]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/sched.h
rcu: Use DEFINE_PER_CPU_SHARED_ALIGNED for rcu_data
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7 16struct rq;
442bf3aa 17struct cpuidle_state;
45ceebf7 18
da0c1e65
KT
19/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
cca26e80 21#define TASK_ON_RQ_MIGRATING 2
da0c1e65 22
029632fb
PZ
23extern __read_mostly int scheduler_running;
24
45ceebf7
PG
25extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
029632fb
PZ
31/*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
cc1f4b1f
LZ
36/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
029632fb
PZ
61#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
332ac17e
DF
64/*
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
029632fb
PZ
71/*
72 * These are the 'tuning knobs' of the scheduler:
029632fb 73 */
029632fb
PZ
74
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
d50dde5a
DF
80static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
029632fb
PZ
85static inline int rt_policy(int policy)
86{
d50dde5a 87 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
88}
89
aab03e05
DF
90static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
029632fb
PZ
95static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
aab03e05
DF
100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
332ac17e 105static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
332ac17e
DF
113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
029632fb
PZ
119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
a5e7be3b
JL
134
135void __dl_clear_params(struct task_struct *p);
136
332ac17e
DF
137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
1724813d 169 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
029632fb
PZ
179extern struct mutex sched_domains_mutex;
180
181#ifdef CONFIG_CGROUP_SCHED
182
183#include <linux/cgroup.h>
184
185struct cfs_rq;
186struct rt_rq;
187
35cf4e50 188extern struct list_head task_groups;
029632fb
PZ
189
190struct cfs_bandwidth {
191#ifdef CONFIG_CFS_BANDWIDTH
192 raw_spinlock_t lock;
193 ktime_t period;
194 u64 quota, runtime;
9c58c79a 195 s64 hierarchical_quota;
029632fb
PZ
196 u64 runtime_expires;
197
198 int idle, timer_active;
199 struct hrtimer period_timer, slack_timer;
200 struct list_head throttled_cfs_rq;
201
202 /* statistics */
203 int nr_periods, nr_throttled;
204 u64 throttled_time;
205#endif
206};
207
208/* task group related information */
209struct task_group {
210 struct cgroup_subsys_state css;
211
212#ifdef CONFIG_FAIR_GROUP_SCHED
213 /* schedulable entities of this group on each cpu */
214 struct sched_entity **se;
215 /* runqueue "owned" by this group on each cpu */
216 struct cfs_rq **cfs_rq;
217 unsigned long shares;
218
fa6bddeb 219#ifdef CONFIG_SMP
bf5b986e 220 atomic_long_t load_avg;
bb17f655 221 atomic_t runnable_avg;
029632fb 222#endif
fa6bddeb 223#endif
029632fb
PZ
224
225#ifdef CONFIG_RT_GROUP_SCHED
226 struct sched_rt_entity **rt_se;
227 struct rt_rq **rt_rq;
228
229 struct rt_bandwidth rt_bandwidth;
230#endif
231
232 struct rcu_head rcu;
233 struct list_head list;
234
235 struct task_group *parent;
236 struct list_head siblings;
237 struct list_head children;
238
239#ifdef CONFIG_SCHED_AUTOGROUP
240 struct autogroup *autogroup;
241#endif
242
243 struct cfs_bandwidth cfs_bandwidth;
244};
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
248
249/*
250 * A weight of 0 or 1 can cause arithmetics problems.
251 * A weight of a cfs_rq is the sum of weights of which entities
252 * are queued on this cfs_rq, so a weight of a entity should not be
253 * too large, so as the shares value of a task group.
254 * (The default weight is 1024 - so there's no practical
255 * limitation from this.)
256 */
257#define MIN_SHARES (1UL << 1)
258#define MAX_SHARES (1UL << 18)
259#endif
260
029632fb
PZ
261typedef int (*tg_visitor)(struct task_group *, void *);
262
263extern int walk_tg_tree_from(struct task_group *from,
264 tg_visitor down, tg_visitor up, void *data);
265
266/*
267 * Iterate the full tree, calling @down when first entering a node and @up when
268 * leaving it for the final time.
269 *
270 * Caller must hold rcu_lock or sufficient equivalent.
271 */
272static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
273{
274 return walk_tg_tree_from(&root_task_group, down, up, data);
275}
276
277extern int tg_nop(struct task_group *tg, void *data);
278
279extern void free_fair_sched_group(struct task_group *tg);
280extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
281extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
282extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
283 struct sched_entity *se, int cpu,
284 struct sched_entity *parent);
285extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
286extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
287
288extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 289extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
290extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
291
292extern void free_rt_sched_group(struct task_group *tg);
293extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
294extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
295 struct sched_rt_entity *rt_se, int cpu,
296 struct sched_rt_entity *parent);
297
25cc7da7
LZ
298extern struct task_group *sched_create_group(struct task_group *parent);
299extern void sched_online_group(struct task_group *tg,
300 struct task_group *parent);
301extern void sched_destroy_group(struct task_group *tg);
302extern void sched_offline_group(struct task_group *tg);
303
304extern void sched_move_task(struct task_struct *tsk);
305
306#ifdef CONFIG_FAIR_GROUP_SCHED
307extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
308#endif
309
029632fb
PZ
310#else /* CONFIG_CGROUP_SCHED */
311
312struct cfs_bandwidth { };
313
314#endif /* CONFIG_CGROUP_SCHED */
315
316/* CFS-related fields in a runqueue */
317struct cfs_rq {
318 struct load_weight load;
c82513e5 319 unsigned int nr_running, h_nr_running;
029632fb
PZ
320
321 u64 exec_clock;
322 u64 min_vruntime;
323#ifndef CONFIG_64BIT
324 u64 min_vruntime_copy;
325#endif
326
327 struct rb_root tasks_timeline;
328 struct rb_node *rb_leftmost;
329
029632fb
PZ
330 /*
331 * 'curr' points to currently running entity on this cfs_rq.
332 * It is set to NULL otherwise (i.e when none are currently running).
333 */
334 struct sched_entity *curr, *next, *last, *skip;
335
336#ifdef CONFIG_SCHED_DEBUG
337 unsigned int nr_spread_over;
338#endif
339
2dac754e
PT
340#ifdef CONFIG_SMP
341 /*
342 * CFS Load tracking
343 * Under CFS, load is tracked on a per-entity basis and aggregated up.
344 * This allows for the description of both thread and group usage (in
345 * the FAIR_GROUP_SCHED case).
346 */
72a4cf20 347 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 348 atomic64_t decay_counter;
9ee474f5 349 u64 last_decay;
2509940f 350 atomic_long_t removed_load;
141965c7 351
c566e8e9 352#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 353 /* Required to track per-cpu representation of a task_group */
bb17f655 354 u32 tg_runnable_contrib;
bf5b986e 355 unsigned long tg_load_contrib;
82958366
PT
356
357 /*
358 * h_load = weight * f(tg)
359 *
360 * Where f(tg) is the recursive weight fraction assigned to
361 * this group.
362 */
363 unsigned long h_load;
68520796
VD
364 u64 last_h_load_update;
365 struct sched_entity *h_load_next;
366#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
367#endif /* CONFIG_SMP */
368
029632fb
PZ
369#ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 int on_list;
381 struct list_head leaf_cfs_rq_list;
382 struct task_group *tg; /* group that "owns" this runqueue */
383
029632fb
PZ
384#ifdef CONFIG_CFS_BANDWIDTH
385 int runtime_enabled;
386 u64 runtime_expires;
387 s64 runtime_remaining;
388
f1b17280
PT
389 u64 throttled_clock, throttled_clock_task;
390 u64 throttled_clock_task_time;
029632fb
PZ
391 int throttled, throttle_count;
392 struct list_head throttled_list;
393#endif /* CONFIG_CFS_BANDWIDTH */
394#endif /* CONFIG_FAIR_GROUP_SCHED */
395};
396
397static inline int rt_bandwidth_enabled(void)
398{
399 return sysctl_sched_rt_runtime >= 0;
400}
401
402/* Real-Time classes' related field in a runqueue: */
403struct rt_rq {
404 struct rt_prio_array active;
c82513e5 405 unsigned int rt_nr_running;
029632fb
PZ
406#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
407 struct {
408 int curr; /* highest queued rt task prio */
409#ifdef CONFIG_SMP
410 int next; /* next highest */
411#endif
412 } highest_prio;
413#endif
414#ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 unsigned long rt_nr_total;
417 int overloaded;
418 struct plist_head pushable_tasks;
419#endif
f4ebcbc0
KT
420 int rt_queued;
421
029632fb
PZ
422 int rt_throttled;
423 u64 rt_time;
424 u64 rt_runtime;
425 /* Nests inside the rq lock: */
426 raw_spinlock_t rt_runtime_lock;
427
428#ifdef CONFIG_RT_GROUP_SCHED
429 unsigned long rt_nr_boosted;
430
431 struct rq *rq;
029632fb
PZ
432 struct task_group *tg;
433#endif
434};
435
aab03e05
DF
436/* Deadline class' related fields in a runqueue */
437struct dl_rq {
438 /* runqueue is an rbtree, ordered by deadline */
439 struct rb_root rb_root;
440 struct rb_node *rb_leftmost;
441
442 unsigned long dl_nr_running;
1baca4ce
JL
443
444#ifdef CONFIG_SMP
445 /*
446 * Deadline values of the currently executing and the
447 * earliest ready task on this rq. Caching these facilitates
448 * the decision wether or not a ready but not running task
449 * should migrate somewhere else.
450 */
451 struct {
452 u64 curr;
453 u64 next;
454 } earliest_dl;
455
456 unsigned long dl_nr_migratory;
1baca4ce
JL
457 int overloaded;
458
459 /*
460 * Tasks on this rq that can be pushed away. They are kept in
461 * an rb-tree, ordered by tasks' deadlines, with caching
462 * of the leftmost (earliest deadline) element.
463 */
464 struct rb_root pushable_dl_tasks_root;
465 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
466#else
467 struct dl_bw dl_bw;
1baca4ce 468#endif
aab03e05
DF
469};
470
029632fb
PZ
471#ifdef CONFIG_SMP
472
473/*
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
480 */
481struct root_domain {
482 atomic_t refcount;
483 atomic_t rto_count;
484 struct rcu_head rcu;
485 cpumask_var_t span;
486 cpumask_var_t online;
487
4486edd1
TC
488 /* Indicate more than one runnable task for any CPU */
489 bool overload;
490
1baca4ce
JL
491 /*
492 * The bit corresponding to a CPU gets set here if such CPU has more
493 * than one runnable -deadline task (as it is below for RT tasks).
494 */
495 cpumask_var_t dlo_mask;
496 atomic_t dlo_count;
332ac17e 497 struct dl_bw dl_bw;
6bfd6d72 498 struct cpudl cpudl;
1baca4ce 499
029632fb
PZ
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 struct cpupri cpupri;
506};
507
508extern struct root_domain def_root_domain;
509
510#endif /* CONFIG_SMP */
511
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519struct rq {
520 /* runqueue lock: */
521 raw_spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
c82513e5 527 unsigned int nr_running;
0ec8aa00
PZ
528#ifdef CONFIG_NUMA_BALANCING
529 unsigned int nr_numa_running;
530 unsigned int nr_preferred_running;
531#endif
029632fb
PZ
532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534 unsigned long last_load_update_tick;
3451d024 535#ifdef CONFIG_NO_HZ_COMMON
029632fb 536 u64 nohz_stamp;
1c792db7 537 unsigned long nohz_flags;
265f22a9
FW
538#endif
539#ifdef CONFIG_NO_HZ_FULL
540 unsigned long last_sched_tick;
029632fb
PZ
541#endif
542 int skip_clock_update;
543
544 /* capture load from *all* tasks on this cpu: */
545 struct load_weight load;
546 unsigned long nr_load_updates;
547 u64 nr_switches;
548
549 struct cfs_rq cfs;
550 struct rt_rq rt;
aab03e05 551 struct dl_rq dl;
029632fb
PZ
552
553#ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
556
557 struct sched_avg avg;
a35b6466
PZ
558#endif /* CONFIG_FAIR_GROUP_SCHED */
559
029632fb
PZ
560 /*
561 * This is part of a global counter where only the total sum
562 * over all CPUs matters. A task can increase this counter on
563 * one CPU and if it got migrated afterwards it may decrease
564 * it on another CPU. Always updated under the runqueue lock:
565 */
566 unsigned long nr_uninterruptible;
567
568 struct task_struct *curr, *idle, *stop;
569 unsigned long next_balance;
570 struct mm_struct *prev_mm;
571
572 u64 clock;
573 u64 clock_task;
574
575 atomic_t nr_iowait;
576
577#ifdef CONFIG_SMP
578 struct root_domain *rd;
579 struct sched_domain *sd;
580
ced549fa 581 unsigned long cpu_capacity;
029632fb
PZ
582
583 unsigned char idle_balance;
584 /* For active balancing */
585 int post_schedule;
586 int active_balance;
587 int push_cpu;
588 struct cpu_stop_work active_balance_work;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
367456c7
PZ
593 struct list_head cfs_tasks;
594
029632fb
PZ
595 u64 rt_avg;
596 u64 age_stamp;
597 u64 idle_stamp;
598 u64 avg_idle;
9bd721c5
JL
599
600 /* This is used to determine avg_idle's max value */
601 u64 max_idle_balance_cost;
029632fb
PZ
602#endif
603
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 u64 prev_irq_time;
606#endif
607#ifdef CONFIG_PARAVIRT
608 u64 prev_steal_time;
609#endif
610#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
611 u64 prev_steal_time_rq;
612#endif
613
614 /* calc_load related fields */
615 unsigned long calc_load_update;
616 long calc_load_active;
617
618#ifdef CONFIG_SCHED_HRTICK
619#ifdef CONFIG_SMP
620 int hrtick_csd_pending;
621 struct call_single_data hrtick_csd;
622#endif
623 struct hrtimer hrtick_timer;
624#endif
625
626#ifdef CONFIG_SCHEDSTATS
627 /* latency stats */
628 struct sched_info rq_sched_info;
629 unsigned long long rq_cpu_time;
630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
631
632 /* sys_sched_yield() stats */
633 unsigned int yld_count;
634
635 /* schedule() stats */
029632fb
PZ
636 unsigned int sched_count;
637 unsigned int sched_goidle;
638
639 /* try_to_wake_up() stats */
640 unsigned int ttwu_count;
641 unsigned int ttwu_local;
642#endif
643
644#ifdef CONFIG_SMP
645 struct llist_head wake_list;
646#endif
442bf3aa
DL
647
648#ifdef CONFIG_CPU_IDLE
649 /* Must be inspected within a rcu lock section */
650 struct cpuidle_state *idle_state;
651#endif
029632fb
PZ
652};
653
654static inline int cpu_of(struct rq *rq)
655{
656#ifdef CONFIG_SMP
657 return rq->cpu;
658#else
659 return 0;
660#endif
661}
662
8b06c55b 663DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 664
518cd623 665#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 666#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
667#define task_rq(p) cpu_rq(task_cpu(p))
668#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 669#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 670
78becc27
FW
671static inline u64 rq_clock(struct rq *rq)
672{
673 return rq->clock;
674}
675
676static inline u64 rq_clock_task(struct rq *rq)
677{
678 return rq->clock_task;
679}
680
f809ca9a 681#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 682extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 683extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 684extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
685#endif /* CONFIG_NUMA_BALANCING */
686
518cd623
PZ
687#ifdef CONFIG_SMP
688
e3baac47
PZ
689extern void sched_ttwu_pending(void);
690
029632fb
PZ
691#define rcu_dereference_check_sched_domain(p) \
692 rcu_dereference_check((p), \
693 lockdep_is_held(&sched_domains_mutex))
694
695/*
696 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
697 * See detach_destroy_domains: synchronize_sched for details.
698 *
699 * The domain tree of any CPU may only be accessed from within
700 * preempt-disabled sections.
701 */
702#define for_each_domain(cpu, __sd) \
518cd623
PZ
703 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
704 __sd; __sd = __sd->parent)
029632fb 705
77e81365
SS
706#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
707
518cd623
PZ
708/**
709 * highest_flag_domain - Return highest sched_domain containing flag.
710 * @cpu: The cpu whose highest level of sched domain is to
711 * be returned.
712 * @flag: The flag to check for the highest sched_domain
713 * for the given cpu.
714 *
715 * Returns the highest sched_domain of a cpu which contains the given flag.
716 */
717static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
718{
719 struct sched_domain *sd, *hsd = NULL;
720
721 for_each_domain(cpu, sd) {
722 if (!(sd->flags & flag))
723 break;
724 hsd = sd;
725 }
726
727 return hsd;
728}
729
fb13c7ee
MG
730static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
731{
732 struct sched_domain *sd;
733
734 for_each_domain(cpu, sd) {
735 if (sd->flags & flag)
736 break;
737 }
738
739 return sd;
740}
741
518cd623 742DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 743DECLARE_PER_CPU(int, sd_llc_size);
518cd623 744DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 745DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
746DECLARE_PER_CPU(struct sched_domain *, sd_busy);
747DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 748
63b2ca30 749struct sched_group_capacity {
5e6521ea
LZ
750 atomic_t ref;
751 /*
63b2ca30
NP
752 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
753 * for a single CPU.
5e6521ea 754 */
63b2ca30 755 unsigned int capacity, capacity_orig;
5e6521ea 756 unsigned long next_update;
63b2ca30 757 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
758 /*
759 * Number of busy cpus in this group.
760 */
761 atomic_t nr_busy_cpus;
762
763 unsigned long cpumask[0]; /* iteration mask */
764};
765
766struct sched_group {
767 struct sched_group *next; /* Must be a circular list */
768 atomic_t ref;
769
770 unsigned int group_weight;
63b2ca30 771 struct sched_group_capacity *sgc;
5e6521ea
LZ
772
773 /*
774 * The CPUs this group covers.
775 *
776 * NOTE: this field is variable length. (Allocated dynamically
777 * by attaching extra space to the end of the structure,
778 * depending on how many CPUs the kernel has booted up with)
779 */
780 unsigned long cpumask[0];
781};
782
783static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
784{
785 return to_cpumask(sg->cpumask);
786}
787
788/*
789 * cpumask masking which cpus in the group are allowed to iterate up the domain
790 * tree.
791 */
792static inline struct cpumask *sched_group_mask(struct sched_group *sg)
793{
63b2ca30 794 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
795}
796
797/**
798 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
799 * @group: The group whose first cpu is to be returned.
800 */
801static inline unsigned int group_first_cpu(struct sched_group *group)
802{
803 return cpumask_first(sched_group_cpus(group));
804}
805
c1174876
PZ
806extern int group_balance_cpu(struct sched_group *sg);
807
e3baac47
PZ
808#else
809
810static inline void sched_ttwu_pending(void) { }
811
518cd623 812#endif /* CONFIG_SMP */
029632fb 813
391e43da
PZ
814#include "stats.h"
815#include "auto_group.h"
029632fb
PZ
816
817#ifdef CONFIG_CGROUP_SCHED
818
819/*
820 * Return the group to which this tasks belongs.
821 *
8af01f56
TH
822 * We cannot use task_css() and friends because the cgroup subsystem
823 * changes that value before the cgroup_subsys::attach() method is called,
824 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
825 *
826 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
827 * core changes this before calling sched_move_task().
828 *
829 * Instead we use a 'copy' which is updated from sched_move_task() while
830 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
831 */
832static inline struct task_group *task_group(struct task_struct *p)
833{
8323f26c 834 return p->sched_task_group;
029632fb
PZ
835}
836
837/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
838static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
839{
840#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
841 struct task_group *tg = task_group(p);
842#endif
843
844#ifdef CONFIG_FAIR_GROUP_SCHED
845 p->se.cfs_rq = tg->cfs_rq[cpu];
846 p->se.parent = tg->se[cpu];
847#endif
848
849#ifdef CONFIG_RT_GROUP_SCHED
850 p->rt.rt_rq = tg->rt_rq[cpu];
851 p->rt.parent = tg->rt_se[cpu];
852#endif
853}
854
855#else /* CONFIG_CGROUP_SCHED */
856
857static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
858static inline struct task_group *task_group(struct task_struct *p)
859{
860 return NULL;
861}
862
863#endif /* CONFIG_CGROUP_SCHED */
864
865static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
866{
867 set_task_rq(p, cpu);
868#ifdef CONFIG_SMP
869 /*
870 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
871 * successfuly executed on another CPU. We must ensure that updates of
872 * per-task data have been completed by this moment.
873 */
874 smp_wmb();
875 task_thread_info(p)->cpu = cpu;
ac66f547 876 p->wake_cpu = cpu;
029632fb
PZ
877#endif
878}
879
880/*
881 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
882 */
883#ifdef CONFIG_SCHED_DEBUG
c5905afb 884# include <linux/static_key.h>
029632fb
PZ
885# define const_debug __read_mostly
886#else
887# define const_debug const
888#endif
889
890extern const_debug unsigned int sysctl_sched_features;
891
892#define SCHED_FEAT(name, enabled) \
893 __SCHED_FEAT_##name ,
894
895enum {
391e43da 896#include "features.h"
f8b6d1cc 897 __SCHED_FEAT_NR,
029632fb
PZ
898};
899
900#undef SCHED_FEAT
901
f8b6d1cc 902#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 903#define SCHED_FEAT(name, enabled) \
c5905afb 904static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 905{ \
6e76ea8a 906 return static_key_##enabled(key); \
f8b6d1cc
PZ
907}
908
909#include "features.h"
910
911#undef SCHED_FEAT
912
c5905afb 913extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
914#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
915#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 916#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 917#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 918
cbee9f88
PZ
919#ifdef CONFIG_NUMA_BALANCING
920#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
921#ifdef CONFIG_SCHED_DEBUG
922#define numabalancing_enabled sched_feat_numa(NUMA)
923#else
924extern bool numabalancing_enabled;
925#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
926#else
927#define sched_feat_numa(x) (0)
3105b86a
MG
928#define numabalancing_enabled (0)
929#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 930
029632fb
PZ
931static inline u64 global_rt_period(void)
932{
933 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
934}
935
936static inline u64 global_rt_runtime(void)
937{
938 if (sysctl_sched_rt_runtime < 0)
939 return RUNTIME_INF;
940
941 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
942}
943
029632fb
PZ
944static inline int task_current(struct rq *rq, struct task_struct *p)
945{
946 return rq->curr == p;
947}
948
949static inline int task_running(struct rq *rq, struct task_struct *p)
950{
951#ifdef CONFIG_SMP
952 return p->on_cpu;
953#else
954 return task_current(rq, p);
955#endif
956}
957
da0c1e65
KT
958static inline int task_on_rq_queued(struct task_struct *p)
959{
960 return p->on_rq == TASK_ON_RQ_QUEUED;
961}
029632fb 962
cca26e80
KT
963static inline int task_on_rq_migrating(struct task_struct *p)
964{
965 return p->on_rq == TASK_ON_RQ_MIGRATING;
966}
967
029632fb
PZ
968#ifndef prepare_arch_switch
969# define prepare_arch_switch(next) do { } while (0)
970#endif
971#ifndef finish_arch_switch
972# define finish_arch_switch(prev) do { } while (0)
973#endif
01f23e16
CM
974#ifndef finish_arch_post_lock_switch
975# define finish_arch_post_lock_switch() do { } while (0)
976#endif
029632fb 977
029632fb
PZ
978static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
979{
980#ifdef CONFIG_SMP
981 /*
982 * We can optimise this out completely for !SMP, because the
983 * SMP rebalancing from interrupt is the only thing that cares
984 * here.
985 */
986 next->on_cpu = 1;
987#endif
988}
989
990static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
991{
992#ifdef CONFIG_SMP
993 /*
994 * After ->on_cpu is cleared, the task can be moved to a different CPU.
995 * We must ensure this doesn't happen until the switch is completely
996 * finished.
997 */
998 smp_wmb();
999 prev->on_cpu = 0;
1000#endif
1001#ifdef CONFIG_DEBUG_SPINLOCK
1002 /* this is a valid case when another task releases the spinlock */
1003 rq->lock.owner = current;
1004#endif
1005 /*
1006 * If we are tracking spinlock dependencies then we have to
1007 * fix up the runqueue lock - which gets 'carried over' from
1008 * prev into current:
1009 */
1010 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1011
1012 raw_spin_unlock_irq(&rq->lock);
1013}
1014
b13095f0
LZ
1015/*
1016 * wake flags
1017 */
1018#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1019#define WF_FORK 0x02 /* child wakeup after fork */
1020#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1021
029632fb
PZ
1022/*
1023 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1024 * of tasks with abnormal "nice" values across CPUs the contribution that
1025 * each task makes to its run queue's load is weighted according to its
1026 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1027 * scaled version of the new time slice allocation that they receive on time
1028 * slice expiry etc.
1029 */
1030
1031#define WEIGHT_IDLEPRIO 3
1032#define WMULT_IDLEPRIO 1431655765
1033
1034/*
1035 * Nice levels are multiplicative, with a gentle 10% change for every
1036 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1037 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1038 * that remained on nice 0.
1039 *
1040 * The "10% effect" is relative and cumulative: from _any_ nice level,
1041 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1042 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1043 * If a task goes up by ~10% and another task goes down by ~10% then
1044 * the relative distance between them is ~25%.)
1045 */
1046static const int prio_to_weight[40] = {
1047 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1048 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1049 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1050 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1051 /* 0 */ 1024, 820, 655, 526, 423,
1052 /* 5 */ 335, 272, 215, 172, 137,
1053 /* 10 */ 110, 87, 70, 56, 45,
1054 /* 15 */ 36, 29, 23, 18, 15,
1055};
1056
1057/*
1058 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1059 *
1060 * In cases where the weight does not change often, we can use the
1061 * precalculated inverse to speed up arithmetics by turning divisions
1062 * into multiplications:
1063 */
1064static const u32 prio_to_wmult[40] = {
1065 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1066 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1067 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1068 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1069 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1070 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1071 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1072 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1073};
1074
c82ba9fa
LZ
1075#define ENQUEUE_WAKEUP 1
1076#define ENQUEUE_HEAD 2
1077#ifdef CONFIG_SMP
1078#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1079#else
1080#define ENQUEUE_WAKING 0
1081#endif
aab03e05 1082#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1083
1084#define DEQUEUE_SLEEP 1
1085
37e117c0
PZ
1086#define RETRY_TASK ((void *)-1UL)
1087
c82ba9fa
LZ
1088struct sched_class {
1089 const struct sched_class *next;
1090
1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1093 void (*yield_task) (struct rq *rq);
1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1095
1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1097
606dba2e
PZ
1098 /*
1099 * It is the responsibility of the pick_next_task() method that will
1100 * return the next task to call put_prev_task() on the @prev task or
1101 * something equivalent.
37e117c0
PZ
1102 *
1103 * May return RETRY_TASK when it finds a higher prio class has runnable
1104 * tasks.
606dba2e
PZ
1105 */
1106 struct task_struct * (*pick_next_task) (struct rq *rq,
1107 struct task_struct *prev);
c82ba9fa
LZ
1108 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1109
1110#ifdef CONFIG_SMP
ac66f547 1111 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1112 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1113
c82ba9fa
LZ
1114 void (*post_schedule) (struct rq *this_rq);
1115 void (*task_waking) (struct task_struct *task);
1116 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1117
1118 void (*set_cpus_allowed)(struct task_struct *p,
1119 const struct cpumask *newmask);
1120
1121 void (*rq_online)(struct rq *rq);
1122 void (*rq_offline)(struct rq *rq);
1123#endif
1124
1125 void (*set_curr_task) (struct rq *rq);
1126 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1127 void (*task_fork) (struct task_struct *p);
e6c390f2 1128 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1129
1130 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1131 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1132 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1133 int oldprio);
1134
1135 unsigned int (*get_rr_interval) (struct rq *rq,
1136 struct task_struct *task);
1137
1138#ifdef CONFIG_FAIR_GROUP_SCHED
1139 void (*task_move_group) (struct task_struct *p, int on_rq);
1140#endif
1141};
029632fb 1142
3f1d2a31
PZ
1143static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1144{
1145 prev->sched_class->put_prev_task(rq, prev);
1146}
1147
029632fb
PZ
1148#define sched_class_highest (&stop_sched_class)
1149#define for_each_class(class) \
1150 for (class = sched_class_highest; class; class = class->next)
1151
1152extern const struct sched_class stop_sched_class;
aab03e05 1153extern const struct sched_class dl_sched_class;
029632fb
PZ
1154extern const struct sched_class rt_sched_class;
1155extern const struct sched_class fair_sched_class;
1156extern const struct sched_class idle_sched_class;
1157
1158
1159#ifdef CONFIG_SMP
1160
63b2ca30 1161extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1162
7caff66f 1163extern void trigger_load_balance(struct rq *rq);
029632fb 1164
642dbc39
VG
1165extern void idle_enter_fair(struct rq *this_rq);
1166extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1167
dc877341
PZ
1168#else
1169
1170static inline void idle_enter_fair(struct rq *rq) { }
1171static inline void idle_exit_fair(struct rq *rq) { }
1172
029632fb
PZ
1173#endif
1174
442bf3aa
DL
1175#ifdef CONFIG_CPU_IDLE
1176static inline void idle_set_state(struct rq *rq,
1177 struct cpuidle_state *idle_state)
1178{
1179 rq->idle_state = idle_state;
1180}
1181
1182static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1183{
1184 WARN_ON(!rcu_read_lock_held());
1185 return rq->idle_state;
1186}
1187#else
1188static inline void idle_set_state(struct rq *rq,
1189 struct cpuidle_state *idle_state)
1190{
1191}
1192
1193static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1194{
1195 return NULL;
1196}
1197#endif
1198
029632fb
PZ
1199extern void sysrq_sched_debug_show(void);
1200extern void sched_init_granularity(void);
1201extern void update_max_interval(void);
1baca4ce
JL
1202
1203extern void init_sched_dl_class(void);
029632fb
PZ
1204extern void init_sched_rt_class(void);
1205extern void init_sched_fair_class(void);
332ac17e 1206extern void init_sched_dl_class(void);
029632fb 1207
8875125e 1208extern void resched_curr(struct rq *rq);
029632fb
PZ
1209extern void resched_cpu(int cpu);
1210
1211extern struct rt_bandwidth def_rt_bandwidth;
1212extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1213
332ac17e
DF
1214extern struct dl_bandwidth def_dl_bandwidth;
1215extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1216extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1217
332ac17e
DF
1218unsigned long to_ratio(u64 period, u64 runtime);
1219
556061b0 1220extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1221
a75cdaa9
AS
1222extern void init_task_runnable_average(struct task_struct *p);
1223
72465447 1224static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1225{
72465447
KT
1226 unsigned prev_nr = rq->nr_running;
1227
1228 rq->nr_running = prev_nr + count;
9f3660c2 1229
72465447 1230 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1231#ifdef CONFIG_SMP
1232 if (!rq->rd->overload)
1233 rq->rd->overload = true;
1234#endif
1235
1236#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1237 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1238 /*
1239 * Tick is needed if more than one task runs on a CPU.
1240 * Send the target an IPI to kick it out of nohz mode.
1241 *
1242 * We assume that IPI implies full memory barrier and the
1243 * new value of rq->nr_running is visible on reception
1244 * from the target.
1245 */
fd2ac4f4 1246 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1247 }
9f3660c2 1248#endif
4486edd1 1249 }
029632fb
PZ
1250}
1251
72465447 1252static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1253{
72465447 1254 rq->nr_running -= count;
029632fb
PZ
1255}
1256
265f22a9
FW
1257static inline void rq_last_tick_reset(struct rq *rq)
1258{
1259#ifdef CONFIG_NO_HZ_FULL
1260 rq->last_sched_tick = jiffies;
1261#endif
1262}
1263
029632fb
PZ
1264extern void update_rq_clock(struct rq *rq);
1265
1266extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1267extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1268
1269extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1270
1271extern const_debug unsigned int sysctl_sched_time_avg;
1272extern const_debug unsigned int sysctl_sched_nr_migrate;
1273extern const_debug unsigned int sysctl_sched_migration_cost;
1274
1275static inline u64 sched_avg_period(void)
1276{
1277 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1278}
1279
029632fb
PZ
1280#ifdef CONFIG_SCHED_HRTICK
1281
1282/*
1283 * Use hrtick when:
1284 * - enabled by features
1285 * - hrtimer is actually high res
1286 */
1287static inline int hrtick_enabled(struct rq *rq)
1288{
1289 if (!sched_feat(HRTICK))
1290 return 0;
1291 if (!cpu_active(cpu_of(rq)))
1292 return 0;
1293 return hrtimer_is_hres_active(&rq->hrtick_timer);
1294}
1295
1296void hrtick_start(struct rq *rq, u64 delay);
1297
b39e66ea
MG
1298#else
1299
1300static inline int hrtick_enabled(struct rq *rq)
1301{
1302 return 0;
1303}
1304
029632fb
PZ
1305#endif /* CONFIG_SCHED_HRTICK */
1306
1307#ifdef CONFIG_SMP
1308extern void sched_avg_update(struct rq *rq);
1309static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1310{
1311 rq->rt_avg += rt_delta;
1312 sched_avg_update(rq);
1313}
1314#else
1315static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1316static inline void sched_avg_update(struct rq *rq) { }
1317#endif
1318
1319extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1320
1321#ifdef CONFIG_SMP
1322#ifdef CONFIG_PREEMPT
1323
1324static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1325
1326/*
1327 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1328 * way at the expense of forcing extra atomic operations in all
1329 * invocations. This assures that the double_lock is acquired using the
1330 * same underlying policy as the spinlock_t on this architecture, which
1331 * reduces latency compared to the unfair variant below. However, it
1332 * also adds more overhead and therefore may reduce throughput.
1333 */
1334static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1335 __releases(this_rq->lock)
1336 __acquires(busiest->lock)
1337 __acquires(this_rq->lock)
1338{
1339 raw_spin_unlock(&this_rq->lock);
1340 double_rq_lock(this_rq, busiest);
1341
1342 return 1;
1343}
1344
1345#else
1346/*
1347 * Unfair double_lock_balance: Optimizes throughput at the expense of
1348 * latency by eliminating extra atomic operations when the locks are
1349 * already in proper order on entry. This favors lower cpu-ids and will
1350 * grant the double lock to lower cpus over higher ids under contention,
1351 * regardless of entry order into the function.
1352 */
1353static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1354 __releases(this_rq->lock)
1355 __acquires(busiest->lock)
1356 __acquires(this_rq->lock)
1357{
1358 int ret = 0;
1359
1360 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1361 if (busiest < this_rq) {
1362 raw_spin_unlock(&this_rq->lock);
1363 raw_spin_lock(&busiest->lock);
1364 raw_spin_lock_nested(&this_rq->lock,
1365 SINGLE_DEPTH_NESTING);
1366 ret = 1;
1367 } else
1368 raw_spin_lock_nested(&busiest->lock,
1369 SINGLE_DEPTH_NESTING);
1370 }
1371 return ret;
1372}
1373
1374#endif /* CONFIG_PREEMPT */
1375
1376/*
1377 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1378 */
1379static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1380{
1381 if (unlikely(!irqs_disabled())) {
1382 /* printk() doesn't work good under rq->lock */
1383 raw_spin_unlock(&this_rq->lock);
1384 BUG_ON(1);
1385 }
1386
1387 return _double_lock_balance(this_rq, busiest);
1388}
1389
1390static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1391 __releases(busiest->lock)
1392{
1393 raw_spin_unlock(&busiest->lock);
1394 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1395}
1396
74602315
PZ
1397static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1398{
1399 if (l1 > l2)
1400 swap(l1, l2);
1401
1402 spin_lock(l1);
1403 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404}
1405
60e69eed
MG
1406static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1407{
1408 if (l1 > l2)
1409 swap(l1, l2);
1410
1411 spin_lock_irq(l1);
1412 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1413}
1414
74602315
PZ
1415static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1416{
1417 if (l1 > l2)
1418 swap(l1, l2);
1419
1420 raw_spin_lock(l1);
1421 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1422}
1423
029632fb
PZ
1424/*
1425 * double_rq_lock - safely lock two runqueues
1426 *
1427 * Note this does not disable interrupts like task_rq_lock,
1428 * you need to do so manually before calling.
1429 */
1430static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1431 __acquires(rq1->lock)
1432 __acquires(rq2->lock)
1433{
1434 BUG_ON(!irqs_disabled());
1435 if (rq1 == rq2) {
1436 raw_spin_lock(&rq1->lock);
1437 __acquire(rq2->lock); /* Fake it out ;) */
1438 } else {
1439 if (rq1 < rq2) {
1440 raw_spin_lock(&rq1->lock);
1441 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1442 } else {
1443 raw_spin_lock(&rq2->lock);
1444 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1445 }
1446 }
1447}
1448
1449/*
1450 * double_rq_unlock - safely unlock two runqueues
1451 *
1452 * Note this does not restore interrupts like task_rq_unlock,
1453 * you need to do so manually after calling.
1454 */
1455static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1456 __releases(rq1->lock)
1457 __releases(rq2->lock)
1458{
1459 raw_spin_unlock(&rq1->lock);
1460 if (rq1 != rq2)
1461 raw_spin_unlock(&rq2->lock);
1462 else
1463 __release(rq2->lock);
1464}
1465
1466#else /* CONFIG_SMP */
1467
1468/*
1469 * double_rq_lock - safely lock two runqueues
1470 *
1471 * Note this does not disable interrupts like task_rq_lock,
1472 * you need to do so manually before calling.
1473 */
1474static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1475 __acquires(rq1->lock)
1476 __acquires(rq2->lock)
1477{
1478 BUG_ON(!irqs_disabled());
1479 BUG_ON(rq1 != rq2);
1480 raw_spin_lock(&rq1->lock);
1481 __acquire(rq2->lock); /* Fake it out ;) */
1482}
1483
1484/*
1485 * double_rq_unlock - safely unlock two runqueues
1486 *
1487 * Note this does not restore interrupts like task_rq_unlock,
1488 * you need to do so manually after calling.
1489 */
1490static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1491 __releases(rq1->lock)
1492 __releases(rq2->lock)
1493{
1494 BUG_ON(rq1 != rq2);
1495 raw_spin_unlock(&rq1->lock);
1496 __release(rq2->lock);
1497}
1498
1499#endif
1500
1501extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1502extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1503extern void print_cfs_stats(struct seq_file *m, int cpu);
1504extern void print_rt_stats(struct seq_file *m, int cpu);
1505
1506extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1507extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1508extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1509
1ee14e6c
BS
1510extern void cfs_bandwidth_usage_inc(void);
1511extern void cfs_bandwidth_usage_dec(void);
1c792db7 1512
3451d024 1513#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1514enum rq_nohz_flag_bits {
1515 NOHZ_TICK_STOPPED,
1516 NOHZ_BALANCE_KICK,
1517};
1518
1519#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1520#endif
73fbec60
FW
1521
1522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1523
1524DECLARE_PER_CPU(u64, cpu_hardirq_time);
1525DECLARE_PER_CPU(u64, cpu_softirq_time);
1526
1527#ifndef CONFIG_64BIT
1528DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1529
1530static inline void irq_time_write_begin(void)
1531{
1532 __this_cpu_inc(irq_time_seq.sequence);
1533 smp_wmb();
1534}
1535
1536static inline void irq_time_write_end(void)
1537{
1538 smp_wmb();
1539 __this_cpu_inc(irq_time_seq.sequence);
1540}
1541
1542static inline u64 irq_time_read(int cpu)
1543{
1544 u64 irq_time;
1545 unsigned seq;
1546
1547 do {
1548 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1549 irq_time = per_cpu(cpu_softirq_time, cpu) +
1550 per_cpu(cpu_hardirq_time, cpu);
1551 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1552
1553 return irq_time;
1554}
1555#else /* CONFIG_64BIT */
1556static inline void irq_time_write_begin(void)
1557{
1558}
1559
1560static inline void irq_time_write_end(void)
1561{
1562}
1563
1564static inline u64 irq_time_read(int cpu)
1565{
1566 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1567}
1568#endif /* CONFIG_64BIT */
1569#endif /* CONFIG_IRQ_TIME_ACCOUNTING */