]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
ceph: fix iput race when queueing inode work
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
d0b27fa7 210
58088ad0
PT
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
d8b4986d 262 struct hrtimer period_timer, slack_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
e8da1b18
NR
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
ab84d31e
PT
268#endif
269};
270
29f59db3 271/* task group related information */
4cf86d77 272struct task_group {
68318b8e 273 struct cgroup_subsys_state css;
6c415b92 274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
2069dd75
PZ
281
282 atomic_t load_weight;
052f1dc7
PZ
283#endif
284
285#ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
d0b27fa7 289 struct rt_bandwidth rt_bandwidth;
052f1dc7 290#endif
6b2d7700 291
ae8393e5 292 struct rcu_head rcu;
6f505b16 293 struct list_head list;
f473aa5e
PZ
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
5091faa4
MG
298
299#ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301#endif
ab84d31e
PT
302
303 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
304};
305
3d4b47b4 306/* task_group_lock serializes the addition/removal of task groups */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
e9036b36
CG
309#ifdef CONFIG_FAIR_GROUP_SCHED
310
07e06b01 311# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 312
cb4ad1ff 313/*
2e084786
LJ
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
cb4ad1ff
MX
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
cd62287e
MG
321#define MIN_SHARES (1UL << 1)
322#define MAX_SHARES (1UL << 18)
18d95a28 323
07e06b01 324static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
325#endif
326
29f59db3 327/* Default task group.
3a252015 328 * Every task in system belong to this group at bootup.
29f59db3 329 */
07e06b01 330struct task_group root_task_group;
29f59db3 331
7c941438 332#endif /* CONFIG_CGROUP_SCHED */
29f59db3 333
6aa645ea
IM
334/* CFS-related fields in a runqueue */
335struct cfs_rq {
336 struct load_weight load;
953bfcd1 337 unsigned long nr_running, h_nr_running;
6aa645ea 338
6aa645ea 339 u64 exec_clock;
e9acbff6 340 u64 min_vruntime;
3fe1698b
PZ
341#ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343#endif
6aa645ea
IM
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
4a55bd5e
PZ
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
ac53db59 355 struct sched_entity *curr, *next, *last, *skip;
ddc97297 356
4934a4d3 357#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 358 unsigned int nr_spread_over;
4934a4d3 359#endif
ddc97297 360
62160e3f 361#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
41a2d6cf
IM
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
3d4b47b4 372 int on_list;
41a2d6cf
IM
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
375
376#ifdef CONFIG_SMP
c09595f6 377 /*
c8cba857 378 * the part of load.weight contributed by tasks
c09595f6 379 */
c8cba857 380 unsigned long task_weight;
c09595f6 381
c8cba857
PZ
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
c09595f6 389
c8cba857 390 /*
3b3d190e
PT
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 396 */
2069dd75
PZ
397 u64 load_avg;
398 u64 load_period;
3b3d190e 399 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 400
2069dd75 401 unsigned long load_contribution;
c09595f6 402#endif
ab84d31e
PT
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
a9cf55b2 405 u64 runtime_expires;
ab84d31e 406 s64 runtime_remaining;
85dac906 407
e8da1b18 408 u64 throttled_timestamp;
64660c86 409 int throttled, throttle_count;
85dac906 410 struct list_head throttled_list;
ab84d31e 411#endif
6aa645ea
IM
412#endif
413};
1da177e4 414
ab84d31e
PT
415#ifdef CONFIG_FAIR_GROUP_SCHED
416#ifdef CONFIG_CFS_BANDWIDTH
417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418{
419 return &tg->cfs_bandwidth;
420}
421
422static inline u64 default_cfs_period(void);
58088ad0 423static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
d8b4986d
PT
424static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427{
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433}
58088ad0
PT
434
435static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436{
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454}
ab84d31e
PT
455
456static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457{
458 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 459 cfs_b->runtime = 0;
ab84d31e
PT
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 462
85dac906 463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
d8b4986d
PT
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
ab84d31e
PT
468}
469
470static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471{
472 cfs_rq->runtime_enabled = 0;
85dac906 473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
474}
475
58088ad0
PT
476/* requires cfs_b->lock, may release to reprogram timer */
477static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478{
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498}
499
ab84d31e 500static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
501{
502 hrtimer_cancel(&cfs_b->period_timer);
d8b4986d 503 hrtimer_cancel(&cfs_b->slack_timer);
58088ad0 504}
ab84d31e
PT
505#else
506static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511{
512 return NULL;
513}
514#endif /* CONFIG_CFS_BANDWIDTH */
515#endif /* CONFIG_FAIR_GROUP_SCHED */
516
6aa645ea
IM
517/* Real-Time classes' related field in a runqueue: */
518struct rt_rq {
519 struct rt_prio_array active;
63489e45 520 unsigned long rt_nr_running;
052f1dc7 521#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
522 struct {
523 int curr; /* highest queued rt task prio */
398a153b 524#ifdef CONFIG_SMP
e864c499 525 int next; /* next highest */
398a153b 526#endif
e864c499 527 } highest_prio;
6f505b16 528#endif
fa85ae24 529#ifdef CONFIG_SMP
73fe6aae 530 unsigned long rt_nr_migratory;
a1ba4d8b 531 unsigned long rt_nr_total;
a22d7fc1 532 int overloaded;
917b627d 533 struct plist_head pushable_tasks;
fa85ae24 534#endif
6f505b16 535 int rt_throttled;
fa85ae24 536 u64 rt_time;
ac086bc2 537 u64 rt_runtime;
ea736ed5 538 /* Nests inside the rq lock: */
0986b11b 539 raw_spinlock_t rt_runtime_lock;
6f505b16 540
052f1dc7 541#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
542 unsigned long rt_nr_boosted;
543
6f505b16
PZ
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
6f505b16 547#endif
6aa645ea
IM
548};
549
57d885fe
GH
550#ifdef CONFIG_SMP
551
552/*
553 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
57d885fe
GH
559 */
560struct root_domain {
561 atomic_t refcount;
26a148eb 562 atomic_t rto_count;
dce840a0 563 struct rcu_head rcu;
c6c4927b
RR
564 cpumask_var_t span;
565 cpumask_var_t online;
637f5085 566
0eab9146 567 /*
637f5085
GH
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
c6c4927b 571 cpumask_var_t rto_mask;
6e0534f2 572 struct cpupri cpupri;
57d885fe
GH
573};
574
dc938520
GH
575/*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
57d885fe
GH
579static struct root_domain def_root_domain;
580
ed2d372c 581#endif /* CONFIG_SMP */
57d885fe 582
1da177e4
LT
583/*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
70b97a7f 590struct rq {
d8016491 591 /* runqueue lock: */
05fa785c 592 raw_spinlock_t lock;
1da177e4
LT
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
6aa645ea
IM
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 601 unsigned long last_load_update_tick;
46cb4b7c 602#ifdef CONFIG_NO_HZ
39c0cbe2 603 u64 nohz_stamp;
83cd4fe2 604 unsigned char nohz_balance_kick;
46cb4b7c 605#endif
61eadef6 606 int skip_clock_update;
a64692a3 607
d8016491
IM
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
6aa645ea
IM
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
6f505b16 614 struct rt_rq rt;
6f505b16 615
6aa645ea 616#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
619#endif
620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 621 struct list_head leaf_rt_rq_list;
1da177e4 622#endif
1da177e4
LT
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
34f971f6 632 struct task_struct *curr, *idle, *stop;
c9819f45 633 unsigned long next_balance;
1da177e4 634 struct mm_struct *prev_mm;
6aa645ea 635
3e51f33f 636 u64 clock;
305e6835 637 u64 clock_task;
6aa645ea 638
1da177e4
LT
639 atomic_t nr_iowait;
640
641#ifdef CONFIG_SMP
0eab9146 642 struct root_domain *rd;
1da177e4
LT
643 struct sched_domain *sd;
644
e51fd5e2
PZ
645 unsigned long cpu_power;
646
6eb57e0d 647 unsigned char idle_balance;
1da177e4 648 /* For active balancing */
3f029d3c 649 int post_schedule;
1da177e4
LT
650 int active_balance;
651 int push_cpu;
969c7921 652 struct cpu_stop_work active_balance_work;
d8016491
IM
653 /* cpu of this runqueue: */
654 int cpu;
1f11eb6a 655 int online;
1da177e4 656
e9e9250b
PZ
657 u64 rt_avg;
658 u64 age_stamp;
1b9508f6
MG
659 u64 idle_stamp;
660 u64 avg_idle;
1da177e4
LT
661#endif
662
aa483808
VP
663#ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665#endif
e6e6685a
GC
666#ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668#endif
095c0aa8
GC
669#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671#endif
aa483808 672
dce48a84
TG
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
8f4d37ec 677#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
678#ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681#endif
8f4d37ec
PZ
682 struct hrtimer hrtick_timer;
683#endif
684
1da177e4
LT
685#ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
9c2c4802
KC
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
690
691 /* sys_sched_yield() stats */
480b9434 692 unsigned int yld_count;
1da177e4
LT
693
694 /* schedule() stats */
480b9434
KC
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
1da177e4
LT
698
699 /* try_to_wake_up() stats */
480b9434
KC
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
1da177e4 702#endif
317f3941
PZ
703
704#ifdef CONFIG_SMP
fa14ff4a 705 struct llist_head wake_list;
317f3941 706#endif
1da177e4
LT
707};
708
f34e3b61 709static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 710
a64692a3 711
1e5a7405 712static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 713
0a2966b4
CL
714static inline int cpu_of(struct rq *rq)
715{
716#ifdef CONFIG_SMP
717 return rq->cpu;
718#else
719 return 0;
720#endif
721}
722
497f0ab3 723#define rcu_dereference_check_sched_domain(p) \
d11c563d 724 rcu_dereference_check((p), \
d11c563d
PM
725 lockdep_is_held(&sched_domains_mutex))
726
674311d5
NP
727/*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 729 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
48f24c4d 734#define for_each_domain(cpu, __sd) \
497f0ab3 735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
736
737#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738#define this_rq() (&__get_cpu_var(runqueues))
739#define task_rq(p) cpu_rq(task_cpu(p))
740#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 741#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 742
dc61b1d6
PZ
743#ifdef CONFIG_CGROUP_SCHED
744
745/*
746 * Return the group to which this tasks belongs.
747 *
6c6c54e1
PZ
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
dc61b1d6
PZ
752 */
753static inline struct task_group *task_group(struct task_struct *p)
754{
5091faa4 755 struct task_group *tg;
dc61b1d6
PZ
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
dc61b1d6
PZ
764}
765
766/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768{
769#ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772#endif
773
774#ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777#endif
778}
779
780#else /* CONFIG_CGROUP_SCHED */
781
782static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783static inline struct task_group *task_group(struct task_struct *p)
784{
785 return NULL;
786}
787
788#endif /* CONFIG_CGROUP_SCHED */
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 791
fe44d621 792static void update_rq_clock(struct rq *rq)
3e51f33f 793{
fe44d621 794 s64 delta;
305e6835 795
61eadef6 796 if (rq->skip_clock_update > 0)
f26f9aff 797 return;
aa483808 798
fe44d621
PZ
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
3e51f33f
PZ
802}
803
bf5c91ba
IM
804/*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807#ifdef CONFIG_SCHED_DEBUG
808# define const_debug __read_mostly
809#else
810# define const_debug static const
811#endif
812
017730c1 813/**
1fd06bb1 814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 815 * @cpu: the processor in question.
017730c1 816 *
017730c1
IM
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
89f19f04 820int runqueue_is_locked(int cpu)
017730c1 821{
05fa785c 822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
823}
824
bf5c91ba
IM
825/*
826 * Debugging: various feature bits
827 */
f00b45c1
PZ
828
829#define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
bf5c91ba 832enum {
f00b45c1 833#include "sched_features.h"
bf5c91ba
IM
834};
835
f00b45c1
PZ
836#undef SCHED_FEAT
837
838#define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
bf5c91ba 841const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
842#include "sched_features.h"
843 0;
844
845#undef SCHED_FEAT
846
847#ifdef CONFIG_SCHED_DEBUG
848#define SCHED_FEAT(name, enabled) \
849 #name ,
850
983ed7a6 851static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
852#include "sched_features.h"
853 NULL
854};
855
856#undef SCHED_FEAT
857
34f3a814 858static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 859{
f00b45c1
PZ
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 866 }
34f3a814 867 seq_puts(m, "\n");
f00b45c1 868
34f3a814 869 return 0;
f00b45c1
PZ
870}
871
872static ssize_t
873sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875{
876 char buf[64];
7740191c 877 char *cmp;
f00b45c1
PZ
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
7740191c 888 cmp = strstrip(buf);
f00b45c1 889
524429c3 890 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
7740191c 896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
42994724 908 *ppos += cnt;
f00b45c1
PZ
909
910 return cnt;
911}
912
34f3a814
LZ
913static int sched_feat_open(struct inode *inode, struct file *filp)
914{
915 return single_open(filp, sched_feat_show, NULL);
916}
917
828c0950 918static const struct file_operations sched_feat_fops = {
34f3a814
LZ
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
f00b45c1
PZ
924};
925
926static __init int sched_init_debug(void)
927{
f00b45c1
PZ
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932}
933late_initcall(sched_init_debug);
934
935#endif
936
937#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 938
b82d9fdd
PZ
939/*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
e9e9250b
PZ
945/*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
fa85ae24 953/*
9f0c1e56 954 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
955 * default: 1s
956 */
9f0c1e56 957unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 958
6892b75e
IM
959static __read_mostly int scheduler_running;
960
9f0c1e56
PZ
961/*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965int sysctl_sched_rt_runtime = 950000;
fa85ae24 966
d0b27fa7
PZ
967static inline u64 global_rt_period(void)
968{
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970}
971
972static inline u64 global_rt_runtime(void)
973{
e26873bb 974 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978}
fa85ae24 979
1da177e4 980#ifndef prepare_arch_switch
4866cde0
NP
981# define prepare_arch_switch(next) do { } while (0)
982#endif
983#ifndef finish_arch_switch
984# define finish_arch_switch(prev) do { } while (0)
985#endif
986
051a1d1a
DA
987static inline int task_current(struct rq *rq, struct task_struct *p)
988{
989 return rq->curr == p;
990}
991
70b97a7f 992static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 993{
3ca7a440
PZ
994#ifdef CONFIG_SMP
995 return p->on_cpu;
996#else
051a1d1a 997 return task_current(rq, p);
3ca7a440 998#endif
4866cde0
NP
999}
1000
3ca7a440 1001#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 1003{
3ca7a440
PZ
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
4866cde0
NP
1012}
1013
70b97a7f 1014static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 1015{
3ca7a440
PZ
1016#ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024#endif
da04c035
IM
1025#ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028#endif
8a25d5de
IM
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
05fa785c 1036 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1037}
1038
1039#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1040static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
3ca7a440 1048 next->on_cpu = 1;
4866cde0
NP
1049#endif
1050#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1051 raw_spin_unlock_irq(&rq->lock);
4866cde0 1052#else
05fa785c 1053 raw_spin_unlock(&rq->lock);
4866cde0
NP
1054#endif
1055}
1056
70b97a7f 1057static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1058{
1059#ifdef CONFIG_SMP
1060 /*
3ca7a440 1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
3ca7a440 1066 prev->on_cpu = 0;
4866cde0
NP
1067#endif
1068#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1da177e4 1070#endif
4866cde0
NP
1071}
1072#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1073
0970d299 1074/*
0122ec5b 1075 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1076 */
70b97a7f 1077static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1078 __acquires(rq->lock)
1079{
0970d299
PZ
1080 struct rq *rq;
1081
0122ec5b
PZ
1082 lockdep_assert_held(&p->pi_lock);
1083
3a5c359a 1084 for (;;) {
0970d299 1085 rq = task_rq(p);
05fa785c 1086 raw_spin_lock(&rq->lock);
65cc8e48 1087 if (likely(rq == task_rq(p)))
3a5c359a 1088 return rq;
05fa785c 1089 raw_spin_unlock(&rq->lock);
b29739f9 1090 }
b29739f9
IM
1091}
1092
1da177e4 1093/*
0122ec5b 1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1095 */
70b97a7f 1096static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1097 __acquires(p->pi_lock)
1da177e4
LT
1098 __acquires(rq->lock)
1099{
70b97a7f 1100 struct rq *rq;
1da177e4 1101
3a5c359a 1102 for (;;) {
0122ec5b 1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1104 rq = task_rq(p);
05fa785c 1105 raw_spin_lock(&rq->lock);
65cc8e48 1106 if (likely(rq == task_rq(p)))
3a5c359a 1107 return rq;
0122ec5b
PZ
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1110 }
1da177e4
LT
1111}
1112
a9957449 1113static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1114 __releases(rq->lock)
1115{
05fa785c 1116 raw_spin_unlock(&rq->lock);
b29739f9
IM
1117}
1118
0122ec5b
PZ
1119static inline void
1120task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1121 __releases(rq->lock)
0122ec5b 1122 __releases(p->pi_lock)
1da177e4 1123{
0122ec5b
PZ
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1126}
1127
1da177e4 1128/*
cc2a73b5 1129 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1130 */
a9957449 1131static struct rq *this_rq_lock(void)
1da177e4
LT
1132 __acquires(rq->lock)
1133{
70b97a7f 1134 struct rq *rq;
1da177e4
LT
1135
1136 local_irq_disable();
1137 rq = this_rq();
05fa785c 1138 raw_spin_lock(&rq->lock);
1da177e4
LT
1139
1140 return rq;
1141}
1142
8f4d37ec
PZ
1143#ifdef CONFIG_SCHED_HRTICK
1144/*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
8f4d37ec
PZ
1154
1155/*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160static inline int hrtick_enabled(struct rq *rq)
1161{
1162 if (!sched_feat(HRTICK))
1163 return 0;
ba42059f 1164 if (!cpu_active(cpu_of(rq)))
b328ca18 1165 return 0;
8f4d37ec
PZ
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167}
1168
8f4d37ec
PZ
1169static void hrtick_clear(struct rq *rq)
1170{
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173}
1174
8f4d37ec
PZ
1175/*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180{
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
05fa785c 1185 raw_spin_lock(&rq->lock);
3e51f33f 1186 update_rq_clock(rq);
8f4d37ec 1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1188 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1189
1190 return HRTIMER_NORESTART;
1191}
1192
95e904c7 1193#ifdef CONFIG_SMP
31656519
PZ
1194/*
1195 * called from hardirq (IPI) context
1196 */
1197static void __hrtick_start(void *arg)
b328ca18 1198{
31656519 1199 struct rq *rq = arg;
b328ca18 1200
05fa785c 1201 raw_spin_lock(&rq->lock);
31656519
PZ
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
05fa785c 1204 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1205}
1206
31656519
PZ
1207/*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1213{
31656519
PZ
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1216
cc584b21 1217 hrtimer_set_expires(timer, time);
31656519
PZ
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
6e275637 1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1223 rq->hrtick_csd_pending = 1;
1224 }
b328ca18
PZ
1225}
1226
1227static int
1228hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229{
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
31656519 1239 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244}
1245
fa748203 1246static __init void init_hrtick(void)
b328ca18
PZ
1247{
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249}
31656519
PZ
1250#else
1251/*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256static void hrtick_start(struct rq *rq, u64 delay)
1257{
7f1e2ca9 1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1259 HRTIMER_MODE_REL_PINNED, 0);
31656519 1260}
b328ca18 1261
006c75f1 1262static inline void init_hrtick(void)
8f4d37ec 1263{
8f4d37ec 1264}
31656519 1265#endif /* CONFIG_SMP */
8f4d37ec 1266
31656519 1267static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1268{
31656519
PZ
1269#ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
8f4d37ec 1271
31656519
PZ
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275#endif
8f4d37ec 1276
31656519
PZ
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
8f4d37ec 1279}
006c75f1 1280#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1281static inline void hrtick_clear(struct rq *rq)
1282{
1283}
1284
8f4d37ec
PZ
1285static inline void init_rq_hrtick(struct rq *rq)
1286{
1287}
1288
b328ca18
PZ
1289static inline void init_hrtick(void)
1290{
1291}
006c75f1 1292#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1293
c24d20db
IM
1294/*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301#ifdef CONFIG_SMP
1302
1303#ifndef tsk_is_polling
1304#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305#endif
1306
31656519 1307static void resched_task(struct task_struct *p)
c24d20db
IM
1308{
1309 int cpu;
1310
05fa785c 1311 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1312
5ed0cec0 1313 if (test_tsk_need_resched(p))
c24d20db
IM
1314 return;
1315
5ed0cec0 1316 set_tsk_need_resched(p);
c24d20db
IM
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326}
1327
1328static void resched_cpu(int cpu)
1329{
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
05fa785c 1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1334 return;
1335 resched_task(cpu_curr(cpu));
05fa785c 1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1337}
06d8308c
TG
1338
1339#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1340/*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348int get_nohz_timer_target(void)
1349{
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
057f3fad 1354 rcu_read_lock();
83cd4fe2 1355 for_each_domain(cpu, sd) {
057f3fad
PZ
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
83cd4fe2 1362 }
057f3fad
PZ
1363unlock:
1364 rcu_read_unlock();
83cd4fe2
VP
1365 return cpu;
1366}
06d8308c
TG
1367/*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377void wake_up_idle_cpu(int cpu)
1378{
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
5ed0cec0 1399 set_tsk_need_resched(rq->idle);
06d8308c
TG
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405}
39c0cbe2 1406
ca38062e
SS
1407static inline bool got_nohz_idle_kick(void)
1408{
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410}
1411
1412#else /* CONFIG_NO_HZ */
1413
1414static inline bool got_nohz_idle_kick(void)
1415{
1416 return false;
1417}
1418
6d6bc0ad 1419#endif /* CONFIG_NO_HZ */
06d8308c 1420
e9e9250b
PZ
1421static u64 sched_avg_period(void)
1422{
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424}
1425
1426static void sched_avg_update(struct rq *rq)
1427{
1428 s64 period = sched_avg_period();
1429
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1431 /*
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1435 */
1436 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1439 }
1440}
1441
1442static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1443{
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1446}
1447
6d6bc0ad 1448#else /* !CONFIG_SMP */
31656519 1449static void resched_task(struct task_struct *p)
c24d20db 1450{
05fa785c 1451 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1452 set_tsk_need_resched(p);
c24d20db 1453}
e9e9250b
PZ
1454
1455static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456{
1457}
da2b71ed
SS
1458
1459static void sched_avg_update(struct rq *rq)
1460{
1461}
6d6bc0ad 1462#endif /* CONFIG_SMP */
c24d20db 1463
45bf76df
IM
1464#if BITS_PER_LONG == 32
1465# define WMULT_CONST (~0UL)
1466#else
1467# define WMULT_CONST (1UL << 32)
1468#endif
1469
1470#define WMULT_SHIFT 32
1471
194081eb
IM
1472/*
1473 * Shift right and round:
1474 */
cf2ab469 1475#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1476
a7be37ac
PZ
1477/*
1478 * delta *= weight / lw
1479 */
cb1c4fc9 1480static unsigned long
45bf76df
IM
1481calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1483{
1484 u64 tmp;
1485
c8b28116
NR
1486 /*
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1490 */
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
db670dac 1495
7a232e03 1496 if (!lw->inv_weight) {
c8b28116
NR
1497 unsigned long w = scale_load_down(lw->weight);
1498
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1500 lw->inv_weight = 1;
c8b28116
NR
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
7a232e03 1503 else
c8b28116 1504 lw->inv_weight = WMULT_CONST / w;
7a232e03 1505 }
45bf76df 1506
45bf76df
IM
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
194081eb 1510 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1512 WMULT_SHIFT/2);
1513 else
cf2ab469 1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1515
ecf691da 1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1517}
1518
1091985b 1519static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1520{
1521 lw->weight += inc;
e89996ae 1522 lw->inv_weight = 0;
45bf76df
IM
1523}
1524
1091985b 1525static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1526{
1527 lw->weight -= dec;
e89996ae 1528 lw->inv_weight = 0;
45bf76df
IM
1529}
1530
2069dd75
PZ
1531static inline void update_load_set(struct load_weight *lw, unsigned long w)
1532{
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1535}
1536
2dd73a4f
PW
1537/*
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1544 */
1545
cce7ade8
PZ
1546#define WEIGHT_IDLEPRIO 3
1547#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1548
1549/*
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1554 *
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
dd41f596
IM
1560 */
1561static const int prio_to_weight[40] = {
254753dc
IM
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1570};
1571
5714d2de
IM
1572/*
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1574 *
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1578 */
dd41f596 1579static const u32 prio_to_wmult[40] = {
254753dc
IM
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1588};
2dd73a4f 1589
ef12fefa
BR
1590/* Time spent by the tasks of the cpu accounting group executing in ... */
1591enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1594
1595 CPUACCT_STAT_NSTATS,
1596};
1597
d842de87
SV
1598#ifdef CONFIG_CGROUP_CPUACCT
1599static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1600static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1602#else
1603static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1604static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1606#endif
1607
18d95a28
PZ
1608static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1609{
1610 update_load_add(&rq->load, load);
1611}
1612
1613static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1614{
1615 update_load_sub(&rq->load, load);
1616}
1617
a790de99
PT
1618#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1620typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1621
1622/*
8277434e
PT
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1625 *
1626 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1627 */
8277434e
PT
1628static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1630{
1631 struct task_group *parent, *child;
eb755805 1632 int ret;
c09595f6 1633
8277434e
PT
1634 parent = from;
1635
c09595f6 1636down:
eb755805
PZ
1637 ret = (*down)(parent, data);
1638 if (ret)
8277434e 1639 goto out;
c09595f6
PZ
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1643
1644up:
1645 continue;
1646 }
eb755805 1647 ret = (*up)(parent, data);
8277434e
PT
1648 if (ret || parent == from)
1649 goto out;
c09595f6
PZ
1650
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
8277434e 1655out:
eb755805 1656 return ret;
c09595f6
PZ
1657}
1658
8277434e
PT
1659/*
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1662 *
1663 * Caller must hold rcu_lock or sufficient equivalent.
1664 */
1665
1666static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1667{
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1669}
1670
eb755805
PZ
1671static int tg_nop(struct task_group *tg, void *data)
1672{
1673 return 0;
c09595f6 1674}
eb755805
PZ
1675#endif
1676
1677#ifdef CONFIG_SMP
f5f08f39
PZ
1678/* Used instead of source_load when we know the type == 0 */
1679static unsigned long weighted_cpuload(const int cpu)
1680{
1681 return cpu_rq(cpu)->load.weight;
1682}
1683
1684/*
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1687 *
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1690 */
1691static unsigned long source_load(int cpu, int type)
1692{
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1695
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1698
1699 return min(rq->cpu_load[type-1], total);
1700}
1701
1702/*
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1705 */
1706static unsigned long target_load(int cpu, int type)
1707{
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1710
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1713
1714 return max(rq->cpu_load[type-1], total);
1715}
1716
ae154be1
PZ
1717static unsigned long power_of(int cpu)
1718{
e51fd5e2 1719 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1720}
1721
eb755805
PZ
1722static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1723
1724static unsigned long cpu_avg_load_per_task(int cpu)
1725{
1726 struct rq *rq = cpu_rq(cpu);
af6d596f 1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1728
4cd42620 1729 if (nr_running)
e2b245f8 1730 return rq->load.weight / nr_running;
eb755805 1731
e2b245f8 1732 return 0;
eb755805
PZ
1733}
1734
8f45e2b5
GH
1735#ifdef CONFIG_PREEMPT
1736
b78bb868
PZ
1737static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738
70574a99 1739/*
8f45e2b5
GH
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
70574a99 1746 */
8f45e2b5
GH
1747static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1751{
05fa785c 1752 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1753 double_rq_lock(this_rq, busiest);
1754
1755 return 1;
1756}
1757
1758#else
1759/*
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1765 */
1766static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1770{
1771 int ret = 0;
1772
05fa785c 1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1774 if (busiest < this_rq) {
05fa785c
TG
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
70574a99
AD
1779 ret = 1;
1780 } else
05fa785c
TG
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
70574a99
AD
1783 }
1784 return ret;
1785}
1786
8f45e2b5
GH
1787#endif /* CONFIG_PREEMPT */
1788
1789/*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793{
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
05fa785c 1796 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801}
1802
70574a99
AD
1803static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805{
05fa785c 1806 raw_spin_unlock(&busiest->lock);
70574a99
AD
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808}
1e3c88bd
PZ
1809
1810/*
1811 * double_rq_lock - safely lock two runqueues
1812 *
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1815 */
1816static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1819{
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1831 }
1832 }
1e3c88bd
PZ
1833}
1834
1835/*
1836 * double_rq_unlock - safely unlock two runqueues
1837 *
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1840 */
1841static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1844{
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1850}
1851
d95f4122
MG
1852#else /* CONFIG_SMP */
1853
1854/*
1855 * double_rq_lock - safely lock two runqueues
1856 *
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1859 */
1860static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1863{
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1868}
1869
1870/*
1871 * double_rq_unlock - safely unlock two runqueues
1872 *
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1875 */
1876static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1879{
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1883}
1884
18d95a28
PZ
1885#endif
1886
74f5187a 1887static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1888static void update_sysctl(void);
acb4a848 1889static int get_update_sysctl_factor(void);
fdf3e95d 1890static void update_cpu_load(struct rq *this_rq);
dce48a84 1891
cd29fe6f
PZ
1892static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893{
1894 set_task_rq(p, cpu);
1895#ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
bfb9035c 1898 * successfully executed on another CPU. We must ensure that updates of
cd29fe6f
PZ
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903#endif
1904}
dce48a84 1905
1e3c88bd 1906static const struct sched_class rt_sched_class;
dd41f596 1907
34f971f6 1908#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1909#define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
dd41f596 1911
1e3c88bd
PZ
1912#include "sched_stats.h"
1913
c09595f6 1914static void inc_nr_running(struct rq *rq)
9c217245
IM
1915{
1916 rq->nr_running++;
9c217245
IM
1917}
1918
c09595f6 1919static void dec_nr_running(struct rq *rq)
9c217245
IM
1920{
1921 rq->nr_running--;
9c217245
IM
1922}
1923
45bf76df
IM
1924static void set_load_weight(struct task_struct *p)
1925{
f05998d4
NR
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1928
dd41f596
IM
1929 /*
1930 * SCHED_IDLE tasks get minimal weight:
1931 */
1932 if (p->policy == SCHED_IDLE) {
c8b28116 1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1934 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1935 return;
1936 }
71f8bd46 1937
c8b28116 1938 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1939 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1940}
1941
371fd7e7 1942static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1943{
a64692a3 1944 update_rq_clock(rq);
dd41f596 1945 sched_info_queued(p);
371fd7e7 1946 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1947}
1948
371fd7e7 1949static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1950{
a64692a3 1951 update_rq_clock(rq);
46ac22ba 1952 sched_info_dequeued(p);
371fd7e7 1953 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1954}
1955
1e3c88bd
PZ
1956/*
1957 * activate_task - move a task to the runqueue.
1958 */
371fd7e7 1959static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1960{
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1963
371fd7e7 1964 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1965}
1966
1967/*
1968 * deactivate_task - remove a task from the runqueue.
1969 */
371fd7e7 1970static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1971{
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1974
371fd7e7 1975 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1976}
1977
b52bfee4
VP
1978#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979
305e6835
VP
1980/*
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
305e6835 1990 */
b52bfee4
VP
1991static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992static DEFINE_PER_CPU(u64, cpu_softirq_time);
1993
1994static DEFINE_PER_CPU(u64, irq_start_time);
1995static int sched_clock_irqtime;
1996
1997void enable_sched_clock_irqtime(void)
1998{
1999 sched_clock_irqtime = 1;
2000}
2001
2002void disable_sched_clock_irqtime(void)
2003{
2004 sched_clock_irqtime = 0;
2005}
2006
8e92c201
PZ
2007#ifndef CONFIG_64BIT
2008static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2009
2010static inline void irq_time_write_begin(void)
2011{
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2014}
2015
2016static inline void irq_time_write_end(void)
2017{
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2020}
2021
2022static inline u64 irq_time_read(int cpu)
2023{
2024 u64 irq_time;
2025 unsigned seq;
2026
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2032
2033 return irq_time;
2034}
2035#else /* CONFIG_64BIT */
2036static inline void irq_time_write_begin(void)
2037{
2038}
2039
2040static inline void irq_time_write_end(void)
2041{
2042}
2043
2044static inline u64 irq_time_read(int cpu)
305e6835 2045{
305e6835
VP
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2047}
8e92c201 2048#endif /* CONFIG_64BIT */
305e6835 2049
fe44d621
PZ
2050/*
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2053 */
b52bfee4
VP
2054void account_system_vtime(struct task_struct *curr)
2055{
2056 unsigned long flags;
fe44d621 2057 s64 delta;
b52bfee4 2058 int cpu;
b52bfee4
VP
2059
2060 if (!sched_clock_irqtime)
2061 return;
2062
2063 local_irq_save(flags);
2064
b52bfee4 2065 cpu = smp_processor_id();
fe44d621
PZ
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2068
8e92c201 2069 irq_time_write_begin();
b52bfee4
VP
2070 /*
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2075 */
2076 if (hardirq_count())
fe44d621 2077 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2079 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2080
8e92c201 2081 irq_time_write_end();
b52bfee4
VP
2082 local_irq_restore(flags);
2083}
b7dadc38 2084EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2085
e6e6685a
GC
2086#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2087
2088#ifdef CONFIG_PARAVIRT
2089static inline u64 steal_ticks(u64 steal)
aa483808 2090{
e6e6685a
GC
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
fe44d621 2093
e6e6685a
GC
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2095}
2096#endif
2097
fe44d621 2098static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2099{
095c0aa8
GC
2100/*
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2103 */
2104#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106#endif
2107#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2109
2110 /*
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2114 *
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2119 *
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2124 */
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2127
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
095c0aa8
GC
2130#endif
2131#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2134
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2137
2138 if (unlikely(steal > delta))
2139 steal = delta;
2140
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2143
2144 rq->prev_steal_time_rq += steal;
2145
2146 delta -= steal;
2147 }
2148#endif
2149
fe44d621
PZ
2150 rq->clock_task += delta;
2151
095c0aa8
GC
2152#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155#endif
aa483808
VP
2156}
2157
095c0aa8 2158#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2159static int irqtime_account_hi_update(void)
2160{
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2165
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2172}
2173
2174static int irqtime_account_si_update(void)
2175{
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2180
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2187}
2188
fe44d621 2189#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2190
abb74cef
VP
2191#define sched_clock_irqtime (0)
2192
095c0aa8 2193#endif
b52bfee4 2194
1e3c88bd
PZ
2195#include "sched_idletask.c"
2196#include "sched_fair.c"
2197#include "sched_rt.c"
5091faa4 2198#include "sched_autogroup.c"
34f971f6 2199#include "sched_stoptask.c"
1e3c88bd
PZ
2200#ifdef CONFIG_SCHED_DEBUG
2201# include "sched_debug.c"
2202#endif
2203
34f971f6
PZ
2204void sched_set_stop_task(int cpu, struct task_struct *stop)
2205{
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2208
2209 if (stop) {
2210 /*
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2213 *
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2217 */
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2219
2220 stop->sched_class = &stop_sched_class;
2221 }
2222
2223 cpu_rq(cpu)->stop = stop;
2224
2225 if (old_stop) {
2226 /*
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2229 */
2230 old_stop->sched_class = &rt_sched_class;
2231 }
2232}
2233
14531189 2234/*
dd41f596 2235 * __normal_prio - return the priority that is based on the static prio
14531189 2236 */
14531189
IM
2237static inline int __normal_prio(struct task_struct *p)
2238{
dd41f596 2239 return p->static_prio;
14531189
IM
2240}
2241
b29739f9
IM
2242/*
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2248 */
36c8b586 2249static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2250{
2251 int prio;
2252
e05606d3 2253 if (task_has_rt_policy(p))
b29739f9
IM
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2258}
2259
2260/*
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2266 */
36c8b586 2267static int effective_prio(struct task_struct *p)
b29739f9
IM
2268{
2269 p->normal_prio = normal_prio(p);
2270 /*
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2274 */
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2278}
2279
1da177e4
LT
2280/**
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2283 */
36c8b586 2284inline int task_curr(const struct task_struct *p)
1da177e4
LT
2285{
2286 return cpu_curr(task_cpu(p)) == p;
2287}
2288
cb469845
SR
2289static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
da7a735e 2291 int oldprio)
cb469845
SR
2292{
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
da7a735e
PZ
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2299}
2300
1e5a7405
PZ
2301static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2302{
2303 const struct sched_class *class;
2304
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2321 */
fd2f4419 2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2323 rq->skip_clock_update = 1;
2324}
2325
1da177e4 2326#ifdef CONFIG_SMP
cc367732
IM
2327/*
2328 * Is this task likely cache-hot:
2329 */
e7693a36 2330static int
cc367732
IM
2331task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2332{
2333 s64 delta;
2334
e6c8fba7
PZ
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2337
ef8002f6
NR
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2340
f540a608
IM
2341 /*
2342 * Buddy candidates are cache hot:
2343 */
f685ceac 2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2347 return 1;
2348
6bc1665b
IM
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2353
cc367732
IM
2354 delta = now - p->se.exec_start;
2355
2356 return delta < (s64)sysctl_sched_migration_cost;
2357}
2358
dd41f596 2359void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2360{
e2912009
PZ
2361#ifdef CONFIG_SCHED_DEBUG
2362 /*
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2365 */
077614ee
PZ
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2368
2369#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2370 /*
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2373 *
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2376 *
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2379 */
0122ec5b
PZ
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382#endif
e2912009
PZ
2383#endif
2384
de1d7286 2385 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2386
0c69774e
PZ
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
a8b0ca17 2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2390 }
dd41f596
IM
2391
2392 __set_task_cpu(p, new_cpu);
c65cc870
IM
2393}
2394
969c7921 2395struct migration_arg {
36c8b586 2396 struct task_struct *task;
1da177e4 2397 int dest_cpu;
70b97a7f 2398};
1da177e4 2399
969c7921
TH
2400static int migration_cpu_stop(void *data);
2401
1da177e4
LT
2402/*
2403 * wait_task_inactive - wait for a thread to unschedule.
2404 *
85ba2d86
RM
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2411 *
1da177e4
LT
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2417 */
85ba2d86 2418unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2419{
2420 unsigned long flags;
dd41f596 2421 int running, on_rq;
85ba2d86 2422 unsigned long ncsw;
70b97a7f 2423 struct rq *rq;
1da177e4 2424
3a5c359a
AK
2425 for (;;) {
2426 /*
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2431 */
2432 rq = task_rq(p);
fa490cfd 2433
3a5c359a
AK
2434 /*
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2438 *
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2444 */
85ba2d86
RM
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
3a5c359a 2448 cpu_relax();
85ba2d86 2449 }
fa490cfd 2450
3a5c359a
AK
2451 /*
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2455 */
2456 rq = task_rq_lock(p, &flags);
27a9da65 2457 trace_sched_wait_task(p);
3a5c359a 2458 running = task_running(rq, p);
fd2f4419 2459 on_rq = p->on_rq;
85ba2d86 2460 ncsw = 0;
f31e11d8 2461 if (!match_state || p->state == match_state)
93dcf55f 2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2463 task_rq_unlock(rq, p, &flags);
fa490cfd 2464
85ba2d86
RM
2465 /*
2466 * If it changed from the expected state, bail out now.
2467 */
2468 if (unlikely(!ncsw))
2469 break;
2470
3a5c359a
AK
2471 /*
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2474 *
2475 * Oops. Go back and try again..
2476 */
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2480 }
fa490cfd 2481
3a5c359a
AK
2482 /*
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2486 *
80dd99b3 2487 * So if it was still runnable (but just not actively
3a5c359a
AK
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2490 */
2491 if (unlikely(on_rq)) {
8eb90c30
TG
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2493
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2496 continue;
2497 }
fa490cfd 2498
3a5c359a
AK
2499 /*
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2503 */
2504 break;
2505 }
85ba2d86
RM
2506
2507 return ncsw;
1da177e4
LT
2508}
2509
2510/***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2513 *
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2516 *
25985edc 2517 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2522 */
36c8b586 2523void kick_process(struct task_struct *p)
1da177e4
LT
2524{
2525 int cpu;
2526
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2532}
b43e3521 2533EXPORT_SYMBOL_GPL(kick_process);
476d139c 2534#endif /* CONFIG_SMP */
1da177e4 2535
970b13ba 2536#ifdef CONFIG_SMP
30da688e 2537/*
013fdb80 2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2539 */
5da9a0fb
PZ
2540static int select_fallback_rq(int cpu, struct task_struct *p)
2541{
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2544
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
fa17b507 2547 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb
PZ
2548 return dest_cpu;
2549
2550 /* Any allowed, online CPU? */
fa17b507 2551 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
5da9a0fb
PZ
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2554
2555 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2557 /*
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2561 */
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2565 }
2566
2567 return dest_cpu;
2568}
2569
e2912009 2570/*
013fdb80 2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2572 */
970b13ba 2573static inline
7608dec2 2574int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2575{
7608dec2 2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2577
2578 /*
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2582 *
2583 * Since this is common to all placement strategies, this lives here.
2584 *
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2587 */
fa17b507 2588 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 2589 !cpu_online(cpu)))
5da9a0fb 2590 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2591
2592 return cpu;
970b13ba 2593}
09a40af5
MG
2594
2595static void update_avg(u64 *avg, u64 sample)
2596{
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2599}
970b13ba
PZ
2600#endif
2601
d7c01d27 2602static void
b84cb5df 2603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2604{
d7c01d27 2605#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2606 struct rq *rq = this_rq();
2607
d7c01d27
PZ
2608#ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2610
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2616
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2618 rcu_read_lock();
d7c01d27
PZ
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2623 }
2624 }
057f3fad 2625 rcu_read_unlock();
d7c01d27 2626 }
f339b9dc
PZ
2627
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2630
d7c01d27
PZ
2631#endif /* CONFIG_SMP */
2632
2633 schedstat_inc(rq, ttwu_count);
9ed3811a 2634 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2635
2636 if (wake_flags & WF_SYNC)
9ed3811a 2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2638
d7c01d27
PZ
2639#endif /* CONFIG_SCHEDSTATS */
2640}
2641
2642static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2643{
9ed3811a 2644 activate_task(rq, p, en_flags);
fd2f4419 2645 p->on_rq = 1;
c2f7115e
PZ
2646
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2650}
2651
23f41eeb
PZ
2652/*
2653 * Mark the task runnable and perform wakeup-preemption.
2654 */
89363381 2655static void
23f41eeb 2656ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2657{
89363381 2658 trace_sched_wakeup(p, true);
9ed3811a
TH
2659 check_preempt_curr(rq, p, wake_flags);
2660
2661 p->state = TASK_RUNNING;
2662#ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2665
e69c6341 2666 if (rq->idle_stamp) {
9ed3811a
TH
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2669
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2675 }
2676#endif
2677}
2678
c05fbafb
PZ
2679static void
2680ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2681{
2682#ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685#endif
2686
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2689}
2690
2691/*
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2696 */
2697static int ttwu_remote(struct task_struct *p, int wake_flags)
2698{
2699 struct rq *rq;
2700 int ret = 0;
2701
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2706 }
2707 __task_rq_unlock(rq);
2708
2709 return ret;
2710}
2711
317f3941 2712#ifdef CONFIG_SMP
fa14ff4a 2713static void sched_ttwu_pending(void)
317f3941
PZ
2714{
2715 struct rq *rq = this_rq();
fa14ff4a
PZ
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
317f3941
PZ
2718
2719 raw_spin_lock(&rq->lock);
2720
fa14ff4a
PZ
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
317f3941
PZ
2724 ttwu_do_activate(rq, p, 0);
2725 }
2726
2727 raw_spin_unlock(&rq->lock);
2728}
2729
2730void scheduler_ipi(void)
2731{
ca38062e 2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
2733 return;
2734
2735 /*
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2740 *
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2743 *
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2747 */
2748 irq_enter();
fa14ff4a 2749 sched_ttwu_pending();
ca38062e
SS
2750
2751 /*
2752 * Check if someone kicked us for doing the nohz idle load balance.
2753 */
6eb57e0d
SS
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance = 1;
ca38062e 2756 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 2757 }
c5d753a5 2758 irq_exit();
317f3941
PZ
2759}
2760
2761static void ttwu_queue_remote(struct task_struct *p, int cpu)
2762{
fa14ff4a 2763 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
2764 smp_send_reschedule(cpu);
2765}
d6aa8f85
PZ
2766
2767#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2769{
2770 struct rq *rq;
2771 int ret = 0;
2772
2773 rq = __task_rq_lock(p);
2774 if (p->on_cpu) {
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776 ttwu_do_wakeup(rq, p, wake_flags);
2777 ret = 1;
2778 }
2779 __task_rq_unlock(rq);
2780
2781 return ret;
2782
2783}
2784#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785#endif /* CONFIG_SMP */
317f3941 2786
c05fbafb
PZ
2787static void ttwu_queue(struct task_struct *p, int cpu)
2788{
2789 struct rq *rq = cpu_rq(cpu);
2790
17d9f311 2791#if defined(CONFIG_SMP)
317f3941 2792 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2793 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2794 ttwu_queue_remote(p, cpu);
2795 return;
2796 }
2797#endif
2798
c05fbafb
PZ
2799 raw_spin_lock(&rq->lock);
2800 ttwu_do_activate(rq, p, 0);
2801 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2802}
2803
2804/**
1da177e4 2805 * try_to_wake_up - wake up a thread
9ed3811a 2806 * @p: the thread to be awakened
1da177e4 2807 * @state: the mask of task states that can be woken
9ed3811a 2808 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2809 *
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2815 *
9ed3811a
TH
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
1da177e4 2818 */
e4a52bcb
PZ
2819static int
2820try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2821{
1da177e4 2822 unsigned long flags;
c05fbafb 2823 int cpu, success = 0;
2398f2c6 2824
04e2f174 2825 smp_wmb();
013fdb80 2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2827 if (!(p->state & state))
1da177e4
LT
2828 goto out;
2829
c05fbafb 2830 success = 1; /* we're going to change ->state */
1da177e4 2831 cpu = task_cpu(p);
1da177e4 2832
c05fbafb
PZ
2833 if (p->on_rq && ttwu_remote(p, wake_flags))
2834 goto stat;
1da177e4 2835
1da177e4 2836#ifdef CONFIG_SMP
e9c84311 2837 /*
c05fbafb
PZ
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
e9c84311 2840 */
e4a52bcb
PZ
2841 while (p->on_cpu) {
2842#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2843 /*
d6aa8f85
PZ
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2848 * remote wakeup.
e4a52bcb 2849 */
d6aa8f85 2850 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2851 goto stat;
d6aa8f85 2852#else
e4a52bcb 2853 cpu_relax();
d6aa8f85 2854#endif
371fd7e7 2855 }
0970d299 2856 /*
e4a52bcb 2857 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2858 */
e4a52bcb 2859 smp_rmb();
1da177e4 2860
a8e4f2ea 2861 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2862 p->state = TASK_WAKING;
e7693a36 2863
e4a52bcb 2864 if (p->sched_class->task_waking)
74f8e4b2 2865 p->sched_class->task_waking(p);
efbbd05a 2866
7608dec2 2867 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2868 if (task_cpu(p) != cpu) {
2869 wake_flags |= WF_MIGRATED;
e4a52bcb 2870 set_task_cpu(p, cpu);
f339b9dc 2871 }
1da177e4 2872#endif /* CONFIG_SMP */
1da177e4 2873
c05fbafb
PZ
2874 ttwu_queue(p, cpu);
2875stat:
b84cb5df 2876 ttwu_stat(p, cpu, wake_flags);
1da177e4 2877out:
013fdb80 2878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2879
2880 return success;
2881}
2882
21aa9af0
TH
2883/**
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2886 *
2acca55e 2887 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2889 * the current task.
21aa9af0
TH
2890 */
2891static void try_to_wake_up_local(struct task_struct *p)
2892{
2893 struct rq *rq = task_rq(p);
21aa9af0
TH
2894
2895 BUG_ON(rq != this_rq());
2896 BUG_ON(p == current);
2897 lockdep_assert_held(&rq->lock);
2898
2acca55e
PZ
2899 if (!raw_spin_trylock(&p->pi_lock)) {
2900 raw_spin_unlock(&rq->lock);
2901 raw_spin_lock(&p->pi_lock);
2902 raw_spin_lock(&rq->lock);
2903 }
2904
21aa9af0 2905 if (!(p->state & TASK_NORMAL))
2acca55e 2906 goto out;
21aa9af0 2907
fd2f4419 2908 if (!p->on_rq)
d7c01d27
PZ
2909 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2910
23f41eeb 2911 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2912 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2913out:
2914 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2915}
2916
50fa610a
DH
2917/**
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2920 *
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2923 * running.
2924 *
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2927 */
7ad5b3a5 2928int wake_up_process(struct task_struct *p)
1da177e4 2929{
d9514f6c 2930 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2931}
1da177e4
LT
2932EXPORT_SYMBOL(wake_up_process);
2933
7ad5b3a5 2934int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2935{
2936 return try_to_wake_up(p, state, 0);
2937}
2938
1da177e4
LT
2939/*
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
dd41f596
IM
2942 *
2943 * __sched_fork() is basic setup used by init_idle() too:
2944 */
2945static void __sched_fork(struct task_struct *p)
2946{
fd2f4419
PZ
2947 p->on_rq = 0;
2948
2949 p->se.on_rq = 0;
dd41f596
IM
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
f6cf891c 2952 p->se.prev_sum_exec_runtime = 0;
6c594c21 2953 p->se.nr_migrations = 0;
da7a735e 2954 p->se.vruntime = 0;
fd2f4419 2955 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2956
2957#ifdef CONFIG_SCHEDSTATS
41acab88 2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2959#endif
476d139c 2960
fa717060 2961 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2962
e107be36
AK
2963#ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965#endif
dd41f596
IM
2966}
2967
2968/*
2969 * fork()/clone()-time setup:
2970 */
3e51e3ed 2971void sched_fork(struct task_struct *p)
dd41f596 2972{
0122ec5b 2973 unsigned long flags;
dd41f596
IM
2974 int cpu = get_cpu();
2975
2976 __sched_fork(p);
06b83b5f 2977 /*
0017d735 2978 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2981 */
0017d735 2982 p->state = TASK_RUNNING;
dd41f596 2983
c350a04e
MG
2984 /*
2985 * Make sure we do not leak PI boosting priority to the child.
2986 */
2987 p->prio = current->normal_prio;
2988
b9dc29e7
MG
2989 /*
2990 * Revert to default priority/policy on fork if requested.
2991 */
2992 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2993 if (task_has_rt_policy(p)) {
b9dc29e7 2994 p->policy = SCHED_NORMAL;
6c697bdf 2995 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
2999
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
6c697bdf 3002
b9dc29e7
MG
3003 /*
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3006 */
3007 p->sched_reset_on_fork = 0;
3008 }
ca94c442 3009
2ddbf952
HS
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
b29739f9 3012
cd29fe6f
PZ
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3015
86951599
PZ
3016 /*
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3020 *
3021 * Silence PROVE_RCU.
3022 */
0122ec5b 3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3024 set_task_cpu(p, cpu);
0122ec5b 3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3026
52f17b6c 3027#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3028 if (likely(sched_info_on()))
52f17b6c 3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3030#endif
3ca7a440
PZ
3031#if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
4866cde0 3033#endif
bdd4e85d 3034#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3035 /* Want to start with kernel preemption disabled. */
a1261f54 3036 task_thread_info(p)->preempt_count = 1;
1da177e4 3037#endif
806c09a7 3038#ifdef CONFIG_SMP
917b627d 3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3040#endif
917b627d 3041
476d139c 3042 put_cpu();
1da177e4
LT
3043}
3044
3045/*
3046 * wake_up_new_task - wake up a newly created task for the first time.
3047 *
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3051 */
3e51e3ed 3052void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3053{
3054 unsigned long flags;
dd41f596 3055 struct rq *rq;
fabf318e 3056
ab2515c4 3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3058#ifdef CONFIG_SMP
3059 /*
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
fabf318e 3063 */
ab2515c4 3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3065#endif
3066
ab2515c4 3067 rq = __task_rq_lock(p);
cd29fe6f 3068 activate_task(rq, p, 0);
fd2f4419 3069 p->on_rq = 1;
89363381 3070 trace_sched_wakeup_new(p, true);
a7558e01 3071 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3072#ifdef CONFIG_SMP
efbbd05a
PZ
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
9a897c5a 3075#endif
0122ec5b 3076 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3077}
3078
e107be36
AK
3079#ifdef CONFIG_PREEMPT_NOTIFIERS
3080
3081/**
80dd99b3 3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3083 * @notifier: notifier struct to register
e107be36
AK
3084 */
3085void preempt_notifier_register(struct preempt_notifier *notifier)
3086{
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3088}
3089EXPORT_SYMBOL_GPL(preempt_notifier_register);
3090
3091/**
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3093 * @notifier: notifier struct to unregister
e107be36
AK
3094 *
3095 * This is safe to call from within a preemption notifier.
3096 */
3097void preempt_notifier_unregister(struct preempt_notifier *notifier)
3098{
3099 hlist_del(&notifier->link);
3100}
3101EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3102
3103static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3104{
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3107
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3110}
3111
3112static void
3113fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3115{
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3118
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3121}
3122
6d6bc0ad 3123#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3124
3125static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3126{
3127}
3128
3129static void
3130fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3132{
3133}
3134
6d6bc0ad 3135#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3136
4866cde0
NP
3137/**
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
421cee29 3140 * @prev: the current task that is being switched out
4866cde0
NP
3141 * @next: the task we are going to switch to.
3142 *
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3146 *
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3149 */
e107be36
AK
3150static inline void
3151prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
4866cde0 3153{
fe4b04fa
PZ
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
e107be36 3156 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
fe4b04fa 3159 trace_sched_switch(prev, next);
4866cde0
NP
3160}
3161
1da177e4
LT
3162/**
3163 * finish_task_switch - clean up after a task-switch
344babaa 3164 * @rq: runqueue associated with task-switch
1da177e4
LT
3165 * @prev: the thread we just switched away from.
3166 *
4866cde0
NP
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3171 *
3172 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3173 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3176 */
a9957449 3177static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3178 __releases(rq->lock)
3179{
1da177e4 3180 struct mm_struct *mm = rq->prev_mm;
55a101f8 3181 long prev_state;
1da177e4
LT
3182
3183 rq->prev_mm = NULL;
3184
3185 /*
3186 * A task struct has one reference for the use as "current".
c394cc9f 3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
c394cc9f 3190 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3195 */
55a101f8 3196 prev_state = prev->state;
4866cde0 3197 finish_arch_switch(prev);
8381f65d
JI
3198#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 3201 perf_event_task_sched_in(prev, current);
8381f65d
JI
3202#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3205 finish_lock_switch(rq, prev);
e8fa1362 3206
e107be36 3207 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3208 if (mm)
3209 mmdrop(mm);
c394cc9f 3210 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3211 /*
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
9761eea8 3214 */
c6fd91f0 3215 kprobe_flush_task(prev);
1da177e4 3216 put_task_struct(prev);
c6fd91f0 3217 }
1da177e4
LT
3218}
3219
3f029d3c
GH
3220#ifdef CONFIG_SMP
3221
3222/* assumes rq->lock is held */
3223static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3224{
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3227}
3228
3229/* rq->lock is NOT held, but preemption is disabled */
3230static inline void post_schedule(struct rq *rq)
3231{
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3234
05fa785c 3235 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
05fa785c 3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3239
3240 rq->post_schedule = 0;
3241 }
3242}
3243
3244#else
da19ab51 3245
3f029d3c
GH
3246static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3247{
3248}
3249
3250static inline void post_schedule(struct rq *rq)
3251{
1da177e4
LT
3252}
3253
3f029d3c
GH
3254#endif
3255
1da177e4
LT
3256/**
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3259 */
36c8b586 3260asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3261 __releases(rq->lock)
3262{
70b97a7f
IM
3263 struct rq *rq = this_rq();
3264
4866cde0 3265 finish_task_switch(rq, prev);
da19ab51 3266
3f029d3c
GH
3267 /*
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3270 */
3271 post_schedule(rq);
70b97a7f 3272
4866cde0
NP
3273#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276#endif
1da177e4 3277 if (current->set_child_tid)
b488893a 3278 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3279}
3280
3281/*
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3284 */
dd41f596 3285static inline void
70b97a7f 3286context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3287 struct task_struct *next)
1da177e4 3288{
dd41f596 3289 struct mm_struct *mm, *oldmm;
1da177e4 3290
e107be36 3291 prepare_task_switch(rq, prev, next);
fe4b04fa 3292
dd41f596
IM
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
9226d125
ZA
3295 /*
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3299 */
224101ed 3300 arch_start_context_switch(prev);
9226d125 3301
31915ab4 3302 if (!mm) {
1da177e4
LT
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3308
31915ab4 3309 if (!prev->mm) {
1da177e4 3310 prev->active_mm = NULL;
1da177e4
LT
3311 rq->prev_mm = oldmm;
3312 }
3a5f5e48
IM
3313 /*
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3318 */
3319#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3321#endif
1da177e4
LT
3322
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3325
dd41f596
IM
3326 barrier();
3327 /*
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3331 */
3332 finish_task_switch(this_rq(), prev);
1da177e4
LT
3333}
3334
3335/*
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3337 *
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3341 */
3342unsigned long nr_running(void)
3343{
3344 unsigned long i, sum = 0;
3345
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3348
3349 return sum;
f711f609 3350}
1da177e4
LT
3351
3352unsigned long nr_uninterruptible(void)
f711f609 3353{
1da177e4 3354 unsigned long i, sum = 0;
f711f609 3355
0a945022 3356 for_each_possible_cpu(i)
1da177e4 3357 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3358
3359 /*
1da177e4
LT
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
f711f609 3362 */
1da177e4
LT
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
f711f609 3365
1da177e4 3366 return sum;
f711f609 3367}
f711f609 3368
1da177e4 3369unsigned long long nr_context_switches(void)
46cb4b7c 3370{
cc94abfc
SR
3371 int i;
3372 unsigned long long sum = 0;
46cb4b7c 3373
0a945022 3374 for_each_possible_cpu(i)
1da177e4 3375 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3376
1da177e4
LT
3377 return sum;
3378}
483b4ee6 3379
1da177e4
LT
3380unsigned long nr_iowait(void)
3381{
3382 unsigned long i, sum = 0;
483b4ee6 3383
0a945022 3384 for_each_possible_cpu(i)
1da177e4 3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3386
1da177e4
LT
3387 return sum;
3388}
483b4ee6 3389
8c215bd3 3390unsigned long nr_iowait_cpu(int cpu)
69d25870 3391{
8c215bd3 3392 struct rq *this = cpu_rq(cpu);
69d25870
AV
3393 return atomic_read(&this->nr_iowait);
3394}
46cb4b7c 3395
69d25870
AV
3396unsigned long this_cpu_load(void)
3397{
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3400}
e790fb0b 3401
46cb4b7c 3402
dce48a84
TG
3403/* Variables and functions for calc_load */
3404static atomic_long_t calc_load_tasks;
3405static unsigned long calc_load_update;
3406unsigned long avenrun[3];
3407EXPORT_SYMBOL(avenrun);
46cb4b7c 3408
74f5187a
PZ
3409static long calc_load_fold_active(struct rq *this_rq)
3410{
3411 long nr_active, delta = 0;
3412
3413 nr_active = this_rq->nr_running;
3414 nr_active += (long) this_rq->nr_uninterruptible;
3415
3416 if (nr_active != this_rq->calc_load_active) {
3417 delta = nr_active - this_rq->calc_load_active;
3418 this_rq->calc_load_active = nr_active;
3419 }
3420
3421 return delta;
3422}
3423
0f004f5a
PZ
3424static unsigned long
3425calc_load(unsigned long load, unsigned long exp, unsigned long active)
3426{
3427 load *= exp;
3428 load += active * (FIXED_1 - exp);
3429 load += 1UL << (FSHIFT - 1);
3430 return load >> FSHIFT;
3431}
3432
74f5187a
PZ
3433#ifdef CONFIG_NO_HZ
3434/*
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3436 *
3437 * When making the ILB scale, we should try to pull this in as well.
3438 */
3439static atomic_long_t calc_load_tasks_idle;
3440
3441static void calc_load_account_idle(struct rq *this_rq)
3442{
3443 long delta;
3444
3445 delta = calc_load_fold_active(this_rq);
3446 if (delta)
3447 atomic_long_add(delta, &calc_load_tasks_idle);
3448}
3449
3450static long calc_load_fold_idle(void)
3451{
3452 long delta = 0;
3453
3454 /*
3455 * Its got a race, we don't care...
3456 */
3457 if (atomic_long_read(&calc_load_tasks_idle))
3458 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3459
3460 return delta;
3461}
0f004f5a
PZ
3462
3463/**
3464 * fixed_power_int - compute: x^n, in O(log n) time
3465 *
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3469 *
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3476 * vector.
3477 */
3478static unsigned long
3479fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3480{
3481 unsigned long result = 1UL << frac_bits;
3482
3483 if (n) for (;;) {
3484 if (n & 1) {
3485 result *= x;
3486 result += 1UL << (frac_bits - 1);
3487 result >>= frac_bits;
3488 }
3489 n >>= 1;
3490 if (!n)
3491 break;
3492 x *= x;
3493 x += 1UL << (frac_bits - 1);
3494 x >>= frac_bits;
3495 }
3496
3497 return result;
3498}
3499
3500/*
3501 * a1 = a0 * e + a * (1 - e)
3502 *
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3506 *
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3510 *
3511 * ...
3512 *
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3516 *
3517 * [1] application of the geometric series:
3518 *
3519 * n 1 - x^(n+1)
3520 * S_n := \Sum x^i = -------------
3521 * i=0 1 - x
3522 */
3523static unsigned long
3524calc_load_n(unsigned long load, unsigned long exp,
3525 unsigned long active, unsigned int n)
3526{
3527
3528 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3529}
3530
3531/*
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3536 *
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3539 */
3540static void calc_global_nohz(unsigned long ticks)
3541{
3542 long delta, active, n;
3543
3544 if (time_before(jiffies, calc_load_update))
3545 return;
3546
3547 /*
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3551 * due to NO_HZ.
3552 */
3553 delta = calc_load_fold_idle();
3554 if (delta)
3555 atomic_long_add(delta, &calc_load_tasks);
3556
3557 /*
3558 * If we were idle for multiple load cycles, apply them.
3559 */
3560 if (ticks >= LOAD_FREQ) {
3561 n = ticks / LOAD_FREQ;
3562
3563 active = atomic_long_read(&calc_load_tasks);
3564 active = active > 0 ? active * FIXED_1 : 0;
3565
3566 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3567 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3568 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3569
3570 calc_load_update += n * LOAD_FREQ;
3571 }
3572
3573 /*
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3577 *
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3582 */
3583}
74f5187a
PZ
3584#else
3585static void calc_load_account_idle(struct rq *this_rq)
3586{
3587}
3588
3589static inline long calc_load_fold_idle(void)
3590{
3591 return 0;
3592}
0f004f5a
PZ
3593
3594static void calc_global_nohz(unsigned long ticks)
3595{
3596}
74f5187a
PZ
3597#endif
3598
2d02494f
TG
3599/**
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3604 *
3605 * These values are estimates at best, so no need for locking.
3606 */
3607void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3608{
3609 loads[0] = (avenrun[0] + offset) << shift;
3610 loads[1] = (avenrun[1] + offset) << shift;
3611 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3612}
46cb4b7c 3613
46cb4b7c 3614/*
dce48a84
TG
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
7835b98b 3617 */
0f004f5a 3618void calc_global_load(unsigned long ticks)
7835b98b 3619{
dce48a84 3620 long active;
1da177e4 3621
0f004f5a
PZ
3622 calc_global_nohz(ticks);
3623
3624 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3625 return;
1da177e4 3626
dce48a84
TG
3627 active = atomic_long_read(&calc_load_tasks);
3628 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3629
dce48a84
TG
3630 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3631 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3632 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3633
dce48a84
TG
3634 calc_load_update += LOAD_FREQ;
3635}
1da177e4 3636
dce48a84 3637/*
74f5187a
PZ
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
dce48a84
TG
3640 */
3641static void calc_load_account_active(struct rq *this_rq)
3642{
74f5187a 3643 long delta;
08c183f3 3644
74f5187a
PZ
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
783609c6 3647
74f5187a
PZ
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
dce48a84 3651 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3652
3653 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3654}
3655
fdf3e95d
VP
3656/*
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3659 *
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3664 *
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3668 *
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3678 *
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3682 */
3683#define DEGRADE_SHIFT 7
3684static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3693
3694/*
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3698 */
3699static unsigned long
3700decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3701{
3702 int j = 0;
3703
3704 if (!missed_updates)
3705 return load;
3706
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3709
3710 if (idx == 1)
3711 return load >> missed_updates;
3712
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3716
3717 missed_updates >>= 1;
3718 j++;
3719 }
3720 return load;
3721}
3722
46cb4b7c 3723/*
dd41f596 3724 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
46cb4b7c 3727 */
dd41f596 3728static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3729{
495eca49 3730 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
dd41f596 3733 int i, scale;
46cb4b7c 3734
dd41f596 3735 this_rq->nr_load_updates++;
46cb4b7c 3736
fdf3e95d
VP
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3740
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3743
dd41f596 3744 /* Update our load: */
fdf3e95d
VP
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3747 unsigned long old_load, new_load;
7d1e6a9b 3748
dd41f596 3749 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3750
dd41f596 3751 old_load = this_rq->cpu_load[i];
fdf3e95d 3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3753 new_load = this_load;
a25707f3
IM
3754 /*
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3758 */
3759 if (new_load > old_load)
fdf3e95d
VP
3760 new_load += scale - 1;
3761
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3763 }
da2b71ed
SS
3764
3765 sched_avg_update(this_rq);
fdf3e95d
VP
3766}
3767
3768static void update_cpu_load_active(struct rq *this_rq)
3769{
3770 update_cpu_load(this_rq);
46cb4b7c 3771
74f5187a 3772 calc_load_account_active(this_rq);
46cb4b7c
SS
3773}
3774
dd41f596 3775#ifdef CONFIG_SMP
8a0be9ef 3776
46cb4b7c 3777/*
38022906
PZ
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3780 */
38022906 3781void sched_exec(void)
46cb4b7c 3782{
38022906 3783 struct task_struct *p = current;
1da177e4 3784 unsigned long flags;
0017d735 3785 int dest_cpu;
46cb4b7c 3786
8f42ced9 3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
38022906 3791
8f42ced9 3792 if (likely(cpu_active(dest_cpu))) {
969c7921 3793 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3794
8f42ced9
PZ
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3797 return;
3798 }
0017d735 3799unlock:
8f42ced9 3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3801}
dd41f596 3802
1da177e4
LT
3803#endif
3804
1da177e4
LT
3805DEFINE_PER_CPU(struct kernel_stat, kstat);
3806
3807EXPORT_PER_CPU_SYMBOL(kstat);
3808
3809/*
c5f8d995 3810 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3811 * @p in case that task is currently running.
c5f8d995
HS
3812 *
3813 * Called with task_rq_lock() held on @rq.
1da177e4 3814 */
c5f8d995
HS
3815static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3816{
3817 u64 ns = 0;
3818
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
305e6835 3821 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3822 if ((s64)ns < 0)
3823 ns = 0;
3824 }
3825
3826 return ns;
3827}
3828
bb34d92f 3829unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3830{
1da177e4 3831 unsigned long flags;
41b86e9c 3832 struct rq *rq;
bb34d92f 3833 u64 ns = 0;
48f24c4d 3834
41b86e9c 3835 rq = task_rq_lock(p, &flags);
c5f8d995 3836 ns = do_task_delta_exec(p, rq);
0122ec5b 3837 task_rq_unlock(rq, p, &flags);
1508487e 3838
c5f8d995
HS
3839 return ns;
3840}
f06febc9 3841
c5f8d995
HS
3842/*
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3846 */
3847unsigned long long task_sched_runtime(struct task_struct *p)
3848{
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3852
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3855 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3856
3857 return ns;
3858}
48f24c4d 3859
1da177e4
LT
3860/*
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
1da177e4 3863 * @cputime: the cpu time spent in user space since the last update
457533a7 3864 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3865 */
457533a7
MS
3866void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
1da177e4
LT
3868{
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3871
457533a7 3872 /* Add user time to process. */
1da177e4 3873 p->utime = cputime_add(p->utime, cputime);
457533a7 3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3875 account_group_user_time(p, cputime);
1da177e4
LT
3876
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3883
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3885 /* Account for user time used */
3886 acct_update_integrals(p);
1da177e4
LT
3887}
3888
94886b84
LV
3889/*
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3893 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3894 */
457533a7
MS
3895static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
94886b84
LV
3897{
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900
3901 tmp = cputime_to_cputime64(cputime);
3902
457533a7 3903 /* Add guest time to process. */
94886b84 3904 p->utime = cputime_add(p->utime, cputime);
457533a7 3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3906 account_group_user_time(p, cputime);
94886b84
LV
3907 p->gtime = cputime_add(p->gtime, cputime);
3908
457533a7 3909 /* Add guest time to cpustat. */
ce0e7b28
RO
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3916 }
94886b84
LV
3917}
3918
70a89a66
VP
3919/*
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3925 */
3926static inline
3927void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3929{
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3931
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3936
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3940
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3943}
3944
1da177e4
LT
3945/*
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3950 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3951 */
3952void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3953 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3954{
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3956 cputime64_t *target_cputime64;
1da177e4 3957
983ed7a6 3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3959 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3960 return;
3961 }
94886b84 3962
1da177e4 3963 if (hardirq_count() - hardirq_offset)
70a89a66 3964 target_cputime64 = &cpustat->irq;
75e1056f 3965 else if (in_serving_softirq())
70a89a66 3966 target_cputime64 = &cpustat->softirq;
1da177e4 3967 else
70a89a66 3968 target_cputime64 = &cpustat->system;
ef12fefa 3969
70a89a66 3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3971}
3972
c66f08be 3973/*
1da177e4 3974 * Account for involuntary wait time.
544b4a1f 3975 * @cputime: the cpu time spent in involuntary wait
c66f08be 3976 */
79741dd3 3977void account_steal_time(cputime_t cputime)
c66f08be 3978{
79741dd3
MS
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3981
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3983}
3984
1da177e4 3985/*
79741dd3
MS
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
1da177e4 3988 */
79741dd3 3989void account_idle_time(cputime_t cputime)
1da177e4
LT
3990{
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3993 struct rq *rq = this_rq();
1da177e4 3994
79741dd3
MS
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3999}
4000
e6e6685a
GC
4001static __always_inline bool steal_account_process_tick(void)
4002{
4003#ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4006
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4009
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4012
4013 account_steal_time(st);
4014 return st;
4015 }
4016#endif
4017 return false;
4018}
4019
79741dd3
MS
4020#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4021
abb74cef
VP
4022#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4023/*
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4028 *
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4037 *
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4043 */
4044static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4046{
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4050
e6e6685a
GC
4051 if (steal_account_process_tick())
4052 return;
4053
abb74cef
VP
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4058 } else if (this_cpu_ksoftirqd() == p) {
4059 /*
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4063 */
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
abb74cef
VP
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4075 }
4076}
4077
4078static void irqtime_account_idle_ticks(int ticks)
4079{
4080 int i;
4081 struct rq *rq = this_rq();
4082
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4085}
544b4a1f 4086#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4087static void irqtime_account_idle_ticks(int ticks) {}
4088static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
544b4a1f 4090#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4091
4092/*
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4096 */
4097void account_process_tick(struct task_struct *p, int user_tick)
4098{
a42548a1 4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4100 struct rq *rq = this_rq();
4101
abb74cef
VP
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4105 }
4106
e6e6685a
GC
4107 if (steal_account_process_tick())
4108 return;
4109
79741dd3 4110 if (user_tick)
a42548a1 4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4114 one_jiffy_scaled);
4115 else
a42548a1 4116 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4117}
4118
4119/*
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4123 */
4124void account_steal_ticks(unsigned long ticks)
4125{
4126 account_steal_time(jiffies_to_cputime(ticks));
4127}
4128
4129/*
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4132 */
4133void account_idle_ticks(unsigned long ticks)
4134{
abb74cef
VP
4135
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4139 }
4140
79741dd3 4141 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4142}
4143
79741dd3
MS
4144#endif
4145
49048622
BS
4146/*
4147 * Use precise platform statistics if available:
4148 */
4149#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4150void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4151{
d99ca3b9
HS
4152 *ut = p->utime;
4153 *st = p->stime;
49048622
BS
4154}
4155
0cf55e1e 4156void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4157{
0cf55e1e
HS
4158 struct task_cputime cputime;
4159
4160 thread_group_cputime(p, &cputime);
4161
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
49048622
BS
4164}
4165#else
761b1d26
HS
4166
4167#ifndef nsecs_to_cputime
b7b20df9 4168# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4169#endif
4170
d180c5bc 4171void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4172{
d99ca3b9 4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4174
4175 /*
4176 * Use CFS's precise accounting:
4177 */
d180c5bc 4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4179
4180 if (total) {
e75e863d 4181 u64 temp = rtime;
d180c5bc 4182
e75e863d 4183 temp *= utime;
49048622 4184 do_div(temp, total);
d180c5bc
HS
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
49048622 4188
d180c5bc
HS
4189 /*
4190 * Compare with previous values, to keep monotonicity:
4191 */
761b1d26 4192 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4194
d99ca3b9
HS
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
49048622
BS
4197}
4198
0cf55e1e
HS
4199/*
4200 * Must be called with siglock held.
4201 */
4202void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4203{
0cf55e1e
HS
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
49048622 4207
0cf55e1e 4208 thread_group_cputime(p, &cputime);
49048622 4209
0cf55e1e
HS
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4212
0cf55e1e 4213 if (total) {
e75e863d 4214 u64 temp = rtime;
49048622 4215
e75e863d 4216 temp *= cputime.utime;
0cf55e1e
HS
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4221
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4225
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
49048622 4228}
49048622 4229#endif
49048622 4230
7835b98b
CL
4231/*
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
7835b98b
CL
4234 */
4235void scheduler_tick(void)
4236{
7835b98b
CL
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
dd41f596 4239 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4240
4241 sched_clock_tick();
dd41f596 4242
05fa785c 4243 raw_spin_lock(&rq->lock);
3e51f33f 4244 update_rq_clock(rq);
fdf3e95d 4245 update_cpu_load_active(rq);
fa85ae24 4246 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4247 raw_spin_unlock(&rq->lock);
7835b98b 4248
e9d2b064 4249 perf_event_task_tick();
e220d2dc 4250
e418e1c2 4251#ifdef CONFIG_SMP
6eb57e0d 4252 rq->idle_balance = idle_cpu(cpu);
dd41f596 4253 trigger_load_balance(rq, cpu);
e418e1c2 4254#endif
1da177e4
LT
4255}
4256
132380a0 4257notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4258{
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265}
1da177e4 4266
7e49fcce
SR
4267#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
43627582 4270void __kprobes add_preempt_count(int val)
1da177e4 4271{
6cd8a4bb 4272#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4273 /*
4274 * Underflow?
4275 */
9a11b49a
IM
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
6cd8a4bb 4278#endif
1da177e4 4279 preempt_count() += val;
6cd8a4bb 4280#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4281 /*
4282 * Spinlock count overflowing soon?
4283 */
33859f7f
MOS
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
6cd8a4bb
SR
4286#endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4289}
4290EXPORT_SYMBOL(add_preempt_count);
4291
43627582 4292void __kprobes sub_preempt_count(int val)
1da177e4 4293{
6cd8a4bb 4294#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4295 /*
4296 * Underflow?
4297 */
01e3eb82 4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4299 return;
1da177e4
LT
4300 /*
4301 * Is the spinlock portion underflowing?
4302 */
9a11b49a
IM
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
6cd8a4bb 4306#endif
9a11b49a 4307
6cd8a4bb
SR
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4310 preempt_count() -= val;
4311}
4312EXPORT_SYMBOL(sub_preempt_count);
4313
4314#endif
4315
4316/*
dd41f596 4317 * Print scheduling while atomic bug:
1da177e4 4318 */
dd41f596 4319static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4320{
838225b4
SS
4321 struct pt_regs *regs = get_irq_regs();
4322
3df0fc5b
PZ
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
838225b4 4325
dd41f596 4326 debug_show_held_locks(prev);
e21f5b15 4327 print_modules();
dd41f596
IM
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
838225b4
SS
4330
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
dd41f596 4335}
1da177e4 4336
dd41f596
IM
4337/*
4338 * Various schedule()-time debugging checks and statistics:
4339 */
4340static inline void schedule_debug(struct task_struct *prev)
4341{
1da177e4 4342 /*
41a2d6cf 4343 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4346 */
3f33a7ce 4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 4348 __schedule_bug(prev);
b3fbab05 4349 rcu_sleep_check();
dd41f596 4350
1da177e4
LT
4351 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4352
2d72376b 4353 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4354}
4355
6cecd084 4356static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4357{
61eadef6 4358 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4359 update_rq_clock(rq);
6cecd084 4360 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4361}
4362
dd41f596
IM
4363/*
4364 * Pick up the highest-prio task:
4365 */
4366static inline struct task_struct *
b67802ea 4367pick_next_task(struct rq *rq)
dd41f596 4368{
5522d5d5 4369 const struct sched_class *class;
dd41f596 4370 struct task_struct *p;
1da177e4
LT
4371
4372 /*
dd41f596
IM
4373 * Optimization: we know that if all tasks are in
4374 * the fair class we can call that function directly:
1da177e4 4375 */
953bfcd1 4376 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4377 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4378 if (likely(p))
4379 return p;
1da177e4
LT
4380 }
4381
34f971f6 4382 for_each_class(class) {
fb8d4724 4383 p = class->pick_next_task(rq);
dd41f596
IM
4384 if (p)
4385 return p;
dd41f596 4386 }
34f971f6
PZ
4387
4388 BUG(); /* the idle class will always have a runnable task */
dd41f596 4389}
1da177e4 4390
dd41f596 4391/*
c259e01a 4392 * __schedule() is the main scheduler function.
dd41f596 4393 */
c259e01a 4394static void __sched __schedule(void)
dd41f596
IM
4395{
4396 struct task_struct *prev, *next;
67ca7bde 4397 unsigned long *switch_count;
dd41f596 4398 struct rq *rq;
31656519 4399 int cpu;
dd41f596 4400
ff743345
PZ
4401need_resched:
4402 preempt_disable();
dd41f596
IM
4403 cpu = smp_processor_id();
4404 rq = cpu_rq(cpu);
25502a6c 4405 rcu_note_context_switch(cpu);
dd41f596 4406 prev = rq->curr;
dd41f596 4407
dd41f596 4408 schedule_debug(prev);
1da177e4 4409
31656519 4410 if (sched_feat(HRTICK))
f333fdc9 4411 hrtick_clear(rq);
8f4d37ec 4412
05fa785c 4413 raw_spin_lock_irq(&rq->lock);
1da177e4 4414
246d86b5 4415 switch_count = &prev->nivcsw;
1da177e4 4416 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4417 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4418 prev->state = TASK_RUNNING;
21aa9af0 4419 } else {
2acca55e
PZ
4420 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4421 prev->on_rq = 0;
4422
21aa9af0 4423 /*
2acca55e
PZ
4424 * If a worker went to sleep, notify and ask workqueue
4425 * whether it wants to wake up a task to maintain
4426 * concurrency.
21aa9af0
TH
4427 */
4428 if (prev->flags & PF_WQ_WORKER) {
4429 struct task_struct *to_wakeup;
4430
4431 to_wakeup = wq_worker_sleeping(prev, cpu);
4432 if (to_wakeup)
4433 try_to_wake_up_local(to_wakeup);
4434 }
21aa9af0 4435 }
dd41f596 4436 switch_count = &prev->nvcsw;
1da177e4
LT
4437 }
4438
3f029d3c 4439 pre_schedule(rq, prev);
f65eda4f 4440
dd41f596 4441 if (unlikely(!rq->nr_running))
1da177e4 4442 idle_balance(cpu, rq);
1da177e4 4443
df1c99d4 4444 put_prev_task(rq, prev);
b67802ea 4445 next = pick_next_task(rq);
f26f9aff
MG
4446 clear_tsk_need_resched(prev);
4447 rq->skip_clock_update = 0;
1da177e4 4448
1da177e4 4449 if (likely(prev != next)) {
1da177e4
LT
4450 rq->nr_switches++;
4451 rq->curr = next;
4452 ++*switch_count;
4453
dd41f596 4454 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4455 /*
246d86b5
ON
4456 * The context switch have flipped the stack from under us
4457 * and restored the local variables which were saved when
4458 * this task called schedule() in the past. prev == current
4459 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4460 */
4461 cpu = smp_processor_id();
4462 rq = cpu_rq(cpu);
1da177e4 4463 } else
05fa785c 4464 raw_spin_unlock_irq(&rq->lock);
1da177e4 4465
3f029d3c 4466 post_schedule(rq);
1da177e4 4467
1da177e4 4468 preempt_enable_no_resched();
ff743345 4469 if (need_resched())
1da177e4
LT
4470 goto need_resched;
4471}
c259e01a 4472
9c40cef2
TG
4473static inline void sched_submit_work(struct task_struct *tsk)
4474{
4475 if (!tsk->state)
4476 return;
4477 /*
4478 * If we are going to sleep and we have plugged IO queued,
4479 * make sure to submit it to avoid deadlocks.
4480 */
4481 if (blk_needs_flush_plug(tsk))
4482 blk_schedule_flush_plug(tsk);
4483}
4484
6ebbe7a0 4485asmlinkage void __sched schedule(void)
c259e01a 4486{
9c40cef2
TG
4487 struct task_struct *tsk = current;
4488
4489 sched_submit_work(tsk);
c259e01a
TG
4490 __schedule();
4491}
1da177e4
LT
4492EXPORT_SYMBOL(schedule);
4493
c08f7829 4494#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4495
c6eb3dda
PZ
4496static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4497{
c6eb3dda 4498 if (lock->owner != owner)
307bf980 4499 return false;
0d66bf6d
PZ
4500
4501 /*
c6eb3dda
PZ
4502 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4503 * lock->owner still matches owner, if that fails, owner might
4504 * point to free()d memory, if it still matches, the rcu_read_lock()
4505 * ensures the memory stays valid.
0d66bf6d 4506 */
c6eb3dda 4507 barrier();
0d66bf6d 4508
307bf980 4509 return owner->on_cpu;
c6eb3dda 4510}
0d66bf6d 4511
c6eb3dda
PZ
4512/*
4513 * Look out! "owner" is an entirely speculative pointer
4514 * access and not reliable.
4515 */
4516int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4517{
4518 if (!sched_feat(OWNER_SPIN))
4519 return 0;
0d66bf6d 4520
307bf980 4521 rcu_read_lock();
c6eb3dda
PZ
4522 while (owner_running(lock, owner)) {
4523 if (need_resched())
307bf980 4524 break;
0d66bf6d 4525
335d7afb 4526 arch_mutex_cpu_relax();
0d66bf6d 4527 }
307bf980 4528 rcu_read_unlock();
4b402210 4529
c6eb3dda 4530 /*
307bf980
TG
4531 * We break out the loop above on need_resched() and when the
4532 * owner changed, which is a sign for heavy contention. Return
4533 * success only when lock->owner is NULL.
c6eb3dda 4534 */
307bf980 4535 return lock->owner == NULL;
0d66bf6d
PZ
4536}
4537#endif
4538
1da177e4
LT
4539#ifdef CONFIG_PREEMPT
4540/*
2ed6e34f 4541 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4542 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4543 * occur there and call schedule directly.
4544 */
d1f74e20 4545asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4546{
4547 struct thread_info *ti = current_thread_info();
6478d880 4548
1da177e4
LT
4549 /*
4550 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4551 * we do not want to preempt the current task. Just return..
1da177e4 4552 */
beed33a8 4553 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4554 return;
4555
3a5c359a 4556 do {
d1f74e20 4557 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 4558 __schedule();
d1f74e20 4559 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4560
3a5c359a
AK
4561 /*
4562 * Check again in case we missed a preemption opportunity
4563 * between schedule and now.
4564 */
4565 barrier();
5ed0cec0 4566 } while (need_resched());
1da177e4 4567}
1da177e4
LT
4568EXPORT_SYMBOL(preempt_schedule);
4569
4570/*
2ed6e34f 4571 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4572 * off of irq context.
4573 * Note, that this is called and return with irqs disabled. This will
4574 * protect us against recursive calling from irq.
4575 */
4576asmlinkage void __sched preempt_schedule_irq(void)
4577{
4578 struct thread_info *ti = current_thread_info();
6478d880 4579
2ed6e34f 4580 /* Catch callers which need to be fixed */
1da177e4
LT
4581 BUG_ON(ti->preempt_count || !irqs_disabled());
4582
3a5c359a
AK
4583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4585 local_irq_enable();
c259e01a 4586 __schedule();
3a5c359a 4587 local_irq_disable();
3a5c359a 4588 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4589
3a5c359a
AK
4590 /*
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4593 */
4594 barrier();
5ed0cec0 4595 } while (need_resched());
1da177e4
LT
4596}
4597
4598#endif /* CONFIG_PREEMPT */
4599
63859d4f 4600int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4601 void *key)
1da177e4 4602{
63859d4f 4603 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4604}
1da177e4
LT
4605EXPORT_SYMBOL(default_wake_function);
4606
4607/*
41a2d6cf
IM
4608 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4609 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4610 * number) then we wake all the non-exclusive tasks and one exclusive task.
4611 *
4612 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4613 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4614 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4615 */
78ddb08f 4616static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4617 int nr_exclusive, int wake_flags, void *key)
1da177e4 4618{
2e45874c 4619 wait_queue_t *curr, *next;
1da177e4 4620
2e45874c 4621 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4622 unsigned flags = curr->flags;
4623
63859d4f 4624 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4625 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4626 break;
4627 }
4628}
4629
4630/**
4631 * __wake_up - wake up threads blocked on a waitqueue.
4632 * @q: the waitqueue
4633 * @mode: which threads
4634 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4635 * @key: is directly passed to the wakeup function
50fa610a
DH
4636 *
4637 * It may be assumed that this function implies a write memory barrier before
4638 * changing the task state if and only if any tasks are woken up.
1da177e4 4639 */
7ad5b3a5 4640void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4641 int nr_exclusive, void *key)
1da177e4
LT
4642{
4643 unsigned long flags;
4644
4645 spin_lock_irqsave(&q->lock, flags);
4646 __wake_up_common(q, mode, nr_exclusive, 0, key);
4647 spin_unlock_irqrestore(&q->lock, flags);
4648}
1da177e4
LT
4649EXPORT_SYMBOL(__wake_up);
4650
4651/*
4652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4653 */
7ad5b3a5 4654void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4655{
4656 __wake_up_common(q, mode, 1, 0, NULL);
4657}
22c43c81 4658EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4659
4ede816a
DL
4660void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4661{
4662 __wake_up_common(q, mode, 1, 0, key);
4663}
bf294b41 4664EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4665
1da177e4 4666/**
4ede816a 4667 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4668 * @q: the waitqueue
4669 * @mode: which threads
4670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4671 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4672 *
4673 * The sync wakeup differs that the waker knows that it will schedule
4674 * away soon, so while the target thread will be woken up, it will not
4675 * be migrated to another CPU - ie. the two threads are 'synchronized'
4676 * with each other. This can prevent needless bouncing between CPUs.
4677 *
4678 * On UP it can prevent extra preemption.
50fa610a
DH
4679 *
4680 * It may be assumed that this function implies a write memory barrier before
4681 * changing the task state if and only if any tasks are woken up.
1da177e4 4682 */
4ede816a
DL
4683void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4684 int nr_exclusive, void *key)
1da177e4
LT
4685{
4686 unsigned long flags;
7d478721 4687 int wake_flags = WF_SYNC;
1da177e4
LT
4688
4689 if (unlikely(!q))
4690 return;
4691
4692 if (unlikely(!nr_exclusive))
7d478721 4693 wake_flags = 0;
1da177e4
LT
4694
4695 spin_lock_irqsave(&q->lock, flags);
7d478721 4696 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4697 spin_unlock_irqrestore(&q->lock, flags);
4698}
4ede816a
DL
4699EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4700
4701/*
4702 * __wake_up_sync - see __wake_up_sync_key()
4703 */
4704void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4705{
4706 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4707}
1da177e4
LT
4708EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4709
65eb3dc6
KD
4710/**
4711 * complete: - signals a single thread waiting on this completion
4712 * @x: holds the state of this particular completion
4713 *
4714 * This will wake up a single thread waiting on this completion. Threads will be
4715 * awakened in the same order in which they were queued.
4716 *
4717 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4718 *
4719 * It may be assumed that this function implies a write memory barrier before
4720 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4721 */
b15136e9 4722void complete(struct completion *x)
1da177e4
LT
4723{
4724 unsigned long flags;
4725
4726 spin_lock_irqsave(&x->wait.lock, flags);
4727 x->done++;
d9514f6c 4728 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4729 spin_unlock_irqrestore(&x->wait.lock, flags);
4730}
4731EXPORT_SYMBOL(complete);
4732
65eb3dc6
KD
4733/**
4734 * complete_all: - signals all threads waiting on this completion
4735 * @x: holds the state of this particular completion
4736 *
4737 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4738 *
4739 * It may be assumed that this function implies a write memory barrier before
4740 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4741 */
b15136e9 4742void complete_all(struct completion *x)
1da177e4
LT
4743{
4744 unsigned long flags;
4745
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
d9514f6c 4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4750}
4751EXPORT_SYMBOL(complete_all);
4752
8cbbe86d
AK
4753static inline long __sched
4754do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4755{
1da177e4
LT
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4758
a93d2f17 4759 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4760 do {
94d3d824 4761 if (signal_pending_state(state, current)) {
ea71a546
ON
4762 timeout = -ERESTARTSYS;
4763 break;
8cbbe86d
AK
4764 }
4765 __set_current_state(state);
1da177e4
LT
4766 spin_unlock_irq(&x->wait.lock);
4767 timeout = schedule_timeout(timeout);
4768 spin_lock_irq(&x->wait.lock);
ea71a546 4769 } while (!x->done && timeout);
1da177e4 4770 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4771 if (!x->done)
4772 return timeout;
1da177e4
LT
4773 }
4774 x->done--;
ea71a546 4775 return timeout ?: 1;
1da177e4 4776}
1da177e4 4777
8cbbe86d
AK
4778static long __sched
4779wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4780{
1da177e4
LT
4781 might_sleep();
4782
4783 spin_lock_irq(&x->wait.lock);
8cbbe86d 4784 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4785 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4786 return timeout;
4787}
1da177e4 4788
65eb3dc6
KD
4789/**
4790 * wait_for_completion: - waits for completion of a task
4791 * @x: holds the state of this particular completion
4792 *
4793 * This waits to be signaled for completion of a specific task. It is NOT
4794 * interruptible and there is no timeout.
4795 *
4796 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4797 * and interrupt capability. Also see complete().
4798 */
b15136e9 4799void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4800{
4801 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4802}
8cbbe86d 4803EXPORT_SYMBOL(wait_for_completion);
1da177e4 4804
65eb3dc6
KD
4805/**
4806 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4807 * @x: holds the state of this particular completion
4808 * @timeout: timeout value in jiffies
4809 *
4810 * This waits for either a completion of a specific task to be signaled or for a
4811 * specified timeout to expire. The timeout is in jiffies. It is not
4812 * interruptible.
4813 */
b15136e9 4814unsigned long __sched
8cbbe86d 4815wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4816{
8cbbe86d 4817 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4818}
8cbbe86d 4819EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4820
65eb3dc6
KD
4821/**
4822 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4823 * @x: holds the state of this particular completion
4824 *
4825 * This waits for completion of a specific task to be signaled. It is
4826 * interruptible.
4827 */
8cbbe86d 4828int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4829{
51e97990
AK
4830 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4831 if (t == -ERESTARTSYS)
4832 return t;
4833 return 0;
0fec171c 4834}
8cbbe86d 4835EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4836
65eb3dc6
KD
4837/**
4838 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4839 * @x: holds the state of this particular completion
4840 * @timeout: timeout value in jiffies
4841 *
4842 * This waits for either a completion of a specific task to be signaled or for a
4843 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4844 */
6bf41237 4845long __sched
8cbbe86d
AK
4846wait_for_completion_interruptible_timeout(struct completion *x,
4847 unsigned long timeout)
0fec171c 4848{
8cbbe86d 4849 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4850}
8cbbe86d 4851EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4852
65eb3dc6
KD
4853/**
4854 * wait_for_completion_killable: - waits for completion of a task (killable)
4855 * @x: holds the state of this particular completion
4856 *
4857 * This waits to be signaled for completion of a specific task. It can be
4858 * interrupted by a kill signal.
4859 */
009e577e
MW
4860int __sched wait_for_completion_killable(struct completion *x)
4861{
4862 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4863 if (t == -ERESTARTSYS)
4864 return t;
4865 return 0;
4866}
4867EXPORT_SYMBOL(wait_for_completion_killable);
4868
0aa12fb4
SW
4869/**
4870 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4871 * @x: holds the state of this particular completion
4872 * @timeout: timeout value in jiffies
4873 *
4874 * This waits for either a completion of a specific task to be
4875 * signaled or for a specified timeout to expire. It can be
4876 * interrupted by a kill signal. The timeout is in jiffies.
4877 */
6bf41237 4878long __sched
0aa12fb4
SW
4879wait_for_completion_killable_timeout(struct completion *x,
4880 unsigned long timeout)
4881{
4882 return wait_for_common(x, timeout, TASK_KILLABLE);
4883}
4884EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4885
be4de352
DC
4886/**
4887 * try_wait_for_completion - try to decrement a completion without blocking
4888 * @x: completion structure
4889 *
4890 * Returns: 0 if a decrement cannot be done without blocking
4891 * 1 if a decrement succeeded.
4892 *
4893 * If a completion is being used as a counting completion,
4894 * attempt to decrement the counter without blocking. This
4895 * enables us to avoid waiting if the resource the completion
4896 * is protecting is not available.
4897 */
4898bool try_wait_for_completion(struct completion *x)
4899{
7539a3b3 4900 unsigned long flags;
be4de352
DC
4901 int ret = 1;
4902
7539a3b3 4903 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4904 if (!x->done)
4905 ret = 0;
4906 else
4907 x->done--;
7539a3b3 4908 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4909 return ret;
4910}
4911EXPORT_SYMBOL(try_wait_for_completion);
4912
4913/**
4914 * completion_done - Test to see if a completion has any waiters
4915 * @x: completion structure
4916 *
4917 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4918 * 1 if there are no waiters.
4919 *
4920 */
4921bool completion_done(struct completion *x)
4922{
7539a3b3 4923 unsigned long flags;
be4de352
DC
4924 int ret = 1;
4925
7539a3b3 4926 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4927 if (!x->done)
4928 ret = 0;
7539a3b3 4929 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4930 return ret;
4931}
4932EXPORT_SYMBOL(completion_done);
4933
8cbbe86d
AK
4934static long __sched
4935sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4936{
0fec171c
IM
4937 unsigned long flags;
4938 wait_queue_t wait;
4939
4940 init_waitqueue_entry(&wait, current);
1da177e4 4941
8cbbe86d 4942 __set_current_state(state);
1da177e4 4943
8cbbe86d
AK
4944 spin_lock_irqsave(&q->lock, flags);
4945 __add_wait_queue(q, &wait);
4946 spin_unlock(&q->lock);
4947 timeout = schedule_timeout(timeout);
4948 spin_lock_irq(&q->lock);
4949 __remove_wait_queue(q, &wait);
4950 spin_unlock_irqrestore(&q->lock, flags);
4951
4952 return timeout;
4953}
4954
4955void __sched interruptible_sleep_on(wait_queue_head_t *q)
4956{
4957 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4958}
1da177e4
LT
4959EXPORT_SYMBOL(interruptible_sleep_on);
4960
0fec171c 4961long __sched
95cdf3b7 4962interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4963{
8cbbe86d 4964 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4965}
1da177e4
LT
4966EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4967
0fec171c 4968void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4969{
8cbbe86d 4970 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4971}
1da177e4
LT
4972EXPORT_SYMBOL(sleep_on);
4973
0fec171c 4974long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4975{
8cbbe86d 4976 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4977}
1da177e4
LT
4978EXPORT_SYMBOL(sleep_on_timeout);
4979
b29739f9
IM
4980#ifdef CONFIG_RT_MUTEXES
4981
4982/*
4983 * rt_mutex_setprio - set the current priority of a task
4984 * @p: task
4985 * @prio: prio value (kernel-internal form)
4986 *
4987 * This function changes the 'effective' priority of a task. It does
4988 * not touch ->normal_prio like __setscheduler().
4989 *
4990 * Used by the rt_mutex code to implement priority inheritance logic.
4991 */
36c8b586 4992void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4993{
83b699ed 4994 int oldprio, on_rq, running;
70b97a7f 4995 struct rq *rq;
83ab0aa0 4996 const struct sched_class *prev_class;
b29739f9
IM
4997
4998 BUG_ON(prio < 0 || prio > MAX_PRIO);
4999
0122ec5b 5000 rq = __task_rq_lock(p);
b29739f9 5001
a8027073 5002 trace_sched_pi_setprio(p, prio);
d5f9f942 5003 oldprio = p->prio;
83ab0aa0 5004 prev_class = p->sched_class;
fd2f4419 5005 on_rq = p->on_rq;
051a1d1a 5006 running = task_current(rq, p);
0e1f3483 5007 if (on_rq)
69be72c1 5008 dequeue_task(rq, p, 0);
0e1f3483
HS
5009 if (running)
5010 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5011
5012 if (rt_prio(prio))
5013 p->sched_class = &rt_sched_class;
5014 else
5015 p->sched_class = &fair_sched_class;
5016
b29739f9
IM
5017 p->prio = prio;
5018
0e1f3483
HS
5019 if (running)
5020 p->sched_class->set_curr_task(rq);
da7a735e 5021 if (on_rq)
371fd7e7 5022 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5023
da7a735e 5024 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5025 __task_rq_unlock(rq);
b29739f9
IM
5026}
5027
5028#endif
5029
36c8b586 5030void set_user_nice(struct task_struct *p, long nice)
1da177e4 5031{
dd41f596 5032 int old_prio, delta, on_rq;
1da177e4 5033 unsigned long flags;
70b97a7f 5034 struct rq *rq;
1da177e4
LT
5035
5036 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5037 return;
5038 /*
5039 * We have to be careful, if called from sys_setpriority(),
5040 * the task might be in the middle of scheduling on another CPU.
5041 */
5042 rq = task_rq_lock(p, &flags);
5043 /*
5044 * The RT priorities are set via sched_setscheduler(), but we still
5045 * allow the 'normal' nice value to be set - but as expected
5046 * it wont have any effect on scheduling until the task is
dd41f596 5047 * SCHED_FIFO/SCHED_RR:
1da177e4 5048 */
e05606d3 5049 if (task_has_rt_policy(p)) {
1da177e4
LT
5050 p->static_prio = NICE_TO_PRIO(nice);
5051 goto out_unlock;
5052 }
fd2f4419 5053 on_rq = p->on_rq;
c09595f6 5054 if (on_rq)
69be72c1 5055 dequeue_task(rq, p, 0);
1da177e4 5056
1da177e4 5057 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5058 set_load_weight(p);
b29739f9
IM
5059 old_prio = p->prio;
5060 p->prio = effective_prio(p);
5061 delta = p->prio - old_prio;
1da177e4 5062
dd41f596 5063 if (on_rq) {
371fd7e7 5064 enqueue_task(rq, p, 0);
1da177e4 5065 /*
d5f9f942
AM
5066 * If the task increased its priority or is running and
5067 * lowered its priority, then reschedule its CPU:
1da177e4 5068 */
d5f9f942 5069 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5070 resched_task(rq->curr);
5071 }
5072out_unlock:
0122ec5b 5073 task_rq_unlock(rq, p, &flags);
1da177e4 5074}
1da177e4
LT
5075EXPORT_SYMBOL(set_user_nice);
5076
e43379f1
MM
5077/*
5078 * can_nice - check if a task can reduce its nice value
5079 * @p: task
5080 * @nice: nice value
5081 */
36c8b586 5082int can_nice(const struct task_struct *p, const int nice)
e43379f1 5083{
024f4747
MM
5084 /* convert nice value [19,-20] to rlimit style value [1,40] */
5085 int nice_rlim = 20 - nice;
48f24c4d 5086
78d7d407 5087 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5088 capable(CAP_SYS_NICE));
5089}
5090
1da177e4
LT
5091#ifdef __ARCH_WANT_SYS_NICE
5092
5093/*
5094 * sys_nice - change the priority of the current process.
5095 * @increment: priority increment
5096 *
5097 * sys_setpriority is a more generic, but much slower function that
5098 * does similar things.
5099 */
5add95d4 5100SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5101{
48f24c4d 5102 long nice, retval;
1da177e4
LT
5103
5104 /*
5105 * Setpriority might change our priority at the same moment.
5106 * We don't have to worry. Conceptually one call occurs first
5107 * and we have a single winner.
5108 */
e43379f1
MM
5109 if (increment < -40)
5110 increment = -40;
1da177e4
LT
5111 if (increment > 40)
5112 increment = 40;
5113
2b8f836f 5114 nice = TASK_NICE(current) + increment;
1da177e4
LT
5115 if (nice < -20)
5116 nice = -20;
5117 if (nice > 19)
5118 nice = 19;
5119
e43379f1
MM
5120 if (increment < 0 && !can_nice(current, nice))
5121 return -EPERM;
5122
1da177e4
LT
5123 retval = security_task_setnice(current, nice);
5124 if (retval)
5125 return retval;
5126
5127 set_user_nice(current, nice);
5128 return 0;
5129}
5130
5131#endif
5132
5133/**
5134 * task_prio - return the priority value of a given task.
5135 * @p: the task in question.
5136 *
5137 * This is the priority value as seen by users in /proc.
5138 * RT tasks are offset by -200. Normal tasks are centered
5139 * around 0, value goes from -16 to +15.
5140 */
36c8b586 5141int task_prio(const struct task_struct *p)
1da177e4
LT
5142{
5143 return p->prio - MAX_RT_PRIO;
5144}
5145
5146/**
5147 * task_nice - return the nice value of a given task.
5148 * @p: the task in question.
5149 */
36c8b586 5150int task_nice(const struct task_struct *p)
1da177e4
LT
5151{
5152 return TASK_NICE(p);
5153}
150d8bed 5154EXPORT_SYMBOL(task_nice);
1da177e4
LT
5155
5156/**
5157 * idle_cpu - is a given cpu idle currently?
5158 * @cpu: the processor in question.
5159 */
5160int idle_cpu(int cpu)
5161{
908a3283
TG
5162 struct rq *rq = cpu_rq(cpu);
5163
5164 if (rq->curr != rq->idle)
5165 return 0;
5166
5167 if (rq->nr_running)
5168 return 0;
5169
5170#ifdef CONFIG_SMP
5171 if (!llist_empty(&rq->wake_list))
5172 return 0;
5173#endif
5174
5175 return 1;
1da177e4
LT
5176}
5177
1da177e4
LT
5178/**
5179 * idle_task - return the idle task for a given cpu.
5180 * @cpu: the processor in question.
5181 */
36c8b586 5182struct task_struct *idle_task(int cpu)
1da177e4
LT
5183{
5184 return cpu_rq(cpu)->idle;
5185}
5186
5187/**
5188 * find_process_by_pid - find a process with a matching PID value.
5189 * @pid: the pid in question.
5190 */
a9957449 5191static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5192{
228ebcbe 5193 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5194}
5195
5196/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5197static void
5198__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5199{
1da177e4
LT
5200 p->policy = policy;
5201 p->rt_priority = prio;
b29739f9
IM
5202 p->normal_prio = normal_prio(p);
5203 /* we are holding p->pi_lock already */
5204 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5205 if (rt_prio(p->prio))
5206 p->sched_class = &rt_sched_class;
5207 else
5208 p->sched_class = &fair_sched_class;
2dd73a4f 5209 set_load_weight(p);
1da177e4
LT
5210}
5211
c69e8d9c
DH
5212/*
5213 * check the target process has a UID that matches the current process's
5214 */
5215static bool check_same_owner(struct task_struct *p)
5216{
5217 const struct cred *cred = current_cred(), *pcred;
5218 bool match;
5219
5220 rcu_read_lock();
5221 pcred = __task_cred(p);
b0e77598
SH
5222 if (cred->user->user_ns == pcred->user->user_ns)
5223 match = (cred->euid == pcred->euid ||
5224 cred->euid == pcred->uid);
5225 else
5226 match = false;
c69e8d9c
DH
5227 rcu_read_unlock();
5228 return match;
5229}
5230
961ccddd 5231static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5232 const struct sched_param *param, bool user)
1da177e4 5233{
83b699ed 5234 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5235 unsigned long flags;
83ab0aa0 5236 const struct sched_class *prev_class;
70b97a7f 5237 struct rq *rq;
ca94c442 5238 int reset_on_fork;
1da177e4 5239
66e5393a
SR
5240 /* may grab non-irq protected spin_locks */
5241 BUG_ON(in_interrupt());
1da177e4
LT
5242recheck:
5243 /* double check policy once rq lock held */
ca94c442
LP
5244 if (policy < 0) {
5245 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5246 policy = oldpolicy = p->policy;
ca94c442
LP
5247 } else {
5248 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5249 policy &= ~SCHED_RESET_ON_FORK;
5250
5251 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5253 policy != SCHED_IDLE)
5254 return -EINVAL;
5255 }
5256
1da177e4
LT
5257 /*
5258 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5260 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5261 */
5262 if (param->sched_priority < 0 ||
95cdf3b7 5263 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5264 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5265 return -EINVAL;
e05606d3 5266 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5267 return -EINVAL;
5268
37e4ab3f
OC
5269 /*
5270 * Allow unprivileged RT tasks to decrease priority:
5271 */
961ccddd 5272 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5273 if (rt_policy(policy)) {
a44702e8
ON
5274 unsigned long rlim_rtprio =
5275 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5276
5277 /* can't set/change the rt policy */
5278 if (policy != p->policy && !rlim_rtprio)
5279 return -EPERM;
5280
5281 /* can't increase priority */
5282 if (param->sched_priority > p->rt_priority &&
5283 param->sched_priority > rlim_rtprio)
5284 return -EPERM;
5285 }
c02aa73b 5286
dd41f596 5287 /*
c02aa73b
DH
5288 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5289 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5290 */
c02aa73b
DH
5291 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5292 if (!can_nice(p, TASK_NICE(p)))
5293 return -EPERM;
5294 }
5fe1d75f 5295
37e4ab3f 5296 /* can't change other user's priorities */
c69e8d9c 5297 if (!check_same_owner(p))
37e4ab3f 5298 return -EPERM;
ca94c442
LP
5299
5300 /* Normal users shall not reset the sched_reset_on_fork flag */
5301 if (p->sched_reset_on_fork && !reset_on_fork)
5302 return -EPERM;
37e4ab3f 5303 }
1da177e4 5304
725aad24 5305 if (user) {
b0ae1981 5306 retval = security_task_setscheduler(p);
725aad24
JF
5307 if (retval)
5308 return retval;
5309 }
5310
b29739f9
IM
5311 /*
5312 * make sure no PI-waiters arrive (or leave) while we are
5313 * changing the priority of the task:
0122ec5b 5314 *
25985edc 5315 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5316 * runqueue lock must be held.
5317 */
0122ec5b 5318 rq = task_rq_lock(p, &flags);
dc61b1d6 5319
34f971f6
PZ
5320 /*
5321 * Changing the policy of the stop threads its a very bad idea
5322 */
5323 if (p == rq->stop) {
0122ec5b 5324 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5325 return -EINVAL;
5326 }
5327
a51e9198
DF
5328 /*
5329 * If not changing anything there's no need to proceed further:
5330 */
5331 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5332 param->sched_priority == p->rt_priority))) {
5333
5334 __task_rq_unlock(rq);
5335 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5336 return 0;
5337 }
5338
dc61b1d6
PZ
5339#ifdef CONFIG_RT_GROUP_SCHED
5340 if (user) {
5341 /*
5342 * Do not allow realtime tasks into groups that have no runtime
5343 * assigned.
5344 */
5345 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5346 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5347 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5348 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5349 return -EPERM;
5350 }
5351 }
5352#endif
5353
1da177e4
LT
5354 /* recheck policy now with rq lock held */
5355 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5356 policy = oldpolicy = -1;
0122ec5b 5357 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5358 goto recheck;
5359 }
fd2f4419 5360 on_rq = p->on_rq;
051a1d1a 5361 running = task_current(rq, p);
0e1f3483 5362 if (on_rq)
2e1cb74a 5363 deactivate_task(rq, p, 0);
0e1f3483
HS
5364 if (running)
5365 p->sched_class->put_prev_task(rq, p);
f6b53205 5366
ca94c442
LP
5367 p->sched_reset_on_fork = reset_on_fork;
5368
1da177e4 5369 oldprio = p->prio;
83ab0aa0 5370 prev_class = p->sched_class;
dd41f596 5371 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5372
0e1f3483
HS
5373 if (running)
5374 p->sched_class->set_curr_task(rq);
da7a735e 5375 if (on_rq)
dd41f596 5376 activate_task(rq, p, 0);
cb469845 5377
da7a735e 5378 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5379 task_rq_unlock(rq, p, &flags);
b29739f9 5380
95e02ca9
TG
5381 rt_mutex_adjust_pi(p);
5382
1da177e4
LT
5383 return 0;
5384}
961ccddd
RR
5385
5386/**
5387 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5388 * @p: the task in question.
5389 * @policy: new policy.
5390 * @param: structure containing the new RT priority.
5391 *
5392 * NOTE that the task may be already dead.
5393 */
5394int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5395 const struct sched_param *param)
961ccddd
RR
5396{
5397 return __sched_setscheduler(p, policy, param, true);
5398}
1da177e4
LT
5399EXPORT_SYMBOL_GPL(sched_setscheduler);
5400
961ccddd
RR
5401/**
5402 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5403 * @p: the task in question.
5404 * @policy: new policy.
5405 * @param: structure containing the new RT priority.
5406 *
5407 * Just like sched_setscheduler, only don't bother checking if the
5408 * current context has permission. For example, this is needed in
5409 * stop_machine(): we create temporary high priority worker threads,
5410 * but our caller might not have that capability.
5411 */
5412int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5413 const struct sched_param *param)
961ccddd
RR
5414{
5415 return __sched_setscheduler(p, policy, param, false);
5416}
5417
95cdf3b7
IM
5418static int
5419do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5420{
1da177e4
LT
5421 struct sched_param lparam;
5422 struct task_struct *p;
36c8b586 5423 int retval;
1da177e4
LT
5424
5425 if (!param || pid < 0)
5426 return -EINVAL;
5427 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5428 return -EFAULT;
5fe1d75f
ON
5429
5430 rcu_read_lock();
5431 retval = -ESRCH;
1da177e4 5432 p = find_process_by_pid(pid);
5fe1d75f
ON
5433 if (p != NULL)
5434 retval = sched_setscheduler(p, policy, &lparam);
5435 rcu_read_unlock();
36c8b586 5436
1da177e4
LT
5437 return retval;
5438}
5439
5440/**
5441 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5442 * @pid: the pid in question.
5443 * @policy: new policy.
5444 * @param: structure containing the new RT priority.
5445 */
5add95d4
HC
5446SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5447 struct sched_param __user *, param)
1da177e4 5448{
c21761f1
JB
5449 /* negative values for policy are not valid */
5450 if (policy < 0)
5451 return -EINVAL;
5452
1da177e4
LT
5453 return do_sched_setscheduler(pid, policy, param);
5454}
5455
5456/**
5457 * sys_sched_setparam - set/change the RT priority of a thread
5458 * @pid: the pid in question.
5459 * @param: structure containing the new RT priority.
5460 */
5add95d4 5461SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5462{
5463 return do_sched_setscheduler(pid, -1, param);
5464}
5465
5466/**
5467 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5468 * @pid: the pid in question.
5469 */
5add95d4 5470SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5471{
36c8b586 5472 struct task_struct *p;
3a5c359a 5473 int retval;
1da177e4
LT
5474
5475 if (pid < 0)
3a5c359a 5476 return -EINVAL;
1da177e4
LT
5477
5478 retval = -ESRCH;
5fe85be0 5479 rcu_read_lock();
1da177e4
LT
5480 p = find_process_by_pid(pid);
5481 if (p) {
5482 retval = security_task_getscheduler(p);
5483 if (!retval)
ca94c442
LP
5484 retval = p->policy
5485 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5486 }
5fe85be0 5487 rcu_read_unlock();
1da177e4
LT
5488 return retval;
5489}
5490
5491/**
ca94c442 5492 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5493 * @pid: the pid in question.
5494 * @param: structure containing the RT priority.
5495 */
5add95d4 5496SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5497{
5498 struct sched_param lp;
36c8b586 5499 struct task_struct *p;
3a5c359a 5500 int retval;
1da177e4
LT
5501
5502 if (!param || pid < 0)
3a5c359a 5503 return -EINVAL;
1da177e4 5504
5fe85be0 5505 rcu_read_lock();
1da177e4
LT
5506 p = find_process_by_pid(pid);
5507 retval = -ESRCH;
5508 if (!p)
5509 goto out_unlock;
5510
5511 retval = security_task_getscheduler(p);
5512 if (retval)
5513 goto out_unlock;
5514
5515 lp.sched_priority = p->rt_priority;
5fe85be0 5516 rcu_read_unlock();
1da177e4
LT
5517
5518 /*
5519 * This one might sleep, we cannot do it with a spinlock held ...
5520 */
5521 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5522
1da177e4
LT
5523 return retval;
5524
5525out_unlock:
5fe85be0 5526 rcu_read_unlock();
1da177e4
LT
5527 return retval;
5528}
5529
96f874e2 5530long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5531{
5a16f3d3 5532 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5533 struct task_struct *p;
5534 int retval;
1da177e4 5535
95402b38 5536 get_online_cpus();
23f5d142 5537 rcu_read_lock();
1da177e4
LT
5538
5539 p = find_process_by_pid(pid);
5540 if (!p) {
23f5d142 5541 rcu_read_unlock();
95402b38 5542 put_online_cpus();
1da177e4
LT
5543 return -ESRCH;
5544 }
5545
23f5d142 5546 /* Prevent p going away */
1da177e4 5547 get_task_struct(p);
23f5d142 5548 rcu_read_unlock();
1da177e4 5549
5a16f3d3
RR
5550 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5551 retval = -ENOMEM;
5552 goto out_put_task;
5553 }
5554 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5555 retval = -ENOMEM;
5556 goto out_free_cpus_allowed;
5557 }
1da177e4 5558 retval = -EPERM;
b0e77598 5559 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5560 goto out_unlock;
5561
b0ae1981 5562 retval = security_task_setscheduler(p);
e7834f8f
DQ
5563 if (retval)
5564 goto out_unlock;
5565
5a16f3d3
RR
5566 cpuset_cpus_allowed(p, cpus_allowed);
5567 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5568again:
5a16f3d3 5569 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5570
8707d8b8 5571 if (!retval) {
5a16f3d3
RR
5572 cpuset_cpus_allowed(p, cpus_allowed);
5573 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5574 /*
5575 * We must have raced with a concurrent cpuset
5576 * update. Just reset the cpus_allowed to the
5577 * cpuset's cpus_allowed
5578 */
5a16f3d3 5579 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5580 goto again;
5581 }
5582 }
1da177e4 5583out_unlock:
5a16f3d3
RR
5584 free_cpumask_var(new_mask);
5585out_free_cpus_allowed:
5586 free_cpumask_var(cpus_allowed);
5587out_put_task:
1da177e4 5588 put_task_struct(p);
95402b38 5589 put_online_cpus();
1da177e4
LT
5590 return retval;
5591}
5592
5593static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5594 struct cpumask *new_mask)
1da177e4 5595{
96f874e2
RR
5596 if (len < cpumask_size())
5597 cpumask_clear(new_mask);
5598 else if (len > cpumask_size())
5599 len = cpumask_size();
5600
1da177e4
LT
5601 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5602}
5603
5604/**
5605 * sys_sched_setaffinity - set the cpu affinity of a process
5606 * @pid: pid of the process
5607 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5608 * @user_mask_ptr: user-space pointer to the new cpu mask
5609 */
5add95d4
HC
5610SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5611 unsigned long __user *, user_mask_ptr)
1da177e4 5612{
5a16f3d3 5613 cpumask_var_t new_mask;
1da177e4
LT
5614 int retval;
5615
5a16f3d3
RR
5616 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5617 return -ENOMEM;
1da177e4 5618
5a16f3d3
RR
5619 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5620 if (retval == 0)
5621 retval = sched_setaffinity(pid, new_mask);
5622 free_cpumask_var(new_mask);
5623 return retval;
1da177e4
LT
5624}
5625
96f874e2 5626long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5627{
36c8b586 5628 struct task_struct *p;
31605683 5629 unsigned long flags;
1da177e4 5630 int retval;
1da177e4 5631
95402b38 5632 get_online_cpus();
23f5d142 5633 rcu_read_lock();
1da177e4
LT
5634
5635 retval = -ESRCH;
5636 p = find_process_by_pid(pid);
5637 if (!p)
5638 goto out_unlock;
5639
e7834f8f
DQ
5640 retval = security_task_getscheduler(p);
5641 if (retval)
5642 goto out_unlock;
5643
013fdb80 5644 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5645 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5646 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5647
5648out_unlock:
23f5d142 5649 rcu_read_unlock();
95402b38 5650 put_online_cpus();
1da177e4 5651
9531b62f 5652 return retval;
1da177e4
LT
5653}
5654
5655/**
5656 * sys_sched_getaffinity - get the cpu affinity of a process
5657 * @pid: pid of the process
5658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5659 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5660 */
5add95d4
HC
5661SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5662 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5663{
5664 int ret;
f17c8607 5665 cpumask_var_t mask;
1da177e4 5666
84fba5ec 5667 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5668 return -EINVAL;
5669 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5670 return -EINVAL;
5671
f17c8607
RR
5672 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5673 return -ENOMEM;
1da177e4 5674
f17c8607
RR
5675 ret = sched_getaffinity(pid, mask);
5676 if (ret == 0) {
8bc037fb 5677 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5678
5679 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5680 ret = -EFAULT;
5681 else
cd3d8031 5682 ret = retlen;
f17c8607
RR
5683 }
5684 free_cpumask_var(mask);
1da177e4 5685
f17c8607 5686 return ret;
1da177e4
LT
5687}
5688
5689/**
5690 * sys_sched_yield - yield the current processor to other threads.
5691 *
dd41f596
IM
5692 * This function yields the current CPU to other tasks. If there are no
5693 * other threads running on this CPU then this function will return.
1da177e4 5694 */
5add95d4 5695SYSCALL_DEFINE0(sched_yield)
1da177e4 5696{
70b97a7f 5697 struct rq *rq = this_rq_lock();
1da177e4 5698
2d72376b 5699 schedstat_inc(rq, yld_count);
4530d7ab 5700 current->sched_class->yield_task(rq);
1da177e4
LT
5701
5702 /*
5703 * Since we are going to call schedule() anyway, there's
5704 * no need to preempt or enable interrupts:
5705 */
5706 __release(rq->lock);
8a25d5de 5707 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5708 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5709 preempt_enable_no_resched();
5710
5711 schedule();
5712
5713 return 0;
5714}
5715
d86ee480
PZ
5716static inline int should_resched(void)
5717{
5718 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5719}
5720
e7b38404 5721static void __cond_resched(void)
1da177e4 5722{
e7aaaa69 5723 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 5724 __schedule();
e7aaaa69 5725 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5726}
5727
02b67cc3 5728int __sched _cond_resched(void)
1da177e4 5729{
d86ee480 5730 if (should_resched()) {
1da177e4
LT
5731 __cond_resched();
5732 return 1;
5733 }
5734 return 0;
5735}
02b67cc3 5736EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5737
5738/*
613afbf8 5739 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5740 * call schedule, and on return reacquire the lock.
5741 *
41a2d6cf 5742 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5743 * operations here to prevent schedule() from being called twice (once via
5744 * spin_unlock(), once by hand).
5745 */
613afbf8 5746int __cond_resched_lock(spinlock_t *lock)
1da177e4 5747{
d86ee480 5748 int resched = should_resched();
6df3cecb
JK
5749 int ret = 0;
5750
f607c668
PZ
5751 lockdep_assert_held(lock);
5752
95c354fe 5753 if (spin_needbreak(lock) || resched) {
1da177e4 5754 spin_unlock(lock);
d86ee480 5755 if (resched)
95c354fe
NP
5756 __cond_resched();
5757 else
5758 cpu_relax();
6df3cecb 5759 ret = 1;
1da177e4 5760 spin_lock(lock);
1da177e4 5761 }
6df3cecb 5762 return ret;
1da177e4 5763}
613afbf8 5764EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5765
613afbf8 5766int __sched __cond_resched_softirq(void)
1da177e4
LT
5767{
5768 BUG_ON(!in_softirq());
5769
d86ee480 5770 if (should_resched()) {
98d82567 5771 local_bh_enable();
1da177e4
LT
5772 __cond_resched();
5773 local_bh_disable();
5774 return 1;
5775 }
5776 return 0;
5777}
613afbf8 5778EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5779
1da177e4
LT
5780/**
5781 * yield - yield the current processor to other threads.
5782 *
72fd4a35 5783 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5784 * thread runnable and calls sys_sched_yield().
5785 */
5786void __sched yield(void)
5787{
5788 set_current_state(TASK_RUNNING);
5789 sys_sched_yield();
5790}
1da177e4
LT
5791EXPORT_SYMBOL(yield);
5792
d95f4122
MG
5793/**
5794 * yield_to - yield the current processor to another thread in
5795 * your thread group, or accelerate that thread toward the
5796 * processor it's on.
16addf95
RD
5797 * @p: target task
5798 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5799 *
5800 * It's the caller's job to ensure that the target task struct
5801 * can't go away on us before we can do any checks.
5802 *
5803 * Returns true if we indeed boosted the target task.
5804 */
5805bool __sched yield_to(struct task_struct *p, bool preempt)
5806{
5807 struct task_struct *curr = current;
5808 struct rq *rq, *p_rq;
5809 unsigned long flags;
5810 bool yielded = 0;
5811
5812 local_irq_save(flags);
5813 rq = this_rq();
5814
5815again:
5816 p_rq = task_rq(p);
5817 double_rq_lock(rq, p_rq);
5818 while (task_rq(p) != p_rq) {
5819 double_rq_unlock(rq, p_rq);
5820 goto again;
5821 }
5822
5823 if (!curr->sched_class->yield_to_task)
5824 goto out;
5825
5826 if (curr->sched_class != p->sched_class)
5827 goto out;
5828
5829 if (task_running(p_rq, p) || p->state)
5830 goto out;
5831
5832 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5833 if (yielded) {
d95f4122 5834 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5835 /*
5836 * Make p's CPU reschedule; pick_next_entity takes care of
5837 * fairness.
5838 */
5839 if (preempt && rq != p_rq)
5840 resched_task(p_rq->curr);
5841 }
d95f4122
MG
5842
5843out:
5844 double_rq_unlock(rq, p_rq);
5845 local_irq_restore(flags);
5846
5847 if (yielded)
5848 schedule();
5849
5850 return yielded;
5851}
5852EXPORT_SYMBOL_GPL(yield_to);
5853
1da177e4 5854/*
41a2d6cf 5855 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5856 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5857 */
5858void __sched io_schedule(void)
5859{
54d35f29 5860 struct rq *rq = raw_rq();
1da177e4 5861
0ff92245 5862 delayacct_blkio_start();
1da177e4 5863 atomic_inc(&rq->nr_iowait);
73c10101 5864 blk_flush_plug(current);
8f0dfc34 5865 current->in_iowait = 1;
1da177e4 5866 schedule();
8f0dfc34 5867 current->in_iowait = 0;
1da177e4 5868 atomic_dec(&rq->nr_iowait);
0ff92245 5869 delayacct_blkio_end();
1da177e4 5870}
1da177e4
LT
5871EXPORT_SYMBOL(io_schedule);
5872
5873long __sched io_schedule_timeout(long timeout)
5874{
54d35f29 5875 struct rq *rq = raw_rq();
1da177e4
LT
5876 long ret;
5877
0ff92245 5878 delayacct_blkio_start();
1da177e4 5879 atomic_inc(&rq->nr_iowait);
73c10101 5880 blk_flush_plug(current);
8f0dfc34 5881 current->in_iowait = 1;
1da177e4 5882 ret = schedule_timeout(timeout);
8f0dfc34 5883 current->in_iowait = 0;
1da177e4 5884 atomic_dec(&rq->nr_iowait);
0ff92245 5885 delayacct_blkio_end();
1da177e4
LT
5886 return ret;
5887}
5888
5889/**
5890 * sys_sched_get_priority_max - return maximum RT priority.
5891 * @policy: scheduling class.
5892 *
5893 * this syscall returns the maximum rt_priority that can be used
5894 * by a given scheduling class.
5895 */
5add95d4 5896SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5897{
5898 int ret = -EINVAL;
5899
5900 switch (policy) {
5901 case SCHED_FIFO:
5902 case SCHED_RR:
5903 ret = MAX_USER_RT_PRIO-1;
5904 break;
5905 case SCHED_NORMAL:
b0a9499c 5906 case SCHED_BATCH:
dd41f596 5907 case SCHED_IDLE:
1da177e4
LT
5908 ret = 0;
5909 break;
5910 }
5911 return ret;
5912}
5913
5914/**
5915 * sys_sched_get_priority_min - return minimum RT priority.
5916 * @policy: scheduling class.
5917 *
5918 * this syscall returns the minimum rt_priority that can be used
5919 * by a given scheduling class.
5920 */
5add95d4 5921SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5922{
5923 int ret = -EINVAL;
5924
5925 switch (policy) {
5926 case SCHED_FIFO:
5927 case SCHED_RR:
5928 ret = 1;
5929 break;
5930 case SCHED_NORMAL:
b0a9499c 5931 case SCHED_BATCH:
dd41f596 5932 case SCHED_IDLE:
1da177e4
LT
5933 ret = 0;
5934 }
5935 return ret;
5936}
5937
5938/**
5939 * sys_sched_rr_get_interval - return the default timeslice of a process.
5940 * @pid: pid of the process.
5941 * @interval: userspace pointer to the timeslice value.
5942 *
5943 * this syscall writes the default timeslice value of a given process
5944 * into the user-space timespec buffer. A value of '0' means infinity.
5945 */
17da2bd9 5946SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5947 struct timespec __user *, interval)
1da177e4 5948{
36c8b586 5949 struct task_struct *p;
a4ec24b4 5950 unsigned int time_slice;
dba091b9
TG
5951 unsigned long flags;
5952 struct rq *rq;
3a5c359a 5953 int retval;
1da177e4 5954 struct timespec t;
1da177e4
LT
5955
5956 if (pid < 0)
3a5c359a 5957 return -EINVAL;
1da177e4
LT
5958
5959 retval = -ESRCH;
1a551ae7 5960 rcu_read_lock();
1da177e4
LT
5961 p = find_process_by_pid(pid);
5962 if (!p)
5963 goto out_unlock;
5964
5965 retval = security_task_getscheduler(p);
5966 if (retval)
5967 goto out_unlock;
5968
dba091b9
TG
5969 rq = task_rq_lock(p, &flags);
5970 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5971 task_rq_unlock(rq, p, &flags);
a4ec24b4 5972
1a551ae7 5973 rcu_read_unlock();
a4ec24b4 5974 jiffies_to_timespec(time_slice, &t);
1da177e4 5975 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5976 return retval;
3a5c359a 5977
1da177e4 5978out_unlock:
1a551ae7 5979 rcu_read_unlock();
1da177e4
LT
5980 return retval;
5981}
5982
7c731e0a 5983static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5984
82a1fcb9 5985void sched_show_task(struct task_struct *p)
1da177e4 5986{
1da177e4 5987 unsigned long free = 0;
36c8b586 5988 unsigned state;
1da177e4 5989
1da177e4 5990 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5991 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5992 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5993#if BITS_PER_LONG == 32
1da177e4 5994 if (state == TASK_RUNNING)
3df0fc5b 5995 printk(KERN_CONT " running ");
1da177e4 5996 else
3df0fc5b 5997 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5998#else
5999 if (state == TASK_RUNNING)
3df0fc5b 6000 printk(KERN_CONT " running task ");
1da177e4 6001 else
3df0fc5b 6002 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6003#endif
6004#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6005 free = stack_not_used(p);
1da177e4 6006#endif
3df0fc5b 6007 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6008 task_pid_nr(p), task_pid_nr(p->real_parent),
6009 (unsigned long)task_thread_info(p)->flags);
1da177e4 6010
5fb5e6de 6011 show_stack(p, NULL);
1da177e4
LT
6012}
6013
e59e2ae2 6014void show_state_filter(unsigned long state_filter)
1da177e4 6015{
36c8b586 6016 struct task_struct *g, *p;
1da177e4 6017
4bd77321 6018#if BITS_PER_LONG == 32
3df0fc5b
PZ
6019 printk(KERN_INFO
6020 " task PC stack pid father\n");
1da177e4 6021#else
3df0fc5b
PZ
6022 printk(KERN_INFO
6023 " task PC stack pid father\n");
1da177e4 6024#endif
510f5acc 6025 rcu_read_lock();
1da177e4
LT
6026 do_each_thread(g, p) {
6027 /*
6028 * reset the NMI-timeout, listing all files on a slow
25985edc 6029 * console might take a lot of time:
1da177e4
LT
6030 */
6031 touch_nmi_watchdog();
39bc89fd 6032 if (!state_filter || (p->state & state_filter))
82a1fcb9 6033 sched_show_task(p);
1da177e4
LT
6034 } while_each_thread(g, p);
6035
04c9167f
JF
6036 touch_all_softlockup_watchdogs();
6037
dd41f596
IM
6038#ifdef CONFIG_SCHED_DEBUG
6039 sysrq_sched_debug_show();
6040#endif
510f5acc 6041 rcu_read_unlock();
e59e2ae2
IM
6042 /*
6043 * Only show locks if all tasks are dumped:
6044 */
93335a21 6045 if (!state_filter)
e59e2ae2 6046 debug_show_all_locks();
1da177e4
LT
6047}
6048
1df21055
IM
6049void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6050{
dd41f596 6051 idle->sched_class = &idle_sched_class;
1df21055
IM
6052}
6053
f340c0d1
IM
6054/**
6055 * init_idle - set up an idle thread for a given CPU
6056 * @idle: task in question
6057 * @cpu: cpu the idle task belongs to
6058 *
6059 * NOTE: this function does not set the idle thread's NEED_RESCHED
6060 * flag, to make booting more robust.
6061 */
5c1e1767 6062void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6063{
70b97a7f 6064 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6065 unsigned long flags;
6066
05fa785c 6067 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6068
dd41f596 6069 __sched_fork(idle);
06b83b5f 6070 idle->state = TASK_RUNNING;
dd41f596
IM
6071 idle->se.exec_start = sched_clock();
6072
1e1b6c51 6073 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6074 /*
6075 * We're having a chicken and egg problem, even though we are
6076 * holding rq->lock, the cpu isn't yet set to this cpu so the
6077 * lockdep check in task_group() will fail.
6078 *
6079 * Similar case to sched_fork(). / Alternatively we could
6080 * use task_rq_lock() here and obtain the other rq->lock.
6081 *
6082 * Silence PROVE_RCU
6083 */
6084 rcu_read_lock();
dd41f596 6085 __set_task_cpu(idle, cpu);
6506cf6c 6086 rcu_read_unlock();
1da177e4 6087
1da177e4 6088 rq->curr = rq->idle = idle;
3ca7a440
PZ
6089#if defined(CONFIG_SMP)
6090 idle->on_cpu = 1;
4866cde0 6091#endif
05fa785c 6092 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6093
6094 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6095 task_thread_info(idle)->preempt_count = 0;
625f2a37 6096
dd41f596
IM
6097 /*
6098 * The idle tasks have their own, simple scheduling class:
6099 */
6100 idle->sched_class = &idle_sched_class;
868baf07 6101 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6102}
6103
19978ca6
IM
6104/*
6105 * Increase the granularity value when there are more CPUs,
6106 * because with more CPUs the 'effective latency' as visible
6107 * to users decreases. But the relationship is not linear,
6108 * so pick a second-best guess by going with the log2 of the
6109 * number of CPUs.
6110 *
6111 * This idea comes from the SD scheduler of Con Kolivas:
6112 */
acb4a848 6113static int get_update_sysctl_factor(void)
19978ca6 6114{
4ca3ef71 6115 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6116 unsigned int factor;
6117
6118 switch (sysctl_sched_tunable_scaling) {
6119 case SCHED_TUNABLESCALING_NONE:
6120 factor = 1;
6121 break;
6122 case SCHED_TUNABLESCALING_LINEAR:
6123 factor = cpus;
6124 break;
6125 case SCHED_TUNABLESCALING_LOG:
6126 default:
6127 factor = 1 + ilog2(cpus);
6128 break;
6129 }
19978ca6 6130
acb4a848
CE
6131 return factor;
6132}
19978ca6 6133
acb4a848
CE
6134static void update_sysctl(void)
6135{
6136 unsigned int factor = get_update_sysctl_factor();
19978ca6 6137
0bcdcf28
CE
6138#define SET_SYSCTL(name) \
6139 (sysctl_##name = (factor) * normalized_sysctl_##name)
6140 SET_SYSCTL(sched_min_granularity);
6141 SET_SYSCTL(sched_latency);
6142 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6143#undef SET_SYSCTL
6144}
55cd5340 6145
0bcdcf28
CE
6146static inline void sched_init_granularity(void)
6147{
6148 update_sysctl();
19978ca6
IM
6149}
6150
1da177e4 6151#ifdef CONFIG_SMP
1e1b6c51
KM
6152void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6153{
6154 if (p->sched_class && p->sched_class->set_cpus_allowed)
6155 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
6156
6157 cpumask_copy(&p->cpus_allowed, new_mask);
6158 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
6159}
6160
1da177e4
LT
6161/*
6162 * This is how migration works:
6163 *
969c7921
TH
6164 * 1) we invoke migration_cpu_stop() on the target CPU using
6165 * stop_one_cpu().
6166 * 2) stopper starts to run (implicitly forcing the migrated thread
6167 * off the CPU)
6168 * 3) it checks whether the migrated task is still in the wrong runqueue.
6169 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6170 * it and puts it into the right queue.
969c7921
TH
6171 * 5) stopper completes and stop_one_cpu() returns and the migration
6172 * is done.
1da177e4
LT
6173 */
6174
6175/*
6176 * Change a given task's CPU affinity. Migrate the thread to a
6177 * proper CPU and schedule it away if the CPU it's executing on
6178 * is removed from the allowed bitmask.
6179 *
6180 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6181 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6182 * call is not atomic; no spinlocks may be held.
6183 */
96f874e2 6184int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6185{
6186 unsigned long flags;
70b97a7f 6187 struct rq *rq;
969c7921 6188 unsigned int dest_cpu;
48f24c4d 6189 int ret = 0;
1da177e4
LT
6190
6191 rq = task_rq_lock(p, &flags);
e2912009 6192
db44fc01
YZ
6193 if (cpumask_equal(&p->cpus_allowed, new_mask))
6194 goto out;
6195
6ad4c188 6196 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6197 ret = -EINVAL;
6198 goto out;
6199 }
6200
db44fc01 6201 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6202 ret = -EINVAL;
6203 goto out;
6204 }
6205
1e1b6c51 6206 do_set_cpus_allowed(p, new_mask);
73fe6aae 6207
1da177e4 6208 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6209 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6210 goto out;
6211
969c7921 6212 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6213 if (p->on_rq) {
969c7921 6214 struct migration_arg arg = { p, dest_cpu };
1da177e4 6215 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6216 task_rq_unlock(rq, p, &flags);
969c7921 6217 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6218 tlb_migrate_finish(p->mm);
6219 return 0;
6220 }
6221out:
0122ec5b 6222 task_rq_unlock(rq, p, &flags);
48f24c4d 6223
1da177e4
LT
6224 return ret;
6225}
cd8ba7cd 6226EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6227
6228/*
41a2d6cf 6229 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6230 * this because either it can't run here any more (set_cpus_allowed()
6231 * away from this CPU, or CPU going down), or because we're
6232 * attempting to rebalance this task on exec (sched_exec).
6233 *
6234 * So we race with normal scheduler movements, but that's OK, as long
6235 * as the task is no longer on this CPU.
efc30814
KK
6236 *
6237 * Returns non-zero if task was successfully migrated.
1da177e4 6238 */
efc30814 6239static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6240{
70b97a7f 6241 struct rq *rq_dest, *rq_src;
e2912009 6242 int ret = 0;
1da177e4 6243
e761b772 6244 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6245 return ret;
1da177e4
LT
6246
6247 rq_src = cpu_rq(src_cpu);
6248 rq_dest = cpu_rq(dest_cpu);
6249
0122ec5b 6250 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6251 double_rq_lock(rq_src, rq_dest);
6252 /* Already moved. */
6253 if (task_cpu(p) != src_cpu)
b1e38734 6254 goto done;
1da177e4 6255 /* Affinity changed (again). */
fa17b507 6256 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 6257 goto fail;
1da177e4 6258
e2912009
PZ
6259 /*
6260 * If we're not on a rq, the next wake-up will ensure we're
6261 * placed properly.
6262 */
fd2f4419 6263 if (p->on_rq) {
2e1cb74a 6264 deactivate_task(rq_src, p, 0);
e2912009 6265 set_task_cpu(p, dest_cpu);
dd41f596 6266 activate_task(rq_dest, p, 0);
15afe09b 6267 check_preempt_curr(rq_dest, p, 0);
1da177e4 6268 }
b1e38734 6269done:
efc30814 6270 ret = 1;
b1e38734 6271fail:
1da177e4 6272 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6273 raw_spin_unlock(&p->pi_lock);
efc30814 6274 return ret;
1da177e4
LT
6275}
6276
6277/*
969c7921
TH
6278 * migration_cpu_stop - this will be executed by a highprio stopper thread
6279 * and performs thread migration by bumping thread off CPU then
6280 * 'pushing' onto another runqueue.
1da177e4 6281 */
969c7921 6282static int migration_cpu_stop(void *data)
1da177e4 6283{
969c7921 6284 struct migration_arg *arg = data;
f7b4cddc 6285
969c7921
TH
6286 /*
6287 * The original target cpu might have gone down and we might
6288 * be on another cpu but it doesn't matter.
6289 */
f7b4cddc 6290 local_irq_disable();
969c7921 6291 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6292 local_irq_enable();
1da177e4 6293 return 0;
f7b4cddc
ON
6294}
6295
1da177e4 6296#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6297
054b9108 6298/*
48c5ccae
PZ
6299 * Ensures that the idle task is using init_mm right before its cpu goes
6300 * offline.
054b9108 6301 */
48c5ccae 6302void idle_task_exit(void)
1da177e4 6303{
48c5ccae 6304 struct mm_struct *mm = current->active_mm;
e76bd8d9 6305
48c5ccae 6306 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6307
48c5ccae
PZ
6308 if (mm != &init_mm)
6309 switch_mm(mm, &init_mm, current);
6310 mmdrop(mm);
1da177e4
LT
6311}
6312
6313/*
6314 * While a dead CPU has no uninterruptible tasks queued at this point,
6315 * it might still have a nonzero ->nr_uninterruptible counter, because
6316 * for performance reasons the counter is not stricly tracking tasks to
6317 * their home CPUs. So we just add the counter to another CPU's counter,
6318 * to keep the global sum constant after CPU-down:
6319 */
70b97a7f 6320static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6321{
6ad4c188 6322 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6323
1da177e4
LT
6324 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6325 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6326}
6327
dd41f596 6328/*
48c5ccae 6329 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6330 */
48c5ccae 6331static void calc_global_load_remove(struct rq *rq)
1da177e4 6332{
48c5ccae
PZ
6333 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6334 rq->calc_load_active = 0;
1da177e4
LT
6335}
6336
8cb120d3
PT
6337#ifdef CONFIG_CFS_BANDWIDTH
6338static void unthrottle_offline_cfs_rqs(struct rq *rq)
6339{
6340 struct cfs_rq *cfs_rq;
6341
6342 for_each_leaf_cfs_rq(rq, cfs_rq) {
6343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6344
6345 if (!cfs_rq->runtime_enabled)
6346 continue;
6347
6348 /*
6349 * clock_task is not advancing so we just need to make sure
6350 * there's some valid quota amount
6351 */
6352 cfs_rq->runtime_remaining = cfs_b->quota;
6353 if (cfs_rq_throttled(cfs_rq))
6354 unthrottle_cfs_rq(cfs_rq);
6355 }
6356}
6357#else
6358static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6359#endif
6360
48f24c4d 6361/*
48c5ccae
PZ
6362 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6363 * try_to_wake_up()->select_task_rq().
6364 *
6365 * Called with rq->lock held even though we'er in stop_machine() and
6366 * there's no concurrency possible, we hold the required locks anyway
6367 * because of lock validation efforts.
1da177e4 6368 */
48c5ccae 6369static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6370{
70b97a7f 6371 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6372 struct task_struct *next, *stop = rq->stop;
6373 int dest_cpu;
1da177e4
LT
6374
6375 /*
48c5ccae
PZ
6376 * Fudge the rq selection such that the below task selection loop
6377 * doesn't get stuck on the currently eligible stop task.
6378 *
6379 * We're currently inside stop_machine() and the rq is either stuck
6380 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6381 * either way we should never end up calling schedule() until we're
6382 * done here.
1da177e4 6383 */
48c5ccae 6384 rq->stop = NULL;
48f24c4d 6385
8cb120d3
PT
6386 /* Ensure any throttled groups are reachable by pick_next_task */
6387 unthrottle_offline_cfs_rqs(rq);
6388
dd41f596 6389 for ( ; ; ) {
48c5ccae
PZ
6390 /*
6391 * There's this thread running, bail when that's the only
6392 * remaining thread.
6393 */
6394 if (rq->nr_running == 1)
dd41f596 6395 break;
48c5ccae 6396
b67802ea 6397 next = pick_next_task(rq);
48c5ccae 6398 BUG_ON(!next);
79c53799 6399 next->sched_class->put_prev_task(rq, next);
e692ab53 6400
48c5ccae
PZ
6401 /* Find suitable destination for @next, with force if needed. */
6402 dest_cpu = select_fallback_rq(dead_cpu, next);
6403 raw_spin_unlock(&rq->lock);
6404
6405 __migrate_task(next, dead_cpu, dest_cpu);
6406
6407 raw_spin_lock(&rq->lock);
1da177e4 6408 }
dce48a84 6409
48c5ccae 6410 rq->stop = stop;
dce48a84 6411}
48c5ccae 6412
1da177e4
LT
6413#endif /* CONFIG_HOTPLUG_CPU */
6414
e692ab53
NP
6415#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6416
6417static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6418 {
6419 .procname = "sched_domain",
c57baf1e 6420 .mode = 0555,
e0361851 6421 },
56992309 6422 {}
e692ab53
NP
6423};
6424
6425static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6426 {
6427 .procname = "kernel",
c57baf1e 6428 .mode = 0555,
e0361851
AD
6429 .child = sd_ctl_dir,
6430 },
56992309 6431 {}
e692ab53
NP
6432};
6433
6434static struct ctl_table *sd_alloc_ctl_entry(int n)
6435{
6436 struct ctl_table *entry =
5cf9f062 6437 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6438
e692ab53
NP
6439 return entry;
6440}
6441
6382bc90
MM
6442static void sd_free_ctl_entry(struct ctl_table **tablep)
6443{
cd790076 6444 struct ctl_table *entry;
6382bc90 6445
cd790076
MM
6446 /*
6447 * In the intermediate directories, both the child directory and
6448 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6449 * will always be set. In the lowest directory the names are
cd790076
MM
6450 * static strings and all have proc handlers.
6451 */
6452 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6453 if (entry->child)
6454 sd_free_ctl_entry(&entry->child);
cd790076
MM
6455 if (entry->proc_handler == NULL)
6456 kfree(entry->procname);
6457 }
6382bc90
MM
6458
6459 kfree(*tablep);
6460 *tablep = NULL;
6461}
6462
e692ab53 6463static void
e0361851 6464set_table_entry(struct ctl_table *entry,
e692ab53
NP
6465 const char *procname, void *data, int maxlen,
6466 mode_t mode, proc_handler *proc_handler)
6467{
e692ab53
NP
6468 entry->procname = procname;
6469 entry->data = data;
6470 entry->maxlen = maxlen;
6471 entry->mode = mode;
6472 entry->proc_handler = proc_handler;
6473}
6474
6475static struct ctl_table *
6476sd_alloc_ctl_domain_table(struct sched_domain *sd)
6477{
a5d8c348 6478 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6479
ad1cdc1d
MM
6480 if (table == NULL)
6481 return NULL;
6482
e0361851 6483 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6484 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6485 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6486 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6487 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6488 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6489 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6490 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6491 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6492 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6493 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6494 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6495 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6496 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6497 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6498 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6499 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6500 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6501 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6502 &sd->cache_nice_tries,
6503 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6504 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6506 set_table_entry(&table[11], "name", sd->name,
6507 CORENAME_MAX_SIZE, 0444, proc_dostring);
6508 /* &table[12] is terminator */
e692ab53
NP
6509
6510 return table;
6511}
6512
9a4e7159 6513static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6514{
6515 struct ctl_table *entry, *table;
6516 struct sched_domain *sd;
6517 int domain_num = 0, i;
6518 char buf[32];
6519
6520 for_each_domain(cpu, sd)
6521 domain_num++;
6522 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6523 if (table == NULL)
6524 return NULL;
e692ab53
NP
6525
6526 i = 0;
6527 for_each_domain(cpu, sd) {
6528 snprintf(buf, 32, "domain%d", i);
e692ab53 6529 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6530 entry->mode = 0555;
e692ab53
NP
6531 entry->child = sd_alloc_ctl_domain_table(sd);
6532 entry++;
6533 i++;
6534 }
6535 return table;
6536}
6537
6538static struct ctl_table_header *sd_sysctl_header;
6382bc90 6539static void register_sched_domain_sysctl(void)
e692ab53 6540{
6ad4c188 6541 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6542 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6543 char buf[32];
6544
7378547f
MM
6545 WARN_ON(sd_ctl_dir[0].child);
6546 sd_ctl_dir[0].child = entry;
6547
ad1cdc1d
MM
6548 if (entry == NULL)
6549 return;
6550
6ad4c188 6551 for_each_possible_cpu(i) {
e692ab53 6552 snprintf(buf, 32, "cpu%d", i);
e692ab53 6553 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6554 entry->mode = 0555;
e692ab53 6555 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6556 entry++;
e692ab53 6557 }
7378547f
MM
6558
6559 WARN_ON(sd_sysctl_header);
e692ab53
NP
6560 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6561}
6382bc90 6562
7378547f 6563/* may be called multiple times per register */
6382bc90
MM
6564static void unregister_sched_domain_sysctl(void)
6565{
7378547f
MM
6566 if (sd_sysctl_header)
6567 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6568 sd_sysctl_header = NULL;
7378547f
MM
6569 if (sd_ctl_dir[0].child)
6570 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6571}
e692ab53 6572#else
6382bc90
MM
6573static void register_sched_domain_sysctl(void)
6574{
6575}
6576static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6577{
6578}
6579#endif
6580
1f11eb6a
GH
6581static void set_rq_online(struct rq *rq)
6582{
6583 if (!rq->online) {
6584 const struct sched_class *class;
6585
c6c4927b 6586 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6587 rq->online = 1;
6588
6589 for_each_class(class) {
6590 if (class->rq_online)
6591 class->rq_online(rq);
6592 }
6593 }
6594}
6595
6596static void set_rq_offline(struct rq *rq)
6597{
6598 if (rq->online) {
6599 const struct sched_class *class;
6600
6601 for_each_class(class) {
6602 if (class->rq_offline)
6603 class->rq_offline(rq);
6604 }
6605
c6c4927b 6606 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6607 rq->online = 0;
6608 }
6609}
6610
1da177e4
LT
6611/*
6612 * migration_call - callback that gets triggered when a CPU is added.
6613 * Here we can start up the necessary migration thread for the new CPU.
6614 */
48f24c4d
IM
6615static int __cpuinit
6616migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6617{
48f24c4d 6618 int cpu = (long)hcpu;
1da177e4 6619 unsigned long flags;
969c7921 6620 struct rq *rq = cpu_rq(cpu);
1da177e4 6621
48c5ccae 6622 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6623
1da177e4 6624 case CPU_UP_PREPARE:
a468d389 6625 rq->calc_load_update = calc_load_update;
1da177e4 6626 break;
48f24c4d 6627
1da177e4 6628 case CPU_ONLINE:
1f94ef59 6629 /* Update our root-domain */
05fa785c 6630 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6631 if (rq->rd) {
c6c4927b 6632 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6633
6634 set_rq_online(rq);
1f94ef59 6635 }
05fa785c 6636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6637 break;
48f24c4d 6638
1da177e4 6639#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6640 case CPU_DYING:
317f3941 6641 sched_ttwu_pending();
57d885fe 6642 /* Update our root-domain */
05fa785c 6643 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6644 if (rq->rd) {
c6c4927b 6645 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6646 set_rq_offline(rq);
57d885fe 6647 }
48c5ccae
PZ
6648 migrate_tasks(cpu);
6649 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6650 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6651
6652 migrate_nr_uninterruptible(rq);
6653 calc_global_load_remove(rq);
57d885fe 6654 break;
1da177e4
LT
6655#endif
6656 }
49c022e6
PZ
6657
6658 update_max_interval();
6659
1da177e4
LT
6660 return NOTIFY_OK;
6661}
6662
f38b0820
PM
6663/*
6664 * Register at high priority so that task migration (migrate_all_tasks)
6665 * happens before everything else. This has to be lower priority than
cdd6c482 6666 * the notifier in the perf_event subsystem, though.
1da177e4 6667 */
26c2143b 6668static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6669 .notifier_call = migration_call,
50a323b7 6670 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6671};
6672
3a101d05
TH
6673static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6674 unsigned long action, void *hcpu)
6675{
6676 switch (action & ~CPU_TASKS_FROZEN) {
6677 case CPU_ONLINE:
6678 case CPU_DOWN_FAILED:
6679 set_cpu_active((long)hcpu, true);
6680 return NOTIFY_OK;
6681 default:
6682 return NOTIFY_DONE;
6683 }
6684}
6685
6686static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6687 unsigned long action, void *hcpu)
6688{
6689 switch (action & ~CPU_TASKS_FROZEN) {
6690 case CPU_DOWN_PREPARE:
6691 set_cpu_active((long)hcpu, false);
6692 return NOTIFY_OK;
6693 default:
6694 return NOTIFY_DONE;
6695 }
6696}
6697
7babe8db 6698static int __init migration_init(void)
1da177e4
LT
6699{
6700 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6701 int err;
48f24c4d 6702
3a101d05 6703 /* Initialize migration for the boot CPU */
07dccf33
AM
6704 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6705 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6706 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6707 register_cpu_notifier(&migration_notifier);
7babe8db 6708
3a101d05
TH
6709 /* Register cpu active notifiers */
6710 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6711 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6712
a004cd42 6713 return 0;
1da177e4 6714}
7babe8db 6715early_initcall(migration_init);
1da177e4
LT
6716#endif
6717
6718#ifdef CONFIG_SMP
476f3534 6719
4cb98839
PZ
6720static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6721
3e9830dc 6722#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6723
f6630114
MT
6724static __read_mostly int sched_domain_debug_enabled;
6725
6726static int __init sched_domain_debug_setup(char *str)
6727{
6728 sched_domain_debug_enabled = 1;
6729
6730 return 0;
6731}
6732early_param("sched_debug", sched_domain_debug_setup);
6733
7c16ec58 6734static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6735 struct cpumask *groupmask)
1da177e4 6736{
4dcf6aff 6737 struct sched_group *group = sd->groups;
434d53b0 6738 char str[256];
1da177e4 6739
968ea6d8 6740 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6741 cpumask_clear(groupmask);
4dcf6aff
IM
6742
6743 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6744
6745 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6746 printk("does not load-balance\n");
4dcf6aff 6747 if (sd->parent)
3df0fc5b
PZ
6748 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6749 " has parent");
4dcf6aff 6750 return -1;
41c7ce9a
NP
6751 }
6752
3df0fc5b 6753 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6754
758b2cdc 6755 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6756 printk(KERN_ERR "ERROR: domain->span does not contain "
6757 "CPU%d\n", cpu);
4dcf6aff 6758 }
758b2cdc 6759 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6760 printk(KERN_ERR "ERROR: domain->groups does not contain"
6761 " CPU%d\n", cpu);
4dcf6aff 6762 }
1da177e4 6763
4dcf6aff 6764 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6765 do {
4dcf6aff 6766 if (!group) {
3df0fc5b
PZ
6767 printk("\n");
6768 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6769 break;
6770 }
6771
9c3f75cb 6772 if (!group->sgp->power) {
3df0fc5b
PZ
6773 printk(KERN_CONT "\n");
6774 printk(KERN_ERR "ERROR: domain->cpu_power not "
6775 "set\n");
4dcf6aff
IM
6776 break;
6777 }
1da177e4 6778
758b2cdc 6779 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6780 printk(KERN_CONT "\n");
6781 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6782 break;
6783 }
1da177e4 6784
758b2cdc 6785 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6786 printk(KERN_CONT "\n");
6787 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6788 break;
6789 }
1da177e4 6790
758b2cdc 6791 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6792
968ea6d8 6793 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6794
3df0fc5b 6795 printk(KERN_CONT " %s", str);
9c3f75cb 6796 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6797 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6798 group->sgp->power);
381512cf 6799 }
1da177e4 6800
4dcf6aff
IM
6801 group = group->next;
6802 } while (group != sd->groups);
3df0fc5b 6803 printk(KERN_CONT "\n");
1da177e4 6804
758b2cdc 6805 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6806 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6807
758b2cdc
RR
6808 if (sd->parent &&
6809 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6810 printk(KERN_ERR "ERROR: parent span is not a superset "
6811 "of domain->span\n");
4dcf6aff
IM
6812 return 0;
6813}
1da177e4 6814
4dcf6aff
IM
6815static void sched_domain_debug(struct sched_domain *sd, int cpu)
6816{
6817 int level = 0;
1da177e4 6818
f6630114
MT
6819 if (!sched_domain_debug_enabled)
6820 return;
6821
4dcf6aff
IM
6822 if (!sd) {
6823 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6824 return;
6825 }
1da177e4 6826
4dcf6aff
IM
6827 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6828
6829 for (;;) {
4cb98839 6830 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6831 break;
1da177e4
LT
6832 level++;
6833 sd = sd->parent;
33859f7f 6834 if (!sd)
4dcf6aff
IM
6835 break;
6836 }
1da177e4 6837}
6d6bc0ad 6838#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6839# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6840#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6841
1a20ff27 6842static int sd_degenerate(struct sched_domain *sd)
245af2c7 6843{
758b2cdc 6844 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6845 return 1;
6846
6847 /* Following flags need at least 2 groups */
6848 if (sd->flags & (SD_LOAD_BALANCE |
6849 SD_BALANCE_NEWIDLE |
6850 SD_BALANCE_FORK |
89c4710e
SS
6851 SD_BALANCE_EXEC |
6852 SD_SHARE_CPUPOWER |
6853 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6854 if (sd->groups != sd->groups->next)
6855 return 0;
6856 }
6857
6858 /* Following flags don't use groups */
c88d5910 6859 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6860 return 0;
6861
6862 return 1;
6863}
6864
48f24c4d
IM
6865static int
6866sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6867{
6868 unsigned long cflags = sd->flags, pflags = parent->flags;
6869
6870 if (sd_degenerate(parent))
6871 return 1;
6872
758b2cdc 6873 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6874 return 0;
6875
245af2c7
SS
6876 /* Flags needing groups don't count if only 1 group in parent */
6877 if (parent->groups == parent->groups->next) {
6878 pflags &= ~(SD_LOAD_BALANCE |
6879 SD_BALANCE_NEWIDLE |
6880 SD_BALANCE_FORK |
89c4710e
SS
6881 SD_BALANCE_EXEC |
6882 SD_SHARE_CPUPOWER |
6883 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6884 if (nr_node_ids == 1)
6885 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6886 }
6887 if (~cflags & pflags)
6888 return 0;
6889
6890 return 1;
6891}
6892
dce840a0 6893static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6894{
dce840a0 6895 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6896
68e74568 6897 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6898 free_cpumask_var(rd->rto_mask);
6899 free_cpumask_var(rd->online);
6900 free_cpumask_var(rd->span);
6901 kfree(rd);
6902}
6903
57d885fe
GH
6904static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6905{
a0490fa3 6906 struct root_domain *old_rd = NULL;
57d885fe 6907 unsigned long flags;
57d885fe 6908
05fa785c 6909 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6910
6911 if (rq->rd) {
a0490fa3 6912 old_rd = rq->rd;
57d885fe 6913
c6c4927b 6914 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6915 set_rq_offline(rq);
57d885fe 6916
c6c4927b 6917 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6918
a0490fa3
IM
6919 /*
6920 * If we dont want to free the old_rt yet then
6921 * set old_rd to NULL to skip the freeing later
6922 * in this function:
6923 */
6924 if (!atomic_dec_and_test(&old_rd->refcount))
6925 old_rd = NULL;
57d885fe
GH
6926 }
6927
6928 atomic_inc(&rd->refcount);
6929 rq->rd = rd;
6930
c6c4927b 6931 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6932 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6933 set_rq_online(rq);
57d885fe 6934
05fa785c 6935 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6936
6937 if (old_rd)
dce840a0 6938 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6939}
6940
68c38fc3 6941static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6942{
6943 memset(rd, 0, sizeof(*rd));
6944
68c38fc3 6945 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6946 goto out;
68c38fc3 6947 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6948 goto free_span;
68c38fc3 6949 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6950 goto free_online;
6e0534f2 6951
68c38fc3 6952 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6953 goto free_rto_mask;
c6c4927b 6954 return 0;
6e0534f2 6955
68e74568
RR
6956free_rto_mask:
6957 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6958free_online:
6959 free_cpumask_var(rd->online);
6960free_span:
6961 free_cpumask_var(rd->span);
0c910d28 6962out:
c6c4927b 6963 return -ENOMEM;
57d885fe
GH
6964}
6965
6966static void init_defrootdomain(void)
6967{
68c38fc3 6968 init_rootdomain(&def_root_domain);
c6c4927b 6969
57d885fe
GH
6970 atomic_set(&def_root_domain.refcount, 1);
6971}
6972
dc938520 6973static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6974{
6975 struct root_domain *rd;
6976
6977 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6978 if (!rd)
6979 return NULL;
6980
68c38fc3 6981 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6982 kfree(rd);
6983 return NULL;
6984 }
57d885fe
GH
6985
6986 return rd;
6987}
6988
e3589f6c
PZ
6989static void free_sched_groups(struct sched_group *sg, int free_sgp)
6990{
6991 struct sched_group *tmp, *first;
6992
6993 if (!sg)
6994 return;
6995
6996 first = sg;
6997 do {
6998 tmp = sg->next;
6999
7000 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7001 kfree(sg->sgp);
7002
7003 kfree(sg);
7004 sg = tmp;
7005 } while (sg != first);
7006}
7007
dce840a0
PZ
7008static void free_sched_domain(struct rcu_head *rcu)
7009{
7010 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
7011
7012 /*
7013 * If its an overlapping domain it has private groups, iterate and
7014 * nuke them all.
7015 */
7016 if (sd->flags & SD_OVERLAP) {
7017 free_sched_groups(sd->groups, 1);
7018 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 7019 kfree(sd->groups->sgp);
dce840a0 7020 kfree(sd->groups);
9c3f75cb 7021 }
dce840a0
PZ
7022 kfree(sd);
7023}
7024
7025static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7026{
7027 call_rcu(&sd->rcu, free_sched_domain);
7028}
7029
7030static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7031{
7032 for (; sd; sd = sd->parent)
7033 destroy_sched_domain(sd, cpu);
7034}
7035
1da177e4 7036/*
0eab9146 7037 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7038 * hold the hotplug lock.
7039 */
0eab9146
IM
7040static void
7041cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7042{
70b97a7f 7043 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7044 struct sched_domain *tmp;
7045
7046 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7047 for (tmp = sd; tmp; ) {
245af2c7
SS
7048 struct sched_domain *parent = tmp->parent;
7049 if (!parent)
7050 break;
f29c9b1c 7051
1a848870 7052 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7053 tmp->parent = parent->parent;
1a848870
SS
7054 if (parent->parent)
7055 parent->parent->child = tmp;
dce840a0 7056 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7057 } else
7058 tmp = tmp->parent;
245af2c7
SS
7059 }
7060
1a848870 7061 if (sd && sd_degenerate(sd)) {
dce840a0 7062 tmp = sd;
245af2c7 7063 sd = sd->parent;
dce840a0 7064 destroy_sched_domain(tmp, cpu);
1a848870
SS
7065 if (sd)
7066 sd->child = NULL;
7067 }
1da177e4 7068
4cb98839 7069 sched_domain_debug(sd, cpu);
1da177e4 7070
57d885fe 7071 rq_attach_root(rq, rd);
dce840a0 7072 tmp = rq->sd;
674311d5 7073 rcu_assign_pointer(rq->sd, sd);
dce840a0 7074 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7075}
7076
7077/* cpus with isolated domains */
dcc30a35 7078static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7079
7080/* Setup the mask of cpus configured for isolated domains */
7081static int __init isolated_cpu_setup(char *str)
7082{
bdddd296 7083 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7084 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7085 return 1;
7086}
7087
8927f494 7088__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7089
9c1cfda2 7090#define SD_NODES_PER_DOMAIN 16
1da177e4 7091
9c1cfda2 7092#ifdef CONFIG_NUMA
198e2f18 7093
9c1cfda2
JH
7094/**
7095 * find_next_best_node - find the next node to include in a sched_domain
7096 * @node: node whose sched_domain we're building
7097 * @used_nodes: nodes already in the sched_domain
7098 *
41a2d6cf 7099 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7100 * finds the closest node not already in the @used_nodes map.
7101 *
7102 * Should use nodemask_t.
7103 */
c5f59f08 7104static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7105{
7142d17e 7106 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7107
7108 min_val = INT_MAX;
7109
076ac2af 7110 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7111 /* Start at @node */
076ac2af 7112 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7113
7114 if (!nr_cpus_node(n))
7115 continue;
7116
7117 /* Skip already used nodes */
c5f59f08 7118 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7119 continue;
7120
7121 /* Simple min distance search */
7122 val = node_distance(node, n);
7123
7124 if (val < min_val) {
7125 min_val = val;
7126 best_node = n;
7127 }
7128 }
7129
7142d17e
HD
7130 if (best_node != -1)
7131 node_set(best_node, *used_nodes);
9c1cfda2
JH
7132 return best_node;
7133}
7134
7135/**
7136 * sched_domain_node_span - get a cpumask for a node's sched_domain
7137 * @node: node whose cpumask we're constructing
73486722 7138 * @span: resulting cpumask
9c1cfda2 7139 *
41a2d6cf 7140 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7141 * should be one that prevents unnecessary balancing, but also spreads tasks
7142 * out optimally.
7143 */
96f874e2 7144static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7145{
c5f59f08 7146 nodemask_t used_nodes;
48f24c4d 7147 int i;
9c1cfda2 7148
6ca09dfc 7149 cpumask_clear(span);
c5f59f08 7150 nodes_clear(used_nodes);
9c1cfda2 7151
6ca09dfc 7152 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7153 node_set(node, used_nodes);
9c1cfda2
JH
7154
7155 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7156 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7157 if (next_node < 0)
7158 break;
6ca09dfc 7159 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7160 }
9c1cfda2 7161}
d3081f52
PZ
7162
7163static const struct cpumask *cpu_node_mask(int cpu)
7164{
7165 lockdep_assert_held(&sched_domains_mutex);
7166
7167 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7168
7169 return sched_domains_tmpmask;
7170}
2c402dc3
PZ
7171
7172static const struct cpumask *cpu_allnodes_mask(int cpu)
7173{
7174 return cpu_possible_mask;
7175}
6d6bc0ad 7176#endif /* CONFIG_NUMA */
9c1cfda2 7177
d3081f52
PZ
7178static const struct cpumask *cpu_cpu_mask(int cpu)
7179{
7180 return cpumask_of_node(cpu_to_node(cpu));
7181}
7182
5c45bf27 7183int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7184
dce840a0
PZ
7185struct sd_data {
7186 struct sched_domain **__percpu sd;
7187 struct sched_group **__percpu sg;
9c3f75cb 7188 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7189};
7190
49a02c51 7191struct s_data {
21d42ccf 7192 struct sched_domain ** __percpu sd;
49a02c51
AH
7193 struct root_domain *rd;
7194};
7195
2109b99e 7196enum s_alloc {
2109b99e 7197 sa_rootdomain,
21d42ccf 7198 sa_sd,
dce840a0 7199 sa_sd_storage,
2109b99e
AH
7200 sa_none,
7201};
7202
54ab4ff4
PZ
7203struct sched_domain_topology_level;
7204
7205typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7206typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7207
e3589f6c
PZ
7208#define SDTL_OVERLAP 0x01
7209
eb7a74e6 7210struct sched_domain_topology_level {
2c402dc3
PZ
7211 sched_domain_init_f init;
7212 sched_domain_mask_f mask;
e3589f6c 7213 int flags;
54ab4ff4 7214 struct sd_data data;
eb7a74e6
PZ
7215};
7216
e3589f6c
PZ
7217static int
7218build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7219{
7220 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7221 const struct cpumask *span = sched_domain_span(sd);
7222 struct cpumask *covered = sched_domains_tmpmask;
7223 struct sd_data *sdd = sd->private;
7224 struct sched_domain *child;
7225 int i;
7226
7227 cpumask_clear(covered);
7228
7229 for_each_cpu(i, span) {
7230 struct cpumask *sg_span;
7231
7232 if (cpumask_test_cpu(i, covered))
7233 continue;
7234
7235 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7236 GFP_KERNEL, cpu_to_node(i));
7237
7238 if (!sg)
7239 goto fail;
7240
7241 sg_span = sched_group_cpus(sg);
7242
7243 child = *per_cpu_ptr(sdd->sd, i);
7244 if (child->child) {
7245 child = child->child;
7246 cpumask_copy(sg_span, sched_domain_span(child));
7247 } else
7248 cpumask_set_cpu(i, sg_span);
7249
7250 cpumask_or(covered, covered, sg_span);
7251
7252 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7253 atomic_inc(&sg->sgp->ref);
7254
7255 if (cpumask_test_cpu(cpu, sg_span))
7256 groups = sg;
7257
7258 if (!first)
7259 first = sg;
7260 if (last)
7261 last->next = sg;
7262 last = sg;
7263 last->next = first;
7264 }
7265 sd->groups = groups;
7266
7267 return 0;
7268
7269fail:
7270 free_sched_groups(first, 0);
7271
7272 return -ENOMEM;
7273}
7274
dce840a0 7275static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7276{
dce840a0
PZ
7277 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7278 struct sched_domain *child = sd->child;
1da177e4 7279
dce840a0
PZ
7280 if (child)
7281 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7282
9c3f75cb 7283 if (sg) {
dce840a0 7284 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7285 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7286 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7287 }
dce840a0
PZ
7288
7289 return cpu;
1e9f28fa 7290}
1e9f28fa 7291
01a08546 7292/*
dce840a0
PZ
7293 * build_sched_groups will build a circular linked list of the groups
7294 * covered by the given span, and will set each group's ->cpumask correctly,
7295 * and ->cpu_power to 0.
e3589f6c
PZ
7296 *
7297 * Assumes the sched_domain tree is fully constructed
01a08546 7298 */
e3589f6c
PZ
7299static int
7300build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7301{
dce840a0
PZ
7302 struct sched_group *first = NULL, *last = NULL;
7303 struct sd_data *sdd = sd->private;
7304 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7305 struct cpumask *covered;
dce840a0 7306 int i;
9c1cfda2 7307
e3589f6c
PZ
7308 get_group(cpu, sdd, &sd->groups);
7309 atomic_inc(&sd->groups->ref);
7310
7311 if (cpu != cpumask_first(sched_domain_span(sd)))
7312 return 0;
7313
f96225fd
PZ
7314 lockdep_assert_held(&sched_domains_mutex);
7315 covered = sched_domains_tmpmask;
7316
dce840a0 7317 cpumask_clear(covered);
6711cab4 7318
dce840a0
PZ
7319 for_each_cpu(i, span) {
7320 struct sched_group *sg;
7321 int group = get_group(i, sdd, &sg);
7322 int j;
6711cab4 7323
dce840a0
PZ
7324 if (cpumask_test_cpu(i, covered))
7325 continue;
6711cab4 7326
dce840a0 7327 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7328 sg->sgp->power = 0;
0601a88d 7329
dce840a0
PZ
7330 for_each_cpu(j, span) {
7331 if (get_group(j, sdd, NULL) != group)
7332 continue;
0601a88d 7333
dce840a0
PZ
7334 cpumask_set_cpu(j, covered);
7335 cpumask_set_cpu(j, sched_group_cpus(sg));
7336 }
0601a88d 7337
dce840a0
PZ
7338 if (!first)
7339 first = sg;
7340 if (last)
7341 last->next = sg;
7342 last = sg;
7343 }
7344 last->next = first;
e3589f6c
PZ
7345
7346 return 0;
0601a88d 7347}
51888ca2 7348
89c4710e
SS
7349/*
7350 * Initialize sched groups cpu_power.
7351 *
7352 * cpu_power indicates the capacity of sched group, which is used while
7353 * distributing the load between different sched groups in a sched domain.
7354 * Typically cpu_power for all the groups in a sched domain will be same unless
7355 * there are asymmetries in the topology. If there are asymmetries, group
7356 * having more cpu_power will pickup more load compared to the group having
7357 * less cpu_power.
89c4710e
SS
7358 */
7359static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7360{
e3589f6c 7361 struct sched_group *sg = sd->groups;
89c4710e 7362
e3589f6c
PZ
7363 WARN_ON(!sd || !sg);
7364
7365 do {
7366 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7367 sg = sg->next;
7368 } while (sg != sd->groups);
89c4710e 7369
e3589f6c
PZ
7370 if (cpu != group_first_cpu(sg))
7371 return;
aae6d3dd 7372
d274cb30 7373 update_group_power(sd, cpu);
89c4710e
SS
7374}
7375
7c16ec58
MT
7376/*
7377 * Initializers for schedule domains
7378 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7379 */
7380
a5d8c348
IM
7381#ifdef CONFIG_SCHED_DEBUG
7382# define SD_INIT_NAME(sd, type) sd->name = #type
7383#else
7384# define SD_INIT_NAME(sd, type) do { } while (0)
7385#endif
7386
54ab4ff4
PZ
7387#define SD_INIT_FUNC(type) \
7388static noinline struct sched_domain * \
7389sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7390{ \
7391 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7392 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7393 SD_INIT_NAME(sd, type); \
7394 sd->private = &tl->data; \
7395 return sd; \
7c16ec58
MT
7396}
7397
7398SD_INIT_FUNC(CPU)
7399#ifdef CONFIG_NUMA
7400 SD_INIT_FUNC(ALLNODES)
7401 SD_INIT_FUNC(NODE)
7402#endif
7403#ifdef CONFIG_SCHED_SMT
7404 SD_INIT_FUNC(SIBLING)
7405#endif
7406#ifdef CONFIG_SCHED_MC
7407 SD_INIT_FUNC(MC)
7408#endif
01a08546
HC
7409#ifdef CONFIG_SCHED_BOOK
7410 SD_INIT_FUNC(BOOK)
7411#endif
7c16ec58 7412
1d3504fc 7413static int default_relax_domain_level = -1;
60495e77 7414int sched_domain_level_max;
1d3504fc
HS
7415
7416static int __init setup_relax_domain_level(char *str)
7417{
30e0e178
LZ
7418 unsigned long val;
7419
7420 val = simple_strtoul(str, NULL, 0);
60495e77 7421 if (val < sched_domain_level_max)
30e0e178
LZ
7422 default_relax_domain_level = val;
7423
1d3504fc
HS
7424 return 1;
7425}
7426__setup("relax_domain_level=", setup_relax_domain_level);
7427
7428static void set_domain_attribute(struct sched_domain *sd,
7429 struct sched_domain_attr *attr)
7430{
7431 int request;
7432
7433 if (!attr || attr->relax_domain_level < 0) {
7434 if (default_relax_domain_level < 0)
7435 return;
7436 else
7437 request = default_relax_domain_level;
7438 } else
7439 request = attr->relax_domain_level;
7440 if (request < sd->level) {
7441 /* turn off idle balance on this domain */
c88d5910 7442 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7443 } else {
7444 /* turn on idle balance on this domain */
c88d5910 7445 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7446 }
7447}
7448
54ab4ff4
PZ
7449static void __sdt_free(const struct cpumask *cpu_map);
7450static int __sdt_alloc(const struct cpumask *cpu_map);
7451
2109b99e
AH
7452static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7453 const struct cpumask *cpu_map)
7454{
7455 switch (what) {
2109b99e 7456 case sa_rootdomain:
822ff793
PZ
7457 if (!atomic_read(&d->rd->refcount))
7458 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7459 case sa_sd:
7460 free_percpu(d->sd); /* fall through */
dce840a0 7461 case sa_sd_storage:
54ab4ff4 7462 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7463 case sa_none:
7464 break;
7465 }
7466}
3404c8d9 7467
2109b99e
AH
7468static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7469 const struct cpumask *cpu_map)
7470{
dce840a0
PZ
7471 memset(d, 0, sizeof(*d));
7472
54ab4ff4
PZ
7473 if (__sdt_alloc(cpu_map))
7474 return sa_sd_storage;
dce840a0
PZ
7475 d->sd = alloc_percpu(struct sched_domain *);
7476 if (!d->sd)
7477 return sa_sd_storage;
2109b99e 7478 d->rd = alloc_rootdomain();
dce840a0 7479 if (!d->rd)
21d42ccf 7480 return sa_sd;
2109b99e
AH
7481 return sa_rootdomain;
7482}
57d885fe 7483
dce840a0
PZ
7484/*
7485 * NULL the sd_data elements we've used to build the sched_domain and
7486 * sched_group structure so that the subsequent __free_domain_allocs()
7487 * will not free the data we're using.
7488 */
7489static void claim_allocations(int cpu, struct sched_domain *sd)
7490{
7491 struct sd_data *sdd = sd->private;
dce840a0
PZ
7492
7493 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7494 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7495
e3589f6c 7496 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7497 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7498
7499 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7500 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7501}
7502
2c402dc3
PZ
7503#ifdef CONFIG_SCHED_SMT
7504static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7505{
2c402dc3 7506 return topology_thread_cpumask(cpu);
3bd65a80 7507}
2c402dc3 7508#endif
7f4588f3 7509
d069b916
PZ
7510/*
7511 * Topology list, bottom-up.
7512 */
2c402dc3 7513static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7514#ifdef CONFIG_SCHED_SMT
7515 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7516#endif
1e9f28fa 7517#ifdef CONFIG_SCHED_MC
2c402dc3 7518 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7519#endif
d069b916
PZ
7520#ifdef CONFIG_SCHED_BOOK
7521 { sd_init_BOOK, cpu_book_mask, },
7522#endif
7523 { sd_init_CPU, cpu_cpu_mask, },
7524#ifdef CONFIG_NUMA
e3589f6c 7525 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7526 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7527#endif
eb7a74e6
PZ
7528 { NULL, },
7529};
7530
7531static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7532
54ab4ff4
PZ
7533static int __sdt_alloc(const struct cpumask *cpu_map)
7534{
7535 struct sched_domain_topology_level *tl;
7536 int j;
7537
7538 for (tl = sched_domain_topology; tl->init; tl++) {
7539 struct sd_data *sdd = &tl->data;
7540
7541 sdd->sd = alloc_percpu(struct sched_domain *);
7542 if (!sdd->sd)
7543 return -ENOMEM;
7544
7545 sdd->sg = alloc_percpu(struct sched_group *);
7546 if (!sdd->sg)
7547 return -ENOMEM;
7548
9c3f75cb
PZ
7549 sdd->sgp = alloc_percpu(struct sched_group_power *);
7550 if (!sdd->sgp)
7551 return -ENOMEM;
7552
54ab4ff4
PZ
7553 for_each_cpu(j, cpu_map) {
7554 struct sched_domain *sd;
7555 struct sched_group *sg;
9c3f75cb 7556 struct sched_group_power *sgp;
54ab4ff4
PZ
7557
7558 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7559 GFP_KERNEL, cpu_to_node(j));
7560 if (!sd)
7561 return -ENOMEM;
7562
7563 *per_cpu_ptr(sdd->sd, j) = sd;
7564
7565 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7566 GFP_KERNEL, cpu_to_node(j));
7567 if (!sg)
7568 return -ENOMEM;
7569
7570 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7571
7572 sgp = kzalloc_node(sizeof(struct sched_group_power),
7573 GFP_KERNEL, cpu_to_node(j));
7574 if (!sgp)
7575 return -ENOMEM;
7576
7577 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7578 }
7579 }
7580
7581 return 0;
7582}
7583
7584static void __sdt_free(const struct cpumask *cpu_map)
7585{
7586 struct sched_domain_topology_level *tl;
7587 int j;
7588
7589 for (tl = sched_domain_topology; tl->init; tl++) {
7590 struct sd_data *sdd = &tl->data;
7591
7592 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7593 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7594 if (sd && (sd->flags & SD_OVERLAP))
7595 free_sched_groups(sd->groups, 0);
feff8fa0 7596 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 7597 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7598 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7599 }
7600 free_percpu(sdd->sd);
7601 free_percpu(sdd->sg);
9c3f75cb 7602 free_percpu(sdd->sgp);
54ab4ff4
PZ
7603 }
7604}
7605
2c402dc3
PZ
7606struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7607 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7608 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7609 int cpu)
7610{
54ab4ff4 7611 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7612 if (!sd)
d069b916 7613 return child;
2c402dc3
PZ
7614
7615 set_domain_attribute(sd, attr);
7616 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7617 if (child) {
7618 sd->level = child->level + 1;
7619 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7620 child->parent = sd;
60495e77 7621 }
d069b916 7622 sd->child = child;
2c402dc3
PZ
7623
7624 return sd;
7625}
7626
2109b99e
AH
7627/*
7628 * Build sched domains for a given set of cpus and attach the sched domains
7629 * to the individual cpus
7630 */
dce840a0
PZ
7631static int build_sched_domains(const struct cpumask *cpu_map,
7632 struct sched_domain_attr *attr)
2109b99e
AH
7633{
7634 enum s_alloc alloc_state = sa_none;
dce840a0 7635 struct sched_domain *sd;
2109b99e 7636 struct s_data d;
822ff793 7637 int i, ret = -ENOMEM;
9c1cfda2 7638
2109b99e
AH
7639 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7640 if (alloc_state != sa_rootdomain)
7641 goto error;
9c1cfda2 7642
dce840a0 7643 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7644 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7645 struct sched_domain_topology_level *tl;
7646
3bd65a80 7647 sd = NULL;
e3589f6c 7648 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7649 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7650 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7651 sd->flags |= SD_OVERLAP;
d110235d
PZ
7652 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7653 break;
e3589f6c 7654 }
d274cb30 7655
d069b916
PZ
7656 while (sd->child)
7657 sd = sd->child;
7658
21d42ccf 7659 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7660 }
7661
7662 /* Build the groups for the domains */
7663 for_each_cpu(i, cpu_map) {
7664 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7665 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7666 if (sd->flags & SD_OVERLAP) {
7667 if (build_overlap_sched_groups(sd, i))
7668 goto error;
7669 } else {
7670 if (build_sched_groups(sd, i))
7671 goto error;
7672 }
1cf51902 7673 }
a06dadbe 7674 }
9c1cfda2 7675
1da177e4 7676 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7677 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7678 if (!cpumask_test_cpu(i, cpu_map))
7679 continue;
9c1cfda2 7680
dce840a0
PZ
7681 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7682 claim_allocations(i, sd);
cd4ea6ae 7683 init_sched_groups_power(i, sd);
dce840a0 7684 }
f712c0c7 7685 }
9c1cfda2 7686
1da177e4 7687 /* Attach the domains */
dce840a0 7688 rcu_read_lock();
abcd083a 7689 for_each_cpu(i, cpu_map) {
21d42ccf 7690 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7691 cpu_attach_domain(sd, d.rd, i);
1da177e4 7692 }
dce840a0 7693 rcu_read_unlock();
51888ca2 7694
822ff793 7695 ret = 0;
51888ca2 7696error:
2109b99e 7697 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7698 return ret;
1da177e4 7699}
029190c5 7700
acc3f5d7 7701static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7702static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7703static struct sched_domain_attr *dattr_cur;
7704 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7705
7706/*
7707 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7708 * cpumask) fails, then fallback to a single sched domain,
7709 * as determined by the single cpumask fallback_doms.
029190c5 7710 */
4212823f 7711static cpumask_var_t fallback_doms;
029190c5 7712
ee79d1bd
HC
7713/*
7714 * arch_update_cpu_topology lets virtualized architectures update the
7715 * cpu core maps. It is supposed to return 1 if the topology changed
7716 * or 0 if it stayed the same.
7717 */
7718int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7719{
ee79d1bd 7720 return 0;
22e52b07
HC
7721}
7722
acc3f5d7
RR
7723cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7724{
7725 int i;
7726 cpumask_var_t *doms;
7727
7728 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7729 if (!doms)
7730 return NULL;
7731 for (i = 0; i < ndoms; i++) {
7732 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7733 free_sched_domains(doms, i);
7734 return NULL;
7735 }
7736 }
7737 return doms;
7738}
7739
7740void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7741{
7742 unsigned int i;
7743 for (i = 0; i < ndoms; i++)
7744 free_cpumask_var(doms[i]);
7745 kfree(doms);
7746}
7747
1a20ff27 7748/*
41a2d6cf 7749 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7750 * For now this just excludes isolated cpus, but could be used to
7751 * exclude other special cases in the future.
1a20ff27 7752 */
c4a8849a 7753static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7754{
7378547f
MM
7755 int err;
7756
22e52b07 7757 arch_update_cpu_topology();
029190c5 7758 ndoms_cur = 1;
acc3f5d7 7759 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7760 if (!doms_cur)
acc3f5d7
RR
7761 doms_cur = &fallback_doms;
7762 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7763 dattr_cur = NULL;
dce840a0 7764 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7765 register_sched_domain_sysctl();
7378547f
MM
7766
7767 return err;
1a20ff27
DG
7768}
7769
1a20ff27
DG
7770/*
7771 * Detach sched domains from a group of cpus specified in cpu_map
7772 * These cpus will now be attached to the NULL domain
7773 */
96f874e2 7774static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7775{
7776 int i;
7777
dce840a0 7778 rcu_read_lock();
abcd083a 7779 for_each_cpu(i, cpu_map)
57d885fe 7780 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7781 rcu_read_unlock();
1a20ff27
DG
7782}
7783
1d3504fc
HS
7784/* handle null as "default" */
7785static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7786 struct sched_domain_attr *new, int idx_new)
7787{
7788 struct sched_domain_attr tmp;
7789
7790 /* fast path */
7791 if (!new && !cur)
7792 return 1;
7793
7794 tmp = SD_ATTR_INIT;
7795 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7796 new ? (new + idx_new) : &tmp,
7797 sizeof(struct sched_domain_attr));
7798}
7799
029190c5
PJ
7800/*
7801 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7802 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7803 * doms_new[] to the current sched domain partitioning, doms_cur[].
7804 * It destroys each deleted domain and builds each new domain.
7805 *
acc3f5d7 7806 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7807 * The masks don't intersect (don't overlap.) We should setup one
7808 * sched domain for each mask. CPUs not in any of the cpumasks will
7809 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7811 * it as it is.
7812 *
acc3f5d7
RR
7813 * The passed in 'doms_new' should be allocated using
7814 * alloc_sched_domains. This routine takes ownership of it and will
7815 * free_sched_domains it when done with it. If the caller failed the
7816 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7817 * and partition_sched_domains() will fallback to the single partition
7818 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7819 *
96f874e2 7820 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7821 * ndoms_new == 0 is a special case for destroying existing domains,
7822 * and it will not create the default domain.
dfb512ec 7823 *
029190c5
PJ
7824 * Call with hotplug lock held
7825 */
acc3f5d7 7826void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7827 struct sched_domain_attr *dattr_new)
029190c5 7828{
dfb512ec 7829 int i, j, n;
d65bd5ec 7830 int new_topology;
029190c5 7831
712555ee 7832 mutex_lock(&sched_domains_mutex);
a1835615 7833
7378547f
MM
7834 /* always unregister in case we don't destroy any domains */
7835 unregister_sched_domain_sysctl();
7836
d65bd5ec
HC
7837 /* Let architecture update cpu core mappings. */
7838 new_topology = arch_update_cpu_topology();
7839
dfb512ec 7840 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7841
7842 /* Destroy deleted domains */
7843 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7844 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7845 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7846 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7847 goto match1;
7848 }
7849 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7850 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7851match1:
7852 ;
7853 }
7854
e761b772
MK
7855 if (doms_new == NULL) {
7856 ndoms_cur = 0;
acc3f5d7 7857 doms_new = &fallback_doms;
6ad4c188 7858 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7859 WARN_ON_ONCE(dattr_new);
e761b772
MK
7860 }
7861
029190c5
PJ
7862 /* Build new domains */
7863 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7864 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7865 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7866 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7867 goto match2;
7868 }
7869 /* no match - add a new doms_new */
dce840a0 7870 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7871match2:
7872 ;
7873 }
7874
7875 /* Remember the new sched domains */
acc3f5d7
RR
7876 if (doms_cur != &fallback_doms)
7877 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7878 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7879 doms_cur = doms_new;
1d3504fc 7880 dattr_cur = dattr_new;
029190c5 7881 ndoms_cur = ndoms_new;
7378547f
MM
7882
7883 register_sched_domain_sysctl();
a1835615 7884
712555ee 7885 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7886}
7887
5c45bf27 7888#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7889static void reinit_sched_domains(void)
5c45bf27 7890{
95402b38 7891 get_online_cpus();
dfb512ec
MK
7892
7893 /* Destroy domains first to force the rebuild */
7894 partition_sched_domains(0, NULL, NULL);
7895
e761b772 7896 rebuild_sched_domains();
95402b38 7897 put_online_cpus();
5c45bf27
SS
7898}
7899
7900static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7901{
afb8a9b7 7902 unsigned int level = 0;
5c45bf27 7903
afb8a9b7
GS
7904 if (sscanf(buf, "%u", &level) != 1)
7905 return -EINVAL;
7906
7907 /*
7908 * level is always be positive so don't check for
7909 * level < POWERSAVINGS_BALANCE_NONE which is 0
7910 * What happens on 0 or 1 byte write,
7911 * need to check for count as well?
7912 */
7913
7914 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7915 return -EINVAL;
7916
7917 if (smt)
afb8a9b7 7918 sched_smt_power_savings = level;
5c45bf27 7919 else
afb8a9b7 7920 sched_mc_power_savings = level;
5c45bf27 7921
c4a8849a 7922 reinit_sched_domains();
5c45bf27 7923
c70f22d2 7924 return count;
5c45bf27
SS
7925}
7926
5c45bf27 7927#ifdef CONFIG_SCHED_MC
f718cd4a 7928static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7929 struct sysdev_class_attribute *attr,
f718cd4a 7930 char *page)
5c45bf27
SS
7931{
7932 return sprintf(page, "%u\n", sched_mc_power_savings);
7933}
f718cd4a 7934static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7935 struct sysdev_class_attribute *attr,
48f24c4d 7936 const char *buf, size_t count)
5c45bf27
SS
7937{
7938 return sched_power_savings_store(buf, count, 0);
7939}
f718cd4a
AK
7940static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7941 sched_mc_power_savings_show,
7942 sched_mc_power_savings_store);
5c45bf27
SS
7943#endif
7944
7945#ifdef CONFIG_SCHED_SMT
f718cd4a 7946static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7947 struct sysdev_class_attribute *attr,
f718cd4a 7948 char *page)
5c45bf27
SS
7949{
7950 return sprintf(page, "%u\n", sched_smt_power_savings);
7951}
f718cd4a 7952static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7953 struct sysdev_class_attribute *attr,
48f24c4d 7954 const char *buf, size_t count)
5c45bf27
SS
7955{
7956 return sched_power_savings_store(buf, count, 1);
7957}
f718cd4a
AK
7958static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7959 sched_smt_power_savings_show,
6707de00
AB
7960 sched_smt_power_savings_store);
7961#endif
7962
39aac648 7963int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7964{
7965 int err = 0;
7966
7967#ifdef CONFIG_SCHED_SMT
7968 if (smt_capable())
7969 err = sysfs_create_file(&cls->kset.kobj,
7970 &attr_sched_smt_power_savings.attr);
7971#endif
7972#ifdef CONFIG_SCHED_MC
7973 if (!err && mc_capable())
7974 err = sysfs_create_file(&cls->kset.kobj,
7975 &attr_sched_mc_power_savings.attr);
7976#endif
7977 return err;
7978}
6d6bc0ad 7979#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7980
1da177e4 7981/*
3a101d05
TH
7982 * Update cpusets according to cpu_active mask. If cpusets are
7983 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7984 * around partition_sched_domains().
1da177e4 7985 */
0b2e918a
TH
7986static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7987 void *hcpu)
e761b772 7988{
3a101d05 7989 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7990 case CPU_ONLINE:
6ad4c188 7991 case CPU_DOWN_FAILED:
3a101d05 7992 cpuset_update_active_cpus();
e761b772 7993 return NOTIFY_OK;
3a101d05
TH
7994 default:
7995 return NOTIFY_DONE;
7996 }
7997}
e761b772 7998
0b2e918a
TH
7999static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8000 void *hcpu)
3a101d05
TH
8001{
8002 switch (action & ~CPU_TASKS_FROZEN) {
8003 case CPU_DOWN_PREPARE:
8004 cpuset_update_active_cpus();
8005 return NOTIFY_OK;
e761b772
MK
8006 default:
8007 return NOTIFY_DONE;
8008 }
8009}
e761b772
MK
8010
8011static int update_runtime(struct notifier_block *nfb,
8012 unsigned long action, void *hcpu)
1da177e4 8013{
7def2be1
PZ
8014 int cpu = (int)(long)hcpu;
8015
1da177e4 8016 switch (action) {
1da177e4 8017 case CPU_DOWN_PREPARE:
8bb78442 8018 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8019 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8020 return NOTIFY_OK;
8021
1da177e4 8022 case CPU_DOWN_FAILED:
8bb78442 8023 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8024 case CPU_ONLINE:
8bb78442 8025 case CPU_ONLINE_FROZEN:
7def2be1 8026 enable_runtime(cpu_rq(cpu));
e761b772
MK
8027 return NOTIFY_OK;
8028
1da177e4
LT
8029 default:
8030 return NOTIFY_DONE;
8031 }
1da177e4 8032}
1da177e4
LT
8033
8034void __init sched_init_smp(void)
8035{
dcc30a35
RR
8036 cpumask_var_t non_isolated_cpus;
8037
8038 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8039 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8040
95402b38 8041 get_online_cpus();
712555ee 8042 mutex_lock(&sched_domains_mutex);
c4a8849a 8043 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8044 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8045 if (cpumask_empty(non_isolated_cpus))
8046 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8047 mutex_unlock(&sched_domains_mutex);
95402b38 8048 put_online_cpus();
e761b772 8049
3a101d05
TH
8050 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8051 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8052
8053 /* RT runtime code needs to handle some hotplug events */
8054 hotcpu_notifier(update_runtime, 0);
8055
b328ca18 8056 init_hrtick();
5c1e1767
NP
8057
8058 /* Move init over to a non-isolated CPU */
dcc30a35 8059 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8060 BUG();
19978ca6 8061 sched_init_granularity();
dcc30a35 8062 free_cpumask_var(non_isolated_cpus);
4212823f 8063
0e3900e6 8064 init_sched_rt_class();
1da177e4
LT
8065}
8066#else
8067void __init sched_init_smp(void)
8068{
19978ca6 8069 sched_init_granularity();
1da177e4
LT
8070}
8071#endif /* CONFIG_SMP */
8072
cd1bb94b
AB
8073const_debug unsigned int sysctl_timer_migration = 1;
8074
1da177e4
LT
8075int in_sched_functions(unsigned long addr)
8076{
1da177e4
LT
8077 return in_lock_functions(addr) ||
8078 (addr >= (unsigned long)__sched_text_start
8079 && addr < (unsigned long)__sched_text_end);
8080}
8081
acb5a9ba 8082static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8083{
8084 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8085 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8086 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8087#ifndef CONFIG_64BIT
8088 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8089#endif
dd41f596
IM
8090}
8091
fa85ae24
PZ
8092static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8093{
8094 struct rt_prio_array *array;
8095 int i;
8096
8097 array = &rt_rq->active;
8098 for (i = 0; i < MAX_RT_PRIO; i++) {
8099 INIT_LIST_HEAD(array->queue + i);
8100 __clear_bit(i, array->bitmap);
8101 }
8102 /* delimiter for bitsearch: */
8103 __set_bit(MAX_RT_PRIO, array->bitmap);
8104
acb5a9ba 8105#if defined CONFIG_SMP
e864c499
GH
8106 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8107 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8108 rt_rq->rt_nr_migratory = 0;
fa85ae24 8109 rt_rq->overloaded = 0;
732375c6 8110 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8111#endif
8112
8113 rt_rq->rt_time = 0;
8114 rt_rq->rt_throttled = 0;
ac086bc2 8115 rt_rq->rt_runtime = 0;
0986b11b 8116 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8117}
8118
6f505b16 8119#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8120static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8121 struct sched_entity *se, int cpu,
ec7dc8ac 8122 struct sched_entity *parent)
6f505b16 8123{
ec7dc8ac 8124 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8125
6f505b16 8126 cfs_rq->tg = tg;
acb5a9ba
JS
8127 cfs_rq->rq = rq;
8128#ifdef CONFIG_SMP
8129 /* allow initial update_cfs_load() to truncate */
8130 cfs_rq->load_stamp = 1;
8131#endif
ab84d31e 8132 init_cfs_rq_runtime(cfs_rq);
6f505b16 8133
acb5a9ba 8134 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8135 tg->se[cpu] = se;
acb5a9ba 8136
07e06b01 8137 /* se could be NULL for root_task_group */
354d60c2
DG
8138 if (!se)
8139 return;
8140
ec7dc8ac
DG
8141 if (!parent)
8142 se->cfs_rq = &rq->cfs;
8143 else
8144 se->cfs_rq = parent->my_q;
8145
6f505b16 8146 se->my_q = cfs_rq;
9437178f 8147 update_load_set(&se->load, 0);
ec7dc8ac 8148 se->parent = parent;
6f505b16 8149}
052f1dc7 8150#endif
6f505b16 8151
052f1dc7 8152#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8153static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8154 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8155 struct sched_rt_entity *parent)
6f505b16 8156{
ec7dc8ac
DG
8157 struct rq *rq = cpu_rq(cpu);
8158
acb5a9ba
JS
8159 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8160 rt_rq->rt_nr_boosted = 0;
8161 rt_rq->rq = rq;
6f505b16 8162 rt_rq->tg = tg;
6f505b16 8163
acb5a9ba 8164 tg->rt_rq[cpu] = rt_rq;
6f505b16 8165 tg->rt_se[cpu] = rt_se;
acb5a9ba 8166
354d60c2
DG
8167 if (!rt_se)
8168 return;
8169
ec7dc8ac
DG
8170 if (!parent)
8171 rt_se->rt_rq = &rq->rt;
8172 else
8173 rt_se->rt_rq = parent->my_q;
8174
6f505b16 8175 rt_se->my_q = rt_rq;
ec7dc8ac 8176 rt_se->parent = parent;
6f505b16
PZ
8177 INIT_LIST_HEAD(&rt_se->run_list);
8178}
8179#endif
8180
1da177e4
LT
8181void __init sched_init(void)
8182{
dd41f596 8183 int i, j;
434d53b0
MT
8184 unsigned long alloc_size = 0, ptr;
8185
8186#ifdef CONFIG_FAIR_GROUP_SCHED
8187 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8188#endif
8189#ifdef CONFIG_RT_GROUP_SCHED
8190 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8191#endif
df7c8e84 8192#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8193 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8194#endif
434d53b0 8195 if (alloc_size) {
36b7b6d4 8196 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8197
8198#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8199 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8200 ptr += nr_cpu_ids * sizeof(void **);
8201
07e06b01 8202 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8203 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8204
6d6bc0ad 8205#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8206#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8207 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8208 ptr += nr_cpu_ids * sizeof(void **);
8209
07e06b01 8210 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8211 ptr += nr_cpu_ids * sizeof(void **);
8212
6d6bc0ad 8213#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8214#ifdef CONFIG_CPUMASK_OFFSTACK
8215 for_each_possible_cpu(i) {
8216 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8217 ptr += cpumask_size();
8218 }
8219#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8220 }
dd41f596 8221
57d885fe
GH
8222#ifdef CONFIG_SMP
8223 init_defrootdomain();
8224#endif
8225
d0b27fa7
PZ
8226 init_rt_bandwidth(&def_rt_bandwidth,
8227 global_rt_period(), global_rt_runtime());
8228
8229#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8230 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8231 global_rt_period(), global_rt_runtime());
6d6bc0ad 8232#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8233
7c941438 8234#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8235 list_add(&root_task_group.list, &task_groups);
8236 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8237 autogroup_init(&init_task);
7c941438 8238#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8239
0a945022 8240 for_each_possible_cpu(i) {
70b97a7f 8241 struct rq *rq;
1da177e4
LT
8242
8243 rq = cpu_rq(i);
05fa785c 8244 raw_spin_lock_init(&rq->lock);
7897986b 8245 rq->nr_running = 0;
dce48a84
TG
8246 rq->calc_load_active = 0;
8247 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8248 init_cfs_rq(&rq->cfs);
6f505b16 8249 init_rt_rq(&rq->rt, rq);
dd41f596 8250#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8251 root_task_group.shares = root_task_group_load;
6f505b16 8252 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8253 /*
07e06b01 8254 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8255 *
8256 * In case of task-groups formed thr' the cgroup filesystem, it
8257 * gets 100% of the cpu resources in the system. This overall
8258 * system cpu resource is divided among the tasks of
07e06b01 8259 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8260 * based on each entity's (task or task-group's) weight
8261 * (se->load.weight).
8262 *
07e06b01 8263 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8264 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8265 * then A0's share of the cpu resource is:
8266 *
0d905bca 8267 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8268 *
07e06b01
YZ
8269 * We achieve this by letting root_task_group's tasks sit
8270 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8271 */
ab84d31e 8272 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8273 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8274#endif /* CONFIG_FAIR_GROUP_SCHED */
8275
8276 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8277#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8278 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8279 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8280#endif
1da177e4 8281
dd41f596
IM
8282 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8283 rq->cpu_load[j] = 0;
fdf3e95d
VP
8284
8285 rq->last_load_update_tick = jiffies;
8286
1da177e4 8287#ifdef CONFIG_SMP
41c7ce9a 8288 rq->sd = NULL;
57d885fe 8289 rq->rd = NULL;
1399fa78 8290 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8291 rq->post_schedule = 0;
1da177e4 8292 rq->active_balance = 0;
dd41f596 8293 rq->next_balance = jiffies;
1da177e4 8294 rq->push_cpu = 0;
0a2966b4 8295 rq->cpu = i;
1f11eb6a 8296 rq->online = 0;
eae0c9df
MG
8297 rq->idle_stamp = 0;
8298 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8299 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8300#ifdef CONFIG_NO_HZ
8301 rq->nohz_balance_kick = 0;
83cd4fe2 8302#endif
1da177e4 8303#endif
8f4d37ec 8304 init_rq_hrtick(rq);
1da177e4 8305 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8306 }
8307
2dd73a4f 8308 set_load_weight(&init_task);
b50f60ce 8309
e107be36
AK
8310#ifdef CONFIG_PREEMPT_NOTIFIERS
8311 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8312#endif
8313
c9819f45 8314#ifdef CONFIG_SMP
962cf36c 8315 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8316#endif
8317
b50f60ce 8318#ifdef CONFIG_RT_MUTEXES
732375c6 8319 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8320#endif
8321
1da177e4
LT
8322 /*
8323 * The boot idle thread does lazy MMU switching as well:
8324 */
8325 atomic_inc(&init_mm.mm_count);
8326 enter_lazy_tlb(&init_mm, current);
8327
8328 /*
8329 * Make us the idle thread. Technically, schedule() should not be
8330 * called from this thread, however somewhere below it might be,
8331 * but because we are the idle thread, we just pick up running again
8332 * when this runqueue becomes "idle".
8333 */
8334 init_idle(current, smp_processor_id());
dce48a84
TG
8335
8336 calc_load_update = jiffies + LOAD_FREQ;
8337
dd41f596
IM
8338 /*
8339 * During early bootup we pretend to be a normal task:
8340 */
8341 current->sched_class = &fair_sched_class;
6892b75e 8342
bf4d83f6 8343#ifdef CONFIG_SMP
4cb98839 8344 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8345#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8346 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8347 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8348 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8349 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8350 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8351#endif
bdddd296
RR
8352 /* May be allocated at isolcpus cmdline parse time */
8353 if (cpu_isolated_map == NULL)
8354 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8355#endif /* SMP */
6a7b3dc3 8356
6892b75e 8357 scheduler_running = 1;
1da177e4
LT
8358}
8359
d902db1e 8360#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8361static inline int preempt_count_equals(int preempt_offset)
8362{
234da7bc 8363 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8364
4ba8216c 8365 return (nested == preempt_offset);
e4aafea2
FW
8366}
8367
d894837f 8368void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8369{
1da177e4
LT
8370 static unsigned long prev_jiffy; /* ratelimiting */
8371
b3fbab05 8372 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
8373 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8374 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8375 return;
8376 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8377 return;
8378 prev_jiffy = jiffies;
8379
3df0fc5b
PZ
8380 printk(KERN_ERR
8381 "BUG: sleeping function called from invalid context at %s:%d\n",
8382 file, line);
8383 printk(KERN_ERR
8384 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8385 in_atomic(), irqs_disabled(),
8386 current->pid, current->comm);
aef745fc
IM
8387
8388 debug_show_held_locks(current);
8389 if (irqs_disabled())
8390 print_irqtrace_events(current);
8391 dump_stack();
1da177e4
LT
8392}
8393EXPORT_SYMBOL(__might_sleep);
8394#endif
8395
8396#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8397static void normalize_task(struct rq *rq, struct task_struct *p)
8398{
da7a735e
PZ
8399 const struct sched_class *prev_class = p->sched_class;
8400 int old_prio = p->prio;
3a5e4dc1 8401 int on_rq;
3e51f33f 8402
fd2f4419 8403 on_rq = p->on_rq;
3a5e4dc1
AK
8404 if (on_rq)
8405 deactivate_task(rq, p, 0);
8406 __setscheduler(rq, p, SCHED_NORMAL, 0);
8407 if (on_rq) {
8408 activate_task(rq, p, 0);
8409 resched_task(rq->curr);
8410 }
da7a735e
PZ
8411
8412 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8413}
8414
1da177e4
LT
8415void normalize_rt_tasks(void)
8416{
a0f98a1c 8417 struct task_struct *g, *p;
1da177e4 8418 unsigned long flags;
70b97a7f 8419 struct rq *rq;
1da177e4 8420
4cf5d77a 8421 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8422 do_each_thread(g, p) {
178be793
IM
8423 /*
8424 * Only normalize user tasks:
8425 */
8426 if (!p->mm)
8427 continue;
8428
6cfb0d5d 8429 p->se.exec_start = 0;
6cfb0d5d 8430#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8431 p->se.statistics.wait_start = 0;
8432 p->se.statistics.sleep_start = 0;
8433 p->se.statistics.block_start = 0;
6cfb0d5d 8434#endif
dd41f596
IM
8435
8436 if (!rt_task(p)) {
8437 /*
8438 * Renice negative nice level userspace
8439 * tasks back to 0:
8440 */
8441 if (TASK_NICE(p) < 0 && p->mm)
8442 set_user_nice(p, 0);
1da177e4 8443 continue;
dd41f596 8444 }
1da177e4 8445
1d615482 8446 raw_spin_lock(&p->pi_lock);
b29739f9 8447 rq = __task_rq_lock(p);
1da177e4 8448
178be793 8449 normalize_task(rq, p);
3a5e4dc1 8450
b29739f9 8451 __task_rq_unlock(rq);
1d615482 8452 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8453 } while_each_thread(g, p);
8454
4cf5d77a 8455 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8456}
8457
8458#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8459
67fc4e0c 8460#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8461/*
67fc4e0c 8462 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8463 *
8464 * They can only be called when the whole system has been
8465 * stopped - every CPU needs to be quiescent, and no scheduling
8466 * activity can take place. Using them for anything else would
8467 * be a serious bug, and as a result, they aren't even visible
8468 * under any other configuration.
8469 */
8470
8471/**
8472 * curr_task - return the current task for a given cpu.
8473 * @cpu: the processor in question.
8474 *
8475 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8476 */
36c8b586 8477struct task_struct *curr_task(int cpu)
1df5c10a
LT
8478{
8479 return cpu_curr(cpu);
8480}
8481
67fc4e0c
JW
8482#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8483
8484#ifdef CONFIG_IA64
1df5c10a
LT
8485/**
8486 * set_curr_task - set the current task for a given cpu.
8487 * @cpu: the processor in question.
8488 * @p: the task pointer to set.
8489 *
8490 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8491 * are serviced on a separate stack. It allows the architecture to switch the
8492 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8493 * must be called with all CPU's synchronized, and interrupts disabled, the
8494 * and caller must save the original value of the current task (see
8495 * curr_task() above) and restore that value before reenabling interrupts and
8496 * re-starting the system.
8497 *
8498 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8499 */
36c8b586 8500void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8501{
8502 cpu_curr(cpu) = p;
8503}
8504
8505#endif
29f59db3 8506
bccbe08a
PZ
8507#ifdef CONFIG_FAIR_GROUP_SCHED
8508static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8509{
8510 int i;
8511
ab84d31e
PT
8512 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8513
6f505b16
PZ
8514 for_each_possible_cpu(i) {
8515 if (tg->cfs_rq)
8516 kfree(tg->cfs_rq[i]);
8517 if (tg->se)
8518 kfree(tg->se[i]);
6f505b16
PZ
8519 }
8520
8521 kfree(tg->cfs_rq);
8522 kfree(tg->se);
6f505b16
PZ
8523}
8524
ec7dc8ac
DG
8525static
8526int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8527{
29f59db3 8528 struct cfs_rq *cfs_rq;
eab17229 8529 struct sched_entity *se;
29f59db3
SV
8530 int i;
8531
434d53b0 8532 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8533 if (!tg->cfs_rq)
8534 goto err;
434d53b0 8535 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8536 if (!tg->se)
8537 goto err;
052f1dc7
PZ
8538
8539 tg->shares = NICE_0_LOAD;
29f59db3 8540
ab84d31e
PT
8541 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8542
29f59db3 8543 for_each_possible_cpu(i) {
eab17229
LZ
8544 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8545 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8546 if (!cfs_rq)
8547 goto err;
8548
eab17229
LZ
8549 se = kzalloc_node(sizeof(struct sched_entity),
8550 GFP_KERNEL, cpu_to_node(i));
29f59db3 8551 if (!se)
dfc12eb2 8552 goto err_free_rq;
29f59db3 8553
acb5a9ba 8554 init_cfs_rq(cfs_rq);
3d4b47b4 8555 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8556 }
8557
8558 return 1;
8559
49246274 8560err_free_rq:
dfc12eb2 8561 kfree(cfs_rq);
49246274 8562err:
bccbe08a
PZ
8563 return 0;
8564}
8565
bccbe08a
PZ
8566static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8567{
3d4b47b4
PZ
8568 struct rq *rq = cpu_rq(cpu);
8569 unsigned long flags;
3d4b47b4
PZ
8570
8571 /*
8572 * Only empty task groups can be destroyed; so we can speculatively
8573 * check on_list without danger of it being re-added.
8574 */
8575 if (!tg->cfs_rq[cpu]->on_list)
8576 return;
8577
8578 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8579 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8580 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8581}
5f817d67 8582#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8583static inline void free_fair_sched_group(struct task_group *tg)
8584{
8585}
8586
ec7dc8ac
DG
8587static inline
8588int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8589{
8590 return 1;
8591}
8592
bccbe08a
PZ
8593static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8594{
8595}
6d6bc0ad 8596#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8597
8598#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8599static void free_rt_sched_group(struct task_group *tg)
8600{
8601 int i;
8602
99bc5242
BL
8603 if (tg->rt_se)
8604 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8605
bccbe08a
PZ
8606 for_each_possible_cpu(i) {
8607 if (tg->rt_rq)
8608 kfree(tg->rt_rq[i]);
8609 if (tg->rt_se)
8610 kfree(tg->rt_se[i]);
8611 }
8612
8613 kfree(tg->rt_rq);
8614 kfree(tg->rt_se);
8615}
8616
ec7dc8ac
DG
8617static
8618int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8619{
8620 struct rt_rq *rt_rq;
eab17229 8621 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8622 int i;
8623
434d53b0 8624 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8625 if (!tg->rt_rq)
8626 goto err;
434d53b0 8627 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8628 if (!tg->rt_se)
8629 goto err;
8630
d0b27fa7
PZ
8631 init_rt_bandwidth(&tg->rt_bandwidth,
8632 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8633
8634 for_each_possible_cpu(i) {
eab17229
LZ
8635 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8636 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8637 if (!rt_rq)
8638 goto err;
29f59db3 8639
eab17229
LZ
8640 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8641 GFP_KERNEL, cpu_to_node(i));
6f505b16 8642 if (!rt_se)
dfc12eb2 8643 goto err_free_rq;
29f59db3 8644
acb5a9ba
JS
8645 init_rt_rq(rt_rq, cpu_rq(i));
8646 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8647 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8648 }
8649
bccbe08a
PZ
8650 return 1;
8651
49246274 8652err_free_rq:
dfc12eb2 8653 kfree(rt_rq);
49246274 8654err:
bccbe08a
PZ
8655 return 0;
8656}
6d6bc0ad 8657#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8658static inline void free_rt_sched_group(struct task_group *tg)
8659{
8660}
8661
ec7dc8ac
DG
8662static inline
8663int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8664{
8665 return 1;
8666}
6d6bc0ad 8667#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8668
7c941438 8669#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8670static void free_sched_group(struct task_group *tg)
8671{
8672 free_fair_sched_group(tg);
8673 free_rt_sched_group(tg);
e9aa1dd1 8674 autogroup_free(tg);
bccbe08a
PZ
8675 kfree(tg);
8676}
8677
8678/* allocate runqueue etc for a new task group */
ec7dc8ac 8679struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8680{
8681 struct task_group *tg;
8682 unsigned long flags;
bccbe08a
PZ
8683
8684 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8685 if (!tg)
8686 return ERR_PTR(-ENOMEM);
8687
ec7dc8ac 8688 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8689 goto err;
8690
ec7dc8ac 8691 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8692 goto err;
8693
8ed36996 8694 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8695 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8696
8697 WARN_ON(!parent); /* root should already exist */
8698
8699 tg->parent = parent;
f473aa5e 8700 INIT_LIST_HEAD(&tg->children);
09f2724a 8701 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8702 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8703
9b5b7751 8704 return tg;
29f59db3
SV
8705
8706err:
6f505b16 8707 free_sched_group(tg);
29f59db3
SV
8708 return ERR_PTR(-ENOMEM);
8709}
8710
9b5b7751 8711/* rcu callback to free various structures associated with a task group */
6f505b16 8712static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8713{
29f59db3 8714 /* now it should be safe to free those cfs_rqs */
6f505b16 8715 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8716}
8717
9b5b7751 8718/* Destroy runqueue etc associated with a task group */
4cf86d77 8719void sched_destroy_group(struct task_group *tg)
29f59db3 8720{
8ed36996 8721 unsigned long flags;
9b5b7751 8722 int i;
29f59db3 8723
3d4b47b4
PZ
8724 /* end participation in shares distribution */
8725 for_each_possible_cpu(i)
bccbe08a 8726 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8727
8728 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8729 list_del_rcu(&tg->list);
f473aa5e 8730 list_del_rcu(&tg->siblings);
8ed36996 8731 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8732
9b5b7751 8733 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8734 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8735}
8736
9b5b7751 8737/* change task's runqueue when it moves between groups.
3a252015
IM
8738 * The caller of this function should have put the task in its new group
8739 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8740 * reflect its new group.
9b5b7751
SV
8741 */
8742void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8743{
8744 int on_rq, running;
8745 unsigned long flags;
8746 struct rq *rq;
8747
8748 rq = task_rq_lock(tsk, &flags);
8749
051a1d1a 8750 running = task_current(rq, tsk);
fd2f4419 8751 on_rq = tsk->on_rq;
29f59db3 8752
0e1f3483 8753 if (on_rq)
29f59db3 8754 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8755 if (unlikely(running))
8756 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8757
810b3817 8758#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8759 if (tsk->sched_class->task_move_group)
8760 tsk->sched_class->task_move_group(tsk, on_rq);
8761 else
810b3817 8762#endif
b2b5ce02 8763 set_task_rq(tsk, task_cpu(tsk));
810b3817 8764
0e1f3483
HS
8765 if (unlikely(running))
8766 tsk->sched_class->set_curr_task(rq);
8767 if (on_rq)
371fd7e7 8768 enqueue_task(rq, tsk, 0);
29f59db3 8769
0122ec5b 8770 task_rq_unlock(rq, tsk, &flags);
29f59db3 8771}
7c941438 8772#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8773
052f1dc7 8774#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8775static DEFINE_MUTEX(shares_mutex);
8776
4cf86d77 8777int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8778{
8779 int i;
8ed36996 8780 unsigned long flags;
c61935fd 8781
ec7dc8ac
DG
8782 /*
8783 * We can't change the weight of the root cgroup.
8784 */
8785 if (!tg->se[0])
8786 return -EINVAL;
8787
cd62287e 8788 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8789
8ed36996 8790 mutex_lock(&shares_mutex);
9b5b7751 8791 if (tg->shares == shares)
5cb350ba 8792 goto done;
29f59db3 8793
9b5b7751 8794 tg->shares = shares;
c09595f6 8795 for_each_possible_cpu(i) {
9437178f
PT
8796 struct rq *rq = cpu_rq(i);
8797 struct sched_entity *se;
8798
8799 se = tg->se[i];
8800 /* Propagate contribution to hierarchy */
8801 raw_spin_lock_irqsave(&rq->lock, flags);
8802 for_each_sched_entity(se)
6d5ab293 8803 update_cfs_shares(group_cfs_rq(se));
9437178f 8804 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8805 }
29f59db3 8806
5cb350ba 8807done:
8ed36996 8808 mutex_unlock(&shares_mutex);
9b5b7751 8809 return 0;
29f59db3
SV
8810}
8811
5cb350ba
DG
8812unsigned long sched_group_shares(struct task_group *tg)
8813{
8814 return tg->shares;
8815}
052f1dc7 8816#endif
5cb350ba 8817
a790de99 8818#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8819static unsigned long to_ratio(u64 period, u64 runtime)
8820{
8821 if (runtime == RUNTIME_INF)
9a7e0b18 8822 return 1ULL << 20;
9f0c1e56 8823
9a7e0b18 8824 return div64_u64(runtime << 20, period);
9f0c1e56 8825}
a790de99
PT
8826#endif
8827
8828#ifdef CONFIG_RT_GROUP_SCHED
8829/*
8830 * Ensure that the real time constraints are schedulable.
8831 */
8832static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8833
9a7e0b18
PZ
8834/* Must be called with tasklist_lock held */
8835static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8836{
9a7e0b18 8837 struct task_struct *g, *p;
b40b2e8e 8838
9a7e0b18
PZ
8839 do_each_thread(g, p) {
8840 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8841 return 1;
8842 } while_each_thread(g, p);
b40b2e8e 8843
9a7e0b18
PZ
8844 return 0;
8845}
b40b2e8e 8846
9a7e0b18
PZ
8847struct rt_schedulable_data {
8848 struct task_group *tg;
8849 u64 rt_period;
8850 u64 rt_runtime;
8851};
b40b2e8e 8852
a790de99 8853static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8854{
8855 struct rt_schedulable_data *d = data;
8856 struct task_group *child;
8857 unsigned long total, sum = 0;
8858 u64 period, runtime;
b40b2e8e 8859
9a7e0b18
PZ
8860 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8861 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8862
9a7e0b18
PZ
8863 if (tg == d->tg) {
8864 period = d->rt_period;
8865 runtime = d->rt_runtime;
b40b2e8e 8866 }
b40b2e8e 8867
4653f803
PZ
8868 /*
8869 * Cannot have more runtime than the period.
8870 */
8871 if (runtime > period && runtime != RUNTIME_INF)
8872 return -EINVAL;
6f505b16 8873
4653f803
PZ
8874 /*
8875 * Ensure we don't starve existing RT tasks.
8876 */
9a7e0b18
PZ
8877 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8878 return -EBUSY;
6f505b16 8879
9a7e0b18 8880 total = to_ratio(period, runtime);
6f505b16 8881
4653f803
PZ
8882 /*
8883 * Nobody can have more than the global setting allows.
8884 */
8885 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8886 return -EINVAL;
6f505b16 8887
4653f803
PZ
8888 /*
8889 * The sum of our children's runtime should not exceed our own.
8890 */
9a7e0b18
PZ
8891 list_for_each_entry_rcu(child, &tg->children, siblings) {
8892 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8893 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8894
9a7e0b18
PZ
8895 if (child == d->tg) {
8896 period = d->rt_period;
8897 runtime = d->rt_runtime;
8898 }
6f505b16 8899
9a7e0b18 8900 sum += to_ratio(period, runtime);
9f0c1e56 8901 }
6f505b16 8902
9a7e0b18
PZ
8903 if (sum > total)
8904 return -EINVAL;
8905
8906 return 0;
6f505b16
PZ
8907}
8908
9a7e0b18 8909static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8910{
8277434e
PT
8911 int ret;
8912
9a7e0b18
PZ
8913 struct rt_schedulable_data data = {
8914 .tg = tg,
8915 .rt_period = period,
8916 .rt_runtime = runtime,
8917 };
8918
8277434e
PT
8919 rcu_read_lock();
8920 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8921 rcu_read_unlock();
8922
8923 return ret;
521f1a24
DG
8924}
8925
ab84d31e 8926static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8927 u64 rt_period, u64 rt_runtime)
6f505b16 8928{
ac086bc2 8929 int i, err = 0;
9f0c1e56 8930
9f0c1e56 8931 mutex_lock(&rt_constraints_mutex);
521f1a24 8932 read_lock(&tasklist_lock);
9a7e0b18
PZ
8933 err = __rt_schedulable(tg, rt_period, rt_runtime);
8934 if (err)
9f0c1e56 8935 goto unlock;
ac086bc2 8936
0986b11b 8937 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8938 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8939 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8940
8941 for_each_possible_cpu(i) {
8942 struct rt_rq *rt_rq = tg->rt_rq[i];
8943
0986b11b 8944 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8945 rt_rq->rt_runtime = rt_runtime;
0986b11b 8946 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8947 }
0986b11b 8948 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8949unlock:
521f1a24 8950 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8951 mutex_unlock(&rt_constraints_mutex);
8952
8953 return err;
6f505b16
PZ
8954}
8955
d0b27fa7
PZ
8956int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8957{
8958 u64 rt_runtime, rt_period;
8959
8960 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8961 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8962 if (rt_runtime_us < 0)
8963 rt_runtime = RUNTIME_INF;
8964
ab84d31e 8965 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8966}
8967
9f0c1e56
PZ
8968long sched_group_rt_runtime(struct task_group *tg)
8969{
8970 u64 rt_runtime_us;
8971
d0b27fa7 8972 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8973 return -1;
8974
d0b27fa7 8975 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8976 do_div(rt_runtime_us, NSEC_PER_USEC);
8977 return rt_runtime_us;
8978}
d0b27fa7
PZ
8979
8980int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8981{
8982 u64 rt_runtime, rt_period;
8983
8984 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8985 rt_runtime = tg->rt_bandwidth.rt_runtime;
8986
619b0488
R
8987 if (rt_period == 0)
8988 return -EINVAL;
8989
ab84d31e 8990 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8991}
8992
8993long sched_group_rt_period(struct task_group *tg)
8994{
8995 u64 rt_period_us;
8996
8997 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8998 do_div(rt_period_us, NSEC_PER_USEC);
8999 return rt_period_us;
9000}
9001
9002static int sched_rt_global_constraints(void)
9003{
4653f803 9004 u64 runtime, period;
d0b27fa7
PZ
9005 int ret = 0;
9006
ec5d4989
HS
9007 if (sysctl_sched_rt_period <= 0)
9008 return -EINVAL;
9009
4653f803
PZ
9010 runtime = global_rt_runtime();
9011 period = global_rt_period();
9012
9013 /*
9014 * Sanity check on the sysctl variables.
9015 */
9016 if (runtime > period && runtime != RUNTIME_INF)
9017 return -EINVAL;
10b612f4 9018
d0b27fa7 9019 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9020 read_lock(&tasklist_lock);
4653f803 9021 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9022 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9023 mutex_unlock(&rt_constraints_mutex);
9024
9025 return ret;
9026}
54e99124
DG
9027
9028int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9029{
9030 /* Don't accept realtime tasks when there is no way for them to run */
9031 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9032 return 0;
9033
9034 return 1;
9035}
9036
6d6bc0ad 9037#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9038static int sched_rt_global_constraints(void)
9039{
ac086bc2
PZ
9040 unsigned long flags;
9041 int i;
9042
ec5d4989
HS
9043 if (sysctl_sched_rt_period <= 0)
9044 return -EINVAL;
9045
60aa605d
PZ
9046 /*
9047 * There's always some RT tasks in the root group
9048 * -- migration, kstopmachine etc..
9049 */
9050 if (sysctl_sched_rt_runtime == 0)
9051 return -EBUSY;
9052
0986b11b 9053 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9054 for_each_possible_cpu(i) {
9055 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9056
0986b11b 9057 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9058 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9059 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9060 }
0986b11b 9061 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9062
d0b27fa7
PZ
9063 return 0;
9064}
6d6bc0ad 9065#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9066
9067int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9068 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9069 loff_t *ppos)
9070{
9071 int ret;
9072 int old_period, old_runtime;
9073 static DEFINE_MUTEX(mutex);
9074
9075 mutex_lock(&mutex);
9076 old_period = sysctl_sched_rt_period;
9077 old_runtime = sysctl_sched_rt_runtime;
9078
8d65af78 9079 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9080
9081 if (!ret && write) {
9082 ret = sched_rt_global_constraints();
9083 if (ret) {
9084 sysctl_sched_rt_period = old_period;
9085 sysctl_sched_rt_runtime = old_runtime;
9086 } else {
9087 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9088 def_rt_bandwidth.rt_period =
9089 ns_to_ktime(global_rt_period());
9090 }
9091 }
9092 mutex_unlock(&mutex);
9093
9094 return ret;
9095}
68318b8e 9096
052f1dc7 9097#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9098
9099/* return corresponding task_group object of a cgroup */
2b01dfe3 9100static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9101{
2b01dfe3
PM
9102 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9103 struct task_group, css);
68318b8e
SV
9104}
9105
9106static struct cgroup_subsys_state *
2b01dfe3 9107cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9108{
ec7dc8ac 9109 struct task_group *tg, *parent;
68318b8e 9110
2b01dfe3 9111 if (!cgrp->parent) {
68318b8e 9112 /* This is early initialization for the top cgroup */
07e06b01 9113 return &root_task_group.css;
68318b8e
SV
9114 }
9115
ec7dc8ac
DG
9116 parent = cgroup_tg(cgrp->parent);
9117 tg = sched_create_group(parent);
68318b8e
SV
9118 if (IS_ERR(tg))
9119 return ERR_PTR(-ENOMEM);
9120
68318b8e
SV
9121 return &tg->css;
9122}
9123
41a2d6cf
IM
9124static void
9125cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9126{
2b01dfe3 9127 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9128
9129 sched_destroy_group(tg);
9130}
9131
41a2d6cf 9132static int
be367d09 9133cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9134{
b68aa230 9135#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9136 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9137 return -EINVAL;
9138#else
68318b8e
SV
9139 /* We don't support RT-tasks being in separate groups */
9140 if (tsk->sched_class != &fair_sched_class)
9141 return -EINVAL;
b68aa230 9142#endif
be367d09
BB
9143 return 0;
9144}
68318b8e 9145
68318b8e 9146static void
f780bdb7 9147cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9148{
9149 sched_move_task(tsk);
9150}
9151
068c5cc5 9152static void
d41d5a01
PZ
9153cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9154 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9155{
9156 /*
9157 * cgroup_exit() is called in the copy_process() failure path.
9158 * Ignore this case since the task hasn't ran yet, this avoids
9159 * trying to poke a half freed task state from generic code.
9160 */
9161 if (!(task->flags & PF_EXITING))
9162 return;
9163
9164 sched_move_task(task);
9165}
9166
052f1dc7 9167#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9168static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9169 u64 shareval)
68318b8e 9170{
c8b28116 9171 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9172}
9173
f4c753b7 9174static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9175{
2b01dfe3 9176 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9177
c8b28116 9178 return (u64) scale_load_down(tg->shares);
68318b8e 9179}
ab84d31e
PT
9180
9181#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9182static DEFINE_MUTEX(cfs_constraints_mutex);
9183
ab84d31e
PT
9184const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9185const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9186
a790de99
PT
9187static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9188
ab84d31e
PT
9189static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9190{
58088ad0 9191 int i, ret = 0, runtime_enabled;
ab84d31e 9192 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9193
9194 if (tg == &root_task_group)
9195 return -EINVAL;
9196
9197 /*
9198 * Ensure we have at some amount of bandwidth every period. This is
9199 * to prevent reaching a state of large arrears when throttled via
9200 * entity_tick() resulting in prolonged exit starvation.
9201 */
9202 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9203 return -EINVAL;
9204
9205 /*
9206 * Likewise, bound things on the otherside by preventing insane quota
9207 * periods. This also allows us to normalize in computing quota
9208 * feasibility.
9209 */
9210 if (period > max_cfs_quota_period)
9211 return -EINVAL;
9212
a790de99
PT
9213 mutex_lock(&cfs_constraints_mutex);
9214 ret = __cfs_schedulable(tg, period, quota);
9215 if (ret)
9216 goto out_unlock;
9217
58088ad0 9218 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9219 raw_spin_lock_irq(&cfs_b->lock);
9220 cfs_b->period = ns_to_ktime(period);
9221 cfs_b->quota = quota;
58088ad0 9222
a9cf55b2 9223 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9224 /* restart the period timer (if active) to handle new period expiry */
9225 if (runtime_enabled && cfs_b->timer_active) {
9226 /* force a reprogram */
9227 cfs_b->timer_active = 0;
9228 __start_cfs_bandwidth(cfs_b);
9229 }
ab84d31e
PT
9230 raw_spin_unlock_irq(&cfs_b->lock);
9231
9232 for_each_possible_cpu(i) {
9233 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9234 struct rq *rq = rq_of(cfs_rq);
9235
9236 raw_spin_lock_irq(&rq->lock);
58088ad0 9237 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9238 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9239
9240 if (cfs_rq_throttled(cfs_rq))
9241 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9242 raw_spin_unlock_irq(&rq->lock);
9243 }
a790de99
PT
9244out_unlock:
9245 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9246
a790de99 9247 return ret;
ab84d31e
PT
9248}
9249
9250int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9251{
9252 u64 quota, period;
9253
9254 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9255 if (cfs_quota_us < 0)
9256 quota = RUNTIME_INF;
9257 else
9258 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9259
9260 return tg_set_cfs_bandwidth(tg, period, quota);
9261}
9262
9263long tg_get_cfs_quota(struct task_group *tg)
9264{
9265 u64 quota_us;
9266
9267 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9268 return -1;
9269
9270 quota_us = tg_cfs_bandwidth(tg)->quota;
9271 do_div(quota_us, NSEC_PER_USEC);
9272
9273 return quota_us;
9274}
9275
9276int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9277{
9278 u64 quota, period;
9279
9280 period = (u64)cfs_period_us * NSEC_PER_USEC;
9281 quota = tg_cfs_bandwidth(tg)->quota;
9282
9283 if (period <= 0)
9284 return -EINVAL;
9285
9286 return tg_set_cfs_bandwidth(tg, period, quota);
9287}
9288
9289long tg_get_cfs_period(struct task_group *tg)
9290{
9291 u64 cfs_period_us;
9292
9293 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9294 do_div(cfs_period_us, NSEC_PER_USEC);
9295
9296 return cfs_period_us;
9297}
9298
9299static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9300{
9301 return tg_get_cfs_quota(cgroup_tg(cgrp));
9302}
9303
9304static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9305 s64 cfs_quota_us)
9306{
9307 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9308}
9309
9310static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9311{
9312 return tg_get_cfs_period(cgroup_tg(cgrp));
9313}
9314
9315static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9316 u64 cfs_period_us)
9317{
9318 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9319}
9320
a790de99
PT
9321struct cfs_schedulable_data {
9322 struct task_group *tg;
9323 u64 period, quota;
9324};
9325
9326/*
9327 * normalize group quota/period to be quota/max_period
9328 * note: units are usecs
9329 */
9330static u64 normalize_cfs_quota(struct task_group *tg,
9331 struct cfs_schedulable_data *d)
9332{
9333 u64 quota, period;
9334
9335 if (tg == d->tg) {
9336 period = d->period;
9337 quota = d->quota;
9338 } else {
9339 period = tg_get_cfs_period(tg);
9340 quota = tg_get_cfs_quota(tg);
9341 }
9342
9343 /* note: these should typically be equivalent */
9344 if (quota == RUNTIME_INF || quota == -1)
9345 return RUNTIME_INF;
9346
9347 return to_ratio(period, quota);
9348}
9349
9350static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9351{
9352 struct cfs_schedulable_data *d = data;
9353 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9354 s64 quota = 0, parent_quota = -1;
9355
9356 if (!tg->parent) {
9357 quota = RUNTIME_INF;
9358 } else {
9359 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9360
9361 quota = normalize_cfs_quota(tg, d);
9362 parent_quota = parent_b->hierarchal_quota;
9363
9364 /*
9365 * ensure max(child_quota) <= parent_quota, inherit when no
9366 * limit is set
9367 */
9368 if (quota == RUNTIME_INF)
9369 quota = parent_quota;
9370 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9371 return -EINVAL;
9372 }
9373 cfs_b->hierarchal_quota = quota;
9374
9375 return 0;
9376}
9377
9378static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9379{
8277434e 9380 int ret;
a790de99
PT
9381 struct cfs_schedulable_data data = {
9382 .tg = tg,
9383 .period = period,
9384 .quota = quota,
9385 };
9386
9387 if (quota != RUNTIME_INF) {
9388 do_div(data.period, NSEC_PER_USEC);
9389 do_div(data.quota, NSEC_PER_USEC);
9390 }
9391
8277434e
PT
9392 rcu_read_lock();
9393 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9394 rcu_read_unlock();
9395
9396 return ret;
a790de99 9397}
e8da1b18
NR
9398
9399static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9400 struct cgroup_map_cb *cb)
9401{
9402 struct task_group *tg = cgroup_tg(cgrp);
9403 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9404
9405 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9406 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9407 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9408
9409 return 0;
9410}
ab84d31e 9411#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9412#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9413
052f1dc7 9414#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9415static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9416 s64 val)
6f505b16 9417{
06ecb27c 9418 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9419}
9420
06ecb27c 9421static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9422{
06ecb27c 9423 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9424}
d0b27fa7
PZ
9425
9426static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9427 u64 rt_period_us)
9428{
9429 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9430}
9431
9432static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9433{
9434 return sched_group_rt_period(cgroup_tg(cgrp));
9435}
6d6bc0ad 9436#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9437
fe5c7cc2 9438static struct cftype cpu_files[] = {
052f1dc7 9439#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9440 {
9441 .name = "shares",
f4c753b7
PM
9442 .read_u64 = cpu_shares_read_u64,
9443 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9444 },
052f1dc7 9445#endif
ab84d31e
PT
9446#ifdef CONFIG_CFS_BANDWIDTH
9447 {
9448 .name = "cfs_quota_us",
9449 .read_s64 = cpu_cfs_quota_read_s64,
9450 .write_s64 = cpu_cfs_quota_write_s64,
9451 },
9452 {
9453 .name = "cfs_period_us",
9454 .read_u64 = cpu_cfs_period_read_u64,
9455 .write_u64 = cpu_cfs_period_write_u64,
9456 },
e8da1b18
NR
9457 {
9458 .name = "stat",
9459 .read_map = cpu_stats_show,
9460 },
ab84d31e 9461#endif
052f1dc7 9462#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9463 {
9f0c1e56 9464 .name = "rt_runtime_us",
06ecb27c
PM
9465 .read_s64 = cpu_rt_runtime_read,
9466 .write_s64 = cpu_rt_runtime_write,
6f505b16 9467 },
d0b27fa7
PZ
9468 {
9469 .name = "rt_period_us",
f4c753b7
PM
9470 .read_u64 = cpu_rt_period_read_uint,
9471 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9472 },
052f1dc7 9473#endif
68318b8e
SV
9474};
9475
9476static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9477{
fe5c7cc2 9478 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9479}
9480
9481struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9482 .name = "cpu",
9483 .create = cpu_cgroup_create,
9484 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9485 .can_attach_task = cpu_cgroup_can_attach_task,
9486 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9487 .exit = cpu_cgroup_exit,
38605cae
IM
9488 .populate = cpu_cgroup_populate,
9489 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9490 .early_init = 1,
9491};
9492
052f1dc7 9493#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9494
9495#ifdef CONFIG_CGROUP_CPUACCT
9496
9497/*
9498 * CPU accounting code for task groups.
9499 *
9500 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9501 * (balbir@in.ibm.com).
9502 */
9503
934352f2 9504/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9505struct cpuacct {
9506 struct cgroup_subsys_state css;
9507 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9508 u64 __percpu *cpuusage;
ef12fefa 9509 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9510 struct cpuacct *parent;
d842de87
SV
9511};
9512
9513struct cgroup_subsys cpuacct_subsys;
9514
9515/* return cpu accounting group corresponding to this container */
32cd756a 9516static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9517{
32cd756a 9518 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9519 struct cpuacct, css);
9520}
9521
9522/* return cpu accounting group to which this task belongs */
9523static inline struct cpuacct *task_ca(struct task_struct *tsk)
9524{
9525 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9526 struct cpuacct, css);
9527}
9528
9529/* create a new cpu accounting group */
9530static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9531 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9532{
9533 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9534 int i;
d842de87
SV
9535
9536 if (!ca)
ef12fefa 9537 goto out;
d842de87
SV
9538
9539 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9540 if (!ca->cpuusage)
9541 goto out_free_ca;
9542
9543 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9544 if (percpu_counter_init(&ca->cpustat[i], 0))
9545 goto out_free_counters;
d842de87 9546
934352f2
BR
9547 if (cgrp->parent)
9548 ca->parent = cgroup_ca(cgrp->parent);
9549
d842de87 9550 return &ca->css;
ef12fefa
BR
9551
9552out_free_counters:
9553 while (--i >= 0)
9554 percpu_counter_destroy(&ca->cpustat[i]);
9555 free_percpu(ca->cpuusage);
9556out_free_ca:
9557 kfree(ca);
9558out:
9559 return ERR_PTR(-ENOMEM);
d842de87
SV
9560}
9561
9562/* destroy an existing cpu accounting group */
41a2d6cf 9563static void
32cd756a 9564cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9565{
32cd756a 9566 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9567 int i;
d842de87 9568
ef12fefa
BR
9569 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9570 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9571 free_percpu(ca->cpuusage);
9572 kfree(ca);
9573}
9574
720f5498
KC
9575static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9576{
b36128c8 9577 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9578 u64 data;
9579
9580#ifndef CONFIG_64BIT
9581 /*
9582 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9583 */
05fa785c 9584 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9585 data = *cpuusage;
05fa785c 9586 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9587#else
9588 data = *cpuusage;
9589#endif
9590
9591 return data;
9592}
9593
9594static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9595{
b36128c8 9596 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9597
9598#ifndef CONFIG_64BIT
9599 /*
9600 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9601 */
05fa785c 9602 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9603 *cpuusage = val;
05fa785c 9604 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9605#else
9606 *cpuusage = val;
9607#endif
9608}
9609
d842de87 9610/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9611static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9612{
32cd756a 9613 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9614 u64 totalcpuusage = 0;
9615 int i;
9616
720f5498
KC
9617 for_each_present_cpu(i)
9618 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9619
9620 return totalcpuusage;
9621}
9622
0297b803
DG
9623static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9624 u64 reset)
9625{
9626 struct cpuacct *ca = cgroup_ca(cgrp);
9627 int err = 0;
9628 int i;
9629
9630 if (reset) {
9631 err = -EINVAL;
9632 goto out;
9633 }
9634
720f5498
KC
9635 for_each_present_cpu(i)
9636 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9637
0297b803
DG
9638out:
9639 return err;
9640}
9641
e9515c3c
KC
9642static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9643 struct seq_file *m)
9644{
9645 struct cpuacct *ca = cgroup_ca(cgroup);
9646 u64 percpu;
9647 int i;
9648
9649 for_each_present_cpu(i) {
9650 percpu = cpuacct_cpuusage_read(ca, i);
9651 seq_printf(m, "%llu ", (unsigned long long) percpu);
9652 }
9653 seq_printf(m, "\n");
9654 return 0;
9655}
9656
ef12fefa
BR
9657static const char *cpuacct_stat_desc[] = {
9658 [CPUACCT_STAT_USER] = "user",
9659 [CPUACCT_STAT_SYSTEM] = "system",
9660};
9661
9662static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9663 struct cgroup_map_cb *cb)
9664{
9665 struct cpuacct *ca = cgroup_ca(cgrp);
9666 int i;
9667
9668 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9669 s64 val = percpu_counter_read(&ca->cpustat[i]);
9670 val = cputime64_to_clock_t(val);
9671 cb->fill(cb, cpuacct_stat_desc[i], val);
9672 }
9673 return 0;
9674}
9675
d842de87
SV
9676static struct cftype files[] = {
9677 {
9678 .name = "usage",
f4c753b7
PM
9679 .read_u64 = cpuusage_read,
9680 .write_u64 = cpuusage_write,
d842de87 9681 },
e9515c3c
KC
9682 {
9683 .name = "usage_percpu",
9684 .read_seq_string = cpuacct_percpu_seq_read,
9685 },
ef12fefa
BR
9686 {
9687 .name = "stat",
9688 .read_map = cpuacct_stats_show,
9689 },
d842de87
SV
9690};
9691
32cd756a 9692static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9693{
32cd756a 9694 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9695}
9696
9697/*
9698 * charge this task's execution time to its accounting group.
9699 *
9700 * called with rq->lock held.
9701 */
9702static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9703{
9704 struct cpuacct *ca;
934352f2 9705 int cpu;
d842de87 9706
c40c6f85 9707 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9708 return;
9709
934352f2 9710 cpu = task_cpu(tsk);
a18b83b7
BR
9711
9712 rcu_read_lock();
9713
d842de87 9714 ca = task_ca(tsk);
d842de87 9715
934352f2 9716 for (; ca; ca = ca->parent) {
b36128c8 9717 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9718 *cpuusage += cputime;
9719 }
a18b83b7
BR
9720
9721 rcu_read_unlock();
d842de87
SV
9722}
9723
fa535a77
AB
9724/*
9725 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9726 * in cputime_t units. As a result, cpuacct_update_stats calls
9727 * percpu_counter_add with values large enough to always overflow the
9728 * per cpu batch limit causing bad SMP scalability.
9729 *
9730 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9731 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9732 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9733 */
9734#ifdef CONFIG_SMP
9735#define CPUACCT_BATCH \
9736 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9737#else
9738#define CPUACCT_BATCH 0
9739#endif
9740
ef12fefa
BR
9741/*
9742 * Charge the system/user time to the task's accounting group.
9743 */
9744static void cpuacct_update_stats(struct task_struct *tsk,
9745 enum cpuacct_stat_index idx, cputime_t val)
9746{
9747 struct cpuacct *ca;
fa535a77 9748 int batch = CPUACCT_BATCH;
ef12fefa
BR
9749
9750 if (unlikely(!cpuacct_subsys.active))
9751 return;
9752
9753 rcu_read_lock();
9754 ca = task_ca(tsk);
9755
9756 do {
fa535a77 9757 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9758 ca = ca->parent;
9759 } while (ca);
9760 rcu_read_unlock();
9761}
9762
d842de87
SV
9763struct cgroup_subsys cpuacct_subsys = {
9764 .name = "cpuacct",
9765 .create = cpuacct_create,
9766 .destroy = cpuacct_destroy,
9767 .populate = cpuacct_populate,
9768 .subsys_id = cpuacct_subsys_id,
9769};
9770#endif /* CONFIG_CGROUP_CPUACCT */