]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched/fair: Clean-up update_sg_lb_stats parameters
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9148a3a1 78#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 80#else
6d3aed3d 81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
82#endif
83
45ceebf7 84struct rq;
442bf3aa 85struct cpuidle_state;
45ceebf7 86
da0c1e65
KT
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
cca26e80 89#define TASK_ON_RQ_MIGRATING 2
da0c1e65 90
029632fb
PZ
91extern __read_mostly int scheduler_running;
92
45ceebf7
PG
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
3289bdb4 96extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
98
99#ifdef CONFIG_SMP
cee1afce 100extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 101#else
cee1afce 102static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 103#endif
45ceebf7 104
029632fb
PZ
105/*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
cc1f4b1f
LZ
110/*
111 * Increase resolution of nice-level calculations for 64-bit architectures.
112 * The extra resolution improves shares distribution and load balancing of
113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114 * hierarchies, especially on larger systems. This is not a user-visible change
115 * and does not change the user-interface for setting shares/weights.
116 *
117 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119 * are pretty high and the returns do not justify the increased costs.
2159197d 120 *
97fb7a0a
IM
121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 123 */
2159197d 124#ifdef CONFIG_64BIT
172895e6 125# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
126# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
127# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 128#else
172895e6 129# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
130# define scale_load(w) (w)
131# define scale_load_down(w) (w)
132#endif
133
6ecdd749 134/*
172895e6
YD
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
139 *
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141 *
6ecdd749 142 */
172895e6 143#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 144
332ac17e
DF
145/*
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
149 */
97fb7a0a 150#define DL_SCALE 10
029632fb
PZ
151
152/*
97fb7a0a 153 * Single value that denotes runtime == period, ie unlimited time.
029632fb 154 */
97fb7a0a 155#define RUNTIME_INF ((u64)~0ULL)
029632fb 156
20f9cd2a
HA
157static inline int idle_policy(int policy)
158{
159 return policy == SCHED_IDLE;
160}
d50dde5a
DF
161static inline int fair_policy(int policy)
162{
163 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164}
165
029632fb
PZ
166static inline int rt_policy(int policy)
167{
d50dde5a 168 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
169}
170
aab03e05
DF
171static inline int dl_policy(int policy)
172{
173 return policy == SCHED_DEADLINE;
174}
20f9cd2a
HA
175static inline bool valid_policy(int policy)
176{
177 return idle_policy(policy) || fair_policy(policy) ||
178 rt_policy(policy) || dl_policy(policy);
179}
aab03e05 180
1da1843f
VK
181static inline int task_has_idle_policy(struct task_struct *p)
182{
183 return idle_policy(p->policy);
184}
185
029632fb
PZ
186static inline int task_has_rt_policy(struct task_struct *p)
187{
188 return rt_policy(p->policy);
189}
190
aab03e05
DF
191static inline int task_has_dl_policy(struct task_struct *p)
192{
193 return dl_policy(p->policy);
194}
195
07881166
JL
196#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197
794a56eb
JL
198/*
199 * !! For sched_setattr_nocheck() (kernel) only !!
200 *
201 * This is actually gross. :(
202 *
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
207 *
208 * SUGOV stands for SchedUtil GOVernor.
209 */
210#define SCHED_FLAG_SUGOV 0x10000000
211
212static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213{
214#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216#else
217 return false;
218#endif
219}
220
2d3d891d
DF
221/*
222 * Tells if entity @a should preempt entity @b.
223 */
332ac17e
DF
224static inline bool
225dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 226{
794a56eb
JL
227 return dl_entity_is_special(a) ||
228 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
229}
230
029632fb
PZ
231/*
232 * This is the priority-queue data structure of the RT scheduling class:
233 */
234struct rt_prio_array {
235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 struct list_head queue[MAX_RT_PRIO];
237};
238
239struct rt_bandwidth {
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock;
242 ktime_t rt_period;
243 u64 rt_runtime;
244 struct hrtimer rt_period_timer;
4cfafd30 245 unsigned int rt_period_active;
029632fb 246};
a5e7be3b
JL
247
248void __dl_clear_params(struct task_struct *p);
249
332ac17e
DF
250/*
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
255 *
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
261 *
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
263 * meaning that:
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
272 * control.
273 */
274struct dl_bandwidth {
97fb7a0a
IM
275 raw_spinlock_t dl_runtime_lock;
276 u64 dl_runtime;
277 u64 dl_period;
332ac17e
DF
278};
279
280static inline int dl_bandwidth_enabled(void)
281{
1724813d 282 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
283}
284
332ac17e 285struct dl_bw {
97fb7a0a
IM
286 raw_spinlock_t lock;
287 u64 bw;
288 u64 total_bw;
332ac17e
DF
289};
290
daec5798
LA
291static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292
7f51412a 293static inline
8c0944ce 294void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
295{
296 dl_b->total_bw -= tsk_bw;
daec5798 297 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
298}
299
300static inline
daec5798 301void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
302{
303 dl_b->total_bw += tsk_bw;
daec5798 304 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
305}
306
307static inline
308bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309{
310 return dl_b->bw != -1 &&
311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312}
313
97fb7a0a 314extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 315extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 316extern int sched_dl_global_validate(void);
06a76fe0 317extern void sched_dl_do_global(void);
97fb7a0a 318extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
319extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 322extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
323extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 325extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
326
327#ifdef CONFIG_CGROUP_SCHED
328
329#include <linux/cgroup.h>
eb414681 330#include <linux/psi.h>
029632fb
PZ
331
332struct cfs_rq;
333struct rt_rq;
334
35cf4e50 335extern struct list_head task_groups;
029632fb
PZ
336
337struct cfs_bandwidth {
338#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
339 raw_spinlock_t lock;
340 ktime_t period;
341 u64 quota;
342 u64 runtime;
343 s64 hierarchical_quota;
344 u64 runtime_expires;
512ac999 345 int expires_seq;
97fb7a0a 346
512ac999
XP
347 short idle;
348 short period_active;
97fb7a0a
IM
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 u64 throttled_time;
baa9be4f
PA
357
358 bool distribute_running;
029632fb
PZ
359#endif
360};
361
97fb7a0a 362/* Task group related information */
029632fb
PZ
363struct task_group {
364 struct cgroup_subsys_state css;
365
366#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
029632fb 372
fa6bddeb 373#ifdef CONFIG_SMP
b0367629
WL
374 /*
375 * load_avg can be heavily contended at clock tick time, so put
376 * it in its own cacheline separated from the fields above which
377 * will also be accessed at each tick.
378 */
97fb7a0a 379 atomic_long_t load_avg ____cacheline_aligned;
029632fb 380#endif
fa6bddeb 381#endif
029632fb
PZ
382
383#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
384 struct sched_rt_entity **rt_se;
385 struct rt_rq **rt_rq;
029632fb 386
97fb7a0a 387 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
388#endif
389
97fb7a0a
IM
390 struct rcu_head rcu;
391 struct list_head list;
029632fb 392
97fb7a0a
IM
393 struct task_group *parent;
394 struct list_head siblings;
395 struct list_head children;
029632fb
PZ
396
397#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 398 struct autogroup *autogroup;
029632fb
PZ
399#endif
400
97fb7a0a 401 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
402};
403
404#ifdef CONFIG_FAIR_GROUP_SCHED
405#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
406
407/*
408 * A weight of 0 or 1 can cause arithmetics problems.
409 * A weight of a cfs_rq is the sum of weights of which entities
410 * are queued on this cfs_rq, so a weight of a entity should not be
411 * too large, so as the shares value of a task group.
412 * (The default weight is 1024 - so there's no practical
413 * limitation from this.)
414 */
97fb7a0a
IM
415#define MIN_SHARES (1UL << 1)
416#define MAX_SHARES (1UL << 18)
029632fb
PZ
417#endif
418
029632fb
PZ
419typedef int (*tg_visitor)(struct task_group *, void *);
420
421extern int walk_tg_tree_from(struct task_group *from,
422 tg_visitor down, tg_visitor up, void *data);
423
424/*
425 * Iterate the full tree, calling @down when first entering a node and @up when
426 * leaving it for the final time.
427 *
428 * Caller must hold rcu_lock or sufficient equivalent.
429 */
430static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
431{
432 return walk_tg_tree_from(&root_task_group, down, up, data);
433}
434
435extern int tg_nop(struct task_group *tg, void *data);
436
437extern void free_fair_sched_group(struct task_group *tg);
438extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 439extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 440extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
441extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
442 struct sched_entity *se, int cpu,
443 struct sched_entity *parent);
444extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
445
446extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 447extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
448extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
449
450extern void free_rt_sched_group(struct task_group *tg);
451extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
452extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
453 struct sched_rt_entity *rt_se, int cpu,
454 struct sched_rt_entity *parent);
8887cd99
NP
455extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
456extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
457extern long sched_group_rt_runtime(struct task_group *tg);
458extern long sched_group_rt_period(struct task_group *tg);
459extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 460
25cc7da7
LZ
461extern struct task_group *sched_create_group(struct task_group *parent);
462extern void sched_online_group(struct task_group *tg,
463 struct task_group *parent);
464extern void sched_destroy_group(struct task_group *tg);
465extern void sched_offline_group(struct task_group *tg);
466
467extern void sched_move_task(struct task_struct *tsk);
468
469#ifdef CONFIG_FAIR_GROUP_SCHED
470extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
471
472#ifdef CONFIG_SMP
473extern void set_task_rq_fair(struct sched_entity *se,
474 struct cfs_rq *prev, struct cfs_rq *next);
475#else /* !CONFIG_SMP */
476static inline void set_task_rq_fair(struct sched_entity *se,
477 struct cfs_rq *prev, struct cfs_rq *next) { }
478#endif /* CONFIG_SMP */
479#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 480
029632fb
PZ
481#else /* CONFIG_CGROUP_SCHED */
482
483struct cfs_bandwidth { };
484
485#endif /* CONFIG_CGROUP_SCHED */
486
487/* CFS-related fields in a runqueue */
488struct cfs_rq {
97fb7a0a
IM
489 struct load_weight load;
490 unsigned long runnable_weight;
491 unsigned int nr_running;
492 unsigned int h_nr_running;
029632fb 493
97fb7a0a
IM
494 u64 exec_clock;
495 u64 min_vruntime;
029632fb 496#ifndef CONFIG_64BIT
97fb7a0a 497 u64 min_vruntime_copy;
029632fb
PZ
498#endif
499
97fb7a0a 500 struct rb_root_cached tasks_timeline;
029632fb 501
029632fb
PZ
502 /*
503 * 'curr' points to currently running entity on this cfs_rq.
504 * It is set to NULL otherwise (i.e when none are currently running).
505 */
97fb7a0a
IM
506 struct sched_entity *curr;
507 struct sched_entity *next;
508 struct sched_entity *last;
509 struct sched_entity *skip;
029632fb
PZ
510
511#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 512 unsigned int nr_spread_over;
029632fb
PZ
513#endif
514
2dac754e
PT
515#ifdef CONFIG_SMP
516 /*
9d89c257 517 * CFS load tracking
2dac754e 518 */
97fb7a0a 519 struct sched_avg avg;
2a2f5d4e 520#ifndef CONFIG_64BIT
97fb7a0a 521 u64 load_last_update_time_copy;
9d89c257 522#endif
2a2f5d4e
PZ
523 struct {
524 raw_spinlock_t lock ____cacheline_aligned;
525 int nr;
526 unsigned long load_avg;
527 unsigned long util_avg;
0e2d2aaa 528 unsigned long runnable_sum;
2a2f5d4e 529 } removed;
82958366 530
9d89c257 531#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
532 unsigned long tg_load_avg_contrib;
533 long propagate;
534 long prop_runnable_sum;
0e2d2aaa 535
82958366
PT
536 /*
537 * h_load = weight * f(tg)
538 *
539 * Where f(tg) is the recursive weight fraction assigned to
540 * this group.
541 */
97fb7a0a
IM
542 unsigned long h_load;
543 u64 last_h_load_update;
544 struct sched_entity *h_load_next;
68520796 545#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
546#endif /* CONFIG_SMP */
547
029632fb 548#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 549 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
550
551 /*
552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
554 * (like users, containers etc.)
555 *
97fb7a0a
IM
556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
557 * This list is used during load balance.
029632fb 558 */
97fb7a0a
IM
559 int on_list;
560 struct list_head leaf_cfs_rq_list;
561 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 562
029632fb 563#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 564 int runtime_enabled;
512ac999 565 int expires_seq;
97fb7a0a
IM
566 u64 runtime_expires;
567 s64 runtime_remaining;
568
569 u64 throttled_clock;
570 u64 throttled_clock_task;
571 u64 throttled_clock_task_time;
572 int throttled;
573 int throttle_count;
574 struct list_head throttled_list;
029632fb
PZ
575#endif /* CONFIG_CFS_BANDWIDTH */
576#endif /* CONFIG_FAIR_GROUP_SCHED */
577};
578
579static inline int rt_bandwidth_enabled(void)
580{
581 return sysctl_sched_rt_runtime >= 0;
582}
583
b6366f04 584/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 585#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
586# define HAVE_RT_PUSH_IPI
587#endif
588
029632fb
PZ
589/* Real-Time classes' related field in a runqueue: */
590struct rt_rq {
97fb7a0a
IM
591 struct rt_prio_array active;
592 unsigned int rt_nr_running;
593 unsigned int rr_nr_running;
029632fb
PZ
594#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
595 struct {
97fb7a0a 596 int curr; /* highest queued rt task prio */
029632fb 597#ifdef CONFIG_SMP
97fb7a0a 598 int next; /* next highest */
029632fb
PZ
599#endif
600 } highest_prio;
601#endif
602#ifdef CONFIG_SMP
97fb7a0a
IM
603 unsigned long rt_nr_migratory;
604 unsigned long rt_nr_total;
605 int overloaded;
606 struct plist_head pushable_tasks;
371bf427 607
b6366f04 608#endif /* CONFIG_SMP */
97fb7a0a 609 int rt_queued;
f4ebcbc0 610
97fb7a0a
IM
611 int rt_throttled;
612 u64 rt_time;
613 u64 rt_runtime;
029632fb 614 /* Nests inside the rq lock: */
97fb7a0a 615 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
616
617#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 618 unsigned long rt_nr_boosted;
029632fb 619
97fb7a0a
IM
620 struct rq *rq;
621 struct task_group *tg;
029632fb
PZ
622#endif
623};
624
296b2ffe
VG
625static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
626{
627 return rt_rq->rt_queued && rt_rq->rt_nr_running;
628}
629
aab03e05
DF
630/* Deadline class' related fields in a runqueue */
631struct dl_rq {
632 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 633 struct rb_root_cached root;
aab03e05 634
97fb7a0a 635 unsigned long dl_nr_running;
1baca4ce
JL
636
637#ifdef CONFIG_SMP
638 /*
639 * Deadline values of the currently executing and the
640 * earliest ready task on this rq. Caching these facilitates
dfcb245e 641 * the decision whether or not a ready but not running task
1baca4ce
JL
642 * should migrate somewhere else.
643 */
644 struct {
97fb7a0a
IM
645 u64 curr;
646 u64 next;
1baca4ce
JL
647 } earliest_dl;
648
97fb7a0a
IM
649 unsigned long dl_nr_migratory;
650 int overloaded;
1baca4ce
JL
651
652 /*
653 * Tasks on this rq that can be pushed away. They are kept in
654 * an rb-tree, ordered by tasks' deadlines, with caching
655 * of the leftmost (earliest deadline) element.
656 */
97fb7a0a 657 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 658#else
97fb7a0a 659 struct dl_bw dl_bw;
1baca4ce 660#endif
e36d8677
LA
661 /*
662 * "Active utilization" for this runqueue: increased when a
663 * task wakes up (becomes TASK_RUNNING) and decreased when a
664 * task blocks
665 */
97fb7a0a 666 u64 running_bw;
4da3abce 667
8fd27231
LA
668 /*
669 * Utilization of the tasks "assigned" to this runqueue (including
670 * the tasks that are in runqueue and the tasks that executed on this
671 * CPU and blocked). Increased when a task moves to this runqueue, and
672 * decreased when the task moves away (migrates, changes scheduling
673 * policy, or terminates).
674 * This is needed to compute the "inactive utilization" for the
675 * runqueue (inactive utilization = this_bw - running_bw).
676 */
97fb7a0a
IM
677 u64 this_bw;
678 u64 extra_bw;
8fd27231 679
4da3abce
LA
680 /*
681 * Inverse of the fraction of CPU utilization that can be reclaimed
682 * by the GRUB algorithm.
683 */
97fb7a0a 684 u64 bw_ratio;
aab03e05
DF
685};
686
c0796298
VG
687#ifdef CONFIG_FAIR_GROUP_SCHED
688/* An entity is a task if it doesn't "own" a runqueue */
689#define entity_is_task(se) (!se->my_q)
690#else
691#define entity_is_task(se) 1
692#endif
693
029632fb 694#ifdef CONFIG_SMP
c0796298
VG
695/*
696 * XXX we want to get rid of these helpers and use the full load resolution.
697 */
698static inline long se_weight(struct sched_entity *se)
699{
700 return scale_load_down(se->load.weight);
701}
702
703static inline long se_runnable(struct sched_entity *se)
704{
705 return scale_load_down(se->runnable_weight);
706}
029632fb 707
afe06efd
TC
708static inline bool sched_asym_prefer(int a, int b)
709{
710 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
711}
712
6aa140fa
QP
713struct perf_domain {
714 struct em_perf_domain *em_pd;
715 struct perf_domain *next;
716 struct rcu_head rcu;
717};
718
630246a0
QP
719/* Scheduling group status flags */
720#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
721
029632fb
PZ
722/*
723 * We add the notion of a root-domain which will be used to define per-domain
724 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 725 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
726 * exclusive cpuset is created, we also create and attach a new root-domain
727 * object.
728 *
729 */
730struct root_domain {
97fb7a0a
IM
731 atomic_t refcount;
732 atomic_t rto_count;
733 struct rcu_head rcu;
734 cpumask_var_t span;
735 cpumask_var_t online;
029632fb 736
757ffdd7
VS
737 /*
738 * Indicate pullable load on at least one CPU, e.g:
739 * - More than one runnable task
740 * - Running task is misfit
741 */
575638d1 742 int overload;
4486edd1 743
1baca4ce
JL
744 /*
745 * The bit corresponding to a CPU gets set here if such CPU has more
746 * than one runnable -deadline task (as it is below for RT tasks).
747 */
97fb7a0a
IM
748 cpumask_var_t dlo_mask;
749 atomic_t dlo_count;
750 struct dl_bw dl_bw;
751 struct cpudl cpudl;
1baca4ce 752
4bdced5c
SRRH
753#ifdef HAVE_RT_PUSH_IPI
754 /*
755 * For IPI pull requests, loop across the rto_mask.
756 */
97fb7a0a
IM
757 struct irq_work rto_push_work;
758 raw_spinlock_t rto_lock;
4bdced5c 759 /* These are only updated and read within rto_lock */
97fb7a0a
IM
760 int rto_loop;
761 int rto_cpu;
4bdced5c 762 /* These atomics are updated outside of a lock */
97fb7a0a
IM
763 atomic_t rto_loop_next;
764 atomic_t rto_loop_start;
4bdced5c 765#endif
029632fb
PZ
766 /*
767 * The "RT overload" flag: it gets set if a CPU has more than
768 * one runnable RT task.
769 */
97fb7a0a
IM
770 cpumask_var_t rto_mask;
771 struct cpupri cpupri;
cd92bfd3 772
97fb7a0a 773 unsigned long max_cpu_capacity;
6aa140fa
QP
774
775 /*
776 * NULL-terminated list of performance domains intersecting with the
777 * CPUs of the rd. Protected by RCU.
778 */
779 struct perf_domain *pd;
029632fb
PZ
780};
781
782extern struct root_domain def_root_domain;
f2cb1360 783extern struct mutex sched_domains_mutex;
f2cb1360
IM
784
785extern void init_defrootdomain(void);
8d5dc512 786extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 787extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
788extern void sched_get_rd(struct root_domain *rd);
789extern void sched_put_rd(struct root_domain *rd);
029632fb 790
4bdced5c
SRRH
791#ifdef HAVE_RT_PUSH_IPI
792extern void rto_push_irq_work_func(struct irq_work *work);
793#endif
029632fb
PZ
794#endif /* CONFIG_SMP */
795
796/*
797 * This is the main, per-CPU runqueue data structure.
798 *
799 * Locking rule: those places that want to lock multiple runqueues
800 * (such as the load balancing or the thread migration code), lock
801 * acquire operations must be ordered by ascending &runqueue.
802 */
803struct rq {
804 /* runqueue lock: */
97fb7a0a 805 raw_spinlock_t lock;
029632fb
PZ
806
807 /*
808 * nr_running and cpu_load should be in the same cacheline because
809 * remote CPUs use both these fields when doing load calculation.
810 */
97fb7a0a 811 unsigned int nr_running;
0ec8aa00 812#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
813 unsigned int nr_numa_running;
814 unsigned int nr_preferred_running;
a4739eca 815 unsigned int numa_migrate_on;
0ec8aa00 816#endif
029632fb 817 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 818 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 819#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 820#ifdef CONFIG_SMP
97fb7a0a 821 unsigned long last_load_update_tick;
e022e0d3 822 unsigned long last_blocked_load_update_tick;
f643ea22 823 unsigned int has_blocked_load;
9fd81dd5 824#endif /* CONFIG_SMP */
00357f5e 825 unsigned int nohz_tick_stopped;
a22e47a4 826 atomic_t nohz_flags;
9fd81dd5 827#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 828
97fb7a0a
IM
829 /* capture load from *all* tasks on this CPU: */
830 struct load_weight load;
831 unsigned long nr_load_updates;
832 u64 nr_switches;
029632fb 833
97fb7a0a
IM
834 struct cfs_rq cfs;
835 struct rt_rq rt;
836 struct dl_rq dl;
029632fb
PZ
837
838#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
839 /* list of leaf cfs_rq on this CPU: */
840 struct list_head leaf_cfs_rq_list;
841 struct list_head *tmp_alone_branch;
a35b6466
PZ
842#endif /* CONFIG_FAIR_GROUP_SCHED */
843
029632fb
PZ
844 /*
845 * This is part of a global counter where only the total sum
846 * over all CPUs matters. A task can increase this counter on
847 * one CPU and if it got migrated afterwards it may decrease
848 * it on another CPU. Always updated under the runqueue lock:
849 */
97fb7a0a 850 unsigned long nr_uninterruptible;
029632fb 851
97fb7a0a
IM
852 struct task_struct *curr;
853 struct task_struct *idle;
854 struct task_struct *stop;
855 unsigned long next_balance;
856 struct mm_struct *prev_mm;
029632fb 857
97fb7a0a
IM
858 unsigned int clock_update_flags;
859 u64 clock;
860 u64 clock_task;
029632fb 861
97fb7a0a 862 atomic_t nr_iowait;
029632fb
PZ
863
864#ifdef CONFIG_SMP
97fb7a0a
IM
865 struct root_domain *rd;
866 struct sched_domain *sd;
867
868 unsigned long cpu_capacity;
869 unsigned long cpu_capacity_orig;
029632fb 870
97fb7a0a 871 struct callback_head *balance_callback;
029632fb 872
97fb7a0a 873 unsigned char idle_balance;
e3fca9e7 874
3b1baa64
MR
875 unsigned long misfit_task_load;
876
029632fb 877 /* For active balancing */
97fb7a0a
IM
878 int active_balance;
879 int push_cpu;
880 struct cpu_stop_work active_balance_work;
881
882 /* CPU of this runqueue: */
883 int cpu;
884 int online;
029632fb 885
367456c7
PZ
886 struct list_head cfs_tasks;
887
371bf427 888 struct sched_avg avg_rt;
3727e0e1 889 struct sched_avg avg_dl;
11d4afd4 890#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
891 struct sched_avg avg_irq;
892#endif
97fb7a0a
IM
893 u64 idle_stamp;
894 u64 avg_idle;
9bd721c5
JL
895
896 /* This is used to determine avg_idle's max value */
97fb7a0a 897 u64 max_idle_balance_cost;
029632fb
PZ
898#endif
899
900#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 901 u64 prev_irq_time;
029632fb
PZ
902#endif
903#ifdef CONFIG_PARAVIRT
97fb7a0a 904 u64 prev_steal_time;
029632fb
PZ
905#endif
906#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 907 u64 prev_steal_time_rq;
029632fb
PZ
908#endif
909
910 /* calc_load related fields */
97fb7a0a
IM
911 unsigned long calc_load_update;
912 long calc_load_active;
029632fb
PZ
913
914#ifdef CONFIG_SCHED_HRTICK
915#ifdef CONFIG_SMP
97fb7a0a
IM
916 int hrtick_csd_pending;
917 call_single_data_t hrtick_csd;
029632fb 918#endif
97fb7a0a 919 struct hrtimer hrtick_timer;
029632fb
PZ
920#endif
921
922#ifdef CONFIG_SCHEDSTATS
923 /* latency stats */
97fb7a0a
IM
924 struct sched_info rq_sched_info;
925 unsigned long long rq_cpu_time;
029632fb
PZ
926 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
927
928 /* sys_sched_yield() stats */
97fb7a0a 929 unsigned int yld_count;
029632fb
PZ
930
931 /* schedule() stats */
97fb7a0a
IM
932 unsigned int sched_count;
933 unsigned int sched_goidle;
029632fb
PZ
934
935 /* try_to_wake_up() stats */
97fb7a0a
IM
936 unsigned int ttwu_count;
937 unsigned int ttwu_local;
029632fb
PZ
938#endif
939
940#ifdef CONFIG_SMP
97fb7a0a 941 struct llist_head wake_list;
029632fb 942#endif
442bf3aa
DL
943
944#ifdef CONFIG_CPU_IDLE
945 /* Must be inspected within a rcu lock section */
97fb7a0a 946 struct cpuidle_state *idle_state;
442bf3aa 947#endif
029632fb
PZ
948};
949
950static inline int cpu_of(struct rq *rq)
951{
952#ifdef CONFIG_SMP
953 return rq->cpu;
954#else
955 return 0;
956#endif
957}
958
1b568f0a
PZ
959
960#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
961extern void __update_idle_core(struct rq *rq);
962
963static inline void update_idle_core(struct rq *rq)
964{
965 if (static_branch_unlikely(&sched_smt_present))
966 __update_idle_core(rq);
967}
968
969#else
970static inline void update_idle_core(struct rq *rq) { }
971#endif
972
8b06c55b 973DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 974
518cd623 975#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 976#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
977#define task_rq(p) cpu_rq(task_cpu(p))
978#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 979#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 980
1f351d7f
JW
981extern void update_rq_clock(struct rq *rq);
982
cebde6d6
PZ
983static inline u64 __rq_clock_broken(struct rq *rq)
984{
316c1608 985 return READ_ONCE(rq->clock);
cebde6d6
PZ
986}
987
cb42c9a3
MF
988/*
989 * rq::clock_update_flags bits
990 *
991 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
992 * call to __schedule(). This is an optimisation to avoid
993 * neighbouring rq clock updates.
994 *
995 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
996 * in effect and calls to update_rq_clock() are being ignored.
997 *
998 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
999 * made to update_rq_clock() since the last time rq::lock was pinned.
1000 *
1001 * If inside of __schedule(), clock_update_flags will have been
1002 * shifted left (a left shift is a cheap operation for the fast path
1003 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1004 *
1005 * if (rq-clock_update_flags >= RQCF_UPDATED)
1006 *
1007 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1008 * one position though, because the next rq_unpin_lock() will shift it
1009 * back.
1010 */
97fb7a0a
IM
1011#define RQCF_REQ_SKIP 0x01
1012#define RQCF_ACT_SKIP 0x02
1013#define RQCF_UPDATED 0x04
cb42c9a3
MF
1014
1015static inline void assert_clock_updated(struct rq *rq)
1016{
1017 /*
1018 * The only reason for not seeing a clock update since the
1019 * last rq_pin_lock() is if we're currently skipping updates.
1020 */
1021 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1022}
1023
78becc27
FW
1024static inline u64 rq_clock(struct rq *rq)
1025{
cebde6d6 1026 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1027 assert_clock_updated(rq);
1028
78becc27
FW
1029 return rq->clock;
1030}
1031
1032static inline u64 rq_clock_task(struct rq *rq)
1033{
cebde6d6 1034 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1035 assert_clock_updated(rq);
1036
78becc27
FW
1037 return rq->clock_task;
1038}
1039
adcc8da8 1040static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1041{
1042 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1043 rq->clock_update_flags |= RQCF_REQ_SKIP;
1044}
1045
1046/*
595058b6 1047 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1048 * request is cancelled.
1049 */
1050static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1051{
1052 lockdep_assert_held(&rq->lock);
1053 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1054}
1055
d8ac8971
MF
1056struct rq_flags {
1057 unsigned long flags;
1058 struct pin_cookie cookie;
cb42c9a3
MF
1059#ifdef CONFIG_SCHED_DEBUG
1060 /*
1061 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1062 * current pin context is stashed here in case it needs to be
1063 * restored in rq_repin_lock().
1064 */
1065 unsigned int clock_update_flags;
1066#endif
d8ac8971
MF
1067};
1068
1069static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1070{
1071 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1072
1073#ifdef CONFIG_SCHED_DEBUG
1074 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1075 rf->clock_update_flags = 0;
1076#endif
d8ac8971
MF
1077}
1078
1079static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1080{
cb42c9a3
MF
1081#ifdef CONFIG_SCHED_DEBUG
1082 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1083 rf->clock_update_flags = RQCF_UPDATED;
1084#endif
1085
d8ac8971
MF
1086 lockdep_unpin_lock(&rq->lock, rf->cookie);
1087}
1088
1089static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1090{
1091 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1092
1093#ifdef CONFIG_SCHED_DEBUG
1094 /*
1095 * Restore the value we stashed in @rf for this pin context.
1096 */
1097 rq->clock_update_flags |= rf->clock_update_flags;
1098#endif
d8ac8971
MF
1099}
1100
1f351d7f
JW
1101struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1102 __acquires(rq->lock);
1103
1104struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1105 __acquires(p->pi_lock)
1106 __acquires(rq->lock);
1107
1108static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1109 __releases(rq->lock)
1110{
1111 rq_unpin_lock(rq, rf);
1112 raw_spin_unlock(&rq->lock);
1113}
1114
1115static inline void
1116task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1117 __releases(rq->lock)
1118 __releases(p->pi_lock)
1119{
1120 rq_unpin_lock(rq, rf);
1121 raw_spin_unlock(&rq->lock);
1122 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1123}
1124
1125static inline void
1126rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1127 __acquires(rq->lock)
1128{
1129 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1130 rq_pin_lock(rq, rf);
1131}
1132
1133static inline void
1134rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1135 __acquires(rq->lock)
1136{
1137 raw_spin_lock_irq(&rq->lock);
1138 rq_pin_lock(rq, rf);
1139}
1140
1141static inline void
1142rq_lock(struct rq *rq, struct rq_flags *rf)
1143 __acquires(rq->lock)
1144{
1145 raw_spin_lock(&rq->lock);
1146 rq_pin_lock(rq, rf);
1147}
1148
1149static inline void
1150rq_relock(struct rq *rq, struct rq_flags *rf)
1151 __acquires(rq->lock)
1152{
1153 raw_spin_lock(&rq->lock);
1154 rq_repin_lock(rq, rf);
1155}
1156
1157static inline void
1158rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1159 __releases(rq->lock)
1160{
1161 rq_unpin_lock(rq, rf);
1162 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1163}
1164
1165static inline void
1166rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1167 __releases(rq->lock)
1168{
1169 rq_unpin_lock(rq, rf);
1170 raw_spin_unlock_irq(&rq->lock);
1171}
1172
1173static inline void
1174rq_unlock(struct rq *rq, struct rq_flags *rf)
1175 __releases(rq->lock)
1176{
1177 rq_unpin_lock(rq, rf);
1178 raw_spin_unlock(&rq->lock);
1179}
1180
246b3b33
JW
1181static inline struct rq *
1182this_rq_lock_irq(struct rq_flags *rf)
1183 __acquires(rq->lock)
1184{
1185 struct rq *rq;
1186
1187 local_irq_disable();
1188 rq = this_rq();
1189 rq_lock(rq, rf);
1190 return rq;
1191}
1192
9942f79b 1193#ifdef CONFIG_NUMA
e3fe70b1
RR
1194enum numa_topology_type {
1195 NUMA_DIRECT,
1196 NUMA_GLUELESS_MESH,
1197 NUMA_BACKPLANE,
1198};
1199extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1200extern int sched_max_numa_distance;
1201extern bool find_numa_distance(int distance);
1202#endif
1203
f2cb1360
IM
1204#ifdef CONFIG_NUMA
1205extern void sched_init_numa(void);
1206extern void sched_domains_numa_masks_set(unsigned int cpu);
1207extern void sched_domains_numa_masks_clear(unsigned int cpu);
1208#else
1209static inline void sched_init_numa(void) { }
1210static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1211static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1212#endif
1213
f809ca9a 1214#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1215/* The regions in numa_faults array from task_struct */
1216enum numa_faults_stats {
1217 NUMA_MEM = 0,
1218 NUMA_CPU,
1219 NUMA_MEMBUF,
1220 NUMA_CPUBUF
1221};
0ec8aa00 1222extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1223extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1224extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1225 int cpu, int scpu);
13784475
MG
1226extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1227#else
1228static inline void
1229init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1230{
1231}
f809ca9a
MG
1232#endif /* CONFIG_NUMA_BALANCING */
1233
518cd623
PZ
1234#ifdef CONFIG_SMP
1235
e3fca9e7
PZ
1236static inline void
1237queue_balance_callback(struct rq *rq,
1238 struct callback_head *head,
1239 void (*func)(struct rq *rq))
1240{
1241 lockdep_assert_held(&rq->lock);
1242
1243 if (unlikely(head->next))
1244 return;
1245
1246 head->func = (void (*)(struct callback_head *))func;
1247 head->next = rq->balance_callback;
1248 rq->balance_callback = head;
1249}
1250
e3baac47
PZ
1251extern void sched_ttwu_pending(void);
1252
029632fb
PZ
1253#define rcu_dereference_check_sched_domain(p) \
1254 rcu_dereference_check((p), \
1255 lockdep_is_held(&sched_domains_mutex))
1256
1257/*
1258 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1259 * See detach_destroy_domains: synchronize_sched for details.
1260 *
1261 * The domain tree of any CPU may only be accessed from within
1262 * preempt-disabled sections.
1263 */
1264#define for_each_domain(cpu, __sd) \
518cd623
PZ
1265 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1266 __sd; __sd = __sd->parent)
029632fb 1267
77e81365
SS
1268#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1269
518cd623
PZ
1270/**
1271 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1272 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1273 * be returned.
1274 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1275 * for the given CPU.
518cd623 1276 *
97fb7a0a 1277 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1278 */
1279static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1280{
1281 struct sched_domain *sd, *hsd = NULL;
1282
1283 for_each_domain(cpu, sd) {
1284 if (!(sd->flags & flag))
1285 break;
1286 hsd = sd;
1287 }
1288
1289 return hsd;
1290}
1291
fb13c7ee
MG
1292static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1293{
1294 struct sched_domain *sd;
1295
1296 for_each_domain(cpu, sd) {
1297 if (sd->flags & flag)
1298 break;
1299 }
1300
1301 return sd;
1302}
1303
518cd623 1304DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1305DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1306DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1307DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1308DECLARE_PER_CPU(struct sched_domain *, sd_numa);
011b27bb
QP
1309DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
1310DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
df054e84 1311extern struct static_key_false sched_asym_cpucapacity;
518cd623 1312
63b2ca30 1313struct sched_group_capacity {
97fb7a0a 1314 atomic_t ref;
5e6521ea 1315 /*
172895e6 1316 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1317 * for a single CPU.
5e6521ea 1318 */
97fb7a0a
IM
1319 unsigned long capacity;
1320 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1321 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1322 unsigned long next_update;
1323 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1324
005f874d 1325#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1326 int id;
005f874d
PZ
1327#endif
1328
97fb7a0a 1329 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1330};
1331
1332struct sched_group {
97fb7a0a
IM
1333 struct sched_group *next; /* Must be a circular list */
1334 atomic_t ref;
5e6521ea 1335
97fb7a0a 1336 unsigned int group_weight;
63b2ca30 1337 struct sched_group_capacity *sgc;
97fb7a0a 1338 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1339
1340 /*
1341 * The CPUs this group covers.
1342 *
1343 * NOTE: this field is variable length. (Allocated dynamically
1344 * by attaching extra space to the end of the structure,
1345 * depending on how many CPUs the kernel has booted up with)
1346 */
97fb7a0a 1347 unsigned long cpumask[0];
5e6521ea
LZ
1348};
1349
ae4df9d6 1350static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1351{
1352 return to_cpumask(sg->cpumask);
1353}
1354
1355/*
e5c14b1f 1356 * See build_balance_mask().
5e6521ea 1357 */
e5c14b1f 1358static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1359{
63b2ca30 1360 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1361}
1362
1363/**
97fb7a0a
IM
1364 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1365 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1366 */
1367static inline unsigned int group_first_cpu(struct sched_group *group)
1368{
ae4df9d6 1369 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1370}
1371
c1174876
PZ
1372extern int group_balance_cpu(struct sched_group *sg);
1373
3866e845
SRRH
1374#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1375void register_sched_domain_sysctl(void);
bbdacdfe 1376void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1377void unregister_sched_domain_sysctl(void);
1378#else
1379static inline void register_sched_domain_sysctl(void)
1380{
1381}
bbdacdfe
PZ
1382static inline void dirty_sched_domain_sysctl(int cpu)
1383{
1384}
3866e845
SRRH
1385static inline void unregister_sched_domain_sysctl(void)
1386{
1387}
1388#endif
1389
e3baac47
PZ
1390#else
1391
1392static inline void sched_ttwu_pending(void) { }
1393
518cd623 1394#endif /* CONFIG_SMP */
029632fb 1395
391e43da 1396#include "stats.h"
1051408f 1397#include "autogroup.h"
029632fb
PZ
1398
1399#ifdef CONFIG_CGROUP_SCHED
1400
1401/*
1402 * Return the group to which this tasks belongs.
1403 *
8af01f56
TH
1404 * We cannot use task_css() and friends because the cgroup subsystem
1405 * changes that value before the cgroup_subsys::attach() method is called,
1406 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1407 *
1408 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1409 * core changes this before calling sched_move_task().
1410 *
1411 * Instead we use a 'copy' which is updated from sched_move_task() while
1412 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1413 */
1414static inline struct task_group *task_group(struct task_struct *p)
1415{
8323f26c 1416 return p->sched_task_group;
029632fb
PZ
1417}
1418
1419/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1420static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1421{
1422#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1423 struct task_group *tg = task_group(p);
1424#endif
1425
1426#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1427 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1428 p->se.cfs_rq = tg->cfs_rq[cpu];
1429 p->se.parent = tg->se[cpu];
1430#endif
1431
1432#ifdef CONFIG_RT_GROUP_SCHED
1433 p->rt.rt_rq = tg->rt_rq[cpu];
1434 p->rt.parent = tg->rt_se[cpu];
1435#endif
1436}
1437
1438#else /* CONFIG_CGROUP_SCHED */
1439
1440static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1441static inline struct task_group *task_group(struct task_struct *p)
1442{
1443 return NULL;
1444}
1445
1446#endif /* CONFIG_CGROUP_SCHED */
1447
1448static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1449{
1450 set_task_rq(p, cpu);
1451#ifdef CONFIG_SMP
1452 /*
1453 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1454 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1455 * per-task data have been completed by this moment.
1456 */
1457 smp_wmb();
c65eacbe
AL
1458#ifdef CONFIG_THREAD_INFO_IN_TASK
1459 p->cpu = cpu;
1460#else
029632fb 1461 task_thread_info(p)->cpu = cpu;
c65eacbe 1462#endif
ac66f547 1463 p->wake_cpu = cpu;
029632fb
PZ
1464#endif
1465}
1466
1467/*
1468 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1469 */
1470#ifdef CONFIG_SCHED_DEBUG
c5905afb 1471# include <linux/static_key.h>
029632fb
PZ
1472# define const_debug __read_mostly
1473#else
1474# define const_debug const
1475#endif
1476
029632fb
PZ
1477#define SCHED_FEAT(name, enabled) \
1478 __SCHED_FEAT_##name ,
1479
1480enum {
391e43da 1481#include "features.h"
f8b6d1cc 1482 __SCHED_FEAT_NR,
029632fb
PZ
1483};
1484
1485#undef SCHED_FEAT
1486
f8b6d1cc 1487#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1488
1489/*
1490 * To support run-time toggling of sched features, all the translation units
1491 * (but core.c) reference the sysctl_sched_features defined in core.c.
1492 */
1493extern const_debug unsigned int sysctl_sched_features;
1494
f8b6d1cc 1495#define SCHED_FEAT(name, enabled) \
c5905afb 1496static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1497{ \
6e76ea8a 1498 return static_key_##enabled(key); \
f8b6d1cc
PZ
1499}
1500
1501#include "features.h"
f8b6d1cc
PZ
1502#undef SCHED_FEAT
1503
c5905afb 1504extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1505#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1506
f8b6d1cc 1507#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1508
1509/*
1510 * Each translation unit has its own copy of sysctl_sched_features to allow
1511 * constants propagation at compile time and compiler optimization based on
1512 * features default.
1513 */
1514#define SCHED_FEAT(name, enabled) \
1515 (1UL << __SCHED_FEAT_##name) * enabled |
1516static const_debug __maybe_unused unsigned int sysctl_sched_features =
1517#include "features.h"
1518 0;
1519#undef SCHED_FEAT
1520
7e6f4c5d 1521#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1522
f8b6d1cc 1523#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1524
2a595721 1525extern struct static_key_false sched_numa_balancing;
cb251765 1526extern struct static_key_false sched_schedstats;
cbee9f88 1527
029632fb
PZ
1528static inline u64 global_rt_period(void)
1529{
1530 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1531}
1532
1533static inline u64 global_rt_runtime(void)
1534{
1535 if (sysctl_sched_rt_runtime < 0)
1536 return RUNTIME_INF;
1537
1538 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1539}
1540
029632fb
PZ
1541static inline int task_current(struct rq *rq, struct task_struct *p)
1542{
1543 return rq->curr == p;
1544}
1545
1546static inline int task_running(struct rq *rq, struct task_struct *p)
1547{
1548#ifdef CONFIG_SMP
1549 return p->on_cpu;
1550#else
1551 return task_current(rq, p);
1552#endif
1553}
1554
da0c1e65
KT
1555static inline int task_on_rq_queued(struct task_struct *p)
1556{
1557 return p->on_rq == TASK_ON_RQ_QUEUED;
1558}
029632fb 1559
cca26e80
KT
1560static inline int task_on_rq_migrating(struct task_struct *p)
1561{
1562 return p->on_rq == TASK_ON_RQ_MIGRATING;
1563}
1564
b13095f0
LZ
1565/*
1566 * wake flags
1567 */
97fb7a0a
IM
1568#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1569#define WF_FORK 0x02 /* Child wakeup after fork */
1570#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1571
029632fb
PZ
1572/*
1573 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1574 * of tasks with abnormal "nice" values across CPUs the contribution that
1575 * each task makes to its run queue's load is weighted according to its
1576 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1577 * scaled version of the new time slice allocation that they receive on time
1578 * slice expiry etc.
1579 */
1580
97fb7a0a
IM
1581#define WEIGHT_IDLEPRIO 3
1582#define WMULT_IDLEPRIO 1431655765
029632fb 1583
97fb7a0a
IM
1584extern const int sched_prio_to_weight[40];
1585extern const u32 sched_prio_to_wmult[40];
029632fb 1586
ff77e468
PZ
1587/*
1588 * {de,en}queue flags:
1589 *
1590 * DEQUEUE_SLEEP - task is no longer runnable
1591 * ENQUEUE_WAKEUP - task just became runnable
1592 *
1593 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1594 * are in a known state which allows modification. Such pairs
1595 * should preserve as much state as possible.
1596 *
1597 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1598 * in the runqueue.
1599 *
1600 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1601 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1602 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1603 *
1604 */
1605
1606#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1607#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1608#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1609#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1610
1de64443 1611#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1612#define ENQUEUE_RESTORE 0x02
1613#define ENQUEUE_MOVE 0x04
0a67d1ee 1614#define ENQUEUE_NOCLOCK 0x08
ff77e468 1615
0a67d1ee
PZ
1616#define ENQUEUE_HEAD 0x10
1617#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1618#ifdef CONFIG_SMP
0a67d1ee 1619#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1620#else
59efa0ba 1621#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1622#endif
c82ba9fa 1623
37e117c0
PZ
1624#define RETRY_TASK ((void *)-1UL)
1625
c82ba9fa
LZ
1626struct sched_class {
1627 const struct sched_class *next;
1628
1629 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1630 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1631 void (*yield_task) (struct rq *rq);
1632 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1633
97fb7a0a 1634 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1635
606dba2e
PZ
1636 /*
1637 * It is the responsibility of the pick_next_task() method that will
1638 * return the next task to call put_prev_task() on the @prev task or
1639 * something equivalent.
37e117c0
PZ
1640 *
1641 * May return RETRY_TASK when it finds a higher prio class has runnable
1642 * tasks.
606dba2e 1643 */
97fb7a0a
IM
1644 struct task_struct * (*pick_next_task)(struct rq *rq,
1645 struct task_struct *prev,
1646 struct rq_flags *rf);
1647 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1648
1649#ifdef CONFIG_SMP
ac66f547 1650 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1651 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1652
97fb7a0a 1653 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1654
1655 void (*set_cpus_allowed)(struct task_struct *p,
1656 const struct cpumask *newmask);
1657
1658 void (*rq_online)(struct rq *rq);
1659 void (*rq_offline)(struct rq *rq);
1660#endif
1661
97fb7a0a
IM
1662 void (*set_curr_task)(struct rq *rq);
1663 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1664 void (*task_fork)(struct task_struct *p);
1665 void (*task_dead)(struct task_struct *p);
c82ba9fa 1666
67dfa1b7
KT
1667 /*
1668 * The switched_from() call is allowed to drop rq->lock, therefore we
1669 * cannot assume the switched_from/switched_to pair is serliazed by
1670 * rq->lock. They are however serialized by p->pi_lock.
1671 */
97fb7a0a
IM
1672 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1673 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1674 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1675 int oldprio);
c82ba9fa 1676
97fb7a0a
IM
1677 unsigned int (*get_rr_interval)(struct rq *rq,
1678 struct task_struct *task);
c82ba9fa 1679
97fb7a0a 1680 void (*update_curr)(struct rq *rq);
6e998916 1681
97fb7a0a
IM
1682#define TASK_SET_GROUP 0
1683#define TASK_MOVE_GROUP 1
ea86cb4b 1684
c82ba9fa 1685#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1686 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1687#endif
1688};
029632fb 1689
3f1d2a31
PZ
1690static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1691{
1692 prev->sched_class->put_prev_task(rq, prev);
1693}
1694
b2bf6c31
PZ
1695static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1696{
1697 curr->sched_class->set_curr_task(rq);
1698}
1699
f5832c19 1700#ifdef CONFIG_SMP
029632fb 1701#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1702#else
1703#define sched_class_highest (&dl_sched_class)
1704#endif
029632fb
PZ
1705#define for_each_class(class) \
1706 for (class = sched_class_highest; class; class = class->next)
1707
1708extern const struct sched_class stop_sched_class;
aab03e05 1709extern const struct sched_class dl_sched_class;
029632fb
PZ
1710extern const struct sched_class rt_sched_class;
1711extern const struct sched_class fair_sched_class;
1712extern const struct sched_class idle_sched_class;
1713
1714
1715#ifdef CONFIG_SMP
1716
63b2ca30 1717extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1718
7caff66f 1719extern void trigger_load_balance(struct rq *rq);
029632fb 1720
c5b28038
PZ
1721extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1722
029632fb
PZ
1723#endif
1724
442bf3aa
DL
1725#ifdef CONFIG_CPU_IDLE
1726static inline void idle_set_state(struct rq *rq,
1727 struct cpuidle_state *idle_state)
1728{
1729 rq->idle_state = idle_state;
1730}
1731
1732static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1733{
9148a3a1 1734 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1735
442bf3aa
DL
1736 return rq->idle_state;
1737}
1738#else
1739static inline void idle_set_state(struct rq *rq,
1740 struct cpuidle_state *idle_state)
1741{
1742}
1743
1744static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1745{
1746 return NULL;
1747}
1748#endif
1749
8663effb
SRV
1750extern void schedule_idle(void);
1751
029632fb
PZ
1752extern void sysrq_sched_debug_show(void);
1753extern void sched_init_granularity(void);
1754extern void update_max_interval(void);
1baca4ce
JL
1755
1756extern void init_sched_dl_class(void);
029632fb
PZ
1757extern void init_sched_rt_class(void);
1758extern void init_sched_fair_class(void);
1759
9059393e
VG
1760extern void reweight_task(struct task_struct *p, int prio);
1761
8875125e 1762extern void resched_curr(struct rq *rq);
029632fb
PZ
1763extern void resched_cpu(int cpu);
1764
1765extern struct rt_bandwidth def_rt_bandwidth;
1766extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1767
332ac17e
DF
1768extern struct dl_bandwidth def_dl_bandwidth;
1769extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1770extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1771extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1772extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1773
97fb7a0a
IM
1774#define BW_SHIFT 20
1775#define BW_UNIT (1 << BW_SHIFT)
1776#define RATIO_SHIFT 8
332ac17e
DF
1777unsigned long to_ratio(u64 period, u64 runtime);
1778
540247fb 1779extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1780extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1781
76d92ac3
FW
1782#ifdef CONFIG_NO_HZ_FULL
1783extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1784extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1785
1786/*
1787 * Tick may be needed by tasks in the runqueue depending on their policy and
1788 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1789 * nohz mode if necessary.
1790 */
1791static inline void sched_update_tick_dependency(struct rq *rq)
1792{
1793 int cpu;
1794
1795 if (!tick_nohz_full_enabled())
1796 return;
1797
1798 cpu = cpu_of(rq);
1799
1800 if (!tick_nohz_full_cpu(cpu))
1801 return;
1802
1803 if (sched_can_stop_tick(rq))
1804 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1805 else
1806 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1807}
1808#else
d84b3131 1809static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1810static inline void sched_update_tick_dependency(struct rq *rq) { }
1811#endif
1812
72465447 1813static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1814{
72465447
KT
1815 unsigned prev_nr = rq->nr_running;
1816
1817 rq->nr_running = prev_nr + count;
9f3660c2 1818
4486edd1 1819#ifdef CONFIG_SMP
3e184501 1820 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1821 if (!READ_ONCE(rq->rd->overload))
1822 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1823 }
3e184501 1824#endif
76d92ac3
FW
1825
1826 sched_update_tick_dependency(rq);
029632fb
PZ
1827}
1828
72465447 1829static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1830{
72465447 1831 rq->nr_running -= count;
76d92ac3
FW
1832 /* Check if we still need preemption */
1833 sched_update_tick_dependency(rq);
029632fb
PZ
1834}
1835
029632fb
PZ
1836extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1837extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1838
1839extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1840
029632fb
PZ
1841extern const_debug unsigned int sysctl_sched_nr_migrate;
1842extern const_debug unsigned int sysctl_sched_migration_cost;
1843
029632fb
PZ
1844#ifdef CONFIG_SCHED_HRTICK
1845
1846/*
1847 * Use hrtick when:
1848 * - enabled by features
1849 * - hrtimer is actually high res
1850 */
1851static inline int hrtick_enabled(struct rq *rq)
1852{
1853 if (!sched_feat(HRTICK))
1854 return 0;
1855 if (!cpu_active(cpu_of(rq)))
1856 return 0;
1857 return hrtimer_is_hres_active(&rq->hrtick_timer);
1858}
1859
1860void hrtick_start(struct rq *rq, u64 delay);
1861
b39e66ea
MG
1862#else
1863
1864static inline int hrtick_enabled(struct rq *rq)
1865{
1866 return 0;
1867}
1868
029632fb
PZ
1869#endif /* CONFIG_SCHED_HRTICK */
1870
dfbca41f
PZ
1871#ifndef arch_scale_freq_capacity
1872static __always_inline
7673c8a4 1873unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1874{
1875 return SCHED_CAPACITY_SCALE;
1876}
1877#endif
b5b4860d 1878
029632fb
PZ
1879#ifdef CONFIG_SMP
1880#ifdef CONFIG_PREEMPT
1881
1882static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1883
1884/*
1885 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1886 * way at the expense of forcing extra atomic operations in all
1887 * invocations. This assures that the double_lock is acquired using the
1888 * same underlying policy as the spinlock_t on this architecture, which
1889 * reduces latency compared to the unfair variant below. However, it
1890 * also adds more overhead and therefore may reduce throughput.
1891 */
1892static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1893 __releases(this_rq->lock)
1894 __acquires(busiest->lock)
1895 __acquires(this_rq->lock)
1896{
1897 raw_spin_unlock(&this_rq->lock);
1898 double_rq_lock(this_rq, busiest);
1899
1900 return 1;
1901}
1902
1903#else
1904/*
1905 * Unfair double_lock_balance: Optimizes throughput at the expense of
1906 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1907 * already in proper order on entry. This favors lower CPU-ids and will
1908 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1909 * regardless of entry order into the function.
1910 */
1911static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1912 __releases(this_rq->lock)
1913 __acquires(busiest->lock)
1914 __acquires(this_rq->lock)
1915{
1916 int ret = 0;
1917
1918 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1919 if (busiest < this_rq) {
1920 raw_spin_unlock(&this_rq->lock);
1921 raw_spin_lock(&busiest->lock);
1922 raw_spin_lock_nested(&this_rq->lock,
1923 SINGLE_DEPTH_NESTING);
1924 ret = 1;
1925 } else
1926 raw_spin_lock_nested(&busiest->lock,
1927 SINGLE_DEPTH_NESTING);
1928 }
1929 return ret;
1930}
1931
1932#endif /* CONFIG_PREEMPT */
1933
1934/*
1935 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1936 */
1937static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1938{
1939 if (unlikely(!irqs_disabled())) {
97fb7a0a 1940 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1941 raw_spin_unlock(&this_rq->lock);
1942 BUG_ON(1);
1943 }
1944
1945 return _double_lock_balance(this_rq, busiest);
1946}
1947
1948static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1949 __releases(busiest->lock)
1950{
1951 raw_spin_unlock(&busiest->lock);
1952 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1953}
1954
74602315
PZ
1955static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1956{
1957 if (l1 > l2)
1958 swap(l1, l2);
1959
1960 spin_lock(l1);
1961 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1962}
1963
60e69eed
MG
1964static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1965{
1966 if (l1 > l2)
1967 swap(l1, l2);
1968
1969 spin_lock_irq(l1);
1970 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1971}
1972
74602315
PZ
1973static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1974{
1975 if (l1 > l2)
1976 swap(l1, l2);
1977
1978 raw_spin_lock(l1);
1979 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1980}
1981
029632fb
PZ
1982/*
1983 * double_rq_lock - safely lock two runqueues
1984 *
1985 * Note this does not disable interrupts like task_rq_lock,
1986 * you need to do so manually before calling.
1987 */
1988static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1989 __acquires(rq1->lock)
1990 __acquires(rq2->lock)
1991{
1992 BUG_ON(!irqs_disabled());
1993 if (rq1 == rq2) {
1994 raw_spin_lock(&rq1->lock);
1995 __acquire(rq2->lock); /* Fake it out ;) */
1996 } else {
1997 if (rq1 < rq2) {
1998 raw_spin_lock(&rq1->lock);
1999 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2000 } else {
2001 raw_spin_lock(&rq2->lock);
2002 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2003 }
2004 }
2005}
2006
2007/*
2008 * double_rq_unlock - safely unlock two runqueues
2009 *
2010 * Note this does not restore interrupts like task_rq_unlock,
2011 * you need to do so manually after calling.
2012 */
2013static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2014 __releases(rq1->lock)
2015 __releases(rq2->lock)
2016{
2017 raw_spin_unlock(&rq1->lock);
2018 if (rq1 != rq2)
2019 raw_spin_unlock(&rq2->lock);
2020 else
2021 __release(rq2->lock);
2022}
2023
f2cb1360
IM
2024extern void set_rq_online (struct rq *rq);
2025extern void set_rq_offline(struct rq *rq);
2026extern bool sched_smp_initialized;
2027
029632fb
PZ
2028#else /* CONFIG_SMP */
2029
2030/*
2031 * double_rq_lock - safely lock two runqueues
2032 *
2033 * Note this does not disable interrupts like task_rq_lock,
2034 * you need to do so manually before calling.
2035 */
2036static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2037 __acquires(rq1->lock)
2038 __acquires(rq2->lock)
2039{
2040 BUG_ON(!irqs_disabled());
2041 BUG_ON(rq1 != rq2);
2042 raw_spin_lock(&rq1->lock);
2043 __acquire(rq2->lock); /* Fake it out ;) */
2044}
2045
2046/*
2047 * double_rq_unlock - safely unlock two runqueues
2048 *
2049 * Note this does not restore interrupts like task_rq_unlock,
2050 * you need to do so manually after calling.
2051 */
2052static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2053 __releases(rq1->lock)
2054 __releases(rq2->lock)
2055{
2056 BUG_ON(rq1 != rq2);
2057 raw_spin_unlock(&rq1->lock);
2058 __release(rq2->lock);
2059}
2060
2061#endif
2062
2063extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2064extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2065
2066#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2067extern bool sched_debug_enabled;
2068
029632fb
PZ
2069extern void print_cfs_stats(struct seq_file *m, int cpu);
2070extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2071extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2072extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2073extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2074extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2075#ifdef CONFIG_NUMA_BALANCING
2076extern void
2077show_numa_stats(struct task_struct *p, struct seq_file *m);
2078extern void
2079print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2080 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2081#endif /* CONFIG_NUMA_BALANCING */
2082#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2083
2084extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2085extern void init_rt_rq(struct rt_rq *rt_rq);
2086extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2087
1ee14e6c
BS
2088extern void cfs_bandwidth_usage_inc(void);
2089extern void cfs_bandwidth_usage_dec(void);
1c792db7 2090
3451d024 2091#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2092#define NOHZ_BALANCE_KICK_BIT 0
2093#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2094
a22e47a4 2095#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2096#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2097
2098#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2099
2100#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2101
00357f5e 2102extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2103#else
00357f5e 2104static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2105#endif
73fbec60 2106
daec5798
LA
2107
2108#ifdef CONFIG_SMP
2109static inline
2110void __dl_update(struct dl_bw *dl_b, s64 bw)
2111{
2112 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2113 int i;
2114
2115 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2116 "sched RCU must be held");
2117 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2118 struct rq *rq = cpu_rq(i);
2119
2120 rq->dl.extra_bw += bw;
2121 }
2122}
2123#else
2124static inline
2125void __dl_update(struct dl_bw *dl_b, s64 bw)
2126{
2127 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2128
2129 dl->extra_bw += bw;
2130}
2131#endif
2132
2133
73fbec60 2134#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2135struct irqtime {
25e2d8c1 2136 u64 total;
a499a5a1 2137 u64 tick_delta;
19d23dbf
FW
2138 u64 irq_start_time;
2139 struct u64_stats_sync sync;
2140};
73fbec60 2141
19d23dbf 2142DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2143
25e2d8c1
FW
2144/*
2145 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2146 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2147 * and never move forward.
2148 */
73fbec60
FW
2149static inline u64 irq_time_read(int cpu)
2150{
19d23dbf
FW
2151 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2152 unsigned int seq;
2153 u64 total;
73fbec60
FW
2154
2155 do {
19d23dbf 2156 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2157 total = irqtime->total;
19d23dbf 2158 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2159
19d23dbf 2160 return total;
73fbec60 2161}
73fbec60 2162#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2163
2164#ifdef CONFIG_CPU_FREQ
2165DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2166
2167/**
2168 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2169 * @rq: Runqueue to carry out the update for.
58919e83 2170 * @flags: Update reason flags.
adaf9fcd 2171 *
58919e83
RW
2172 * This function is called by the scheduler on the CPU whose utilization is
2173 * being updated.
adaf9fcd
RW
2174 *
2175 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2176 *
2177 * The way cpufreq is currently arranged requires it to evaluate the CPU
2178 * performance state (frequency/voltage) on a regular basis to prevent it from
2179 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2180 * That is not guaranteed to happen if the updates are only triggered from CFS
2181 * and DL, though, because they may not be coming in if only RT tasks are
2182 * active all the time (or there are RT tasks only).
adaf9fcd 2183 *
e0367b12
JL
2184 * As a workaround for that issue, this function is called periodically by the
2185 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2186 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2187 * solutions targeted more specifically at RT tasks.
adaf9fcd 2188 */
12bde33d 2189static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2190{
58919e83
RW
2191 struct update_util_data *data;
2192
674e7541
VK
2193 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2194 cpu_of(rq)));
58919e83 2195 if (data)
12bde33d
RW
2196 data->func(data, rq_clock(rq), flags);
2197}
adaf9fcd 2198#else
12bde33d 2199static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2200#endif /* CONFIG_CPU_FREQ */
be53f58f 2201
9bdcb44e 2202#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2203# ifndef arch_scale_freq_invariant
2204# define arch_scale_freq_invariant() true
2205# endif
2206#else
2207# define arch_scale_freq_invariant() false
9bdcb44e 2208#endif
d4edd662 2209
794a56eb 2210#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b
QP
2211/**
2212 * enum schedutil_type - CPU utilization type
2213 * @FREQUENCY_UTIL: Utilization used to select frequency
2214 * @ENERGY_UTIL: Utilization used during energy calculation
2215 *
2216 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2217 * need to be aggregated differently depending on the usage made of them. This
2218 * enum is used within schedutil_freq_util() to differentiate the types of
2219 * utilization expected by the callers, and adjust the aggregation accordingly.
2220 */
2221enum schedutil_type {
2222 FREQUENCY_UTIL,
2223 ENERGY_UTIL,
2224};
2225
2226unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
2227 unsigned long max, enum schedutil_type type);
2228
2229static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2230{
2231 unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
2232
2233 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
2234}
2235
8cc90515 2236static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2237{
2238 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2239}
2240
8cc90515
VG
2241static inline unsigned long cpu_util_dl(struct rq *rq)
2242{
2243 return READ_ONCE(rq->avg_dl.util_avg);
2244}
2245
d4edd662
JL
2246static inline unsigned long cpu_util_cfs(struct rq *rq)
2247{
a07630b8
PB
2248 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2249
2250 if (sched_feat(UTIL_EST)) {
2251 util = max_t(unsigned long, util,
2252 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2253 }
2254
2255 return util;
d4edd662 2256}
371bf427
VG
2257
2258static inline unsigned long cpu_util_rt(struct rq *rq)
2259{
dfa444dc 2260 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2261}
938e5e4b
QP
2262#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2263static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2264{
2265 return cfs;
2266}
2e62c474 2267#endif
9033ea11 2268
11d4afd4 2269#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2270static inline unsigned long cpu_util_irq(struct rq *rq)
2271{
2272 return rq->avg_irq.util_avg;
2273}
2e62c474
VG
2274
2275static inline
2276unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2277{
2278 util *= (max - irq);
2279 util /= max;
2280
2281 return util;
2282
2283}
9033ea11
VG
2284#else
2285static inline unsigned long cpu_util_irq(struct rq *rq)
2286{
2287 return 0;
2288}
2289
2e62c474
VG
2290static inline
2291unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2292{
2293 return util;
2294}
794a56eb 2295#endif
6aa140fa 2296
531b5c9f 2297#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
6aa140fa
QP
2298#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2299#else
2300#define perf_domain_span(pd) NULL
2301#endif
1f74de87
QP
2302
2303#ifdef CONFIG_SMP
2304extern struct static_key_false sched_energy_present;
2305#endif