]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched/core: Move task_rq_lock() out of line
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
3866e845 6#include <linux/binfmts.h>
029632fb
PZ
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
b6366f04 10#include <linux/irq_work.h>
9f3660c2 11#include <linux/tick.h>
f809ca9a 12#include <linux/slab.h>
029632fb 13
391e43da 14#include "cpupri.h"
6bfd6d72 15#include "cpudeadline.h"
60fed789 16#include "cpuacct.h"
029632fb 17
45ceebf7 18struct rq;
442bf3aa 19struct cpuidle_state;
45ceebf7 20
da0c1e65
KT
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
cca26e80 23#define TASK_ON_RQ_MIGRATING 2
da0c1e65 24
029632fb
PZ
25extern __read_mostly int scheduler_running;
26
45ceebf7
PG
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
3289bdb4 30extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 31extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
32
33#ifdef CONFIG_SMP
cee1afce 34extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 35#else
cee1afce 36static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 37#endif
45ceebf7 38
029632fb
PZ
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
cc1f4b1f
LZ
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
54 * increased costs.
55 */
56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
57# define SCHED_LOAD_RESOLUTION 10
58# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
59# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
60#else
61# define SCHED_LOAD_RESOLUTION 0
62# define scale_load(w) (w)
63# define scale_load_down(w) (w)
64#endif
65
66#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
67#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
68
029632fb
PZ
69#define NICE_0_LOAD SCHED_LOAD_SCALE
70#define NICE_0_SHIFT SCHED_LOAD_SHIFT
71
332ac17e
DF
72/*
73 * Single value that decides SCHED_DEADLINE internal math precision.
74 * 10 -> just above 1us
75 * 9 -> just above 0.5us
76 */
77#define DL_SCALE (10)
78
029632fb
PZ
79/*
80 * These are the 'tuning knobs' of the scheduler:
029632fb 81 */
029632fb
PZ
82
83/*
84 * single value that denotes runtime == period, ie unlimited time.
85 */
86#define RUNTIME_INF ((u64)~0ULL)
87
20f9cd2a
HA
88static inline int idle_policy(int policy)
89{
90 return policy == SCHED_IDLE;
91}
d50dde5a
DF
92static inline int fair_policy(int policy)
93{
94 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
95}
96
029632fb
PZ
97static inline int rt_policy(int policy)
98{
d50dde5a 99 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
100}
101
aab03e05
DF
102static inline int dl_policy(int policy)
103{
104 return policy == SCHED_DEADLINE;
105}
20f9cd2a
HA
106static inline bool valid_policy(int policy)
107{
108 return idle_policy(policy) || fair_policy(policy) ||
109 rt_policy(policy) || dl_policy(policy);
110}
aab03e05 111
029632fb
PZ
112static inline int task_has_rt_policy(struct task_struct *p)
113{
114 return rt_policy(p->policy);
115}
116
aab03e05
DF
117static inline int task_has_dl_policy(struct task_struct *p)
118{
119 return dl_policy(p->policy);
120}
121
2d3d891d
DF
122/*
123 * Tells if entity @a should preempt entity @b.
124 */
332ac17e
DF
125static inline bool
126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
127{
128 return dl_time_before(a->deadline, b->deadline);
129}
130
029632fb
PZ
131/*
132 * This is the priority-queue data structure of the RT scheduling class:
133 */
134struct rt_prio_array {
135 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
136 struct list_head queue[MAX_RT_PRIO];
137};
138
139struct rt_bandwidth {
140 /* nests inside the rq lock: */
141 raw_spinlock_t rt_runtime_lock;
142 ktime_t rt_period;
143 u64 rt_runtime;
144 struct hrtimer rt_period_timer;
4cfafd30 145 unsigned int rt_period_active;
029632fb 146};
a5e7be3b
JL
147
148void __dl_clear_params(struct task_struct *p);
149
332ac17e
DF
150/*
151 * To keep the bandwidth of -deadline tasks and groups under control
152 * we need some place where:
153 * - store the maximum -deadline bandwidth of the system (the group);
154 * - cache the fraction of that bandwidth that is currently allocated.
155 *
156 * This is all done in the data structure below. It is similar to the
157 * one used for RT-throttling (rt_bandwidth), with the main difference
158 * that, since here we are only interested in admission control, we
159 * do not decrease any runtime while the group "executes", neither we
160 * need a timer to replenish it.
161 *
162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
163 * meaning that:
164 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
165 * - dl_total_bw array contains, in the i-eth element, the currently
166 * allocated bandwidth on the i-eth CPU.
167 * Moreover, groups consume bandwidth on each CPU, while tasks only
168 * consume bandwidth on the CPU they're running on.
169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
170 * that will be shown the next time the proc or cgroup controls will
171 * be red. It on its turn can be changed by writing on its own
172 * control.
173 */
174struct dl_bandwidth {
175 raw_spinlock_t dl_runtime_lock;
176 u64 dl_runtime;
177 u64 dl_period;
178};
179
180static inline int dl_bandwidth_enabled(void)
181{
1724813d 182 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
183}
184
185extern struct dl_bw *dl_bw_of(int i);
186
187struct dl_bw {
188 raw_spinlock_t lock;
189 u64 bw, total_bw;
190};
191
7f51412a
JL
192static inline
193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
194{
195 dl_b->total_bw -= tsk_bw;
196}
197
198static inline
199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
200{
201 dl_b->total_bw += tsk_bw;
202}
203
204static inline
205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
206{
207 return dl_b->bw != -1 &&
208 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
209}
210
029632fb
PZ
211extern struct mutex sched_domains_mutex;
212
213#ifdef CONFIG_CGROUP_SCHED
214
215#include <linux/cgroup.h>
216
217struct cfs_rq;
218struct rt_rq;
219
35cf4e50 220extern struct list_head task_groups;
029632fb
PZ
221
222struct cfs_bandwidth {
223#ifdef CONFIG_CFS_BANDWIDTH
224 raw_spinlock_t lock;
225 ktime_t period;
226 u64 quota, runtime;
9c58c79a 227 s64 hierarchical_quota;
029632fb
PZ
228 u64 runtime_expires;
229
4cfafd30 230 int idle, period_active;
029632fb
PZ
231 struct hrtimer period_timer, slack_timer;
232 struct list_head throttled_cfs_rq;
233
234 /* statistics */
235 int nr_periods, nr_throttled;
236 u64 throttled_time;
237#endif
238};
239
240/* task group related information */
241struct task_group {
242 struct cgroup_subsys_state css;
243
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 /* schedulable entities of this group on each cpu */
246 struct sched_entity **se;
247 /* runqueue "owned" by this group on each cpu */
248 struct cfs_rq **cfs_rq;
249 unsigned long shares;
250
fa6bddeb 251#ifdef CONFIG_SMP
b0367629
WL
252 /*
253 * load_avg can be heavily contended at clock tick time, so put
254 * it in its own cacheline separated from the fields above which
255 * will also be accessed at each tick.
256 */
257 atomic_long_t load_avg ____cacheline_aligned;
029632fb 258#endif
fa6bddeb 259#endif
029632fb
PZ
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266#endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
278
279 struct cfs_bandwidth cfs_bandwidth;
280};
281
282#ifdef CONFIG_FAIR_GROUP_SCHED
283#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
284
285/*
286 * A weight of 0 or 1 can cause arithmetics problems.
287 * A weight of a cfs_rq is the sum of weights of which entities
288 * are queued on this cfs_rq, so a weight of a entity should not be
289 * too large, so as the shares value of a task group.
290 * (The default weight is 1024 - so there's no practical
291 * limitation from this.)
292 */
293#define MIN_SHARES (1UL << 1)
294#define MAX_SHARES (1UL << 18)
295#endif
296
029632fb
PZ
297typedef int (*tg_visitor)(struct task_group *, void *);
298
299extern int walk_tg_tree_from(struct task_group *from,
300 tg_visitor down, tg_visitor up, void *data);
301
302/*
303 * Iterate the full tree, calling @down when first entering a node and @up when
304 * leaving it for the final time.
305 *
306 * Caller must hold rcu_lock or sufficient equivalent.
307 */
308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
309{
310 return walk_tg_tree_from(&root_task_group, down, up, data);
311}
312
313extern int tg_nop(struct task_group *tg, void *data);
314
315extern void free_fair_sched_group(struct task_group *tg);
316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
6fe1f348 317extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
319 struct sched_entity *se, int cpu,
320 struct sched_entity *parent);
321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
322
323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
326
327extern void free_rt_sched_group(struct task_group *tg);
328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
330 struct sched_rt_entity *rt_se, int cpu,
331 struct sched_rt_entity *parent);
332
25cc7da7
LZ
333extern struct task_group *sched_create_group(struct task_group *parent);
334extern void sched_online_group(struct task_group *tg,
335 struct task_group *parent);
336extern void sched_destroy_group(struct task_group *tg);
337extern void sched_offline_group(struct task_group *tg);
338
339extern void sched_move_task(struct task_struct *tsk);
340
341#ifdef CONFIG_FAIR_GROUP_SCHED
342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
343
344#ifdef CONFIG_SMP
345extern void set_task_rq_fair(struct sched_entity *se,
346 struct cfs_rq *prev, struct cfs_rq *next);
347#else /* !CONFIG_SMP */
348static inline void set_task_rq_fair(struct sched_entity *se,
349 struct cfs_rq *prev, struct cfs_rq *next) { }
350#endif /* CONFIG_SMP */
351#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 352
029632fb
PZ
353#else /* CONFIG_CGROUP_SCHED */
354
355struct cfs_bandwidth { };
356
357#endif /* CONFIG_CGROUP_SCHED */
358
359/* CFS-related fields in a runqueue */
360struct cfs_rq {
361 struct load_weight load;
c82513e5 362 unsigned int nr_running, h_nr_running;
029632fb
PZ
363
364 u64 exec_clock;
365 u64 min_vruntime;
366#ifndef CONFIG_64BIT
367 u64 min_vruntime_copy;
368#endif
369
370 struct rb_root tasks_timeline;
371 struct rb_node *rb_leftmost;
372
029632fb
PZ
373 /*
374 * 'curr' points to currently running entity on this cfs_rq.
375 * It is set to NULL otherwise (i.e when none are currently running).
376 */
377 struct sched_entity *curr, *next, *last, *skip;
378
379#ifdef CONFIG_SCHED_DEBUG
380 unsigned int nr_spread_over;
381#endif
382
2dac754e
PT
383#ifdef CONFIG_SMP
384 /*
9d89c257 385 * CFS load tracking
2dac754e 386 */
9d89c257 387 struct sched_avg avg;
13962234
YD
388 u64 runnable_load_sum;
389 unsigned long runnable_load_avg;
c566e8e9 390#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
391 unsigned long tg_load_avg_contrib;
392#endif
393 atomic_long_t removed_load_avg, removed_util_avg;
394#ifndef CONFIG_64BIT
395 u64 load_last_update_time_copy;
396#endif
82958366 397
9d89c257 398#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
68520796
VD
406 u64 last_h_load_update;
407 struct sched_entity *h_load_next;
408#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
409#endif /* CONFIG_SMP */
410
029632fb
PZ
411#ifdef CONFIG_FAIR_GROUP_SCHED
412 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
413
414 /*
415 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
416 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
417 * (like users, containers etc.)
418 *
419 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
420 * list is used during load balance.
421 */
422 int on_list;
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
029632fb
PZ
426#ifdef CONFIG_CFS_BANDWIDTH
427 int runtime_enabled;
428 u64 runtime_expires;
429 s64 runtime_remaining;
430
f1b17280
PT
431 u64 throttled_clock, throttled_clock_task;
432 u64 throttled_clock_task_time;
029632fb
PZ
433 int throttled, throttle_count;
434 struct list_head throttled_list;
435#endif /* CONFIG_CFS_BANDWIDTH */
436#endif /* CONFIG_FAIR_GROUP_SCHED */
437};
438
439static inline int rt_bandwidth_enabled(void)
440{
441 return sysctl_sched_rt_runtime >= 0;
442}
443
b6366f04
SR
444/* RT IPI pull logic requires IRQ_WORK */
445#ifdef CONFIG_IRQ_WORK
446# define HAVE_RT_PUSH_IPI
447#endif
448
029632fb
PZ
449/* Real-Time classes' related field in a runqueue: */
450struct rt_rq {
451 struct rt_prio_array active;
c82513e5 452 unsigned int rt_nr_running;
01d36d0a 453 unsigned int rr_nr_running;
029632fb
PZ
454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457#ifdef CONFIG_SMP
458 int next; /* next highest */
459#endif
460 } highest_prio;
461#endif
462#ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
b6366f04
SR
467#ifdef HAVE_RT_PUSH_IPI
468 int push_flags;
469 int push_cpu;
470 struct irq_work push_work;
471 raw_spinlock_t push_lock;
029632fb 472#endif
b6366f04 473#endif /* CONFIG_SMP */
f4ebcbc0
KT
474 int rt_queued;
475
029632fb
PZ
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 raw_spinlock_t rt_runtime_lock;
481
482#ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
484
485 struct rq *rq;
029632fb
PZ
486 struct task_group *tg;
487#endif
488};
489
aab03e05
DF
490/* Deadline class' related fields in a runqueue */
491struct dl_rq {
492 /* runqueue is an rbtree, ordered by deadline */
493 struct rb_root rb_root;
494 struct rb_node *rb_leftmost;
495
496 unsigned long dl_nr_running;
1baca4ce
JL
497
498#ifdef CONFIG_SMP
499 /*
500 * Deadline values of the currently executing and the
501 * earliest ready task on this rq. Caching these facilitates
502 * the decision wether or not a ready but not running task
503 * should migrate somewhere else.
504 */
505 struct {
506 u64 curr;
507 u64 next;
508 } earliest_dl;
509
510 unsigned long dl_nr_migratory;
1baca4ce
JL
511 int overloaded;
512
513 /*
514 * Tasks on this rq that can be pushed away. They are kept in
515 * an rb-tree, ordered by tasks' deadlines, with caching
516 * of the leftmost (earliest deadline) element.
517 */
518 struct rb_root pushable_dl_tasks_root;
519 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
520#else
521 struct dl_bw dl_bw;
1baca4ce 522#endif
aab03e05
DF
523};
524
029632fb
PZ
525#ifdef CONFIG_SMP
526
527/*
528 * We add the notion of a root-domain which will be used to define per-domain
529 * variables. Each exclusive cpuset essentially defines an island domain by
530 * fully partitioning the member cpus from any other cpuset. Whenever a new
531 * exclusive cpuset is created, we also create and attach a new root-domain
532 * object.
533 *
534 */
535struct root_domain {
536 atomic_t refcount;
537 atomic_t rto_count;
538 struct rcu_head rcu;
539 cpumask_var_t span;
540 cpumask_var_t online;
541
4486edd1
TC
542 /* Indicate more than one runnable task for any CPU */
543 bool overload;
544
1baca4ce
JL
545 /*
546 * The bit corresponding to a CPU gets set here if such CPU has more
547 * than one runnable -deadline task (as it is below for RT tasks).
548 */
549 cpumask_var_t dlo_mask;
550 atomic_t dlo_count;
332ac17e 551 struct dl_bw dl_bw;
6bfd6d72 552 struct cpudl cpudl;
1baca4ce 553
029632fb
PZ
554 /*
555 * The "RT overload" flag: it gets set if a CPU has more than
556 * one runnable RT task.
557 */
558 cpumask_var_t rto_mask;
559 struct cpupri cpupri;
560};
561
562extern struct root_domain def_root_domain;
563
564#endif /* CONFIG_SMP */
565
566/*
567 * This is the main, per-CPU runqueue data structure.
568 *
569 * Locking rule: those places that want to lock multiple runqueues
570 * (such as the load balancing or the thread migration code), lock
571 * acquire operations must be ordered by ascending &runqueue.
572 */
573struct rq {
574 /* runqueue lock: */
575 raw_spinlock_t lock;
576
577 /*
578 * nr_running and cpu_load should be in the same cacheline because
579 * remote CPUs use both these fields when doing load calculation.
580 */
c82513e5 581 unsigned int nr_running;
0ec8aa00
PZ
582#ifdef CONFIG_NUMA_BALANCING
583 unsigned int nr_numa_running;
584 unsigned int nr_preferred_running;
585#endif
029632fb
PZ
586 #define CPU_LOAD_IDX_MAX 5
587 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 588#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
589#ifdef CONFIG_SMP
590 unsigned long last_load_update_tick;
591#endif /* CONFIG_SMP */
029632fb 592 u64 nohz_stamp;
1c792db7 593 unsigned long nohz_flags;
9fd81dd5 594#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
595#ifdef CONFIG_NO_HZ_FULL
596 unsigned long last_sched_tick;
029632fb 597#endif
029632fb
PZ
598 /* capture load from *all* tasks on this cpu: */
599 struct load_weight load;
600 unsigned long nr_load_updates;
601 u64 nr_switches;
602
603 struct cfs_rq cfs;
604 struct rt_rq rt;
aab03e05 605 struct dl_rq dl;
029632fb
PZ
606
607#ifdef CONFIG_FAIR_GROUP_SCHED
608 /* list of leaf cfs_rq on this cpu: */
609 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
610#endif /* CONFIG_FAIR_GROUP_SCHED */
611
029632fb
PZ
612 /*
613 * This is part of a global counter where only the total sum
614 * over all CPUs matters. A task can increase this counter on
615 * one CPU and if it got migrated afterwards it may decrease
616 * it on another CPU. Always updated under the runqueue lock:
617 */
618 unsigned long nr_uninterruptible;
619
620 struct task_struct *curr, *idle, *stop;
621 unsigned long next_balance;
622 struct mm_struct *prev_mm;
623
9edfbfed 624 unsigned int clock_skip_update;
029632fb
PZ
625 u64 clock;
626 u64 clock_task;
627
628 atomic_t nr_iowait;
629
630#ifdef CONFIG_SMP
631 struct root_domain *rd;
632 struct sched_domain *sd;
633
ced549fa 634 unsigned long cpu_capacity;
ca6d75e6 635 unsigned long cpu_capacity_orig;
029632fb 636
e3fca9e7
PZ
637 struct callback_head *balance_callback;
638
029632fb
PZ
639 unsigned char idle_balance;
640 /* For active balancing */
029632fb
PZ
641 int active_balance;
642 int push_cpu;
643 struct cpu_stop_work active_balance_work;
644 /* cpu of this runqueue: */
645 int cpu;
646 int online;
647
367456c7
PZ
648 struct list_head cfs_tasks;
649
029632fb
PZ
650 u64 rt_avg;
651 u64 age_stamp;
652 u64 idle_stamp;
653 u64 avg_idle;
9bd721c5
JL
654
655 /* This is used to determine avg_idle's max value */
656 u64 max_idle_balance_cost;
029632fb
PZ
657#endif
658
659#ifdef CONFIG_IRQ_TIME_ACCOUNTING
660 u64 prev_irq_time;
661#endif
662#ifdef CONFIG_PARAVIRT
663 u64 prev_steal_time;
664#endif
665#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
666 u64 prev_steal_time_rq;
667#endif
668
669 /* calc_load related fields */
670 unsigned long calc_load_update;
671 long calc_load_active;
672
673#ifdef CONFIG_SCHED_HRTICK
674#ifdef CONFIG_SMP
675 int hrtick_csd_pending;
676 struct call_single_data hrtick_csd;
677#endif
678 struct hrtimer hrtick_timer;
679#endif
680
681#ifdef CONFIG_SCHEDSTATS
682 /* latency stats */
683 struct sched_info rq_sched_info;
684 unsigned long long rq_cpu_time;
685 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
686
687 /* sys_sched_yield() stats */
688 unsigned int yld_count;
689
690 /* schedule() stats */
029632fb
PZ
691 unsigned int sched_count;
692 unsigned int sched_goidle;
693
694 /* try_to_wake_up() stats */
695 unsigned int ttwu_count;
696 unsigned int ttwu_local;
697#endif
698
699#ifdef CONFIG_SMP
700 struct llist_head wake_list;
701#endif
442bf3aa
DL
702
703#ifdef CONFIG_CPU_IDLE
704 /* Must be inspected within a rcu lock section */
705 struct cpuidle_state *idle_state;
706#endif
029632fb
PZ
707};
708
709static inline int cpu_of(struct rq *rq)
710{
711#ifdef CONFIG_SMP
712 return rq->cpu;
713#else
714 return 0;
715#endif
716}
717
8b06c55b 718DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 719
518cd623 720#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 721#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
722#define task_rq(p) cpu_rq(task_cpu(p))
723#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 724#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 725
cebde6d6
PZ
726static inline u64 __rq_clock_broken(struct rq *rq)
727{
316c1608 728 return READ_ONCE(rq->clock);
cebde6d6
PZ
729}
730
78becc27
FW
731static inline u64 rq_clock(struct rq *rq)
732{
cebde6d6 733 lockdep_assert_held(&rq->lock);
78becc27
FW
734 return rq->clock;
735}
736
737static inline u64 rq_clock_task(struct rq *rq)
738{
cebde6d6 739 lockdep_assert_held(&rq->lock);
78becc27
FW
740 return rq->clock_task;
741}
742
9edfbfed
PZ
743#define RQCF_REQ_SKIP 0x01
744#define RQCF_ACT_SKIP 0x02
745
746static inline void rq_clock_skip_update(struct rq *rq, bool skip)
747{
748 lockdep_assert_held(&rq->lock);
749 if (skip)
750 rq->clock_skip_update |= RQCF_REQ_SKIP;
751 else
752 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
753}
754
9942f79b 755#ifdef CONFIG_NUMA
e3fe70b1
RR
756enum numa_topology_type {
757 NUMA_DIRECT,
758 NUMA_GLUELESS_MESH,
759 NUMA_BACKPLANE,
760};
761extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
762extern int sched_max_numa_distance;
763extern bool find_numa_distance(int distance);
764#endif
765
f809ca9a 766#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
767/* The regions in numa_faults array from task_struct */
768enum numa_faults_stats {
769 NUMA_MEM = 0,
770 NUMA_CPU,
771 NUMA_MEMBUF,
772 NUMA_CPUBUF
773};
0ec8aa00 774extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 775extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 776extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
777#endif /* CONFIG_NUMA_BALANCING */
778
518cd623
PZ
779#ifdef CONFIG_SMP
780
e3fca9e7
PZ
781static inline void
782queue_balance_callback(struct rq *rq,
783 struct callback_head *head,
784 void (*func)(struct rq *rq))
785{
786 lockdep_assert_held(&rq->lock);
787
788 if (unlikely(head->next))
789 return;
790
791 head->func = (void (*)(struct callback_head *))func;
792 head->next = rq->balance_callback;
793 rq->balance_callback = head;
794}
795
e3baac47
PZ
796extern void sched_ttwu_pending(void);
797
029632fb
PZ
798#define rcu_dereference_check_sched_domain(p) \
799 rcu_dereference_check((p), \
800 lockdep_is_held(&sched_domains_mutex))
801
802/*
803 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
804 * See detach_destroy_domains: synchronize_sched for details.
805 *
806 * The domain tree of any CPU may only be accessed from within
807 * preempt-disabled sections.
808 */
809#define for_each_domain(cpu, __sd) \
518cd623
PZ
810 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
811 __sd; __sd = __sd->parent)
029632fb 812
77e81365
SS
813#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
814
518cd623
PZ
815/**
816 * highest_flag_domain - Return highest sched_domain containing flag.
817 * @cpu: The cpu whose highest level of sched domain is to
818 * be returned.
819 * @flag: The flag to check for the highest sched_domain
820 * for the given cpu.
821 *
822 * Returns the highest sched_domain of a cpu which contains the given flag.
823 */
824static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
825{
826 struct sched_domain *sd, *hsd = NULL;
827
828 for_each_domain(cpu, sd) {
829 if (!(sd->flags & flag))
830 break;
831 hsd = sd;
832 }
833
834 return hsd;
835}
836
fb13c7ee
MG
837static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
838{
839 struct sched_domain *sd;
840
841 for_each_domain(cpu, sd) {
842 if (sd->flags & flag)
843 break;
844 }
845
846 return sd;
847}
848
518cd623 849DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 850DECLARE_PER_CPU(int, sd_llc_size);
518cd623 851DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 852DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
853DECLARE_PER_CPU(struct sched_domain *, sd_busy);
854DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 855
63b2ca30 856struct sched_group_capacity {
5e6521ea
LZ
857 atomic_t ref;
858 /*
63b2ca30
NP
859 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
860 * for a single CPU.
5e6521ea 861 */
dc7ff76e 862 unsigned int capacity;
5e6521ea 863 unsigned long next_update;
63b2ca30 864 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
865 /*
866 * Number of busy cpus in this group.
867 */
868 atomic_t nr_busy_cpus;
869
870 unsigned long cpumask[0]; /* iteration mask */
871};
872
873struct sched_group {
874 struct sched_group *next; /* Must be a circular list */
875 atomic_t ref;
876
877 unsigned int group_weight;
63b2ca30 878 struct sched_group_capacity *sgc;
5e6521ea
LZ
879
880 /*
881 * The CPUs this group covers.
882 *
883 * NOTE: this field is variable length. (Allocated dynamically
884 * by attaching extra space to the end of the structure,
885 * depending on how many CPUs the kernel has booted up with)
886 */
887 unsigned long cpumask[0];
888};
889
890static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
891{
892 return to_cpumask(sg->cpumask);
893}
894
895/*
896 * cpumask masking which cpus in the group are allowed to iterate up the domain
897 * tree.
898 */
899static inline struct cpumask *sched_group_mask(struct sched_group *sg)
900{
63b2ca30 901 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
902}
903
904/**
905 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
906 * @group: The group whose first cpu is to be returned.
907 */
908static inline unsigned int group_first_cpu(struct sched_group *group)
909{
910 return cpumask_first(sched_group_cpus(group));
911}
912
c1174876
PZ
913extern int group_balance_cpu(struct sched_group *sg);
914
3866e845
SRRH
915#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
916void register_sched_domain_sysctl(void);
917void unregister_sched_domain_sysctl(void);
918#else
919static inline void register_sched_domain_sysctl(void)
920{
921}
922static inline void unregister_sched_domain_sysctl(void)
923{
924}
925#endif
926
e3baac47
PZ
927#else
928
929static inline void sched_ttwu_pending(void) { }
930
518cd623 931#endif /* CONFIG_SMP */
029632fb 932
391e43da
PZ
933#include "stats.h"
934#include "auto_group.h"
029632fb
PZ
935
936#ifdef CONFIG_CGROUP_SCHED
937
938/*
939 * Return the group to which this tasks belongs.
940 *
8af01f56
TH
941 * We cannot use task_css() and friends because the cgroup subsystem
942 * changes that value before the cgroup_subsys::attach() method is called,
943 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
944 *
945 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
946 * core changes this before calling sched_move_task().
947 *
948 * Instead we use a 'copy' which is updated from sched_move_task() while
949 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
950 */
951static inline struct task_group *task_group(struct task_struct *p)
952{
8323f26c 953 return p->sched_task_group;
029632fb
PZ
954}
955
956/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
957static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
958{
959#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
960 struct task_group *tg = task_group(p);
961#endif
962
963#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 964 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
965 p->se.cfs_rq = tg->cfs_rq[cpu];
966 p->se.parent = tg->se[cpu];
967#endif
968
969#ifdef CONFIG_RT_GROUP_SCHED
970 p->rt.rt_rq = tg->rt_rq[cpu];
971 p->rt.parent = tg->rt_se[cpu];
972#endif
973}
974
975#else /* CONFIG_CGROUP_SCHED */
976
977static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
978static inline struct task_group *task_group(struct task_struct *p)
979{
980 return NULL;
981}
982
983#endif /* CONFIG_CGROUP_SCHED */
984
985static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
986{
987 set_task_rq(p, cpu);
988#ifdef CONFIG_SMP
989 /*
990 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
991 * successfuly executed on another CPU. We must ensure that updates of
992 * per-task data have been completed by this moment.
993 */
994 smp_wmb();
995 task_thread_info(p)->cpu = cpu;
ac66f547 996 p->wake_cpu = cpu;
029632fb
PZ
997#endif
998}
999
1000/*
1001 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1002 */
1003#ifdef CONFIG_SCHED_DEBUG
c5905afb 1004# include <linux/static_key.h>
029632fb
PZ
1005# define const_debug __read_mostly
1006#else
1007# define const_debug const
1008#endif
1009
1010extern const_debug unsigned int sysctl_sched_features;
1011
1012#define SCHED_FEAT(name, enabled) \
1013 __SCHED_FEAT_##name ,
1014
1015enum {
391e43da 1016#include "features.h"
f8b6d1cc 1017 __SCHED_FEAT_NR,
029632fb
PZ
1018};
1019
1020#undef SCHED_FEAT
1021
f8b6d1cc 1022#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1023#define SCHED_FEAT(name, enabled) \
c5905afb 1024static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1025{ \
6e76ea8a 1026 return static_key_##enabled(key); \
f8b6d1cc
PZ
1027}
1028
1029#include "features.h"
1030
1031#undef SCHED_FEAT
1032
c5905afb 1033extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1034#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1035#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1036#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1037#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1038
2a595721 1039extern struct static_key_false sched_numa_balancing;
cb251765 1040extern struct static_key_false sched_schedstats;
cbee9f88 1041
029632fb
PZ
1042static inline u64 global_rt_period(void)
1043{
1044 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1045}
1046
1047static inline u64 global_rt_runtime(void)
1048{
1049 if (sysctl_sched_rt_runtime < 0)
1050 return RUNTIME_INF;
1051
1052 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1053}
1054
029632fb
PZ
1055static inline int task_current(struct rq *rq, struct task_struct *p)
1056{
1057 return rq->curr == p;
1058}
1059
1060static inline int task_running(struct rq *rq, struct task_struct *p)
1061{
1062#ifdef CONFIG_SMP
1063 return p->on_cpu;
1064#else
1065 return task_current(rq, p);
1066#endif
1067}
1068
da0c1e65
KT
1069static inline int task_on_rq_queued(struct task_struct *p)
1070{
1071 return p->on_rq == TASK_ON_RQ_QUEUED;
1072}
029632fb 1073
cca26e80
KT
1074static inline int task_on_rq_migrating(struct task_struct *p)
1075{
1076 return p->on_rq == TASK_ON_RQ_MIGRATING;
1077}
1078
029632fb
PZ
1079#ifndef prepare_arch_switch
1080# define prepare_arch_switch(next) do { } while (0)
1081#endif
01f23e16
CM
1082#ifndef finish_arch_post_lock_switch
1083# define finish_arch_post_lock_switch() do { } while (0)
1084#endif
029632fb 1085
029632fb
PZ
1086static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1087{
1088#ifdef CONFIG_SMP
1089 /*
1090 * We can optimise this out completely for !SMP, because the
1091 * SMP rebalancing from interrupt is the only thing that cares
1092 * here.
1093 */
1094 next->on_cpu = 1;
1095#endif
1096}
1097
1098static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1099{
1100#ifdef CONFIG_SMP
1101 /*
1102 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1103 * We must ensure this doesn't happen until the switch is completely
1104 * finished.
95913d97 1105 *
b75a2253
PZ
1106 * In particular, the load of prev->state in finish_task_switch() must
1107 * happen before this.
1108 *
b3e0b1b6 1109 * Pairs with the smp_cond_acquire() in try_to_wake_up().
029632fb 1110 */
95913d97 1111 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1112#endif
1113#ifdef CONFIG_DEBUG_SPINLOCK
1114 /* this is a valid case when another task releases the spinlock */
1115 rq->lock.owner = current;
1116#endif
1117 /*
1118 * If we are tracking spinlock dependencies then we have to
1119 * fix up the runqueue lock - which gets 'carried over' from
1120 * prev into current:
1121 */
1122 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1123
1124 raw_spin_unlock_irq(&rq->lock);
1125}
1126
b13095f0
LZ
1127/*
1128 * wake flags
1129 */
1130#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1131#define WF_FORK 0x02 /* child wakeup after fork */
1132#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1133
029632fb
PZ
1134/*
1135 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1136 * of tasks with abnormal "nice" values across CPUs the contribution that
1137 * each task makes to its run queue's load is weighted according to its
1138 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1139 * scaled version of the new time slice allocation that they receive on time
1140 * slice expiry etc.
1141 */
1142
1143#define WEIGHT_IDLEPRIO 3
1144#define WMULT_IDLEPRIO 1431655765
1145
ed82b8a1
AK
1146extern const int sched_prio_to_weight[40];
1147extern const u32 sched_prio_to_wmult[40];
029632fb 1148
ff77e468
PZ
1149/*
1150 * {de,en}queue flags:
1151 *
1152 * DEQUEUE_SLEEP - task is no longer runnable
1153 * ENQUEUE_WAKEUP - task just became runnable
1154 *
1155 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1156 * are in a known state which allows modification. Such pairs
1157 * should preserve as much state as possible.
1158 *
1159 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1160 * in the runqueue.
1161 *
1162 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1163 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1164 * ENQUEUE_WAKING - sched_class::task_waking was called
1165 *
1166 */
1167
1168#define DEQUEUE_SLEEP 0x01
1169#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1170#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1171
1de64443 1172#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1173#define ENQUEUE_RESTORE 0x02
1174#define ENQUEUE_MOVE 0x04
1175
1176#define ENQUEUE_HEAD 0x08
1177#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1178#ifdef CONFIG_SMP
ff77e468 1179#define ENQUEUE_WAKING 0x20
c82ba9fa 1180#else
1de64443 1181#define ENQUEUE_WAKING 0x00
c82ba9fa 1182#endif
c82ba9fa 1183
37e117c0
PZ
1184#define RETRY_TASK ((void *)-1UL)
1185
c82ba9fa
LZ
1186struct sched_class {
1187 const struct sched_class *next;
1188
1189 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1190 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1191 void (*yield_task) (struct rq *rq);
1192 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1193
1194 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1195
606dba2e
PZ
1196 /*
1197 * It is the responsibility of the pick_next_task() method that will
1198 * return the next task to call put_prev_task() on the @prev task or
1199 * something equivalent.
37e117c0
PZ
1200 *
1201 * May return RETRY_TASK when it finds a higher prio class has runnable
1202 * tasks.
606dba2e
PZ
1203 */
1204 struct task_struct * (*pick_next_task) (struct rq *rq,
1205 struct task_struct *prev);
c82ba9fa
LZ
1206 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1207
1208#ifdef CONFIG_SMP
ac66f547 1209 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1210 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1211
c82ba9fa
LZ
1212 void (*task_waking) (struct task_struct *task);
1213 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1214
1215 void (*set_cpus_allowed)(struct task_struct *p,
1216 const struct cpumask *newmask);
1217
1218 void (*rq_online)(struct rq *rq);
1219 void (*rq_offline)(struct rq *rq);
1220#endif
1221
1222 void (*set_curr_task) (struct rq *rq);
1223 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1224 void (*task_fork) (struct task_struct *p);
e6c390f2 1225 void (*task_dead) (struct task_struct *p);
c82ba9fa 1226
67dfa1b7
KT
1227 /*
1228 * The switched_from() call is allowed to drop rq->lock, therefore we
1229 * cannot assume the switched_from/switched_to pair is serliazed by
1230 * rq->lock. They are however serialized by p->pi_lock.
1231 */
c82ba9fa
LZ
1232 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1233 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1234 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1235 int oldprio);
1236
1237 unsigned int (*get_rr_interval) (struct rq *rq,
1238 struct task_struct *task);
1239
6e998916
SG
1240 void (*update_curr) (struct rq *rq);
1241
c82ba9fa 1242#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 1243 void (*task_move_group) (struct task_struct *p);
c82ba9fa
LZ
1244#endif
1245};
029632fb 1246
3f1d2a31
PZ
1247static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1248{
1249 prev->sched_class->put_prev_task(rq, prev);
1250}
1251
029632fb
PZ
1252#define sched_class_highest (&stop_sched_class)
1253#define for_each_class(class) \
1254 for (class = sched_class_highest; class; class = class->next)
1255
1256extern const struct sched_class stop_sched_class;
aab03e05 1257extern const struct sched_class dl_sched_class;
029632fb
PZ
1258extern const struct sched_class rt_sched_class;
1259extern const struct sched_class fair_sched_class;
1260extern const struct sched_class idle_sched_class;
1261
1262
1263#ifdef CONFIG_SMP
1264
63b2ca30 1265extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1266
7caff66f 1267extern void trigger_load_balance(struct rq *rq);
029632fb 1268
c5b28038
PZ
1269extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1270
029632fb
PZ
1271#endif
1272
442bf3aa
DL
1273#ifdef CONFIG_CPU_IDLE
1274static inline void idle_set_state(struct rq *rq,
1275 struct cpuidle_state *idle_state)
1276{
1277 rq->idle_state = idle_state;
1278}
1279
1280static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1281{
1282 WARN_ON(!rcu_read_lock_held());
1283 return rq->idle_state;
1284}
1285#else
1286static inline void idle_set_state(struct rq *rq,
1287 struct cpuidle_state *idle_state)
1288{
1289}
1290
1291static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1292{
1293 return NULL;
1294}
1295#endif
1296
029632fb
PZ
1297extern void sysrq_sched_debug_show(void);
1298extern void sched_init_granularity(void);
1299extern void update_max_interval(void);
1baca4ce
JL
1300
1301extern void init_sched_dl_class(void);
029632fb
PZ
1302extern void init_sched_rt_class(void);
1303extern void init_sched_fair_class(void);
1304
8875125e 1305extern void resched_curr(struct rq *rq);
029632fb
PZ
1306extern void resched_cpu(int cpu);
1307
1308extern struct rt_bandwidth def_rt_bandwidth;
1309extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1310
332ac17e
DF
1311extern struct dl_bandwidth def_dl_bandwidth;
1312extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1313extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1314
332ac17e
DF
1315unsigned long to_ratio(u64 period, u64 runtime);
1316
540247fb 1317extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1318extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1319
76d92ac3
FW
1320#ifdef CONFIG_NO_HZ_FULL
1321extern bool sched_can_stop_tick(struct rq *rq);
1322
1323/*
1324 * Tick may be needed by tasks in the runqueue depending on their policy and
1325 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1326 * nohz mode if necessary.
1327 */
1328static inline void sched_update_tick_dependency(struct rq *rq)
1329{
1330 int cpu;
1331
1332 if (!tick_nohz_full_enabled())
1333 return;
1334
1335 cpu = cpu_of(rq);
1336
1337 if (!tick_nohz_full_cpu(cpu))
1338 return;
1339
1340 if (sched_can_stop_tick(rq))
1341 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1342 else
1343 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1344}
1345#else
1346static inline void sched_update_tick_dependency(struct rq *rq) { }
1347#endif
1348
72465447 1349static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1350{
72465447
KT
1351 unsigned prev_nr = rq->nr_running;
1352
1353 rq->nr_running = prev_nr + count;
9f3660c2 1354
72465447 1355 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1356#ifdef CONFIG_SMP
1357 if (!rq->rd->overload)
1358 rq->rd->overload = true;
1359#endif
4486edd1 1360 }
76d92ac3
FW
1361
1362 sched_update_tick_dependency(rq);
029632fb
PZ
1363}
1364
72465447 1365static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1366{
72465447 1367 rq->nr_running -= count;
76d92ac3
FW
1368 /* Check if we still need preemption */
1369 sched_update_tick_dependency(rq);
029632fb
PZ
1370}
1371
265f22a9
FW
1372static inline void rq_last_tick_reset(struct rq *rq)
1373{
1374#ifdef CONFIG_NO_HZ_FULL
1375 rq->last_sched_tick = jiffies;
1376#endif
1377}
1378
029632fb
PZ
1379extern void update_rq_clock(struct rq *rq);
1380
1381extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1382extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1383
1384extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1385
1386extern const_debug unsigned int sysctl_sched_time_avg;
1387extern const_debug unsigned int sysctl_sched_nr_migrate;
1388extern const_debug unsigned int sysctl_sched_migration_cost;
1389
1390static inline u64 sched_avg_period(void)
1391{
1392 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1393}
1394
029632fb
PZ
1395#ifdef CONFIG_SCHED_HRTICK
1396
1397/*
1398 * Use hrtick when:
1399 * - enabled by features
1400 * - hrtimer is actually high res
1401 */
1402static inline int hrtick_enabled(struct rq *rq)
1403{
1404 if (!sched_feat(HRTICK))
1405 return 0;
1406 if (!cpu_active(cpu_of(rq)))
1407 return 0;
1408 return hrtimer_is_hres_active(&rq->hrtick_timer);
1409}
1410
1411void hrtick_start(struct rq *rq, u64 delay);
1412
b39e66ea
MG
1413#else
1414
1415static inline int hrtick_enabled(struct rq *rq)
1416{
1417 return 0;
1418}
1419
029632fb
PZ
1420#endif /* CONFIG_SCHED_HRTICK */
1421
1422#ifdef CONFIG_SMP
1423extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1424
1425#ifndef arch_scale_freq_capacity
1426static __always_inline
1427unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1428{
1429 return SCHED_CAPACITY_SCALE;
1430}
1431#endif
b5b4860d 1432
8cd5601c
MR
1433#ifndef arch_scale_cpu_capacity
1434static __always_inline
1435unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1436{
e3279a2e 1437 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1438 return sd->smt_gain / sd->span_weight;
1439
1440 return SCHED_CAPACITY_SCALE;
1441}
1442#endif
1443
029632fb
PZ
1444static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1445{
b5b4860d 1446 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1447 sched_avg_update(rq);
1448}
1449#else
1450static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1451static inline void sched_avg_update(struct rq *rq) { }
1452#endif
1453
3e71a462
PZ
1454struct rq *__task_rq_lock(struct task_struct *p)
1455 __acquires(rq->lock);
1456struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
3960c8c0 1457 __acquires(p->pi_lock)
3e71a462 1458 __acquires(rq->lock);
3960c8c0
PZ
1459
1460static inline void __task_rq_unlock(struct rq *rq)
1461 __releases(rq->lock)
1462{
cbce1a68 1463 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1464 raw_spin_unlock(&rq->lock);
1465}
1466
1467static inline void
1468task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1469 __releases(rq->lock)
1470 __releases(p->pi_lock)
1471{
cbce1a68 1472 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1473 raw_spin_unlock(&rq->lock);
1474 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1475}
1476
029632fb
PZ
1477#ifdef CONFIG_SMP
1478#ifdef CONFIG_PREEMPT
1479
1480static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1481
1482/*
1483 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1484 * way at the expense of forcing extra atomic operations in all
1485 * invocations. This assures that the double_lock is acquired using the
1486 * same underlying policy as the spinlock_t on this architecture, which
1487 * reduces latency compared to the unfair variant below. However, it
1488 * also adds more overhead and therefore may reduce throughput.
1489 */
1490static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1491 __releases(this_rq->lock)
1492 __acquires(busiest->lock)
1493 __acquires(this_rq->lock)
1494{
1495 raw_spin_unlock(&this_rq->lock);
1496 double_rq_lock(this_rq, busiest);
1497
1498 return 1;
1499}
1500
1501#else
1502/*
1503 * Unfair double_lock_balance: Optimizes throughput at the expense of
1504 * latency by eliminating extra atomic operations when the locks are
1505 * already in proper order on entry. This favors lower cpu-ids and will
1506 * grant the double lock to lower cpus over higher ids under contention,
1507 * regardless of entry order into the function.
1508 */
1509static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1510 __releases(this_rq->lock)
1511 __acquires(busiest->lock)
1512 __acquires(this_rq->lock)
1513{
1514 int ret = 0;
1515
1516 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1517 if (busiest < this_rq) {
1518 raw_spin_unlock(&this_rq->lock);
1519 raw_spin_lock(&busiest->lock);
1520 raw_spin_lock_nested(&this_rq->lock,
1521 SINGLE_DEPTH_NESTING);
1522 ret = 1;
1523 } else
1524 raw_spin_lock_nested(&busiest->lock,
1525 SINGLE_DEPTH_NESTING);
1526 }
1527 return ret;
1528}
1529
1530#endif /* CONFIG_PREEMPT */
1531
1532/*
1533 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1534 */
1535static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1536{
1537 if (unlikely(!irqs_disabled())) {
1538 /* printk() doesn't work good under rq->lock */
1539 raw_spin_unlock(&this_rq->lock);
1540 BUG_ON(1);
1541 }
1542
1543 return _double_lock_balance(this_rq, busiest);
1544}
1545
1546static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1547 __releases(busiest->lock)
1548{
1549 raw_spin_unlock(&busiest->lock);
1550 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1551}
1552
74602315
PZ
1553static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1554{
1555 if (l1 > l2)
1556 swap(l1, l2);
1557
1558 spin_lock(l1);
1559 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1560}
1561
60e69eed
MG
1562static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1563{
1564 if (l1 > l2)
1565 swap(l1, l2);
1566
1567 spin_lock_irq(l1);
1568 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1569}
1570
74602315
PZ
1571static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1572{
1573 if (l1 > l2)
1574 swap(l1, l2);
1575
1576 raw_spin_lock(l1);
1577 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1578}
1579
029632fb
PZ
1580/*
1581 * double_rq_lock - safely lock two runqueues
1582 *
1583 * Note this does not disable interrupts like task_rq_lock,
1584 * you need to do so manually before calling.
1585 */
1586static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1587 __acquires(rq1->lock)
1588 __acquires(rq2->lock)
1589{
1590 BUG_ON(!irqs_disabled());
1591 if (rq1 == rq2) {
1592 raw_spin_lock(&rq1->lock);
1593 __acquire(rq2->lock); /* Fake it out ;) */
1594 } else {
1595 if (rq1 < rq2) {
1596 raw_spin_lock(&rq1->lock);
1597 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1598 } else {
1599 raw_spin_lock(&rq2->lock);
1600 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1601 }
1602 }
1603}
1604
1605/*
1606 * double_rq_unlock - safely unlock two runqueues
1607 *
1608 * Note this does not restore interrupts like task_rq_unlock,
1609 * you need to do so manually after calling.
1610 */
1611static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1612 __releases(rq1->lock)
1613 __releases(rq2->lock)
1614{
1615 raw_spin_unlock(&rq1->lock);
1616 if (rq1 != rq2)
1617 raw_spin_unlock(&rq2->lock);
1618 else
1619 __release(rq2->lock);
1620}
1621
1622#else /* CONFIG_SMP */
1623
1624/*
1625 * double_rq_lock - safely lock two runqueues
1626 *
1627 * Note this does not disable interrupts like task_rq_lock,
1628 * you need to do so manually before calling.
1629 */
1630static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1631 __acquires(rq1->lock)
1632 __acquires(rq2->lock)
1633{
1634 BUG_ON(!irqs_disabled());
1635 BUG_ON(rq1 != rq2);
1636 raw_spin_lock(&rq1->lock);
1637 __acquire(rq2->lock); /* Fake it out ;) */
1638}
1639
1640/*
1641 * double_rq_unlock - safely unlock two runqueues
1642 *
1643 * Note this does not restore interrupts like task_rq_unlock,
1644 * you need to do so manually after calling.
1645 */
1646static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1647 __releases(rq1->lock)
1648 __releases(rq2->lock)
1649{
1650 BUG_ON(rq1 != rq2);
1651 raw_spin_unlock(&rq1->lock);
1652 __release(rq2->lock);
1653}
1654
1655#endif
1656
1657extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1658extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1659
1660#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1661extern void print_cfs_stats(struct seq_file *m, int cpu);
1662extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1663extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1664extern void
1665print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1666
1667#ifdef CONFIG_NUMA_BALANCING
1668extern void
1669show_numa_stats(struct task_struct *p, struct seq_file *m);
1670extern void
1671print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1672 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1673#endif /* CONFIG_NUMA_BALANCING */
1674#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1675
1676extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1677extern void init_rt_rq(struct rt_rq *rt_rq);
1678extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1679
1ee14e6c
BS
1680extern void cfs_bandwidth_usage_inc(void);
1681extern void cfs_bandwidth_usage_dec(void);
1c792db7 1682
3451d024 1683#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1684enum rq_nohz_flag_bits {
1685 NOHZ_TICK_STOPPED,
1686 NOHZ_BALANCE_KICK,
1687};
1688
1689#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1690#endif
73fbec60
FW
1691
1692#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1693
1694DECLARE_PER_CPU(u64, cpu_hardirq_time);
1695DECLARE_PER_CPU(u64, cpu_softirq_time);
1696
1697#ifndef CONFIG_64BIT
1698DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1699
1700static inline void irq_time_write_begin(void)
1701{
1702 __this_cpu_inc(irq_time_seq.sequence);
1703 smp_wmb();
1704}
1705
1706static inline void irq_time_write_end(void)
1707{
1708 smp_wmb();
1709 __this_cpu_inc(irq_time_seq.sequence);
1710}
1711
1712static inline u64 irq_time_read(int cpu)
1713{
1714 u64 irq_time;
1715 unsigned seq;
1716
1717 do {
1718 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1719 irq_time = per_cpu(cpu_softirq_time, cpu) +
1720 per_cpu(cpu_hardirq_time, cpu);
1721 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1722
1723 return irq_time;
1724}
1725#else /* CONFIG_64BIT */
1726static inline void irq_time_write_begin(void)
1727{
1728}
1729
1730static inline void irq_time_write_end(void)
1731{
1732}
1733
1734static inline u64 irq_time_read(int cpu)
1735{
1736 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1737}
1738#endif /* CONFIG_64BIT */
1739#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1740
1741#ifdef CONFIG_CPU_FREQ
1742DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1743
1744/**
1745 * cpufreq_update_util - Take a note about CPU utilization changes.
1746 * @time: Current time.
1747 * @util: Current utilization.
1748 * @max: Utilization ceiling.
1749 *
1750 * This function is called by the scheduler on every invocation of
1751 * update_load_avg() on the CPU whose utilization is being updated.
1752 *
1753 * It can only be called from RCU-sched read-side critical sections.
1754 */
1755static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1756{
1757 struct update_util_data *data;
1758
1759 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1760 if (data)
1761 data->func(data, time, util, max);
1762}
1763
1764/**
1765 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1766 * @time: Current time.
1767 *
1768 * The way cpufreq is currently arranged requires it to evaluate the CPU
1769 * performance state (frequency/voltage) on a regular basis to prevent it from
1770 * being stuck in a completely inadequate performance level for too long.
1771 * That is not guaranteed to happen if the updates are only triggered from CFS,
1772 * though, because they may not be coming in if RT or deadline tasks are active
1773 * all the time (or there are RT and DL tasks only).
1774 *
1775 * As a workaround for that issue, this function is called by the RT and DL
1776 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1777 * but that really is a band-aid. Going forward it should be replaced with
1778 * solutions targeted more specifically at RT and DL tasks.
1779 */
1780static inline void cpufreq_trigger_update(u64 time)
1781{
1782 cpufreq_update_util(time, ULONG_MAX, 0);
1783}
1784#else
1785static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1786static inline void cpufreq_trigger_update(u64 time) {}
1787#endif /* CONFIG_CPU_FREQ */
be53f58f 1788
e9532e69
TG
1789static inline void account_reset_rq(struct rq *rq)
1790{
1791#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1792 rq->prev_irq_time = 0;
1793#endif
1794#ifdef CONFIG_PARAVIRT
1795 rq->prev_steal_time = 0;
1796#endif
1797#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1798 rq->prev_steal_time_rq = 0;
1799#endif
1800}