]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched: Remove select_task_rq()'s sd_flag parameter
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9d246053
PA
78#include <trace/events/sched.h>
79
9148a3a1 80#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 81# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 82#else
6d3aed3d 83# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
84#endif
85
45ceebf7 86struct rq;
442bf3aa 87struct cpuidle_state;
45ceebf7 88
da0c1e65
KT
89/* task_struct::on_rq states: */
90#define TASK_ON_RQ_QUEUED 1
cca26e80 91#define TASK_ON_RQ_MIGRATING 2
da0c1e65 92
029632fb
PZ
93extern __read_mostly int scheduler_running;
94
45ceebf7
PG
95extern unsigned long calc_load_update;
96extern atomic_long_t calc_load_tasks;
97
3289bdb4 98extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 99extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 100
9d246053 101extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
029632fb
PZ
102/*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
cc1f4b1f
LZ
107/*
108 * Increase resolution of nice-level calculations for 64-bit architectures.
109 * The extra resolution improves shares distribution and load balancing of
110 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
111 * hierarchies, especially on larger systems. This is not a user-visible change
112 * and does not change the user-interface for setting shares/weights.
113 *
114 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
115 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
116 * are pretty high and the returns do not justify the increased costs.
2159197d 117 *
97fb7a0a
IM
118 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
119 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 120 */
2159197d 121#ifdef CONFIG_64BIT
172895e6 122# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 123# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
124# define scale_load_down(w) \
125({ \
126 unsigned long __w = (w); \
127 if (__w) \
128 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 __w; \
130})
cc1f4b1f 131#else
172895e6 132# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
133# define scale_load(w) (w)
134# define scale_load_down(w) (w)
135#endif
136
6ecdd749 137/*
172895e6
YD
138 * Task weight (visible to users) and its load (invisible to users) have
139 * independent resolution, but they should be well calibrated. We use
140 * scale_load() and scale_load_down(w) to convert between them. The
141 * following must be true:
142 *
143 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
144 *
6ecdd749 145 */
172895e6 146#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 147
332ac17e
DF
148/*
149 * Single value that decides SCHED_DEADLINE internal math precision.
150 * 10 -> just above 1us
151 * 9 -> just above 0.5us
152 */
97fb7a0a 153#define DL_SCALE 10
029632fb
PZ
154
155/*
97fb7a0a 156 * Single value that denotes runtime == period, ie unlimited time.
029632fb 157 */
97fb7a0a 158#define RUNTIME_INF ((u64)~0ULL)
029632fb 159
20f9cd2a
HA
160static inline int idle_policy(int policy)
161{
162 return policy == SCHED_IDLE;
163}
d50dde5a
DF
164static inline int fair_policy(int policy)
165{
166 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
167}
168
029632fb
PZ
169static inline int rt_policy(int policy)
170{
d50dde5a 171 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
172}
173
aab03e05
DF
174static inline int dl_policy(int policy)
175{
176 return policy == SCHED_DEADLINE;
177}
20f9cd2a
HA
178static inline bool valid_policy(int policy)
179{
180 return idle_policy(policy) || fair_policy(policy) ||
181 rt_policy(policy) || dl_policy(policy);
182}
aab03e05 183
1da1843f
VK
184static inline int task_has_idle_policy(struct task_struct *p)
185{
186 return idle_policy(p->policy);
187}
188
029632fb
PZ
189static inline int task_has_rt_policy(struct task_struct *p)
190{
191 return rt_policy(p->policy);
192}
193
aab03e05
DF
194static inline int task_has_dl_policy(struct task_struct *p)
195{
196 return dl_policy(p->policy);
197}
198
07881166
JL
199#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
200
d76343c6
VS
201static inline void update_avg(u64 *avg, u64 sample)
202{
203 s64 diff = sample - *avg;
204 *avg += diff / 8;
205}
206
794a56eb
JL
207/*
208 * !! For sched_setattr_nocheck() (kernel) only !!
209 *
210 * This is actually gross. :(
211 *
212 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
213 * tasks, but still be able to sleep. We need this on platforms that cannot
214 * atomically change clock frequency. Remove once fast switching will be
215 * available on such platforms.
216 *
217 * SUGOV stands for SchedUtil GOVernor.
218 */
219#define SCHED_FLAG_SUGOV 0x10000000
220
221static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
222{
223#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
224 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
225#else
226 return false;
227#endif
228}
229
2d3d891d
DF
230/*
231 * Tells if entity @a should preempt entity @b.
232 */
332ac17e
DF
233static inline bool
234dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 235{
794a56eb
JL
236 return dl_entity_is_special(a) ||
237 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
238}
239
029632fb
PZ
240/*
241 * This is the priority-queue data structure of the RT scheduling class:
242 */
243struct rt_prio_array {
244 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
245 struct list_head queue[MAX_RT_PRIO];
246};
247
248struct rt_bandwidth {
249 /* nests inside the rq lock: */
250 raw_spinlock_t rt_runtime_lock;
251 ktime_t rt_period;
252 u64 rt_runtime;
253 struct hrtimer rt_period_timer;
4cfafd30 254 unsigned int rt_period_active;
029632fb 255};
a5e7be3b
JL
256
257void __dl_clear_params(struct task_struct *p);
258
332ac17e 259struct dl_bandwidth {
97fb7a0a
IM
260 raw_spinlock_t dl_runtime_lock;
261 u64 dl_runtime;
262 u64 dl_period;
332ac17e
DF
263};
264
265static inline int dl_bandwidth_enabled(void)
266{
1724813d 267 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
268}
269
a57415f5
PL
270/*
271 * To keep the bandwidth of -deadline tasks under control
272 * we need some place where:
273 * - store the maximum -deadline bandwidth of each cpu;
274 * - cache the fraction of bandwidth that is currently allocated in
275 * each root domain;
276 *
277 * This is all done in the data structure below. It is similar to the
278 * one used for RT-throttling (rt_bandwidth), with the main difference
279 * that, since here we are only interested in admission control, we
280 * do not decrease any runtime while the group "executes", neither we
281 * need a timer to replenish it.
282 *
283 * With respect to SMP, bandwidth is given on a per root domain basis,
284 * meaning that:
285 * - bw (< 100%) is the deadline bandwidth of each CPU;
286 * - total_bw is the currently allocated bandwidth in each root domain;
287 */
332ac17e 288struct dl_bw {
97fb7a0a
IM
289 raw_spinlock_t lock;
290 u64 bw;
291 u64 total_bw;
332ac17e
DF
292};
293
daec5798
LA
294static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
295
7f51412a 296static inline
8c0944ce 297void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
298{
299 dl_b->total_bw -= tsk_bw;
daec5798 300 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
301}
302
303static inline
daec5798 304void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
305{
306 dl_b->total_bw += tsk_bw;
daec5798 307 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
308}
309
60ffd5ed
LA
310static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
311 u64 old_bw, u64 new_bw)
7f51412a
JL
312{
313 return dl_b->bw != -1 &&
60ffd5ed 314 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
7f51412a
JL
315}
316
b4118988
LA
317/*
318 * Verify the fitness of task @p to run on @cpu taking into account the
319 * CPU original capacity and the runtime/deadline ratio of the task.
320 *
321 * The function will return true if the CPU original capacity of the
322 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
323 * task and false otherwise.
324 */
325static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
326{
327 unsigned long cap = arch_scale_cpu_capacity(cpu);
328
329 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
330}
331
f2cb1360 332extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 333extern int sched_dl_global_validate(void);
06a76fe0 334extern void sched_dl_do_global(void);
97fb7a0a 335extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
336extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
337extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
338extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 339extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
340extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
341extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 342extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
343
344#ifdef CONFIG_CGROUP_SCHED
345
346#include <linux/cgroup.h>
eb414681 347#include <linux/psi.h>
029632fb
PZ
348
349struct cfs_rq;
350struct rt_rq;
351
35cf4e50 352extern struct list_head task_groups;
029632fb
PZ
353
354struct cfs_bandwidth {
355#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
356 raw_spinlock_t lock;
357 ktime_t period;
358 u64 quota;
359 u64 runtime;
360 s64 hierarchical_quota;
97fb7a0a 361
66567fcb 362 u8 idle;
363 u8 period_active;
66567fcb 364 u8 slack_started;
97fb7a0a
IM
365 struct hrtimer period_timer;
366 struct hrtimer slack_timer;
367 struct list_head throttled_cfs_rq;
368
369 /* Statistics: */
370 int nr_periods;
371 int nr_throttled;
372 u64 throttled_time;
029632fb
PZ
373#endif
374};
375
97fb7a0a 376/* Task group related information */
029632fb
PZ
377struct task_group {
378 struct cgroup_subsys_state css;
379
380#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
381 /* schedulable entities of this group on each CPU */
382 struct sched_entity **se;
383 /* runqueue "owned" by this group on each CPU */
384 struct cfs_rq **cfs_rq;
385 unsigned long shares;
029632fb 386
fa6bddeb 387#ifdef CONFIG_SMP
b0367629
WL
388 /*
389 * load_avg can be heavily contended at clock tick time, so put
390 * it in its own cacheline separated from the fields above which
391 * will also be accessed at each tick.
392 */
97fb7a0a 393 atomic_long_t load_avg ____cacheline_aligned;
029632fb 394#endif
fa6bddeb 395#endif
029632fb
PZ
396
397#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
398 struct sched_rt_entity **rt_se;
399 struct rt_rq **rt_rq;
029632fb 400
97fb7a0a 401 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
402#endif
403
97fb7a0a
IM
404 struct rcu_head rcu;
405 struct list_head list;
029632fb 406
97fb7a0a
IM
407 struct task_group *parent;
408 struct list_head siblings;
409 struct list_head children;
029632fb
PZ
410
411#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 412 struct autogroup *autogroup;
029632fb
PZ
413#endif
414
97fb7a0a 415 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
416
417#ifdef CONFIG_UCLAMP_TASK_GROUP
418 /* The two decimal precision [%] value requested from user-space */
419 unsigned int uclamp_pct[UCLAMP_CNT];
420 /* Clamp values requested for a task group */
421 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
422 /* Effective clamp values used for a task group */
423 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
424#endif
425
029632fb
PZ
426};
427
428#ifdef CONFIG_FAIR_GROUP_SCHED
429#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
430
431/*
432 * A weight of 0 or 1 can cause arithmetics problems.
433 * A weight of a cfs_rq is the sum of weights of which entities
434 * are queued on this cfs_rq, so a weight of a entity should not be
435 * too large, so as the shares value of a task group.
436 * (The default weight is 1024 - so there's no practical
437 * limitation from this.)
438 */
97fb7a0a
IM
439#define MIN_SHARES (1UL << 1)
440#define MAX_SHARES (1UL << 18)
029632fb
PZ
441#endif
442
029632fb
PZ
443typedef int (*tg_visitor)(struct task_group *, void *);
444
445extern int walk_tg_tree_from(struct task_group *from,
446 tg_visitor down, tg_visitor up, void *data);
447
448/*
449 * Iterate the full tree, calling @down when first entering a node and @up when
450 * leaving it for the final time.
451 *
452 * Caller must hold rcu_lock or sufficient equivalent.
453 */
454static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
455{
456 return walk_tg_tree_from(&root_task_group, down, up, data);
457}
458
459extern int tg_nop(struct task_group *tg, void *data);
460
461extern void free_fair_sched_group(struct task_group *tg);
462extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 463extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 464extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
465extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
466 struct sched_entity *se, int cpu,
467 struct sched_entity *parent);
468extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
469
470extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 471extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
472extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
473
474extern void free_rt_sched_group(struct task_group *tg);
475extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
476extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
477 struct sched_rt_entity *rt_se, int cpu,
478 struct sched_rt_entity *parent);
8887cd99
NP
479extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
480extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
481extern long sched_group_rt_runtime(struct task_group *tg);
482extern long sched_group_rt_period(struct task_group *tg);
483extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 484
25cc7da7
LZ
485extern struct task_group *sched_create_group(struct task_group *parent);
486extern void sched_online_group(struct task_group *tg,
487 struct task_group *parent);
488extern void sched_destroy_group(struct task_group *tg);
489extern void sched_offline_group(struct task_group *tg);
490
491extern void sched_move_task(struct task_struct *tsk);
492
493#ifdef CONFIG_FAIR_GROUP_SCHED
494extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
495
496#ifdef CONFIG_SMP
497extern void set_task_rq_fair(struct sched_entity *se,
498 struct cfs_rq *prev, struct cfs_rq *next);
499#else /* !CONFIG_SMP */
500static inline void set_task_rq_fair(struct sched_entity *se,
501 struct cfs_rq *prev, struct cfs_rq *next) { }
502#endif /* CONFIG_SMP */
503#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 504
029632fb
PZ
505#else /* CONFIG_CGROUP_SCHED */
506
507struct cfs_bandwidth { };
508
509#endif /* CONFIG_CGROUP_SCHED */
510
511/* CFS-related fields in a runqueue */
512struct cfs_rq {
97fb7a0a 513 struct load_weight load;
97fb7a0a 514 unsigned int nr_running;
43e9f7f2
VK
515 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
516 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 517
97fb7a0a
IM
518 u64 exec_clock;
519 u64 min_vruntime;
029632fb 520#ifndef CONFIG_64BIT
97fb7a0a 521 u64 min_vruntime_copy;
029632fb
PZ
522#endif
523
97fb7a0a 524 struct rb_root_cached tasks_timeline;
029632fb 525
029632fb
PZ
526 /*
527 * 'curr' points to currently running entity on this cfs_rq.
528 * It is set to NULL otherwise (i.e when none are currently running).
529 */
97fb7a0a
IM
530 struct sched_entity *curr;
531 struct sched_entity *next;
532 struct sched_entity *last;
533 struct sched_entity *skip;
029632fb
PZ
534
535#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 536 unsigned int nr_spread_over;
029632fb
PZ
537#endif
538
2dac754e
PT
539#ifdef CONFIG_SMP
540 /*
9d89c257 541 * CFS load tracking
2dac754e 542 */
97fb7a0a 543 struct sched_avg avg;
2a2f5d4e 544#ifndef CONFIG_64BIT
97fb7a0a 545 u64 load_last_update_time_copy;
9d89c257 546#endif
2a2f5d4e
PZ
547 struct {
548 raw_spinlock_t lock ____cacheline_aligned;
549 int nr;
550 unsigned long load_avg;
551 unsigned long util_avg;
9f683953 552 unsigned long runnable_avg;
2a2f5d4e 553 } removed;
82958366 554
9d89c257 555#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
556 unsigned long tg_load_avg_contrib;
557 long propagate;
558 long prop_runnable_sum;
0e2d2aaa 559
82958366
PT
560 /*
561 * h_load = weight * f(tg)
562 *
563 * Where f(tg) is the recursive weight fraction assigned to
564 * this group.
565 */
97fb7a0a
IM
566 unsigned long h_load;
567 u64 last_h_load_update;
568 struct sched_entity *h_load_next;
68520796 569#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
570#endif /* CONFIG_SMP */
571
029632fb 572#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 573 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
574
575 /*
576 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
577 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
578 * (like users, containers etc.)
579 *
97fb7a0a
IM
580 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
581 * This list is used during load balance.
029632fb 582 */
97fb7a0a
IM
583 int on_list;
584 struct list_head leaf_cfs_rq_list;
585 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 586
029632fb 587#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 588 int runtime_enabled;
97fb7a0a
IM
589 s64 runtime_remaining;
590
591 u64 throttled_clock;
592 u64 throttled_clock_task;
593 u64 throttled_clock_task_time;
594 int throttled;
595 int throttle_count;
596 struct list_head throttled_list;
029632fb
PZ
597#endif /* CONFIG_CFS_BANDWIDTH */
598#endif /* CONFIG_FAIR_GROUP_SCHED */
599};
600
601static inline int rt_bandwidth_enabled(void)
602{
603 return sysctl_sched_rt_runtime >= 0;
604}
605
b6366f04 606/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 607#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
608# define HAVE_RT_PUSH_IPI
609#endif
610
029632fb
PZ
611/* Real-Time classes' related field in a runqueue: */
612struct rt_rq {
97fb7a0a
IM
613 struct rt_prio_array active;
614 unsigned int rt_nr_running;
615 unsigned int rr_nr_running;
029632fb
PZ
616#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
617 struct {
97fb7a0a 618 int curr; /* highest queued rt task prio */
029632fb 619#ifdef CONFIG_SMP
97fb7a0a 620 int next; /* next highest */
029632fb
PZ
621#endif
622 } highest_prio;
623#endif
624#ifdef CONFIG_SMP
97fb7a0a
IM
625 unsigned long rt_nr_migratory;
626 unsigned long rt_nr_total;
627 int overloaded;
628 struct plist_head pushable_tasks;
371bf427 629
b6366f04 630#endif /* CONFIG_SMP */
97fb7a0a 631 int rt_queued;
f4ebcbc0 632
97fb7a0a
IM
633 int rt_throttled;
634 u64 rt_time;
635 u64 rt_runtime;
029632fb 636 /* Nests inside the rq lock: */
97fb7a0a 637 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
638
639#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 640 unsigned long rt_nr_boosted;
029632fb 641
97fb7a0a
IM
642 struct rq *rq;
643 struct task_group *tg;
029632fb
PZ
644#endif
645};
646
296b2ffe
VG
647static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
648{
649 return rt_rq->rt_queued && rt_rq->rt_nr_running;
650}
651
aab03e05
DF
652/* Deadline class' related fields in a runqueue */
653struct dl_rq {
654 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 655 struct rb_root_cached root;
aab03e05 656
97fb7a0a 657 unsigned long dl_nr_running;
1baca4ce
JL
658
659#ifdef CONFIG_SMP
660 /*
661 * Deadline values of the currently executing and the
662 * earliest ready task on this rq. Caching these facilitates
dfcb245e 663 * the decision whether or not a ready but not running task
1baca4ce
JL
664 * should migrate somewhere else.
665 */
666 struct {
97fb7a0a
IM
667 u64 curr;
668 u64 next;
1baca4ce
JL
669 } earliest_dl;
670
97fb7a0a
IM
671 unsigned long dl_nr_migratory;
672 int overloaded;
1baca4ce
JL
673
674 /*
675 * Tasks on this rq that can be pushed away. They are kept in
676 * an rb-tree, ordered by tasks' deadlines, with caching
677 * of the leftmost (earliest deadline) element.
678 */
97fb7a0a 679 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 680#else
97fb7a0a 681 struct dl_bw dl_bw;
1baca4ce 682#endif
e36d8677
LA
683 /*
684 * "Active utilization" for this runqueue: increased when a
685 * task wakes up (becomes TASK_RUNNING) and decreased when a
686 * task blocks
687 */
97fb7a0a 688 u64 running_bw;
4da3abce 689
8fd27231
LA
690 /*
691 * Utilization of the tasks "assigned" to this runqueue (including
692 * the tasks that are in runqueue and the tasks that executed on this
693 * CPU and blocked). Increased when a task moves to this runqueue, and
694 * decreased when the task moves away (migrates, changes scheduling
695 * policy, or terminates).
696 * This is needed to compute the "inactive utilization" for the
697 * runqueue (inactive utilization = this_bw - running_bw).
698 */
97fb7a0a
IM
699 u64 this_bw;
700 u64 extra_bw;
8fd27231 701
4da3abce
LA
702 /*
703 * Inverse of the fraction of CPU utilization that can be reclaimed
704 * by the GRUB algorithm.
705 */
97fb7a0a 706 u64 bw_ratio;
aab03e05
DF
707};
708
c0796298
VG
709#ifdef CONFIG_FAIR_GROUP_SCHED
710/* An entity is a task if it doesn't "own" a runqueue */
711#define entity_is_task(se) (!se->my_q)
0dacee1b 712
9f683953
VG
713static inline void se_update_runnable(struct sched_entity *se)
714{
715 if (!entity_is_task(se))
716 se->runnable_weight = se->my_q->h_nr_running;
717}
718
719static inline long se_runnable(struct sched_entity *se)
720{
721 if (entity_is_task(se))
722 return !!se->on_rq;
723 else
724 return se->runnable_weight;
725}
726
c0796298
VG
727#else
728#define entity_is_task(se) 1
0dacee1b 729
9f683953
VG
730static inline void se_update_runnable(struct sched_entity *se) {}
731
732static inline long se_runnable(struct sched_entity *se)
733{
734 return !!se->on_rq;
735}
c0796298
VG
736#endif
737
029632fb 738#ifdef CONFIG_SMP
c0796298
VG
739/*
740 * XXX we want to get rid of these helpers and use the full load resolution.
741 */
742static inline long se_weight(struct sched_entity *se)
743{
744 return scale_load_down(se->load.weight);
745}
746
029632fb 747
afe06efd
TC
748static inline bool sched_asym_prefer(int a, int b)
749{
750 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
751}
752
6aa140fa
QP
753struct perf_domain {
754 struct em_perf_domain *em_pd;
755 struct perf_domain *next;
756 struct rcu_head rcu;
757};
758
630246a0
QP
759/* Scheduling group status flags */
760#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 761#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 762
029632fb
PZ
763/*
764 * We add the notion of a root-domain which will be used to define per-domain
765 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 766 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
767 * exclusive cpuset is created, we also create and attach a new root-domain
768 * object.
769 *
770 */
771struct root_domain {
97fb7a0a
IM
772 atomic_t refcount;
773 atomic_t rto_count;
774 struct rcu_head rcu;
775 cpumask_var_t span;
776 cpumask_var_t online;
029632fb 777
757ffdd7
VS
778 /*
779 * Indicate pullable load on at least one CPU, e.g:
780 * - More than one runnable task
781 * - Running task is misfit
782 */
575638d1 783 int overload;
4486edd1 784
2802bf3c
MR
785 /* Indicate one or more cpus over-utilized (tipping point) */
786 int overutilized;
787
1baca4ce
JL
788 /*
789 * The bit corresponding to a CPU gets set here if such CPU has more
790 * than one runnable -deadline task (as it is below for RT tasks).
791 */
97fb7a0a
IM
792 cpumask_var_t dlo_mask;
793 atomic_t dlo_count;
794 struct dl_bw dl_bw;
795 struct cpudl cpudl;
1baca4ce 796
26762423
PL
797 /*
798 * Indicate whether a root_domain's dl_bw has been checked or
799 * updated. It's monotonously increasing value.
800 *
801 * Also, some corner cases, like 'wrap around' is dangerous, but given
802 * that u64 is 'big enough'. So that shouldn't be a concern.
803 */
804 u64 visit_gen;
805
4bdced5c
SRRH
806#ifdef HAVE_RT_PUSH_IPI
807 /*
808 * For IPI pull requests, loop across the rto_mask.
809 */
97fb7a0a
IM
810 struct irq_work rto_push_work;
811 raw_spinlock_t rto_lock;
4bdced5c 812 /* These are only updated and read within rto_lock */
97fb7a0a
IM
813 int rto_loop;
814 int rto_cpu;
4bdced5c 815 /* These atomics are updated outside of a lock */
97fb7a0a
IM
816 atomic_t rto_loop_next;
817 atomic_t rto_loop_start;
4bdced5c 818#endif
029632fb
PZ
819 /*
820 * The "RT overload" flag: it gets set if a CPU has more than
821 * one runnable RT task.
822 */
97fb7a0a
IM
823 cpumask_var_t rto_mask;
824 struct cpupri cpupri;
cd92bfd3 825
97fb7a0a 826 unsigned long max_cpu_capacity;
6aa140fa
QP
827
828 /*
829 * NULL-terminated list of performance domains intersecting with the
830 * CPUs of the rd. Protected by RCU.
831 */
7ba7319f 832 struct perf_domain __rcu *pd;
029632fb
PZ
833};
834
f2cb1360 835extern void init_defrootdomain(void);
8d5dc512 836extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 837extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
838extern void sched_get_rd(struct root_domain *rd);
839extern void sched_put_rd(struct root_domain *rd);
029632fb 840
4bdced5c
SRRH
841#ifdef HAVE_RT_PUSH_IPI
842extern void rto_push_irq_work_func(struct irq_work *work);
843#endif
029632fb
PZ
844#endif /* CONFIG_SMP */
845
69842cba
PB
846#ifdef CONFIG_UCLAMP_TASK
847/*
848 * struct uclamp_bucket - Utilization clamp bucket
849 * @value: utilization clamp value for tasks on this clamp bucket
850 * @tasks: number of RUNNABLE tasks on this clamp bucket
851 *
852 * Keep track of how many tasks are RUNNABLE for a given utilization
853 * clamp value.
854 */
855struct uclamp_bucket {
856 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
857 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
858};
859
860/*
861 * struct uclamp_rq - rq's utilization clamp
862 * @value: currently active clamp values for a rq
863 * @bucket: utilization clamp buckets affecting a rq
864 *
865 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
866 * A clamp value is affecting a rq when there is at least one task RUNNABLE
867 * (or actually running) with that value.
868 *
869 * There are up to UCLAMP_CNT possible different clamp values, currently there
870 * are only two: minimum utilization and maximum utilization.
871 *
872 * All utilization clamping values are MAX aggregated, since:
873 * - for util_min: we want to run the CPU at least at the max of the minimum
874 * utilization required by its currently RUNNABLE tasks.
875 * - for util_max: we want to allow the CPU to run up to the max of the
876 * maximum utilization allowed by its currently RUNNABLE tasks.
877 *
878 * Since on each system we expect only a limited number of different
879 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
880 * the metrics required to compute all the per-rq utilization clamp values.
881 */
882struct uclamp_rq {
883 unsigned int value;
884 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
885};
46609ce2
QY
886
887DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
888#endif /* CONFIG_UCLAMP_TASK */
889
029632fb
PZ
890/*
891 * This is the main, per-CPU runqueue data structure.
892 *
893 * Locking rule: those places that want to lock multiple runqueues
894 * (such as the load balancing or the thread migration code), lock
895 * acquire operations must be ordered by ascending &runqueue.
896 */
897struct rq {
898 /* runqueue lock: */
97fb7a0a 899 raw_spinlock_t lock;
029632fb
PZ
900
901 /*
902 * nr_running and cpu_load should be in the same cacheline because
903 * remote CPUs use both these fields when doing load calculation.
904 */
97fb7a0a 905 unsigned int nr_running;
0ec8aa00 906#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
907 unsigned int nr_numa_running;
908 unsigned int nr_preferred_running;
a4739eca 909 unsigned int numa_migrate_on;
0ec8aa00 910#endif
3451d024 911#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 912#ifdef CONFIG_SMP
e022e0d3 913 unsigned long last_blocked_load_update_tick;
f643ea22 914 unsigned int has_blocked_load;
90b5363a 915 call_single_data_t nohz_csd;
9fd81dd5 916#endif /* CONFIG_SMP */
00357f5e 917 unsigned int nohz_tick_stopped;
90b5363a 918 atomic_t nohz_flags;
9fd81dd5 919#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 920
126c2092
PZ
921#ifdef CONFIG_SMP
922 unsigned int ttwu_pending;
923#endif
97fb7a0a 924 u64 nr_switches;
029632fb 925
69842cba
PB
926#ifdef CONFIG_UCLAMP_TASK
927 /* Utilization clamp values based on CPU's RUNNABLE tasks */
928 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
929 unsigned int uclamp_flags;
930#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
931#endif
932
97fb7a0a
IM
933 struct cfs_rq cfs;
934 struct rt_rq rt;
935 struct dl_rq dl;
029632fb
PZ
936
937#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
938 /* list of leaf cfs_rq on this CPU: */
939 struct list_head leaf_cfs_rq_list;
940 struct list_head *tmp_alone_branch;
a35b6466
PZ
941#endif /* CONFIG_FAIR_GROUP_SCHED */
942
029632fb
PZ
943 /*
944 * This is part of a global counter where only the total sum
945 * over all CPUs matters. A task can increase this counter on
946 * one CPU and if it got migrated afterwards it may decrease
947 * it on another CPU. Always updated under the runqueue lock:
948 */
97fb7a0a 949 unsigned long nr_uninterruptible;
029632fb 950
4104a562 951 struct task_struct __rcu *curr;
97fb7a0a
IM
952 struct task_struct *idle;
953 struct task_struct *stop;
954 unsigned long next_balance;
955 struct mm_struct *prev_mm;
029632fb 956
97fb7a0a
IM
957 unsigned int clock_update_flags;
958 u64 clock;
23127296
VG
959 /* Ensure that all clocks are in the same cache line */
960 u64 clock_task ____cacheline_aligned;
961 u64 clock_pelt;
962 unsigned long lost_idle_time;
029632fb 963
97fb7a0a 964 atomic_t nr_iowait;
029632fb 965
227a4aad
MD
966#ifdef CONFIG_MEMBARRIER
967 int membarrier_state;
968#endif
969
029632fb 970#ifdef CONFIG_SMP
994aeb7a
JFG
971 struct root_domain *rd;
972 struct sched_domain __rcu *sd;
97fb7a0a
IM
973
974 unsigned long cpu_capacity;
975 unsigned long cpu_capacity_orig;
029632fb 976
97fb7a0a 977 struct callback_head *balance_callback;
2558aacf 978 unsigned char balance_flags;
029632fb 979
19a1f5ec 980 unsigned char nohz_idle_balance;
97fb7a0a 981 unsigned char idle_balance;
e3fca9e7 982
3b1baa64
MR
983 unsigned long misfit_task_load;
984
029632fb 985 /* For active balancing */
97fb7a0a
IM
986 int active_balance;
987 int push_cpu;
988 struct cpu_stop_work active_balance_work;
989
990 /* CPU of this runqueue: */
991 int cpu;
992 int online;
029632fb 993
367456c7
PZ
994 struct list_head cfs_tasks;
995
371bf427 996 struct sched_avg avg_rt;
3727e0e1 997 struct sched_avg avg_dl;
11d4afd4 998#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 999 struct sched_avg avg_irq;
76504793
TG
1000#endif
1001#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1002 struct sched_avg avg_thermal;
91c27493 1003#endif
97fb7a0a
IM
1004 u64 idle_stamp;
1005 u64 avg_idle;
9bd721c5
JL
1006
1007 /* This is used to determine avg_idle's max value */
97fb7a0a 1008 u64 max_idle_balance_cost;
f2469a1f
TG
1009
1010#ifdef CONFIG_HOTPLUG_CPU
1011 struct rcuwait hotplug_wait;
1012#endif
90b5363a 1013#endif /* CONFIG_SMP */
029632fb
PZ
1014
1015#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1016 u64 prev_irq_time;
029632fb
PZ
1017#endif
1018#ifdef CONFIG_PARAVIRT
97fb7a0a 1019 u64 prev_steal_time;
029632fb
PZ
1020#endif
1021#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1022 u64 prev_steal_time_rq;
029632fb
PZ
1023#endif
1024
1025 /* calc_load related fields */
97fb7a0a
IM
1026 unsigned long calc_load_update;
1027 long calc_load_active;
029632fb
PZ
1028
1029#ifdef CONFIG_SCHED_HRTICK
1030#ifdef CONFIG_SMP
97fb7a0a 1031 call_single_data_t hrtick_csd;
029632fb 1032#endif
97fb7a0a 1033 struct hrtimer hrtick_timer;
029632fb
PZ
1034#endif
1035
1036#ifdef CONFIG_SCHEDSTATS
1037 /* latency stats */
97fb7a0a
IM
1038 struct sched_info rq_sched_info;
1039 unsigned long long rq_cpu_time;
029632fb
PZ
1040 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1041
1042 /* sys_sched_yield() stats */
97fb7a0a 1043 unsigned int yld_count;
029632fb
PZ
1044
1045 /* schedule() stats */
97fb7a0a
IM
1046 unsigned int sched_count;
1047 unsigned int sched_goidle;
029632fb
PZ
1048
1049 /* try_to_wake_up() stats */
97fb7a0a
IM
1050 unsigned int ttwu_count;
1051 unsigned int ttwu_local;
029632fb
PZ
1052#endif
1053
442bf3aa
DL
1054#ifdef CONFIG_CPU_IDLE
1055 /* Must be inspected within a rcu lock section */
97fb7a0a 1056 struct cpuidle_state *idle_state;
442bf3aa 1057#endif
3015ef4b
TG
1058
1059#if defined(CONFIG_PREEMPT_RT) && defined(CONFIG_SMP)
1060 unsigned int nr_pinned;
1061#endif
a7c81556
PZ
1062 unsigned int push_busy;
1063 struct cpu_stop_work push_work;
029632fb
PZ
1064};
1065
62478d99
VG
1066#ifdef CONFIG_FAIR_GROUP_SCHED
1067
1068/* CPU runqueue to which this cfs_rq is attached */
1069static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1070{
1071 return cfs_rq->rq;
1072}
1073
1074#else
1075
1076static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1077{
1078 return container_of(cfs_rq, struct rq, cfs);
1079}
1080#endif
1081
029632fb
PZ
1082static inline int cpu_of(struct rq *rq)
1083{
1084#ifdef CONFIG_SMP
1085 return rq->cpu;
1086#else
1087 return 0;
1088#endif
1089}
1090
a7c81556
PZ
1091#define MDF_PUSH 0x01
1092
1093static inline bool is_migration_disabled(struct task_struct *p)
1094{
1095#if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT_RT)
1096 return p->migration_disabled;
1097#else
1098 return false;
1099#endif
1100}
1b568f0a
PZ
1101
1102#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1103extern void __update_idle_core(struct rq *rq);
1104
1105static inline void update_idle_core(struct rq *rq)
1106{
1107 if (static_branch_unlikely(&sched_smt_present))
1108 __update_idle_core(rq);
1109}
1110
1111#else
1112static inline void update_idle_core(struct rq *rq) { }
1113#endif
1114
8b06c55b 1115DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1116
518cd623 1117#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1118#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1119#define task_rq(p) cpu_rq(task_cpu(p))
1120#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1121#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1122
1f351d7f
JW
1123extern void update_rq_clock(struct rq *rq);
1124
cebde6d6
PZ
1125static inline u64 __rq_clock_broken(struct rq *rq)
1126{
316c1608 1127 return READ_ONCE(rq->clock);
cebde6d6
PZ
1128}
1129
cb42c9a3
MF
1130/*
1131 * rq::clock_update_flags bits
1132 *
1133 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1134 * call to __schedule(). This is an optimisation to avoid
1135 * neighbouring rq clock updates.
1136 *
1137 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1138 * in effect and calls to update_rq_clock() are being ignored.
1139 *
1140 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1141 * made to update_rq_clock() since the last time rq::lock was pinned.
1142 *
1143 * If inside of __schedule(), clock_update_flags will have been
1144 * shifted left (a left shift is a cheap operation for the fast path
1145 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1146 *
1147 * if (rq-clock_update_flags >= RQCF_UPDATED)
1148 *
1149 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1150 * one position though, because the next rq_unpin_lock() will shift it
1151 * back.
1152 */
97fb7a0a
IM
1153#define RQCF_REQ_SKIP 0x01
1154#define RQCF_ACT_SKIP 0x02
1155#define RQCF_UPDATED 0x04
cb42c9a3
MF
1156
1157static inline void assert_clock_updated(struct rq *rq)
1158{
1159 /*
1160 * The only reason for not seeing a clock update since the
1161 * last rq_pin_lock() is if we're currently skipping updates.
1162 */
1163 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1164}
1165
78becc27
FW
1166static inline u64 rq_clock(struct rq *rq)
1167{
cebde6d6 1168 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1169 assert_clock_updated(rq);
1170
78becc27
FW
1171 return rq->clock;
1172}
1173
1174static inline u64 rq_clock_task(struct rq *rq)
1175{
cebde6d6 1176 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1177 assert_clock_updated(rq);
1178
78becc27
FW
1179 return rq->clock_task;
1180}
1181
05289b90
TG
1182/**
1183 * By default the decay is the default pelt decay period.
1184 * The decay shift can change the decay period in
1185 * multiples of 32.
1186 * Decay shift Decay period(ms)
1187 * 0 32
1188 * 1 64
1189 * 2 128
1190 * 3 256
1191 * 4 512
1192 */
1193extern int sched_thermal_decay_shift;
1194
1195static inline u64 rq_clock_thermal(struct rq *rq)
1196{
1197 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1198}
1199
adcc8da8 1200static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1201{
1202 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1203 rq->clock_update_flags |= RQCF_REQ_SKIP;
1204}
1205
1206/*
595058b6 1207 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1208 * request is cancelled.
1209 */
1210static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1211{
1212 lockdep_assert_held(&rq->lock);
1213 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1214}
1215
d8ac8971
MF
1216struct rq_flags {
1217 unsigned long flags;
1218 struct pin_cookie cookie;
cb42c9a3
MF
1219#ifdef CONFIG_SCHED_DEBUG
1220 /*
1221 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1222 * current pin context is stashed here in case it needs to be
1223 * restored in rq_repin_lock().
1224 */
1225 unsigned int clock_update_flags;
1226#endif
d8ac8971
MF
1227};
1228
58877d34
PZ
1229/*
1230 * Lockdep annotation that avoids accidental unlocks; it's like a
1231 * sticky/continuous lockdep_assert_held().
1232 *
1233 * This avoids code that has access to 'struct rq *rq' (basically everything in
1234 * the scheduler) from accidentally unlocking the rq if they do not also have a
1235 * copy of the (on-stack) 'struct rq_flags rf'.
1236 *
1237 * Also see Documentation/locking/lockdep-design.rst.
1238 */
d8ac8971
MF
1239static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1240{
1241 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1242
1243#ifdef CONFIG_SCHED_DEBUG
1244 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1245 rf->clock_update_flags = 0;
1246#endif
565790d2
PZ
1247#ifdef CONFIG_SMP
1248 SCHED_WARN_ON(rq->balance_callback);
1249#endif
d8ac8971
MF
1250}
1251
1252static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1253{
cb42c9a3
MF
1254#ifdef CONFIG_SCHED_DEBUG
1255 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1256 rf->clock_update_flags = RQCF_UPDATED;
1257#endif
1258
d8ac8971
MF
1259 lockdep_unpin_lock(&rq->lock, rf->cookie);
1260}
1261
1262static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1263{
1264 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1265
1266#ifdef CONFIG_SCHED_DEBUG
1267 /*
1268 * Restore the value we stashed in @rf for this pin context.
1269 */
1270 rq->clock_update_flags |= rf->clock_update_flags;
1271#endif
d8ac8971
MF
1272}
1273
1f351d7f
JW
1274struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1275 __acquires(rq->lock);
1276
1277struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1278 __acquires(p->pi_lock)
1279 __acquires(rq->lock);
1280
1281static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1282 __releases(rq->lock)
1283{
1284 rq_unpin_lock(rq, rf);
1285 raw_spin_unlock(&rq->lock);
1286}
1287
1288static inline void
1289task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1290 __releases(rq->lock)
1291 __releases(p->pi_lock)
1292{
1293 rq_unpin_lock(rq, rf);
1294 raw_spin_unlock(&rq->lock);
1295 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1296}
1297
1298static inline void
1299rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1300 __acquires(rq->lock)
1301{
1302 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1303 rq_pin_lock(rq, rf);
1304}
1305
1306static inline void
1307rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1308 __acquires(rq->lock)
1309{
1310 raw_spin_lock_irq(&rq->lock);
1311 rq_pin_lock(rq, rf);
1312}
1313
1314static inline void
1315rq_lock(struct rq *rq, struct rq_flags *rf)
1316 __acquires(rq->lock)
1317{
1318 raw_spin_lock(&rq->lock);
1319 rq_pin_lock(rq, rf);
1320}
1321
1322static inline void
1323rq_relock(struct rq *rq, struct rq_flags *rf)
1324 __acquires(rq->lock)
1325{
1326 raw_spin_lock(&rq->lock);
1327 rq_repin_lock(rq, rf);
1328}
1329
1330static inline void
1331rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1332 __releases(rq->lock)
1333{
1334 rq_unpin_lock(rq, rf);
1335 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1336}
1337
1338static inline void
1339rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1340 __releases(rq->lock)
1341{
1342 rq_unpin_lock(rq, rf);
1343 raw_spin_unlock_irq(&rq->lock);
1344}
1345
1346static inline void
1347rq_unlock(struct rq *rq, struct rq_flags *rf)
1348 __releases(rq->lock)
1349{
1350 rq_unpin_lock(rq, rf);
1351 raw_spin_unlock(&rq->lock);
1352}
1353
246b3b33
JW
1354static inline struct rq *
1355this_rq_lock_irq(struct rq_flags *rf)
1356 __acquires(rq->lock)
1357{
1358 struct rq *rq;
1359
1360 local_irq_disable();
1361 rq = this_rq();
1362 rq_lock(rq, rf);
1363 return rq;
1364}
1365
9942f79b 1366#ifdef CONFIG_NUMA
e3fe70b1
RR
1367enum numa_topology_type {
1368 NUMA_DIRECT,
1369 NUMA_GLUELESS_MESH,
1370 NUMA_BACKPLANE,
1371};
1372extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1373extern int sched_max_numa_distance;
1374extern bool find_numa_distance(int distance);
f2cb1360
IM
1375extern void sched_init_numa(void);
1376extern void sched_domains_numa_masks_set(unsigned int cpu);
1377extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1378extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1379#else
1380static inline void sched_init_numa(void) { }
1381static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1382static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1383static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1384{
1385 return nr_cpu_ids;
1386}
f2cb1360
IM
1387#endif
1388
f809ca9a 1389#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1390/* The regions in numa_faults array from task_struct */
1391enum numa_faults_stats {
1392 NUMA_MEM = 0,
1393 NUMA_CPU,
1394 NUMA_MEMBUF,
1395 NUMA_CPUBUF
1396};
0ec8aa00 1397extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1398extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1399extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1400 int cpu, int scpu);
13784475
MG
1401extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1402#else
1403static inline void
1404init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1405{
1406}
f809ca9a
MG
1407#endif /* CONFIG_NUMA_BALANCING */
1408
518cd623
PZ
1409#ifdef CONFIG_SMP
1410
2558aacf
PZ
1411#define BALANCE_WORK 0x01
1412#define BALANCE_PUSH 0x02
1413
e3fca9e7
PZ
1414static inline void
1415queue_balance_callback(struct rq *rq,
1416 struct callback_head *head,
1417 void (*func)(struct rq *rq))
1418{
1419 lockdep_assert_held(&rq->lock);
1420
2558aacf 1421 if (unlikely(head->next || (rq->balance_flags & BALANCE_PUSH)))
e3fca9e7
PZ
1422 return;
1423
1424 head->func = (void (*)(struct callback_head *))func;
1425 head->next = rq->balance_callback;
1426 rq->balance_callback = head;
2558aacf 1427 rq->balance_flags |= BALANCE_WORK;
e3fca9e7
PZ
1428}
1429
029632fb
PZ
1430#define rcu_dereference_check_sched_domain(p) \
1431 rcu_dereference_check((p), \
1432 lockdep_is_held(&sched_domains_mutex))
1433
1434/*
1435 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1436 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1437 *
1438 * The domain tree of any CPU may only be accessed from within
1439 * preempt-disabled sections.
1440 */
1441#define for_each_domain(cpu, __sd) \
518cd623
PZ
1442 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1443 __sd; __sd = __sd->parent)
029632fb 1444
518cd623
PZ
1445/**
1446 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1447 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1448 * be returned.
1449 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1450 * for the given CPU.
518cd623 1451 *
97fb7a0a 1452 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1453 */
1454static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1455{
1456 struct sched_domain *sd, *hsd = NULL;
1457
1458 for_each_domain(cpu, sd) {
1459 if (!(sd->flags & flag))
1460 break;
1461 hsd = sd;
1462 }
1463
1464 return hsd;
1465}
1466
fb13c7ee
MG
1467static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1468{
1469 struct sched_domain *sd;
1470
1471 for_each_domain(cpu, sd) {
1472 if (sd->flags & flag)
1473 break;
1474 }
1475
1476 return sd;
1477}
1478
994aeb7a 1479DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1480DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1481DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1482DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1483DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1484DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1485DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1486extern struct static_key_false sched_asym_cpucapacity;
518cd623 1487
63b2ca30 1488struct sched_group_capacity {
97fb7a0a 1489 atomic_t ref;
5e6521ea 1490 /*
172895e6 1491 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1492 * for a single CPU.
5e6521ea 1493 */
97fb7a0a
IM
1494 unsigned long capacity;
1495 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1496 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1497 unsigned long next_update;
1498 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1499
005f874d 1500#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1501 int id;
005f874d
PZ
1502#endif
1503
eba9f082 1504 unsigned long cpumask[]; /* Balance mask */
5e6521ea
LZ
1505};
1506
1507struct sched_group {
97fb7a0a
IM
1508 struct sched_group *next; /* Must be a circular list */
1509 atomic_t ref;
5e6521ea 1510
97fb7a0a 1511 unsigned int group_weight;
63b2ca30 1512 struct sched_group_capacity *sgc;
97fb7a0a 1513 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1514
1515 /*
1516 * The CPUs this group covers.
1517 *
1518 * NOTE: this field is variable length. (Allocated dynamically
1519 * by attaching extra space to the end of the structure,
1520 * depending on how many CPUs the kernel has booted up with)
1521 */
04f5c362 1522 unsigned long cpumask[];
5e6521ea
LZ
1523};
1524
ae4df9d6 1525static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1526{
1527 return to_cpumask(sg->cpumask);
1528}
1529
1530/*
e5c14b1f 1531 * See build_balance_mask().
5e6521ea 1532 */
e5c14b1f 1533static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1534{
63b2ca30 1535 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1536}
1537
1538/**
97fb7a0a
IM
1539 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1540 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1541 */
1542static inline unsigned int group_first_cpu(struct sched_group *group)
1543{
ae4df9d6 1544 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1545}
1546
c1174876
PZ
1547extern int group_balance_cpu(struct sched_group *sg);
1548
3866e845
SRRH
1549#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1550void register_sched_domain_sysctl(void);
bbdacdfe 1551void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1552void unregister_sched_domain_sysctl(void);
1553#else
1554static inline void register_sched_domain_sysctl(void)
1555{
1556}
bbdacdfe
PZ
1557static inline void dirty_sched_domain_sysctl(int cpu)
1558{
1559}
3866e845
SRRH
1560static inline void unregister_sched_domain_sysctl(void)
1561{
1562}
1563#endif
1564
b2a02fc4 1565extern void flush_smp_call_function_from_idle(void);
e3baac47 1566
b2a02fc4
PZ
1567#else /* !CONFIG_SMP: */
1568static inline void flush_smp_call_function_from_idle(void) { }
b2a02fc4 1569#endif
029632fb 1570
391e43da 1571#include "stats.h"
1051408f 1572#include "autogroup.h"
029632fb
PZ
1573
1574#ifdef CONFIG_CGROUP_SCHED
1575
1576/*
1577 * Return the group to which this tasks belongs.
1578 *
8af01f56
TH
1579 * We cannot use task_css() and friends because the cgroup subsystem
1580 * changes that value before the cgroup_subsys::attach() method is called,
1581 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1582 *
1583 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1584 * core changes this before calling sched_move_task().
1585 *
1586 * Instead we use a 'copy' which is updated from sched_move_task() while
1587 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1588 */
1589static inline struct task_group *task_group(struct task_struct *p)
1590{
8323f26c 1591 return p->sched_task_group;
029632fb
PZ
1592}
1593
1594/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1595static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1596{
1597#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1598 struct task_group *tg = task_group(p);
1599#endif
1600
1601#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1602 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1603 p->se.cfs_rq = tg->cfs_rq[cpu];
1604 p->se.parent = tg->se[cpu];
1605#endif
1606
1607#ifdef CONFIG_RT_GROUP_SCHED
1608 p->rt.rt_rq = tg->rt_rq[cpu];
1609 p->rt.parent = tg->rt_se[cpu];
1610#endif
1611}
1612
1613#else /* CONFIG_CGROUP_SCHED */
1614
1615static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1616static inline struct task_group *task_group(struct task_struct *p)
1617{
1618 return NULL;
1619}
1620
1621#endif /* CONFIG_CGROUP_SCHED */
1622
1623static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1624{
1625 set_task_rq(p, cpu);
1626#ifdef CONFIG_SMP
1627 /*
1628 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1629 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1630 * per-task data have been completed by this moment.
1631 */
1632 smp_wmb();
c65eacbe 1633#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1634 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1635#else
c546951d 1636 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1637#endif
ac66f547 1638 p->wake_cpu = cpu;
029632fb
PZ
1639#endif
1640}
1641
1642/*
1643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1644 */
1645#ifdef CONFIG_SCHED_DEBUG
c5905afb 1646# include <linux/static_key.h>
029632fb
PZ
1647# define const_debug __read_mostly
1648#else
1649# define const_debug const
1650#endif
1651
029632fb
PZ
1652#define SCHED_FEAT(name, enabled) \
1653 __SCHED_FEAT_##name ,
1654
1655enum {
391e43da 1656#include "features.h"
f8b6d1cc 1657 __SCHED_FEAT_NR,
029632fb
PZ
1658};
1659
1660#undef SCHED_FEAT
1661
a73f863a 1662#ifdef CONFIG_SCHED_DEBUG
765cc3a4
PB
1663
1664/*
1665 * To support run-time toggling of sched features, all the translation units
1666 * (but core.c) reference the sysctl_sched_features defined in core.c.
1667 */
1668extern const_debug unsigned int sysctl_sched_features;
1669
a73f863a 1670#ifdef CONFIG_JUMP_LABEL
f8b6d1cc 1671#define SCHED_FEAT(name, enabled) \
c5905afb 1672static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1673{ \
6e76ea8a 1674 return static_key_##enabled(key); \
f8b6d1cc
PZ
1675}
1676
1677#include "features.h"
f8b6d1cc
PZ
1678#undef SCHED_FEAT
1679
c5905afb 1680extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1681#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1682
a73f863a
JL
1683#else /* !CONFIG_JUMP_LABEL */
1684
1685#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1686
1687#endif /* CONFIG_JUMP_LABEL */
1688
1689#else /* !SCHED_DEBUG */
765cc3a4
PB
1690
1691/*
1692 * Each translation unit has its own copy of sysctl_sched_features to allow
1693 * constants propagation at compile time and compiler optimization based on
1694 * features default.
1695 */
1696#define SCHED_FEAT(name, enabled) \
1697 (1UL << __SCHED_FEAT_##name) * enabled |
1698static const_debug __maybe_unused unsigned int sysctl_sched_features =
1699#include "features.h"
1700 0;
1701#undef SCHED_FEAT
1702
7e6f4c5d 1703#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1704
a73f863a 1705#endif /* SCHED_DEBUG */
029632fb 1706
2a595721 1707extern struct static_key_false sched_numa_balancing;
cb251765 1708extern struct static_key_false sched_schedstats;
cbee9f88 1709
029632fb
PZ
1710static inline u64 global_rt_period(void)
1711{
1712 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1713}
1714
1715static inline u64 global_rt_runtime(void)
1716{
1717 if (sysctl_sched_rt_runtime < 0)
1718 return RUNTIME_INF;
1719
1720 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1721}
1722
029632fb
PZ
1723static inline int task_current(struct rq *rq, struct task_struct *p)
1724{
1725 return rq->curr == p;
1726}
1727
1728static inline int task_running(struct rq *rq, struct task_struct *p)
1729{
1730#ifdef CONFIG_SMP
1731 return p->on_cpu;
1732#else
1733 return task_current(rq, p);
1734#endif
1735}
1736
da0c1e65
KT
1737static inline int task_on_rq_queued(struct task_struct *p)
1738{
1739 return p->on_rq == TASK_ON_RQ_QUEUED;
1740}
029632fb 1741
cca26e80
KT
1742static inline int task_on_rq_migrating(struct task_struct *p)
1743{
c546951d 1744 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1745}
1746
17770579
VS
1747/* Wake flags. The first three directly map to some SD flag value */
1748#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
1749#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
1750#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
1751
1752#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
1753#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
1754#define WF_ON_CPU 0x40 /* Wakee is on_cpu */
1755
1756#ifdef CONFIG_SMP
1757static_assert(WF_EXEC == SD_BALANCE_EXEC);
1758static_assert(WF_FORK == SD_BALANCE_FORK);
1759static_assert(WF_TTWU == SD_BALANCE_WAKE);
1760#endif
b13095f0 1761
029632fb
PZ
1762/*
1763 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1764 * of tasks with abnormal "nice" values across CPUs the contribution that
1765 * each task makes to its run queue's load is weighted according to its
1766 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1767 * scaled version of the new time slice allocation that they receive on time
1768 * slice expiry etc.
1769 */
1770
97fb7a0a
IM
1771#define WEIGHT_IDLEPRIO 3
1772#define WMULT_IDLEPRIO 1431655765
029632fb 1773
97fb7a0a
IM
1774extern const int sched_prio_to_weight[40];
1775extern const u32 sched_prio_to_wmult[40];
029632fb 1776
ff77e468
PZ
1777/*
1778 * {de,en}queue flags:
1779 *
1780 * DEQUEUE_SLEEP - task is no longer runnable
1781 * ENQUEUE_WAKEUP - task just became runnable
1782 *
1783 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1784 * are in a known state which allows modification. Such pairs
1785 * should preserve as much state as possible.
1786 *
1787 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1788 * in the runqueue.
1789 *
1790 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1791 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1792 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1793 *
1794 */
1795
1796#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1797#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1798#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1799#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1800
1de64443 1801#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1802#define ENQUEUE_RESTORE 0x02
1803#define ENQUEUE_MOVE 0x04
0a67d1ee 1804#define ENQUEUE_NOCLOCK 0x08
ff77e468 1805
0a67d1ee
PZ
1806#define ENQUEUE_HEAD 0x10
1807#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1808#ifdef CONFIG_SMP
0a67d1ee 1809#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1810#else
59efa0ba 1811#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1812#endif
c82ba9fa 1813
37e117c0
PZ
1814#define RETRY_TASK ((void *)-1UL)
1815
c82ba9fa 1816struct sched_class {
c82ba9fa 1817
69842cba
PB
1818#ifdef CONFIG_UCLAMP_TASK
1819 int uclamp_enabled;
1820#endif
1821
c82ba9fa
LZ
1822 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1823 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 1824 void (*yield_task) (struct rq *rq);
0900acf2 1825 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 1826
97fb7a0a 1827 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1828
98c2f700
PZ
1829 struct task_struct *(*pick_next_task)(struct rq *rq);
1830
6e2df058 1831 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 1832 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
1833
1834#ifdef CONFIG_SMP
6e2df058 1835 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
3aef1551 1836 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
1327237a 1837 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1838
97fb7a0a 1839 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1840
1841 void (*set_cpus_allowed)(struct task_struct *p,
9cfc3e18
PZ
1842 const struct cpumask *newmask,
1843 u32 flags);
c82ba9fa
LZ
1844
1845 void (*rq_online)(struct rq *rq);
1846 void (*rq_offline)(struct rq *rq);
a7c81556
PZ
1847
1848 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
c82ba9fa
LZ
1849#endif
1850
97fb7a0a
IM
1851 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1852 void (*task_fork)(struct task_struct *p);
1853 void (*task_dead)(struct task_struct *p);
c82ba9fa 1854
67dfa1b7
KT
1855 /*
1856 * The switched_from() call is allowed to drop rq->lock, therefore we
1857 * cannot assume the switched_from/switched_to pair is serliazed by
1858 * rq->lock. They are however serialized by p->pi_lock.
1859 */
97fb7a0a
IM
1860 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1861 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1862 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1863 int oldprio);
c82ba9fa 1864
97fb7a0a
IM
1865 unsigned int (*get_rr_interval)(struct rq *rq,
1866 struct task_struct *task);
c82ba9fa 1867
97fb7a0a 1868 void (*update_curr)(struct rq *rq);
6e998916 1869
97fb7a0a
IM
1870#define TASK_SET_GROUP 0
1871#define TASK_MOVE_GROUP 1
ea86cb4b 1872
c82ba9fa 1873#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1874 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa 1875#endif
43c31ac0 1876};
029632fb 1877
3f1d2a31
PZ
1878static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1879{
10e7071b 1880 WARN_ON_ONCE(rq->curr != prev);
6e2df058 1881 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
1882}
1883
03b7fad1 1884static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1885{
03b7fad1 1886 WARN_ON_ONCE(rq->curr != next);
a0e813f2 1887 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
1888}
1889
43c31ac0
PZ
1890
1891/*
1892 * Helper to define a sched_class instance; each one is placed in a separate
1893 * section which is ordered by the linker script:
1894 *
1895 * include/asm-generic/vmlinux.lds.h
1896 *
1897 * Also enforce alignment on the instance, not the type, to guarantee layout.
1898 */
1899#define DEFINE_SCHED_CLASS(name) \
1900const struct sched_class name##_sched_class \
1901 __aligned(__alignof__(struct sched_class)) \
1902 __section("__" #name "_sched_class")
1903
c3a340f7
SRV
1904/* Defined in include/asm-generic/vmlinux.lds.h */
1905extern struct sched_class __begin_sched_classes[];
1906extern struct sched_class __end_sched_classes[];
1907
1908#define sched_class_highest (__end_sched_classes - 1)
1909#define sched_class_lowest (__begin_sched_classes - 1)
6e2df058
PZ
1910
1911#define for_class_range(class, _from, _to) \
c3a340f7 1912 for (class = (_from); class != (_to); class--)
6e2df058 1913
029632fb 1914#define for_each_class(class) \
c3a340f7 1915 for_class_range(class, sched_class_highest, sched_class_lowest)
029632fb
PZ
1916
1917extern const struct sched_class stop_sched_class;
aab03e05 1918extern const struct sched_class dl_sched_class;
029632fb
PZ
1919extern const struct sched_class rt_sched_class;
1920extern const struct sched_class fair_sched_class;
1921extern const struct sched_class idle_sched_class;
1922
6e2df058
PZ
1923static inline bool sched_stop_runnable(struct rq *rq)
1924{
1925 return rq->stop && task_on_rq_queued(rq->stop);
1926}
1927
1928static inline bool sched_dl_runnable(struct rq *rq)
1929{
1930 return rq->dl.dl_nr_running > 0;
1931}
1932
1933static inline bool sched_rt_runnable(struct rq *rq)
1934{
1935 return rq->rt.rt_queued > 0;
1936}
1937
1938static inline bool sched_fair_runnable(struct rq *rq)
1939{
1940 return rq->cfs.nr_running > 0;
1941}
029632fb 1942
5d7d6056 1943extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 1944extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 1945
af449901
PZ
1946#define SCA_CHECK 0x01
1947#define SCA_MIGRATE_DISABLE 0x02
1948#define SCA_MIGRATE_ENABLE 0x04
1949
029632fb
PZ
1950#ifdef CONFIG_SMP
1951
63b2ca30 1952extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1953
7caff66f 1954extern void trigger_load_balance(struct rq *rq);
029632fb 1955
9cfc3e18 1956extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
c5b28038 1957
a7c81556
PZ
1958static inline struct task_struct *get_push_task(struct rq *rq)
1959{
1960 struct task_struct *p = rq->curr;
1961
1962 lockdep_assert_held(&rq->lock);
1963
1964 if (rq->push_busy)
1965 return NULL;
1966
1967 if (p->nr_cpus_allowed == 1)
1968 return NULL;
1969
1970 rq->push_busy = true;
1971 return get_task_struct(p);
1972}
1973
1974extern int push_cpu_stop(void *arg);
c5b28038 1975
029632fb
PZ
1976#endif
1977
442bf3aa
DL
1978#ifdef CONFIG_CPU_IDLE
1979static inline void idle_set_state(struct rq *rq,
1980 struct cpuidle_state *idle_state)
1981{
1982 rq->idle_state = idle_state;
1983}
1984
1985static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1986{
9148a3a1 1987 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1988
442bf3aa
DL
1989 return rq->idle_state;
1990}
1991#else
1992static inline void idle_set_state(struct rq *rq,
1993 struct cpuidle_state *idle_state)
1994{
1995}
1996
1997static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1998{
1999 return NULL;
2000}
2001#endif
2002
8663effb
SRV
2003extern void schedule_idle(void);
2004
029632fb
PZ
2005extern void sysrq_sched_debug_show(void);
2006extern void sched_init_granularity(void);
2007extern void update_max_interval(void);
1baca4ce
JL
2008
2009extern void init_sched_dl_class(void);
029632fb
PZ
2010extern void init_sched_rt_class(void);
2011extern void init_sched_fair_class(void);
2012
9059393e
VG
2013extern void reweight_task(struct task_struct *p, int prio);
2014
8875125e 2015extern void resched_curr(struct rq *rq);
029632fb
PZ
2016extern void resched_cpu(int cpu);
2017
2018extern struct rt_bandwidth def_rt_bandwidth;
2019extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2020
332ac17e
DF
2021extern struct dl_bandwidth def_dl_bandwidth;
2022extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 2023extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 2024extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 2025
97fb7a0a
IM
2026#define BW_SHIFT 20
2027#define BW_UNIT (1 << BW_SHIFT)
2028#define RATIO_SHIFT 8
d505b8af
HC
2029#define MAX_BW_BITS (64 - BW_SHIFT)
2030#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
2031unsigned long to_ratio(u64 period, u64 runtime);
2032
540247fb 2033extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 2034extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 2035
76d92ac3
FW
2036#ifdef CONFIG_NO_HZ_FULL
2037extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 2038extern int __init sched_tick_offload_init(void);
76d92ac3
FW
2039
2040/*
2041 * Tick may be needed by tasks in the runqueue depending on their policy and
2042 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2043 * nohz mode if necessary.
2044 */
2045static inline void sched_update_tick_dependency(struct rq *rq)
2046{
21a6ee14 2047 int cpu = cpu_of(rq);
76d92ac3
FW
2048
2049 if (!tick_nohz_full_cpu(cpu))
2050 return;
2051
2052 if (sched_can_stop_tick(rq))
2053 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2054 else
2055 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2056}
2057#else
d84b3131 2058static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
2059static inline void sched_update_tick_dependency(struct rq *rq) { }
2060#endif
2061
72465447 2062static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 2063{
72465447
KT
2064 unsigned prev_nr = rq->nr_running;
2065
2066 rq->nr_running = prev_nr + count;
9d246053
PA
2067 if (trace_sched_update_nr_running_tp_enabled()) {
2068 call_trace_sched_update_nr_running(rq, count);
2069 }
9f3660c2 2070
4486edd1 2071#ifdef CONFIG_SMP
3e184501 2072 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
2073 if (!READ_ONCE(rq->rd->overload))
2074 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 2075 }
3e184501 2076#endif
76d92ac3
FW
2077
2078 sched_update_tick_dependency(rq);
029632fb
PZ
2079}
2080
72465447 2081static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 2082{
72465447 2083 rq->nr_running -= count;
9d246053 2084 if (trace_sched_update_nr_running_tp_enabled()) {
a1bd0685 2085 call_trace_sched_update_nr_running(rq, -count);
9d246053
PA
2086 }
2087
76d92ac3
FW
2088 /* Check if we still need preemption */
2089 sched_update_tick_dependency(rq);
029632fb
PZ
2090}
2091
029632fb
PZ
2092extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2093extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2094
2095extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2096
029632fb
PZ
2097extern const_debug unsigned int sysctl_sched_nr_migrate;
2098extern const_debug unsigned int sysctl_sched_migration_cost;
2099
029632fb
PZ
2100#ifdef CONFIG_SCHED_HRTICK
2101
2102/*
2103 * Use hrtick when:
2104 * - enabled by features
2105 * - hrtimer is actually high res
2106 */
2107static inline int hrtick_enabled(struct rq *rq)
2108{
2109 if (!sched_feat(HRTICK))
2110 return 0;
2111 if (!cpu_active(cpu_of(rq)))
2112 return 0;
2113 return hrtimer_is_hres_active(&rq->hrtick_timer);
2114}
2115
2116void hrtick_start(struct rq *rq, u64 delay);
2117
b39e66ea
MG
2118#else
2119
2120static inline int hrtick_enabled(struct rq *rq)
2121{
2122 return 0;
2123}
2124
029632fb
PZ
2125#endif /* CONFIG_SCHED_HRTICK */
2126
1567c3e3
GG
2127#ifndef arch_scale_freq_tick
2128static __always_inline
2129void arch_scale_freq_tick(void)
2130{
2131}
2132#endif
2133
dfbca41f 2134#ifndef arch_scale_freq_capacity
f4470cdf
VS
2135/**
2136 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2137 * @cpu: the CPU in question.
2138 *
2139 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2140 *
2141 * f_curr
2142 * ------ * SCHED_CAPACITY_SCALE
2143 * f_max
2144 */
dfbca41f 2145static __always_inline
7673c8a4 2146unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2147{
2148 return SCHED_CAPACITY_SCALE;
2149}
2150#endif
b5b4860d 2151
029632fb 2152#ifdef CONFIG_SMP
c1a280b6 2153#ifdef CONFIG_PREEMPTION
029632fb
PZ
2154
2155static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2156
2157/*
2158 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2159 * way at the expense of forcing extra atomic operations in all
2160 * invocations. This assures that the double_lock is acquired using the
2161 * same underlying policy as the spinlock_t on this architecture, which
2162 * reduces latency compared to the unfair variant below. However, it
2163 * also adds more overhead and therefore may reduce throughput.
2164 */
2165static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2166 __releases(this_rq->lock)
2167 __acquires(busiest->lock)
2168 __acquires(this_rq->lock)
2169{
2170 raw_spin_unlock(&this_rq->lock);
2171 double_rq_lock(this_rq, busiest);
2172
2173 return 1;
2174}
2175
2176#else
2177/*
2178 * Unfair double_lock_balance: Optimizes throughput at the expense of
2179 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2180 * already in proper order on entry. This favors lower CPU-ids and will
2181 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2182 * regardless of entry order into the function.
2183 */
2184static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2185 __releases(this_rq->lock)
2186 __acquires(busiest->lock)
2187 __acquires(this_rq->lock)
2188{
2189 int ret = 0;
2190
2191 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2192 if (busiest < this_rq) {
2193 raw_spin_unlock(&this_rq->lock);
2194 raw_spin_lock(&busiest->lock);
2195 raw_spin_lock_nested(&this_rq->lock,
2196 SINGLE_DEPTH_NESTING);
2197 ret = 1;
2198 } else
2199 raw_spin_lock_nested(&busiest->lock,
2200 SINGLE_DEPTH_NESTING);
2201 }
2202 return ret;
2203}
2204
c1a280b6 2205#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2206
2207/*
2208 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2209 */
2210static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2211{
2212 if (unlikely(!irqs_disabled())) {
97fb7a0a 2213 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2214 raw_spin_unlock(&this_rq->lock);
2215 BUG_ON(1);
2216 }
2217
2218 return _double_lock_balance(this_rq, busiest);
2219}
2220
2221static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2222 __releases(busiest->lock)
2223{
2224 raw_spin_unlock(&busiest->lock);
2225 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2226}
2227
74602315
PZ
2228static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2229{
2230 if (l1 > l2)
2231 swap(l1, l2);
2232
2233 spin_lock(l1);
2234 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2235}
2236
60e69eed
MG
2237static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2238{
2239 if (l1 > l2)
2240 swap(l1, l2);
2241
2242 spin_lock_irq(l1);
2243 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2244}
2245
74602315
PZ
2246static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2247{
2248 if (l1 > l2)
2249 swap(l1, l2);
2250
2251 raw_spin_lock(l1);
2252 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2253}
2254
029632fb
PZ
2255/*
2256 * double_rq_lock - safely lock two runqueues
2257 *
2258 * Note this does not disable interrupts like task_rq_lock,
2259 * you need to do so manually before calling.
2260 */
2261static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2262 __acquires(rq1->lock)
2263 __acquires(rq2->lock)
2264{
2265 BUG_ON(!irqs_disabled());
2266 if (rq1 == rq2) {
2267 raw_spin_lock(&rq1->lock);
2268 __acquire(rq2->lock); /* Fake it out ;) */
2269 } else {
2270 if (rq1 < rq2) {
2271 raw_spin_lock(&rq1->lock);
2272 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2273 } else {
2274 raw_spin_lock(&rq2->lock);
2275 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2276 }
2277 }
2278}
2279
2280/*
2281 * double_rq_unlock - safely unlock two runqueues
2282 *
2283 * Note this does not restore interrupts like task_rq_unlock,
2284 * you need to do so manually after calling.
2285 */
2286static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2287 __releases(rq1->lock)
2288 __releases(rq2->lock)
2289{
2290 raw_spin_unlock(&rq1->lock);
2291 if (rq1 != rq2)
2292 raw_spin_unlock(&rq2->lock);
2293 else
2294 __release(rq2->lock);
2295}
2296
f2cb1360
IM
2297extern void set_rq_online (struct rq *rq);
2298extern void set_rq_offline(struct rq *rq);
2299extern bool sched_smp_initialized;
2300
029632fb
PZ
2301#else /* CONFIG_SMP */
2302
2303/*
2304 * double_rq_lock - safely lock two runqueues
2305 *
2306 * Note this does not disable interrupts like task_rq_lock,
2307 * you need to do so manually before calling.
2308 */
2309static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2310 __acquires(rq1->lock)
2311 __acquires(rq2->lock)
2312{
2313 BUG_ON(!irqs_disabled());
2314 BUG_ON(rq1 != rq2);
2315 raw_spin_lock(&rq1->lock);
2316 __acquire(rq2->lock); /* Fake it out ;) */
2317}
2318
2319/*
2320 * double_rq_unlock - safely unlock two runqueues
2321 *
2322 * Note this does not restore interrupts like task_rq_unlock,
2323 * you need to do so manually after calling.
2324 */
2325static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2326 __releases(rq1->lock)
2327 __releases(rq2->lock)
2328{
2329 BUG_ON(rq1 != rq2);
2330 raw_spin_unlock(&rq1->lock);
2331 __release(rq2->lock);
2332}
2333
2334#endif
2335
2336extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2337extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2338
2339#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2340extern bool sched_debug_enabled;
2341
029632fb
PZ
2342extern void print_cfs_stats(struct seq_file *m, int cpu);
2343extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2344extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2345extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2346extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2347extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2348#ifdef CONFIG_NUMA_BALANCING
2349extern void
2350show_numa_stats(struct task_struct *p, struct seq_file *m);
2351extern void
2352print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2353 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2354#endif /* CONFIG_NUMA_BALANCING */
2355#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2356
2357extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2358extern void init_rt_rq(struct rt_rq *rt_rq);
2359extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2360
1ee14e6c
BS
2361extern void cfs_bandwidth_usage_inc(void);
2362extern void cfs_bandwidth_usage_dec(void);
1c792db7 2363
3451d024 2364#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2365#define NOHZ_BALANCE_KICK_BIT 0
2366#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2367
a22e47a4 2368#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2369#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2370
2371#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2372
2373#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2374
00357f5e 2375extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2376#else
00357f5e 2377static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2378#endif
73fbec60 2379
daec5798
LA
2380
2381#ifdef CONFIG_SMP
2382static inline
2383void __dl_update(struct dl_bw *dl_b, s64 bw)
2384{
2385 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2386 int i;
2387
2388 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2389 "sched RCU must be held");
2390 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2391 struct rq *rq = cpu_rq(i);
2392
2393 rq->dl.extra_bw += bw;
2394 }
2395}
2396#else
2397static inline
2398void __dl_update(struct dl_bw *dl_b, s64 bw)
2399{
2400 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2401
2402 dl->extra_bw += bw;
2403}
2404#endif
2405
2406
73fbec60 2407#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2408struct irqtime {
25e2d8c1 2409 u64 total;
a499a5a1 2410 u64 tick_delta;
19d23dbf
FW
2411 u64 irq_start_time;
2412 struct u64_stats_sync sync;
2413};
73fbec60 2414
19d23dbf 2415DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2416
25e2d8c1
FW
2417/*
2418 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2419 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2420 * and never move forward.
2421 */
73fbec60
FW
2422static inline u64 irq_time_read(int cpu)
2423{
19d23dbf
FW
2424 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2425 unsigned int seq;
2426 u64 total;
73fbec60
FW
2427
2428 do {
19d23dbf 2429 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2430 total = irqtime->total;
19d23dbf 2431 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2432
19d23dbf 2433 return total;
73fbec60 2434}
73fbec60 2435#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2436
2437#ifdef CONFIG_CPU_FREQ
b10abd0a 2438DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2439
2440/**
2441 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2442 * @rq: Runqueue to carry out the update for.
58919e83 2443 * @flags: Update reason flags.
adaf9fcd 2444 *
58919e83
RW
2445 * This function is called by the scheduler on the CPU whose utilization is
2446 * being updated.
adaf9fcd
RW
2447 *
2448 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2449 *
2450 * The way cpufreq is currently arranged requires it to evaluate the CPU
2451 * performance state (frequency/voltage) on a regular basis to prevent it from
2452 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2453 * That is not guaranteed to happen if the updates are only triggered from CFS
2454 * and DL, though, because they may not be coming in if only RT tasks are
2455 * active all the time (or there are RT tasks only).
adaf9fcd 2456 *
e0367b12
JL
2457 * As a workaround for that issue, this function is called periodically by the
2458 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2459 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2460 * solutions targeted more specifically at RT tasks.
adaf9fcd 2461 */
12bde33d 2462static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2463{
58919e83
RW
2464 struct update_util_data *data;
2465
674e7541
VK
2466 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2467 cpu_of(rq)));
58919e83 2468 if (data)
12bde33d
RW
2469 data->func(data, rq_clock(rq), flags);
2470}
adaf9fcd 2471#else
12bde33d 2472static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2473#endif /* CONFIG_CPU_FREQ */
be53f58f 2474
982d9cdc 2475#ifdef CONFIG_UCLAMP_TASK
686516b5 2476unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d 2477
46609ce2
QY
2478/**
2479 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2480 * @rq: The rq to clamp against. Must not be NULL.
2481 * @util: The util value to clamp.
2482 * @p: The task to clamp against. Can be NULL if you want to clamp
2483 * against @rq only.
2484 *
2485 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2486 *
2487 * If sched_uclamp_used static key is disabled, then just return the util
2488 * without any clamping since uclamp aggregation at the rq level in the fast
2489 * path is disabled, rendering this operation a NOP.
2490 *
2491 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2492 * will return the correct effective uclamp value of the task even if the
2493 * static key is disabled.
2494 */
9d20ad7d 2495static __always_inline
d2b58a28
VS
2496unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2497 struct task_struct *p)
982d9cdc 2498{
46609ce2
QY
2499 unsigned long min_util;
2500 unsigned long max_util;
2501
2502 if (!static_branch_likely(&sched_uclamp_used))
2503 return util;
2504
2505 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2506 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
982d9cdc 2507
9d20ad7d
PB
2508 if (p) {
2509 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2510 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2511 }
2512
982d9cdc
PB
2513 /*
2514 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2515 * RUNNABLE tasks with _different_ clamps, we can end up with an
2516 * inversion. Fix it now when the clamps are applied.
2517 */
2518 if (unlikely(min_util >= max_util))
2519 return min_util;
2520
2521 return clamp(util, min_util, max_util);
2522}
46609ce2
QY
2523
2524/*
2525 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2526 * by default in the fast path and only gets turned on once userspace performs
2527 * an operation that requires it.
2528 *
2529 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2530 * hence is active.
2531 */
2532static inline bool uclamp_is_used(void)
2533{
2534 return static_branch_likely(&sched_uclamp_used);
2535}
982d9cdc 2536#else /* CONFIG_UCLAMP_TASK */
d2b58a28
VS
2537static inline
2538unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2539 struct task_struct *p)
9d20ad7d
PB
2540{
2541 return util;
2542}
46609ce2
QY
2543
2544static inline bool uclamp_is_used(void)
2545{
2546 return false;
2547}
982d9cdc
PB
2548#endif /* CONFIG_UCLAMP_TASK */
2549
9bdcb44e 2550#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2551# ifndef arch_scale_freq_invariant
2552# define arch_scale_freq_invariant() true
2553# endif
2554#else
2555# define arch_scale_freq_invariant() false
9bdcb44e 2556#endif
d4edd662 2557
10a35e68
VG
2558#ifdef CONFIG_SMP
2559static inline unsigned long capacity_orig_of(int cpu)
2560{
2561 return cpu_rq(cpu)->cpu_capacity_orig;
2562}
2563#endif
2564
938e5e4b
QP
2565/**
2566 * enum schedutil_type - CPU utilization type
2567 * @FREQUENCY_UTIL: Utilization used to select frequency
2568 * @ENERGY_UTIL: Utilization used during energy calculation
2569 *
2570 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2571 * need to be aggregated differently depending on the usage made of them. This
2572 * enum is used within schedutil_freq_util() to differentiate the types of
2573 * utilization expected by the callers, and adjust the aggregation accordingly.
2574 */
2575enum schedutil_type {
2576 FREQUENCY_UTIL,
2577 ENERGY_UTIL,
2578};
2579
af24bde8 2580#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2581
af24bde8
PB
2582unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2583 unsigned long max, enum schedutil_type type,
2584 struct task_struct *p);
938e5e4b 2585
8cc90515 2586static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2587{
2588 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2589}
2590
8cc90515
VG
2591static inline unsigned long cpu_util_dl(struct rq *rq)
2592{
2593 return READ_ONCE(rq->avg_dl.util_avg);
2594}
2595
d4edd662
JL
2596static inline unsigned long cpu_util_cfs(struct rq *rq)
2597{
a07630b8
PB
2598 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2599
2600 if (sched_feat(UTIL_EST)) {
2601 util = max_t(unsigned long, util,
2602 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2603 }
2604
2605 return util;
d4edd662 2606}
371bf427
VG
2607
2608static inline unsigned long cpu_util_rt(struct rq *rq)
2609{
dfa444dc 2610 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2611}
938e5e4b 2612#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2613static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2614 unsigned long max, enum schedutil_type type,
2615 struct task_struct *p)
938e5e4b 2616{
af24bde8 2617 return 0;
938e5e4b 2618}
af24bde8 2619#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2620
11d4afd4 2621#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2622static inline unsigned long cpu_util_irq(struct rq *rq)
2623{
2624 return rq->avg_irq.util_avg;
2625}
2e62c474
VG
2626
2627static inline
2628unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2629{
2630 util *= (max - irq);
2631 util /= max;
2632
2633 return util;
2634
2635}
9033ea11
VG
2636#else
2637static inline unsigned long cpu_util_irq(struct rq *rq)
2638{
2639 return 0;
2640}
2641
2e62c474
VG
2642static inline
2643unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2644{
2645 return util;
2646}
794a56eb 2647#endif
6aa140fa 2648
531b5c9f 2649#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2650
6aa140fa 2651#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2652
2653DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2654
2655static inline bool sched_energy_enabled(void)
2656{
2657 return static_branch_unlikely(&sched_energy_present);
2658}
2659
2660#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2661
6aa140fa 2662#define perf_domain_span(pd) NULL
f8a696f2 2663static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2664
f8a696f2 2665#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2666
2667#ifdef CONFIG_MEMBARRIER
2668/*
2669 * The scheduler provides memory barriers required by membarrier between:
2670 * - prior user-space memory accesses and store to rq->membarrier_state,
2671 * - store to rq->membarrier_state and following user-space memory accesses.
2672 * In the same way it provides those guarantees around store to rq->curr.
2673 */
2674static inline void membarrier_switch_mm(struct rq *rq,
2675 struct mm_struct *prev_mm,
2676 struct mm_struct *next_mm)
2677{
2678 int membarrier_state;
2679
2680 if (prev_mm == next_mm)
2681 return;
2682
2683 membarrier_state = atomic_read(&next_mm->membarrier_state);
2684 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2685 return;
2686
2687 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2688}
2689#else
2690static inline void membarrier_switch_mm(struct rq *rq,
2691 struct mm_struct *prev_mm,
2692 struct mm_struct *next_mm)
2693{
2694}
2695#endif
52262ee5
MG
2696
2697#ifdef CONFIG_SMP
2698static inline bool is_per_cpu_kthread(struct task_struct *p)
2699{
2700 if (!(p->flags & PF_KTHREAD))
2701 return false;
2702
2703 if (p->nr_cpus_allowed != 1)
2704 return false;
2705
2706 return true;
2707}
2708#endif
b3212fe2
TG
2709
2710void swake_up_all_locked(struct swait_queue_head *q);
2711void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);