]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/wait.c
sched/wait: Avoid abort_exclusive_wait() in __wait_on_bit_lock()
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / wait.c
CommitLineData
1da177e4
LT
1/*
2 * Generic waiting primitives.
3 *
6d49e352 4 * (C) 2004 Nadia Yvette Chambers, Oracle
1da177e4 5 */
1da177e4 6#include <linux/init.h>
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/wait.h>
11#include <linux/hash.h>
cb6538e7 12#include <linux/kthread.h>
1da177e4 13
f07fdec5 14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
21d71f51
IM
15{
16 spin_lock_init(&q->lock);
f07fdec5 17 lockdep_set_class_and_name(&q->lock, key, name);
21d71f51
IM
18 INIT_LIST_HEAD(&q->task_list);
19}
eb4542b9 20
2fc39111 21EXPORT_SYMBOL(__init_waitqueue_head);
eb4542b9 22
7ad5b3a5 23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
1da177e4
LT
24{
25 unsigned long flags;
26
27 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
28 spin_lock_irqsave(&q->lock, flags);
29 __add_wait_queue(q, wait);
30 spin_unlock_irqrestore(&q->lock, flags);
31}
32EXPORT_SYMBOL(add_wait_queue);
33
7ad5b3a5 34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
1da177e4
LT
35{
36 unsigned long flags;
37
38 wait->flags |= WQ_FLAG_EXCLUSIVE;
39 spin_lock_irqsave(&q->lock, flags);
40 __add_wait_queue_tail(q, wait);
41 spin_unlock_irqrestore(&q->lock, flags);
42}
43EXPORT_SYMBOL(add_wait_queue_exclusive);
44
7ad5b3a5 45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
1da177e4
LT
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&q->lock, flags);
50 __remove_wait_queue(q, wait);
51 spin_unlock_irqrestore(&q->lock, flags);
52}
53EXPORT_SYMBOL(remove_wait_queue);
54
55
b4145872
PZ
56/*
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
60 *
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
64 */
65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
66 int nr_exclusive, int wake_flags, void *key)
67{
68 wait_queue_t *curr, *next;
69
70 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
71 unsigned flags = curr->flags;
72
73 if (curr->func(curr, mode, wake_flags, key) &&
74 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
75 break;
76 }
77}
78
79/**
80 * __wake_up - wake up threads blocked on a waitqueue.
81 * @q: the waitqueue
82 * @mode: which threads
83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
84 * @key: is directly passed to the wakeup function
85 *
86 * It may be assumed that this function implies a write memory barrier before
87 * changing the task state if and only if any tasks are woken up.
88 */
89void __wake_up(wait_queue_head_t *q, unsigned int mode,
90 int nr_exclusive, void *key)
91{
92 unsigned long flags;
93
94 spin_lock_irqsave(&q->lock, flags);
95 __wake_up_common(q, mode, nr_exclusive, 0, key);
96 spin_unlock_irqrestore(&q->lock, flags);
97}
98EXPORT_SYMBOL(__wake_up);
99
100/*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104{
105 __wake_up_common(q, mode, nr, 0, NULL);
106}
107EXPORT_SYMBOL_GPL(__wake_up_locked);
108
ac5be6b4 109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
b4145872 110{
ac5be6b4 111 __wake_up_common(q, mode, 1, 0, key);
b4145872
PZ
112}
113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
115/**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133 int nr_exclusive, void *key)
134{
135 unsigned long flags;
136 int wake_flags = 1; /* XXX WF_SYNC */
137
138 if (unlikely(!q))
139 return;
140
141 if (unlikely(nr_exclusive != 1))
142 wake_flags = 0;
143
144 spin_lock_irqsave(&q->lock, flags);
145 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146 spin_unlock_irqrestore(&q->lock, flags);
147}
148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
150/*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154{
155 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
156}
157EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
158
1da177e4
LT
159/*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
59c51591 169 * loads to move into the critical region).
1da177e4 170 */
7ad5b3a5 171void
1da177e4
LT
172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173{
174 unsigned long flags;
175
176 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177 spin_lock_irqsave(&q->lock, flags);
178 if (list_empty(&wait->task_list))
179 __add_wait_queue(q, wait);
a25d644f 180 set_current_state(state);
1da177e4
LT
181 spin_unlock_irqrestore(&q->lock, flags);
182}
183EXPORT_SYMBOL(prepare_to_wait);
184
7ad5b3a5 185void
1da177e4
LT
186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187{
188 unsigned long flags;
189
190 wait->flags |= WQ_FLAG_EXCLUSIVE;
191 spin_lock_irqsave(&q->lock, flags);
192 if (list_empty(&wait->task_list))
193 __add_wait_queue_tail(q, wait);
a25d644f 194 set_current_state(state);
1da177e4
LT
195 spin_unlock_irqrestore(&q->lock, flags);
196}
197EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
c2d81644
ON
199long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
200{
201 unsigned long flags;
b1ea06a9 202 long ret = 0;
c2d81644
ON
203
204 wait->private = current;
205 wait->func = autoremove_wake_function;
206
207 spin_lock_irqsave(&q->lock, flags);
b1ea06a9
ON
208 if (unlikely(signal_pending_state(state, current))) {
209 /*
210 * Exclusive waiter must not fail if it was selected by wakeup,
211 * it should "consume" the condition we were waiting for.
212 *
213 * The caller will recheck the condition and return success if
214 * we were already woken up, we can not miss the event because
215 * wakeup locks/unlocks the same q->lock.
216 *
217 * But we need to ensure that set-condition + wakeup after that
218 * can't see us, it should wake up another exclusive waiter if
219 * we fail.
220 */
221 list_del_init(&wait->task_list);
222 ret = -ERESTARTSYS;
223 } else {
224 if (list_empty(&wait->task_list)) {
225 if (wait->flags & WQ_FLAG_EXCLUSIVE)
226 __add_wait_queue_tail(q, wait);
227 else
228 __add_wait_queue(q, wait);
229 }
230 set_current_state(state);
c2d81644 231 }
c2d81644
ON
232 spin_unlock_irqrestore(&q->lock, flags);
233
b1ea06a9 234 return ret;
c2d81644
ON
235}
236EXPORT_SYMBOL(prepare_to_wait_event);
237
ee2f154a 238/**
777c6c5f
JW
239 * finish_wait - clean up after waiting in a queue
240 * @q: waitqueue waited on
241 * @wait: wait descriptor
242 *
243 * Sets current thread back to running state and removes
244 * the wait descriptor from the given waitqueue if still
245 * queued.
246 */
7ad5b3a5 247void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
1da177e4
LT
248{
249 unsigned long flags;
250
251 __set_current_state(TASK_RUNNING);
252 /*
253 * We can check for list emptiness outside the lock
254 * IFF:
255 * - we use the "careful" check that verifies both
256 * the next and prev pointers, so that there cannot
257 * be any half-pending updates in progress on other
258 * CPU's that we haven't seen yet (and that might
259 * still change the stack area.
260 * and
261 * - all other users take the lock (ie we can only
262 * have _one_ other CPU that looks at or modifies
263 * the list).
264 */
265 if (!list_empty_careful(&wait->task_list)) {
266 spin_lock_irqsave(&q->lock, flags);
267 list_del_init(&wait->task_list);
268 spin_unlock_irqrestore(&q->lock, flags);
269 }
270}
271EXPORT_SYMBOL(finish_wait);
272
273int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
274{
275 int ret = default_wake_function(wait, mode, sync, key);
276
277 if (ret)
278 list_del_init(&wait->task_list);
279 return ret;
280}
281EXPORT_SYMBOL(autoremove_wake_function);
282
cb6538e7
PZ
283static inline bool is_kthread_should_stop(void)
284{
285 return (current->flags & PF_KTHREAD) && kthread_should_stop();
286}
61ada528
PZ
287
288/*
289 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
290 *
291 * add_wait_queue(&wq, &wait);
292 * for (;;) {
293 * if (condition)
294 * break;
295 *
296 * p->state = mode; condition = true;
297 * smp_mb(); // A smp_wmb(); // C
298 * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
299 * schedule() try_to_wake_up();
300 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
301 * wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
302 * smp_mb() // B smp_wmb(); // C
303 * wait->flags |= WQ_FLAG_WOKEN;
304 * }
305 * remove_wait_queue(&wq, &wait);
306 *
307 */
308long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
309{
310 set_current_state(mode); /* A */
311 /*
312 * The above implies an smp_mb(), which matches with the smp_wmb() from
313 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
314 * also observe all state before the wakeup.
315 */
cb6538e7 316 if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
61ada528
PZ
317 timeout = schedule_timeout(timeout);
318 __set_current_state(TASK_RUNNING);
319
320 /*
321 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
322 * woken_wake_function() such that we must either observe the wait
323 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
324 * an event.
325 */
b92b8b35 326 smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
61ada528
PZ
327
328 return timeout;
329}
330EXPORT_SYMBOL(wait_woken);
331
332int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
333{
334 /*
335 * Although this function is called under waitqueue lock, LOCK
336 * doesn't imply write barrier and the users expects write
337 * barrier semantics on wakeup functions. The following
338 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
b92b8b35 339 * and is paired with smp_store_mb() in wait_woken().
61ada528
PZ
340 */
341 smp_wmb(); /* C */
342 wait->flags |= WQ_FLAG_WOKEN;
343
344 return default_wake_function(wait, mode, sync, key);
345}
346EXPORT_SYMBOL(woken_wake_function);
347
1da177e4
LT
348int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
349{
350 struct wait_bit_key *key = arg;
351 struct wait_bit_queue *wait_bit
352 = container_of(wait, struct wait_bit_queue, wait);
353
354 if (wait_bit->key.flags != key->flags ||
355 wait_bit->key.bit_nr != key->bit_nr ||
356 test_bit(key->bit_nr, key->flags))
357 return 0;
358 else
359 return autoremove_wake_function(wait, mode, sync, key);
360}
361EXPORT_SYMBOL(wake_bit_function);
362
363/*
364 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
365 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
366 * permitted return codes. Nonzero return codes halt waiting and return.
367 */
7ad5b3a5 368int __sched
1da177e4 369__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
c1221321 370 wait_bit_action_f *action, unsigned mode)
1da177e4
LT
371{
372 int ret = 0;
373
374 do {
375 prepare_to_wait(wq, &q->wait, mode);
376 if (test_bit(q->key.bit_nr, q->key.flags))
dfd01f02 377 ret = (*action)(&q->key, mode);
1da177e4
LT
378 } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
379 finish_wait(wq, &q->wait);
380 return ret;
381}
382EXPORT_SYMBOL(__wait_on_bit);
383
7ad5b3a5 384int __sched out_of_line_wait_on_bit(void *word, int bit,
c1221321 385 wait_bit_action_f *action, unsigned mode)
1da177e4
LT
386{
387 wait_queue_head_t *wq = bit_waitqueue(word, bit);
388 DEFINE_WAIT_BIT(wait, word, bit);
389
390 return __wait_on_bit(wq, &wait, action, mode);
391}
392EXPORT_SYMBOL(out_of_line_wait_on_bit);
393
cbbce822
N
394int __sched out_of_line_wait_on_bit_timeout(
395 void *word, int bit, wait_bit_action_f *action,
396 unsigned mode, unsigned long timeout)
397{
398 wait_queue_head_t *wq = bit_waitqueue(word, bit);
399 DEFINE_WAIT_BIT(wait, word, bit);
400
401 wait.key.timeout = jiffies + timeout;
402 return __wait_on_bit(wq, &wait, action, mode);
403}
404EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
405
7ad5b3a5 406int __sched
1da177e4 407__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
c1221321 408 wait_bit_action_f *action, unsigned mode)
1da177e4 409{
eaf9ef52 410 int ret = 0;
777c6c5f 411
eaf9ef52 412 for (;;) {
1da177e4 413 prepare_to_wait_exclusive(wq, &q->wait, mode);
eaf9ef52
ON
414 if (test_bit(q->key.bit_nr, q->key.flags)) {
415 ret = action(&q->key, mode);
416 /*
417 * See the comment in prepare_to_wait_event().
418 * finish_wait() does not necessarily takes wq->lock,
419 * but test_and_set_bit() implies mb() which pairs with
420 * smp_mb__after_atomic() before wake_up_page().
421 */
422 if (ret)
423 finish_wait(wq, &q->wait);
424 }
425 if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
426 if (!ret)
427 finish_wait(wq, &q->wait);
428 return 0;
429 } else if (ret) {
430 return ret;
431 }
432 }
1da177e4
LT
433}
434EXPORT_SYMBOL(__wait_on_bit_lock);
435
7ad5b3a5 436int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
c1221321 437 wait_bit_action_f *action, unsigned mode)
1da177e4
LT
438{
439 wait_queue_head_t *wq = bit_waitqueue(word, bit);
440 DEFINE_WAIT_BIT(wait, word, bit);
441
442 return __wait_on_bit_lock(wq, &wait, action, mode);
443}
444EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
445
7ad5b3a5 446void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
1da177e4
LT
447{
448 struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
449 if (waitqueue_active(wq))
e64d66c8 450 __wake_up(wq, TASK_NORMAL, 1, &key);
1da177e4
LT
451}
452EXPORT_SYMBOL(__wake_up_bit);
453
454/**
455 * wake_up_bit - wake up a waiter on a bit
456 * @word: the word being waited on, a kernel virtual address
457 * @bit: the bit of the word being waited on
458 *
459 * There is a standard hashed waitqueue table for generic use. This
460 * is the part of the hashtable's accessor API that wakes up waiters
461 * on a bit. For instance, if one were to have waiters on a bitflag,
462 * one would call wake_up_bit() after clearing the bit.
463 *
464 * In order for this to function properly, as it uses waitqueue_active()
465 * internally, some kind of memory barrier must be done prior to calling
4e857c58 466 * this. Typically, this will be smp_mb__after_atomic(), but in some
1da177e4
LT
467 * cases where bitflags are manipulated non-atomically under a lock, one
468 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
469 * because spin_unlock() does not guarantee a memory barrier.
470 */
7ad5b3a5 471void wake_up_bit(void *word, int bit)
1da177e4
LT
472{
473 __wake_up_bit(bit_waitqueue(word, bit), word, bit);
474}
475EXPORT_SYMBOL(wake_up_bit);
476
7ad5b3a5 477wait_queue_head_t *bit_waitqueue(void *word, int bit)
1da177e4
LT
478{
479 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
480 const struct zone *zone = page_zone(virt_to_page(word));
481 unsigned long val = (unsigned long)word << shift | bit;
482
483 return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
484}
485EXPORT_SYMBOL(bit_waitqueue);
cb65537e
DH
486
487/*
488 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
489 * index (we're keying off bit -1, but that would produce a horrible hash
490 * value).
491 */
492static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
493{
494 if (BITS_PER_LONG == 64) {
495 unsigned long q = (unsigned long)p;
496 return bit_waitqueue((void *)(q & ~1), q & 1);
497 }
498 return bit_waitqueue(p, 0);
499}
500
501static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
502 void *arg)
503{
504 struct wait_bit_key *key = arg;
505 struct wait_bit_queue *wait_bit
506 = container_of(wait, struct wait_bit_queue, wait);
507 atomic_t *val = key->flags;
508
509 if (wait_bit->key.flags != key->flags ||
510 wait_bit->key.bit_nr != key->bit_nr ||
511 atomic_read(val) != 0)
512 return 0;
513 return autoremove_wake_function(wait, mode, sync, key);
514}
515
516/*
517 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
518 * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
519 * return codes halt waiting and return.
520 */
521static __sched
522int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
523 int (*action)(atomic_t *), unsigned mode)
524{
525 atomic_t *val;
526 int ret = 0;
527
528 do {
529 prepare_to_wait(wq, &q->wait, mode);
530 val = q->key.flags;
531 if (atomic_read(val) == 0)
42577ca8
DH
532 break;
533 ret = (*action)(val);
cb65537e
DH
534 } while (!ret && atomic_read(val) != 0);
535 finish_wait(wq, &q->wait);
536 return ret;
537}
538
539#define DEFINE_WAIT_ATOMIC_T(name, p) \
540 struct wait_bit_queue name = { \
541 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
542 .wait = { \
543 .private = current, \
544 .func = wake_atomic_t_function, \
545 .task_list = \
546 LIST_HEAD_INIT((name).wait.task_list), \
547 }, \
548 }
549
550__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
551 unsigned mode)
552{
553 wait_queue_head_t *wq = atomic_t_waitqueue(p);
554 DEFINE_WAIT_ATOMIC_T(wait, p);
555
556 return __wait_on_atomic_t(wq, &wait, action, mode);
557}
558EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
559
560/**
561 * wake_up_atomic_t - Wake up a waiter on a atomic_t
2203547f 562 * @p: The atomic_t being waited on, a kernel virtual address
cb65537e
DH
563 *
564 * Wake up anyone waiting for the atomic_t to go to zero.
565 *
566 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
567 * check is done by the waiter's wake function, not the by the waker itself).
568 */
569void wake_up_atomic_t(atomic_t *p)
570{
571 __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
572}
573EXPORT_SYMBOL(wake_up_atomic_t);
74316201 574
dfd01f02 575__sched int bit_wait(struct wait_bit_key *word, int mode)
74316201 576{
74316201 577 schedule();
dfd01f02 578 if (signal_pending_state(mode, current))
68985633 579 return -EINTR;
74316201
N
580 return 0;
581}
582EXPORT_SYMBOL(bit_wait);
583
dfd01f02 584__sched int bit_wait_io(struct wait_bit_key *word, int mode)
74316201 585{
74316201 586 io_schedule();
dfd01f02 587 if (signal_pending_state(mode, current))
68985633 588 return -EINTR;
74316201
N
589 return 0;
590}
591EXPORT_SYMBOL(bit_wait_io);
cbbce822 592
dfd01f02 593__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
cbbce822 594{
316c1608 595 unsigned long now = READ_ONCE(jiffies);
cbbce822
N
596 if (time_after_eq(now, word->timeout))
597 return -EAGAIN;
598 schedule_timeout(word->timeout - now);
dfd01f02 599 if (signal_pending_state(mode, current))
68985633 600 return -EINTR;
cbbce822
N
601 return 0;
602}
603EXPORT_SYMBOL_GPL(bit_wait_timeout);
604
dfd01f02 605__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
cbbce822 606{
316c1608 607 unsigned long now = READ_ONCE(jiffies);
cbbce822
N
608 if (time_after_eq(now, word->timeout))
609 return -EAGAIN;
610 io_schedule_timeout(word->timeout - now);
dfd01f02 611 if (signal_pending_state(mode, current))
68985633 612 return -EINTR;
cbbce822
N
613 return 0;
614}
615EXPORT_SYMBOL_GPL(bit_wait_io_timeout);