]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
cpufreq: schedutil: Use unsigned int for iowait boost
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
dfc3401a 3#include <linux/sched/autogroup.h>
cf4aebc2 4#include <linux/sched/sysctl.h>
105ab3d8 5#include <linux/sched/topology.h>
8bd75c77 6#include <linux/sched/rt.h>
ef8bd77f 7#include <linux/sched/deadline.h>
e6017571 8#include <linux/sched/clock.h>
84f001e1 9#include <linux/sched/wake_q.h>
3f07c014 10#include <linux/sched/signal.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
6e84f315 12#include <linux/sched/mm.h>
55687da1 13#include <linux/sched/cpufreq.h>
03441a34 14#include <linux/sched/stat.h>
370c9135 15#include <linux/sched/nohz.h>
b17b0153 16#include <linux/sched/debug.h>
ef8bd77f 17#include <linux/sched/hotplug.h>
29930025 18#include <linux/sched/task.h>
68db0cf1 19#include <linux/sched/task_stack.h>
32ef5517 20#include <linux/sched/cputime.h>
1777e463 21#include <linux/sched/init.h>
ef8bd77f 22
19d23dbf 23#include <linux/u64_stats_sync.h>
a499a5a1 24#include <linux/kernel_stat.h>
3866e845 25#include <linux/binfmts.h>
029632fb
PZ
26#include <linux/mutex.h>
27#include <linux/spinlock.h>
28#include <linux/stop_machine.h>
b6366f04 29#include <linux/irq_work.h>
9f3660c2 30#include <linux/tick.h>
f809ca9a 31#include <linux/slab.h>
029632fb 32
7fce777c
IM
33#ifdef CONFIG_PARAVIRT
34#include <asm/paravirt.h>
35#endif
36
391e43da 37#include "cpupri.h"
6bfd6d72 38#include "cpudeadline.h"
60fed789 39#include "cpuacct.h"
029632fb 40
9148a3a1 41#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 42# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 43#else
6d3aed3d 44# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
45#endif
46
45ceebf7 47struct rq;
442bf3aa 48struct cpuidle_state;
45ceebf7 49
da0c1e65
KT
50/* task_struct::on_rq states: */
51#define TASK_ON_RQ_QUEUED 1
cca26e80 52#define TASK_ON_RQ_MIGRATING 2
da0c1e65 53
029632fb
PZ
54extern __read_mostly int scheduler_running;
55
45ceebf7
PG
56extern unsigned long calc_load_update;
57extern atomic_long_t calc_load_tasks;
58
3289bdb4 59extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 60extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
61
62#ifdef CONFIG_SMP
cee1afce 63extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 64#else
cee1afce 65static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 66#endif
45ceebf7 67
029632fb
PZ
68/*
69 * Helpers for converting nanosecond timing to jiffy resolution
70 */
71#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
72
cc1f4b1f
LZ
73/*
74 * Increase resolution of nice-level calculations for 64-bit architectures.
75 * The extra resolution improves shares distribution and load balancing of
76 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
77 * hierarchies, especially on larger systems. This is not a user-visible change
78 * and does not change the user-interface for setting shares/weights.
79 *
80 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
81 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
82 * pretty high and the returns do not justify the increased costs.
83 *
84 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
85 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 86 */
2159197d 87#ifdef CONFIG_64BIT
172895e6 88# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
89# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
90# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 91#else
172895e6 92# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
93# define scale_load(w) (w)
94# define scale_load_down(w) (w)
95#endif
96
6ecdd749 97/*
172895e6
YD
98 * Task weight (visible to users) and its load (invisible to users) have
99 * independent resolution, but they should be well calibrated. We use
100 * scale_load() and scale_load_down(w) to convert between them. The
101 * following must be true:
102 *
103 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
104 *
6ecdd749 105 */
172895e6 106#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 107
332ac17e
DF
108/*
109 * Single value that decides SCHED_DEADLINE internal math precision.
110 * 10 -> just above 1us
111 * 9 -> just above 0.5us
112 */
113#define DL_SCALE (10)
114
029632fb
PZ
115/*
116 * These are the 'tuning knobs' of the scheduler:
029632fb 117 */
029632fb
PZ
118
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
20f9cd2a
HA
124static inline int idle_policy(int policy)
125{
126 return policy == SCHED_IDLE;
127}
d50dde5a
DF
128static inline int fair_policy(int policy)
129{
130 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
131}
132
029632fb
PZ
133static inline int rt_policy(int policy)
134{
d50dde5a 135 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
136}
137
aab03e05
DF
138static inline int dl_policy(int policy)
139{
140 return policy == SCHED_DEADLINE;
141}
20f9cd2a
HA
142static inline bool valid_policy(int policy)
143{
144 return idle_policy(policy) || fair_policy(policy) ||
145 rt_policy(policy) || dl_policy(policy);
146}
aab03e05 147
029632fb
PZ
148static inline int task_has_rt_policy(struct task_struct *p)
149{
150 return rt_policy(p->policy);
151}
152
aab03e05
DF
153static inline int task_has_dl_policy(struct task_struct *p)
154{
155 return dl_policy(p->policy);
156}
157
2d3d891d
DF
158/*
159 * Tells if entity @a should preempt entity @b.
160 */
332ac17e
DF
161static inline bool
162dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
163{
164 return dl_time_before(a->deadline, b->deadline);
165}
166
029632fb
PZ
167/*
168 * This is the priority-queue data structure of the RT scheduling class:
169 */
170struct rt_prio_array {
171 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
172 struct list_head queue[MAX_RT_PRIO];
173};
174
175struct rt_bandwidth {
176 /* nests inside the rq lock: */
177 raw_spinlock_t rt_runtime_lock;
178 ktime_t rt_period;
179 u64 rt_runtime;
180 struct hrtimer rt_period_timer;
4cfafd30 181 unsigned int rt_period_active;
029632fb 182};
a5e7be3b
JL
183
184void __dl_clear_params(struct task_struct *p);
185
332ac17e
DF
186/*
187 * To keep the bandwidth of -deadline tasks and groups under control
188 * we need some place where:
189 * - store the maximum -deadline bandwidth of the system (the group);
190 * - cache the fraction of that bandwidth that is currently allocated.
191 *
192 * This is all done in the data structure below. It is similar to the
193 * one used for RT-throttling (rt_bandwidth), with the main difference
194 * that, since here we are only interested in admission control, we
195 * do not decrease any runtime while the group "executes", neither we
196 * need a timer to replenish it.
197 *
198 * With respect to SMP, the bandwidth is given on a per-CPU basis,
199 * meaning that:
200 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
201 * - dl_total_bw array contains, in the i-eth element, the currently
202 * allocated bandwidth on the i-eth CPU.
203 * Moreover, groups consume bandwidth on each CPU, while tasks only
204 * consume bandwidth on the CPU they're running on.
205 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
206 * that will be shown the next time the proc or cgroup controls will
207 * be red. It on its turn can be changed by writing on its own
208 * control.
209 */
210struct dl_bandwidth {
211 raw_spinlock_t dl_runtime_lock;
212 u64 dl_runtime;
213 u64 dl_period;
214};
215
216static inline int dl_bandwidth_enabled(void)
217{
1724813d 218 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
219}
220
332ac17e
DF
221struct dl_bw {
222 raw_spinlock_t lock;
223 u64 bw, total_bw;
224};
225
daec5798
LA
226static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
227
7f51412a 228static inline
daec5798 229void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
230{
231 dl_b->total_bw -= tsk_bw;
daec5798 232 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
233}
234
235static inline
daec5798 236void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
237{
238 dl_b->total_bw += tsk_bw;
daec5798 239 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
240}
241
242static inline
243bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
244{
245 return dl_b->bw != -1 &&
246 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
247}
248
209a0cbd 249void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 250extern void init_dl_bw(struct dl_bw *dl_b);
06a76fe0
NP
251extern int sched_dl_global_validate(void);
252extern void sched_dl_do_global(void);
253extern int sched_dl_overflow(struct task_struct *p, int policy,
254 const struct sched_attr *attr);
255extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
256extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
257extern bool __checkparam_dl(const struct sched_attr *attr);
258extern void __dl_clear_params(struct task_struct *p);
259extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
260extern int dl_task_can_attach(struct task_struct *p,
261 const struct cpumask *cs_cpus_allowed);
262extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
263 const struct cpumask *trial);
264extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
265
266#ifdef CONFIG_CGROUP_SCHED
267
268#include <linux/cgroup.h>
269
270struct cfs_rq;
271struct rt_rq;
272
35cf4e50 273extern struct list_head task_groups;
029632fb
PZ
274
275struct cfs_bandwidth {
276#ifdef CONFIG_CFS_BANDWIDTH
277 raw_spinlock_t lock;
278 ktime_t period;
279 u64 quota, runtime;
9c58c79a 280 s64 hierarchical_quota;
029632fb
PZ
281 u64 runtime_expires;
282
4cfafd30 283 int idle, period_active;
029632fb
PZ
284 struct hrtimer period_timer, slack_timer;
285 struct list_head throttled_cfs_rq;
286
287 /* statistics */
288 int nr_periods, nr_throttled;
289 u64 throttled_time;
290#endif
291};
292
293/* task group related information */
294struct task_group {
295 struct cgroup_subsys_state css;
296
297#ifdef CONFIG_FAIR_GROUP_SCHED
298 /* schedulable entities of this group on each cpu */
299 struct sched_entity **se;
300 /* runqueue "owned" by this group on each cpu */
301 struct cfs_rq **cfs_rq;
302 unsigned long shares;
303
fa6bddeb 304#ifdef CONFIG_SMP
b0367629
WL
305 /*
306 * load_avg can be heavily contended at clock tick time, so put
307 * it in its own cacheline separated from the fields above which
308 * will also be accessed at each tick.
309 */
310 atomic_long_t load_avg ____cacheline_aligned;
029632fb 311#endif
fa6bddeb 312#endif
029632fb
PZ
313
314#ifdef CONFIG_RT_GROUP_SCHED
315 struct sched_rt_entity **rt_se;
316 struct rt_rq **rt_rq;
317
318 struct rt_bandwidth rt_bandwidth;
319#endif
320
321 struct rcu_head rcu;
322 struct list_head list;
323
324 struct task_group *parent;
325 struct list_head siblings;
326 struct list_head children;
327
328#ifdef CONFIG_SCHED_AUTOGROUP
329 struct autogroup *autogroup;
330#endif
331
332 struct cfs_bandwidth cfs_bandwidth;
333};
334
335#ifdef CONFIG_FAIR_GROUP_SCHED
336#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
337
338/*
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
346#define MIN_SHARES (1UL << 1)
347#define MAX_SHARES (1UL << 18)
348#endif
349
029632fb
PZ
350typedef int (*tg_visitor)(struct task_group *, void *);
351
352extern int walk_tg_tree_from(struct task_group *from,
353 tg_visitor down, tg_visitor up, void *data);
354
355/*
356 * Iterate the full tree, calling @down when first entering a node and @up when
357 * leaving it for the final time.
358 *
359 * Caller must hold rcu_lock or sufficient equivalent.
360 */
361static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
362{
363 return walk_tg_tree_from(&root_task_group, down, up, data);
364}
365
366extern int tg_nop(struct task_group *tg, void *data);
367
368extern void free_fair_sched_group(struct task_group *tg);
369extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 370extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 371extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
372extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
373 struct sched_entity *se, int cpu,
374 struct sched_entity *parent);
375extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
376
377extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 378extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
379extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
380
381extern void free_rt_sched_group(struct task_group *tg);
382extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
383extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
384 struct sched_rt_entity *rt_se, int cpu,
385 struct sched_rt_entity *parent);
8887cd99
NP
386extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
387extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
388extern long sched_group_rt_runtime(struct task_group *tg);
389extern long sched_group_rt_period(struct task_group *tg);
390extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 391
25cc7da7
LZ
392extern struct task_group *sched_create_group(struct task_group *parent);
393extern void sched_online_group(struct task_group *tg,
394 struct task_group *parent);
395extern void sched_destroy_group(struct task_group *tg);
396extern void sched_offline_group(struct task_group *tg);
397
398extern void sched_move_task(struct task_struct *tsk);
399
400#ifdef CONFIG_FAIR_GROUP_SCHED
401extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
402
403#ifdef CONFIG_SMP
404extern void set_task_rq_fair(struct sched_entity *se,
405 struct cfs_rq *prev, struct cfs_rq *next);
406#else /* !CONFIG_SMP */
407static inline void set_task_rq_fair(struct sched_entity *se,
408 struct cfs_rq *prev, struct cfs_rq *next) { }
409#endif /* CONFIG_SMP */
410#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 411
029632fb
PZ
412#else /* CONFIG_CGROUP_SCHED */
413
414struct cfs_bandwidth { };
415
416#endif /* CONFIG_CGROUP_SCHED */
417
418/* CFS-related fields in a runqueue */
419struct cfs_rq {
420 struct load_weight load;
c82513e5 421 unsigned int nr_running, h_nr_running;
029632fb
PZ
422
423 u64 exec_clock;
424 u64 min_vruntime;
425#ifndef CONFIG_64BIT
426 u64 min_vruntime_copy;
427#endif
428
429 struct rb_root tasks_timeline;
430 struct rb_node *rb_leftmost;
431
029632fb
PZ
432 /*
433 * 'curr' points to currently running entity on this cfs_rq.
434 * It is set to NULL otherwise (i.e when none are currently running).
435 */
436 struct sched_entity *curr, *next, *last, *skip;
437
438#ifdef CONFIG_SCHED_DEBUG
439 unsigned int nr_spread_over;
440#endif
441
2dac754e
PT
442#ifdef CONFIG_SMP
443 /*
9d89c257 444 * CFS load tracking
2dac754e 445 */
9d89c257 446 struct sched_avg avg;
13962234
YD
447 u64 runnable_load_sum;
448 unsigned long runnable_load_avg;
c566e8e9 449#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257 450 unsigned long tg_load_avg_contrib;
09a43ace 451 unsigned long propagate_avg;
9d89c257
YD
452#endif
453 atomic_long_t removed_load_avg, removed_util_avg;
454#ifndef CONFIG_64BIT
455 u64 load_last_update_time_copy;
456#endif
82958366 457
9d89c257 458#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
459 /*
460 * h_load = weight * f(tg)
461 *
462 * Where f(tg) is the recursive weight fraction assigned to
463 * this group.
464 */
465 unsigned long h_load;
68520796
VD
466 u64 last_h_load_update;
467 struct sched_entity *h_load_next;
468#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
469#endif /* CONFIG_SMP */
470
029632fb
PZ
471#ifdef CONFIG_FAIR_GROUP_SCHED
472 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
473
474 /*
475 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
476 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
477 * (like users, containers etc.)
478 *
479 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
480 * list is used during load balance.
481 */
482 int on_list;
483 struct list_head leaf_cfs_rq_list;
484 struct task_group *tg; /* group that "owns" this runqueue */
485
029632fb
PZ
486#ifdef CONFIG_CFS_BANDWIDTH
487 int runtime_enabled;
488 u64 runtime_expires;
489 s64 runtime_remaining;
490
f1b17280
PT
491 u64 throttled_clock, throttled_clock_task;
492 u64 throttled_clock_task_time;
55e16d30 493 int throttled, throttle_count;
029632fb
PZ
494 struct list_head throttled_list;
495#endif /* CONFIG_CFS_BANDWIDTH */
496#endif /* CONFIG_FAIR_GROUP_SCHED */
497};
498
499static inline int rt_bandwidth_enabled(void)
500{
501 return sysctl_sched_rt_runtime >= 0;
502}
503
b6366f04
SR
504/* RT IPI pull logic requires IRQ_WORK */
505#ifdef CONFIG_IRQ_WORK
506# define HAVE_RT_PUSH_IPI
507#endif
508
029632fb
PZ
509/* Real-Time classes' related field in a runqueue: */
510struct rt_rq {
511 struct rt_prio_array active;
c82513e5 512 unsigned int rt_nr_running;
01d36d0a 513 unsigned int rr_nr_running;
029632fb
PZ
514#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
515 struct {
516 int curr; /* highest queued rt task prio */
517#ifdef CONFIG_SMP
518 int next; /* next highest */
519#endif
520 } highest_prio;
521#endif
522#ifdef CONFIG_SMP
523 unsigned long rt_nr_migratory;
524 unsigned long rt_nr_total;
525 int overloaded;
526 struct plist_head pushable_tasks;
b6366f04
SR
527#ifdef HAVE_RT_PUSH_IPI
528 int push_flags;
529 int push_cpu;
530 struct irq_work push_work;
531 raw_spinlock_t push_lock;
029632fb 532#endif
b6366f04 533#endif /* CONFIG_SMP */
f4ebcbc0
KT
534 int rt_queued;
535
029632fb
PZ
536 int rt_throttled;
537 u64 rt_time;
538 u64 rt_runtime;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock;
541
542#ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted;
544
545 struct rq *rq;
029632fb
PZ
546 struct task_group *tg;
547#endif
548};
549
aab03e05
DF
550/* Deadline class' related fields in a runqueue */
551struct dl_rq {
552 /* runqueue is an rbtree, ordered by deadline */
553 struct rb_root rb_root;
554 struct rb_node *rb_leftmost;
555
556 unsigned long dl_nr_running;
1baca4ce
JL
557
558#ifdef CONFIG_SMP
559 /*
560 * Deadline values of the currently executing and the
561 * earliest ready task on this rq. Caching these facilitates
562 * the decision wether or not a ready but not running task
563 * should migrate somewhere else.
564 */
565 struct {
566 u64 curr;
567 u64 next;
568 } earliest_dl;
569
570 unsigned long dl_nr_migratory;
1baca4ce
JL
571 int overloaded;
572
573 /*
574 * Tasks on this rq that can be pushed away. They are kept in
575 * an rb-tree, ordered by tasks' deadlines, with caching
576 * of the leftmost (earliest deadline) element.
577 */
578 struct rb_root pushable_dl_tasks_root;
579 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
580#else
581 struct dl_bw dl_bw;
1baca4ce 582#endif
e36d8677
LA
583 /*
584 * "Active utilization" for this runqueue: increased when a
585 * task wakes up (becomes TASK_RUNNING) and decreased when a
586 * task blocks
587 */
588 u64 running_bw;
4da3abce 589
8fd27231
LA
590 /*
591 * Utilization of the tasks "assigned" to this runqueue (including
592 * the tasks that are in runqueue and the tasks that executed on this
593 * CPU and blocked). Increased when a task moves to this runqueue, and
594 * decreased when the task moves away (migrates, changes scheduling
595 * policy, or terminates).
596 * This is needed to compute the "inactive utilization" for the
597 * runqueue (inactive utilization = this_bw - running_bw).
598 */
599 u64 this_bw;
daec5798 600 u64 extra_bw;
8fd27231 601
4da3abce
LA
602 /*
603 * Inverse of the fraction of CPU utilization that can be reclaimed
604 * by the GRUB algorithm.
605 */
606 u64 bw_ratio;
aab03e05
DF
607};
608
029632fb
PZ
609#ifdef CONFIG_SMP
610
afe06efd
TC
611static inline bool sched_asym_prefer(int a, int b)
612{
613 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
614}
615
029632fb
PZ
616/*
617 * We add the notion of a root-domain which will be used to define per-domain
618 * variables. Each exclusive cpuset essentially defines an island domain by
619 * fully partitioning the member cpus from any other cpuset. Whenever a new
620 * exclusive cpuset is created, we also create and attach a new root-domain
621 * object.
622 *
623 */
624struct root_domain {
625 atomic_t refcount;
626 atomic_t rto_count;
627 struct rcu_head rcu;
628 cpumask_var_t span;
629 cpumask_var_t online;
630
4486edd1
TC
631 /* Indicate more than one runnable task for any CPU */
632 bool overload;
633
1baca4ce
JL
634 /*
635 * The bit corresponding to a CPU gets set here if such CPU has more
636 * than one runnable -deadline task (as it is below for RT tasks).
637 */
638 cpumask_var_t dlo_mask;
639 atomic_t dlo_count;
332ac17e 640 struct dl_bw dl_bw;
6bfd6d72 641 struct cpudl cpudl;
1baca4ce 642
029632fb
PZ
643 /*
644 * The "RT overload" flag: it gets set if a CPU has more than
645 * one runnable RT task.
646 */
647 cpumask_var_t rto_mask;
648 struct cpupri cpupri;
cd92bfd3
DE
649
650 unsigned long max_cpu_capacity;
029632fb
PZ
651};
652
653extern struct root_domain def_root_domain;
f2cb1360 654extern struct mutex sched_domains_mutex;
f2cb1360
IM
655
656extern void init_defrootdomain(void);
8d5dc512 657extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 658extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
029632fb
PZ
659
660#endif /* CONFIG_SMP */
661
662/*
663 * This is the main, per-CPU runqueue data structure.
664 *
665 * Locking rule: those places that want to lock multiple runqueues
666 * (such as the load balancing or the thread migration code), lock
667 * acquire operations must be ordered by ascending &runqueue.
668 */
669struct rq {
670 /* runqueue lock: */
671 raw_spinlock_t lock;
672
673 /*
674 * nr_running and cpu_load should be in the same cacheline because
675 * remote CPUs use both these fields when doing load calculation.
676 */
c82513e5 677 unsigned int nr_running;
0ec8aa00
PZ
678#ifdef CONFIG_NUMA_BALANCING
679 unsigned int nr_numa_running;
680 unsigned int nr_preferred_running;
681#endif
029632fb
PZ
682 #define CPU_LOAD_IDX_MAX 5
683 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 684#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
685#ifdef CONFIG_SMP
686 unsigned long last_load_update_tick;
687#endif /* CONFIG_SMP */
1c792db7 688 unsigned long nohz_flags;
9fd81dd5 689#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
690#ifdef CONFIG_NO_HZ_FULL
691 unsigned long last_sched_tick;
029632fb 692#endif
029632fb
PZ
693 /* capture load from *all* tasks on this cpu: */
694 struct load_weight load;
695 unsigned long nr_load_updates;
696 u64 nr_switches;
697
698 struct cfs_rq cfs;
699 struct rt_rq rt;
aab03e05 700 struct dl_rq dl;
029632fb
PZ
701
702#ifdef CONFIG_FAIR_GROUP_SCHED
703 /* list of leaf cfs_rq on this cpu: */
704 struct list_head leaf_cfs_rq_list;
9c2791f9 705 struct list_head *tmp_alone_branch;
a35b6466
PZ
706#endif /* CONFIG_FAIR_GROUP_SCHED */
707
029632fb
PZ
708 /*
709 * This is part of a global counter where only the total sum
710 * over all CPUs matters. A task can increase this counter on
711 * one CPU and if it got migrated afterwards it may decrease
712 * it on another CPU. Always updated under the runqueue lock:
713 */
714 unsigned long nr_uninterruptible;
715
716 struct task_struct *curr, *idle, *stop;
717 unsigned long next_balance;
718 struct mm_struct *prev_mm;
719
cb42c9a3 720 unsigned int clock_update_flags;
029632fb
PZ
721 u64 clock;
722 u64 clock_task;
723
724 atomic_t nr_iowait;
725
726#ifdef CONFIG_SMP
727 struct root_domain *rd;
728 struct sched_domain *sd;
729
ced549fa 730 unsigned long cpu_capacity;
ca6d75e6 731 unsigned long cpu_capacity_orig;
029632fb 732
e3fca9e7
PZ
733 struct callback_head *balance_callback;
734
029632fb
PZ
735 unsigned char idle_balance;
736 /* For active balancing */
029632fb
PZ
737 int active_balance;
738 int push_cpu;
739 struct cpu_stop_work active_balance_work;
740 /* cpu of this runqueue: */
741 int cpu;
742 int online;
743
367456c7
PZ
744 struct list_head cfs_tasks;
745
029632fb
PZ
746 u64 rt_avg;
747 u64 age_stamp;
748 u64 idle_stamp;
749 u64 avg_idle;
9bd721c5
JL
750
751 /* This is used to determine avg_idle's max value */
752 u64 max_idle_balance_cost;
029632fb
PZ
753#endif
754
755#ifdef CONFIG_IRQ_TIME_ACCOUNTING
756 u64 prev_irq_time;
757#endif
758#ifdef CONFIG_PARAVIRT
759 u64 prev_steal_time;
760#endif
761#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
762 u64 prev_steal_time_rq;
763#endif
764
765 /* calc_load related fields */
766 unsigned long calc_load_update;
767 long calc_load_active;
768
769#ifdef CONFIG_SCHED_HRTICK
770#ifdef CONFIG_SMP
771 int hrtick_csd_pending;
772 struct call_single_data hrtick_csd;
773#endif
774 struct hrtimer hrtick_timer;
775#endif
776
777#ifdef CONFIG_SCHEDSTATS
778 /* latency stats */
779 struct sched_info rq_sched_info;
780 unsigned long long rq_cpu_time;
781 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
782
783 /* sys_sched_yield() stats */
784 unsigned int yld_count;
785
786 /* schedule() stats */
029632fb
PZ
787 unsigned int sched_count;
788 unsigned int sched_goidle;
789
790 /* try_to_wake_up() stats */
791 unsigned int ttwu_count;
792 unsigned int ttwu_local;
793#endif
794
795#ifdef CONFIG_SMP
796 struct llist_head wake_list;
797#endif
442bf3aa
DL
798
799#ifdef CONFIG_CPU_IDLE
800 /* Must be inspected within a rcu lock section */
801 struct cpuidle_state *idle_state;
802#endif
029632fb
PZ
803};
804
805static inline int cpu_of(struct rq *rq)
806{
807#ifdef CONFIG_SMP
808 return rq->cpu;
809#else
810 return 0;
811#endif
812}
813
1b568f0a
PZ
814
815#ifdef CONFIG_SCHED_SMT
816
817extern struct static_key_false sched_smt_present;
818
819extern void __update_idle_core(struct rq *rq);
820
821static inline void update_idle_core(struct rq *rq)
822{
823 if (static_branch_unlikely(&sched_smt_present))
824 __update_idle_core(rq);
825}
826
827#else
828static inline void update_idle_core(struct rq *rq) { }
829#endif
830
8b06c55b 831DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 832
518cd623 833#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 834#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
835#define task_rq(p) cpu_rq(task_cpu(p))
836#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 837#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 838
cebde6d6
PZ
839static inline u64 __rq_clock_broken(struct rq *rq)
840{
316c1608 841 return READ_ONCE(rq->clock);
cebde6d6
PZ
842}
843
cb42c9a3
MF
844/*
845 * rq::clock_update_flags bits
846 *
847 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
848 * call to __schedule(). This is an optimisation to avoid
849 * neighbouring rq clock updates.
850 *
851 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
852 * in effect and calls to update_rq_clock() are being ignored.
853 *
854 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
855 * made to update_rq_clock() since the last time rq::lock was pinned.
856 *
857 * If inside of __schedule(), clock_update_flags will have been
858 * shifted left (a left shift is a cheap operation for the fast path
859 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
860 *
861 * if (rq-clock_update_flags >= RQCF_UPDATED)
862 *
863 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
864 * one position though, because the next rq_unpin_lock() will shift it
865 * back.
866 */
867#define RQCF_REQ_SKIP 0x01
868#define RQCF_ACT_SKIP 0x02
869#define RQCF_UPDATED 0x04
870
871static inline void assert_clock_updated(struct rq *rq)
872{
873 /*
874 * The only reason for not seeing a clock update since the
875 * last rq_pin_lock() is if we're currently skipping updates.
876 */
877 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
878}
879
78becc27
FW
880static inline u64 rq_clock(struct rq *rq)
881{
cebde6d6 882 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
883 assert_clock_updated(rq);
884
78becc27
FW
885 return rq->clock;
886}
887
888static inline u64 rq_clock_task(struct rq *rq)
889{
cebde6d6 890 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
891 assert_clock_updated(rq);
892
78becc27
FW
893 return rq->clock_task;
894}
895
9edfbfed
PZ
896static inline void rq_clock_skip_update(struct rq *rq, bool skip)
897{
898 lockdep_assert_held(&rq->lock);
899 if (skip)
cb42c9a3 900 rq->clock_update_flags |= RQCF_REQ_SKIP;
9edfbfed 901 else
cb42c9a3 902 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
903}
904
d8ac8971
MF
905struct rq_flags {
906 unsigned long flags;
907 struct pin_cookie cookie;
cb42c9a3
MF
908#ifdef CONFIG_SCHED_DEBUG
909 /*
910 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
911 * current pin context is stashed here in case it needs to be
912 * restored in rq_repin_lock().
913 */
914 unsigned int clock_update_flags;
915#endif
d8ac8971
MF
916};
917
918static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
919{
920 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
921
922#ifdef CONFIG_SCHED_DEBUG
923 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
924 rf->clock_update_flags = 0;
925#endif
d8ac8971
MF
926}
927
928static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
929{
cb42c9a3
MF
930#ifdef CONFIG_SCHED_DEBUG
931 if (rq->clock_update_flags > RQCF_ACT_SKIP)
932 rf->clock_update_flags = RQCF_UPDATED;
933#endif
934
d8ac8971
MF
935 lockdep_unpin_lock(&rq->lock, rf->cookie);
936}
937
938static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
939{
940 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
941
942#ifdef CONFIG_SCHED_DEBUG
943 /*
944 * Restore the value we stashed in @rf for this pin context.
945 */
946 rq->clock_update_flags |= rf->clock_update_flags;
947#endif
d8ac8971
MF
948}
949
9942f79b 950#ifdef CONFIG_NUMA
e3fe70b1
RR
951enum numa_topology_type {
952 NUMA_DIRECT,
953 NUMA_GLUELESS_MESH,
954 NUMA_BACKPLANE,
955};
956extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
957extern int sched_max_numa_distance;
958extern bool find_numa_distance(int distance);
959#endif
960
f2cb1360
IM
961#ifdef CONFIG_NUMA
962extern void sched_init_numa(void);
963extern void sched_domains_numa_masks_set(unsigned int cpu);
964extern void sched_domains_numa_masks_clear(unsigned int cpu);
965#else
966static inline void sched_init_numa(void) { }
967static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
968static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
969#endif
970
f809ca9a 971#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
972/* The regions in numa_faults array from task_struct */
973enum numa_faults_stats {
974 NUMA_MEM = 0,
975 NUMA_CPU,
976 NUMA_MEMBUF,
977 NUMA_CPUBUF
978};
0ec8aa00 979extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 980extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 981extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
982#endif /* CONFIG_NUMA_BALANCING */
983
518cd623
PZ
984#ifdef CONFIG_SMP
985
e3fca9e7
PZ
986static inline void
987queue_balance_callback(struct rq *rq,
988 struct callback_head *head,
989 void (*func)(struct rq *rq))
990{
991 lockdep_assert_held(&rq->lock);
992
993 if (unlikely(head->next))
994 return;
995
996 head->func = (void (*)(struct callback_head *))func;
997 head->next = rq->balance_callback;
998 rq->balance_callback = head;
999}
1000
e3baac47
PZ
1001extern void sched_ttwu_pending(void);
1002
029632fb
PZ
1003#define rcu_dereference_check_sched_domain(p) \
1004 rcu_dereference_check((p), \
1005 lockdep_is_held(&sched_domains_mutex))
1006
1007/*
1008 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1009 * See detach_destroy_domains: synchronize_sched for details.
1010 *
1011 * The domain tree of any CPU may only be accessed from within
1012 * preempt-disabled sections.
1013 */
1014#define for_each_domain(cpu, __sd) \
518cd623
PZ
1015 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1016 __sd; __sd = __sd->parent)
029632fb 1017
77e81365
SS
1018#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1019
518cd623
PZ
1020/**
1021 * highest_flag_domain - Return highest sched_domain containing flag.
1022 * @cpu: The cpu whose highest level of sched domain is to
1023 * be returned.
1024 * @flag: The flag to check for the highest sched_domain
1025 * for the given cpu.
1026 *
1027 * Returns the highest sched_domain of a cpu which contains the given flag.
1028 */
1029static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1030{
1031 struct sched_domain *sd, *hsd = NULL;
1032
1033 for_each_domain(cpu, sd) {
1034 if (!(sd->flags & flag))
1035 break;
1036 hsd = sd;
1037 }
1038
1039 return hsd;
1040}
1041
fb13c7ee
MG
1042static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1043{
1044 struct sched_domain *sd;
1045
1046 for_each_domain(cpu, sd) {
1047 if (sd->flags & flag)
1048 break;
1049 }
1050
1051 return sd;
1052}
1053
518cd623 1054DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1055DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1056DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1057DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1058DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1059DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 1060
63b2ca30 1061struct sched_group_capacity {
5e6521ea
LZ
1062 atomic_t ref;
1063 /*
172895e6 1064 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1065 * for a single CPU.
5e6521ea 1066 */
bf475ce0
MR
1067 unsigned long capacity;
1068 unsigned long min_capacity; /* Min per-CPU capacity in group */
5e6521ea 1069 unsigned long next_update;
63b2ca30 1070 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1071
005f874d
PZ
1072#ifdef CONFIG_SCHED_DEBUG
1073 int id;
1074#endif
1075
e5c14b1f 1076 unsigned long cpumask[0]; /* balance mask */
5e6521ea
LZ
1077};
1078
1079struct sched_group {
1080 struct sched_group *next; /* Must be a circular list */
1081 atomic_t ref;
1082
1083 unsigned int group_weight;
63b2ca30 1084 struct sched_group_capacity *sgc;
afe06efd 1085 int asym_prefer_cpu; /* cpu of highest priority in group */
5e6521ea
LZ
1086
1087 /*
1088 * The CPUs this group covers.
1089 *
1090 * NOTE: this field is variable length. (Allocated dynamically
1091 * by attaching extra space to the end of the structure,
1092 * depending on how many CPUs the kernel has booted up with)
1093 */
1094 unsigned long cpumask[0];
1095};
1096
ae4df9d6 1097static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1098{
1099 return to_cpumask(sg->cpumask);
1100}
1101
1102/*
e5c14b1f 1103 * See build_balance_mask().
5e6521ea 1104 */
e5c14b1f 1105static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1106{
63b2ca30 1107 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1108}
1109
1110/**
1111 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1112 * @group: The group whose first cpu is to be returned.
1113 */
1114static inline unsigned int group_first_cpu(struct sched_group *group)
1115{
ae4df9d6 1116 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1117}
1118
c1174876
PZ
1119extern int group_balance_cpu(struct sched_group *sg);
1120
3866e845
SRRH
1121#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1122void register_sched_domain_sysctl(void);
1123void unregister_sched_domain_sysctl(void);
1124#else
1125static inline void register_sched_domain_sysctl(void)
1126{
1127}
1128static inline void unregister_sched_domain_sysctl(void)
1129{
1130}
1131#endif
1132
e3baac47
PZ
1133#else
1134
1135static inline void sched_ttwu_pending(void) { }
1136
518cd623 1137#endif /* CONFIG_SMP */
029632fb 1138
391e43da 1139#include "stats.h"
1051408f 1140#include "autogroup.h"
029632fb
PZ
1141
1142#ifdef CONFIG_CGROUP_SCHED
1143
1144/*
1145 * Return the group to which this tasks belongs.
1146 *
8af01f56
TH
1147 * We cannot use task_css() and friends because the cgroup subsystem
1148 * changes that value before the cgroup_subsys::attach() method is called,
1149 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1150 *
1151 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1152 * core changes this before calling sched_move_task().
1153 *
1154 * Instead we use a 'copy' which is updated from sched_move_task() while
1155 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1156 */
1157static inline struct task_group *task_group(struct task_struct *p)
1158{
8323f26c 1159 return p->sched_task_group;
029632fb
PZ
1160}
1161
1162/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1163static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1164{
1165#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1166 struct task_group *tg = task_group(p);
1167#endif
1168
1169#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1170 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1171 p->se.cfs_rq = tg->cfs_rq[cpu];
1172 p->se.parent = tg->se[cpu];
1173#endif
1174
1175#ifdef CONFIG_RT_GROUP_SCHED
1176 p->rt.rt_rq = tg->rt_rq[cpu];
1177 p->rt.parent = tg->rt_se[cpu];
1178#endif
1179}
1180
1181#else /* CONFIG_CGROUP_SCHED */
1182
1183static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1184static inline struct task_group *task_group(struct task_struct *p)
1185{
1186 return NULL;
1187}
1188
1189#endif /* CONFIG_CGROUP_SCHED */
1190
1191static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1192{
1193 set_task_rq(p, cpu);
1194#ifdef CONFIG_SMP
1195 /*
1196 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1197 * successfuly executed on another CPU. We must ensure that updates of
1198 * per-task data have been completed by this moment.
1199 */
1200 smp_wmb();
c65eacbe
AL
1201#ifdef CONFIG_THREAD_INFO_IN_TASK
1202 p->cpu = cpu;
1203#else
029632fb 1204 task_thread_info(p)->cpu = cpu;
c65eacbe 1205#endif
ac66f547 1206 p->wake_cpu = cpu;
029632fb
PZ
1207#endif
1208}
1209
1210/*
1211 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1212 */
1213#ifdef CONFIG_SCHED_DEBUG
c5905afb 1214# include <linux/static_key.h>
029632fb
PZ
1215# define const_debug __read_mostly
1216#else
1217# define const_debug const
1218#endif
1219
1220extern const_debug unsigned int sysctl_sched_features;
1221
1222#define SCHED_FEAT(name, enabled) \
1223 __SCHED_FEAT_##name ,
1224
1225enum {
391e43da 1226#include "features.h"
f8b6d1cc 1227 __SCHED_FEAT_NR,
029632fb
PZ
1228};
1229
1230#undef SCHED_FEAT
1231
f8b6d1cc 1232#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1233#define SCHED_FEAT(name, enabled) \
c5905afb 1234static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1235{ \
6e76ea8a 1236 return static_key_##enabled(key); \
f8b6d1cc
PZ
1237}
1238
1239#include "features.h"
1240
1241#undef SCHED_FEAT
1242
c5905afb 1243extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1244#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1245#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1246#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1247#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1248
2a595721 1249extern struct static_key_false sched_numa_balancing;
cb251765 1250extern struct static_key_false sched_schedstats;
cbee9f88 1251
029632fb
PZ
1252static inline u64 global_rt_period(void)
1253{
1254 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1255}
1256
1257static inline u64 global_rt_runtime(void)
1258{
1259 if (sysctl_sched_rt_runtime < 0)
1260 return RUNTIME_INF;
1261
1262 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1263}
1264
029632fb
PZ
1265static inline int task_current(struct rq *rq, struct task_struct *p)
1266{
1267 return rq->curr == p;
1268}
1269
1270static inline int task_running(struct rq *rq, struct task_struct *p)
1271{
1272#ifdef CONFIG_SMP
1273 return p->on_cpu;
1274#else
1275 return task_current(rq, p);
1276#endif
1277}
1278
da0c1e65
KT
1279static inline int task_on_rq_queued(struct task_struct *p)
1280{
1281 return p->on_rq == TASK_ON_RQ_QUEUED;
1282}
029632fb 1283
cca26e80
KT
1284static inline int task_on_rq_migrating(struct task_struct *p)
1285{
1286 return p->on_rq == TASK_ON_RQ_MIGRATING;
1287}
1288
029632fb
PZ
1289#ifndef prepare_arch_switch
1290# define prepare_arch_switch(next) do { } while (0)
1291#endif
01f23e16
CM
1292#ifndef finish_arch_post_lock_switch
1293# define finish_arch_post_lock_switch() do { } while (0)
1294#endif
029632fb 1295
029632fb
PZ
1296static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1297{
1298#ifdef CONFIG_SMP
1299 /*
1300 * We can optimise this out completely for !SMP, because the
1301 * SMP rebalancing from interrupt is the only thing that cares
1302 * here.
1303 */
1304 next->on_cpu = 1;
1305#endif
1306}
1307
1308static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1309{
1310#ifdef CONFIG_SMP
1311 /*
1312 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1313 * We must ensure this doesn't happen until the switch is completely
1314 * finished.
95913d97 1315 *
b75a2253
PZ
1316 * In particular, the load of prev->state in finish_task_switch() must
1317 * happen before this.
1318 *
1f03e8d2 1319 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1320 */
95913d97 1321 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1322#endif
1323#ifdef CONFIG_DEBUG_SPINLOCK
1324 /* this is a valid case when another task releases the spinlock */
1325 rq->lock.owner = current;
1326#endif
1327 /*
1328 * If we are tracking spinlock dependencies then we have to
1329 * fix up the runqueue lock - which gets 'carried over' from
1330 * prev into current:
1331 */
1332 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1333
1334 raw_spin_unlock_irq(&rq->lock);
1335}
1336
b13095f0
LZ
1337/*
1338 * wake flags
1339 */
1340#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1341#define WF_FORK 0x02 /* child wakeup after fork */
1342#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1343
029632fb
PZ
1344/*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
1353#define WEIGHT_IDLEPRIO 3
1354#define WMULT_IDLEPRIO 1431655765
1355
ed82b8a1
AK
1356extern const int sched_prio_to_weight[40];
1357extern const u32 sched_prio_to_wmult[40];
029632fb 1358
ff77e468
PZ
1359/*
1360 * {de,en}queue flags:
1361 *
1362 * DEQUEUE_SLEEP - task is no longer runnable
1363 * ENQUEUE_WAKEUP - task just became runnable
1364 *
1365 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1366 * are in a known state which allows modification. Such pairs
1367 * should preserve as much state as possible.
1368 *
1369 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1370 * in the runqueue.
1371 *
1372 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1373 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1374 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1375 *
1376 */
1377
1378#define DEQUEUE_SLEEP 0x01
1379#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1380#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
0a67d1ee 1381#define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
ff77e468 1382
1de64443 1383#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1384#define ENQUEUE_RESTORE 0x02
1385#define ENQUEUE_MOVE 0x04
0a67d1ee 1386#define ENQUEUE_NOCLOCK 0x08
ff77e468 1387
0a67d1ee
PZ
1388#define ENQUEUE_HEAD 0x10
1389#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1390#ifdef CONFIG_SMP
0a67d1ee 1391#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1392#else
59efa0ba 1393#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1394#endif
c82ba9fa 1395
37e117c0
PZ
1396#define RETRY_TASK ((void *)-1UL)
1397
c82ba9fa
LZ
1398struct sched_class {
1399 const struct sched_class *next;
1400
1401 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1402 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1403 void (*yield_task) (struct rq *rq);
1404 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1405
1406 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1407
606dba2e
PZ
1408 /*
1409 * It is the responsibility of the pick_next_task() method that will
1410 * return the next task to call put_prev_task() on the @prev task or
1411 * something equivalent.
37e117c0
PZ
1412 *
1413 * May return RETRY_TASK when it finds a higher prio class has runnable
1414 * tasks.
606dba2e
PZ
1415 */
1416 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28 1417 struct task_struct *prev,
d8ac8971 1418 struct rq_flags *rf);
c82ba9fa
LZ
1419 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1420
1421#ifdef CONFIG_SMP
ac66f547 1422 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1423 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1424
c82ba9fa
LZ
1425 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1426
1427 void (*set_cpus_allowed)(struct task_struct *p,
1428 const struct cpumask *newmask);
1429
1430 void (*rq_online)(struct rq *rq);
1431 void (*rq_offline)(struct rq *rq);
1432#endif
1433
1434 void (*set_curr_task) (struct rq *rq);
1435 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1436 void (*task_fork) (struct task_struct *p);
e6c390f2 1437 void (*task_dead) (struct task_struct *p);
c82ba9fa 1438
67dfa1b7
KT
1439 /*
1440 * The switched_from() call is allowed to drop rq->lock, therefore we
1441 * cannot assume the switched_from/switched_to pair is serliazed by
1442 * rq->lock. They are however serialized by p->pi_lock.
1443 */
c82ba9fa
LZ
1444 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1445 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1446 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1447 int oldprio);
1448
1449 unsigned int (*get_rr_interval) (struct rq *rq,
1450 struct task_struct *task);
1451
6e998916
SG
1452 void (*update_curr) (struct rq *rq);
1453
ea86cb4b
VG
1454#define TASK_SET_GROUP 0
1455#define TASK_MOVE_GROUP 1
1456
c82ba9fa 1457#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1458 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1459#endif
1460};
029632fb 1461
3f1d2a31
PZ
1462static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1463{
1464 prev->sched_class->put_prev_task(rq, prev);
1465}
1466
b2bf6c31
PZ
1467static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1468{
1469 curr->sched_class->set_curr_task(rq);
1470}
1471
f5832c19 1472#ifdef CONFIG_SMP
029632fb 1473#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1474#else
1475#define sched_class_highest (&dl_sched_class)
1476#endif
029632fb
PZ
1477#define for_each_class(class) \
1478 for (class = sched_class_highest; class; class = class->next)
1479
1480extern const struct sched_class stop_sched_class;
aab03e05 1481extern const struct sched_class dl_sched_class;
029632fb
PZ
1482extern const struct sched_class rt_sched_class;
1483extern const struct sched_class fair_sched_class;
1484extern const struct sched_class idle_sched_class;
1485
1486
1487#ifdef CONFIG_SMP
1488
63b2ca30 1489extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1490
7caff66f 1491extern void trigger_load_balance(struct rq *rq);
029632fb 1492
c5b28038
PZ
1493extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1494
029632fb
PZ
1495#endif
1496
442bf3aa
DL
1497#ifdef CONFIG_CPU_IDLE
1498static inline void idle_set_state(struct rq *rq,
1499 struct cpuidle_state *idle_state)
1500{
1501 rq->idle_state = idle_state;
1502}
1503
1504static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1505{
9148a3a1 1506 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1507 return rq->idle_state;
1508}
1509#else
1510static inline void idle_set_state(struct rq *rq,
1511 struct cpuidle_state *idle_state)
1512{
1513}
1514
1515static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1516{
1517 return NULL;
1518}
1519#endif
1520
8663effb
SRV
1521extern void schedule_idle(void);
1522
029632fb
PZ
1523extern void sysrq_sched_debug_show(void);
1524extern void sched_init_granularity(void);
1525extern void update_max_interval(void);
1baca4ce
JL
1526
1527extern void init_sched_dl_class(void);
029632fb
PZ
1528extern void init_sched_rt_class(void);
1529extern void init_sched_fair_class(void);
1530
8875125e 1531extern void resched_curr(struct rq *rq);
029632fb
PZ
1532extern void resched_cpu(int cpu);
1533
1534extern struct rt_bandwidth def_rt_bandwidth;
1535extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1536
332ac17e
DF
1537extern struct dl_bandwidth def_dl_bandwidth;
1538extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1539extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1540extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1541extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1542
c52f14d3
LA
1543#define BW_SHIFT 20
1544#define BW_UNIT (1 << BW_SHIFT)
4da3abce 1545#define RATIO_SHIFT 8
332ac17e
DF
1546unsigned long to_ratio(u64 period, u64 runtime);
1547
540247fb 1548extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1549extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1550
76d92ac3
FW
1551#ifdef CONFIG_NO_HZ_FULL
1552extern bool sched_can_stop_tick(struct rq *rq);
1553
1554/*
1555 * Tick may be needed by tasks in the runqueue depending on their policy and
1556 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1557 * nohz mode if necessary.
1558 */
1559static inline void sched_update_tick_dependency(struct rq *rq)
1560{
1561 int cpu;
1562
1563 if (!tick_nohz_full_enabled())
1564 return;
1565
1566 cpu = cpu_of(rq);
1567
1568 if (!tick_nohz_full_cpu(cpu))
1569 return;
1570
1571 if (sched_can_stop_tick(rq))
1572 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1573 else
1574 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1575}
1576#else
1577static inline void sched_update_tick_dependency(struct rq *rq) { }
1578#endif
1579
72465447 1580static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1581{
72465447
KT
1582 unsigned prev_nr = rq->nr_running;
1583
1584 rq->nr_running = prev_nr + count;
9f3660c2 1585
72465447 1586 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1587#ifdef CONFIG_SMP
1588 if (!rq->rd->overload)
1589 rq->rd->overload = true;
1590#endif
4486edd1 1591 }
76d92ac3
FW
1592
1593 sched_update_tick_dependency(rq);
029632fb
PZ
1594}
1595
72465447 1596static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1597{
72465447 1598 rq->nr_running -= count;
76d92ac3
FW
1599 /* Check if we still need preemption */
1600 sched_update_tick_dependency(rq);
029632fb
PZ
1601}
1602
265f22a9
FW
1603static inline void rq_last_tick_reset(struct rq *rq)
1604{
1605#ifdef CONFIG_NO_HZ_FULL
1606 rq->last_sched_tick = jiffies;
1607#endif
1608}
1609
029632fb
PZ
1610extern void update_rq_clock(struct rq *rq);
1611
1612extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1613extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1614
1615extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1616
1617extern const_debug unsigned int sysctl_sched_time_avg;
1618extern const_debug unsigned int sysctl_sched_nr_migrate;
1619extern const_debug unsigned int sysctl_sched_migration_cost;
1620
1621static inline u64 sched_avg_period(void)
1622{
1623 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1624}
1625
029632fb
PZ
1626#ifdef CONFIG_SCHED_HRTICK
1627
1628/*
1629 * Use hrtick when:
1630 * - enabled by features
1631 * - hrtimer is actually high res
1632 */
1633static inline int hrtick_enabled(struct rq *rq)
1634{
1635 if (!sched_feat(HRTICK))
1636 return 0;
1637 if (!cpu_active(cpu_of(rq)))
1638 return 0;
1639 return hrtimer_is_hres_active(&rq->hrtick_timer);
1640}
1641
1642void hrtick_start(struct rq *rq, u64 delay);
1643
b39e66ea
MG
1644#else
1645
1646static inline int hrtick_enabled(struct rq *rq)
1647{
1648 return 0;
1649}
1650
029632fb
PZ
1651#endif /* CONFIG_SCHED_HRTICK */
1652
1653#ifdef CONFIG_SMP
1654extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1655
1656#ifndef arch_scale_freq_capacity
1657static __always_inline
1658unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1659{
1660 return SCHED_CAPACITY_SCALE;
1661}
1662#endif
b5b4860d 1663
8cd5601c
MR
1664#ifndef arch_scale_cpu_capacity
1665static __always_inline
1666unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1667{
e3279a2e 1668 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1669 return sd->smt_gain / sd->span_weight;
1670
1671 return SCHED_CAPACITY_SCALE;
1672}
1673#endif
1674
029632fb
PZ
1675static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1676{
b5b4860d 1677 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1678 sched_avg_update(rq);
1679}
1680#else
1681static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1682static inline void sched_avg_update(struct rq *rq) { }
1683#endif
1684
eb580751 1685struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1686 __acquires(rq->lock);
8a8c69c3 1687
eb580751 1688struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1689 __acquires(p->pi_lock)
3e71a462 1690 __acquires(rq->lock);
3960c8c0 1691
eb580751 1692static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1693 __releases(rq->lock)
1694{
d8ac8971 1695 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1696 raw_spin_unlock(&rq->lock);
1697}
1698
1699static inline void
eb580751 1700task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1701 __releases(rq->lock)
1702 __releases(p->pi_lock)
1703{
d8ac8971 1704 rq_unpin_lock(rq, rf);
3960c8c0 1705 raw_spin_unlock(&rq->lock);
eb580751 1706 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1707}
1708
8a8c69c3
PZ
1709static inline void
1710rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1711 __acquires(rq->lock)
1712{
1713 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1714 rq_pin_lock(rq, rf);
1715}
1716
1717static inline void
1718rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1719 __acquires(rq->lock)
1720{
1721 raw_spin_lock_irq(&rq->lock);
1722 rq_pin_lock(rq, rf);
1723}
1724
1725static inline void
1726rq_lock(struct rq *rq, struct rq_flags *rf)
1727 __acquires(rq->lock)
1728{
1729 raw_spin_lock(&rq->lock);
1730 rq_pin_lock(rq, rf);
1731}
1732
1733static inline void
1734rq_relock(struct rq *rq, struct rq_flags *rf)
1735 __acquires(rq->lock)
1736{
1737 raw_spin_lock(&rq->lock);
1738 rq_repin_lock(rq, rf);
1739}
1740
1741static inline void
1742rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1743 __releases(rq->lock)
1744{
1745 rq_unpin_lock(rq, rf);
1746 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1747}
1748
1749static inline void
1750rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1751 __releases(rq->lock)
1752{
1753 rq_unpin_lock(rq, rf);
1754 raw_spin_unlock_irq(&rq->lock);
1755}
1756
1757static inline void
1758rq_unlock(struct rq *rq, struct rq_flags *rf)
1759 __releases(rq->lock)
1760{
1761 rq_unpin_lock(rq, rf);
1762 raw_spin_unlock(&rq->lock);
1763}
1764
029632fb
PZ
1765#ifdef CONFIG_SMP
1766#ifdef CONFIG_PREEMPT
1767
1768static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1769
1770/*
1771 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1772 * way at the expense of forcing extra atomic operations in all
1773 * invocations. This assures that the double_lock is acquired using the
1774 * same underlying policy as the spinlock_t on this architecture, which
1775 * reduces latency compared to the unfair variant below. However, it
1776 * also adds more overhead and therefore may reduce throughput.
1777 */
1778static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1779 __releases(this_rq->lock)
1780 __acquires(busiest->lock)
1781 __acquires(this_rq->lock)
1782{
1783 raw_spin_unlock(&this_rq->lock);
1784 double_rq_lock(this_rq, busiest);
1785
1786 return 1;
1787}
1788
1789#else
1790/*
1791 * Unfair double_lock_balance: Optimizes throughput at the expense of
1792 * latency by eliminating extra atomic operations when the locks are
1793 * already in proper order on entry. This favors lower cpu-ids and will
1794 * grant the double lock to lower cpus over higher ids under contention,
1795 * regardless of entry order into the function.
1796 */
1797static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(this_rq->lock)
1799 __acquires(busiest->lock)
1800 __acquires(this_rq->lock)
1801{
1802 int ret = 0;
1803
1804 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1805 if (busiest < this_rq) {
1806 raw_spin_unlock(&this_rq->lock);
1807 raw_spin_lock(&busiest->lock);
1808 raw_spin_lock_nested(&this_rq->lock,
1809 SINGLE_DEPTH_NESTING);
1810 ret = 1;
1811 } else
1812 raw_spin_lock_nested(&busiest->lock,
1813 SINGLE_DEPTH_NESTING);
1814 }
1815 return ret;
1816}
1817
1818#endif /* CONFIG_PREEMPT */
1819
1820/*
1821 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1822 */
1823static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1824{
1825 if (unlikely(!irqs_disabled())) {
1826 /* printk() doesn't work good under rq->lock */
1827 raw_spin_unlock(&this_rq->lock);
1828 BUG_ON(1);
1829 }
1830
1831 return _double_lock_balance(this_rq, busiest);
1832}
1833
1834static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1835 __releases(busiest->lock)
1836{
1837 raw_spin_unlock(&busiest->lock);
1838 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1839}
1840
74602315
PZ
1841static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1842{
1843 if (l1 > l2)
1844 swap(l1, l2);
1845
1846 spin_lock(l1);
1847 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1848}
1849
60e69eed
MG
1850static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1851{
1852 if (l1 > l2)
1853 swap(l1, l2);
1854
1855 spin_lock_irq(l1);
1856 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1857}
1858
74602315
PZ
1859static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1860{
1861 if (l1 > l2)
1862 swap(l1, l2);
1863
1864 raw_spin_lock(l1);
1865 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1866}
1867
029632fb
PZ
1868/*
1869 * double_rq_lock - safely lock two runqueues
1870 *
1871 * Note this does not disable interrupts like task_rq_lock,
1872 * you need to do so manually before calling.
1873 */
1874static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1875 __acquires(rq1->lock)
1876 __acquires(rq2->lock)
1877{
1878 BUG_ON(!irqs_disabled());
1879 if (rq1 == rq2) {
1880 raw_spin_lock(&rq1->lock);
1881 __acquire(rq2->lock); /* Fake it out ;) */
1882 } else {
1883 if (rq1 < rq2) {
1884 raw_spin_lock(&rq1->lock);
1885 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1886 } else {
1887 raw_spin_lock(&rq2->lock);
1888 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1889 }
1890 }
1891}
1892
1893/*
1894 * double_rq_unlock - safely unlock two runqueues
1895 *
1896 * Note this does not restore interrupts like task_rq_unlock,
1897 * you need to do so manually after calling.
1898 */
1899static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1900 __releases(rq1->lock)
1901 __releases(rq2->lock)
1902{
1903 raw_spin_unlock(&rq1->lock);
1904 if (rq1 != rq2)
1905 raw_spin_unlock(&rq2->lock);
1906 else
1907 __release(rq2->lock);
1908}
1909
f2cb1360
IM
1910extern void set_rq_online (struct rq *rq);
1911extern void set_rq_offline(struct rq *rq);
1912extern bool sched_smp_initialized;
1913
029632fb
PZ
1914#else /* CONFIG_SMP */
1915
1916/*
1917 * double_rq_lock - safely lock two runqueues
1918 *
1919 * Note this does not disable interrupts like task_rq_lock,
1920 * you need to do so manually before calling.
1921 */
1922static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1923 __acquires(rq1->lock)
1924 __acquires(rq2->lock)
1925{
1926 BUG_ON(!irqs_disabled());
1927 BUG_ON(rq1 != rq2);
1928 raw_spin_lock(&rq1->lock);
1929 __acquire(rq2->lock); /* Fake it out ;) */
1930}
1931
1932/*
1933 * double_rq_unlock - safely unlock two runqueues
1934 *
1935 * Note this does not restore interrupts like task_rq_unlock,
1936 * you need to do so manually after calling.
1937 */
1938static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1939 __releases(rq1->lock)
1940 __releases(rq2->lock)
1941{
1942 BUG_ON(rq1 != rq2);
1943 raw_spin_unlock(&rq1->lock);
1944 __release(rq2->lock);
1945}
1946
1947#endif
1948
1949extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1950extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1951
1952#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1953extern void print_cfs_stats(struct seq_file *m, int cpu);
1954extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1955extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1956extern void
1957print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1958#ifdef CONFIG_NUMA_BALANCING
1959extern void
1960show_numa_stats(struct task_struct *p, struct seq_file *m);
1961extern void
1962print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1963 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1964#endif /* CONFIG_NUMA_BALANCING */
1965#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1966
1967extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1968extern void init_rt_rq(struct rt_rq *rt_rq);
1969extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1970
1ee14e6c
BS
1971extern void cfs_bandwidth_usage_inc(void);
1972extern void cfs_bandwidth_usage_dec(void);
1c792db7 1973
3451d024 1974#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1975enum rq_nohz_flag_bits {
1976 NOHZ_TICK_STOPPED,
1977 NOHZ_BALANCE_KICK,
1978};
1979
1980#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1981
1982extern void nohz_balance_exit_idle(unsigned int cpu);
1983#else
1984static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1985#endif
73fbec60 1986
daec5798
LA
1987
1988#ifdef CONFIG_SMP
1989static inline
1990void __dl_update(struct dl_bw *dl_b, s64 bw)
1991{
1992 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
1993 int i;
1994
1995 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
1996 "sched RCU must be held");
1997 for_each_cpu_and(i, rd->span, cpu_active_mask) {
1998 struct rq *rq = cpu_rq(i);
1999
2000 rq->dl.extra_bw += bw;
2001 }
2002}
2003#else
2004static inline
2005void __dl_update(struct dl_bw *dl_b, s64 bw)
2006{
2007 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2008
2009 dl->extra_bw += bw;
2010}
2011#endif
2012
2013
73fbec60 2014#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2015struct irqtime {
25e2d8c1 2016 u64 total;
a499a5a1 2017 u64 tick_delta;
19d23dbf
FW
2018 u64 irq_start_time;
2019 struct u64_stats_sync sync;
2020};
73fbec60 2021
19d23dbf 2022DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2023
25e2d8c1
FW
2024/*
2025 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2026 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2027 * and never move forward.
2028 */
73fbec60
FW
2029static inline u64 irq_time_read(int cpu)
2030{
19d23dbf
FW
2031 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2032 unsigned int seq;
2033 u64 total;
73fbec60
FW
2034
2035 do {
19d23dbf 2036 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2037 total = irqtime->total;
19d23dbf 2038 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2039
19d23dbf 2040 return total;
73fbec60 2041}
73fbec60 2042#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2043
2044#ifdef CONFIG_CPU_FREQ
2045DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2046
2047/**
2048 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2049 * @rq: Runqueue to carry out the update for.
58919e83 2050 * @flags: Update reason flags.
adaf9fcd 2051 *
58919e83
RW
2052 * This function is called by the scheduler on the CPU whose utilization is
2053 * being updated.
adaf9fcd
RW
2054 *
2055 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2056 *
2057 * The way cpufreq is currently arranged requires it to evaluate the CPU
2058 * performance state (frequency/voltage) on a regular basis to prevent it from
2059 * being stuck in a completely inadequate performance level for too long.
2060 * That is not guaranteed to happen if the updates are only triggered from CFS,
2061 * though, because they may not be coming in if RT or deadline tasks are active
2062 * all the time (or there are RT and DL tasks only).
2063 *
2064 * As a workaround for that issue, this function is called by the RT and DL
2065 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
2066 * but that really is a band-aid. Going forward it should be replaced with
2067 * solutions targeted more specifically at RT and DL tasks.
2068 */
12bde33d 2069static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2070{
58919e83
RW
2071 struct update_util_data *data;
2072
2073 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
2074 if (data)
12bde33d
RW
2075 data->func(data, rq_clock(rq), flags);
2076}
2077
2078static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
2079{
2080 if (cpu_of(rq) == smp_processor_id())
2081 cpufreq_update_util(rq, flags);
adaf9fcd
RW
2082}
2083#else
12bde33d
RW
2084static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2085static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
adaf9fcd 2086#endif /* CONFIG_CPU_FREQ */
be53f58f 2087
9bdcb44e
RW
2088#ifdef arch_scale_freq_capacity
2089#ifndef arch_scale_freq_invariant
2090#define arch_scale_freq_invariant() (true)
2091#endif
2092#else /* arch_scale_freq_capacity */
2093#define arch_scale_freq_invariant() (false)
2094#endif