]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/sched.h
sched, timer: Convert usages of ACCESS_ONCE() in the scheduler to READ_ONCE()/WRITE_O...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
3289bdb4 29extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 30extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
31
32#ifdef CONFIG_SMP
45ceebf7 33extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
34#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
45ceebf7 37
029632fb
PZ
38/*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
cc1f4b1f
LZ
43/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
029632fb
PZ
68#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
332ac17e
DF
71/*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
029632fb
PZ
78/*
79 * These are the 'tuning knobs' of the scheduler:
029632fb 80 */
029632fb
PZ
81
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
d50dde5a
DF
87static inline int fair_policy(int policy)
88{
89 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90}
91
029632fb
PZ
92static inline int rt_policy(int policy)
93{
d50dde5a 94 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
95}
96
aab03e05
DF
97static inline int dl_policy(int policy)
98{
99 return policy == SCHED_DEADLINE;
100}
101
029632fb
PZ
102static inline int task_has_rt_policy(struct task_struct *p)
103{
104 return rt_policy(p->policy);
105}
106
aab03e05
DF
107static inline int task_has_dl_policy(struct task_struct *p)
108{
109 return dl_policy(p->policy);
110}
111
332ac17e 112static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
113{
114 return (s64)(a - b) < 0;
115}
116
117/*
118 * Tells if entity @a should preempt entity @b.
119 */
332ac17e
DF
120static inline bool
121dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
122{
123 return dl_time_before(a->deadline, b->deadline);
124}
125
029632fb
PZ
126/*
127 * This is the priority-queue data structure of the RT scheduling class:
128 */
129struct rt_prio_array {
130 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 struct list_head queue[MAX_RT_PRIO];
132};
133
134struct rt_bandwidth {
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock;
137 ktime_t rt_period;
138 u64 rt_runtime;
139 struct hrtimer rt_period_timer;
140};
a5e7be3b
JL
141
142void __dl_clear_params(struct task_struct *p);
143
332ac17e
DF
144/*
145 * To keep the bandwidth of -deadline tasks and groups under control
146 * we need some place where:
147 * - store the maximum -deadline bandwidth of the system (the group);
148 * - cache the fraction of that bandwidth that is currently allocated.
149 *
150 * This is all done in the data structure below. It is similar to the
151 * one used for RT-throttling (rt_bandwidth), with the main difference
152 * that, since here we are only interested in admission control, we
153 * do not decrease any runtime while the group "executes", neither we
154 * need a timer to replenish it.
155 *
156 * With respect to SMP, the bandwidth is given on a per-CPU basis,
157 * meaning that:
158 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
159 * - dl_total_bw array contains, in the i-eth element, the currently
160 * allocated bandwidth on the i-eth CPU.
161 * Moreover, groups consume bandwidth on each CPU, while tasks only
162 * consume bandwidth on the CPU they're running on.
163 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
164 * that will be shown the next time the proc or cgroup controls will
165 * be red. It on its turn can be changed by writing on its own
166 * control.
167 */
168struct dl_bandwidth {
169 raw_spinlock_t dl_runtime_lock;
170 u64 dl_runtime;
171 u64 dl_period;
172};
173
174static inline int dl_bandwidth_enabled(void)
175{
1724813d 176 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
177}
178
179extern struct dl_bw *dl_bw_of(int i);
180
181struct dl_bw {
182 raw_spinlock_t lock;
183 u64 bw, total_bw;
184};
185
7f51412a
JL
186static inline
187void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
188{
189 dl_b->total_bw -= tsk_bw;
190}
191
192static inline
193void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
194{
195 dl_b->total_bw += tsk_bw;
196}
197
198static inline
199bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
200{
201 return dl_b->bw != -1 &&
202 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
203}
204
029632fb
PZ
205extern struct mutex sched_domains_mutex;
206
207#ifdef CONFIG_CGROUP_SCHED
208
209#include <linux/cgroup.h>
210
211struct cfs_rq;
212struct rt_rq;
213
35cf4e50 214extern struct list_head task_groups;
029632fb
PZ
215
216struct cfs_bandwidth {
217#ifdef CONFIG_CFS_BANDWIDTH
218 raw_spinlock_t lock;
219 ktime_t period;
220 u64 quota, runtime;
9c58c79a 221 s64 hierarchical_quota;
029632fb
PZ
222 u64 runtime_expires;
223
224 int idle, timer_active;
225 struct hrtimer period_timer, slack_timer;
226 struct list_head throttled_cfs_rq;
227
228 /* statistics */
229 int nr_periods, nr_throttled;
230 u64 throttled_time;
231#endif
232};
233
234/* task group related information */
235struct task_group {
236 struct cgroup_subsys_state css;
237
238#ifdef CONFIG_FAIR_GROUP_SCHED
239 /* schedulable entities of this group on each cpu */
240 struct sched_entity **se;
241 /* runqueue "owned" by this group on each cpu */
242 struct cfs_rq **cfs_rq;
243 unsigned long shares;
244
fa6bddeb 245#ifdef CONFIG_SMP
bf5b986e 246 atomic_long_t load_avg;
bb17f655 247 atomic_t runnable_avg;
029632fb 248#endif
fa6bddeb 249#endif
029632fb
PZ
250
251#ifdef CONFIG_RT_GROUP_SCHED
252 struct sched_rt_entity **rt_se;
253 struct rt_rq **rt_rq;
254
255 struct rt_bandwidth rt_bandwidth;
256#endif
257
258 struct rcu_head rcu;
259 struct list_head list;
260
261 struct task_group *parent;
262 struct list_head siblings;
263 struct list_head children;
264
265#ifdef CONFIG_SCHED_AUTOGROUP
266 struct autogroup *autogroup;
267#endif
268
269 struct cfs_bandwidth cfs_bandwidth;
270};
271
272#ifdef CONFIG_FAIR_GROUP_SCHED
273#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
274
275/*
276 * A weight of 0 or 1 can cause arithmetics problems.
277 * A weight of a cfs_rq is the sum of weights of which entities
278 * are queued on this cfs_rq, so a weight of a entity should not be
279 * too large, so as the shares value of a task group.
280 * (The default weight is 1024 - so there's no practical
281 * limitation from this.)
282 */
283#define MIN_SHARES (1UL << 1)
284#define MAX_SHARES (1UL << 18)
285#endif
286
029632fb
PZ
287typedef int (*tg_visitor)(struct task_group *, void *);
288
289extern int walk_tg_tree_from(struct task_group *from,
290 tg_visitor down, tg_visitor up, void *data);
291
292/*
293 * Iterate the full tree, calling @down when first entering a node and @up when
294 * leaving it for the final time.
295 *
296 * Caller must hold rcu_lock or sufficient equivalent.
297 */
298static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
299{
300 return walk_tg_tree_from(&root_task_group, down, up, data);
301}
302
303extern int tg_nop(struct task_group *tg, void *data);
304
305extern void free_fair_sched_group(struct task_group *tg);
306extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
307extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
308extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
309 struct sched_entity *se, int cpu,
310 struct sched_entity *parent);
311extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
312extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
313
314extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 315extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
316extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
317
318extern void free_rt_sched_group(struct task_group *tg);
319extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
320extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
321 struct sched_rt_entity *rt_se, int cpu,
322 struct sched_rt_entity *parent);
323
25cc7da7
LZ
324extern struct task_group *sched_create_group(struct task_group *parent);
325extern void sched_online_group(struct task_group *tg,
326 struct task_group *parent);
327extern void sched_destroy_group(struct task_group *tg);
328extern void sched_offline_group(struct task_group *tg);
329
330extern void sched_move_task(struct task_struct *tsk);
331
332#ifdef CONFIG_FAIR_GROUP_SCHED
333extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
334#endif
335
029632fb
PZ
336#else /* CONFIG_CGROUP_SCHED */
337
338struct cfs_bandwidth { };
339
340#endif /* CONFIG_CGROUP_SCHED */
341
342/* CFS-related fields in a runqueue */
343struct cfs_rq {
344 struct load_weight load;
c82513e5 345 unsigned int nr_running, h_nr_running;
029632fb
PZ
346
347 u64 exec_clock;
348 u64 min_vruntime;
349#ifndef CONFIG_64BIT
350 u64 min_vruntime_copy;
351#endif
352
353 struct rb_root tasks_timeline;
354 struct rb_node *rb_leftmost;
355
029632fb
PZ
356 /*
357 * 'curr' points to currently running entity on this cfs_rq.
358 * It is set to NULL otherwise (i.e when none are currently running).
359 */
360 struct sched_entity *curr, *next, *last, *skip;
361
362#ifdef CONFIG_SCHED_DEBUG
363 unsigned int nr_spread_over;
364#endif
365
2dac754e
PT
366#ifdef CONFIG_SMP
367 /*
368 * CFS Load tracking
369 * Under CFS, load is tracked on a per-entity basis and aggregated up.
370 * This allows for the description of both thread and group usage (in
371 * the FAIR_GROUP_SCHED case).
36ee28e4
VG
372 * runnable_load_avg is the sum of the load_avg_contrib of the
373 * sched_entities on the rq.
374 * blocked_load_avg is similar to runnable_load_avg except that its
375 * the blocked sched_entities on the rq.
376 * utilization_load_avg is the sum of the average running time of the
377 * sched_entities on the rq.
2dac754e 378 */
36ee28e4 379 unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
2509940f 380 atomic64_t decay_counter;
9ee474f5 381 u64 last_decay;
2509940f 382 atomic_long_t removed_load;
141965c7 383
c566e8e9 384#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 385 /* Required to track per-cpu representation of a task_group */
bb17f655 386 u32 tg_runnable_contrib;
bf5b986e 387 unsigned long tg_load_contrib;
82958366
PT
388
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
68520796
VD
396 u64 last_h_load_update;
397 struct sched_entity *h_load_next;
398#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
399#endif /* CONFIG_SMP */
400
029632fb
PZ
401#ifdef CONFIG_FAIR_GROUP_SCHED
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403
404 /*
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
408 *
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
411 */
412 int on_list;
413 struct list_head leaf_cfs_rq_list;
414 struct task_group *tg; /* group that "owns" this runqueue */
415
029632fb
PZ
416#ifdef CONFIG_CFS_BANDWIDTH
417 int runtime_enabled;
418 u64 runtime_expires;
419 s64 runtime_remaining;
420
f1b17280
PT
421 u64 throttled_clock, throttled_clock_task;
422 u64 throttled_clock_task_time;
029632fb
PZ
423 int throttled, throttle_count;
424 struct list_head throttled_list;
425#endif /* CONFIG_CFS_BANDWIDTH */
426#endif /* CONFIG_FAIR_GROUP_SCHED */
427};
428
429static inline int rt_bandwidth_enabled(void)
430{
431 return sysctl_sched_rt_runtime >= 0;
432}
433
b6366f04
SR
434/* RT IPI pull logic requires IRQ_WORK */
435#ifdef CONFIG_IRQ_WORK
436# define HAVE_RT_PUSH_IPI
437#endif
438
029632fb
PZ
439/* Real-Time classes' related field in a runqueue: */
440struct rt_rq {
441 struct rt_prio_array active;
c82513e5 442 unsigned int rt_nr_running;
029632fb
PZ
443#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
444 struct {
445 int curr; /* highest queued rt task prio */
446#ifdef CONFIG_SMP
447 int next; /* next highest */
448#endif
449 } highest_prio;
450#endif
451#ifdef CONFIG_SMP
452 unsigned long rt_nr_migratory;
453 unsigned long rt_nr_total;
454 int overloaded;
455 struct plist_head pushable_tasks;
b6366f04
SR
456#ifdef HAVE_RT_PUSH_IPI
457 int push_flags;
458 int push_cpu;
459 struct irq_work push_work;
460 raw_spinlock_t push_lock;
029632fb 461#endif
b6366f04 462#endif /* CONFIG_SMP */
f4ebcbc0
KT
463 int rt_queued;
464
029632fb
PZ
465 int rt_throttled;
466 u64 rt_time;
467 u64 rt_runtime;
468 /* Nests inside the rq lock: */
469 raw_spinlock_t rt_runtime_lock;
470
471#ifdef CONFIG_RT_GROUP_SCHED
472 unsigned long rt_nr_boosted;
473
474 struct rq *rq;
029632fb
PZ
475 struct task_group *tg;
476#endif
477};
478
aab03e05
DF
479/* Deadline class' related fields in a runqueue */
480struct dl_rq {
481 /* runqueue is an rbtree, ordered by deadline */
482 struct rb_root rb_root;
483 struct rb_node *rb_leftmost;
484
485 unsigned long dl_nr_running;
1baca4ce
JL
486
487#ifdef CONFIG_SMP
488 /*
489 * Deadline values of the currently executing and the
490 * earliest ready task on this rq. Caching these facilitates
491 * the decision wether or not a ready but not running task
492 * should migrate somewhere else.
493 */
494 struct {
495 u64 curr;
496 u64 next;
497 } earliest_dl;
498
499 unsigned long dl_nr_migratory;
1baca4ce
JL
500 int overloaded;
501
502 /*
503 * Tasks on this rq that can be pushed away. They are kept in
504 * an rb-tree, ordered by tasks' deadlines, with caching
505 * of the leftmost (earliest deadline) element.
506 */
507 struct rb_root pushable_dl_tasks_root;
508 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
509#else
510 struct dl_bw dl_bw;
1baca4ce 511#endif
aab03e05
DF
512};
513
029632fb
PZ
514#ifdef CONFIG_SMP
515
516/*
517 * We add the notion of a root-domain which will be used to define per-domain
518 * variables. Each exclusive cpuset essentially defines an island domain by
519 * fully partitioning the member cpus from any other cpuset. Whenever a new
520 * exclusive cpuset is created, we also create and attach a new root-domain
521 * object.
522 *
523 */
524struct root_domain {
525 atomic_t refcount;
526 atomic_t rto_count;
527 struct rcu_head rcu;
528 cpumask_var_t span;
529 cpumask_var_t online;
530
4486edd1
TC
531 /* Indicate more than one runnable task for any CPU */
532 bool overload;
533
1baca4ce
JL
534 /*
535 * The bit corresponding to a CPU gets set here if such CPU has more
536 * than one runnable -deadline task (as it is below for RT tasks).
537 */
538 cpumask_var_t dlo_mask;
539 atomic_t dlo_count;
332ac17e 540 struct dl_bw dl_bw;
6bfd6d72 541 struct cpudl cpudl;
1baca4ce 542
029632fb
PZ
543 /*
544 * The "RT overload" flag: it gets set if a CPU has more than
545 * one runnable RT task.
546 */
547 cpumask_var_t rto_mask;
548 struct cpupri cpupri;
549};
550
551extern struct root_domain def_root_domain;
552
553#endif /* CONFIG_SMP */
554
555/*
556 * This is the main, per-CPU runqueue data structure.
557 *
558 * Locking rule: those places that want to lock multiple runqueues
559 * (such as the load balancing or the thread migration code), lock
560 * acquire operations must be ordered by ascending &runqueue.
561 */
562struct rq {
563 /* runqueue lock: */
564 raw_spinlock_t lock;
565
566 /*
567 * nr_running and cpu_load should be in the same cacheline because
568 * remote CPUs use both these fields when doing load calculation.
569 */
c82513e5 570 unsigned int nr_running;
0ec8aa00
PZ
571#ifdef CONFIG_NUMA_BALANCING
572 unsigned int nr_numa_running;
573 unsigned int nr_preferred_running;
574#endif
029632fb
PZ
575 #define CPU_LOAD_IDX_MAX 5
576 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
577 unsigned long last_load_update_tick;
3451d024 578#ifdef CONFIG_NO_HZ_COMMON
029632fb 579 u64 nohz_stamp;
1c792db7 580 unsigned long nohz_flags;
265f22a9
FW
581#endif
582#ifdef CONFIG_NO_HZ_FULL
583 unsigned long last_sched_tick;
029632fb 584#endif
029632fb
PZ
585 /* capture load from *all* tasks on this cpu: */
586 struct load_weight load;
587 unsigned long nr_load_updates;
588 u64 nr_switches;
589
590 struct cfs_rq cfs;
591 struct rt_rq rt;
aab03e05 592 struct dl_rq dl;
029632fb
PZ
593
594#ifdef CONFIG_FAIR_GROUP_SCHED
595 /* list of leaf cfs_rq on this cpu: */
596 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
597
598 struct sched_avg avg;
a35b6466
PZ
599#endif /* CONFIG_FAIR_GROUP_SCHED */
600
029632fb
PZ
601 /*
602 * This is part of a global counter where only the total sum
603 * over all CPUs matters. A task can increase this counter on
604 * one CPU and if it got migrated afterwards it may decrease
605 * it on another CPU. Always updated under the runqueue lock:
606 */
607 unsigned long nr_uninterruptible;
608
609 struct task_struct *curr, *idle, *stop;
610 unsigned long next_balance;
611 struct mm_struct *prev_mm;
612
9edfbfed 613 unsigned int clock_skip_update;
029632fb
PZ
614 u64 clock;
615 u64 clock_task;
616
617 atomic_t nr_iowait;
618
619#ifdef CONFIG_SMP
620 struct root_domain *rd;
621 struct sched_domain *sd;
622
ced549fa 623 unsigned long cpu_capacity;
ca6d75e6 624 unsigned long cpu_capacity_orig;
029632fb
PZ
625
626 unsigned char idle_balance;
627 /* For active balancing */
628 int post_schedule;
629 int active_balance;
630 int push_cpu;
631 struct cpu_stop_work active_balance_work;
632 /* cpu of this runqueue: */
633 int cpu;
634 int online;
635
367456c7
PZ
636 struct list_head cfs_tasks;
637
029632fb
PZ
638 u64 rt_avg;
639 u64 age_stamp;
640 u64 idle_stamp;
641 u64 avg_idle;
9bd721c5
JL
642
643 /* This is used to determine avg_idle's max value */
644 u64 max_idle_balance_cost;
029632fb
PZ
645#endif
646
647#ifdef CONFIG_IRQ_TIME_ACCOUNTING
648 u64 prev_irq_time;
649#endif
650#ifdef CONFIG_PARAVIRT
651 u64 prev_steal_time;
652#endif
653#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
654 u64 prev_steal_time_rq;
655#endif
656
657 /* calc_load related fields */
658 unsigned long calc_load_update;
659 long calc_load_active;
660
661#ifdef CONFIG_SCHED_HRTICK
662#ifdef CONFIG_SMP
663 int hrtick_csd_pending;
664 struct call_single_data hrtick_csd;
665#endif
666 struct hrtimer hrtick_timer;
667#endif
668
669#ifdef CONFIG_SCHEDSTATS
670 /* latency stats */
671 struct sched_info rq_sched_info;
672 unsigned long long rq_cpu_time;
673 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
674
675 /* sys_sched_yield() stats */
676 unsigned int yld_count;
677
678 /* schedule() stats */
029632fb
PZ
679 unsigned int sched_count;
680 unsigned int sched_goidle;
681
682 /* try_to_wake_up() stats */
683 unsigned int ttwu_count;
684 unsigned int ttwu_local;
685#endif
686
687#ifdef CONFIG_SMP
688 struct llist_head wake_list;
689#endif
442bf3aa
DL
690
691#ifdef CONFIG_CPU_IDLE
692 /* Must be inspected within a rcu lock section */
693 struct cpuidle_state *idle_state;
694#endif
029632fb
PZ
695};
696
697static inline int cpu_of(struct rq *rq)
698{
699#ifdef CONFIG_SMP
700 return rq->cpu;
701#else
702 return 0;
703#endif
704}
705
8b06c55b 706DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 707
518cd623 708#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 709#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
710#define task_rq(p) cpu_rq(task_cpu(p))
711#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 712#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 713
cebde6d6
PZ
714static inline u64 __rq_clock_broken(struct rq *rq)
715{
316c1608 716 return READ_ONCE(rq->clock);
cebde6d6
PZ
717}
718
78becc27
FW
719static inline u64 rq_clock(struct rq *rq)
720{
cebde6d6 721 lockdep_assert_held(&rq->lock);
78becc27
FW
722 return rq->clock;
723}
724
725static inline u64 rq_clock_task(struct rq *rq)
726{
cebde6d6 727 lockdep_assert_held(&rq->lock);
78becc27
FW
728 return rq->clock_task;
729}
730
9edfbfed
PZ
731#define RQCF_REQ_SKIP 0x01
732#define RQCF_ACT_SKIP 0x02
733
734static inline void rq_clock_skip_update(struct rq *rq, bool skip)
735{
736 lockdep_assert_held(&rq->lock);
737 if (skip)
738 rq->clock_skip_update |= RQCF_REQ_SKIP;
739 else
740 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
741}
742
9942f79b 743#ifdef CONFIG_NUMA
e3fe70b1
RR
744enum numa_topology_type {
745 NUMA_DIRECT,
746 NUMA_GLUELESS_MESH,
747 NUMA_BACKPLANE,
748};
749extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
750extern int sched_max_numa_distance;
751extern bool find_numa_distance(int distance);
752#endif
753
f809ca9a 754#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
755/* The regions in numa_faults array from task_struct */
756enum numa_faults_stats {
757 NUMA_MEM = 0,
758 NUMA_CPU,
759 NUMA_MEMBUF,
760 NUMA_CPUBUF
761};
0ec8aa00 762extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 763extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 764extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
765#endif /* CONFIG_NUMA_BALANCING */
766
518cd623
PZ
767#ifdef CONFIG_SMP
768
e3baac47
PZ
769extern void sched_ttwu_pending(void);
770
029632fb
PZ
771#define rcu_dereference_check_sched_domain(p) \
772 rcu_dereference_check((p), \
773 lockdep_is_held(&sched_domains_mutex))
774
775/*
776 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
777 * See detach_destroy_domains: synchronize_sched for details.
778 *
779 * The domain tree of any CPU may only be accessed from within
780 * preempt-disabled sections.
781 */
782#define for_each_domain(cpu, __sd) \
518cd623
PZ
783 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
784 __sd; __sd = __sd->parent)
029632fb 785
77e81365
SS
786#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
787
518cd623
PZ
788/**
789 * highest_flag_domain - Return highest sched_domain containing flag.
790 * @cpu: The cpu whose highest level of sched domain is to
791 * be returned.
792 * @flag: The flag to check for the highest sched_domain
793 * for the given cpu.
794 *
795 * Returns the highest sched_domain of a cpu which contains the given flag.
796 */
797static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
798{
799 struct sched_domain *sd, *hsd = NULL;
800
801 for_each_domain(cpu, sd) {
802 if (!(sd->flags & flag))
803 break;
804 hsd = sd;
805 }
806
807 return hsd;
808}
809
fb13c7ee
MG
810static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
811{
812 struct sched_domain *sd;
813
814 for_each_domain(cpu, sd) {
815 if (sd->flags & flag)
816 break;
817 }
818
819 return sd;
820}
821
518cd623 822DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 823DECLARE_PER_CPU(int, sd_llc_size);
518cd623 824DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 825DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
826DECLARE_PER_CPU(struct sched_domain *, sd_busy);
827DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 828
63b2ca30 829struct sched_group_capacity {
5e6521ea
LZ
830 atomic_t ref;
831 /*
63b2ca30
NP
832 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
833 * for a single CPU.
5e6521ea 834 */
dc7ff76e 835 unsigned int capacity;
5e6521ea 836 unsigned long next_update;
63b2ca30 837 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
838 /*
839 * Number of busy cpus in this group.
840 */
841 atomic_t nr_busy_cpus;
842
843 unsigned long cpumask[0]; /* iteration mask */
844};
845
846struct sched_group {
847 struct sched_group *next; /* Must be a circular list */
848 atomic_t ref;
849
850 unsigned int group_weight;
63b2ca30 851 struct sched_group_capacity *sgc;
5e6521ea
LZ
852
853 /*
854 * The CPUs this group covers.
855 *
856 * NOTE: this field is variable length. (Allocated dynamically
857 * by attaching extra space to the end of the structure,
858 * depending on how many CPUs the kernel has booted up with)
859 */
860 unsigned long cpumask[0];
861};
862
863static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
864{
865 return to_cpumask(sg->cpumask);
866}
867
868/*
869 * cpumask masking which cpus in the group are allowed to iterate up the domain
870 * tree.
871 */
872static inline struct cpumask *sched_group_mask(struct sched_group *sg)
873{
63b2ca30 874 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
875}
876
877/**
878 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
879 * @group: The group whose first cpu is to be returned.
880 */
881static inline unsigned int group_first_cpu(struct sched_group *group)
882{
883 return cpumask_first(sched_group_cpus(group));
884}
885
c1174876
PZ
886extern int group_balance_cpu(struct sched_group *sg);
887
e3baac47
PZ
888#else
889
890static inline void sched_ttwu_pending(void) { }
891
518cd623 892#endif /* CONFIG_SMP */
029632fb 893
391e43da
PZ
894#include "stats.h"
895#include "auto_group.h"
029632fb
PZ
896
897#ifdef CONFIG_CGROUP_SCHED
898
899/*
900 * Return the group to which this tasks belongs.
901 *
8af01f56
TH
902 * We cannot use task_css() and friends because the cgroup subsystem
903 * changes that value before the cgroup_subsys::attach() method is called,
904 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
905 *
906 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
907 * core changes this before calling sched_move_task().
908 *
909 * Instead we use a 'copy' which is updated from sched_move_task() while
910 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
911 */
912static inline struct task_group *task_group(struct task_struct *p)
913{
8323f26c 914 return p->sched_task_group;
029632fb
PZ
915}
916
917/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
918static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
919{
920#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
921 struct task_group *tg = task_group(p);
922#endif
923
924#ifdef CONFIG_FAIR_GROUP_SCHED
925 p->se.cfs_rq = tg->cfs_rq[cpu];
926 p->se.parent = tg->se[cpu];
927#endif
928
929#ifdef CONFIG_RT_GROUP_SCHED
930 p->rt.rt_rq = tg->rt_rq[cpu];
931 p->rt.parent = tg->rt_se[cpu];
932#endif
933}
934
935#else /* CONFIG_CGROUP_SCHED */
936
937static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
938static inline struct task_group *task_group(struct task_struct *p)
939{
940 return NULL;
941}
942
943#endif /* CONFIG_CGROUP_SCHED */
944
945static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
946{
947 set_task_rq(p, cpu);
948#ifdef CONFIG_SMP
949 /*
950 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
951 * successfuly executed on another CPU. We must ensure that updates of
952 * per-task data have been completed by this moment.
953 */
954 smp_wmb();
955 task_thread_info(p)->cpu = cpu;
ac66f547 956 p->wake_cpu = cpu;
029632fb
PZ
957#endif
958}
959
960/*
961 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
962 */
963#ifdef CONFIG_SCHED_DEBUG
c5905afb 964# include <linux/static_key.h>
029632fb
PZ
965# define const_debug __read_mostly
966#else
967# define const_debug const
968#endif
969
970extern const_debug unsigned int sysctl_sched_features;
971
972#define SCHED_FEAT(name, enabled) \
973 __SCHED_FEAT_##name ,
974
975enum {
391e43da 976#include "features.h"
f8b6d1cc 977 __SCHED_FEAT_NR,
029632fb
PZ
978};
979
980#undef SCHED_FEAT
981
f8b6d1cc 982#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 983#define SCHED_FEAT(name, enabled) \
c5905afb 984static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 985{ \
6e76ea8a 986 return static_key_##enabled(key); \
f8b6d1cc
PZ
987}
988
989#include "features.h"
990
991#undef SCHED_FEAT
992
c5905afb 993extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
994#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
995#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 996#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 997#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 998
cbee9f88
PZ
999#ifdef CONFIG_NUMA_BALANCING
1000#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
1001#ifdef CONFIG_SCHED_DEBUG
1002#define numabalancing_enabled sched_feat_numa(NUMA)
1003#else
1004extern bool numabalancing_enabled;
1005#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
1006#else
1007#define sched_feat_numa(x) (0)
3105b86a
MG
1008#define numabalancing_enabled (0)
1009#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 1010
029632fb
PZ
1011static inline u64 global_rt_period(void)
1012{
1013 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1014}
1015
1016static inline u64 global_rt_runtime(void)
1017{
1018 if (sysctl_sched_rt_runtime < 0)
1019 return RUNTIME_INF;
1020
1021 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1022}
1023
029632fb
PZ
1024static inline int task_current(struct rq *rq, struct task_struct *p)
1025{
1026 return rq->curr == p;
1027}
1028
1029static inline int task_running(struct rq *rq, struct task_struct *p)
1030{
1031#ifdef CONFIG_SMP
1032 return p->on_cpu;
1033#else
1034 return task_current(rq, p);
1035#endif
1036}
1037
da0c1e65
KT
1038static inline int task_on_rq_queued(struct task_struct *p)
1039{
1040 return p->on_rq == TASK_ON_RQ_QUEUED;
1041}
029632fb 1042
cca26e80
KT
1043static inline int task_on_rq_migrating(struct task_struct *p)
1044{
1045 return p->on_rq == TASK_ON_RQ_MIGRATING;
1046}
1047
029632fb
PZ
1048#ifndef prepare_arch_switch
1049# define prepare_arch_switch(next) do { } while (0)
1050#endif
1051#ifndef finish_arch_switch
1052# define finish_arch_switch(prev) do { } while (0)
1053#endif
01f23e16
CM
1054#ifndef finish_arch_post_lock_switch
1055# define finish_arch_post_lock_switch() do { } while (0)
1056#endif
029632fb 1057
029632fb
PZ
1058static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1059{
1060#ifdef CONFIG_SMP
1061 /*
1062 * We can optimise this out completely for !SMP, because the
1063 * SMP rebalancing from interrupt is the only thing that cares
1064 * here.
1065 */
1066 next->on_cpu = 1;
1067#endif
1068}
1069
1070static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1071{
1072#ifdef CONFIG_SMP
1073 /*
1074 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1075 * We must ensure this doesn't happen until the switch is completely
1076 * finished.
1077 */
1078 smp_wmb();
1079 prev->on_cpu = 0;
1080#endif
1081#ifdef CONFIG_DEBUG_SPINLOCK
1082 /* this is a valid case when another task releases the spinlock */
1083 rq->lock.owner = current;
1084#endif
1085 /*
1086 * If we are tracking spinlock dependencies then we have to
1087 * fix up the runqueue lock - which gets 'carried over' from
1088 * prev into current:
1089 */
1090 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1091
1092 raw_spin_unlock_irq(&rq->lock);
1093}
1094
b13095f0
LZ
1095/*
1096 * wake flags
1097 */
1098#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1099#define WF_FORK 0x02 /* child wakeup after fork */
1100#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1101
029632fb
PZ
1102/*
1103 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1104 * of tasks with abnormal "nice" values across CPUs the contribution that
1105 * each task makes to its run queue's load is weighted according to its
1106 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1107 * scaled version of the new time slice allocation that they receive on time
1108 * slice expiry etc.
1109 */
1110
1111#define WEIGHT_IDLEPRIO 3
1112#define WMULT_IDLEPRIO 1431655765
1113
1114/*
1115 * Nice levels are multiplicative, with a gentle 10% change for every
1116 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1117 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1118 * that remained on nice 0.
1119 *
1120 * The "10% effect" is relative and cumulative: from _any_ nice level,
1121 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1122 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1123 * If a task goes up by ~10% and another task goes down by ~10% then
1124 * the relative distance between them is ~25%.)
1125 */
1126static const int prio_to_weight[40] = {
1127 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1128 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1129 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1130 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1131 /* 0 */ 1024, 820, 655, 526, 423,
1132 /* 5 */ 335, 272, 215, 172, 137,
1133 /* 10 */ 110, 87, 70, 56, 45,
1134 /* 15 */ 36, 29, 23, 18, 15,
1135};
1136
1137/*
1138 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1139 *
1140 * In cases where the weight does not change often, we can use the
1141 * precalculated inverse to speed up arithmetics by turning divisions
1142 * into multiplications:
1143 */
1144static const u32 prio_to_wmult[40] = {
1145 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1146 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1147 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1148 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1149 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1150 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1151 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1152 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1153};
1154
c82ba9fa
LZ
1155#define ENQUEUE_WAKEUP 1
1156#define ENQUEUE_HEAD 2
1157#ifdef CONFIG_SMP
1158#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1159#else
1160#define ENQUEUE_WAKING 0
1161#endif
aab03e05 1162#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1163
1164#define DEQUEUE_SLEEP 1
1165
37e117c0
PZ
1166#define RETRY_TASK ((void *)-1UL)
1167
c82ba9fa
LZ
1168struct sched_class {
1169 const struct sched_class *next;
1170
1171 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1172 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1173 void (*yield_task) (struct rq *rq);
1174 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1175
1176 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1177
606dba2e
PZ
1178 /*
1179 * It is the responsibility of the pick_next_task() method that will
1180 * return the next task to call put_prev_task() on the @prev task or
1181 * something equivalent.
37e117c0
PZ
1182 *
1183 * May return RETRY_TASK when it finds a higher prio class has runnable
1184 * tasks.
606dba2e
PZ
1185 */
1186 struct task_struct * (*pick_next_task) (struct rq *rq,
1187 struct task_struct *prev);
c82ba9fa
LZ
1188 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1189
1190#ifdef CONFIG_SMP
ac66f547 1191 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1192 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1193
c82ba9fa
LZ
1194 void (*post_schedule) (struct rq *this_rq);
1195 void (*task_waking) (struct task_struct *task);
1196 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1197
1198 void (*set_cpus_allowed)(struct task_struct *p,
1199 const struct cpumask *newmask);
1200
1201 void (*rq_online)(struct rq *rq);
1202 void (*rq_offline)(struct rq *rq);
1203#endif
1204
1205 void (*set_curr_task) (struct rq *rq);
1206 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1207 void (*task_fork) (struct task_struct *p);
e6c390f2 1208 void (*task_dead) (struct task_struct *p);
c82ba9fa 1209
67dfa1b7
KT
1210 /*
1211 * The switched_from() call is allowed to drop rq->lock, therefore we
1212 * cannot assume the switched_from/switched_to pair is serliazed by
1213 * rq->lock. They are however serialized by p->pi_lock.
1214 */
c82ba9fa
LZ
1215 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1216 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1217 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1218 int oldprio);
1219
1220 unsigned int (*get_rr_interval) (struct rq *rq,
1221 struct task_struct *task);
1222
6e998916
SG
1223 void (*update_curr) (struct rq *rq);
1224
c82ba9fa
LZ
1225#ifdef CONFIG_FAIR_GROUP_SCHED
1226 void (*task_move_group) (struct task_struct *p, int on_rq);
1227#endif
1228};
029632fb 1229
3f1d2a31
PZ
1230static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1231{
1232 prev->sched_class->put_prev_task(rq, prev);
1233}
1234
029632fb
PZ
1235#define sched_class_highest (&stop_sched_class)
1236#define for_each_class(class) \
1237 for (class = sched_class_highest; class; class = class->next)
1238
1239extern const struct sched_class stop_sched_class;
aab03e05 1240extern const struct sched_class dl_sched_class;
029632fb
PZ
1241extern const struct sched_class rt_sched_class;
1242extern const struct sched_class fair_sched_class;
1243extern const struct sched_class idle_sched_class;
1244
1245
1246#ifdef CONFIG_SMP
1247
63b2ca30 1248extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1249
7caff66f 1250extern void trigger_load_balance(struct rq *rq);
029632fb 1251
642dbc39
VG
1252extern void idle_enter_fair(struct rq *this_rq);
1253extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1254
dc877341
PZ
1255#else
1256
1257static inline void idle_enter_fair(struct rq *rq) { }
1258static inline void idle_exit_fair(struct rq *rq) { }
1259
029632fb
PZ
1260#endif
1261
442bf3aa
DL
1262#ifdef CONFIG_CPU_IDLE
1263static inline void idle_set_state(struct rq *rq,
1264 struct cpuidle_state *idle_state)
1265{
1266 rq->idle_state = idle_state;
1267}
1268
1269static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1270{
1271 WARN_ON(!rcu_read_lock_held());
1272 return rq->idle_state;
1273}
1274#else
1275static inline void idle_set_state(struct rq *rq,
1276 struct cpuidle_state *idle_state)
1277{
1278}
1279
1280static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1281{
1282 return NULL;
1283}
1284#endif
1285
029632fb
PZ
1286extern void sysrq_sched_debug_show(void);
1287extern void sched_init_granularity(void);
1288extern void update_max_interval(void);
1baca4ce
JL
1289
1290extern void init_sched_dl_class(void);
029632fb
PZ
1291extern void init_sched_rt_class(void);
1292extern void init_sched_fair_class(void);
332ac17e 1293extern void init_sched_dl_class(void);
029632fb 1294
8875125e 1295extern void resched_curr(struct rq *rq);
029632fb
PZ
1296extern void resched_cpu(int cpu);
1297
1298extern struct rt_bandwidth def_rt_bandwidth;
1299extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1300
332ac17e
DF
1301extern struct dl_bandwidth def_dl_bandwidth;
1302extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1303extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1304
332ac17e
DF
1305unsigned long to_ratio(u64 period, u64 runtime);
1306
a75cdaa9
AS
1307extern void init_task_runnable_average(struct task_struct *p);
1308
72465447 1309static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1310{
72465447
KT
1311 unsigned prev_nr = rq->nr_running;
1312
1313 rq->nr_running = prev_nr + count;
9f3660c2 1314
72465447 1315 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1316#ifdef CONFIG_SMP
1317 if (!rq->rd->overload)
1318 rq->rd->overload = true;
1319#endif
1320
1321#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1322 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1323 /*
1324 * Tick is needed if more than one task runs on a CPU.
1325 * Send the target an IPI to kick it out of nohz mode.
1326 *
1327 * We assume that IPI implies full memory barrier and the
1328 * new value of rq->nr_running is visible on reception
1329 * from the target.
1330 */
fd2ac4f4 1331 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1332 }
9f3660c2 1333#endif
4486edd1 1334 }
029632fb
PZ
1335}
1336
72465447 1337static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1338{
72465447 1339 rq->nr_running -= count;
029632fb
PZ
1340}
1341
265f22a9
FW
1342static inline void rq_last_tick_reset(struct rq *rq)
1343{
1344#ifdef CONFIG_NO_HZ_FULL
1345 rq->last_sched_tick = jiffies;
1346#endif
1347}
1348
029632fb
PZ
1349extern void update_rq_clock(struct rq *rq);
1350
1351extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1352extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1353
1354extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1355
1356extern const_debug unsigned int sysctl_sched_time_avg;
1357extern const_debug unsigned int sysctl_sched_nr_migrate;
1358extern const_debug unsigned int sysctl_sched_migration_cost;
1359
1360static inline u64 sched_avg_period(void)
1361{
1362 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1363}
1364
029632fb
PZ
1365#ifdef CONFIG_SCHED_HRTICK
1366
1367/*
1368 * Use hrtick when:
1369 * - enabled by features
1370 * - hrtimer is actually high res
1371 */
1372static inline int hrtick_enabled(struct rq *rq)
1373{
1374 if (!sched_feat(HRTICK))
1375 return 0;
1376 if (!cpu_active(cpu_of(rq)))
1377 return 0;
1378 return hrtimer_is_hres_active(&rq->hrtick_timer);
1379}
1380
1381void hrtick_start(struct rq *rq, u64 delay);
1382
b39e66ea
MG
1383#else
1384
1385static inline int hrtick_enabled(struct rq *rq)
1386{
1387 return 0;
1388}
1389
029632fb
PZ
1390#endif /* CONFIG_SCHED_HRTICK */
1391
1392#ifdef CONFIG_SMP
1393extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1394
1395#ifndef arch_scale_freq_capacity
1396static __always_inline
1397unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1398{
1399 return SCHED_CAPACITY_SCALE;
1400}
1401#endif
b5b4860d 1402
029632fb
PZ
1403static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1404{
b5b4860d 1405 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1406 sched_avg_update(rq);
1407}
1408#else
1409static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1410static inline void sched_avg_update(struct rq *rq) { }
1411#endif
1412
1413extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1414
3960c8c0
PZ
1415/*
1416 * __task_rq_lock - lock the rq @p resides on.
1417 */
1418static inline struct rq *__task_rq_lock(struct task_struct *p)
1419 __acquires(rq->lock)
1420{
1421 struct rq *rq;
1422
1423 lockdep_assert_held(&p->pi_lock);
1424
1425 for (;;) {
1426 rq = task_rq(p);
1427 raw_spin_lock(&rq->lock);
1428 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1429 return rq;
1430 raw_spin_unlock(&rq->lock);
1431
1432 while (unlikely(task_on_rq_migrating(p)))
1433 cpu_relax();
1434 }
1435}
1436
1437/*
1438 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1439 */
1440static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1441 __acquires(p->pi_lock)
1442 __acquires(rq->lock)
1443{
1444 struct rq *rq;
1445
1446 for (;;) {
1447 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1448 rq = task_rq(p);
1449 raw_spin_lock(&rq->lock);
1450 /*
1451 * move_queued_task() task_rq_lock()
1452 *
1453 * ACQUIRE (rq->lock)
1454 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1455 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1456 * [S] ->cpu = new_cpu [L] task_rq()
1457 * [L] ->on_rq
1458 * RELEASE (rq->lock)
1459 *
1460 * If we observe the old cpu in task_rq_lock, the acquire of
1461 * the old rq->lock will fully serialize against the stores.
1462 *
1463 * If we observe the new cpu in task_rq_lock, the acquire will
1464 * pair with the WMB to ensure we must then also see migrating.
1465 */
1466 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
1467 return rq;
1468 raw_spin_unlock(&rq->lock);
1469 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1470
1471 while (unlikely(task_on_rq_migrating(p)))
1472 cpu_relax();
1473 }
1474}
1475
1476static inline void __task_rq_unlock(struct rq *rq)
1477 __releases(rq->lock)
1478{
1479 raw_spin_unlock(&rq->lock);
1480}
1481
1482static inline void
1483task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1484 __releases(rq->lock)
1485 __releases(p->pi_lock)
1486{
1487 raw_spin_unlock(&rq->lock);
1488 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1489}
1490
029632fb
PZ
1491#ifdef CONFIG_SMP
1492#ifdef CONFIG_PREEMPT
1493
1494static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1495
1496/*
1497 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1498 * way at the expense of forcing extra atomic operations in all
1499 * invocations. This assures that the double_lock is acquired using the
1500 * same underlying policy as the spinlock_t on this architecture, which
1501 * reduces latency compared to the unfair variant below. However, it
1502 * also adds more overhead and therefore may reduce throughput.
1503 */
1504static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1505 __releases(this_rq->lock)
1506 __acquires(busiest->lock)
1507 __acquires(this_rq->lock)
1508{
1509 raw_spin_unlock(&this_rq->lock);
1510 double_rq_lock(this_rq, busiest);
1511
1512 return 1;
1513}
1514
1515#else
1516/*
1517 * Unfair double_lock_balance: Optimizes throughput at the expense of
1518 * latency by eliminating extra atomic operations when the locks are
1519 * already in proper order on entry. This favors lower cpu-ids and will
1520 * grant the double lock to lower cpus over higher ids under contention,
1521 * regardless of entry order into the function.
1522 */
1523static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1524 __releases(this_rq->lock)
1525 __acquires(busiest->lock)
1526 __acquires(this_rq->lock)
1527{
1528 int ret = 0;
1529
1530 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1531 if (busiest < this_rq) {
1532 raw_spin_unlock(&this_rq->lock);
1533 raw_spin_lock(&busiest->lock);
1534 raw_spin_lock_nested(&this_rq->lock,
1535 SINGLE_DEPTH_NESTING);
1536 ret = 1;
1537 } else
1538 raw_spin_lock_nested(&busiest->lock,
1539 SINGLE_DEPTH_NESTING);
1540 }
1541 return ret;
1542}
1543
1544#endif /* CONFIG_PREEMPT */
1545
1546/*
1547 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1548 */
1549static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1550{
1551 if (unlikely(!irqs_disabled())) {
1552 /* printk() doesn't work good under rq->lock */
1553 raw_spin_unlock(&this_rq->lock);
1554 BUG_ON(1);
1555 }
1556
1557 return _double_lock_balance(this_rq, busiest);
1558}
1559
1560static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1561 __releases(busiest->lock)
1562{
1563 raw_spin_unlock(&busiest->lock);
1564 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1565}
1566
74602315
PZ
1567static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1568{
1569 if (l1 > l2)
1570 swap(l1, l2);
1571
1572 spin_lock(l1);
1573 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1574}
1575
60e69eed
MG
1576static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1577{
1578 if (l1 > l2)
1579 swap(l1, l2);
1580
1581 spin_lock_irq(l1);
1582 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1583}
1584
74602315
PZ
1585static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1586{
1587 if (l1 > l2)
1588 swap(l1, l2);
1589
1590 raw_spin_lock(l1);
1591 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1592}
1593
029632fb
PZ
1594/*
1595 * double_rq_lock - safely lock two runqueues
1596 *
1597 * Note this does not disable interrupts like task_rq_lock,
1598 * you need to do so manually before calling.
1599 */
1600static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1601 __acquires(rq1->lock)
1602 __acquires(rq2->lock)
1603{
1604 BUG_ON(!irqs_disabled());
1605 if (rq1 == rq2) {
1606 raw_spin_lock(&rq1->lock);
1607 __acquire(rq2->lock); /* Fake it out ;) */
1608 } else {
1609 if (rq1 < rq2) {
1610 raw_spin_lock(&rq1->lock);
1611 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1612 } else {
1613 raw_spin_lock(&rq2->lock);
1614 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1615 }
1616 }
1617}
1618
1619/*
1620 * double_rq_unlock - safely unlock two runqueues
1621 *
1622 * Note this does not restore interrupts like task_rq_unlock,
1623 * you need to do so manually after calling.
1624 */
1625static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1626 __releases(rq1->lock)
1627 __releases(rq2->lock)
1628{
1629 raw_spin_unlock(&rq1->lock);
1630 if (rq1 != rq2)
1631 raw_spin_unlock(&rq2->lock);
1632 else
1633 __release(rq2->lock);
1634}
1635
1636#else /* CONFIG_SMP */
1637
1638/*
1639 * double_rq_lock - safely lock two runqueues
1640 *
1641 * Note this does not disable interrupts like task_rq_lock,
1642 * you need to do so manually before calling.
1643 */
1644static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1645 __acquires(rq1->lock)
1646 __acquires(rq2->lock)
1647{
1648 BUG_ON(!irqs_disabled());
1649 BUG_ON(rq1 != rq2);
1650 raw_spin_lock(&rq1->lock);
1651 __acquire(rq2->lock); /* Fake it out ;) */
1652}
1653
1654/*
1655 * double_rq_unlock - safely unlock two runqueues
1656 *
1657 * Note this does not restore interrupts like task_rq_unlock,
1658 * you need to do so manually after calling.
1659 */
1660static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1661 __releases(rq1->lock)
1662 __releases(rq2->lock)
1663{
1664 BUG_ON(rq1 != rq2);
1665 raw_spin_unlock(&rq1->lock);
1666 __release(rq2->lock);
1667}
1668
1669#endif
1670
1671extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1672extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1673extern void print_cfs_stats(struct seq_file *m, int cpu);
1674extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1675extern void print_dl_stats(struct seq_file *m, int cpu);
029632fb
PZ
1676
1677extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1678extern void init_rt_rq(struct rt_rq *rt_rq);
1679extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1680
1ee14e6c
BS
1681extern void cfs_bandwidth_usage_inc(void);
1682extern void cfs_bandwidth_usage_dec(void);
1c792db7 1683
3451d024 1684#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1685enum rq_nohz_flag_bits {
1686 NOHZ_TICK_STOPPED,
1687 NOHZ_BALANCE_KICK,
1688};
1689
1690#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1691#endif
73fbec60
FW
1692
1693#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1694
1695DECLARE_PER_CPU(u64, cpu_hardirq_time);
1696DECLARE_PER_CPU(u64, cpu_softirq_time);
1697
1698#ifndef CONFIG_64BIT
1699DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1700
1701static inline void irq_time_write_begin(void)
1702{
1703 __this_cpu_inc(irq_time_seq.sequence);
1704 smp_wmb();
1705}
1706
1707static inline void irq_time_write_end(void)
1708{
1709 smp_wmb();
1710 __this_cpu_inc(irq_time_seq.sequence);
1711}
1712
1713static inline u64 irq_time_read(int cpu)
1714{
1715 u64 irq_time;
1716 unsigned seq;
1717
1718 do {
1719 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1720 irq_time = per_cpu(cpu_softirq_time, cpu) +
1721 per_cpu(cpu_hardirq_time, cpu);
1722 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1723
1724 return irq_time;
1725}
1726#else /* CONFIG_64BIT */
1727static inline void irq_time_write_begin(void)
1728{
1729}
1730
1731static inline void irq_time_write_end(void)
1732{
1733}
1734
1735static inline u64 irq_time_read(int cpu)
1736{
1737 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1738}
1739#endif /* CONFIG_64BIT */
1740#endif /* CONFIG_IRQ_TIME_ACCOUNTING */