
1075static inline u64 global_rt_period(void)
1076{
1077 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1078}
1079
1080static inline u64 global_rt_runtime(void)
1081{
1082 if (sysctl_sched_rt_runtime < 0)
1083 return RUNTIME_INF;
1084
1085 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1086}
1087
029632fb
PZ
1088static inline int task_current(struct rq *rq, struct task_struct *p)
1089{
1090 return rq->curr == p;
1091}
1092
1093static inline int task_running(struct rq *rq, struct task_struct *p)
1094{
1095#ifdef CONFIG_SMP
1096 return p->on_cpu;
1097#else
1098 return task_current(rq, p);
1099#endif
1100}
1101
da0c1e65
KT
1102static inline int task_on_rq_queued(struct task_struct *p)
1103{
1104 return p->on_rq == TASK_ON_RQ_QUEUED;
1105}
029632fb 1106
cca26e80
KT
1107static inline int task_on_rq_migrating(struct task_struct *p)
1108{
1109 return p->on_rq == TASK_ON_RQ_MIGRATING;
1110}
1111
029632fb
PZ
1112#ifndef prepare_arch_switch
1113# define prepare_arch_switch(next) do { } while (0)
1114#endif
01f23e16
CM
1115#ifndef finish_arch_post_lock_switch
1116# define finish_arch_post_lock_switch() do { } while (0)
1117#endif
029632fb 1118
029632fb
PZ
1119static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1120{
1121#ifdef CONFIG_SMP
1122 /*
1123 * We can optimise this out completely for !SMP, because the
1124 * SMP rebalancing from interrupt is the only thing that cares
1125 * here.
1126 */
1127 next->on_cpu = 1;
1128#endif
1129}
1130
1131static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1132{
1133#ifdef CONFIG_SMP
1134 /*
1135 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1136 * We must ensure this doesn't happen until the switch is completely
1137 * finished.
95913d97 1138 *
b75a2253
PZ
1139 * In particular, the load of prev->state in finish_task_switch() must
1140 * happen before this.
1141 *
1f03e8d2 1142 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1143 */
95913d97 1144 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1145#endif
1146#ifdef CONFIG_DEBUG_SPINLOCK
1147 /* this is a valid case when another task releases the spinlock */
1148 rq->lock.owner = current;
1149#endif
1150 /*
1151 * If we are tracking spinlock dependencies then we have to
1152 * fix up the runqueue lock - which gets 'carried over' from
1153 * prev into current:
1154 */
1155 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1156
1157 raw_spin_unlock_irq(&rq->lock);
1158}
1159
b13095f0
LZ
1160/*
1161 * wake flags
1162 */
1163#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1164#define WF_FORK 0x02 /* child wakeup after fork */
1165#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1166
029632fb
PZ
1167/*
1168 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1169 * of tasks with abnormal "nice" values across CPUs the contribution that
1170 * each task makes to its run queue's load is weighted according to its
1171 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1172 * scaled version of the new time slice allocation that they receive on time
1173 * slice expiry etc.
1174 */
1175
1176#define WEIGHT_IDLEPRIO 3
1177#define WMULT_IDLEPRIO 1431655765
1178
ed82b8a1
AK
1179extern const int sched_prio_to_weight[40];
1180extern const u32 sched_prio_to_wmult[40];
029632fb 1181
ff77e468
PZ
1182/*
1183 * {de,en}queue flags:
1184 *
1185 * DEQUEUE_SLEEP - task is no longer runnable
1186 * ENQUEUE_WAKEUP - task just became runnable
1187 *
1188 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1189 * are in a known state which allows modification. Such pairs
1190 * should preserve as much state as possible.
1191 *
1192 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1193 * in the runqueue.
1194 *
1195 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1196 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1197 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1198 *
1199 */
1200
1201#define DEQUEUE_SLEEP 0x01
1202#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1203#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1204
1de64443 1205#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1206#define ENQUEUE_RESTORE 0x02
1207#define ENQUEUE_MOVE 0x04
1208
1209#define ENQUEUE_HEAD 0x08
1210#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1211#ifdef CONFIG_SMP
59efa0ba 1212#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1213#else
59efa0ba 1214#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1215#endif
c82ba9fa 1216
37e117c0
PZ
1217#define RETRY_TASK ((void *)-1UL)
1218
c82ba9fa
LZ
1219struct sched_class {
1220 const struct sched_class *next;
1221
1222 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1223 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1224 void (*yield_task) (struct rq *rq);
1225 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1226
1227 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1228
606dba2e
PZ
1229 /*
1230 * It is the responsibility of the pick_next_task() method that will
1231 * return the next task to call put_prev_task() on the @prev task or
1232 * something equivalent.
37e117c0
PZ
1233 *
1234 * May return RETRY_TASK when it finds a higher prio class has runnable
1235 * tasks.
606dba2e
PZ
1236 */
1237 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28
PZ
1238 struct task_struct *prev,
1239 struct pin_cookie cookie);
c82ba9fa
LZ
1240 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1241
1242#ifdef CONFIG_SMP
ac66f547 1243 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1244 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1245
c82ba9fa
LZ
1246 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1247
1248 void (*set_cpus_allowed)(struct task_struct *p,
1249 const struct cpumask *newmask);
1250
1251 void (*rq_online)(struct rq *rq);
1252 void (*rq_offline)(struct rq *rq);
1253#endif
1254
1255 void (*set_curr_task) (struct rq *rq);
1256 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1257 void (*task_fork) (struct task_struct *p);
e6c390f2 1258 void (*task_dead) (struct task_struct *p);
c82ba9fa 1259
67dfa1b7
KT
1260 /*
1261 * The switched_from() call is allowed to drop rq->lock, therefore we
1262 * cannot assume the switched_from/switched_to pair is serliazed by
1263 * rq->lock. They are however serialized by p->pi_lock.
1264 */
c82ba9fa
LZ
1265 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1266 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1267 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1268 int oldprio);
1269
1270 unsigned int (*get_rr_interval) (struct rq *rq,
1271 struct task_struct *task);
1272
6e998916
SG
1273 void (*update_curr) (struct rq *rq);
1274
ea86cb4b
VG
1275#define TASK_SET_GROUP 0
1276#define TASK_MOVE_GROUP 1
1277
c82ba9fa 1278#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1279 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1280#endif
1281};
029632fb 1282
3f1d2a31
PZ
1283static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1284{
1285 prev->sched_class->put_prev_task(rq, prev);
1286}
1287
b2bf6c31
PZ
1288static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1289{
1290 curr->sched_class->set_curr_task(rq);
1291}
1292
029632fb
PZ
1293#define sched_class_highest (&stop_sched_class)
1294#define for_each_class(class) \
1295 for (class = sched_class_highest; class; class = class->next)
1296
1297extern const struct sched_class stop_sched_class;
aab03e05 1298extern const struct sched_class dl_sched_class;
029632fb
PZ
1299extern const struct sched_class rt_sched_class;
1300extern const struct sched_class fair_sched_class;
1301extern const struct sched_class idle_sched_class;
1302
1303
1304#ifdef CONFIG_SMP
1305
63b2ca30 1306extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1307
7caff66f 1308extern void trigger_load_balance(struct rq *rq);
029632fb 1309
c5b28038
PZ
1310extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1311
029632fb
PZ
1312#endif
1313
442bf3aa
DL
1314#ifdef CONFIG_CPU_IDLE
1315static inline void idle_set_state(struct rq *rq,
1316 struct cpuidle_state *idle_state)
1317{
1318 rq->idle_state = idle_state;
1319}
1320
1321static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1322{
9148a3a1 1323 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1324 return rq->idle_state;
1325}
1326#else
1327static inline void idle_set_state(struct rq *rq,
1328 struct cpuidle_state *idle_state)
1329{
1330}
1331
1332static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1333{
1334 return NULL;
1335}
1336#endif
1337
029632fb
PZ
1338extern void sysrq_sched_debug_show(void);
1339extern void sched_init_granularity(void);
1340extern void update_max_interval(void);
1baca4ce
JL
1341
1342extern void init_sched_dl_class(void);
029632fb
PZ
1343extern void init_sched_rt_class(void);
1344extern void init_sched_fair_class(void);
1345
8875125e 1346extern void resched_curr(struct rq *rq);
029632fb
PZ
1347extern void resched_cpu(int cpu);
1348
1349extern struct rt_bandwidth def_rt_bandwidth;
1350extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1351
332ac17e
DF
1352extern struct dl_bandwidth def_dl_bandwidth;
1353extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1354extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1355
332ac17e
DF
1356unsigned long to_ratio(u64 period, u64 runtime);
1357
540247fb 1358extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1359extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1360
76d92ac3
FW
1361#ifdef CONFIG_NO_HZ_FULL
1362extern bool sched_can_stop_tick(struct rq *rq);
1363
1364/*
1365 * Tick may be needed by tasks in the runqueue depending on their policy and
1366 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1367 * nohz mode if necessary.
1368 */
1369static inline void sched_update_tick_dependency(struct rq *rq)
1370{
1371 int cpu;
1372
1373 if (!tick_nohz_full_enabled())
1374 return;
1375
1376 cpu = cpu_of(rq);
1377
1378 if (!tick_nohz_full_cpu(cpu))
1379 return;
1380
1381 if (sched_can_stop_tick(rq))
1382 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1383 else
1384 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1385}
1386#else
1387static inline void sched_update_tick_dependency(struct rq *rq) { }
1388#endif
1389
72465447 1390static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1391{
72465447
KT
1392 unsigned prev_nr = rq->nr_running;
1393
1394 rq->nr_running = prev_nr + count;
9f3660c2 1395
72465447 1396 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1397#ifdef CONFIG_SMP
1398 if (!rq->rd->overload)
1399 rq->rd->overload = true;
1400#endif
4486edd1 1401 }
76d92ac3
FW
1402
1403 sched_update_tick_dependency(rq);
029632fb
PZ
1404}
1405
72465447 1406static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1407{
72465447 1408 rq->nr_running -= count;
76d92ac3
FW
1409 /* Check if we still need preemption */
1410 sched_update_tick_dependency(rq);
029632fb
PZ
1411}
1412
265f22a9
FW
1413static inline void rq_last_tick_reset(struct rq *rq)
1414{
1415#ifdef CONFIG_NO_HZ_FULL
1416 rq->last_sched_tick = jiffies;
1417#endif
1418}
1419
029632fb
PZ
1420extern void update_rq_clock(struct rq *rq);
1421
1422extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1423extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1424
1425extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1426
1427extern const_debug unsigned int sysctl_sched_time_avg;
1428extern const_debug unsigned int sysctl_sched_nr_migrate;
1429extern const_debug unsigned int sysctl_sched_migration_cost;
1430
1431static inline u64 sched_avg_period(void)
1432{
1433 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1434}
1435
029632fb
PZ
1436#ifdef CONFIG_SCHED_HRTICK
1437
1438/*
1439 * Use hrtick when:
1440 * - enabled by features
1441 * - hrtimer is actually high res
1442 */
1443static inline int hrtick_enabled(struct rq *rq)
1444{
1445 if (!sched_feat(HRTICK))
1446 return 0;
1447 if (!cpu_active(cpu_of(rq)))
1448 return 0;
1449 return hrtimer_is_hres_active(&rq->hrtick_timer);
1450}
1451
1452void hrtick_start(struct rq *rq, u64 delay);
1453
b39e66ea
MG
1454#else
1455
1456static inline int hrtick_enabled(struct rq *rq)
1457{
1458 return 0;
1459}
1460
029632fb
PZ
1461#endif /* CONFIG_SCHED_HRTICK */
1462
1463#ifdef CONFIG_SMP
1464extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1465
1466#ifndef arch_scale_freq_capacity
1467static __always_inline
1468unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1469{
1470 return SCHED_CAPACITY_SCALE;
1471}
1472#endif
b5b4860d 1473
8cd5601c
MR
1474#ifndef arch_scale_cpu_capacity
1475static __always_inline
1476unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1477{
e3279a2e 1478 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1479 return sd->smt_gain / sd->span_weight;
1480
1481 return SCHED_CAPACITY_SCALE;
1482}
1483#endif
1484
029632fb
PZ
1485static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1486{
b5b4860d 1487 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1488 sched_avg_update(rq);
1489}
1490#else
1491static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1492static inline void sched_avg_update(struct rq *rq) { }
1493#endif
1494
eb580751
PZ
1495struct rq_flags {
1496 unsigned long flags;
e7904a28 1497 struct pin_cookie cookie;
eb580751
PZ
1498};
1499
1500struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1501 __acquires(rq->lock);
eb580751 1502struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1503 __acquires(p->pi_lock)
3e71a462 1504 __acquires(rq->lock);
3960c8c0 1505
eb580751 1506static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1507 __releases(rq->lock)
1508{
e7904a28 1509 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0
PZ
1510 raw_spin_unlock(&rq->lock);
1511}
1512
1513static inline void
eb580751 1514task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1515 __releases(rq->lock)
1516 __releases(p->pi_lock)
1517{
e7904a28 1518 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0 1519 raw_spin_unlock(&rq->lock);
eb580751 1520 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1521}
1522
029632fb
PZ
1523#ifdef CONFIG_SMP
1524#ifdef CONFIG_PREEMPT
1525
1526static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1527
1528/*
1529 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1530 * way at the expense of forcing extra atomic operations in all
1531 * invocations. This assures that the double_lock is acquired using the
1532 * same underlying policy as the spinlock_t on this architecture, which
1533 * reduces latency compared to the unfair variant below. However, it
1534 * also adds more overhead and therefore may reduce throughput.
1535 */
1536static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1537 __releases(this_rq->lock)
1538 __acquires(busiest->lock)
1539 __acquires(this_rq->lock)
1540{
1541 raw_spin_unlock(&this_rq->lock);
1542 double_rq_lock(this_rq, busiest);
1543
1544 return 1;
1545}
1546
1547#else
1548/*
1549 * Unfair double_lock_balance: Optimizes throughput at the expense of
1550 * latency by eliminating extra atomic operations when the locks are
1551 * already in proper order on entry. This favors lower cpu-ids and will
1552 * grant the double lock to lower cpus over higher ids under contention,
1553 * regardless of entry order into the function.
1554 */
1555static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1556 __releases(this_rq->lock)
1557 __acquires(busiest->lock)
1558 __acquires(this_rq->lock)
1559{
1560 int ret = 0;
1561
1562 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1563 if (busiest < this_rq) {
1564 raw_spin_unlock(&this_rq->lock);
1565 raw_spin_lock(&busiest->lock);
1566 raw_spin_lock_nested(&this_rq->lock,
1567 SINGLE_DEPTH_NESTING);
1568 ret = 1;
1569 } else
1570 raw_spin_lock_nested(&busiest->lock,
1571 SINGLE_DEPTH_NESTING);
1572 }
1573 return ret;
1574}
1575
1576#endif /* CONFIG_PREEMPT */
1577
1578/*
1579 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1580 */
1581static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1582{
1583 if (unlikely(!irqs_disabled())) {
1584 /* printk() doesn't work good under rq->lock */
1585 raw_spin_unlock(&this_rq->lock);
1586 BUG_ON(1);
1587 }
1588
1589 return _double_lock_balance(this_rq, busiest);
1590}
1591
1592static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1593 __releases(busiest->lock)
1594{
1595 raw_spin_unlock(&busiest->lock);
1596 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1597}
1598
74602315
PZ
1599static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1600{
1601 if (l1 > l2)
1602 swap(l1, l2);
1603
1604 spin_lock(l1);
1605 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1606}
1607
60e69eed
MG
1608static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1609{
1610 if (l1 > l2)
1611 swap(l1, l2);
1612
1613 spin_lock_irq(l1);
1614 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1615}
1616
74602315
PZ
1617static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1618{
1619 if (l1 > l2)
1620 swap(l1, l2);
1621
1622 raw_spin_lock(l1);
1623 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1624}
1625
029632fb
PZ
1626/*
1627 * double_rq_lock - safely lock two runqueues
1628 *
1629 * Note this does not disable interrupts like task_rq_lock,
1630 * you need to do so manually before calling.
1631 */
1632static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1633 __acquires(rq1->lock)
1634 __acquires(rq2->lock)
1635{
1636 BUG_ON(!irqs_disabled());
1637 if (rq1 == rq2) {
1638 raw_spin_lock(&rq1->lock);
1639 __acquire(rq2->lock); /* Fake it out ;) */
1640 } else {
1641 if (rq1 < rq2) {
1642 raw_spin_lock(&rq1->lock);
1643 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1644 } else {
1645 raw_spin_lock(&rq2->lock);
1646 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1647 }
1648 }
1649}
1650
1651/*
1652 * double_rq_unlock - safely unlock two runqueues
1653 *
1654 * Note this does not restore interrupts like task_rq_unlock,
1655 * you need to do so manually after calling.
1656 */
1657static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1658 __releases(rq1->lock)
1659 __releases(rq2->lock)
1660{
1661 raw_spin_unlock(&rq1->lock);
1662 if (rq1 != rq2)
1663 raw_spin_unlock(&rq2->lock);
1664 else
1665 __release(rq2->lock);
1666}
1667
1668#else /* CONFIG_SMP */
1669
1670/*
1671 * double_rq_lock - safely lock two runqueues
1672 *
1673 * Note this does not disable interrupts like task_rq_lock,
1674 * you need to do so manually before calling.
1675 */
1676static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1677 __acquires(rq1->lock)
1678 __acquires(rq2->lock)
1679{
1680 BUG_ON(!irqs_disabled());
1681 BUG_ON(rq1 != rq2);
1682 raw_spin_lock(&rq1->lock);
1683 __acquire(rq2->lock); /* Fake it out ;) */
1684}
1685
1686/*
1687 * double_rq_unlock - safely unlock two runqueues
1688 *
1689 * Note this does not restore interrupts like task_rq_unlock,
1690 * you need to do so manually after calling.
1691 */
1692static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1693 __releases(rq1->lock)
1694 __releases(rq2->lock)
1695{
1696 BUG_ON(rq1 != rq2);
1697 raw_spin_unlock(&rq1->lock);
1698 __release(rq2->lock);
1699}
1700
1701#endif
1702
1703extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1704extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1705
1706#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1707extern void print_cfs_stats(struct seq_file *m, int cpu);
1708extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1709extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1710extern void
1711print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1712
1713#ifdef CONFIG_NUMA_BALANCING
1714extern void
1715show_numa_stats(struct task_struct *p, struct seq_file *m);
1716extern void
1717print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1718 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1719#endif /* CONFIG_NUMA_BALANCING */
1720#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1721
1722extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1723extern void init_rt_rq(struct rt_rq *rt_rq);
1724extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1725
1ee14e6c
BS
1726extern void cfs_bandwidth_usage_inc(void);
1727extern void cfs_bandwidth_usage_dec(void);
1c792db7 1728
3451d024 1729#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1730enum rq_nohz_flag_bits {
1731 NOHZ_TICK_STOPPED,
1732 NOHZ_BALANCE_KICK,
1733};
1734
1735#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1736
1737extern void nohz_balance_exit_idle(unsigned int cpu);
1738#else
1739static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1740#endif
73fbec60
FW
1741
1742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf
FW
1743struct irqtime {
1744 u64 hardirq_time;
1745 u64 softirq_time;
1746 u64 irq_start_time;
1747 struct u64_stats_sync sync;
1748};
73fbec60 1749
19d23dbf 1750DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60
FW
1751
1752static inline u64 irq_time_read(int cpu)
1753{
19d23dbf
FW
1754 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
1755 unsigned int seq;
1756 u64 total;
73fbec60
FW
1757
1758 do {
19d23dbf
FW
1759 seq = __u64_stats_fetch_begin(&irqtime->sync);
1760 total = irqtime->softirq_time + irqtime->hardirq_time;
1761 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 1762
19d23dbf 1763 return total;
73fbec60 1764}
73fbec60 1765#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1766
1767#ifdef CONFIG_CPU_FREQ
1768DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1769
1770/**
1771 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 1772 * @rq: Runqueue to carry out the update for.
58919e83 1773 * @flags: Update reason flags.
adaf9fcd 1774 *
58919e83
RW
1775 * This function is called by the scheduler on the CPU whose utilization is
1776 * being updated.
adaf9fcd
RW
1777 *
1778 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
1779 *
1780 * The way cpufreq is currently arranged requires it to evaluate the CPU
1781 * performance state (frequency/voltage) on a regular basis to prevent it from
1782 * being stuck in a completely inadequate performance level for too long.
1783 * That is not guaranteed to happen if the updates are only triggered from CFS,
1784 * though, because they may not be coming in if RT or deadline tasks are active
1785 * all the time (or there are RT and DL tasks only).
1786 *
1787 * As a workaround for that issue, this function is called by the RT and DL
1788 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1789 * but that really is a band-aid. Going forward it should be replaced with
1790 * solutions targeted more specifically at RT and DL tasks.
1791 */
12bde33d 1792static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 1793{
58919e83
RW
1794 struct update_util_data *data;
1795
1796 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1797 if (data)
12bde33d
RW
1798 data->func(data, rq_clock(rq), flags);
1799}
1800
1801static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1802{
1803 if (cpu_of(rq) == smp_processor_id())
1804 cpufreq_update_util(rq, flags);
adaf9fcd
RW
1805}
1806#else
12bde33d
RW
1807static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1808static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
adaf9fcd 1809#endif /* CONFIG_CPU_FREQ */
be53f58f 1810
9bdcb44e
RW
1811#ifdef arch_scale_freq_capacity
1812#ifndef arch_scale_freq_invariant
1813#define arch_scale_freq_invariant() (true)
1814#endif
1815#else /* arch_scale_freq_capacity */
1816#define arch_scale_freq_invariant() (false)
1817#endif