]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched/topology.c
kmod: move #ifdef CONFIG_MODULES wrapper to Makefile
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / topology.c
CommitLineData
f2cb1360
IM
1/*
2 * Scheduler topology setup/handling methods
3 */
4#include <linux/sched.h>
5#include <linux/mutex.h>
6
7#include "sched.h"
8
9DEFINE_MUTEX(sched_domains_mutex);
10
11/* Protected by sched_domains_mutex: */
12cpumask_var_t sched_domains_tmpmask;
1676330e 13cpumask_var_t sched_domains_tmpmask2;
f2cb1360
IM
14
15#ifdef CONFIG_SCHED_DEBUG
16
17static __read_mostly int sched_debug_enabled;
18
19static int __init sched_debug_setup(char *str)
20{
21 sched_debug_enabled = 1;
22
23 return 0;
24}
25early_param("sched_debug", sched_debug_setup);
26
27static inline bool sched_debug(void)
28{
29 return sched_debug_enabled;
30}
31
32static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
33 struct cpumask *groupmask)
34{
35 struct sched_group *group = sd->groups;
36
37 cpumask_clear(groupmask);
38
005f874d 39 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
f2cb1360
IM
40
41 if (!(sd->flags & SD_LOAD_BALANCE)) {
42 printk("does not load-balance\n");
43 if (sd->parent)
44 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
45 " has parent");
46 return -1;
47 }
48
005f874d 49 printk(KERN_CONT "span=%*pbl level=%s\n",
f2cb1360
IM
50 cpumask_pr_args(sched_domain_span(sd)), sd->name);
51
52 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
53 printk(KERN_ERR "ERROR: domain->span does not contain "
54 "CPU%d\n", cpu);
55 }
ae4df9d6 56 if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
f2cb1360
IM
57 printk(KERN_ERR "ERROR: domain->groups does not contain"
58 " CPU%d\n", cpu);
59 }
60
61 printk(KERN_DEBUG "%*s groups:", level + 1, "");
62 do {
63 if (!group) {
64 printk("\n");
65 printk(KERN_ERR "ERROR: group is NULL\n");
66 break;
67 }
68
ae4df9d6 69 if (!cpumask_weight(sched_group_span(group))) {
f2cb1360
IM
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: empty group\n");
72 break;
73 }
74
75 if (!(sd->flags & SD_OVERLAP) &&
ae4df9d6 76 cpumask_intersects(groupmask, sched_group_span(group))) {
f2cb1360
IM
77 printk(KERN_CONT "\n");
78 printk(KERN_ERR "ERROR: repeated CPUs\n");
79 break;
80 }
81
ae4df9d6 82 cpumask_or(groupmask, groupmask, sched_group_span(group));
f2cb1360 83
005f874d
PZ
84 printk(KERN_CONT " %d:{ span=%*pbl",
85 group->sgc->id,
ae4df9d6 86 cpumask_pr_args(sched_group_span(group)));
b0151c25 87
af218122 88 if ((sd->flags & SD_OVERLAP) &&
ae4df9d6 89 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
005f874d 90 printk(KERN_CONT " mask=%*pbl",
e5c14b1f 91 cpumask_pr_args(group_balance_mask(group)));
b0151c25
PZ
92 }
93
005f874d
PZ
94 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
95 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
f2cb1360 96
a420b063
PZ
97 if (group == sd->groups && sd->child &&
98 !cpumask_equal(sched_domain_span(sd->child),
ae4df9d6 99 sched_group_span(group))) {
a420b063
PZ
100 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
101 }
102
005f874d
PZ
103 printk(KERN_CONT " }");
104
f2cb1360 105 group = group->next;
b0151c25
PZ
106
107 if (group != sd->groups)
108 printk(KERN_CONT ",");
109
f2cb1360
IM
110 } while (group != sd->groups);
111 printk(KERN_CONT "\n");
112
113 if (!cpumask_equal(sched_domain_span(sd), groupmask))
114 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
115
116 if (sd->parent &&
117 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
118 printk(KERN_ERR "ERROR: parent span is not a superset "
119 "of domain->span\n");
120 return 0;
121}
122
123static void sched_domain_debug(struct sched_domain *sd, int cpu)
124{
125 int level = 0;
126
127 if (!sched_debug_enabled)
128 return;
129
130 if (!sd) {
131 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
132 return;
133 }
134
005f874d 135 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
f2cb1360
IM
136
137 for (;;) {
138 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
139 break;
140 level++;
141 sd = sd->parent;
142 if (!sd)
143 break;
144 }
145}
146#else /* !CONFIG_SCHED_DEBUG */
147
148# define sched_debug_enabled 0
149# define sched_domain_debug(sd, cpu) do { } while (0)
150static inline bool sched_debug(void)
151{
152 return false;
153}
154#endif /* CONFIG_SCHED_DEBUG */
155
156static int sd_degenerate(struct sched_domain *sd)
157{
158 if (cpumask_weight(sched_domain_span(sd)) == 1)
159 return 1;
160
161 /* Following flags need at least 2 groups */
162 if (sd->flags & (SD_LOAD_BALANCE |
163 SD_BALANCE_NEWIDLE |
164 SD_BALANCE_FORK |
165 SD_BALANCE_EXEC |
166 SD_SHARE_CPUCAPACITY |
167 SD_ASYM_CPUCAPACITY |
168 SD_SHARE_PKG_RESOURCES |
169 SD_SHARE_POWERDOMAIN)) {
170 if (sd->groups != sd->groups->next)
171 return 0;
172 }
173
174 /* Following flags don't use groups */
175 if (sd->flags & (SD_WAKE_AFFINE))
176 return 0;
177
178 return 1;
179}
180
181static int
182sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
183{
184 unsigned long cflags = sd->flags, pflags = parent->flags;
185
186 if (sd_degenerate(parent))
187 return 1;
188
189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
190 return 0;
191
192 /* Flags needing groups don't count if only 1 group in parent */
193 if (parent->groups == parent->groups->next) {
194 pflags &= ~(SD_LOAD_BALANCE |
195 SD_BALANCE_NEWIDLE |
196 SD_BALANCE_FORK |
197 SD_BALANCE_EXEC |
198 SD_ASYM_CPUCAPACITY |
199 SD_SHARE_CPUCAPACITY |
200 SD_SHARE_PKG_RESOURCES |
201 SD_PREFER_SIBLING |
202 SD_SHARE_POWERDOMAIN);
203 if (nr_node_ids == 1)
204 pflags &= ~SD_SERIALIZE;
205 }
206 if (~cflags & pflags)
207 return 0;
208
209 return 1;
210}
211
212static void free_rootdomain(struct rcu_head *rcu)
213{
214 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
215
216 cpupri_cleanup(&rd->cpupri);
217 cpudl_cleanup(&rd->cpudl);
218 free_cpumask_var(rd->dlo_mask);
219 free_cpumask_var(rd->rto_mask);
220 free_cpumask_var(rd->online);
221 free_cpumask_var(rd->span);
222 kfree(rd);
223}
224
225void rq_attach_root(struct rq *rq, struct root_domain *rd)
226{
227 struct root_domain *old_rd = NULL;
228 unsigned long flags;
229
230 raw_spin_lock_irqsave(&rq->lock, flags);
231
232 if (rq->rd) {
233 old_rd = rq->rd;
234
235 if (cpumask_test_cpu(rq->cpu, old_rd->online))
236 set_rq_offline(rq);
237
238 cpumask_clear_cpu(rq->cpu, old_rd->span);
239
240 /*
241 * If we dont want to free the old_rd yet then
242 * set old_rd to NULL to skip the freeing later
243 * in this function:
244 */
245 if (!atomic_dec_and_test(&old_rd->refcount))
246 old_rd = NULL;
247 }
248
249 atomic_inc(&rd->refcount);
250 rq->rd = rd;
251
252 cpumask_set_cpu(rq->cpu, rd->span);
253 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
254 set_rq_online(rq);
255
256 raw_spin_unlock_irqrestore(&rq->lock, flags);
257
258 if (old_rd)
259 call_rcu_sched(&old_rd->rcu, free_rootdomain);
260}
261
262static int init_rootdomain(struct root_domain *rd)
263{
f2cb1360
IM
264 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
265 goto out;
266 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
267 goto free_span;
268 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
269 goto free_online;
270 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
271 goto free_dlo_mask;
272
273 init_dl_bw(&rd->dl_bw);
274 if (cpudl_init(&rd->cpudl) != 0)
275 goto free_rto_mask;
276
277 if (cpupri_init(&rd->cpupri) != 0)
278 goto free_cpudl;
279 return 0;
280
281free_cpudl:
282 cpudl_cleanup(&rd->cpudl);
283free_rto_mask:
284 free_cpumask_var(rd->rto_mask);
285free_dlo_mask:
286 free_cpumask_var(rd->dlo_mask);
287free_online:
288 free_cpumask_var(rd->online);
289free_span:
290 free_cpumask_var(rd->span);
291out:
292 return -ENOMEM;
293}
294
295/*
296 * By default the system creates a single root-domain with all CPUs as
297 * members (mimicking the global state we have today).
298 */
299struct root_domain def_root_domain;
300
301void init_defrootdomain(void)
302{
303 init_rootdomain(&def_root_domain);
304
305 atomic_set(&def_root_domain.refcount, 1);
306}
307
308static struct root_domain *alloc_rootdomain(void)
309{
310 struct root_domain *rd;
311
4d13a06d 312 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
f2cb1360
IM
313 if (!rd)
314 return NULL;
315
316 if (init_rootdomain(rd) != 0) {
317 kfree(rd);
318 return NULL;
319 }
320
321 return rd;
322}
323
324static void free_sched_groups(struct sched_group *sg, int free_sgc)
325{
326 struct sched_group *tmp, *first;
327
328 if (!sg)
329 return;
330
331 first = sg;
332 do {
333 tmp = sg->next;
334
335 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
336 kfree(sg->sgc);
337
213c5a45
SW
338 if (atomic_dec_and_test(&sg->ref))
339 kfree(sg);
f2cb1360
IM
340 sg = tmp;
341 } while (sg != first);
342}
343
344static void destroy_sched_domain(struct sched_domain *sd)
345{
346 /*
a090c4f2
PZ
347 * A normal sched domain may have multiple group references, an
348 * overlapping domain, having private groups, only one. Iterate,
349 * dropping group/capacity references, freeing where none remain.
f2cb1360 350 */
213c5a45
SW
351 free_sched_groups(sd->groups, 1);
352
f2cb1360
IM
353 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
354 kfree(sd->shared);
355 kfree(sd);
356}
357
358static void destroy_sched_domains_rcu(struct rcu_head *rcu)
359{
360 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
361
362 while (sd) {
363 struct sched_domain *parent = sd->parent;
364 destroy_sched_domain(sd);
365 sd = parent;
366 }
367}
368
369static void destroy_sched_domains(struct sched_domain *sd)
370{
371 if (sd)
372 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
373}
374
375/*
376 * Keep a special pointer to the highest sched_domain that has
377 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
378 * allows us to avoid some pointer chasing select_idle_sibling().
379 *
380 * Also keep a unique ID per domain (we use the first CPU number in
381 * the cpumask of the domain), this allows us to quickly tell if
382 * two CPUs are in the same cache domain, see cpus_share_cache().
383 */
384DEFINE_PER_CPU(struct sched_domain *, sd_llc);
385DEFINE_PER_CPU(int, sd_llc_size);
386DEFINE_PER_CPU(int, sd_llc_id);
387DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
388DEFINE_PER_CPU(struct sched_domain *, sd_numa);
389DEFINE_PER_CPU(struct sched_domain *, sd_asym);
390
391static void update_top_cache_domain(int cpu)
392{
393 struct sched_domain_shared *sds = NULL;
394 struct sched_domain *sd;
395 int id = cpu;
396 int size = 1;
397
398 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
399 if (sd) {
400 id = cpumask_first(sched_domain_span(sd));
401 size = cpumask_weight(sched_domain_span(sd));
402 sds = sd->shared;
403 }
404
405 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
406 per_cpu(sd_llc_size, cpu) = size;
407 per_cpu(sd_llc_id, cpu) = id;
408 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
409
410 sd = lowest_flag_domain(cpu, SD_NUMA);
411 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
412
413 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
414 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
415}
416
417/*
418 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
419 * hold the hotplug lock.
420 */
421static void
422cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
423{
424 struct rq *rq = cpu_rq(cpu);
425 struct sched_domain *tmp;
426
427 /* Remove the sched domains which do not contribute to scheduling. */
428 for (tmp = sd; tmp; ) {
429 struct sched_domain *parent = tmp->parent;
430 if (!parent)
431 break;
432
433 if (sd_parent_degenerate(tmp, parent)) {
434 tmp->parent = parent->parent;
435 if (parent->parent)
436 parent->parent->child = tmp;
437 /*
438 * Transfer SD_PREFER_SIBLING down in case of a
439 * degenerate parent; the spans match for this
440 * so the property transfers.
441 */
442 if (parent->flags & SD_PREFER_SIBLING)
443 tmp->flags |= SD_PREFER_SIBLING;
444 destroy_sched_domain(parent);
445 } else
446 tmp = tmp->parent;
447 }
448
449 if (sd && sd_degenerate(sd)) {
450 tmp = sd;
451 sd = sd->parent;
452 destroy_sched_domain(tmp);
453 if (sd)
454 sd->child = NULL;
455 }
456
457 sched_domain_debug(sd, cpu);
458
459 rq_attach_root(rq, rd);
460 tmp = rq->sd;
461 rcu_assign_pointer(rq->sd, sd);
bbdacdfe 462 dirty_sched_domain_sysctl(cpu);
f2cb1360
IM
463 destroy_sched_domains(tmp);
464
465 update_top_cache_domain(cpu);
466}
467
468/* Setup the mask of CPUs configured for isolated domains */
469static int __init isolated_cpu_setup(char *str)
470{
471 int ret;
472
473 alloc_bootmem_cpumask_var(&cpu_isolated_map);
474 ret = cpulist_parse(str, cpu_isolated_map);
475 if (ret) {
9b130ad5 476 pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
f2cb1360
IM
477 return 0;
478 }
479 return 1;
480}
481__setup("isolcpus=", isolated_cpu_setup);
482
483struct s_data {
484 struct sched_domain ** __percpu sd;
485 struct root_domain *rd;
486};
487
488enum s_alloc {
489 sa_rootdomain,
490 sa_sd,
491 sa_sd_storage,
492 sa_none,
493};
494
35a566e6
PZ
495/*
496 * Return the canonical balance CPU for this group, this is the first CPU
e5c14b1f 497 * of this group that's also in the balance mask.
35a566e6 498 *
e5c14b1f
PZ
499 * The balance mask are all those CPUs that could actually end up at this
500 * group. See build_balance_mask().
35a566e6
PZ
501 *
502 * Also see should_we_balance().
503 */
504int group_balance_cpu(struct sched_group *sg)
505{
e5c14b1f 506 return cpumask_first(group_balance_mask(sg));
35a566e6
PZ
507}
508
509
510/*
511 * NUMA topology (first read the regular topology blurb below)
512 *
513 * Given a node-distance table, for example:
514 *
515 * node 0 1 2 3
516 * 0: 10 20 30 20
517 * 1: 20 10 20 30
518 * 2: 30 20 10 20
519 * 3: 20 30 20 10
520 *
521 * which represents a 4 node ring topology like:
522 *
523 * 0 ----- 1
524 * | |
525 * | |
526 * | |
527 * 3 ----- 2
528 *
529 * We want to construct domains and groups to represent this. The way we go
530 * about doing this is to build the domains on 'hops'. For each NUMA level we
531 * construct the mask of all nodes reachable in @level hops.
532 *
533 * For the above NUMA topology that gives 3 levels:
534 *
535 * NUMA-2 0-3 0-3 0-3 0-3
536 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
537 *
538 * NUMA-1 0-1,3 0-2 1-3 0,2-3
539 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
540 *
541 * NUMA-0 0 1 2 3
542 *
543 *
544 * As can be seen; things don't nicely line up as with the regular topology.
545 * When we iterate a domain in child domain chunks some nodes can be
546 * represented multiple times -- hence the "overlap" naming for this part of
547 * the topology.
548 *
549 * In order to minimize this overlap, we only build enough groups to cover the
550 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
551 *
552 * Because:
553 *
554 * - the first group of each domain is its child domain; this
555 * gets us the first 0-1,3
556 * - the only uncovered node is 2, who's child domain is 1-3.
557 *
558 * However, because of the overlap, computing a unique CPU for each group is
559 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
560 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
561 * end up at those groups (they would end up in group: 0-1,3).
562 *
e5c14b1f 563 * To correct this we have to introduce the group balance mask. This mask
35a566e6
PZ
564 * will contain those CPUs in the group that can reach this group given the
565 * (child) domain tree.
566 *
567 * With this we can once again compute balance_cpu and sched_group_capacity
568 * relations.
569 *
570 * XXX include words on how balance_cpu is unique and therefore can be
571 * used for sched_group_capacity links.
572 *
573 *
574 * Another 'interesting' topology is:
575 *
576 * node 0 1 2 3
577 * 0: 10 20 20 30
578 * 1: 20 10 20 20
579 * 2: 20 20 10 20
580 * 3: 30 20 20 10
581 *
582 * Which looks a little like:
583 *
584 * 0 ----- 1
585 * | / |
586 * | / |
587 * | / |
588 * 2 ----- 3
589 *
590 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
591 * are not.
592 *
593 * This leads to a few particularly weird cases where the sched_domain's are
594 * not of the same number for each cpu. Consider:
595 *
596 * NUMA-2 0-3 0-3
597 * groups: {0-2},{1-3} {1-3},{0-2}
598 *
599 * NUMA-1 0-2 0-3 0-3 1-3
600 *
601 * NUMA-0 0 1 2 3
602 *
603 */
604
605
f2cb1360 606/*
e5c14b1f
PZ
607 * Build the balance mask; it contains only those CPUs that can arrive at this
608 * group and should be considered to continue balancing.
35a566e6
PZ
609 *
610 * We do this during the group creation pass, therefore the group information
611 * isn't complete yet, however since each group represents a (child) domain we
612 * can fully construct this using the sched_domain bits (which are already
613 * complete).
f2cb1360 614 */
1676330e 615static void
e5c14b1f 616build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
f2cb1360 617{
ae4df9d6 618 const struct cpumask *sg_span = sched_group_span(sg);
f2cb1360
IM
619 struct sd_data *sdd = sd->private;
620 struct sched_domain *sibling;
621 int i;
622
1676330e
PZ
623 cpumask_clear(mask);
624
f32d782e 625 for_each_cpu(i, sg_span) {
f2cb1360 626 sibling = *per_cpu_ptr(sdd->sd, i);
73bb059f
PZ
627
628 /*
629 * Can happen in the asymmetric case, where these siblings are
630 * unused. The mask will not be empty because those CPUs that
631 * do have the top domain _should_ span the domain.
632 */
633 if (!sibling->child)
634 continue;
635
636 /* If we would not end up here, we can't continue from here */
637 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
f2cb1360
IM
638 continue;
639
1676330e 640 cpumask_set_cpu(i, mask);
f2cb1360 641 }
73bb059f
PZ
642
643 /* We must not have empty masks here */
1676330e 644 WARN_ON_ONCE(cpumask_empty(mask));
f2cb1360
IM
645}
646
647/*
35a566e6
PZ
648 * XXX: This creates per-node group entries; since the load-balancer will
649 * immediately access remote memory to construct this group's load-balance
650 * statistics having the groups node local is of dubious benefit.
f2cb1360 651 */
8c033469
LRV
652static struct sched_group *
653build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
654{
655 struct sched_group *sg;
656 struct cpumask *sg_span;
657
658 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
659 GFP_KERNEL, cpu_to_node(cpu));
660
661 if (!sg)
662 return NULL;
663
ae4df9d6 664 sg_span = sched_group_span(sg);
8c033469
LRV
665 if (sd->child)
666 cpumask_copy(sg_span, sched_domain_span(sd->child));
667 else
668 cpumask_copy(sg_span, sched_domain_span(sd));
669
213c5a45 670 atomic_inc(&sg->ref);
8c033469
LRV
671 return sg;
672}
673
674static void init_overlap_sched_group(struct sched_domain *sd,
1676330e 675 struct sched_group *sg)
8c033469 676{
1676330e 677 struct cpumask *mask = sched_domains_tmpmask2;
8c033469
LRV
678 struct sd_data *sdd = sd->private;
679 struct cpumask *sg_span;
1676330e
PZ
680 int cpu;
681
e5c14b1f 682 build_balance_mask(sd, sg, mask);
ae4df9d6 683 cpu = cpumask_first_and(sched_group_span(sg), mask);
8c033469
LRV
684
685 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
686 if (atomic_inc_return(&sg->sgc->ref) == 1)
e5c14b1f 687 cpumask_copy(group_balance_mask(sg), mask);
35a566e6 688 else
e5c14b1f 689 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
8c033469
LRV
690
691 /*
692 * Initialize sgc->capacity such that even if we mess up the
693 * domains and no possible iteration will get us here, we won't
694 * die on a /0 trap.
695 */
ae4df9d6 696 sg_span = sched_group_span(sg);
8c033469
LRV
697 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
698 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
699}
700
f2cb1360
IM
701static int
702build_overlap_sched_groups(struct sched_domain *sd, int cpu)
703{
91eaed0d 704 struct sched_group *first = NULL, *last = NULL, *sg;
f2cb1360
IM
705 const struct cpumask *span = sched_domain_span(sd);
706 struct cpumask *covered = sched_domains_tmpmask;
707 struct sd_data *sdd = sd->private;
708 struct sched_domain *sibling;
709 int i;
710
711 cpumask_clear(covered);
712
0372dd27 713 for_each_cpu_wrap(i, span, cpu) {
f2cb1360
IM
714 struct cpumask *sg_span;
715
716 if (cpumask_test_cpu(i, covered))
717 continue;
718
719 sibling = *per_cpu_ptr(sdd->sd, i);
720
c20e1ea4
LRV
721 /*
722 * Asymmetric node setups can result in situations where the
723 * domain tree is of unequal depth, make sure to skip domains
724 * that already cover the entire range.
725 *
726 * In that case build_sched_domains() will have terminated the
727 * iteration early and our sibling sd spans will be empty.
728 * Domains should always include the CPU they're built on, so
729 * check that.
730 */
f2cb1360
IM
731 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
732 continue;
733
8c033469 734 sg = build_group_from_child_sched_domain(sibling, cpu);
f2cb1360
IM
735 if (!sg)
736 goto fail;
737
ae4df9d6 738 sg_span = sched_group_span(sg);
f2cb1360
IM
739 cpumask_or(covered, covered, sg_span);
740
1676330e 741 init_overlap_sched_group(sd, sg);
f2cb1360 742
f2cb1360
IM
743 if (!first)
744 first = sg;
745 if (last)
746 last->next = sg;
747 last = sg;
748 last->next = first;
749 }
91eaed0d 750 sd->groups = first;
f2cb1360
IM
751
752 return 0;
753
754fail:
755 free_sched_groups(first, 0);
756
757 return -ENOMEM;
758}
759
35a566e6
PZ
760
761/*
762 * Package topology (also see the load-balance blurb in fair.c)
763 *
764 * The scheduler builds a tree structure to represent a number of important
765 * topology features. By default (default_topology[]) these include:
766 *
767 * - Simultaneous multithreading (SMT)
768 * - Multi-Core Cache (MC)
769 * - Package (DIE)
770 *
771 * Where the last one more or less denotes everything up to a NUMA node.
772 *
773 * The tree consists of 3 primary data structures:
774 *
775 * sched_domain -> sched_group -> sched_group_capacity
776 * ^ ^ ^ ^
777 * `-' `-'
778 *
779 * The sched_domains are per-cpu and have a two way link (parent & child) and
780 * denote the ever growing mask of CPUs belonging to that level of topology.
781 *
782 * Each sched_domain has a circular (double) linked list of sched_group's, each
783 * denoting the domains of the level below (or individual CPUs in case of the
784 * first domain level). The sched_group linked by a sched_domain includes the
785 * CPU of that sched_domain [*].
786 *
787 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
788 *
789 * CPU 0 1 2 3 4 5 6 7
790 *
791 * DIE [ ]
792 * MC [ ] [ ]
793 * SMT [ ] [ ] [ ] [ ]
794 *
795 * - or -
796 *
797 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
798 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
799 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
800 *
801 * CPU 0 1 2 3 4 5 6 7
802 *
803 * One way to think about it is: sched_domain moves you up and down among these
804 * topology levels, while sched_group moves you sideways through it, at child
805 * domain granularity.
806 *
807 * sched_group_capacity ensures each unique sched_group has shared storage.
808 *
809 * There are two related construction problems, both require a CPU that
810 * uniquely identify each group (for a given domain):
811 *
812 * - The first is the balance_cpu (see should_we_balance() and the
813 * load-balance blub in fair.c); for each group we only want 1 CPU to
814 * continue balancing at a higher domain.
815 *
816 * - The second is the sched_group_capacity; we want all identical groups
817 * to share a single sched_group_capacity.
818 *
819 * Since these topologies are exclusive by construction. That is, its
820 * impossible for an SMT thread to belong to multiple cores, and cores to
821 * be part of multiple caches. There is a very clear and unique location
822 * for each CPU in the hierarchy.
823 *
824 * Therefore computing a unique CPU for each group is trivial (the iteration
825 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
826 * group), we can simply pick the first CPU in each group.
827 *
828 *
829 * [*] in other words, the first group of each domain is its child domain.
830 */
831
0c0e776a 832static struct sched_group *get_group(int cpu, struct sd_data *sdd)
f2cb1360
IM
833{
834 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
835 struct sched_domain *child = sd->child;
0c0e776a 836 struct sched_group *sg;
f2cb1360
IM
837
838 if (child)
839 cpu = cpumask_first(sched_domain_span(child));
840
0c0e776a
PZ
841 sg = *per_cpu_ptr(sdd->sg, cpu);
842 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
843
844 /* For claim_allocations: */
845 atomic_inc(&sg->ref);
846 atomic_inc(&sg->sgc->ref);
f2cb1360 847
0c0e776a 848 if (child) {
ae4df9d6
PZ
849 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
850 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
0c0e776a 851 } else {
ae4df9d6 852 cpumask_set_cpu(cpu, sched_group_span(sg));
e5c14b1f 853 cpumask_set_cpu(cpu, group_balance_mask(sg));
f2cb1360
IM
854 }
855
ae4df9d6 856 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
0c0e776a
PZ
857 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
858
859 return sg;
f2cb1360
IM
860}
861
862/*
863 * build_sched_groups will build a circular linked list of the groups
864 * covered by the given span, and will set each group's ->cpumask correctly,
865 * and ->cpu_capacity to 0.
866 *
867 * Assumes the sched_domain tree is fully constructed
868 */
869static int
870build_sched_groups(struct sched_domain *sd, int cpu)
871{
872 struct sched_group *first = NULL, *last = NULL;
873 struct sd_data *sdd = sd->private;
874 const struct cpumask *span = sched_domain_span(sd);
875 struct cpumask *covered;
876 int i;
877
f2cb1360
IM
878 lockdep_assert_held(&sched_domains_mutex);
879 covered = sched_domains_tmpmask;
880
881 cpumask_clear(covered);
882
0c0e776a 883 for_each_cpu_wrap(i, span, cpu) {
f2cb1360 884 struct sched_group *sg;
f2cb1360
IM
885
886 if (cpumask_test_cpu(i, covered))
887 continue;
888
0c0e776a 889 sg = get_group(i, sdd);
f2cb1360 890
ae4df9d6 891 cpumask_or(covered, covered, sched_group_span(sg));
f2cb1360
IM
892
893 if (!first)
894 first = sg;
895 if (last)
896 last->next = sg;
897 last = sg;
898 }
899 last->next = first;
0c0e776a 900 sd->groups = first;
f2cb1360
IM
901
902 return 0;
903}
904
905/*
906 * Initialize sched groups cpu_capacity.
907 *
908 * cpu_capacity indicates the capacity of sched group, which is used while
909 * distributing the load between different sched groups in a sched domain.
910 * Typically cpu_capacity for all the groups in a sched domain will be same
911 * unless there are asymmetries in the topology. If there are asymmetries,
912 * group having more cpu_capacity will pickup more load compared to the
913 * group having less cpu_capacity.
914 */
915static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
916{
917 struct sched_group *sg = sd->groups;
918
919 WARN_ON(!sg);
920
921 do {
922 int cpu, max_cpu = -1;
923
ae4df9d6 924 sg->group_weight = cpumask_weight(sched_group_span(sg));
f2cb1360
IM
925
926 if (!(sd->flags & SD_ASYM_PACKING))
927 goto next;
928
ae4df9d6 929 for_each_cpu(cpu, sched_group_span(sg)) {
f2cb1360
IM
930 if (max_cpu < 0)
931 max_cpu = cpu;
932 else if (sched_asym_prefer(cpu, max_cpu))
933 max_cpu = cpu;
934 }
935 sg->asym_prefer_cpu = max_cpu;
936
937next:
938 sg = sg->next;
939 } while (sg != sd->groups);
940
941 if (cpu != group_balance_cpu(sg))
942 return;
943
944 update_group_capacity(sd, cpu);
945}
946
947/*
948 * Initializers for schedule domains
949 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
950 */
951
952static int default_relax_domain_level = -1;
953int sched_domain_level_max;
954
955static int __init setup_relax_domain_level(char *str)
956{
957 if (kstrtoint(str, 0, &default_relax_domain_level))
958 pr_warn("Unable to set relax_domain_level\n");
959
960 return 1;
961}
962__setup("relax_domain_level=", setup_relax_domain_level);
963
964static void set_domain_attribute(struct sched_domain *sd,
965 struct sched_domain_attr *attr)
966{
967 int request;
968
969 if (!attr || attr->relax_domain_level < 0) {
970 if (default_relax_domain_level < 0)
971 return;
972 else
973 request = default_relax_domain_level;
974 } else
975 request = attr->relax_domain_level;
976 if (request < sd->level) {
977 /* Turn off idle balance on this domain: */
978 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
979 } else {
980 /* Turn on idle balance on this domain: */
981 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
982 }
983}
984
985static void __sdt_free(const struct cpumask *cpu_map);
986static int __sdt_alloc(const struct cpumask *cpu_map);
987
988static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
989 const struct cpumask *cpu_map)
990{
991 switch (what) {
992 case sa_rootdomain:
993 if (!atomic_read(&d->rd->refcount))
994 free_rootdomain(&d->rd->rcu);
995 /* Fall through */
996 case sa_sd:
997 free_percpu(d->sd);
998 /* Fall through */
999 case sa_sd_storage:
1000 __sdt_free(cpu_map);
1001 /* Fall through */
1002 case sa_none:
1003 break;
1004 }
1005}
1006
1007static enum s_alloc
1008__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1009{
1010 memset(d, 0, sizeof(*d));
1011
1012 if (__sdt_alloc(cpu_map))
1013 return sa_sd_storage;
1014 d->sd = alloc_percpu(struct sched_domain *);
1015 if (!d->sd)
1016 return sa_sd_storage;
1017 d->rd = alloc_rootdomain();
1018 if (!d->rd)
1019 return sa_sd;
1020 return sa_rootdomain;
1021}
1022
1023/*
1024 * NULL the sd_data elements we've used to build the sched_domain and
1025 * sched_group structure so that the subsequent __free_domain_allocs()
1026 * will not free the data we're using.
1027 */
1028static void claim_allocations(int cpu, struct sched_domain *sd)
1029{
1030 struct sd_data *sdd = sd->private;
1031
1032 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1034
1035 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1037
1038 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1040
1041 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043}
1044
1045#ifdef CONFIG_NUMA
1046static int sched_domains_numa_levels;
1047enum numa_topology_type sched_numa_topology_type;
1048static int *sched_domains_numa_distance;
1049int sched_max_numa_distance;
1050static struct cpumask ***sched_domains_numa_masks;
1051static int sched_domains_curr_level;
1052#endif
1053
1054/*
1055 * SD_flags allowed in topology descriptions.
1056 *
1057 * These flags are purely descriptive of the topology and do not prescribe
1058 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1059 * function:
1060 *
1061 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1062 * SD_SHARE_PKG_RESOURCES - describes shared caches
1063 * SD_NUMA - describes NUMA topologies
1064 * SD_SHARE_POWERDOMAIN - describes shared power domain
1065 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1066 *
1067 * Odd one out, which beside describing the topology has a quirk also
1068 * prescribes the desired behaviour that goes along with it:
1069 *
1070 * SD_ASYM_PACKING - describes SMT quirks
1071 */
1072#define TOPOLOGY_SD_FLAGS \
1073 (SD_SHARE_CPUCAPACITY | \
1074 SD_SHARE_PKG_RESOURCES | \
1075 SD_NUMA | \
1076 SD_ASYM_PACKING | \
1077 SD_ASYM_CPUCAPACITY | \
1078 SD_SHARE_POWERDOMAIN)
1079
1080static struct sched_domain *
1081sd_init(struct sched_domain_topology_level *tl,
1082 const struct cpumask *cpu_map,
1083 struct sched_domain *child, int cpu)
1084{
1085 struct sd_data *sdd = &tl->data;
1086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087 int sd_id, sd_weight, sd_flags = 0;
1088
1089#ifdef CONFIG_NUMA
1090 /*
1091 * Ugly hack to pass state to sd_numa_mask()...
1092 */
1093 sched_domains_curr_level = tl->numa_level;
1094#endif
1095
1096 sd_weight = cpumask_weight(tl->mask(cpu));
1097
1098 if (tl->sd_flags)
1099 sd_flags = (*tl->sd_flags)();
1100 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101 "wrong sd_flags in topology description\n"))
1102 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103
1104 *sd = (struct sched_domain){
1105 .min_interval = sd_weight,
1106 .max_interval = 2*sd_weight,
1107 .busy_factor = 32,
1108 .imbalance_pct = 125,
1109
1110 .cache_nice_tries = 0,
1111 .busy_idx = 0,
1112 .idle_idx = 0,
1113 .newidle_idx = 0,
1114 .wake_idx = 0,
1115 .forkexec_idx = 0,
1116
1117 .flags = 1*SD_LOAD_BALANCE
1118 | 1*SD_BALANCE_NEWIDLE
1119 | 1*SD_BALANCE_EXEC
1120 | 1*SD_BALANCE_FORK
1121 | 0*SD_BALANCE_WAKE
1122 | 1*SD_WAKE_AFFINE
1123 | 0*SD_SHARE_CPUCAPACITY
1124 | 0*SD_SHARE_PKG_RESOURCES
1125 | 0*SD_SERIALIZE
1126 | 0*SD_PREFER_SIBLING
1127 | 0*SD_NUMA
1128 | sd_flags
1129 ,
1130
1131 .last_balance = jiffies,
1132 .balance_interval = sd_weight,
1133 .smt_gain = 0,
1134 .max_newidle_lb_cost = 0,
1135 .next_decay_max_lb_cost = jiffies,
1136 .child = child,
1137#ifdef CONFIG_SCHED_DEBUG
1138 .name = tl->name,
1139#endif
1140 };
1141
1142 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1143 sd_id = cpumask_first(sched_domain_span(sd));
1144
1145 /*
1146 * Convert topological properties into behaviour.
1147 */
1148
1149 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1150 struct sched_domain *t = sd;
1151
1152 for_each_lower_domain(t)
1153 t->flags |= SD_BALANCE_WAKE;
1154 }
1155
1156 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1157 sd->flags |= SD_PREFER_SIBLING;
1158 sd->imbalance_pct = 110;
1159 sd->smt_gain = 1178; /* ~15% */
1160
1161 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1162 sd->imbalance_pct = 117;
1163 sd->cache_nice_tries = 1;
1164 sd->busy_idx = 2;
1165
1166#ifdef CONFIG_NUMA
1167 } else if (sd->flags & SD_NUMA) {
1168 sd->cache_nice_tries = 2;
1169 sd->busy_idx = 3;
1170 sd->idle_idx = 2;
1171
1172 sd->flags |= SD_SERIALIZE;
1173 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1174 sd->flags &= ~(SD_BALANCE_EXEC |
1175 SD_BALANCE_FORK |
1176 SD_WAKE_AFFINE);
1177 }
1178
1179#endif
1180 } else {
1181 sd->flags |= SD_PREFER_SIBLING;
1182 sd->cache_nice_tries = 1;
1183 sd->busy_idx = 2;
1184 sd->idle_idx = 1;
1185 }
1186
1187 /*
1188 * For all levels sharing cache; connect a sched_domain_shared
1189 * instance.
1190 */
1191 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1192 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1193 atomic_inc(&sd->shared->ref);
1194 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1195 }
1196
1197 sd->private = sdd;
1198
1199 return sd;
1200}
1201
1202/*
1203 * Topology list, bottom-up.
1204 */
1205static struct sched_domain_topology_level default_topology[] = {
1206#ifdef CONFIG_SCHED_SMT
1207 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1208#endif
1209#ifdef CONFIG_SCHED_MC
1210 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1211#endif
1212 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1213 { NULL, },
1214};
1215
1216static struct sched_domain_topology_level *sched_domain_topology =
1217 default_topology;
1218
1219#define for_each_sd_topology(tl) \
1220 for (tl = sched_domain_topology; tl->mask; tl++)
1221
1222void set_sched_topology(struct sched_domain_topology_level *tl)
1223{
1224 if (WARN_ON_ONCE(sched_smp_initialized))
1225 return;
1226
1227 sched_domain_topology = tl;
1228}
1229
1230#ifdef CONFIG_NUMA
1231
1232static const struct cpumask *sd_numa_mask(int cpu)
1233{
1234 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1235}
1236
1237static void sched_numa_warn(const char *str)
1238{
1239 static int done = false;
1240 int i,j;
1241
1242 if (done)
1243 return;
1244
1245 done = true;
1246
1247 printk(KERN_WARNING "ERROR: %s\n\n", str);
1248
1249 for (i = 0; i < nr_node_ids; i++) {
1250 printk(KERN_WARNING " ");
1251 for (j = 0; j < nr_node_ids; j++)
1252 printk(KERN_CONT "%02d ", node_distance(i,j));
1253 printk(KERN_CONT "\n");
1254 }
1255 printk(KERN_WARNING "\n");
1256}
1257
1258bool find_numa_distance(int distance)
1259{
1260 int i;
1261
1262 if (distance == node_distance(0, 0))
1263 return true;
1264
1265 for (i = 0; i < sched_domains_numa_levels; i++) {
1266 if (sched_domains_numa_distance[i] == distance)
1267 return true;
1268 }
1269
1270 return false;
1271}
1272
1273/*
1274 * A system can have three types of NUMA topology:
1275 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1276 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1277 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1278 *
1279 * The difference between a glueless mesh topology and a backplane
1280 * topology lies in whether communication between not directly
1281 * connected nodes goes through intermediary nodes (where programs
1282 * could run), or through backplane controllers. This affects
1283 * placement of programs.
1284 *
1285 * The type of topology can be discerned with the following tests:
1286 * - If the maximum distance between any nodes is 1 hop, the system
1287 * is directly connected.
1288 * - If for two nodes A and B, located N > 1 hops away from each other,
1289 * there is an intermediary node C, which is < N hops away from both
1290 * nodes A and B, the system is a glueless mesh.
1291 */
1292static void init_numa_topology_type(void)
1293{
1294 int a, b, c, n;
1295
1296 n = sched_max_numa_distance;
1297
1298 if (sched_domains_numa_levels <= 1) {
1299 sched_numa_topology_type = NUMA_DIRECT;
1300 return;
1301 }
1302
1303 for_each_online_node(a) {
1304 for_each_online_node(b) {
1305 /* Find two nodes furthest removed from each other. */
1306 if (node_distance(a, b) < n)
1307 continue;
1308
1309 /* Is there an intermediary node between a and b? */
1310 for_each_online_node(c) {
1311 if (node_distance(a, c) < n &&
1312 node_distance(b, c) < n) {
1313 sched_numa_topology_type =
1314 NUMA_GLUELESS_MESH;
1315 return;
1316 }
1317 }
1318
1319 sched_numa_topology_type = NUMA_BACKPLANE;
1320 return;
1321 }
1322 }
1323}
1324
1325void sched_init_numa(void)
1326{
1327 int next_distance, curr_distance = node_distance(0, 0);
1328 struct sched_domain_topology_level *tl;
1329 int level = 0;
1330 int i, j, k;
1331
1332 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1333 if (!sched_domains_numa_distance)
1334 return;
1335
1336 /*
1337 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1338 * unique distances in the node_distance() table.
1339 *
1340 * Assumes node_distance(0,j) includes all distances in
1341 * node_distance(i,j) in order to avoid cubic time.
1342 */
1343 next_distance = curr_distance;
1344 for (i = 0; i < nr_node_ids; i++) {
1345 for (j = 0; j < nr_node_ids; j++) {
1346 for (k = 0; k < nr_node_ids; k++) {
1347 int distance = node_distance(i, k);
1348
1349 if (distance > curr_distance &&
1350 (distance < next_distance ||
1351 next_distance == curr_distance))
1352 next_distance = distance;
1353
1354 /*
1355 * While not a strong assumption it would be nice to know
1356 * about cases where if node A is connected to B, B is not
1357 * equally connected to A.
1358 */
1359 if (sched_debug() && node_distance(k, i) != distance)
1360 sched_numa_warn("Node-distance not symmetric");
1361
1362 if (sched_debug() && i && !find_numa_distance(distance))
1363 sched_numa_warn("Node-0 not representative");
1364 }
1365 if (next_distance != curr_distance) {
1366 sched_domains_numa_distance[level++] = next_distance;
1367 sched_domains_numa_levels = level;
1368 curr_distance = next_distance;
1369 } else break;
1370 }
1371
1372 /*
1373 * In case of sched_debug() we verify the above assumption.
1374 */
1375 if (!sched_debug())
1376 break;
1377 }
1378
1379 if (!level)
1380 return;
1381
1382 /*
1383 * 'level' contains the number of unique distances, excluding the
1384 * identity distance node_distance(i,i).
1385 *
1386 * The sched_domains_numa_distance[] array includes the actual distance
1387 * numbers.
1388 */
1389
1390 /*
1391 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1392 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1393 * the array will contain less then 'level' members. This could be
1394 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1395 * in other functions.
1396 *
1397 * We reset it to 'level' at the end of this function.
1398 */
1399 sched_domains_numa_levels = 0;
1400
1401 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1402 if (!sched_domains_numa_masks)
1403 return;
1404
1405 /*
1406 * Now for each level, construct a mask per node which contains all
1407 * CPUs of nodes that are that many hops away from us.
1408 */
1409 for (i = 0; i < level; i++) {
1410 sched_domains_numa_masks[i] =
1411 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1412 if (!sched_domains_numa_masks[i])
1413 return;
1414
1415 for (j = 0; j < nr_node_ids; j++) {
1416 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1417 if (!mask)
1418 return;
1419
1420 sched_domains_numa_masks[i][j] = mask;
1421
1422 for_each_node(k) {
1423 if (node_distance(j, k) > sched_domains_numa_distance[i])
1424 continue;
1425
1426 cpumask_or(mask, mask, cpumask_of_node(k));
1427 }
1428 }
1429 }
1430
1431 /* Compute default topology size */
1432 for (i = 0; sched_domain_topology[i].mask; i++);
1433
1434 tl = kzalloc((i + level + 1) *
1435 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1436 if (!tl)
1437 return;
1438
1439 /*
1440 * Copy the default topology bits..
1441 */
1442 for (i = 0; sched_domain_topology[i].mask; i++)
1443 tl[i] = sched_domain_topology[i];
1444
1445 /*
1446 * .. and append 'j' levels of NUMA goodness.
1447 */
1448 for (j = 0; j < level; i++, j++) {
1449 tl[i] = (struct sched_domain_topology_level){
1450 .mask = sd_numa_mask,
1451 .sd_flags = cpu_numa_flags,
1452 .flags = SDTL_OVERLAP,
1453 .numa_level = j,
1454 SD_INIT_NAME(NUMA)
1455 };
1456 }
1457
1458 sched_domain_topology = tl;
1459
1460 sched_domains_numa_levels = level;
1461 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1462
1463 init_numa_topology_type();
1464}
1465
1466void sched_domains_numa_masks_set(unsigned int cpu)
1467{
1468 int node = cpu_to_node(cpu);
1469 int i, j;
1470
1471 for (i = 0; i < sched_domains_numa_levels; i++) {
1472 for (j = 0; j < nr_node_ids; j++) {
1473 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1474 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1475 }
1476 }
1477}
1478
1479void sched_domains_numa_masks_clear(unsigned int cpu)
1480{
1481 int i, j;
1482
1483 for (i = 0; i < sched_domains_numa_levels; i++) {
1484 for (j = 0; j < nr_node_ids; j++)
1485 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1486 }
1487}
1488
1489#endif /* CONFIG_NUMA */
1490
1491static int __sdt_alloc(const struct cpumask *cpu_map)
1492{
1493 struct sched_domain_topology_level *tl;
1494 int j;
1495
1496 for_each_sd_topology(tl) {
1497 struct sd_data *sdd = &tl->data;
1498
1499 sdd->sd = alloc_percpu(struct sched_domain *);
1500 if (!sdd->sd)
1501 return -ENOMEM;
1502
1503 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1504 if (!sdd->sds)
1505 return -ENOMEM;
1506
1507 sdd->sg = alloc_percpu(struct sched_group *);
1508 if (!sdd->sg)
1509 return -ENOMEM;
1510
1511 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1512 if (!sdd->sgc)
1513 return -ENOMEM;
1514
1515 for_each_cpu(j, cpu_map) {
1516 struct sched_domain *sd;
1517 struct sched_domain_shared *sds;
1518 struct sched_group *sg;
1519 struct sched_group_capacity *sgc;
1520
1521 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1522 GFP_KERNEL, cpu_to_node(j));
1523 if (!sd)
1524 return -ENOMEM;
1525
1526 *per_cpu_ptr(sdd->sd, j) = sd;
1527
1528 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1529 GFP_KERNEL, cpu_to_node(j));
1530 if (!sds)
1531 return -ENOMEM;
1532
1533 *per_cpu_ptr(sdd->sds, j) = sds;
1534
1535 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1536 GFP_KERNEL, cpu_to_node(j));
1537 if (!sg)
1538 return -ENOMEM;
1539
1540 sg->next = sg;
1541
1542 *per_cpu_ptr(sdd->sg, j) = sg;
1543
1544 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1545 GFP_KERNEL, cpu_to_node(j));
1546 if (!sgc)
1547 return -ENOMEM;
1548
005f874d
PZ
1549#ifdef CONFIG_SCHED_DEBUG
1550 sgc->id = j;
1551#endif
1552
f2cb1360
IM
1553 *per_cpu_ptr(sdd->sgc, j) = sgc;
1554 }
1555 }
1556
1557 return 0;
1558}
1559
1560static void __sdt_free(const struct cpumask *cpu_map)
1561{
1562 struct sched_domain_topology_level *tl;
1563 int j;
1564
1565 for_each_sd_topology(tl) {
1566 struct sd_data *sdd = &tl->data;
1567
1568 for_each_cpu(j, cpu_map) {
1569 struct sched_domain *sd;
1570
1571 if (sdd->sd) {
1572 sd = *per_cpu_ptr(sdd->sd, j);
1573 if (sd && (sd->flags & SD_OVERLAP))
1574 free_sched_groups(sd->groups, 0);
1575 kfree(*per_cpu_ptr(sdd->sd, j));
1576 }
1577
1578 if (sdd->sds)
1579 kfree(*per_cpu_ptr(sdd->sds, j));
1580 if (sdd->sg)
1581 kfree(*per_cpu_ptr(sdd->sg, j));
1582 if (sdd->sgc)
1583 kfree(*per_cpu_ptr(sdd->sgc, j));
1584 }
1585 free_percpu(sdd->sd);
1586 sdd->sd = NULL;
1587 free_percpu(sdd->sds);
1588 sdd->sds = NULL;
1589 free_percpu(sdd->sg);
1590 sdd->sg = NULL;
1591 free_percpu(sdd->sgc);
1592 sdd->sgc = NULL;
1593 }
1594}
1595
181a80d1 1596static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
f2cb1360
IM
1597 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1598 struct sched_domain *child, int cpu)
1599{
1600 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1601
1602 if (child) {
1603 sd->level = child->level + 1;
1604 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1605 child->parent = sd;
1606
1607 if (!cpumask_subset(sched_domain_span(child),
1608 sched_domain_span(sd))) {
1609 pr_err("BUG: arch topology borken\n");
1610#ifdef CONFIG_SCHED_DEBUG
1611 pr_err(" the %s domain not a subset of the %s domain\n",
1612 child->name, sd->name);
1613#endif
1614 /* Fixup, ensure @sd has at least @child cpus. */
1615 cpumask_or(sched_domain_span(sd),
1616 sched_domain_span(sd),
1617 sched_domain_span(child));
1618 }
1619
1620 }
1621 set_domain_attribute(sd, attr);
1622
1623 return sd;
1624}
1625
1626/*
1627 * Build sched domains for a given set of CPUs and attach the sched domains
1628 * to the individual CPUs
1629 */
1630static int
1631build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1632{
1633 enum s_alloc alloc_state;
1634 struct sched_domain *sd;
1635 struct s_data d;
1636 struct rq *rq = NULL;
1637 int i, ret = -ENOMEM;
1638
1639 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1640 if (alloc_state != sa_rootdomain)
1641 goto error;
1642
1643 /* Set up domains for CPUs specified by the cpu_map: */
1644 for_each_cpu(i, cpu_map) {
1645 struct sched_domain_topology_level *tl;
1646
1647 sd = NULL;
1648 for_each_sd_topology(tl) {
1649 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1650 if (tl == sched_domain_topology)
1651 *per_cpu_ptr(d.sd, i) = sd;
af85596c 1652 if (tl->flags & SDTL_OVERLAP)
f2cb1360
IM
1653 sd->flags |= SD_OVERLAP;
1654 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1655 break;
1656 }
1657 }
1658
1659 /* Build the groups for the domains */
1660 for_each_cpu(i, cpu_map) {
1661 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1662 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1663 if (sd->flags & SD_OVERLAP) {
1664 if (build_overlap_sched_groups(sd, i))
1665 goto error;
1666 } else {
1667 if (build_sched_groups(sd, i))
1668 goto error;
1669 }
1670 }
1671 }
1672
1673 /* Calculate CPU capacity for physical packages and nodes */
1674 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1675 if (!cpumask_test_cpu(i, cpu_map))
1676 continue;
1677
1678 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1679 claim_allocations(i, sd);
1680 init_sched_groups_capacity(i, sd);
1681 }
1682 }
1683
1684 /* Attach the domains */
1685 rcu_read_lock();
1686 for_each_cpu(i, cpu_map) {
1687 rq = cpu_rq(i);
1688 sd = *per_cpu_ptr(d.sd, i);
1689
1690 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1691 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1692 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1693
1694 cpu_attach_domain(sd, d.rd, i);
1695 }
1696 rcu_read_unlock();
1697
1698 if (rq && sched_debug_enabled) {
1699 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1700 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1701 }
1702
1703 ret = 0;
1704error:
1705 __free_domain_allocs(&d, alloc_state, cpu_map);
1706 return ret;
1707}
1708
1709/* Current sched domains: */
1710static cpumask_var_t *doms_cur;
1711
1712/* Number of sched domains in 'doms_cur': */
1713static int ndoms_cur;
1714
1715/* Attribues of custom domains in 'doms_cur' */
1716static struct sched_domain_attr *dattr_cur;
1717
1718/*
1719 * Special case: If a kmalloc() of a doms_cur partition (array of
1720 * cpumask) fails, then fallback to a single sched domain,
1721 * as determined by the single cpumask fallback_doms.
1722 */
8d5dc512 1723static cpumask_var_t fallback_doms;
f2cb1360
IM
1724
1725/*
1726 * arch_update_cpu_topology lets virtualized architectures update the
1727 * CPU core maps. It is supposed to return 1 if the topology changed
1728 * or 0 if it stayed the same.
1729 */
1730int __weak arch_update_cpu_topology(void)
1731{
1732 return 0;
1733}
1734
1735cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1736{
1737 int i;
1738 cpumask_var_t *doms;
1739
1740 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1741 if (!doms)
1742 return NULL;
1743 for (i = 0; i < ndoms; i++) {
1744 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1745 free_sched_domains(doms, i);
1746 return NULL;
1747 }
1748 }
1749 return doms;
1750}
1751
1752void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1753{
1754 unsigned int i;
1755 for (i = 0; i < ndoms; i++)
1756 free_cpumask_var(doms[i]);
1757 kfree(doms);
1758}
1759
1760/*
1761 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1762 * For now this just excludes isolated CPUs, but could be used to
1763 * exclude other special cases in the future.
1764 */
8d5dc512 1765int sched_init_domains(const struct cpumask *cpu_map)
f2cb1360
IM
1766{
1767 int err;
1768
8d5dc512 1769 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1676330e 1770 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
8d5dc512
PZ
1771 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1772
f2cb1360
IM
1773 arch_update_cpu_topology();
1774 ndoms_cur = 1;
1775 doms_cur = alloc_sched_domains(ndoms_cur);
1776 if (!doms_cur)
1777 doms_cur = &fallback_doms;
1778 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1779 err = build_sched_domains(doms_cur[0], NULL);
1780 register_sched_domain_sysctl();
1781
1782 return err;
1783}
1784
1785/*
1786 * Detach sched domains from a group of CPUs specified in cpu_map
1787 * These CPUs will now be attached to the NULL domain
1788 */
1789static void detach_destroy_domains(const struct cpumask *cpu_map)
1790{
1791 int i;
1792
1793 rcu_read_lock();
1794 for_each_cpu(i, cpu_map)
1795 cpu_attach_domain(NULL, &def_root_domain, i);
1796 rcu_read_unlock();
1797}
1798
1799/* handle null as "default" */
1800static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1801 struct sched_domain_attr *new, int idx_new)
1802{
1803 struct sched_domain_attr tmp;
1804
1805 /* Fast path: */
1806 if (!new && !cur)
1807 return 1;
1808
1809 tmp = SD_ATTR_INIT;
1810 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1811 new ? (new + idx_new) : &tmp,
1812 sizeof(struct sched_domain_attr));
1813}
1814
1815/*
1816 * Partition sched domains as specified by the 'ndoms_new'
1817 * cpumasks in the array doms_new[] of cpumasks. This compares
1818 * doms_new[] to the current sched domain partitioning, doms_cur[].
1819 * It destroys each deleted domain and builds each new domain.
1820 *
1821 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1822 * The masks don't intersect (don't overlap.) We should setup one
1823 * sched domain for each mask. CPUs not in any of the cpumasks will
1824 * not be load balanced. If the same cpumask appears both in the
1825 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1826 * it as it is.
1827 *
1828 * The passed in 'doms_new' should be allocated using
1829 * alloc_sched_domains. This routine takes ownership of it and will
1830 * free_sched_domains it when done with it. If the caller failed the
1831 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1832 * and partition_sched_domains() will fallback to the single partition
1833 * 'fallback_doms', it also forces the domains to be rebuilt.
1834 *
1835 * If doms_new == NULL it will be replaced with cpu_online_mask.
1836 * ndoms_new == 0 is a special case for destroying existing domains,
1837 * and it will not create the default domain.
1838 *
1839 * Call with hotplug lock held
1840 */
1841void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1842 struct sched_domain_attr *dattr_new)
1843{
1844 int i, j, n;
1845 int new_topology;
1846
1847 mutex_lock(&sched_domains_mutex);
1848
1849 /* Always unregister in case we don't destroy any domains: */
1850 unregister_sched_domain_sysctl();
1851
1852 /* Let the architecture update CPU core mappings: */
1853 new_topology = arch_update_cpu_topology();
1854
09e0dd8e
PZ
1855 if (!doms_new) {
1856 WARN_ON_ONCE(dattr_new);
1857 n = 0;
1858 doms_new = alloc_sched_domains(1);
1859 if (doms_new) {
1860 n = 1;
1861 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1862 }
1863 } else {
1864 n = ndoms_new;
1865 }
f2cb1360
IM
1866
1867 /* Destroy deleted domains: */
1868 for (i = 0; i < ndoms_cur; i++) {
1869 for (j = 0; j < n && !new_topology; j++) {
1870 if (cpumask_equal(doms_cur[i], doms_new[j])
1871 && dattrs_equal(dattr_cur, i, dattr_new, j))
1872 goto match1;
1873 }
1874 /* No match - a current sched domain not in new doms_new[] */
1875 detach_destroy_domains(doms_cur[i]);
1876match1:
1877 ;
1878 }
1879
1880 n = ndoms_cur;
09e0dd8e 1881 if (!doms_new) {
f2cb1360
IM
1882 n = 0;
1883 doms_new = &fallback_doms;
1884 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
f2cb1360
IM
1885 }
1886
1887 /* Build new domains: */
1888 for (i = 0; i < ndoms_new; i++) {
1889 for (j = 0; j < n && !new_topology; j++) {
1890 if (cpumask_equal(doms_new[i], doms_cur[j])
1891 && dattrs_equal(dattr_new, i, dattr_cur, j))
1892 goto match2;
1893 }
1894 /* No match - add a new doms_new */
1895 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1896match2:
1897 ;
1898 }
1899
1900 /* Remember the new sched domains: */
1901 if (doms_cur != &fallback_doms)
1902 free_sched_domains(doms_cur, ndoms_cur);
1903
1904 kfree(dattr_cur);
1905 doms_cur = doms_new;
1906 dattr_cur = dattr_new;
1907 ndoms_cur = ndoms_new;
1908
1909 register_sched_domain_sysctl();
1910
1911 mutex_unlock(&sched_domains_mutex);
1912}
1913