]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/sched.h
Merge tag 'mailbox-v5.9' of git://git.linaro.org/landing-teams/working/fujitsu/integr...
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
85c2ce91 70#include <asm-generic/vmlinux.lds.h>
029632fb 71
7fce777c 72#ifdef CONFIG_PARAVIRT
325ea10c 73# include <asm/paravirt.h>
7fce777c
IM
74#endif
75
391e43da 76#include "cpupri.h"
6bfd6d72 77#include "cpudeadline.h"
029632fb 78
9d246053
PA
79#include <trace/events/sched.h>
80
9148a3a1 81#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 82# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 83#else
6d3aed3d 84# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
85#endif
86
45ceebf7 87struct rq;
442bf3aa 88struct cpuidle_state;
45ceebf7 89
da0c1e65
KT
90/* task_struct::on_rq states: */
91#define TASK_ON_RQ_QUEUED 1
cca26e80 92#define TASK_ON_RQ_MIGRATING 2
da0c1e65 93
029632fb
PZ
94extern __read_mostly int scheduler_running;
95
45ceebf7
PG
96extern unsigned long calc_load_update;
97extern atomic_long_t calc_load_tasks;
98
3289bdb4 99extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 100extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 101
9d246053 102extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
029632fb
PZ
103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
cc1f4b1f
LZ
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
2159197d 118 *
97fb7a0a
IM
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 121 */
2159197d 122#ifdef CONFIG_64BIT
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
125# define scale_load_down(w) \
126({ \
127 unsigned long __w = (w); \
128 if (__w) \
129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 __w; \
131})
cc1f4b1f 132#else
172895e6 133# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
134# define scale_load(w) (w)
135# define scale_load_down(w) (w)
136#endif
137
6ecdd749 138/*
172895e6
YD
139 * Task weight (visible to users) and its load (invisible to users) have
140 * independent resolution, but they should be well calibrated. We use
141 * scale_load() and scale_load_down(w) to convert between them. The
142 * following must be true:
143 *
144 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
145 *
6ecdd749 146 */
172895e6 147#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 148
332ac17e
DF
149/*
150 * Single value that decides SCHED_DEADLINE internal math precision.
151 * 10 -> just above 1us
152 * 9 -> just above 0.5us
153 */
97fb7a0a 154#define DL_SCALE 10
029632fb
PZ
155
156/*
97fb7a0a 157 * Single value that denotes runtime == period, ie unlimited time.
029632fb 158 */
97fb7a0a 159#define RUNTIME_INF ((u64)~0ULL)
029632fb 160
20f9cd2a
HA
161static inline int idle_policy(int policy)
162{
163 return policy == SCHED_IDLE;
164}
d50dde5a
DF
165static inline int fair_policy(int policy)
166{
167 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168}
169
029632fb
PZ
170static inline int rt_policy(int policy)
171{
d50dde5a 172 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
173}
174
aab03e05
DF
175static inline int dl_policy(int policy)
176{
177 return policy == SCHED_DEADLINE;
178}
20f9cd2a
HA
179static inline bool valid_policy(int policy)
180{
181 return idle_policy(policy) || fair_policy(policy) ||
182 rt_policy(policy) || dl_policy(policy);
183}
aab03e05 184
1da1843f
VK
185static inline int task_has_idle_policy(struct task_struct *p)
186{
187 return idle_policy(p->policy);
188}
189
029632fb
PZ
190static inline int task_has_rt_policy(struct task_struct *p)
191{
192 return rt_policy(p->policy);
193}
194
aab03e05
DF
195static inline int task_has_dl_policy(struct task_struct *p)
196{
197 return dl_policy(p->policy);
198}
199
07881166
JL
200#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201
d76343c6
VS
202static inline void update_avg(u64 *avg, u64 sample)
203{
204 s64 diff = sample - *avg;
205 *avg += diff / 8;
206}
207
794a56eb
JL
208/*
209 * !! For sched_setattr_nocheck() (kernel) only !!
210 *
211 * This is actually gross. :(
212 *
213 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
214 * tasks, but still be able to sleep. We need this on platforms that cannot
215 * atomically change clock frequency. Remove once fast switching will be
216 * available on such platforms.
217 *
218 * SUGOV stands for SchedUtil GOVernor.
219 */
220#define SCHED_FLAG_SUGOV 0x10000000
221
222static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
223{
224#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
225 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
226#else
227 return false;
228#endif
229}
230
2d3d891d
DF
231/*
232 * Tells if entity @a should preempt entity @b.
233 */
332ac17e
DF
234static inline bool
235dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 236{
794a56eb
JL
237 return dl_entity_is_special(a) ||
238 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
239}
240
029632fb
PZ
241/*
242 * This is the priority-queue data structure of the RT scheduling class:
243 */
244struct rt_prio_array {
245 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
246 struct list_head queue[MAX_RT_PRIO];
247};
248
249struct rt_bandwidth {
250 /* nests inside the rq lock: */
251 raw_spinlock_t rt_runtime_lock;
252 ktime_t rt_period;
253 u64 rt_runtime;
254 struct hrtimer rt_period_timer;
4cfafd30 255 unsigned int rt_period_active;
029632fb 256};
a5e7be3b
JL
257
258void __dl_clear_params(struct task_struct *p);
259
332ac17e
DF
260/*
261 * To keep the bandwidth of -deadline tasks and groups under control
262 * we need some place where:
263 * - store the maximum -deadline bandwidth of the system (the group);
264 * - cache the fraction of that bandwidth that is currently allocated.
265 *
266 * This is all done in the data structure below. It is similar to the
267 * one used for RT-throttling (rt_bandwidth), with the main difference
268 * that, since here we are only interested in admission control, we
269 * do not decrease any runtime while the group "executes", neither we
270 * need a timer to replenish it.
271 *
272 * With respect to SMP, the bandwidth is given on a per-CPU basis,
273 * meaning that:
274 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
275 * - dl_total_bw array contains, in the i-eth element, the currently
276 * allocated bandwidth on the i-eth CPU.
277 * Moreover, groups consume bandwidth on each CPU, while tasks only
278 * consume bandwidth on the CPU they're running on.
279 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
280 * that will be shown the next time the proc or cgroup controls will
281 * be red. It on its turn can be changed by writing on its own
282 * control.
283 */
284struct dl_bandwidth {
97fb7a0a
IM
285 raw_spinlock_t dl_runtime_lock;
286 u64 dl_runtime;
287 u64 dl_period;
332ac17e
DF
288};
289
290static inline int dl_bandwidth_enabled(void)
291{
1724813d 292 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
293}
294
332ac17e 295struct dl_bw {
97fb7a0a
IM
296 raw_spinlock_t lock;
297 u64 bw;
298 u64 total_bw;
332ac17e
DF
299};
300
daec5798
LA
301static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
302
7f51412a 303static inline
8c0944ce 304void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
305{
306 dl_b->total_bw -= tsk_bw;
daec5798 307 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
308}
309
310static inline
daec5798 311void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
312{
313 dl_b->total_bw += tsk_bw;
daec5798 314 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
315}
316
60ffd5ed
LA
317static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
318 u64 old_bw, u64 new_bw)
7f51412a
JL
319{
320 return dl_b->bw != -1 &&
60ffd5ed 321 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
7f51412a
JL
322}
323
b4118988
LA
324/*
325 * Verify the fitness of task @p to run on @cpu taking into account the
326 * CPU original capacity and the runtime/deadline ratio of the task.
327 *
328 * The function will return true if the CPU original capacity of the
329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330 * task and false otherwise.
331 */
332static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333{
334 unsigned long cap = arch_scale_cpu_capacity(cpu);
335
336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337}
338
f2cb1360 339extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 340extern int sched_dl_global_validate(void);
06a76fe0 341extern void sched_dl_do_global(void);
97fb7a0a 342extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
343extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 346extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
347extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
348extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 349extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
350
351#ifdef CONFIG_CGROUP_SCHED
352
353#include <linux/cgroup.h>
eb414681 354#include <linux/psi.h>
029632fb
PZ
355
356struct cfs_rq;
357struct rt_rq;
358
35cf4e50 359extern struct list_head task_groups;
029632fb
PZ
360
361struct cfs_bandwidth {
362#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
363 raw_spinlock_t lock;
364 ktime_t period;
365 u64 quota;
366 u64 runtime;
367 s64 hierarchical_quota;
97fb7a0a 368
66567fcb 369 u8 idle;
370 u8 period_active;
66567fcb 371 u8 slack_started;
97fb7a0a
IM
372 struct hrtimer period_timer;
373 struct hrtimer slack_timer;
374 struct list_head throttled_cfs_rq;
375
376 /* Statistics: */
377 int nr_periods;
378 int nr_throttled;
379 u64 throttled_time;
029632fb
PZ
380#endif
381};
382
97fb7a0a 383/* Task group related information */
029632fb
PZ
384struct task_group {
385 struct cgroup_subsys_state css;
386
387#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
388 /* schedulable entities of this group on each CPU */
389 struct sched_entity **se;
390 /* runqueue "owned" by this group on each CPU */
391 struct cfs_rq **cfs_rq;
392 unsigned long shares;
029632fb 393
fa6bddeb 394#ifdef CONFIG_SMP
b0367629
WL
395 /*
396 * load_avg can be heavily contended at clock tick time, so put
397 * it in its own cacheline separated from the fields above which
398 * will also be accessed at each tick.
399 */
97fb7a0a 400 atomic_long_t load_avg ____cacheline_aligned;
029632fb 401#endif
fa6bddeb 402#endif
029632fb
PZ
403
404#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
405 struct sched_rt_entity **rt_se;
406 struct rt_rq **rt_rq;
029632fb 407
97fb7a0a 408 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
409#endif
410
97fb7a0a
IM
411 struct rcu_head rcu;
412 struct list_head list;
029632fb 413
97fb7a0a
IM
414 struct task_group *parent;
415 struct list_head siblings;
416 struct list_head children;
029632fb
PZ
417
418#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 419 struct autogroup *autogroup;
029632fb
PZ
420#endif
421
97fb7a0a 422 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
423
424#ifdef CONFIG_UCLAMP_TASK_GROUP
425 /* The two decimal precision [%] value requested from user-space */
426 unsigned int uclamp_pct[UCLAMP_CNT];
427 /* Clamp values requested for a task group */
428 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
429 /* Effective clamp values used for a task group */
430 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
431#endif
432
029632fb
PZ
433};
434
435#ifdef CONFIG_FAIR_GROUP_SCHED
436#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
437
438/*
439 * A weight of 0 or 1 can cause arithmetics problems.
440 * A weight of a cfs_rq is the sum of weights of which entities
441 * are queued on this cfs_rq, so a weight of a entity should not be
442 * too large, so as the shares value of a task group.
443 * (The default weight is 1024 - so there's no practical
444 * limitation from this.)
445 */
97fb7a0a
IM
446#define MIN_SHARES (1UL << 1)
447#define MAX_SHARES (1UL << 18)
029632fb
PZ
448#endif
449
029632fb
PZ
450typedef int (*tg_visitor)(struct task_group *, void *);
451
452extern int walk_tg_tree_from(struct task_group *from,
453 tg_visitor down, tg_visitor up, void *data);
454
455/*
456 * Iterate the full tree, calling @down when first entering a node and @up when
457 * leaving it for the final time.
458 *
459 * Caller must hold rcu_lock or sufficient equivalent.
460 */
461static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
462{
463 return walk_tg_tree_from(&root_task_group, down, up, data);
464}
465
466extern int tg_nop(struct task_group *tg, void *data);
467
468extern void free_fair_sched_group(struct task_group *tg);
469extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 470extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 471extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
472extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
473 struct sched_entity *se, int cpu,
474 struct sched_entity *parent);
475extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
476
477extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 478extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
479extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
480
481extern void free_rt_sched_group(struct task_group *tg);
482extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
483extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
484 struct sched_rt_entity *rt_se, int cpu,
485 struct sched_rt_entity *parent);
8887cd99
NP
486extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
487extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
488extern long sched_group_rt_runtime(struct task_group *tg);
489extern long sched_group_rt_period(struct task_group *tg);
490extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 491
25cc7da7
LZ
492extern struct task_group *sched_create_group(struct task_group *parent);
493extern void sched_online_group(struct task_group *tg,
494 struct task_group *parent);
495extern void sched_destroy_group(struct task_group *tg);
496extern void sched_offline_group(struct task_group *tg);
497
498extern void sched_move_task(struct task_struct *tsk);
499
500#ifdef CONFIG_FAIR_GROUP_SCHED
501extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
502
503#ifdef CONFIG_SMP
504extern void set_task_rq_fair(struct sched_entity *se,
505 struct cfs_rq *prev, struct cfs_rq *next);
506#else /* !CONFIG_SMP */
507static inline void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next) { }
509#endif /* CONFIG_SMP */
510#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 511
029632fb
PZ
512#else /* CONFIG_CGROUP_SCHED */
513
514struct cfs_bandwidth { };
515
516#endif /* CONFIG_CGROUP_SCHED */
517
518/* CFS-related fields in a runqueue */
519struct cfs_rq {
97fb7a0a 520 struct load_weight load;
97fb7a0a 521 unsigned int nr_running;
43e9f7f2
VK
522 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
523 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 524
97fb7a0a
IM
525 u64 exec_clock;
526 u64 min_vruntime;
029632fb 527#ifndef CONFIG_64BIT
97fb7a0a 528 u64 min_vruntime_copy;
029632fb
PZ
529#endif
530
97fb7a0a 531 struct rb_root_cached tasks_timeline;
029632fb 532
029632fb
PZ
533 /*
534 * 'curr' points to currently running entity on this cfs_rq.
535 * It is set to NULL otherwise (i.e when none are currently running).
536 */
97fb7a0a
IM
537 struct sched_entity *curr;
538 struct sched_entity *next;
539 struct sched_entity *last;
540 struct sched_entity *skip;
029632fb
PZ
541
542#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 543 unsigned int nr_spread_over;
029632fb
PZ
544#endif
545
2dac754e
PT
546#ifdef CONFIG_SMP
547 /*
9d89c257 548 * CFS load tracking
2dac754e 549 */
97fb7a0a 550 struct sched_avg avg;
2a2f5d4e 551#ifndef CONFIG_64BIT
97fb7a0a 552 u64 load_last_update_time_copy;
9d89c257 553#endif
2a2f5d4e
PZ
554 struct {
555 raw_spinlock_t lock ____cacheline_aligned;
556 int nr;
557 unsigned long load_avg;
558 unsigned long util_avg;
9f683953 559 unsigned long runnable_avg;
2a2f5d4e 560 } removed;
82958366 561
9d89c257 562#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
563 unsigned long tg_load_avg_contrib;
564 long propagate;
565 long prop_runnable_sum;
0e2d2aaa 566
82958366
PT
567 /*
568 * h_load = weight * f(tg)
569 *
570 * Where f(tg) is the recursive weight fraction assigned to
571 * this group.
572 */
97fb7a0a
IM
573 unsigned long h_load;
574 u64 last_h_load_update;
575 struct sched_entity *h_load_next;
68520796 576#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
577#endif /* CONFIG_SMP */
578
029632fb 579#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 580 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
581
582 /*
583 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
584 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
585 * (like users, containers etc.)
586 *
97fb7a0a
IM
587 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
588 * This list is used during load balance.
029632fb 589 */
97fb7a0a
IM
590 int on_list;
591 struct list_head leaf_cfs_rq_list;
592 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 593
029632fb 594#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 595 int runtime_enabled;
97fb7a0a
IM
596 s64 runtime_remaining;
597
598 u64 throttled_clock;
599 u64 throttled_clock_task;
600 u64 throttled_clock_task_time;
601 int throttled;
602 int throttle_count;
603 struct list_head throttled_list;
029632fb
PZ
604#endif /* CONFIG_CFS_BANDWIDTH */
605#endif /* CONFIG_FAIR_GROUP_SCHED */
606};
607
608static inline int rt_bandwidth_enabled(void)
609{
610 return sysctl_sched_rt_runtime >= 0;
611}
612
b6366f04 613/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 614#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
615# define HAVE_RT_PUSH_IPI
616#endif
617
029632fb
PZ
618/* Real-Time classes' related field in a runqueue: */
619struct rt_rq {
97fb7a0a
IM
620 struct rt_prio_array active;
621 unsigned int rt_nr_running;
622 unsigned int rr_nr_running;
029632fb
PZ
623#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
624 struct {
97fb7a0a 625 int curr; /* highest queued rt task prio */
029632fb 626#ifdef CONFIG_SMP
97fb7a0a 627 int next; /* next highest */
029632fb
PZ
628#endif
629 } highest_prio;
630#endif
631#ifdef CONFIG_SMP
97fb7a0a
IM
632 unsigned long rt_nr_migratory;
633 unsigned long rt_nr_total;
634 int overloaded;
635 struct plist_head pushable_tasks;
371bf427 636
b6366f04 637#endif /* CONFIG_SMP */
97fb7a0a 638 int rt_queued;
f4ebcbc0 639
97fb7a0a
IM
640 int rt_throttled;
641 u64 rt_time;
642 u64 rt_runtime;
029632fb 643 /* Nests inside the rq lock: */
97fb7a0a 644 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
645
646#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 647 unsigned long rt_nr_boosted;
029632fb 648
97fb7a0a
IM
649 struct rq *rq;
650 struct task_group *tg;
029632fb
PZ
651#endif
652};
653
296b2ffe
VG
654static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
655{
656 return rt_rq->rt_queued && rt_rq->rt_nr_running;
657}
658
aab03e05
DF
659/* Deadline class' related fields in a runqueue */
660struct dl_rq {
661 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 662 struct rb_root_cached root;
aab03e05 663
97fb7a0a 664 unsigned long dl_nr_running;
1baca4ce
JL
665
666#ifdef CONFIG_SMP
667 /*
668 * Deadline values of the currently executing and the
669 * earliest ready task on this rq. Caching these facilitates
dfcb245e 670 * the decision whether or not a ready but not running task
1baca4ce
JL
671 * should migrate somewhere else.
672 */
673 struct {
97fb7a0a
IM
674 u64 curr;
675 u64 next;
1baca4ce
JL
676 } earliest_dl;
677
97fb7a0a
IM
678 unsigned long dl_nr_migratory;
679 int overloaded;
1baca4ce
JL
680
681 /*
682 * Tasks on this rq that can be pushed away. They are kept in
683 * an rb-tree, ordered by tasks' deadlines, with caching
684 * of the leftmost (earliest deadline) element.
685 */
97fb7a0a 686 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 687#else
97fb7a0a 688 struct dl_bw dl_bw;
1baca4ce 689#endif
e36d8677
LA
690 /*
691 * "Active utilization" for this runqueue: increased when a
692 * task wakes up (becomes TASK_RUNNING) and decreased when a
693 * task blocks
694 */
97fb7a0a 695 u64 running_bw;
4da3abce 696
8fd27231
LA
697 /*
698 * Utilization of the tasks "assigned" to this runqueue (including
699 * the tasks that are in runqueue and the tasks that executed on this
700 * CPU and blocked). Increased when a task moves to this runqueue, and
701 * decreased when the task moves away (migrates, changes scheduling
702 * policy, or terminates).
703 * This is needed to compute the "inactive utilization" for the
704 * runqueue (inactive utilization = this_bw - running_bw).
705 */
97fb7a0a
IM
706 u64 this_bw;
707 u64 extra_bw;
8fd27231 708
4da3abce
LA
709 /*
710 * Inverse of the fraction of CPU utilization that can be reclaimed
711 * by the GRUB algorithm.
712 */
97fb7a0a 713 u64 bw_ratio;
aab03e05
DF
714};
715
c0796298
VG
716#ifdef CONFIG_FAIR_GROUP_SCHED
717/* An entity is a task if it doesn't "own" a runqueue */
718#define entity_is_task(se) (!se->my_q)
0dacee1b 719
9f683953
VG
720static inline void se_update_runnable(struct sched_entity *se)
721{
722 if (!entity_is_task(se))
723 se->runnable_weight = se->my_q->h_nr_running;
724}
725
726static inline long se_runnable(struct sched_entity *se)
727{
728 if (entity_is_task(se))
729 return !!se->on_rq;
730 else
731 return se->runnable_weight;
732}
733
c0796298
VG
734#else
735#define entity_is_task(se) 1
0dacee1b 736
9f683953
VG
737static inline void se_update_runnable(struct sched_entity *se) {}
738
739static inline long se_runnable(struct sched_entity *se)
740{
741 return !!se->on_rq;
742}
c0796298
VG
743#endif
744
029632fb 745#ifdef CONFIG_SMP
c0796298
VG
746/*
747 * XXX we want to get rid of these helpers and use the full load resolution.
748 */
749static inline long se_weight(struct sched_entity *se)
750{
751 return scale_load_down(se->load.weight);
752}
753
029632fb 754
afe06efd
TC
755static inline bool sched_asym_prefer(int a, int b)
756{
757 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
758}
759
6aa140fa
QP
760struct perf_domain {
761 struct em_perf_domain *em_pd;
762 struct perf_domain *next;
763 struct rcu_head rcu;
764};
765
630246a0
QP
766/* Scheduling group status flags */
767#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 768#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 769
029632fb
PZ
770/*
771 * We add the notion of a root-domain which will be used to define per-domain
772 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
774 * exclusive cpuset is created, we also create and attach a new root-domain
775 * object.
776 *
777 */
778struct root_domain {
97fb7a0a
IM
779 atomic_t refcount;
780 atomic_t rto_count;
781 struct rcu_head rcu;
782 cpumask_var_t span;
783 cpumask_var_t online;
029632fb 784
757ffdd7
VS
785 /*
786 * Indicate pullable load on at least one CPU, e.g:
787 * - More than one runnable task
788 * - Running task is misfit
789 */
575638d1 790 int overload;
4486edd1 791
2802bf3c
MR
792 /* Indicate one or more cpus over-utilized (tipping point) */
793 int overutilized;
794
1baca4ce
JL
795 /*
796 * The bit corresponding to a CPU gets set here if such CPU has more
797 * than one runnable -deadline task (as it is below for RT tasks).
798 */
97fb7a0a
IM
799 cpumask_var_t dlo_mask;
800 atomic_t dlo_count;
801 struct dl_bw dl_bw;
802 struct cpudl cpudl;
1baca4ce 803
4bdced5c
SRRH
804#ifdef HAVE_RT_PUSH_IPI
805 /*
806 * For IPI pull requests, loop across the rto_mask.
807 */
97fb7a0a
IM
808 struct irq_work rto_push_work;
809 raw_spinlock_t rto_lock;
4bdced5c 810 /* These are only updated and read within rto_lock */
97fb7a0a
IM
811 int rto_loop;
812 int rto_cpu;
4bdced5c 813 /* These atomics are updated outside of a lock */
97fb7a0a
IM
814 atomic_t rto_loop_next;
815 atomic_t rto_loop_start;
4bdced5c 816#endif
029632fb
PZ
817 /*
818 * The "RT overload" flag: it gets set if a CPU has more than
819 * one runnable RT task.
820 */
97fb7a0a
IM
821 cpumask_var_t rto_mask;
822 struct cpupri cpupri;
cd92bfd3 823
97fb7a0a 824 unsigned long max_cpu_capacity;
6aa140fa
QP
825
826 /*
827 * NULL-terminated list of performance domains intersecting with the
828 * CPUs of the rd. Protected by RCU.
829 */
7ba7319f 830 struct perf_domain __rcu *pd;
029632fb
PZ
831};
832
f2cb1360 833extern void init_defrootdomain(void);
8d5dc512 834extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 835extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
836extern void sched_get_rd(struct root_domain *rd);
837extern void sched_put_rd(struct root_domain *rd);
029632fb 838
4bdced5c
SRRH
839#ifdef HAVE_RT_PUSH_IPI
840extern void rto_push_irq_work_func(struct irq_work *work);
841#endif
029632fb
PZ
842#endif /* CONFIG_SMP */
843
69842cba
PB
844#ifdef CONFIG_UCLAMP_TASK
845/*
846 * struct uclamp_bucket - Utilization clamp bucket
847 * @value: utilization clamp value for tasks on this clamp bucket
848 * @tasks: number of RUNNABLE tasks on this clamp bucket
849 *
850 * Keep track of how many tasks are RUNNABLE for a given utilization
851 * clamp value.
852 */
853struct uclamp_bucket {
854 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
855 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
856};
857
858/*
859 * struct uclamp_rq - rq's utilization clamp
860 * @value: currently active clamp values for a rq
861 * @bucket: utilization clamp buckets affecting a rq
862 *
863 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
864 * A clamp value is affecting a rq when there is at least one task RUNNABLE
865 * (or actually running) with that value.
866 *
867 * There are up to UCLAMP_CNT possible different clamp values, currently there
868 * are only two: minimum utilization and maximum utilization.
869 *
870 * All utilization clamping values are MAX aggregated, since:
871 * - for util_min: we want to run the CPU at least at the max of the minimum
872 * utilization required by its currently RUNNABLE tasks.
873 * - for util_max: we want to allow the CPU to run up to the max of the
874 * maximum utilization allowed by its currently RUNNABLE tasks.
875 *
876 * Since on each system we expect only a limited number of different
877 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
878 * the metrics required to compute all the per-rq utilization clamp values.
879 */
880struct uclamp_rq {
881 unsigned int value;
882 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
883};
46609ce2
QY
884
885DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
886#endif /* CONFIG_UCLAMP_TASK */
887
029632fb
PZ
888/*
889 * This is the main, per-CPU runqueue data structure.
890 *
891 * Locking rule: those places that want to lock multiple runqueues
892 * (such as the load balancing or the thread migration code), lock
893 * acquire operations must be ordered by ascending &runqueue.
894 */
895struct rq {
896 /* runqueue lock: */
97fb7a0a 897 raw_spinlock_t lock;
029632fb
PZ
898
899 /*
900 * nr_running and cpu_load should be in the same cacheline because
901 * remote CPUs use both these fields when doing load calculation.
902 */
97fb7a0a 903 unsigned int nr_running;
0ec8aa00 904#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
905 unsigned int nr_numa_running;
906 unsigned int nr_preferred_running;
a4739eca 907 unsigned int numa_migrate_on;
0ec8aa00 908#endif
3451d024 909#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 910#ifdef CONFIG_SMP
e022e0d3 911 unsigned long last_blocked_load_update_tick;
f643ea22 912 unsigned int has_blocked_load;
90b5363a 913 call_single_data_t nohz_csd;
9fd81dd5 914#endif /* CONFIG_SMP */
00357f5e 915 unsigned int nohz_tick_stopped;
90b5363a 916 atomic_t nohz_flags;
9fd81dd5 917#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 918
126c2092
PZ
919#ifdef CONFIG_SMP
920 unsigned int ttwu_pending;
921#endif
97fb7a0a 922 u64 nr_switches;
029632fb 923
69842cba
PB
924#ifdef CONFIG_UCLAMP_TASK
925 /* Utilization clamp values based on CPU's RUNNABLE tasks */
926 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
927 unsigned int uclamp_flags;
928#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
929#endif
930
97fb7a0a
IM
931 struct cfs_rq cfs;
932 struct rt_rq rt;
933 struct dl_rq dl;
029632fb
PZ
934
935#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
936 /* list of leaf cfs_rq on this CPU: */
937 struct list_head leaf_cfs_rq_list;
938 struct list_head *tmp_alone_branch;
a35b6466
PZ
939#endif /* CONFIG_FAIR_GROUP_SCHED */
940
029632fb
PZ
941 /*
942 * This is part of a global counter where only the total sum
943 * over all CPUs matters. A task can increase this counter on
944 * one CPU and if it got migrated afterwards it may decrease
945 * it on another CPU. Always updated under the runqueue lock:
946 */
97fb7a0a 947 unsigned long nr_uninterruptible;
029632fb 948
4104a562 949 struct task_struct __rcu *curr;
97fb7a0a
IM
950 struct task_struct *idle;
951 struct task_struct *stop;
952 unsigned long next_balance;
953 struct mm_struct *prev_mm;
029632fb 954
97fb7a0a
IM
955 unsigned int clock_update_flags;
956 u64 clock;
23127296
VG
957 /* Ensure that all clocks are in the same cache line */
958 u64 clock_task ____cacheline_aligned;
959 u64 clock_pelt;
960 unsigned long lost_idle_time;
029632fb 961
97fb7a0a 962 atomic_t nr_iowait;
029632fb 963
227a4aad
MD
964#ifdef CONFIG_MEMBARRIER
965 int membarrier_state;
966#endif
967
029632fb 968#ifdef CONFIG_SMP
994aeb7a
JFG
969 struct root_domain *rd;
970 struct sched_domain __rcu *sd;
97fb7a0a
IM
971
972 unsigned long cpu_capacity;
973 unsigned long cpu_capacity_orig;
029632fb 974
97fb7a0a 975 struct callback_head *balance_callback;
029632fb 976
19a1f5ec 977 unsigned char nohz_idle_balance;
97fb7a0a 978 unsigned char idle_balance;
e3fca9e7 979
3b1baa64
MR
980 unsigned long misfit_task_load;
981
029632fb 982 /* For active balancing */
97fb7a0a
IM
983 int active_balance;
984 int push_cpu;
985 struct cpu_stop_work active_balance_work;
986
987 /* CPU of this runqueue: */
988 int cpu;
989 int online;
029632fb 990
367456c7
PZ
991 struct list_head cfs_tasks;
992
371bf427 993 struct sched_avg avg_rt;
3727e0e1 994 struct sched_avg avg_dl;
11d4afd4 995#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 996 struct sched_avg avg_irq;
76504793
TG
997#endif
998#ifdef CONFIG_SCHED_THERMAL_PRESSURE
999 struct sched_avg avg_thermal;
91c27493 1000#endif
97fb7a0a
IM
1001 u64 idle_stamp;
1002 u64 avg_idle;
9bd721c5
JL
1003
1004 /* This is used to determine avg_idle's max value */
97fb7a0a 1005 u64 max_idle_balance_cost;
90b5363a 1006#endif /* CONFIG_SMP */
029632fb
PZ
1007
1008#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1009 u64 prev_irq_time;
029632fb
PZ
1010#endif
1011#ifdef CONFIG_PARAVIRT
97fb7a0a 1012 u64 prev_steal_time;
029632fb
PZ
1013#endif
1014#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1015 u64 prev_steal_time_rq;
029632fb
PZ
1016#endif
1017
1018 /* calc_load related fields */
97fb7a0a
IM
1019 unsigned long calc_load_update;
1020 long calc_load_active;
029632fb
PZ
1021
1022#ifdef CONFIG_SCHED_HRTICK
1023#ifdef CONFIG_SMP
97fb7a0a 1024 call_single_data_t hrtick_csd;
029632fb 1025#endif
97fb7a0a 1026 struct hrtimer hrtick_timer;
029632fb
PZ
1027#endif
1028
1029#ifdef CONFIG_SCHEDSTATS
1030 /* latency stats */
97fb7a0a
IM
1031 struct sched_info rq_sched_info;
1032 unsigned long long rq_cpu_time;
029632fb
PZ
1033 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1034
1035 /* sys_sched_yield() stats */
97fb7a0a 1036 unsigned int yld_count;
029632fb
PZ
1037
1038 /* schedule() stats */
97fb7a0a
IM
1039 unsigned int sched_count;
1040 unsigned int sched_goidle;
029632fb
PZ
1041
1042 /* try_to_wake_up() stats */
97fb7a0a
IM
1043 unsigned int ttwu_count;
1044 unsigned int ttwu_local;
029632fb
PZ
1045#endif
1046
442bf3aa
DL
1047#ifdef CONFIG_CPU_IDLE
1048 /* Must be inspected within a rcu lock section */
97fb7a0a 1049 struct cpuidle_state *idle_state;
442bf3aa 1050#endif
029632fb
PZ
1051};
1052
62478d99
VG
1053#ifdef CONFIG_FAIR_GROUP_SCHED
1054
1055/* CPU runqueue to which this cfs_rq is attached */
1056static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1057{
1058 return cfs_rq->rq;
1059}
1060
1061#else
1062
1063static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1064{
1065 return container_of(cfs_rq, struct rq, cfs);
1066}
1067#endif
1068
029632fb
PZ
1069static inline int cpu_of(struct rq *rq)
1070{
1071#ifdef CONFIG_SMP
1072 return rq->cpu;
1073#else
1074 return 0;
1075#endif
1076}
1077
1b568f0a
PZ
1078
1079#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1080extern void __update_idle_core(struct rq *rq);
1081
1082static inline void update_idle_core(struct rq *rq)
1083{
1084 if (static_branch_unlikely(&sched_smt_present))
1085 __update_idle_core(rq);
1086}
1087
1088#else
1089static inline void update_idle_core(struct rq *rq) { }
1090#endif
1091
8b06c55b 1092DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1093
518cd623 1094#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1095#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1096#define task_rq(p) cpu_rq(task_cpu(p))
1097#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1098#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1099
1f351d7f
JW
1100extern void update_rq_clock(struct rq *rq);
1101
cebde6d6
PZ
1102static inline u64 __rq_clock_broken(struct rq *rq)
1103{
316c1608 1104 return READ_ONCE(rq->clock);
cebde6d6
PZ
1105}
1106
cb42c9a3
MF
1107/*
1108 * rq::clock_update_flags bits
1109 *
1110 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1111 * call to __schedule(). This is an optimisation to avoid
1112 * neighbouring rq clock updates.
1113 *
1114 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1115 * in effect and calls to update_rq_clock() are being ignored.
1116 *
1117 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1118 * made to update_rq_clock() since the last time rq::lock was pinned.
1119 *
1120 * If inside of __schedule(), clock_update_flags will have been
1121 * shifted left (a left shift is a cheap operation for the fast path
1122 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1123 *
1124 * if (rq-clock_update_flags >= RQCF_UPDATED)
1125 *
1126 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1127 * one position though, because the next rq_unpin_lock() will shift it
1128 * back.
1129 */
97fb7a0a
IM
1130#define RQCF_REQ_SKIP 0x01
1131#define RQCF_ACT_SKIP 0x02
1132#define RQCF_UPDATED 0x04
cb42c9a3
MF
1133
1134static inline void assert_clock_updated(struct rq *rq)
1135{
1136 /*
1137 * The only reason for not seeing a clock update since the
1138 * last rq_pin_lock() is if we're currently skipping updates.
1139 */
1140 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1141}
1142
78becc27
FW
1143static inline u64 rq_clock(struct rq *rq)
1144{
cebde6d6 1145 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1146 assert_clock_updated(rq);
1147
78becc27
FW
1148 return rq->clock;
1149}
1150
1151static inline u64 rq_clock_task(struct rq *rq)
1152{
cebde6d6 1153 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1154 assert_clock_updated(rq);
1155
78becc27
FW
1156 return rq->clock_task;
1157}
1158
05289b90
TG
1159/**
1160 * By default the decay is the default pelt decay period.
1161 * The decay shift can change the decay period in
1162 * multiples of 32.
1163 * Decay shift Decay period(ms)
1164 * 0 32
1165 * 1 64
1166 * 2 128
1167 * 3 256
1168 * 4 512
1169 */
1170extern int sched_thermal_decay_shift;
1171
1172static inline u64 rq_clock_thermal(struct rq *rq)
1173{
1174 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1175}
1176
adcc8da8 1177static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1178{
1179 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1180 rq->clock_update_flags |= RQCF_REQ_SKIP;
1181}
1182
1183/*
595058b6 1184 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1185 * request is cancelled.
1186 */
1187static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1188{
1189 lockdep_assert_held(&rq->lock);
1190 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1191}
1192
d8ac8971
MF
1193struct rq_flags {
1194 unsigned long flags;
1195 struct pin_cookie cookie;
cb42c9a3
MF
1196#ifdef CONFIG_SCHED_DEBUG
1197 /*
1198 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1199 * current pin context is stashed here in case it needs to be
1200 * restored in rq_repin_lock().
1201 */
1202 unsigned int clock_update_flags;
1203#endif
d8ac8971
MF
1204};
1205
58877d34
PZ
1206/*
1207 * Lockdep annotation that avoids accidental unlocks; it's like a
1208 * sticky/continuous lockdep_assert_held().
1209 *
1210 * This avoids code that has access to 'struct rq *rq' (basically everything in
1211 * the scheduler) from accidentally unlocking the rq if they do not also have a
1212 * copy of the (on-stack) 'struct rq_flags rf'.
1213 *
1214 * Also see Documentation/locking/lockdep-design.rst.
1215 */
d8ac8971
MF
1216static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1217{
1218 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1219
1220#ifdef CONFIG_SCHED_DEBUG
1221 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1222 rf->clock_update_flags = 0;
1223#endif
d8ac8971
MF
1224}
1225
1226static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1227{
cb42c9a3
MF
1228#ifdef CONFIG_SCHED_DEBUG
1229 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1230 rf->clock_update_flags = RQCF_UPDATED;
1231#endif
1232
d8ac8971
MF
1233 lockdep_unpin_lock(&rq->lock, rf->cookie);
1234}
1235
1236static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1237{
1238 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1239
1240#ifdef CONFIG_SCHED_DEBUG
1241 /*
1242 * Restore the value we stashed in @rf for this pin context.
1243 */
1244 rq->clock_update_flags |= rf->clock_update_flags;
1245#endif
d8ac8971
MF
1246}
1247
1f351d7f
JW
1248struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1249 __acquires(rq->lock);
1250
1251struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1252 __acquires(p->pi_lock)
1253 __acquires(rq->lock);
1254
1255static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1256 __releases(rq->lock)
1257{
1258 rq_unpin_lock(rq, rf);
1259 raw_spin_unlock(&rq->lock);
1260}
1261
1262static inline void
1263task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1264 __releases(rq->lock)
1265 __releases(p->pi_lock)
1266{
1267 rq_unpin_lock(rq, rf);
1268 raw_spin_unlock(&rq->lock);
1269 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1270}
1271
1272static inline void
1273rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1274 __acquires(rq->lock)
1275{
1276 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1277 rq_pin_lock(rq, rf);
1278}
1279
1280static inline void
1281rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1282 __acquires(rq->lock)
1283{
1284 raw_spin_lock_irq(&rq->lock);
1285 rq_pin_lock(rq, rf);
1286}
1287
1288static inline void
1289rq_lock(struct rq *rq, struct rq_flags *rf)
1290 __acquires(rq->lock)
1291{
1292 raw_spin_lock(&rq->lock);
1293 rq_pin_lock(rq, rf);
1294}
1295
1296static inline void
1297rq_relock(struct rq *rq, struct rq_flags *rf)
1298 __acquires(rq->lock)
1299{
1300 raw_spin_lock(&rq->lock);
1301 rq_repin_lock(rq, rf);
1302}
1303
1304static inline void
1305rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1306 __releases(rq->lock)
1307{
1308 rq_unpin_lock(rq, rf);
1309 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1310}
1311
1312static inline void
1313rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1314 __releases(rq->lock)
1315{
1316 rq_unpin_lock(rq, rf);
1317 raw_spin_unlock_irq(&rq->lock);
1318}
1319
1320static inline void
1321rq_unlock(struct rq *rq, struct rq_flags *rf)
1322 __releases(rq->lock)
1323{
1324 rq_unpin_lock(rq, rf);
1325 raw_spin_unlock(&rq->lock);
1326}
1327
246b3b33
JW
1328static inline struct rq *
1329this_rq_lock_irq(struct rq_flags *rf)
1330 __acquires(rq->lock)
1331{
1332 struct rq *rq;
1333
1334 local_irq_disable();
1335 rq = this_rq();
1336 rq_lock(rq, rf);
1337 return rq;
1338}
1339
9942f79b 1340#ifdef CONFIG_NUMA
e3fe70b1
RR
1341enum numa_topology_type {
1342 NUMA_DIRECT,
1343 NUMA_GLUELESS_MESH,
1344 NUMA_BACKPLANE,
1345};
1346extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1347extern int sched_max_numa_distance;
1348extern bool find_numa_distance(int distance);
f2cb1360
IM
1349extern void sched_init_numa(void);
1350extern void sched_domains_numa_masks_set(unsigned int cpu);
1351extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1352extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1353#else
1354static inline void sched_init_numa(void) { }
1355static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1356static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1357static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1358{
1359 return nr_cpu_ids;
1360}
f2cb1360
IM
1361#endif
1362
f809ca9a 1363#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1364/* The regions in numa_faults array from task_struct */
1365enum numa_faults_stats {
1366 NUMA_MEM = 0,
1367 NUMA_CPU,
1368 NUMA_MEMBUF,
1369 NUMA_CPUBUF
1370};
0ec8aa00 1371extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1372extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1373extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1374 int cpu, int scpu);
13784475
MG
1375extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1376#else
1377static inline void
1378init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1379{
1380}
f809ca9a
MG
1381#endif /* CONFIG_NUMA_BALANCING */
1382
518cd623
PZ
1383#ifdef CONFIG_SMP
1384
e3fca9e7
PZ
1385static inline void
1386queue_balance_callback(struct rq *rq,
1387 struct callback_head *head,
1388 void (*func)(struct rq *rq))
1389{
1390 lockdep_assert_held(&rq->lock);
1391
1392 if (unlikely(head->next))
1393 return;
1394
1395 head->func = (void (*)(struct callback_head *))func;
1396 head->next = rq->balance_callback;
1397 rq->balance_callback = head;
1398}
1399
029632fb
PZ
1400#define rcu_dereference_check_sched_domain(p) \
1401 rcu_dereference_check((p), \
1402 lockdep_is_held(&sched_domains_mutex))
1403
1404/*
1405 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1406 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1407 *
1408 * The domain tree of any CPU may only be accessed from within
1409 * preempt-disabled sections.
1410 */
1411#define for_each_domain(cpu, __sd) \
518cd623
PZ
1412 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1413 __sd; __sd = __sd->parent)
029632fb 1414
518cd623
PZ
1415/**
1416 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1417 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1418 * be returned.
1419 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1420 * for the given CPU.
518cd623 1421 *
97fb7a0a 1422 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1423 */
1424static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1425{
1426 struct sched_domain *sd, *hsd = NULL;
1427
1428 for_each_domain(cpu, sd) {
1429 if (!(sd->flags & flag))
1430 break;
1431 hsd = sd;
1432 }
1433
1434 return hsd;
1435}
1436
fb13c7ee
MG
1437static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1438{
1439 struct sched_domain *sd;
1440
1441 for_each_domain(cpu, sd) {
1442 if (sd->flags & flag)
1443 break;
1444 }
1445
1446 return sd;
1447}
1448
994aeb7a 1449DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1450DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1451DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1452DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1453DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1454DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1455DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1456extern struct static_key_false sched_asym_cpucapacity;
518cd623 1457
63b2ca30 1458struct sched_group_capacity {
97fb7a0a 1459 atomic_t ref;
5e6521ea 1460 /*
172895e6 1461 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1462 * for a single CPU.
5e6521ea 1463 */
97fb7a0a
IM
1464 unsigned long capacity;
1465 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1466 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1467 unsigned long next_update;
1468 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1469
005f874d 1470#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1471 int id;
005f874d
PZ
1472#endif
1473
97fb7a0a 1474 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1475};
1476
1477struct sched_group {
97fb7a0a
IM
1478 struct sched_group *next; /* Must be a circular list */
1479 atomic_t ref;
5e6521ea 1480
97fb7a0a 1481 unsigned int group_weight;
63b2ca30 1482 struct sched_group_capacity *sgc;
97fb7a0a 1483 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1484
1485 /*
1486 * The CPUs this group covers.
1487 *
1488 * NOTE: this field is variable length. (Allocated dynamically
1489 * by attaching extra space to the end of the structure,
1490 * depending on how many CPUs the kernel has booted up with)
1491 */
04f5c362 1492 unsigned long cpumask[];
5e6521ea
LZ
1493};
1494
ae4df9d6 1495static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1496{
1497 return to_cpumask(sg->cpumask);
1498}
1499
1500/*
e5c14b1f 1501 * See build_balance_mask().
5e6521ea 1502 */
e5c14b1f 1503static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1504{
63b2ca30 1505 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1506}
1507
1508/**
97fb7a0a
IM
1509 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1510 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1511 */
1512static inline unsigned int group_first_cpu(struct sched_group *group)
1513{
ae4df9d6 1514 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1515}
1516
c1174876
PZ
1517extern int group_balance_cpu(struct sched_group *sg);
1518
3866e845
SRRH
1519#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1520void register_sched_domain_sysctl(void);
bbdacdfe 1521void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1522void unregister_sched_domain_sysctl(void);
1523#else
1524static inline void register_sched_domain_sysctl(void)
1525{
1526}
bbdacdfe
PZ
1527static inline void dirty_sched_domain_sysctl(int cpu)
1528{
1529}
3866e845
SRRH
1530static inline void unregister_sched_domain_sysctl(void)
1531{
1532}
1533#endif
1534
b2a02fc4 1535extern void flush_smp_call_function_from_idle(void);
e3baac47 1536
b2a02fc4
PZ
1537#else /* !CONFIG_SMP: */
1538static inline void flush_smp_call_function_from_idle(void) { }
b2a02fc4 1539#endif
029632fb 1540
391e43da 1541#include "stats.h"
1051408f 1542#include "autogroup.h"
029632fb
PZ
1543
1544#ifdef CONFIG_CGROUP_SCHED
1545
1546/*
1547 * Return the group to which this tasks belongs.
1548 *
8af01f56
TH
1549 * We cannot use task_css() and friends because the cgroup subsystem
1550 * changes that value before the cgroup_subsys::attach() method is called,
1551 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1552 *
1553 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1554 * core changes this before calling sched_move_task().
1555 *
1556 * Instead we use a 'copy' which is updated from sched_move_task() while
1557 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1558 */
1559static inline struct task_group *task_group(struct task_struct *p)
1560{
8323f26c 1561 return p->sched_task_group;
029632fb
PZ
1562}
1563
1564/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1565static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1566{
1567#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1568 struct task_group *tg = task_group(p);
1569#endif
1570
1571#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1572 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1573 p->se.cfs_rq = tg->cfs_rq[cpu];
1574 p->se.parent = tg->se[cpu];
1575#endif
1576
1577#ifdef CONFIG_RT_GROUP_SCHED
1578 p->rt.rt_rq = tg->rt_rq[cpu];
1579 p->rt.parent = tg->rt_se[cpu];
1580#endif
1581}
1582
1583#else /* CONFIG_CGROUP_SCHED */
1584
1585static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1586static inline struct task_group *task_group(struct task_struct *p)
1587{
1588 return NULL;
1589}
1590
1591#endif /* CONFIG_CGROUP_SCHED */
1592
1593static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1594{
1595 set_task_rq(p, cpu);
1596#ifdef CONFIG_SMP
1597 /*
1598 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1599 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1600 * per-task data have been completed by this moment.
1601 */
1602 smp_wmb();
c65eacbe 1603#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1604 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1605#else
c546951d 1606 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1607#endif
ac66f547 1608 p->wake_cpu = cpu;
029632fb
PZ
1609#endif
1610}
1611
1612/*
1613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1614 */
1615#ifdef CONFIG_SCHED_DEBUG
c5905afb 1616# include <linux/static_key.h>
029632fb
PZ
1617# define const_debug __read_mostly
1618#else
1619# define const_debug const
1620#endif
1621
029632fb
PZ
1622#define SCHED_FEAT(name, enabled) \
1623 __SCHED_FEAT_##name ,
1624
1625enum {
391e43da 1626#include "features.h"
f8b6d1cc 1627 __SCHED_FEAT_NR,
029632fb
PZ
1628};
1629
1630#undef SCHED_FEAT
1631
e9666d10 1632#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
765cc3a4
PB
1633
1634/*
1635 * To support run-time toggling of sched features, all the translation units
1636 * (but core.c) reference the sysctl_sched_features defined in core.c.
1637 */
1638extern const_debug unsigned int sysctl_sched_features;
1639
f8b6d1cc 1640#define SCHED_FEAT(name, enabled) \
c5905afb 1641static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1642{ \
6e76ea8a 1643 return static_key_##enabled(key); \
f8b6d1cc
PZ
1644}
1645
1646#include "features.h"
f8b6d1cc
PZ
1647#undef SCHED_FEAT
1648
c5905afb 1649extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1650#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1651
e9666d10 1652#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
765cc3a4
PB
1653
1654/*
1655 * Each translation unit has its own copy of sysctl_sched_features to allow
1656 * constants propagation at compile time and compiler optimization based on
1657 * features default.
1658 */
1659#define SCHED_FEAT(name, enabled) \
1660 (1UL << __SCHED_FEAT_##name) * enabled |
1661static const_debug __maybe_unused unsigned int sysctl_sched_features =
1662#include "features.h"
1663 0;
1664#undef SCHED_FEAT
1665
7e6f4c5d 1666#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1667
e9666d10 1668#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
029632fb 1669
2a595721 1670extern struct static_key_false sched_numa_balancing;
cb251765 1671extern struct static_key_false sched_schedstats;
cbee9f88 1672
029632fb
PZ
1673static inline u64 global_rt_period(void)
1674{
1675 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1676}
1677
1678static inline u64 global_rt_runtime(void)
1679{
1680 if (sysctl_sched_rt_runtime < 0)
1681 return RUNTIME_INF;
1682
1683 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1684}
1685
029632fb
PZ
1686static inline int task_current(struct rq *rq, struct task_struct *p)
1687{
1688 return rq->curr == p;
1689}
1690
1691static inline int task_running(struct rq *rq, struct task_struct *p)
1692{
1693#ifdef CONFIG_SMP
1694 return p->on_cpu;
1695#else
1696 return task_current(rq, p);
1697#endif
1698}
1699
da0c1e65
KT
1700static inline int task_on_rq_queued(struct task_struct *p)
1701{
1702 return p->on_rq == TASK_ON_RQ_QUEUED;
1703}
029632fb 1704
cca26e80
KT
1705static inline int task_on_rq_migrating(struct task_struct *p)
1706{
c546951d 1707 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1708}
1709
b13095f0
LZ
1710/*
1711 * wake flags
1712 */
97fb7a0a
IM
1713#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1714#define WF_FORK 0x02 /* Child wakeup after fork */
2ebb1771 1715#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
739f70b4 1716#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
b13095f0 1717
029632fb
PZ
1718/*
1719 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1720 * of tasks with abnormal "nice" values across CPUs the contribution that
1721 * each task makes to its run queue's load is weighted according to its
1722 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1723 * scaled version of the new time slice allocation that they receive on time
1724 * slice expiry etc.
1725 */
1726
97fb7a0a
IM
1727#define WEIGHT_IDLEPRIO 3
1728#define WMULT_IDLEPRIO 1431655765
029632fb 1729
97fb7a0a
IM
1730extern const int sched_prio_to_weight[40];
1731extern const u32 sched_prio_to_wmult[40];
029632fb 1732
ff77e468
PZ
1733/*
1734 * {de,en}queue flags:
1735 *
1736 * DEQUEUE_SLEEP - task is no longer runnable
1737 * ENQUEUE_WAKEUP - task just became runnable
1738 *
1739 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1740 * are in a known state which allows modification. Such pairs
1741 * should preserve as much state as possible.
1742 *
1743 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1744 * in the runqueue.
1745 *
1746 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1747 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1748 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1749 *
1750 */
1751
1752#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1753#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1754#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1755#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1756
1de64443 1757#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1758#define ENQUEUE_RESTORE 0x02
1759#define ENQUEUE_MOVE 0x04
0a67d1ee 1760#define ENQUEUE_NOCLOCK 0x08
ff77e468 1761
0a67d1ee
PZ
1762#define ENQUEUE_HEAD 0x10
1763#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1764#ifdef CONFIG_SMP
0a67d1ee 1765#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1766#else
59efa0ba 1767#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1768#endif
c82ba9fa 1769
37e117c0
PZ
1770#define RETRY_TASK ((void *)-1UL)
1771
c82ba9fa 1772struct sched_class {
c82ba9fa 1773
69842cba
PB
1774#ifdef CONFIG_UCLAMP_TASK
1775 int uclamp_enabled;
1776#endif
1777
c82ba9fa
LZ
1778 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1779 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 1780 void (*yield_task) (struct rq *rq);
0900acf2 1781 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 1782
97fb7a0a 1783 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1784
98c2f700
PZ
1785 struct task_struct *(*pick_next_task)(struct rq *rq);
1786
6e2df058 1787 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 1788 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
1789
1790#ifdef CONFIG_SMP
6e2df058 1791 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
ac66f547 1792 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1793 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1794
97fb7a0a 1795 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1796
1797 void (*set_cpus_allowed)(struct task_struct *p,
1798 const struct cpumask *newmask);
1799
1800 void (*rq_online)(struct rq *rq);
1801 void (*rq_offline)(struct rq *rq);
1802#endif
1803
97fb7a0a
IM
1804 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1805 void (*task_fork)(struct task_struct *p);
1806 void (*task_dead)(struct task_struct *p);
c82ba9fa 1807
67dfa1b7
KT
1808 /*
1809 * The switched_from() call is allowed to drop rq->lock, therefore we
1810 * cannot assume the switched_from/switched_to pair is serliazed by
1811 * rq->lock. They are however serialized by p->pi_lock.
1812 */
97fb7a0a
IM
1813 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1814 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1815 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1816 int oldprio);
c82ba9fa 1817
97fb7a0a
IM
1818 unsigned int (*get_rr_interval)(struct rq *rq,
1819 struct task_struct *task);
c82ba9fa 1820
97fb7a0a 1821 void (*update_curr)(struct rq *rq);
6e998916 1822
97fb7a0a
IM
1823#define TASK_SET_GROUP 0
1824#define TASK_MOVE_GROUP 1
ea86cb4b 1825
c82ba9fa 1826#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1827 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa 1828#endif
85c2ce91 1829} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
029632fb 1830
3f1d2a31
PZ
1831static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1832{
10e7071b 1833 WARN_ON_ONCE(rq->curr != prev);
6e2df058 1834 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
1835}
1836
03b7fad1 1837static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1838{
03b7fad1 1839 WARN_ON_ONCE(rq->curr != next);
a0e813f2 1840 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
1841}
1842
c3a340f7
SRV
1843/* Defined in include/asm-generic/vmlinux.lds.h */
1844extern struct sched_class __begin_sched_classes[];
1845extern struct sched_class __end_sched_classes[];
1846
1847#define sched_class_highest (__end_sched_classes - 1)
1848#define sched_class_lowest (__begin_sched_classes - 1)
6e2df058
PZ
1849
1850#define for_class_range(class, _from, _to) \
c3a340f7 1851 for (class = (_from); class != (_to); class--)
6e2df058 1852
029632fb 1853#define for_each_class(class) \
c3a340f7 1854 for_class_range(class, sched_class_highest, sched_class_lowest)
029632fb
PZ
1855
1856extern const struct sched_class stop_sched_class;
aab03e05 1857extern const struct sched_class dl_sched_class;
029632fb
PZ
1858extern const struct sched_class rt_sched_class;
1859extern const struct sched_class fair_sched_class;
1860extern const struct sched_class idle_sched_class;
1861
6e2df058
PZ
1862static inline bool sched_stop_runnable(struct rq *rq)
1863{
1864 return rq->stop && task_on_rq_queued(rq->stop);
1865}
1866
1867static inline bool sched_dl_runnable(struct rq *rq)
1868{
1869 return rq->dl.dl_nr_running > 0;
1870}
1871
1872static inline bool sched_rt_runnable(struct rq *rq)
1873{
1874 return rq->rt.rt_queued > 0;
1875}
1876
1877static inline bool sched_fair_runnable(struct rq *rq)
1878{
1879 return rq->cfs.nr_running > 0;
1880}
029632fb 1881
5d7d6056 1882extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 1883extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 1884
029632fb
PZ
1885#ifdef CONFIG_SMP
1886
63b2ca30 1887extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1888
7caff66f 1889extern void trigger_load_balance(struct rq *rq);
029632fb 1890
c5b28038
PZ
1891extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1892
029632fb
PZ
1893#endif
1894
442bf3aa
DL
1895#ifdef CONFIG_CPU_IDLE
1896static inline void idle_set_state(struct rq *rq,
1897 struct cpuidle_state *idle_state)
1898{
1899 rq->idle_state = idle_state;
1900}
1901
1902static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1903{
9148a3a1 1904 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1905
442bf3aa
DL
1906 return rq->idle_state;
1907}
1908#else
1909static inline void idle_set_state(struct rq *rq,
1910 struct cpuidle_state *idle_state)
1911{
1912}
1913
1914static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1915{
1916 return NULL;
1917}
1918#endif
1919
8663effb
SRV
1920extern void schedule_idle(void);
1921
029632fb
PZ
1922extern void sysrq_sched_debug_show(void);
1923extern void sched_init_granularity(void);
1924extern void update_max_interval(void);
1baca4ce
JL
1925
1926extern void init_sched_dl_class(void);
029632fb
PZ
1927extern void init_sched_rt_class(void);
1928extern void init_sched_fair_class(void);
1929
9059393e
VG
1930extern void reweight_task(struct task_struct *p, int prio);
1931
8875125e 1932extern void resched_curr(struct rq *rq);
029632fb
PZ
1933extern void resched_cpu(int cpu);
1934
1935extern struct rt_bandwidth def_rt_bandwidth;
1936extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1937
332ac17e
DF
1938extern struct dl_bandwidth def_dl_bandwidth;
1939extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1940extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1941extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 1942
97fb7a0a
IM
1943#define BW_SHIFT 20
1944#define BW_UNIT (1 << BW_SHIFT)
1945#define RATIO_SHIFT 8
d505b8af
HC
1946#define MAX_BW_BITS (64 - BW_SHIFT)
1947#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
1948unsigned long to_ratio(u64 period, u64 runtime);
1949
540247fb 1950extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 1951extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 1952
76d92ac3
FW
1953#ifdef CONFIG_NO_HZ_FULL
1954extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1955extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1956
1957/*
1958 * Tick may be needed by tasks in the runqueue depending on their policy and
1959 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1960 * nohz mode if necessary.
1961 */
1962static inline void sched_update_tick_dependency(struct rq *rq)
1963{
21a6ee14 1964 int cpu = cpu_of(rq);
76d92ac3
FW
1965
1966 if (!tick_nohz_full_cpu(cpu))
1967 return;
1968
1969 if (sched_can_stop_tick(rq))
1970 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1971 else
1972 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1973}
1974#else
d84b3131 1975static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1976static inline void sched_update_tick_dependency(struct rq *rq) { }
1977#endif
1978
72465447 1979static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1980{
72465447
KT
1981 unsigned prev_nr = rq->nr_running;
1982
1983 rq->nr_running = prev_nr + count;
9d246053
PA
1984 if (trace_sched_update_nr_running_tp_enabled()) {
1985 call_trace_sched_update_nr_running(rq, count);
1986 }
9f3660c2 1987
4486edd1 1988#ifdef CONFIG_SMP
3e184501 1989 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1990 if (!READ_ONCE(rq->rd->overload))
1991 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1992 }
3e184501 1993#endif
76d92ac3
FW
1994
1995 sched_update_tick_dependency(rq);
029632fb
PZ
1996}
1997
72465447 1998static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1999{
72465447 2000 rq->nr_running -= count;
9d246053
PA
2001 if (trace_sched_update_nr_running_tp_enabled()) {
2002 call_trace_sched_update_nr_running(rq, count);
2003 }
2004
76d92ac3
FW
2005 /* Check if we still need preemption */
2006 sched_update_tick_dependency(rq);
029632fb
PZ
2007}
2008
029632fb
PZ
2009extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2010extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2011
2012extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2013
029632fb
PZ
2014extern const_debug unsigned int sysctl_sched_nr_migrate;
2015extern const_debug unsigned int sysctl_sched_migration_cost;
2016
029632fb
PZ
2017#ifdef CONFIG_SCHED_HRTICK
2018
2019/*
2020 * Use hrtick when:
2021 * - enabled by features
2022 * - hrtimer is actually high res
2023 */
2024static inline int hrtick_enabled(struct rq *rq)
2025{
2026 if (!sched_feat(HRTICK))
2027 return 0;
2028 if (!cpu_active(cpu_of(rq)))
2029 return 0;
2030 return hrtimer_is_hres_active(&rq->hrtick_timer);
2031}
2032
2033void hrtick_start(struct rq *rq, u64 delay);
2034
b39e66ea
MG
2035#else
2036
2037static inline int hrtick_enabled(struct rq *rq)
2038{
2039 return 0;
2040}
2041
029632fb
PZ
2042#endif /* CONFIG_SCHED_HRTICK */
2043
1567c3e3
GG
2044#ifndef arch_scale_freq_tick
2045static __always_inline
2046void arch_scale_freq_tick(void)
2047{
2048}
2049#endif
2050
dfbca41f 2051#ifndef arch_scale_freq_capacity
f4470cdf
VS
2052/**
2053 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2054 * @cpu: the CPU in question.
2055 *
2056 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2057 *
2058 * f_curr
2059 * ------ * SCHED_CAPACITY_SCALE
2060 * f_max
2061 */
dfbca41f 2062static __always_inline
7673c8a4 2063unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2064{
2065 return SCHED_CAPACITY_SCALE;
2066}
2067#endif
b5b4860d 2068
029632fb 2069#ifdef CONFIG_SMP
c1a280b6 2070#ifdef CONFIG_PREEMPTION
029632fb
PZ
2071
2072static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2073
2074/*
2075 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2076 * way at the expense of forcing extra atomic operations in all
2077 * invocations. This assures that the double_lock is acquired using the
2078 * same underlying policy as the spinlock_t on this architecture, which
2079 * reduces latency compared to the unfair variant below. However, it
2080 * also adds more overhead and therefore may reduce throughput.
2081 */
2082static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2083 __releases(this_rq->lock)
2084 __acquires(busiest->lock)
2085 __acquires(this_rq->lock)
2086{
2087 raw_spin_unlock(&this_rq->lock);
2088 double_rq_lock(this_rq, busiest);
2089
2090 return 1;
2091}
2092
2093#else
2094/*
2095 * Unfair double_lock_balance: Optimizes throughput at the expense of
2096 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2097 * already in proper order on entry. This favors lower CPU-ids and will
2098 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2099 * regardless of entry order into the function.
2100 */
2101static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2102 __releases(this_rq->lock)
2103 __acquires(busiest->lock)
2104 __acquires(this_rq->lock)
2105{
2106 int ret = 0;
2107
2108 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2109 if (busiest < this_rq) {
2110 raw_spin_unlock(&this_rq->lock);
2111 raw_spin_lock(&busiest->lock);
2112 raw_spin_lock_nested(&this_rq->lock,
2113 SINGLE_DEPTH_NESTING);
2114 ret = 1;
2115 } else
2116 raw_spin_lock_nested(&busiest->lock,
2117 SINGLE_DEPTH_NESTING);
2118 }
2119 return ret;
2120}
2121
c1a280b6 2122#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2123
2124/*
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126 */
2127static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2128{
2129 if (unlikely(!irqs_disabled())) {
97fb7a0a 2130 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2131 raw_spin_unlock(&this_rq->lock);
2132 BUG_ON(1);
2133 }
2134
2135 return _double_lock_balance(this_rq, busiest);
2136}
2137
2138static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2139 __releases(busiest->lock)
2140{
2141 raw_spin_unlock(&busiest->lock);
2142 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2143}
2144
74602315
PZ
2145static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2146{
2147 if (l1 > l2)
2148 swap(l1, l2);
2149
2150 spin_lock(l1);
2151 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2152}
2153
60e69eed
MG
2154static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2155{
2156 if (l1 > l2)
2157 swap(l1, l2);
2158
2159 spin_lock_irq(l1);
2160 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2161}
2162
74602315
PZ
2163static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2164{
2165 if (l1 > l2)
2166 swap(l1, l2);
2167
2168 raw_spin_lock(l1);
2169 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2170}
2171
029632fb
PZ
2172/*
2173 * double_rq_lock - safely lock two runqueues
2174 *
2175 * Note this does not disable interrupts like task_rq_lock,
2176 * you need to do so manually before calling.
2177 */
2178static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2179 __acquires(rq1->lock)
2180 __acquires(rq2->lock)
2181{
2182 BUG_ON(!irqs_disabled());
2183 if (rq1 == rq2) {
2184 raw_spin_lock(&rq1->lock);
2185 __acquire(rq2->lock); /* Fake it out ;) */
2186 } else {
2187 if (rq1 < rq2) {
2188 raw_spin_lock(&rq1->lock);
2189 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2190 } else {
2191 raw_spin_lock(&rq2->lock);
2192 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2193 }
2194 }
2195}
2196
2197/*
2198 * double_rq_unlock - safely unlock two runqueues
2199 *
2200 * Note this does not restore interrupts like task_rq_unlock,
2201 * you need to do so manually after calling.
2202 */
2203static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2204 __releases(rq1->lock)
2205 __releases(rq2->lock)
2206{
2207 raw_spin_unlock(&rq1->lock);
2208 if (rq1 != rq2)
2209 raw_spin_unlock(&rq2->lock);
2210 else
2211 __release(rq2->lock);
2212}
2213
f2cb1360
IM
2214extern void set_rq_online (struct rq *rq);
2215extern void set_rq_offline(struct rq *rq);
2216extern bool sched_smp_initialized;
2217
029632fb
PZ
2218#else /* CONFIG_SMP */
2219
2220/*
2221 * double_rq_lock - safely lock two runqueues
2222 *
2223 * Note this does not disable interrupts like task_rq_lock,
2224 * you need to do so manually before calling.
2225 */
2226static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2227 __acquires(rq1->lock)
2228 __acquires(rq2->lock)
2229{
2230 BUG_ON(!irqs_disabled());
2231 BUG_ON(rq1 != rq2);
2232 raw_spin_lock(&rq1->lock);
2233 __acquire(rq2->lock); /* Fake it out ;) */
2234}
2235
2236/*
2237 * double_rq_unlock - safely unlock two runqueues
2238 *
2239 * Note this does not restore interrupts like task_rq_unlock,
2240 * you need to do so manually after calling.
2241 */
2242static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2243 __releases(rq1->lock)
2244 __releases(rq2->lock)
2245{
2246 BUG_ON(rq1 != rq2);
2247 raw_spin_unlock(&rq1->lock);
2248 __release(rq2->lock);
2249}
2250
2251#endif
2252
2253extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2254extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2255
2256#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2257extern bool sched_debug_enabled;
2258
029632fb
PZ
2259extern void print_cfs_stats(struct seq_file *m, int cpu);
2260extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2261extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2262extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2263extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2264extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2265#ifdef CONFIG_NUMA_BALANCING
2266extern void
2267show_numa_stats(struct task_struct *p, struct seq_file *m);
2268extern void
2269print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2270 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2271#endif /* CONFIG_NUMA_BALANCING */
2272#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2273
2274extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2275extern void init_rt_rq(struct rt_rq *rt_rq);
2276extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2277
1ee14e6c
BS
2278extern void cfs_bandwidth_usage_inc(void);
2279extern void cfs_bandwidth_usage_dec(void);
1c792db7 2280
3451d024 2281#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2282#define NOHZ_BALANCE_KICK_BIT 0
2283#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2284
a22e47a4 2285#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2286#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2287
2288#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2289
2290#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2291
00357f5e 2292extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2293#else
00357f5e 2294static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2295#endif
73fbec60 2296
daec5798
LA
2297
2298#ifdef CONFIG_SMP
2299static inline
2300void __dl_update(struct dl_bw *dl_b, s64 bw)
2301{
2302 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2303 int i;
2304
2305 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2306 "sched RCU must be held");
2307 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2308 struct rq *rq = cpu_rq(i);
2309
2310 rq->dl.extra_bw += bw;
2311 }
2312}
2313#else
2314static inline
2315void __dl_update(struct dl_bw *dl_b, s64 bw)
2316{
2317 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2318
2319 dl->extra_bw += bw;
2320}
2321#endif
2322
2323
73fbec60 2324#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2325struct irqtime {
25e2d8c1 2326 u64 total;
a499a5a1 2327 u64 tick_delta;
19d23dbf
FW
2328 u64 irq_start_time;
2329 struct u64_stats_sync sync;
2330};
73fbec60 2331
19d23dbf 2332DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2333
25e2d8c1
FW
2334/*
2335 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2336 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2337 * and never move forward.
2338 */
73fbec60
FW
2339static inline u64 irq_time_read(int cpu)
2340{
19d23dbf
FW
2341 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2342 unsigned int seq;
2343 u64 total;
73fbec60
FW
2344
2345 do {
19d23dbf 2346 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2347 total = irqtime->total;
19d23dbf 2348 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2349
19d23dbf 2350 return total;
73fbec60 2351}
73fbec60 2352#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2353
2354#ifdef CONFIG_CPU_FREQ
b10abd0a 2355DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2356
2357/**
2358 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2359 * @rq: Runqueue to carry out the update for.
58919e83 2360 * @flags: Update reason flags.
adaf9fcd 2361 *
58919e83
RW
2362 * This function is called by the scheduler on the CPU whose utilization is
2363 * being updated.
adaf9fcd
RW
2364 *
2365 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2366 *
2367 * The way cpufreq is currently arranged requires it to evaluate the CPU
2368 * performance state (frequency/voltage) on a regular basis to prevent it from
2369 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2370 * That is not guaranteed to happen if the updates are only triggered from CFS
2371 * and DL, though, because they may not be coming in if only RT tasks are
2372 * active all the time (or there are RT tasks only).
adaf9fcd 2373 *
e0367b12
JL
2374 * As a workaround for that issue, this function is called periodically by the
2375 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2376 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2377 * solutions targeted more specifically at RT tasks.
adaf9fcd 2378 */
12bde33d 2379static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2380{
58919e83
RW
2381 struct update_util_data *data;
2382
674e7541
VK
2383 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2384 cpu_of(rq)));
58919e83 2385 if (data)
12bde33d
RW
2386 data->func(data, rq_clock(rq), flags);
2387}
adaf9fcd 2388#else
12bde33d 2389static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2390#endif /* CONFIG_CPU_FREQ */
be53f58f 2391
982d9cdc 2392#ifdef CONFIG_UCLAMP_TASK
686516b5 2393unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d 2394
46609ce2
QY
2395/**
2396 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2397 * @rq: The rq to clamp against. Must not be NULL.
2398 * @util: The util value to clamp.
2399 * @p: The task to clamp against. Can be NULL if you want to clamp
2400 * against @rq only.
2401 *
2402 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2403 *
2404 * If sched_uclamp_used static key is disabled, then just return the util
2405 * without any clamping since uclamp aggregation at the rq level in the fast
2406 * path is disabled, rendering this operation a NOP.
2407 *
2408 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2409 * will return the correct effective uclamp value of the task even if the
2410 * static key is disabled.
2411 */
9d20ad7d 2412static __always_inline
d2b58a28
VS
2413unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2414 struct task_struct *p)
982d9cdc 2415{
46609ce2
QY
2416 unsigned long min_util;
2417 unsigned long max_util;
2418
2419 if (!static_branch_likely(&sched_uclamp_used))
2420 return util;
2421
2422 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2423 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
982d9cdc 2424
9d20ad7d
PB
2425 if (p) {
2426 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2427 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2428 }
2429
982d9cdc
PB
2430 /*
2431 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2432 * RUNNABLE tasks with _different_ clamps, we can end up with an
2433 * inversion. Fix it now when the clamps are applied.
2434 */
2435 if (unlikely(min_util >= max_util))
2436 return min_util;
2437
2438 return clamp(util, min_util, max_util);
2439}
46609ce2
QY
2440
2441/*
2442 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2443 * by default in the fast path and only gets turned on once userspace performs
2444 * an operation that requires it.
2445 *
2446 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2447 * hence is active.
2448 */
2449static inline bool uclamp_is_used(void)
2450{
2451 return static_branch_likely(&sched_uclamp_used);
2452}
982d9cdc 2453#else /* CONFIG_UCLAMP_TASK */
d2b58a28
VS
2454static inline
2455unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2456 struct task_struct *p)
9d20ad7d
PB
2457{
2458 return util;
2459}
46609ce2
QY
2460
2461static inline bool uclamp_is_used(void)
2462{
2463 return false;
2464}
982d9cdc
PB
2465#endif /* CONFIG_UCLAMP_TASK */
2466
9bdcb44e 2467#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2468# ifndef arch_scale_freq_invariant
2469# define arch_scale_freq_invariant() true
2470# endif
2471#else
2472# define arch_scale_freq_invariant() false
9bdcb44e 2473#endif
d4edd662 2474
10a35e68
VG
2475#ifdef CONFIG_SMP
2476static inline unsigned long capacity_orig_of(int cpu)
2477{
2478 return cpu_rq(cpu)->cpu_capacity_orig;
2479}
2480#endif
2481
938e5e4b
QP
2482/**
2483 * enum schedutil_type - CPU utilization type
2484 * @FREQUENCY_UTIL: Utilization used to select frequency
2485 * @ENERGY_UTIL: Utilization used during energy calculation
2486 *
2487 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2488 * need to be aggregated differently depending on the usage made of them. This
2489 * enum is used within schedutil_freq_util() to differentiate the types of
2490 * utilization expected by the callers, and adjust the aggregation accordingly.
2491 */
2492enum schedutil_type {
2493 FREQUENCY_UTIL,
2494 ENERGY_UTIL,
2495};
2496
af24bde8 2497#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2498
af24bde8
PB
2499unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2500 unsigned long max, enum schedutil_type type,
2501 struct task_struct *p);
938e5e4b 2502
8cc90515 2503static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2504{
2505 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2506}
2507
8cc90515
VG
2508static inline unsigned long cpu_util_dl(struct rq *rq)
2509{
2510 return READ_ONCE(rq->avg_dl.util_avg);
2511}
2512
d4edd662
JL
2513static inline unsigned long cpu_util_cfs(struct rq *rq)
2514{
a07630b8
PB
2515 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2516
2517 if (sched_feat(UTIL_EST)) {
2518 util = max_t(unsigned long, util,
2519 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2520 }
2521
2522 return util;
d4edd662 2523}
371bf427
VG
2524
2525static inline unsigned long cpu_util_rt(struct rq *rq)
2526{
dfa444dc 2527 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2528}
938e5e4b 2529#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2530static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2531 unsigned long max, enum schedutil_type type,
2532 struct task_struct *p)
938e5e4b 2533{
af24bde8 2534 return 0;
938e5e4b 2535}
af24bde8 2536#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2537
11d4afd4 2538#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2539static inline unsigned long cpu_util_irq(struct rq *rq)
2540{
2541 return rq->avg_irq.util_avg;
2542}
2e62c474
VG
2543
2544static inline
2545unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2546{
2547 util *= (max - irq);
2548 util /= max;
2549
2550 return util;
2551
2552}
9033ea11
VG
2553#else
2554static inline unsigned long cpu_util_irq(struct rq *rq)
2555{
2556 return 0;
2557}
2558
2e62c474
VG
2559static inline
2560unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2561{
2562 return util;
2563}
794a56eb 2564#endif
6aa140fa 2565
531b5c9f 2566#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2567
6aa140fa 2568#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2569
2570DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2571
2572static inline bool sched_energy_enabled(void)
2573{
2574 return static_branch_unlikely(&sched_energy_present);
2575}
2576
2577#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2578
6aa140fa 2579#define perf_domain_span(pd) NULL
f8a696f2 2580static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2581
f8a696f2 2582#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2583
2584#ifdef CONFIG_MEMBARRIER
2585/*
2586 * The scheduler provides memory barriers required by membarrier between:
2587 * - prior user-space memory accesses and store to rq->membarrier_state,
2588 * - store to rq->membarrier_state and following user-space memory accesses.
2589 * In the same way it provides those guarantees around store to rq->curr.
2590 */
2591static inline void membarrier_switch_mm(struct rq *rq,
2592 struct mm_struct *prev_mm,
2593 struct mm_struct *next_mm)
2594{
2595 int membarrier_state;
2596
2597 if (prev_mm == next_mm)
2598 return;
2599
2600 membarrier_state = atomic_read(&next_mm->membarrier_state);
2601 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2602 return;
2603
2604 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2605}
2606#else
2607static inline void membarrier_switch_mm(struct rq *rq,
2608 struct mm_struct *prev_mm,
2609 struct mm_struct *next_mm)
2610{
2611}
2612#endif
52262ee5
MG
2613
2614#ifdef CONFIG_SMP
2615static inline bool is_per_cpu_kthread(struct task_struct *p)
2616{
2617 if (!(p->flags & PF_KTHREAD))
2618 return false;
2619
2620 if (p->nr_cpus_allowed != 1)
2621 return false;
2622
2623 return true;
2624}
2625#endif
b3212fe2
TG
2626
2627void swake_up_all_locked(struct swait_queue_head *q);
2628void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);