]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/sched.h
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9d246053
PA
78#include <trace/events/sched.h>
79
9148a3a1 80#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 81# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 82#else
6d3aed3d 83# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
84#endif
85
45ceebf7 86struct rq;
442bf3aa 87struct cpuidle_state;
45ceebf7 88
da0c1e65
KT
89/* task_struct::on_rq states: */
90#define TASK_ON_RQ_QUEUED 1
cca26e80 91#define TASK_ON_RQ_MIGRATING 2
da0c1e65 92
029632fb
PZ
93extern __read_mostly int scheduler_running;
94
45ceebf7
PG
95extern unsigned long calc_load_update;
96extern atomic_long_t calc_load_tasks;
97
3289bdb4 98extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 99extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 100
9d246053 101extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
029632fb
PZ
102/*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
cc1f4b1f
LZ
107/*
108 * Increase resolution of nice-level calculations for 64-bit architectures.
109 * The extra resolution improves shares distribution and load balancing of
110 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
111 * hierarchies, especially on larger systems. This is not a user-visible change
112 * and does not change the user-interface for setting shares/weights.
113 *
114 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
115 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
116 * are pretty high and the returns do not justify the increased costs.
2159197d 117 *
97fb7a0a
IM
118 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
119 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 120 */
2159197d 121#ifdef CONFIG_64BIT
172895e6 122# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 123# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
124# define scale_load_down(w) \
125({ \
126 unsigned long __w = (w); \
127 if (__w) \
128 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 __w; \
130})
cc1f4b1f 131#else
172895e6 132# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
133# define scale_load(w) (w)
134# define scale_load_down(w) (w)
135#endif
136
6ecdd749 137/*
172895e6
YD
138 * Task weight (visible to users) and its load (invisible to users) have
139 * independent resolution, but they should be well calibrated. We use
140 * scale_load() and scale_load_down(w) to convert between them. The
141 * following must be true:
142 *
143 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
144 *
6ecdd749 145 */
172895e6 146#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 147
332ac17e
DF
148/*
149 * Single value that decides SCHED_DEADLINE internal math precision.
150 * 10 -> just above 1us
151 * 9 -> just above 0.5us
152 */
97fb7a0a 153#define DL_SCALE 10
029632fb
PZ
154
155/*
97fb7a0a 156 * Single value that denotes runtime == period, ie unlimited time.
029632fb 157 */
97fb7a0a 158#define RUNTIME_INF ((u64)~0ULL)
029632fb 159
20f9cd2a
HA
160static inline int idle_policy(int policy)
161{
162 return policy == SCHED_IDLE;
163}
d50dde5a
DF
164static inline int fair_policy(int policy)
165{
166 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
167}
168
029632fb
PZ
169static inline int rt_policy(int policy)
170{
d50dde5a 171 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
172}
173
aab03e05
DF
174static inline int dl_policy(int policy)
175{
176 return policy == SCHED_DEADLINE;
177}
20f9cd2a
HA
178static inline bool valid_policy(int policy)
179{
180 return idle_policy(policy) || fair_policy(policy) ||
181 rt_policy(policy) || dl_policy(policy);
182}
aab03e05 183
1da1843f
VK
184static inline int task_has_idle_policy(struct task_struct *p)
185{
186 return idle_policy(p->policy);
187}
188
029632fb
PZ
189static inline int task_has_rt_policy(struct task_struct *p)
190{
191 return rt_policy(p->policy);
192}
193
aab03e05
DF
194static inline int task_has_dl_policy(struct task_struct *p)
195{
196 return dl_policy(p->policy);
197}
198
07881166
JL
199#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
200
d76343c6
VS
201static inline void update_avg(u64 *avg, u64 sample)
202{
203 s64 diff = sample - *avg;
204 *avg += diff / 8;
205}
206
914497a1
VS
207/*
208 * Shifting a value by an exponent greater *or equal* to the size of said value
209 * is UB; cap at size-1.
210 */
211#define shr_bound(val, shift) \
212 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
213
794a56eb
JL
214/*
215 * !! For sched_setattr_nocheck() (kernel) only !!
216 *
217 * This is actually gross. :(
218 *
219 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
220 * tasks, but still be able to sleep. We need this on platforms that cannot
221 * atomically change clock frequency. Remove once fast switching will be
222 * available on such platforms.
223 *
224 * SUGOV stands for SchedUtil GOVernor.
225 */
226#define SCHED_FLAG_SUGOV 0x10000000
227
228static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
229{
230#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
231 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
232#else
233 return false;
234#endif
235}
236
2d3d891d
DF
237/*
238 * Tells if entity @a should preempt entity @b.
239 */
332ac17e
DF
240static inline bool
241dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 242{
794a56eb
JL
243 return dl_entity_is_special(a) ||
244 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
245}
246
029632fb
PZ
247/*
248 * This is the priority-queue data structure of the RT scheduling class:
249 */
250struct rt_prio_array {
251 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
252 struct list_head queue[MAX_RT_PRIO];
253};
254
255struct rt_bandwidth {
256 /* nests inside the rq lock: */
257 raw_spinlock_t rt_runtime_lock;
258 ktime_t rt_period;
259 u64 rt_runtime;
260 struct hrtimer rt_period_timer;
4cfafd30 261 unsigned int rt_period_active;
029632fb 262};
a5e7be3b
JL
263
264void __dl_clear_params(struct task_struct *p);
265
332ac17e 266struct dl_bandwidth {
97fb7a0a
IM
267 raw_spinlock_t dl_runtime_lock;
268 u64 dl_runtime;
269 u64 dl_period;
332ac17e
DF
270};
271
272static inline int dl_bandwidth_enabled(void)
273{
1724813d 274 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
275}
276
a57415f5
PL
277/*
278 * To keep the bandwidth of -deadline tasks under control
279 * we need some place where:
280 * - store the maximum -deadline bandwidth of each cpu;
281 * - cache the fraction of bandwidth that is currently allocated in
282 * each root domain;
283 *
284 * This is all done in the data structure below. It is similar to the
285 * one used for RT-throttling (rt_bandwidth), with the main difference
286 * that, since here we are only interested in admission control, we
287 * do not decrease any runtime while the group "executes", neither we
288 * need a timer to replenish it.
289 *
290 * With respect to SMP, bandwidth is given on a per root domain basis,
291 * meaning that:
292 * - bw (< 100%) is the deadline bandwidth of each CPU;
293 * - total_bw is the currently allocated bandwidth in each root domain;
294 */
332ac17e 295struct dl_bw {
97fb7a0a
IM
296 raw_spinlock_t lock;
297 u64 bw;
298 u64 total_bw;
332ac17e
DF
299};
300
daec5798
LA
301static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
302
7f51412a 303static inline
8c0944ce 304void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
305{
306 dl_b->total_bw -= tsk_bw;
daec5798 307 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
308}
309
310static inline
daec5798 311void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
312{
313 dl_b->total_bw += tsk_bw;
daec5798 314 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
315}
316
60ffd5ed
LA
317static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
318 u64 old_bw, u64 new_bw)
7f51412a
JL
319{
320 return dl_b->bw != -1 &&
60ffd5ed 321 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
7f51412a
JL
322}
323
b4118988
LA
324/*
325 * Verify the fitness of task @p to run on @cpu taking into account the
326 * CPU original capacity and the runtime/deadline ratio of the task.
327 *
328 * The function will return true if the CPU original capacity of the
329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330 * task and false otherwise.
331 */
332static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333{
334 unsigned long cap = arch_scale_cpu_capacity(cpu);
335
336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337}
338
f2cb1360 339extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 340extern int sched_dl_global_validate(void);
06a76fe0 341extern void sched_dl_do_global(void);
97fb7a0a 342extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
343extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 346extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
347extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
348extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 349extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
350
351#ifdef CONFIG_CGROUP_SCHED
352
353#include <linux/cgroup.h>
eb414681 354#include <linux/psi.h>
029632fb
PZ
355
356struct cfs_rq;
357struct rt_rq;
358
35cf4e50 359extern struct list_head task_groups;
029632fb
PZ
360
361struct cfs_bandwidth {
362#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
363 raw_spinlock_t lock;
364 ktime_t period;
365 u64 quota;
366 u64 runtime;
367 s64 hierarchical_quota;
97fb7a0a 368
66567fcb 369 u8 idle;
370 u8 period_active;
66567fcb 371 u8 slack_started;
97fb7a0a
IM
372 struct hrtimer period_timer;
373 struct hrtimer slack_timer;
374 struct list_head throttled_cfs_rq;
375
376 /* Statistics: */
377 int nr_periods;
378 int nr_throttled;
379 u64 throttled_time;
029632fb
PZ
380#endif
381};
382
97fb7a0a 383/* Task group related information */
029632fb
PZ
384struct task_group {
385 struct cgroup_subsys_state css;
386
387#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
388 /* schedulable entities of this group on each CPU */
389 struct sched_entity **se;
390 /* runqueue "owned" by this group on each CPU */
391 struct cfs_rq **cfs_rq;
392 unsigned long shares;
029632fb 393
fa6bddeb 394#ifdef CONFIG_SMP
b0367629
WL
395 /*
396 * load_avg can be heavily contended at clock tick time, so put
397 * it in its own cacheline separated from the fields above which
398 * will also be accessed at each tick.
399 */
97fb7a0a 400 atomic_long_t load_avg ____cacheline_aligned;
029632fb 401#endif
fa6bddeb 402#endif
029632fb
PZ
403
404#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
405 struct sched_rt_entity **rt_se;
406 struct rt_rq **rt_rq;
029632fb 407
97fb7a0a 408 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
409#endif
410
97fb7a0a
IM
411 struct rcu_head rcu;
412 struct list_head list;
029632fb 413
97fb7a0a
IM
414 struct task_group *parent;
415 struct list_head siblings;
416 struct list_head children;
029632fb
PZ
417
418#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 419 struct autogroup *autogroup;
029632fb
PZ
420#endif
421
97fb7a0a 422 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
423
424#ifdef CONFIG_UCLAMP_TASK_GROUP
425 /* The two decimal precision [%] value requested from user-space */
426 unsigned int uclamp_pct[UCLAMP_CNT];
427 /* Clamp values requested for a task group */
428 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
429 /* Effective clamp values used for a task group */
430 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
431#endif
432
029632fb
PZ
433};
434
435#ifdef CONFIG_FAIR_GROUP_SCHED
436#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
437
438/*
439 * A weight of 0 or 1 can cause arithmetics problems.
440 * A weight of a cfs_rq is the sum of weights of which entities
441 * are queued on this cfs_rq, so a weight of a entity should not be
442 * too large, so as the shares value of a task group.
443 * (The default weight is 1024 - so there's no practical
444 * limitation from this.)
445 */
97fb7a0a
IM
446#define MIN_SHARES (1UL << 1)
447#define MAX_SHARES (1UL << 18)
029632fb
PZ
448#endif
449
029632fb
PZ
450typedef int (*tg_visitor)(struct task_group *, void *);
451
452extern int walk_tg_tree_from(struct task_group *from,
453 tg_visitor down, tg_visitor up, void *data);
454
455/*
456 * Iterate the full tree, calling @down when first entering a node and @up when
457 * leaving it for the final time.
458 *
459 * Caller must hold rcu_lock or sufficient equivalent.
460 */
461static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
462{
463 return walk_tg_tree_from(&root_task_group, down, up, data);
464}
465
466extern int tg_nop(struct task_group *tg, void *data);
467
468extern void free_fair_sched_group(struct task_group *tg);
469extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 470extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 471extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
472extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
473 struct sched_entity *se, int cpu,
474 struct sched_entity *parent);
475extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
476
477extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 478extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
479extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
480
481extern void free_rt_sched_group(struct task_group *tg);
482extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
483extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
484 struct sched_rt_entity *rt_se, int cpu,
485 struct sched_rt_entity *parent);
8887cd99
NP
486extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
487extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
488extern long sched_group_rt_runtime(struct task_group *tg);
489extern long sched_group_rt_period(struct task_group *tg);
490extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 491
25cc7da7
LZ
492extern struct task_group *sched_create_group(struct task_group *parent);
493extern void sched_online_group(struct task_group *tg,
494 struct task_group *parent);
495extern void sched_destroy_group(struct task_group *tg);
496extern void sched_offline_group(struct task_group *tg);
497
498extern void sched_move_task(struct task_struct *tsk);
499
500#ifdef CONFIG_FAIR_GROUP_SCHED
501extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
502
503#ifdef CONFIG_SMP
504extern void set_task_rq_fair(struct sched_entity *se,
505 struct cfs_rq *prev, struct cfs_rq *next);
506#else /* !CONFIG_SMP */
507static inline void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next) { }
509#endif /* CONFIG_SMP */
510#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 511
029632fb
PZ
512#else /* CONFIG_CGROUP_SCHED */
513
514struct cfs_bandwidth { };
515
516#endif /* CONFIG_CGROUP_SCHED */
517
518/* CFS-related fields in a runqueue */
519struct cfs_rq {
97fb7a0a 520 struct load_weight load;
97fb7a0a 521 unsigned int nr_running;
43e9f7f2
VK
522 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
523 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 524
97fb7a0a
IM
525 u64 exec_clock;
526 u64 min_vruntime;
029632fb 527#ifndef CONFIG_64BIT
97fb7a0a 528 u64 min_vruntime_copy;
029632fb
PZ
529#endif
530
97fb7a0a 531 struct rb_root_cached tasks_timeline;
029632fb 532
029632fb
PZ
533 /*
534 * 'curr' points to currently running entity on this cfs_rq.
535 * It is set to NULL otherwise (i.e when none are currently running).
536 */
97fb7a0a
IM
537 struct sched_entity *curr;
538 struct sched_entity *next;
539 struct sched_entity *last;
540 struct sched_entity *skip;
029632fb
PZ
541
542#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 543 unsigned int nr_spread_over;
029632fb
PZ
544#endif
545
2dac754e
PT
546#ifdef CONFIG_SMP
547 /*
9d89c257 548 * CFS load tracking
2dac754e 549 */
97fb7a0a 550 struct sched_avg avg;
2a2f5d4e 551#ifndef CONFIG_64BIT
97fb7a0a 552 u64 load_last_update_time_copy;
9d89c257 553#endif
2a2f5d4e
PZ
554 struct {
555 raw_spinlock_t lock ____cacheline_aligned;
556 int nr;
557 unsigned long load_avg;
558 unsigned long util_avg;
9f683953 559 unsigned long runnable_avg;
2a2f5d4e 560 } removed;
82958366 561
9d89c257 562#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
563 unsigned long tg_load_avg_contrib;
564 long propagate;
565 long prop_runnable_sum;
0e2d2aaa 566
82958366
PT
567 /*
568 * h_load = weight * f(tg)
569 *
570 * Where f(tg) is the recursive weight fraction assigned to
571 * this group.
572 */
97fb7a0a
IM
573 unsigned long h_load;
574 u64 last_h_load_update;
575 struct sched_entity *h_load_next;
68520796 576#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
577#endif /* CONFIG_SMP */
578
029632fb 579#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 580 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
581
582 /*
583 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
584 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
585 * (like users, containers etc.)
586 *
97fb7a0a
IM
587 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
588 * This list is used during load balance.
029632fb 589 */
97fb7a0a
IM
590 int on_list;
591 struct list_head leaf_cfs_rq_list;
592 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 593
029632fb 594#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 595 int runtime_enabled;
97fb7a0a
IM
596 s64 runtime_remaining;
597
598 u64 throttled_clock;
599 u64 throttled_clock_task;
600 u64 throttled_clock_task_time;
601 int throttled;
602 int throttle_count;
603 struct list_head throttled_list;
029632fb
PZ
604#endif /* CONFIG_CFS_BANDWIDTH */
605#endif /* CONFIG_FAIR_GROUP_SCHED */
606};
607
608static inline int rt_bandwidth_enabled(void)
609{
610 return sysctl_sched_rt_runtime >= 0;
611}
612
b6366f04 613/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 614#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
615# define HAVE_RT_PUSH_IPI
616#endif
617
029632fb
PZ
618/* Real-Time classes' related field in a runqueue: */
619struct rt_rq {
97fb7a0a
IM
620 struct rt_prio_array active;
621 unsigned int rt_nr_running;
622 unsigned int rr_nr_running;
029632fb
PZ
623#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
624 struct {
97fb7a0a 625 int curr; /* highest queued rt task prio */
029632fb 626#ifdef CONFIG_SMP
97fb7a0a 627 int next; /* next highest */
029632fb
PZ
628#endif
629 } highest_prio;
630#endif
631#ifdef CONFIG_SMP
97fb7a0a
IM
632 unsigned long rt_nr_migratory;
633 unsigned long rt_nr_total;
634 int overloaded;
635 struct plist_head pushable_tasks;
371bf427 636
b6366f04 637#endif /* CONFIG_SMP */
97fb7a0a 638 int rt_queued;
f4ebcbc0 639
97fb7a0a
IM
640 int rt_throttled;
641 u64 rt_time;
642 u64 rt_runtime;
029632fb 643 /* Nests inside the rq lock: */
97fb7a0a 644 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
645
646#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 647 unsigned long rt_nr_boosted;
029632fb 648
97fb7a0a
IM
649 struct rq *rq;
650 struct task_group *tg;
029632fb
PZ
651#endif
652};
653
296b2ffe
VG
654static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
655{
656 return rt_rq->rt_queued && rt_rq->rt_nr_running;
657}
658
aab03e05
DF
659/* Deadline class' related fields in a runqueue */
660struct dl_rq {
661 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 662 struct rb_root_cached root;
aab03e05 663
97fb7a0a 664 unsigned long dl_nr_running;
1baca4ce
JL
665
666#ifdef CONFIG_SMP
667 /*
668 * Deadline values of the currently executing and the
669 * earliest ready task on this rq. Caching these facilitates
dfcb245e 670 * the decision whether or not a ready but not running task
1baca4ce
JL
671 * should migrate somewhere else.
672 */
673 struct {
97fb7a0a
IM
674 u64 curr;
675 u64 next;
1baca4ce
JL
676 } earliest_dl;
677
97fb7a0a
IM
678 unsigned long dl_nr_migratory;
679 int overloaded;
1baca4ce
JL
680
681 /*
682 * Tasks on this rq that can be pushed away. They are kept in
683 * an rb-tree, ordered by tasks' deadlines, with caching
684 * of the leftmost (earliest deadline) element.
685 */
97fb7a0a 686 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 687#else
97fb7a0a 688 struct dl_bw dl_bw;
1baca4ce 689#endif
e36d8677
LA
690 /*
691 * "Active utilization" for this runqueue: increased when a
692 * task wakes up (becomes TASK_RUNNING) and decreased when a
693 * task blocks
694 */
97fb7a0a 695 u64 running_bw;
4da3abce 696
8fd27231
LA
697 /*
698 * Utilization of the tasks "assigned" to this runqueue (including
699 * the tasks that are in runqueue and the tasks that executed on this
700 * CPU and blocked). Increased when a task moves to this runqueue, and
701 * decreased when the task moves away (migrates, changes scheduling
702 * policy, or terminates).
703 * This is needed to compute the "inactive utilization" for the
704 * runqueue (inactive utilization = this_bw - running_bw).
705 */
97fb7a0a
IM
706 u64 this_bw;
707 u64 extra_bw;
8fd27231 708
4da3abce
LA
709 /*
710 * Inverse of the fraction of CPU utilization that can be reclaimed
711 * by the GRUB algorithm.
712 */
97fb7a0a 713 u64 bw_ratio;
aab03e05
DF
714};
715
c0796298
VG
716#ifdef CONFIG_FAIR_GROUP_SCHED
717/* An entity is a task if it doesn't "own" a runqueue */
718#define entity_is_task(se) (!se->my_q)
0dacee1b 719
9f683953
VG
720static inline void se_update_runnable(struct sched_entity *se)
721{
722 if (!entity_is_task(se))
723 se->runnable_weight = se->my_q->h_nr_running;
724}
725
726static inline long se_runnable(struct sched_entity *se)
727{
728 if (entity_is_task(se))
729 return !!se->on_rq;
730 else
731 return se->runnable_weight;
732}
733
c0796298
VG
734#else
735#define entity_is_task(se) 1
0dacee1b 736
9f683953
VG
737static inline void se_update_runnable(struct sched_entity *se) {}
738
739static inline long se_runnable(struct sched_entity *se)
740{
741 return !!se->on_rq;
742}
c0796298
VG
743#endif
744
029632fb 745#ifdef CONFIG_SMP
c0796298
VG
746/*
747 * XXX we want to get rid of these helpers and use the full load resolution.
748 */
749static inline long se_weight(struct sched_entity *se)
750{
751 return scale_load_down(se->load.weight);
752}
753
029632fb 754
afe06efd
TC
755static inline bool sched_asym_prefer(int a, int b)
756{
757 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
758}
759
6aa140fa
QP
760struct perf_domain {
761 struct em_perf_domain *em_pd;
762 struct perf_domain *next;
763 struct rcu_head rcu;
764};
765
630246a0
QP
766/* Scheduling group status flags */
767#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 768#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 769
029632fb
PZ
770/*
771 * We add the notion of a root-domain which will be used to define per-domain
772 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
774 * exclusive cpuset is created, we also create and attach a new root-domain
775 * object.
776 *
777 */
778struct root_domain {
97fb7a0a
IM
779 atomic_t refcount;
780 atomic_t rto_count;
781 struct rcu_head rcu;
782 cpumask_var_t span;
783 cpumask_var_t online;
029632fb 784
757ffdd7
VS
785 /*
786 * Indicate pullable load on at least one CPU, e.g:
787 * - More than one runnable task
788 * - Running task is misfit
789 */
575638d1 790 int overload;
4486edd1 791
2802bf3c
MR
792 /* Indicate one or more cpus over-utilized (tipping point) */
793 int overutilized;
794
1baca4ce
JL
795 /*
796 * The bit corresponding to a CPU gets set here if such CPU has more
797 * than one runnable -deadline task (as it is below for RT tasks).
798 */
97fb7a0a
IM
799 cpumask_var_t dlo_mask;
800 atomic_t dlo_count;
801 struct dl_bw dl_bw;
802 struct cpudl cpudl;
1baca4ce 803
26762423
PL
804 /*
805 * Indicate whether a root_domain's dl_bw has been checked or
806 * updated. It's monotonously increasing value.
807 *
808 * Also, some corner cases, like 'wrap around' is dangerous, but given
809 * that u64 is 'big enough'. So that shouldn't be a concern.
810 */
811 u64 visit_gen;
812
4bdced5c
SRRH
813#ifdef HAVE_RT_PUSH_IPI
814 /*
815 * For IPI pull requests, loop across the rto_mask.
816 */
97fb7a0a
IM
817 struct irq_work rto_push_work;
818 raw_spinlock_t rto_lock;
4bdced5c 819 /* These are only updated and read within rto_lock */
97fb7a0a
IM
820 int rto_loop;
821 int rto_cpu;
4bdced5c 822 /* These atomics are updated outside of a lock */
97fb7a0a
IM
823 atomic_t rto_loop_next;
824 atomic_t rto_loop_start;
4bdced5c 825#endif
029632fb
PZ
826 /*
827 * The "RT overload" flag: it gets set if a CPU has more than
828 * one runnable RT task.
829 */
97fb7a0a
IM
830 cpumask_var_t rto_mask;
831 struct cpupri cpupri;
cd92bfd3 832
97fb7a0a 833 unsigned long max_cpu_capacity;
6aa140fa
QP
834
835 /*
836 * NULL-terminated list of performance domains intersecting with the
837 * CPUs of the rd. Protected by RCU.
838 */
7ba7319f 839 struct perf_domain __rcu *pd;
029632fb
PZ
840};
841
f2cb1360 842extern void init_defrootdomain(void);
8d5dc512 843extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 844extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
845extern void sched_get_rd(struct root_domain *rd);
846extern void sched_put_rd(struct root_domain *rd);
029632fb 847
4bdced5c
SRRH
848#ifdef HAVE_RT_PUSH_IPI
849extern void rto_push_irq_work_func(struct irq_work *work);
850#endif
029632fb
PZ
851#endif /* CONFIG_SMP */
852
69842cba
PB
853#ifdef CONFIG_UCLAMP_TASK
854/*
855 * struct uclamp_bucket - Utilization clamp bucket
856 * @value: utilization clamp value for tasks on this clamp bucket
857 * @tasks: number of RUNNABLE tasks on this clamp bucket
858 *
859 * Keep track of how many tasks are RUNNABLE for a given utilization
860 * clamp value.
861 */
862struct uclamp_bucket {
863 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
864 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
865};
866
867/*
868 * struct uclamp_rq - rq's utilization clamp
869 * @value: currently active clamp values for a rq
870 * @bucket: utilization clamp buckets affecting a rq
871 *
872 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
873 * A clamp value is affecting a rq when there is at least one task RUNNABLE
874 * (or actually running) with that value.
875 *
876 * There are up to UCLAMP_CNT possible different clamp values, currently there
877 * are only two: minimum utilization and maximum utilization.
878 *
879 * All utilization clamping values are MAX aggregated, since:
880 * - for util_min: we want to run the CPU at least at the max of the minimum
881 * utilization required by its currently RUNNABLE tasks.
882 * - for util_max: we want to allow the CPU to run up to the max of the
883 * maximum utilization allowed by its currently RUNNABLE tasks.
884 *
885 * Since on each system we expect only a limited number of different
886 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
887 * the metrics required to compute all the per-rq utilization clamp values.
888 */
889struct uclamp_rq {
890 unsigned int value;
891 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
892};
46609ce2
QY
893
894DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
895#endif /* CONFIG_UCLAMP_TASK */
896
029632fb
PZ
897/*
898 * This is the main, per-CPU runqueue data structure.
899 *
900 * Locking rule: those places that want to lock multiple runqueues
901 * (such as the load balancing or the thread migration code), lock
902 * acquire operations must be ordered by ascending &runqueue.
903 */
904struct rq {
905 /* runqueue lock: */
97fb7a0a 906 raw_spinlock_t lock;
029632fb
PZ
907
908 /*
909 * nr_running and cpu_load should be in the same cacheline because
910 * remote CPUs use both these fields when doing load calculation.
911 */
97fb7a0a 912 unsigned int nr_running;
0ec8aa00 913#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
914 unsigned int nr_numa_running;
915 unsigned int nr_preferred_running;
a4739eca 916 unsigned int numa_migrate_on;
0ec8aa00 917#endif
3451d024 918#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 919#ifdef CONFIG_SMP
e022e0d3 920 unsigned long last_blocked_load_update_tick;
f643ea22 921 unsigned int has_blocked_load;
90b5363a 922 call_single_data_t nohz_csd;
9fd81dd5 923#endif /* CONFIG_SMP */
00357f5e 924 unsigned int nohz_tick_stopped;
90b5363a 925 atomic_t nohz_flags;
9fd81dd5 926#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 927
126c2092
PZ
928#ifdef CONFIG_SMP
929 unsigned int ttwu_pending;
930#endif
97fb7a0a 931 u64 nr_switches;
029632fb 932
69842cba
PB
933#ifdef CONFIG_UCLAMP_TASK
934 /* Utilization clamp values based on CPU's RUNNABLE tasks */
935 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
936 unsigned int uclamp_flags;
937#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
938#endif
939
97fb7a0a
IM
940 struct cfs_rq cfs;
941 struct rt_rq rt;
942 struct dl_rq dl;
029632fb
PZ
943
944#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
945 /* list of leaf cfs_rq on this CPU: */
946 struct list_head leaf_cfs_rq_list;
947 struct list_head *tmp_alone_branch;
a35b6466
PZ
948#endif /* CONFIG_FAIR_GROUP_SCHED */
949
029632fb
PZ
950 /*
951 * This is part of a global counter where only the total sum
952 * over all CPUs matters. A task can increase this counter on
953 * one CPU and if it got migrated afterwards it may decrease
954 * it on another CPU. Always updated under the runqueue lock:
955 */
97fb7a0a 956 unsigned long nr_uninterruptible;
029632fb 957
4104a562 958 struct task_struct __rcu *curr;
97fb7a0a
IM
959 struct task_struct *idle;
960 struct task_struct *stop;
961 unsigned long next_balance;
962 struct mm_struct *prev_mm;
029632fb 963
97fb7a0a
IM
964 unsigned int clock_update_flags;
965 u64 clock;
23127296
VG
966 /* Ensure that all clocks are in the same cache line */
967 u64 clock_task ____cacheline_aligned;
968 u64 clock_pelt;
969 unsigned long lost_idle_time;
029632fb 970
97fb7a0a 971 atomic_t nr_iowait;
029632fb 972
227a4aad
MD
973#ifdef CONFIG_MEMBARRIER
974 int membarrier_state;
975#endif
976
029632fb 977#ifdef CONFIG_SMP
994aeb7a
JFG
978 struct root_domain *rd;
979 struct sched_domain __rcu *sd;
97fb7a0a
IM
980
981 unsigned long cpu_capacity;
982 unsigned long cpu_capacity_orig;
029632fb 983
97fb7a0a 984 struct callback_head *balance_callback;
975707f2 985 unsigned char balance_push;
029632fb 986
19a1f5ec 987 unsigned char nohz_idle_balance;
97fb7a0a 988 unsigned char idle_balance;
e3fca9e7 989
3b1baa64
MR
990 unsigned long misfit_task_load;
991
029632fb 992 /* For active balancing */
97fb7a0a
IM
993 int active_balance;
994 int push_cpu;
995 struct cpu_stop_work active_balance_work;
996
997 /* CPU of this runqueue: */
998 int cpu;
999 int online;
029632fb 1000
367456c7
PZ
1001 struct list_head cfs_tasks;
1002
371bf427 1003 struct sched_avg avg_rt;
3727e0e1 1004 struct sched_avg avg_dl;
11d4afd4 1005#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 1006 struct sched_avg avg_irq;
76504793
TG
1007#endif
1008#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1009 struct sched_avg avg_thermal;
91c27493 1010#endif
97fb7a0a
IM
1011 u64 idle_stamp;
1012 u64 avg_idle;
9bd721c5
JL
1013
1014 /* This is used to determine avg_idle's max value */
97fb7a0a 1015 u64 max_idle_balance_cost;
f2469a1f
TG
1016
1017#ifdef CONFIG_HOTPLUG_CPU
1018 struct rcuwait hotplug_wait;
1019#endif
90b5363a 1020#endif /* CONFIG_SMP */
029632fb
PZ
1021
1022#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1023 u64 prev_irq_time;
029632fb
PZ
1024#endif
1025#ifdef CONFIG_PARAVIRT
97fb7a0a 1026 u64 prev_steal_time;
029632fb
PZ
1027#endif
1028#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1029 u64 prev_steal_time_rq;
029632fb
PZ
1030#endif
1031
1032 /* calc_load related fields */
97fb7a0a
IM
1033 unsigned long calc_load_update;
1034 long calc_load_active;
029632fb
PZ
1035
1036#ifdef CONFIG_SCHED_HRTICK
1037#ifdef CONFIG_SMP
97fb7a0a 1038 call_single_data_t hrtick_csd;
029632fb 1039#endif
97fb7a0a 1040 struct hrtimer hrtick_timer;
c30ac5e3 1041 ktime_t hrtick_time;
029632fb
PZ
1042#endif
1043
1044#ifdef CONFIG_SCHEDSTATS
1045 /* latency stats */
97fb7a0a
IM
1046 struct sched_info rq_sched_info;
1047 unsigned long long rq_cpu_time;
029632fb
PZ
1048 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1049
1050 /* sys_sched_yield() stats */
97fb7a0a 1051 unsigned int yld_count;
029632fb
PZ
1052
1053 /* schedule() stats */
97fb7a0a
IM
1054 unsigned int sched_count;
1055 unsigned int sched_goidle;
029632fb
PZ
1056
1057 /* try_to_wake_up() stats */
97fb7a0a
IM
1058 unsigned int ttwu_count;
1059 unsigned int ttwu_local;
029632fb
PZ
1060#endif
1061
442bf3aa
DL
1062#ifdef CONFIG_CPU_IDLE
1063 /* Must be inspected within a rcu lock section */
97fb7a0a 1064 struct cpuidle_state *idle_state;
442bf3aa 1065#endif
3015ef4b 1066
74d862b6 1067#ifdef CONFIG_SMP
3015ef4b
TG
1068 unsigned int nr_pinned;
1069#endif
a7c81556
PZ
1070 unsigned int push_busy;
1071 struct cpu_stop_work push_work;
029632fb
PZ
1072};
1073
62478d99
VG
1074#ifdef CONFIG_FAIR_GROUP_SCHED
1075
1076/* CPU runqueue to which this cfs_rq is attached */
1077static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1078{
1079 return cfs_rq->rq;
1080}
1081
1082#else
1083
1084static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1085{
1086 return container_of(cfs_rq, struct rq, cfs);
1087}
1088#endif
1089
029632fb
PZ
1090static inline int cpu_of(struct rq *rq)
1091{
1092#ifdef CONFIG_SMP
1093 return rq->cpu;
1094#else
1095 return 0;
1096#endif
1097}
1098
a7c81556
PZ
1099#define MDF_PUSH 0x01
1100
1101static inline bool is_migration_disabled(struct task_struct *p)
1102{
74d862b6 1103#ifdef CONFIG_SMP
a7c81556
PZ
1104 return p->migration_disabled;
1105#else
1106 return false;
1107#endif
1108}
1b568f0a
PZ
1109
1110#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1111extern void __update_idle_core(struct rq *rq);
1112
1113static inline void update_idle_core(struct rq *rq)
1114{
1115 if (static_branch_unlikely(&sched_smt_present))
1116 __update_idle_core(rq);
1117}
1118
1119#else
1120static inline void update_idle_core(struct rq *rq) { }
1121#endif
1122
8b06c55b 1123DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1124
518cd623 1125#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1126#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1127#define task_rq(p) cpu_rq(task_cpu(p))
1128#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1129#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1130
1f351d7f
JW
1131extern void update_rq_clock(struct rq *rq);
1132
cebde6d6
PZ
1133static inline u64 __rq_clock_broken(struct rq *rq)
1134{
316c1608 1135 return READ_ONCE(rq->clock);
cebde6d6
PZ
1136}
1137
cb42c9a3
MF
1138/*
1139 * rq::clock_update_flags bits
1140 *
1141 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1142 * call to __schedule(). This is an optimisation to avoid
1143 * neighbouring rq clock updates.
1144 *
1145 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1146 * in effect and calls to update_rq_clock() are being ignored.
1147 *
1148 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1149 * made to update_rq_clock() since the last time rq::lock was pinned.
1150 *
1151 * If inside of __schedule(), clock_update_flags will have been
1152 * shifted left (a left shift is a cheap operation for the fast path
1153 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1154 *
1155 * if (rq-clock_update_flags >= RQCF_UPDATED)
1156 *
1157 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1158 * one position though, because the next rq_unpin_lock() will shift it
1159 * back.
1160 */
97fb7a0a
IM
1161#define RQCF_REQ_SKIP 0x01
1162#define RQCF_ACT_SKIP 0x02
1163#define RQCF_UPDATED 0x04
cb42c9a3
MF
1164
1165static inline void assert_clock_updated(struct rq *rq)
1166{
1167 /*
1168 * The only reason for not seeing a clock update since the
1169 * last rq_pin_lock() is if we're currently skipping updates.
1170 */
1171 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1172}
1173
78becc27
FW
1174static inline u64 rq_clock(struct rq *rq)
1175{
cebde6d6 1176 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1177 assert_clock_updated(rq);
1178
78becc27
FW
1179 return rq->clock;
1180}
1181
1182static inline u64 rq_clock_task(struct rq *rq)
1183{
cebde6d6 1184 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1185 assert_clock_updated(rq);
1186
78becc27
FW
1187 return rq->clock_task;
1188}
1189
05289b90
TG
1190/**
1191 * By default the decay is the default pelt decay period.
1192 * The decay shift can change the decay period in
1193 * multiples of 32.
1194 * Decay shift Decay period(ms)
1195 * 0 32
1196 * 1 64
1197 * 2 128
1198 * 3 256
1199 * 4 512
1200 */
1201extern int sched_thermal_decay_shift;
1202
1203static inline u64 rq_clock_thermal(struct rq *rq)
1204{
1205 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1206}
1207
adcc8da8 1208static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1209{
1210 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1211 rq->clock_update_flags |= RQCF_REQ_SKIP;
1212}
1213
1214/*
595058b6 1215 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1216 * request is cancelled.
1217 */
1218static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1219{
1220 lockdep_assert_held(&rq->lock);
1221 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1222}
1223
d8ac8971
MF
1224struct rq_flags {
1225 unsigned long flags;
1226 struct pin_cookie cookie;
cb42c9a3
MF
1227#ifdef CONFIG_SCHED_DEBUG
1228 /*
1229 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1230 * current pin context is stashed here in case it needs to be
1231 * restored in rq_repin_lock().
1232 */
1233 unsigned int clock_update_flags;
1234#endif
d8ac8971
MF
1235};
1236
ae792702
PZ
1237extern struct callback_head balance_push_callback;
1238
58877d34
PZ
1239/*
1240 * Lockdep annotation that avoids accidental unlocks; it's like a
1241 * sticky/continuous lockdep_assert_held().
1242 *
1243 * This avoids code that has access to 'struct rq *rq' (basically everything in
1244 * the scheduler) from accidentally unlocking the rq if they do not also have a
1245 * copy of the (on-stack) 'struct rq_flags rf'.
1246 *
1247 * Also see Documentation/locking/lockdep-design.rst.
1248 */
d8ac8971
MF
1249static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1250{
1251 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1252
1253#ifdef CONFIG_SCHED_DEBUG
1254 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1255 rf->clock_update_flags = 0;
565790d2 1256#ifdef CONFIG_SMP
ae792702
PZ
1257 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1258#endif
565790d2 1259#endif
d8ac8971
MF
1260}
1261
1262static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1263{
cb42c9a3
MF
1264#ifdef CONFIG_SCHED_DEBUG
1265 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1266 rf->clock_update_flags = RQCF_UPDATED;
1267#endif
1268
d8ac8971
MF
1269 lockdep_unpin_lock(&rq->lock, rf->cookie);
1270}
1271
1272static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1273{
1274 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1275
1276#ifdef CONFIG_SCHED_DEBUG
1277 /*
1278 * Restore the value we stashed in @rf for this pin context.
1279 */
1280 rq->clock_update_flags |= rf->clock_update_flags;
1281#endif
d8ac8971
MF
1282}
1283
1f351d7f
JW
1284struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1285 __acquires(rq->lock);
1286
1287struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1288 __acquires(p->pi_lock)
1289 __acquires(rq->lock);
1290
1291static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1292 __releases(rq->lock)
1293{
1294 rq_unpin_lock(rq, rf);
1295 raw_spin_unlock(&rq->lock);
1296}
1297
1298static inline void
1299task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1300 __releases(rq->lock)
1301 __releases(p->pi_lock)
1302{
1303 rq_unpin_lock(rq, rf);
1304 raw_spin_unlock(&rq->lock);
1305 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1306}
1307
1308static inline void
1309rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1310 __acquires(rq->lock)
1311{
1312 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1313 rq_pin_lock(rq, rf);
1314}
1315
1316static inline void
1317rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1318 __acquires(rq->lock)
1319{
1320 raw_spin_lock_irq(&rq->lock);
1321 rq_pin_lock(rq, rf);
1322}
1323
1324static inline void
1325rq_lock(struct rq *rq, struct rq_flags *rf)
1326 __acquires(rq->lock)
1327{
1328 raw_spin_lock(&rq->lock);
1329 rq_pin_lock(rq, rf);
1330}
1331
1332static inline void
1333rq_relock(struct rq *rq, struct rq_flags *rf)
1334 __acquires(rq->lock)
1335{
1336 raw_spin_lock(&rq->lock);
1337 rq_repin_lock(rq, rf);
1338}
1339
1340static inline void
1341rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1342 __releases(rq->lock)
1343{
1344 rq_unpin_lock(rq, rf);
1345 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1346}
1347
1348static inline void
1349rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1350 __releases(rq->lock)
1351{
1352 rq_unpin_lock(rq, rf);
1353 raw_spin_unlock_irq(&rq->lock);
1354}
1355
1356static inline void
1357rq_unlock(struct rq *rq, struct rq_flags *rf)
1358 __releases(rq->lock)
1359{
1360 rq_unpin_lock(rq, rf);
1361 raw_spin_unlock(&rq->lock);
1362}
1363
246b3b33
JW
1364static inline struct rq *
1365this_rq_lock_irq(struct rq_flags *rf)
1366 __acquires(rq->lock)
1367{
1368 struct rq *rq;
1369
1370 local_irq_disable();
1371 rq = this_rq();
1372 rq_lock(rq, rf);
1373 return rq;
1374}
1375
9942f79b 1376#ifdef CONFIG_NUMA
e3fe70b1
RR
1377enum numa_topology_type {
1378 NUMA_DIRECT,
1379 NUMA_GLUELESS_MESH,
1380 NUMA_BACKPLANE,
1381};
1382extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1383extern int sched_max_numa_distance;
1384extern bool find_numa_distance(int distance);
f2cb1360
IM
1385extern void sched_init_numa(void);
1386extern void sched_domains_numa_masks_set(unsigned int cpu);
1387extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1388extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1389#else
1390static inline void sched_init_numa(void) { }
1391static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1392static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1393static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1394{
1395 return nr_cpu_ids;
1396}
f2cb1360
IM
1397#endif
1398
f809ca9a 1399#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1400/* The regions in numa_faults array from task_struct */
1401enum numa_faults_stats {
1402 NUMA_MEM = 0,
1403 NUMA_CPU,
1404 NUMA_MEMBUF,
1405 NUMA_CPUBUF
1406};
0ec8aa00 1407extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1408extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1409extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1410 int cpu, int scpu);
13784475
MG
1411extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1412#else
1413static inline void
1414init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1415{
1416}
f809ca9a
MG
1417#endif /* CONFIG_NUMA_BALANCING */
1418
518cd623
PZ
1419#ifdef CONFIG_SMP
1420
e3fca9e7
PZ
1421static inline void
1422queue_balance_callback(struct rq *rq,
1423 struct callback_head *head,
1424 void (*func)(struct rq *rq))
1425{
1426 lockdep_assert_held(&rq->lock);
1427
ae792702 1428 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
e3fca9e7
PZ
1429 return;
1430
1431 head->func = (void (*)(struct callback_head *))func;
1432 head->next = rq->balance_callback;
1433 rq->balance_callback = head;
1434}
1435
029632fb
PZ
1436#define rcu_dereference_check_sched_domain(p) \
1437 rcu_dereference_check((p), \
1438 lockdep_is_held(&sched_domains_mutex))
1439
1440/*
1441 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1442 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1443 *
1444 * The domain tree of any CPU may only be accessed from within
1445 * preempt-disabled sections.
1446 */
1447#define for_each_domain(cpu, __sd) \
518cd623
PZ
1448 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1449 __sd; __sd = __sd->parent)
029632fb 1450
518cd623
PZ
1451/**
1452 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1453 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1454 * be returned.
1455 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1456 * for the given CPU.
518cd623 1457 *
97fb7a0a 1458 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1459 */
1460static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1461{
1462 struct sched_domain *sd, *hsd = NULL;
1463
1464 for_each_domain(cpu, sd) {
1465 if (!(sd->flags & flag))
1466 break;
1467 hsd = sd;
1468 }
1469
1470 return hsd;
1471}
1472
fb13c7ee
MG
1473static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1474{
1475 struct sched_domain *sd;
1476
1477 for_each_domain(cpu, sd) {
1478 if (sd->flags & flag)
1479 break;
1480 }
1481
1482 return sd;
1483}
1484
994aeb7a 1485DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1486DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1487DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1488DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1489DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1490DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1491DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1492extern struct static_key_false sched_asym_cpucapacity;
518cd623 1493
63b2ca30 1494struct sched_group_capacity {
97fb7a0a 1495 atomic_t ref;
5e6521ea 1496 /*
172895e6 1497 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1498 * for a single CPU.
5e6521ea 1499 */
97fb7a0a
IM
1500 unsigned long capacity;
1501 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1502 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1503 unsigned long next_update;
1504 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1505
005f874d 1506#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1507 int id;
005f874d
PZ
1508#endif
1509
eba9f082 1510 unsigned long cpumask[]; /* Balance mask */
5e6521ea
LZ
1511};
1512
1513struct sched_group {
97fb7a0a
IM
1514 struct sched_group *next; /* Must be a circular list */
1515 atomic_t ref;
5e6521ea 1516
97fb7a0a 1517 unsigned int group_weight;
63b2ca30 1518 struct sched_group_capacity *sgc;
97fb7a0a 1519 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1520
1521 /*
1522 * The CPUs this group covers.
1523 *
1524 * NOTE: this field is variable length. (Allocated dynamically
1525 * by attaching extra space to the end of the structure,
1526 * depending on how many CPUs the kernel has booted up with)
1527 */
04f5c362 1528 unsigned long cpumask[];
5e6521ea
LZ
1529};
1530
ae4df9d6 1531static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1532{
1533 return to_cpumask(sg->cpumask);
1534}
1535
1536/*
e5c14b1f 1537 * See build_balance_mask().
5e6521ea 1538 */
e5c14b1f 1539static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1540{
63b2ca30 1541 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1542}
1543
1544/**
97fb7a0a
IM
1545 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1546 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1547 */
1548static inline unsigned int group_first_cpu(struct sched_group *group)
1549{
ae4df9d6 1550 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1551}
1552
c1174876
PZ
1553extern int group_balance_cpu(struct sched_group *sg);
1554
3866e845
SRRH
1555#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1556void register_sched_domain_sysctl(void);
bbdacdfe 1557void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1558void unregister_sched_domain_sysctl(void);
1559#else
1560static inline void register_sched_domain_sysctl(void)
1561{
1562}
bbdacdfe
PZ
1563static inline void dirty_sched_domain_sysctl(int cpu)
1564{
1565}
3866e845
SRRH
1566static inline void unregister_sched_domain_sysctl(void)
1567{
1568}
1569#endif
1570
b2a02fc4 1571extern void flush_smp_call_function_from_idle(void);
e3baac47 1572
b2a02fc4
PZ
1573#else /* !CONFIG_SMP: */
1574static inline void flush_smp_call_function_from_idle(void) { }
b2a02fc4 1575#endif
029632fb 1576
391e43da 1577#include "stats.h"
1051408f 1578#include "autogroup.h"
029632fb
PZ
1579
1580#ifdef CONFIG_CGROUP_SCHED
1581
1582/*
1583 * Return the group to which this tasks belongs.
1584 *
8af01f56
TH
1585 * We cannot use task_css() and friends because the cgroup subsystem
1586 * changes that value before the cgroup_subsys::attach() method is called,
1587 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1588 *
1589 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1590 * core changes this before calling sched_move_task().
1591 *
1592 * Instead we use a 'copy' which is updated from sched_move_task() while
1593 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1594 */
1595static inline struct task_group *task_group(struct task_struct *p)
1596{
8323f26c 1597 return p->sched_task_group;
029632fb
PZ
1598}
1599
1600/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1601static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1602{
1603#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1604 struct task_group *tg = task_group(p);
1605#endif
1606
1607#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1608 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1609 p->se.cfs_rq = tg->cfs_rq[cpu];
1610 p->se.parent = tg->se[cpu];
1611#endif
1612
1613#ifdef CONFIG_RT_GROUP_SCHED
1614 p->rt.rt_rq = tg->rt_rq[cpu];
1615 p->rt.parent = tg->rt_se[cpu];
1616#endif
1617}
1618
1619#else /* CONFIG_CGROUP_SCHED */
1620
1621static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1622static inline struct task_group *task_group(struct task_struct *p)
1623{
1624 return NULL;
1625}
1626
1627#endif /* CONFIG_CGROUP_SCHED */
1628
1629static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1630{
1631 set_task_rq(p, cpu);
1632#ifdef CONFIG_SMP
1633 /*
1634 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1635 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1636 * per-task data have been completed by this moment.
1637 */
1638 smp_wmb();
c65eacbe 1639#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1640 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1641#else
c546951d 1642 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1643#endif
ac66f547 1644 p->wake_cpu = cpu;
029632fb
PZ
1645#endif
1646}
1647
1648/*
1649 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1650 */
1651#ifdef CONFIG_SCHED_DEBUG
c5905afb 1652# include <linux/static_key.h>
029632fb
PZ
1653# define const_debug __read_mostly
1654#else
1655# define const_debug const
1656#endif
1657
029632fb
PZ
1658#define SCHED_FEAT(name, enabled) \
1659 __SCHED_FEAT_##name ,
1660
1661enum {
391e43da 1662#include "features.h"
f8b6d1cc 1663 __SCHED_FEAT_NR,
029632fb
PZ
1664};
1665
1666#undef SCHED_FEAT
1667
a73f863a 1668#ifdef CONFIG_SCHED_DEBUG
765cc3a4
PB
1669
1670/*
1671 * To support run-time toggling of sched features, all the translation units
1672 * (but core.c) reference the sysctl_sched_features defined in core.c.
1673 */
1674extern const_debug unsigned int sysctl_sched_features;
1675
a73f863a 1676#ifdef CONFIG_JUMP_LABEL
f8b6d1cc 1677#define SCHED_FEAT(name, enabled) \
c5905afb 1678static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1679{ \
6e76ea8a 1680 return static_key_##enabled(key); \
f8b6d1cc
PZ
1681}
1682
1683#include "features.h"
f8b6d1cc
PZ
1684#undef SCHED_FEAT
1685
c5905afb 1686extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1687#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1688
a73f863a
JL
1689#else /* !CONFIG_JUMP_LABEL */
1690
1691#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1692
1693#endif /* CONFIG_JUMP_LABEL */
1694
1695#else /* !SCHED_DEBUG */
765cc3a4
PB
1696
1697/*
1698 * Each translation unit has its own copy of sysctl_sched_features to allow
1699 * constants propagation at compile time and compiler optimization based on
1700 * features default.
1701 */
1702#define SCHED_FEAT(name, enabled) \
1703 (1UL << __SCHED_FEAT_##name) * enabled |
1704static const_debug __maybe_unused unsigned int sysctl_sched_features =
1705#include "features.h"
1706 0;
1707#undef SCHED_FEAT
1708
7e6f4c5d 1709#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1710
a73f863a 1711#endif /* SCHED_DEBUG */
029632fb 1712
2a595721 1713extern struct static_key_false sched_numa_balancing;
cb251765 1714extern struct static_key_false sched_schedstats;
cbee9f88 1715
029632fb
PZ
1716static inline u64 global_rt_period(void)
1717{
1718 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1719}
1720
1721static inline u64 global_rt_runtime(void)
1722{
1723 if (sysctl_sched_rt_runtime < 0)
1724 return RUNTIME_INF;
1725
1726 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1727}
1728
029632fb
PZ
1729static inline int task_current(struct rq *rq, struct task_struct *p)
1730{
1731 return rq->curr == p;
1732}
1733
1734static inline int task_running(struct rq *rq, struct task_struct *p)
1735{
1736#ifdef CONFIG_SMP
1737 return p->on_cpu;
1738#else
1739 return task_current(rq, p);
1740#endif
1741}
1742
da0c1e65
KT
1743static inline int task_on_rq_queued(struct task_struct *p)
1744{
1745 return p->on_rq == TASK_ON_RQ_QUEUED;
1746}
029632fb 1747
cca26e80
KT
1748static inline int task_on_rq_migrating(struct task_struct *p)
1749{
c546951d 1750 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1751}
1752
17770579
VS
1753/* Wake flags. The first three directly map to some SD flag value */
1754#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
1755#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
1756#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
1757
1758#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
1759#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
1760#define WF_ON_CPU 0x40 /* Wakee is on_cpu */
1761
1762#ifdef CONFIG_SMP
1763static_assert(WF_EXEC == SD_BALANCE_EXEC);
1764static_assert(WF_FORK == SD_BALANCE_FORK);
1765static_assert(WF_TTWU == SD_BALANCE_WAKE);
1766#endif
b13095f0 1767
029632fb
PZ
1768/*
1769 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1770 * of tasks with abnormal "nice" values across CPUs the contribution that
1771 * each task makes to its run queue's load is weighted according to its
1772 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1773 * scaled version of the new time slice allocation that they receive on time
1774 * slice expiry etc.
1775 */
1776
97fb7a0a
IM
1777#define WEIGHT_IDLEPRIO 3
1778#define WMULT_IDLEPRIO 1431655765
029632fb 1779
97fb7a0a
IM
1780extern const int sched_prio_to_weight[40];
1781extern const u32 sched_prio_to_wmult[40];
029632fb 1782
ff77e468
PZ
1783/*
1784 * {de,en}queue flags:
1785 *
1786 * DEQUEUE_SLEEP - task is no longer runnable
1787 * ENQUEUE_WAKEUP - task just became runnable
1788 *
1789 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1790 * are in a known state which allows modification. Such pairs
1791 * should preserve as much state as possible.
1792 *
1793 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1794 * in the runqueue.
1795 *
1796 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1797 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1798 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1799 *
1800 */
1801
1802#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1803#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1804#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1805#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1806
1de64443 1807#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1808#define ENQUEUE_RESTORE 0x02
1809#define ENQUEUE_MOVE 0x04
0a67d1ee 1810#define ENQUEUE_NOCLOCK 0x08
ff77e468 1811
0a67d1ee
PZ
1812#define ENQUEUE_HEAD 0x10
1813#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1814#ifdef CONFIG_SMP
0a67d1ee 1815#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1816#else
59efa0ba 1817#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1818#endif
c82ba9fa 1819
37e117c0
PZ
1820#define RETRY_TASK ((void *)-1UL)
1821
c82ba9fa 1822struct sched_class {
c82ba9fa 1823
69842cba
PB
1824#ifdef CONFIG_UCLAMP_TASK
1825 int uclamp_enabled;
1826#endif
1827
c82ba9fa
LZ
1828 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1829 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 1830 void (*yield_task) (struct rq *rq);
0900acf2 1831 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 1832
97fb7a0a 1833 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1834
98c2f700
PZ
1835 struct task_struct *(*pick_next_task)(struct rq *rq);
1836
6e2df058 1837 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 1838 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
1839
1840#ifdef CONFIG_SMP
6e2df058 1841 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
3aef1551 1842 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
1327237a 1843 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1844
97fb7a0a 1845 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1846
1847 void (*set_cpus_allowed)(struct task_struct *p,
9cfc3e18
PZ
1848 const struct cpumask *newmask,
1849 u32 flags);
c82ba9fa
LZ
1850
1851 void (*rq_online)(struct rq *rq);
1852 void (*rq_offline)(struct rq *rq);
a7c81556
PZ
1853
1854 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
c82ba9fa
LZ
1855#endif
1856
97fb7a0a
IM
1857 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1858 void (*task_fork)(struct task_struct *p);
1859 void (*task_dead)(struct task_struct *p);
c82ba9fa 1860
67dfa1b7
KT
1861 /*
1862 * The switched_from() call is allowed to drop rq->lock, therefore we
1863 * cannot assume the switched_from/switched_to pair is serliazed by
1864 * rq->lock. They are however serialized by p->pi_lock.
1865 */
97fb7a0a
IM
1866 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1867 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1868 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1869 int oldprio);
c82ba9fa 1870
97fb7a0a
IM
1871 unsigned int (*get_rr_interval)(struct rq *rq,
1872 struct task_struct *task);
c82ba9fa 1873
97fb7a0a 1874 void (*update_curr)(struct rq *rq);
6e998916 1875
97fb7a0a
IM
1876#define TASK_SET_GROUP 0
1877#define TASK_MOVE_GROUP 1
ea86cb4b 1878
c82ba9fa 1879#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1880 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa 1881#endif
43c31ac0 1882};
029632fb 1883
3f1d2a31
PZ
1884static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1885{
10e7071b 1886 WARN_ON_ONCE(rq->curr != prev);
6e2df058 1887 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
1888}
1889
03b7fad1 1890static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1891{
03b7fad1 1892 WARN_ON_ONCE(rq->curr != next);
a0e813f2 1893 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
1894}
1895
43c31ac0
PZ
1896
1897/*
1898 * Helper to define a sched_class instance; each one is placed in a separate
1899 * section which is ordered by the linker script:
1900 *
1901 * include/asm-generic/vmlinux.lds.h
1902 *
1903 * Also enforce alignment on the instance, not the type, to guarantee layout.
1904 */
1905#define DEFINE_SCHED_CLASS(name) \
1906const struct sched_class name##_sched_class \
1907 __aligned(__alignof__(struct sched_class)) \
1908 __section("__" #name "_sched_class")
1909
c3a340f7
SRV
1910/* Defined in include/asm-generic/vmlinux.lds.h */
1911extern struct sched_class __begin_sched_classes[];
1912extern struct sched_class __end_sched_classes[];
1913
1914#define sched_class_highest (__end_sched_classes - 1)
1915#define sched_class_lowest (__begin_sched_classes - 1)
6e2df058
PZ
1916
1917#define for_class_range(class, _from, _to) \
c3a340f7 1918 for (class = (_from); class != (_to); class--)
6e2df058 1919
029632fb 1920#define for_each_class(class) \
c3a340f7 1921 for_class_range(class, sched_class_highest, sched_class_lowest)
029632fb
PZ
1922
1923extern const struct sched_class stop_sched_class;
aab03e05 1924extern const struct sched_class dl_sched_class;
029632fb
PZ
1925extern const struct sched_class rt_sched_class;
1926extern const struct sched_class fair_sched_class;
1927extern const struct sched_class idle_sched_class;
1928
6e2df058
PZ
1929static inline bool sched_stop_runnable(struct rq *rq)
1930{
1931 return rq->stop && task_on_rq_queued(rq->stop);
1932}
1933
1934static inline bool sched_dl_runnable(struct rq *rq)
1935{
1936 return rq->dl.dl_nr_running > 0;
1937}
1938
1939static inline bool sched_rt_runnable(struct rq *rq)
1940{
1941 return rq->rt.rt_queued > 0;
1942}
1943
1944static inline bool sched_fair_runnable(struct rq *rq)
1945{
1946 return rq->cfs.nr_running > 0;
1947}
029632fb 1948
5d7d6056 1949extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 1950extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 1951
af449901
PZ
1952#define SCA_CHECK 0x01
1953#define SCA_MIGRATE_DISABLE 0x02
1954#define SCA_MIGRATE_ENABLE 0x04
1955
029632fb
PZ
1956#ifdef CONFIG_SMP
1957
63b2ca30 1958extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1959
7caff66f 1960extern void trigger_load_balance(struct rq *rq);
029632fb 1961
9cfc3e18 1962extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
c5b28038 1963
a7c81556
PZ
1964static inline struct task_struct *get_push_task(struct rq *rq)
1965{
1966 struct task_struct *p = rq->curr;
1967
1968 lockdep_assert_held(&rq->lock);
1969
1970 if (rq->push_busy)
1971 return NULL;
1972
1973 if (p->nr_cpus_allowed == 1)
1974 return NULL;
1975
1976 rq->push_busy = true;
1977 return get_task_struct(p);
1978}
1979
1980extern int push_cpu_stop(void *arg);
c5b28038 1981
029632fb
PZ
1982#endif
1983
442bf3aa
DL
1984#ifdef CONFIG_CPU_IDLE
1985static inline void idle_set_state(struct rq *rq,
1986 struct cpuidle_state *idle_state)
1987{
1988 rq->idle_state = idle_state;
1989}
1990
1991static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1992{
9148a3a1 1993 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1994
442bf3aa
DL
1995 return rq->idle_state;
1996}
1997#else
1998static inline void idle_set_state(struct rq *rq,
1999 struct cpuidle_state *idle_state)
2000{
2001}
2002
2003static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2004{
2005 return NULL;
2006}
2007#endif
2008
8663effb
SRV
2009extern void schedule_idle(void);
2010
029632fb
PZ
2011extern void sysrq_sched_debug_show(void);
2012extern void sched_init_granularity(void);
2013extern void update_max_interval(void);
1baca4ce
JL
2014
2015extern void init_sched_dl_class(void);
029632fb
PZ
2016extern void init_sched_rt_class(void);
2017extern void init_sched_fair_class(void);
2018
9059393e
VG
2019extern void reweight_task(struct task_struct *p, int prio);
2020
8875125e 2021extern void resched_curr(struct rq *rq);
029632fb
PZ
2022extern void resched_cpu(int cpu);
2023
2024extern struct rt_bandwidth def_rt_bandwidth;
2025extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2026
332ac17e
DF
2027extern struct dl_bandwidth def_dl_bandwidth;
2028extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 2029extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 2030extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 2031
97fb7a0a
IM
2032#define BW_SHIFT 20
2033#define BW_UNIT (1 << BW_SHIFT)
2034#define RATIO_SHIFT 8
d505b8af
HC
2035#define MAX_BW_BITS (64 - BW_SHIFT)
2036#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
2037unsigned long to_ratio(u64 period, u64 runtime);
2038
540247fb 2039extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 2040extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 2041
76d92ac3
FW
2042#ifdef CONFIG_NO_HZ_FULL
2043extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 2044extern int __init sched_tick_offload_init(void);
76d92ac3
FW
2045
2046/*
2047 * Tick may be needed by tasks in the runqueue depending on their policy and
2048 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2049 * nohz mode if necessary.
2050 */
2051static inline void sched_update_tick_dependency(struct rq *rq)
2052{
21a6ee14 2053 int cpu = cpu_of(rq);
76d92ac3
FW
2054
2055 if (!tick_nohz_full_cpu(cpu))
2056 return;
2057
2058 if (sched_can_stop_tick(rq))
2059 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2060 else
2061 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2062}
2063#else
d84b3131 2064static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
2065static inline void sched_update_tick_dependency(struct rq *rq) { }
2066#endif
2067
72465447 2068static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 2069{
72465447
KT
2070 unsigned prev_nr = rq->nr_running;
2071
2072 rq->nr_running = prev_nr + count;
9d246053
PA
2073 if (trace_sched_update_nr_running_tp_enabled()) {
2074 call_trace_sched_update_nr_running(rq, count);
2075 }
9f3660c2 2076
4486edd1 2077#ifdef CONFIG_SMP
3e184501 2078 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
2079 if (!READ_ONCE(rq->rd->overload))
2080 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 2081 }
3e184501 2082#endif
76d92ac3
FW
2083
2084 sched_update_tick_dependency(rq);
029632fb
PZ
2085}
2086
72465447 2087static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 2088{
72465447 2089 rq->nr_running -= count;
9d246053 2090 if (trace_sched_update_nr_running_tp_enabled()) {
a1bd0685 2091 call_trace_sched_update_nr_running(rq, -count);
9d246053
PA
2092 }
2093
76d92ac3
FW
2094 /* Check if we still need preemption */
2095 sched_update_tick_dependency(rq);
029632fb
PZ
2096}
2097
029632fb
PZ
2098extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2099extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2100
2101extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2102
029632fb
PZ
2103extern const_debug unsigned int sysctl_sched_nr_migrate;
2104extern const_debug unsigned int sysctl_sched_migration_cost;
2105
029632fb
PZ
2106#ifdef CONFIG_SCHED_HRTICK
2107
2108/*
2109 * Use hrtick when:
2110 * - enabled by features
2111 * - hrtimer is actually high res
2112 */
2113static inline int hrtick_enabled(struct rq *rq)
2114{
2115 if (!sched_feat(HRTICK))
2116 return 0;
2117 if (!cpu_active(cpu_of(rq)))
2118 return 0;
2119 return hrtimer_is_hres_active(&rq->hrtick_timer);
2120}
2121
2122void hrtick_start(struct rq *rq, u64 delay);
2123
b39e66ea
MG
2124#else
2125
2126static inline int hrtick_enabled(struct rq *rq)
2127{
2128 return 0;
2129}
2130
029632fb
PZ
2131#endif /* CONFIG_SCHED_HRTICK */
2132
1567c3e3
GG
2133#ifndef arch_scale_freq_tick
2134static __always_inline
2135void arch_scale_freq_tick(void)
2136{
2137}
2138#endif
2139
dfbca41f 2140#ifndef arch_scale_freq_capacity
f4470cdf
VS
2141/**
2142 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2143 * @cpu: the CPU in question.
2144 *
2145 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2146 *
2147 * f_curr
2148 * ------ * SCHED_CAPACITY_SCALE
2149 * f_max
2150 */
dfbca41f 2151static __always_inline
7673c8a4 2152unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2153{
2154 return SCHED_CAPACITY_SCALE;
2155}
2156#endif
b5b4860d 2157
029632fb 2158#ifdef CONFIG_SMP
c1a280b6 2159#ifdef CONFIG_PREEMPTION
029632fb
PZ
2160
2161static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2162
2163/*
2164 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2165 * way at the expense of forcing extra atomic operations in all
2166 * invocations. This assures that the double_lock is acquired using the
2167 * same underlying policy as the spinlock_t on this architecture, which
2168 * reduces latency compared to the unfair variant below. However, it
2169 * also adds more overhead and therefore may reduce throughput.
2170 */
2171static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2172 __releases(this_rq->lock)
2173 __acquires(busiest->lock)
2174 __acquires(this_rq->lock)
2175{
2176 raw_spin_unlock(&this_rq->lock);
2177 double_rq_lock(this_rq, busiest);
2178
2179 return 1;
2180}
2181
2182#else
2183/*
2184 * Unfair double_lock_balance: Optimizes throughput at the expense of
2185 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2186 * already in proper order on entry. This favors lower CPU-ids and will
2187 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2188 * regardless of entry order into the function.
2189 */
2190static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2191 __releases(this_rq->lock)
2192 __acquires(busiest->lock)
2193 __acquires(this_rq->lock)
2194{
2195 int ret = 0;
2196
2197 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2198 if (busiest < this_rq) {
2199 raw_spin_unlock(&this_rq->lock);
2200 raw_spin_lock(&busiest->lock);
2201 raw_spin_lock_nested(&this_rq->lock,
2202 SINGLE_DEPTH_NESTING);
2203 ret = 1;
2204 } else
2205 raw_spin_lock_nested(&busiest->lock,
2206 SINGLE_DEPTH_NESTING);
2207 }
2208 return ret;
2209}
2210
c1a280b6 2211#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2212
2213/*
2214 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2215 */
2216static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2217{
2218 if (unlikely(!irqs_disabled())) {
97fb7a0a 2219 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2220 raw_spin_unlock(&this_rq->lock);
2221 BUG_ON(1);
2222 }
2223
2224 return _double_lock_balance(this_rq, busiest);
2225}
2226
2227static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2228 __releases(busiest->lock)
2229{
2230 raw_spin_unlock(&busiest->lock);
2231 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2232}
2233
74602315
PZ
2234static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2235{
2236 if (l1 > l2)
2237 swap(l1, l2);
2238
2239 spin_lock(l1);
2240 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2241}
2242
60e69eed
MG
2243static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2244{
2245 if (l1 > l2)
2246 swap(l1, l2);
2247
2248 spin_lock_irq(l1);
2249 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2250}
2251
74602315
PZ
2252static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2253{
2254 if (l1 > l2)
2255 swap(l1, l2);
2256
2257 raw_spin_lock(l1);
2258 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2259}
2260
029632fb
PZ
2261/*
2262 * double_rq_lock - safely lock two runqueues
2263 *
2264 * Note this does not disable interrupts like task_rq_lock,
2265 * you need to do so manually before calling.
2266 */
2267static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2268 __acquires(rq1->lock)
2269 __acquires(rq2->lock)
2270{
2271 BUG_ON(!irqs_disabled());
2272 if (rq1 == rq2) {
2273 raw_spin_lock(&rq1->lock);
2274 __acquire(rq2->lock); /* Fake it out ;) */
2275 } else {
2276 if (rq1 < rq2) {
2277 raw_spin_lock(&rq1->lock);
2278 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2279 } else {
2280 raw_spin_lock(&rq2->lock);
2281 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2282 }
2283 }
2284}
2285
2286/*
2287 * double_rq_unlock - safely unlock two runqueues
2288 *
2289 * Note this does not restore interrupts like task_rq_unlock,
2290 * you need to do so manually after calling.
2291 */
2292static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2293 __releases(rq1->lock)
2294 __releases(rq2->lock)
2295{
2296 raw_spin_unlock(&rq1->lock);
2297 if (rq1 != rq2)
2298 raw_spin_unlock(&rq2->lock);
2299 else
2300 __release(rq2->lock);
2301}
2302
f2cb1360
IM
2303extern void set_rq_online (struct rq *rq);
2304extern void set_rq_offline(struct rq *rq);
2305extern bool sched_smp_initialized;
2306
029632fb
PZ
2307#else /* CONFIG_SMP */
2308
2309/*
2310 * double_rq_lock - safely lock two runqueues
2311 *
2312 * Note this does not disable interrupts like task_rq_lock,
2313 * you need to do so manually before calling.
2314 */
2315static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2316 __acquires(rq1->lock)
2317 __acquires(rq2->lock)
2318{
2319 BUG_ON(!irqs_disabled());
2320 BUG_ON(rq1 != rq2);
2321 raw_spin_lock(&rq1->lock);
2322 __acquire(rq2->lock); /* Fake it out ;) */
2323}
2324
2325/*
2326 * double_rq_unlock - safely unlock two runqueues
2327 *
2328 * Note this does not restore interrupts like task_rq_unlock,
2329 * you need to do so manually after calling.
2330 */
2331static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2332 __releases(rq1->lock)
2333 __releases(rq2->lock)
2334{
2335 BUG_ON(rq1 != rq2);
2336 raw_spin_unlock(&rq1->lock);
2337 __release(rq2->lock);
2338}
2339
2340#endif
2341
2342extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2343extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2344
2345#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2346extern bool sched_debug_enabled;
2347
029632fb
PZ
2348extern void print_cfs_stats(struct seq_file *m, int cpu);
2349extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2350extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2351extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2352extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2353extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2354#ifdef CONFIG_NUMA_BALANCING
2355extern void
2356show_numa_stats(struct task_struct *p, struct seq_file *m);
2357extern void
2358print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2359 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2360#endif /* CONFIG_NUMA_BALANCING */
2361#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2362
2363extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2364extern void init_rt_rq(struct rt_rq *rt_rq);
2365extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2366
1ee14e6c
BS
2367extern void cfs_bandwidth_usage_inc(void);
2368extern void cfs_bandwidth_usage_dec(void);
1c792db7 2369
3451d024 2370#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2371#define NOHZ_BALANCE_KICK_BIT 0
2372#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2373
a22e47a4 2374#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2375#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2376
2377#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2378
2379#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2380
00357f5e 2381extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2382#else
00357f5e 2383static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2384#endif
73fbec60 2385
daec5798
LA
2386
2387#ifdef CONFIG_SMP
2388static inline
2389void __dl_update(struct dl_bw *dl_b, s64 bw)
2390{
2391 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2392 int i;
2393
2394 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2395 "sched RCU must be held");
2396 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2397 struct rq *rq = cpu_rq(i);
2398
2399 rq->dl.extra_bw += bw;
2400 }
2401}
2402#else
2403static inline
2404void __dl_update(struct dl_bw *dl_b, s64 bw)
2405{
2406 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2407
2408 dl->extra_bw += bw;
2409}
2410#endif
2411
2412
73fbec60 2413#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2414struct irqtime {
25e2d8c1 2415 u64 total;
a499a5a1 2416 u64 tick_delta;
19d23dbf
FW
2417 u64 irq_start_time;
2418 struct u64_stats_sync sync;
2419};
73fbec60 2420
19d23dbf 2421DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2422
25e2d8c1
FW
2423/*
2424 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2425 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2426 * and never move forward.
2427 */
73fbec60
FW
2428static inline u64 irq_time_read(int cpu)
2429{
19d23dbf
FW
2430 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2431 unsigned int seq;
2432 u64 total;
73fbec60
FW
2433
2434 do {
19d23dbf 2435 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2436 total = irqtime->total;
19d23dbf 2437 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2438
19d23dbf 2439 return total;
73fbec60 2440}
73fbec60 2441#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2442
2443#ifdef CONFIG_CPU_FREQ
b10abd0a 2444DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2445
2446/**
2447 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2448 * @rq: Runqueue to carry out the update for.
58919e83 2449 * @flags: Update reason flags.
adaf9fcd 2450 *
58919e83
RW
2451 * This function is called by the scheduler on the CPU whose utilization is
2452 * being updated.
adaf9fcd
RW
2453 *
2454 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2455 *
2456 * The way cpufreq is currently arranged requires it to evaluate the CPU
2457 * performance state (frequency/voltage) on a regular basis to prevent it from
2458 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2459 * That is not guaranteed to happen if the updates are only triggered from CFS
2460 * and DL, though, because they may not be coming in if only RT tasks are
2461 * active all the time (or there are RT tasks only).
adaf9fcd 2462 *
e0367b12
JL
2463 * As a workaround for that issue, this function is called periodically by the
2464 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2465 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2466 * solutions targeted more specifically at RT tasks.
adaf9fcd 2467 */
12bde33d 2468static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2469{
58919e83
RW
2470 struct update_util_data *data;
2471
674e7541
VK
2472 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2473 cpu_of(rq)));
58919e83 2474 if (data)
12bde33d
RW
2475 data->func(data, rq_clock(rq), flags);
2476}
adaf9fcd 2477#else
12bde33d 2478static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2479#endif /* CONFIG_CPU_FREQ */
be53f58f 2480
982d9cdc 2481#ifdef CONFIG_UCLAMP_TASK
686516b5 2482unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d 2483
46609ce2
QY
2484/**
2485 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2486 * @rq: The rq to clamp against. Must not be NULL.
2487 * @util: The util value to clamp.
2488 * @p: The task to clamp against. Can be NULL if you want to clamp
2489 * against @rq only.
2490 *
2491 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2492 *
2493 * If sched_uclamp_used static key is disabled, then just return the util
2494 * without any clamping since uclamp aggregation at the rq level in the fast
2495 * path is disabled, rendering this operation a NOP.
2496 *
2497 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2498 * will return the correct effective uclamp value of the task even if the
2499 * static key is disabled.
2500 */
9d20ad7d 2501static __always_inline
d2b58a28
VS
2502unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2503 struct task_struct *p)
982d9cdc 2504{
46609ce2
QY
2505 unsigned long min_util;
2506 unsigned long max_util;
2507
2508 if (!static_branch_likely(&sched_uclamp_used))
2509 return util;
2510
2511 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2512 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
982d9cdc 2513
9d20ad7d
PB
2514 if (p) {
2515 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2516 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2517 }
2518
982d9cdc
PB
2519 /*
2520 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2521 * RUNNABLE tasks with _different_ clamps, we can end up with an
2522 * inversion. Fix it now when the clamps are applied.
2523 */
2524 if (unlikely(min_util >= max_util))
2525 return min_util;
2526
2527 return clamp(util, min_util, max_util);
2528}
46609ce2
QY
2529
2530/*
2531 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2532 * by default in the fast path and only gets turned on once userspace performs
2533 * an operation that requires it.
2534 *
2535 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2536 * hence is active.
2537 */
2538static inline bool uclamp_is_used(void)
2539{
2540 return static_branch_likely(&sched_uclamp_used);
2541}
982d9cdc 2542#else /* CONFIG_UCLAMP_TASK */
d2b58a28
VS
2543static inline
2544unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2545 struct task_struct *p)
9d20ad7d
PB
2546{
2547 return util;
2548}
46609ce2
QY
2549
2550static inline bool uclamp_is_used(void)
2551{
2552 return false;
2553}
982d9cdc
PB
2554#endif /* CONFIG_UCLAMP_TASK */
2555
9bdcb44e 2556#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2557# ifndef arch_scale_freq_invariant
2558# define arch_scale_freq_invariant() true
2559# endif
2560#else
2561# define arch_scale_freq_invariant() false
9bdcb44e 2562#endif
d4edd662 2563
10a35e68
VG
2564#ifdef CONFIG_SMP
2565static inline unsigned long capacity_orig_of(int cpu)
2566{
2567 return cpu_rq(cpu)->cpu_capacity_orig;
2568}
2569#endif
2570
938e5e4b
QP
2571/**
2572 * enum schedutil_type - CPU utilization type
2573 * @FREQUENCY_UTIL: Utilization used to select frequency
2574 * @ENERGY_UTIL: Utilization used during energy calculation
2575 *
2576 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2577 * need to be aggregated differently depending on the usage made of them. This
2578 * enum is used within schedutil_freq_util() to differentiate the types of
2579 * utilization expected by the callers, and adjust the aggregation accordingly.
2580 */
2581enum schedutil_type {
2582 FREQUENCY_UTIL,
2583 ENERGY_UTIL,
2584};
2585
af24bde8 2586#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2587
af24bde8
PB
2588unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2589 unsigned long max, enum schedutil_type type,
2590 struct task_struct *p);
938e5e4b 2591
8cc90515 2592static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2593{
2594 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2595}
2596
8cc90515
VG
2597static inline unsigned long cpu_util_dl(struct rq *rq)
2598{
2599 return READ_ONCE(rq->avg_dl.util_avg);
2600}
2601
d4edd662
JL
2602static inline unsigned long cpu_util_cfs(struct rq *rq)
2603{
a07630b8
PB
2604 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2605
2606 if (sched_feat(UTIL_EST)) {
2607 util = max_t(unsigned long, util,
2608 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2609 }
2610
2611 return util;
d4edd662 2612}
371bf427
VG
2613
2614static inline unsigned long cpu_util_rt(struct rq *rq)
2615{
dfa444dc 2616 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2617}
938e5e4b 2618#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2619static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2620 unsigned long max, enum schedutil_type type,
2621 struct task_struct *p)
938e5e4b 2622{
af24bde8 2623 return 0;
938e5e4b 2624}
af24bde8 2625#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2626
11d4afd4 2627#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2628static inline unsigned long cpu_util_irq(struct rq *rq)
2629{
2630 return rq->avg_irq.util_avg;
2631}
2e62c474
VG
2632
2633static inline
2634unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2635{
2636 util *= (max - irq);
2637 util /= max;
2638
2639 return util;
2640
2641}
9033ea11
VG
2642#else
2643static inline unsigned long cpu_util_irq(struct rq *rq)
2644{
2645 return 0;
2646}
2647
2e62c474
VG
2648static inline
2649unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2650{
2651 return util;
2652}
794a56eb 2653#endif
6aa140fa 2654
531b5c9f 2655#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2656
6aa140fa 2657#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2658
2659DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2660
2661static inline bool sched_energy_enabled(void)
2662{
2663 return static_branch_unlikely(&sched_energy_present);
2664}
2665
2666#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2667
6aa140fa 2668#define perf_domain_span(pd) NULL
f8a696f2 2669static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2670
f8a696f2 2671#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2672
2673#ifdef CONFIG_MEMBARRIER
2674/*
2675 * The scheduler provides memory barriers required by membarrier between:
2676 * - prior user-space memory accesses and store to rq->membarrier_state,
2677 * - store to rq->membarrier_state and following user-space memory accesses.
2678 * In the same way it provides those guarantees around store to rq->curr.
2679 */
2680static inline void membarrier_switch_mm(struct rq *rq,
2681 struct mm_struct *prev_mm,
2682 struct mm_struct *next_mm)
2683{
2684 int membarrier_state;
2685
2686 if (prev_mm == next_mm)
2687 return;
2688
2689 membarrier_state = atomic_read(&next_mm->membarrier_state);
2690 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2691 return;
2692
2693 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2694}
2695#else
2696static inline void membarrier_switch_mm(struct rq *rq,
2697 struct mm_struct *prev_mm,
2698 struct mm_struct *next_mm)
2699{
2700}
2701#endif
52262ee5
MG
2702
2703#ifdef CONFIG_SMP
2704static inline bool is_per_cpu_kthread(struct task_struct *p)
2705{
2706 if (!(p->flags & PF_KTHREAD))
2707 return false;
2708
2709 if (p->nr_cpus_allowed != 1)
2710 return false;
2711
2712 return true;
2713}
2714#endif
b3212fe2
TG
2715
2716void swake_up_all_locked(struct swait_queue_head *q);
2717void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);