]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/sched.h
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
105ab3d8 4#include <linux/sched/topology.h>
8bd75c77 5#include <linux/sched/rt.h>
ef8bd77f 6#include <linux/sched/deadline.h>
e6017571 7#include <linux/sched/clock.h>
84f001e1 8#include <linux/sched/wake_q.h>
3f07c014 9#include <linux/sched/signal.h>
6a3827d7 10#include <linux/sched/numa_balancing.h>
6e84f315 11#include <linux/sched/mm.h>
55687da1 12#include <linux/sched/cpufreq.h>
03441a34 13#include <linux/sched/stat.h>
370c9135 14#include <linux/sched/nohz.h>
b17b0153 15#include <linux/sched/debug.h>
ef8bd77f 16#include <linux/sched/hotplug.h>
29930025 17#include <linux/sched/task.h>
ef8bd77f 18
19d23dbf 19#include <linux/u64_stats_sync.h>
a499a5a1 20#include <linux/kernel_stat.h>
3866e845 21#include <linux/binfmts.h>
029632fb
PZ
22#include <linux/mutex.h>
23#include <linux/spinlock.h>
24#include <linux/stop_machine.h>
b6366f04 25#include <linux/irq_work.h>
9f3660c2 26#include <linux/tick.h>
f809ca9a 27#include <linux/slab.h>
029632fb 28
7fce777c
IM
29#ifdef CONFIG_PARAVIRT
30#include <asm/paravirt.h>
31#endif
32
391e43da 33#include "cpupri.h"
6bfd6d72 34#include "cpudeadline.h"
60fed789 35#include "cpuacct.h"
029632fb 36
9148a3a1
PZ
37#ifdef CONFIG_SCHED_DEBUG
38#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
39#else
40#define SCHED_WARN_ON(x) ((void)(x))
41#endif
42
45ceebf7 43struct rq;
442bf3aa 44struct cpuidle_state;
45ceebf7 45
da0c1e65
KT
46/* task_struct::on_rq states: */
47#define TASK_ON_RQ_QUEUED 1
cca26e80 48#define TASK_ON_RQ_MIGRATING 2
da0c1e65 49
029632fb
PZ
50extern __read_mostly int scheduler_running;
51
45ceebf7
PG
52extern unsigned long calc_load_update;
53extern atomic_long_t calc_load_tasks;
54
3289bdb4 55extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 56extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
57
58#ifdef CONFIG_SMP
cee1afce 59extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 60#else
cee1afce 61static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 62#endif
45ceebf7 63
029632fb
PZ
64/*
65 * Helpers for converting nanosecond timing to jiffy resolution
66 */
67#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
68
cc1f4b1f
LZ
69/*
70 * Increase resolution of nice-level calculations for 64-bit architectures.
71 * The extra resolution improves shares distribution and load balancing of
72 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
73 * hierarchies, especially on larger systems. This is not a user-visible change
74 * and does not change the user-interface for setting shares/weights.
75 *
76 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
77 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
78 * pretty high and the returns do not justify the increased costs.
79 *
80 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
81 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 82 */
2159197d 83#ifdef CONFIG_64BIT
172895e6 84# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
85# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
86# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 87#else
172895e6 88# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
89# define scale_load(w) (w)
90# define scale_load_down(w) (w)
91#endif
92
6ecdd749 93/*
172895e6
YD
94 * Task weight (visible to users) and its load (invisible to users) have
95 * independent resolution, but they should be well calibrated. We use
96 * scale_load() and scale_load_down(w) to convert between them. The
97 * following must be true:
98 *
99 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
100 *
6ecdd749 101 */
172895e6 102#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 103
332ac17e
DF
104/*
105 * Single value that decides SCHED_DEADLINE internal math precision.
106 * 10 -> just above 1us
107 * 9 -> just above 0.5us
108 */
109#define DL_SCALE (10)
110
029632fb
PZ
111/*
112 * These are the 'tuning knobs' of the scheduler:
029632fb 113 */
029632fb
PZ
114
115/*
116 * single value that denotes runtime == period, ie unlimited time.
117 */
118#define RUNTIME_INF ((u64)~0ULL)
119
20f9cd2a
HA
120static inline int idle_policy(int policy)
121{
122 return policy == SCHED_IDLE;
123}
d50dde5a
DF
124static inline int fair_policy(int policy)
125{
126 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
127}
128
029632fb
PZ
129static inline int rt_policy(int policy)
130{
d50dde5a 131 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
132}
133
aab03e05
DF
134static inline int dl_policy(int policy)
135{
136 return policy == SCHED_DEADLINE;
137}
20f9cd2a
HA
138static inline bool valid_policy(int policy)
139{
140 return idle_policy(policy) || fair_policy(policy) ||
141 rt_policy(policy) || dl_policy(policy);
142}
aab03e05 143
029632fb
PZ
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
aab03e05
DF
149static inline int task_has_dl_policy(struct task_struct *p)
150{
151 return dl_policy(p->policy);
152}
153
2d3d891d
DF
154/*
155 * Tells if entity @a should preempt entity @b.
156 */
332ac17e
DF
157static inline bool
158dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
159{
160 return dl_time_before(a->deadline, b->deadline);
161}
162
029632fb
PZ
163/*
164 * This is the priority-queue data structure of the RT scheduling class:
165 */
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
171struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 raw_spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
4cfafd30 177 unsigned int rt_period_active;
029632fb 178};
a5e7be3b
JL
179
180void __dl_clear_params(struct task_struct *p);
181
332ac17e
DF
182/*
183 * To keep the bandwidth of -deadline tasks and groups under control
184 * we need some place where:
185 * - store the maximum -deadline bandwidth of the system (the group);
186 * - cache the fraction of that bandwidth that is currently allocated.
187 *
188 * This is all done in the data structure below. It is similar to the
189 * one used for RT-throttling (rt_bandwidth), with the main difference
190 * that, since here we are only interested in admission control, we
191 * do not decrease any runtime while the group "executes", neither we
192 * need a timer to replenish it.
193 *
194 * With respect to SMP, the bandwidth is given on a per-CPU basis,
195 * meaning that:
196 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
197 * - dl_total_bw array contains, in the i-eth element, the currently
198 * allocated bandwidth on the i-eth CPU.
199 * Moreover, groups consume bandwidth on each CPU, while tasks only
200 * consume bandwidth on the CPU they're running on.
201 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
202 * that will be shown the next time the proc or cgroup controls will
203 * be red. It on its turn can be changed by writing on its own
204 * control.
205 */
206struct dl_bandwidth {
207 raw_spinlock_t dl_runtime_lock;
208 u64 dl_runtime;
209 u64 dl_period;
210};
211
212static inline int dl_bandwidth_enabled(void)
213{
1724813d 214 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
215}
216
217extern struct dl_bw *dl_bw_of(int i);
218
219struct dl_bw {
220 raw_spinlock_t lock;
221 u64 bw, total_bw;
222};
223
7f51412a
JL
224static inline
225void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
226{
227 dl_b->total_bw -= tsk_bw;
228}
229
230static inline
231void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
232{
233 dl_b->total_bw += tsk_bw;
234}
235
236static inline
237bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
238{
239 return dl_b->bw != -1 &&
240 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
241}
242
f2cb1360 243extern void init_dl_bw(struct dl_bw *dl_b);
029632fb
PZ
244
245#ifdef CONFIG_CGROUP_SCHED
246
247#include <linux/cgroup.h>
248
249struct cfs_rq;
250struct rt_rq;
251
35cf4e50 252extern struct list_head task_groups;
029632fb
PZ
253
254struct cfs_bandwidth {
255#ifdef CONFIG_CFS_BANDWIDTH
256 raw_spinlock_t lock;
257 ktime_t period;
258 u64 quota, runtime;
9c58c79a 259 s64 hierarchical_quota;
029632fb
PZ
260 u64 runtime_expires;
261
4cfafd30 262 int idle, period_active;
029632fb
PZ
263 struct hrtimer period_timer, slack_timer;
264 struct list_head throttled_cfs_rq;
265
266 /* statistics */
267 int nr_periods, nr_throttled;
268 u64 throttled_time;
269#endif
270};
271
272/* task group related information */
273struct task_group {
274 struct cgroup_subsys_state css;
275
276#ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282
fa6bddeb 283#ifdef CONFIG_SMP
b0367629
WL
284 /*
285 * load_avg can be heavily contended at clock tick time, so put
286 * it in its own cacheline separated from the fields above which
287 * will also be accessed at each tick.
288 */
289 atomic_long_t load_avg ____cacheline_aligned;
029632fb 290#endif
fa6bddeb 291#endif
029632fb
PZ
292
293#ifdef CONFIG_RT_GROUP_SCHED
294 struct sched_rt_entity **rt_se;
295 struct rt_rq **rt_rq;
296
297 struct rt_bandwidth rt_bandwidth;
298#endif
299
300 struct rcu_head rcu;
301 struct list_head list;
302
303 struct task_group *parent;
304 struct list_head siblings;
305 struct list_head children;
306
307#ifdef CONFIG_SCHED_AUTOGROUP
308 struct autogroup *autogroup;
309#endif
310
311 struct cfs_bandwidth cfs_bandwidth;
312};
313
314#ifdef CONFIG_FAIR_GROUP_SCHED
315#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
316
317/*
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
325#define MIN_SHARES (1UL << 1)
326#define MAX_SHARES (1UL << 18)
327#endif
328
029632fb
PZ
329typedef int (*tg_visitor)(struct task_group *, void *);
330
331extern int walk_tg_tree_from(struct task_group *from,
332 tg_visitor down, tg_visitor up, void *data);
333
334/*
335 * Iterate the full tree, calling @down when first entering a node and @up when
336 * leaving it for the final time.
337 *
338 * Caller must hold rcu_lock or sufficient equivalent.
339 */
340static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
341{
342 return walk_tg_tree_from(&root_task_group, down, up, data);
343}
344
345extern int tg_nop(struct task_group *tg, void *data);
346
347extern void free_fair_sched_group(struct task_group *tg);
348extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 349extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 350extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
351extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
352 struct sched_entity *se, int cpu,
353 struct sched_entity *parent);
354extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
355
356extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 357extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
358extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
359
360extern void free_rt_sched_group(struct task_group *tg);
361extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
362extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
363 struct sched_rt_entity *rt_se, int cpu,
364 struct sched_rt_entity *parent);
365
25cc7da7
LZ
366extern struct task_group *sched_create_group(struct task_group *parent);
367extern void sched_online_group(struct task_group *tg,
368 struct task_group *parent);
369extern void sched_destroy_group(struct task_group *tg);
370extern void sched_offline_group(struct task_group *tg);
371
372extern void sched_move_task(struct task_struct *tsk);
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
376
377#ifdef CONFIG_SMP
378extern void set_task_rq_fair(struct sched_entity *se,
379 struct cfs_rq *prev, struct cfs_rq *next);
380#else /* !CONFIG_SMP */
381static inline void set_task_rq_fair(struct sched_entity *se,
382 struct cfs_rq *prev, struct cfs_rq *next) { }
383#endif /* CONFIG_SMP */
384#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 385
029632fb
PZ
386#else /* CONFIG_CGROUP_SCHED */
387
388struct cfs_bandwidth { };
389
390#endif /* CONFIG_CGROUP_SCHED */
391
392/* CFS-related fields in a runqueue */
393struct cfs_rq {
394 struct load_weight load;
c82513e5 395 unsigned int nr_running, h_nr_running;
029632fb
PZ
396
397 u64 exec_clock;
398 u64 min_vruntime;
399#ifndef CONFIG_64BIT
400 u64 min_vruntime_copy;
401#endif
402
403 struct rb_root tasks_timeline;
404 struct rb_node *rb_leftmost;
405
029632fb
PZ
406 /*
407 * 'curr' points to currently running entity on this cfs_rq.
408 * It is set to NULL otherwise (i.e when none are currently running).
409 */
410 struct sched_entity *curr, *next, *last, *skip;
411
412#ifdef CONFIG_SCHED_DEBUG
413 unsigned int nr_spread_over;
414#endif
415
2dac754e
PT
416#ifdef CONFIG_SMP
417 /*
9d89c257 418 * CFS load tracking
2dac754e 419 */
9d89c257 420 struct sched_avg avg;
13962234
YD
421 u64 runnable_load_sum;
422 unsigned long runnable_load_avg;
c566e8e9 423#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257 424 unsigned long tg_load_avg_contrib;
09a43ace 425 unsigned long propagate_avg;
9d89c257
YD
426#endif
427 atomic_long_t removed_load_avg, removed_util_avg;
428#ifndef CONFIG_64BIT
429 u64 load_last_update_time_copy;
430#endif
82958366 431
9d89c257 432#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
433 /*
434 * h_load = weight * f(tg)
435 *
436 * Where f(tg) is the recursive weight fraction assigned to
437 * this group.
438 */
439 unsigned long h_load;
68520796
VD
440 u64 last_h_load_update;
441 struct sched_entity *h_load_next;
442#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
443#endif /* CONFIG_SMP */
444
029632fb
PZ
445#ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
456 int on_list;
457 struct list_head leaf_cfs_rq_list;
458 struct task_group *tg; /* group that "owns" this runqueue */
459
029632fb
PZ
460#ifdef CONFIG_CFS_BANDWIDTH
461 int runtime_enabled;
462 u64 runtime_expires;
463 s64 runtime_remaining;
464
f1b17280
PT
465 u64 throttled_clock, throttled_clock_task;
466 u64 throttled_clock_task_time;
55e16d30 467 int throttled, throttle_count;
029632fb
PZ
468 struct list_head throttled_list;
469#endif /* CONFIG_CFS_BANDWIDTH */
470#endif /* CONFIG_FAIR_GROUP_SCHED */
471};
472
473static inline int rt_bandwidth_enabled(void)
474{
475 return sysctl_sched_rt_runtime >= 0;
476}
477
b6366f04
SR
478/* RT IPI pull logic requires IRQ_WORK */
479#ifdef CONFIG_IRQ_WORK
480# define HAVE_RT_PUSH_IPI
481#endif
482
029632fb
PZ
483/* Real-Time classes' related field in a runqueue: */
484struct rt_rq {
485 struct rt_prio_array active;
c82513e5 486 unsigned int rt_nr_running;
01d36d0a 487 unsigned int rr_nr_running;
029632fb
PZ
488#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
489 struct {
490 int curr; /* highest queued rt task prio */
491#ifdef CONFIG_SMP
492 int next; /* next highest */
493#endif
494 } highest_prio;
495#endif
496#ifdef CONFIG_SMP
497 unsigned long rt_nr_migratory;
498 unsigned long rt_nr_total;
499 int overloaded;
500 struct plist_head pushable_tasks;
b6366f04
SR
501#ifdef HAVE_RT_PUSH_IPI
502 int push_flags;
503 int push_cpu;
504 struct irq_work push_work;
505 raw_spinlock_t push_lock;
029632fb 506#endif
b6366f04 507#endif /* CONFIG_SMP */
f4ebcbc0
KT
508 int rt_queued;
509
029632fb
PZ
510 int rt_throttled;
511 u64 rt_time;
512 u64 rt_runtime;
513 /* Nests inside the rq lock: */
514 raw_spinlock_t rt_runtime_lock;
515
516#ifdef CONFIG_RT_GROUP_SCHED
517 unsigned long rt_nr_boosted;
518
519 struct rq *rq;
029632fb
PZ
520 struct task_group *tg;
521#endif
522};
523
aab03e05
DF
524/* Deadline class' related fields in a runqueue */
525struct dl_rq {
526 /* runqueue is an rbtree, ordered by deadline */
527 struct rb_root rb_root;
528 struct rb_node *rb_leftmost;
529
530 unsigned long dl_nr_running;
1baca4ce
JL
531
532#ifdef CONFIG_SMP
533 /*
534 * Deadline values of the currently executing and the
535 * earliest ready task on this rq. Caching these facilitates
536 * the decision wether or not a ready but not running task
537 * should migrate somewhere else.
538 */
539 struct {
540 u64 curr;
541 u64 next;
542 } earliest_dl;
543
544 unsigned long dl_nr_migratory;
1baca4ce
JL
545 int overloaded;
546
547 /*
548 * Tasks on this rq that can be pushed away. They are kept in
549 * an rb-tree, ordered by tasks' deadlines, with caching
550 * of the leftmost (earliest deadline) element.
551 */
552 struct rb_root pushable_dl_tasks_root;
553 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
554#else
555 struct dl_bw dl_bw;
1baca4ce 556#endif
aab03e05
DF
557};
558
029632fb
PZ
559#ifdef CONFIG_SMP
560
afe06efd
TC
561static inline bool sched_asym_prefer(int a, int b)
562{
563 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
564}
565
029632fb
PZ
566/*
567 * We add the notion of a root-domain which will be used to define per-domain
568 * variables. Each exclusive cpuset essentially defines an island domain by
569 * fully partitioning the member cpus from any other cpuset. Whenever a new
570 * exclusive cpuset is created, we also create and attach a new root-domain
571 * object.
572 *
573 */
574struct root_domain {
575 atomic_t refcount;
576 atomic_t rto_count;
577 struct rcu_head rcu;
578 cpumask_var_t span;
579 cpumask_var_t online;
580
4486edd1
TC
581 /* Indicate more than one runnable task for any CPU */
582 bool overload;
583
1baca4ce
JL
584 /*
585 * The bit corresponding to a CPU gets set here if such CPU has more
586 * than one runnable -deadline task (as it is below for RT tasks).
587 */
588 cpumask_var_t dlo_mask;
589 atomic_t dlo_count;
332ac17e 590 struct dl_bw dl_bw;
6bfd6d72 591 struct cpudl cpudl;
1baca4ce 592
029632fb
PZ
593 /*
594 * The "RT overload" flag: it gets set if a CPU has more than
595 * one runnable RT task.
596 */
597 cpumask_var_t rto_mask;
598 struct cpupri cpupri;
cd92bfd3
DE
599
600 unsigned long max_cpu_capacity;
029632fb
PZ
601};
602
603extern struct root_domain def_root_domain;
f2cb1360
IM
604extern struct mutex sched_domains_mutex;
605extern cpumask_var_t fallback_doms;
606extern cpumask_var_t sched_domains_tmpmask;
607
608extern void init_defrootdomain(void);
609extern int init_sched_domains(const struct cpumask *cpu_map);
610extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
029632fb
PZ
611
612#endif /* CONFIG_SMP */
613
614/*
615 * This is the main, per-CPU runqueue data structure.
616 *
617 * Locking rule: those places that want to lock multiple runqueues
618 * (such as the load balancing or the thread migration code), lock
619 * acquire operations must be ordered by ascending &runqueue.
620 */
621struct rq {
622 /* runqueue lock: */
623 raw_spinlock_t lock;
624
625 /*
626 * nr_running and cpu_load should be in the same cacheline because
627 * remote CPUs use both these fields when doing load calculation.
628 */
c82513e5 629 unsigned int nr_running;
0ec8aa00
PZ
630#ifdef CONFIG_NUMA_BALANCING
631 unsigned int nr_numa_running;
632 unsigned int nr_preferred_running;
633#endif
029632fb
PZ
634 #define CPU_LOAD_IDX_MAX 5
635 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 636#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
637#ifdef CONFIG_SMP
638 unsigned long last_load_update_tick;
639#endif /* CONFIG_SMP */
1c792db7 640 unsigned long nohz_flags;
9fd81dd5 641#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
642#ifdef CONFIG_NO_HZ_FULL
643 unsigned long last_sched_tick;
029632fb 644#endif
029632fb
PZ
645 /* capture load from *all* tasks on this cpu: */
646 struct load_weight load;
647 unsigned long nr_load_updates;
648 u64 nr_switches;
649
650 struct cfs_rq cfs;
651 struct rt_rq rt;
aab03e05 652 struct dl_rq dl;
029632fb
PZ
653
654#ifdef CONFIG_FAIR_GROUP_SCHED
655 /* list of leaf cfs_rq on this cpu: */
656 struct list_head leaf_cfs_rq_list;
9c2791f9 657 struct list_head *tmp_alone_branch;
a35b6466
PZ
658#endif /* CONFIG_FAIR_GROUP_SCHED */
659
029632fb
PZ
660 /*
661 * This is part of a global counter where only the total sum
662 * over all CPUs matters. A task can increase this counter on
663 * one CPU and if it got migrated afterwards it may decrease
664 * it on another CPU. Always updated under the runqueue lock:
665 */
666 unsigned long nr_uninterruptible;
667
668 struct task_struct *curr, *idle, *stop;
669 unsigned long next_balance;
670 struct mm_struct *prev_mm;
671
cb42c9a3 672 unsigned int clock_update_flags;
029632fb
PZ
673 u64 clock;
674 u64 clock_task;
675
676 atomic_t nr_iowait;
677
678#ifdef CONFIG_SMP
679 struct root_domain *rd;
680 struct sched_domain *sd;
681
ced549fa 682 unsigned long cpu_capacity;
ca6d75e6 683 unsigned long cpu_capacity_orig;
029632fb 684
e3fca9e7
PZ
685 struct callback_head *balance_callback;
686
029632fb
PZ
687 unsigned char idle_balance;
688 /* For active balancing */
029632fb
PZ
689 int active_balance;
690 int push_cpu;
691 struct cpu_stop_work active_balance_work;
692 /* cpu of this runqueue: */
693 int cpu;
694 int online;
695
367456c7
PZ
696 struct list_head cfs_tasks;
697
029632fb
PZ
698 u64 rt_avg;
699 u64 age_stamp;
700 u64 idle_stamp;
701 u64 avg_idle;
9bd721c5
JL
702
703 /* This is used to determine avg_idle's max value */
704 u64 max_idle_balance_cost;
029632fb
PZ
705#endif
706
707#ifdef CONFIG_IRQ_TIME_ACCOUNTING
708 u64 prev_irq_time;
709#endif
710#ifdef CONFIG_PARAVIRT
711 u64 prev_steal_time;
712#endif
713#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
714 u64 prev_steal_time_rq;
715#endif
716
717 /* calc_load related fields */
718 unsigned long calc_load_update;
719 long calc_load_active;
720
721#ifdef CONFIG_SCHED_HRTICK
722#ifdef CONFIG_SMP
723 int hrtick_csd_pending;
724 struct call_single_data hrtick_csd;
725#endif
726 struct hrtimer hrtick_timer;
727#endif
728
729#ifdef CONFIG_SCHEDSTATS
730 /* latency stats */
731 struct sched_info rq_sched_info;
732 unsigned long long rq_cpu_time;
733 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
734
735 /* sys_sched_yield() stats */
736 unsigned int yld_count;
737
738 /* schedule() stats */
029632fb
PZ
739 unsigned int sched_count;
740 unsigned int sched_goidle;
741
742 /* try_to_wake_up() stats */
743 unsigned int ttwu_count;
744 unsigned int ttwu_local;
745#endif
746
747#ifdef CONFIG_SMP
748 struct llist_head wake_list;
749#endif
442bf3aa
DL
750
751#ifdef CONFIG_CPU_IDLE
752 /* Must be inspected within a rcu lock section */
753 struct cpuidle_state *idle_state;
754#endif
029632fb
PZ
755};
756
757static inline int cpu_of(struct rq *rq)
758{
759#ifdef CONFIG_SMP
760 return rq->cpu;
761#else
762 return 0;
763#endif
764}
765
1b568f0a
PZ
766
767#ifdef CONFIG_SCHED_SMT
768
769extern struct static_key_false sched_smt_present;
770
771extern void __update_idle_core(struct rq *rq);
772
773static inline void update_idle_core(struct rq *rq)
774{
775 if (static_branch_unlikely(&sched_smt_present))
776 __update_idle_core(rq);
777}
778
779#else
780static inline void update_idle_core(struct rq *rq) { }
781#endif
782
8b06c55b 783DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 784
518cd623 785#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 786#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
787#define task_rq(p) cpu_rq(task_cpu(p))
788#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 789#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 790
cebde6d6
PZ
791static inline u64 __rq_clock_broken(struct rq *rq)
792{
316c1608 793 return READ_ONCE(rq->clock);
cebde6d6
PZ
794}
795
cb42c9a3
MF
796/*
797 * rq::clock_update_flags bits
798 *
799 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
800 * call to __schedule(). This is an optimisation to avoid
801 * neighbouring rq clock updates.
802 *
803 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
804 * in effect and calls to update_rq_clock() are being ignored.
805 *
806 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
807 * made to update_rq_clock() since the last time rq::lock was pinned.
808 *
809 * If inside of __schedule(), clock_update_flags will have been
810 * shifted left (a left shift is a cheap operation for the fast path
811 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
812 *
813 * if (rq-clock_update_flags >= RQCF_UPDATED)
814 *
815 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
816 * one position though, because the next rq_unpin_lock() will shift it
817 * back.
818 */
819#define RQCF_REQ_SKIP 0x01
820#define RQCF_ACT_SKIP 0x02
821#define RQCF_UPDATED 0x04
822
823static inline void assert_clock_updated(struct rq *rq)
824{
825 /*
826 * The only reason for not seeing a clock update since the
827 * last rq_pin_lock() is if we're currently skipping updates.
828 */
829 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
830}
831
78becc27
FW
832static inline u64 rq_clock(struct rq *rq)
833{
cebde6d6 834 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
835 assert_clock_updated(rq);
836
78becc27
FW
837 return rq->clock;
838}
839
840static inline u64 rq_clock_task(struct rq *rq)
841{
cebde6d6 842 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
843 assert_clock_updated(rq);
844
78becc27
FW
845 return rq->clock_task;
846}
847
9edfbfed
PZ
848static inline void rq_clock_skip_update(struct rq *rq, bool skip)
849{
850 lockdep_assert_held(&rq->lock);
851 if (skip)
cb42c9a3 852 rq->clock_update_flags |= RQCF_REQ_SKIP;
9edfbfed 853 else
cb42c9a3 854 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
855}
856
d8ac8971
MF
857struct rq_flags {
858 unsigned long flags;
859 struct pin_cookie cookie;
cb42c9a3
MF
860#ifdef CONFIG_SCHED_DEBUG
861 /*
862 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
863 * current pin context is stashed here in case it needs to be
864 * restored in rq_repin_lock().
865 */
866 unsigned int clock_update_flags;
867#endif
d8ac8971
MF
868};
869
870static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
871{
872 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
873
874#ifdef CONFIG_SCHED_DEBUG
875 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
876 rf->clock_update_flags = 0;
877#endif
d8ac8971
MF
878}
879
880static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
881{
cb42c9a3
MF
882#ifdef CONFIG_SCHED_DEBUG
883 if (rq->clock_update_flags > RQCF_ACT_SKIP)
884 rf->clock_update_flags = RQCF_UPDATED;
885#endif
886
d8ac8971
MF
887 lockdep_unpin_lock(&rq->lock, rf->cookie);
888}
889
890static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
891{
892 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
893
894#ifdef CONFIG_SCHED_DEBUG
895 /*
896 * Restore the value we stashed in @rf for this pin context.
897 */
898 rq->clock_update_flags |= rf->clock_update_flags;
899#endif
d8ac8971
MF
900}
901
9942f79b 902#ifdef CONFIG_NUMA
e3fe70b1
RR
903enum numa_topology_type {
904 NUMA_DIRECT,
905 NUMA_GLUELESS_MESH,
906 NUMA_BACKPLANE,
907};
908extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
909extern int sched_max_numa_distance;
910extern bool find_numa_distance(int distance);
911#endif
912
f2cb1360
IM
913#ifdef CONFIG_NUMA
914extern void sched_init_numa(void);
915extern void sched_domains_numa_masks_set(unsigned int cpu);
916extern void sched_domains_numa_masks_clear(unsigned int cpu);
917#else
918static inline void sched_init_numa(void) { }
919static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
920static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
921#endif
922
f809ca9a 923#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
924/* The regions in numa_faults array from task_struct */
925enum numa_faults_stats {
926 NUMA_MEM = 0,
927 NUMA_CPU,
928 NUMA_MEMBUF,
929 NUMA_CPUBUF
930};
0ec8aa00 931extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 932extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 933extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
934#endif /* CONFIG_NUMA_BALANCING */
935
518cd623
PZ
936#ifdef CONFIG_SMP
937
e3fca9e7
PZ
938static inline void
939queue_balance_callback(struct rq *rq,
940 struct callback_head *head,
941 void (*func)(struct rq *rq))
942{
943 lockdep_assert_held(&rq->lock);
944
945 if (unlikely(head->next))
946 return;
947
948 head->func = (void (*)(struct callback_head *))func;
949 head->next = rq->balance_callback;
950 rq->balance_callback = head;
951}
952
e3baac47
PZ
953extern void sched_ttwu_pending(void);
954
029632fb
PZ
955#define rcu_dereference_check_sched_domain(p) \
956 rcu_dereference_check((p), \
957 lockdep_is_held(&sched_domains_mutex))
958
959/*
960 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
961 * See detach_destroy_domains: synchronize_sched for details.
962 *
963 * The domain tree of any CPU may only be accessed from within
964 * preempt-disabled sections.
965 */
966#define for_each_domain(cpu, __sd) \
518cd623
PZ
967 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
968 __sd; __sd = __sd->parent)
029632fb 969
77e81365
SS
970#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
971
518cd623
PZ
972/**
973 * highest_flag_domain - Return highest sched_domain containing flag.
974 * @cpu: The cpu whose highest level of sched domain is to
975 * be returned.
976 * @flag: The flag to check for the highest sched_domain
977 * for the given cpu.
978 *
979 * Returns the highest sched_domain of a cpu which contains the given flag.
980 */
981static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
982{
983 struct sched_domain *sd, *hsd = NULL;
984
985 for_each_domain(cpu, sd) {
986 if (!(sd->flags & flag))
987 break;
988 hsd = sd;
989 }
990
991 return hsd;
992}
993
fb13c7ee
MG
994static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
995{
996 struct sched_domain *sd;
997
998 for_each_domain(cpu, sd) {
999 if (sd->flags & flag)
1000 break;
1001 }
1002
1003 return sd;
1004}
1005
518cd623 1006DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1007DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1008DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1009DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1010DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1011DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 1012
63b2ca30 1013struct sched_group_capacity {
5e6521ea
LZ
1014 atomic_t ref;
1015 /*
172895e6 1016 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1017 * for a single CPU.
5e6521ea 1018 */
bf475ce0
MR
1019 unsigned long capacity;
1020 unsigned long min_capacity; /* Min per-CPU capacity in group */
5e6521ea 1021 unsigned long next_update;
63b2ca30 1022 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
1023
1024 unsigned long cpumask[0]; /* iteration mask */
1025};
1026
1027struct sched_group {
1028 struct sched_group *next; /* Must be a circular list */
1029 atomic_t ref;
1030
1031 unsigned int group_weight;
63b2ca30 1032 struct sched_group_capacity *sgc;
afe06efd 1033 int asym_prefer_cpu; /* cpu of highest priority in group */
5e6521ea
LZ
1034
1035 /*
1036 * The CPUs this group covers.
1037 *
1038 * NOTE: this field is variable length. (Allocated dynamically
1039 * by attaching extra space to the end of the structure,
1040 * depending on how many CPUs the kernel has booted up with)
1041 */
1042 unsigned long cpumask[0];
1043};
1044
1045static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1046{
1047 return to_cpumask(sg->cpumask);
1048}
1049
1050/*
1051 * cpumask masking which cpus in the group are allowed to iterate up the domain
1052 * tree.
1053 */
1054static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1055{
63b2ca30 1056 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1057}
1058
1059/**
1060 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1061 * @group: The group whose first cpu is to be returned.
1062 */
1063static inline unsigned int group_first_cpu(struct sched_group *group)
1064{
1065 return cpumask_first(sched_group_cpus(group));
1066}
1067
c1174876
PZ
1068extern int group_balance_cpu(struct sched_group *sg);
1069
3866e845
SRRH
1070#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1071void register_sched_domain_sysctl(void);
1072void unregister_sched_domain_sysctl(void);
1073#else
1074static inline void register_sched_domain_sysctl(void)
1075{
1076}
1077static inline void unregister_sched_domain_sysctl(void)
1078{
1079}
1080#endif
1081
e3baac47
PZ
1082#else
1083
1084static inline void sched_ttwu_pending(void) { }
1085
518cd623 1086#endif /* CONFIG_SMP */
029632fb 1087
391e43da 1088#include "stats.h"
1051408f 1089#include "autogroup.h"
029632fb
PZ
1090
1091#ifdef CONFIG_CGROUP_SCHED
1092
1093/*
1094 * Return the group to which this tasks belongs.
1095 *
8af01f56
TH
1096 * We cannot use task_css() and friends because the cgroup subsystem
1097 * changes that value before the cgroup_subsys::attach() method is called,
1098 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1099 *
1100 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1101 * core changes this before calling sched_move_task().
1102 *
1103 * Instead we use a 'copy' which is updated from sched_move_task() while
1104 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1105 */
1106static inline struct task_group *task_group(struct task_struct *p)
1107{
8323f26c 1108 return p->sched_task_group;
029632fb
PZ
1109}
1110
1111/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1112static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1113{
1114#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1115 struct task_group *tg = task_group(p);
1116#endif
1117
1118#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1119 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1120 p->se.cfs_rq = tg->cfs_rq[cpu];
1121 p->se.parent = tg->se[cpu];
1122#endif
1123
1124#ifdef CONFIG_RT_GROUP_SCHED
1125 p->rt.rt_rq = tg->rt_rq[cpu];
1126 p->rt.parent = tg->rt_se[cpu];
1127#endif
1128}
1129
1130#else /* CONFIG_CGROUP_SCHED */
1131
1132static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1133static inline struct task_group *task_group(struct task_struct *p)
1134{
1135 return NULL;
1136}
1137
1138#endif /* CONFIG_CGROUP_SCHED */
1139
1140static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1141{
1142 set_task_rq(p, cpu);
1143#ifdef CONFIG_SMP
1144 /*
1145 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1146 * successfuly executed on another CPU. We must ensure that updates of
1147 * per-task data have been completed by this moment.
1148 */
1149 smp_wmb();
c65eacbe
AL
1150#ifdef CONFIG_THREAD_INFO_IN_TASK
1151 p->cpu = cpu;
1152#else
029632fb 1153 task_thread_info(p)->cpu = cpu;
c65eacbe 1154#endif
ac66f547 1155 p->wake_cpu = cpu;
029632fb
PZ
1156#endif
1157}
1158
1159/*
1160 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1161 */
1162#ifdef CONFIG_SCHED_DEBUG
c5905afb 1163# include <linux/static_key.h>
029632fb
PZ
1164# define const_debug __read_mostly
1165#else
1166# define const_debug const
1167#endif
1168
1169extern const_debug unsigned int sysctl_sched_features;
1170
1171#define SCHED_FEAT(name, enabled) \
1172 __SCHED_FEAT_##name ,
1173
1174enum {
391e43da 1175#include "features.h"
f8b6d1cc 1176 __SCHED_FEAT_NR,
029632fb
PZ
1177};
1178
1179#undef SCHED_FEAT
1180
f8b6d1cc 1181#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1182#define SCHED_FEAT(name, enabled) \
c5905afb 1183static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1184{ \
6e76ea8a 1185 return static_key_##enabled(key); \
f8b6d1cc
PZ
1186}
1187
1188#include "features.h"
1189
1190#undef SCHED_FEAT
1191
c5905afb 1192extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1193#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1194#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1195#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1196#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1197
2a595721 1198extern struct static_key_false sched_numa_balancing;
cb251765 1199extern struct static_key_false sched_schedstats;
cbee9f88 1200
029632fb
PZ
1201static inline u64 global_rt_period(void)
1202{
1203 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1204}
1205
1206static inline u64 global_rt_runtime(void)
1207{
1208 if (sysctl_sched_rt_runtime < 0)
1209 return RUNTIME_INF;
1210
1211 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1212}
1213
029632fb
PZ
1214static inline int task_current(struct rq *rq, struct task_struct *p)
1215{
1216 return rq->curr == p;
1217}
1218
1219static inline int task_running(struct rq *rq, struct task_struct *p)
1220{
1221#ifdef CONFIG_SMP
1222 return p->on_cpu;
1223#else
1224 return task_current(rq, p);
1225#endif
1226}
1227
da0c1e65
KT
1228static inline int task_on_rq_queued(struct task_struct *p)
1229{
1230 return p->on_rq == TASK_ON_RQ_QUEUED;
1231}
029632fb 1232
cca26e80
KT
1233static inline int task_on_rq_migrating(struct task_struct *p)
1234{
1235 return p->on_rq == TASK_ON_RQ_MIGRATING;
1236}
1237
029632fb
PZ
1238#ifndef prepare_arch_switch
1239# define prepare_arch_switch(next) do { } while (0)
1240#endif
01f23e16
CM
1241#ifndef finish_arch_post_lock_switch
1242# define finish_arch_post_lock_switch() do { } while (0)
1243#endif
029632fb 1244
029632fb
PZ
1245static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1246{
1247#ifdef CONFIG_SMP
1248 /*
1249 * We can optimise this out completely for !SMP, because the
1250 * SMP rebalancing from interrupt is the only thing that cares
1251 * here.
1252 */
1253 next->on_cpu = 1;
1254#endif
1255}
1256
1257static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1258{
1259#ifdef CONFIG_SMP
1260 /*
1261 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1262 * We must ensure this doesn't happen until the switch is completely
1263 * finished.
95913d97 1264 *
b75a2253
PZ
1265 * In particular, the load of prev->state in finish_task_switch() must
1266 * happen before this.
1267 *
1f03e8d2 1268 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1269 */
95913d97 1270 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1271#endif
1272#ifdef CONFIG_DEBUG_SPINLOCK
1273 /* this is a valid case when another task releases the spinlock */
1274 rq->lock.owner = current;
1275#endif
1276 /*
1277 * If we are tracking spinlock dependencies then we have to
1278 * fix up the runqueue lock - which gets 'carried over' from
1279 * prev into current:
1280 */
1281 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1282
1283 raw_spin_unlock_irq(&rq->lock);
1284}
1285
b13095f0
LZ
1286/*
1287 * wake flags
1288 */
1289#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1290#define WF_FORK 0x02 /* child wakeup after fork */
1291#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1292
029632fb
PZ
1293/*
1294 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1295 * of tasks with abnormal "nice" values across CPUs the contribution that
1296 * each task makes to its run queue's load is weighted according to its
1297 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1298 * scaled version of the new time slice allocation that they receive on time
1299 * slice expiry etc.
1300 */
1301
1302#define WEIGHT_IDLEPRIO 3
1303#define WMULT_IDLEPRIO 1431655765
1304
ed82b8a1
AK
1305extern const int sched_prio_to_weight[40];
1306extern const u32 sched_prio_to_wmult[40];
029632fb 1307
ff77e468
PZ
1308/*
1309 * {de,en}queue flags:
1310 *
1311 * DEQUEUE_SLEEP - task is no longer runnable
1312 * ENQUEUE_WAKEUP - task just became runnable
1313 *
1314 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1315 * are in a known state which allows modification. Such pairs
1316 * should preserve as much state as possible.
1317 *
1318 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1319 * in the runqueue.
1320 *
1321 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1322 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1323 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1324 *
1325 */
1326
1327#define DEQUEUE_SLEEP 0x01
1328#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1329#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1330
1de64443 1331#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1332#define ENQUEUE_RESTORE 0x02
1333#define ENQUEUE_MOVE 0x04
1334
1335#define ENQUEUE_HEAD 0x08
1336#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1337#ifdef CONFIG_SMP
59efa0ba 1338#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1339#else
59efa0ba 1340#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1341#endif
c82ba9fa 1342
37e117c0
PZ
1343#define RETRY_TASK ((void *)-1UL)
1344
c82ba9fa
LZ
1345struct sched_class {
1346 const struct sched_class *next;
1347
1348 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1349 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1350 void (*yield_task) (struct rq *rq);
1351 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1352
1353 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1354
606dba2e
PZ
1355 /*
1356 * It is the responsibility of the pick_next_task() method that will
1357 * return the next task to call put_prev_task() on the @prev task or
1358 * something equivalent.
37e117c0
PZ
1359 *
1360 * May return RETRY_TASK when it finds a higher prio class has runnable
1361 * tasks.
606dba2e
PZ
1362 */
1363 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28 1364 struct task_struct *prev,
d8ac8971 1365 struct rq_flags *rf);
c82ba9fa
LZ
1366 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1367
1368#ifdef CONFIG_SMP
ac66f547 1369 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1370 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1371
c82ba9fa
LZ
1372 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1373
1374 void (*set_cpus_allowed)(struct task_struct *p,
1375 const struct cpumask *newmask);
1376
1377 void (*rq_online)(struct rq *rq);
1378 void (*rq_offline)(struct rq *rq);
1379#endif
1380
1381 void (*set_curr_task) (struct rq *rq);
1382 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1383 void (*task_fork) (struct task_struct *p);
e6c390f2 1384 void (*task_dead) (struct task_struct *p);
c82ba9fa 1385
67dfa1b7
KT
1386 /*
1387 * The switched_from() call is allowed to drop rq->lock, therefore we
1388 * cannot assume the switched_from/switched_to pair is serliazed by
1389 * rq->lock. They are however serialized by p->pi_lock.
1390 */
c82ba9fa
LZ
1391 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1392 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1393 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1394 int oldprio);
1395
1396 unsigned int (*get_rr_interval) (struct rq *rq,
1397 struct task_struct *task);
1398
6e998916
SG
1399 void (*update_curr) (struct rq *rq);
1400
ea86cb4b
VG
1401#define TASK_SET_GROUP 0
1402#define TASK_MOVE_GROUP 1
1403
c82ba9fa 1404#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1405 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1406#endif
1407};
029632fb 1408
3f1d2a31
PZ
1409static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1410{
1411 prev->sched_class->put_prev_task(rq, prev);
1412}
1413
b2bf6c31
PZ
1414static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1415{
1416 curr->sched_class->set_curr_task(rq);
1417}
1418
029632fb
PZ
1419#define sched_class_highest (&stop_sched_class)
1420#define for_each_class(class) \
1421 for (class = sched_class_highest; class; class = class->next)
1422
1423extern const struct sched_class stop_sched_class;
aab03e05 1424extern const struct sched_class dl_sched_class;
029632fb
PZ
1425extern const struct sched_class rt_sched_class;
1426extern const struct sched_class fair_sched_class;
1427extern const struct sched_class idle_sched_class;
1428
1429
1430#ifdef CONFIG_SMP
1431
63b2ca30 1432extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1433
7caff66f 1434extern void trigger_load_balance(struct rq *rq);
029632fb 1435
c5b28038
PZ
1436extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1437
029632fb
PZ
1438#endif
1439
442bf3aa
DL
1440#ifdef CONFIG_CPU_IDLE
1441static inline void idle_set_state(struct rq *rq,
1442 struct cpuidle_state *idle_state)
1443{
1444 rq->idle_state = idle_state;
1445}
1446
1447static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1448{
9148a3a1 1449 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1450 return rq->idle_state;
1451}
1452#else
1453static inline void idle_set_state(struct rq *rq,
1454 struct cpuidle_state *idle_state)
1455{
1456}
1457
1458static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1459{
1460 return NULL;
1461}
1462#endif
1463
029632fb
PZ
1464extern void sysrq_sched_debug_show(void);
1465extern void sched_init_granularity(void);
1466extern void update_max_interval(void);
1baca4ce
JL
1467
1468extern void init_sched_dl_class(void);
029632fb
PZ
1469extern void init_sched_rt_class(void);
1470extern void init_sched_fair_class(void);
1471
8875125e 1472extern void resched_curr(struct rq *rq);
029632fb
PZ
1473extern void resched_cpu(int cpu);
1474
1475extern struct rt_bandwidth def_rt_bandwidth;
1476extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1477
332ac17e
DF
1478extern struct dl_bandwidth def_dl_bandwidth;
1479extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1480extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1481
332ac17e
DF
1482unsigned long to_ratio(u64 period, u64 runtime);
1483
540247fb 1484extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1485extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1486
76d92ac3
FW
1487#ifdef CONFIG_NO_HZ_FULL
1488extern bool sched_can_stop_tick(struct rq *rq);
1489
1490/*
1491 * Tick may be needed by tasks in the runqueue depending on their policy and
1492 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1493 * nohz mode if necessary.
1494 */
1495static inline void sched_update_tick_dependency(struct rq *rq)
1496{
1497 int cpu;
1498
1499 if (!tick_nohz_full_enabled())
1500 return;
1501
1502 cpu = cpu_of(rq);
1503
1504 if (!tick_nohz_full_cpu(cpu))
1505 return;
1506
1507 if (sched_can_stop_tick(rq))
1508 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1509 else
1510 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1511}
1512#else
1513static inline void sched_update_tick_dependency(struct rq *rq) { }
1514#endif
1515
72465447 1516static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1517{
72465447
KT
1518 unsigned prev_nr = rq->nr_running;
1519
1520 rq->nr_running = prev_nr + count;
9f3660c2 1521
72465447 1522 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1523#ifdef CONFIG_SMP
1524 if (!rq->rd->overload)
1525 rq->rd->overload = true;
1526#endif
4486edd1 1527 }
76d92ac3
FW
1528
1529 sched_update_tick_dependency(rq);
029632fb
PZ
1530}
1531
72465447 1532static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1533{
72465447 1534 rq->nr_running -= count;
76d92ac3
FW
1535 /* Check if we still need preemption */
1536 sched_update_tick_dependency(rq);
029632fb
PZ
1537}
1538
265f22a9
FW
1539static inline void rq_last_tick_reset(struct rq *rq)
1540{
1541#ifdef CONFIG_NO_HZ_FULL
1542 rq->last_sched_tick = jiffies;
1543#endif
1544}
1545
029632fb
PZ
1546extern void update_rq_clock(struct rq *rq);
1547
1548extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1549extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1550
1551extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1552
1553extern const_debug unsigned int sysctl_sched_time_avg;
1554extern const_debug unsigned int sysctl_sched_nr_migrate;
1555extern const_debug unsigned int sysctl_sched_migration_cost;
1556
1557static inline u64 sched_avg_period(void)
1558{
1559 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1560}
1561
029632fb
PZ
1562#ifdef CONFIG_SCHED_HRTICK
1563
1564/*
1565 * Use hrtick when:
1566 * - enabled by features
1567 * - hrtimer is actually high res
1568 */
1569static inline int hrtick_enabled(struct rq *rq)
1570{
1571 if (!sched_feat(HRTICK))
1572 return 0;
1573 if (!cpu_active(cpu_of(rq)))
1574 return 0;
1575 return hrtimer_is_hres_active(&rq->hrtick_timer);
1576}
1577
1578void hrtick_start(struct rq *rq, u64 delay);
1579
b39e66ea
MG
1580#else
1581
1582static inline int hrtick_enabled(struct rq *rq)
1583{
1584 return 0;
1585}
1586
029632fb
PZ
1587#endif /* CONFIG_SCHED_HRTICK */
1588
1589#ifdef CONFIG_SMP
1590extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1591
1592#ifndef arch_scale_freq_capacity
1593static __always_inline
1594unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1595{
1596 return SCHED_CAPACITY_SCALE;
1597}
1598#endif
b5b4860d 1599
8cd5601c
MR
1600#ifndef arch_scale_cpu_capacity
1601static __always_inline
1602unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1603{
e3279a2e 1604 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1605 return sd->smt_gain / sd->span_weight;
1606
1607 return SCHED_CAPACITY_SCALE;
1608}
1609#endif
1610
029632fb
PZ
1611static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1612{
b5b4860d 1613 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1614 sched_avg_update(rq);
1615}
1616#else
1617static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1618static inline void sched_avg_update(struct rq *rq) { }
1619#endif
1620
eb580751 1621struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1622 __acquires(rq->lock);
eb580751 1623struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1624 __acquires(p->pi_lock)
3e71a462 1625 __acquires(rq->lock);
3960c8c0 1626
eb580751 1627static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1628 __releases(rq->lock)
1629{
d8ac8971 1630 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1631 raw_spin_unlock(&rq->lock);
1632}
1633
1634static inline void
eb580751 1635task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1636 __releases(rq->lock)
1637 __releases(p->pi_lock)
1638{
d8ac8971 1639 rq_unpin_lock(rq, rf);
3960c8c0 1640 raw_spin_unlock(&rq->lock);
eb580751 1641 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1642}
1643
029632fb
PZ
1644#ifdef CONFIG_SMP
1645#ifdef CONFIG_PREEMPT
1646
1647static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1648
1649/*
1650 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1651 * way at the expense of forcing extra atomic operations in all
1652 * invocations. This assures that the double_lock is acquired using the
1653 * same underlying policy as the spinlock_t on this architecture, which
1654 * reduces latency compared to the unfair variant below. However, it
1655 * also adds more overhead and therefore may reduce throughput.
1656 */
1657static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1658 __releases(this_rq->lock)
1659 __acquires(busiest->lock)
1660 __acquires(this_rq->lock)
1661{
1662 raw_spin_unlock(&this_rq->lock);
1663 double_rq_lock(this_rq, busiest);
1664
1665 return 1;
1666}
1667
1668#else
1669/*
1670 * Unfair double_lock_balance: Optimizes throughput at the expense of
1671 * latency by eliminating extra atomic operations when the locks are
1672 * already in proper order on entry. This favors lower cpu-ids and will
1673 * grant the double lock to lower cpus over higher ids under contention,
1674 * regardless of entry order into the function.
1675 */
1676static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1677 __releases(this_rq->lock)
1678 __acquires(busiest->lock)
1679 __acquires(this_rq->lock)
1680{
1681 int ret = 0;
1682
1683 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1684 if (busiest < this_rq) {
1685 raw_spin_unlock(&this_rq->lock);
1686 raw_spin_lock(&busiest->lock);
1687 raw_spin_lock_nested(&this_rq->lock,
1688 SINGLE_DEPTH_NESTING);
1689 ret = 1;
1690 } else
1691 raw_spin_lock_nested(&busiest->lock,
1692 SINGLE_DEPTH_NESTING);
1693 }
1694 return ret;
1695}
1696
1697#endif /* CONFIG_PREEMPT */
1698
1699/*
1700 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1701 */
1702static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703{
1704 if (unlikely(!irqs_disabled())) {
1705 /* printk() doesn't work good under rq->lock */
1706 raw_spin_unlock(&this_rq->lock);
1707 BUG_ON(1);
1708 }
1709
1710 return _double_lock_balance(this_rq, busiest);
1711}
1712
1713static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1714 __releases(busiest->lock)
1715{
1716 raw_spin_unlock(&busiest->lock);
1717 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1718}
1719
74602315
PZ
1720static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1721{
1722 if (l1 > l2)
1723 swap(l1, l2);
1724
1725 spin_lock(l1);
1726 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1727}
1728
60e69eed
MG
1729static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1730{
1731 if (l1 > l2)
1732 swap(l1, l2);
1733
1734 spin_lock_irq(l1);
1735 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1736}
1737
74602315
PZ
1738static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1739{
1740 if (l1 > l2)
1741 swap(l1, l2);
1742
1743 raw_spin_lock(l1);
1744 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1745}
1746
029632fb
PZ
1747/*
1748 * double_rq_lock - safely lock two runqueues
1749 *
1750 * Note this does not disable interrupts like task_rq_lock,
1751 * you need to do so manually before calling.
1752 */
1753static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1754 __acquires(rq1->lock)
1755 __acquires(rq2->lock)
1756{
1757 BUG_ON(!irqs_disabled());
1758 if (rq1 == rq2) {
1759 raw_spin_lock(&rq1->lock);
1760 __acquire(rq2->lock); /* Fake it out ;) */
1761 } else {
1762 if (rq1 < rq2) {
1763 raw_spin_lock(&rq1->lock);
1764 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1765 } else {
1766 raw_spin_lock(&rq2->lock);
1767 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1768 }
1769 }
1770}
1771
1772/*
1773 * double_rq_unlock - safely unlock two runqueues
1774 *
1775 * Note this does not restore interrupts like task_rq_unlock,
1776 * you need to do so manually after calling.
1777 */
1778static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1779 __releases(rq1->lock)
1780 __releases(rq2->lock)
1781{
1782 raw_spin_unlock(&rq1->lock);
1783 if (rq1 != rq2)
1784 raw_spin_unlock(&rq2->lock);
1785 else
1786 __release(rq2->lock);
1787}
1788
f2cb1360
IM
1789extern void set_rq_online (struct rq *rq);
1790extern void set_rq_offline(struct rq *rq);
1791extern bool sched_smp_initialized;
1792
029632fb
PZ
1793#else /* CONFIG_SMP */
1794
1795/*
1796 * double_rq_lock - safely lock two runqueues
1797 *
1798 * Note this does not disable interrupts like task_rq_lock,
1799 * you need to do so manually before calling.
1800 */
1801static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1802 __acquires(rq1->lock)
1803 __acquires(rq2->lock)
1804{
1805 BUG_ON(!irqs_disabled());
1806 BUG_ON(rq1 != rq2);
1807 raw_spin_lock(&rq1->lock);
1808 __acquire(rq2->lock); /* Fake it out ;) */
1809}
1810
1811/*
1812 * double_rq_unlock - safely unlock two runqueues
1813 *
1814 * Note this does not restore interrupts like task_rq_unlock,
1815 * you need to do so manually after calling.
1816 */
1817static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1818 __releases(rq1->lock)
1819 __releases(rq2->lock)
1820{
1821 BUG_ON(rq1 != rq2);
1822 raw_spin_unlock(&rq1->lock);
1823 __release(rq2->lock);
1824}
1825
1826#endif
1827
1828extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1829extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1830
1831#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1832extern void print_cfs_stats(struct seq_file *m, int cpu);
1833extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1834extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1835extern void
1836print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1837#ifdef CONFIG_NUMA_BALANCING
1838extern void
1839show_numa_stats(struct task_struct *p, struct seq_file *m);
1840extern void
1841print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1842 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1843#endif /* CONFIG_NUMA_BALANCING */
1844#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1845
1846extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1847extern void init_rt_rq(struct rt_rq *rt_rq);
1848extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1849
1ee14e6c
BS
1850extern void cfs_bandwidth_usage_inc(void);
1851extern void cfs_bandwidth_usage_dec(void);
1c792db7 1852
3451d024 1853#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1854enum rq_nohz_flag_bits {
1855 NOHZ_TICK_STOPPED,
1856 NOHZ_BALANCE_KICK,
1857};
1858
1859#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1860
1861extern void nohz_balance_exit_idle(unsigned int cpu);
1862#else
1863static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1864#endif
73fbec60
FW
1865
1866#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 1867struct irqtime {
a499a5a1 1868 u64 tick_delta;
19d23dbf
FW
1869 u64 irq_start_time;
1870 struct u64_stats_sync sync;
1871};
73fbec60 1872
19d23dbf 1873DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60
FW
1874
1875static inline u64 irq_time_read(int cpu)
1876{
19d23dbf 1877 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
a499a5a1 1878 u64 *cpustat = kcpustat_cpu(cpu).cpustat;
19d23dbf
FW
1879 unsigned int seq;
1880 u64 total;
73fbec60
FW
1881
1882 do {
19d23dbf 1883 seq = __u64_stats_fetch_begin(&irqtime->sync);
a499a5a1 1884 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
19d23dbf 1885 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 1886
19d23dbf 1887 return total;
73fbec60 1888}
73fbec60 1889#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1890
1891#ifdef CONFIG_CPU_FREQ
1892DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1893
1894/**
1895 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 1896 * @rq: Runqueue to carry out the update for.
58919e83 1897 * @flags: Update reason flags.
adaf9fcd 1898 *
58919e83
RW
1899 * This function is called by the scheduler on the CPU whose utilization is
1900 * being updated.
adaf9fcd
RW
1901 *
1902 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
1903 *
1904 * The way cpufreq is currently arranged requires it to evaluate the CPU
1905 * performance state (frequency/voltage) on a regular basis to prevent it from
1906 * being stuck in a completely inadequate performance level for too long.
1907 * That is not guaranteed to happen if the updates are only triggered from CFS,
1908 * though, because they may not be coming in if RT or deadline tasks are active
1909 * all the time (or there are RT and DL tasks only).
1910 *
1911 * As a workaround for that issue, this function is called by the RT and DL
1912 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1913 * but that really is a band-aid. Going forward it should be replaced with
1914 * solutions targeted more specifically at RT and DL tasks.
1915 */
12bde33d 1916static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 1917{
58919e83
RW
1918 struct update_util_data *data;
1919
1920 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1921 if (data)
12bde33d
RW
1922 data->func(data, rq_clock(rq), flags);
1923}
1924
1925static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1926{
1927 if (cpu_of(rq) == smp_processor_id())
1928 cpufreq_update_util(rq, flags);
adaf9fcd
RW
1929}
1930#else
12bde33d
RW
1931static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1932static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
adaf9fcd 1933#endif /* CONFIG_CPU_FREQ */
be53f58f 1934
9bdcb44e
RW
1935#ifdef arch_scale_freq_capacity
1936#ifndef arch_scale_freq_invariant
1937#define arch_scale_freq_invariant() (true)
1938#endif
1939#else /* arch_scale_freq_capacity */
1940#define arch_scale_freq_invariant() (false)
1941#endif