]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched: Massage set_cpus_allowed()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
85c2ce91 70#include <asm-generic/vmlinux.lds.h>
029632fb 71
7fce777c 72#ifdef CONFIG_PARAVIRT
325ea10c 73# include <asm/paravirt.h>
7fce777c
IM
74#endif
75
391e43da 76#include "cpupri.h"
6bfd6d72 77#include "cpudeadline.h"
029632fb 78
9d246053
PA
79#include <trace/events/sched.h>
80
9148a3a1 81#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 82# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 83#else
6d3aed3d 84# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
85#endif
86
45ceebf7 87struct rq;
442bf3aa 88struct cpuidle_state;
45ceebf7 89
da0c1e65
KT
90/* task_struct::on_rq states: */
91#define TASK_ON_RQ_QUEUED 1
cca26e80 92#define TASK_ON_RQ_MIGRATING 2
da0c1e65 93
029632fb
PZ
94extern __read_mostly int scheduler_running;
95
45ceebf7
PG
96extern unsigned long calc_load_update;
97extern atomic_long_t calc_load_tasks;
98
3289bdb4 99extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 100extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 101
9d246053 102extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
029632fb
PZ
103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
cc1f4b1f
LZ
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
2159197d 118 *
97fb7a0a
IM
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 121 */
2159197d 122#ifdef CONFIG_64BIT
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
125# define scale_load_down(w) \
126({ \
127 unsigned long __w = (w); \
128 if (__w) \
129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 __w; \
131})
cc1f4b1f 132#else
172895e6 133# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
134# define scale_load(w) (w)
135# define scale_load_down(w) (w)
136#endif
137
6ecdd749 138/*
172895e6
YD
139 * Task weight (visible to users) and its load (invisible to users) have
140 * independent resolution, but they should be well calibrated. We use
141 * scale_load() and scale_load_down(w) to convert between them. The
142 * following must be true:
143 *
144 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
145 *
6ecdd749 146 */
172895e6 147#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 148
332ac17e
DF
149/*
150 * Single value that decides SCHED_DEADLINE internal math precision.
151 * 10 -> just above 1us
152 * 9 -> just above 0.5us
153 */
97fb7a0a 154#define DL_SCALE 10
029632fb
PZ
155
156/*
97fb7a0a 157 * Single value that denotes runtime == period, ie unlimited time.
029632fb 158 */
97fb7a0a 159#define RUNTIME_INF ((u64)~0ULL)
029632fb 160
20f9cd2a
HA
161static inline int idle_policy(int policy)
162{
163 return policy == SCHED_IDLE;
164}
d50dde5a
DF
165static inline int fair_policy(int policy)
166{
167 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168}
169
029632fb
PZ
170static inline int rt_policy(int policy)
171{
d50dde5a 172 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
173}
174
aab03e05
DF
175static inline int dl_policy(int policy)
176{
177 return policy == SCHED_DEADLINE;
178}
20f9cd2a
HA
179static inline bool valid_policy(int policy)
180{
181 return idle_policy(policy) || fair_policy(policy) ||
182 rt_policy(policy) || dl_policy(policy);
183}
aab03e05 184
1da1843f
VK
185static inline int task_has_idle_policy(struct task_struct *p)
186{
187 return idle_policy(p->policy);
188}
189
029632fb
PZ
190static inline int task_has_rt_policy(struct task_struct *p)
191{
192 return rt_policy(p->policy);
193}
194
aab03e05
DF
195static inline int task_has_dl_policy(struct task_struct *p)
196{
197 return dl_policy(p->policy);
198}
199
07881166
JL
200#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201
d76343c6
VS
202static inline void update_avg(u64 *avg, u64 sample)
203{
204 s64 diff = sample - *avg;
205 *avg += diff / 8;
206}
207
794a56eb
JL
208/*
209 * !! For sched_setattr_nocheck() (kernel) only !!
210 *
211 * This is actually gross. :(
212 *
213 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
214 * tasks, but still be able to sleep. We need this on platforms that cannot
215 * atomically change clock frequency. Remove once fast switching will be
216 * available on such platforms.
217 *
218 * SUGOV stands for SchedUtil GOVernor.
219 */
220#define SCHED_FLAG_SUGOV 0x10000000
221
222static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
223{
224#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
225 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
226#else
227 return false;
228#endif
229}
230
2d3d891d
DF
231/*
232 * Tells if entity @a should preempt entity @b.
233 */
332ac17e
DF
234static inline bool
235dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 236{
794a56eb
JL
237 return dl_entity_is_special(a) ||
238 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
239}
240
029632fb
PZ
241/*
242 * This is the priority-queue data structure of the RT scheduling class:
243 */
244struct rt_prio_array {
245 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
246 struct list_head queue[MAX_RT_PRIO];
247};
248
249struct rt_bandwidth {
250 /* nests inside the rq lock: */
251 raw_spinlock_t rt_runtime_lock;
252 ktime_t rt_period;
253 u64 rt_runtime;
254 struct hrtimer rt_period_timer;
4cfafd30 255 unsigned int rt_period_active;
029632fb 256};
a5e7be3b
JL
257
258void __dl_clear_params(struct task_struct *p);
259
332ac17e
DF
260/*
261 * To keep the bandwidth of -deadline tasks and groups under control
262 * we need some place where:
263 * - store the maximum -deadline bandwidth of the system (the group);
264 * - cache the fraction of that bandwidth that is currently allocated.
265 *
266 * This is all done in the data structure below. It is similar to the
267 * one used for RT-throttling (rt_bandwidth), with the main difference
268 * that, since here we are only interested in admission control, we
269 * do not decrease any runtime while the group "executes", neither we
270 * need a timer to replenish it.
271 *
272 * With respect to SMP, the bandwidth is given on a per-CPU basis,
273 * meaning that:
274 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
275 * - dl_total_bw array contains, in the i-eth element, the currently
276 * allocated bandwidth on the i-eth CPU.
277 * Moreover, groups consume bandwidth on each CPU, while tasks only
278 * consume bandwidth on the CPU they're running on.
279 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
280 * that will be shown the next time the proc or cgroup controls will
281 * be red. It on its turn can be changed by writing on its own
282 * control.
283 */
284struct dl_bandwidth {
97fb7a0a
IM
285 raw_spinlock_t dl_runtime_lock;
286 u64 dl_runtime;
287 u64 dl_period;
332ac17e
DF
288};
289
290static inline int dl_bandwidth_enabled(void)
291{
1724813d 292 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
293}
294
332ac17e 295struct dl_bw {
97fb7a0a
IM
296 raw_spinlock_t lock;
297 u64 bw;
298 u64 total_bw;
332ac17e
DF
299};
300
daec5798
LA
301static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
302
7f51412a 303static inline
8c0944ce 304void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
305{
306 dl_b->total_bw -= tsk_bw;
daec5798 307 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
308}
309
310static inline
daec5798 311void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
312{
313 dl_b->total_bw += tsk_bw;
daec5798 314 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
315}
316
60ffd5ed
LA
317static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
318 u64 old_bw, u64 new_bw)
7f51412a
JL
319{
320 return dl_b->bw != -1 &&
60ffd5ed 321 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
7f51412a
JL
322}
323
b4118988
LA
324/*
325 * Verify the fitness of task @p to run on @cpu taking into account the
326 * CPU original capacity and the runtime/deadline ratio of the task.
327 *
328 * The function will return true if the CPU original capacity of the
329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330 * task and false otherwise.
331 */
332static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333{
334 unsigned long cap = arch_scale_cpu_capacity(cpu);
335
336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337}
338
f2cb1360 339extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 340extern int sched_dl_global_validate(void);
06a76fe0 341extern void sched_dl_do_global(void);
97fb7a0a 342extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
343extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 346extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
347extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
348extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 349extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
350
351#ifdef CONFIG_CGROUP_SCHED
352
353#include <linux/cgroup.h>
eb414681 354#include <linux/psi.h>
029632fb
PZ
355
356struct cfs_rq;
357struct rt_rq;
358
35cf4e50 359extern struct list_head task_groups;
029632fb
PZ
360
361struct cfs_bandwidth {
362#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
363 raw_spinlock_t lock;
364 ktime_t period;
365 u64 quota;
366 u64 runtime;
367 s64 hierarchical_quota;
97fb7a0a 368
66567fcb 369 u8 idle;
370 u8 period_active;
66567fcb 371 u8 slack_started;
97fb7a0a
IM
372 struct hrtimer period_timer;
373 struct hrtimer slack_timer;
374 struct list_head throttled_cfs_rq;
375
376 /* Statistics: */
377 int nr_periods;
378 int nr_throttled;
379 u64 throttled_time;
029632fb
PZ
380#endif
381};
382
97fb7a0a 383/* Task group related information */
029632fb
PZ
384struct task_group {
385 struct cgroup_subsys_state css;
386
387#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
388 /* schedulable entities of this group on each CPU */
389 struct sched_entity **se;
390 /* runqueue "owned" by this group on each CPU */
391 struct cfs_rq **cfs_rq;
392 unsigned long shares;
029632fb 393
fa6bddeb 394#ifdef CONFIG_SMP
b0367629
WL
395 /*
396 * load_avg can be heavily contended at clock tick time, so put
397 * it in its own cacheline separated from the fields above which
398 * will also be accessed at each tick.
399 */
97fb7a0a 400 atomic_long_t load_avg ____cacheline_aligned;
029632fb 401#endif
fa6bddeb 402#endif
029632fb
PZ
403
404#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
405 struct sched_rt_entity **rt_se;
406 struct rt_rq **rt_rq;
029632fb 407
97fb7a0a 408 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
409#endif
410
97fb7a0a
IM
411 struct rcu_head rcu;
412 struct list_head list;
029632fb 413
97fb7a0a
IM
414 struct task_group *parent;
415 struct list_head siblings;
416 struct list_head children;
029632fb
PZ
417
418#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 419 struct autogroup *autogroup;
029632fb
PZ
420#endif
421
97fb7a0a 422 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
423
424#ifdef CONFIG_UCLAMP_TASK_GROUP
425 /* The two decimal precision [%] value requested from user-space */
426 unsigned int uclamp_pct[UCLAMP_CNT];
427 /* Clamp values requested for a task group */
428 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
429 /* Effective clamp values used for a task group */
430 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
431#endif
432
029632fb
PZ
433};
434
435#ifdef CONFIG_FAIR_GROUP_SCHED
436#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
437
438/*
439 * A weight of 0 or 1 can cause arithmetics problems.
440 * A weight of a cfs_rq is the sum of weights of which entities
441 * are queued on this cfs_rq, so a weight of a entity should not be
442 * too large, so as the shares value of a task group.
443 * (The default weight is 1024 - so there's no practical
444 * limitation from this.)
445 */
97fb7a0a
IM
446#define MIN_SHARES (1UL << 1)
447#define MAX_SHARES (1UL << 18)
029632fb
PZ
448#endif
449
029632fb
PZ
450typedef int (*tg_visitor)(struct task_group *, void *);
451
452extern int walk_tg_tree_from(struct task_group *from,
453 tg_visitor down, tg_visitor up, void *data);
454
455/*
456 * Iterate the full tree, calling @down when first entering a node and @up when
457 * leaving it for the final time.
458 *
459 * Caller must hold rcu_lock or sufficient equivalent.
460 */
461static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
462{
463 return walk_tg_tree_from(&root_task_group, down, up, data);
464}
465
466extern int tg_nop(struct task_group *tg, void *data);
467
468extern void free_fair_sched_group(struct task_group *tg);
469extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 470extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 471extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
472extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
473 struct sched_entity *se, int cpu,
474 struct sched_entity *parent);
475extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
476
477extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 478extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
479extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
480
481extern void free_rt_sched_group(struct task_group *tg);
482extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
483extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
484 struct sched_rt_entity *rt_se, int cpu,
485 struct sched_rt_entity *parent);
8887cd99
NP
486extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
487extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
488extern long sched_group_rt_runtime(struct task_group *tg);
489extern long sched_group_rt_period(struct task_group *tg);
490extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 491
25cc7da7
LZ
492extern struct task_group *sched_create_group(struct task_group *parent);
493extern void sched_online_group(struct task_group *tg,
494 struct task_group *parent);
495extern void sched_destroy_group(struct task_group *tg);
496extern void sched_offline_group(struct task_group *tg);
497
498extern void sched_move_task(struct task_struct *tsk);
499
500#ifdef CONFIG_FAIR_GROUP_SCHED
501extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
502
503#ifdef CONFIG_SMP
504extern void set_task_rq_fair(struct sched_entity *se,
505 struct cfs_rq *prev, struct cfs_rq *next);
506#else /* !CONFIG_SMP */
507static inline void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next) { }
509#endif /* CONFIG_SMP */
510#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 511
029632fb
PZ
512#else /* CONFIG_CGROUP_SCHED */
513
514struct cfs_bandwidth { };
515
516#endif /* CONFIG_CGROUP_SCHED */
517
518/* CFS-related fields in a runqueue */
519struct cfs_rq {
97fb7a0a 520 struct load_weight load;
97fb7a0a 521 unsigned int nr_running;
43e9f7f2
VK
522 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
523 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 524
97fb7a0a
IM
525 u64 exec_clock;
526 u64 min_vruntime;
029632fb 527#ifndef CONFIG_64BIT
97fb7a0a 528 u64 min_vruntime_copy;
029632fb
PZ
529#endif
530
97fb7a0a 531 struct rb_root_cached tasks_timeline;
029632fb 532
029632fb
PZ
533 /*
534 * 'curr' points to currently running entity on this cfs_rq.
535 * It is set to NULL otherwise (i.e when none are currently running).
536 */
97fb7a0a
IM
537 struct sched_entity *curr;
538 struct sched_entity *next;
539 struct sched_entity *last;
540 struct sched_entity *skip;
029632fb
PZ
541
542#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 543 unsigned int nr_spread_over;
029632fb
PZ
544#endif
545
2dac754e
PT
546#ifdef CONFIG_SMP
547 /*
9d89c257 548 * CFS load tracking
2dac754e 549 */
97fb7a0a 550 struct sched_avg avg;
2a2f5d4e 551#ifndef CONFIG_64BIT
97fb7a0a 552 u64 load_last_update_time_copy;
9d89c257 553#endif
2a2f5d4e
PZ
554 struct {
555 raw_spinlock_t lock ____cacheline_aligned;
556 int nr;
557 unsigned long load_avg;
558 unsigned long util_avg;
9f683953 559 unsigned long runnable_avg;
2a2f5d4e 560 } removed;
82958366 561
9d89c257 562#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
563 unsigned long tg_load_avg_contrib;
564 long propagate;
565 long prop_runnable_sum;
0e2d2aaa 566
82958366
PT
567 /*
568 * h_load = weight * f(tg)
569 *
570 * Where f(tg) is the recursive weight fraction assigned to
571 * this group.
572 */
97fb7a0a
IM
573 unsigned long h_load;
574 u64 last_h_load_update;
575 struct sched_entity *h_load_next;
68520796 576#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
577#endif /* CONFIG_SMP */
578
029632fb 579#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 580 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
581
582 /*
583 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
584 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
585 * (like users, containers etc.)
586 *
97fb7a0a
IM
587 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
588 * This list is used during load balance.
029632fb 589 */
97fb7a0a
IM
590 int on_list;
591 struct list_head leaf_cfs_rq_list;
592 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 593
029632fb 594#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 595 int runtime_enabled;
97fb7a0a
IM
596 s64 runtime_remaining;
597
598 u64 throttled_clock;
599 u64 throttled_clock_task;
600 u64 throttled_clock_task_time;
601 int throttled;
602 int throttle_count;
603 struct list_head throttled_list;
029632fb
PZ
604#endif /* CONFIG_CFS_BANDWIDTH */
605#endif /* CONFIG_FAIR_GROUP_SCHED */
606};
607
608static inline int rt_bandwidth_enabled(void)
609{
610 return sysctl_sched_rt_runtime >= 0;
611}
612
b6366f04 613/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 614#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
615# define HAVE_RT_PUSH_IPI
616#endif
617
029632fb
PZ
618/* Real-Time classes' related field in a runqueue: */
619struct rt_rq {
97fb7a0a
IM
620 struct rt_prio_array active;
621 unsigned int rt_nr_running;
622 unsigned int rr_nr_running;
029632fb
PZ
623#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
624 struct {
97fb7a0a 625 int curr; /* highest queued rt task prio */
029632fb 626#ifdef CONFIG_SMP
97fb7a0a 627 int next; /* next highest */
029632fb
PZ
628#endif
629 } highest_prio;
630#endif
631#ifdef CONFIG_SMP
97fb7a0a
IM
632 unsigned long rt_nr_migratory;
633 unsigned long rt_nr_total;
634 int overloaded;
635 struct plist_head pushable_tasks;
371bf427 636
b6366f04 637#endif /* CONFIG_SMP */
97fb7a0a 638 int rt_queued;
f4ebcbc0 639
97fb7a0a
IM
640 int rt_throttled;
641 u64 rt_time;
642 u64 rt_runtime;
029632fb 643 /* Nests inside the rq lock: */
97fb7a0a 644 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
645
646#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 647 unsigned long rt_nr_boosted;
029632fb 648
97fb7a0a
IM
649 struct rq *rq;
650 struct task_group *tg;
029632fb
PZ
651#endif
652};
653
296b2ffe
VG
654static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
655{
656 return rt_rq->rt_queued && rt_rq->rt_nr_running;
657}
658
aab03e05
DF
659/* Deadline class' related fields in a runqueue */
660struct dl_rq {
661 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 662 struct rb_root_cached root;
aab03e05 663
97fb7a0a 664 unsigned long dl_nr_running;
1baca4ce
JL
665
666#ifdef CONFIG_SMP
667 /*
668 * Deadline values of the currently executing and the
669 * earliest ready task on this rq. Caching these facilitates
dfcb245e 670 * the decision whether or not a ready but not running task
1baca4ce
JL
671 * should migrate somewhere else.
672 */
673 struct {
97fb7a0a
IM
674 u64 curr;
675 u64 next;
1baca4ce
JL
676 } earliest_dl;
677
97fb7a0a
IM
678 unsigned long dl_nr_migratory;
679 int overloaded;
1baca4ce
JL
680
681 /*
682 * Tasks on this rq that can be pushed away. They are kept in
683 * an rb-tree, ordered by tasks' deadlines, with caching
684 * of the leftmost (earliest deadline) element.
685 */
97fb7a0a 686 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 687#else
97fb7a0a 688 struct dl_bw dl_bw;
1baca4ce 689#endif
e36d8677
LA
690 /*
691 * "Active utilization" for this runqueue: increased when a
692 * task wakes up (becomes TASK_RUNNING) and decreased when a
693 * task blocks
694 */
97fb7a0a 695 u64 running_bw;
4da3abce 696
8fd27231
LA
697 /*
698 * Utilization of the tasks "assigned" to this runqueue (including
699 * the tasks that are in runqueue and the tasks that executed on this
700 * CPU and blocked). Increased when a task moves to this runqueue, and
701 * decreased when the task moves away (migrates, changes scheduling
702 * policy, or terminates).
703 * This is needed to compute the "inactive utilization" for the
704 * runqueue (inactive utilization = this_bw - running_bw).
705 */
97fb7a0a
IM
706 u64 this_bw;
707 u64 extra_bw;
8fd27231 708
4da3abce
LA
709 /*
710 * Inverse of the fraction of CPU utilization that can be reclaimed
711 * by the GRUB algorithm.
712 */
97fb7a0a 713 u64 bw_ratio;
aab03e05
DF
714};
715
c0796298
VG
716#ifdef CONFIG_FAIR_GROUP_SCHED
717/* An entity is a task if it doesn't "own" a runqueue */
718#define entity_is_task(se) (!se->my_q)
0dacee1b 719
9f683953
VG
720static inline void se_update_runnable(struct sched_entity *se)
721{
722 if (!entity_is_task(se))
723 se->runnable_weight = se->my_q->h_nr_running;
724}
725
726static inline long se_runnable(struct sched_entity *se)
727{
728 if (entity_is_task(se))
729 return !!se->on_rq;
730 else
731 return se->runnable_weight;
732}
733
c0796298
VG
734#else
735#define entity_is_task(se) 1
0dacee1b 736
9f683953
VG
737static inline void se_update_runnable(struct sched_entity *se) {}
738
739static inline long se_runnable(struct sched_entity *se)
740{
741 return !!se->on_rq;
742}
c0796298
VG
743#endif
744
029632fb 745#ifdef CONFIG_SMP
c0796298
VG
746/*
747 * XXX we want to get rid of these helpers and use the full load resolution.
748 */
749static inline long se_weight(struct sched_entity *se)
750{
751 return scale_load_down(se->load.weight);
752}
753
029632fb 754
afe06efd
TC
755static inline bool sched_asym_prefer(int a, int b)
756{
757 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
758}
759
6aa140fa
QP
760struct perf_domain {
761 struct em_perf_domain *em_pd;
762 struct perf_domain *next;
763 struct rcu_head rcu;
764};
765
630246a0
QP
766/* Scheduling group status flags */
767#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 768#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 769
029632fb
PZ
770/*
771 * We add the notion of a root-domain which will be used to define per-domain
772 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
774 * exclusive cpuset is created, we also create and attach a new root-domain
775 * object.
776 *
777 */
778struct root_domain {
97fb7a0a
IM
779 atomic_t refcount;
780 atomic_t rto_count;
781 struct rcu_head rcu;
782 cpumask_var_t span;
783 cpumask_var_t online;
029632fb 784
757ffdd7
VS
785 /*
786 * Indicate pullable load on at least one CPU, e.g:
787 * - More than one runnable task
788 * - Running task is misfit
789 */
575638d1 790 int overload;
4486edd1 791
2802bf3c
MR
792 /* Indicate one or more cpus over-utilized (tipping point) */
793 int overutilized;
794
1baca4ce
JL
795 /*
796 * The bit corresponding to a CPU gets set here if such CPU has more
797 * than one runnable -deadline task (as it is below for RT tasks).
798 */
97fb7a0a
IM
799 cpumask_var_t dlo_mask;
800 atomic_t dlo_count;
801 struct dl_bw dl_bw;
802 struct cpudl cpudl;
1baca4ce 803
4bdced5c
SRRH
804#ifdef HAVE_RT_PUSH_IPI
805 /*
806 * For IPI pull requests, loop across the rto_mask.
807 */
97fb7a0a
IM
808 struct irq_work rto_push_work;
809 raw_spinlock_t rto_lock;
4bdced5c 810 /* These are only updated and read within rto_lock */
97fb7a0a
IM
811 int rto_loop;
812 int rto_cpu;
4bdced5c 813 /* These atomics are updated outside of a lock */
97fb7a0a
IM
814 atomic_t rto_loop_next;
815 atomic_t rto_loop_start;
4bdced5c 816#endif
029632fb
PZ
817 /*
818 * The "RT overload" flag: it gets set if a CPU has more than
819 * one runnable RT task.
820 */
97fb7a0a
IM
821 cpumask_var_t rto_mask;
822 struct cpupri cpupri;
cd92bfd3 823
97fb7a0a 824 unsigned long max_cpu_capacity;
6aa140fa
QP
825
826 /*
827 * NULL-terminated list of performance domains intersecting with the
828 * CPUs of the rd. Protected by RCU.
829 */
7ba7319f 830 struct perf_domain __rcu *pd;
029632fb
PZ
831};
832
f2cb1360 833extern void init_defrootdomain(void);
8d5dc512 834extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 835extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
836extern void sched_get_rd(struct root_domain *rd);
837extern void sched_put_rd(struct root_domain *rd);
029632fb 838
4bdced5c
SRRH
839#ifdef HAVE_RT_PUSH_IPI
840extern void rto_push_irq_work_func(struct irq_work *work);
841#endif
029632fb
PZ
842#endif /* CONFIG_SMP */
843
69842cba
PB
844#ifdef CONFIG_UCLAMP_TASK
845/*
846 * struct uclamp_bucket - Utilization clamp bucket
847 * @value: utilization clamp value for tasks on this clamp bucket
848 * @tasks: number of RUNNABLE tasks on this clamp bucket
849 *
850 * Keep track of how many tasks are RUNNABLE for a given utilization
851 * clamp value.
852 */
853struct uclamp_bucket {
854 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
855 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
856};
857
858/*
859 * struct uclamp_rq - rq's utilization clamp
860 * @value: currently active clamp values for a rq
861 * @bucket: utilization clamp buckets affecting a rq
862 *
863 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
864 * A clamp value is affecting a rq when there is at least one task RUNNABLE
865 * (or actually running) with that value.
866 *
867 * There are up to UCLAMP_CNT possible different clamp values, currently there
868 * are only two: minimum utilization and maximum utilization.
869 *
870 * All utilization clamping values are MAX aggregated, since:
871 * - for util_min: we want to run the CPU at least at the max of the minimum
872 * utilization required by its currently RUNNABLE tasks.
873 * - for util_max: we want to allow the CPU to run up to the max of the
874 * maximum utilization allowed by its currently RUNNABLE tasks.
875 *
876 * Since on each system we expect only a limited number of different
877 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
878 * the metrics required to compute all the per-rq utilization clamp values.
879 */
880struct uclamp_rq {
881 unsigned int value;
882 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
883};
46609ce2
QY
884
885DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
886#endif /* CONFIG_UCLAMP_TASK */
887
029632fb
PZ
888/*
889 * This is the main, per-CPU runqueue data structure.
890 *
891 * Locking rule: those places that want to lock multiple runqueues
892 * (such as the load balancing or the thread migration code), lock
893 * acquire operations must be ordered by ascending &runqueue.
894 */
895struct rq {
896 /* runqueue lock: */
97fb7a0a 897 raw_spinlock_t lock;
029632fb
PZ
898
899 /*
900 * nr_running and cpu_load should be in the same cacheline because
901 * remote CPUs use both these fields when doing load calculation.
902 */
97fb7a0a 903 unsigned int nr_running;
0ec8aa00 904#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
905 unsigned int nr_numa_running;
906 unsigned int nr_preferred_running;
a4739eca 907 unsigned int numa_migrate_on;
0ec8aa00 908#endif
3451d024 909#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 910#ifdef CONFIG_SMP
e022e0d3 911 unsigned long last_blocked_load_update_tick;
f643ea22 912 unsigned int has_blocked_load;
90b5363a 913 call_single_data_t nohz_csd;
9fd81dd5 914#endif /* CONFIG_SMP */
00357f5e 915 unsigned int nohz_tick_stopped;
90b5363a 916 atomic_t nohz_flags;
9fd81dd5 917#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 918
126c2092
PZ
919#ifdef CONFIG_SMP
920 unsigned int ttwu_pending;
921#endif
97fb7a0a 922 u64 nr_switches;
029632fb 923
69842cba
PB
924#ifdef CONFIG_UCLAMP_TASK
925 /* Utilization clamp values based on CPU's RUNNABLE tasks */
926 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
927 unsigned int uclamp_flags;
928#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
929#endif
930
97fb7a0a
IM
931 struct cfs_rq cfs;
932 struct rt_rq rt;
933 struct dl_rq dl;
029632fb
PZ
934
935#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
936 /* list of leaf cfs_rq on this CPU: */
937 struct list_head leaf_cfs_rq_list;
938 struct list_head *tmp_alone_branch;
a35b6466
PZ
939#endif /* CONFIG_FAIR_GROUP_SCHED */
940
029632fb
PZ
941 /*
942 * This is part of a global counter where only the total sum
943 * over all CPUs matters. A task can increase this counter on
944 * one CPU and if it got migrated afterwards it may decrease
945 * it on another CPU. Always updated under the runqueue lock:
946 */
97fb7a0a 947 unsigned long nr_uninterruptible;
029632fb 948
4104a562 949 struct task_struct __rcu *curr;
97fb7a0a
IM
950 struct task_struct *idle;
951 struct task_struct *stop;
952 unsigned long next_balance;
953 struct mm_struct *prev_mm;
029632fb 954
97fb7a0a
IM
955 unsigned int clock_update_flags;
956 u64 clock;
23127296
VG
957 /* Ensure that all clocks are in the same cache line */
958 u64 clock_task ____cacheline_aligned;
959 u64 clock_pelt;
960 unsigned long lost_idle_time;
029632fb 961
97fb7a0a 962 atomic_t nr_iowait;
029632fb 963
227a4aad
MD
964#ifdef CONFIG_MEMBARRIER
965 int membarrier_state;
966#endif
967
029632fb 968#ifdef CONFIG_SMP
994aeb7a
JFG
969 struct root_domain *rd;
970 struct sched_domain __rcu *sd;
97fb7a0a
IM
971
972 unsigned long cpu_capacity;
973 unsigned long cpu_capacity_orig;
029632fb 974
97fb7a0a 975 struct callback_head *balance_callback;
2558aacf 976 unsigned char balance_flags;
029632fb 977
19a1f5ec 978 unsigned char nohz_idle_balance;
97fb7a0a 979 unsigned char idle_balance;
e3fca9e7 980
3b1baa64
MR
981 unsigned long misfit_task_load;
982
029632fb 983 /* For active balancing */
97fb7a0a
IM
984 int active_balance;
985 int push_cpu;
986 struct cpu_stop_work active_balance_work;
987
988 /* CPU of this runqueue: */
989 int cpu;
990 int online;
029632fb 991
367456c7
PZ
992 struct list_head cfs_tasks;
993
371bf427 994 struct sched_avg avg_rt;
3727e0e1 995 struct sched_avg avg_dl;
11d4afd4 996#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 997 struct sched_avg avg_irq;
76504793
TG
998#endif
999#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1000 struct sched_avg avg_thermal;
91c27493 1001#endif
97fb7a0a
IM
1002 u64 idle_stamp;
1003 u64 avg_idle;
9bd721c5
JL
1004
1005 /* This is used to determine avg_idle's max value */
97fb7a0a 1006 u64 max_idle_balance_cost;
f2469a1f
TG
1007
1008#ifdef CONFIG_HOTPLUG_CPU
1009 struct rcuwait hotplug_wait;
1010#endif
90b5363a 1011#endif /* CONFIG_SMP */
029632fb
PZ
1012
1013#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1014 u64 prev_irq_time;
029632fb
PZ
1015#endif
1016#ifdef CONFIG_PARAVIRT
97fb7a0a 1017 u64 prev_steal_time;
029632fb
PZ
1018#endif
1019#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1020 u64 prev_steal_time_rq;
029632fb
PZ
1021#endif
1022
1023 /* calc_load related fields */
97fb7a0a
IM
1024 unsigned long calc_load_update;
1025 long calc_load_active;
029632fb
PZ
1026
1027#ifdef CONFIG_SCHED_HRTICK
1028#ifdef CONFIG_SMP
97fb7a0a 1029 call_single_data_t hrtick_csd;
029632fb 1030#endif
97fb7a0a 1031 struct hrtimer hrtick_timer;
029632fb
PZ
1032#endif
1033
1034#ifdef CONFIG_SCHEDSTATS
1035 /* latency stats */
97fb7a0a
IM
1036 struct sched_info rq_sched_info;
1037 unsigned long long rq_cpu_time;
029632fb
PZ
1038 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1039
1040 /* sys_sched_yield() stats */
97fb7a0a 1041 unsigned int yld_count;
029632fb
PZ
1042
1043 /* schedule() stats */
97fb7a0a
IM
1044 unsigned int sched_count;
1045 unsigned int sched_goidle;
029632fb
PZ
1046
1047 /* try_to_wake_up() stats */
97fb7a0a
IM
1048 unsigned int ttwu_count;
1049 unsigned int ttwu_local;
029632fb
PZ
1050#endif
1051
442bf3aa
DL
1052#ifdef CONFIG_CPU_IDLE
1053 /* Must be inspected within a rcu lock section */
97fb7a0a 1054 struct cpuidle_state *idle_state;
442bf3aa 1055#endif
029632fb
PZ
1056};
1057
62478d99
VG
1058#ifdef CONFIG_FAIR_GROUP_SCHED
1059
1060/* CPU runqueue to which this cfs_rq is attached */
1061static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1062{
1063 return cfs_rq->rq;
1064}
1065
1066#else
1067
1068static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1069{
1070 return container_of(cfs_rq, struct rq, cfs);
1071}
1072#endif
1073
029632fb
PZ
1074static inline int cpu_of(struct rq *rq)
1075{
1076#ifdef CONFIG_SMP
1077 return rq->cpu;
1078#else
1079 return 0;
1080#endif
1081}
1082
1b568f0a
PZ
1083
1084#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1085extern void __update_idle_core(struct rq *rq);
1086
1087static inline void update_idle_core(struct rq *rq)
1088{
1089 if (static_branch_unlikely(&sched_smt_present))
1090 __update_idle_core(rq);
1091}
1092
1093#else
1094static inline void update_idle_core(struct rq *rq) { }
1095#endif
1096
8b06c55b 1097DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1098
518cd623 1099#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1100#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1101#define task_rq(p) cpu_rq(task_cpu(p))
1102#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1103#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1104
1f351d7f
JW
1105extern void update_rq_clock(struct rq *rq);
1106
cebde6d6
PZ
1107static inline u64 __rq_clock_broken(struct rq *rq)
1108{
316c1608 1109 return READ_ONCE(rq->clock);
cebde6d6
PZ
1110}
1111
cb42c9a3
MF
1112/*
1113 * rq::clock_update_flags bits
1114 *
1115 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1116 * call to __schedule(). This is an optimisation to avoid
1117 * neighbouring rq clock updates.
1118 *
1119 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1120 * in effect and calls to update_rq_clock() are being ignored.
1121 *
1122 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1123 * made to update_rq_clock() since the last time rq::lock was pinned.
1124 *
1125 * If inside of __schedule(), clock_update_flags will have been
1126 * shifted left (a left shift is a cheap operation for the fast path
1127 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1128 *
1129 * if (rq-clock_update_flags >= RQCF_UPDATED)
1130 *
1131 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1132 * one position though, because the next rq_unpin_lock() will shift it
1133 * back.
1134 */
97fb7a0a
IM
1135#define RQCF_REQ_SKIP 0x01
1136#define RQCF_ACT_SKIP 0x02
1137#define RQCF_UPDATED 0x04
cb42c9a3
MF
1138
1139static inline void assert_clock_updated(struct rq *rq)
1140{
1141 /*
1142 * The only reason for not seeing a clock update since the
1143 * last rq_pin_lock() is if we're currently skipping updates.
1144 */
1145 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1146}
1147
78becc27
FW
1148static inline u64 rq_clock(struct rq *rq)
1149{
cebde6d6 1150 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1151 assert_clock_updated(rq);
1152
78becc27
FW
1153 return rq->clock;
1154}
1155
1156static inline u64 rq_clock_task(struct rq *rq)
1157{
cebde6d6 1158 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1159 assert_clock_updated(rq);
1160
78becc27
FW
1161 return rq->clock_task;
1162}
1163
05289b90
TG
1164/**
1165 * By default the decay is the default pelt decay period.
1166 * The decay shift can change the decay period in
1167 * multiples of 32.
1168 * Decay shift Decay period(ms)
1169 * 0 32
1170 * 1 64
1171 * 2 128
1172 * 3 256
1173 * 4 512
1174 */
1175extern int sched_thermal_decay_shift;
1176
1177static inline u64 rq_clock_thermal(struct rq *rq)
1178{
1179 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1180}
1181
adcc8da8 1182static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1183{
1184 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1185 rq->clock_update_flags |= RQCF_REQ_SKIP;
1186}
1187
1188/*
595058b6 1189 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1190 * request is cancelled.
1191 */
1192static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1193{
1194 lockdep_assert_held(&rq->lock);
1195 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1196}
1197
d8ac8971
MF
1198struct rq_flags {
1199 unsigned long flags;
1200 struct pin_cookie cookie;
cb42c9a3
MF
1201#ifdef CONFIG_SCHED_DEBUG
1202 /*
1203 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1204 * current pin context is stashed here in case it needs to be
1205 * restored in rq_repin_lock().
1206 */
1207 unsigned int clock_update_flags;
1208#endif
d8ac8971
MF
1209};
1210
58877d34
PZ
1211/*
1212 * Lockdep annotation that avoids accidental unlocks; it's like a
1213 * sticky/continuous lockdep_assert_held().
1214 *
1215 * This avoids code that has access to 'struct rq *rq' (basically everything in
1216 * the scheduler) from accidentally unlocking the rq if they do not also have a
1217 * copy of the (on-stack) 'struct rq_flags rf'.
1218 *
1219 * Also see Documentation/locking/lockdep-design.rst.
1220 */
d8ac8971
MF
1221static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1222{
1223 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1224
1225#ifdef CONFIG_SCHED_DEBUG
1226 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1227 rf->clock_update_flags = 0;
1228#endif
565790d2
PZ
1229#ifdef CONFIG_SMP
1230 SCHED_WARN_ON(rq->balance_callback);
1231#endif
d8ac8971
MF
1232}
1233
1234static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1235{
cb42c9a3
MF
1236#ifdef CONFIG_SCHED_DEBUG
1237 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1238 rf->clock_update_flags = RQCF_UPDATED;
1239#endif
1240
d8ac8971
MF
1241 lockdep_unpin_lock(&rq->lock, rf->cookie);
1242}
1243
1244static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1245{
1246 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1247
1248#ifdef CONFIG_SCHED_DEBUG
1249 /*
1250 * Restore the value we stashed in @rf for this pin context.
1251 */
1252 rq->clock_update_flags |= rf->clock_update_flags;
1253#endif
d8ac8971
MF
1254}
1255
1f351d7f
JW
1256struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1257 __acquires(rq->lock);
1258
1259struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1260 __acquires(p->pi_lock)
1261 __acquires(rq->lock);
1262
1263static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1264 __releases(rq->lock)
1265{
1266 rq_unpin_lock(rq, rf);
1267 raw_spin_unlock(&rq->lock);
1268}
1269
1270static inline void
1271task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1272 __releases(rq->lock)
1273 __releases(p->pi_lock)
1274{
1275 rq_unpin_lock(rq, rf);
1276 raw_spin_unlock(&rq->lock);
1277 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1278}
1279
1280static inline void
1281rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1282 __acquires(rq->lock)
1283{
1284 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1285 rq_pin_lock(rq, rf);
1286}
1287
1288static inline void
1289rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1290 __acquires(rq->lock)
1291{
1292 raw_spin_lock_irq(&rq->lock);
1293 rq_pin_lock(rq, rf);
1294}
1295
1296static inline void
1297rq_lock(struct rq *rq, struct rq_flags *rf)
1298 __acquires(rq->lock)
1299{
1300 raw_spin_lock(&rq->lock);
1301 rq_pin_lock(rq, rf);
1302}
1303
1304static inline void
1305rq_relock(struct rq *rq, struct rq_flags *rf)
1306 __acquires(rq->lock)
1307{
1308 raw_spin_lock(&rq->lock);
1309 rq_repin_lock(rq, rf);
1310}
1311
1312static inline void
1313rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1314 __releases(rq->lock)
1315{
1316 rq_unpin_lock(rq, rf);
1317 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1318}
1319
1320static inline void
1321rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1322 __releases(rq->lock)
1323{
1324 rq_unpin_lock(rq, rf);
1325 raw_spin_unlock_irq(&rq->lock);
1326}
1327
1328static inline void
1329rq_unlock(struct rq *rq, struct rq_flags *rf)
1330 __releases(rq->lock)
1331{
1332 rq_unpin_lock(rq, rf);
1333 raw_spin_unlock(&rq->lock);
1334}
1335
246b3b33
JW
1336static inline struct rq *
1337this_rq_lock_irq(struct rq_flags *rf)
1338 __acquires(rq->lock)
1339{
1340 struct rq *rq;
1341
1342 local_irq_disable();
1343 rq = this_rq();
1344 rq_lock(rq, rf);
1345 return rq;
1346}
1347
9942f79b 1348#ifdef CONFIG_NUMA
e3fe70b1
RR
1349enum numa_topology_type {
1350 NUMA_DIRECT,
1351 NUMA_GLUELESS_MESH,
1352 NUMA_BACKPLANE,
1353};
1354extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1355extern int sched_max_numa_distance;
1356extern bool find_numa_distance(int distance);
f2cb1360
IM
1357extern void sched_init_numa(void);
1358extern void sched_domains_numa_masks_set(unsigned int cpu);
1359extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1360extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1361#else
1362static inline void sched_init_numa(void) { }
1363static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1364static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1365static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1366{
1367 return nr_cpu_ids;
1368}
f2cb1360
IM
1369#endif
1370
f809ca9a 1371#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1372/* The regions in numa_faults array from task_struct */
1373enum numa_faults_stats {
1374 NUMA_MEM = 0,
1375 NUMA_CPU,
1376 NUMA_MEMBUF,
1377 NUMA_CPUBUF
1378};
0ec8aa00 1379extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1380extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1381extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1382 int cpu, int scpu);
13784475
MG
1383extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1384#else
1385static inline void
1386init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1387{
1388}
f809ca9a
MG
1389#endif /* CONFIG_NUMA_BALANCING */
1390
518cd623
PZ
1391#ifdef CONFIG_SMP
1392
2558aacf
PZ
1393#define BALANCE_WORK 0x01
1394#define BALANCE_PUSH 0x02
1395
e3fca9e7
PZ
1396static inline void
1397queue_balance_callback(struct rq *rq,
1398 struct callback_head *head,
1399 void (*func)(struct rq *rq))
1400{
1401 lockdep_assert_held(&rq->lock);
1402
2558aacf 1403 if (unlikely(head->next || (rq->balance_flags & BALANCE_PUSH)))
e3fca9e7
PZ
1404 return;
1405
1406 head->func = (void (*)(struct callback_head *))func;
1407 head->next = rq->balance_callback;
1408 rq->balance_callback = head;
2558aacf 1409 rq->balance_flags |= BALANCE_WORK;
e3fca9e7
PZ
1410}
1411
029632fb
PZ
1412#define rcu_dereference_check_sched_domain(p) \
1413 rcu_dereference_check((p), \
1414 lockdep_is_held(&sched_domains_mutex))
1415
1416/*
1417 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1418 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1419 *
1420 * The domain tree of any CPU may only be accessed from within
1421 * preempt-disabled sections.
1422 */
1423#define for_each_domain(cpu, __sd) \
518cd623
PZ
1424 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1425 __sd; __sd = __sd->parent)
029632fb 1426
518cd623
PZ
1427/**
1428 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1429 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1430 * be returned.
1431 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1432 * for the given CPU.
518cd623 1433 *
97fb7a0a 1434 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1435 */
1436static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1437{
1438 struct sched_domain *sd, *hsd = NULL;
1439
1440 for_each_domain(cpu, sd) {
1441 if (!(sd->flags & flag))
1442 break;
1443 hsd = sd;
1444 }
1445
1446 return hsd;
1447}
1448
fb13c7ee
MG
1449static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1450{
1451 struct sched_domain *sd;
1452
1453 for_each_domain(cpu, sd) {
1454 if (sd->flags & flag)
1455 break;
1456 }
1457
1458 return sd;
1459}
1460
994aeb7a 1461DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1462DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1463DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1464DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1465DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1466DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1467DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1468extern struct static_key_false sched_asym_cpucapacity;
518cd623 1469
63b2ca30 1470struct sched_group_capacity {
97fb7a0a 1471 atomic_t ref;
5e6521ea 1472 /*
172895e6 1473 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1474 * for a single CPU.
5e6521ea 1475 */
97fb7a0a
IM
1476 unsigned long capacity;
1477 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1478 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1479 unsigned long next_update;
1480 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1481
005f874d 1482#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1483 int id;
005f874d
PZ
1484#endif
1485
eba9f082 1486 unsigned long cpumask[]; /* Balance mask */
5e6521ea
LZ
1487};
1488
1489struct sched_group {
97fb7a0a
IM
1490 struct sched_group *next; /* Must be a circular list */
1491 atomic_t ref;
5e6521ea 1492
97fb7a0a 1493 unsigned int group_weight;
63b2ca30 1494 struct sched_group_capacity *sgc;
97fb7a0a 1495 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1496
1497 /*
1498 * The CPUs this group covers.
1499 *
1500 * NOTE: this field is variable length. (Allocated dynamically
1501 * by attaching extra space to the end of the structure,
1502 * depending on how many CPUs the kernel has booted up with)
1503 */
04f5c362 1504 unsigned long cpumask[];
5e6521ea
LZ
1505};
1506
ae4df9d6 1507static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1508{
1509 return to_cpumask(sg->cpumask);
1510}
1511
1512/*
e5c14b1f 1513 * See build_balance_mask().
5e6521ea 1514 */
e5c14b1f 1515static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1516{
63b2ca30 1517 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1518}
1519
1520/**
97fb7a0a
IM
1521 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1522 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1523 */
1524static inline unsigned int group_first_cpu(struct sched_group *group)
1525{
ae4df9d6 1526 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1527}
1528
c1174876
PZ
1529extern int group_balance_cpu(struct sched_group *sg);
1530
3866e845
SRRH
1531#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1532void register_sched_domain_sysctl(void);
bbdacdfe 1533void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1534void unregister_sched_domain_sysctl(void);
1535#else
1536static inline void register_sched_domain_sysctl(void)
1537{
1538}
bbdacdfe
PZ
1539static inline void dirty_sched_domain_sysctl(int cpu)
1540{
1541}
3866e845
SRRH
1542static inline void unregister_sched_domain_sysctl(void)
1543{
1544}
1545#endif
1546
b2a02fc4 1547extern void flush_smp_call_function_from_idle(void);
e3baac47 1548
b2a02fc4
PZ
1549#else /* !CONFIG_SMP: */
1550static inline void flush_smp_call_function_from_idle(void) { }
b2a02fc4 1551#endif
029632fb 1552
391e43da 1553#include "stats.h"
1051408f 1554#include "autogroup.h"
029632fb
PZ
1555
1556#ifdef CONFIG_CGROUP_SCHED
1557
1558/*
1559 * Return the group to which this tasks belongs.
1560 *
8af01f56
TH
1561 * We cannot use task_css() and friends because the cgroup subsystem
1562 * changes that value before the cgroup_subsys::attach() method is called,
1563 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1564 *
1565 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1566 * core changes this before calling sched_move_task().
1567 *
1568 * Instead we use a 'copy' which is updated from sched_move_task() while
1569 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1570 */
1571static inline struct task_group *task_group(struct task_struct *p)
1572{
8323f26c 1573 return p->sched_task_group;
029632fb
PZ
1574}
1575
1576/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1577static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1578{
1579#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1580 struct task_group *tg = task_group(p);
1581#endif
1582
1583#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1584 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1585 p->se.cfs_rq = tg->cfs_rq[cpu];
1586 p->se.parent = tg->se[cpu];
1587#endif
1588
1589#ifdef CONFIG_RT_GROUP_SCHED
1590 p->rt.rt_rq = tg->rt_rq[cpu];
1591 p->rt.parent = tg->rt_se[cpu];
1592#endif
1593}
1594
1595#else /* CONFIG_CGROUP_SCHED */
1596
1597static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1598static inline struct task_group *task_group(struct task_struct *p)
1599{
1600 return NULL;
1601}
1602
1603#endif /* CONFIG_CGROUP_SCHED */
1604
1605static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1606{
1607 set_task_rq(p, cpu);
1608#ifdef CONFIG_SMP
1609 /*
1610 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1611 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1612 * per-task data have been completed by this moment.
1613 */
1614 smp_wmb();
c65eacbe 1615#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1616 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1617#else
c546951d 1618 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1619#endif
ac66f547 1620 p->wake_cpu = cpu;
029632fb
PZ
1621#endif
1622}
1623
1624/*
1625 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1626 */
1627#ifdef CONFIG_SCHED_DEBUG
c5905afb 1628# include <linux/static_key.h>
029632fb
PZ
1629# define const_debug __read_mostly
1630#else
1631# define const_debug const
1632#endif
1633
029632fb
PZ
1634#define SCHED_FEAT(name, enabled) \
1635 __SCHED_FEAT_##name ,
1636
1637enum {
391e43da 1638#include "features.h"
f8b6d1cc 1639 __SCHED_FEAT_NR,
029632fb
PZ
1640};
1641
1642#undef SCHED_FEAT
1643
a73f863a 1644#ifdef CONFIG_SCHED_DEBUG
765cc3a4
PB
1645
1646/*
1647 * To support run-time toggling of sched features, all the translation units
1648 * (but core.c) reference the sysctl_sched_features defined in core.c.
1649 */
1650extern const_debug unsigned int sysctl_sched_features;
1651
a73f863a 1652#ifdef CONFIG_JUMP_LABEL
f8b6d1cc 1653#define SCHED_FEAT(name, enabled) \
c5905afb 1654static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1655{ \
6e76ea8a 1656 return static_key_##enabled(key); \
f8b6d1cc
PZ
1657}
1658
1659#include "features.h"
f8b6d1cc
PZ
1660#undef SCHED_FEAT
1661
c5905afb 1662extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1663#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1664
a73f863a
JL
1665#else /* !CONFIG_JUMP_LABEL */
1666
1667#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1668
1669#endif /* CONFIG_JUMP_LABEL */
1670
1671#else /* !SCHED_DEBUG */
765cc3a4
PB
1672
1673/*
1674 * Each translation unit has its own copy of sysctl_sched_features to allow
1675 * constants propagation at compile time and compiler optimization based on
1676 * features default.
1677 */
1678#define SCHED_FEAT(name, enabled) \
1679 (1UL << __SCHED_FEAT_##name) * enabled |
1680static const_debug __maybe_unused unsigned int sysctl_sched_features =
1681#include "features.h"
1682 0;
1683#undef SCHED_FEAT
1684
7e6f4c5d 1685#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1686
a73f863a 1687#endif /* SCHED_DEBUG */
029632fb 1688
2a595721 1689extern struct static_key_false sched_numa_balancing;
cb251765 1690extern struct static_key_false sched_schedstats;
cbee9f88 1691
029632fb
PZ
1692static inline u64 global_rt_period(void)
1693{
1694 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1695}
1696
1697static inline u64 global_rt_runtime(void)
1698{
1699 if (sysctl_sched_rt_runtime < 0)
1700 return RUNTIME_INF;
1701
1702 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1703}
1704
029632fb
PZ
1705static inline int task_current(struct rq *rq, struct task_struct *p)
1706{
1707 return rq->curr == p;
1708}
1709
1710static inline int task_running(struct rq *rq, struct task_struct *p)
1711{
1712#ifdef CONFIG_SMP
1713 return p->on_cpu;
1714#else
1715 return task_current(rq, p);
1716#endif
1717}
1718
da0c1e65
KT
1719static inline int task_on_rq_queued(struct task_struct *p)
1720{
1721 return p->on_rq == TASK_ON_RQ_QUEUED;
1722}
029632fb 1723
cca26e80
KT
1724static inline int task_on_rq_migrating(struct task_struct *p)
1725{
c546951d 1726 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1727}
1728
b13095f0
LZ
1729/*
1730 * wake flags
1731 */
97fb7a0a
IM
1732#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1733#define WF_FORK 0x02 /* Child wakeup after fork */
2ebb1771 1734#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
739f70b4 1735#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
b13095f0 1736
029632fb
PZ
1737/*
1738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1739 * of tasks with abnormal "nice" values across CPUs the contribution that
1740 * each task makes to its run queue's load is weighted according to its
1741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1742 * scaled version of the new time slice allocation that they receive on time
1743 * slice expiry etc.
1744 */
1745
97fb7a0a
IM
1746#define WEIGHT_IDLEPRIO 3
1747#define WMULT_IDLEPRIO 1431655765
029632fb 1748
97fb7a0a
IM
1749extern const int sched_prio_to_weight[40];
1750extern const u32 sched_prio_to_wmult[40];
029632fb 1751
ff77e468
PZ
1752/*
1753 * {de,en}queue flags:
1754 *
1755 * DEQUEUE_SLEEP - task is no longer runnable
1756 * ENQUEUE_WAKEUP - task just became runnable
1757 *
1758 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1759 * are in a known state which allows modification. Such pairs
1760 * should preserve as much state as possible.
1761 *
1762 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1763 * in the runqueue.
1764 *
1765 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1766 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1767 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1768 *
1769 */
1770
1771#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1772#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1773#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1774#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1775
1de64443 1776#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1777#define ENQUEUE_RESTORE 0x02
1778#define ENQUEUE_MOVE 0x04
0a67d1ee 1779#define ENQUEUE_NOCLOCK 0x08
ff77e468 1780
0a67d1ee
PZ
1781#define ENQUEUE_HEAD 0x10
1782#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1783#ifdef CONFIG_SMP
0a67d1ee 1784#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1785#else
59efa0ba 1786#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1787#endif
c82ba9fa 1788
37e117c0
PZ
1789#define RETRY_TASK ((void *)-1UL)
1790
c82ba9fa 1791struct sched_class {
c82ba9fa 1792
69842cba
PB
1793#ifdef CONFIG_UCLAMP_TASK
1794 int uclamp_enabled;
1795#endif
1796
c82ba9fa
LZ
1797 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1798 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 1799 void (*yield_task) (struct rq *rq);
0900acf2 1800 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 1801
97fb7a0a 1802 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1803
98c2f700
PZ
1804 struct task_struct *(*pick_next_task)(struct rq *rq);
1805
6e2df058 1806 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 1807 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
1808
1809#ifdef CONFIG_SMP
6e2df058 1810 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
ac66f547 1811 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1812 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1813
97fb7a0a 1814 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1815
1816 void (*set_cpus_allowed)(struct task_struct *p,
9cfc3e18
PZ
1817 const struct cpumask *newmask,
1818 u32 flags);
c82ba9fa
LZ
1819
1820 void (*rq_online)(struct rq *rq);
1821 void (*rq_offline)(struct rq *rq);
1822#endif
1823
97fb7a0a
IM
1824 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1825 void (*task_fork)(struct task_struct *p);
1826 void (*task_dead)(struct task_struct *p);
c82ba9fa 1827
67dfa1b7
KT
1828 /*
1829 * The switched_from() call is allowed to drop rq->lock, therefore we
1830 * cannot assume the switched_from/switched_to pair is serliazed by
1831 * rq->lock. They are however serialized by p->pi_lock.
1832 */
97fb7a0a
IM
1833 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1834 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1835 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1836 int oldprio);
c82ba9fa 1837
97fb7a0a
IM
1838 unsigned int (*get_rr_interval)(struct rq *rq,
1839 struct task_struct *task);
c82ba9fa 1840
97fb7a0a 1841 void (*update_curr)(struct rq *rq);
6e998916 1842
97fb7a0a
IM
1843#define TASK_SET_GROUP 0
1844#define TASK_MOVE_GROUP 1
ea86cb4b 1845
c82ba9fa 1846#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1847 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa 1848#endif
85c2ce91 1849} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
029632fb 1850
3f1d2a31
PZ
1851static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1852{
10e7071b 1853 WARN_ON_ONCE(rq->curr != prev);
6e2df058 1854 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
1855}
1856
03b7fad1 1857static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1858{
03b7fad1 1859 WARN_ON_ONCE(rq->curr != next);
a0e813f2 1860 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
1861}
1862
c3a340f7
SRV
1863/* Defined in include/asm-generic/vmlinux.lds.h */
1864extern struct sched_class __begin_sched_classes[];
1865extern struct sched_class __end_sched_classes[];
1866
1867#define sched_class_highest (__end_sched_classes - 1)
1868#define sched_class_lowest (__begin_sched_classes - 1)
6e2df058
PZ
1869
1870#define for_class_range(class, _from, _to) \
c3a340f7 1871 for (class = (_from); class != (_to); class--)
6e2df058 1872
029632fb 1873#define for_each_class(class) \
c3a340f7 1874 for_class_range(class, sched_class_highest, sched_class_lowest)
029632fb
PZ
1875
1876extern const struct sched_class stop_sched_class;
aab03e05 1877extern const struct sched_class dl_sched_class;
029632fb
PZ
1878extern const struct sched_class rt_sched_class;
1879extern const struct sched_class fair_sched_class;
1880extern const struct sched_class idle_sched_class;
1881
6e2df058
PZ
1882static inline bool sched_stop_runnable(struct rq *rq)
1883{
1884 return rq->stop && task_on_rq_queued(rq->stop);
1885}
1886
1887static inline bool sched_dl_runnable(struct rq *rq)
1888{
1889 return rq->dl.dl_nr_running > 0;
1890}
1891
1892static inline bool sched_rt_runnable(struct rq *rq)
1893{
1894 return rq->rt.rt_queued > 0;
1895}
1896
1897static inline bool sched_fair_runnable(struct rq *rq)
1898{
1899 return rq->cfs.nr_running > 0;
1900}
029632fb 1901
5d7d6056 1902extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 1903extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 1904
029632fb
PZ
1905#ifdef CONFIG_SMP
1906
63b2ca30 1907extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1908
7caff66f 1909extern void trigger_load_balance(struct rq *rq);
029632fb 1910
9cfc3e18
PZ
1911#define SCA_CHECK 0x01
1912
1913extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
c5b28038 1914
029632fb
PZ
1915#endif
1916
442bf3aa
DL
1917#ifdef CONFIG_CPU_IDLE
1918static inline void idle_set_state(struct rq *rq,
1919 struct cpuidle_state *idle_state)
1920{
1921 rq->idle_state = idle_state;
1922}
1923
1924static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1925{
9148a3a1 1926 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1927
442bf3aa
DL
1928 return rq->idle_state;
1929}
1930#else
1931static inline void idle_set_state(struct rq *rq,
1932 struct cpuidle_state *idle_state)
1933{
1934}
1935
1936static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1937{
1938 return NULL;
1939}
1940#endif
1941
8663effb
SRV
1942extern void schedule_idle(void);
1943
029632fb
PZ
1944extern void sysrq_sched_debug_show(void);
1945extern void sched_init_granularity(void);
1946extern void update_max_interval(void);
1baca4ce
JL
1947
1948extern void init_sched_dl_class(void);
029632fb
PZ
1949extern void init_sched_rt_class(void);
1950extern void init_sched_fair_class(void);
1951
9059393e
VG
1952extern void reweight_task(struct task_struct *p, int prio);
1953
8875125e 1954extern void resched_curr(struct rq *rq);
029632fb
PZ
1955extern void resched_cpu(int cpu);
1956
1957extern struct rt_bandwidth def_rt_bandwidth;
1958extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1959
332ac17e
DF
1960extern struct dl_bandwidth def_dl_bandwidth;
1961extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1962extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1963extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 1964
97fb7a0a
IM
1965#define BW_SHIFT 20
1966#define BW_UNIT (1 << BW_SHIFT)
1967#define RATIO_SHIFT 8
d505b8af
HC
1968#define MAX_BW_BITS (64 - BW_SHIFT)
1969#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
1970unsigned long to_ratio(u64 period, u64 runtime);
1971
540247fb 1972extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 1973extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 1974
76d92ac3
FW
1975#ifdef CONFIG_NO_HZ_FULL
1976extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1977extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1978
1979/*
1980 * Tick may be needed by tasks in the runqueue depending on their policy and
1981 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1982 * nohz mode if necessary.
1983 */
1984static inline void sched_update_tick_dependency(struct rq *rq)
1985{
21a6ee14 1986 int cpu = cpu_of(rq);
76d92ac3
FW
1987
1988 if (!tick_nohz_full_cpu(cpu))
1989 return;
1990
1991 if (sched_can_stop_tick(rq))
1992 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1993 else
1994 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1995}
1996#else
d84b3131 1997static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1998static inline void sched_update_tick_dependency(struct rq *rq) { }
1999#endif
2000
72465447 2001static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 2002{
72465447
KT
2003 unsigned prev_nr = rq->nr_running;
2004
2005 rq->nr_running = prev_nr + count;
9d246053
PA
2006 if (trace_sched_update_nr_running_tp_enabled()) {
2007 call_trace_sched_update_nr_running(rq, count);
2008 }
9f3660c2 2009
4486edd1 2010#ifdef CONFIG_SMP
3e184501 2011 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
2012 if (!READ_ONCE(rq->rd->overload))
2013 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 2014 }
3e184501 2015#endif
76d92ac3
FW
2016
2017 sched_update_tick_dependency(rq);
029632fb
PZ
2018}
2019
72465447 2020static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 2021{
72465447 2022 rq->nr_running -= count;
9d246053 2023 if (trace_sched_update_nr_running_tp_enabled()) {
a1bd0685 2024 call_trace_sched_update_nr_running(rq, -count);
9d246053
PA
2025 }
2026
76d92ac3
FW
2027 /* Check if we still need preemption */
2028 sched_update_tick_dependency(rq);
029632fb
PZ
2029}
2030
029632fb
PZ
2031extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2032extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2033
2034extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2035
029632fb
PZ
2036extern const_debug unsigned int sysctl_sched_nr_migrate;
2037extern const_debug unsigned int sysctl_sched_migration_cost;
2038
029632fb
PZ
2039#ifdef CONFIG_SCHED_HRTICK
2040
2041/*
2042 * Use hrtick when:
2043 * - enabled by features
2044 * - hrtimer is actually high res
2045 */
2046static inline int hrtick_enabled(struct rq *rq)
2047{
2048 if (!sched_feat(HRTICK))
2049 return 0;
2050 if (!cpu_active(cpu_of(rq)))
2051 return 0;
2052 return hrtimer_is_hres_active(&rq->hrtick_timer);
2053}
2054
2055void hrtick_start(struct rq *rq, u64 delay);
2056
b39e66ea
MG
2057#else
2058
2059static inline int hrtick_enabled(struct rq *rq)
2060{
2061 return 0;
2062}
2063
029632fb
PZ
2064#endif /* CONFIG_SCHED_HRTICK */
2065
1567c3e3
GG
2066#ifndef arch_scale_freq_tick
2067static __always_inline
2068void arch_scale_freq_tick(void)
2069{
2070}
2071#endif
2072
dfbca41f 2073#ifndef arch_scale_freq_capacity
f4470cdf
VS
2074/**
2075 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2076 * @cpu: the CPU in question.
2077 *
2078 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2079 *
2080 * f_curr
2081 * ------ * SCHED_CAPACITY_SCALE
2082 * f_max
2083 */
dfbca41f 2084static __always_inline
7673c8a4 2085unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2086{
2087 return SCHED_CAPACITY_SCALE;
2088}
2089#endif
b5b4860d 2090
029632fb 2091#ifdef CONFIG_SMP
c1a280b6 2092#ifdef CONFIG_PREEMPTION
029632fb
PZ
2093
2094static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2095
2096/*
2097 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2098 * way at the expense of forcing extra atomic operations in all
2099 * invocations. This assures that the double_lock is acquired using the
2100 * same underlying policy as the spinlock_t on this architecture, which
2101 * reduces latency compared to the unfair variant below. However, it
2102 * also adds more overhead and therefore may reduce throughput.
2103 */
2104static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2105 __releases(this_rq->lock)
2106 __acquires(busiest->lock)
2107 __acquires(this_rq->lock)
2108{
2109 raw_spin_unlock(&this_rq->lock);
2110 double_rq_lock(this_rq, busiest);
2111
2112 return 1;
2113}
2114
2115#else
2116/*
2117 * Unfair double_lock_balance: Optimizes throughput at the expense of
2118 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2119 * already in proper order on entry. This favors lower CPU-ids and will
2120 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2121 * regardless of entry order into the function.
2122 */
2123static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2124 __releases(this_rq->lock)
2125 __acquires(busiest->lock)
2126 __acquires(this_rq->lock)
2127{
2128 int ret = 0;
2129
2130 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2131 if (busiest < this_rq) {
2132 raw_spin_unlock(&this_rq->lock);
2133 raw_spin_lock(&busiest->lock);
2134 raw_spin_lock_nested(&this_rq->lock,
2135 SINGLE_DEPTH_NESTING);
2136 ret = 1;
2137 } else
2138 raw_spin_lock_nested(&busiest->lock,
2139 SINGLE_DEPTH_NESTING);
2140 }
2141 return ret;
2142}
2143
c1a280b6 2144#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2145
2146/*
2147 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2148 */
2149static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2150{
2151 if (unlikely(!irqs_disabled())) {
97fb7a0a 2152 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2153 raw_spin_unlock(&this_rq->lock);
2154 BUG_ON(1);
2155 }
2156
2157 return _double_lock_balance(this_rq, busiest);
2158}
2159
2160static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2161 __releases(busiest->lock)
2162{
2163 raw_spin_unlock(&busiest->lock);
2164 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2165}
2166
74602315
PZ
2167static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2168{
2169 if (l1 > l2)
2170 swap(l1, l2);
2171
2172 spin_lock(l1);
2173 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2174}
2175
60e69eed
MG
2176static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2177{
2178 if (l1 > l2)
2179 swap(l1, l2);
2180
2181 spin_lock_irq(l1);
2182 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2183}
2184
74602315
PZ
2185static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2186{
2187 if (l1 > l2)
2188 swap(l1, l2);
2189
2190 raw_spin_lock(l1);
2191 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2192}
2193
029632fb
PZ
2194/*
2195 * double_rq_lock - safely lock two runqueues
2196 *
2197 * Note this does not disable interrupts like task_rq_lock,
2198 * you need to do so manually before calling.
2199 */
2200static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2201 __acquires(rq1->lock)
2202 __acquires(rq2->lock)
2203{
2204 BUG_ON(!irqs_disabled());
2205 if (rq1 == rq2) {
2206 raw_spin_lock(&rq1->lock);
2207 __acquire(rq2->lock); /* Fake it out ;) */
2208 } else {
2209 if (rq1 < rq2) {
2210 raw_spin_lock(&rq1->lock);
2211 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2212 } else {
2213 raw_spin_lock(&rq2->lock);
2214 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2215 }
2216 }
2217}
2218
2219/*
2220 * double_rq_unlock - safely unlock two runqueues
2221 *
2222 * Note this does not restore interrupts like task_rq_unlock,
2223 * you need to do so manually after calling.
2224 */
2225static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2226 __releases(rq1->lock)
2227 __releases(rq2->lock)
2228{
2229 raw_spin_unlock(&rq1->lock);
2230 if (rq1 != rq2)
2231 raw_spin_unlock(&rq2->lock);
2232 else
2233 __release(rq2->lock);
2234}
2235
f2cb1360
IM
2236extern void set_rq_online (struct rq *rq);
2237extern void set_rq_offline(struct rq *rq);
2238extern bool sched_smp_initialized;
2239
029632fb
PZ
2240#else /* CONFIG_SMP */
2241
2242/*
2243 * double_rq_lock - safely lock two runqueues
2244 *
2245 * Note this does not disable interrupts like task_rq_lock,
2246 * you need to do so manually before calling.
2247 */
2248static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2249 __acquires(rq1->lock)
2250 __acquires(rq2->lock)
2251{
2252 BUG_ON(!irqs_disabled());
2253 BUG_ON(rq1 != rq2);
2254 raw_spin_lock(&rq1->lock);
2255 __acquire(rq2->lock); /* Fake it out ;) */
2256}
2257
2258/*
2259 * double_rq_unlock - safely unlock two runqueues
2260 *
2261 * Note this does not restore interrupts like task_rq_unlock,
2262 * you need to do so manually after calling.
2263 */
2264static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2265 __releases(rq1->lock)
2266 __releases(rq2->lock)
2267{
2268 BUG_ON(rq1 != rq2);
2269 raw_spin_unlock(&rq1->lock);
2270 __release(rq2->lock);
2271}
2272
2273#endif
2274
2275extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2276extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2277
2278#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2279extern bool sched_debug_enabled;
2280
029632fb
PZ
2281extern void print_cfs_stats(struct seq_file *m, int cpu);
2282extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2283extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2284extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2285extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2286extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2287#ifdef CONFIG_NUMA_BALANCING
2288extern void
2289show_numa_stats(struct task_struct *p, struct seq_file *m);
2290extern void
2291print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2292 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2293#endif /* CONFIG_NUMA_BALANCING */
2294#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2295
2296extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2297extern void init_rt_rq(struct rt_rq *rt_rq);
2298extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2299
1ee14e6c
BS
2300extern void cfs_bandwidth_usage_inc(void);
2301extern void cfs_bandwidth_usage_dec(void);
1c792db7 2302
3451d024 2303#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2304#define NOHZ_BALANCE_KICK_BIT 0
2305#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2306
a22e47a4 2307#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2308#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2309
2310#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2311
2312#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2313
00357f5e 2314extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2315#else
00357f5e 2316static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2317#endif
73fbec60 2318
daec5798
LA
2319
2320#ifdef CONFIG_SMP
2321static inline
2322void __dl_update(struct dl_bw *dl_b, s64 bw)
2323{
2324 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2325 int i;
2326
2327 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2328 "sched RCU must be held");
2329 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2330 struct rq *rq = cpu_rq(i);
2331
2332 rq->dl.extra_bw += bw;
2333 }
2334}
2335#else
2336static inline
2337void __dl_update(struct dl_bw *dl_b, s64 bw)
2338{
2339 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2340
2341 dl->extra_bw += bw;
2342}
2343#endif
2344
2345
73fbec60 2346#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2347struct irqtime {
25e2d8c1 2348 u64 total;
a499a5a1 2349 u64 tick_delta;
19d23dbf
FW
2350 u64 irq_start_time;
2351 struct u64_stats_sync sync;
2352};
73fbec60 2353
19d23dbf 2354DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2355
25e2d8c1
FW
2356/*
2357 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2358 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2359 * and never move forward.
2360 */
73fbec60
FW
2361static inline u64 irq_time_read(int cpu)
2362{
19d23dbf
FW
2363 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2364 unsigned int seq;
2365 u64 total;
73fbec60
FW
2366
2367 do {
19d23dbf 2368 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2369 total = irqtime->total;
19d23dbf 2370 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2371
19d23dbf 2372 return total;
73fbec60 2373}
73fbec60 2374#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2375
2376#ifdef CONFIG_CPU_FREQ
b10abd0a 2377DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2378
2379/**
2380 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2381 * @rq: Runqueue to carry out the update for.
58919e83 2382 * @flags: Update reason flags.
adaf9fcd 2383 *
58919e83
RW
2384 * This function is called by the scheduler on the CPU whose utilization is
2385 * being updated.
adaf9fcd
RW
2386 *
2387 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2388 *
2389 * The way cpufreq is currently arranged requires it to evaluate the CPU
2390 * performance state (frequency/voltage) on a regular basis to prevent it from
2391 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2392 * That is not guaranteed to happen if the updates are only triggered from CFS
2393 * and DL, though, because they may not be coming in if only RT tasks are
2394 * active all the time (or there are RT tasks only).
adaf9fcd 2395 *
e0367b12
JL
2396 * As a workaround for that issue, this function is called periodically by the
2397 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2398 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2399 * solutions targeted more specifically at RT tasks.
adaf9fcd 2400 */
12bde33d 2401static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2402{
58919e83
RW
2403 struct update_util_data *data;
2404
674e7541
VK
2405 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2406 cpu_of(rq)));
58919e83 2407 if (data)
12bde33d
RW
2408 data->func(data, rq_clock(rq), flags);
2409}
adaf9fcd 2410#else
12bde33d 2411static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2412#endif /* CONFIG_CPU_FREQ */
be53f58f 2413
982d9cdc 2414#ifdef CONFIG_UCLAMP_TASK
686516b5 2415unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d 2416
46609ce2
QY
2417/**
2418 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2419 * @rq: The rq to clamp against. Must not be NULL.
2420 * @util: The util value to clamp.
2421 * @p: The task to clamp against. Can be NULL if you want to clamp
2422 * against @rq only.
2423 *
2424 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2425 *
2426 * If sched_uclamp_used static key is disabled, then just return the util
2427 * without any clamping since uclamp aggregation at the rq level in the fast
2428 * path is disabled, rendering this operation a NOP.
2429 *
2430 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2431 * will return the correct effective uclamp value of the task even if the
2432 * static key is disabled.
2433 */
9d20ad7d 2434static __always_inline
d2b58a28
VS
2435unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2436 struct task_struct *p)
982d9cdc 2437{
46609ce2
QY
2438 unsigned long min_util;
2439 unsigned long max_util;
2440
2441 if (!static_branch_likely(&sched_uclamp_used))
2442 return util;
2443
2444 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2445 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
982d9cdc 2446
9d20ad7d
PB
2447 if (p) {
2448 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2449 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2450 }
2451
982d9cdc
PB
2452 /*
2453 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2454 * RUNNABLE tasks with _different_ clamps, we can end up with an
2455 * inversion. Fix it now when the clamps are applied.
2456 */
2457 if (unlikely(min_util >= max_util))
2458 return min_util;
2459
2460 return clamp(util, min_util, max_util);
2461}
46609ce2
QY
2462
2463/*
2464 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2465 * by default in the fast path and only gets turned on once userspace performs
2466 * an operation that requires it.
2467 *
2468 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2469 * hence is active.
2470 */
2471static inline bool uclamp_is_used(void)
2472{
2473 return static_branch_likely(&sched_uclamp_used);
2474}
982d9cdc 2475#else /* CONFIG_UCLAMP_TASK */
d2b58a28
VS
2476static inline
2477unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2478 struct task_struct *p)
9d20ad7d
PB
2479{
2480 return util;
2481}
46609ce2
QY
2482
2483static inline bool uclamp_is_used(void)
2484{
2485 return false;
2486}
982d9cdc
PB
2487#endif /* CONFIG_UCLAMP_TASK */
2488
9bdcb44e 2489#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2490# ifndef arch_scale_freq_invariant
2491# define arch_scale_freq_invariant() true
2492# endif
2493#else
2494# define arch_scale_freq_invariant() false
9bdcb44e 2495#endif
d4edd662 2496
10a35e68
VG
2497#ifdef CONFIG_SMP
2498static inline unsigned long capacity_orig_of(int cpu)
2499{
2500 return cpu_rq(cpu)->cpu_capacity_orig;
2501}
2502#endif
2503
938e5e4b
QP
2504/**
2505 * enum schedutil_type - CPU utilization type
2506 * @FREQUENCY_UTIL: Utilization used to select frequency
2507 * @ENERGY_UTIL: Utilization used during energy calculation
2508 *
2509 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2510 * need to be aggregated differently depending on the usage made of them. This
2511 * enum is used within schedutil_freq_util() to differentiate the types of
2512 * utilization expected by the callers, and adjust the aggregation accordingly.
2513 */
2514enum schedutil_type {
2515 FREQUENCY_UTIL,
2516 ENERGY_UTIL,
2517};
2518
af24bde8 2519#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2520
af24bde8
PB
2521unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2522 unsigned long max, enum schedutil_type type,
2523 struct task_struct *p);
938e5e4b 2524
8cc90515 2525static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2526{
2527 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2528}
2529
8cc90515
VG
2530static inline unsigned long cpu_util_dl(struct rq *rq)
2531{
2532 return READ_ONCE(rq->avg_dl.util_avg);
2533}
2534
d4edd662
JL
2535static inline unsigned long cpu_util_cfs(struct rq *rq)
2536{
a07630b8
PB
2537 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2538
2539 if (sched_feat(UTIL_EST)) {
2540 util = max_t(unsigned long, util,
2541 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2542 }
2543
2544 return util;
d4edd662 2545}
371bf427
VG
2546
2547static inline unsigned long cpu_util_rt(struct rq *rq)
2548{
dfa444dc 2549 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2550}
938e5e4b 2551#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2552static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2553 unsigned long max, enum schedutil_type type,
2554 struct task_struct *p)
938e5e4b 2555{
af24bde8 2556 return 0;
938e5e4b 2557}
af24bde8 2558#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2559
11d4afd4 2560#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2561static inline unsigned long cpu_util_irq(struct rq *rq)
2562{
2563 return rq->avg_irq.util_avg;
2564}
2e62c474
VG
2565
2566static inline
2567unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2568{
2569 util *= (max - irq);
2570 util /= max;
2571
2572 return util;
2573
2574}
9033ea11
VG
2575#else
2576static inline unsigned long cpu_util_irq(struct rq *rq)
2577{
2578 return 0;
2579}
2580
2e62c474
VG
2581static inline
2582unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2583{
2584 return util;
2585}
794a56eb 2586#endif
6aa140fa 2587
531b5c9f 2588#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2589
6aa140fa 2590#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2591
2592DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2593
2594static inline bool sched_energy_enabled(void)
2595{
2596 return static_branch_unlikely(&sched_energy_present);
2597}
2598
2599#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2600
6aa140fa 2601#define perf_domain_span(pd) NULL
f8a696f2 2602static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2603
f8a696f2 2604#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2605
2606#ifdef CONFIG_MEMBARRIER
2607/*
2608 * The scheduler provides memory barriers required by membarrier between:
2609 * - prior user-space memory accesses and store to rq->membarrier_state,
2610 * - store to rq->membarrier_state and following user-space memory accesses.
2611 * In the same way it provides those guarantees around store to rq->curr.
2612 */
2613static inline void membarrier_switch_mm(struct rq *rq,
2614 struct mm_struct *prev_mm,
2615 struct mm_struct *next_mm)
2616{
2617 int membarrier_state;
2618
2619 if (prev_mm == next_mm)
2620 return;
2621
2622 membarrier_state = atomic_read(&next_mm->membarrier_state);
2623 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2624 return;
2625
2626 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2627}
2628#else
2629static inline void membarrier_switch_mm(struct rq *rq,
2630 struct mm_struct *prev_mm,
2631 struct mm_struct *next_mm)
2632{
2633}
2634#endif
52262ee5
MG
2635
2636#ifdef CONFIG_SMP
2637static inline bool is_per_cpu_kthread(struct task_struct *p)
2638{
2639 if (!(p->flags & PF_KTHREAD))
2640 return false;
2641
2642 if (p->nr_cpus_allowed != 1)
2643 return false;
2644
2645 return true;
2646}
2647#endif
b3212fe2
TG
2648
2649void swake_up_all_locked(struct swait_queue_head *q);
2650void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);