]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched: Make __update_entity_runnable_avg() fast
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
c566e8e9 115 atomic64_t load_avg;
bb17f655 116 atomic_t runnable_avg;
029632fb
PZ
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
c82513e5 206 unsigned int nr_running, h_nr_running;
029632fb
PZ
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
029632fb
PZ
217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
2dac754e
PT
227#ifdef CONFIG_SMP
228 /*
229 * CFS Load tracking
230 * Under CFS, load is tracked on a per-entity basis and aggregated up.
231 * This allows for the description of both thread and group usage (in
232 * the FAIR_GROUP_SCHED case).
233 */
9ee474f5 234 u64 runnable_load_avg, blocked_load_avg;
aff3e498 235 atomic64_t decay_counter, removed_load;
9ee474f5 236 u64 last_decay;
82958366 237
c566e8e9 238#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 239 u32 tg_runnable_contrib;
c566e8e9 240 u64 tg_load_contrib;
82958366
PT
241#endif /* CONFIG_FAIR_GROUP_SCHED */
242
243 /*
244 * h_load = weight * f(tg)
245 *
246 * Where f(tg) is the recursive weight fraction assigned to
247 * this group.
248 */
249 unsigned long h_load;
250#endif /* CONFIG_SMP */
251
029632fb
PZ
252#ifdef CONFIG_FAIR_GROUP_SCHED
253 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
254
255 /*
256 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
257 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
258 * (like users, containers etc.)
259 *
260 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
261 * list is used during load balance.
262 */
263 int on_list;
264 struct list_head leaf_cfs_rq_list;
265 struct task_group *tg; /* group that "owns" this runqueue */
266
029632fb
PZ
267#ifdef CONFIG_CFS_BANDWIDTH
268 int runtime_enabled;
269 u64 runtime_expires;
270 s64 runtime_remaining;
271
f1b17280
PT
272 u64 throttled_clock, throttled_clock_task;
273 u64 throttled_clock_task_time;
029632fb
PZ
274 int throttled, throttle_count;
275 struct list_head throttled_list;
276#endif /* CONFIG_CFS_BANDWIDTH */
277#endif /* CONFIG_FAIR_GROUP_SCHED */
278};
279
280static inline int rt_bandwidth_enabled(void)
281{
282 return sysctl_sched_rt_runtime >= 0;
283}
284
285/* Real-Time classes' related field in a runqueue: */
286struct rt_rq {
287 struct rt_prio_array active;
c82513e5 288 unsigned int rt_nr_running;
029632fb
PZ
289#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
290 struct {
291 int curr; /* highest queued rt task prio */
292#ifdef CONFIG_SMP
293 int next; /* next highest */
294#endif
295 } highest_prio;
296#endif
297#ifdef CONFIG_SMP
298 unsigned long rt_nr_migratory;
299 unsigned long rt_nr_total;
300 int overloaded;
301 struct plist_head pushable_tasks;
302#endif
303 int rt_throttled;
304 u64 rt_time;
305 u64 rt_runtime;
306 /* Nests inside the rq lock: */
307 raw_spinlock_t rt_runtime_lock;
308
309#ifdef CONFIG_RT_GROUP_SCHED
310 unsigned long rt_nr_boosted;
311
312 struct rq *rq;
313 struct list_head leaf_rt_rq_list;
314 struct task_group *tg;
315#endif
316};
317
318#ifdef CONFIG_SMP
319
320/*
321 * We add the notion of a root-domain which will be used to define per-domain
322 * variables. Each exclusive cpuset essentially defines an island domain by
323 * fully partitioning the member cpus from any other cpuset. Whenever a new
324 * exclusive cpuset is created, we also create and attach a new root-domain
325 * object.
326 *
327 */
328struct root_domain {
329 atomic_t refcount;
330 atomic_t rto_count;
331 struct rcu_head rcu;
332 cpumask_var_t span;
333 cpumask_var_t online;
334
335 /*
336 * The "RT overload" flag: it gets set if a CPU has more than
337 * one runnable RT task.
338 */
339 cpumask_var_t rto_mask;
340 struct cpupri cpupri;
341};
342
343extern struct root_domain def_root_domain;
344
345#endif /* CONFIG_SMP */
346
347/*
348 * This is the main, per-CPU runqueue data structure.
349 *
350 * Locking rule: those places that want to lock multiple runqueues
351 * (such as the load balancing or the thread migration code), lock
352 * acquire operations must be ordered by ascending &runqueue.
353 */
354struct rq {
355 /* runqueue lock: */
356 raw_spinlock_t lock;
357
358 /*
359 * nr_running and cpu_load should be in the same cacheline because
360 * remote CPUs use both these fields when doing load calculation.
361 */
c82513e5 362 unsigned int nr_running;
029632fb
PZ
363 #define CPU_LOAD_IDX_MAX 5
364 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
365 unsigned long last_load_update_tick;
366#ifdef CONFIG_NO_HZ
367 u64 nohz_stamp;
1c792db7 368 unsigned long nohz_flags;
029632fb
PZ
369#endif
370 int skip_clock_update;
371
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
374 unsigned long nr_load_updates;
375 u64 nr_switches;
376
377 struct cfs_rq cfs;
378 struct rt_rq rt;
379
380#ifdef CONFIG_FAIR_GROUP_SCHED
381 /* list of leaf cfs_rq on this cpu: */
382 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
383#ifdef CONFIG_SMP
384 unsigned long h_load_throttle;
385#endif /* CONFIG_SMP */
386#endif /* CONFIG_FAIR_GROUP_SCHED */
387
029632fb
PZ
388#ifdef CONFIG_RT_GROUP_SCHED
389 struct list_head leaf_rt_rq_list;
390#endif
391
392 /*
393 * This is part of a global counter where only the total sum
394 * over all CPUs matters. A task can increase this counter on
395 * one CPU and if it got migrated afterwards it may decrease
396 * it on another CPU. Always updated under the runqueue lock:
397 */
398 unsigned long nr_uninterruptible;
399
400 struct task_struct *curr, *idle, *stop;
401 unsigned long next_balance;
402 struct mm_struct *prev_mm;
403
404 u64 clock;
405 u64 clock_task;
406
407 atomic_t nr_iowait;
408
409#ifdef CONFIG_SMP
410 struct root_domain *rd;
411 struct sched_domain *sd;
412
413 unsigned long cpu_power;
414
415 unsigned char idle_balance;
416 /* For active balancing */
417 int post_schedule;
418 int active_balance;
419 int push_cpu;
420 struct cpu_stop_work active_balance_work;
421 /* cpu of this runqueue: */
422 int cpu;
423 int online;
424
367456c7
PZ
425 struct list_head cfs_tasks;
426
029632fb
PZ
427 u64 rt_avg;
428 u64 age_stamp;
429 u64 idle_stamp;
430 u64 avg_idle;
431#endif
432
433#ifdef CONFIG_IRQ_TIME_ACCOUNTING
434 u64 prev_irq_time;
435#endif
436#ifdef CONFIG_PARAVIRT
437 u64 prev_steal_time;
438#endif
439#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
440 u64 prev_steal_time_rq;
441#endif
442
443 /* calc_load related fields */
444 unsigned long calc_load_update;
445 long calc_load_active;
446
447#ifdef CONFIG_SCHED_HRTICK
448#ifdef CONFIG_SMP
449 int hrtick_csd_pending;
450 struct call_single_data hrtick_csd;
451#endif
452 struct hrtimer hrtick_timer;
453#endif
454
455#ifdef CONFIG_SCHEDSTATS
456 /* latency stats */
457 struct sched_info rq_sched_info;
458 unsigned long long rq_cpu_time;
459 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
460
461 /* sys_sched_yield() stats */
462 unsigned int yld_count;
463
464 /* schedule() stats */
029632fb
PZ
465 unsigned int sched_count;
466 unsigned int sched_goidle;
467
468 /* try_to_wake_up() stats */
469 unsigned int ttwu_count;
470 unsigned int ttwu_local;
471#endif
472
473#ifdef CONFIG_SMP
474 struct llist_head wake_list;
475#endif
18bf2805
BS
476
477 struct sched_avg avg;
029632fb
PZ
478};
479
480static inline int cpu_of(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483 return rq->cpu;
484#else
485 return 0;
486#endif
487}
488
489DECLARE_PER_CPU(struct rq, runqueues);
490
518cd623
PZ
491#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
492#define this_rq() (&__get_cpu_var(runqueues))
493#define task_rq(p) cpu_rq(task_cpu(p))
494#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
495#define raw_rq() (&__raw_get_cpu_var(runqueues))
496
497#ifdef CONFIG_SMP
498
029632fb
PZ
499#define rcu_dereference_check_sched_domain(p) \
500 rcu_dereference_check((p), \
501 lockdep_is_held(&sched_domains_mutex))
502
503/*
504 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
505 * See detach_destroy_domains: synchronize_sched for details.
506 *
507 * The domain tree of any CPU may only be accessed from within
508 * preempt-disabled sections.
509 */
510#define for_each_domain(cpu, __sd) \
518cd623
PZ
511 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
512 __sd; __sd = __sd->parent)
029632fb 513
77e81365
SS
514#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
515
518cd623
PZ
516/**
517 * highest_flag_domain - Return highest sched_domain containing flag.
518 * @cpu: The cpu whose highest level of sched domain is to
519 * be returned.
520 * @flag: The flag to check for the highest sched_domain
521 * for the given cpu.
522 *
523 * Returns the highest sched_domain of a cpu which contains the given flag.
524 */
525static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
526{
527 struct sched_domain *sd, *hsd = NULL;
528
529 for_each_domain(cpu, sd) {
530 if (!(sd->flags & flag))
531 break;
532 hsd = sd;
533 }
534
535 return hsd;
536}
537
538DECLARE_PER_CPU(struct sched_domain *, sd_llc);
539DECLARE_PER_CPU(int, sd_llc_id);
540
c1174876
PZ
541extern int group_balance_cpu(struct sched_group *sg);
542
518cd623 543#endif /* CONFIG_SMP */
029632fb 544
391e43da
PZ
545#include "stats.h"
546#include "auto_group.h"
029632fb
PZ
547
548#ifdef CONFIG_CGROUP_SCHED
549
550/*
551 * Return the group to which this tasks belongs.
552 *
8323f26c
PZ
553 * We cannot use task_subsys_state() and friends because the cgroup
554 * subsystem changes that value before the cgroup_subsys::attach() method
555 * is called, therefore we cannot pin it and might observe the wrong value.
556 *
557 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
558 * core changes this before calling sched_move_task().
559 *
560 * Instead we use a 'copy' which is updated from sched_move_task() while
561 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
562 */
563static inline struct task_group *task_group(struct task_struct *p)
564{
8323f26c 565 return p->sched_task_group;
029632fb
PZ
566}
567
568/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
569static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
570{
571#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
572 struct task_group *tg = task_group(p);
573#endif
574
575#ifdef CONFIG_FAIR_GROUP_SCHED
576 p->se.cfs_rq = tg->cfs_rq[cpu];
577 p->se.parent = tg->se[cpu];
578#endif
579
580#ifdef CONFIG_RT_GROUP_SCHED
581 p->rt.rt_rq = tg->rt_rq[cpu];
582 p->rt.parent = tg->rt_se[cpu];
583#endif
584}
585
586#else /* CONFIG_CGROUP_SCHED */
587
588static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
589static inline struct task_group *task_group(struct task_struct *p)
590{
591 return NULL;
592}
593
594#endif /* CONFIG_CGROUP_SCHED */
595
596static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
597{
598 set_task_rq(p, cpu);
599#ifdef CONFIG_SMP
600 /*
601 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
602 * successfuly executed on another CPU. We must ensure that updates of
603 * per-task data have been completed by this moment.
604 */
605 smp_wmb();
606 task_thread_info(p)->cpu = cpu;
607#endif
608}
609
610/*
611 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
612 */
613#ifdef CONFIG_SCHED_DEBUG
c5905afb 614# include <linux/static_key.h>
029632fb
PZ
615# define const_debug __read_mostly
616#else
617# define const_debug const
618#endif
619
620extern const_debug unsigned int sysctl_sched_features;
621
622#define SCHED_FEAT(name, enabled) \
623 __SCHED_FEAT_##name ,
624
625enum {
391e43da 626#include "features.h"
f8b6d1cc 627 __SCHED_FEAT_NR,
029632fb
PZ
628};
629
630#undef SCHED_FEAT
631
f8b6d1cc 632#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 633static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 634{
c5905afb 635 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
636}
637
c5905afb 638static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 639{
c5905afb 640 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
641}
642
643#define SCHED_FEAT(name, enabled) \
c5905afb 644static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
645{ \
646 return static_branch__##enabled(key); \
647}
648
649#include "features.h"
650
651#undef SCHED_FEAT
652
c5905afb 653extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
654#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
655#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 656#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 657#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
658
659static inline u64 global_rt_period(void)
660{
661 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
662}
663
664static inline u64 global_rt_runtime(void)
665{
666 if (sysctl_sched_rt_runtime < 0)
667 return RUNTIME_INF;
668
669 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
670}
671
672
673
674static inline int task_current(struct rq *rq, struct task_struct *p)
675{
676 return rq->curr == p;
677}
678
679static inline int task_running(struct rq *rq, struct task_struct *p)
680{
681#ifdef CONFIG_SMP
682 return p->on_cpu;
683#else
684 return task_current(rq, p);
685#endif
686}
687
688
689#ifndef prepare_arch_switch
690# define prepare_arch_switch(next) do { } while (0)
691#endif
692#ifndef finish_arch_switch
693# define finish_arch_switch(prev) do { } while (0)
694#endif
01f23e16
CM
695#ifndef finish_arch_post_lock_switch
696# define finish_arch_post_lock_switch() do { } while (0)
697#endif
029632fb
PZ
698
699#ifndef __ARCH_WANT_UNLOCKED_CTXSW
700static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
701{
702#ifdef CONFIG_SMP
703 /*
704 * We can optimise this out completely for !SMP, because the
705 * SMP rebalancing from interrupt is the only thing that cares
706 * here.
707 */
708 next->on_cpu = 1;
709#endif
710}
711
712static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
713{
714#ifdef CONFIG_SMP
715 /*
716 * After ->on_cpu is cleared, the task can be moved to a different CPU.
717 * We must ensure this doesn't happen until the switch is completely
718 * finished.
719 */
720 smp_wmb();
721 prev->on_cpu = 0;
722#endif
723#ifdef CONFIG_DEBUG_SPINLOCK
724 /* this is a valid case when another task releases the spinlock */
725 rq->lock.owner = current;
726#endif
727 /*
728 * If we are tracking spinlock dependencies then we have to
729 * fix up the runqueue lock - which gets 'carried over' from
730 * prev into current:
731 */
732 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
733
734 raw_spin_unlock_irq(&rq->lock);
735}
736
737#else /* __ARCH_WANT_UNLOCKED_CTXSW */
738static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
739{
740#ifdef CONFIG_SMP
741 /*
742 * We can optimise this out completely for !SMP, because the
743 * SMP rebalancing from interrupt is the only thing that cares
744 * here.
745 */
746 next->on_cpu = 1;
747#endif
029632fb 748 raw_spin_unlock(&rq->lock);
029632fb
PZ
749}
750
751static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
752{
753#ifdef CONFIG_SMP
754 /*
755 * After ->on_cpu is cleared, the task can be moved to a different CPU.
756 * We must ensure this doesn't happen until the switch is completely
757 * finished.
758 */
759 smp_wmb();
760 prev->on_cpu = 0;
761#endif
029632fb 762 local_irq_enable();
029632fb
PZ
763}
764#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
765
766
767static inline void update_load_add(struct load_weight *lw, unsigned long inc)
768{
769 lw->weight += inc;
770 lw->inv_weight = 0;
771}
772
773static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774{
775 lw->weight -= dec;
776 lw->inv_weight = 0;
777}
778
779static inline void update_load_set(struct load_weight *lw, unsigned long w)
780{
781 lw->weight = w;
782 lw->inv_weight = 0;
783}
784
785/*
786 * To aid in avoiding the subversion of "niceness" due to uneven distribution
787 * of tasks with abnormal "nice" values across CPUs the contribution that
788 * each task makes to its run queue's load is weighted according to its
789 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
790 * scaled version of the new time slice allocation that they receive on time
791 * slice expiry etc.
792 */
793
794#define WEIGHT_IDLEPRIO 3
795#define WMULT_IDLEPRIO 1431655765
796
797/*
798 * Nice levels are multiplicative, with a gentle 10% change for every
799 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
800 * nice 1, it will get ~10% less CPU time than another CPU-bound task
801 * that remained on nice 0.
802 *
803 * The "10% effect" is relative and cumulative: from _any_ nice level,
804 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
805 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
806 * If a task goes up by ~10% and another task goes down by ~10% then
807 * the relative distance between them is ~25%.)
808 */
809static const int prio_to_weight[40] = {
810 /* -20 */ 88761, 71755, 56483, 46273, 36291,
811 /* -15 */ 29154, 23254, 18705, 14949, 11916,
812 /* -10 */ 9548, 7620, 6100, 4904, 3906,
813 /* -5 */ 3121, 2501, 1991, 1586, 1277,
814 /* 0 */ 1024, 820, 655, 526, 423,
815 /* 5 */ 335, 272, 215, 172, 137,
816 /* 10 */ 110, 87, 70, 56, 45,
817 /* 15 */ 36, 29, 23, 18, 15,
818};
819
820/*
821 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
822 *
823 * In cases where the weight does not change often, we can use the
824 * precalculated inverse to speed up arithmetics by turning divisions
825 * into multiplications:
826 */
827static const u32 prio_to_wmult[40] = {
828 /* -20 */ 48388, 59856, 76040, 92818, 118348,
829 /* -15 */ 147320, 184698, 229616, 287308, 360437,
830 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
831 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
832 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
833 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
834 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
835 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
836};
837
838/* Time spent by the tasks of the cpu accounting group executing in ... */
839enum cpuacct_stat_index {
840 CPUACCT_STAT_USER, /* ... user mode */
841 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
842
843 CPUACCT_STAT_NSTATS,
844};
845
846
847#define sched_class_highest (&stop_sched_class)
848#define for_each_class(class) \
849 for (class = sched_class_highest; class; class = class->next)
850
851extern const struct sched_class stop_sched_class;
852extern const struct sched_class rt_sched_class;
853extern const struct sched_class fair_sched_class;
854extern const struct sched_class idle_sched_class;
855
856
857#ifdef CONFIG_SMP
858
859extern void trigger_load_balance(struct rq *rq, int cpu);
860extern void idle_balance(int this_cpu, struct rq *this_rq);
861
862#else /* CONFIG_SMP */
863
864static inline void idle_balance(int cpu, struct rq *rq)
865{
866}
867
868#endif
869
870extern void sysrq_sched_debug_show(void);
871extern void sched_init_granularity(void);
872extern void update_max_interval(void);
873extern void update_group_power(struct sched_domain *sd, int cpu);
874extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
875extern void init_sched_rt_class(void);
876extern void init_sched_fair_class(void);
877
878extern void resched_task(struct task_struct *p);
879extern void resched_cpu(int cpu);
880
881extern struct rt_bandwidth def_rt_bandwidth;
882extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
883
556061b0 884extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
885
886#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
887#include <linux/cgroup.h>
888/* track cpu usage of a group of tasks and its child groups */
889struct cpuacct {
890 struct cgroup_subsys_state css;
891 /* cpuusage holds pointer to a u64-type object on every cpu */
892 u64 __percpu *cpuusage;
893 struct kernel_cpustat __percpu *cpustat;
894};
895
73fbec60
FW
896extern struct cgroup_subsys cpuacct_subsys;
897extern struct cpuacct root_cpuacct;
898
54c707e9
GC
899/* return cpu accounting group corresponding to this container */
900static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
901{
902 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
903 struct cpuacct, css);
904}
905
906/* return cpu accounting group to which this task belongs */
907static inline struct cpuacct *task_ca(struct task_struct *tsk)
908{
909 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
910 struct cpuacct, css);
911}
912
913static inline struct cpuacct *parent_ca(struct cpuacct *ca)
914{
915 if (!ca || !ca->css.cgroup->parent)
916 return NULL;
917 return cgroup_ca(ca->css.cgroup->parent);
918}
919
029632fb 920extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
921#else
922static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
923#endif
924
73fbec60
FW
925#ifdef CONFIG_PARAVIRT
926static inline u64 steal_ticks(u64 steal)
927{
928 if (unlikely(steal > NSEC_PER_SEC))
929 return div_u64(steal, TICK_NSEC);
930
931 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
932}
933#endif
934
029632fb
PZ
935static inline void inc_nr_running(struct rq *rq)
936{
937 rq->nr_running++;
938}
939
940static inline void dec_nr_running(struct rq *rq)
941{
942 rq->nr_running--;
943}
944
945extern void update_rq_clock(struct rq *rq);
946
947extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
948extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
949
950extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
951
952extern const_debug unsigned int sysctl_sched_time_avg;
953extern const_debug unsigned int sysctl_sched_nr_migrate;
954extern const_debug unsigned int sysctl_sched_migration_cost;
955
956static inline u64 sched_avg_period(void)
957{
958 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
959}
960
029632fb
PZ
961#ifdef CONFIG_SCHED_HRTICK
962
963/*
964 * Use hrtick when:
965 * - enabled by features
966 * - hrtimer is actually high res
967 */
968static inline int hrtick_enabled(struct rq *rq)
969{
970 if (!sched_feat(HRTICK))
971 return 0;
972 if (!cpu_active(cpu_of(rq)))
973 return 0;
974 return hrtimer_is_hres_active(&rq->hrtick_timer);
975}
976
977void hrtick_start(struct rq *rq, u64 delay);
978
b39e66ea
MG
979#else
980
981static inline int hrtick_enabled(struct rq *rq)
982{
983 return 0;
984}
985
029632fb
PZ
986#endif /* CONFIG_SCHED_HRTICK */
987
988#ifdef CONFIG_SMP
989extern void sched_avg_update(struct rq *rq);
990static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
991{
992 rq->rt_avg += rt_delta;
993 sched_avg_update(rq);
994}
995#else
996static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
997static inline void sched_avg_update(struct rq *rq) { }
998#endif
999
1000extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1001
1002#ifdef CONFIG_SMP
1003#ifdef CONFIG_PREEMPT
1004
1005static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1006
1007/*
1008 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1009 * way at the expense of forcing extra atomic operations in all
1010 * invocations. This assures that the double_lock is acquired using the
1011 * same underlying policy as the spinlock_t on this architecture, which
1012 * reduces latency compared to the unfair variant below. However, it
1013 * also adds more overhead and therefore may reduce throughput.
1014 */
1015static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1016 __releases(this_rq->lock)
1017 __acquires(busiest->lock)
1018 __acquires(this_rq->lock)
1019{
1020 raw_spin_unlock(&this_rq->lock);
1021 double_rq_lock(this_rq, busiest);
1022
1023 return 1;
1024}
1025
1026#else
1027/*
1028 * Unfair double_lock_balance: Optimizes throughput at the expense of
1029 * latency by eliminating extra atomic operations when the locks are
1030 * already in proper order on entry. This favors lower cpu-ids and will
1031 * grant the double lock to lower cpus over higher ids under contention,
1032 * regardless of entry order into the function.
1033 */
1034static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1035 __releases(this_rq->lock)
1036 __acquires(busiest->lock)
1037 __acquires(this_rq->lock)
1038{
1039 int ret = 0;
1040
1041 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1042 if (busiest < this_rq) {
1043 raw_spin_unlock(&this_rq->lock);
1044 raw_spin_lock(&busiest->lock);
1045 raw_spin_lock_nested(&this_rq->lock,
1046 SINGLE_DEPTH_NESTING);
1047 ret = 1;
1048 } else
1049 raw_spin_lock_nested(&busiest->lock,
1050 SINGLE_DEPTH_NESTING);
1051 }
1052 return ret;
1053}
1054
1055#endif /* CONFIG_PREEMPT */
1056
1057/*
1058 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1059 */
1060static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1061{
1062 if (unlikely(!irqs_disabled())) {
1063 /* printk() doesn't work good under rq->lock */
1064 raw_spin_unlock(&this_rq->lock);
1065 BUG_ON(1);
1066 }
1067
1068 return _double_lock_balance(this_rq, busiest);
1069}
1070
1071static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1072 __releases(busiest->lock)
1073{
1074 raw_spin_unlock(&busiest->lock);
1075 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1076}
1077
1078/*
1079 * double_rq_lock - safely lock two runqueues
1080 *
1081 * Note this does not disable interrupts like task_rq_lock,
1082 * you need to do so manually before calling.
1083 */
1084static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1085 __acquires(rq1->lock)
1086 __acquires(rq2->lock)
1087{
1088 BUG_ON(!irqs_disabled());
1089 if (rq1 == rq2) {
1090 raw_spin_lock(&rq1->lock);
1091 __acquire(rq2->lock); /* Fake it out ;) */
1092 } else {
1093 if (rq1 < rq2) {
1094 raw_spin_lock(&rq1->lock);
1095 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1096 } else {
1097 raw_spin_lock(&rq2->lock);
1098 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1099 }
1100 }
1101}
1102
1103/*
1104 * double_rq_unlock - safely unlock two runqueues
1105 *
1106 * Note this does not restore interrupts like task_rq_unlock,
1107 * you need to do so manually after calling.
1108 */
1109static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1110 __releases(rq1->lock)
1111 __releases(rq2->lock)
1112{
1113 raw_spin_unlock(&rq1->lock);
1114 if (rq1 != rq2)
1115 raw_spin_unlock(&rq2->lock);
1116 else
1117 __release(rq2->lock);
1118}
1119
1120#else /* CONFIG_SMP */
1121
1122/*
1123 * double_rq_lock - safely lock two runqueues
1124 *
1125 * Note this does not disable interrupts like task_rq_lock,
1126 * you need to do so manually before calling.
1127 */
1128static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1129 __acquires(rq1->lock)
1130 __acquires(rq2->lock)
1131{
1132 BUG_ON(!irqs_disabled());
1133 BUG_ON(rq1 != rq2);
1134 raw_spin_lock(&rq1->lock);
1135 __acquire(rq2->lock); /* Fake it out ;) */
1136}
1137
1138/*
1139 * double_rq_unlock - safely unlock two runqueues
1140 *
1141 * Note this does not restore interrupts like task_rq_unlock,
1142 * you need to do so manually after calling.
1143 */
1144static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1145 __releases(rq1->lock)
1146 __releases(rq2->lock)
1147{
1148 BUG_ON(rq1 != rq2);
1149 raw_spin_unlock(&rq1->lock);
1150 __release(rq2->lock);
1151}
1152
1153#endif
1154
1155extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1156extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1157extern void print_cfs_stats(struct seq_file *m, int cpu);
1158extern void print_rt_stats(struct seq_file *m, int cpu);
1159
1160extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1161extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1162
1163extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1164
1165#ifdef CONFIG_NO_HZ
1166enum rq_nohz_flag_bits {
1167 NOHZ_TICK_STOPPED,
1168 NOHZ_BALANCE_KICK,
69e1e811 1169 NOHZ_IDLE,
1c792db7
SS
1170};
1171
1172#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1173#endif
73fbec60
FW
1174
1175#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1176
1177DECLARE_PER_CPU(u64, cpu_hardirq_time);
1178DECLARE_PER_CPU(u64, cpu_softirq_time);
1179
1180#ifndef CONFIG_64BIT
1181DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1182
1183static inline void irq_time_write_begin(void)
1184{
1185 __this_cpu_inc(irq_time_seq.sequence);
1186 smp_wmb();
1187}
1188
1189static inline void irq_time_write_end(void)
1190{
1191 smp_wmb();
1192 __this_cpu_inc(irq_time_seq.sequence);
1193}
1194
1195static inline u64 irq_time_read(int cpu)
1196{
1197 u64 irq_time;
1198 unsigned seq;
1199
1200 do {
1201 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1202 irq_time = per_cpu(cpu_softirq_time, cpu) +
1203 per_cpu(cpu_hardirq_time, cpu);
1204 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1205
1206 return irq_time;
1207}
1208#else /* CONFIG_64BIT */
1209static inline void irq_time_write_begin(void)
1210{
1211}
1212
1213static inline void irq_time_write_end(void)
1214{
1215}
1216
1217static inline u64 irq_time_read(int cpu)
1218{
1219 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1220}
1221#endif /* CONFIG_64BIT */
1222#endif /* CONFIG_IRQ_TIME_ACCOUNTING */