]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
Revert "sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking"
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
029632fb 9
391e43da 10#include "cpupri.h"
60fed789 11#include "cpuacct.h"
029632fb 12
45ceebf7
PG
13struct rq;
14
029632fb
PZ
15extern __read_mostly int scheduler_running;
16
45ceebf7
PG
17extern unsigned long calc_load_update;
18extern atomic_long_t calc_load_tasks;
19
20extern long calc_load_fold_active(struct rq *this_rq);
21extern void update_cpu_load_active(struct rq *this_rq);
22
029632fb
PZ
23/*
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
27 */
28#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
31
32/*
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
36 */
37#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
40
41/*
42 * Helpers for converting nanosecond timing to jiffy resolution
43 */
44#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45
cc1f4b1f
LZ
46/*
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
52 *
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
57 */
58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59# define SCHED_LOAD_RESOLUTION 10
60# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62#else
63# define SCHED_LOAD_RESOLUTION 0
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
68#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
70
029632fb
PZ
71#define NICE_0_LOAD SCHED_LOAD_SCALE
72#define NICE_0_SHIFT SCHED_LOAD_SHIFT
73
74/*
75 * These are the 'tuning knobs' of the scheduler:
029632fb 76 */
029632fb
PZ
77
78/*
79 * single value that denotes runtime == period, ie unlimited time.
80 */
81#define RUNTIME_INF ((u64)~0ULL)
82
83static inline int rt_policy(int policy)
84{
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
88}
89
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
95/*
96 * This is the priority-queue data structure of the RT scheduling class:
97 */
98struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
101};
102
103struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
109};
110
111extern struct mutex sched_domains_mutex;
112
113#ifdef CONFIG_CGROUP_SCHED
114
115#include <linux/cgroup.h>
116
117struct cfs_rq;
118struct rt_rq;
119
35cf4e50 120extern struct list_head task_groups;
029632fb
PZ
121
122struct cfs_bandwidth {
123#ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
129
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
133
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137#endif
138};
139
140/* task group related information */
141struct task_group {
142 struct cgroup_subsys_state css;
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
150
151 atomic_t load_weight;
c566e8e9 152 atomic64_t load_avg;
bb17f655 153 atomic_t runnable_avg;
029632fb
PZ
154#endif
155
156#ifdef CONFIG_RT_GROUP_SCHED
157 struct sched_rt_entity **rt_se;
158 struct rt_rq **rt_rq;
159
160 struct rt_bandwidth rt_bandwidth;
161#endif
162
163 struct rcu_head rcu;
164 struct list_head list;
165
166 struct task_group *parent;
167 struct list_head siblings;
168 struct list_head children;
169
170#ifdef CONFIG_SCHED_AUTOGROUP
171 struct autogroup *autogroup;
172#endif
173
174 struct cfs_bandwidth cfs_bandwidth;
175};
176
177#ifdef CONFIG_FAIR_GROUP_SCHED
178#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
179
180/*
181 * A weight of 0 or 1 can cause arithmetics problems.
182 * A weight of a cfs_rq is the sum of weights of which entities
183 * are queued on this cfs_rq, so a weight of a entity should not be
184 * too large, so as the shares value of a task group.
185 * (The default weight is 1024 - so there's no practical
186 * limitation from this.)
187 */
188#define MIN_SHARES (1UL << 1)
189#define MAX_SHARES (1UL << 18)
190#endif
191
029632fb
PZ
192typedef int (*tg_visitor)(struct task_group *, void *);
193
194extern int walk_tg_tree_from(struct task_group *from,
195 tg_visitor down, tg_visitor up, void *data);
196
197/*
198 * Iterate the full tree, calling @down when first entering a node and @up when
199 * leaving it for the final time.
200 *
201 * Caller must hold rcu_lock or sufficient equivalent.
202 */
203static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
204{
205 return walk_tg_tree_from(&root_task_group, down, up, data);
206}
207
208extern int tg_nop(struct task_group *tg, void *data);
209
210extern void free_fair_sched_group(struct task_group *tg);
211extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
212extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
213extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
214 struct sched_entity *se, int cpu,
215 struct sched_entity *parent);
216extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
217extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
218
219extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
220extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
221extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
222
223extern void free_rt_sched_group(struct task_group *tg);
224extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
225extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
226 struct sched_rt_entity *rt_se, int cpu,
227 struct sched_rt_entity *parent);
228
25cc7da7
LZ
229extern struct task_group *sched_create_group(struct task_group *parent);
230extern void sched_online_group(struct task_group *tg,
231 struct task_group *parent);
232extern void sched_destroy_group(struct task_group *tg);
233extern void sched_offline_group(struct task_group *tg);
234
235extern void sched_move_task(struct task_struct *tsk);
236
237#ifdef CONFIG_FAIR_GROUP_SCHED
238extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
239#endif
240
029632fb
PZ
241#else /* CONFIG_CGROUP_SCHED */
242
243struct cfs_bandwidth { };
244
245#endif /* CONFIG_CGROUP_SCHED */
246
247/* CFS-related fields in a runqueue */
248struct cfs_rq {
249 struct load_weight load;
c82513e5 250 unsigned int nr_running, h_nr_running;
029632fb
PZ
251
252 u64 exec_clock;
253 u64 min_vruntime;
254#ifndef CONFIG_64BIT
255 u64 min_vruntime_copy;
256#endif
257
258 struct rb_root tasks_timeline;
259 struct rb_node *rb_leftmost;
260
029632fb
PZ
261 /*
262 * 'curr' points to currently running entity on this cfs_rq.
263 * It is set to NULL otherwise (i.e when none are currently running).
264 */
265 struct sched_entity *curr, *next, *last, *skip;
266
267#ifdef CONFIG_SCHED_DEBUG
268 unsigned int nr_spread_over;
269#endif
270
2dac754e
PT
271#ifdef CONFIG_SMP
272 /*
273 * CFS Load tracking
274 * Under CFS, load is tracked on a per-entity basis and aggregated up.
275 * This allows for the description of both thread and group usage (in
276 * the FAIR_GROUP_SCHED case).
277 */
9ee474f5 278 u64 runnable_load_avg, blocked_load_avg;
aff3e498 279 atomic64_t decay_counter, removed_load;
9ee474f5 280 u64 last_decay;
141965c7 281
c566e8e9 282#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 283 /* Required to track per-cpu representation of a task_group */
bb17f655 284 u32 tg_runnable_contrib;
c566e8e9 285 u64 tg_load_contrib;
82958366
PT
286#endif /* CONFIG_FAIR_GROUP_SCHED */
287
288 /*
289 * h_load = weight * f(tg)
290 *
291 * Where f(tg) is the recursive weight fraction assigned to
292 * this group.
293 */
294 unsigned long h_load;
295#endif /* CONFIG_SMP */
296
029632fb
PZ
297#ifdef CONFIG_FAIR_GROUP_SCHED
298 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
299
300 /*
301 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
302 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
303 * (like users, containers etc.)
304 *
305 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
306 * list is used during load balance.
307 */
308 int on_list;
309 struct list_head leaf_cfs_rq_list;
310 struct task_group *tg; /* group that "owns" this runqueue */
311
029632fb
PZ
312#ifdef CONFIG_CFS_BANDWIDTH
313 int runtime_enabled;
314 u64 runtime_expires;
315 s64 runtime_remaining;
316
f1b17280
PT
317 u64 throttled_clock, throttled_clock_task;
318 u64 throttled_clock_task_time;
029632fb
PZ
319 int throttled, throttle_count;
320 struct list_head throttled_list;
321#endif /* CONFIG_CFS_BANDWIDTH */
322#endif /* CONFIG_FAIR_GROUP_SCHED */
323};
324
325static inline int rt_bandwidth_enabled(void)
326{
327 return sysctl_sched_rt_runtime >= 0;
328}
329
330/* Real-Time classes' related field in a runqueue: */
331struct rt_rq {
332 struct rt_prio_array active;
c82513e5 333 unsigned int rt_nr_running;
029632fb
PZ
334#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
335 struct {
336 int curr; /* highest queued rt task prio */
337#ifdef CONFIG_SMP
338 int next; /* next highest */
339#endif
340 } highest_prio;
341#endif
342#ifdef CONFIG_SMP
343 unsigned long rt_nr_migratory;
344 unsigned long rt_nr_total;
345 int overloaded;
346 struct plist_head pushable_tasks;
347#endif
348 int rt_throttled;
349 u64 rt_time;
350 u64 rt_runtime;
351 /* Nests inside the rq lock: */
352 raw_spinlock_t rt_runtime_lock;
353
354#ifdef CONFIG_RT_GROUP_SCHED
355 unsigned long rt_nr_boosted;
356
357 struct rq *rq;
029632fb
PZ
358 struct task_group *tg;
359#endif
360};
361
362#ifdef CONFIG_SMP
363
364/*
365 * We add the notion of a root-domain which will be used to define per-domain
366 * variables. Each exclusive cpuset essentially defines an island domain by
367 * fully partitioning the member cpus from any other cpuset. Whenever a new
368 * exclusive cpuset is created, we also create and attach a new root-domain
369 * object.
370 *
371 */
372struct root_domain {
373 atomic_t refcount;
374 atomic_t rto_count;
375 struct rcu_head rcu;
376 cpumask_var_t span;
377 cpumask_var_t online;
378
379 /*
380 * The "RT overload" flag: it gets set if a CPU has more than
381 * one runnable RT task.
382 */
383 cpumask_var_t rto_mask;
384 struct cpupri cpupri;
385};
386
387extern struct root_domain def_root_domain;
388
389#endif /* CONFIG_SMP */
390
391/*
392 * This is the main, per-CPU runqueue data structure.
393 *
394 * Locking rule: those places that want to lock multiple runqueues
395 * (such as the load balancing or the thread migration code), lock
396 * acquire operations must be ordered by ascending &runqueue.
397 */
398struct rq {
399 /* runqueue lock: */
400 raw_spinlock_t lock;
401
402 /*
403 * nr_running and cpu_load should be in the same cacheline because
404 * remote CPUs use both these fields when doing load calculation.
405 */
c82513e5 406 unsigned int nr_running;
029632fb
PZ
407 #define CPU_LOAD_IDX_MAX 5
408 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
409 unsigned long last_load_update_tick;
3451d024 410#ifdef CONFIG_NO_HZ_COMMON
029632fb 411 u64 nohz_stamp;
1c792db7 412 unsigned long nohz_flags;
265f22a9
FW
413#endif
414#ifdef CONFIG_NO_HZ_FULL
415 unsigned long last_sched_tick;
029632fb
PZ
416#endif
417 int skip_clock_update;
418
419 /* capture load from *all* tasks on this cpu: */
420 struct load_weight load;
421 unsigned long nr_load_updates;
422 u64 nr_switches;
423
424 struct cfs_rq cfs;
425 struct rt_rq rt;
426
427#ifdef CONFIG_FAIR_GROUP_SCHED
428 /* list of leaf cfs_rq on this cpu: */
429 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
430#ifdef CONFIG_SMP
431 unsigned long h_load_throttle;
432#endif /* CONFIG_SMP */
433#endif /* CONFIG_FAIR_GROUP_SCHED */
434
029632fb
PZ
435#ifdef CONFIG_RT_GROUP_SCHED
436 struct list_head leaf_rt_rq_list;
437#endif
438
439 /*
440 * This is part of a global counter where only the total sum
441 * over all CPUs matters. A task can increase this counter on
442 * one CPU and if it got migrated afterwards it may decrease
443 * it on another CPU. Always updated under the runqueue lock:
444 */
445 unsigned long nr_uninterruptible;
446
447 struct task_struct *curr, *idle, *stop;
448 unsigned long next_balance;
449 struct mm_struct *prev_mm;
450
451 u64 clock;
452 u64 clock_task;
453
454 atomic_t nr_iowait;
455
456#ifdef CONFIG_SMP
457 struct root_domain *rd;
458 struct sched_domain *sd;
459
460 unsigned long cpu_power;
461
462 unsigned char idle_balance;
463 /* For active balancing */
464 int post_schedule;
465 int active_balance;
466 int push_cpu;
467 struct cpu_stop_work active_balance_work;
468 /* cpu of this runqueue: */
469 int cpu;
470 int online;
471
367456c7
PZ
472 struct list_head cfs_tasks;
473
029632fb
PZ
474 u64 rt_avg;
475 u64 age_stamp;
476 u64 idle_stamp;
477 u64 avg_idle;
478#endif
479
480#ifdef CONFIG_IRQ_TIME_ACCOUNTING
481 u64 prev_irq_time;
482#endif
483#ifdef CONFIG_PARAVIRT
484 u64 prev_steal_time;
485#endif
486#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
487 u64 prev_steal_time_rq;
488#endif
489
490 /* calc_load related fields */
491 unsigned long calc_load_update;
492 long calc_load_active;
493
494#ifdef CONFIG_SCHED_HRTICK
495#ifdef CONFIG_SMP
496 int hrtick_csd_pending;
497 struct call_single_data hrtick_csd;
498#endif
499 struct hrtimer hrtick_timer;
500#endif
501
502#ifdef CONFIG_SCHEDSTATS
503 /* latency stats */
504 struct sched_info rq_sched_info;
505 unsigned long long rq_cpu_time;
506 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
507
508 /* sys_sched_yield() stats */
509 unsigned int yld_count;
510
511 /* schedule() stats */
029632fb
PZ
512 unsigned int sched_count;
513 unsigned int sched_goidle;
514
515 /* try_to_wake_up() stats */
516 unsigned int ttwu_count;
517 unsigned int ttwu_local;
518#endif
519
520#ifdef CONFIG_SMP
521 struct llist_head wake_list;
522#endif
18bf2805
BS
523
524 struct sched_avg avg;
029632fb
PZ
525};
526
527static inline int cpu_of(struct rq *rq)
528{
529#ifdef CONFIG_SMP
530 return rq->cpu;
531#else
532 return 0;
533#endif
534}
535
536DECLARE_PER_CPU(struct rq, runqueues);
537
518cd623
PZ
538#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
539#define this_rq() (&__get_cpu_var(runqueues))
540#define task_rq(p) cpu_rq(task_cpu(p))
541#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
542#define raw_rq() (&__raw_get_cpu_var(runqueues))
543
78becc27
FW
544static inline u64 rq_clock(struct rq *rq)
545{
546 return rq->clock;
547}
548
549static inline u64 rq_clock_task(struct rq *rq)
550{
551 return rq->clock_task;
552}
553
518cd623
PZ
554#ifdef CONFIG_SMP
555
029632fb
PZ
556#define rcu_dereference_check_sched_domain(p) \
557 rcu_dereference_check((p), \
558 lockdep_is_held(&sched_domains_mutex))
559
560/*
561 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
562 * See detach_destroy_domains: synchronize_sched for details.
563 *
564 * The domain tree of any CPU may only be accessed from within
565 * preempt-disabled sections.
566 */
567#define for_each_domain(cpu, __sd) \
518cd623
PZ
568 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
569 __sd; __sd = __sd->parent)
029632fb 570
77e81365
SS
571#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
572
518cd623
PZ
573/**
574 * highest_flag_domain - Return highest sched_domain containing flag.
575 * @cpu: The cpu whose highest level of sched domain is to
576 * be returned.
577 * @flag: The flag to check for the highest sched_domain
578 * for the given cpu.
579 *
580 * Returns the highest sched_domain of a cpu which contains the given flag.
581 */
582static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
583{
584 struct sched_domain *sd, *hsd = NULL;
585
586 for_each_domain(cpu, sd) {
587 if (!(sd->flags & flag))
588 break;
589 hsd = sd;
590 }
591
592 return hsd;
593}
594
595DECLARE_PER_CPU(struct sched_domain *, sd_llc);
596DECLARE_PER_CPU(int, sd_llc_id);
597
5e6521ea
LZ
598struct sched_group_power {
599 atomic_t ref;
600 /*
601 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
602 * single CPU.
603 */
604 unsigned int power, power_orig;
605 unsigned long next_update;
606 /*
607 * Number of busy cpus in this group.
608 */
609 atomic_t nr_busy_cpus;
610
611 unsigned long cpumask[0]; /* iteration mask */
612};
613
614struct sched_group {
615 struct sched_group *next; /* Must be a circular list */
616 atomic_t ref;
617
618 unsigned int group_weight;
619 struct sched_group_power *sgp;
620
621 /*
622 * The CPUs this group covers.
623 *
624 * NOTE: this field is variable length. (Allocated dynamically
625 * by attaching extra space to the end of the structure,
626 * depending on how many CPUs the kernel has booted up with)
627 */
628 unsigned long cpumask[0];
629};
630
631static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
632{
633 return to_cpumask(sg->cpumask);
634}
635
636/*
637 * cpumask masking which cpus in the group are allowed to iterate up the domain
638 * tree.
639 */
640static inline struct cpumask *sched_group_mask(struct sched_group *sg)
641{
642 return to_cpumask(sg->sgp->cpumask);
643}
644
645/**
646 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
647 * @group: The group whose first cpu is to be returned.
648 */
649static inline unsigned int group_first_cpu(struct sched_group *group)
650{
651 return cpumask_first(sched_group_cpus(group));
652}
653
c1174876
PZ
654extern int group_balance_cpu(struct sched_group *sg);
655
518cd623 656#endif /* CONFIG_SMP */
029632fb 657
391e43da
PZ
658#include "stats.h"
659#include "auto_group.h"
029632fb
PZ
660
661#ifdef CONFIG_CGROUP_SCHED
662
663/*
664 * Return the group to which this tasks belongs.
665 *
8323f26c
PZ
666 * We cannot use task_subsys_state() and friends because the cgroup
667 * subsystem changes that value before the cgroup_subsys::attach() method
668 * is called, therefore we cannot pin it and might observe the wrong value.
669 *
670 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
671 * core changes this before calling sched_move_task().
672 *
673 * Instead we use a 'copy' which is updated from sched_move_task() while
674 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
675 */
676static inline struct task_group *task_group(struct task_struct *p)
677{
8323f26c 678 return p->sched_task_group;
029632fb
PZ
679}
680
681/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
682static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
683{
684#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
685 struct task_group *tg = task_group(p);
686#endif
687
688#ifdef CONFIG_FAIR_GROUP_SCHED
689 p->se.cfs_rq = tg->cfs_rq[cpu];
690 p->se.parent = tg->se[cpu];
691#endif
692
693#ifdef CONFIG_RT_GROUP_SCHED
694 p->rt.rt_rq = tg->rt_rq[cpu];
695 p->rt.parent = tg->rt_se[cpu];
696#endif
697}
698
699#else /* CONFIG_CGROUP_SCHED */
700
701static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
702static inline struct task_group *task_group(struct task_struct *p)
703{
704 return NULL;
705}
706
707#endif /* CONFIG_CGROUP_SCHED */
708
709static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
710{
711 set_task_rq(p, cpu);
712#ifdef CONFIG_SMP
713 /*
714 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
715 * successfuly executed on another CPU. We must ensure that updates of
716 * per-task data have been completed by this moment.
717 */
718 smp_wmb();
719 task_thread_info(p)->cpu = cpu;
720#endif
721}
722
723/*
724 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
725 */
726#ifdef CONFIG_SCHED_DEBUG
c5905afb 727# include <linux/static_key.h>
029632fb
PZ
728# define const_debug __read_mostly
729#else
730# define const_debug const
731#endif
732
733extern const_debug unsigned int sysctl_sched_features;
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
738enum {
391e43da 739#include "features.h"
f8b6d1cc 740 __SCHED_FEAT_NR,
029632fb
PZ
741};
742
743#undef SCHED_FEAT
744
f8b6d1cc 745#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 746static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 747{
c5905afb 748 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
749}
750
c5905afb 751static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 752{
c5905afb 753 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
754}
755
756#define SCHED_FEAT(name, enabled) \
c5905afb 757static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
758{ \
759 return static_branch__##enabled(key); \
760}
761
762#include "features.h"
763
764#undef SCHED_FEAT
765
c5905afb 766extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
767#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
768#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 769#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 770#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 771
cbee9f88
PZ
772#ifdef CONFIG_NUMA_BALANCING
773#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
774#ifdef CONFIG_SCHED_DEBUG
775#define numabalancing_enabled sched_feat_numa(NUMA)
776#else
777extern bool numabalancing_enabled;
778#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
779#else
780#define sched_feat_numa(x) (0)
3105b86a
MG
781#define numabalancing_enabled (0)
782#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 783
029632fb
PZ
784static inline u64 global_rt_period(void)
785{
786 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
787}
788
789static inline u64 global_rt_runtime(void)
790{
791 if (sysctl_sched_rt_runtime < 0)
792 return RUNTIME_INF;
793
794 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
795}
796
797
798
799static inline int task_current(struct rq *rq, struct task_struct *p)
800{
801 return rq->curr == p;
802}
803
804static inline int task_running(struct rq *rq, struct task_struct *p)
805{
806#ifdef CONFIG_SMP
807 return p->on_cpu;
808#else
809 return task_current(rq, p);
810#endif
811}
812
813
814#ifndef prepare_arch_switch
815# define prepare_arch_switch(next) do { } while (0)
816#endif
817#ifndef finish_arch_switch
818# define finish_arch_switch(prev) do { } while (0)
819#endif
01f23e16
CM
820#ifndef finish_arch_post_lock_switch
821# define finish_arch_post_lock_switch() do { } while (0)
822#endif
029632fb
PZ
823
824#ifndef __ARCH_WANT_UNLOCKED_CTXSW
825static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
826{
827#ifdef CONFIG_SMP
828 /*
829 * We can optimise this out completely for !SMP, because the
830 * SMP rebalancing from interrupt is the only thing that cares
831 * here.
832 */
833 next->on_cpu = 1;
834#endif
835}
836
837static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
838{
839#ifdef CONFIG_SMP
840 /*
841 * After ->on_cpu is cleared, the task can be moved to a different CPU.
842 * We must ensure this doesn't happen until the switch is completely
843 * finished.
844 */
845 smp_wmb();
846 prev->on_cpu = 0;
847#endif
848#ifdef CONFIG_DEBUG_SPINLOCK
849 /* this is a valid case when another task releases the spinlock */
850 rq->lock.owner = current;
851#endif
852 /*
853 * If we are tracking spinlock dependencies then we have to
854 * fix up the runqueue lock - which gets 'carried over' from
855 * prev into current:
856 */
857 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
858
859 raw_spin_unlock_irq(&rq->lock);
860}
861
862#else /* __ARCH_WANT_UNLOCKED_CTXSW */
863static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864{
865#ifdef CONFIG_SMP
866 /*
867 * We can optimise this out completely for !SMP, because the
868 * SMP rebalancing from interrupt is the only thing that cares
869 * here.
870 */
871 next->on_cpu = 1;
872#endif
029632fb 873 raw_spin_unlock(&rq->lock);
029632fb
PZ
874}
875
876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877{
878#ifdef CONFIG_SMP
879 /*
880 * After ->on_cpu is cleared, the task can be moved to a different CPU.
881 * We must ensure this doesn't happen until the switch is completely
882 * finished.
883 */
884 smp_wmb();
885 prev->on_cpu = 0;
886#endif
029632fb 887 local_irq_enable();
029632fb
PZ
888}
889#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
890
b13095f0
LZ
891/*
892 * wake flags
893 */
894#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
895#define WF_FORK 0x02 /* child wakeup after fork */
896#define WF_MIGRATED 0x4 /* internal use, task got migrated */
897
029632fb
PZ
898/*
899 * To aid in avoiding the subversion of "niceness" due to uneven distribution
900 * of tasks with abnormal "nice" values across CPUs the contribution that
901 * each task makes to its run queue's load is weighted according to its
902 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
903 * scaled version of the new time slice allocation that they receive on time
904 * slice expiry etc.
905 */
906
907#define WEIGHT_IDLEPRIO 3
908#define WMULT_IDLEPRIO 1431655765
909
910/*
911 * Nice levels are multiplicative, with a gentle 10% change for every
912 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
913 * nice 1, it will get ~10% less CPU time than another CPU-bound task
914 * that remained on nice 0.
915 *
916 * The "10% effect" is relative and cumulative: from _any_ nice level,
917 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
918 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
919 * If a task goes up by ~10% and another task goes down by ~10% then
920 * the relative distance between them is ~25%.)
921 */
922static const int prio_to_weight[40] = {
923 /* -20 */ 88761, 71755, 56483, 46273, 36291,
924 /* -15 */ 29154, 23254, 18705, 14949, 11916,
925 /* -10 */ 9548, 7620, 6100, 4904, 3906,
926 /* -5 */ 3121, 2501, 1991, 1586, 1277,
927 /* 0 */ 1024, 820, 655, 526, 423,
928 /* 5 */ 335, 272, 215, 172, 137,
929 /* 10 */ 110, 87, 70, 56, 45,
930 /* 15 */ 36, 29, 23, 18, 15,
931};
932
933/*
934 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
935 *
936 * In cases where the weight does not change often, we can use the
937 * precalculated inverse to speed up arithmetics by turning divisions
938 * into multiplications:
939 */
940static const u32 prio_to_wmult[40] = {
941 /* -20 */ 48388, 59856, 76040, 92818, 118348,
942 /* -15 */ 147320, 184698, 229616, 287308, 360437,
943 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
944 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
945 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
946 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
947 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
948 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
949};
950
c82ba9fa
LZ
951#define ENQUEUE_WAKEUP 1
952#define ENQUEUE_HEAD 2
953#ifdef CONFIG_SMP
954#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
955#else
956#define ENQUEUE_WAKING 0
957#endif
958
959#define DEQUEUE_SLEEP 1
960
961struct sched_class {
962 const struct sched_class *next;
963
964 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
965 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
966 void (*yield_task) (struct rq *rq);
967 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
968
969 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
970
971 struct task_struct * (*pick_next_task) (struct rq *rq);
972 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
973
974#ifdef CONFIG_SMP
975 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
976 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
977
978 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
979 void (*post_schedule) (struct rq *this_rq);
980 void (*task_waking) (struct task_struct *task);
981 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
982
983 void (*set_cpus_allowed)(struct task_struct *p,
984 const struct cpumask *newmask);
985
986 void (*rq_online)(struct rq *rq);
987 void (*rq_offline)(struct rq *rq);
988#endif
989
990 void (*set_curr_task) (struct rq *rq);
991 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
992 void (*task_fork) (struct task_struct *p);
993
994 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
995 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
996 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
997 int oldprio);
998
999 unsigned int (*get_rr_interval) (struct rq *rq,
1000 struct task_struct *task);
1001
1002#ifdef CONFIG_FAIR_GROUP_SCHED
1003 void (*task_move_group) (struct task_struct *p, int on_rq);
1004#endif
1005};
029632fb
PZ
1006
1007#define sched_class_highest (&stop_sched_class)
1008#define for_each_class(class) \
1009 for (class = sched_class_highest; class; class = class->next)
1010
1011extern const struct sched_class stop_sched_class;
1012extern const struct sched_class rt_sched_class;
1013extern const struct sched_class fair_sched_class;
1014extern const struct sched_class idle_sched_class;
1015
1016
1017#ifdef CONFIG_SMP
1018
b719203b
LZ
1019extern void update_group_power(struct sched_domain *sd, int cpu);
1020
029632fb
PZ
1021extern void trigger_load_balance(struct rq *rq, int cpu);
1022extern void idle_balance(int this_cpu, struct rq *this_rq);
1023
642dbc39
VG
1024extern void idle_enter_fair(struct rq *this_rq);
1025extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1026
029632fb
PZ
1027#else /* CONFIG_SMP */
1028
1029static inline void idle_balance(int cpu, struct rq *rq)
1030{
1031}
1032
1033#endif
1034
1035extern void sysrq_sched_debug_show(void);
1036extern void sched_init_granularity(void);
1037extern void update_max_interval(void);
029632fb
PZ
1038extern void init_sched_rt_class(void);
1039extern void init_sched_fair_class(void);
1040
1041extern void resched_task(struct task_struct *p);
1042extern void resched_cpu(int cpu);
1043
1044extern struct rt_bandwidth def_rt_bandwidth;
1045extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1046
556061b0 1047extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1048
73fbec60
FW
1049#ifdef CONFIG_PARAVIRT
1050static inline u64 steal_ticks(u64 steal)
1051{
1052 if (unlikely(steal > NSEC_PER_SEC))
1053 return div_u64(steal, TICK_NSEC);
1054
1055 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1056}
1057#endif
1058
029632fb
PZ
1059static inline void inc_nr_running(struct rq *rq)
1060{
1061 rq->nr_running++;
9f3660c2
FW
1062
1063#ifdef CONFIG_NO_HZ_FULL
1064 if (rq->nr_running == 2) {
1065 if (tick_nohz_full_cpu(rq->cpu)) {
1066 /* Order rq->nr_running write against the IPI */
1067 smp_wmb();
1068 smp_send_reschedule(rq->cpu);
1069 }
1070 }
1071#endif
029632fb
PZ
1072}
1073
1074static inline void dec_nr_running(struct rq *rq)
1075{
1076 rq->nr_running--;
1077}
1078
265f22a9
FW
1079static inline void rq_last_tick_reset(struct rq *rq)
1080{
1081#ifdef CONFIG_NO_HZ_FULL
1082 rq->last_sched_tick = jiffies;
1083#endif
1084}
1085
029632fb
PZ
1086extern void update_rq_clock(struct rq *rq);
1087
1088extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1089extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1090
1091extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1092
1093extern const_debug unsigned int sysctl_sched_time_avg;
1094extern const_debug unsigned int sysctl_sched_nr_migrate;
1095extern const_debug unsigned int sysctl_sched_migration_cost;
1096
1097static inline u64 sched_avg_period(void)
1098{
1099 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1100}
1101
029632fb
PZ
1102#ifdef CONFIG_SCHED_HRTICK
1103
1104/*
1105 * Use hrtick when:
1106 * - enabled by features
1107 * - hrtimer is actually high res
1108 */
1109static inline int hrtick_enabled(struct rq *rq)
1110{
1111 if (!sched_feat(HRTICK))
1112 return 0;
1113 if (!cpu_active(cpu_of(rq)))
1114 return 0;
1115 return hrtimer_is_hres_active(&rq->hrtick_timer);
1116}
1117
1118void hrtick_start(struct rq *rq, u64 delay);
1119
b39e66ea
MG
1120#else
1121
1122static inline int hrtick_enabled(struct rq *rq)
1123{
1124 return 0;
1125}
1126
029632fb
PZ
1127#endif /* CONFIG_SCHED_HRTICK */
1128
1129#ifdef CONFIG_SMP
1130extern void sched_avg_update(struct rq *rq);
1131static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1132{
1133 rq->rt_avg += rt_delta;
1134 sched_avg_update(rq);
1135}
1136#else
1137static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1138static inline void sched_avg_update(struct rq *rq) { }
1139#endif
1140
1141extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1142
1143#ifdef CONFIG_SMP
1144#ifdef CONFIG_PREEMPT
1145
1146static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1147
1148/*
1149 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1150 * way at the expense of forcing extra atomic operations in all
1151 * invocations. This assures that the double_lock is acquired using the
1152 * same underlying policy as the spinlock_t on this architecture, which
1153 * reduces latency compared to the unfair variant below. However, it
1154 * also adds more overhead and therefore may reduce throughput.
1155 */
1156static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1157 __releases(this_rq->lock)
1158 __acquires(busiest->lock)
1159 __acquires(this_rq->lock)
1160{
1161 raw_spin_unlock(&this_rq->lock);
1162 double_rq_lock(this_rq, busiest);
1163
1164 return 1;
1165}
1166
1167#else
1168/*
1169 * Unfair double_lock_balance: Optimizes throughput at the expense of
1170 * latency by eliminating extra atomic operations when the locks are
1171 * already in proper order on entry. This favors lower cpu-ids and will
1172 * grant the double lock to lower cpus over higher ids under contention,
1173 * regardless of entry order into the function.
1174 */
1175static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1176 __releases(this_rq->lock)
1177 __acquires(busiest->lock)
1178 __acquires(this_rq->lock)
1179{
1180 int ret = 0;
1181
1182 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1183 if (busiest < this_rq) {
1184 raw_spin_unlock(&this_rq->lock);
1185 raw_spin_lock(&busiest->lock);
1186 raw_spin_lock_nested(&this_rq->lock,
1187 SINGLE_DEPTH_NESTING);
1188 ret = 1;
1189 } else
1190 raw_spin_lock_nested(&busiest->lock,
1191 SINGLE_DEPTH_NESTING);
1192 }
1193 return ret;
1194}
1195
1196#endif /* CONFIG_PREEMPT */
1197
1198/*
1199 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1200 */
1201static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1202{
1203 if (unlikely(!irqs_disabled())) {
1204 /* printk() doesn't work good under rq->lock */
1205 raw_spin_unlock(&this_rq->lock);
1206 BUG_ON(1);
1207 }
1208
1209 return _double_lock_balance(this_rq, busiest);
1210}
1211
1212static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1213 __releases(busiest->lock)
1214{
1215 raw_spin_unlock(&busiest->lock);
1216 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1217}
1218
1219/*
1220 * double_rq_lock - safely lock two runqueues
1221 *
1222 * Note this does not disable interrupts like task_rq_lock,
1223 * you need to do so manually before calling.
1224 */
1225static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1226 __acquires(rq1->lock)
1227 __acquires(rq2->lock)
1228{
1229 BUG_ON(!irqs_disabled());
1230 if (rq1 == rq2) {
1231 raw_spin_lock(&rq1->lock);
1232 __acquire(rq2->lock); /* Fake it out ;) */
1233 } else {
1234 if (rq1 < rq2) {
1235 raw_spin_lock(&rq1->lock);
1236 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1237 } else {
1238 raw_spin_lock(&rq2->lock);
1239 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1240 }
1241 }
1242}
1243
1244/*
1245 * double_rq_unlock - safely unlock two runqueues
1246 *
1247 * Note this does not restore interrupts like task_rq_unlock,
1248 * you need to do so manually after calling.
1249 */
1250static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1251 __releases(rq1->lock)
1252 __releases(rq2->lock)
1253{
1254 raw_spin_unlock(&rq1->lock);
1255 if (rq1 != rq2)
1256 raw_spin_unlock(&rq2->lock);
1257 else
1258 __release(rq2->lock);
1259}
1260
1261#else /* CONFIG_SMP */
1262
1263/*
1264 * double_rq_lock - safely lock two runqueues
1265 *
1266 * Note this does not disable interrupts like task_rq_lock,
1267 * you need to do so manually before calling.
1268 */
1269static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1270 __acquires(rq1->lock)
1271 __acquires(rq2->lock)
1272{
1273 BUG_ON(!irqs_disabled());
1274 BUG_ON(rq1 != rq2);
1275 raw_spin_lock(&rq1->lock);
1276 __acquire(rq2->lock); /* Fake it out ;) */
1277}
1278
1279/*
1280 * double_rq_unlock - safely unlock two runqueues
1281 *
1282 * Note this does not restore interrupts like task_rq_unlock,
1283 * you need to do so manually after calling.
1284 */
1285static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1286 __releases(rq1->lock)
1287 __releases(rq2->lock)
1288{
1289 BUG_ON(rq1 != rq2);
1290 raw_spin_unlock(&rq1->lock);
1291 __release(rq2->lock);
1292}
1293
1294#endif
1295
1296extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1297extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1298extern void print_cfs_stats(struct seq_file *m, int cpu);
1299extern void print_rt_stats(struct seq_file *m, int cpu);
1300
1301extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1302extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1303
1304extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1305
3451d024 1306#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1307enum rq_nohz_flag_bits {
1308 NOHZ_TICK_STOPPED,
1309 NOHZ_BALANCE_KICK,
1310};
1311
1312#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1313#endif
73fbec60
FW
1314
1315#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1316
1317DECLARE_PER_CPU(u64, cpu_hardirq_time);
1318DECLARE_PER_CPU(u64, cpu_softirq_time);
1319
1320#ifndef CONFIG_64BIT
1321DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1322
1323static inline void irq_time_write_begin(void)
1324{
1325 __this_cpu_inc(irq_time_seq.sequence);
1326 smp_wmb();
1327}
1328
1329static inline void irq_time_write_end(void)
1330{
1331 smp_wmb();
1332 __this_cpu_inc(irq_time_seq.sequence);
1333}
1334
1335static inline u64 irq_time_read(int cpu)
1336{
1337 u64 irq_time;
1338 unsigned seq;
1339
1340 do {
1341 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1342 irq_time = per_cpu(cpu_softirq_time, cpu) +
1343 per_cpu(cpu_hardirq_time, cpu);
1344 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1345
1346 return irq_time;
1347}
1348#else /* CONFIG_64BIT */
1349static inline void irq_time_write_begin(void)
1350{
1351}
1352
1353static inline void irq_time_write_end(void)
1354{
1355}
1356
1357static inline u64 irq_time_read(int cpu)
1358{
1359 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1360}
1361#endif /* CONFIG_64BIT */
1362#endif /* CONFIG_IRQ_TIME_ACCOUNTING */