]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched/sched.h
sched/uclamp: Fix initialization of struct uclamp_rq
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
85c2ce91 70#include <asm-generic/vmlinux.lds.h>
029632fb 71
7fce777c 72#ifdef CONFIG_PARAVIRT
325ea10c 73# include <asm/paravirt.h>
7fce777c
IM
74#endif
75
391e43da 76#include "cpupri.h"
6bfd6d72 77#include "cpudeadline.h"
029632fb 78
9148a3a1 79#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 80# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 81#else
6d3aed3d 82# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
83#endif
84
45ceebf7 85struct rq;
442bf3aa 86struct cpuidle_state;
45ceebf7 87
da0c1e65
KT
88/* task_struct::on_rq states: */
89#define TASK_ON_RQ_QUEUED 1
cca26e80 90#define TASK_ON_RQ_MIGRATING 2
da0c1e65 91
029632fb
PZ
92extern __read_mostly int scheduler_running;
93
45ceebf7
PG
94extern unsigned long calc_load_update;
95extern atomic_long_t calc_load_tasks;
96
3289bdb4 97extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 98extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 99
029632fb
PZ
100/*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
cc1f4b1f
LZ
105/*
106 * Increase resolution of nice-level calculations for 64-bit architectures.
107 * The extra resolution improves shares distribution and load balancing of
108 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
109 * hierarchies, especially on larger systems. This is not a user-visible change
110 * and does not change the user-interface for setting shares/weights.
111 *
112 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
113 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
114 * are pretty high and the returns do not justify the increased costs.
2159197d 115 *
97fb7a0a
IM
116 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
117 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 118 */
2159197d 119#ifdef CONFIG_64BIT
172895e6 120# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 121# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
122# define scale_load_down(w) \
123({ \
124 unsigned long __w = (w); \
125 if (__w) \
126 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
127 __w; \
128})
cc1f4b1f 129#else
172895e6 130# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
131# define scale_load(w) (w)
132# define scale_load_down(w) (w)
133#endif
134
6ecdd749 135/*
172895e6
YD
136 * Task weight (visible to users) and its load (invisible to users) have
137 * independent resolution, but they should be well calibrated. We use
138 * scale_load() and scale_load_down(w) to convert between them. The
139 * following must be true:
140 *
141 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
142 *
6ecdd749 143 */
172895e6 144#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 145
332ac17e
DF
146/*
147 * Single value that decides SCHED_DEADLINE internal math precision.
148 * 10 -> just above 1us
149 * 9 -> just above 0.5us
150 */
97fb7a0a 151#define DL_SCALE 10
029632fb
PZ
152
153/*
97fb7a0a 154 * Single value that denotes runtime == period, ie unlimited time.
029632fb 155 */
97fb7a0a 156#define RUNTIME_INF ((u64)~0ULL)
029632fb 157
20f9cd2a
HA
158static inline int idle_policy(int policy)
159{
160 return policy == SCHED_IDLE;
161}
d50dde5a
DF
162static inline int fair_policy(int policy)
163{
164 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
165}
166
029632fb
PZ
167static inline int rt_policy(int policy)
168{
d50dde5a 169 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
170}
171
aab03e05
DF
172static inline int dl_policy(int policy)
173{
174 return policy == SCHED_DEADLINE;
175}
20f9cd2a
HA
176static inline bool valid_policy(int policy)
177{
178 return idle_policy(policy) || fair_policy(policy) ||
179 rt_policy(policy) || dl_policy(policy);
180}
aab03e05 181
1da1843f
VK
182static inline int task_has_idle_policy(struct task_struct *p)
183{
184 return idle_policy(p->policy);
185}
186
029632fb
PZ
187static inline int task_has_rt_policy(struct task_struct *p)
188{
189 return rt_policy(p->policy);
190}
191
aab03e05
DF
192static inline int task_has_dl_policy(struct task_struct *p)
193{
194 return dl_policy(p->policy);
195}
196
07881166
JL
197#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
198
d76343c6
VS
199static inline void update_avg(u64 *avg, u64 sample)
200{
201 s64 diff = sample - *avg;
202 *avg += diff / 8;
203}
204
794a56eb
JL
205/*
206 * !! For sched_setattr_nocheck() (kernel) only !!
207 *
208 * This is actually gross. :(
209 *
210 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
211 * tasks, but still be able to sleep. We need this on platforms that cannot
212 * atomically change clock frequency. Remove once fast switching will be
213 * available on such platforms.
214 *
215 * SUGOV stands for SchedUtil GOVernor.
216 */
217#define SCHED_FLAG_SUGOV 0x10000000
218
219static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
220{
221#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
222 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
223#else
224 return false;
225#endif
226}
227
2d3d891d
DF
228/*
229 * Tells if entity @a should preempt entity @b.
230 */
332ac17e
DF
231static inline bool
232dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 233{
794a56eb
JL
234 return dl_entity_is_special(a) ||
235 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
236}
237
029632fb
PZ
238/*
239 * This is the priority-queue data structure of the RT scheduling class:
240 */
241struct rt_prio_array {
242 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
243 struct list_head queue[MAX_RT_PRIO];
244};
245
246struct rt_bandwidth {
247 /* nests inside the rq lock: */
248 raw_spinlock_t rt_runtime_lock;
249 ktime_t rt_period;
250 u64 rt_runtime;
251 struct hrtimer rt_period_timer;
4cfafd30 252 unsigned int rt_period_active;
029632fb 253};
a5e7be3b
JL
254
255void __dl_clear_params(struct task_struct *p);
256
332ac17e
DF
257/*
258 * To keep the bandwidth of -deadline tasks and groups under control
259 * we need some place where:
260 * - store the maximum -deadline bandwidth of the system (the group);
261 * - cache the fraction of that bandwidth that is currently allocated.
262 *
263 * This is all done in the data structure below. It is similar to the
264 * one used for RT-throttling (rt_bandwidth), with the main difference
265 * that, since here we are only interested in admission control, we
266 * do not decrease any runtime while the group "executes", neither we
267 * need a timer to replenish it.
268 *
269 * With respect to SMP, the bandwidth is given on a per-CPU basis,
270 * meaning that:
271 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
272 * - dl_total_bw array contains, in the i-eth element, the currently
273 * allocated bandwidth on the i-eth CPU.
274 * Moreover, groups consume bandwidth on each CPU, while tasks only
275 * consume bandwidth on the CPU they're running on.
276 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
277 * that will be shown the next time the proc or cgroup controls will
278 * be red. It on its turn can be changed by writing on its own
279 * control.
280 */
281struct dl_bandwidth {
97fb7a0a
IM
282 raw_spinlock_t dl_runtime_lock;
283 u64 dl_runtime;
284 u64 dl_period;
332ac17e
DF
285};
286
287static inline int dl_bandwidth_enabled(void)
288{
1724813d 289 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
290}
291
332ac17e 292struct dl_bw {
97fb7a0a
IM
293 raw_spinlock_t lock;
294 u64 bw;
295 u64 total_bw;
332ac17e
DF
296};
297
daec5798
LA
298static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
299
7f51412a 300static inline
8c0944ce 301void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
302{
303 dl_b->total_bw -= tsk_bw;
daec5798 304 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
305}
306
307static inline
daec5798 308void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
309{
310 dl_b->total_bw += tsk_bw;
daec5798 311 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
312}
313
60ffd5ed
LA
314static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
315 u64 old_bw, u64 new_bw)
7f51412a
JL
316{
317 return dl_b->bw != -1 &&
60ffd5ed 318 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
7f51412a
JL
319}
320
b4118988
LA
321/*
322 * Verify the fitness of task @p to run on @cpu taking into account the
323 * CPU original capacity and the runtime/deadline ratio of the task.
324 *
325 * The function will return true if the CPU original capacity of the
326 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
327 * task and false otherwise.
328 */
329static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
330{
331 unsigned long cap = arch_scale_cpu_capacity(cpu);
332
333 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
334}
335
f2cb1360 336extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 337extern int sched_dl_global_validate(void);
06a76fe0 338extern void sched_dl_do_global(void);
97fb7a0a 339extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
340extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
341extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
342extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 343extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
344extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
345extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 346extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
347
348#ifdef CONFIG_CGROUP_SCHED
349
350#include <linux/cgroup.h>
eb414681 351#include <linux/psi.h>
029632fb
PZ
352
353struct cfs_rq;
354struct rt_rq;
355
35cf4e50 356extern struct list_head task_groups;
029632fb
PZ
357
358struct cfs_bandwidth {
359#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
360 raw_spinlock_t lock;
361 ktime_t period;
362 u64 quota;
363 u64 runtime;
364 s64 hierarchical_quota;
97fb7a0a 365
66567fcb 366 u8 idle;
367 u8 period_active;
66567fcb 368 u8 slack_started;
97fb7a0a
IM
369 struct hrtimer period_timer;
370 struct hrtimer slack_timer;
371 struct list_head throttled_cfs_rq;
372
373 /* Statistics: */
374 int nr_periods;
375 int nr_throttled;
376 u64 throttled_time;
029632fb
PZ
377#endif
378};
379
97fb7a0a 380/* Task group related information */
029632fb
PZ
381struct task_group {
382 struct cgroup_subsys_state css;
383
384#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
385 /* schedulable entities of this group on each CPU */
386 struct sched_entity **se;
387 /* runqueue "owned" by this group on each CPU */
388 struct cfs_rq **cfs_rq;
389 unsigned long shares;
029632fb 390
fa6bddeb 391#ifdef CONFIG_SMP
b0367629
WL
392 /*
393 * load_avg can be heavily contended at clock tick time, so put
394 * it in its own cacheline separated from the fields above which
395 * will also be accessed at each tick.
396 */
97fb7a0a 397 atomic_long_t load_avg ____cacheline_aligned;
029632fb 398#endif
fa6bddeb 399#endif
029632fb
PZ
400
401#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
402 struct sched_rt_entity **rt_se;
403 struct rt_rq **rt_rq;
029632fb 404
97fb7a0a 405 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
406#endif
407
97fb7a0a
IM
408 struct rcu_head rcu;
409 struct list_head list;
029632fb 410
97fb7a0a
IM
411 struct task_group *parent;
412 struct list_head siblings;
413 struct list_head children;
029632fb
PZ
414
415#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 416 struct autogroup *autogroup;
029632fb
PZ
417#endif
418
97fb7a0a 419 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
420
421#ifdef CONFIG_UCLAMP_TASK_GROUP
422 /* The two decimal precision [%] value requested from user-space */
423 unsigned int uclamp_pct[UCLAMP_CNT];
424 /* Clamp values requested for a task group */
425 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
426 /* Effective clamp values used for a task group */
427 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
428#endif
429
029632fb
PZ
430};
431
432#ifdef CONFIG_FAIR_GROUP_SCHED
433#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
434
435/*
436 * A weight of 0 or 1 can cause arithmetics problems.
437 * A weight of a cfs_rq is the sum of weights of which entities
438 * are queued on this cfs_rq, so a weight of a entity should not be
439 * too large, so as the shares value of a task group.
440 * (The default weight is 1024 - so there's no practical
441 * limitation from this.)
442 */
97fb7a0a
IM
443#define MIN_SHARES (1UL << 1)
444#define MAX_SHARES (1UL << 18)
029632fb
PZ
445#endif
446
029632fb
PZ
447typedef int (*tg_visitor)(struct task_group *, void *);
448
449extern int walk_tg_tree_from(struct task_group *from,
450 tg_visitor down, tg_visitor up, void *data);
451
452/*
453 * Iterate the full tree, calling @down when first entering a node and @up when
454 * leaving it for the final time.
455 *
456 * Caller must hold rcu_lock or sufficient equivalent.
457 */
458static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
459{
460 return walk_tg_tree_from(&root_task_group, down, up, data);
461}
462
463extern int tg_nop(struct task_group *tg, void *data);
464
465extern void free_fair_sched_group(struct task_group *tg);
466extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 467extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 468extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
469extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
470 struct sched_entity *se, int cpu,
471 struct sched_entity *parent);
472extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
473
474extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 475extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
476extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
477
478extern void free_rt_sched_group(struct task_group *tg);
479extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
480extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
481 struct sched_rt_entity *rt_se, int cpu,
482 struct sched_rt_entity *parent);
8887cd99
NP
483extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
484extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
485extern long sched_group_rt_runtime(struct task_group *tg);
486extern long sched_group_rt_period(struct task_group *tg);
487extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 488
25cc7da7
LZ
489extern struct task_group *sched_create_group(struct task_group *parent);
490extern void sched_online_group(struct task_group *tg,
491 struct task_group *parent);
492extern void sched_destroy_group(struct task_group *tg);
493extern void sched_offline_group(struct task_group *tg);
494
495extern void sched_move_task(struct task_struct *tsk);
496
497#ifdef CONFIG_FAIR_GROUP_SCHED
498extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
499
500#ifdef CONFIG_SMP
501extern void set_task_rq_fair(struct sched_entity *se,
502 struct cfs_rq *prev, struct cfs_rq *next);
503#else /* !CONFIG_SMP */
504static inline void set_task_rq_fair(struct sched_entity *se,
505 struct cfs_rq *prev, struct cfs_rq *next) { }
506#endif /* CONFIG_SMP */
507#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 508
029632fb
PZ
509#else /* CONFIG_CGROUP_SCHED */
510
511struct cfs_bandwidth { };
512
513#endif /* CONFIG_CGROUP_SCHED */
514
515/* CFS-related fields in a runqueue */
516struct cfs_rq {
97fb7a0a 517 struct load_weight load;
97fb7a0a 518 unsigned int nr_running;
43e9f7f2
VK
519 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
520 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 521
97fb7a0a
IM
522 u64 exec_clock;
523 u64 min_vruntime;
029632fb 524#ifndef CONFIG_64BIT
97fb7a0a 525 u64 min_vruntime_copy;
029632fb
PZ
526#endif
527
97fb7a0a 528 struct rb_root_cached tasks_timeline;
029632fb 529
029632fb
PZ
530 /*
531 * 'curr' points to currently running entity on this cfs_rq.
532 * It is set to NULL otherwise (i.e when none are currently running).
533 */
97fb7a0a
IM
534 struct sched_entity *curr;
535 struct sched_entity *next;
536 struct sched_entity *last;
537 struct sched_entity *skip;
029632fb
PZ
538
539#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 540 unsigned int nr_spread_over;
029632fb
PZ
541#endif
542
2dac754e
PT
543#ifdef CONFIG_SMP
544 /*
9d89c257 545 * CFS load tracking
2dac754e 546 */
97fb7a0a 547 struct sched_avg avg;
2a2f5d4e 548#ifndef CONFIG_64BIT
97fb7a0a 549 u64 load_last_update_time_copy;
9d89c257 550#endif
2a2f5d4e
PZ
551 struct {
552 raw_spinlock_t lock ____cacheline_aligned;
553 int nr;
554 unsigned long load_avg;
555 unsigned long util_avg;
9f683953 556 unsigned long runnable_avg;
2a2f5d4e 557 } removed;
82958366 558
9d89c257 559#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
560 unsigned long tg_load_avg_contrib;
561 long propagate;
562 long prop_runnable_sum;
0e2d2aaa 563
82958366
PT
564 /*
565 * h_load = weight * f(tg)
566 *
567 * Where f(tg) is the recursive weight fraction assigned to
568 * this group.
569 */
97fb7a0a
IM
570 unsigned long h_load;
571 u64 last_h_load_update;
572 struct sched_entity *h_load_next;
68520796 573#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
574#endif /* CONFIG_SMP */
575
029632fb 576#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 577 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
578
579 /*
580 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
581 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
582 * (like users, containers etc.)
583 *
97fb7a0a
IM
584 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
585 * This list is used during load balance.
029632fb 586 */
97fb7a0a
IM
587 int on_list;
588 struct list_head leaf_cfs_rq_list;
589 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 590
029632fb 591#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 592 int runtime_enabled;
97fb7a0a
IM
593 s64 runtime_remaining;
594
595 u64 throttled_clock;
596 u64 throttled_clock_task;
597 u64 throttled_clock_task_time;
598 int throttled;
599 int throttle_count;
600 struct list_head throttled_list;
029632fb
PZ
601#endif /* CONFIG_CFS_BANDWIDTH */
602#endif /* CONFIG_FAIR_GROUP_SCHED */
603};
604
605static inline int rt_bandwidth_enabled(void)
606{
607 return sysctl_sched_rt_runtime >= 0;
608}
609
b6366f04 610/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 611#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
612# define HAVE_RT_PUSH_IPI
613#endif
614
029632fb
PZ
615/* Real-Time classes' related field in a runqueue: */
616struct rt_rq {
97fb7a0a
IM
617 struct rt_prio_array active;
618 unsigned int rt_nr_running;
619 unsigned int rr_nr_running;
029632fb
PZ
620#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
621 struct {
97fb7a0a 622 int curr; /* highest queued rt task prio */
029632fb 623#ifdef CONFIG_SMP
97fb7a0a 624 int next; /* next highest */
029632fb
PZ
625#endif
626 } highest_prio;
627#endif
628#ifdef CONFIG_SMP
97fb7a0a
IM
629 unsigned long rt_nr_migratory;
630 unsigned long rt_nr_total;
631 int overloaded;
632 struct plist_head pushable_tasks;
371bf427 633
b6366f04 634#endif /* CONFIG_SMP */
97fb7a0a 635 int rt_queued;
f4ebcbc0 636
97fb7a0a
IM
637 int rt_throttled;
638 u64 rt_time;
639 u64 rt_runtime;
029632fb 640 /* Nests inside the rq lock: */
97fb7a0a 641 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
642
643#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 644 unsigned long rt_nr_boosted;
029632fb 645
97fb7a0a
IM
646 struct rq *rq;
647 struct task_group *tg;
029632fb
PZ
648#endif
649};
650
296b2ffe
VG
651static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
652{
653 return rt_rq->rt_queued && rt_rq->rt_nr_running;
654}
655
aab03e05
DF
656/* Deadline class' related fields in a runqueue */
657struct dl_rq {
658 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 659 struct rb_root_cached root;
aab03e05 660
97fb7a0a 661 unsigned long dl_nr_running;
1baca4ce
JL
662
663#ifdef CONFIG_SMP
664 /*
665 * Deadline values of the currently executing and the
666 * earliest ready task on this rq. Caching these facilitates
dfcb245e 667 * the decision whether or not a ready but not running task
1baca4ce
JL
668 * should migrate somewhere else.
669 */
670 struct {
97fb7a0a
IM
671 u64 curr;
672 u64 next;
1baca4ce
JL
673 } earliest_dl;
674
97fb7a0a
IM
675 unsigned long dl_nr_migratory;
676 int overloaded;
1baca4ce
JL
677
678 /*
679 * Tasks on this rq that can be pushed away. They are kept in
680 * an rb-tree, ordered by tasks' deadlines, with caching
681 * of the leftmost (earliest deadline) element.
682 */
97fb7a0a 683 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 684#else
97fb7a0a 685 struct dl_bw dl_bw;
1baca4ce 686#endif
e36d8677
LA
687 /*
688 * "Active utilization" for this runqueue: increased when a
689 * task wakes up (becomes TASK_RUNNING) and decreased when a
690 * task blocks
691 */
97fb7a0a 692 u64 running_bw;
4da3abce 693
8fd27231
LA
694 /*
695 * Utilization of the tasks "assigned" to this runqueue (including
696 * the tasks that are in runqueue and the tasks that executed on this
697 * CPU and blocked). Increased when a task moves to this runqueue, and
698 * decreased when the task moves away (migrates, changes scheduling
699 * policy, or terminates).
700 * This is needed to compute the "inactive utilization" for the
701 * runqueue (inactive utilization = this_bw - running_bw).
702 */
97fb7a0a
IM
703 u64 this_bw;
704 u64 extra_bw;
8fd27231 705
4da3abce
LA
706 /*
707 * Inverse of the fraction of CPU utilization that can be reclaimed
708 * by the GRUB algorithm.
709 */
97fb7a0a 710 u64 bw_ratio;
aab03e05
DF
711};
712
c0796298
VG
713#ifdef CONFIG_FAIR_GROUP_SCHED
714/* An entity is a task if it doesn't "own" a runqueue */
715#define entity_is_task(se) (!se->my_q)
0dacee1b 716
9f683953
VG
717static inline void se_update_runnable(struct sched_entity *se)
718{
719 if (!entity_is_task(se))
720 se->runnable_weight = se->my_q->h_nr_running;
721}
722
723static inline long se_runnable(struct sched_entity *se)
724{
725 if (entity_is_task(se))
726 return !!se->on_rq;
727 else
728 return se->runnable_weight;
729}
730
c0796298
VG
731#else
732#define entity_is_task(se) 1
0dacee1b 733
9f683953
VG
734static inline void se_update_runnable(struct sched_entity *se) {}
735
736static inline long se_runnable(struct sched_entity *se)
737{
738 return !!se->on_rq;
739}
c0796298
VG
740#endif
741
029632fb 742#ifdef CONFIG_SMP
c0796298
VG
743/*
744 * XXX we want to get rid of these helpers and use the full load resolution.
745 */
746static inline long se_weight(struct sched_entity *se)
747{
748 return scale_load_down(se->load.weight);
749}
750
029632fb 751
afe06efd
TC
752static inline bool sched_asym_prefer(int a, int b)
753{
754 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
755}
756
6aa140fa
QP
757struct perf_domain {
758 struct em_perf_domain *em_pd;
759 struct perf_domain *next;
760 struct rcu_head rcu;
761};
762
630246a0
QP
763/* Scheduling group status flags */
764#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 765#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 766
029632fb
PZ
767/*
768 * We add the notion of a root-domain which will be used to define per-domain
769 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 770 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
771 * exclusive cpuset is created, we also create and attach a new root-domain
772 * object.
773 *
774 */
775struct root_domain {
97fb7a0a
IM
776 atomic_t refcount;
777 atomic_t rto_count;
778 struct rcu_head rcu;
779 cpumask_var_t span;
780 cpumask_var_t online;
029632fb 781
757ffdd7
VS
782 /*
783 * Indicate pullable load on at least one CPU, e.g:
784 * - More than one runnable task
785 * - Running task is misfit
786 */
575638d1 787 int overload;
4486edd1 788
2802bf3c
MR
789 /* Indicate one or more cpus over-utilized (tipping point) */
790 int overutilized;
791
1baca4ce
JL
792 /*
793 * The bit corresponding to a CPU gets set here if such CPU has more
794 * than one runnable -deadline task (as it is below for RT tasks).
795 */
97fb7a0a
IM
796 cpumask_var_t dlo_mask;
797 atomic_t dlo_count;
798 struct dl_bw dl_bw;
799 struct cpudl cpudl;
1baca4ce 800
4bdced5c
SRRH
801#ifdef HAVE_RT_PUSH_IPI
802 /*
803 * For IPI pull requests, loop across the rto_mask.
804 */
97fb7a0a
IM
805 struct irq_work rto_push_work;
806 raw_spinlock_t rto_lock;
4bdced5c 807 /* These are only updated and read within rto_lock */
97fb7a0a
IM
808 int rto_loop;
809 int rto_cpu;
4bdced5c 810 /* These atomics are updated outside of a lock */
97fb7a0a
IM
811 atomic_t rto_loop_next;
812 atomic_t rto_loop_start;
4bdced5c 813#endif
029632fb
PZ
814 /*
815 * The "RT overload" flag: it gets set if a CPU has more than
816 * one runnable RT task.
817 */
97fb7a0a
IM
818 cpumask_var_t rto_mask;
819 struct cpupri cpupri;
cd92bfd3 820
97fb7a0a 821 unsigned long max_cpu_capacity;
6aa140fa
QP
822
823 /*
824 * NULL-terminated list of performance domains intersecting with the
825 * CPUs of the rd. Protected by RCU.
826 */
7ba7319f 827 struct perf_domain __rcu *pd;
029632fb
PZ
828};
829
f2cb1360 830extern void init_defrootdomain(void);
8d5dc512 831extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 832extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
833extern void sched_get_rd(struct root_domain *rd);
834extern void sched_put_rd(struct root_domain *rd);
029632fb 835
4bdced5c
SRRH
836#ifdef HAVE_RT_PUSH_IPI
837extern void rto_push_irq_work_func(struct irq_work *work);
838#endif
029632fb
PZ
839#endif /* CONFIG_SMP */
840
69842cba
PB
841#ifdef CONFIG_UCLAMP_TASK
842/*
843 * struct uclamp_bucket - Utilization clamp bucket
844 * @value: utilization clamp value for tasks on this clamp bucket
845 * @tasks: number of RUNNABLE tasks on this clamp bucket
846 *
847 * Keep track of how many tasks are RUNNABLE for a given utilization
848 * clamp value.
849 */
850struct uclamp_bucket {
851 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
852 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
853};
854
855/*
856 * struct uclamp_rq - rq's utilization clamp
857 * @value: currently active clamp values for a rq
858 * @bucket: utilization clamp buckets affecting a rq
859 *
860 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
861 * A clamp value is affecting a rq when there is at least one task RUNNABLE
862 * (or actually running) with that value.
863 *
864 * There are up to UCLAMP_CNT possible different clamp values, currently there
865 * are only two: minimum utilization and maximum utilization.
866 *
867 * All utilization clamping values are MAX aggregated, since:
868 * - for util_min: we want to run the CPU at least at the max of the minimum
869 * utilization required by its currently RUNNABLE tasks.
870 * - for util_max: we want to allow the CPU to run up to the max of the
871 * maximum utilization allowed by its currently RUNNABLE tasks.
872 *
873 * Since on each system we expect only a limited number of different
874 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
875 * the metrics required to compute all the per-rq utilization clamp values.
876 */
877struct uclamp_rq {
878 unsigned int value;
879 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
880};
881#endif /* CONFIG_UCLAMP_TASK */
882
029632fb
PZ
883/*
884 * This is the main, per-CPU runqueue data structure.
885 *
886 * Locking rule: those places that want to lock multiple runqueues
887 * (such as the load balancing or the thread migration code), lock
888 * acquire operations must be ordered by ascending &runqueue.
889 */
890struct rq {
891 /* runqueue lock: */
97fb7a0a 892 raw_spinlock_t lock;
029632fb
PZ
893
894 /*
895 * nr_running and cpu_load should be in the same cacheline because
896 * remote CPUs use both these fields when doing load calculation.
897 */
97fb7a0a 898 unsigned int nr_running;
0ec8aa00 899#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
900 unsigned int nr_numa_running;
901 unsigned int nr_preferred_running;
a4739eca 902 unsigned int numa_migrate_on;
0ec8aa00 903#endif
3451d024 904#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 905#ifdef CONFIG_SMP
e022e0d3 906 unsigned long last_blocked_load_update_tick;
f643ea22 907 unsigned int has_blocked_load;
90b5363a 908 call_single_data_t nohz_csd;
9fd81dd5 909#endif /* CONFIG_SMP */
00357f5e 910 unsigned int nohz_tick_stopped;
90b5363a 911 atomic_t nohz_flags;
9fd81dd5 912#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 913
126c2092
PZ
914#ifdef CONFIG_SMP
915 unsigned int ttwu_pending;
916#endif
97fb7a0a 917 u64 nr_switches;
029632fb 918
69842cba
PB
919#ifdef CONFIG_UCLAMP_TASK
920 /* Utilization clamp values based on CPU's RUNNABLE tasks */
921 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
922 unsigned int uclamp_flags;
923#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
924#endif
925
97fb7a0a
IM
926 struct cfs_rq cfs;
927 struct rt_rq rt;
928 struct dl_rq dl;
029632fb
PZ
929
930#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
931 /* list of leaf cfs_rq on this CPU: */
932 struct list_head leaf_cfs_rq_list;
933 struct list_head *tmp_alone_branch;
a35b6466
PZ
934#endif /* CONFIG_FAIR_GROUP_SCHED */
935
029632fb
PZ
936 /*
937 * This is part of a global counter where only the total sum
938 * over all CPUs matters. A task can increase this counter on
939 * one CPU and if it got migrated afterwards it may decrease
940 * it on another CPU. Always updated under the runqueue lock:
941 */
97fb7a0a 942 unsigned long nr_uninterruptible;
029632fb 943
4104a562 944 struct task_struct __rcu *curr;
97fb7a0a
IM
945 struct task_struct *idle;
946 struct task_struct *stop;
947 unsigned long next_balance;
948 struct mm_struct *prev_mm;
029632fb 949
97fb7a0a
IM
950 unsigned int clock_update_flags;
951 u64 clock;
23127296
VG
952 /* Ensure that all clocks are in the same cache line */
953 u64 clock_task ____cacheline_aligned;
954 u64 clock_pelt;
955 unsigned long lost_idle_time;
029632fb 956
97fb7a0a 957 atomic_t nr_iowait;
029632fb 958
227a4aad
MD
959#ifdef CONFIG_MEMBARRIER
960 int membarrier_state;
961#endif
962
029632fb 963#ifdef CONFIG_SMP
994aeb7a
JFG
964 struct root_domain *rd;
965 struct sched_domain __rcu *sd;
97fb7a0a
IM
966
967 unsigned long cpu_capacity;
968 unsigned long cpu_capacity_orig;
029632fb 969
97fb7a0a 970 struct callback_head *balance_callback;
029632fb 971
19a1f5ec 972 unsigned char nohz_idle_balance;
97fb7a0a 973 unsigned char idle_balance;
e3fca9e7 974
3b1baa64
MR
975 unsigned long misfit_task_load;
976
029632fb 977 /* For active balancing */
97fb7a0a
IM
978 int active_balance;
979 int push_cpu;
980 struct cpu_stop_work active_balance_work;
981
982 /* CPU of this runqueue: */
983 int cpu;
984 int online;
029632fb 985
367456c7
PZ
986 struct list_head cfs_tasks;
987
371bf427 988 struct sched_avg avg_rt;
3727e0e1 989 struct sched_avg avg_dl;
11d4afd4 990#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 991 struct sched_avg avg_irq;
76504793
TG
992#endif
993#ifdef CONFIG_SCHED_THERMAL_PRESSURE
994 struct sched_avg avg_thermal;
91c27493 995#endif
97fb7a0a
IM
996 u64 idle_stamp;
997 u64 avg_idle;
9bd721c5
JL
998
999 /* This is used to determine avg_idle's max value */
97fb7a0a 1000 u64 max_idle_balance_cost;
90b5363a 1001#endif /* CONFIG_SMP */
029632fb
PZ
1002
1003#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1004 u64 prev_irq_time;
029632fb
PZ
1005#endif
1006#ifdef CONFIG_PARAVIRT
97fb7a0a 1007 u64 prev_steal_time;
029632fb
PZ
1008#endif
1009#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1010 u64 prev_steal_time_rq;
029632fb
PZ
1011#endif
1012
1013 /* calc_load related fields */
97fb7a0a
IM
1014 unsigned long calc_load_update;
1015 long calc_load_active;
029632fb
PZ
1016
1017#ifdef CONFIG_SCHED_HRTICK
1018#ifdef CONFIG_SMP
97fb7a0a 1019 call_single_data_t hrtick_csd;
029632fb 1020#endif
97fb7a0a 1021 struct hrtimer hrtick_timer;
029632fb
PZ
1022#endif
1023
1024#ifdef CONFIG_SCHEDSTATS
1025 /* latency stats */
97fb7a0a
IM
1026 struct sched_info rq_sched_info;
1027 unsigned long long rq_cpu_time;
029632fb
PZ
1028 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1029
1030 /* sys_sched_yield() stats */
97fb7a0a 1031 unsigned int yld_count;
029632fb
PZ
1032
1033 /* schedule() stats */
97fb7a0a
IM
1034 unsigned int sched_count;
1035 unsigned int sched_goidle;
029632fb
PZ
1036
1037 /* try_to_wake_up() stats */
97fb7a0a
IM
1038 unsigned int ttwu_count;
1039 unsigned int ttwu_local;
029632fb
PZ
1040#endif
1041
442bf3aa
DL
1042#ifdef CONFIG_CPU_IDLE
1043 /* Must be inspected within a rcu lock section */
97fb7a0a 1044 struct cpuidle_state *idle_state;
442bf3aa 1045#endif
029632fb
PZ
1046};
1047
62478d99
VG
1048#ifdef CONFIG_FAIR_GROUP_SCHED
1049
1050/* CPU runqueue to which this cfs_rq is attached */
1051static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1052{
1053 return cfs_rq->rq;
1054}
1055
1056#else
1057
1058static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1059{
1060 return container_of(cfs_rq, struct rq, cfs);
1061}
1062#endif
1063
029632fb
PZ
1064static inline int cpu_of(struct rq *rq)
1065{
1066#ifdef CONFIG_SMP
1067 return rq->cpu;
1068#else
1069 return 0;
1070#endif
1071}
1072
1b568f0a
PZ
1073
1074#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1075extern void __update_idle_core(struct rq *rq);
1076
1077static inline void update_idle_core(struct rq *rq)
1078{
1079 if (static_branch_unlikely(&sched_smt_present))
1080 __update_idle_core(rq);
1081}
1082
1083#else
1084static inline void update_idle_core(struct rq *rq) { }
1085#endif
1086
8b06c55b 1087DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1088
518cd623 1089#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1090#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1091#define task_rq(p) cpu_rq(task_cpu(p))
1092#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1093#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1094
1f351d7f
JW
1095extern void update_rq_clock(struct rq *rq);
1096
cebde6d6
PZ
1097static inline u64 __rq_clock_broken(struct rq *rq)
1098{
316c1608 1099 return READ_ONCE(rq->clock);
cebde6d6
PZ
1100}
1101
cb42c9a3
MF
1102/*
1103 * rq::clock_update_flags bits
1104 *
1105 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1106 * call to __schedule(). This is an optimisation to avoid
1107 * neighbouring rq clock updates.
1108 *
1109 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1110 * in effect and calls to update_rq_clock() are being ignored.
1111 *
1112 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1113 * made to update_rq_clock() since the last time rq::lock was pinned.
1114 *
1115 * If inside of __schedule(), clock_update_flags will have been
1116 * shifted left (a left shift is a cheap operation for the fast path
1117 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1118 *
1119 * if (rq-clock_update_flags >= RQCF_UPDATED)
1120 *
1121 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1122 * one position though, because the next rq_unpin_lock() will shift it
1123 * back.
1124 */
97fb7a0a
IM
1125#define RQCF_REQ_SKIP 0x01
1126#define RQCF_ACT_SKIP 0x02
1127#define RQCF_UPDATED 0x04
cb42c9a3
MF
1128
1129static inline void assert_clock_updated(struct rq *rq)
1130{
1131 /*
1132 * The only reason for not seeing a clock update since the
1133 * last rq_pin_lock() is if we're currently skipping updates.
1134 */
1135 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1136}
1137
78becc27
FW
1138static inline u64 rq_clock(struct rq *rq)
1139{
cebde6d6 1140 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1141 assert_clock_updated(rq);
1142
78becc27
FW
1143 return rq->clock;
1144}
1145
1146static inline u64 rq_clock_task(struct rq *rq)
1147{
cebde6d6 1148 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1149 assert_clock_updated(rq);
1150
78becc27
FW
1151 return rq->clock_task;
1152}
1153
05289b90
TG
1154/**
1155 * By default the decay is the default pelt decay period.
1156 * The decay shift can change the decay period in
1157 * multiples of 32.
1158 * Decay shift Decay period(ms)
1159 * 0 32
1160 * 1 64
1161 * 2 128
1162 * 3 256
1163 * 4 512
1164 */
1165extern int sched_thermal_decay_shift;
1166
1167static inline u64 rq_clock_thermal(struct rq *rq)
1168{
1169 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1170}
1171
adcc8da8 1172static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1173{
1174 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1175 rq->clock_update_flags |= RQCF_REQ_SKIP;
1176}
1177
1178/*
595058b6 1179 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1180 * request is cancelled.
1181 */
1182static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1183{
1184 lockdep_assert_held(&rq->lock);
1185 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1186}
1187
d8ac8971
MF
1188struct rq_flags {
1189 unsigned long flags;
1190 struct pin_cookie cookie;
cb42c9a3
MF
1191#ifdef CONFIG_SCHED_DEBUG
1192 /*
1193 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1194 * current pin context is stashed here in case it needs to be
1195 * restored in rq_repin_lock().
1196 */
1197 unsigned int clock_update_flags;
1198#endif
d8ac8971
MF
1199};
1200
1201static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1202{
1203 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1204
1205#ifdef CONFIG_SCHED_DEBUG
1206 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1207 rf->clock_update_flags = 0;
1208#endif
d8ac8971
MF
1209}
1210
1211static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1212{
cb42c9a3
MF
1213#ifdef CONFIG_SCHED_DEBUG
1214 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1215 rf->clock_update_flags = RQCF_UPDATED;
1216#endif
1217
d8ac8971
MF
1218 lockdep_unpin_lock(&rq->lock, rf->cookie);
1219}
1220
1221static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1222{
1223 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1224
1225#ifdef CONFIG_SCHED_DEBUG
1226 /*
1227 * Restore the value we stashed in @rf for this pin context.
1228 */
1229 rq->clock_update_flags |= rf->clock_update_flags;
1230#endif
d8ac8971
MF
1231}
1232
1f351d7f
JW
1233struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1234 __acquires(rq->lock);
1235
1236struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1237 __acquires(p->pi_lock)
1238 __acquires(rq->lock);
1239
1240static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1241 __releases(rq->lock)
1242{
1243 rq_unpin_lock(rq, rf);
1244 raw_spin_unlock(&rq->lock);
1245}
1246
1247static inline void
1248task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1249 __releases(rq->lock)
1250 __releases(p->pi_lock)
1251{
1252 rq_unpin_lock(rq, rf);
1253 raw_spin_unlock(&rq->lock);
1254 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1255}
1256
1257static inline void
1258rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1259 __acquires(rq->lock)
1260{
1261 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1262 rq_pin_lock(rq, rf);
1263}
1264
1265static inline void
1266rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1267 __acquires(rq->lock)
1268{
1269 raw_spin_lock_irq(&rq->lock);
1270 rq_pin_lock(rq, rf);
1271}
1272
1273static inline void
1274rq_lock(struct rq *rq, struct rq_flags *rf)
1275 __acquires(rq->lock)
1276{
1277 raw_spin_lock(&rq->lock);
1278 rq_pin_lock(rq, rf);
1279}
1280
1281static inline void
1282rq_relock(struct rq *rq, struct rq_flags *rf)
1283 __acquires(rq->lock)
1284{
1285 raw_spin_lock(&rq->lock);
1286 rq_repin_lock(rq, rf);
1287}
1288
1289static inline void
1290rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1291 __releases(rq->lock)
1292{
1293 rq_unpin_lock(rq, rf);
1294 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1295}
1296
1297static inline void
1298rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1299 __releases(rq->lock)
1300{
1301 rq_unpin_lock(rq, rf);
1302 raw_spin_unlock_irq(&rq->lock);
1303}
1304
1305static inline void
1306rq_unlock(struct rq *rq, struct rq_flags *rf)
1307 __releases(rq->lock)
1308{
1309 rq_unpin_lock(rq, rf);
1310 raw_spin_unlock(&rq->lock);
1311}
1312
246b3b33
JW
1313static inline struct rq *
1314this_rq_lock_irq(struct rq_flags *rf)
1315 __acquires(rq->lock)
1316{
1317 struct rq *rq;
1318
1319 local_irq_disable();
1320 rq = this_rq();
1321 rq_lock(rq, rf);
1322 return rq;
1323}
1324
9942f79b 1325#ifdef CONFIG_NUMA
e3fe70b1
RR
1326enum numa_topology_type {
1327 NUMA_DIRECT,
1328 NUMA_GLUELESS_MESH,
1329 NUMA_BACKPLANE,
1330};
1331extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1332extern int sched_max_numa_distance;
1333extern bool find_numa_distance(int distance);
f2cb1360
IM
1334extern void sched_init_numa(void);
1335extern void sched_domains_numa_masks_set(unsigned int cpu);
1336extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1337extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1338#else
1339static inline void sched_init_numa(void) { }
1340static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1341static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1342static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1343{
1344 return nr_cpu_ids;
1345}
f2cb1360
IM
1346#endif
1347
f809ca9a 1348#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1349/* The regions in numa_faults array from task_struct */
1350enum numa_faults_stats {
1351 NUMA_MEM = 0,
1352 NUMA_CPU,
1353 NUMA_MEMBUF,
1354 NUMA_CPUBUF
1355};
0ec8aa00 1356extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1357extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1358extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1359 int cpu, int scpu);
13784475
MG
1360extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1361#else
1362static inline void
1363init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1364{
1365}
f809ca9a
MG
1366#endif /* CONFIG_NUMA_BALANCING */
1367
518cd623
PZ
1368#ifdef CONFIG_SMP
1369
e3fca9e7
PZ
1370static inline void
1371queue_balance_callback(struct rq *rq,
1372 struct callback_head *head,
1373 void (*func)(struct rq *rq))
1374{
1375 lockdep_assert_held(&rq->lock);
1376
1377 if (unlikely(head->next))
1378 return;
1379
1380 head->func = (void (*)(struct callback_head *))func;
1381 head->next = rq->balance_callback;
1382 rq->balance_callback = head;
1383}
1384
029632fb
PZ
1385#define rcu_dereference_check_sched_domain(p) \
1386 rcu_dereference_check((p), \
1387 lockdep_is_held(&sched_domains_mutex))
1388
1389/*
1390 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1391 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1392 *
1393 * The domain tree of any CPU may only be accessed from within
1394 * preempt-disabled sections.
1395 */
1396#define for_each_domain(cpu, __sd) \
518cd623
PZ
1397 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1398 __sd; __sd = __sd->parent)
029632fb 1399
518cd623
PZ
1400/**
1401 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1402 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1403 * be returned.
1404 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1405 * for the given CPU.
518cd623 1406 *
97fb7a0a 1407 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1408 */
1409static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1410{
1411 struct sched_domain *sd, *hsd = NULL;
1412
1413 for_each_domain(cpu, sd) {
1414 if (!(sd->flags & flag))
1415 break;
1416 hsd = sd;
1417 }
1418
1419 return hsd;
1420}
1421
fb13c7ee
MG
1422static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1423{
1424 struct sched_domain *sd;
1425
1426 for_each_domain(cpu, sd) {
1427 if (sd->flags & flag)
1428 break;
1429 }
1430
1431 return sd;
1432}
1433
994aeb7a 1434DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1435DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1436DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1437DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1438DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1439DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1440DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1441extern struct static_key_false sched_asym_cpucapacity;
518cd623 1442
63b2ca30 1443struct sched_group_capacity {
97fb7a0a 1444 atomic_t ref;
5e6521ea 1445 /*
172895e6 1446 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1447 * for a single CPU.
5e6521ea 1448 */
97fb7a0a
IM
1449 unsigned long capacity;
1450 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1451 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1452 unsigned long next_update;
1453 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1454
005f874d 1455#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1456 int id;
005f874d
PZ
1457#endif
1458
97fb7a0a 1459 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1460};
1461
1462struct sched_group {
97fb7a0a
IM
1463 struct sched_group *next; /* Must be a circular list */
1464 atomic_t ref;
5e6521ea 1465
97fb7a0a 1466 unsigned int group_weight;
63b2ca30 1467 struct sched_group_capacity *sgc;
97fb7a0a 1468 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1469
1470 /*
1471 * The CPUs this group covers.
1472 *
1473 * NOTE: this field is variable length. (Allocated dynamically
1474 * by attaching extra space to the end of the structure,
1475 * depending on how many CPUs the kernel has booted up with)
1476 */
04f5c362 1477 unsigned long cpumask[];
5e6521ea
LZ
1478};
1479
ae4df9d6 1480static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1481{
1482 return to_cpumask(sg->cpumask);
1483}
1484
1485/*
e5c14b1f 1486 * See build_balance_mask().
5e6521ea 1487 */
e5c14b1f 1488static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1489{
63b2ca30 1490 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1491}
1492
1493/**
97fb7a0a
IM
1494 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1495 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1496 */
1497static inline unsigned int group_first_cpu(struct sched_group *group)
1498{
ae4df9d6 1499 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1500}
1501
c1174876
PZ
1502extern int group_balance_cpu(struct sched_group *sg);
1503
3866e845
SRRH
1504#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1505void register_sched_domain_sysctl(void);
bbdacdfe 1506void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1507void unregister_sched_domain_sysctl(void);
1508#else
1509static inline void register_sched_domain_sysctl(void)
1510{
1511}
bbdacdfe
PZ
1512static inline void dirty_sched_domain_sysctl(int cpu)
1513{
1514}
3866e845
SRRH
1515static inline void unregister_sched_domain_sysctl(void)
1516{
1517}
1518#endif
1519
b2a02fc4 1520extern void flush_smp_call_function_from_idle(void);
e3baac47 1521
b2a02fc4
PZ
1522#else /* !CONFIG_SMP: */
1523static inline void flush_smp_call_function_from_idle(void) { }
b2a02fc4 1524#endif
029632fb 1525
391e43da 1526#include "stats.h"
1051408f 1527#include "autogroup.h"
029632fb
PZ
1528
1529#ifdef CONFIG_CGROUP_SCHED
1530
1531/*
1532 * Return the group to which this tasks belongs.
1533 *
8af01f56
TH
1534 * We cannot use task_css() and friends because the cgroup subsystem
1535 * changes that value before the cgroup_subsys::attach() method is called,
1536 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1537 *
1538 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1539 * core changes this before calling sched_move_task().
1540 *
1541 * Instead we use a 'copy' which is updated from sched_move_task() while
1542 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1543 */
1544static inline struct task_group *task_group(struct task_struct *p)
1545{
8323f26c 1546 return p->sched_task_group;
029632fb
PZ
1547}
1548
1549/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1550static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1551{
1552#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1553 struct task_group *tg = task_group(p);
1554#endif
1555
1556#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1557 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1558 p->se.cfs_rq = tg->cfs_rq[cpu];
1559 p->se.parent = tg->se[cpu];
1560#endif
1561
1562#ifdef CONFIG_RT_GROUP_SCHED
1563 p->rt.rt_rq = tg->rt_rq[cpu];
1564 p->rt.parent = tg->rt_se[cpu];
1565#endif
1566}
1567
1568#else /* CONFIG_CGROUP_SCHED */
1569
1570static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1571static inline struct task_group *task_group(struct task_struct *p)
1572{
1573 return NULL;
1574}
1575
1576#endif /* CONFIG_CGROUP_SCHED */
1577
1578static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1579{
1580 set_task_rq(p, cpu);
1581#ifdef CONFIG_SMP
1582 /*
1583 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1584 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1585 * per-task data have been completed by this moment.
1586 */
1587 smp_wmb();
c65eacbe 1588#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1589 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1590#else
c546951d 1591 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1592#endif
ac66f547 1593 p->wake_cpu = cpu;
029632fb
PZ
1594#endif
1595}
1596
1597/*
1598 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1599 */
1600#ifdef CONFIG_SCHED_DEBUG
c5905afb 1601# include <linux/static_key.h>
029632fb
PZ
1602# define const_debug __read_mostly
1603#else
1604# define const_debug const
1605#endif
1606
029632fb
PZ
1607#define SCHED_FEAT(name, enabled) \
1608 __SCHED_FEAT_##name ,
1609
1610enum {
391e43da 1611#include "features.h"
f8b6d1cc 1612 __SCHED_FEAT_NR,
029632fb
PZ
1613};
1614
1615#undef SCHED_FEAT
1616
e9666d10 1617#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
765cc3a4
PB
1618
1619/*
1620 * To support run-time toggling of sched features, all the translation units
1621 * (but core.c) reference the sysctl_sched_features defined in core.c.
1622 */
1623extern const_debug unsigned int sysctl_sched_features;
1624
f8b6d1cc 1625#define SCHED_FEAT(name, enabled) \
c5905afb 1626static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1627{ \
6e76ea8a 1628 return static_key_##enabled(key); \
f8b6d1cc
PZ
1629}
1630
1631#include "features.h"
f8b6d1cc
PZ
1632#undef SCHED_FEAT
1633
c5905afb 1634extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1635#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1636
e9666d10 1637#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
765cc3a4
PB
1638
1639/*
1640 * Each translation unit has its own copy of sysctl_sched_features to allow
1641 * constants propagation at compile time and compiler optimization based on
1642 * features default.
1643 */
1644#define SCHED_FEAT(name, enabled) \
1645 (1UL << __SCHED_FEAT_##name) * enabled |
1646static const_debug __maybe_unused unsigned int sysctl_sched_features =
1647#include "features.h"
1648 0;
1649#undef SCHED_FEAT
1650
7e6f4c5d 1651#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1652
e9666d10 1653#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
029632fb 1654
2a595721 1655extern struct static_key_false sched_numa_balancing;
cb251765 1656extern struct static_key_false sched_schedstats;
cbee9f88 1657
029632fb
PZ
1658static inline u64 global_rt_period(void)
1659{
1660 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1661}
1662
1663static inline u64 global_rt_runtime(void)
1664{
1665 if (sysctl_sched_rt_runtime < 0)
1666 return RUNTIME_INF;
1667
1668 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1669}
1670
029632fb
PZ
1671static inline int task_current(struct rq *rq, struct task_struct *p)
1672{
1673 return rq->curr == p;
1674}
1675
1676static inline int task_running(struct rq *rq, struct task_struct *p)
1677{
1678#ifdef CONFIG_SMP
1679 return p->on_cpu;
1680#else
1681 return task_current(rq, p);
1682#endif
1683}
1684
da0c1e65
KT
1685static inline int task_on_rq_queued(struct task_struct *p)
1686{
1687 return p->on_rq == TASK_ON_RQ_QUEUED;
1688}
029632fb 1689
cca26e80
KT
1690static inline int task_on_rq_migrating(struct task_struct *p)
1691{
c546951d 1692 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1693}
1694
b13095f0
LZ
1695/*
1696 * wake flags
1697 */
97fb7a0a
IM
1698#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1699#define WF_FORK 0x02 /* Child wakeup after fork */
2ebb1771 1700#define WF_MIGRATED 0x04 /* Internal use, task got migrated */
739f70b4 1701#define WF_ON_CPU 0x08 /* Wakee is on_cpu */
b13095f0 1702
029632fb
PZ
1703/*
1704 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1705 * of tasks with abnormal "nice" values across CPUs the contribution that
1706 * each task makes to its run queue's load is weighted according to its
1707 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1708 * scaled version of the new time slice allocation that they receive on time
1709 * slice expiry etc.
1710 */
1711
97fb7a0a
IM
1712#define WEIGHT_IDLEPRIO 3
1713#define WMULT_IDLEPRIO 1431655765
029632fb 1714
97fb7a0a
IM
1715extern const int sched_prio_to_weight[40];
1716extern const u32 sched_prio_to_wmult[40];
029632fb 1717
ff77e468
PZ
1718/*
1719 * {de,en}queue flags:
1720 *
1721 * DEQUEUE_SLEEP - task is no longer runnable
1722 * ENQUEUE_WAKEUP - task just became runnable
1723 *
1724 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1725 * are in a known state which allows modification. Such pairs
1726 * should preserve as much state as possible.
1727 *
1728 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1729 * in the runqueue.
1730 *
1731 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1732 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1733 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1734 *
1735 */
1736
1737#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1738#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1739#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1740#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1741
1de64443 1742#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1743#define ENQUEUE_RESTORE 0x02
1744#define ENQUEUE_MOVE 0x04
0a67d1ee 1745#define ENQUEUE_NOCLOCK 0x08
ff77e468 1746
0a67d1ee
PZ
1747#define ENQUEUE_HEAD 0x10
1748#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1749#ifdef CONFIG_SMP
0a67d1ee 1750#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1751#else
59efa0ba 1752#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1753#endif
c82ba9fa 1754
37e117c0
PZ
1755#define RETRY_TASK ((void *)-1UL)
1756
c82ba9fa 1757struct sched_class {
c82ba9fa 1758
69842cba
PB
1759#ifdef CONFIG_UCLAMP_TASK
1760 int uclamp_enabled;
1761#endif
1762
c82ba9fa
LZ
1763 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1764 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 1765 void (*yield_task) (struct rq *rq);
0900acf2 1766 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 1767
97fb7a0a 1768 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1769
98c2f700
PZ
1770 struct task_struct *(*pick_next_task)(struct rq *rq);
1771
6e2df058 1772 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 1773 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
1774
1775#ifdef CONFIG_SMP
6e2df058 1776 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
ac66f547 1777 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1778 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1779
97fb7a0a 1780 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1781
1782 void (*set_cpus_allowed)(struct task_struct *p,
1783 const struct cpumask *newmask);
1784
1785 void (*rq_online)(struct rq *rq);
1786 void (*rq_offline)(struct rq *rq);
1787#endif
1788
97fb7a0a
IM
1789 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1790 void (*task_fork)(struct task_struct *p);
1791 void (*task_dead)(struct task_struct *p);
c82ba9fa 1792
67dfa1b7
KT
1793 /*
1794 * The switched_from() call is allowed to drop rq->lock, therefore we
1795 * cannot assume the switched_from/switched_to pair is serliazed by
1796 * rq->lock. They are however serialized by p->pi_lock.
1797 */
97fb7a0a
IM
1798 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1799 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1800 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1801 int oldprio);
c82ba9fa 1802
97fb7a0a
IM
1803 unsigned int (*get_rr_interval)(struct rq *rq,
1804 struct task_struct *task);
c82ba9fa 1805
97fb7a0a 1806 void (*update_curr)(struct rq *rq);
6e998916 1807
97fb7a0a
IM
1808#define TASK_SET_GROUP 0
1809#define TASK_MOVE_GROUP 1
ea86cb4b 1810
c82ba9fa 1811#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1812 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa 1813#endif
85c2ce91 1814} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
029632fb 1815
3f1d2a31
PZ
1816static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1817{
10e7071b 1818 WARN_ON_ONCE(rq->curr != prev);
6e2df058 1819 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
1820}
1821
03b7fad1 1822static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1823{
03b7fad1 1824 WARN_ON_ONCE(rq->curr != next);
a0e813f2 1825 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
1826}
1827
c3a340f7
SRV
1828/* Defined in include/asm-generic/vmlinux.lds.h */
1829extern struct sched_class __begin_sched_classes[];
1830extern struct sched_class __end_sched_classes[];
1831
1832#define sched_class_highest (__end_sched_classes - 1)
1833#define sched_class_lowest (__begin_sched_classes - 1)
6e2df058
PZ
1834
1835#define for_class_range(class, _from, _to) \
c3a340f7 1836 for (class = (_from); class != (_to); class--)
6e2df058 1837
029632fb 1838#define for_each_class(class) \
c3a340f7 1839 for_class_range(class, sched_class_highest, sched_class_lowest)
029632fb
PZ
1840
1841extern const struct sched_class stop_sched_class;
aab03e05 1842extern const struct sched_class dl_sched_class;
029632fb
PZ
1843extern const struct sched_class rt_sched_class;
1844extern const struct sched_class fair_sched_class;
1845extern const struct sched_class idle_sched_class;
1846
6e2df058
PZ
1847static inline bool sched_stop_runnable(struct rq *rq)
1848{
1849 return rq->stop && task_on_rq_queued(rq->stop);
1850}
1851
1852static inline bool sched_dl_runnable(struct rq *rq)
1853{
1854 return rq->dl.dl_nr_running > 0;
1855}
1856
1857static inline bool sched_rt_runnable(struct rq *rq)
1858{
1859 return rq->rt.rt_queued > 0;
1860}
1861
1862static inline bool sched_fair_runnable(struct rq *rq)
1863{
1864 return rq->cfs.nr_running > 0;
1865}
029632fb 1866
5d7d6056 1867extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 1868extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 1869
029632fb
PZ
1870#ifdef CONFIG_SMP
1871
63b2ca30 1872extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1873
7caff66f 1874extern void trigger_load_balance(struct rq *rq);
029632fb 1875
c5b28038
PZ
1876extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1877
029632fb
PZ
1878#endif
1879
442bf3aa
DL
1880#ifdef CONFIG_CPU_IDLE
1881static inline void idle_set_state(struct rq *rq,
1882 struct cpuidle_state *idle_state)
1883{
1884 rq->idle_state = idle_state;
1885}
1886
1887static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1888{
9148a3a1 1889 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1890
442bf3aa
DL
1891 return rq->idle_state;
1892}
1893#else
1894static inline void idle_set_state(struct rq *rq,
1895 struct cpuidle_state *idle_state)
1896{
1897}
1898
1899static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1900{
1901 return NULL;
1902}
1903#endif
1904
8663effb
SRV
1905extern void schedule_idle(void);
1906
029632fb
PZ
1907extern void sysrq_sched_debug_show(void);
1908extern void sched_init_granularity(void);
1909extern void update_max_interval(void);
1baca4ce
JL
1910
1911extern void init_sched_dl_class(void);
029632fb
PZ
1912extern void init_sched_rt_class(void);
1913extern void init_sched_fair_class(void);
1914
9059393e
VG
1915extern void reweight_task(struct task_struct *p, int prio);
1916
8875125e 1917extern void resched_curr(struct rq *rq);
029632fb
PZ
1918extern void resched_cpu(int cpu);
1919
1920extern struct rt_bandwidth def_rt_bandwidth;
1921extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1922
332ac17e
DF
1923extern struct dl_bandwidth def_dl_bandwidth;
1924extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1925extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1926extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 1927
97fb7a0a
IM
1928#define BW_SHIFT 20
1929#define BW_UNIT (1 << BW_SHIFT)
1930#define RATIO_SHIFT 8
d505b8af
HC
1931#define MAX_BW_BITS (64 - BW_SHIFT)
1932#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
1933unsigned long to_ratio(u64 period, u64 runtime);
1934
540247fb 1935extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 1936extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 1937
76d92ac3
FW
1938#ifdef CONFIG_NO_HZ_FULL
1939extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1940extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1941
1942/*
1943 * Tick may be needed by tasks in the runqueue depending on their policy and
1944 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1945 * nohz mode if necessary.
1946 */
1947static inline void sched_update_tick_dependency(struct rq *rq)
1948{
1949 int cpu;
1950
1951 if (!tick_nohz_full_enabled())
1952 return;
1953
1954 cpu = cpu_of(rq);
1955
1956 if (!tick_nohz_full_cpu(cpu))
1957 return;
1958
1959 if (sched_can_stop_tick(rq))
1960 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1961 else
1962 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1963}
1964#else
d84b3131 1965static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1966static inline void sched_update_tick_dependency(struct rq *rq) { }
1967#endif
1968
72465447 1969static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1970{
72465447
KT
1971 unsigned prev_nr = rq->nr_running;
1972
1973 rq->nr_running = prev_nr + count;
9f3660c2 1974
4486edd1 1975#ifdef CONFIG_SMP
3e184501 1976 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1977 if (!READ_ONCE(rq->rd->overload))
1978 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1979 }
3e184501 1980#endif
76d92ac3
FW
1981
1982 sched_update_tick_dependency(rq);
029632fb
PZ
1983}
1984
72465447 1985static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1986{
72465447 1987 rq->nr_running -= count;
76d92ac3
FW
1988 /* Check if we still need preemption */
1989 sched_update_tick_dependency(rq);
029632fb
PZ
1990}
1991
029632fb
PZ
1992extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1993extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1994
1995extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1996
029632fb
PZ
1997extern const_debug unsigned int sysctl_sched_nr_migrate;
1998extern const_debug unsigned int sysctl_sched_migration_cost;
1999
029632fb
PZ
2000#ifdef CONFIG_SCHED_HRTICK
2001
2002/*
2003 * Use hrtick when:
2004 * - enabled by features
2005 * - hrtimer is actually high res
2006 */
2007static inline int hrtick_enabled(struct rq *rq)
2008{
2009 if (!sched_feat(HRTICK))
2010 return 0;
2011 if (!cpu_active(cpu_of(rq)))
2012 return 0;
2013 return hrtimer_is_hres_active(&rq->hrtick_timer);
2014}
2015
2016void hrtick_start(struct rq *rq, u64 delay);
2017
b39e66ea
MG
2018#else
2019
2020static inline int hrtick_enabled(struct rq *rq)
2021{
2022 return 0;
2023}
2024
029632fb
PZ
2025#endif /* CONFIG_SCHED_HRTICK */
2026
1567c3e3
GG
2027#ifndef arch_scale_freq_tick
2028static __always_inline
2029void arch_scale_freq_tick(void)
2030{
2031}
2032#endif
2033
dfbca41f
PZ
2034#ifndef arch_scale_freq_capacity
2035static __always_inline
7673c8a4 2036unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2037{
2038 return SCHED_CAPACITY_SCALE;
2039}
2040#endif
b5b4860d 2041
029632fb 2042#ifdef CONFIG_SMP
c1a280b6 2043#ifdef CONFIG_PREEMPTION
029632fb
PZ
2044
2045static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2046
2047/*
2048 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2049 * way at the expense of forcing extra atomic operations in all
2050 * invocations. This assures that the double_lock is acquired using the
2051 * same underlying policy as the spinlock_t on this architecture, which
2052 * reduces latency compared to the unfair variant below. However, it
2053 * also adds more overhead and therefore may reduce throughput.
2054 */
2055static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2056 __releases(this_rq->lock)
2057 __acquires(busiest->lock)
2058 __acquires(this_rq->lock)
2059{
2060 raw_spin_unlock(&this_rq->lock);
2061 double_rq_lock(this_rq, busiest);
2062
2063 return 1;
2064}
2065
2066#else
2067/*
2068 * Unfair double_lock_balance: Optimizes throughput at the expense of
2069 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2070 * already in proper order on entry. This favors lower CPU-ids and will
2071 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2072 * regardless of entry order into the function.
2073 */
2074static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2075 __releases(this_rq->lock)
2076 __acquires(busiest->lock)
2077 __acquires(this_rq->lock)
2078{
2079 int ret = 0;
2080
2081 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2082 if (busiest < this_rq) {
2083 raw_spin_unlock(&this_rq->lock);
2084 raw_spin_lock(&busiest->lock);
2085 raw_spin_lock_nested(&this_rq->lock,
2086 SINGLE_DEPTH_NESTING);
2087 ret = 1;
2088 } else
2089 raw_spin_lock_nested(&busiest->lock,
2090 SINGLE_DEPTH_NESTING);
2091 }
2092 return ret;
2093}
2094
c1a280b6 2095#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2096
2097/*
2098 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2099 */
2100static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2101{
2102 if (unlikely(!irqs_disabled())) {
97fb7a0a 2103 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2104 raw_spin_unlock(&this_rq->lock);
2105 BUG_ON(1);
2106 }
2107
2108 return _double_lock_balance(this_rq, busiest);
2109}
2110
2111static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2112 __releases(busiest->lock)
2113{
2114 raw_spin_unlock(&busiest->lock);
2115 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2116}
2117
74602315
PZ
2118static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2119{
2120 if (l1 > l2)
2121 swap(l1, l2);
2122
2123 spin_lock(l1);
2124 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2125}
2126
60e69eed
MG
2127static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2128{
2129 if (l1 > l2)
2130 swap(l1, l2);
2131
2132 spin_lock_irq(l1);
2133 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2134}
2135
74602315
PZ
2136static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2137{
2138 if (l1 > l2)
2139 swap(l1, l2);
2140
2141 raw_spin_lock(l1);
2142 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2143}
2144
029632fb
PZ
2145/*
2146 * double_rq_lock - safely lock two runqueues
2147 *
2148 * Note this does not disable interrupts like task_rq_lock,
2149 * you need to do so manually before calling.
2150 */
2151static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2152 __acquires(rq1->lock)
2153 __acquires(rq2->lock)
2154{
2155 BUG_ON(!irqs_disabled());
2156 if (rq1 == rq2) {
2157 raw_spin_lock(&rq1->lock);
2158 __acquire(rq2->lock); /* Fake it out ;) */
2159 } else {
2160 if (rq1 < rq2) {
2161 raw_spin_lock(&rq1->lock);
2162 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2163 } else {
2164 raw_spin_lock(&rq2->lock);
2165 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2166 }
2167 }
2168}
2169
2170/*
2171 * double_rq_unlock - safely unlock two runqueues
2172 *
2173 * Note this does not restore interrupts like task_rq_unlock,
2174 * you need to do so manually after calling.
2175 */
2176static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2177 __releases(rq1->lock)
2178 __releases(rq2->lock)
2179{
2180 raw_spin_unlock(&rq1->lock);
2181 if (rq1 != rq2)
2182 raw_spin_unlock(&rq2->lock);
2183 else
2184 __release(rq2->lock);
2185}
2186
f2cb1360
IM
2187extern void set_rq_online (struct rq *rq);
2188extern void set_rq_offline(struct rq *rq);
2189extern bool sched_smp_initialized;
2190
029632fb
PZ
2191#else /* CONFIG_SMP */
2192
2193/*
2194 * double_rq_lock - safely lock two runqueues
2195 *
2196 * Note this does not disable interrupts like task_rq_lock,
2197 * you need to do so manually before calling.
2198 */
2199static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2200 __acquires(rq1->lock)
2201 __acquires(rq2->lock)
2202{
2203 BUG_ON(!irqs_disabled());
2204 BUG_ON(rq1 != rq2);
2205 raw_spin_lock(&rq1->lock);
2206 __acquire(rq2->lock); /* Fake it out ;) */
2207}
2208
2209/*
2210 * double_rq_unlock - safely unlock two runqueues
2211 *
2212 * Note this does not restore interrupts like task_rq_unlock,
2213 * you need to do so manually after calling.
2214 */
2215static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2216 __releases(rq1->lock)
2217 __releases(rq2->lock)
2218{
2219 BUG_ON(rq1 != rq2);
2220 raw_spin_unlock(&rq1->lock);
2221 __release(rq2->lock);
2222}
2223
2224#endif
2225
2226extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2227extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2228
2229#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2230extern bool sched_debug_enabled;
2231
029632fb
PZ
2232extern void print_cfs_stats(struct seq_file *m, int cpu);
2233extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2234extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2235extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2236extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2237extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2238#ifdef CONFIG_NUMA_BALANCING
2239extern void
2240show_numa_stats(struct task_struct *p, struct seq_file *m);
2241extern void
2242print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2243 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2244#endif /* CONFIG_NUMA_BALANCING */
2245#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2246
2247extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2248extern void init_rt_rq(struct rt_rq *rt_rq);
2249extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2250
1ee14e6c
BS
2251extern void cfs_bandwidth_usage_inc(void);
2252extern void cfs_bandwidth_usage_dec(void);
1c792db7 2253
3451d024 2254#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2255#define NOHZ_BALANCE_KICK_BIT 0
2256#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2257
a22e47a4 2258#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2259#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2260
2261#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2262
2263#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2264
00357f5e 2265extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2266#else
00357f5e 2267static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2268#endif
73fbec60 2269
daec5798
LA
2270
2271#ifdef CONFIG_SMP
2272static inline
2273void __dl_update(struct dl_bw *dl_b, s64 bw)
2274{
2275 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2276 int i;
2277
2278 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2279 "sched RCU must be held");
2280 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2281 struct rq *rq = cpu_rq(i);
2282
2283 rq->dl.extra_bw += bw;
2284 }
2285}
2286#else
2287static inline
2288void __dl_update(struct dl_bw *dl_b, s64 bw)
2289{
2290 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2291
2292 dl->extra_bw += bw;
2293}
2294#endif
2295
2296
73fbec60 2297#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2298struct irqtime {
25e2d8c1 2299 u64 total;
a499a5a1 2300 u64 tick_delta;
19d23dbf
FW
2301 u64 irq_start_time;
2302 struct u64_stats_sync sync;
2303};
73fbec60 2304
19d23dbf 2305DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2306
25e2d8c1
FW
2307/*
2308 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2309 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2310 * and never move forward.
2311 */
73fbec60
FW
2312static inline u64 irq_time_read(int cpu)
2313{
19d23dbf
FW
2314 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2315 unsigned int seq;
2316 u64 total;
73fbec60
FW
2317
2318 do {
19d23dbf 2319 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2320 total = irqtime->total;
19d23dbf 2321 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2322
19d23dbf 2323 return total;
73fbec60 2324}
73fbec60 2325#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2326
2327#ifdef CONFIG_CPU_FREQ
b10abd0a 2328DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2329
2330/**
2331 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2332 * @rq: Runqueue to carry out the update for.
58919e83 2333 * @flags: Update reason flags.
adaf9fcd 2334 *
58919e83
RW
2335 * This function is called by the scheduler on the CPU whose utilization is
2336 * being updated.
adaf9fcd
RW
2337 *
2338 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2339 *
2340 * The way cpufreq is currently arranged requires it to evaluate the CPU
2341 * performance state (frequency/voltage) on a regular basis to prevent it from
2342 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2343 * That is not guaranteed to happen if the updates are only triggered from CFS
2344 * and DL, though, because they may not be coming in if only RT tasks are
2345 * active all the time (or there are RT tasks only).
adaf9fcd 2346 *
e0367b12
JL
2347 * As a workaround for that issue, this function is called periodically by the
2348 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2349 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2350 * solutions targeted more specifically at RT tasks.
adaf9fcd 2351 */
12bde33d 2352static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2353{
58919e83
RW
2354 struct update_util_data *data;
2355
674e7541
VK
2356 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2357 cpu_of(rq)));
58919e83 2358 if (data)
12bde33d
RW
2359 data->func(data, rq_clock(rq), flags);
2360}
adaf9fcd 2361#else
12bde33d 2362static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2363#endif /* CONFIG_CPU_FREQ */
be53f58f 2364
982d9cdc 2365#ifdef CONFIG_UCLAMP_TASK
686516b5 2366unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d
PB
2367
2368static __always_inline
d2b58a28
VS
2369unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2370 struct task_struct *p)
982d9cdc 2371{
686516b5
VS
2372 unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2373 unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
982d9cdc 2374
9d20ad7d
PB
2375 if (p) {
2376 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2377 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2378 }
2379
982d9cdc
PB
2380 /*
2381 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2382 * RUNNABLE tasks with _different_ clamps, we can end up with an
2383 * inversion. Fix it now when the clamps are applied.
2384 */
2385 if (unlikely(min_util >= max_util))
2386 return min_util;
2387
2388 return clamp(util, min_util, max_util);
2389}
2390#else /* CONFIG_UCLAMP_TASK */
d2b58a28
VS
2391static inline
2392unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2393 struct task_struct *p)
9d20ad7d
PB
2394{
2395 return util;
2396}
982d9cdc
PB
2397#endif /* CONFIG_UCLAMP_TASK */
2398
9bdcb44e 2399#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2400# ifndef arch_scale_freq_invariant
2401# define arch_scale_freq_invariant() true
2402# endif
2403#else
2404# define arch_scale_freq_invariant() false
9bdcb44e 2405#endif
d4edd662 2406
10a35e68
VG
2407#ifdef CONFIG_SMP
2408static inline unsigned long capacity_orig_of(int cpu)
2409{
2410 return cpu_rq(cpu)->cpu_capacity_orig;
2411}
2412#endif
2413
938e5e4b
QP
2414/**
2415 * enum schedutil_type - CPU utilization type
2416 * @FREQUENCY_UTIL: Utilization used to select frequency
2417 * @ENERGY_UTIL: Utilization used during energy calculation
2418 *
2419 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2420 * need to be aggregated differently depending on the usage made of them. This
2421 * enum is used within schedutil_freq_util() to differentiate the types of
2422 * utilization expected by the callers, and adjust the aggregation accordingly.
2423 */
2424enum schedutil_type {
2425 FREQUENCY_UTIL,
2426 ENERGY_UTIL,
2427};
2428
af24bde8 2429#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2430
af24bde8
PB
2431unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2432 unsigned long max, enum schedutil_type type,
2433 struct task_struct *p);
938e5e4b 2434
8cc90515 2435static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2436{
2437 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2438}
2439
8cc90515
VG
2440static inline unsigned long cpu_util_dl(struct rq *rq)
2441{
2442 return READ_ONCE(rq->avg_dl.util_avg);
2443}
2444
d4edd662
JL
2445static inline unsigned long cpu_util_cfs(struct rq *rq)
2446{
a07630b8
PB
2447 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2448
2449 if (sched_feat(UTIL_EST)) {
2450 util = max_t(unsigned long, util,
2451 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2452 }
2453
2454 return util;
d4edd662 2455}
371bf427
VG
2456
2457static inline unsigned long cpu_util_rt(struct rq *rq)
2458{
dfa444dc 2459 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2460}
938e5e4b 2461#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2462static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2463 unsigned long max, enum schedutil_type type,
2464 struct task_struct *p)
938e5e4b 2465{
af24bde8 2466 return 0;
938e5e4b 2467}
af24bde8 2468#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2469
11d4afd4 2470#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2471static inline unsigned long cpu_util_irq(struct rq *rq)
2472{
2473 return rq->avg_irq.util_avg;
2474}
2e62c474
VG
2475
2476static inline
2477unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2478{
2479 util *= (max - irq);
2480 util /= max;
2481
2482 return util;
2483
2484}
9033ea11
VG
2485#else
2486static inline unsigned long cpu_util_irq(struct rq *rq)
2487{
2488 return 0;
2489}
2490
2e62c474
VG
2491static inline
2492unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2493{
2494 return util;
2495}
794a56eb 2496#endif
6aa140fa 2497
531b5c9f 2498#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2499
6aa140fa 2500#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2501
2502DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2503
2504static inline bool sched_energy_enabled(void)
2505{
2506 return static_branch_unlikely(&sched_energy_present);
2507}
2508
2509#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2510
6aa140fa 2511#define perf_domain_span(pd) NULL
f8a696f2 2512static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2513
f8a696f2 2514#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2515
2516#ifdef CONFIG_MEMBARRIER
2517/*
2518 * The scheduler provides memory barriers required by membarrier between:
2519 * - prior user-space memory accesses and store to rq->membarrier_state,
2520 * - store to rq->membarrier_state and following user-space memory accesses.
2521 * In the same way it provides those guarantees around store to rq->curr.
2522 */
2523static inline void membarrier_switch_mm(struct rq *rq,
2524 struct mm_struct *prev_mm,
2525 struct mm_struct *next_mm)
2526{
2527 int membarrier_state;
2528
2529 if (prev_mm == next_mm)
2530 return;
2531
2532 membarrier_state = atomic_read(&next_mm->membarrier_state);
2533 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2534 return;
2535
2536 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2537}
2538#else
2539static inline void membarrier_switch_mm(struct rq *rq,
2540 struct mm_struct *prev_mm,
2541 struct mm_struct *next_mm)
2542{
2543}
2544#endif
52262ee5
MG
2545
2546#ifdef CONFIG_SMP
2547static inline bool is_per_cpu_kthread(struct task_struct *p)
2548{
2549 if (!(p->flags & PF_KTHREAD))
2550 return false;
2551
2552 if (p->nr_cpus_allowed != 1)
2553 return false;
2554
2555 return true;
2556}
2557#endif
b3212fe2
TG
2558
2559void swake_up_all_locked(struct swait_queue_head *q);
2560void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);