]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: fix: move the CPU check into ->task_new_fair()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165};
166
167/* Default task group's sched entity on each cpu */
168static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
169/* Default task group's cfs_rq on each cpu */
170static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
171
9b5b7751
SV
172static struct sched_entity *init_sched_entity_p[NR_CPUS];
173static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
174
175/* Default task group.
3a252015 176 * Every task in system belong to this group at bootup.
29f59db3 177 */
4cf86d77 178struct task_group init_task_group = {
3a252015
IM
179 .se = init_sched_entity_p,
180 .cfs_rq = init_cfs_rq_p,
181};
9b5b7751 182
24e377a8 183#ifdef CONFIG_FAIR_USER_SCHED
3a252015 184# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 185#else
3a252015 186# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
187#endif
188
4cf86d77 189static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
190
191/* return group to which a task belongs */
4cf86d77 192static inline struct task_group *task_group(struct task_struct *p)
29f59db3 193{
4cf86d77 194 struct task_group *tg;
9b5b7751 195
24e377a8
SV
196#ifdef CONFIG_FAIR_USER_SCHED
197 tg = p->user->tg;
198#else
4cf86d77 199 tg = &init_task_group;
24e377a8 200#endif
9b5b7751
SV
201
202 return tg;
29f59db3
SV
203}
204
205/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
206static inline void set_task_cfs_rq(struct task_struct *p)
207{
4cf86d77
IM
208 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
209 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
210}
211
212#else
213
214static inline void set_task_cfs_rq(struct task_struct *p) { }
215
216#endif /* CONFIG_FAIR_GROUP_SCHED */
217
6aa645ea
IM
218/* CFS-related fields in a runqueue */
219struct cfs_rq {
220 struct load_weight load;
221 unsigned long nr_running;
222
6aa645ea 223 u64 exec_clock;
e9acbff6 224 u64 min_vruntime;
6aa645ea
IM
225
226 struct rb_root tasks_timeline;
227 struct rb_node *rb_leftmost;
228 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
229 /* 'curr' points to currently running entity on this cfs_rq.
230 * It is set to NULL otherwise (i.e when none are currently running).
231 */
232 struct sched_entity *curr;
ddc97297
PZ
233
234 unsigned long nr_spread_over;
235
62160e3f 236#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
237 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
238
239 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
240 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
241 * (like users, containers etc.)
242 *
243 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
244 * list is used during load balance.
245 */
246 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 247 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 248 struct rcu_head rcu;
6aa645ea
IM
249#endif
250};
1da177e4 251
6aa645ea
IM
252/* Real-Time classes' related field in a runqueue: */
253struct rt_rq {
254 struct rt_prio_array active;
255 int rt_load_balance_idx;
256 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
257};
258
1da177e4
LT
259/*
260 * This is the main, per-CPU runqueue data structure.
261 *
262 * Locking rule: those places that want to lock multiple runqueues
263 * (such as the load balancing or the thread migration code), lock
264 * acquire operations must be ordered by ascending &runqueue.
265 */
70b97a7f 266struct rq {
6aa645ea 267 spinlock_t lock; /* runqueue lock */
1da177e4
LT
268
269 /*
270 * nr_running and cpu_load should be in the same cacheline because
271 * remote CPUs use both these fields when doing load calculation.
272 */
273 unsigned long nr_running;
6aa645ea
IM
274 #define CPU_LOAD_IDX_MAX 5
275 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 276 unsigned char idle_at_tick;
46cb4b7c
SS
277#ifdef CONFIG_NO_HZ
278 unsigned char in_nohz_recently;
279#endif
495eca49 280 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
281 unsigned long nr_load_updates;
282 u64 nr_switches;
283
284 struct cfs_rq cfs;
285#ifdef CONFIG_FAIR_GROUP_SCHED
286 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 287#endif
6aa645ea 288 struct rt_rq rt;
1da177e4
LT
289
290 /*
291 * This is part of a global counter where only the total sum
292 * over all CPUs matters. A task can increase this counter on
293 * one CPU and if it got migrated afterwards it may decrease
294 * it on another CPU. Always updated under the runqueue lock:
295 */
296 unsigned long nr_uninterruptible;
297
36c8b586 298 struct task_struct *curr, *idle;
c9819f45 299 unsigned long next_balance;
1da177e4 300 struct mm_struct *prev_mm;
6aa645ea 301
6aa645ea
IM
302 u64 clock, prev_clock_raw;
303 s64 clock_max_delta;
304
305 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
306 u64 idle_clock;
307 unsigned int clock_deep_idle_events;
529c7726 308 u64 tick_timestamp;
6aa645ea 309
1da177e4
LT
310 atomic_t nr_iowait;
311
312#ifdef CONFIG_SMP
313 struct sched_domain *sd;
314
315 /* For active balancing */
316 int active_balance;
317 int push_cpu;
0a2966b4 318 int cpu; /* cpu of this runqueue */
1da177e4 319
36c8b586 320 struct task_struct *migration_thread;
1da177e4
LT
321 struct list_head migration_queue;
322#endif
323
324#ifdef CONFIG_SCHEDSTATS
325 /* latency stats */
326 struct sched_info rq_sched_info;
327
328 /* sys_sched_yield() stats */
329 unsigned long yld_exp_empty;
330 unsigned long yld_act_empty;
331 unsigned long yld_both_empty;
2d72376b 332 unsigned long yld_count;
1da177e4
LT
333
334 /* schedule() stats */
335 unsigned long sched_switch;
2d72376b 336 unsigned long sched_count;
1da177e4
LT
337 unsigned long sched_goidle;
338
339 /* try_to_wake_up() stats */
2d72376b 340 unsigned long ttwu_count;
1da177e4 341 unsigned long ttwu_local;
b8efb561
IM
342
343 /* BKL stats */
2d72376b 344 unsigned long bkl_count;
1da177e4 345#endif
fcb99371 346 struct lock_class_key rq_lock_key;
1da177e4
LT
347};
348
f34e3b61 349static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 350static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 351
dd41f596
IM
352static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
353{
354 rq->curr->sched_class->check_preempt_curr(rq, p);
355}
356
0a2966b4
CL
357static inline int cpu_of(struct rq *rq)
358{
359#ifdef CONFIG_SMP
360 return rq->cpu;
361#else
362 return 0;
363#endif
364}
365
20d315d4 366/*
b04a0f4c
IM
367 * Update the per-runqueue clock, as finegrained as the platform can give
368 * us, but without assuming monotonicity, etc.:
20d315d4 369 */
b04a0f4c 370static void __update_rq_clock(struct rq *rq)
20d315d4
IM
371{
372 u64 prev_raw = rq->prev_clock_raw;
373 u64 now = sched_clock();
374 s64 delta = now - prev_raw;
375 u64 clock = rq->clock;
376
b04a0f4c
IM
377#ifdef CONFIG_SCHED_DEBUG
378 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
379#endif
20d315d4
IM
380 /*
381 * Protect against sched_clock() occasionally going backwards:
382 */
383 if (unlikely(delta < 0)) {
384 clock++;
385 rq->clock_warps++;
386 } else {
387 /*
388 * Catch too large forward jumps too:
389 */
529c7726
IM
390 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
391 if (clock < rq->tick_timestamp + TICK_NSEC)
392 clock = rq->tick_timestamp + TICK_NSEC;
393 else
394 clock++;
20d315d4
IM
395 rq->clock_overflows++;
396 } else {
397 if (unlikely(delta > rq->clock_max_delta))
398 rq->clock_max_delta = delta;
399 clock += delta;
400 }
401 }
402
403 rq->prev_clock_raw = now;
404 rq->clock = clock;
b04a0f4c 405}
20d315d4 406
b04a0f4c
IM
407static void update_rq_clock(struct rq *rq)
408{
409 if (likely(smp_processor_id() == cpu_of(rq)))
410 __update_rq_clock(rq);
20d315d4
IM
411}
412
674311d5
NP
413/*
414 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 415 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
416 *
417 * The domain tree of any CPU may only be accessed from within
418 * preempt-disabled sections.
419 */
48f24c4d
IM
420#define for_each_domain(cpu, __sd) \
421 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
422
423#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
424#define this_rq() (&__get_cpu_var(runqueues))
425#define task_rq(p) cpu_rq(task_cpu(p))
426#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
427
bf5c91ba
IM
428/*
429 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
430 */
431#ifdef CONFIG_SCHED_DEBUG
432# define const_debug __read_mostly
433#else
434# define const_debug static const
435#endif
436
437/*
438 * Debugging: various feature bits
439 */
440enum {
bbdba7c0
IM
441 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
442 SCHED_FEAT_START_DEBIT = 2,
06877c33 443 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 444 SCHED_FEAT_APPROX_AVG = 8,
bf5c91ba
IM
445};
446
447const_debug unsigned int sysctl_sched_features =
bf5c91ba 448 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 449 SCHED_FEAT_START_DEBIT *1 |
06877c33 450 SCHED_FEAT_TREE_AVG *0 |
94dfb5e7 451 SCHED_FEAT_APPROX_AVG *0;
bf5c91ba
IM
452
453#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
454
e436d800
IM
455/*
456 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
457 * clock constructed from sched_clock():
458 */
459unsigned long long cpu_clock(int cpu)
460{
e436d800
IM
461 unsigned long long now;
462 unsigned long flags;
b04a0f4c 463 struct rq *rq;
e436d800 464
2cd4d0ea 465 local_irq_save(flags);
b04a0f4c
IM
466 rq = cpu_rq(cpu);
467 update_rq_clock(rq);
468 now = rq->clock;
2cd4d0ea 469 local_irq_restore(flags);
e436d800
IM
470
471 return now;
472}
473
1da177e4 474#ifndef prepare_arch_switch
4866cde0
NP
475# define prepare_arch_switch(next) do { } while (0)
476#endif
477#ifndef finish_arch_switch
478# define finish_arch_switch(prev) do { } while (0)
479#endif
480
481#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 482static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
483{
484 return rq->curr == p;
485}
486
70b97a7f 487static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
488{
489}
490
70b97a7f 491static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 492{
da04c035
IM
493#ifdef CONFIG_DEBUG_SPINLOCK
494 /* this is a valid case when another task releases the spinlock */
495 rq->lock.owner = current;
496#endif
8a25d5de
IM
497 /*
498 * If we are tracking spinlock dependencies then we have to
499 * fix up the runqueue lock - which gets 'carried over' from
500 * prev into current:
501 */
502 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
503
4866cde0
NP
504 spin_unlock_irq(&rq->lock);
505}
506
507#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 508static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
509{
510#ifdef CONFIG_SMP
511 return p->oncpu;
512#else
513 return rq->curr == p;
514#endif
515}
516
70b97a7f 517static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
518{
519#ifdef CONFIG_SMP
520 /*
521 * We can optimise this out completely for !SMP, because the
522 * SMP rebalancing from interrupt is the only thing that cares
523 * here.
524 */
525 next->oncpu = 1;
526#endif
527#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
528 spin_unlock_irq(&rq->lock);
529#else
530 spin_unlock(&rq->lock);
531#endif
532}
533
70b97a7f 534static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
535{
536#ifdef CONFIG_SMP
537 /*
538 * After ->oncpu is cleared, the task can be moved to a different CPU.
539 * We must ensure this doesn't happen until the switch is completely
540 * finished.
541 */
542 smp_wmb();
543 prev->oncpu = 0;
544#endif
545#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
546 local_irq_enable();
1da177e4 547#endif
4866cde0
NP
548}
549#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 550
b29739f9
IM
551/*
552 * __task_rq_lock - lock the runqueue a given task resides on.
553 * Must be called interrupts disabled.
554 */
70b97a7f 555static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
556 __acquires(rq->lock)
557{
70b97a7f 558 struct rq *rq;
b29739f9
IM
559
560repeat_lock_task:
561 rq = task_rq(p);
562 spin_lock(&rq->lock);
563 if (unlikely(rq != task_rq(p))) {
564 spin_unlock(&rq->lock);
565 goto repeat_lock_task;
566 }
567 return rq;
568}
569
1da177e4
LT
570/*
571 * task_rq_lock - lock the runqueue a given task resides on and disable
572 * interrupts. Note the ordering: we can safely lookup the task_rq without
573 * explicitly disabling preemption.
574 */
70b97a7f 575static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
576 __acquires(rq->lock)
577{
70b97a7f 578 struct rq *rq;
1da177e4
LT
579
580repeat_lock_task:
581 local_irq_save(*flags);
582 rq = task_rq(p);
583 spin_lock(&rq->lock);
584 if (unlikely(rq != task_rq(p))) {
585 spin_unlock_irqrestore(&rq->lock, *flags);
586 goto repeat_lock_task;
587 }
588 return rq;
589}
590
a9957449 591static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
592 __releases(rq->lock)
593{
594 spin_unlock(&rq->lock);
595}
596
70b97a7f 597static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
598 __releases(rq->lock)
599{
600 spin_unlock_irqrestore(&rq->lock, *flags);
601}
602
1da177e4 603/*
cc2a73b5 604 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 605 */
a9957449 606static struct rq *this_rq_lock(void)
1da177e4
LT
607 __acquires(rq->lock)
608{
70b97a7f 609 struct rq *rq;
1da177e4
LT
610
611 local_irq_disable();
612 rq = this_rq();
613 spin_lock(&rq->lock);
614
615 return rq;
616}
617
1b9f19c2 618/*
2aa44d05 619 * We are going deep-idle (irqs are disabled):
1b9f19c2 620 */
2aa44d05 621void sched_clock_idle_sleep_event(void)
1b9f19c2 622{
2aa44d05
IM
623 struct rq *rq = cpu_rq(smp_processor_id());
624
625 spin_lock(&rq->lock);
626 __update_rq_clock(rq);
627 spin_unlock(&rq->lock);
628 rq->clock_deep_idle_events++;
629}
630EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
631
632/*
633 * We just idled delta nanoseconds (called with irqs disabled):
634 */
635void sched_clock_idle_wakeup_event(u64 delta_ns)
636{
637 struct rq *rq = cpu_rq(smp_processor_id());
638 u64 now = sched_clock();
1b9f19c2 639
2aa44d05
IM
640 rq->idle_clock += delta_ns;
641 /*
642 * Override the previous timestamp and ignore all
643 * sched_clock() deltas that occured while we idled,
644 * and use the PM-provided delta_ns to advance the
645 * rq clock:
646 */
647 spin_lock(&rq->lock);
648 rq->prev_clock_raw = now;
649 rq->clock += delta_ns;
650 spin_unlock(&rq->lock);
1b9f19c2 651}
2aa44d05 652EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 653
c24d20db
IM
654/*
655 * resched_task - mark a task 'to be rescheduled now'.
656 *
657 * On UP this means the setting of the need_resched flag, on SMP it
658 * might also involve a cross-CPU call to trigger the scheduler on
659 * the target CPU.
660 */
661#ifdef CONFIG_SMP
662
663#ifndef tsk_is_polling
664#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
665#endif
666
667static void resched_task(struct task_struct *p)
668{
669 int cpu;
670
671 assert_spin_locked(&task_rq(p)->lock);
672
673 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
674 return;
675
676 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
677
678 cpu = task_cpu(p);
679 if (cpu == smp_processor_id())
680 return;
681
682 /* NEED_RESCHED must be visible before we test polling */
683 smp_mb();
684 if (!tsk_is_polling(p))
685 smp_send_reschedule(cpu);
686}
687
688static void resched_cpu(int cpu)
689{
690 struct rq *rq = cpu_rq(cpu);
691 unsigned long flags;
692
693 if (!spin_trylock_irqsave(&rq->lock, flags))
694 return;
695 resched_task(cpu_curr(cpu));
696 spin_unlock_irqrestore(&rq->lock, flags);
697}
698#else
699static inline void resched_task(struct task_struct *p)
700{
701 assert_spin_locked(&task_rq(p)->lock);
702 set_tsk_need_resched(p);
703}
704#endif
705
45bf76df
IM
706#if BITS_PER_LONG == 32
707# define WMULT_CONST (~0UL)
708#else
709# define WMULT_CONST (1UL << 32)
710#endif
711
712#define WMULT_SHIFT 32
713
194081eb
IM
714/*
715 * Shift right and round:
716 */
cf2ab469 717#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 718
cb1c4fc9 719static unsigned long
45bf76df
IM
720calc_delta_mine(unsigned long delta_exec, unsigned long weight,
721 struct load_weight *lw)
722{
723 u64 tmp;
724
725 if (unlikely(!lw->inv_weight))
194081eb 726 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
727
728 tmp = (u64)delta_exec * weight;
729 /*
730 * Check whether we'd overflow the 64-bit multiplication:
731 */
194081eb 732 if (unlikely(tmp > WMULT_CONST))
cf2ab469 733 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
734 WMULT_SHIFT/2);
735 else
cf2ab469 736 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 737
ecf691da 738 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
739}
740
741static inline unsigned long
742calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
743{
744 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
745}
746
1091985b 747static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
748{
749 lw->weight += inc;
45bf76df
IM
750}
751
1091985b 752static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
753{
754 lw->weight -= dec;
45bf76df
IM
755}
756
2dd73a4f
PW
757/*
758 * To aid in avoiding the subversion of "niceness" due to uneven distribution
759 * of tasks with abnormal "nice" values across CPUs the contribution that
760 * each task makes to its run queue's load is weighted according to its
761 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
762 * scaled version of the new time slice allocation that they receive on time
763 * slice expiry etc.
764 */
765
dd41f596
IM
766#define WEIGHT_IDLEPRIO 2
767#define WMULT_IDLEPRIO (1 << 31)
768
769/*
770 * Nice levels are multiplicative, with a gentle 10% change for every
771 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
772 * nice 1, it will get ~10% less CPU time than another CPU-bound task
773 * that remained on nice 0.
774 *
775 * The "10% effect" is relative and cumulative: from _any_ nice level,
776 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
777 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
778 * If a task goes up by ~10% and another task goes down by ~10% then
779 * the relative distance between them is ~25%.)
dd41f596
IM
780 */
781static const int prio_to_weight[40] = {
254753dc
IM
782 /* -20 */ 88761, 71755, 56483, 46273, 36291,
783 /* -15 */ 29154, 23254, 18705, 14949, 11916,
784 /* -10 */ 9548, 7620, 6100, 4904, 3906,
785 /* -5 */ 3121, 2501, 1991, 1586, 1277,
786 /* 0 */ 1024, 820, 655, 526, 423,
787 /* 5 */ 335, 272, 215, 172, 137,
788 /* 10 */ 110, 87, 70, 56, 45,
789 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
790};
791
5714d2de
IM
792/*
793 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
794 *
795 * In cases where the weight does not change often, we can use the
796 * precalculated inverse to speed up arithmetics by turning divisions
797 * into multiplications:
798 */
dd41f596 799static const u32 prio_to_wmult[40] = {
254753dc
IM
800 /* -20 */ 48388, 59856, 76040, 92818, 118348,
801 /* -15 */ 147320, 184698, 229616, 287308, 360437,
802 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
803 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
804 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
805 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
806 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
807 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 808};
2dd73a4f 809
dd41f596
IM
810static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
811
812/*
813 * runqueue iterator, to support SMP load-balancing between different
814 * scheduling classes, without having to expose their internal data
815 * structures to the load-balancing proper:
816 */
817struct rq_iterator {
818 void *arg;
819 struct task_struct *(*start)(void *);
820 struct task_struct *(*next)(void *);
821};
822
823static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
824 unsigned long max_nr_move, unsigned long max_load_move,
825 struct sched_domain *sd, enum cpu_idle_type idle,
826 int *all_pinned, unsigned long *load_moved,
a4ac01c3 827 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
828
829#include "sched_stats.h"
dd41f596 830#include "sched_idletask.c"
5522d5d5
IM
831#include "sched_fair.c"
832#include "sched_rt.c"
dd41f596
IM
833#ifdef CONFIG_SCHED_DEBUG
834# include "sched_debug.c"
835#endif
836
837#define sched_class_highest (&rt_sched_class)
838
9c217245
IM
839/*
840 * Update delta_exec, delta_fair fields for rq.
841 *
842 * delta_fair clock advances at a rate inversely proportional to
495eca49 843 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
844 * delta_exec advances at the same rate as wall-clock (provided
845 * cpu is not idle).
846 *
847 * delta_exec / delta_fair is a measure of the (smoothened) load on this
848 * runqueue over any given interval. This (smoothened) load is used
849 * during load balance.
850 *
495eca49 851 * This function is called /before/ updating rq->load
9c217245
IM
852 * and when switching tasks.
853 */
29b4b623 854static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 855{
495eca49 856 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
857}
858
79b5dddf 859static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 860{
495eca49 861 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
862}
863
e5fa2237 864static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
865{
866 rq->nr_running++;
29b4b623 867 inc_load(rq, p);
9c217245
IM
868}
869
db53181e 870static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
871{
872 rq->nr_running--;
79b5dddf 873 dec_load(rq, p);
9c217245
IM
874}
875
45bf76df
IM
876static void set_load_weight(struct task_struct *p)
877{
878 if (task_has_rt_policy(p)) {
dd41f596
IM
879 p->se.load.weight = prio_to_weight[0] * 2;
880 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
881 return;
882 }
45bf76df 883
dd41f596
IM
884 /*
885 * SCHED_IDLE tasks get minimal weight:
886 */
887 if (p->policy == SCHED_IDLE) {
888 p->se.load.weight = WEIGHT_IDLEPRIO;
889 p->se.load.inv_weight = WMULT_IDLEPRIO;
890 return;
891 }
71f8bd46 892
dd41f596
IM
893 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
894 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
895}
896
8159f87e 897static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 898{
dd41f596 899 sched_info_queued(p);
fd390f6a 900 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 901 p->se.on_rq = 1;
71f8bd46
IM
902}
903
69be72c1 904static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 905{
f02231e5 906 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 907 p->se.on_rq = 0;
71f8bd46
IM
908}
909
14531189 910/*
dd41f596 911 * __normal_prio - return the priority that is based on the static prio
14531189 912 */
14531189
IM
913static inline int __normal_prio(struct task_struct *p)
914{
dd41f596 915 return p->static_prio;
14531189
IM
916}
917
b29739f9
IM
918/*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
36c8b586 925static inline int normal_prio(struct task_struct *p)
b29739f9
IM
926{
927 int prio;
928
e05606d3 929 if (task_has_rt_policy(p))
b29739f9
IM
930 prio = MAX_RT_PRIO-1 - p->rt_priority;
931 else
932 prio = __normal_prio(p);
933 return prio;
934}
935
936/*
937 * Calculate the current priority, i.e. the priority
938 * taken into account by the scheduler. This value might
939 * be boosted by RT tasks, or might be boosted by
940 * interactivity modifiers. Will be RT if the task got
941 * RT-boosted. If not then it returns p->normal_prio.
942 */
36c8b586 943static int effective_prio(struct task_struct *p)
b29739f9
IM
944{
945 p->normal_prio = normal_prio(p);
946 /*
947 * If we are RT tasks or we were boosted to RT priority,
948 * keep the priority unchanged. Otherwise, update priority
949 * to the normal priority:
950 */
951 if (!rt_prio(p->prio))
952 return p->normal_prio;
953 return p->prio;
954}
955
1da177e4 956/*
dd41f596 957 * activate_task - move a task to the runqueue.
1da177e4 958 */
dd41f596 959static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 960{
dd41f596
IM
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
1da177e4 963
8159f87e 964 enqueue_task(rq, p, wakeup);
e5fa2237 965 inc_nr_running(p, rq);
1da177e4
LT
966}
967
1da177e4
LT
968/*
969 * deactivate_task - remove a task from the runqueue.
970 */
2e1cb74a 971static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 972{
dd41f596
IM
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
69be72c1 976 dequeue_task(rq, p, sleep);
db53181e 977 dec_nr_running(p, rq);
1da177e4
LT
978}
979
1da177e4
LT
980/**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
36c8b586 984inline int task_curr(const struct task_struct *p)
1da177e4
LT
985{
986 return cpu_curr(task_cpu(p)) == p;
987}
988
2dd73a4f
PW
989/* Used instead of source_load when we know the type == 0 */
990unsigned long weighted_cpuload(const int cpu)
991{
495eca49 992 return cpu_rq(cpu)->load.weight;
dd41f596
IM
993}
994
995static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996{
997#ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
dd41f596 999#endif
29f59db3 1000 set_task_cfs_rq(p);
2dd73a4f
PW
1001}
1002
1da177e4 1003#ifdef CONFIG_SMP
c65cc870 1004
dd41f596 1005void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1006{
dd41f596
IM
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1009 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1010 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1011 u64 clock_offset;
dd41f596
IM
1012
1013 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1014
1015#ifdef CONFIG_SCHEDSTATS
1016 if (p->se.wait_start)
1017 p->se.wait_start -= clock_offset;
dd41f596
IM
1018 if (p->se.sleep_start)
1019 p->se.sleep_start -= clock_offset;
1020 if (p->se.block_start)
1021 p->se.block_start -= clock_offset;
6cfb0d5d 1022#endif
2830cf8c
SV
1023 p->se.vruntime -= old_cfsrq->min_vruntime -
1024 new_cfsrq->min_vruntime;
dd41f596
IM
1025
1026 __set_task_cpu(p, new_cpu);
c65cc870
IM
1027}
1028
70b97a7f 1029struct migration_req {
1da177e4 1030 struct list_head list;
1da177e4 1031
36c8b586 1032 struct task_struct *task;
1da177e4
LT
1033 int dest_cpu;
1034
1da177e4 1035 struct completion done;
70b97a7f 1036};
1da177e4
LT
1037
1038/*
1039 * The task's runqueue lock must be held.
1040 * Returns true if you have to wait for migration thread.
1041 */
36c8b586 1042static int
70b97a7f 1043migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1044{
70b97a7f 1045 struct rq *rq = task_rq(p);
1da177e4
LT
1046
1047 /*
1048 * If the task is not on a runqueue (and not running), then
1049 * it is sufficient to simply update the task's cpu field.
1050 */
dd41f596 1051 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1052 set_task_cpu(p, dest_cpu);
1053 return 0;
1054 }
1055
1056 init_completion(&req->done);
1da177e4
LT
1057 req->task = p;
1058 req->dest_cpu = dest_cpu;
1059 list_add(&req->list, &rq->migration_queue);
48f24c4d 1060
1da177e4
LT
1061 return 1;
1062}
1063
1064/*
1065 * wait_task_inactive - wait for a thread to unschedule.
1066 *
1067 * The caller must ensure that the task *will* unschedule sometime soon,
1068 * else this function might spin for a *long* time. This function can't
1069 * be called with interrupts off, or it may introduce deadlock with
1070 * smp_call_function() if an IPI is sent by the same process we are
1071 * waiting to become inactive.
1072 */
36c8b586 1073void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1074{
1075 unsigned long flags;
dd41f596 1076 int running, on_rq;
70b97a7f 1077 struct rq *rq;
1da177e4
LT
1078
1079repeat:
fa490cfd
LT
1080 /*
1081 * We do the initial early heuristics without holding
1082 * any task-queue locks at all. We'll only try to get
1083 * the runqueue lock when things look like they will
1084 * work out!
1085 */
1086 rq = task_rq(p);
1087
1088 /*
1089 * If the task is actively running on another CPU
1090 * still, just relax and busy-wait without holding
1091 * any locks.
1092 *
1093 * NOTE! Since we don't hold any locks, it's not
1094 * even sure that "rq" stays as the right runqueue!
1095 * But we don't care, since "task_running()" will
1096 * return false if the runqueue has changed and p
1097 * is actually now running somewhere else!
1098 */
1099 while (task_running(rq, p))
1100 cpu_relax();
1101
1102 /*
1103 * Ok, time to look more closely! We need the rq
1104 * lock now, to be *sure*. If we're wrong, we'll
1105 * just go back and repeat.
1106 */
1da177e4 1107 rq = task_rq_lock(p, &flags);
fa490cfd 1108 running = task_running(rq, p);
dd41f596 1109 on_rq = p->se.on_rq;
fa490cfd
LT
1110 task_rq_unlock(rq, &flags);
1111
1112 /*
1113 * Was it really running after all now that we
1114 * checked with the proper locks actually held?
1115 *
1116 * Oops. Go back and try again..
1117 */
1118 if (unlikely(running)) {
1da177e4 1119 cpu_relax();
1da177e4
LT
1120 goto repeat;
1121 }
fa490cfd
LT
1122
1123 /*
1124 * It's not enough that it's not actively running,
1125 * it must be off the runqueue _entirely_, and not
1126 * preempted!
1127 *
1128 * So if it wa still runnable (but just not actively
1129 * running right now), it's preempted, and we should
1130 * yield - it could be a while.
1131 */
dd41f596 1132 if (unlikely(on_rq)) {
fa490cfd
LT
1133 yield();
1134 goto repeat;
1135 }
1136
1137 /*
1138 * Ahh, all good. It wasn't running, and it wasn't
1139 * runnable, which means that it will never become
1140 * running in the future either. We're all done!
1141 */
1da177e4
LT
1142}
1143
1144/***
1145 * kick_process - kick a running thread to enter/exit the kernel
1146 * @p: the to-be-kicked thread
1147 *
1148 * Cause a process which is running on another CPU to enter
1149 * kernel-mode, without any delay. (to get signals handled.)
1150 *
1151 * NOTE: this function doesnt have to take the runqueue lock,
1152 * because all it wants to ensure is that the remote task enters
1153 * the kernel. If the IPI races and the task has been migrated
1154 * to another CPU then no harm is done and the purpose has been
1155 * achieved as well.
1156 */
36c8b586 1157void kick_process(struct task_struct *p)
1da177e4
LT
1158{
1159 int cpu;
1160
1161 preempt_disable();
1162 cpu = task_cpu(p);
1163 if ((cpu != smp_processor_id()) && task_curr(p))
1164 smp_send_reschedule(cpu);
1165 preempt_enable();
1166}
1167
1168/*
2dd73a4f
PW
1169 * Return a low guess at the load of a migration-source cpu weighted
1170 * according to the scheduling class and "nice" value.
1da177e4
LT
1171 *
1172 * We want to under-estimate the load of migration sources, to
1173 * balance conservatively.
1174 */
a9957449 1175static unsigned long source_load(int cpu, int type)
1da177e4 1176{
70b97a7f 1177 struct rq *rq = cpu_rq(cpu);
dd41f596 1178 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1179
3b0bd9bc 1180 if (type == 0)
dd41f596 1181 return total;
b910472d 1182
dd41f596 1183 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1184}
1185
1186/*
2dd73a4f
PW
1187 * Return a high guess at the load of a migration-target cpu weighted
1188 * according to the scheduling class and "nice" value.
1da177e4 1189 */
a9957449 1190static unsigned long target_load(int cpu, int type)
1da177e4 1191{
70b97a7f 1192 struct rq *rq = cpu_rq(cpu);
dd41f596 1193 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1194
7897986b 1195 if (type == 0)
dd41f596 1196 return total;
3b0bd9bc 1197
dd41f596 1198 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1199}
1200
1201/*
1202 * Return the average load per task on the cpu's run queue
1203 */
1204static inline unsigned long cpu_avg_load_per_task(int cpu)
1205{
70b97a7f 1206 struct rq *rq = cpu_rq(cpu);
dd41f596 1207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1208 unsigned long n = rq->nr_running;
1209
dd41f596 1210 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1211}
1212
147cbb4b
NP
1213/*
1214 * find_idlest_group finds and returns the least busy CPU group within the
1215 * domain.
1216 */
1217static struct sched_group *
1218find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1219{
1220 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1221 unsigned long min_load = ULONG_MAX, this_load = 0;
1222 int load_idx = sd->forkexec_idx;
1223 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1224
1225 do {
1226 unsigned long load, avg_load;
1227 int local_group;
1228 int i;
1229
da5a5522
BD
1230 /* Skip over this group if it has no CPUs allowed */
1231 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1232 goto nextgroup;
1233
147cbb4b 1234 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1235
1236 /* Tally up the load of all CPUs in the group */
1237 avg_load = 0;
1238
1239 for_each_cpu_mask(i, group->cpumask) {
1240 /* Bias balancing toward cpus of our domain */
1241 if (local_group)
1242 load = source_load(i, load_idx);
1243 else
1244 load = target_load(i, load_idx);
1245
1246 avg_load += load;
1247 }
1248
1249 /* Adjust by relative CPU power of the group */
5517d86b
ED
1250 avg_load = sg_div_cpu_power(group,
1251 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1252
1253 if (local_group) {
1254 this_load = avg_load;
1255 this = group;
1256 } else if (avg_load < min_load) {
1257 min_load = avg_load;
1258 idlest = group;
1259 }
da5a5522 1260nextgroup:
147cbb4b
NP
1261 group = group->next;
1262 } while (group != sd->groups);
1263
1264 if (!idlest || 100*this_load < imbalance*min_load)
1265 return NULL;
1266 return idlest;
1267}
1268
1269/*
0feaece9 1270 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1271 */
95cdf3b7
IM
1272static int
1273find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1274{
da5a5522 1275 cpumask_t tmp;
147cbb4b
NP
1276 unsigned long load, min_load = ULONG_MAX;
1277 int idlest = -1;
1278 int i;
1279
da5a5522
BD
1280 /* Traverse only the allowed CPUs */
1281 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1282
1283 for_each_cpu_mask(i, tmp) {
2dd73a4f 1284 load = weighted_cpuload(i);
147cbb4b
NP
1285
1286 if (load < min_load || (load == min_load && i == this_cpu)) {
1287 min_load = load;
1288 idlest = i;
1289 }
1290 }
1291
1292 return idlest;
1293}
1294
476d139c
NP
1295/*
1296 * sched_balance_self: balance the current task (running on cpu) in domains
1297 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1298 * SD_BALANCE_EXEC.
1299 *
1300 * Balance, ie. select the least loaded group.
1301 *
1302 * Returns the target CPU number, or the same CPU if no balancing is needed.
1303 *
1304 * preempt must be disabled.
1305 */
1306static int sched_balance_self(int cpu, int flag)
1307{
1308 struct task_struct *t = current;
1309 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1310
c96d145e 1311 for_each_domain(cpu, tmp) {
9761eea8
IM
1312 /*
1313 * If power savings logic is enabled for a domain, stop there.
1314 */
5c45bf27
SS
1315 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1316 break;
476d139c
NP
1317 if (tmp->flags & flag)
1318 sd = tmp;
c96d145e 1319 }
476d139c
NP
1320
1321 while (sd) {
1322 cpumask_t span;
1323 struct sched_group *group;
1a848870
SS
1324 int new_cpu, weight;
1325
1326 if (!(sd->flags & flag)) {
1327 sd = sd->child;
1328 continue;
1329 }
476d139c
NP
1330
1331 span = sd->span;
1332 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1333 if (!group) {
1334 sd = sd->child;
1335 continue;
1336 }
476d139c 1337
da5a5522 1338 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1339 if (new_cpu == -1 || new_cpu == cpu) {
1340 /* Now try balancing at a lower domain level of cpu */
1341 sd = sd->child;
1342 continue;
1343 }
476d139c 1344
1a848870 1345 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1346 cpu = new_cpu;
476d139c
NP
1347 sd = NULL;
1348 weight = cpus_weight(span);
1349 for_each_domain(cpu, tmp) {
1350 if (weight <= cpus_weight(tmp->span))
1351 break;
1352 if (tmp->flags & flag)
1353 sd = tmp;
1354 }
1355 /* while loop will break here if sd == NULL */
1356 }
1357
1358 return cpu;
1359}
1360
1361#endif /* CONFIG_SMP */
1da177e4
LT
1362
1363/*
1364 * wake_idle() will wake a task on an idle cpu if task->cpu is
1365 * not idle and an idle cpu is available. The span of cpus to
1366 * search starts with cpus closest then further out as needed,
1367 * so we always favor a closer, idle cpu.
1368 *
1369 * Returns the CPU we should wake onto.
1370 */
1371#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1372static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1373{
1374 cpumask_t tmp;
1375 struct sched_domain *sd;
1376 int i;
1377
4953198b
SS
1378 /*
1379 * If it is idle, then it is the best cpu to run this task.
1380 *
1381 * This cpu is also the best, if it has more than one task already.
1382 * Siblings must be also busy(in most cases) as they didn't already
1383 * pickup the extra load from this cpu and hence we need not check
1384 * sibling runqueue info. This will avoid the checks and cache miss
1385 * penalities associated with that.
1386 */
1387 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1388 return cpu;
1389
1390 for_each_domain(cpu, sd) {
1391 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1392 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1393 for_each_cpu_mask(i, tmp) {
1394 if (idle_cpu(i))
1395 return i;
1396 }
9761eea8 1397 } else {
e0f364f4 1398 break;
9761eea8 1399 }
1da177e4
LT
1400 }
1401 return cpu;
1402}
1403#else
36c8b586 1404static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1405{
1406 return cpu;
1407}
1408#endif
1409
1410/***
1411 * try_to_wake_up - wake up a thread
1412 * @p: the to-be-woken-up thread
1413 * @state: the mask of task states that can be woken
1414 * @sync: do a synchronous wakeup?
1415 *
1416 * Put it on the run-queue if it's not already there. The "current"
1417 * thread is always on the run-queue (except when the actual
1418 * re-schedule is in progress), and as such you're allowed to do
1419 * the simpler "current->state = TASK_RUNNING" to mark yourself
1420 * runnable without the overhead of this.
1421 *
1422 * returns failure only if the task is already active.
1423 */
36c8b586 1424static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1425{
1426 int cpu, this_cpu, success = 0;
1427 unsigned long flags;
1428 long old_state;
70b97a7f 1429 struct rq *rq;
1da177e4 1430#ifdef CONFIG_SMP
7897986b 1431 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1432 unsigned long load, this_load;
1da177e4
LT
1433 int new_cpu;
1434#endif
1435
1436 rq = task_rq_lock(p, &flags);
1437 old_state = p->state;
1438 if (!(old_state & state))
1439 goto out;
1440
dd41f596 1441 if (p->se.on_rq)
1da177e4
LT
1442 goto out_running;
1443
1444 cpu = task_cpu(p);
1445 this_cpu = smp_processor_id();
1446
1447#ifdef CONFIG_SMP
1448 if (unlikely(task_running(rq, p)))
1449 goto out_activate;
1450
7897986b
NP
1451 new_cpu = cpu;
1452
2d72376b 1453 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1454 if (cpu == this_cpu) {
1455 schedstat_inc(rq, ttwu_local);
7897986b
NP
1456 goto out_set_cpu;
1457 }
1458
1459 for_each_domain(this_cpu, sd) {
1460 if (cpu_isset(cpu, sd->span)) {
1461 schedstat_inc(sd, ttwu_wake_remote);
1462 this_sd = sd;
1463 break;
1da177e4
LT
1464 }
1465 }
1da177e4 1466
7897986b 1467 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1468 goto out_set_cpu;
1469
1da177e4 1470 /*
7897986b 1471 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1472 */
7897986b
NP
1473 if (this_sd) {
1474 int idx = this_sd->wake_idx;
1475 unsigned int imbalance;
1da177e4 1476
a3f21bce
NP
1477 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1478
7897986b
NP
1479 load = source_load(cpu, idx);
1480 this_load = target_load(this_cpu, idx);
1da177e4 1481
7897986b
NP
1482 new_cpu = this_cpu; /* Wake to this CPU if we can */
1483
a3f21bce
NP
1484 if (this_sd->flags & SD_WAKE_AFFINE) {
1485 unsigned long tl = this_load;
33859f7f
MOS
1486 unsigned long tl_per_task;
1487
1488 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1489
1da177e4 1490 /*
a3f21bce
NP
1491 * If sync wakeup then subtract the (maximum possible)
1492 * effect of the currently running task from the load
1493 * of the current CPU:
1da177e4 1494 */
a3f21bce 1495 if (sync)
dd41f596 1496 tl -= current->se.load.weight;
a3f21bce
NP
1497
1498 if ((tl <= load &&
2dd73a4f 1499 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1500 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1501 /*
1502 * This domain has SD_WAKE_AFFINE and
1503 * p is cache cold in this domain, and
1504 * there is no bad imbalance.
1505 */
1506 schedstat_inc(this_sd, ttwu_move_affine);
1507 goto out_set_cpu;
1508 }
1509 }
1510
1511 /*
1512 * Start passive balancing when half the imbalance_pct
1513 * limit is reached.
1514 */
1515 if (this_sd->flags & SD_WAKE_BALANCE) {
1516 if (imbalance*this_load <= 100*load) {
1517 schedstat_inc(this_sd, ttwu_move_balance);
1518 goto out_set_cpu;
1519 }
1da177e4
LT
1520 }
1521 }
1522
1523 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1524out_set_cpu:
1525 new_cpu = wake_idle(new_cpu, p);
1526 if (new_cpu != cpu) {
1527 set_task_cpu(p, new_cpu);
1528 task_rq_unlock(rq, &flags);
1529 /* might preempt at this point */
1530 rq = task_rq_lock(p, &flags);
1531 old_state = p->state;
1532 if (!(old_state & state))
1533 goto out;
dd41f596 1534 if (p->se.on_rq)
1da177e4
LT
1535 goto out_running;
1536
1537 this_cpu = smp_processor_id();
1538 cpu = task_cpu(p);
1539 }
1540
1541out_activate:
1542#endif /* CONFIG_SMP */
2daa3577 1543 update_rq_clock(rq);
dd41f596 1544 activate_task(rq, p, 1);
1da177e4
LT
1545 /*
1546 * Sync wakeups (i.e. those types of wakeups where the waker
1547 * has indicated that it will leave the CPU in short order)
1548 * don't trigger a preemption, if the woken up task will run on
1549 * this cpu. (in this case the 'I will reschedule' promise of
1550 * the waker guarantees that the freshly woken up task is going
1551 * to be considered on this CPU.)
1552 */
dd41f596
IM
1553 if (!sync || cpu != this_cpu)
1554 check_preempt_curr(rq, p);
1da177e4
LT
1555 success = 1;
1556
1557out_running:
1558 p->state = TASK_RUNNING;
1559out:
1560 task_rq_unlock(rq, &flags);
1561
1562 return success;
1563}
1564
36c8b586 1565int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1566{
1567 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1568 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1569}
1da177e4
LT
1570EXPORT_SYMBOL(wake_up_process);
1571
36c8b586 1572int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1573{
1574 return try_to_wake_up(p, state, 0);
1575}
1576
1da177e4
LT
1577/*
1578 * Perform scheduler related setup for a newly forked process p.
1579 * p is forked by current.
dd41f596
IM
1580 *
1581 * __sched_fork() is basic setup used by init_idle() too:
1582 */
1583static void __sched_fork(struct task_struct *p)
1584{
dd41f596
IM
1585 p->se.exec_start = 0;
1586 p->se.sum_exec_runtime = 0;
f6cf891c 1587 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1588
1589#ifdef CONFIG_SCHEDSTATS
1590 p->se.wait_start = 0;
dd41f596
IM
1591 p->se.sum_sleep_runtime = 0;
1592 p->se.sleep_start = 0;
dd41f596
IM
1593 p->se.block_start = 0;
1594 p->se.sleep_max = 0;
1595 p->se.block_max = 0;
1596 p->se.exec_max = 0;
eba1ed4b 1597 p->se.slice_max = 0;
dd41f596 1598 p->se.wait_max = 0;
6cfb0d5d 1599#endif
476d139c 1600
dd41f596
IM
1601 INIT_LIST_HEAD(&p->run_list);
1602 p->se.on_rq = 0;
476d139c 1603
e107be36
AK
1604#ifdef CONFIG_PREEMPT_NOTIFIERS
1605 INIT_HLIST_HEAD(&p->preempt_notifiers);
1606#endif
1607
1da177e4
LT
1608 /*
1609 * We mark the process as running here, but have not actually
1610 * inserted it onto the runqueue yet. This guarantees that
1611 * nobody will actually run it, and a signal or other external
1612 * event cannot wake it up and insert it on the runqueue either.
1613 */
1614 p->state = TASK_RUNNING;
dd41f596
IM
1615}
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
1620void sched_fork(struct task_struct *p, int clone_flags)
1621{
1622 int cpu = get_cpu();
1623
1624 __sched_fork(p);
1625
1626#ifdef CONFIG_SMP
1627 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1628#endif
02e4bac2 1629 set_task_cpu(p, cpu);
b29739f9
IM
1630
1631 /*
1632 * Make sure we do not leak PI boosting priority to the child:
1633 */
1634 p->prio = current->normal_prio;
2ddbf952
HS
1635 if (!rt_prio(p->prio))
1636 p->sched_class = &fair_sched_class;
b29739f9 1637
52f17b6c 1638#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1639 if (likely(sched_info_on()))
52f17b6c 1640 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1641#endif
d6077cb8 1642#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1643 p->oncpu = 0;
1644#endif
1da177e4 1645#ifdef CONFIG_PREEMPT
4866cde0 1646 /* Want to start with kernel preemption disabled. */
a1261f54 1647 task_thread_info(p)->preempt_count = 1;
1da177e4 1648#endif
476d139c 1649 put_cpu();
1da177e4
LT
1650}
1651
1652/*
1653 * wake_up_new_task - wake up a newly created task for the first time.
1654 *
1655 * This function will do some initial scheduler statistics housekeeping
1656 * that must be done for every newly created context, then puts the task
1657 * on the runqueue and wakes it.
1658 */
36c8b586 1659void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1660{
1661 unsigned long flags;
dd41f596 1662 struct rq *rq;
1da177e4
LT
1663
1664 rq = task_rq_lock(p, &flags);
147cbb4b 1665 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1666 update_rq_clock(rq);
1da177e4
LT
1667
1668 p->prio = effective_prio(p);
1669
00bf7bfc 1670 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1671 activate_task(rq, p, 0);
1da177e4 1672 } else {
1da177e4 1673 /*
dd41f596
IM
1674 * Let the scheduling class do new task startup
1675 * management (if any):
1da177e4 1676 */
ee0827d8 1677 p->sched_class->task_new(rq, p);
e5fa2237 1678 inc_nr_running(p, rq);
1da177e4 1679 }
dd41f596
IM
1680 check_preempt_curr(rq, p);
1681 task_rq_unlock(rq, &flags);
1da177e4
LT
1682}
1683
e107be36
AK
1684#ifdef CONFIG_PREEMPT_NOTIFIERS
1685
1686/**
421cee29
RD
1687 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1688 * @notifier: notifier struct to register
e107be36
AK
1689 */
1690void preempt_notifier_register(struct preempt_notifier *notifier)
1691{
1692 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1693}
1694EXPORT_SYMBOL_GPL(preempt_notifier_register);
1695
1696/**
1697 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1698 * @notifier: notifier struct to unregister
e107be36
AK
1699 *
1700 * This is safe to call from within a preemption notifier.
1701 */
1702void preempt_notifier_unregister(struct preempt_notifier *notifier)
1703{
1704 hlist_del(&notifier->link);
1705}
1706EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1707
1708static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1709{
1710 struct preempt_notifier *notifier;
1711 struct hlist_node *node;
1712
1713 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1714 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1715}
1716
1717static void
1718fire_sched_out_preempt_notifiers(struct task_struct *curr,
1719 struct task_struct *next)
1720{
1721 struct preempt_notifier *notifier;
1722 struct hlist_node *node;
1723
1724 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1725 notifier->ops->sched_out(notifier, next);
1726}
1727
1728#else
1729
1730static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1731{
1732}
1733
1734static void
1735fire_sched_out_preempt_notifiers(struct task_struct *curr,
1736 struct task_struct *next)
1737{
1738}
1739
1740#endif
1741
4866cde0
NP
1742/**
1743 * prepare_task_switch - prepare to switch tasks
1744 * @rq: the runqueue preparing to switch
421cee29 1745 * @prev: the current task that is being switched out
4866cde0
NP
1746 * @next: the task we are going to switch to.
1747 *
1748 * This is called with the rq lock held and interrupts off. It must
1749 * be paired with a subsequent finish_task_switch after the context
1750 * switch.
1751 *
1752 * prepare_task_switch sets up locking and calls architecture specific
1753 * hooks.
1754 */
e107be36
AK
1755static inline void
1756prepare_task_switch(struct rq *rq, struct task_struct *prev,
1757 struct task_struct *next)
4866cde0 1758{
e107be36 1759 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1760 prepare_lock_switch(rq, next);
1761 prepare_arch_switch(next);
1762}
1763
1da177e4
LT
1764/**
1765 * finish_task_switch - clean up after a task-switch
344babaa 1766 * @rq: runqueue associated with task-switch
1da177e4
LT
1767 * @prev: the thread we just switched away from.
1768 *
4866cde0
NP
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
1775 * so, we finish that here outside of the runqueue lock. (Doing it
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
a9957449 1779static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1780 __releases(rq->lock)
1781{
1da177e4 1782 struct mm_struct *mm = rq->prev_mm;
55a101f8 1783 long prev_state;
1da177e4
LT
1784
1785 rq->prev_mm = NULL;
1786
1787 /*
1788 * A task struct has one reference for the use as "current".
c394cc9f 1789 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1790 * schedule one last time. The schedule call will never return, and
1791 * the scheduled task must drop that reference.
c394cc9f 1792 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1793 * still held, otherwise prev could be scheduled on another cpu, die
1794 * there before we look at prev->state, and then the reference would
1795 * be dropped twice.
1796 * Manfred Spraul <manfred@colorfullife.com>
1797 */
55a101f8 1798 prev_state = prev->state;
4866cde0
NP
1799 finish_arch_switch(prev);
1800 finish_lock_switch(rq, prev);
e107be36 1801 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1802 if (mm)
1803 mmdrop(mm);
c394cc9f 1804 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1805 /*
1806 * Remove function-return probe instances associated with this
1807 * task and put them back on the free list.
9761eea8 1808 */
c6fd91f0 1809 kprobe_flush_task(prev);
1da177e4 1810 put_task_struct(prev);
c6fd91f0 1811 }
1da177e4
LT
1812}
1813
1814/**
1815 * schedule_tail - first thing a freshly forked thread must call.
1816 * @prev: the thread we just switched away from.
1817 */
36c8b586 1818asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1819 __releases(rq->lock)
1820{
70b97a7f
IM
1821 struct rq *rq = this_rq();
1822
4866cde0
NP
1823 finish_task_switch(rq, prev);
1824#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1825 /* In this case, finish_task_switch does not reenable preemption */
1826 preempt_enable();
1827#endif
1da177e4
LT
1828 if (current->set_child_tid)
1829 put_user(current->pid, current->set_child_tid);
1830}
1831
1832/*
1833 * context_switch - switch to the new MM and the new
1834 * thread's register state.
1835 */
dd41f596 1836static inline void
70b97a7f 1837context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1838 struct task_struct *next)
1da177e4 1839{
dd41f596 1840 struct mm_struct *mm, *oldmm;
1da177e4 1841
e107be36 1842 prepare_task_switch(rq, prev, next);
dd41f596
IM
1843 mm = next->mm;
1844 oldmm = prev->active_mm;
9226d125
ZA
1845 /*
1846 * For paravirt, this is coupled with an exit in switch_to to
1847 * combine the page table reload and the switch backend into
1848 * one hypercall.
1849 */
1850 arch_enter_lazy_cpu_mode();
1851
dd41f596 1852 if (unlikely(!mm)) {
1da177e4
LT
1853 next->active_mm = oldmm;
1854 atomic_inc(&oldmm->mm_count);
1855 enter_lazy_tlb(oldmm, next);
1856 } else
1857 switch_mm(oldmm, mm, next);
1858
dd41f596 1859 if (unlikely(!prev->mm)) {
1da177e4 1860 prev->active_mm = NULL;
1da177e4
LT
1861 rq->prev_mm = oldmm;
1862 }
3a5f5e48
IM
1863 /*
1864 * Since the runqueue lock will be released by the next
1865 * task (which is an invalid locking op but in the case
1866 * of the scheduler it's an obvious special-case), so we
1867 * do an early lockdep release here:
1868 */
1869#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1870 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1871#endif
1da177e4
LT
1872
1873 /* Here we just switch the register state and the stack. */
1874 switch_to(prev, next, prev);
1875
dd41f596
IM
1876 barrier();
1877 /*
1878 * this_rq must be evaluated again because prev may have moved
1879 * CPUs since it called schedule(), thus the 'rq' on its stack
1880 * frame will be invalid.
1881 */
1882 finish_task_switch(this_rq(), prev);
1da177e4
LT
1883}
1884
1885/*
1886 * nr_running, nr_uninterruptible and nr_context_switches:
1887 *
1888 * externally visible scheduler statistics: current number of runnable
1889 * threads, current number of uninterruptible-sleeping threads, total
1890 * number of context switches performed since bootup.
1891 */
1892unsigned long nr_running(void)
1893{
1894 unsigned long i, sum = 0;
1895
1896 for_each_online_cpu(i)
1897 sum += cpu_rq(i)->nr_running;
1898
1899 return sum;
1900}
1901
1902unsigned long nr_uninterruptible(void)
1903{
1904 unsigned long i, sum = 0;
1905
0a945022 1906 for_each_possible_cpu(i)
1da177e4
LT
1907 sum += cpu_rq(i)->nr_uninterruptible;
1908
1909 /*
1910 * Since we read the counters lockless, it might be slightly
1911 * inaccurate. Do not allow it to go below zero though:
1912 */
1913 if (unlikely((long)sum < 0))
1914 sum = 0;
1915
1916 return sum;
1917}
1918
1919unsigned long long nr_context_switches(void)
1920{
cc94abfc
SR
1921 int i;
1922 unsigned long long sum = 0;
1da177e4 1923
0a945022 1924 for_each_possible_cpu(i)
1da177e4
LT
1925 sum += cpu_rq(i)->nr_switches;
1926
1927 return sum;
1928}
1929
1930unsigned long nr_iowait(void)
1931{
1932 unsigned long i, sum = 0;
1933
0a945022 1934 for_each_possible_cpu(i)
1da177e4
LT
1935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1936
1937 return sum;
1938}
1939
db1b1fef
JS
1940unsigned long nr_active(void)
1941{
1942 unsigned long i, running = 0, uninterruptible = 0;
1943
1944 for_each_online_cpu(i) {
1945 running += cpu_rq(i)->nr_running;
1946 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1947 }
1948
1949 if (unlikely((long)uninterruptible < 0))
1950 uninterruptible = 0;
1951
1952 return running + uninterruptible;
1953}
1954
48f24c4d 1955/*
dd41f596
IM
1956 * Update rq->cpu_load[] statistics. This function is usually called every
1957 * scheduler tick (TICK_NSEC).
48f24c4d 1958 */
dd41f596 1959static void update_cpu_load(struct rq *this_rq)
48f24c4d 1960{
495eca49 1961 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1962 int i, scale;
1963
1964 this_rq->nr_load_updates++;
dd41f596
IM
1965
1966 /* Update our load: */
1967 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1968 unsigned long old_load, new_load;
1969
1970 /* scale is effectively 1 << i now, and >> i divides by scale */
1971
1972 old_load = this_rq->cpu_load[i];
1973 new_load = this_load;
a25707f3
IM
1974 /*
1975 * Round up the averaging division if load is increasing. This
1976 * prevents us from getting stuck on 9 if the load is 10, for
1977 * example.
1978 */
1979 if (new_load > old_load)
1980 new_load += scale-1;
dd41f596
IM
1981 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1982 }
48f24c4d
IM
1983}
1984
dd41f596
IM
1985#ifdef CONFIG_SMP
1986
1da177e4
LT
1987/*
1988 * double_rq_lock - safely lock two runqueues
1989 *
1990 * Note this does not disable interrupts like task_rq_lock,
1991 * you need to do so manually before calling.
1992 */
70b97a7f 1993static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1994 __acquires(rq1->lock)
1995 __acquires(rq2->lock)
1996{
054b9108 1997 BUG_ON(!irqs_disabled());
1da177e4
LT
1998 if (rq1 == rq2) {
1999 spin_lock(&rq1->lock);
2000 __acquire(rq2->lock); /* Fake it out ;) */
2001 } else {
c96d145e 2002 if (rq1 < rq2) {
1da177e4
LT
2003 spin_lock(&rq1->lock);
2004 spin_lock(&rq2->lock);
2005 } else {
2006 spin_lock(&rq2->lock);
2007 spin_lock(&rq1->lock);
2008 }
2009 }
6e82a3be
IM
2010 update_rq_clock(rq1);
2011 update_rq_clock(rq2);
1da177e4
LT
2012}
2013
2014/*
2015 * double_rq_unlock - safely unlock two runqueues
2016 *
2017 * Note this does not restore interrupts like task_rq_unlock,
2018 * you need to do so manually after calling.
2019 */
70b97a7f 2020static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2021 __releases(rq1->lock)
2022 __releases(rq2->lock)
2023{
2024 spin_unlock(&rq1->lock);
2025 if (rq1 != rq2)
2026 spin_unlock(&rq2->lock);
2027 else
2028 __release(rq2->lock);
2029}
2030
2031/*
2032 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2033 */
70b97a7f 2034static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2035 __releases(this_rq->lock)
2036 __acquires(busiest->lock)
2037 __acquires(this_rq->lock)
2038{
054b9108
KK
2039 if (unlikely(!irqs_disabled())) {
2040 /* printk() doesn't work good under rq->lock */
2041 spin_unlock(&this_rq->lock);
2042 BUG_ON(1);
2043 }
1da177e4 2044 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2045 if (busiest < this_rq) {
1da177e4
LT
2046 spin_unlock(&this_rq->lock);
2047 spin_lock(&busiest->lock);
2048 spin_lock(&this_rq->lock);
2049 } else
2050 spin_lock(&busiest->lock);
2051 }
2052}
2053
1da177e4
LT
2054/*
2055 * If dest_cpu is allowed for this process, migrate the task to it.
2056 * This is accomplished by forcing the cpu_allowed mask to only
2057 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2058 * the cpu_allowed mask is restored.
2059 */
36c8b586 2060static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2061{
70b97a7f 2062 struct migration_req req;
1da177e4 2063 unsigned long flags;
70b97a7f 2064 struct rq *rq;
1da177e4
LT
2065
2066 rq = task_rq_lock(p, &flags);
2067 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2068 || unlikely(cpu_is_offline(dest_cpu)))
2069 goto out;
2070
2071 /* force the process onto the specified CPU */
2072 if (migrate_task(p, dest_cpu, &req)) {
2073 /* Need to wait for migration thread (might exit: take ref). */
2074 struct task_struct *mt = rq->migration_thread;
36c8b586 2075
1da177e4
LT
2076 get_task_struct(mt);
2077 task_rq_unlock(rq, &flags);
2078 wake_up_process(mt);
2079 put_task_struct(mt);
2080 wait_for_completion(&req.done);
36c8b586 2081
1da177e4
LT
2082 return;
2083 }
2084out:
2085 task_rq_unlock(rq, &flags);
2086}
2087
2088/*
476d139c
NP
2089 * sched_exec - execve() is a valuable balancing opportunity, because at
2090 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2091 */
2092void sched_exec(void)
2093{
1da177e4 2094 int new_cpu, this_cpu = get_cpu();
476d139c 2095 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2096 put_cpu();
476d139c
NP
2097 if (new_cpu != this_cpu)
2098 sched_migrate_task(current, new_cpu);
1da177e4
LT
2099}
2100
2101/*
2102 * pull_task - move a task from a remote runqueue to the local runqueue.
2103 * Both runqueues must be locked.
2104 */
dd41f596
IM
2105static void pull_task(struct rq *src_rq, struct task_struct *p,
2106 struct rq *this_rq, int this_cpu)
1da177e4 2107{
2e1cb74a 2108 deactivate_task(src_rq, p, 0);
1da177e4 2109 set_task_cpu(p, this_cpu);
dd41f596 2110 activate_task(this_rq, p, 0);
1da177e4
LT
2111 /*
2112 * Note that idle threads have a prio of MAX_PRIO, for this test
2113 * to be always true for them.
2114 */
dd41f596 2115 check_preempt_curr(this_rq, p);
1da177e4
LT
2116}
2117
2118/*
2119 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2120 */
858119e1 2121static
70b97a7f 2122int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2123 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2124 int *all_pinned)
1da177e4
LT
2125{
2126 /*
2127 * We do not migrate tasks that are:
2128 * 1) running (obviously), or
2129 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2130 * 3) are cache-hot on their current CPU.
2131 */
1da177e4
LT
2132 if (!cpu_isset(this_cpu, p->cpus_allowed))
2133 return 0;
81026794
NP
2134 *all_pinned = 0;
2135
2136 if (task_running(rq, p))
2137 return 0;
1da177e4 2138
1da177e4
LT
2139 return 1;
2140}
2141
dd41f596 2142static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2143 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2144 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2145 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2146 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2147{
dd41f596
IM
2148 int pulled = 0, pinned = 0, skip_for_load;
2149 struct task_struct *p;
2150 long rem_load_move = max_load_move;
1da177e4 2151
2dd73a4f 2152 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2153 goto out;
2154
81026794
NP
2155 pinned = 1;
2156
1da177e4 2157 /*
dd41f596 2158 * Start the load-balancing iterator:
1da177e4 2159 */
dd41f596
IM
2160 p = iterator->start(iterator->arg);
2161next:
2162 if (!p)
1da177e4 2163 goto out;
50ddd969
PW
2164 /*
2165 * To help distribute high priority tasks accross CPUs we don't
2166 * skip a task if it will be the highest priority task (i.e. smallest
2167 * prio value) on its new queue regardless of its load weight
2168 */
dd41f596
IM
2169 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2170 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2171 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2172 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2173 p = iterator->next(iterator->arg);
2174 goto next;
1da177e4
LT
2175 }
2176
dd41f596 2177 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2178 pulled++;
dd41f596 2179 rem_load_move -= p->se.load.weight;
1da177e4 2180
2dd73a4f
PW
2181 /*
2182 * We only want to steal up to the prescribed number of tasks
2183 * and the prescribed amount of weighted load.
2184 */
2185 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2186 if (p->prio < *this_best_prio)
2187 *this_best_prio = p->prio;
dd41f596
IM
2188 p = iterator->next(iterator->arg);
2189 goto next;
1da177e4
LT
2190 }
2191out:
2192 /*
2193 * Right now, this is the only place pull_task() is called,
2194 * so we can safely collect pull_task() stats here rather than
2195 * inside pull_task().
2196 */
2197 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2198
2199 if (all_pinned)
2200 *all_pinned = pinned;
dd41f596 2201 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2202 return pulled;
2203}
2204
dd41f596 2205/*
43010659
PW
2206 * move_tasks tries to move up to max_load_move weighted load from busiest to
2207 * this_rq, as part of a balancing operation within domain "sd".
2208 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2209 *
2210 * Called with both runqueues locked.
2211 */
2212static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2213 unsigned long max_load_move,
dd41f596
IM
2214 struct sched_domain *sd, enum cpu_idle_type idle,
2215 int *all_pinned)
2216{
5522d5d5 2217 const struct sched_class *class = sched_class_highest;
43010659 2218 unsigned long total_load_moved = 0;
a4ac01c3 2219 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2220
2221 do {
43010659
PW
2222 total_load_moved +=
2223 class->load_balance(this_rq, this_cpu, busiest,
2224 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2225 sd, idle, all_pinned, &this_best_prio);
dd41f596 2226 class = class->next;
43010659 2227 } while (class && max_load_move > total_load_moved);
dd41f596 2228
43010659
PW
2229 return total_load_moved > 0;
2230}
2231
2232/*
2233 * move_one_task tries to move exactly one task from busiest to this_rq, as
2234 * part of active balancing operations within "domain".
2235 * Returns 1 if successful and 0 otherwise.
2236 *
2237 * Called with both runqueues locked.
2238 */
2239static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2240 struct sched_domain *sd, enum cpu_idle_type idle)
2241{
5522d5d5 2242 const struct sched_class *class;
a4ac01c3 2243 int this_best_prio = MAX_PRIO;
43010659
PW
2244
2245 for (class = sched_class_highest; class; class = class->next)
2246 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2247 1, ULONG_MAX, sd, idle, NULL,
2248 &this_best_prio))
43010659
PW
2249 return 1;
2250
2251 return 0;
dd41f596
IM
2252}
2253
1da177e4
LT
2254/*
2255 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2256 * domain. It calculates and returns the amount of weighted load which
2257 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2258 */
2259static struct sched_group *
2260find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2261 unsigned long *imbalance, enum cpu_idle_type idle,
2262 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2263{
2264 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2265 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2266 unsigned long max_pull;
2dd73a4f
PW
2267 unsigned long busiest_load_per_task, busiest_nr_running;
2268 unsigned long this_load_per_task, this_nr_running;
7897986b 2269 int load_idx;
5c45bf27
SS
2270#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2271 int power_savings_balance = 1;
2272 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2273 unsigned long min_nr_running = ULONG_MAX;
2274 struct sched_group *group_min = NULL, *group_leader = NULL;
2275#endif
1da177e4
LT
2276
2277 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2278 busiest_load_per_task = busiest_nr_running = 0;
2279 this_load_per_task = this_nr_running = 0;
d15bcfdb 2280 if (idle == CPU_NOT_IDLE)
7897986b 2281 load_idx = sd->busy_idx;
d15bcfdb 2282 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2283 load_idx = sd->newidle_idx;
2284 else
2285 load_idx = sd->idle_idx;
1da177e4
LT
2286
2287 do {
5c45bf27 2288 unsigned long load, group_capacity;
1da177e4
LT
2289 int local_group;
2290 int i;
783609c6 2291 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2292 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2293
2294 local_group = cpu_isset(this_cpu, group->cpumask);
2295
783609c6
SS
2296 if (local_group)
2297 balance_cpu = first_cpu(group->cpumask);
2298
1da177e4 2299 /* Tally up the load of all CPUs in the group */
2dd73a4f 2300 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2301
2302 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2303 struct rq *rq;
2304
2305 if (!cpu_isset(i, *cpus))
2306 continue;
2307
2308 rq = cpu_rq(i);
2dd73a4f 2309
9439aab8 2310 if (*sd_idle && rq->nr_running)
5969fe06
NP
2311 *sd_idle = 0;
2312
1da177e4 2313 /* Bias balancing toward cpus of our domain */
783609c6
SS
2314 if (local_group) {
2315 if (idle_cpu(i) && !first_idle_cpu) {
2316 first_idle_cpu = 1;
2317 balance_cpu = i;
2318 }
2319
a2000572 2320 load = target_load(i, load_idx);
783609c6 2321 } else
a2000572 2322 load = source_load(i, load_idx);
1da177e4
LT
2323
2324 avg_load += load;
2dd73a4f 2325 sum_nr_running += rq->nr_running;
dd41f596 2326 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2327 }
2328
783609c6
SS
2329 /*
2330 * First idle cpu or the first cpu(busiest) in this sched group
2331 * is eligible for doing load balancing at this and above
9439aab8
SS
2332 * domains. In the newly idle case, we will allow all the cpu's
2333 * to do the newly idle load balance.
783609c6 2334 */
9439aab8
SS
2335 if (idle != CPU_NEWLY_IDLE && local_group &&
2336 balance_cpu != this_cpu && balance) {
783609c6
SS
2337 *balance = 0;
2338 goto ret;
2339 }
2340
1da177e4 2341 total_load += avg_load;
5517d86b 2342 total_pwr += group->__cpu_power;
1da177e4
LT
2343
2344 /* Adjust by relative CPU power of the group */
5517d86b
ED
2345 avg_load = sg_div_cpu_power(group,
2346 avg_load * SCHED_LOAD_SCALE);
1da177e4 2347
5517d86b 2348 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2349
1da177e4
LT
2350 if (local_group) {
2351 this_load = avg_load;
2352 this = group;
2dd73a4f
PW
2353 this_nr_running = sum_nr_running;
2354 this_load_per_task = sum_weighted_load;
2355 } else if (avg_load > max_load &&
5c45bf27 2356 sum_nr_running > group_capacity) {
1da177e4
LT
2357 max_load = avg_load;
2358 busiest = group;
2dd73a4f
PW
2359 busiest_nr_running = sum_nr_running;
2360 busiest_load_per_task = sum_weighted_load;
1da177e4 2361 }
5c45bf27
SS
2362
2363#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2364 /*
2365 * Busy processors will not participate in power savings
2366 * balance.
2367 */
dd41f596
IM
2368 if (idle == CPU_NOT_IDLE ||
2369 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2370 goto group_next;
5c45bf27
SS
2371
2372 /*
2373 * If the local group is idle or completely loaded
2374 * no need to do power savings balance at this domain
2375 */
2376 if (local_group && (this_nr_running >= group_capacity ||
2377 !this_nr_running))
2378 power_savings_balance = 0;
2379
dd41f596 2380 /*
5c45bf27
SS
2381 * If a group is already running at full capacity or idle,
2382 * don't include that group in power savings calculations
dd41f596
IM
2383 */
2384 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2385 || !sum_nr_running)
dd41f596 2386 goto group_next;
5c45bf27 2387
dd41f596 2388 /*
5c45bf27 2389 * Calculate the group which has the least non-idle load.
dd41f596
IM
2390 * This is the group from where we need to pick up the load
2391 * for saving power
2392 */
2393 if ((sum_nr_running < min_nr_running) ||
2394 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2395 first_cpu(group->cpumask) <
2396 first_cpu(group_min->cpumask))) {
dd41f596
IM
2397 group_min = group;
2398 min_nr_running = sum_nr_running;
5c45bf27
SS
2399 min_load_per_task = sum_weighted_load /
2400 sum_nr_running;
dd41f596 2401 }
5c45bf27 2402
dd41f596 2403 /*
5c45bf27 2404 * Calculate the group which is almost near its
dd41f596
IM
2405 * capacity but still has some space to pick up some load
2406 * from other group and save more power
2407 */
2408 if (sum_nr_running <= group_capacity - 1) {
2409 if (sum_nr_running > leader_nr_running ||
2410 (sum_nr_running == leader_nr_running &&
2411 first_cpu(group->cpumask) >
2412 first_cpu(group_leader->cpumask))) {
2413 group_leader = group;
2414 leader_nr_running = sum_nr_running;
2415 }
48f24c4d 2416 }
5c45bf27
SS
2417group_next:
2418#endif
1da177e4
LT
2419 group = group->next;
2420 } while (group != sd->groups);
2421
2dd73a4f 2422 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2423 goto out_balanced;
2424
2425 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2426
2427 if (this_load >= avg_load ||
2428 100*max_load <= sd->imbalance_pct*this_load)
2429 goto out_balanced;
2430
2dd73a4f 2431 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2432 /*
2433 * We're trying to get all the cpus to the average_load, so we don't
2434 * want to push ourselves above the average load, nor do we wish to
2435 * reduce the max loaded cpu below the average load, as either of these
2436 * actions would just result in more rebalancing later, and ping-pong
2437 * tasks around. Thus we look for the minimum possible imbalance.
2438 * Negative imbalances (*we* are more loaded than anyone else) will
2439 * be counted as no imbalance for these purposes -- we can't fix that
2440 * by pulling tasks to us. Be careful of negative numbers as they'll
2441 * appear as very large values with unsigned longs.
2442 */
2dd73a4f
PW
2443 if (max_load <= busiest_load_per_task)
2444 goto out_balanced;
2445
2446 /*
2447 * In the presence of smp nice balancing, certain scenarios can have
2448 * max load less than avg load(as we skip the groups at or below
2449 * its cpu_power, while calculating max_load..)
2450 */
2451 if (max_load < avg_load) {
2452 *imbalance = 0;
2453 goto small_imbalance;
2454 }
0c117f1b
SS
2455
2456 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2457 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2458
1da177e4 2459 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2460 *imbalance = min(max_pull * busiest->__cpu_power,
2461 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2462 / SCHED_LOAD_SCALE;
2463
2dd73a4f
PW
2464 /*
2465 * if *imbalance is less than the average load per runnable task
2466 * there is no gaurantee that any tasks will be moved so we'll have
2467 * a think about bumping its value to force at least one task to be
2468 * moved
2469 */
7fd0d2dd 2470 if (*imbalance < busiest_load_per_task) {
48f24c4d 2471 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2472 unsigned int imbn;
2473
2474small_imbalance:
2475 pwr_move = pwr_now = 0;
2476 imbn = 2;
2477 if (this_nr_running) {
2478 this_load_per_task /= this_nr_running;
2479 if (busiest_load_per_task > this_load_per_task)
2480 imbn = 1;
2481 } else
2482 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2483
dd41f596
IM
2484 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2485 busiest_load_per_task * imbn) {
2dd73a4f 2486 *imbalance = busiest_load_per_task;
1da177e4
LT
2487 return busiest;
2488 }
2489
2490 /*
2491 * OK, we don't have enough imbalance to justify moving tasks,
2492 * however we may be able to increase total CPU power used by
2493 * moving them.
2494 */
2495
5517d86b
ED
2496 pwr_now += busiest->__cpu_power *
2497 min(busiest_load_per_task, max_load);
2498 pwr_now += this->__cpu_power *
2499 min(this_load_per_task, this_load);
1da177e4
LT
2500 pwr_now /= SCHED_LOAD_SCALE;
2501
2502 /* Amount of load we'd subtract */
5517d86b
ED
2503 tmp = sg_div_cpu_power(busiest,
2504 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2505 if (max_load > tmp)
5517d86b 2506 pwr_move += busiest->__cpu_power *
2dd73a4f 2507 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2508
2509 /* Amount of load we'd add */
5517d86b 2510 if (max_load * busiest->__cpu_power <
33859f7f 2511 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2512 tmp = sg_div_cpu_power(this,
2513 max_load * busiest->__cpu_power);
1da177e4 2514 else
5517d86b
ED
2515 tmp = sg_div_cpu_power(this,
2516 busiest_load_per_task * SCHED_LOAD_SCALE);
2517 pwr_move += this->__cpu_power *
2518 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2519 pwr_move /= SCHED_LOAD_SCALE;
2520
2521 /* Move if we gain throughput */
7fd0d2dd
SS
2522 if (pwr_move > pwr_now)
2523 *imbalance = busiest_load_per_task;
1da177e4
LT
2524 }
2525
1da177e4
LT
2526 return busiest;
2527
2528out_balanced:
5c45bf27 2529#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2530 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2531 goto ret;
1da177e4 2532
5c45bf27
SS
2533 if (this == group_leader && group_leader != group_min) {
2534 *imbalance = min_load_per_task;
2535 return group_min;
2536 }
5c45bf27 2537#endif
783609c6 2538ret:
1da177e4
LT
2539 *imbalance = 0;
2540 return NULL;
2541}
2542
2543/*
2544 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2545 */
70b97a7f 2546static struct rq *
d15bcfdb 2547find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2548 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2549{
70b97a7f 2550 struct rq *busiest = NULL, *rq;
2dd73a4f 2551 unsigned long max_load = 0;
1da177e4
LT
2552 int i;
2553
2554 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2555 unsigned long wl;
0a2966b4
CL
2556
2557 if (!cpu_isset(i, *cpus))
2558 continue;
2559
48f24c4d 2560 rq = cpu_rq(i);
dd41f596 2561 wl = weighted_cpuload(i);
2dd73a4f 2562
dd41f596 2563 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2564 continue;
1da177e4 2565
dd41f596
IM
2566 if (wl > max_load) {
2567 max_load = wl;
48f24c4d 2568 busiest = rq;
1da177e4
LT
2569 }
2570 }
2571
2572 return busiest;
2573}
2574
77391d71
NP
2575/*
2576 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2577 * so long as it is large enough.
2578 */
2579#define MAX_PINNED_INTERVAL 512
2580
1da177e4
LT
2581/*
2582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2583 * tasks if there is an imbalance.
1da177e4 2584 */
70b97a7f 2585static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2586 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2587 int *balance)
1da177e4 2588{
43010659 2589 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2590 struct sched_group *group;
1da177e4 2591 unsigned long imbalance;
70b97a7f 2592 struct rq *busiest;
0a2966b4 2593 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2594 unsigned long flags;
5969fe06 2595
89c4710e
SS
2596 /*
2597 * When power savings policy is enabled for the parent domain, idle
2598 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2599 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2600 * portraying it as CPU_NOT_IDLE.
89c4710e 2601 */
d15bcfdb 2602 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2603 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2604 sd_idle = 1;
1da177e4 2605
2d72376b 2606 schedstat_inc(sd, lb_count[idle]);
1da177e4 2607
0a2966b4
CL
2608redo:
2609 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2610 &cpus, balance);
2611
06066714 2612 if (*balance == 0)
783609c6 2613 goto out_balanced;
783609c6 2614
1da177e4
LT
2615 if (!group) {
2616 schedstat_inc(sd, lb_nobusyg[idle]);
2617 goto out_balanced;
2618 }
2619
0a2966b4 2620 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2621 if (!busiest) {
2622 schedstat_inc(sd, lb_nobusyq[idle]);
2623 goto out_balanced;
2624 }
2625
db935dbd 2626 BUG_ON(busiest == this_rq);
1da177e4
LT
2627
2628 schedstat_add(sd, lb_imbalance[idle], imbalance);
2629
43010659 2630 ld_moved = 0;
1da177e4
LT
2631 if (busiest->nr_running > 1) {
2632 /*
2633 * Attempt to move tasks. If find_busiest_group has found
2634 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2635 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2636 * correctly treated as an imbalance.
2637 */
fe2eea3f 2638 local_irq_save(flags);
e17224bf 2639 double_rq_lock(this_rq, busiest);
43010659 2640 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2641 imbalance, sd, idle, &all_pinned);
e17224bf 2642 double_rq_unlock(this_rq, busiest);
fe2eea3f 2643 local_irq_restore(flags);
81026794 2644
46cb4b7c
SS
2645 /*
2646 * some other cpu did the load balance for us.
2647 */
43010659 2648 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2649 resched_cpu(this_cpu);
2650
81026794 2651 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2652 if (unlikely(all_pinned)) {
2653 cpu_clear(cpu_of(busiest), cpus);
2654 if (!cpus_empty(cpus))
2655 goto redo;
81026794 2656 goto out_balanced;
0a2966b4 2657 }
1da177e4 2658 }
81026794 2659
43010659 2660 if (!ld_moved) {
1da177e4
LT
2661 schedstat_inc(sd, lb_failed[idle]);
2662 sd->nr_balance_failed++;
2663
2664 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2665
fe2eea3f 2666 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2667
2668 /* don't kick the migration_thread, if the curr
2669 * task on busiest cpu can't be moved to this_cpu
2670 */
2671 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2672 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2673 all_pinned = 1;
2674 goto out_one_pinned;
2675 }
2676
1da177e4
LT
2677 if (!busiest->active_balance) {
2678 busiest->active_balance = 1;
2679 busiest->push_cpu = this_cpu;
81026794 2680 active_balance = 1;
1da177e4 2681 }
fe2eea3f 2682 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2683 if (active_balance)
1da177e4
LT
2684 wake_up_process(busiest->migration_thread);
2685
2686 /*
2687 * We've kicked active balancing, reset the failure
2688 * counter.
2689 */
39507451 2690 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2691 }
81026794 2692 } else
1da177e4
LT
2693 sd->nr_balance_failed = 0;
2694
81026794 2695 if (likely(!active_balance)) {
1da177e4
LT
2696 /* We were unbalanced, so reset the balancing interval */
2697 sd->balance_interval = sd->min_interval;
81026794
NP
2698 } else {
2699 /*
2700 * If we've begun active balancing, start to back off. This
2701 * case may not be covered by the all_pinned logic if there
2702 * is only 1 task on the busy runqueue (because we don't call
2703 * move_tasks).
2704 */
2705 if (sd->balance_interval < sd->max_interval)
2706 sd->balance_interval *= 2;
1da177e4
LT
2707 }
2708
43010659 2709 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2710 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2711 return -1;
43010659 2712 return ld_moved;
1da177e4
LT
2713
2714out_balanced:
1da177e4
LT
2715 schedstat_inc(sd, lb_balanced[idle]);
2716
16cfb1c0 2717 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2718
2719out_one_pinned:
1da177e4 2720 /* tune up the balancing interval */
77391d71
NP
2721 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2722 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2723 sd->balance_interval *= 2;
2724
48f24c4d 2725 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2727 return -1;
1da177e4
LT
2728 return 0;
2729}
2730
2731/*
2732 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2733 * tasks if there is an imbalance.
2734 *
d15bcfdb 2735 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2736 * this_rq is locked.
2737 */
48f24c4d 2738static int
70b97a7f 2739load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2740{
2741 struct sched_group *group;
70b97a7f 2742 struct rq *busiest = NULL;
1da177e4 2743 unsigned long imbalance;
43010659 2744 int ld_moved = 0;
5969fe06 2745 int sd_idle = 0;
969bb4e4 2746 int all_pinned = 0;
0a2966b4 2747 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2748
89c4710e
SS
2749 /*
2750 * When power savings policy is enabled for the parent domain, idle
2751 * sibling can pick up load irrespective of busy siblings. In this case,
2752 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2753 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2754 */
2755 if (sd->flags & SD_SHARE_CPUPOWER &&
2756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2757 sd_idle = 1;
1da177e4 2758
2d72376b 2759 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2760redo:
d15bcfdb 2761 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2762 &sd_idle, &cpus, NULL);
1da177e4 2763 if (!group) {
d15bcfdb 2764 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2765 goto out_balanced;
1da177e4
LT
2766 }
2767
d15bcfdb 2768 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2769 &cpus);
db935dbd 2770 if (!busiest) {
d15bcfdb 2771 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2772 goto out_balanced;
1da177e4
LT
2773 }
2774
db935dbd
NP
2775 BUG_ON(busiest == this_rq);
2776
d15bcfdb 2777 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2778
43010659 2779 ld_moved = 0;
d6d5cfaf
NP
2780 if (busiest->nr_running > 1) {
2781 /* Attempt to move tasks */
2782 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2783 /* this_rq->clock is already updated */
2784 update_rq_clock(busiest);
43010659 2785 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2786 imbalance, sd, CPU_NEWLY_IDLE,
2787 &all_pinned);
d6d5cfaf 2788 spin_unlock(&busiest->lock);
0a2966b4 2789
969bb4e4 2790 if (unlikely(all_pinned)) {
0a2966b4
CL
2791 cpu_clear(cpu_of(busiest), cpus);
2792 if (!cpus_empty(cpus))
2793 goto redo;
2794 }
d6d5cfaf
NP
2795 }
2796
43010659 2797 if (!ld_moved) {
d15bcfdb 2798 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2799 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2800 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2801 return -1;
2802 } else
16cfb1c0 2803 sd->nr_balance_failed = 0;
1da177e4 2804
43010659 2805 return ld_moved;
16cfb1c0
NP
2806
2807out_balanced:
d15bcfdb 2808 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2809 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2810 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2811 return -1;
16cfb1c0 2812 sd->nr_balance_failed = 0;
48f24c4d 2813
16cfb1c0 2814 return 0;
1da177e4
LT
2815}
2816
2817/*
2818 * idle_balance is called by schedule() if this_cpu is about to become
2819 * idle. Attempts to pull tasks from other CPUs.
2820 */
70b97a7f 2821static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2822{
2823 struct sched_domain *sd;
dd41f596
IM
2824 int pulled_task = -1;
2825 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2826
2827 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2828 unsigned long interval;
2829
2830 if (!(sd->flags & SD_LOAD_BALANCE))
2831 continue;
2832
2833 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2834 /* If we've pulled tasks over stop searching: */
1bd77f2d 2835 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2836 this_rq, sd);
2837
2838 interval = msecs_to_jiffies(sd->balance_interval);
2839 if (time_after(next_balance, sd->last_balance + interval))
2840 next_balance = sd->last_balance + interval;
2841 if (pulled_task)
2842 break;
1da177e4 2843 }
dd41f596 2844 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2845 /*
2846 * We are going idle. next_balance may be set based on
2847 * a busy processor. So reset next_balance.
2848 */
2849 this_rq->next_balance = next_balance;
dd41f596 2850 }
1da177e4
LT
2851}
2852
2853/*
2854 * active_load_balance is run by migration threads. It pushes running tasks
2855 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2856 * running on each physical CPU where possible, and avoids physical /
2857 * logical imbalances.
2858 *
2859 * Called with busiest_rq locked.
2860 */
70b97a7f 2861static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2862{
39507451 2863 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2864 struct sched_domain *sd;
2865 struct rq *target_rq;
39507451 2866
48f24c4d 2867 /* Is there any task to move? */
39507451 2868 if (busiest_rq->nr_running <= 1)
39507451
NP
2869 return;
2870
2871 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2872
2873 /*
39507451
NP
2874 * This condition is "impossible", if it occurs
2875 * we need to fix it. Originally reported by
2876 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2877 */
39507451 2878 BUG_ON(busiest_rq == target_rq);
1da177e4 2879
39507451
NP
2880 /* move a task from busiest_rq to target_rq */
2881 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2882 update_rq_clock(busiest_rq);
2883 update_rq_clock(target_rq);
39507451
NP
2884
2885 /* Search for an sd spanning us and the target CPU. */
c96d145e 2886 for_each_domain(target_cpu, sd) {
39507451 2887 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2888 cpu_isset(busiest_cpu, sd->span))
39507451 2889 break;
c96d145e 2890 }
39507451 2891
48f24c4d 2892 if (likely(sd)) {
2d72376b 2893 schedstat_inc(sd, alb_count);
39507451 2894
43010659
PW
2895 if (move_one_task(target_rq, target_cpu, busiest_rq,
2896 sd, CPU_IDLE))
48f24c4d
IM
2897 schedstat_inc(sd, alb_pushed);
2898 else
2899 schedstat_inc(sd, alb_failed);
2900 }
39507451 2901 spin_unlock(&target_rq->lock);
1da177e4
LT
2902}
2903
46cb4b7c
SS
2904#ifdef CONFIG_NO_HZ
2905static struct {
2906 atomic_t load_balancer;
2907 cpumask_t cpu_mask;
2908} nohz ____cacheline_aligned = {
2909 .load_balancer = ATOMIC_INIT(-1),
2910 .cpu_mask = CPU_MASK_NONE,
2911};
2912
7835b98b 2913/*
46cb4b7c
SS
2914 * This routine will try to nominate the ilb (idle load balancing)
2915 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2916 * load balancing on behalf of all those cpus. If all the cpus in the system
2917 * go into this tickless mode, then there will be no ilb owner (as there is
2918 * no need for one) and all the cpus will sleep till the next wakeup event
2919 * arrives...
2920 *
2921 * For the ilb owner, tick is not stopped. And this tick will be used
2922 * for idle load balancing. ilb owner will still be part of
2923 * nohz.cpu_mask..
7835b98b 2924 *
46cb4b7c
SS
2925 * While stopping the tick, this cpu will become the ilb owner if there
2926 * is no other owner. And will be the owner till that cpu becomes busy
2927 * or if all cpus in the system stop their ticks at which point
2928 * there is no need for ilb owner.
2929 *
2930 * When the ilb owner becomes busy, it nominates another owner, during the
2931 * next busy scheduler_tick()
2932 */
2933int select_nohz_load_balancer(int stop_tick)
2934{
2935 int cpu = smp_processor_id();
2936
2937 if (stop_tick) {
2938 cpu_set(cpu, nohz.cpu_mask);
2939 cpu_rq(cpu)->in_nohz_recently = 1;
2940
2941 /*
2942 * If we are going offline and still the leader, give up!
2943 */
2944 if (cpu_is_offline(cpu) &&
2945 atomic_read(&nohz.load_balancer) == cpu) {
2946 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2947 BUG();
2948 return 0;
2949 }
2950
2951 /* time for ilb owner also to sleep */
2952 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2953 if (atomic_read(&nohz.load_balancer) == cpu)
2954 atomic_set(&nohz.load_balancer, -1);
2955 return 0;
2956 }
2957
2958 if (atomic_read(&nohz.load_balancer) == -1) {
2959 /* make me the ilb owner */
2960 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2961 return 1;
2962 } else if (atomic_read(&nohz.load_balancer) == cpu)
2963 return 1;
2964 } else {
2965 if (!cpu_isset(cpu, nohz.cpu_mask))
2966 return 0;
2967
2968 cpu_clear(cpu, nohz.cpu_mask);
2969
2970 if (atomic_read(&nohz.load_balancer) == cpu)
2971 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2972 BUG();
2973 }
2974 return 0;
2975}
2976#endif
2977
2978static DEFINE_SPINLOCK(balancing);
2979
2980/*
7835b98b
CL
2981 * It checks each scheduling domain to see if it is due to be balanced,
2982 * and initiates a balancing operation if so.
2983 *
2984 * Balancing parameters are set up in arch_init_sched_domains.
2985 */
a9957449 2986static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2987{
46cb4b7c
SS
2988 int balance = 1;
2989 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2990 unsigned long interval;
2991 struct sched_domain *sd;
46cb4b7c 2992 /* Earliest time when we have to do rebalance again */
c9819f45 2993 unsigned long next_balance = jiffies + 60*HZ;
f549da84 2994 int update_next_balance = 0;
1da177e4 2995
46cb4b7c 2996 for_each_domain(cpu, sd) {
1da177e4
LT
2997 if (!(sd->flags & SD_LOAD_BALANCE))
2998 continue;
2999
3000 interval = sd->balance_interval;
d15bcfdb 3001 if (idle != CPU_IDLE)
1da177e4
LT
3002 interval *= sd->busy_factor;
3003
3004 /* scale ms to jiffies */
3005 interval = msecs_to_jiffies(interval);
3006 if (unlikely(!interval))
3007 interval = 1;
dd41f596
IM
3008 if (interval > HZ*NR_CPUS/10)
3009 interval = HZ*NR_CPUS/10;
3010
1da177e4 3011
08c183f3
CL
3012 if (sd->flags & SD_SERIALIZE) {
3013 if (!spin_trylock(&balancing))
3014 goto out;
3015 }
3016
c9819f45 3017 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3018 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3019 /*
3020 * We've pulled tasks over so either we're no
5969fe06
NP
3021 * longer idle, or one of our SMT siblings is
3022 * not idle.
3023 */
d15bcfdb 3024 idle = CPU_NOT_IDLE;
1da177e4 3025 }
1bd77f2d 3026 sd->last_balance = jiffies;
1da177e4 3027 }
08c183f3
CL
3028 if (sd->flags & SD_SERIALIZE)
3029 spin_unlock(&balancing);
3030out:
f549da84 3031 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3032 next_balance = sd->last_balance + interval;
f549da84
SS
3033 update_next_balance = 1;
3034 }
783609c6
SS
3035
3036 /*
3037 * Stop the load balance at this level. There is another
3038 * CPU in our sched group which is doing load balancing more
3039 * actively.
3040 */
3041 if (!balance)
3042 break;
1da177e4 3043 }
f549da84
SS
3044
3045 /*
3046 * next_balance will be updated only when there is a need.
3047 * When the cpu is attached to null domain for ex, it will not be
3048 * updated.
3049 */
3050 if (likely(update_next_balance))
3051 rq->next_balance = next_balance;
46cb4b7c
SS
3052}
3053
3054/*
3055 * run_rebalance_domains is triggered when needed from the scheduler tick.
3056 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3057 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3058 */
3059static void run_rebalance_domains(struct softirq_action *h)
3060{
dd41f596
IM
3061 int this_cpu = smp_processor_id();
3062 struct rq *this_rq = cpu_rq(this_cpu);
3063 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3064 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3065
dd41f596 3066 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3067
3068#ifdef CONFIG_NO_HZ
3069 /*
3070 * If this cpu is the owner for idle load balancing, then do the
3071 * balancing on behalf of the other idle cpus whose ticks are
3072 * stopped.
3073 */
dd41f596
IM
3074 if (this_rq->idle_at_tick &&
3075 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3076 cpumask_t cpus = nohz.cpu_mask;
3077 struct rq *rq;
3078 int balance_cpu;
3079
dd41f596 3080 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3081 for_each_cpu_mask(balance_cpu, cpus) {
3082 /*
3083 * If this cpu gets work to do, stop the load balancing
3084 * work being done for other cpus. Next load
3085 * balancing owner will pick it up.
3086 */
3087 if (need_resched())
3088 break;
3089
de0cf899 3090 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3091
3092 rq = cpu_rq(balance_cpu);
dd41f596
IM
3093 if (time_after(this_rq->next_balance, rq->next_balance))
3094 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3095 }
3096 }
3097#endif
3098}
3099
3100/*
3101 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3102 *
3103 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3104 * idle load balancing owner or decide to stop the periodic load balancing,
3105 * if the whole system is idle.
3106 */
dd41f596 3107static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3108{
46cb4b7c
SS
3109#ifdef CONFIG_NO_HZ
3110 /*
3111 * If we were in the nohz mode recently and busy at the current
3112 * scheduler tick, then check if we need to nominate new idle
3113 * load balancer.
3114 */
3115 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3116 rq->in_nohz_recently = 0;
3117
3118 if (atomic_read(&nohz.load_balancer) == cpu) {
3119 cpu_clear(cpu, nohz.cpu_mask);
3120 atomic_set(&nohz.load_balancer, -1);
3121 }
3122
3123 if (atomic_read(&nohz.load_balancer) == -1) {
3124 /*
3125 * simple selection for now: Nominate the
3126 * first cpu in the nohz list to be the next
3127 * ilb owner.
3128 *
3129 * TBD: Traverse the sched domains and nominate
3130 * the nearest cpu in the nohz.cpu_mask.
3131 */
3132 int ilb = first_cpu(nohz.cpu_mask);
3133
3134 if (ilb != NR_CPUS)
3135 resched_cpu(ilb);
3136 }
3137 }
3138
3139 /*
3140 * If this cpu is idle and doing idle load balancing for all the
3141 * cpus with ticks stopped, is it time for that to stop?
3142 */
3143 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3144 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3145 resched_cpu(cpu);
3146 return;
3147 }
3148
3149 /*
3150 * If this cpu is idle and the idle load balancing is done by
3151 * someone else, then no need raise the SCHED_SOFTIRQ
3152 */
3153 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3154 cpu_isset(cpu, nohz.cpu_mask))
3155 return;
3156#endif
3157 if (time_after_eq(jiffies, rq->next_balance))
3158 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3159}
dd41f596
IM
3160
3161#else /* CONFIG_SMP */
3162
1da177e4
LT
3163/*
3164 * on UP we do not need to balance between CPUs:
3165 */
70b97a7f 3166static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3167{
3168}
dd41f596
IM
3169
3170/* Avoid "used but not defined" warning on UP */
3171static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3172 unsigned long max_nr_move, unsigned long max_load_move,
3173 struct sched_domain *sd, enum cpu_idle_type idle,
3174 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3175 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3176{
3177 *load_moved = 0;
3178
3179 return 0;
3180}
3181
1da177e4
LT
3182#endif
3183
1da177e4
LT
3184DEFINE_PER_CPU(struct kernel_stat, kstat);
3185
3186EXPORT_PER_CPU_SYMBOL(kstat);
3187
3188/*
41b86e9c
IM
3189 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3190 * that have not yet been banked in case the task is currently running.
1da177e4 3191 */
41b86e9c 3192unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3193{
1da177e4 3194 unsigned long flags;
41b86e9c
IM
3195 u64 ns, delta_exec;
3196 struct rq *rq;
48f24c4d 3197
41b86e9c
IM
3198 rq = task_rq_lock(p, &flags);
3199 ns = p->se.sum_exec_runtime;
3200 if (rq->curr == p) {
a8e504d2
IM
3201 update_rq_clock(rq);
3202 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3203 if ((s64)delta_exec > 0)
3204 ns += delta_exec;
3205 }
3206 task_rq_unlock(rq, &flags);
48f24c4d 3207
1da177e4
LT
3208 return ns;
3209}
3210
1da177e4
LT
3211/*
3212 * Account user cpu time to a process.
3213 * @p: the process that the cpu time gets accounted to
3214 * @hardirq_offset: the offset to subtract from hardirq_count()
3215 * @cputime: the cpu time spent in user space since the last update
3216 */
3217void account_user_time(struct task_struct *p, cputime_t cputime)
3218{
3219 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3220 cputime64_t tmp;
3221
3222 p->utime = cputime_add(p->utime, cputime);
3223
3224 /* Add user time to cpustat. */
3225 tmp = cputime_to_cputime64(cputime);
3226 if (TASK_NICE(p) > 0)
3227 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3228 else
3229 cpustat->user = cputime64_add(cpustat->user, tmp);
3230}
3231
3232/*
3233 * Account system cpu time to a process.
3234 * @p: the process that the cpu time gets accounted to
3235 * @hardirq_offset: the offset to subtract from hardirq_count()
3236 * @cputime: the cpu time spent in kernel space since the last update
3237 */
3238void account_system_time(struct task_struct *p, int hardirq_offset,
3239 cputime_t cputime)
3240{
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3242 struct rq *rq = this_rq();
1da177e4
LT
3243 cputime64_t tmp;
3244
3245 p->stime = cputime_add(p->stime, cputime);
3246
3247 /* Add system time to cpustat. */
3248 tmp = cputime_to_cputime64(cputime);
3249 if (hardirq_count() - hardirq_offset)
3250 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3251 else if (softirq_count())
3252 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3253 else if (p != rq->idle)
3254 cpustat->system = cputime64_add(cpustat->system, tmp);
3255 else if (atomic_read(&rq->nr_iowait) > 0)
3256 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3257 else
3258 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3259 /* Account for system time used */
3260 acct_update_integrals(p);
1da177e4
LT
3261}
3262
3263/*
3264 * Account for involuntary wait time.
3265 * @p: the process from which the cpu time has been stolen
3266 * @steal: the cpu time spent in involuntary wait
3267 */
3268void account_steal_time(struct task_struct *p, cputime_t steal)
3269{
3270 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3271 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3272 struct rq *rq = this_rq();
1da177e4
LT
3273
3274 if (p == rq->idle) {
3275 p->stime = cputime_add(p->stime, steal);
3276 if (atomic_read(&rq->nr_iowait) > 0)
3277 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3278 else
3279 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3280 } else
3281 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3282}
3283
7835b98b
CL
3284/*
3285 * This function gets called by the timer code, with HZ frequency.
3286 * We call it with interrupts disabled.
3287 *
3288 * It also gets called by the fork code, when changing the parent's
3289 * timeslices.
3290 */
3291void scheduler_tick(void)
3292{
7835b98b
CL
3293 int cpu = smp_processor_id();
3294 struct rq *rq = cpu_rq(cpu);
dd41f596 3295 struct task_struct *curr = rq->curr;
529c7726 3296 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3297
3298 spin_lock(&rq->lock);
546fe3c9 3299 __update_rq_clock(rq);
529c7726
IM
3300 /*
3301 * Let rq->clock advance by at least TICK_NSEC:
3302 */
3303 if (unlikely(rq->clock < next_tick))
3304 rq->clock = next_tick;
3305 rq->tick_timestamp = rq->clock;
f1a438d8 3306 update_cpu_load(rq);
dd41f596
IM
3307 if (curr != rq->idle) /* FIXME: needed? */
3308 curr->sched_class->task_tick(rq, curr);
dd41f596 3309 spin_unlock(&rq->lock);
7835b98b 3310
e418e1c2 3311#ifdef CONFIG_SMP
dd41f596
IM
3312 rq->idle_at_tick = idle_cpu(cpu);
3313 trigger_load_balance(rq, cpu);
e418e1c2 3314#endif
1da177e4
LT
3315}
3316
1da177e4
LT
3317#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3318
3319void fastcall add_preempt_count(int val)
3320{
3321 /*
3322 * Underflow?
3323 */
9a11b49a
IM
3324 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3325 return;
1da177e4
LT
3326 preempt_count() += val;
3327 /*
3328 * Spinlock count overflowing soon?
3329 */
33859f7f
MOS
3330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3331 PREEMPT_MASK - 10);
1da177e4
LT
3332}
3333EXPORT_SYMBOL(add_preempt_count);
3334
3335void fastcall sub_preempt_count(int val)
3336{
3337 /*
3338 * Underflow?
3339 */
9a11b49a
IM
3340 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3341 return;
1da177e4
LT
3342 /*
3343 * Is the spinlock portion underflowing?
3344 */
9a11b49a
IM
3345 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3346 !(preempt_count() & PREEMPT_MASK)))
3347 return;
3348
1da177e4
LT
3349 preempt_count() -= val;
3350}
3351EXPORT_SYMBOL(sub_preempt_count);
3352
3353#endif
3354
3355/*
dd41f596 3356 * Print scheduling while atomic bug:
1da177e4 3357 */
dd41f596 3358static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3359{
dd41f596
IM
3360 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3361 prev->comm, preempt_count(), prev->pid);
3362 debug_show_held_locks(prev);
3363 if (irqs_disabled())
3364 print_irqtrace_events(prev);
3365 dump_stack();
3366}
1da177e4 3367
dd41f596
IM
3368/*
3369 * Various schedule()-time debugging checks and statistics:
3370 */
3371static inline void schedule_debug(struct task_struct *prev)
3372{
1da177e4
LT
3373 /*
3374 * Test if we are atomic. Since do_exit() needs to call into
3375 * schedule() atomically, we ignore that path for now.
3376 * Otherwise, whine if we are scheduling when we should not be.
3377 */
dd41f596
IM
3378 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3379 __schedule_bug(prev);
3380
1da177e4
LT
3381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3382
2d72376b 3383 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3384#ifdef CONFIG_SCHEDSTATS
3385 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3386 schedstat_inc(this_rq(), bkl_count);
3387 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3388 }
3389#endif
dd41f596
IM
3390}
3391
3392/*
3393 * Pick up the highest-prio task:
3394 */
3395static inline struct task_struct *
ff95f3df 3396pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3397{
5522d5d5 3398 const struct sched_class *class;
dd41f596 3399 struct task_struct *p;
1da177e4
LT
3400
3401 /*
dd41f596
IM
3402 * Optimization: we know that if all tasks are in
3403 * the fair class we can call that function directly:
1da177e4 3404 */
dd41f596 3405 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3406 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3407 if (likely(p))
3408 return p;
1da177e4
LT
3409 }
3410
dd41f596
IM
3411 class = sched_class_highest;
3412 for ( ; ; ) {
fb8d4724 3413 p = class->pick_next_task(rq);
dd41f596
IM
3414 if (p)
3415 return p;
3416 /*
3417 * Will never be NULL as the idle class always
3418 * returns a non-NULL p:
3419 */
3420 class = class->next;
3421 }
3422}
1da177e4 3423
dd41f596
IM
3424/*
3425 * schedule() is the main scheduler function.
3426 */
3427asmlinkage void __sched schedule(void)
3428{
3429 struct task_struct *prev, *next;
3430 long *switch_count;
3431 struct rq *rq;
dd41f596
IM
3432 int cpu;
3433
3434need_resched:
3435 preempt_disable();
3436 cpu = smp_processor_id();
3437 rq = cpu_rq(cpu);
3438 rcu_qsctr_inc(cpu);
3439 prev = rq->curr;
3440 switch_count = &prev->nivcsw;
3441
3442 release_kernel_lock(prev);
3443need_resched_nonpreemptible:
3444
3445 schedule_debug(prev);
1da177e4 3446
1e819950
IM
3447 /*
3448 * Do the rq-clock update outside the rq lock:
3449 */
3450 local_irq_disable();
c1b3da3e 3451 __update_rq_clock(rq);
1e819950
IM
3452 spin_lock(&rq->lock);
3453 clear_tsk_need_resched(prev);
1da177e4 3454
1da177e4 3455 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3456 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3457 unlikely(signal_pending(prev)))) {
1da177e4 3458 prev->state = TASK_RUNNING;
dd41f596 3459 } else {
2e1cb74a 3460 deactivate_task(rq, prev, 1);
1da177e4 3461 }
dd41f596 3462 switch_count = &prev->nvcsw;
1da177e4
LT
3463 }
3464
dd41f596 3465 if (unlikely(!rq->nr_running))
1da177e4 3466 idle_balance(cpu, rq);
1da177e4 3467
31ee529c 3468 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3469 next = pick_next_task(rq, prev);
1da177e4
LT
3470
3471 sched_info_switch(prev, next);
dd41f596 3472
1da177e4 3473 if (likely(prev != next)) {
1da177e4
LT
3474 rq->nr_switches++;
3475 rq->curr = next;
3476 ++*switch_count;
3477
dd41f596 3478 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3479 } else
3480 spin_unlock_irq(&rq->lock);
3481
dd41f596
IM
3482 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3483 cpu = smp_processor_id();
3484 rq = cpu_rq(cpu);
1da177e4 3485 goto need_resched_nonpreemptible;
dd41f596 3486 }
1da177e4
LT
3487 preempt_enable_no_resched();
3488 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3489 goto need_resched;
3490}
1da177e4
LT
3491EXPORT_SYMBOL(schedule);
3492
3493#ifdef CONFIG_PREEMPT
3494/*
2ed6e34f 3495 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3496 * off of preempt_enable. Kernel preemptions off return from interrupt
3497 * occur there and call schedule directly.
3498 */
3499asmlinkage void __sched preempt_schedule(void)
3500{
3501 struct thread_info *ti = current_thread_info();
3502#ifdef CONFIG_PREEMPT_BKL
3503 struct task_struct *task = current;
3504 int saved_lock_depth;
3505#endif
3506 /*
3507 * If there is a non-zero preempt_count or interrupts are disabled,
3508 * we do not want to preempt the current task. Just return..
3509 */
beed33a8 3510 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3511 return;
3512
3513need_resched:
3514 add_preempt_count(PREEMPT_ACTIVE);
3515 /*
3516 * We keep the big kernel semaphore locked, but we
3517 * clear ->lock_depth so that schedule() doesnt
3518 * auto-release the semaphore:
3519 */
3520#ifdef CONFIG_PREEMPT_BKL
3521 saved_lock_depth = task->lock_depth;
3522 task->lock_depth = -1;
3523#endif
3524 schedule();
3525#ifdef CONFIG_PREEMPT_BKL
3526 task->lock_depth = saved_lock_depth;
3527#endif
3528 sub_preempt_count(PREEMPT_ACTIVE);
3529
3530 /* we could miss a preemption opportunity between schedule and now */
3531 barrier();
3532 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3533 goto need_resched;
3534}
1da177e4
LT
3535EXPORT_SYMBOL(preempt_schedule);
3536
3537/*
2ed6e34f 3538 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3539 * off of irq context.
3540 * Note, that this is called and return with irqs disabled. This will
3541 * protect us against recursive calling from irq.
3542 */
3543asmlinkage void __sched preempt_schedule_irq(void)
3544{
3545 struct thread_info *ti = current_thread_info();
3546#ifdef CONFIG_PREEMPT_BKL
3547 struct task_struct *task = current;
3548 int saved_lock_depth;
3549#endif
2ed6e34f 3550 /* Catch callers which need to be fixed */
1da177e4
LT
3551 BUG_ON(ti->preempt_count || !irqs_disabled());
3552
3553need_resched:
3554 add_preempt_count(PREEMPT_ACTIVE);
3555 /*
3556 * We keep the big kernel semaphore locked, but we
3557 * clear ->lock_depth so that schedule() doesnt
3558 * auto-release the semaphore:
3559 */
3560#ifdef CONFIG_PREEMPT_BKL
3561 saved_lock_depth = task->lock_depth;
3562 task->lock_depth = -1;
3563#endif
3564 local_irq_enable();
3565 schedule();
3566 local_irq_disable();
3567#ifdef CONFIG_PREEMPT_BKL
3568 task->lock_depth = saved_lock_depth;
3569#endif
3570 sub_preempt_count(PREEMPT_ACTIVE);
3571
3572 /* we could miss a preemption opportunity between schedule and now */
3573 barrier();
3574 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3575 goto need_resched;
3576}
3577
3578#endif /* CONFIG_PREEMPT */
3579
95cdf3b7
IM
3580int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3581 void *key)
1da177e4 3582{
48f24c4d 3583 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3584}
1da177e4
LT
3585EXPORT_SYMBOL(default_wake_function);
3586
3587/*
3588 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3589 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3590 * number) then we wake all the non-exclusive tasks and one exclusive task.
3591 *
3592 * There are circumstances in which we can try to wake a task which has already
3593 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3594 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3595 */
3596static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3597 int nr_exclusive, int sync, void *key)
3598{
2e45874c 3599 wait_queue_t *curr, *next;
1da177e4 3600
2e45874c 3601 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3602 unsigned flags = curr->flags;
3603
1da177e4 3604 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3605 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3606 break;
3607 }
3608}
3609
3610/**
3611 * __wake_up - wake up threads blocked on a waitqueue.
3612 * @q: the waitqueue
3613 * @mode: which threads
3614 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3615 * @key: is directly passed to the wakeup function
1da177e4
LT
3616 */
3617void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3618 int nr_exclusive, void *key)
1da177e4
LT
3619{
3620 unsigned long flags;
3621
3622 spin_lock_irqsave(&q->lock, flags);
3623 __wake_up_common(q, mode, nr_exclusive, 0, key);
3624 spin_unlock_irqrestore(&q->lock, flags);
3625}
1da177e4
LT
3626EXPORT_SYMBOL(__wake_up);
3627
3628/*
3629 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3630 */
3631void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3632{
3633 __wake_up_common(q, mode, 1, 0, NULL);
3634}
3635
3636/**
67be2dd1 3637 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3638 * @q: the waitqueue
3639 * @mode: which threads
3640 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3641 *
3642 * The sync wakeup differs that the waker knows that it will schedule
3643 * away soon, so while the target thread will be woken up, it will not
3644 * be migrated to another CPU - ie. the two threads are 'synchronized'
3645 * with each other. This can prevent needless bouncing between CPUs.
3646 *
3647 * On UP it can prevent extra preemption.
3648 */
95cdf3b7
IM
3649void fastcall
3650__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3651{
3652 unsigned long flags;
3653 int sync = 1;
3654
3655 if (unlikely(!q))
3656 return;
3657
3658 if (unlikely(!nr_exclusive))
3659 sync = 0;
3660
3661 spin_lock_irqsave(&q->lock, flags);
3662 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3663 spin_unlock_irqrestore(&q->lock, flags);
3664}
3665EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3666
3667void fastcall complete(struct completion *x)
3668{
3669 unsigned long flags;
3670
3671 spin_lock_irqsave(&x->wait.lock, flags);
3672 x->done++;
3673 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3674 1, 0, NULL);
3675 spin_unlock_irqrestore(&x->wait.lock, flags);
3676}
3677EXPORT_SYMBOL(complete);
3678
3679void fastcall complete_all(struct completion *x)
3680{
3681 unsigned long flags;
3682
3683 spin_lock_irqsave(&x->wait.lock, flags);
3684 x->done += UINT_MAX/2;
3685 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3686 0, 0, NULL);
3687 spin_unlock_irqrestore(&x->wait.lock, flags);
3688}
3689EXPORT_SYMBOL(complete_all);
3690
3691void fastcall __sched wait_for_completion(struct completion *x)
3692{
3693 might_sleep();
48f24c4d 3694
1da177e4
LT
3695 spin_lock_irq(&x->wait.lock);
3696 if (!x->done) {
3697 DECLARE_WAITQUEUE(wait, current);
3698
3699 wait.flags |= WQ_FLAG_EXCLUSIVE;
3700 __add_wait_queue_tail(&x->wait, &wait);
3701 do {
3702 __set_current_state(TASK_UNINTERRUPTIBLE);
3703 spin_unlock_irq(&x->wait.lock);
3704 schedule();
3705 spin_lock_irq(&x->wait.lock);
3706 } while (!x->done);
3707 __remove_wait_queue(&x->wait, &wait);
3708 }
3709 x->done--;
3710 spin_unlock_irq(&x->wait.lock);
3711}
3712EXPORT_SYMBOL(wait_for_completion);
3713
3714unsigned long fastcall __sched
3715wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3716{
3717 might_sleep();
3718
3719 spin_lock_irq(&x->wait.lock);
3720 if (!x->done) {
3721 DECLARE_WAITQUEUE(wait, current);
3722
3723 wait.flags |= WQ_FLAG_EXCLUSIVE;
3724 __add_wait_queue_tail(&x->wait, &wait);
3725 do {
3726 __set_current_state(TASK_UNINTERRUPTIBLE);
3727 spin_unlock_irq(&x->wait.lock);
3728 timeout = schedule_timeout(timeout);
3729 spin_lock_irq(&x->wait.lock);
3730 if (!timeout) {
3731 __remove_wait_queue(&x->wait, &wait);
3732 goto out;
3733 }
3734 } while (!x->done);
3735 __remove_wait_queue(&x->wait, &wait);
3736 }
3737 x->done--;
3738out:
3739 spin_unlock_irq(&x->wait.lock);
3740 return timeout;
3741}
3742EXPORT_SYMBOL(wait_for_completion_timeout);
3743
3744int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3745{
3746 int ret = 0;
3747
3748 might_sleep();
3749
3750 spin_lock_irq(&x->wait.lock);
3751 if (!x->done) {
3752 DECLARE_WAITQUEUE(wait, current);
3753
3754 wait.flags |= WQ_FLAG_EXCLUSIVE;
3755 __add_wait_queue_tail(&x->wait, &wait);
3756 do {
3757 if (signal_pending(current)) {
3758 ret = -ERESTARTSYS;
3759 __remove_wait_queue(&x->wait, &wait);
3760 goto out;
3761 }
3762 __set_current_state(TASK_INTERRUPTIBLE);
3763 spin_unlock_irq(&x->wait.lock);
3764 schedule();
3765 spin_lock_irq(&x->wait.lock);
3766 } while (!x->done);
3767 __remove_wait_queue(&x->wait, &wait);
3768 }
3769 x->done--;
3770out:
3771 spin_unlock_irq(&x->wait.lock);
3772
3773 return ret;
3774}
3775EXPORT_SYMBOL(wait_for_completion_interruptible);
3776
3777unsigned long fastcall __sched
3778wait_for_completion_interruptible_timeout(struct completion *x,
3779 unsigned long timeout)
3780{
3781 might_sleep();
3782
3783 spin_lock_irq(&x->wait.lock);
3784 if (!x->done) {
3785 DECLARE_WAITQUEUE(wait, current);
3786
3787 wait.flags |= WQ_FLAG_EXCLUSIVE;
3788 __add_wait_queue_tail(&x->wait, &wait);
3789 do {
3790 if (signal_pending(current)) {
3791 timeout = -ERESTARTSYS;
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3794 }
3795 __set_current_state(TASK_INTERRUPTIBLE);
3796 spin_unlock_irq(&x->wait.lock);
3797 timeout = schedule_timeout(timeout);
3798 spin_lock_irq(&x->wait.lock);
3799 if (!timeout) {
3800 __remove_wait_queue(&x->wait, &wait);
3801 goto out;
3802 }
3803 } while (!x->done);
3804 __remove_wait_queue(&x->wait, &wait);
3805 }
3806 x->done--;
3807out:
3808 spin_unlock_irq(&x->wait.lock);
3809 return timeout;
3810}
3811EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3812
0fec171c
IM
3813static inline void
3814sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3815{
3816 spin_lock_irqsave(&q->lock, *flags);
3817 __add_wait_queue(q, wait);
1da177e4 3818 spin_unlock(&q->lock);
0fec171c 3819}
1da177e4 3820
0fec171c
IM
3821static inline void
3822sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3823{
3824 spin_lock_irq(&q->lock);
3825 __remove_wait_queue(q, wait);
3826 spin_unlock_irqrestore(&q->lock, *flags);
3827}
1da177e4 3828
0fec171c 3829void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3830{
0fec171c
IM
3831 unsigned long flags;
3832 wait_queue_t wait;
3833
3834 init_waitqueue_entry(&wait, current);
1da177e4
LT
3835
3836 current->state = TASK_INTERRUPTIBLE;
3837
0fec171c 3838 sleep_on_head(q, &wait, &flags);
1da177e4 3839 schedule();
0fec171c 3840 sleep_on_tail(q, &wait, &flags);
1da177e4 3841}
1da177e4
LT
3842EXPORT_SYMBOL(interruptible_sleep_on);
3843
0fec171c 3844long __sched
95cdf3b7 3845interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3846{
0fec171c
IM
3847 unsigned long flags;
3848 wait_queue_t wait;
3849
3850 init_waitqueue_entry(&wait, current);
1da177e4
LT
3851
3852 current->state = TASK_INTERRUPTIBLE;
3853
0fec171c 3854 sleep_on_head(q, &wait, &flags);
1da177e4 3855 timeout = schedule_timeout(timeout);
0fec171c 3856 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3857
3858 return timeout;
3859}
1da177e4
LT
3860EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3861
0fec171c 3862void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3863{
0fec171c
IM
3864 unsigned long flags;
3865 wait_queue_t wait;
3866
3867 init_waitqueue_entry(&wait, current);
1da177e4
LT
3868
3869 current->state = TASK_UNINTERRUPTIBLE;
3870
0fec171c 3871 sleep_on_head(q, &wait, &flags);
1da177e4 3872 schedule();
0fec171c 3873 sleep_on_tail(q, &wait, &flags);
1da177e4 3874}
1da177e4
LT
3875EXPORT_SYMBOL(sleep_on);
3876
0fec171c 3877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3878{
0fec171c
IM
3879 unsigned long flags;
3880 wait_queue_t wait;
3881
3882 init_waitqueue_entry(&wait, current);
1da177e4
LT
3883
3884 current->state = TASK_UNINTERRUPTIBLE;
3885
0fec171c 3886 sleep_on_head(q, &wait, &flags);
1da177e4 3887 timeout = schedule_timeout(timeout);
0fec171c 3888 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3889
3890 return timeout;
3891}
1da177e4
LT
3892EXPORT_SYMBOL(sleep_on_timeout);
3893
b29739f9
IM
3894#ifdef CONFIG_RT_MUTEXES
3895
3896/*
3897 * rt_mutex_setprio - set the current priority of a task
3898 * @p: task
3899 * @prio: prio value (kernel-internal form)
3900 *
3901 * This function changes the 'effective' priority of a task. It does
3902 * not touch ->normal_prio like __setscheduler().
3903 *
3904 * Used by the rt_mutex code to implement priority inheritance logic.
3905 */
36c8b586 3906void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3907{
3908 unsigned long flags;
83b699ed 3909 int oldprio, on_rq, running;
70b97a7f 3910 struct rq *rq;
b29739f9
IM
3911
3912 BUG_ON(prio < 0 || prio > MAX_PRIO);
3913
3914 rq = task_rq_lock(p, &flags);
a8e504d2 3915 update_rq_clock(rq);
b29739f9 3916
d5f9f942 3917 oldprio = p->prio;
dd41f596 3918 on_rq = p->se.on_rq;
83b699ed
SV
3919 running = task_running(rq, p);
3920 if (on_rq) {
69be72c1 3921 dequeue_task(rq, p, 0);
83b699ed
SV
3922 if (running)
3923 p->sched_class->put_prev_task(rq, p);
3924 }
dd41f596
IM
3925
3926 if (rt_prio(prio))
3927 p->sched_class = &rt_sched_class;
3928 else
3929 p->sched_class = &fair_sched_class;
3930
b29739f9
IM
3931 p->prio = prio;
3932
dd41f596 3933 if (on_rq) {
83b699ed
SV
3934 if (running)
3935 p->sched_class->set_curr_task(rq);
8159f87e 3936 enqueue_task(rq, p, 0);
b29739f9
IM
3937 /*
3938 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3939 * our priority decreased, or if we are not currently running on
3940 * this runqueue and our priority is higher than the current's
b29739f9 3941 */
83b699ed 3942 if (running) {
d5f9f942
AM
3943 if (p->prio > oldprio)
3944 resched_task(rq->curr);
dd41f596
IM
3945 } else {
3946 check_preempt_curr(rq, p);
3947 }
b29739f9
IM
3948 }
3949 task_rq_unlock(rq, &flags);
3950}
3951
3952#endif
3953
36c8b586 3954void set_user_nice(struct task_struct *p, long nice)
1da177e4 3955{
dd41f596 3956 int old_prio, delta, on_rq;
1da177e4 3957 unsigned long flags;
70b97a7f 3958 struct rq *rq;
1da177e4
LT
3959
3960 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3961 return;
3962 /*
3963 * We have to be careful, if called from sys_setpriority(),
3964 * the task might be in the middle of scheduling on another CPU.
3965 */
3966 rq = task_rq_lock(p, &flags);
a8e504d2 3967 update_rq_clock(rq);
1da177e4
LT
3968 /*
3969 * The RT priorities are set via sched_setscheduler(), but we still
3970 * allow the 'normal' nice value to be set - but as expected
3971 * it wont have any effect on scheduling until the task is
dd41f596 3972 * SCHED_FIFO/SCHED_RR:
1da177e4 3973 */
e05606d3 3974 if (task_has_rt_policy(p)) {
1da177e4
LT
3975 p->static_prio = NICE_TO_PRIO(nice);
3976 goto out_unlock;
3977 }
dd41f596
IM
3978 on_rq = p->se.on_rq;
3979 if (on_rq) {
69be72c1 3980 dequeue_task(rq, p, 0);
79b5dddf 3981 dec_load(rq, p);
2dd73a4f 3982 }
1da177e4 3983
1da177e4 3984 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3985 set_load_weight(p);
b29739f9
IM
3986 old_prio = p->prio;
3987 p->prio = effective_prio(p);
3988 delta = p->prio - old_prio;
1da177e4 3989
dd41f596 3990 if (on_rq) {
8159f87e 3991 enqueue_task(rq, p, 0);
29b4b623 3992 inc_load(rq, p);
1da177e4 3993 /*
d5f9f942
AM
3994 * If the task increased its priority or is running and
3995 * lowered its priority, then reschedule its CPU:
1da177e4 3996 */
d5f9f942 3997 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3998 resched_task(rq->curr);
3999 }
4000out_unlock:
4001 task_rq_unlock(rq, &flags);
4002}
1da177e4
LT
4003EXPORT_SYMBOL(set_user_nice);
4004
e43379f1
MM
4005/*
4006 * can_nice - check if a task can reduce its nice value
4007 * @p: task
4008 * @nice: nice value
4009 */
36c8b586 4010int can_nice(const struct task_struct *p, const int nice)
e43379f1 4011{
024f4747
MM
4012 /* convert nice value [19,-20] to rlimit style value [1,40] */
4013 int nice_rlim = 20 - nice;
48f24c4d 4014
e43379f1
MM
4015 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4016 capable(CAP_SYS_NICE));
4017}
4018
1da177e4
LT
4019#ifdef __ARCH_WANT_SYS_NICE
4020
4021/*
4022 * sys_nice - change the priority of the current process.
4023 * @increment: priority increment
4024 *
4025 * sys_setpriority is a more generic, but much slower function that
4026 * does similar things.
4027 */
4028asmlinkage long sys_nice(int increment)
4029{
48f24c4d 4030 long nice, retval;
1da177e4
LT
4031
4032 /*
4033 * Setpriority might change our priority at the same moment.
4034 * We don't have to worry. Conceptually one call occurs first
4035 * and we have a single winner.
4036 */
e43379f1
MM
4037 if (increment < -40)
4038 increment = -40;
1da177e4
LT
4039 if (increment > 40)
4040 increment = 40;
4041
4042 nice = PRIO_TO_NICE(current->static_prio) + increment;
4043 if (nice < -20)
4044 nice = -20;
4045 if (nice > 19)
4046 nice = 19;
4047
e43379f1
MM
4048 if (increment < 0 && !can_nice(current, nice))
4049 return -EPERM;
4050
1da177e4
LT
4051 retval = security_task_setnice(current, nice);
4052 if (retval)
4053 return retval;
4054
4055 set_user_nice(current, nice);
4056 return 0;
4057}
4058
4059#endif
4060
4061/**
4062 * task_prio - return the priority value of a given task.
4063 * @p: the task in question.
4064 *
4065 * This is the priority value as seen by users in /proc.
4066 * RT tasks are offset by -200. Normal tasks are centered
4067 * around 0, value goes from -16 to +15.
4068 */
36c8b586 4069int task_prio(const struct task_struct *p)
1da177e4
LT
4070{
4071 return p->prio - MAX_RT_PRIO;
4072}
4073
4074/**
4075 * task_nice - return the nice value of a given task.
4076 * @p: the task in question.
4077 */
36c8b586 4078int task_nice(const struct task_struct *p)
1da177e4
LT
4079{
4080 return TASK_NICE(p);
4081}
1da177e4 4082EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4083
4084/**
4085 * idle_cpu - is a given cpu idle currently?
4086 * @cpu: the processor in question.
4087 */
4088int idle_cpu(int cpu)
4089{
4090 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4091}
4092
1da177e4
LT
4093/**
4094 * idle_task - return the idle task for a given cpu.
4095 * @cpu: the processor in question.
4096 */
36c8b586 4097struct task_struct *idle_task(int cpu)
1da177e4
LT
4098{
4099 return cpu_rq(cpu)->idle;
4100}
4101
4102/**
4103 * find_process_by_pid - find a process with a matching PID value.
4104 * @pid: the pid in question.
4105 */
a9957449 4106static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4107{
4108 return pid ? find_task_by_pid(pid) : current;
4109}
4110
4111/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4112static void
4113__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4114{
dd41f596 4115 BUG_ON(p->se.on_rq);
48f24c4d 4116
1da177e4 4117 p->policy = policy;
dd41f596
IM
4118 switch (p->policy) {
4119 case SCHED_NORMAL:
4120 case SCHED_BATCH:
4121 case SCHED_IDLE:
4122 p->sched_class = &fair_sched_class;
4123 break;
4124 case SCHED_FIFO:
4125 case SCHED_RR:
4126 p->sched_class = &rt_sched_class;
4127 break;
4128 }
4129
1da177e4 4130 p->rt_priority = prio;
b29739f9
IM
4131 p->normal_prio = normal_prio(p);
4132 /* we are holding p->pi_lock already */
4133 p->prio = rt_mutex_getprio(p);
2dd73a4f 4134 set_load_weight(p);
1da177e4
LT
4135}
4136
4137/**
72fd4a35 4138 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4139 * @p: the task in question.
4140 * @policy: new policy.
4141 * @param: structure containing the new RT priority.
5fe1d75f 4142 *
72fd4a35 4143 * NOTE that the task may be already dead.
1da177e4 4144 */
95cdf3b7
IM
4145int sched_setscheduler(struct task_struct *p, int policy,
4146 struct sched_param *param)
1da177e4 4147{
83b699ed 4148 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4149 unsigned long flags;
70b97a7f 4150 struct rq *rq;
1da177e4 4151
66e5393a
SR
4152 /* may grab non-irq protected spin_locks */
4153 BUG_ON(in_interrupt());
1da177e4
LT
4154recheck:
4155 /* double check policy once rq lock held */
4156 if (policy < 0)
4157 policy = oldpolicy = p->policy;
4158 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4159 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4160 policy != SCHED_IDLE)
b0a9499c 4161 return -EINVAL;
1da177e4
LT
4162 /*
4163 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4164 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4165 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4166 */
4167 if (param->sched_priority < 0 ||
95cdf3b7 4168 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4169 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4170 return -EINVAL;
e05606d3 4171 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4172 return -EINVAL;
4173
37e4ab3f
OC
4174 /*
4175 * Allow unprivileged RT tasks to decrease priority:
4176 */
4177 if (!capable(CAP_SYS_NICE)) {
e05606d3 4178 if (rt_policy(policy)) {
8dc3e909 4179 unsigned long rlim_rtprio;
8dc3e909
ON
4180
4181 if (!lock_task_sighand(p, &flags))
4182 return -ESRCH;
4183 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4184 unlock_task_sighand(p, &flags);
4185
4186 /* can't set/change the rt policy */
4187 if (policy != p->policy && !rlim_rtprio)
4188 return -EPERM;
4189
4190 /* can't increase priority */
4191 if (param->sched_priority > p->rt_priority &&
4192 param->sched_priority > rlim_rtprio)
4193 return -EPERM;
4194 }
dd41f596
IM
4195 /*
4196 * Like positive nice levels, dont allow tasks to
4197 * move out of SCHED_IDLE either:
4198 */
4199 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4200 return -EPERM;
5fe1d75f 4201
37e4ab3f
OC
4202 /* can't change other user's priorities */
4203 if ((current->euid != p->euid) &&
4204 (current->euid != p->uid))
4205 return -EPERM;
4206 }
1da177e4
LT
4207
4208 retval = security_task_setscheduler(p, policy, param);
4209 if (retval)
4210 return retval;
b29739f9
IM
4211 /*
4212 * make sure no PI-waiters arrive (or leave) while we are
4213 * changing the priority of the task:
4214 */
4215 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4216 /*
4217 * To be able to change p->policy safely, the apropriate
4218 * runqueue lock must be held.
4219 */
b29739f9 4220 rq = __task_rq_lock(p);
1da177e4
LT
4221 /* recheck policy now with rq lock held */
4222 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4223 policy = oldpolicy = -1;
b29739f9
IM
4224 __task_rq_unlock(rq);
4225 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4226 goto recheck;
4227 }
2daa3577 4228 update_rq_clock(rq);
dd41f596 4229 on_rq = p->se.on_rq;
83b699ed
SV
4230 running = task_running(rq, p);
4231 if (on_rq) {
2e1cb74a 4232 deactivate_task(rq, p, 0);
83b699ed
SV
4233 if (running)
4234 p->sched_class->put_prev_task(rq, p);
4235 }
f6b53205 4236
1da177e4 4237 oldprio = p->prio;
dd41f596 4238 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4239
dd41f596 4240 if (on_rq) {
83b699ed
SV
4241 if (running)
4242 p->sched_class->set_curr_task(rq);
dd41f596 4243 activate_task(rq, p, 0);
1da177e4
LT
4244 /*
4245 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4246 * our priority decreased, or if we are not currently running on
4247 * this runqueue and our priority is higher than the current's
1da177e4 4248 */
83b699ed 4249 if (running) {
d5f9f942
AM
4250 if (p->prio > oldprio)
4251 resched_task(rq->curr);
dd41f596
IM
4252 } else {
4253 check_preempt_curr(rq, p);
4254 }
1da177e4 4255 }
b29739f9
IM
4256 __task_rq_unlock(rq);
4257 spin_unlock_irqrestore(&p->pi_lock, flags);
4258
95e02ca9
TG
4259 rt_mutex_adjust_pi(p);
4260
1da177e4
LT
4261 return 0;
4262}
4263EXPORT_SYMBOL_GPL(sched_setscheduler);
4264
95cdf3b7
IM
4265static int
4266do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4267{
1da177e4
LT
4268 struct sched_param lparam;
4269 struct task_struct *p;
36c8b586 4270 int retval;
1da177e4
LT
4271
4272 if (!param || pid < 0)
4273 return -EINVAL;
4274 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4275 return -EFAULT;
5fe1d75f
ON
4276
4277 rcu_read_lock();
4278 retval = -ESRCH;
1da177e4 4279 p = find_process_by_pid(pid);
5fe1d75f
ON
4280 if (p != NULL)
4281 retval = sched_setscheduler(p, policy, &lparam);
4282 rcu_read_unlock();
36c8b586 4283
1da177e4
LT
4284 return retval;
4285}
4286
4287/**
4288 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4289 * @pid: the pid in question.
4290 * @policy: new policy.
4291 * @param: structure containing the new RT priority.
4292 */
4293asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4294 struct sched_param __user *param)
4295{
c21761f1
JB
4296 /* negative values for policy are not valid */
4297 if (policy < 0)
4298 return -EINVAL;
4299
1da177e4
LT
4300 return do_sched_setscheduler(pid, policy, param);
4301}
4302
4303/**
4304 * sys_sched_setparam - set/change the RT priority of a thread
4305 * @pid: the pid in question.
4306 * @param: structure containing the new RT priority.
4307 */
4308asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4309{
4310 return do_sched_setscheduler(pid, -1, param);
4311}
4312
4313/**
4314 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4315 * @pid: the pid in question.
4316 */
4317asmlinkage long sys_sched_getscheduler(pid_t pid)
4318{
36c8b586 4319 struct task_struct *p;
1da177e4 4320 int retval = -EINVAL;
1da177e4
LT
4321
4322 if (pid < 0)
4323 goto out_nounlock;
4324
4325 retval = -ESRCH;
4326 read_lock(&tasklist_lock);
4327 p = find_process_by_pid(pid);
4328 if (p) {
4329 retval = security_task_getscheduler(p);
4330 if (!retval)
4331 retval = p->policy;
4332 }
4333 read_unlock(&tasklist_lock);
4334
4335out_nounlock:
4336 return retval;
4337}
4338
4339/**
4340 * sys_sched_getscheduler - get the RT priority of a thread
4341 * @pid: the pid in question.
4342 * @param: structure containing the RT priority.
4343 */
4344asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4345{
4346 struct sched_param lp;
36c8b586 4347 struct task_struct *p;
1da177e4 4348 int retval = -EINVAL;
1da177e4
LT
4349
4350 if (!param || pid < 0)
4351 goto out_nounlock;
4352
4353 read_lock(&tasklist_lock);
4354 p = find_process_by_pid(pid);
4355 retval = -ESRCH;
4356 if (!p)
4357 goto out_unlock;
4358
4359 retval = security_task_getscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4362
4363 lp.sched_priority = p->rt_priority;
4364 read_unlock(&tasklist_lock);
4365
4366 /*
4367 * This one might sleep, we cannot do it with a spinlock held ...
4368 */
4369 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4370
4371out_nounlock:
4372 return retval;
4373
4374out_unlock:
4375 read_unlock(&tasklist_lock);
4376 return retval;
4377}
4378
4379long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4380{
1da177e4 4381 cpumask_t cpus_allowed;
36c8b586
IM
4382 struct task_struct *p;
4383 int retval;
1da177e4 4384
5be9361c 4385 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4386 read_lock(&tasklist_lock);
4387
4388 p = find_process_by_pid(pid);
4389 if (!p) {
4390 read_unlock(&tasklist_lock);
5be9361c 4391 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4392 return -ESRCH;
4393 }
4394
4395 /*
4396 * It is not safe to call set_cpus_allowed with the
4397 * tasklist_lock held. We will bump the task_struct's
4398 * usage count and then drop tasklist_lock.
4399 */
4400 get_task_struct(p);
4401 read_unlock(&tasklist_lock);
4402
4403 retval = -EPERM;
4404 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4405 !capable(CAP_SYS_NICE))
4406 goto out_unlock;
4407
e7834f8f
DQ
4408 retval = security_task_setscheduler(p, 0, NULL);
4409 if (retval)
4410 goto out_unlock;
4411
1da177e4
LT
4412 cpus_allowed = cpuset_cpus_allowed(p);
4413 cpus_and(new_mask, new_mask, cpus_allowed);
4414 retval = set_cpus_allowed(p, new_mask);
4415
4416out_unlock:
4417 put_task_struct(p);
5be9361c 4418 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4419 return retval;
4420}
4421
4422static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4423 cpumask_t *new_mask)
4424{
4425 if (len < sizeof(cpumask_t)) {
4426 memset(new_mask, 0, sizeof(cpumask_t));
4427 } else if (len > sizeof(cpumask_t)) {
4428 len = sizeof(cpumask_t);
4429 }
4430 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4431}
4432
4433/**
4434 * sys_sched_setaffinity - set the cpu affinity of a process
4435 * @pid: pid of the process
4436 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4437 * @user_mask_ptr: user-space pointer to the new cpu mask
4438 */
4439asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4440 unsigned long __user *user_mask_ptr)
4441{
4442 cpumask_t new_mask;
4443 int retval;
4444
4445 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4446 if (retval)
4447 return retval;
4448
4449 return sched_setaffinity(pid, new_mask);
4450}
4451
4452/*
4453 * Represents all cpu's present in the system
4454 * In systems capable of hotplug, this map could dynamically grow
4455 * as new cpu's are detected in the system via any platform specific
4456 * method, such as ACPI for e.g.
4457 */
4458
4cef0c61 4459cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4460EXPORT_SYMBOL(cpu_present_map);
4461
4462#ifndef CONFIG_SMP
4cef0c61 4463cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4464EXPORT_SYMBOL(cpu_online_map);
4465
4cef0c61 4466cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4467EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4468#endif
4469
4470long sched_getaffinity(pid_t pid, cpumask_t *mask)
4471{
36c8b586 4472 struct task_struct *p;
1da177e4 4473 int retval;
1da177e4 4474
5be9361c 4475 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4476 read_lock(&tasklist_lock);
4477
4478 retval = -ESRCH;
4479 p = find_process_by_pid(pid);
4480 if (!p)
4481 goto out_unlock;
4482
e7834f8f
DQ
4483 retval = security_task_getscheduler(p);
4484 if (retval)
4485 goto out_unlock;
4486
2f7016d9 4487 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4488
4489out_unlock:
4490 read_unlock(&tasklist_lock);
5be9361c 4491 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4492
9531b62f 4493 return retval;
1da177e4
LT
4494}
4495
4496/**
4497 * sys_sched_getaffinity - get the cpu affinity of a process
4498 * @pid: pid of the process
4499 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4500 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4501 */
4502asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4503 unsigned long __user *user_mask_ptr)
4504{
4505 int ret;
4506 cpumask_t mask;
4507
4508 if (len < sizeof(cpumask_t))
4509 return -EINVAL;
4510
4511 ret = sched_getaffinity(pid, &mask);
4512 if (ret < 0)
4513 return ret;
4514
4515 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4516 return -EFAULT;
4517
4518 return sizeof(cpumask_t);
4519}
4520
4521/**
4522 * sys_sched_yield - yield the current processor to other threads.
4523 *
dd41f596
IM
4524 * This function yields the current CPU to other tasks. If there are no
4525 * other threads running on this CPU then this function will return.
1da177e4
LT
4526 */
4527asmlinkage long sys_sched_yield(void)
4528{
70b97a7f 4529 struct rq *rq = this_rq_lock();
1da177e4 4530
2d72376b 4531 schedstat_inc(rq, yld_count);
4530d7ab 4532 current->sched_class->yield_task(rq);
1da177e4
LT
4533
4534 /*
4535 * Since we are going to call schedule() anyway, there's
4536 * no need to preempt or enable interrupts:
4537 */
4538 __release(rq->lock);
8a25d5de 4539 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4540 _raw_spin_unlock(&rq->lock);
4541 preempt_enable_no_resched();
4542
4543 schedule();
4544
4545 return 0;
4546}
4547
e7b38404 4548static void __cond_resched(void)
1da177e4 4549{
8e0a43d8
IM
4550#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4551 __might_sleep(__FILE__, __LINE__);
4552#endif
5bbcfd90
IM
4553 /*
4554 * The BKS might be reacquired before we have dropped
4555 * PREEMPT_ACTIVE, which could trigger a second
4556 * cond_resched() call.
4557 */
1da177e4
LT
4558 do {
4559 add_preempt_count(PREEMPT_ACTIVE);
4560 schedule();
4561 sub_preempt_count(PREEMPT_ACTIVE);
4562 } while (need_resched());
4563}
4564
4565int __sched cond_resched(void)
4566{
9414232f
IM
4567 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4568 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4569 __cond_resched();
4570 return 1;
4571 }
4572 return 0;
4573}
1da177e4
LT
4574EXPORT_SYMBOL(cond_resched);
4575
4576/*
4577 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4578 * call schedule, and on return reacquire the lock.
4579 *
4580 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4581 * operations here to prevent schedule() from being called twice (once via
4582 * spin_unlock(), once by hand).
4583 */
95cdf3b7 4584int cond_resched_lock(spinlock_t *lock)
1da177e4 4585{
6df3cecb
JK
4586 int ret = 0;
4587
1da177e4
LT
4588 if (need_lockbreak(lock)) {
4589 spin_unlock(lock);
4590 cpu_relax();
6df3cecb 4591 ret = 1;
1da177e4
LT
4592 spin_lock(lock);
4593 }
9414232f 4594 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4595 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4596 _raw_spin_unlock(lock);
4597 preempt_enable_no_resched();
4598 __cond_resched();
6df3cecb 4599 ret = 1;
1da177e4 4600 spin_lock(lock);
1da177e4 4601 }
6df3cecb 4602 return ret;
1da177e4 4603}
1da177e4
LT
4604EXPORT_SYMBOL(cond_resched_lock);
4605
4606int __sched cond_resched_softirq(void)
4607{
4608 BUG_ON(!in_softirq());
4609
9414232f 4610 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4611 local_bh_enable();
1da177e4
LT
4612 __cond_resched();
4613 local_bh_disable();
4614 return 1;
4615 }
4616 return 0;
4617}
1da177e4
LT
4618EXPORT_SYMBOL(cond_resched_softirq);
4619
1da177e4
LT
4620/**
4621 * yield - yield the current processor to other threads.
4622 *
72fd4a35 4623 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4624 * thread runnable and calls sys_sched_yield().
4625 */
4626void __sched yield(void)
4627{
4628 set_current_state(TASK_RUNNING);
4629 sys_sched_yield();
4630}
1da177e4
LT
4631EXPORT_SYMBOL(yield);
4632
4633/*
4634 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4635 * that process accounting knows that this is a task in IO wait state.
4636 *
4637 * But don't do that if it is a deliberate, throttling IO wait (this task
4638 * has set its backing_dev_info: the queue against which it should throttle)
4639 */
4640void __sched io_schedule(void)
4641{
70b97a7f 4642 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4643
0ff92245 4644 delayacct_blkio_start();
1da177e4
LT
4645 atomic_inc(&rq->nr_iowait);
4646 schedule();
4647 atomic_dec(&rq->nr_iowait);
0ff92245 4648 delayacct_blkio_end();
1da177e4 4649}
1da177e4
LT
4650EXPORT_SYMBOL(io_schedule);
4651
4652long __sched io_schedule_timeout(long timeout)
4653{
70b97a7f 4654 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4655 long ret;
4656
0ff92245 4657 delayacct_blkio_start();
1da177e4
LT
4658 atomic_inc(&rq->nr_iowait);
4659 ret = schedule_timeout(timeout);
4660 atomic_dec(&rq->nr_iowait);
0ff92245 4661 delayacct_blkio_end();
1da177e4
LT
4662 return ret;
4663}
4664
4665/**
4666 * sys_sched_get_priority_max - return maximum RT priority.
4667 * @policy: scheduling class.
4668 *
4669 * this syscall returns the maximum rt_priority that can be used
4670 * by a given scheduling class.
4671 */
4672asmlinkage long sys_sched_get_priority_max(int policy)
4673{
4674 int ret = -EINVAL;
4675
4676 switch (policy) {
4677 case SCHED_FIFO:
4678 case SCHED_RR:
4679 ret = MAX_USER_RT_PRIO-1;
4680 break;
4681 case SCHED_NORMAL:
b0a9499c 4682 case SCHED_BATCH:
dd41f596 4683 case SCHED_IDLE:
1da177e4
LT
4684 ret = 0;
4685 break;
4686 }
4687 return ret;
4688}
4689
4690/**
4691 * sys_sched_get_priority_min - return minimum RT priority.
4692 * @policy: scheduling class.
4693 *
4694 * this syscall returns the minimum rt_priority that can be used
4695 * by a given scheduling class.
4696 */
4697asmlinkage long sys_sched_get_priority_min(int policy)
4698{
4699 int ret = -EINVAL;
4700
4701 switch (policy) {
4702 case SCHED_FIFO:
4703 case SCHED_RR:
4704 ret = 1;
4705 break;
4706 case SCHED_NORMAL:
b0a9499c 4707 case SCHED_BATCH:
dd41f596 4708 case SCHED_IDLE:
1da177e4
LT
4709 ret = 0;
4710 }
4711 return ret;
4712}
4713
4714/**
4715 * sys_sched_rr_get_interval - return the default timeslice of a process.
4716 * @pid: pid of the process.
4717 * @interval: userspace pointer to the timeslice value.
4718 *
4719 * this syscall writes the default timeslice value of a given process
4720 * into the user-space timespec buffer. A value of '0' means infinity.
4721 */
4722asmlinkage
4723long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4724{
36c8b586 4725 struct task_struct *p;
a4ec24b4 4726 unsigned int time_slice;
1da177e4
LT
4727 int retval = -EINVAL;
4728 struct timespec t;
1da177e4
LT
4729
4730 if (pid < 0)
4731 goto out_nounlock;
4732
4733 retval = -ESRCH;
4734 read_lock(&tasklist_lock);
4735 p = find_process_by_pid(pid);
4736 if (!p)
4737 goto out_unlock;
4738
4739 retval = security_task_getscheduler(p);
4740 if (retval)
4741 goto out_unlock;
4742
a4ec24b4
DA
4743 if (p->policy == SCHED_FIFO)
4744 time_slice = 0;
4745 else if (p->policy == SCHED_RR)
4746 time_slice = DEF_TIMESLICE;
4747 else {
4748 struct sched_entity *se = &p->se;
4749 unsigned long flags;
4750 struct rq *rq;
4751
4752 rq = task_rq_lock(p, &flags);
4753 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4754 task_rq_unlock(rq, &flags);
4755 }
1da177e4 4756 read_unlock(&tasklist_lock);
a4ec24b4 4757 jiffies_to_timespec(time_slice, &t);
1da177e4
LT
4758 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4759out_nounlock:
4760 return retval;
4761out_unlock:
4762 read_unlock(&tasklist_lock);
4763 return retval;
4764}
4765
2ed6e34f 4766static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4767
4768static void show_task(struct task_struct *p)
1da177e4 4769{
1da177e4 4770 unsigned long free = 0;
36c8b586 4771 unsigned state;
1da177e4 4772
1da177e4 4773 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4774 printk("%-13.13s %c", p->comm,
4775 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4776#if BITS_PER_LONG == 32
1da177e4 4777 if (state == TASK_RUNNING)
4bd77321 4778 printk(" running ");
1da177e4 4779 else
4bd77321 4780 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4781#else
4782 if (state == TASK_RUNNING)
4bd77321 4783 printk(" running task ");
1da177e4
LT
4784 else
4785 printk(" %016lx ", thread_saved_pc(p));
4786#endif
4787#ifdef CONFIG_DEBUG_STACK_USAGE
4788 {
10ebffde 4789 unsigned long *n = end_of_stack(p);
1da177e4
LT
4790 while (!*n)
4791 n++;
10ebffde 4792 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4793 }
4794#endif
4bd77321 4795 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4796
4797 if (state != TASK_RUNNING)
4798 show_stack(p, NULL);
4799}
4800
e59e2ae2 4801void show_state_filter(unsigned long state_filter)
1da177e4 4802{
36c8b586 4803 struct task_struct *g, *p;
1da177e4 4804
4bd77321
IM
4805#if BITS_PER_LONG == 32
4806 printk(KERN_INFO
4807 " task PC stack pid father\n");
1da177e4 4808#else
4bd77321
IM
4809 printk(KERN_INFO
4810 " task PC stack pid father\n");
1da177e4
LT
4811#endif
4812 read_lock(&tasklist_lock);
4813 do_each_thread(g, p) {
4814 /*
4815 * reset the NMI-timeout, listing all files on a slow
4816 * console might take alot of time:
4817 */
4818 touch_nmi_watchdog();
39bc89fd 4819 if (!state_filter || (p->state & state_filter))
e59e2ae2 4820 show_task(p);
1da177e4
LT
4821 } while_each_thread(g, p);
4822
04c9167f
JF
4823 touch_all_softlockup_watchdogs();
4824
dd41f596
IM
4825#ifdef CONFIG_SCHED_DEBUG
4826 sysrq_sched_debug_show();
4827#endif
1da177e4 4828 read_unlock(&tasklist_lock);
e59e2ae2
IM
4829 /*
4830 * Only show locks if all tasks are dumped:
4831 */
4832 if (state_filter == -1)
4833 debug_show_all_locks();
1da177e4
LT
4834}
4835
1df21055
IM
4836void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4837{
dd41f596 4838 idle->sched_class = &idle_sched_class;
1df21055
IM
4839}
4840
f340c0d1
IM
4841/**
4842 * init_idle - set up an idle thread for a given CPU
4843 * @idle: task in question
4844 * @cpu: cpu the idle task belongs to
4845 *
4846 * NOTE: this function does not set the idle thread's NEED_RESCHED
4847 * flag, to make booting more robust.
4848 */
5c1e1767 4849void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4850{
70b97a7f 4851 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4852 unsigned long flags;
4853
dd41f596
IM
4854 __sched_fork(idle);
4855 idle->se.exec_start = sched_clock();
4856
b29739f9 4857 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4858 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4859 __set_task_cpu(idle, cpu);
1da177e4
LT
4860
4861 spin_lock_irqsave(&rq->lock, flags);
4862 rq->curr = rq->idle = idle;
4866cde0
NP
4863#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4864 idle->oncpu = 1;
4865#endif
1da177e4
LT
4866 spin_unlock_irqrestore(&rq->lock, flags);
4867
4868 /* Set the preempt count _outside_ the spinlocks! */
4869#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4870 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4871#else
a1261f54 4872 task_thread_info(idle)->preempt_count = 0;
1da177e4 4873#endif
dd41f596
IM
4874 /*
4875 * The idle tasks have their own, simple scheduling class:
4876 */
4877 idle->sched_class = &idle_sched_class;
1da177e4
LT
4878}
4879
4880/*
4881 * In a system that switches off the HZ timer nohz_cpu_mask
4882 * indicates which cpus entered this state. This is used
4883 * in the rcu update to wait only for active cpus. For system
4884 * which do not switch off the HZ timer nohz_cpu_mask should
4885 * always be CPU_MASK_NONE.
4886 */
4887cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4888
4889#ifdef CONFIG_SMP
4890/*
4891 * This is how migration works:
4892 *
70b97a7f 4893 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4894 * runqueue and wake up that CPU's migration thread.
4895 * 2) we down() the locked semaphore => thread blocks.
4896 * 3) migration thread wakes up (implicitly it forces the migrated
4897 * thread off the CPU)
4898 * 4) it gets the migration request and checks whether the migrated
4899 * task is still in the wrong runqueue.
4900 * 5) if it's in the wrong runqueue then the migration thread removes
4901 * it and puts it into the right queue.
4902 * 6) migration thread up()s the semaphore.
4903 * 7) we wake up and the migration is done.
4904 */
4905
4906/*
4907 * Change a given task's CPU affinity. Migrate the thread to a
4908 * proper CPU and schedule it away if the CPU it's executing on
4909 * is removed from the allowed bitmask.
4910 *
4911 * NOTE: the caller must have a valid reference to the task, the
4912 * task must not exit() & deallocate itself prematurely. The
4913 * call is not atomic; no spinlocks may be held.
4914 */
36c8b586 4915int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4916{
70b97a7f 4917 struct migration_req req;
1da177e4 4918 unsigned long flags;
70b97a7f 4919 struct rq *rq;
48f24c4d 4920 int ret = 0;
1da177e4
LT
4921
4922 rq = task_rq_lock(p, &flags);
4923 if (!cpus_intersects(new_mask, cpu_online_map)) {
4924 ret = -EINVAL;
4925 goto out;
4926 }
4927
4928 p->cpus_allowed = new_mask;
4929 /* Can the task run on the task's current CPU? If so, we're done */
4930 if (cpu_isset(task_cpu(p), new_mask))
4931 goto out;
4932
4933 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4934 /* Need help from migration thread: drop lock and wait. */
4935 task_rq_unlock(rq, &flags);
4936 wake_up_process(rq->migration_thread);
4937 wait_for_completion(&req.done);
4938 tlb_migrate_finish(p->mm);
4939 return 0;
4940 }
4941out:
4942 task_rq_unlock(rq, &flags);
48f24c4d 4943
1da177e4
LT
4944 return ret;
4945}
1da177e4
LT
4946EXPORT_SYMBOL_GPL(set_cpus_allowed);
4947
4948/*
4949 * Move (not current) task off this cpu, onto dest cpu. We're doing
4950 * this because either it can't run here any more (set_cpus_allowed()
4951 * away from this CPU, or CPU going down), or because we're
4952 * attempting to rebalance this task on exec (sched_exec).
4953 *
4954 * So we race with normal scheduler movements, but that's OK, as long
4955 * as the task is no longer on this CPU.
efc30814
KK
4956 *
4957 * Returns non-zero if task was successfully migrated.
1da177e4 4958 */
efc30814 4959static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4960{
70b97a7f 4961 struct rq *rq_dest, *rq_src;
dd41f596 4962 int ret = 0, on_rq;
1da177e4
LT
4963
4964 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4965 return ret;
1da177e4
LT
4966
4967 rq_src = cpu_rq(src_cpu);
4968 rq_dest = cpu_rq(dest_cpu);
4969
4970 double_rq_lock(rq_src, rq_dest);
4971 /* Already moved. */
4972 if (task_cpu(p) != src_cpu)
4973 goto out;
4974 /* Affinity changed (again). */
4975 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4976 goto out;
4977
dd41f596 4978 on_rq = p->se.on_rq;
6e82a3be 4979 if (on_rq)
2e1cb74a 4980 deactivate_task(rq_src, p, 0);
6e82a3be 4981
1da177e4 4982 set_task_cpu(p, dest_cpu);
dd41f596
IM
4983 if (on_rq) {
4984 activate_task(rq_dest, p, 0);
4985 check_preempt_curr(rq_dest, p);
1da177e4 4986 }
efc30814 4987 ret = 1;
1da177e4
LT
4988out:
4989 double_rq_unlock(rq_src, rq_dest);
efc30814 4990 return ret;
1da177e4
LT
4991}
4992
4993/*
4994 * migration_thread - this is a highprio system thread that performs
4995 * thread migration by bumping thread off CPU then 'pushing' onto
4996 * another runqueue.
4997 */
95cdf3b7 4998static int migration_thread(void *data)
1da177e4 4999{
1da177e4 5000 int cpu = (long)data;
70b97a7f 5001 struct rq *rq;
1da177e4
LT
5002
5003 rq = cpu_rq(cpu);
5004 BUG_ON(rq->migration_thread != current);
5005
5006 set_current_state(TASK_INTERRUPTIBLE);
5007 while (!kthread_should_stop()) {
70b97a7f 5008 struct migration_req *req;
1da177e4 5009 struct list_head *head;
1da177e4 5010
1da177e4
LT
5011 spin_lock_irq(&rq->lock);
5012
5013 if (cpu_is_offline(cpu)) {
5014 spin_unlock_irq(&rq->lock);
5015 goto wait_to_die;
5016 }
5017
5018 if (rq->active_balance) {
5019 active_load_balance(rq, cpu);
5020 rq->active_balance = 0;
5021 }
5022
5023 head = &rq->migration_queue;
5024
5025 if (list_empty(head)) {
5026 spin_unlock_irq(&rq->lock);
5027 schedule();
5028 set_current_state(TASK_INTERRUPTIBLE);
5029 continue;
5030 }
70b97a7f 5031 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5032 list_del_init(head->next);
5033
674311d5
NP
5034 spin_unlock(&rq->lock);
5035 __migrate_task(req->task, cpu, req->dest_cpu);
5036 local_irq_enable();
1da177e4
LT
5037
5038 complete(&req->done);
5039 }
5040 __set_current_state(TASK_RUNNING);
5041 return 0;
5042
5043wait_to_die:
5044 /* Wait for kthread_stop */
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 while (!kthread_should_stop()) {
5047 schedule();
5048 set_current_state(TASK_INTERRUPTIBLE);
5049 }
5050 __set_current_state(TASK_RUNNING);
5051 return 0;
5052}
5053
5054#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5055/*
5056 * Figure out where task on dead CPU should go, use force if neccessary.
5057 * NOTE: interrupts should be disabled by the caller
5058 */
48f24c4d 5059static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5060{
efc30814 5061 unsigned long flags;
1da177e4 5062 cpumask_t mask;
70b97a7f
IM
5063 struct rq *rq;
5064 int dest_cpu;
1da177e4 5065
efc30814 5066restart:
1da177e4
LT
5067 /* On same node? */
5068 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5069 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5070 dest_cpu = any_online_cpu(mask);
5071
5072 /* On any allowed CPU? */
5073 if (dest_cpu == NR_CPUS)
48f24c4d 5074 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5075
5076 /* No more Mr. Nice Guy. */
5077 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5078 rq = task_rq_lock(p, &flags);
5079 cpus_setall(p->cpus_allowed);
5080 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5081 task_rq_unlock(rq, &flags);
1da177e4
LT
5082
5083 /*
5084 * Don't tell them about moving exiting tasks or
5085 * kernel threads (both mm NULL), since they never
5086 * leave kernel.
5087 */
48f24c4d 5088 if (p->mm && printk_ratelimit())
1da177e4
LT
5089 printk(KERN_INFO "process %d (%s) no "
5090 "longer affine to cpu%d\n",
48f24c4d 5091 p->pid, p->comm, dead_cpu);
1da177e4 5092 }
48f24c4d 5093 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5094 goto restart;
1da177e4
LT
5095}
5096
5097/*
5098 * While a dead CPU has no uninterruptible tasks queued at this point,
5099 * it might still have a nonzero ->nr_uninterruptible counter, because
5100 * for performance reasons the counter is not stricly tracking tasks to
5101 * their home CPUs. So we just add the counter to another CPU's counter,
5102 * to keep the global sum constant after CPU-down:
5103 */
70b97a7f 5104static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5105{
70b97a7f 5106 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5107 unsigned long flags;
5108
5109 local_irq_save(flags);
5110 double_rq_lock(rq_src, rq_dest);
5111 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5112 rq_src->nr_uninterruptible = 0;
5113 double_rq_unlock(rq_src, rq_dest);
5114 local_irq_restore(flags);
5115}
5116
5117/* Run through task list and migrate tasks from the dead cpu. */
5118static void migrate_live_tasks(int src_cpu)
5119{
48f24c4d 5120 struct task_struct *p, *t;
1da177e4
LT
5121
5122 write_lock_irq(&tasklist_lock);
5123
48f24c4d
IM
5124 do_each_thread(t, p) {
5125 if (p == current)
1da177e4
LT
5126 continue;
5127
48f24c4d
IM
5128 if (task_cpu(p) == src_cpu)
5129 move_task_off_dead_cpu(src_cpu, p);
5130 } while_each_thread(t, p);
1da177e4
LT
5131
5132 write_unlock_irq(&tasklist_lock);
5133}
5134
a9957449
AD
5135/*
5136 * activate_idle_task - move idle task to the _front_ of runqueue.
5137 */
5138static void activate_idle_task(struct task_struct *p, struct rq *rq)
5139{
5140 update_rq_clock(rq);
5141
5142 if (p->state == TASK_UNINTERRUPTIBLE)
5143 rq->nr_uninterruptible--;
5144
5145 enqueue_task(rq, p, 0);
5146 inc_nr_running(p, rq);
5147}
5148
dd41f596
IM
5149/*
5150 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5151 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5152 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5153 */
5154void sched_idle_next(void)
5155{
48f24c4d 5156 int this_cpu = smp_processor_id();
70b97a7f 5157 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5158 struct task_struct *p = rq->idle;
5159 unsigned long flags;
5160
5161 /* cpu has to be offline */
48f24c4d 5162 BUG_ON(cpu_online(this_cpu));
1da177e4 5163
48f24c4d
IM
5164 /*
5165 * Strictly not necessary since rest of the CPUs are stopped by now
5166 * and interrupts disabled on the current cpu.
1da177e4
LT
5167 */
5168 spin_lock_irqsave(&rq->lock, flags);
5169
dd41f596 5170 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5171
5172 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5173 activate_idle_task(p, rq);
1da177e4
LT
5174
5175 spin_unlock_irqrestore(&rq->lock, flags);
5176}
5177
48f24c4d
IM
5178/*
5179 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5180 * offline.
5181 */
5182void idle_task_exit(void)
5183{
5184 struct mm_struct *mm = current->active_mm;
5185
5186 BUG_ON(cpu_online(smp_processor_id()));
5187
5188 if (mm != &init_mm)
5189 switch_mm(mm, &init_mm, current);
5190 mmdrop(mm);
5191}
5192
054b9108 5193/* called under rq->lock with disabled interrupts */
36c8b586 5194static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5195{
70b97a7f 5196 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5197
5198 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5199 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5200
5201 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5202 BUG_ON(p->state == TASK_DEAD);
1da177e4 5203
48f24c4d 5204 get_task_struct(p);
1da177e4
LT
5205
5206 /*
5207 * Drop lock around migration; if someone else moves it,
5208 * that's OK. No task can be added to this CPU, so iteration is
5209 * fine.
054b9108 5210 * NOTE: interrupts should be left disabled --dev@
1da177e4 5211 */
054b9108 5212 spin_unlock(&rq->lock);
48f24c4d 5213 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5214 spin_lock(&rq->lock);
1da177e4 5215
48f24c4d 5216 put_task_struct(p);
1da177e4
LT
5217}
5218
5219/* release_task() removes task from tasklist, so we won't find dead tasks. */
5220static void migrate_dead_tasks(unsigned int dead_cpu)
5221{
70b97a7f 5222 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5223 struct task_struct *next;
48f24c4d 5224
dd41f596
IM
5225 for ( ; ; ) {
5226 if (!rq->nr_running)
5227 break;
a8e504d2 5228 update_rq_clock(rq);
ff95f3df 5229 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5230 if (!next)
5231 break;
5232 migrate_dead(dead_cpu, next);
e692ab53 5233
1da177e4
LT
5234 }
5235}
5236#endif /* CONFIG_HOTPLUG_CPU */
5237
e692ab53
NP
5238#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5239
5240static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5241 {
5242 .procname = "sched_domain",
c57baf1e 5243 .mode = 0555,
e0361851 5244 },
e692ab53
NP
5245 {0,},
5246};
5247
5248static struct ctl_table sd_ctl_root[] = {
e0361851 5249 {
c57baf1e 5250 .ctl_name = CTL_KERN,
e0361851 5251 .procname = "kernel",
c57baf1e 5252 .mode = 0555,
e0361851
AD
5253 .child = sd_ctl_dir,
5254 },
e692ab53
NP
5255 {0,},
5256};
5257
5258static struct ctl_table *sd_alloc_ctl_entry(int n)
5259{
5260 struct ctl_table *entry =
5261 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5262
5263 BUG_ON(!entry);
5264 memset(entry, 0, n * sizeof(struct ctl_table));
5265
5266 return entry;
5267}
5268
5269static void
e0361851 5270set_table_entry(struct ctl_table *entry,
e692ab53
NP
5271 const char *procname, void *data, int maxlen,
5272 mode_t mode, proc_handler *proc_handler)
5273{
e692ab53
NP
5274 entry->procname = procname;
5275 entry->data = data;
5276 entry->maxlen = maxlen;
5277 entry->mode = mode;
5278 entry->proc_handler = proc_handler;
5279}
5280
5281static struct ctl_table *
5282sd_alloc_ctl_domain_table(struct sched_domain *sd)
5283{
5284 struct ctl_table *table = sd_alloc_ctl_entry(14);
5285
e0361851 5286 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5287 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5288 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5289 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5290 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5291 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5292 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5293 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5294 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5295 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5296 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5297 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5298 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5299 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5300 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5301 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5302 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5303 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5304 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5305 &sd->cache_nice_tries,
5306 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5307 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5308 sizeof(int), 0644, proc_dointvec_minmax);
5309
5310 return table;
5311}
5312
5313static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5314{
5315 struct ctl_table *entry, *table;
5316 struct sched_domain *sd;
5317 int domain_num = 0, i;
5318 char buf[32];
5319
5320 for_each_domain(cpu, sd)
5321 domain_num++;
5322 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5323
5324 i = 0;
5325 for_each_domain(cpu, sd) {
5326 snprintf(buf, 32, "domain%d", i);
e692ab53 5327 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5328 entry->mode = 0555;
e692ab53
NP
5329 entry->child = sd_alloc_ctl_domain_table(sd);
5330 entry++;
5331 i++;
5332 }
5333 return table;
5334}
5335
5336static struct ctl_table_header *sd_sysctl_header;
5337static void init_sched_domain_sysctl(void)
5338{
5339 int i, cpu_num = num_online_cpus();
5340 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5341 char buf[32];
5342
5343 sd_ctl_dir[0].child = entry;
5344
5345 for (i = 0; i < cpu_num; i++, entry++) {
5346 snprintf(buf, 32, "cpu%d", i);
e692ab53 5347 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5348 entry->mode = 0555;
e692ab53
NP
5349 entry->child = sd_alloc_ctl_cpu_table(i);
5350 }
5351 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5352}
5353#else
5354static void init_sched_domain_sysctl(void)
5355{
5356}
5357#endif
5358
1da177e4
LT
5359/*
5360 * migration_call - callback that gets triggered when a CPU is added.
5361 * Here we can start up the necessary migration thread for the new CPU.
5362 */
48f24c4d
IM
5363static int __cpuinit
5364migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5365{
1da177e4 5366 struct task_struct *p;
48f24c4d 5367 int cpu = (long)hcpu;
1da177e4 5368 unsigned long flags;
70b97a7f 5369 struct rq *rq;
1da177e4
LT
5370
5371 switch (action) {
5be9361c
GS
5372 case CPU_LOCK_ACQUIRE:
5373 mutex_lock(&sched_hotcpu_mutex);
5374 break;
5375
1da177e4 5376 case CPU_UP_PREPARE:
8bb78442 5377 case CPU_UP_PREPARE_FROZEN:
dd41f596 5378 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5379 if (IS_ERR(p))
5380 return NOTIFY_BAD;
1da177e4
LT
5381 kthread_bind(p, cpu);
5382 /* Must be high prio: stop_machine expects to yield to it. */
5383 rq = task_rq_lock(p, &flags);
dd41f596 5384 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5385 task_rq_unlock(rq, &flags);
5386 cpu_rq(cpu)->migration_thread = p;
5387 break;
48f24c4d 5388
1da177e4 5389 case CPU_ONLINE:
8bb78442 5390 case CPU_ONLINE_FROZEN:
1da177e4
LT
5391 /* Strictly unneccessary, as first user will wake it. */
5392 wake_up_process(cpu_rq(cpu)->migration_thread);
5393 break;
48f24c4d 5394
1da177e4
LT
5395#ifdef CONFIG_HOTPLUG_CPU
5396 case CPU_UP_CANCELED:
8bb78442 5397 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5398 if (!cpu_rq(cpu)->migration_thread)
5399 break;
1da177e4 5400 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5401 kthread_bind(cpu_rq(cpu)->migration_thread,
5402 any_online_cpu(cpu_online_map));
1da177e4
LT
5403 kthread_stop(cpu_rq(cpu)->migration_thread);
5404 cpu_rq(cpu)->migration_thread = NULL;
5405 break;
48f24c4d 5406
1da177e4 5407 case CPU_DEAD:
8bb78442 5408 case CPU_DEAD_FROZEN:
1da177e4
LT
5409 migrate_live_tasks(cpu);
5410 rq = cpu_rq(cpu);
5411 kthread_stop(rq->migration_thread);
5412 rq->migration_thread = NULL;
5413 /* Idle task back to normal (off runqueue, low prio) */
5414 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5415 update_rq_clock(rq);
2e1cb74a 5416 deactivate_task(rq, rq->idle, 0);
1da177e4 5417 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5418 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5419 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5420 migrate_dead_tasks(cpu);
5421 task_rq_unlock(rq, &flags);
5422 migrate_nr_uninterruptible(rq);
5423 BUG_ON(rq->nr_running != 0);
5424
5425 /* No need to migrate the tasks: it was best-effort if
5be9361c 5426 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5427 * the requestors. */
5428 spin_lock_irq(&rq->lock);
5429 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5430 struct migration_req *req;
5431
1da177e4 5432 req = list_entry(rq->migration_queue.next,
70b97a7f 5433 struct migration_req, list);
1da177e4
LT
5434 list_del_init(&req->list);
5435 complete(&req->done);
5436 }
5437 spin_unlock_irq(&rq->lock);
5438 break;
5439#endif
5be9361c
GS
5440 case CPU_LOCK_RELEASE:
5441 mutex_unlock(&sched_hotcpu_mutex);
5442 break;
1da177e4
LT
5443 }
5444 return NOTIFY_OK;
5445}
5446
5447/* Register at highest priority so that task migration (migrate_all_tasks)
5448 * happens before everything else.
5449 */
26c2143b 5450static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5451 .notifier_call = migration_call,
5452 .priority = 10
5453};
5454
5455int __init migration_init(void)
5456{
5457 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5458 int err;
48f24c4d
IM
5459
5460 /* Start one for the boot CPU: */
07dccf33
AM
5461 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5462 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5463 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5464 register_cpu_notifier(&migration_notifier);
48f24c4d 5465
1da177e4
LT
5466 return 0;
5467}
5468#endif
5469
5470#ifdef CONFIG_SMP
476f3534
CL
5471
5472/* Number of possible processor ids */
5473int nr_cpu_ids __read_mostly = NR_CPUS;
5474EXPORT_SYMBOL(nr_cpu_ids);
5475
3e9830dc 5476#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5477static void sched_domain_debug(struct sched_domain *sd, int cpu)
5478{
5479 int level = 0;
5480
41c7ce9a
NP
5481 if (!sd) {
5482 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5483 return;
5484 }
5485
1da177e4
LT
5486 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5487
5488 do {
5489 int i;
5490 char str[NR_CPUS];
5491 struct sched_group *group = sd->groups;
5492 cpumask_t groupmask;
5493
5494 cpumask_scnprintf(str, NR_CPUS, sd->span);
5495 cpus_clear(groupmask);
5496
5497 printk(KERN_DEBUG);
5498 for (i = 0; i < level + 1; i++)
5499 printk(" ");
5500 printk("domain %d: ", level);
5501
5502 if (!(sd->flags & SD_LOAD_BALANCE)) {
5503 printk("does not load-balance\n");
5504 if (sd->parent)
33859f7f
MOS
5505 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5506 " has parent");
1da177e4
LT
5507 break;
5508 }
5509
5510 printk("span %s\n", str);
5511
5512 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5513 printk(KERN_ERR "ERROR: domain->span does not contain "
5514 "CPU%d\n", cpu);
1da177e4 5515 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5516 printk(KERN_ERR "ERROR: domain->groups does not contain"
5517 " CPU%d\n", cpu);
1da177e4
LT
5518
5519 printk(KERN_DEBUG);
5520 for (i = 0; i < level + 2; i++)
5521 printk(" ");
5522 printk("groups:");
5523 do {
5524 if (!group) {
5525 printk("\n");
5526 printk(KERN_ERR "ERROR: group is NULL\n");
5527 break;
5528 }
5529
5517d86b 5530 if (!group->__cpu_power) {
1da177e4 5531 printk("\n");
33859f7f
MOS
5532 printk(KERN_ERR "ERROR: domain->cpu_power not "
5533 "set\n");
26797a34 5534 break;
1da177e4
LT
5535 }
5536
5537 if (!cpus_weight(group->cpumask)) {
5538 printk("\n");
5539 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5540 break;
1da177e4
LT
5541 }
5542
5543 if (cpus_intersects(groupmask, group->cpumask)) {
5544 printk("\n");
5545 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5546 break;
1da177e4
LT
5547 }
5548
5549 cpus_or(groupmask, groupmask, group->cpumask);
5550
5551 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5552 printk(" %s", str);
5553
5554 group = group->next;
5555 } while (group != sd->groups);
5556 printk("\n");
5557
5558 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5559 printk(KERN_ERR "ERROR: groups don't span "
5560 "domain->span\n");
1da177e4
LT
5561
5562 level++;
5563 sd = sd->parent;
33859f7f
MOS
5564 if (!sd)
5565 continue;
1da177e4 5566
33859f7f
MOS
5567 if (!cpus_subset(groupmask, sd->span))
5568 printk(KERN_ERR "ERROR: parent span is not a superset "
5569 "of domain->span\n");
1da177e4
LT
5570
5571 } while (sd);
5572}
5573#else
48f24c4d 5574# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5575#endif
5576
1a20ff27 5577static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5578{
5579 if (cpus_weight(sd->span) == 1)
5580 return 1;
5581
5582 /* Following flags need at least 2 groups */
5583 if (sd->flags & (SD_LOAD_BALANCE |
5584 SD_BALANCE_NEWIDLE |
5585 SD_BALANCE_FORK |
89c4710e
SS
5586 SD_BALANCE_EXEC |
5587 SD_SHARE_CPUPOWER |
5588 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5589 if (sd->groups != sd->groups->next)
5590 return 0;
5591 }
5592
5593 /* Following flags don't use groups */
5594 if (sd->flags & (SD_WAKE_IDLE |
5595 SD_WAKE_AFFINE |
5596 SD_WAKE_BALANCE))
5597 return 0;
5598
5599 return 1;
5600}
5601
48f24c4d
IM
5602static int
5603sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5604{
5605 unsigned long cflags = sd->flags, pflags = parent->flags;
5606
5607 if (sd_degenerate(parent))
5608 return 1;
5609
5610 if (!cpus_equal(sd->span, parent->span))
5611 return 0;
5612
5613 /* Does parent contain flags not in child? */
5614 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5615 if (cflags & SD_WAKE_AFFINE)
5616 pflags &= ~SD_WAKE_BALANCE;
5617 /* Flags needing groups don't count if only 1 group in parent */
5618 if (parent->groups == parent->groups->next) {
5619 pflags &= ~(SD_LOAD_BALANCE |
5620 SD_BALANCE_NEWIDLE |
5621 SD_BALANCE_FORK |
89c4710e
SS
5622 SD_BALANCE_EXEC |
5623 SD_SHARE_CPUPOWER |
5624 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5625 }
5626 if (~cflags & pflags)
5627 return 0;
5628
5629 return 1;
5630}
5631
1da177e4
LT
5632/*
5633 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5634 * hold the hotplug lock.
5635 */
9c1cfda2 5636static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5637{
70b97a7f 5638 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5639 struct sched_domain *tmp;
5640
5641 /* Remove the sched domains which do not contribute to scheduling. */
5642 for (tmp = sd; tmp; tmp = tmp->parent) {
5643 struct sched_domain *parent = tmp->parent;
5644 if (!parent)
5645 break;
1a848870 5646 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5647 tmp->parent = parent->parent;
1a848870
SS
5648 if (parent->parent)
5649 parent->parent->child = tmp;
5650 }
245af2c7
SS
5651 }
5652
1a848870 5653 if (sd && sd_degenerate(sd)) {
245af2c7 5654 sd = sd->parent;
1a848870
SS
5655 if (sd)
5656 sd->child = NULL;
5657 }
1da177e4
LT
5658
5659 sched_domain_debug(sd, cpu);
5660
674311d5 5661 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5662}
5663
5664/* cpus with isolated domains */
67af63a6 5665static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5666
5667/* Setup the mask of cpus configured for isolated domains */
5668static int __init isolated_cpu_setup(char *str)
5669{
5670 int ints[NR_CPUS], i;
5671
5672 str = get_options(str, ARRAY_SIZE(ints), ints);
5673 cpus_clear(cpu_isolated_map);
5674 for (i = 1; i <= ints[0]; i++)
5675 if (ints[i] < NR_CPUS)
5676 cpu_set(ints[i], cpu_isolated_map);
5677 return 1;
5678}
5679
8927f494 5680__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5681
5682/*
6711cab4
SS
5683 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5684 * to a function which identifies what group(along with sched group) a CPU
5685 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5686 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5687 *
5688 * init_sched_build_groups will build a circular linked list of the groups
5689 * covered by the given span, and will set each group's ->cpumask correctly,
5690 * and ->cpu_power to 0.
5691 */
a616058b 5692static void
6711cab4
SS
5693init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5694 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5695 struct sched_group **sg))
1da177e4
LT
5696{
5697 struct sched_group *first = NULL, *last = NULL;
5698 cpumask_t covered = CPU_MASK_NONE;
5699 int i;
5700
5701 for_each_cpu_mask(i, span) {
6711cab4
SS
5702 struct sched_group *sg;
5703 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5704 int j;
5705
5706 if (cpu_isset(i, covered))
5707 continue;
5708
5709 sg->cpumask = CPU_MASK_NONE;
5517d86b 5710 sg->__cpu_power = 0;
1da177e4
LT
5711
5712 for_each_cpu_mask(j, span) {
6711cab4 5713 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5714 continue;
5715
5716 cpu_set(j, covered);
5717 cpu_set(j, sg->cpumask);
5718 }
5719 if (!first)
5720 first = sg;
5721 if (last)
5722 last->next = sg;
5723 last = sg;
5724 }
5725 last->next = first;
5726}
5727
9c1cfda2 5728#define SD_NODES_PER_DOMAIN 16
1da177e4 5729
9c1cfda2 5730#ifdef CONFIG_NUMA
198e2f18 5731
9c1cfda2
JH
5732/**
5733 * find_next_best_node - find the next node to include in a sched_domain
5734 * @node: node whose sched_domain we're building
5735 * @used_nodes: nodes already in the sched_domain
5736 *
5737 * Find the next node to include in a given scheduling domain. Simply
5738 * finds the closest node not already in the @used_nodes map.
5739 *
5740 * Should use nodemask_t.
5741 */
5742static int find_next_best_node(int node, unsigned long *used_nodes)
5743{
5744 int i, n, val, min_val, best_node = 0;
5745
5746 min_val = INT_MAX;
5747
5748 for (i = 0; i < MAX_NUMNODES; i++) {
5749 /* Start at @node */
5750 n = (node + i) % MAX_NUMNODES;
5751
5752 if (!nr_cpus_node(n))
5753 continue;
5754
5755 /* Skip already used nodes */
5756 if (test_bit(n, used_nodes))
5757 continue;
5758
5759 /* Simple min distance search */
5760 val = node_distance(node, n);
5761
5762 if (val < min_val) {
5763 min_val = val;
5764 best_node = n;
5765 }
5766 }
5767
5768 set_bit(best_node, used_nodes);
5769 return best_node;
5770}
5771
5772/**
5773 * sched_domain_node_span - get a cpumask for a node's sched_domain
5774 * @node: node whose cpumask we're constructing
5775 * @size: number of nodes to include in this span
5776 *
5777 * Given a node, construct a good cpumask for its sched_domain to span. It
5778 * should be one that prevents unnecessary balancing, but also spreads tasks
5779 * out optimally.
5780 */
5781static cpumask_t sched_domain_node_span(int node)
5782{
9c1cfda2 5783 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5784 cpumask_t span, nodemask;
5785 int i;
9c1cfda2
JH
5786
5787 cpus_clear(span);
5788 bitmap_zero(used_nodes, MAX_NUMNODES);
5789
5790 nodemask = node_to_cpumask(node);
5791 cpus_or(span, span, nodemask);
5792 set_bit(node, used_nodes);
5793
5794 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5795 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5796
9c1cfda2
JH
5797 nodemask = node_to_cpumask(next_node);
5798 cpus_or(span, span, nodemask);
5799 }
5800
5801 return span;
5802}
5803#endif
5804
5c45bf27 5805int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5806
9c1cfda2 5807/*
48f24c4d 5808 * SMT sched-domains:
9c1cfda2 5809 */
1da177e4
LT
5810#ifdef CONFIG_SCHED_SMT
5811static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5812static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5813
6711cab4
SS
5814static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5815 struct sched_group **sg)
1da177e4 5816{
6711cab4
SS
5817 if (sg)
5818 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5819 return cpu;
5820}
5821#endif
5822
48f24c4d
IM
5823/*
5824 * multi-core sched-domains:
5825 */
1e9f28fa
SS
5826#ifdef CONFIG_SCHED_MC
5827static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5828static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5829#endif
5830
5831#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5832static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5833 struct sched_group **sg)
1e9f28fa 5834{
6711cab4 5835 int group;
a616058b
SS
5836 cpumask_t mask = cpu_sibling_map[cpu];
5837 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5838 group = first_cpu(mask);
5839 if (sg)
5840 *sg = &per_cpu(sched_group_core, group);
5841 return group;
1e9f28fa
SS
5842}
5843#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5844static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5845 struct sched_group **sg)
1e9f28fa 5846{
6711cab4
SS
5847 if (sg)
5848 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5849 return cpu;
5850}
5851#endif
5852
1da177e4 5853static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5854static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5855
6711cab4
SS
5856static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5857 struct sched_group **sg)
1da177e4 5858{
6711cab4 5859 int group;
48f24c4d 5860#ifdef CONFIG_SCHED_MC
1e9f28fa 5861 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5862 cpus_and(mask, mask, *cpu_map);
6711cab4 5863 group = first_cpu(mask);
1e9f28fa 5864#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5865 cpumask_t mask = cpu_sibling_map[cpu];
5866 cpus_and(mask, mask, *cpu_map);
6711cab4 5867 group = first_cpu(mask);
1da177e4 5868#else
6711cab4 5869 group = cpu;
1da177e4 5870#endif
6711cab4
SS
5871 if (sg)
5872 *sg = &per_cpu(sched_group_phys, group);
5873 return group;
1da177e4
LT
5874}
5875
5876#ifdef CONFIG_NUMA
1da177e4 5877/*
9c1cfda2
JH
5878 * The init_sched_build_groups can't handle what we want to do with node
5879 * groups, so roll our own. Now each node has its own list of groups which
5880 * gets dynamically allocated.
1da177e4 5881 */
9c1cfda2 5882static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5883static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5884
9c1cfda2 5885static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5886static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5887
6711cab4
SS
5888static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5889 struct sched_group **sg)
9c1cfda2 5890{
6711cab4
SS
5891 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5892 int group;
5893
5894 cpus_and(nodemask, nodemask, *cpu_map);
5895 group = first_cpu(nodemask);
5896
5897 if (sg)
5898 *sg = &per_cpu(sched_group_allnodes, group);
5899 return group;
1da177e4 5900}
6711cab4 5901
08069033
SS
5902static void init_numa_sched_groups_power(struct sched_group *group_head)
5903{
5904 struct sched_group *sg = group_head;
5905 int j;
5906
5907 if (!sg)
5908 return;
5909next_sg:
5910 for_each_cpu_mask(j, sg->cpumask) {
5911 struct sched_domain *sd;
5912
5913 sd = &per_cpu(phys_domains, j);
5914 if (j != first_cpu(sd->groups->cpumask)) {
5915 /*
5916 * Only add "power" once for each
5917 * physical package.
5918 */
5919 continue;
5920 }
5921
5517d86b 5922 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5923 }
5924 sg = sg->next;
5925 if (sg != group_head)
5926 goto next_sg;
5927}
1da177e4
LT
5928#endif
5929
a616058b 5930#ifdef CONFIG_NUMA
51888ca2
SV
5931/* Free memory allocated for various sched_group structures */
5932static void free_sched_groups(const cpumask_t *cpu_map)
5933{
a616058b 5934 int cpu, i;
51888ca2
SV
5935
5936 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5937 struct sched_group **sched_group_nodes
5938 = sched_group_nodes_bycpu[cpu];
5939
51888ca2
SV
5940 if (!sched_group_nodes)
5941 continue;
5942
5943 for (i = 0; i < MAX_NUMNODES; i++) {
5944 cpumask_t nodemask = node_to_cpumask(i);
5945 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5946
5947 cpus_and(nodemask, nodemask, *cpu_map);
5948 if (cpus_empty(nodemask))
5949 continue;
5950
5951 if (sg == NULL)
5952 continue;
5953 sg = sg->next;
5954next_sg:
5955 oldsg = sg;
5956 sg = sg->next;
5957 kfree(oldsg);
5958 if (oldsg != sched_group_nodes[i])
5959 goto next_sg;
5960 }
5961 kfree(sched_group_nodes);
5962 sched_group_nodes_bycpu[cpu] = NULL;
5963 }
51888ca2 5964}
a616058b
SS
5965#else
5966static void free_sched_groups(const cpumask_t *cpu_map)
5967{
5968}
5969#endif
51888ca2 5970
89c4710e
SS
5971/*
5972 * Initialize sched groups cpu_power.
5973 *
5974 * cpu_power indicates the capacity of sched group, which is used while
5975 * distributing the load between different sched groups in a sched domain.
5976 * Typically cpu_power for all the groups in a sched domain will be same unless
5977 * there are asymmetries in the topology. If there are asymmetries, group
5978 * having more cpu_power will pickup more load compared to the group having
5979 * less cpu_power.
5980 *
5981 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5982 * the maximum number of tasks a group can handle in the presence of other idle
5983 * or lightly loaded groups in the same sched domain.
5984 */
5985static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5986{
5987 struct sched_domain *child;
5988 struct sched_group *group;
5989
5990 WARN_ON(!sd || !sd->groups);
5991
5992 if (cpu != first_cpu(sd->groups->cpumask))
5993 return;
5994
5995 child = sd->child;
5996
5517d86b
ED
5997 sd->groups->__cpu_power = 0;
5998
89c4710e
SS
5999 /*
6000 * For perf policy, if the groups in child domain share resources
6001 * (for example cores sharing some portions of the cache hierarchy
6002 * or SMT), then set this domain groups cpu_power such that each group
6003 * can handle only one task, when there are other idle groups in the
6004 * same sched domain.
6005 */
6006 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6007 (child->flags &
6008 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6009 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6010 return;
6011 }
6012
89c4710e
SS
6013 /*
6014 * add cpu_power of each child group to this groups cpu_power
6015 */
6016 group = child->groups;
6017 do {
5517d86b 6018 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6019 group = group->next;
6020 } while (group != child->groups);
6021}
6022
1da177e4 6023/*
1a20ff27
DG
6024 * Build sched domains for a given set of cpus and attach the sched domains
6025 * to the individual cpus
1da177e4 6026 */
51888ca2 6027static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6028{
6029 int i;
d1b55138
JH
6030#ifdef CONFIG_NUMA
6031 struct sched_group **sched_group_nodes = NULL;
6711cab4 6032 int sd_allnodes = 0;
d1b55138
JH
6033
6034 /*
6035 * Allocate the per-node list of sched groups
6036 */
dd41f596 6037 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6038 GFP_KERNEL);
d1b55138
JH
6039 if (!sched_group_nodes) {
6040 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6041 return -ENOMEM;
d1b55138
JH
6042 }
6043 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6044#endif
1da177e4
LT
6045
6046 /*
1a20ff27 6047 * Set up domains for cpus specified by the cpu_map.
1da177e4 6048 */
1a20ff27 6049 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6050 struct sched_domain *sd = NULL, *p;
6051 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6052
1a20ff27 6053 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6054
6055#ifdef CONFIG_NUMA
dd41f596
IM
6056 if (cpus_weight(*cpu_map) >
6057 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6058 sd = &per_cpu(allnodes_domains, i);
6059 *sd = SD_ALLNODES_INIT;
6060 sd->span = *cpu_map;
6711cab4 6061 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6062 p = sd;
6711cab4 6063 sd_allnodes = 1;
9c1cfda2
JH
6064 } else
6065 p = NULL;
6066
1da177e4 6067 sd = &per_cpu(node_domains, i);
1da177e4 6068 *sd = SD_NODE_INIT;
9c1cfda2
JH
6069 sd->span = sched_domain_node_span(cpu_to_node(i));
6070 sd->parent = p;
1a848870
SS
6071 if (p)
6072 p->child = sd;
9c1cfda2 6073 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6074#endif
6075
6076 p = sd;
6077 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6078 *sd = SD_CPU_INIT;
6079 sd->span = nodemask;
6080 sd->parent = p;
1a848870
SS
6081 if (p)
6082 p->child = sd;
6711cab4 6083 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6084
1e9f28fa
SS
6085#ifdef CONFIG_SCHED_MC
6086 p = sd;
6087 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6088 *sd = SD_MC_INIT;
6089 sd->span = cpu_coregroup_map(i);
6090 cpus_and(sd->span, sd->span, *cpu_map);
6091 sd->parent = p;
1a848870 6092 p->child = sd;
6711cab4 6093 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6094#endif
6095
1da177e4
LT
6096#ifdef CONFIG_SCHED_SMT
6097 p = sd;
6098 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6099 *sd = SD_SIBLING_INIT;
6100 sd->span = cpu_sibling_map[i];
1a20ff27 6101 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6102 sd->parent = p;
1a848870 6103 p->child = sd;
6711cab4 6104 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6105#endif
6106 }
6107
6108#ifdef CONFIG_SCHED_SMT
6109 /* Set up CPU (sibling) groups */
9c1cfda2 6110 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6111 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6112 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6113 if (i != first_cpu(this_sibling_map))
6114 continue;
6115
dd41f596
IM
6116 init_sched_build_groups(this_sibling_map, cpu_map,
6117 &cpu_to_cpu_group);
1da177e4
LT
6118 }
6119#endif
6120
1e9f28fa
SS
6121#ifdef CONFIG_SCHED_MC
6122 /* Set up multi-core groups */
6123 for_each_cpu_mask(i, *cpu_map) {
6124 cpumask_t this_core_map = cpu_coregroup_map(i);
6125 cpus_and(this_core_map, this_core_map, *cpu_map);
6126 if (i != first_cpu(this_core_map))
6127 continue;
dd41f596
IM
6128 init_sched_build_groups(this_core_map, cpu_map,
6129 &cpu_to_core_group);
1e9f28fa
SS
6130 }
6131#endif
6132
1da177e4
LT
6133 /* Set up physical groups */
6134 for (i = 0; i < MAX_NUMNODES; i++) {
6135 cpumask_t nodemask = node_to_cpumask(i);
6136
1a20ff27 6137 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6138 if (cpus_empty(nodemask))
6139 continue;
6140
6711cab4 6141 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6142 }
6143
6144#ifdef CONFIG_NUMA
6145 /* Set up node groups */
6711cab4 6146 if (sd_allnodes)
dd41f596
IM
6147 init_sched_build_groups(*cpu_map, cpu_map,
6148 &cpu_to_allnodes_group);
9c1cfda2
JH
6149
6150 for (i = 0; i < MAX_NUMNODES; i++) {
6151 /* Set up node groups */
6152 struct sched_group *sg, *prev;
6153 cpumask_t nodemask = node_to_cpumask(i);
6154 cpumask_t domainspan;
6155 cpumask_t covered = CPU_MASK_NONE;
6156 int j;
6157
6158 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6159 if (cpus_empty(nodemask)) {
6160 sched_group_nodes[i] = NULL;
9c1cfda2 6161 continue;
d1b55138 6162 }
9c1cfda2
JH
6163
6164 domainspan = sched_domain_node_span(i);
6165 cpus_and(domainspan, domainspan, *cpu_map);
6166
15f0b676 6167 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6168 if (!sg) {
6169 printk(KERN_WARNING "Can not alloc domain group for "
6170 "node %d\n", i);
6171 goto error;
6172 }
9c1cfda2
JH
6173 sched_group_nodes[i] = sg;
6174 for_each_cpu_mask(j, nodemask) {
6175 struct sched_domain *sd;
9761eea8 6176
9c1cfda2
JH
6177 sd = &per_cpu(node_domains, j);
6178 sd->groups = sg;
9c1cfda2 6179 }
5517d86b 6180 sg->__cpu_power = 0;
9c1cfda2 6181 sg->cpumask = nodemask;
51888ca2 6182 sg->next = sg;
9c1cfda2
JH
6183 cpus_or(covered, covered, nodemask);
6184 prev = sg;
6185
6186 for (j = 0; j < MAX_NUMNODES; j++) {
6187 cpumask_t tmp, notcovered;
6188 int n = (i + j) % MAX_NUMNODES;
6189
6190 cpus_complement(notcovered, covered);
6191 cpus_and(tmp, notcovered, *cpu_map);
6192 cpus_and(tmp, tmp, domainspan);
6193 if (cpus_empty(tmp))
6194 break;
6195
6196 nodemask = node_to_cpumask(n);
6197 cpus_and(tmp, tmp, nodemask);
6198 if (cpus_empty(tmp))
6199 continue;
6200
15f0b676
SV
6201 sg = kmalloc_node(sizeof(struct sched_group),
6202 GFP_KERNEL, i);
9c1cfda2
JH
6203 if (!sg) {
6204 printk(KERN_WARNING
6205 "Can not alloc domain group for node %d\n", j);
51888ca2 6206 goto error;
9c1cfda2 6207 }
5517d86b 6208 sg->__cpu_power = 0;
9c1cfda2 6209 sg->cpumask = tmp;
51888ca2 6210 sg->next = prev->next;
9c1cfda2
JH
6211 cpus_or(covered, covered, tmp);
6212 prev->next = sg;
6213 prev = sg;
6214 }
9c1cfda2 6215 }
1da177e4
LT
6216#endif
6217
6218 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6219#ifdef CONFIG_SCHED_SMT
1a20ff27 6220 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6221 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6222
89c4710e 6223 init_sched_groups_power(i, sd);
5c45bf27 6224 }
1da177e4 6225#endif
1e9f28fa 6226#ifdef CONFIG_SCHED_MC
5c45bf27 6227 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6228 struct sched_domain *sd = &per_cpu(core_domains, i);
6229
89c4710e 6230 init_sched_groups_power(i, sd);
5c45bf27
SS
6231 }
6232#endif
1e9f28fa 6233
5c45bf27 6234 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6235 struct sched_domain *sd = &per_cpu(phys_domains, i);
6236
89c4710e 6237 init_sched_groups_power(i, sd);
1da177e4
LT
6238 }
6239
9c1cfda2 6240#ifdef CONFIG_NUMA
08069033
SS
6241 for (i = 0; i < MAX_NUMNODES; i++)
6242 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6243
6711cab4
SS
6244 if (sd_allnodes) {
6245 struct sched_group *sg;
f712c0c7 6246
6711cab4 6247 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6248 init_numa_sched_groups_power(sg);
6249 }
9c1cfda2
JH
6250#endif
6251
1da177e4 6252 /* Attach the domains */
1a20ff27 6253 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6254 struct sched_domain *sd;
6255#ifdef CONFIG_SCHED_SMT
6256 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6257#elif defined(CONFIG_SCHED_MC)
6258 sd = &per_cpu(core_domains, i);
1da177e4
LT
6259#else
6260 sd = &per_cpu(phys_domains, i);
6261#endif
6262 cpu_attach_domain(sd, i);
6263 }
51888ca2
SV
6264
6265 return 0;
6266
a616058b 6267#ifdef CONFIG_NUMA
51888ca2
SV
6268error:
6269 free_sched_groups(cpu_map);
6270 return -ENOMEM;
a616058b 6271#endif
1da177e4 6272}
1a20ff27
DG
6273/*
6274 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6275 */
51888ca2 6276static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6277{
6278 cpumask_t cpu_default_map;
51888ca2 6279 int err;
1da177e4 6280
1a20ff27
DG
6281 /*
6282 * Setup mask for cpus without special case scheduling requirements.
6283 * For now this just excludes isolated cpus, but could be used to
6284 * exclude other special cases in the future.
6285 */
6286 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6287
51888ca2
SV
6288 err = build_sched_domains(&cpu_default_map);
6289
6290 return err;
1a20ff27
DG
6291}
6292
6293static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6294{
51888ca2 6295 free_sched_groups(cpu_map);
9c1cfda2 6296}
1da177e4 6297
1a20ff27
DG
6298/*
6299 * Detach sched domains from a group of cpus specified in cpu_map
6300 * These cpus will now be attached to the NULL domain
6301 */
858119e1 6302static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6303{
6304 int i;
6305
6306 for_each_cpu_mask(i, *cpu_map)
6307 cpu_attach_domain(NULL, i);
6308 synchronize_sched();
6309 arch_destroy_sched_domains(cpu_map);
6310}
6311
6312/*
6313 * Partition sched domains as specified by the cpumasks below.
6314 * This attaches all cpus from the cpumasks to the NULL domain,
6315 * waits for a RCU quiescent period, recalculates sched
6316 * domain information and then attaches them back to the
6317 * correct sched domains
6318 * Call with hotplug lock held
6319 */
51888ca2 6320int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6321{
6322 cpumask_t change_map;
51888ca2 6323 int err = 0;
1a20ff27
DG
6324
6325 cpus_and(*partition1, *partition1, cpu_online_map);
6326 cpus_and(*partition2, *partition2, cpu_online_map);
6327 cpus_or(change_map, *partition1, *partition2);
6328
6329 /* Detach sched domains from all of the affected cpus */
6330 detach_destroy_domains(&change_map);
6331 if (!cpus_empty(*partition1))
51888ca2
SV
6332 err = build_sched_domains(partition1);
6333 if (!err && !cpus_empty(*partition2))
6334 err = build_sched_domains(partition2);
6335
6336 return err;
1a20ff27
DG
6337}
6338
5c45bf27 6339#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6340static int arch_reinit_sched_domains(void)
5c45bf27
SS
6341{
6342 int err;
6343
5be9361c 6344 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6345 detach_destroy_domains(&cpu_online_map);
6346 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6347 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6348
6349 return err;
6350}
6351
6352static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6353{
6354 int ret;
6355
6356 if (buf[0] != '0' && buf[0] != '1')
6357 return -EINVAL;
6358
6359 if (smt)
6360 sched_smt_power_savings = (buf[0] == '1');
6361 else
6362 sched_mc_power_savings = (buf[0] == '1');
6363
6364 ret = arch_reinit_sched_domains();
6365
6366 return ret ? ret : count;
6367}
6368
5c45bf27
SS
6369#ifdef CONFIG_SCHED_MC
6370static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6371{
6372 return sprintf(page, "%u\n", sched_mc_power_savings);
6373}
48f24c4d
IM
6374static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6375 const char *buf, size_t count)
5c45bf27
SS
6376{
6377 return sched_power_savings_store(buf, count, 0);
6378}
6707de00
AB
6379static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6380 sched_mc_power_savings_store);
5c45bf27
SS
6381#endif
6382
6383#ifdef CONFIG_SCHED_SMT
6384static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6385{
6386 return sprintf(page, "%u\n", sched_smt_power_savings);
6387}
48f24c4d
IM
6388static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6389 const char *buf, size_t count)
5c45bf27
SS
6390{
6391 return sched_power_savings_store(buf, count, 1);
6392}
6707de00
AB
6393static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6394 sched_smt_power_savings_store);
6395#endif
6396
6397int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6398{
6399 int err = 0;
6400
6401#ifdef CONFIG_SCHED_SMT
6402 if (smt_capable())
6403 err = sysfs_create_file(&cls->kset.kobj,
6404 &attr_sched_smt_power_savings.attr);
6405#endif
6406#ifdef CONFIG_SCHED_MC
6407 if (!err && mc_capable())
6408 err = sysfs_create_file(&cls->kset.kobj,
6409 &attr_sched_mc_power_savings.attr);
6410#endif
6411 return err;
6412}
5c45bf27
SS
6413#endif
6414
1da177e4
LT
6415/*
6416 * Force a reinitialization of the sched domains hierarchy. The domains
6417 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6418 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6419 * which will prevent rebalancing while the sched domains are recalculated.
6420 */
6421static int update_sched_domains(struct notifier_block *nfb,
6422 unsigned long action, void *hcpu)
6423{
1da177e4
LT
6424 switch (action) {
6425 case CPU_UP_PREPARE:
8bb78442 6426 case CPU_UP_PREPARE_FROZEN:
1da177e4 6427 case CPU_DOWN_PREPARE:
8bb78442 6428 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6429 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6430 return NOTIFY_OK;
6431
6432 case CPU_UP_CANCELED:
8bb78442 6433 case CPU_UP_CANCELED_FROZEN:
1da177e4 6434 case CPU_DOWN_FAILED:
8bb78442 6435 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6436 case CPU_ONLINE:
8bb78442 6437 case CPU_ONLINE_FROZEN:
1da177e4 6438 case CPU_DEAD:
8bb78442 6439 case CPU_DEAD_FROZEN:
1da177e4
LT
6440 /*
6441 * Fall through and re-initialise the domains.
6442 */
6443 break;
6444 default:
6445 return NOTIFY_DONE;
6446 }
6447
6448 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6449 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6450
6451 return NOTIFY_OK;
6452}
1da177e4
LT
6453
6454void __init sched_init_smp(void)
6455{
5c1e1767
NP
6456 cpumask_t non_isolated_cpus;
6457
5be9361c 6458 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6459 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6460 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6461 if (cpus_empty(non_isolated_cpus))
6462 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6463 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6464 /* XXX: Theoretical race here - CPU may be hotplugged now */
6465 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6466
e692ab53
NP
6467 init_sched_domain_sysctl();
6468
5c1e1767
NP
6469 /* Move init over to a non-isolated CPU */
6470 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6471 BUG();
1da177e4
LT
6472}
6473#else
6474void __init sched_init_smp(void)
6475{
6476}
6477#endif /* CONFIG_SMP */
6478
6479int in_sched_functions(unsigned long addr)
6480{
6481 /* Linker adds these: start and end of __sched functions */
6482 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6483
1da177e4
LT
6484 return in_lock_functions(addr) ||
6485 (addr >= (unsigned long)__sched_text_start
6486 && addr < (unsigned long)__sched_text_end);
6487}
6488
a9957449 6489static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6490{
6491 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6492#ifdef CONFIG_FAIR_GROUP_SCHED
6493 cfs_rq->rq = rq;
6494#endif
67e9fb2a 6495 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6496}
6497
1da177e4
LT
6498void __init sched_init(void)
6499{
476f3534 6500 int highest_cpu = 0;
dd41f596
IM
6501 int i, j;
6502
0a945022 6503 for_each_possible_cpu(i) {
dd41f596 6504 struct rt_prio_array *array;
70b97a7f 6505 struct rq *rq;
1da177e4
LT
6506
6507 rq = cpu_rq(i);
6508 spin_lock_init(&rq->lock);
fcb99371 6509 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6510 rq->nr_running = 0;
dd41f596
IM
6511 rq->clock = 1;
6512 init_cfs_rq(&rq->cfs, rq);
6513#ifdef CONFIG_FAIR_GROUP_SCHED
6514 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6515 {
6516 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6517 struct sched_entity *se =
6518 &per_cpu(init_sched_entity, i);
6519
6520 init_cfs_rq_p[i] = cfs_rq;
6521 init_cfs_rq(cfs_rq, rq);
4cf86d77 6522 cfs_rq->tg = &init_task_group;
3a252015 6523 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6524 &rq->leaf_cfs_rq_list);
6525
3a252015
IM
6526 init_sched_entity_p[i] = se;
6527 se->cfs_rq = &rq->cfs;
6528 se->my_q = cfs_rq;
4cf86d77 6529 se->load.weight = init_task_group_load;
9b5b7751 6530 se->load.inv_weight =
4cf86d77 6531 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6532 se->parent = NULL;
6533 }
4cf86d77 6534 init_task_group.shares = init_task_group_load;
dd41f596 6535#endif
1da177e4 6536
dd41f596
IM
6537 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6538 rq->cpu_load[j] = 0;
1da177e4 6539#ifdef CONFIG_SMP
41c7ce9a 6540 rq->sd = NULL;
1da177e4 6541 rq->active_balance = 0;
dd41f596 6542 rq->next_balance = jiffies;
1da177e4 6543 rq->push_cpu = 0;
0a2966b4 6544 rq->cpu = i;
1da177e4
LT
6545 rq->migration_thread = NULL;
6546 INIT_LIST_HEAD(&rq->migration_queue);
6547#endif
6548 atomic_set(&rq->nr_iowait, 0);
6549
dd41f596
IM
6550 array = &rq->rt.active;
6551 for (j = 0; j < MAX_RT_PRIO; j++) {
6552 INIT_LIST_HEAD(array->queue + j);
6553 __clear_bit(j, array->bitmap);
1da177e4 6554 }
476f3534 6555 highest_cpu = i;
dd41f596
IM
6556 /* delimiter for bitsearch: */
6557 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6558 }
6559
2dd73a4f 6560 set_load_weight(&init_task);
b50f60ce 6561
e107be36
AK
6562#ifdef CONFIG_PREEMPT_NOTIFIERS
6563 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6564#endif
6565
c9819f45 6566#ifdef CONFIG_SMP
476f3534 6567 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6568 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6569#endif
6570
b50f60ce
HC
6571#ifdef CONFIG_RT_MUTEXES
6572 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6573#endif
6574
1da177e4
LT
6575 /*
6576 * The boot idle thread does lazy MMU switching as well:
6577 */
6578 atomic_inc(&init_mm.mm_count);
6579 enter_lazy_tlb(&init_mm, current);
6580
6581 /*
6582 * Make us the idle thread. Technically, schedule() should not be
6583 * called from this thread, however somewhere below it might be,
6584 * but because we are the idle thread, we just pick up running again
6585 * when this runqueue becomes "idle".
6586 */
6587 init_idle(current, smp_processor_id());
dd41f596
IM
6588 /*
6589 * During early bootup we pretend to be a normal task:
6590 */
6591 current->sched_class = &fair_sched_class;
1da177e4
LT
6592}
6593
6594#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6595void __might_sleep(char *file, int line)
6596{
48f24c4d 6597#ifdef in_atomic
1da177e4
LT
6598 static unsigned long prev_jiffy; /* ratelimiting */
6599
6600 if ((in_atomic() || irqs_disabled()) &&
6601 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6602 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6603 return;
6604 prev_jiffy = jiffies;
91368d73 6605 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6606 " context at %s:%d\n", file, line);
6607 printk("in_atomic():%d, irqs_disabled():%d\n",
6608 in_atomic(), irqs_disabled());
a4c410f0 6609 debug_show_held_locks(current);
3117df04
IM
6610 if (irqs_disabled())
6611 print_irqtrace_events(current);
1da177e4
LT
6612 dump_stack();
6613 }
6614#endif
6615}
6616EXPORT_SYMBOL(__might_sleep);
6617#endif
6618
6619#ifdef CONFIG_MAGIC_SYSRQ
6620void normalize_rt_tasks(void)
6621{
a0f98a1c 6622 struct task_struct *g, *p;
1da177e4 6623 unsigned long flags;
70b97a7f 6624 struct rq *rq;
dd41f596 6625 int on_rq;
1da177e4
LT
6626
6627 read_lock_irq(&tasklist_lock);
a0f98a1c 6628 do_each_thread(g, p) {
6cfb0d5d 6629 p->se.exec_start = 0;
6cfb0d5d 6630#ifdef CONFIG_SCHEDSTATS
dd41f596 6631 p->se.wait_start = 0;
dd41f596 6632 p->se.sleep_start = 0;
dd41f596 6633 p->se.block_start = 0;
6cfb0d5d 6634#endif
dd41f596
IM
6635 task_rq(p)->clock = 0;
6636
6637 if (!rt_task(p)) {
6638 /*
6639 * Renice negative nice level userspace
6640 * tasks back to 0:
6641 */
6642 if (TASK_NICE(p) < 0 && p->mm)
6643 set_user_nice(p, 0);
1da177e4 6644 continue;
dd41f596 6645 }
1da177e4 6646
b29739f9
IM
6647 spin_lock_irqsave(&p->pi_lock, flags);
6648 rq = __task_rq_lock(p);
dd41f596
IM
6649#ifdef CONFIG_SMP
6650 /*
6651 * Do not touch the migration thread:
6652 */
6653 if (p == rq->migration_thread)
6654 goto out_unlock;
6655#endif
1da177e4 6656
2daa3577 6657 update_rq_clock(rq);
dd41f596 6658 on_rq = p->se.on_rq;
2daa3577
IM
6659 if (on_rq)
6660 deactivate_task(rq, p, 0);
dd41f596
IM
6661 __setscheduler(rq, p, SCHED_NORMAL, 0);
6662 if (on_rq) {
2daa3577 6663 activate_task(rq, p, 0);
1da177e4
LT
6664 resched_task(rq->curr);
6665 }
dd41f596
IM
6666#ifdef CONFIG_SMP
6667 out_unlock:
6668#endif
b29739f9
IM
6669 __task_rq_unlock(rq);
6670 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6671 } while_each_thread(g, p);
6672
1da177e4
LT
6673 read_unlock_irq(&tasklist_lock);
6674}
6675
6676#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6677
6678#ifdef CONFIG_IA64
6679/*
6680 * These functions are only useful for the IA64 MCA handling.
6681 *
6682 * They can only be called when the whole system has been
6683 * stopped - every CPU needs to be quiescent, and no scheduling
6684 * activity can take place. Using them for anything else would
6685 * be a serious bug, and as a result, they aren't even visible
6686 * under any other configuration.
6687 */
6688
6689/**
6690 * curr_task - return the current task for a given cpu.
6691 * @cpu: the processor in question.
6692 *
6693 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6694 */
36c8b586 6695struct task_struct *curr_task(int cpu)
1df5c10a
LT
6696{
6697 return cpu_curr(cpu);
6698}
6699
6700/**
6701 * set_curr_task - set the current task for a given cpu.
6702 * @cpu: the processor in question.
6703 * @p: the task pointer to set.
6704 *
6705 * Description: This function must only be used when non-maskable interrupts
6706 * are serviced on a separate stack. It allows the architecture to switch the
6707 * notion of the current task on a cpu in a non-blocking manner. This function
6708 * must be called with all CPU's synchronized, and interrupts disabled, the
6709 * and caller must save the original value of the current task (see
6710 * curr_task() above) and restore that value before reenabling interrupts and
6711 * re-starting the system.
6712 *
6713 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6714 */
36c8b586 6715void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6716{
6717 cpu_curr(cpu) = p;
6718}
6719
6720#endif
29f59db3
SV
6721
6722#ifdef CONFIG_FAIR_GROUP_SCHED
6723
29f59db3 6724/* allocate runqueue etc for a new task group */
4cf86d77 6725struct task_group *sched_create_group(void)
29f59db3 6726{
4cf86d77 6727 struct task_group *tg;
29f59db3
SV
6728 struct cfs_rq *cfs_rq;
6729 struct sched_entity *se;
9b5b7751 6730 struct rq *rq;
29f59db3
SV
6731 int i;
6732
29f59db3
SV
6733 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6734 if (!tg)
6735 return ERR_PTR(-ENOMEM);
6736
9b5b7751 6737 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6738 if (!tg->cfs_rq)
6739 goto err;
9b5b7751 6740 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6741 if (!tg->se)
6742 goto err;
6743
6744 for_each_possible_cpu(i) {
9b5b7751 6745 rq = cpu_rq(i);
29f59db3
SV
6746
6747 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6748 cpu_to_node(i));
6749 if (!cfs_rq)
6750 goto err;
6751
6752 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6753 cpu_to_node(i));
6754 if (!se)
6755 goto err;
6756
6757 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6758 memset(se, 0, sizeof(struct sched_entity));
6759
6760 tg->cfs_rq[i] = cfs_rq;
6761 init_cfs_rq(cfs_rq, rq);
6762 cfs_rq->tg = tg;
29f59db3
SV
6763
6764 tg->se[i] = se;
6765 se->cfs_rq = &rq->cfs;
6766 se->my_q = cfs_rq;
6767 se->load.weight = NICE_0_LOAD;
6768 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6769 se->parent = NULL;
6770 }
6771
9b5b7751
SV
6772 for_each_possible_cpu(i) {
6773 rq = cpu_rq(i);
6774 cfs_rq = tg->cfs_rq[i];
6775 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6776 }
29f59db3 6777
9b5b7751 6778 tg->shares = NICE_0_LOAD;
29f59db3 6779
9b5b7751 6780 return tg;
29f59db3
SV
6781
6782err:
6783 for_each_possible_cpu(i) {
a65914b3 6784 if (tg->cfs_rq)
29f59db3 6785 kfree(tg->cfs_rq[i]);
a65914b3 6786 if (tg->se)
29f59db3
SV
6787 kfree(tg->se[i]);
6788 }
a65914b3
IM
6789 kfree(tg->cfs_rq);
6790 kfree(tg->se);
6791 kfree(tg);
29f59db3
SV
6792
6793 return ERR_PTR(-ENOMEM);
6794}
6795
9b5b7751
SV
6796/* rcu callback to free various structures associated with a task group */
6797static void free_sched_group(struct rcu_head *rhp)
29f59db3 6798{
9b5b7751 6799 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6800 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6801 struct sched_entity *se;
6802 int i;
6803
29f59db3
SV
6804 /* now it should be safe to free those cfs_rqs */
6805 for_each_possible_cpu(i) {
6806 cfs_rq = tg->cfs_rq[i];
6807 kfree(cfs_rq);
6808
6809 se = tg->se[i];
6810 kfree(se);
6811 }
6812
6813 kfree(tg->cfs_rq);
6814 kfree(tg->se);
6815 kfree(tg);
6816}
6817
9b5b7751 6818/* Destroy runqueue etc associated with a task group */
4cf86d77 6819void sched_destroy_group(struct task_group *tg)
29f59db3 6820{
9b5b7751
SV
6821 struct cfs_rq *cfs_rq;
6822 int i;
29f59db3 6823
9b5b7751
SV
6824 for_each_possible_cpu(i) {
6825 cfs_rq = tg->cfs_rq[i];
6826 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6827 }
6828
6829 cfs_rq = tg->cfs_rq[0];
6830
6831 /* wait for possible concurrent references to cfs_rqs complete */
6832 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6833}
6834
9b5b7751 6835/* change task's runqueue when it moves between groups.
3a252015
IM
6836 * The caller of this function should have put the task in its new group
6837 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6838 * reflect its new group.
9b5b7751
SV
6839 */
6840void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6841{
6842 int on_rq, running;
6843 unsigned long flags;
6844 struct rq *rq;
6845
6846 rq = task_rq_lock(tsk, &flags);
6847
6848 if (tsk->sched_class != &fair_sched_class)
6849 goto done;
6850
6851 update_rq_clock(rq);
6852
6853 running = task_running(rq, tsk);
6854 on_rq = tsk->se.on_rq;
6855
83b699ed 6856 if (on_rq) {
29f59db3 6857 dequeue_task(rq, tsk, 0);
83b699ed
SV
6858 if (unlikely(running))
6859 tsk->sched_class->put_prev_task(rq, tsk);
6860 }
29f59db3
SV
6861
6862 set_task_cfs_rq(tsk);
6863
83b699ed
SV
6864 if (on_rq) {
6865 if (unlikely(running))
6866 tsk->sched_class->set_curr_task(rq);
7074badb 6867 enqueue_task(rq, tsk, 0);
83b699ed 6868 }
29f59db3
SV
6869
6870done:
6871 task_rq_unlock(rq, &flags);
6872}
6873
6874static void set_se_shares(struct sched_entity *se, unsigned long shares)
6875{
6876 struct cfs_rq *cfs_rq = se->cfs_rq;
6877 struct rq *rq = cfs_rq->rq;
6878 int on_rq;
6879
6880 spin_lock_irq(&rq->lock);
6881
6882 on_rq = se->on_rq;
6883 if (on_rq)
6884 dequeue_entity(cfs_rq, se, 0);
6885
6886 se->load.weight = shares;
6887 se->load.inv_weight = div64_64((1ULL<<32), shares);
6888
6889 if (on_rq)
6890 enqueue_entity(cfs_rq, se, 0);
6891
6892 spin_unlock_irq(&rq->lock);
6893}
6894
4cf86d77 6895int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6896{
6897 int i;
29f59db3 6898
9b5b7751
SV
6899 if (tg->shares == shares)
6900 return 0;
29f59db3 6901
9b5b7751 6902 /* return -EINVAL if the new value is not sane */
29f59db3 6903
9b5b7751 6904 tg->shares = shares;
29f59db3 6905 for_each_possible_cpu(i)
9b5b7751 6906 set_se_shares(tg->se[i], shares);
29f59db3 6907
9b5b7751 6908 return 0;
29f59db3
SV
6909}
6910
3a252015 6911#endif /* CONFIG_FAIR_GROUP_SCHED */