]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/sched.c
sched: Add p->pi_lock to task_rq_lock()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 602 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
5091faa4 608 struct task_group *tg;
dc61b1d6
PZ
609 struct cgroup_subsys_state *css;
610
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 612 lockdep_is_held(&p->pi_lock));
5091faa4
MG
613 tg = container_of(css, struct task_group, css);
614
615 return autogroup_task_group(p, tg);
dc61b1d6
PZ
616}
617
618/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
620{
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624#endif
625
626#ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629#endif
630}
631
632#else /* CONFIG_CGROUP_SCHED */
633
634static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635static inline struct task_group *task_group(struct task_struct *p)
636{
637 return NULL;
638}
639
640#endif /* CONFIG_CGROUP_SCHED */
641
fe44d621 642static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 643
fe44d621 644static void update_rq_clock(struct rq *rq)
3e51f33f 645{
fe44d621 646 s64 delta;
305e6835 647
f26f9aff
MG
648 if (rq->skip_clock_update)
649 return;
aa483808 650
fe44d621
PZ
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
3e51f33f
PZ
654}
655
bf5c91ba
IM
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
017730c1 665/**
1fd06bb1 666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 667 * @cpu: the processor in question.
017730c1 668 *
017730c1
IM
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
524429c3 742 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
3ca7a440
PZ
846#ifdef CONFIG_SMP
847 return p->on_cpu;
848#else
051a1d1a 849 return task_current(rq, p);
3ca7a440 850#endif
4866cde0
NP
851}
852
3ca7a440 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 855{
3ca7a440
PZ
856#ifdef CONFIG_SMP
857 /*
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
860 * here.
861 */
862 next->on_cpu = 1;
863#endif
4866cde0
NP
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
3ca7a440
PZ
868#ifdef CONFIG_SMP
869 /*
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
872 * finished.
873 */
874 smp_wmb();
875 prev->on_cpu = 0;
876#endif
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
3ca7a440 900 next->on_cpu = 1;
4866cde0
NP
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
3ca7a440 913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
3ca7a440 918 prev->on_cpu = 0;
4866cde0
NP
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
0122ec5b 927 * __task_rq_lock - lock the rq @p resides on.
b29739f9 928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
0122ec5b
PZ
934 lockdep_assert_held(&p->pi_lock);
935
3a5c359a 936 for (;;) {
0970d299 937 rq = task_rq(p);
05fa785c 938 raw_spin_lock(&rq->lock);
65cc8e48 939 if (likely(rq == task_rq(p)))
3a5c359a 940 return rq;
05fa785c 941 raw_spin_unlock(&rq->lock);
b29739f9 942 }
b29739f9
IM
943}
944
1da177e4 945/*
0122ec5b 946 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 949 __acquires(p->pi_lock)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a 954 for (;;) {
0122ec5b 955 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 956 rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
65cc8e48 958 if (likely(rq == task_rq(p)))
3a5c359a 959 return rq;
0122ec5b
PZ
960 raw_spin_unlock(&rq->lock);
961 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 962 }
1da177e4
LT
963}
964
a9957449 965static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
966 __releases(rq->lock)
967{
05fa785c 968 raw_spin_unlock(&rq->lock);
b29739f9
IM
969}
970
0122ec5b
PZ
971static inline void
972task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 973 __releases(rq->lock)
0122ec5b 974 __releases(p->pi_lock)
1da177e4 975{
0122ec5b
PZ
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
978}
979
1da177e4 980/*
cc2a73b5 981 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 982 */
a9957449 983static struct rq *this_rq_lock(void)
1da177e4
LT
984 __acquires(rq->lock)
985{
70b97a7f 986 struct rq *rq;
1da177e4
LT
987
988 local_irq_disable();
989 rq = this_rq();
05fa785c 990 raw_spin_lock(&rq->lock);
1da177e4
LT
991
992 return rq;
993}
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996/*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
8f4d37ec
PZ
1006
1007/*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012static inline int hrtick_enabled(struct rq *rq)
1013{
1014 if (!sched_feat(HRTICK))
1015 return 0;
ba42059f 1016 if (!cpu_active(cpu_of(rq)))
b328ca18 1017 return 0;
8f4d37ec
PZ
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019}
1020
8f4d37ec
PZ
1021static void hrtick_clear(struct rq *rq)
1022{
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027/*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032{
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
05fa785c 1037 raw_spin_lock(&rq->lock);
3e51f33f 1038 update_rq_clock(rq);
8f4d37ec 1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1040 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1041
1042 return HRTIMER_NORESTART;
1043}
1044
95e904c7 1045#ifdef CONFIG_SMP
31656519
PZ
1046/*
1047 * called from hardirq (IPI) context
1048 */
1049static void __hrtick_start(void *arg)
b328ca18 1050{
31656519 1051 struct rq *rq = arg;
b328ca18 1052
05fa785c 1053 raw_spin_lock(&rq->lock);
31656519
PZ
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
05fa785c 1056 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1057}
1058
31656519
PZ
1059/*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1065{
31656519
PZ
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1068
cc584b21 1069 hrtimer_set_expires(timer, time);
31656519
PZ
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
6e275637 1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1075 rq->hrtick_csd_pending = 1;
1076 }
b328ca18
PZ
1077}
1078
1079static int
1080hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081{
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
31656519 1091 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096}
1097
fa748203 1098static __init void init_hrtick(void)
b328ca18
PZ
1099{
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101}
31656519
PZ
1102#else
1103/*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108static void hrtick_start(struct rq *rq, u64 delay)
1109{
7f1e2ca9 1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1111 HRTIMER_MODE_REL_PINNED, 0);
31656519 1112}
b328ca18 1113
006c75f1 1114static inline void init_hrtick(void)
8f4d37ec 1115{
8f4d37ec 1116}
31656519 1117#endif /* CONFIG_SMP */
8f4d37ec 1118
31656519 1119static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1120{
31656519
PZ
1121#ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
8f4d37ec 1123
31656519
PZ
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127#endif
8f4d37ec 1128
31656519
PZ
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
8f4d37ec 1131}
006c75f1 1132#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1133static inline void hrtick_clear(struct rq *rq)
1134{
1135}
1136
8f4d37ec
PZ
1137static inline void init_rq_hrtick(struct rq *rq)
1138{
1139}
1140
b328ca18
PZ
1141static inline void init_hrtick(void)
1142{
1143}
006c75f1 1144#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1145
c24d20db
IM
1146/*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153#ifdef CONFIG_SMP
1154
1155#ifndef tsk_is_polling
1156#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157#endif
1158
31656519 1159static void resched_task(struct task_struct *p)
c24d20db
IM
1160{
1161 int cpu;
1162
05fa785c 1163 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1164
5ed0cec0 1165 if (test_tsk_need_resched(p))
c24d20db
IM
1166 return;
1167
5ed0cec0 1168 set_tsk_need_resched(p);
c24d20db
IM
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178}
1179
1180static void resched_cpu(int cpu)
1181{
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
05fa785c 1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1186 return;
1187 resched_task(cpu_curr(cpu));
05fa785c 1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1189}
06d8308c
TG
1190
1191#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1192/*
1193 * In the semi idle case, use the nearest busy cpu for migrating timers
1194 * from an idle cpu. This is good for power-savings.
1195 *
1196 * We don't do similar optimization for completely idle system, as
1197 * selecting an idle cpu will add more delays to the timers than intended
1198 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1199 */
1200int get_nohz_timer_target(void)
1201{
1202 int cpu = smp_processor_id();
1203 int i;
1204 struct sched_domain *sd;
1205
1206 for_each_domain(cpu, sd) {
1207 for_each_cpu(i, sched_domain_span(sd))
1208 if (!idle_cpu(i))
1209 return i;
1210 }
1211 return cpu;
1212}
06d8308c
TG
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
39c0cbe2 1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1265 /*
1266 * Inline assembly required to prevent the compiler
1267 * optimising this loop into a divmod call.
1268 * See __iter_div_u64_rem() for another example of this.
1269 */
1270 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274}
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280}
1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db 1284{
05fa785c 1285 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
e9e9250b
PZ
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291}
da2b71ed
SS
1292
1293static void sched_avg_update(struct rq *rq)
1294{
1295}
6d6bc0ad 1296#endif /* CONFIG_SMP */
c24d20db 1297
45bf76df
IM
1298#if BITS_PER_LONG == 32
1299# define WMULT_CONST (~0UL)
1300#else
1301# define WMULT_CONST (1UL << 32)
1302#endif
1303
1304#define WMULT_SHIFT 32
1305
194081eb
IM
1306/*
1307 * Shift right and round:
1308 */
cf2ab469 1309#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1310
a7be37ac
PZ
1311/*
1312 * delta *= weight / lw
1313 */
cb1c4fc9 1314static unsigned long
45bf76df
IM
1315calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1316 struct load_weight *lw)
1317{
1318 u64 tmp;
1319
7a232e03
LJ
1320 if (!lw->inv_weight) {
1321 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1322 lw->inv_weight = 1;
1323 else
1324 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1325 / (lw->weight+1);
1326 }
45bf76df
IM
1327
1328 tmp = (u64)delta_exec * weight;
1329 /*
1330 * Check whether we'd overflow the 64-bit multiplication:
1331 */
194081eb 1332 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1333 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1334 WMULT_SHIFT/2);
1335 else
cf2ab469 1336 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1337
ecf691da 1338 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1339}
1340
1091985b 1341static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1342{
1343 lw->weight += inc;
e89996ae 1344 lw->inv_weight = 0;
45bf76df
IM
1345}
1346
1091985b 1347static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1348{
1349 lw->weight -= dec;
e89996ae 1350 lw->inv_weight = 0;
45bf76df
IM
1351}
1352
2069dd75
PZ
1353static inline void update_load_set(struct load_weight *lw, unsigned long w)
1354{
1355 lw->weight = w;
1356 lw->inv_weight = 0;
1357}
1358
2dd73a4f
PW
1359/*
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1366 */
1367
cce7ade8
PZ
1368#define WEIGHT_IDLEPRIO 3
1369#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1370
1371/*
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1376 *
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
dd41f596
IM
1382 */
1383static const int prio_to_weight[40] = {
254753dc
IM
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1392};
1393
5714d2de
IM
1394/*
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 *
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1400 */
dd41f596 1401static const u32 prio_to_wmult[40] = {
254753dc
IM
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1410};
2dd73a4f 1411
ef12fefa
BR
1412/* Time spent by the tasks of the cpu accounting group executing in ... */
1413enum cpuacct_stat_index {
1414 CPUACCT_STAT_USER, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1416
1417 CPUACCT_STAT_NSTATS,
1418};
1419
d842de87
SV
1420#ifdef CONFIG_CGROUP_CPUACCT
1421static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1422static void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1424#else
1425static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1426static inline void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1428#endif
1429
18d95a28
PZ
1430static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_add(&rq->load, load);
1433}
1434
1435static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_sub(&rq->load, load);
1438}
1439
7940ca36 1440#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1441typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1442
1443/*
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1446 */
eb755805 1447static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1448{
1449 struct task_group *parent, *child;
eb755805 1450 int ret;
c09595f6
PZ
1451
1452 rcu_read_lock();
1453 parent = &root_task_group;
1454down:
eb755805
PZ
1455 ret = (*down)(parent, data);
1456 if (ret)
1457 goto out_unlock;
c09595f6
PZ
1458 list_for_each_entry_rcu(child, &parent->children, siblings) {
1459 parent = child;
1460 goto down;
1461
1462up:
1463 continue;
1464 }
eb755805
PZ
1465 ret = (*up)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468
1469 child = parent;
1470 parent = parent->parent;
1471 if (parent)
1472 goto up;
eb755805 1473out_unlock:
c09595f6 1474 rcu_read_unlock();
eb755805
PZ
1475
1476 return ret;
c09595f6
PZ
1477}
1478
eb755805
PZ
1479static int tg_nop(struct task_group *tg, void *data)
1480{
1481 return 0;
c09595f6 1482}
eb755805
PZ
1483#endif
1484
1485#ifdef CONFIG_SMP
f5f08f39
PZ
1486/* Used instead of source_load when we know the type == 0 */
1487static unsigned long weighted_cpuload(const int cpu)
1488{
1489 return cpu_rq(cpu)->load.weight;
1490}
1491
1492/*
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 *
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1498 */
1499static unsigned long source_load(int cpu, int type)
1500{
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1503
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1506
1507 return min(rq->cpu_load[type-1], total);
1508}
1509
1510/*
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1513 */
1514static unsigned long target_load(int cpu, int type)
1515{
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1518
1519 if (type == 0 || !sched_feat(LB_BIAS))
1520 return total;
1521
1522 return max(rq->cpu_load[type-1], total);
1523}
1524
ae154be1
PZ
1525static unsigned long power_of(int cpu)
1526{
e51fd5e2 1527 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1528}
1529
eb755805
PZ
1530static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531
1532static unsigned long cpu_avg_load_per_task(int cpu)
1533{
1534 struct rq *rq = cpu_rq(cpu);
af6d596f 1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1536
4cd42620
SR
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1539 else
1540 rq->avg_load_per_task = 0;
eb755805
PZ
1541
1542 return rq->avg_load_per_task;
1543}
1544
1545#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1546
c09595f6 1547/*
c8cba857
PZ
1548 * Compute the cpu's hierarchical load factor for each task group.
1549 * This needs to be done in a top-down fashion because the load of a child
1550 * group is a fraction of its parents load.
c09595f6 1551 */
eb755805 1552static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1553{
c8cba857 1554 unsigned long load;
eb755805 1555 long cpu = (long)data;
c09595f6 1556
c8cba857
PZ
1557 if (!tg->parent) {
1558 load = cpu_rq(cpu)->load.weight;
1559 } else {
1560 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1561 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1562 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1563 }
c09595f6 1564
c8cba857 1565 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1566
eb755805 1567 return 0;
c09595f6
PZ
1568}
1569
eb755805 1570static void update_h_load(long cpu)
c09595f6 1571{
eb755805 1572 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1573}
1574
18d95a28
PZ
1575#endif
1576
8f45e2b5
GH
1577#ifdef CONFIG_PREEMPT
1578
b78bb868
PZ
1579static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1580
70574a99 1581/*
8f45e2b5
GH
1582 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1583 * way at the expense of forcing extra atomic operations in all
1584 * invocations. This assures that the double_lock is acquired using the
1585 * same underlying policy as the spinlock_t on this architecture, which
1586 * reduces latency compared to the unfair variant below. However, it
1587 * also adds more overhead and therefore may reduce throughput.
70574a99 1588 */
8f45e2b5
GH
1589static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1590 __releases(this_rq->lock)
1591 __acquires(busiest->lock)
1592 __acquires(this_rq->lock)
1593{
05fa785c 1594 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1595 double_rq_lock(this_rq, busiest);
1596
1597 return 1;
1598}
1599
1600#else
1601/*
1602 * Unfair double_lock_balance: Optimizes throughput at the expense of
1603 * latency by eliminating extra atomic operations when the locks are
1604 * already in proper order on entry. This favors lower cpu-ids and will
1605 * grant the double lock to lower cpus over higher ids under contention,
1606 * regardless of entry order into the function.
1607 */
1608static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1609 __releases(this_rq->lock)
1610 __acquires(busiest->lock)
1611 __acquires(this_rq->lock)
1612{
1613 int ret = 0;
1614
05fa785c 1615 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1616 if (busiest < this_rq) {
05fa785c
TG
1617 raw_spin_unlock(&this_rq->lock);
1618 raw_spin_lock(&busiest->lock);
1619 raw_spin_lock_nested(&this_rq->lock,
1620 SINGLE_DEPTH_NESTING);
70574a99
AD
1621 ret = 1;
1622 } else
05fa785c
TG
1623 raw_spin_lock_nested(&busiest->lock,
1624 SINGLE_DEPTH_NESTING);
70574a99
AD
1625 }
1626 return ret;
1627}
1628
8f45e2b5
GH
1629#endif /* CONFIG_PREEMPT */
1630
1631/*
1632 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1633 */
1634static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1635{
1636 if (unlikely(!irqs_disabled())) {
1637 /* printk() doesn't work good under rq->lock */
05fa785c 1638 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1639 BUG_ON(1);
1640 }
1641
1642 return _double_lock_balance(this_rq, busiest);
1643}
1644
70574a99
AD
1645static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1646 __releases(busiest->lock)
1647{
05fa785c 1648 raw_spin_unlock(&busiest->lock);
70574a99
AD
1649 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1650}
1e3c88bd
PZ
1651
1652/*
1653 * double_rq_lock - safely lock two runqueues
1654 *
1655 * Note this does not disable interrupts like task_rq_lock,
1656 * you need to do so manually before calling.
1657 */
1658static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1659 __acquires(rq1->lock)
1660 __acquires(rq2->lock)
1661{
1662 BUG_ON(!irqs_disabled());
1663 if (rq1 == rq2) {
1664 raw_spin_lock(&rq1->lock);
1665 __acquire(rq2->lock); /* Fake it out ;) */
1666 } else {
1667 if (rq1 < rq2) {
1668 raw_spin_lock(&rq1->lock);
1669 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1670 } else {
1671 raw_spin_lock(&rq2->lock);
1672 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1673 }
1674 }
1e3c88bd
PZ
1675}
1676
1677/*
1678 * double_rq_unlock - safely unlock two runqueues
1679 *
1680 * Note this does not restore interrupts like task_rq_unlock,
1681 * you need to do so manually after calling.
1682 */
1683static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1684 __releases(rq1->lock)
1685 __releases(rq2->lock)
1686{
1687 raw_spin_unlock(&rq1->lock);
1688 if (rq1 != rq2)
1689 raw_spin_unlock(&rq2->lock);
1690 else
1691 __release(rq2->lock);
1692}
1693
d95f4122
MG
1694#else /* CONFIG_SMP */
1695
1696/*
1697 * double_rq_lock - safely lock two runqueues
1698 *
1699 * Note this does not disable interrupts like task_rq_lock,
1700 * you need to do so manually before calling.
1701 */
1702static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1703 __acquires(rq1->lock)
1704 __acquires(rq2->lock)
1705{
1706 BUG_ON(!irqs_disabled());
1707 BUG_ON(rq1 != rq2);
1708 raw_spin_lock(&rq1->lock);
1709 __acquire(rq2->lock); /* Fake it out ;) */
1710}
1711
1712/*
1713 * double_rq_unlock - safely unlock two runqueues
1714 *
1715 * Note this does not restore interrupts like task_rq_unlock,
1716 * you need to do so manually after calling.
1717 */
1718static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1719 __releases(rq1->lock)
1720 __releases(rq2->lock)
1721{
1722 BUG_ON(rq1 != rq2);
1723 raw_spin_unlock(&rq1->lock);
1724 __release(rq2->lock);
1725}
1726
18d95a28
PZ
1727#endif
1728
74f5187a 1729static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1730static void update_sysctl(void);
acb4a848 1731static int get_update_sysctl_factor(void);
fdf3e95d 1732static void update_cpu_load(struct rq *this_rq);
dce48a84 1733
cd29fe6f
PZ
1734static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1735{
1736 set_task_rq(p, cpu);
1737#ifdef CONFIG_SMP
1738 /*
1739 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1740 * successfuly executed on another CPU. We must ensure that updates of
1741 * per-task data have been completed by this moment.
1742 */
1743 smp_wmb();
1744 task_thread_info(p)->cpu = cpu;
1745#endif
1746}
dce48a84 1747
1e3c88bd 1748static const struct sched_class rt_sched_class;
dd41f596 1749
34f971f6 1750#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1751#define for_each_class(class) \
1752 for (class = sched_class_highest; class; class = class->next)
dd41f596 1753
1e3c88bd
PZ
1754#include "sched_stats.h"
1755
c09595f6 1756static void inc_nr_running(struct rq *rq)
9c217245
IM
1757{
1758 rq->nr_running++;
9c217245
IM
1759}
1760
c09595f6 1761static void dec_nr_running(struct rq *rq)
9c217245
IM
1762{
1763 rq->nr_running--;
9c217245
IM
1764}
1765
45bf76df
IM
1766static void set_load_weight(struct task_struct *p)
1767{
dd41f596
IM
1768 /*
1769 * SCHED_IDLE tasks get minimal weight:
1770 */
1771 if (p->policy == SCHED_IDLE) {
1772 p->se.load.weight = WEIGHT_IDLEPRIO;
1773 p->se.load.inv_weight = WMULT_IDLEPRIO;
1774 return;
1775 }
71f8bd46 1776
dd41f596
IM
1777 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1778 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1779}
1780
371fd7e7 1781static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1782{
a64692a3 1783 update_rq_clock(rq);
dd41f596 1784 sched_info_queued(p);
371fd7e7 1785 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1786}
1787
371fd7e7 1788static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1789{
a64692a3 1790 update_rq_clock(rq);
46ac22ba 1791 sched_info_dequeued(p);
371fd7e7 1792 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1793}
1794
1e3c88bd
PZ
1795/*
1796 * activate_task - move a task to the runqueue.
1797 */
371fd7e7 1798static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1799{
1800 if (task_contributes_to_load(p))
1801 rq->nr_uninterruptible--;
1802
371fd7e7 1803 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1804 inc_nr_running(rq);
1805}
1806
1807/*
1808 * deactivate_task - remove a task from the runqueue.
1809 */
371fd7e7 1810static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1811{
1812 if (task_contributes_to_load(p))
1813 rq->nr_uninterruptible++;
1814
371fd7e7 1815 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1816 dec_nr_running(rq);
1817}
1818
b52bfee4
VP
1819#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1820
305e6835
VP
1821/*
1822 * There are no locks covering percpu hardirq/softirq time.
1823 * They are only modified in account_system_vtime, on corresponding CPU
1824 * with interrupts disabled. So, writes are safe.
1825 * They are read and saved off onto struct rq in update_rq_clock().
1826 * This may result in other CPU reading this CPU's irq time and can
1827 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1828 * or new value with a side effect of accounting a slice of irq time to wrong
1829 * task when irq is in progress while we read rq->clock. That is a worthy
1830 * compromise in place of having locks on each irq in account_system_time.
305e6835 1831 */
b52bfee4
VP
1832static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1833static DEFINE_PER_CPU(u64, cpu_softirq_time);
1834
1835static DEFINE_PER_CPU(u64, irq_start_time);
1836static int sched_clock_irqtime;
1837
1838void enable_sched_clock_irqtime(void)
1839{
1840 sched_clock_irqtime = 1;
1841}
1842
1843void disable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 0;
1846}
1847
8e92c201
PZ
1848#ifndef CONFIG_64BIT
1849static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1850
1851static inline void irq_time_write_begin(void)
1852{
1853 __this_cpu_inc(irq_time_seq.sequence);
1854 smp_wmb();
1855}
1856
1857static inline void irq_time_write_end(void)
1858{
1859 smp_wmb();
1860 __this_cpu_inc(irq_time_seq.sequence);
1861}
1862
1863static inline u64 irq_time_read(int cpu)
1864{
1865 u64 irq_time;
1866 unsigned seq;
1867
1868 do {
1869 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1870 irq_time = per_cpu(cpu_softirq_time, cpu) +
1871 per_cpu(cpu_hardirq_time, cpu);
1872 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1873
1874 return irq_time;
1875}
1876#else /* CONFIG_64BIT */
1877static inline void irq_time_write_begin(void)
1878{
1879}
1880
1881static inline void irq_time_write_end(void)
1882{
1883}
1884
1885static inline u64 irq_time_read(int cpu)
305e6835 1886{
305e6835
VP
1887 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1888}
8e92c201 1889#endif /* CONFIG_64BIT */
305e6835 1890
fe44d621
PZ
1891/*
1892 * Called before incrementing preempt_count on {soft,}irq_enter
1893 * and before decrementing preempt_count on {soft,}irq_exit.
1894 */
b52bfee4
VP
1895void account_system_vtime(struct task_struct *curr)
1896{
1897 unsigned long flags;
fe44d621 1898 s64 delta;
b52bfee4 1899 int cpu;
b52bfee4
VP
1900
1901 if (!sched_clock_irqtime)
1902 return;
1903
1904 local_irq_save(flags);
1905
b52bfee4 1906 cpu = smp_processor_id();
fe44d621
PZ
1907 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1908 __this_cpu_add(irq_start_time, delta);
1909
8e92c201 1910 irq_time_write_begin();
b52bfee4
VP
1911 /*
1912 * We do not account for softirq time from ksoftirqd here.
1913 * We want to continue accounting softirq time to ksoftirqd thread
1914 * in that case, so as not to confuse scheduler with a special task
1915 * that do not consume any time, but still wants to run.
1916 */
1917 if (hardirq_count())
fe44d621 1918 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1919 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1920 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1921
8e92c201 1922 irq_time_write_end();
b52bfee4
VP
1923 local_irq_restore(flags);
1924}
b7dadc38 1925EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1926
fe44d621 1927static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1928{
fe44d621
PZ
1929 s64 irq_delta;
1930
8e92c201 1931 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1932
1933 /*
1934 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1935 * this case when a previous update_rq_clock() happened inside a
1936 * {soft,}irq region.
1937 *
1938 * When this happens, we stop ->clock_task and only update the
1939 * prev_irq_time stamp to account for the part that fit, so that a next
1940 * update will consume the rest. This ensures ->clock_task is
1941 * monotonic.
1942 *
1943 * It does however cause some slight miss-attribution of {soft,}irq
1944 * time, a more accurate solution would be to update the irq_time using
1945 * the current rq->clock timestamp, except that would require using
1946 * atomic ops.
1947 */
1948 if (irq_delta > delta)
1949 irq_delta = delta;
1950
1951 rq->prev_irq_time += irq_delta;
1952 delta -= irq_delta;
1953 rq->clock_task += delta;
1954
1955 if (irq_delta && sched_feat(NONIRQ_POWER))
1956 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1957}
1958
abb74cef
VP
1959static int irqtime_account_hi_update(void)
1960{
1961 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1962 unsigned long flags;
1963 u64 latest_ns;
1964 int ret = 0;
1965
1966 local_irq_save(flags);
1967 latest_ns = this_cpu_read(cpu_hardirq_time);
1968 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1969 ret = 1;
1970 local_irq_restore(flags);
1971 return ret;
1972}
1973
1974static int irqtime_account_si_update(void)
1975{
1976 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1977 unsigned long flags;
1978 u64 latest_ns;
1979 int ret = 0;
1980
1981 local_irq_save(flags);
1982 latest_ns = this_cpu_read(cpu_softirq_time);
1983 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1984 ret = 1;
1985 local_irq_restore(flags);
1986 return ret;
1987}
1988
fe44d621 1989#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1990
abb74cef
VP
1991#define sched_clock_irqtime (0)
1992
fe44d621 1993static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1994{
fe44d621 1995 rq->clock_task += delta;
305e6835
VP
1996}
1997
fe44d621 1998#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1999
1e3c88bd
PZ
2000#include "sched_idletask.c"
2001#include "sched_fair.c"
2002#include "sched_rt.c"
5091faa4 2003#include "sched_autogroup.c"
34f971f6 2004#include "sched_stoptask.c"
1e3c88bd
PZ
2005#ifdef CONFIG_SCHED_DEBUG
2006# include "sched_debug.c"
2007#endif
2008
34f971f6
PZ
2009void sched_set_stop_task(int cpu, struct task_struct *stop)
2010{
2011 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2012 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2013
2014 if (stop) {
2015 /*
2016 * Make it appear like a SCHED_FIFO task, its something
2017 * userspace knows about and won't get confused about.
2018 *
2019 * Also, it will make PI more or less work without too
2020 * much confusion -- but then, stop work should not
2021 * rely on PI working anyway.
2022 */
2023 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2024
2025 stop->sched_class = &stop_sched_class;
2026 }
2027
2028 cpu_rq(cpu)->stop = stop;
2029
2030 if (old_stop) {
2031 /*
2032 * Reset it back to a normal scheduling class so that
2033 * it can die in pieces.
2034 */
2035 old_stop->sched_class = &rt_sched_class;
2036 }
2037}
2038
14531189 2039/*
dd41f596 2040 * __normal_prio - return the priority that is based on the static prio
14531189 2041 */
14531189
IM
2042static inline int __normal_prio(struct task_struct *p)
2043{
dd41f596 2044 return p->static_prio;
14531189
IM
2045}
2046
b29739f9
IM
2047/*
2048 * Calculate the expected normal priority: i.e. priority
2049 * without taking RT-inheritance into account. Might be
2050 * boosted by interactivity modifiers. Changes upon fork,
2051 * setprio syscalls, and whenever the interactivity
2052 * estimator recalculates.
2053 */
36c8b586 2054static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2055{
2056 int prio;
2057
e05606d3 2058 if (task_has_rt_policy(p))
b29739f9
IM
2059 prio = MAX_RT_PRIO-1 - p->rt_priority;
2060 else
2061 prio = __normal_prio(p);
2062 return prio;
2063}
2064
2065/*
2066 * Calculate the current priority, i.e. the priority
2067 * taken into account by the scheduler. This value might
2068 * be boosted by RT tasks, or might be boosted by
2069 * interactivity modifiers. Will be RT if the task got
2070 * RT-boosted. If not then it returns p->normal_prio.
2071 */
36c8b586 2072static int effective_prio(struct task_struct *p)
b29739f9
IM
2073{
2074 p->normal_prio = normal_prio(p);
2075 /*
2076 * If we are RT tasks or we were boosted to RT priority,
2077 * keep the priority unchanged. Otherwise, update priority
2078 * to the normal priority:
2079 */
2080 if (!rt_prio(p->prio))
2081 return p->normal_prio;
2082 return p->prio;
2083}
2084
1da177e4
LT
2085/**
2086 * task_curr - is this task currently executing on a CPU?
2087 * @p: the task in question.
2088 */
36c8b586 2089inline int task_curr(const struct task_struct *p)
1da177e4
LT
2090{
2091 return cpu_curr(task_cpu(p)) == p;
2092}
2093
cb469845
SR
2094static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2095 const struct sched_class *prev_class,
da7a735e 2096 int oldprio)
cb469845
SR
2097{
2098 if (prev_class != p->sched_class) {
2099 if (prev_class->switched_from)
da7a735e
PZ
2100 prev_class->switched_from(rq, p);
2101 p->sched_class->switched_to(rq, p);
2102 } else if (oldprio != p->prio)
2103 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2104}
2105
1e5a7405
PZ
2106static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2107{
2108 const struct sched_class *class;
2109
2110 if (p->sched_class == rq->curr->sched_class) {
2111 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2112 } else {
2113 for_each_class(class) {
2114 if (class == rq->curr->sched_class)
2115 break;
2116 if (class == p->sched_class) {
2117 resched_task(rq->curr);
2118 break;
2119 }
2120 }
2121 }
2122
2123 /*
2124 * A queue event has occurred, and we're going to schedule. In
2125 * this case, we can save a useless back to back clock update.
2126 */
fd2f4419 2127 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2128 rq->skip_clock_update = 1;
2129}
2130
1da177e4 2131#ifdef CONFIG_SMP
cc367732
IM
2132/*
2133 * Is this task likely cache-hot:
2134 */
e7693a36 2135static int
cc367732
IM
2136task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2137{
2138 s64 delta;
2139
e6c8fba7
PZ
2140 if (p->sched_class != &fair_sched_class)
2141 return 0;
2142
ef8002f6
NR
2143 if (unlikely(p->policy == SCHED_IDLE))
2144 return 0;
2145
f540a608
IM
2146 /*
2147 * Buddy candidates are cache hot:
2148 */
f685ceac 2149 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2150 (&p->se == cfs_rq_of(&p->se)->next ||
2151 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2152 return 1;
2153
6bc1665b
IM
2154 if (sysctl_sched_migration_cost == -1)
2155 return 1;
2156 if (sysctl_sched_migration_cost == 0)
2157 return 0;
2158
cc367732
IM
2159 delta = now - p->se.exec_start;
2160
2161 return delta < (s64)sysctl_sched_migration_cost;
2162}
2163
dd41f596 2164void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2165{
e2912009
PZ
2166#ifdef CONFIG_SCHED_DEBUG
2167 /*
2168 * We should never call set_task_cpu() on a blocked task,
2169 * ttwu() will sort out the placement.
2170 */
077614ee
PZ
2171 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2172 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2173
2174#ifdef CONFIG_LOCKDEP
2175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2176 lockdep_is_held(&task_rq(p)->lock)));
2177#endif
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
7608dec2 2201static bool need_migrate_task(struct task_struct *p)
1da177e4 2202{
1da177e4
LT
2203 /*
2204 * If the task is not on a runqueue (and not running), then
e2912009 2205 * the next wake-up will properly place the task.
1da177e4 2206 */
7608dec2
PZ
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2209 return running;
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a 2268 running = task_running(rq, p);
fd2f4419 2269 on_rq = p->on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2273 task_rq_unlock(rq, p, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
8eb90c30
TG
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2306 continue;
2307 }
fa490cfd 2308
3a5c359a
AK
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
85ba2d86
RM
2316
2317 return ncsw;
1da177e4
LT
2318}
2319
2320/***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
25985edc 2327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
36c8b586 2333void kick_process(struct task_struct *p)
1da177e4
LT
2334{
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342}
b43e3521 2343EXPORT_SYMBOL_GPL(kick_process);
476d139c 2344#endif /* CONFIG_SMP */
1da177e4 2345
970b13ba 2346#ifdef CONFIG_SMP
30da688e 2347/*
013fdb80 2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2349 */
5da9a0fb
PZ
2350static int select_fallback_rq(int cpu, struct task_struct *p)
2351{
2352 int dest_cpu;
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2354
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2358 return dest_cpu;
2359
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2363 return dest_cpu;
2364
2365 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2367 /*
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2370 * leave kernel.
2371 */
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2375 }
2376
2377 return dest_cpu;
2378}
2379
e2912009 2380/*
013fdb80 2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2382 */
970b13ba 2383static inline
7608dec2 2384int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2385{
7608dec2 2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2387
2388 /*
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * cpu.
2392 *
2393 * Since this is common to all placement strategies, this lives here.
2394 *
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2397 */
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2399 !cpu_online(cpu)))
5da9a0fb 2400 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2401
2402 return cpu;
970b13ba 2403}
09a40af5
MG
2404
2405static void update_avg(u64 *avg, u64 sample)
2406{
2407 s64 diff = sample - *avg;
2408 *avg += diff >> 3;
2409}
970b13ba
PZ
2410#endif
2411
d7c01d27
PZ
2412static void
2413ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2414{
d7c01d27
PZ
2415#ifdef CONFIG_SCHEDSTATS
2416#ifdef CONFIG_SMP
2417 int this_cpu = smp_processor_id();
2418
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2422 } else {
2423 struct sched_domain *sd;
2424
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
2433#endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
9ed3811a 2436 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2437
2438 if (wake_flags & WF_SYNC)
9ed3811a 2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2440
2441 if (cpu != task_cpu(p))
9ed3811a 2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2443
d7c01d27
PZ
2444#endif /* CONFIG_SCHEDSTATS */
2445}
2446
2447static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2448{
9ed3811a 2449 activate_task(rq, p, en_flags);
fd2f4419 2450 p->on_rq = 1;
c2f7115e
PZ
2451
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2455}
2456
89363381
PZ
2457static void
2458ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2459{
89363381 2460 trace_sched_wakeup(p, true);
9ed3811a
TH
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464#ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478#endif
2479}
2480
2481/**
1da177e4 2482 * try_to_wake_up - wake up a thread
9ed3811a 2483 * @p: the thread to be awakened
1da177e4 2484 * @state: the mask of task states that can be woken
9ed3811a 2485 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2486 *
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2492 *
9ed3811a
TH
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
1da177e4 2495 */
7d478721
PZ
2496static int try_to_wake_up(struct task_struct *p, unsigned int state,
2497 int wake_flags)
1da177e4 2498{
cc367732 2499 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2500 unsigned long flags;
371fd7e7 2501 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2502 struct rq *rq;
1da177e4 2503
e9c84311 2504 this_cpu = get_cpu();
2398f2c6 2505
04e2f174 2506 smp_wmb();
013fdb80
PZ
2507 raw_spin_lock_irqsave(&p->pi_lock, flags);
2508 rq = __task_rq_lock(p);
e9c84311 2509 if (!(p->state & state))
1da177e4
LT
2510 goto out;
2511
d7c01d27
PZ
2512 cpu = task_cpu(p);
2513
fd2f4419 2514 if (p->on_rq)
1da177e4
LT
2515 goto out_running;
2516
cc367732 2517 orig_cpu = cpu;
1da177e4
LT
2518#ifdef CONFIG_SMP
2519 if (unlikely(task_running(rq, p)))
2520 goto out_activate;
2521
a8e4f2ea 2522 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2523 p->state = TASK_WAKING;
efbbd05a 2524
371fd7e7 2525 if (p->sched_class->task_waking) {
74f8e4b2 2526 p->sched_class->task_waking(p);
371fd7e7
PZ
2527 en_flags |= ENQUEUE_WAKING;
2528 }
efbbd05a 2529
7608dec2 2530 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0017d735 2531 if (cpu != orig_cpu)
5d2f5a61 2532 set_task_cpu(p, cpu);
0017d735 2533 __task_rq_unlock(rq);
ab19cb23 2534
0970d299
PZ
2535 rq = cpu_rq(cpu);
2536 raw_spin_lock(&rq->lock);
f5dc3753 2537
0970d299
PZ
2538 /*
2539 * We migrated the task without holding either rq->lock, however
2540 * since the task is not on the task list itself, nobody else
2541 * will try and migrate the task, hence the rq should match the
2542 * cpu we just moved it to.
2543 */
2544 WARN_ON(task_cpu(p) != cpu);
e9c84311 2545 WARN_ON(p->state != TASK_WAKING);
1da177e4 2546
a8e4f2ea
PZ
2547 if (p->sched_contributes_to_load)
2548 rq->nr_uninterruptible--;
2549
1da177e4
LT
2550out_activate:
2551#endif /* CONFIG_SMP */
d7c01d27 2552 ttwu_activate(rq, p, en_flags);
1da177e4 2553out_running:
89363381 2554 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2555 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2556 success = 1;
1da177e4 2557out:
013fdb80
PZ
2558 __task_rq_unlock(rq);
2559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2560 put_cpu();
1da177e4
LT
2561
2562 return success;
2563}
2564
21aa9af0
TH
2565/**
2566 * try_to_wake_up_local - try to wake up a local task with rq lock held
2567 * @p: the thread to be awakened
2568 *
2acca55e 2569 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2570 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2571 * the current task.
21aa9af0
TH
2572 */
2573static void try_to_wake_up_local(struct task_struct *p)
2574{
2575 struct rq *rq = task_rq(p);
21aa9af0
TH
2576
2577 BUG_ON(rq != this_rq());
2578 BUG_ON(p == current);
2579 lockdep_assert_held(&rq->lock);
2580
2acca55e
PZ
2581 if (!raw_spin_trylock(&p->pi_lock)) {
2582 raw_spin_unlock(&rq->lock);
2583 raw_spin_lock(&p->pi_lock);
2584 raw_spin_lock(&rq->lock);
2585 }
2586
21aa9af0 2587 if (!(p->state & TASK_NORMAL))
2acca55e 2588 goto out;
21aa9af0 2589
fd2f4419 2590 if (!p->on_rq)
d7c01d27
PZ
2591 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2592
89363381 2593 ttwu_post_activation(p, rq, 0);
d7c01d27 2594 ttwu_stat(rq, p, smp_processor_id(), 0);
2acca55e
PZ
2595out:
2596 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2597}
2598
50fa610a
DH
2599/**
2600 * wake_up_process - Wake up a specific process
2601 * @p: The process to be woken up.
2602 *
2603 * Attempt to wake up the nominated process and move it to the set of runnable
2604 * processes. Returns 1 if the process was woken up, 0 if it was already
2605 * running.
2606 *
2607 * It may be assumed that this function implies a write memory barrier before
2608 * changing the task state if and only if any tasks are woken up.
2609 */
7ad5b3a5 2610int wake_up_process(struct task_struct *p)
1da177e4 2611{
d9514f6c 2612 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2613}
1da177e4
LT
2614EXPORT_SYMBOL(wake_up_process);
2615
7ad5b3a5 2616int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2617{
2618 return try_to_wake_up(p, state, 0);
2619}
2620
1da177e4
LT
2621/*
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
dd41f596
IM
2624 *
2625 * __sched_fork() is basic setup used by init_idle() too:
2626 */
2627static void __sched_fork(struct task_struct *p)
2628{
fd2f4419
PZ
2629 p->on_rq = 0;
2630
2631 p->se.on_rq = 0;
dd41f596
IM
2632 p->se.exec_start = 0;
2633 p->se.sum_exec_runtime = 0;
f6cf891c 2634 p->se.prev_sum_exec_runtime = 0;
6c594c21 2635 p->se.nr_migrations = 0;
da7a735e 2636 p->se.vruntime = 0;
fd2f4419 2637 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2638
2639#ifdef CONFIG_SCHEDSTATS
41acab88 2640 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2641#endif
476d139c 2642
fa717060 2643 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2644
e107be36
AK
2645#ifdef CONFIG_PREEMPT_NOTIFIERS
2646 INIT_HLIST_HEAD(&p->preempt_notifiers);
2647#endif
dd41f596
IM
2648}
2649
2650/*
2651 * fork()/clone()-time setup:
2652 */
2653void sched_fork(struct task_struct *p, int clone_flags)
2654{
0122ec5b 2655 unsigned long flags;
dd41f596
IM
2656 int cpu = get_cpu();
2657
2658 __sched_fork(p);
06b83b5f 2659 /*
0017d735 2660 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2661 * nobody will actually run it, and a signal or other external
2662 * event cannot wake it up and insert it on the runqueue either.
2663 */
0017d735 2664 p->state = TASK_RUNNING;
dd41f596 2665
b9dc29e7
MG
2666 /*
2667 * Revert to default priority/policy on fork if requested.
2668 */
2669 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2670 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2671 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2672 p->normal_prio = p->static_prio;
2673 }
b9dc29e7 2674
6c697bdf
MG
2675 if (PRIO_TO_NICE(p->static_prio) < 0) {
2676 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2677 p->normal_prio = p->static_prio;
6c697bdf
MG
2678 set_load_weight(p);
2679 }
2680
b9dc29e7
MG
2681 /*
2682 * We don't need the reset flag anymore after the fork. It has
2683 * fulfilled its duty:
2684 */
2685 p->sched_reset_on_fork = 0;
2686 }
ca94c442 2687
f83f9ac2
PW
2688 /*
2689 * Make sure we do not leak PI boosting priority to the child.
2690 */
2691 p->prio = current->normal_prio;
2692
2ddbf952
HS
2693 if (!rt_prio(p->prio))
2694 p->sched_class = &fair_sched_class;
b29739f9 2695
cd29fe6f
PZ
2696 if (p->sched_class->task_fork)
2697 p->sched_class->task_fork(p);
2698
86951599
PZ
2699 /*
2700 * The child is not yet in the pid-hash so no cgroup attach races,
2701 * and the cgroup is pinned to this child due to cgroup_fork()
2702 * is ran before sched_fork().
2703 *
2704 * Silence PROVE_RCU.
2705 */
0122ec5b 2706 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2707 set_task_cpu(p, cpu);
0122ec5b 2708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2709
52f17b6c 2710#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2711 if (likely(sched_info_on()))
52f17b6c 2712 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2713#endif
3ca7a440
PZ
2714#if defined(CONFIG_SMP)
2715 p->on_cpu = 0;
4866cde0 2716#endif
1da177e4 2717#ifdef CONFIG_PREEMPT
4866cde0 2718 /* Want to start with kernel preemption disabled. */
a1261f54 2719 task_thread_info(p)->preempt_count = 1;
1da177e4 2720#endif
806c09a7 2721#ifdef CONFIG_SMP
917b627d 2722 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2723#endif
917b627d 2724
476d139c 2725 put_cpu();
1da177e4
LT
2726}
2727
2728/*
2729 * wake_up_new_task - wake up a newly created task for the first time.
2730 *
2731 * This function will do some initial scheduler statistics housekeeping
2732 * that must be done for every newly created context, then puts the task
2733 * on the runqueue and wakes it.
2734 */
7ad5b3a5 2735void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2736{
2737 unsigned long flags;
dd41f596 2738 struct rq *rq;
c890692b 2739 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2740
2741#ifdef CONFIG_SMP
0017d735
PZ
2742 rq = task_rq_lock(p, &flags);
2743 p->state = TASK_WAKING;
2744
fabf318e
PZ
2745 /*
2746 * Fork balancing, do it here and not earlier because:
2747 * - cpus_allowed can change in the fork path
2748 * - any previously selected cpu might disappear through hotplug
2749 *
0017d735
PZ
2750 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2751 * without people poking at ->cpus_allowed.
fabf318e 2752 */
7608dec2 2753 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
fabf318e 2754 set_task_cpu(p, cpu);
1da177e4 2755
06b83b5f 2756 p->state = TASK_RUNNING;
0122ec5b 2757 task_rq_unlock(rq, p, &flags);
0017d735
PZ
2758#endif
2759
2760 rq = task_rq_lock(p, &flags);
cd29fe6f 2761 activate_task(rq, p, 0);
fd2f4419 2762 p->on_rq = 1;
89363381 2763 trace_sched_wakeup_new(p, true);
a7558e01 2764 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2765#ifdef CONFIG_SMP
efbbd05a
PZ
2766 if (p->sched_class->task_woken)
2767 p->sched_class->task_woken(rq, p);
9a897c5a 2768#endif
0122ec5b 2769 task_rq_unlock(rq, p, &flags);
fabf318e 2770 put_cpu();
1da177e4
LT
2771}
2772
e107be36
AK
2773#ifdef CONFIG_PREEMPT_NOTIFIERS
2774
2775/**
80dd99b3 2776 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2777 * @notifier: notifier struct to register
e107be36
AK
2778 */
2779void preempt_notifier_register(struct preempt_notifier *notifier)
2780{
2781 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2782}
2783EXPORT_SYMBOL_GPL(preempt_notifier_register);
2784
2785/**
2786 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2787 * @notifier: notifier struct to unregister
e107be36
AK
2788 *
2789 * This is safe to call from within a preemption notifier.
2790 */
2791void preempt_notifier_unregister(struct preempt_notifier *notifier)
2792{
2793 hlist_del(&notifier->link);
2794}
2795EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2796
2797static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2798{
2799 struct preempt_notifier *notifier;
2800 struct hlist_node *node;
2801
2802 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2803 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2804}
2805
2806static void
2807fire_sched_out_preempt_notifiers(struct task_struct *curr,
2808 struct task_struct *next)
2809{
2810 struct preempt_notifier *notifier;
2811 struct hlist_node *node;
2812
2813 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2814 notifier->ops->sched_out(notifier, next);
2815}
2816
6d6bc0ad 2817#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2818
2819static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2820{
2821}
2822
2823static void
2824fire_sched_out_preempt_notifiers(struct task_struct *curr,
2825 struct task_struct *next)
2826{
2827}
2828
6d6bc0ad 2829#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2830
4866cde0
NP
2831/**
2832 * prepare_task_switch - prepare to switch tasks
2833 * @rq: the runqueue preparing to switch
421cee29 2834 * @prev: the current task that is being switched out
4866cde0
NP
2835 * @next: the task we are going to switch to.
2836 *
2837 * This is called with the rq lock held and interrupts off. It must
2838 * be paired with a subsequent finish_task_switch after the context
2839 * switch.
2840 *
2841 * prepare_task_switch sets up locking and calls architecture specific
2842 * hooks.
2843 */
e107be36
AK
2844static inline void
2845prepare_task_switch(struct rq *rq, struct task_struct *prev,
2846 struct task_struct *next)
4866cde0 2847{
fe4b04fa
PZ
2848 sched_info_switch(prev, next);
2849 perf_event_task_sched_out(prev, next);
e107be36 2850 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2851 prepare_lock_switch(rq, next);
2852 prepare_arch_switch(next);
fe4b04fa 2853 trace_sched_switch(prev, next);
4866cde0
NP
2854}
2855
1da177e4
LT
2856/**
2857 * finish_task_switch - clean up after a task-switch
344babaa 2858 * @rq: runqueue associated with task-switch
1da177e4
LT
2859 * @prev: the thread we just switched away from.
2860 *
4866cde0
NP
2861 * finish_task_switch must be called after the context switch, paired
2862 * with a prepare_task_switch call before the context switch.
2863 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2864 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2865 *
2866 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2867 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2868 * with the lock held can cause deadlocks; see schedule() for
2869 * details.)
2870 */
a9957449 2871static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2872 __releases(rq->lock)
2873{
1da177e4 2874 struct mm_struct *mm = rq->prev_mm;
55a101f8 2875 long prev_state;
1da177e4
LT
2876
2877 rq->prev_mm = NULL;
2878
2879 /*
2880 * A task struct has one reference for the use as "current".
c394cc9f 2881 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2882 * schedule one last time. The schedule call will never return, and
2883 * the scheduled task must drop that reference.
c394cc9f 2884 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2885 * still held, otherwise prev could be scheduled on another cpu, die
2886 * there before we look at prev->state, and then the reference would
2887 * be dropped twice.
2888 * Manfred Spraul <manfred@colorfullife.com>
2889 */
55a101f8 2890 prev_state = prev->state;
4866cde0 2891 finish_arch_switch(prev);
8381f65d
JI
2892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2893 local_irq_disable();
2894#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2895 perf_event_task_sched_in(current);
8381f65d
JI
2896#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_enable();
2898#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2899 finish_lock_switch(rq, prev);
e8fa1362 2900
e107be36 2901 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2902 if (mm)
2903 mmdrop(mm);
c394cc9f 2904 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2905 /*
2906 * Remove function-return probe instances associated with this
2907 * task and put them back on the free list.
9761eea8 2908 */
c6fd91f0 2909 kprobe_flush_task(prev);
1da177e4 2910 put_task_struct(prev);
c6fd91f0 2911 }
1da177e4
LT
2912}
2913
3f029d3c
GH
2914#ifdef CONFIG_SMP
2915
2916/* assumes rq->lock is held */
2917static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2918{
2919 if (prev->sched_class->pre_schedule)
2920 prev->sched_class->pre_schedule(rq, prev);
2921}
2922
2923/* rq->lock is NOT held, but preemption is disabled */
2924static inline void post_schedule(struct rq *rq)
2925{
2926 if (rq->post_schedule) {
2927 unsigned long flags;
2928
05fa785c 2929 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2930 if (rq->curr->sched_class->post_schedule)
2931 rq->curr->sched_class->post_schedule(rq);
05fa785c 2932 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2933
2934 rq->post_schedule = 0;
2935 }
2936}
2937
2938#else
da19ab51 2939
3f029d3c
GH
2940static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2941{
2942}
2943
2944static inline void post_schedule(struct rq *rq)
2945{
1da177e4
LT
2946}
2947
3f029d3c
GH
2948#endif
2949
1da177e4
LT
2950/**
2951 * schedule_tail - first thing a freshly forked thread must call.
2952 * @prev: the thread we just switched away from.
2953 */
36c8b586 2954asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2955 __releases(rq->lock)
2956{
70b97a7f
IM
2957 struct rq *rq = this_rq();
2958
4866cde0 2959 finish_task_switch(rq, prev);
da19ab51 2960
3f029d3c
GH
2961 /*
2962 * FIXME: do we need to worry about rq being invalidated by the
2963 * task_switch?
2964 */
2965 post_schedule(rq);
70b97a7f 2966
4866cde0
NP
2967#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2968 /* In this case, finish_task_switch does not reenable preemption */
2969 preempt_enable();
2970#endif
1da177e4 2971 if (current->set_child_tid)
b488893a 2972 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2973}
2974
2975/*
2976 * context_switch - switch to the new MM and the new
2977 * thread's register state.
2978 */
dd41f596 2979static inline void
70b97a7f 2980context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2981 struct task_struct *next)
1da177e4 2982{
dd41f596 2983 struct mm_struct *mm, *oldmm;
1da177e4 2984
e107be36 2985 prepare_task_switch(rq, prev, next);
fe4b04fa 2986
dd41f596
IM
2987 mm = next->mm;
2988 oldmm = prev->active_mm;
9226d125
ZA
2989 /*
2990 * For paravirt, this is coupled with an exit in switch_to to
2991 * combine the page table reload and the switch backend into
2992 * one hypercall.
2993 */
224101ed 2994 arch_start_context_switch(prev);
9226d125 2995
31915ab4 2996 if (!mm) {
1da177e4
LT
2997 next->active_mm = oldmm;
2998 atomic_inc(&oldmm->mm_count);
2999 enter_lazy_tlb(oldmm, next);
3000 } else
3001 switch_mm(oldmm, mm, next);
3002
31915ab4 3003 if (!prev->mm) {
1da177e4 3004 prev->active_mm = NULL;
1da177e4
LT
3005 rq->prev_mm = oldmm;
3006 }
3a5f5e48
IM
3007 /*
3008 * Since the runqueue lock will be released by the next
3009 * task (which is an invalid locking op but in the case
3010 * of the scheduler it's an obvious special-case), so we
3011 * do an early lockdep release here:
3012 */
3013#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3014 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3015#endif
1da177e4
LT
3016
3017 /* Here we just switch the register state and the stack. */
3018 switch_to(prev, next, prev);
3019
dd41f596
IM
3020 barrier();
3021 /*
3022 * this_rq must be evaluated again because prev may have moved
3023 * CPUs since it called schedule(), thus the 'rq' on its stack
3024 * frame will be invalid.
3025 */
3026 finish_task_switch(this_rq(), prev);
1da177e4
LT
3027}
3028
3029/*
3030 * nr_running, nr_uninterruptible and nr_context_switches:
3031 *
3032 * externally visible scheduler statistics: current number of runnable
3033 * threads, current number of uninterruptible-sleeping threads, total
3034 * number of context switches performed since bootup.
3035 */
3036unsigned long nr_running(void)
3037{
3038 unsigned long i, sum = 0;
3039
3040 for_each_online_cpu(i)
3041 sum += cpu_rq(i)->nr_running;
3042
3043 return sum;
f711f609 3044}
1da177e4
LT
3045
3046unsigned long nr_uninterruptible(void)
f711f609 3047{
1da177e4 3048 unsigned long i, sum = 0;
f711f609 3049
0a945022 3050 for_each_possible_cpu(i)
1da177e4 3051 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3052
3053 /*
1da177e4
LT
3054 * Since we read the counters lockless, it might be slightly
3055 * inaccurate. Do not allow it to go below zero though:
f711f609 3056 */
1da177e4
LT
3057 if (unlikely((long)sum < 0))
3058 sum = 0;
f711f609 3059
1da177e4 3060 return sum;
f711f609 3061}
f711f609 3062
1da177e4 3063unsigned long long nr_context_switches(void)
46cb4b7c 3064{
cc94abfc
SR
3065 int i;
3066 unsigned long long sum = 0;
46cb4b7c 3067
0a945022 3068 for_each_possible_cpu(i)
1da177e4 3069 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3070
1da177e4
LT
3071 return sum;
3072}
483b4ee6 3073
1da177e4
LT
3074unsigned long nr_iowait(void)
3075{
3076 unsigned long i, sum = 0;
483b4ee6 3077
0a945022 3078 for_each_possible_cpu(i)
1da177e4 3079 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3080
1da177e4
LT
3081 return sum;
3082}
483b4ee6 3083
8c215bd3 3084unsigned long nr_iowait_cpu(int cpu)
69d25870 3085{
8c215bd3 3086 struct rq *this = cpu_rq(cpu);
69d25870
AV
3087 return atomic_read(&this->nr_iowait);
3088}
46cb4b7c 3089
69d25870
AV
3090unsigned long this_cpu_load(void)
3091{
3092 struct rq *this = this_rq();
3093 return this->cpu_load[0];
3094}
e790fb0b 3095
46cb4b7c 3096
dce48a84
TG
3097/* Variables and functions for calc_load */
3098static atomic_long_t calc_load_tasks;
3099static unsigned long calc_load_update;
3100unsigned long avenrun[3];
3101EXPORT_SYMBOL(avenrun);
46cb4b7c 3102
74f5187a
PZ
3103static long calc_load_fold_active(struct rq *this_rq)
3104{
3105 long nr_active, delta = 0;
3106
3107 nr_active = this_rq->nr_running;
3108 nr_active += (long) this_rq->nr_uninterruptible;
3109
3110 if (nr_active != this_rq->calc_load_active) {
3111 delta = nr_active - this_rq->calc_load_active;
3112 this_rq->calc_load_active = nr_active;
3113 }
3114
3115 return delta;
3116}
3117
0f004f5a
PZ
3118static unsigned long
3119calc_load(unsigned long load, unsigned long exp, unsigned long active)
3120{
3121 load *= exp;
3122 load += active * (FIXED_1 - exp);
3123 load += 1UL << (FSHIFT - 1);
3124 return load >> FSHIFT;
3125}
3126
74f5187a
PZ
3127#ifdef CONFIG_NO_HZ
3128/*
3129 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3130 *
3131 * When making the ILB scale, we should try to pull this in as well.
3132 */
3133static atomic_long_t calc_load_tasks_idle;
3134
3135static void calc_load_account_idle(struct rq *this_rq)
3136{
3137 long delta;
3138
3139 delta = calc_load_fold_active(this_rq);
3140 if (delta)
3141 atomic_long_add(delta, &calc_load_tasks_idle);
3142}
3143
3144static long calc_load_fold_idle(void)
3145{
3146 long delta = 0;
3147
3148 /*
3149 * Its got a race, we don't care...
3150 */
3151 if (atomic_long_read(&calc_load_tasks_idle))
3152 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3153
3154 return delta;
3155}
0f004f5a
PZ
3156
3157/**
3158 * fixed_power_int - compute: x^n, in O(log n) time
3159 *
3160 * @x: base of the power
3161 * @frac_bits: fractional bits of @x
3162 * @n: power to raise @x to.
3163 *
3164 * By exploiting the relation between the definition of the natural power
3165 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3166 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3167 * (where: n_i \elem {0, 1}, the binary vector representing n),
3168 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3169 * of course trivially computable in O(log_2 n), the length of our binary
3170 * vector.
3171 */
3172static unsigned long
3173fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3174{
3175 unsigned long result = 1UL << frac_bits;
3176
3177 if (n) for (;;) {
3178 if (n & 1) {
3179 result *= x;
3180 result += 1UL << (frac_bits - 1);
3181 result >>= frac_bits;
3182 }
3183 n >>= 1;
3184 if (!n)
3185 break;
3186 x *= x;
3187 x += 1UL << (frac_bits - 1);
3188 x >>= frac_bits;
3189 }
3190
3191 return result;
3192}
3193
3194/*
3195 * a1 = a0 * e + a * (1 - e)
3196 *
3197 * a2 = a1 * e + a * (1 - e)
3198 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3199 * = a0 * e^2 + a * (1 - e) * (1 + e)
3200 *
3201 * a3 = a2 * e + a * (1 - e)
3202 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3203 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3204 *
3205 * ...
3206 *
3207 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3208 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3209 * = a0 * e^n + a * (1 - e^n)
3210 *
3211 * [1] application of the geometric series:
3212 *
3213 * n 1 - x^(n+1)
3214 * S_n := \Sum x^i = -------------
3215 * i=0 1 - x
3216 */
3217static unsigned long
3218calc_load_n(unsigned long load, unsigned long exp,
3219 unsigned long active, unsigned int n)
3220{
3221
3222 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3223}
3224
3225/*
3226 * NO_HZ can leave us missing all per-cpu ticks calling
3227 * calc_load_account_active(), but since an idle CPU folds its delta into
3228 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3229 * in the pending idle delta if our idle period crossed a load cycle boundary.
3230 *
3231 * Once we've updated the global active value, we need to apply the exponential
3232 * weights adjusted to the number of cycles missed.
3233 */
3234static void calc_global_nohz(unsigned long ticks)
3235{
3236 long delta, active, n;
3237
3238 if (time_before(jiffies, calc_load_update))
3239 return;
3240
3241 /*
3242 * If we crossed a calc_load_update boundary, make sure to fold
3243 * any pending idle changes, the respective CPUs might have
3244 * missed the tick driven calc_load_account_active() update
3245 * due to NO_HZ.
3246 */
3247 delta = calc_load_fold_idle();
3248 if (delta)
3249 atomic_long_add(delta, &calc_load_tasks);
3250
3251 /*
3252 * If we were idle for multiple load cycles, apply them.
3253 */
3254 if (ticks >= LOAD_FREQ) {
3255 n = ticks / LOAD_FREQ;
3256
3257 active = atomic_long_read(&calc_load_tasks);
3258 active = active > 0 ? active * FIXED_1 : 0;
3259
3260 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3261 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3262 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3263
3264 calc_load_update += n * LOAD_FREQ;
3265 }
3266
3267 /*
3268 * Its possible the remainder of the above division also crosses
3269 * a LOAD_FREQ period, the regular check in calc_global_load()
3270 * which comes after this will take care of that.
3271 *
3272 * Consider us being 11 ticks before a cycle completion, and us
3273 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3274 * age us 4 cycles, and the test in calc_global_load() will
3275 * pick up the final one.
3276 */
3277}
74f5187a
PZ
3278#else
3279static void calc_load_account_idle(struct rq *this_rq)
3280{
3281}
3282
3283static inline long calc_load_fold_idle(void)
3284{
3285 return 0;
3286}
0f004f5a
PZ
3287
3288static void calc_global_nohz(unsigned long ticks)
3289{
3290}
74f5187a
PZ
3291#endif
3292
2d02494f
TG
3293/**
3294 * get_avenrun - get the load average array
3295 * @loads: pointer to dest load array
3296 * @offset: offset to add
3297 * @shift: shift count to shift the result left
3298 *
3299 * These values are estimates at best, so no need for locking.
3300 */
3301void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3302{
3303 loads[0] = (avenrun[0] + offset) << shift;
3304 loads[1] = (avenrun[1] + offset) << shift;
3305 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3306}
46cb4b7c 3307
46cb4b7c 3308/*
dce48a84
TG
3309 * calc_load - update the avenrun load estimates 10 ticks after the
3310 * CPUs have updated calc_load_tasks.
7835b98b 3311 */
0f004f5a 3312void calc_global_load(unsigned long ticks)
7835b98b 3313{
dce48a84 3314 long active;
1da177e4 3315
0f004f5a
PZ
3316 calc_global_nohz(ticks);
3317
3318 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3319 return;
1da177e4 3320
dce48a84
TG
3321 active = atomic_long_read(&calc_load_tasks);
3322 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3323
dce48a84
TG
3324 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3325 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3326 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3327
dce48a84
TG
3328 calc_load_update += LOAD_FREQ;
3329}
1da177e4 3330
dce48a84 3331/*
74f5187a
PZ
3332 * Called from update_cpu_load() to periodically update this CPU's
3333 * active count.
dce48a84
TG
3334 */
3335static void calc_load_account_active(struct rq *this_rq)
3336{
74f5187a 3337 long delta;
08c183f3 3338
74f5187a
PZ
3339 if (time_before(jiffies, this_rq->calc_load_update))
3340 return;
783609c6 3341
74f5187a
PZ
3342 delta = calc_load_fold_active(this_rq);
3343 delta += calc_load_fold_idle();
3344 if (delta)
dce48a84 3345 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3346
3347 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3348}
3349
fdf3e95d
VP
3350/*
3351 * The exact cpuload at various idx values, calculated at every tick would be
3352 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3353 *
3354 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3355 * on nth tick when cpu may be busy, then we have:
3356 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3357 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3358 *
3359 * decay_load_missed() below does efficient calculation of
3360 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3361 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3362 *
3363 * The calculation is approximated on a 128 point scale.
3364 * degrade_zero_ticks is the number of ticks after which load at any
3365 * particular idx is approximated to be zero.
3366 * degrade_factor is a precomputed table, a row for each load idx.
3367 * Each column corresponds to degradation factor for a power of two ticks,
3368 * based on 128 point scale.
3369 * Example:
3370 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3371 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3372 *
3373 * With this power of 2 load factors, we can degrade the load n times
3374 * by looking at 1 bits in n and doing as many mult/shift instead of
3375 * n mult/shifts needed by the exact degradation.
3376 */
3377#define DEGRADE_SHIFT 7
3378static const unsigned char
3379 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3380static const unsigned char
3381 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3382 {0, 0, 0, 0, 0, 0, 0, 0},
3383 {64, 32, 8, 0, 0, 0, 0, 0},
3384 {96, 72, 40, 12, 1, 0, 0},
3385 {112, 98, 75, 43, 15, 1, 0},
3386 {120, 112, 98, 76, 45, 16, 2} };
3387
3388/*
3389 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3390 * would be when CPU is idle and so we just decay the old load without
3391 * adding any new load.
3392 */
3393static unsigned long
3394decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3395{
3396 int j = 0;
3397
3398 if (!missed_updates)
3399 return load;
3400
3401 if (missed_updates >= degrade_zero_ticks[idx])
3402 return 0;
3403
3404 if (idx == 1)
3405 return load >> missed_updates;
3406
3407 while (missed_updates) {
3408 if (missed_updates % 2)
3409 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3410
3411 missed_updates >>= 1;
3412 j++;
3413 }
3414 return load;
3415}
3416
46cb4b7c 3417/*
dd41f596 3418 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3419 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3420 * every tick. We fix it up based on jiffies.
46cb4b7c 3421 */
dd41f596 3422static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3423{
495eca49 3424 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3425 unsigned long curr_jiffies = jiffies;
3426 unsigned long pending_updates;
dd41f596 3427 int i, scale;
46cb4b7c 3428
dd41f596 3429 this_rq->nr_load_updates++;
46cb4b7c 3430
fdf3e95d
VP
3431 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3432 if (curr_jiffies == this_rq->last_load_update_tick)
3433 return;
3434
3435 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3436 this_rq->last_load_update_tick = curr_jiffies;
3437
dd41f596 3438 /* Update our load: */
fdf3e95d
VP
3439 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3440 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3441 unsigned long old_load, new_load;
7d1e6a9b 3442
dd41f596 3443 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3444
dd41f596 3445 old_load = this_rq->cpu_load[i];
fdf3e95d 3446 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3447 new_load = this_load;
a25707f3
IM
3448 /*
3449 * Round up the averaging division if load is increasing. This
3450 * prevents us from getting stuck on 9 if the load is 10, for
3451 * example.
3452 */
3453 if (new_load > old_load)
fdf3e95d
VP
3454 new_load += scale - 1;
3455
3456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3457 }
da2b71ed
SS
3458
3459 sched_avg_update(this_rq);
fdf3e95d
VP
3460}
3461
3462static void update_cpu_load_active(struct rq *this_rq)
3463{
3464 update_cpu_load(this_rq);
46cb4b7c 3465
74f5187a 3466 calc_load_account_active(this_rq);
46cb4b7c
SS
3467}
3468
dd41f596 3469#ifdef CONFIG_SMP
8a0be9ef 3470
46cb4b7c 3471/*
38022906
PZ
3472 * sched_exec - execve() is a valuable balancing opportunity, because at
3473 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3474 */
38022906 3475void sched_exec(void)
46cb4b7c 3476{
38022906 3477 struct task_struct *p = current;
1da177e4 3478 unsigned long flags;
70b97a7f 3479 struct rq *rq;
0017d735 3480 int dest_cpu;
46cb4b7c 3481
1da177e4 3482 rq = task_rq_lock(p, &flags);
7608dec2 3483 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3484 if (dest_cpu == smp_processor_id())
3485 goto unlock;
38022906 3486
46cb4b7c 3487 /*
38022906 3488 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3489 */
30da688e 3490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
7608dec2 3491 likely(cpu_active(dest_cpu)) && need_migrate_task(p)) {
969c7921 3492 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3493
0122ec5b 3494 task_rq_unlock(rq, p, &flags);
969c7921 3495 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3496 return;
3497 }
0017d735 3498unlock:
0122ec5b 3499 task_rq_unlock(rq, p, &flags);
1da177e4 3500}
dd41f596 3501
1da177e4
LT
3502#endif
3503
1da177e4
LT
3504DEFINE_PER_CPU(struct kernel_stat, kstat);
3505
3506EXPORT_PER_CPU_SYMBOL(kstat);
3507
3508/*
c5f8d995 3509 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3510 * @p in case that task is currently running.
c5f8d995
HS
3511 *
3512 * Called with task_rq_lock() held on @rq.
1da177e4 3513 */
c5f8d995
HS
3514static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3515{
3516 u64 ns = 0;
3517
3518 if (task_current(rq, p)) {
3519 update_rq_clock(rq);
305e6835 3520 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3521 if ((s64)ns < 0)
3522 ns = 0;
3523 }
3524
3525 return ns;
3526}
3527
bb34d92f 3528unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3529{
1da177e4 3530 unsigned long flags;
41b86e9c 3531 struct rq *rq;
bb34d92f 3532 u64 ns = 0;
48f24c4d 3533
41b86e9c 3534 rq = task_rq_lock(p, &flags);
c5f8d995 3535 ns = do_task_delta_exec(p, rq);
0122ec5b 3536 task_rq_unlock(rq, p, &flags);
1508487e 3537
c5f8d995
HS
3538 return ns;
3539}
f06febc9 3540
c5f8d995
HS
3541/*
3542 * Return accounted runtime for the task.
3543 * In case the task is currently running, return the runtime plus current's
3544 * pending runtime that have not been accounted yet.
3545 */
3546unsigned long long task_sched_runtime(struct task_struct *p)
3547{
3548 unsigned long flags;
3549 struct rq *rq;
3550 u64 ns = 0;
3551
3552 rq = task_rq_lock(p, &flags);
3553 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3554 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3555
3556 return ns;
3557}
48f24c4d 3558
c5f8d995
HS
3559/*
3560 * Return sum_exec_runtime for the thread group.
3561 * In case the task is currently running, return the sum plus current's
3562 * pending runtime that have not been accounted yet.
3563 *
3564 * Note that the thread group might have other running tasks as well,
3565 * so the return value not includes other pending runtime that other
3566 * running tasks might have.
3567 */
3568unsigned long long thread_group_sched_runtime(struct task_struct *p)
3569{
3570 struct task_cputime totals;
3571 unsigned long flags;
3572 struct rq *rq;
3573 u64 ns;
3574
3575 rq = task_rq_lock(p, &flags);
3576 thread_group_cputime(p, &totals);
3577 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3578 task_rq_unlock(rq, p, &flags);
48f24c4d 3579
1da177e4
LT
3580 return ns;
3581}
3582
1da177e4
LT
3583/*
3584 * Account user cpu time to a process.
3585 * @p: the process that the cpu time gets accounted to
1da177e4 3586 * @cputime: the cpu time spent in user space since the last update
457533a7 3587 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3588 */
457533a7
MS
3589void account_user_time(struct task_struct *p, cputime_t cputime,
3590 cputime_t cputime_scaled)
1da177e4
LT
3591{
3592 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3593 cputime64_t tmp;
3594
457533a7 3595 /* Add user time to process. */
1da177e4 3596 p->utime = cputime_add(p->utime, cputime);
457533a7 3597 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3598 account_group_user_time(p, cputime);
1da177e4
LT
3599
3600 /* Add user time to cpustat. */
3601 tmp = cputime_to_cputime64(cputime);
3602 if (TASK_NICE(p) > 0)
3603 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3604 else
3605 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3606
3607 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3608 /* Account for user time used */
3609 acct_update_integrals(p);
1da177e4
LT
3610}
3611
94886b84
LV
3612/*
3613 * Account guest cpu time to a process.
3614 * @p: the process that the cpu time gets accounted to
3615 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3616 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3617 */
457533a7
MS
3618static void account_guest_time(struct task_struct *p, cputime_t cputime,
3619 cputime_t cputime_scaled)
94886b84
LV
3620{
3621 cputime64_t tmp;
3622 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3623
3624 tmp = cputime_to_cputime64(cputime);
3625
457533a7 3626 /* Add guest time to process. */
94886b84 3627 p->utime = cputime_add(p->utime, cputime);
457533a7 3628 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3629 account_group_user_time(p, cputime);
94886b84
LV
3630 p->gtime = cputime_add(p->gtime, cputime);
3631
457533a7 3632 /* Add guest time to cpustat. */
ce0e7b28
RO
3633 if (TASK_NICE(p) > 0) {
3634 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3635 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3636 } else {
3637 cpustat->user = cputime64_add(cpustat->user, tmp);
3638 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3639 }
94886b84
LV
3640}
3641
70a89a66
VP
3642/*
3643 * Account system cpu time to a process and desired cpustat field
3644 * @p: the process that the cpu time gets accounted to
3645 * @cputime: the cpu time spent in kernel space since the last update
3646 * @cputime_scaled: cputime scaled by cpu frequency
3647 * @target_cputime64: pointer to cpustat field that has to be updated
3648 */
3649static inline
3650void __account_system_time(struct task_struct *p, cputime_t cputime,
3651 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3652{
3653 cputime64_t tmp = cputime_to_cputime64(cputime);
3654
3655 /* Add system time to process. */
3656 p->stime = cputime_add(p->stime, cputime);
3657 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3658 account_group_system_time(p, cputime);
3659
3660 /* Add system time to cpustat. */
3661 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3662 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3663
3664 /* Account for system time used */
3665 acct_update_integrals(p);
3666}
3667
1da177e4
LT
3668/*
3669 * Account system cpu time to a process.
3670 * @p: the process that the cpu time gets accounted to
3671 * @hardirq_offset: the offset to subtract from hardirq_count()
3672 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3673 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3674 */
3675void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3676 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3677{
3678 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3679 cputime64_t *target_cputime64;
1da177e4 3680
983ed7a6 3681 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3682 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3683 return;
3684 }
94886b84 3685
1da177e4 3686 if (hardirq_count() - hardirq_offset)
70a89a66 3687 target_cputime64 = &cpustat->irq;
75e1056f 3688 else if (in_serving_softirq())
70a89a66 3689 target_cputime64 = &cpustat->softirq;
1da177e4 3690 else
70a89a66 3691 target_cputime64 = &cpustat->system;
ef12fefa 3692
70a89a66 3693 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3694}
3695
c66f08be 3696/*
1da177e4 3697 * Account for involuntary wait time.
544b4a1f 3698 * @cputime: the cpu time spent in involuntary wait
c66f08be 3699 */
79741dd3 3700void account_steal_time(cputime_t cputime)
c66f08be 3701{
79741dd3
MS
3702 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3703 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3704
3705 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3706}
3707
1da177e4 3708/*
79741dd3
MS
3709 * Account for idle time.
3710 * @cputime: the cpu time spent in idle wait
1da177e4 3711 */
79741dd3 3712void account_idle_time(cputime_t cputime)
1da177e4
LT
3713{
3714 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3715 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3716 struct rq *rq = this_rq();
1da177e4 3717
79741dd3
MS
3718 if (atomic_read(&rq->nr_iowait) > 0)
3719 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3720 else
3721 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3722}
3723
79741dd3
MS
3724#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3725
abb74cef
VP
3726#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3727/*
3728 * Account a tick to a process and cpustat
3729 * @p: the process that the cpu time gets accounted to
3730 * @user_tick: is the tick from userspace
3731 * @rq: the pointer to rq
3732 *
3733 * Tick demultiplexing follows the order
3734 * - pending hardirq update
3735 * - pending softirq update
3736 * - user_time
3737 * - idle_time
3738 * - system time
3739 * - check for guest_time
3740 * - else account as system_time
3741 *
3742 * Check for hardirq is done both for system and user time as there is
3743 * no timer going off while we are on hardirq and hence we may never get an
3744 * opportunity to update it solely in system time.
3745 * p->stime and friends are only updated on system time and not on irq
3746 * softirq as those do not count in task exec_runtime any more.
3747 */
3748static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3749 struct rq *rq)
3750{
3751 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3752 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3753 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3754
3755 if (irqtime_account_hi_update()) {
3756 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3757 } else if (irqtime_account_si_update()) {
3758 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3759 } else if (this_cpu_ksoftirqd() == p) {
3760 /*
3761 * ksoftirqd time do not get accounted in cpu_softirq_time.
3762 * So, we have to handle it separately here.
3763 * Also, p->stime needs to be updated for ksoftirqd.
3764 */
3765 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3766 &cpustat->softirq);
abb74cef
VP
3767 } else if (user_tick) {
3768 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3769 } else if (p == rq->idle) {
3770 account_idle_time(cputime_one_jiffy);
3771 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3772 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3773 } else {
3774 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3775 &cpustat->system);
3776 }
3777}
3778
3779static void irqtime_account_idle_ticks(int ticks)
3780{
3781 int i;
3782 struct rq *rq = this_rq();
3783
3784 for (i = 0; i < ticks; i++)
3785 irqtime_account_process_tick(current, 0, rq);
3786}
544b4a1f 3787#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3788static void irqtime_account_idle_ticks(int ticks) {}
3789static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3790 struct rq *rq) {}
544b4a1f 3791#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3792
3793/*
3794 * Account a single tick of cpu time.
3795 * @p: the process that the cpu time gets accounted to
3796 * @user_tick: indicates if the tick is a user or a system tick
3797 */
3798void account_process_tick(struct task_struct *p, int user_tick)
3799{
a42548a1 3800 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3801 struct rq *rq = this_rq();
3802
abb74cef
VP
3803 if (sched_clock_irqtime) {
3804 irqtime_account_process_tick(p, user_tick, rq);
3805 return;
3806 }
3807
79741dd3 3808 if (user_tick)
a42548a1 3809 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3810 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3811 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3812 one_jiffy_scaled);
3813 else
a42548a1 3814 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3815}
3816
3817/*
3818 * Account multiple ticks of steal time.
3819 * @p: the process from which the cpu time has been stolen
3820 * @ticks: number of stolen ticks
3821 */
3822void account_steal_ticks(unsigned long ticks)
3823{
3824 account_steal_time(jiffies_to_cputime(ticks));
3825}
3826
3827/*
3828 * Account multiple ticks of idle time.
3829 * @ticks: number of stolen ticks
3830 */
3831void account_idle_ticks(unsigned long ticks)
3832{
abb74cef
VP
3833
3834 if (sched_clock_irqtime) {
3835 irqtime_account_idle_ticks(ticks);
3836 return;
3837 }
3838
79741dd3 3839 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3840}
3841
79741dd3
MS
3842#endif
3843
49048622
BS
3844/*
3845 * Use precise platform statistics if available:
3846 */
3847#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3848void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3849{
d99ca3b9
HS
3850 *ut = p->utime;
3851 *st = p->stime;
49048622
BS
3852}
3853
0cf55e1e 3854void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3855{
0cf55e1e
HS
3856 struct task_cputime cputime;
3857
3858 thread_group_cputime(p, &cputime);
3859
3860 *ut = cputime.utime;
3861 *st = cputime.stime;
49048622
BS
3862}
3863#else
761b1d26
HS
3864
3865#ifndef nsecs_to_cputime
b7b20df9 3866# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3867#endif
3868
d180c5bc 3869void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3870{
d99ca3b9 3871 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3872
3873 /*
3874 * Use CFS's precise accounting:
3875 */
d180c5bc 3876 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3877
3878 if (total) {
e75e863d 3879 u64 temp = rtime;
d180c5bc 3880
e75e863d 3881 temp *= utime;
49048622 3882 do_div(temp, total);
d180c5bc
HS
3883 utime = (cputime_t)temp;
3884 } else
3885 utime = rtime;
49048622 3886
d180c5bc
HS
3887 /*
3888 * Compare with previous values, to keep monotonicity:
3889 */
761b1d26 3890 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3891 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3892
d99ca3b9
HS
3893 *ut = p->prev_utime;
3894 *st = p->prev_stime;
49048622
BS
3895}
3896
0cf55e1e
HS
3897/*
3898 * Must be called with siglock held.
3899 */
3900void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3901{
0cf55e1e
HS
3902 struct signal_struct *sig = p->signal;
3903 struct task_cputime cputime;
3904 cputime_t rtime, utime, total;
49048622 3905
0cf55e1e 3906 thread_group_cputime(p, &cputime);
49048622 3907
0cf55e1e
HS
3908 total = cputime_add(cputime.utime, cputime.stime);
3909 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3910
0cf55e1e 3911 if (total) {
e75e863d 3912 u64 temp = rtime;
49048622 3913
e75e863d 3914 temp *= cputime.utime;
0cf55e1e
HS
3915 do_div(temp, total);
3916 utime = (cputime_t)temp;
3917 } else
3918 utime = rtime;
3919
3920 sig->prev_utime = max(sig->prev_utime, utime);
3921 sig->prev_stime = max(sig->prev_stime,
3922 cputime_sub(rtime, sig->prev_utime));
3923
3924 *ut = sig->prev_utime;
3925 *st = sig->prev_stime;
49048622 3926}
49048622 3927#endif
49048622 3928
7835b98b
CL
3929/*
3930 * This function gets called by the timer code, with HZ frequency.
3931 * We call it with interrupts disabled.
3932 *
3933 * It also gets called by the fork code, when changing the parent's
3934 * timeslices.
3935 */
3936void scheduler_tick(void)
3937{
7835b98b
CL
3938 int cpu = smp_processor_id();
3939 struct rq *rq = cpu_rq(cpu);
dd41f596 3940 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3941
3942 sched_clock_tick();
dd41f596 3943
05fa785c 3944 raw_spin_lock(&rq->lock);
3e51f33f 3945 update_rq_clock(rq);
fdf3e95d 3946 update_cpu_load_active(rq);
fa85ae24 3947 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3948 raw_spin_unlock(&rq->lock);
7835b98b 3949
e9d2b064 3950 perf_event_task_tick();
e220d2dc 3951
e418e1c2 3952#ifdef CONFIG_SMP
dd41f596
IM
3953 rq->idle_at_tick = idle_cpu(cpu);
3954 trigger_load_balance(rq, cpu);
e418e1c2 3955#endif
1da177e4
LT
3956}
3957
132380a0 3958notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3959{
3960 if (in_lock_functions(addr)) {
3961 addr = CALLER_ADDR2;
3962 if (in_lock_functions(addr))
3963 addr = CALLER_ADDR3;
3964 }
3965 return addr;
3966}
1da177e4 3967
7e49fcce
SR
3968#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3969 defined(CONFIG_PREEMPT_TRACER))
3970
43627582 3971void __kprobes add_preempt_count(int val)
1da177e4 3972{
6cd8a4bb 3973#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3974 /*
3975 * Underflow?
3976 */
9a11b49a
IM
3977 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3978 return;
6cd8a4bb 3979#endif
1da177e4 3980 preempt_count() += val;
6cd8a4bb 3981#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3982 /*
3983 * Spinlock count overflowing soon?
3984 */
33859f7f
MOS
3985 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3986 PREEMPT_MASK - 10);
6cd8a4bb
SR
3987#endif
3988 if (preempt_count() == val)
3989 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3990}
3991EXPORT_SYMBOL(add_preempt_count);
3992
43627582 3993void __kprobes sub_preempt_count(int val)
1da177e4 3994{
6cd8a4bb 3995#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3996 /*
3997 * Underflow?
3998 */
01e3eb82 3999 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4000 return;
1da177e4
LT
4001 /*
4002 * Is the spinlock portion underflowing?
4003 */
9a11b49a
IM
4004 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4005 !(preempt_count() & PREEMPT_MASK)))
4006 return;
6cd8a4bb 4007#endif
9a11b49a 4008
6cd8a4bb
SR
4009 if (preempt_count() == val)
4010 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4011 preempt_count() -= val;
4012}
4013EXPORT_SYMBOL(sub_preempt_count);
4014
4015#endif
4016
4017/*
dd41f596 4018 * Print scheduling while atomic bug:
1da177e4 4019 */
dd41f596 4020static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4021{
838225b4
SS
4022 struct pt_regs *regs = get_irq_regs();
4023
3df0fc5b
PZ
4024 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4025 prev->comm, prev->pid, preempt_count());
838225b4 4026
dd41f596 4027 debug_show_held_locks(prev);
e21f5b15 4028 print_modules();
dd41f596
IM
4029 if (irqs_disabled())
4030 print_irqtrace_events(prev);
838225b4
SS
4031
4032 if (regs)
4033 show_regs(regs);
4034 else
4035 dump_stack();
dd41f596 4036}
1da177e4 4037
dd41f596
IM
4038/*
4039 * Various schedule()-time debugging checks and statistics:
4040 */
4041static inline void schedule_debug(struct task_struct *prev)
4042{
1da177e4 4043 /*
41a2d6cf 4044 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4045 * schedule() atomically, we ignore that path for now.
4046 * Otherwise, whine if we are scheduling when we should not be.
4047 */
3f33a7ce 4048 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4049 __schedule_bug(prev);
4050
1da177e4
LT
4051 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4052
2d72376b 4053 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4054#ifdef CONFIG_SCHEDSTATS
4055 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4056 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4057 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4058 }
4059#endif
dd41f596
IM
4060}
4061
6cecd084 4062static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4063{
fd2f4419 4064 if (prev->on_rq)
a64692a3 4065 update_rq_clock(rq);
6cecd084 4066 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4067}
4068
dd41f596
IM
4069/*
4070 * Pick up the highest-prio task:
4071 */
4072static inline struct task_struct *
b67802ea 4073pick_next_task(struct rq *rq)
dd41f596 4074{
5522d5d5 4075 const struct sched_class *class;
dd41f596 4076 struct task_struct *p;
1da177e4
LT
4077
4078 /*
dd41f596
IM
4079 * Optimization: we know that if all tasks are in
4080 * the fair class we can call that function directly:
1da177e4 4081 */
dd41f596 4082 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4083 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4084 if (likely(p))
4085 return p;
1da177e4
LT
4086 }
4087
34f971f6 4088 for_each_class(class) {
fb8d4724 4089 p = class->pick_next_task(rq);
dd41f596
IM
4090 if (p)
4091 return p;
dd41f596 4092 }
34f971f6
PZ
4093
4094 BUG(); /* the idle class will always have a runnable task */
dd41f596 4095}
1da177e4 4096
dd41f596
IM
4097/*
4098 * schedule() is the main scheduler function.
4099 */
ff743345 4100asmlinkage void __sched schedule(void)
dd41f596
IM
4101{
4102 struct task_struct *prev, *next;
67ca7bde 4103 unsigned long *switch_count;
dd41f596 4104 struct rq *rq;
31656519 4105 int cpu;
dd41f596 4106
ff743345
PZ
4107need_resched:
4108 preempt_disable();
dd41f596
IM
4109 cpu = smp_processor_id();
4110 rq = cpu_rq(cpu);
25502a6c 4111 rcu_note_context_switch(cpu);
dd41f596 4112 prev = rq->curr;
dd41f596 4113
dd41f596 4114 schedule_debug(prev);
1da177e4 4115
31656519 4116 if (sched_feat(HRTICK))
f333fdc9 4117 hrtick_clear(rq);
8f4d37ec 4118
05fa785c 4119 raw_spin_lock_irq(&rq->lock);
1da177e4 4120
246d86b5 4121 switch_count = &prev->nivcsw;
1da177e4 4122 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4123 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4124 prev->state = TASK_RUNNING;
21aa9af0 4125 } else {
2acca55e
PZ
4126 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4127 prev->on_rq = 0;
4128
21aa9af0 4129 /*
2acca55e
PZ
4130 * If a worker went to sleep, notify and ask workqueue
4131 * whether it wants to wake up a task to maintain
4132 * concurrency.
21aa9af0
TH
4133 */
4134 if (prev->flags & PF_WQ_WORKER) {
4135 struct task_struct *to_wakeup;
4136
4137 to_wakeup = wq_worker_sleeping(prev, cpu);
4138 if (to_wakeup)
4139 try_to_wake_up_local(to_wakeup);
4140 }
fd2f4419 4141
6631e635 4142 /*
2acca55e
PZ
4143 * If we are going to sleep and we have plugged IO
4144 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4145 */
4146 if (blk_needs_flush_plug(prev)) {
4147 raw_spin_unlock(&rq->lock);
4148 blk_flush_plug(prev);
4149 raw_spin_lock(&rq->lock);
4150 }
21aa9af0 4151 }
dd41f596 4152 switch_count = &prev->nvcsw;
1da177e4
LT
4153 }
4154
3f029d3c 4155 pre_schedule(rq, prev);
f65eda4f 4156
dd41f596 4157 if (unlikely(!rq->nr_running))
1da177e4 4158 idle_balance(cpu, rq);
1da177e4 4159
df1c99d4 4160 put_prev_task(rq, prev);
b67802ea 4161 next = pick_next_task(rq);
f26f9aff
MG
4162 clear_tsk_need_resched(prev);
4163 rq->skip_clock_update = 0;
1da177e4 4164
1da177e4 4165 if (likely(prev != next)) {
1da177e4
LT
4166 rq->nr_switches++;
4167 rq->curr = next;
4168 ++*switch_count;
4169
dd41f596 4170 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4171 /*
246d86b5
ON
4172 * The context switch have flipped the stack from under us
4173 * and restored the local variables which were saved when
4174 * this task called schedule() in the past. prev == current
4175 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4176 */
4177 cpu = smp_processor_id();
4178 rq = cpu_rq(cpu);
1da177e4 4179 } else
05fa785c 4180 raw_spin_unlock_irq(&rq->lock);
1da177e4 4181
3f029d3c 4182 post_schedule(rq);
1da177e4 4183
1da177e4 4184 preempt_enable_no_resched();
ff743345 4185 if (need_resched())
1da177e4
LT
4186 goto need_resched;
4187}
1da177e4
LT
4188EXPORT_SYMBOL(schedule);
4189
c08f7829 4190#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4191
c6eb3dda
PZ
4192static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4193{
4194 bool ret = false;
0d66bf6d 4195
c6eb3dda
PZ
4196 rcu_read_lock();
4197 if (lock->owner != owner)
4198 goto fail;
0d66bf6d
PZ
4199
4200 /*
c6eb3dda
PZ
4201 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4202 * lock->owner still matches owner, if that fails, owner might
4203 * point to free()d memory, if it still matches, the rcu_read_lock()
4204 * ensures the memory stays valid.
0d66bf6d 4205 */
c6eb3dda 4206 barrier();
0d66bf6d 4207
c6eb3dda
PZ
4208 ret = owner->on_cpu;
4209fail:
4210 rcu_read_unlock();
0d66bf6d 4211
c6eb3dda
PZ
4212 return ret;
4213}
0d66bf6d 4214
c6eb3dda
PZ
4215/*
4216 * Look out! "owner" is an entirely speculative pointer
4217 * access and not reliable.
4218 */
4219int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4220{
4221 if (!sched_feat(OWNER_SPIN))
4222 return 0;
0d66bf6d 4223
c6eb3dda
PZ
4224 while (owner_running(lock, owner)) {
4225 if (need_resched())
0d66bf6d
PZ
4226 return 0;
4227
335d7afb 4228 arch_mutex_cpu_relax();
0d66bf6d 4229 }
4b402210 4230
c6eb3dda
PZ
4231 /*
4232 * If the owner changed to another task there is likely
4233 * heavy contention, stop spinning.
4234 */
4235 if (lock->owner)
4236 return 0;
4237
0d66bf6d
PZ
4238 return 1;
4239}
4240#endif
4241
1da177e4
LT
4242#ifdef CONFIG_PREEMPT
4243/*
2ed6e34f 4244 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4245 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4246 * occur there and call schedule directly.
4247 */
d1f74e20 4248asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4249{
4250 struct thread_info *ti = current_thread_info();
6478d880 4251
1da177e4
LT
4252 /*
4253 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4254 * we do not want to preempt the current task. Just return..
1da177e4 4255 */
beed33a8 4256 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4257 return;
4258
3a5c359a 4259 do {
d1f74e20 4260 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4261 schedule();
d1f74e20 4262 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4263
3a5c359a
AK
4264 /*
4265 * Check again in case we missed a preemption opportunity
4266 * between schedule and now.
4267 */
4268 barrier();
5ed0cec0 4269 } while (need_resched());
1da177e4 4270}
1da177e4
LT
4271EXPORT_SYMBOL(preempt_schedule);
4272
4273/*
2ed6e34f 4274 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4275 * off of irq context.
4276 * Note, that this is called and return with irqs disabled. This will
4277 * protect us against recursive calling from irq.
4278 */
4279asmlinkage void __sched preempt_schedule_irq(void)
4280{
4281 struct thread_info *ti = current_thread_info();
6478d880 4282
2ed6e34f 4283 /* Catch callers which need to be fixed */
1da177e4
LT
4284 BUG_ON(ti->preempt_count || !irqs_disabled());
4285
3a5c359a
AK
4286 do {
4287 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4288 local_irq_enable();
4289 schedule();
4290 local_irq_disable();
3a5c359a 4291 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4292
3a5c359a
AK
4293 /*
4294 * Check again in case we missed a preemption opportunity
4295 * between schedule and now.
4296 */
4297 barrier();
5ed0cec0 4298 } while (need_resched());
1da177e4
LT
4299}
4300
4301#endif /* CONFIG_PREEMPT */
4302
63859d4f 4303int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4304 void *key)
1da177e4 4305{
63859d4f 4306 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4307}
1da177e4
LT
4308EXPORT_SYMBOL(default_wake_function);
4309
4310/*
41a2d6cf
IM
4311 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4312 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4313 * number) then we wake all the non-exclusive tasks and one exclusive task.
4314 *
4315 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4316 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4317 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4318 */
78ddb08f 4319static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4320 int nr_exclusive, int wake_flags, void *key)
1da177e4 4321{
2e45874c 4322 wait_queue_t *curr, *next;
1da177e4 4323
2e45874c 4324 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4325 unsigned flags = curr->flags;
4326
63859d4f 4327 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4328 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4329 break;
4330 }
4331}
4332
4333/**
4334 * __wake_up - wake up threads blocked on a waitqueue.
4335 * @q: the waitqueue
4336 * @mode: which threads
4337 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4338 * @key: is directly passed to the wakeup function
50fa610a
DH
4339 *
4340 * It may be assumed that this function implies a write memory barrier before
4341 * changing the task state if and only if any tasks are woken up.
1da177e4 4342 */
7ad5b3a5 4343void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4344 int nr_exclusive, void *key)
1da177e4
LT
4345{
4346 unsigned long flags;
4347
4348 spin_lock_irqsave(&q->lock, flags);
4349 __wake_up_common(q, mode, nr_exclusive, 0, key);
4350 spin_unlock_irqrestore(&q->lock, flags);
4351}
1da177e4
LT
4352EXPORT_SYMBOL(__wake_up);
4353
4354/*
4355 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4356 */
7ad5b3a5 4357void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4358{
4359 __wake_up_common(q, mode, 1, 0, NULL);
4360}
22c43c81 4361EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4362
4ede816a
DL
4363void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4364{
4365 __wake_up_common(q, mode, 1, 0, key);
4366}
bf294b41 4367EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4368
1da177e4 4369/**
4ede816a 4370 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4371 * @q: the waitqueue
4372 * @mode: which threads
4373 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4374 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4375 *
4376 * The sync wakeup differs that the waker knows that it will schedule
4377 * away soon, so while the target thread will be woken up, it will not
4378 * be migrated to another CPU - ie. the two threads are 'synchronized'
4379 * with each other. This can prevent needless bouncing between CPUs.
4380 *
4381 * On UP it can prevent extra preemption.
50fa610a
DH
4382 *
4383 * It may be assumed that this function implies a write memory barrier before
4384 * changing the task state if and only if any tasks are woken up.
1da177e4 4385 */
4ede816a
DL
4386void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4387 int nr_exclusive, void *key)
1da177e4
LT
4388{
4389 unsigned long flags;
7d478721 4390 int wake_flags = WF_SYNC;
1da177e4
LT
4391
4392 if (unlikely(!q))
4393 return;
4394
4395 if (unlikely(!nr_exclusive))
7d478721 4396 wake_flags = 0;
1da177e4
LT
4397
4398 spin_lock_irqsave(&q->lock, flags);
7d478721 4399 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4400 spin_unlock_irqrestore(&q->lock, flags);
4401}
4ede816a
DL
4402EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4403
4404/*
4405 * __wake_up_sync - see __wake_up_sync_key()
4406 */
4407void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4408{
4409 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4410}
1da177e4
LT
4411EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4412
65eb3dc6
KD
4413/**
4414 * complete: - signals a single thread waiting on this completion
4415 * @x: holds the state of this particular completion
4416 *
4417 * This will wake up a single thread waiting on this completion. Threads will be
4418 * awakened in the same order in which they were queued.
4419 *
4420 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4421 *
4422 * It may be assumed that this function implies a write memory barrier before
4423 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4424 */
b15136e9 4425void complete(struct completion *x)
1da177e4
LT
4426{
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&x->wait.lock, flags);
4430 x->done++;
d9514f6c 4431 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4432 spin_unlock_irqrestore(&x->wait.lock, flags);
4433}
4434EXPORT_SYMBOL(complete);
4435
65eb3dc6
KD
4436/**
4437 * complete_all: - signals all threads waiting on this completion
4438 * @x: holds the state of this particular completion
4439 *
4440 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4441 *
4442 * It may be assumed that this function implies a write memory barrier before
4443 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4444 */
b15136e9 4445void complete_all(struct completion *x)
1da177e4
LT
4446{
4447 unsigned long flags;
4448
4449 spin_lock_irqsave(&x->wait.lock, flags);
4450 x->done += UINT_MAX/2;
d9514f6c 4451 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4452 spin_unlock_irqrestore(&x->wait.lock, flags);
4453}
4454EXPORT_SYMBOL(complete_all);
4455
8cbbe86d
AK
4456static inline long __sched
4457do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4458{
1da177e4
LT
4459 if (!x->done) {
4460 DECLARE_WAITQUEUE(wait, current);
4461
a93d2f17 4462 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4463 do {
94d3d824 4464 if (signal_pending_state(state, current)) {
ea71a546
ON
4465 timeout = -ERESTARTSYS;
4466 break;
8cbbe86d
AK
4467 }
4468 __set_current_state(state);
1da177e4
LT
4469 spin_unlock_irq(&x->wait.lock);
4470 timeout = schedule_timeout(timeout);
4471 spin_lock_irq(&x->wait.lock);
ea71a546 4472 } while (!x->done && timeout);
1da177e4 4473 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4474 if (!x->done)
4475 return timeout;
1da177e4
LT
4476 }
4477 x->done--;
ea71a546 4478 return timeout ?: 1;
1da177e4 4479}
1da177e4 4480
8cbbe86d
AK
4481static long __sched
4482wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4483{
1da177e4
LT
4484 might_sleep();
4485
4486 spin_lock_irq(&x->wait.lock);
8cbbe86d 4487 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4488 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4489 return timeout;
4490}
1da177e4 4491
65eb3dc6
KD
4492/**
4493 * wait_for_completion: - waits for completion of a task
4494 * @x: holds the state of this particular completion
4495 *
4496 * This waits to be signaled for completion of a specific task. It is NOT
4497 * interruptible and there is no timeout.
4498 *
4499 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4500 * and interrupt capability. Also see complete().
4501 */
b15136e9 4502void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4503{
4504 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4505}
8cbbe86d 4506EXPORT_SYMBOL(wait_for_completion);
1da177e4 4507
65eb3dc6
KD
4508/**
4509 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4510 * @x: holds the state of this particular completion
4511 * @timeout: timeout value in jiffies
4512 *
4513 * This waits for either a completion of a specific task to be signaled or for a
4514 * specified timeout to expire. The timeout is in jiffies. It is not
4515 * interruptible.
4516 */
b15136e9 4517unsigned long __sched
8cbbe86d 4518wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4519{
8cbbe86d 4520 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4521}
8cbbe86d 4522EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4523
65eb3dc6
KD
4524/**
4525 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4526 * @x: holds the state of this particular completion
4527 *
4528 * This waits for completion of a specific task to be signaled. It is
4529 * interruptible.
4530 */
8cbbe86d 4531int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4532{
51e97990
AK
4533 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4534 if (t == -ERESTARTSYS)
4535 return t;
4536 return 0;
0fec171c 4537}
8cbbe86d 4538EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4539
65eb3dc6
KD
4540/**
4541 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4542 * @x: holds the state of this particular completion
4543 * @timeout: timeout value in jiffies
4544 *
4545 * This waits for either a completion of a specific task to be signaled or for a
4546 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4547 */
6bf41237 4548long __sched
8cbbe86d
AK
4549wait_for_completion_interruptible_timeout(struct completion *x,
4550 unsigned long timeout)
0fec171c 4551{
8cbbe86d 4552 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4553}
8cbbe86d 4554EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4555
65eb3dc6
KD
4556/**
4557 * wait_for_completion_killable: - waits for completion of a task (killable)
4558 * @x: holds the state of this particular completion
4559 *
4560 * This waits to be signaled for completion of a specific task. It can be
4561 * interrupted by a kill signal.
4562 */
009e577e
MW
4563int __sched wait_for_completion_killable(struct completion *x)
4564{
4565 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4566 if (t == -ERESTARTSYS)
4567 return t;
4568 return 0;
4569}
4570EXPORT_SYMBOL(wait_for_completion_killable);
4571
0aa12fb4
SW
4572/**
4573 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4574 * @x: holds the state of this particular completion
4575 * @timeout: timeout value in jiffies
4576 *
4577 * This waits for either a completion of a specific task to be
4578 * signaled or for a specified timeout to expire. It can be
4579 * interrupted by a kill signal. The timeout is in jiffies.
4580 */
6bf41237 4581long __sched
0aa12fb4
SW
4582wait_for_completion_killable_timeout(struct completion *x,
4583 unsigned long timeout)
4584{
4585 return wait_for_common(x, timeout, TASK_KILLABLE);
4586}
4587EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4588
be4de352
DC
4589/**
4590 * try_wait_for_completion - try to decrement a completion without blocking
4591 * @x: completion structure
4592 *
4593 * Returns: 0 if a decrement cannot be done without blocking
4594 * 1 if a decrement succeeded.
4595 *
4596 * If a completion is being used as a counting completion,
4597 * attempt to decrement the counter without blocking. This
4598 * enables us to avoid waiting if the resource the completion
4599 * is protecting is not available.
4600 */
4601bool try_wait_for_completion(struct completion *x)
4602{
7539a3b3 4603 unsigned long flags;
be4de352
DC
4604 int ret = 1;
4605
7539a3b3 4606 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4607 if (!x->done)
4608 ret = 0;
4609 else
4610 x->done--;
7539a3b3 4611 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4612 return ret;
4613}
4614EXPORT_SYMBOL(try_wait_for_completion);
4615
4616/**
4617 * completion_done - Test to see if a completion has any waiters
4618 * @x: completion structure
4619 *
4620 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4621 * 1 if there are no waiters.
4622 *
4623 */
4624bool completion_done(struct completion *x)
4625{
7539a3b3 4626 unsigned long flags;
be4de352
DC
4627 int ret = 1;
4628
7539a3b3 4629 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4630 if (!x->done)
4631 ret = 0;
7539a3b3 4632 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4633 return ret;
4634}
4635EXPORT_SYMBOL(completion_done);
4636
8cbbe86d
AK
4637static long __sched
4638sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4639{
0fec171c
IM
4640 unsigned long flags;
4641 wait_queue_t wait;
4642
4643 init_waitqueue_entry(&wait, current);
1da177e4 4644
8cbbe86d 4645 __set_current_state(state);
1da177e4 4646
8cbbe86d
AK
4647 spin_lock_irqsave(&q->lock, flags);
4648 __add_wait_queue(q, &wait);
4649 spin_unlock(&q->lock);
4650 timeout = schedule_timeout(timeout);
4651 spin_lock_irq(&q->lock);
4652 __remove_wait_queue(q, &wait);
4653 spin_unlock_irqrestore(&q->lock, flags);
4654
4655 return timeout;
4656}
4657
4658void __sched interruptible_sleep_on(wait_queue_head_t *q)
4659{
4660 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4661}
1da177e4
LT
4662EXPORT_SYMBOL(interruptible_sleep_on);
4663
0fec171c 4664long __sched
95cdf3b7 4665interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4666{
8cbbe86d 4667 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4668}
1da177e4
LT
4669EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4670
0fec171c 4671void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4672{
8cbbe86d 4673 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4674}
1da177e4
LT
4675EXPORT_SYMBOL(sleep_on);
4676
0fec171c 4677long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4678{
8cbbe86d 4679 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4680}
1da177e4
LT
4681EXPORT_SYMBOL(sleep_on_timeout);
4682
b29739f9
IM
4683#ifdef CONFIG_RT_MUTEXES
4684
4685/*
4686 * rt_mutex_setprio - set the current priority of a task
4687 * @p: task
4688 * @prio: prio value (kernel-internal form)
4689 *
4690 * This function changes the 'effective' priority of a task. It does
4691 * not touch ->normal_prio like __setscheduler().
4692 *
4693 * Used by the rt_mutex code to implement priority inheritance logic.
4694 */
36c8b586 4695void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4696{
83b699ed 4697 int oldprio, on_rq, running;
70b97a7f 4698 struct rq *rq;
83ab0aa0 4699 const struct sched_class *prev_class;
b29739f9
IM
4700
4701 BUG_ON(prio < 0 || prio > MAX_PRIO);
4702
0122ec5b 4703 rq = __task_rq_lock(p);
b29739f9 4704
a8027073 4705 trace_sched_pi_setprio(p, prio);
d5f9f942 4706 oldprio = p->prio;
83ab0aa0 4707 prev_class = p->sched_class;
fd2f4419 4708 on_rq = p->on_rq;
051a1d1a 4709 running = task_current(rq, p);
0e1f3483 4710 if (on_rq)
69be72c1 4711 dequeue_task(rq, p, 0);
0e1f3483
HS
4712 if (running)
4713 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4714
4715 if (rt_prio(prio))
4716 p->sched_class = &rt_sched_class;
4717 else
4718 p->sched_class = &fair_sched_class;
4719
b29739f9
IM
4720 p->prio = prio;
4721
0e1f3483
HS
4722 if (running)
4723 p->sched_class->set_curr_task(rq);
da7a735e 4724 if (on_rq)
371fd7e7 4725 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4726
da7a735e 4727 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4728 __task_rq_unlock(rq);
b29739f9
IM
4729}
4730
4731#endif
4732
36c8b586 4733void set_user_nice(struct task_struct *p, long nice)
1da177e4 4734{
dd41f596 4735 int old_prio, delta, on_rq;
1da177e4 4736 unsigned long flags;
70b97a7f 4737 struct rq *rq;
1da177e4
LT
4738
4739 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4740 return;
4741 /*
4742 * We have to be careful, if called from sys_setpriority(),
4743 * the task might be in the middle of scheduling on another CPU.
4744 */
4745 rq = task_rq_lock(p, &flags);
4746 /*
4747 * The RT priorities are set via sched_setscheduler(), but we still
4748 * allow the 'normal' nice value to be set - but as expected
4749 * it wont have any effect on scheduling until the task is
dd41f596 4750 * SCHED_FIFO/SCHED_RR:
1da177e4 4751 */
e05606d3 4752 if (task_has_rt_policy(p)) {
1da177e4
LT
4753 p->static_prio = NICE_TO_PRIO(nice);
4754 goto out_unlock;
4755 }
fd2f4419 4756 on_rq = p->on_rq;
c09595f6 4757 if (on_rq)
69be72c1 4758 dequeue_task(rq, p, 0);
1da177e4 4759
1da177e4 4760 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4761 set_load_weight(p);
b29739f9
IM
4762 old_prio = p->prio;
4763 p->prio = effective_prio(p);
4764 delta = p->prio - old_prio;
1da177e4 4765
dd41f596 4766 if (on_rq) {
371fd7e7 4767 enqueue_task(rq, p, 0);
1da177e4 4768 /*
d5f9f942
AM
4769 * If the task increased its priority or is running and
4770 * lowered its priority, then reschedule its CPU:
1da177e4 4771 */
d5f9f942 4772 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4773 resched_task(rq->curr);
4774 }
4775out_unlock:
0122ec5b 4776 task_rq_unlock(rq, p, &flags);
1da177e4 4777}
1da177e4
LT
4778EXPORT_SYMBOL(set_user_nice);
4779
e43379f1
MM
4780/*
4781 * can_nice - check if a task can reduce its nice value
4782 * @p: task
4783 * @nice: nice value
4784 */
36c8b586 4785int can_nice(const struct task_struct *p, const int nice)
e43379f1 4786{
024f4747
MM
4787 /* convert nice value [19,-20] to rlimit style value [1,40] */
4788 int nice_rlim = 20 - nice;
48f24c4d 4789
78d7d407 4790 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4791 capable(CAP_SYS_NICE));
4792}
4793
1da177e4
LT
4794#ifdef __ARCH_WANT_SYS_NICE
4795
4796/*
4797 * sys_nice - change the priority of the current process.
4798 * @increment: priority increment
4799 *
4800 * sys_setpriority is a more generic, but much slower function that
4801 * does similar things.
4802 */
5add95d4 4803SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4804{
48f24c4d 4805 long nice, retval;
1da177e4
LT
4806
4807 /*
4808 * Setpriority might change our priority at the same moment.
4809 * We don't have to worry. Conceptually one call occurs first
4810 * and we have a single winner.
4811 */
e43379f1
MM
4812 if (increment < -40)
4813 increment = -40;
1da177e4
LT
4814 if (increment > 40)
4815 increment = 40;
4816
2b8f836f 4817 nice = TASK_NICE(current) + increment;
1da177e4
LT
4818 if (nice < -20)
4819 nice = -20;
4820 if (nice > 19)
4821 nice = 19;
4822
e43379f1
MM
4823 if (increment < 0 && !can_nice(current, nice))
4824 return -EPERM;
4825
1da177e4
LT
4826 retval = security_task_setnice(current, nice);
4827 if (retval)
4828 return retval;
4829
4830 set_user_nice(current, nice);
4831 return 0;
4832}
4833
4834#endif
4835
4836/**
4837 * task_prio - return the priority value of a given task.
4838 * @p: the task in question.
4839 *
4840 * This is the priority value as seen by users in /proc.
4841 * RT tasks are offset by -200. Normal tasks are centered
4842 * around 0, value goes from -16 to +15.
4843 */
36c8b586 4844int task_prio(const struct task_struct *p)
1da177e4
LT
4845{
4846 return p->prio - MAX_RT_PRIO;
4847}
4848
4849/**
4850 * task_nice - return the nice value of a given task.
4851 * @p: the task in question.
4852 */
36c8b586 4853int task_nice(const struct task_struct *p)
1da177e4
LT
4854{
4855 return TASK_NICE(p);
4856}
150d8bed 4857EXPORT_SYMBOL(task_nice);
1da177e4
LT
4858
4859/**
4860 * idle_cpu - is a given cpu idle currently?
4861 * @cpu: the processor in question.
4862 */
4863int idle_cpu(int cpu)
4864{
4865 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4866}
4867
1da177e4
LT
4868/**
4869 * idle_task - return the idle task for a given cpu.
4870 * @cpu: the processor in question.
4871 */
36c8b586 4872struct task_struct *idle_task(int cpu)
1da177e4
LT
4873{
4874 return cpu_rq(cpu)->idle;
4875}
4876
4877/**
4878 * find_process_by_pid - find a process with a matching PID value.
4879 * @pid: the pid in question.
4880 */
a9957449 4881static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4882{
228ebcbe 4883 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4884}
4885
4886/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4887static void
4888__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4889{
1da177e4
LT
4890 p->policy = policy;
4891 p->rt_priority = prio;
b29739f9
IM
4892 p->normal_prio = normal_prio(p);
4893 /* we are holding p->pi_lock already */
4894 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4895 if (rt_prio(p->prio))
4896 p->sched_class = &rt_sched_class;
4897 else
4898 p->sched_class = &fair_sched_class;
2dd73a4f 4899 set_load_weight(p);
1da177e4
LT
4900}
4901
c69e8d9c
DH
4902/*
4903 * check the target process has a UID that matches the current process's
4904 */
4905static bool check_same_owner(struct task_struct *p)
4906{
4907 const struct cred *cred = current_cred(), *pcred;
4908 bool match;
4909
4910 rcu_read_lock();
4911 pcred = __task_cred(p);
b0e77598
SH
4912 if (cred->user->user_ns == pcred->user->user_ns)
4913 match = (cred->euid == pcred->euid ||
4914 cred->euid == pcred->uid);
4915 else
4916 match = false;
c69e8d9c
DH
4917 rcu_read_unlock();
4918 return match;
4919}
4920
961ccddd 4921static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4922 const struct sched_param *param, bool user)
1da177e4 4923{
83b699ed 4924 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4925 unsigned long flags;
83ab0aa0 4926 const struct sched_class *prev_class;
70b97a7f 4927 struct rq *rq;
ca94c442 4928 int reset_on_fork;
1da177e4 4929
66e5393a
SR
4930 /* may grab non-irq protected spin_locks */
4931 BUG_ON(in_interrupt());
1da177e4
LT
4932recheck:
4933 /* double check policy once rq lock held */
ca94c442
LP
4934 if (policy < 0) {
4935 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4936 policy = oldpolicy = p->policy;
ca94c442
LP
4937 } else {
4938 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4939 policy &= ~SCHED_RESET_ON_FORK;
4940
4941 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4942 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4943 policy != SCHED_IDLE)
4944 return -EINVAL;
4945 }
4946
1da177e4
LT
4947 /*
4948 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4949 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4950 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4951 */
4952 if (param->sched_priority < 0 ||
95cdf3b7 4953 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4954 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4955 return -EINVAL;
e05606d3 4956 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4957 return -EINVAL;
4958
37e4ab3f
OC
4959 /*
4960 * Allow unprivileged RT tasks to decrease priority:
4961 */
961ccddd 4962 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4963 if (rt_policy(policy)) {
a44702e8
ON
4964 unsigned long rlim_rtprio =
4965 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4966
4967 /* can't set/change the rt policy */
4968 if (policy != p->policy && !rlim_rtprio)
4969 return -EPERM;
4970
4971 /* can't increase priority */
4972 if (param->sched_priority > p->rt_priority &&
4973 param->sched_priority > rlim_rtprio)
4974 return -EPERM;
4975 }
c02aa73b 4976
dd41f596 4977 /*
c02aa73b
DH
4978 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4979 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4980 */
c02aa73b
DH
4981 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4982 if (!can_nice(p, TASK_NICE(p)))
4983 return -EPERM;
4984 }
5fe1d75f 4985
37e4ab3f 4986 /* can't change other user's priorities */
c69e8d9c 4987 if (!check_same_owner(p))
37e4ab3f 4988 return -EPERM;
ca94c442
LP
4989
4990 /* Normal users shall not reset the sched_reset_on_fork flag */
4991 if (p->sched_reset_on_fork && !reset_on_fork)
4992 return -EPERM;
37e4ab3f 4993 }
1da177e4 4994
725aad24 4995 if (user) {
b0ae1981 4996 retval = security_task_setscheduler(p);
725aad24
JF
4997 if (retval)
4998 return retval;
4999 }
5000
b29739f9
IM
5001 /*
5002 * make sure no PI-waiters arrive (or leave) while we are
5003 * changing the priority of the task:
0122ec5b 5004 *
25985edc 5005 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5006 * runqueue lock must be held.
5007 */
0122ec5b 5008 rq = task_rq_lock(p, &flags);
dc61b1d6 5009
34f971f6
PZ
5010 /*
5011 * Changing the policy of the stop threads its a very bad idea
5012 */
5013 if (p == rq->stop) {
0122ec5b 5014 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5015 return -EINVAL;
5016 }
5017
a51e9198
DF
5018 /*
5019 * If not changing anything there's no need to proceed further:
5020 */
5021 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5022 param->sched_priority == p->rt_priority))) {
5023
5024 __task_rq_unlock(rq);
5025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5026 return 0;
5027 }
5028
dc61b1d6
PZ
5029#ifdef CONFIG_RT_GROUP_SCHED
5030 if (user) {
5031 /*
5032 * Do not allow realtime tasks into groups that have no runtime
5033 * assigned.
5034 */
5035 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5036 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5037 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5038 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5039 return -EPERM;
5040 }
5041 }
5042#endif
5043
1da177e4
LT
5044 /* recheck policy now with rq lock held */
5045 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5046 policy = oldpolicy = -1;
0122ec5b 5047 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5048 goto recheck;
5049 }
fd2f4419 5050 on_rq = p->on_rq;
051a1d1a 5051 running = task_current(rq, p);
0e1f3483 5052 if (on_rq)
2e1cb74a 5053 deactivate_task(rq, p, 0);
0e1f3483
HS
5054 if (running)
5055 p->sched_class->put_prev_task(rq, p);
f6b53205 5056
ca94c442
LP
5057 p->sched_reset_on_fork = reset_on_fork;
5058
1da177e4 5059 oldprio = p->prio;
83ab0aa0 5060 prev_class = p->sched_class;
dd41f596 5061 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5062
0e1f3483
HS
5063 if (running)
5064 p->sched_class->set_curr_task(rq);
da7a735e 5065 if (on_rq)
dd41f596 5066 activate_task(rq, p, 0);
cb469845 5067
da7a735e 5068 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5069 task_rq_unlock(rq, p, &flags);
b29739f9 5070
95e02ca9
TG
5071 rt_mutex_adjust_pi(p);
5072
1da177e4
LT
5073 return 0;
5074}
961ccddd
RR
5075
5076/**
5077 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5081 *
5082 * NOTE that the task may be already dead.
5083 */
5084int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5085 const struct sched_param *param)
961ccddd
RR
5086{
5087 return __sched_setscheduler(p, policy, param, true);
5088}
1da177e4
LT
5089EXPORT_SYMBOL_GPL(sched_setscheduler);
5090
961ccddd
RR
5091/**
5092 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5093 * @p: the task in question.
5094 * @policy: new policy.
5095 * @param: structure containing the new RT priority.
5096 *
5097 * Just like sched_setscheduler, only don't bother checking if the
5098 * current context has permission. For example, this is needed in
5099 * stop_machine(): we create temporary high priority worker threads,
5100 * but our caller might not have that capability.
5101 */
5102int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5103 const struct sched_param *param)
961ccddd
RR
5104{
5105 return __sched_setscheduler(p, policy, param, false);
5106}
5107
95cdf3b7
IM
5108static int
5109do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5110{
1da177e4
LT
5111 struct sched_param lparam;
5112 struct task_struct *p;
36c8b586 5113 int retval;
1da177e4
LT
5114
5115 if (!param || pid < 0)
5116 return -EINVAL;
5117 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5118 return -EFAULT;
5fe1d75f
ON
5119
5120 rcu_read_lock();
5121 retval = -ESRCH;
1da177e4 5122 p = find_process_by_pid(pid);
5fe1d75f
ON
5123 if (p != NULL)
5124 retval = sched_setscheduler(p, policy, &lparam);
5125 rcu_read_unlock();
36c8b586 5126
1da177e4
LT
5127 return retval;
5128}
5129
5130/**
5131 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5132 * @pid: the pid in question.
5133 * @policy: new policy.
5134 * @param: structure containing the new RT priority.
5135 */
5add95d4
HC
5136SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5137 struct sched_param __user *, param)
1da177e4 5138{
c21761f1
JB
5139 /* negative values for policy are not valid */
5140 if (policy < 0)
5141 return -EINVAL;
5142
1da177e4
LT
5143 return do_sched_setscheduler(pid, policy, param);
5144}
5145
5146/**
5147 * sys_sched_setparam - set/change the RT priority of a thread
5148 * @pid: the pid in question.
5149 * @param: structure containing the new RT priority.
5150 */
5add95d4 5151SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5152{
5153 return do_sched_setscheduler(pid, -1, param);
5154}
5155
5156/**
5157 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5158 * @pid: the pid in question.
5159 */
5add95d4 5160SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5161{
36c8b586 5162 struct task_struct *p;
3a5c359a 5163 int retval;
1da177e4
LT
5164
5165 if (pid < 0)
3a5c359a 5166 return -EINVAL;
1da177e4
LT
5167
5168 retval = -ESRCH;
5fe85be0 5169 rcu_read_lock();
1da177e4
LT
5170 p = find_process_by_pid(pid);
5171 if (p) {
5172 retval = security_task_getscheduler(p);
5173 if (!retval)
ca94c442
LP
5174 retval = p->policy
5175 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5176 }
5fe85be0 5177 rcu_read_unlock();
1da177e4
LT
5178 return retval;
5179}
5180
5181/**
ca94c442 5182 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5183 * @pid: the pid in question.
5184 * @param: structure containing the RT priority.
5185 */
5add95d4 5186SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5187{
5188 struct sched_param lp;
36c8b586 5189 struct task_struct *p;
3a5c359a 5190 int retval;
1da177e4
LT
5191
5192 if (!param || pid < 0)
3a5c359a 5193 return -EINVAL;
1da177e4 5194
5fe85be0 5195 rcu_read_lock();
1da177e4
LT
5196 p = find_process_by_pid(pid);
5197 retval = -ESRCH;
5198 if (!p)
5199 goto out_unlock;
5200
5201 retval = security_task_getscheduler(p);
5202 if (retval)
5203 goto out_unlock;
5204
5205 lp.sched_priority = p->rt_priority;
5fe85be0 5206 rcu_read_unlock();
1da177e4
LT
5207
5208 /*
5209 * This one might sleep, we cannot do it with a spinlock held ...
5210 */
5211 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5212
1da177e4
LT
5213 return retval;
5214
5215out_unlock:
5fe85be0 5216 rcu_read_unlock();
1da177e4
LT
5217 return retval;
5218}
5219
96f874e2 5220long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5221{
5a16f3d3 5222 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5223 struct task_struct *p;
5224 int retval;
1da177e4 5225
95402b38 5226 get_online_cpus();
23f5d142 5227 rcu_read_lock();
1da177e4
LT
5228
5229 p = find_process_by_pid(pid);
5230 if (!p) {
23f5d142 5231 rcu_read_unlock();
95402b38 5232 put_online_cpus();
1da177e4
LT
5233 return -ESRCH;
5234 }
5235
23f5d142 5236 /* Prevent p going away */
1da177e4 5237 get_task_struct(p);
23f5d142 5238 rcu_read_unlock();
1da177e4 5239
5a16f3d3
RR
5240 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5241 retval = -ENOMEM;
5242 goto out_put_task;
5243 }
5244 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5245 retval = -ENOMEM;
5246 goto out_free_cpus_allowed;
5247 }
1da177e4 5248 retval = -EPERM;
b0e77598 5249 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5250 goto out_unlock;
5251
b0ae1981 5252 retval = security_task_setscheduler(p);
e7834f8f
DQ
5253 if (retval)
5254 goto out_unlock;
5255
5a16f3d3
RR
5256 cpuset_cpus_allowed(p, cpus_allowed);
5257 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5258again:
5a16f3d3 5259 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5260
8707d8b8 5261 if (!retval) {
5a16f3d3
RR
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5264 /*
5265 * We must have raced with a concurrent cpuset
5266 * update. Just reset the cpus_allowed to the
5267 * cpuset's cpus_allowed
5268 */
5a16f3d3 5269 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5270 goto again;
5271 }
5272 }
1da177e4 5273out_unlock:
5a16f3d3
RR
5274 free_cpumask_var(new_mask);
5275out_free_cpus_allowed:
5276 free_cpumask_var(cpus_allowed);
5277out_put_task:
1da177e4 5278 put_task_struct(p);
95402b38 5279 put_online_cpus();
1da177e4
LT
5280 return retval;
5281}
5282
5283static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5284 struct cpumask *new_mask)
1da177e4 5285{
96f874e2
RR
5286 if (len < cpumask_size())
5287 cpumask_clear(new_mask);
5288 else if (len > cpumask_size())
5289 len = cpumask_size();
5290
1da177e4
LT
5291 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5292}
5293
5294/**
5295 * sys_sched_setaffinity - set the cpu affinity of a process
5296 * @pid: pid of the process
5297 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5298 * @user_mask_ptr: user-space pointer to the new cpu mask
5299 */
5add95d4
HC
5300SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5301 unsigned long __user *, user_mask_ptr)
1da177e4 5302{
5a16f3d3 5303 cpumask_var_t new_mask;
1da177e4
LT
5304 int retval;
5305
5a16f3d3
RR
5306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5307 return -ENOMEM;
1da177e4 5308
5a16f3d3
RR
5309 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5310 if (retval == 0)
5311 retval = sched_setaffinity(pid, new_mask);
5312 free_cpumask_var(new_mask);
5313 return retval;
1da177e4
LT
5314}
5315
96f874e2 5316long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5317{
36c8b586 5318 struct task_struct *p;
31605683 5319 unsigned long flags;
1da177e4 5320 int retval;
1da177e4 5321
95402b38 5322 get_online_cpus();
23f5d142 5323 rcu_read_lock();
1da177e4
LT
5324
5325 retval = -ESRCH;
5326 p = find_process_by_pid(pid);
5327 if (!p)
5328 goto out_unlock;
5329
e7834f8f
DQ
5330 retval = security_task_getscheduler(p);
5331 if (retval)
5332 goto out_unlock;
5333
013fdb80 5334 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5335 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5337
5338out_unlock:
23f5d142 5339 rcu_read_unlock();
95402b38 5340 put_online_cpus();
1da177e4 5341
9531b62f 5342 return retval;
1da177e4
LT
5343}
5344
5345/**
5346 * sys_sched_getaffinity - get the cpu affinity of a process
5347 * @pid: pid of the process
5348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5350 */
5add95d4
HC
5351SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5352 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5353{
5354 int ret;
f17c8607 5355 cpumask_var_t mask;
1da177e4 5356
84fba5ec 5357 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5358 return -EINVAL;
5359 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5360 return -EINVAL;
5361
f17c8607
RR
5362 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5363 return -ENOMEM;
1da177e4 5364
f17c8607
RR
5365 ret = sched_getaffinity(pid, mask);
5366 if (ret == 0) {
8bc037fb 5367 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5368
5369 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5370 ret = -EFAULT;
5371 else
cd3d8031 5372 ret = retlen;
f17c8607
RR
5373 }
5374 free_cpumask_var(mask);
1da177e4 5375
f17c8607 5376 return ret;
1da177e4
LT
5377}
5378
5379/**
5380 * sys_sched_yield - yield the current processor to other threads.
5381 *
dd41f596
IM
5382 * This function yields the current CPU to other tasks. If there are no
5383 * other threads running on this CPU then this function will return.
1da177e4 5384 */
5add95d4 5385SYSCALL_DEFINE0(sched_yield)
1da177e4 5386{
70b97a7f 5387 struct rq *rq = this_rq_lock();
1da177e4 5388
2d72376b 5389 schedstat_inc(rq, yld_count);
4530d7ab 5390 current->sched_class->yield_task(rq);
1da177e4
LT
5391
5392 /*
5393 * Since we are going to call schedule() anyway, there's
5394 * no need to preempt or enable interrupts:
5395 */
5396 __release(rq->lock);
8a25d5de 5397 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5398 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5399 preempt_enable_no_resched();
5400
5401 schedule();
5402
5403 return 0;
5404}
5405
d86ee480
PZ
5406static inline int should_resched(void)
5407{
5408 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5409}
5410
e7b38404 5411static void __cond_resched(void)
1da177e4 5412{
e7aaaa69
FW
5413 add_preempt_count(PREEMPT_ACTIVE);
5414 schedule();
5415 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5416}
5417
02b67cc3 5418int __sched _cond_resched(void)
1da177e4 5419{
d86ee480 5420 if (should_resched()) {
1da177e4
LT
5421 __cond_resched();
5422 return 1;
5423 }
5424 return 0;
5425}
02b67cc3 5426EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5427
5428/*
613afbf8 5429 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5430 * call schedule, and on return reacquire the lock.
5431 *
41a2d6cf 5432 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5433 * operations here to prevent schedule() from being called twice (once via
5434 * spin_unlock(), once by hand).
5435 */
613afbf8 5436int __cond_resched_lock(spinlock_t *lock)
1da177e4 5437{
d86ee480 5438 int resched = should_resched();
6df3cecb
JK
5439 int ret = 0;
5440
f607c668
PZ
5441 lockdep_assert_held(lock);
5442
95c354fe 5443 if (spin_needbreak(lock) || resched) {
1da177e4 5444 spin_unlock(lock);
d86ee480 5445 if (resched)
95c354fe
NP
5446 __cond_resched();
5447 else
5448 cpu_relax();
6df3cecb 5449 ret = 1;
1da177e4 5450 spin_lock(lock);
1da177e4 5451 }
6df3cecb 5452 return ret;
1da177e4 5453}
613afbf8 5454EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5455
613afbf8 5456int __sched __cond_resched_softirq(void)
1da177e4
LT
5457{
5458 BUG_ON(!in_softirq());
5459
d86ee480 5460 if (should_resched()) {
98d82567 5461 local_bh_enable();
1da177e4
LT
5462 __cond_resched();
5463 local_bh_disable();
5464 return 1;
5465 }
5466 return 0;
5467}
613afbf8 5468EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5469
1da177e4
LT
5470/**
5471 * yield - yield the current processor to other threads.
5472 *
72fd4a35 5473 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5474 * thread runnable and calls sys_sched_yield().
5475 */
5476void __sched yield(void)
5477{
5478 set_current_state(TASK_RUNNING);
5479 sys_sched_yield();
5480}
1da177e4
LT
5481EXPORT_SYMBOL(yield);
5482
d95f4122
MG
5483/**
5484 * yield_to - yield the current processor to another thread in
5485 * your thread group, or accelerate that thread toward the
5486 * processor it's on.
16addf95
RD
5487 * @p: target task
5488 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5489 *
5490 * It's the caller's job to ensure that the target task struct
5491 * can't go away on us before we can do any checks.
5492 *
5493 * Returns true if we indeed boosted the target task.
5494 */
5495bool __sched yield_to(struct task_struct *p, bool preempt)
5496{
5497 struct task_struct *curr = current;
5498 struct rq *rq, *p_rq;
5499 unsigned long flags;
5500 bool yielded = 0;
5501
5502 local_irq_save(flags);
5503 rq = this_rq();
5504
5505again:
5506 p_rq = task_rq(p);
5507 double_rq_lock(rq, p_rq);
5508 while (task_rq(p) != p_rq) {
5509 double_rq_unlock(rq, p_rq);
5510 goto again;
5511 }
5512
5513 if (!curr->sched_class->yield_to_task)
5514 goto out;
5515
5516 if (curr->sched_class != p->sched_class)
5517 goto out;
5518
5519 if (task_running(p_rq, p) || p->state)
5520 goto out;
5521
5522 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5523 if (yielded) {
d95f4122 5524 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5525 /*
5526 * Make p's CPU reschedule; pick_next_entity takes care of
5527 * fairness.
5528 */
5529 if (preempt && rq != p_rq)
5530 resched_task(p_rq->curr);
5531 }
d95f4122
MG
5532
5533out:
5534 double_rq_unlock(rq, p_rq);
5535 local_irq_restore(flags);
5536
5537 if (yielded)
5538 schedule();
5539
5540 return yielded;
5541}
5542EXPORT_SYMBOL_GPL(yield_to);
5543
1da177e4 5544/*
41a2d6cf 5545 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5546 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5547 */
5548void __sched io_schedule(void)
5549{
54d35f29 5550 struct rq *rq = raw_rq();
1da177e4 5551
0ff92245 5552 delayacct_blkio_start();
1da177e4 5553 atomic_inc(&rq->nr_iowait);
73c10101 5554 blk_flush_plug(current);
8f0dfc34 5555 current->in_iowait = 1;
1da177e4 5556 schedule();
8f0dfc34 5557 current->in_iowait = 0;
1da177e4 5558 atomic_dec(&rq->nr_iowait);
0ff92245 5559 delayacct_blkio_end();
1da177e4 5560}
1da177e4
LT
5561EXPORT_SYMBOL(io_schedule);
5562
5563long __sched io_schedule_timeout(long timeout)
5564{
54d35f29 5565 struct rq *rq = raw_rq();
1da177e4
LT
5566 long ret;
5567
0ff92245 5568 delayacct_blkio_start();
1da177e4 5569 atomic_inc(&rq->nr_iowait);
73c10101 5570 blk_flush_plug(current);
8f0dfc34 5571 current->in_iowait = 1;
1da177e4 5572 ret = schedule_timeout(timeout);
8f0dfc34 5573 current->in_iowait = 0;
1da177e4 5574 atomic_dec(&rq->nr_iowait);
0ff92245 5575 delayacct_blkio_end();
1da177e4
LT
5576 return ret;
5577}
5578
5579/**
5580 * sys_sched_get_priority_max - return maximum RT priority.
5581 * @policy: scheduling class.
5582 *
5583 * this syscall returns the maximum rt_priority that can be used
5584 * by a given scheduling class.
5585 */
5add95d4 5586SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5587{
5588 int ret = -EINVAL;
5589
5590 switch (policy) {
5591 case SCHED_FIFO:
5592 case SCHED_RR:
5593 ret = MAX_USER_RT_PRIO-1;
5594 break;
5595 case SCHED_NORMAL:
b0a9499c 5596 case SCHED_BATCH:
dd41f596 5597 case SCHED_IDLE:
1da177e4
LT
5598 ret = 0;
5599 break;
5600 }
5601 return ret;
5602}
5603
5604/**
5605 * sys_sched_get_priority_min - return minimum RT priority.
5606 * @policy: scheduling class.
5607 *
5608 * this syscall returns the minimum rt_priority that can be used
5609 * by a given scheduling class.
5610 */
5add95d4 5611SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5612{
5613 int ret = -EINVAL;
5614
5615 switch (policy) {
5616 case SCHED_FIFO:
5617 case SCHED_RR:
5618 ret = 1;
5619 break;
5620 case SCHED_NORMAL:
b0a9499c 5621 case SCHED_BATCH:
dd41f596 5622 case SCHED_IDLE:
1da177e4
LT
5623 ret = 0;
5624 }
5625 return ret;
5626}
5627
5628/**
5629 * sys_sched_rr_get_interval - return the default timeslice of a process.
5630 * @pid: pid of the process.
5631 * @interval: userspace pointer to the timeslice value.
5632 *
5633 * this syscall writes the default timeslice value of a given process
5634 * into the user-space timespec buffer. A value of '0' means infinity.
5635 */
17da2bd9 5636SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5637 struct timespec __user *, interval)
1da177e4 5638{
36c8b586 5639 struct task_struct *p;
a4ec24b4 5640 unsigned int time_slice;
dba091b9
TG
5641 unsigned long flags;
5642 struct rq *rq;
3a5c359a 5643 int retval;
1da177e4 5644 struct timespec t;
1da177e4
LT
5645
5646 if (pid < 0)
3a5c359a 5647 return -EINVAL;
1da177e4
LT
5648
5649 retval = -ESRCH;
1a551ae7 5650 rcu_read_lock();
1da177e4
LT
5651 p = find_process_by_pid(pid);
5652 if (!p)
5653 goto out_unlock;
5654
5655 retval = security_task_getscheduler(p);
5656 if (retval)
5657 goto out_unlock;
5658
dba091b9
TG
5659 rq = task_rq_lock(p, &flags);
5660 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5661 task_rq_unlock(rq, p, &flags);
a4ec24b4 5662
1a551ae7 5663 rcu_read_unlock();
a4ec24b4 5664 jiffies_to_timespec(time_slice, &t);
1da177e4 5665 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5666 return retval;
3a5c359a 5667
1da177e4 5668out_unlock:
1a551ae7 5669 rcu_read_unlock();
1da177e4
LT
5670 return retval;
5671}
5672
7c731e0a 5673static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5674
82a1fcb9 5675void sched_show_task(struct task_struct *p)
1da177e4 5676{
1da177e4 5677 unsigned long free = 0;
36c8b586 5678 unsigned state;
1da177e4 5679
1da177e4 5680 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5681 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5682 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5683#if BITS_PER_LONG == 32
1da177e4 5684 if (state == TASK_RUNNING)
3df0fc5b 5685 printk(KERN_CONT " running ");
1da177e4 5686 else
3df0fc5b 5687 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5688#else
5689 if (state == TASK_RUNNING)
3df0fc5b 5690 printk(KERN_CONT " running task ");
1da177e4 5691 else
3df0fc5b 5692 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5693#endif
5694#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5695 free = stack_not_used(p);
1da177e4 5696#endif
3df0fc5b 5697 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5698 task_pid_nr(p), task_pid_nr(p->real_parent),
5699 (unsigned long)task_thread_info(p)->flags);
1da177e4 5700
5fb5e6de 5701 show_stack(p, NULL);
1da177e4
LT
5702}
5703
e59e2ae2 5704void show_state_filter(unsigned long state_filter)
1da177e4 5705{
36c8b586 5706 struct task_struct *g, *p;
1da177e4 5707
4bd77321 5708#if BITS_PER_LONG == 32
3df0fc5b
PZ
5709 printk(KERN_INFO
5710 " task PC stack pid father\n");
1da177e4 5711#else
3df0fc5b
PZ
5712 printk(KERN_INFO
5713 " task PC stack pid father\n");
1da177e4
LT
5714#endif
5715 read_lock(&tasklist_lock);
5716 do_each_thread(g, p) {
5717 /*
5718 * reset the NMI-timeout, listing all files on a slow
25985edc 5719 * console might take a lot of time:
1da177e4
LT
5720 */
5721 touch_nmi_watchdog();
39bc89fd 5722 if (!state_filter || (p->state & state_filter))
82a1fcb9 5723 sched_show_task(p);
1da177e4
LT
5724 } while_each_thread(g, p);
5725
04c9167f
JF
5726 touch_all_softlockup_watchdogs();
5727
dd41f596
IM
5728#ifdef CONFIG_SCHED_DEBUG
5729 sysrq_sched_debug_show();
5730#endif
1da177e4 5731 read_unlock(&tasklist_lock);
e59e2ae2
IM
5732 /*
5733 * Only show locks if all tasks are dumped:
5734 */
93335a21 5735 if (!state_filter)
e59e2ae2 5736 debug_show_all_locks();
1da177e4
LT
5737}
5738
1df21055
IM
5739void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5740{
dd41f596 5741 idle->sched_class = &idle_sched_class;
1df21055
IM
5742}
5743
f340c0d1
IM
5744/**
5745 * init_idle - set up an idle thread for a given CPU
5746 * @idle: task in question
5747 * @cpu: cpu the idle task belongs to
5748 *
5749 * NOTE: this function does not set the idle thread's NEED_RESCHED
5750 * flag, to make booting more robust.
5751 */
5c1e1767 5752void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5753{
70b97a7f 5754 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5755 unsigned long flags;
5756
05fa785c 5757 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5758
dd41f596 5759 __sched_fork(idle);
06b83b5f 5760 idle->state = TASK_RUNNING;
dd41f596
IM
5761 idle->se.exec_start = sched_clock();
5762
96f874e2 5763 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5764 /*
5765 * We're having a chicken and egg problem, even though we are
5766 * holding rq->lock, the cpu isn't yet set to this cpu so the
5767 * lockdep check in task_group() will fail.
5768 *
5769 * Similar case to sched_fork(). / Alternatively we could
5770 * use task_rq_lock() here and obtain the other rq->lock.
5771 *
5772 * Silence PROVE_RCU
5773 */
5774 rcu_read_lock();
dd41f596 5775 __set_task_cpu(idle, cpu);
6506cf6c 5776 rcu_read_unlock();
1da177e4 5777
1da177e4 5778 rq->curr = rq->idle = idle;
3ca7a440
PZ
5779#if defined(CONFIG_SMP)
5780 idle->on_cpu = 1;
4866cde0 5781#endif
05fa785c 5782 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5783
5784 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5785#if defined(CONFIG_PREEMPT)
5786 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5787#else
a1261f54 5788 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5789#endif
dd41f596
IM
5790 /*
5791 * The idle tasks have their own, simple scheduling class:
5792 */
5793 idle->sched_class = &idle_sched_class;
868baf07 5794 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5795}
5796
5797/*
5798 * In a system that switches off the HZ timer nohz_cpu_mask
5799 * indicates which cpus entered this state. This is used
5800 * in the rcu update to wait only for active cpus. For system
5801 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5802 * always be CPU_BITS_NONE.
1da177e4 5803 */
6a7b3dc3 5804cpumask_var_t nohz_cpu_mask;
1da177e4 5805
19978ca6
IM
5806/*
5807 * Increase the granularity value when there are more CPUs,
5808 * because with more CPUs the 'effective latency' as visible
5809 * to users decreases. But the relationship is not linear,
5810 * so pick a second-best guess by going with the log2 of the
5811 * number of CPUs.
5812 *
5813 * This idea comes from the SD scheduler of Con Kolivas:
5814 */
acb4a848 5815static int get_update_sysctl_factor(void)
19978ca6 5816{
4ca3ef71 5817 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5818 unsigned int factor;
5819
5820 switch (sysctl_sched_tunable_scaling) {
5821 case SCHED_TUNABLESCALING_NONE:
5822 factor = 1;
5823 break;
5824 case SCHED_TUNABLESCALING_LINEAR:
5825 factor = cpus;
5826 break;
5827 case SCHED_TUNABLESCALING_LOG:
5828 default:
5829 factor = 1 + ilog2(cpus);
5830 break;
5831 }
19978ca6 5832
acb4a848
CE
5833 return factor;
5834}
19978ca6 5835
acb4a848
CE
5836static void update_sysctl(void)
5837{
5838 unsigned int factor = get_update_sysctl_factor();
19978ca6 5839
0bcdcf28
CE
5840#define SET_SYSCTL(name) \
5841 (sysctl_##name = (factor) * normalized_sysctl_##name)
5842 SET_SYSCTL(sched_min_granularity);
5843 SET_SYSCTL(sched_latency);
5844 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5845#undef SET_SYSCTL
5846}
55cd5340 5847
0bcdcf28
CE
5848static inline void sched_init_granularity(void)
5849{
5850 update_sysctl();
19978ca6
IM
5851}
5852
1da177e4
LT
5853#ifdef CONFIG_SMP
5854/*
5855 * This is how migration works:
5856 *
969c7921
TH
5857 * 1) we invoke migration_cpu_stop() on the target CPU using
5858 * stop_one_cpu().
5859 * 2) stopper starts to run (implicitly forcing the migrated thread
5860 * off the CPU)
5861 * 3) it checks whether the migrated task is still in the wrong runqueue.
5862 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5863 * it and puts it into the right queue.
969c7921
TH
5864 * 5) stopper completes and stop_one_cpu() returns and the migration
5865 * is done.
1da177e4
LT
5866 */
5867
5868/*
5869 * Change a given task's CPU affinity. Migrate the thread to a
5870 * proper CPU and schedule it away if the CPU it's executing on
5871 * is removed from the allowed bitmask.
5872 *
5873 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5874 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5875 * call is not atomic; no spinlocks may be held.
5876 */
96f874e2 5877int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5878{
5879 unsigned long flags;
70b97a7f 5880 struct rq *rq;
969c7921 5881 unsigned int dest_cpu;
48f24c4d 5882 int ret = 0;
1da177e4 5883
0122ec5b 5884 rq = task_rq_lock(p, &flags);
e2912009 5885
6ad4c188 5886 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5887 ret = -EINVAL;
5888 goto out;
5889 }
5890
9985b0ba 5891 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5892 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5893 ret = -EINVAL;
5894 goto out;
5895 }
5896
73fe6aae 5897 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5898 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5899 else {
96f874e2
RR
5900 cpumask_copy(&p->cpus_allowed, new_mask);
5901 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5902 }
5903
1da177e4 5904 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5905 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5906 goto out;
5907
969c7921 5908 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5909 if (need_migrate_task(p)) {
969c7921 5910 struct migration_arg arg = { p, dest_cpu };
1da177e4 5911 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5912 task_rq_unlock(rq, p, &flags);
969c7921 5913 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5914 tlb_migrate_finish(p->mm);
5915 return 0;
5916 }
5917out:
0122ec5b 5918 task_rq_unlock(rq, p, &flags);
48f24c4d 5919
1da177e4
LT
5920 return ret;
5921}
cd8ba7cd 5922EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5923
5924/*
41a2d6cf 5925 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5926 * this because either it can't run here any more (set_cpus_allowed()
5927 * away from this CPU, or CPU going down), or because we're
5928 * attempting to rebalance this task on exec (sched_exec).
5929 *
5930 * So we race with normal scheduler movements, but that's OK, as long
5931 * as the task is no longer on this CPU.
efc30814
KK
5932 *
5933 * Returns non-zero if task was successfully migrated.
1da177e4 5934 */
efc30814 5935static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5936{
70b97a7f 5937 struct rq *rq_dest, *rq_src;
e2912009 5938 int ret = 0;
1da177e4 5939
e761b772 5940 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5941 return ret;
1da177e4
LT
5942
5943 rq_src = cpu_rq(src_cpu);
5944 rq_dest = cpu_rq(dest_cpu);
5945
0122ec5b 5946 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5947 double_rq_lock(rq_src, rq_dest);
5948 /* Already moved. */
5949 if (task_cpu(p) != src_cpu)
b1e38734 5950 goto done;
1da177e4 5951 /* Affinity changed (again). */
96f874e2 5952 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5953 goto fail;
1da177e4 5954
e2912009
PZ
5955 /*
5956 * If we're not on a rq, the next wake-up will ensure we're
5957 * placed properly.
5958 */
fd2f4419 5959 if (p->on_rq) {
2e1cb74a 5960 deactivate_task(rq_src, p, 0);
e2912009 5961 set_task_cpu(p, dest_cpu);
dd41f596 5962 activate_task(rq_dest, p, 0);
15afe09b 5963 check_preempt_curr(rq_dest, p, 0);
1da177e4 5964 }
b1e38734 5965done:
efc30814 5966 ret = 1;
b1e38734 5967fail:
1da177e4 5968 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5969 raw_spin_unlock(&p->pi_lock);
efc30814 5970 return ret;
1da177e4
LT
5971}
5972
5973/*
969c7921
TH
5974 * migration_cpu_stop - this will be executed by a highprio stopper thread
5975 * and performs thread migration by bumping thread off CPU then
5976 * 'pushing' onto another runqueue.
1da177e4 5977 */
969c7921 5978static int migration_cpu_stop(void *data)
1da177e4 5979{
969c7921 5980 struct migration_arg *arg = data;
f7b4cddc 5981
969c7921
TH
5982 /*
5983 * The original target cpu might have gone down and we might
5984 * be on another cpu but it doesn't matter.
5985 */
f7b4cddc 5986 local_irq_disable();
969c7921 5987 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5988 local_irq_enable();
1da177e4 5989 return 0;
f7b4cddc
ON
5990}
5991
1da177e4 5992#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5993
054b9108 5994/*
48c5ccae
PZ
5995 * Ensures that the idle task is using init_mm right before its cpu goes
5996 * offline.
054b9108 5997 */
48c5ccae 5998void idle_task_exit(void)
1da177e4 5999{
48c5ccae 6000 struct mm_struct *mm = current->active_mm;
e76bd8d9 6001
48c5ccae 6002 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6003
48c5ccae
PZ
6004 if (mm != &init_mm)
6005 switch_mm(mm, &init_mm, current);
6006 mmdrop(mm);
1da177e4
LT
6007}
6008
6009/*
6010 * While a dead CPU has no uninterruptible tasks queued at this point,
6011 * it might still have a nonzero ->nr_uninterruptible counter, because
6012 * for performance reasons the counter is not stricly tracking tasks to
6013 * their home CPUs. So we just add the counter to another CPU's counter,
6014 * to keep the global sum constant after CPU-down:
6015 */
70b97a7f 6016static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6017{
6ad4c188 6018 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6019
1da177e4
LT
6020 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6021 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6022}
6023
dd41f596 6024/*
48c5ccae 6025 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6026 */
48c5ccae 6027static void calc_global_load_remove(struct rq *rq)
1da177e4 6028{
48c5ccae
PZ
6029 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6030 rq->calc_load_active = 0;
1da177e4
LT
6031}
6032
48f24c4d 6033/*
48c5ccae
PZ
6034 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6035 * try_to_wake_up()->select_task_rq().
6036 *
6037 * Called with rq->lock held even though we'er in stop_machine() and
6038 * there's no concurrency possible, we hold the required locks anyway
6039 * because of lock validation efforts.
1da177e4 6040 */
48c5ccae 6041static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6042{
70b97a7f 6043 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6044 struct task_struct *next, *stop = rq->stop;
6045 int dest_cpu;
1da177e4
LT
6046
6047 /*
48c5ccae
PZ
6048 * Fudge the rq selection such that the below task selection loop
6049 * doesn't get stuck on the currently eligible stop task.
6050 *
6051 * We're currently inside stop_machine() and the rq is either stuck
6052 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6053 * either way we should never end up calling schedule() until we're
6054 * done here.
1da177e4 6055 */
48c5ccae 6056 rq->stop = NULL;
48f24c4d 6057
dd41f596 6058 for ( ; ; ) {
48c5ccae
PZ
6059 /*
6060 * There's this thread running, bail when that's the only
6061 * remaining thread.
6062 */
6063 if (rq->nr_running == 1)
dd41f596 6064 break;
48c5ccae 6065
b67802ea 6066 next = pick_next_task(rq);
48c5ccae 6067 BUG_ON(!next);
79c53799 6068 next->sched_class->put_prev_task(rq, next);
e692ab53 6069
48c5ccae
PZ
6070 /* Find suitable destination for @next, with force if needed. */
6071 dest_cpu = select_fallback_rq(dead_cpu, next);
6072 raw_spin_unlock(&rq->lock);
6073
6074 __migrate_task(next, dead_cpu, dest_cpu);
6075
6076 raw_spin_lock(&rq->lock);
1da177e4 6077 }
dce48a84 6078
48c5ccae 6079 rq->stop = stop;
dce48a84 6080}
48c5ccae 6081
1da177e4
LT
6082#endif /* CONFIG_HOTPLUG_CPU */
6083
e692ab53
NP
6084#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6085
6086static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6087 {
6088 .procname = "sched_domain",
c57baf1e 6089 .mode = 0555,
e0361851 6090 },
56992309 6091 {}
e692ab53
NP
6092};
6093
6094static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6095 {
6096 .procname = "kernel",
c57baf1e 6097 .mode = 0555,
e0361851
AD
6098 .child = sd_ctl_dir,
6099 },
56992309 6100 {}
e692ab53
NP
6101};
6102
6103static struct ctl_table *sd_alloc_ctl_entry(int n)
6104{
6105 struct ctl_table *entry =
5cf9f062 6106 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6107
e692ab53
NP
6108 return entry;
6109}
6110
6382bc90
MM
6111static void sd_free_ctl_entry(struct ctl_table **tablep)
6112{
cd790076 6113 struct ctl_table *entry;
6382bc90 6114
cd790076
MM
6115 /*
6116 * In the intermediate directories, both the child directory and
6117 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6118 * will always be set. In the lowest directory the names are
cd790076
MM
6119 * static strings and all have proc handlers.
6120 */
6121 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6122 if (entry->child)
6123 sd_free_ctl_entry(&entry->child);
cd790076
MM
6124 if (entry->proc_handler == NULL)
6125 kfree(entry->procname);
6126 }
6382bc90
MM
6127
6128 kfree(*tablep);
6129 *tablep = NULL;
6130}
6131
e692ab53 6132static void
e0361851 6133set_table_entry(struct ctl_table *entry,
e692ab53
NP
6134 const char *procname, void *data, int maxlen,
6135 mode_t mode, proc_handler *proc_handler)
6136{
e692ab53
NP
6137 entry->procname = procname;
6138 entry->data = data;
6139 entry->maxlen = maxlen;
6140 entry->mode = mode;
6141 entry->proc_handler = proc_handler;
6142}
6143
6144static struct ctl_table *
6145sd_alloc_ctl_domain_table(struct sched_domain *sd)
6146{
a5d8c348 6147 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6148
ad1cdc1d
MM
6149 if (table == NULL)
6150 return NULL;
6151
e0361851 6152 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6153 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6154 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6155 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6156 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6158 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6160 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6161 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6162 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6163 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6164 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6165 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6166 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6170 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6171 &sd->cache_nice_tries,
6172 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6173 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6174 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6175 set_table_entry(&table[11], "name", sd->name,
6176 CORENAME_MAX_SIZE, 0444, proc_dostring);
6177 /* &table[12] is terminator */
e692ab53
NP
6178
6179 return table;
6180}
6181
9a4e7159 6182static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6183{
6184 struct ctl_table *entry, *table;
6185 struct sched_domain *sd;
6186 int domain_num = 0, i;
6187 char buf[32];
6188
6189 for_each_domain(cpu, sd)
6190 domain_num++;
6191 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6192 if (table == NULL)
6193 return NULL;
e692ab53
NP
6194
6195 i = 0;
6196 for_each_domain(cpu, sd) {
6197 snprintf(buf, 32, "domain%d", i);
e692ab53 6198 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6199 entry->mode = 0555;
e692ab53
NP
6200 entry->child = sd_alloc_ctl_domain_table(sd);
6201 entry++;
6202 i++;
6203 }
6204 return table;
6205}
6206
6207static struct ctl_table_header *sd_sysctl_header;
6382bc90 6208static void register_sched_domain_sysctl(void)
e692ab53 6209{
6ad4c188 6210 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6211 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6212 char buf[32];
6213
7378547f
MM
6214 WARN_ON(sd_ctl_dir[0].child);
6215 sd_ctl_dir[0].child = entry;
6216
ad1cdc1d
MM
6217 if (entry == NULL)
6218 return;
6219
6ad4c188 6220 for_each_possible_cpu(i) {
e692ab53 6221 snprintf(buf, 32, "cpu%d", i);
e692ab53 6222 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6223 entry->mode = 0555;
e692ab53 6224 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6225 entry++;
e692ab53 6226 }
7378547f
MM
6227
6228 WARN_ON(sd_sysctl_header);
e692ab53
NP
6229 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6230}
6382bc90 6231
7378547f 6232/* may be called multiple times per register */
6382bc90
MM
6233static void unregister_sched_domain_sysctl(void)
6234{
7378547f
MM
6235 if (sd_sysctl_header)
6236 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6237 sd_sysctl_header = NULL;
7378547f
MM
6238 if (sd_ctl_dir[0].child)
6239 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6240}
e692ab53 6241#else
6382bc90
MM
6242static void register_sched_domain_sysctl(void)
6243{
6244}
6245static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6246{
6247}
6248#endif
6249
1f11eb6a
GH
6250static void set_rq_online(struct rq *rq)
6251{
6252 if (!rq->online) {
6253 const struct sched_class *class;
6254
c6c4927b 6255 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6256 rq->online = 1;
6257
6258 for_each_class(class) {
6259 if (class->rq_online)
6260 class->rq_online(rq);
6261 }
6262 }
6263}
6264
6265static void set_rq_offline(struct rq *rq)
6266{
6267 if (rq->online) {
6268 const struct sched_class *class;
6269
6270 for_each_class(class) {
6271 if (class->rq_offline)
6272 class->rq_offline(rq);
6273 }
6274
c6c4927b 6275 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6276 rq->online = 0;
6277 }
6278}
6279
1da177e4
LT
6280/*
6281 * migration_call - callback that gets triggered when a CPU is added.
6282 * Here we can start up the necessary migration thread for the new CPU.
6283 */
48f24c4d
IM
6284static int __cpuinit
6285migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6286{
48f24c4d 6287 int cpu = (long)hcpu;
1da177e4 6288 unsigned long flags;
969c7921 6289 struct rq *rq = cpu_rq(cpu);
1da177e4 6290
48c5ccae 6291 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6292
1da177e4 6293 case CPU_UP_PREPARE:
a468d389 6294 rq->calc_load_update = calc_load_update;
1da177e4 6295 break;
48f24c4d 6296
1da177e4 6297 case CPU_ONLINE:
1f94ef59 6298 /* Update our root-domain */
05fa785c 6299 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6300 if (rq->rd) {
c6c4927b 6301 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6302
6303 set_rq_online(rq);
1f94ef59 6304 }
05fa785c 6305 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6306 break;
48f24c4d 6307
1da177e4 6308#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6309 case CPU_DYING:
57d885fe 6310 /* Update our root-domain */
05fa785c 6311 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6312 if (rq->rd) {
c6c4927b 6313 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6314 set_rq_offline(rq);
57d885fe 6315 }
48c5ccae
PZ
6316 migrate_tasks(cpu);
6317 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6318 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6319
6320 migrate_nr_uninterruptible(rq);
6321 calc_global_load_remove(rq);
57d885fe 6322 break;
1da177e4
LT
6323#endif
6324 }
49c022e6
PZ
6325
6326 update_max_interval();
6327
1da177e4
LT
6328 return NOTIFY_OK;
6329}
6330
f38b0820
PM
6331/*
6332 * Register at high priority so that task migration (migrate_all_tasks)
6333 * happens before everything else. This has to be lower priority than
cdd6c482 6334 * the notifier in the perf_event subsystem, though.
1da177e4 6335 */
26c2143b 6336static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6337 .notifier_call = migration_call,
50a323b7 6338 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6339};
6340
3a101d05
TH
6341static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6342 unsigned long action, void *hcpu)
6343{
6344 switch (action & ~CPU_TASKS_FROZEN) {
6345 case CPU_ONLINE:
6346 case CPU_DOWN_FAILED:
6347 set_cpu_active((long)hcpu, true);
6348 return NOTIFY_OK;
6349 default:
6350 return NOTIFY_DONE;
6351 }
6352}
6353
6354static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6355 unsigned long action, void *hcpu)
6356{
6357 switch (action & ~CPU_TASKS_FROZEN) {
6358 case CPU_DOWN_PREPARE:
6359 set_cpu_active((long)hcpu, false);
6360 return NOTIFY_OK;
6361 default:
6362 return NOTIFY_DONE;
6363 }
6364}
6365
7babe8db 6366static int __init migration_init(void)
1da177e4
LT
6367{
6368 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6369 int err;
48f24c4d 6370
3a101d05 6371 /* Initialize migration for the boot CPU */
07dccf33
AM
6372 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6373 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6374 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6375 register_cpu_notifier(&migration_notifier);
7babe8db 6376
3a101d05
TH
6377 /* Register cpu active notifiers */
6378 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6379 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6380
a004cd42 6381 return 0;
1da177e4 6382}
7babe8db 6383early_initcall(migration_init);
1da177e4
LT
6384#endif
6385
6386#ifdef CONFIG_SMP
476f3534 6387
3e9830dc 6388#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6389
f6630114
MT
6390static __read_mostly int sched_domain_debug_enabled;
6391
6392static int __init sched_domain_debug_setup(char *str)
6393{
6394 sched_domain_debug_enabled = 1;
6395
6396 return 0;
6397}
6398early_param("sched_debug", sched_domain_debug_setup);
6399
7c16ec58 6400static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6401 struct cpumask *groupmask)
1da177e4 6402{
4dcf6aff 6403 struct sched_group *group = sd->groups;
434d53b0 6404 char str[256];
1da177e4 6405
968ea6d8 6406 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6407 cpumask_clear(groupmask);
4dcf6aff
IM
6408
6409 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6410
6411 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6412 printk("does not load-balance\n");
4dcf6aff 6413 if (sd->parent)
3df0fc5b
PZ
6414 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6415 " has parent");
4dcf6aff 6416 return -1;
41c7ce9a
NP
6417 }
6418
3df0fc5b 6419 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6420
758b2cdc 6421 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6422 printk(KERN_ERR "ERROR: domain->span does not contain "
6423 "CPU%d\n", cpu);
4dcf6aff 6424 }
758b2cdc 6425 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6426 printk(KERN_ERR "ERROR: domain->groups does not contain"
6427 " CPU%d\n", cpu);
4dcf6aff 6428 }
1da177e4 6429
4dcf6aff 6430 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6431 do {
4dcf6aff 6432 if (!group) {
3df0fc5b
PZ
6433 printk("\n");
6434 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6435 break;
6436 }
6437
18a3885f 6438 if (!group->cpu_power) {
3df0fc5b
PZ
6439 printk(KERN_CONT "\n");
6440 printk(KERN_ERR "ERROR: domain->cpu_power not "
6441 "set\n");
4dcf6aff
IM
6442 break;
6443 }
1da177e4 6444
758b2cdc 6445 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6446 printk(KERN_CONT "\n");
6447 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6448 break;
6449 }
1da177e4 6450
758b2cdc 6451 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6452 printk(KERN_CONT "\n");
6453 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6454 break;
6455 }
1da177e4 6456
758b2cdc 6457 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6458
968ea6d8 6459 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6460
3df0fc5b 6461 printk(KERN_CONT " %s", str);
18a3885f 6462 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6463 printk(KERN_CONT " (cpu_power = %d)",
6464 group->cpu_power);
381512cf 6465 }
1da177e4 6466
4dcf6aff
IM
6467 group = group->next;
6468 } while (group != sd->groups);
3df0fc5b 6469 printk(KERN_CONT "\n");
1da177e4 6470
758b2cdc 6471 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6472 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6473
758b2cdc
RR
6474 if (sd->parent &&
6475 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6476 printk(KERN_ERR "ERROR: parent span is not a superset "
6477 "of domain->span\n");
4dcf6aff
IM
6478 return 0;
6479}
1da177e4 6480
4dcf6aff
IM
6481static void sched_domain_debug(struct sched_domain *sd, int cpu)
6482{
d5dd3db1 6483 cpumask_var_t groupmask;
4dcf6aff 6484 int level = 0;
1da177e4 6485
f6630114
MT
6486 if (!sched_domain_debug_enabled)
6487 return;
6488
4dcf6aff
IM
6489 if (!sd) {
6490 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6491 return;
6492 }
1da177e4 6493
4dcf6aff
IM
6494 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6495
d5dd3db1 6496 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6497 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6498 return;
6499 }
6500
4dcf6aff 6501 for (;;) {
7c16ec58 6502 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6503 break;
1da177e4
LT
6504 level++;
6505 sd = sd->parent;
33859f7f 6506 if (!sd)
4dcf6aff
IM
6507 break;
6508 }
d5dd3db1 6509 free_cpumask_var(groupmask);
1da177e4 6510}
6d6bc0ad 6511#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6512# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6513#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6514
1a20ff27 6515static int sd_degenerate(struct sched_domain *sd)
245af2c7 6516{
758b2cdc 6517 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6518 return 1;
6519
6520 /* Following flags need at least 2 groups */
6521 if (sd->flags & (SD_LOAD_BALANCE |
6522 SD_BALANCE_NEWIDLE |
6523 SD_BALANCE_FORK |
89c4710e
SS
6524 SD_BALANCE_EXEC |
6525 SD_SHARE_CPUPOWER |
6526 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6527 if (sd->groups != sd->groups->next)
6528 return 0;
6529 }
6530
6531 /* Following flags don't use groups */
c88d5910 6532 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6533 return 0;
6534
6535 return 1;
6536}
6537
48f24c4d
IM
6538static int
6539sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6540{
6541 unsigned long cflags = sd->flags, pflags = parent->flags;
6542
6543 if (sd_degenerate(parent))
6544 return 1;
6545
758b2cdc 6546 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6547 return 0;
6548
245af2c7
SS
6549 /* Flags needing groups don't count if only 1 group in parent */
6550 if (parent->groups == parent->groups->next) {
6551 pflags &= ~(SD_LOAD_BALANCE |
6552 SD_BALANCE_NEWIDLE |
6553 SD_BALANCE_FORK |
89c4710e
SS
6554 SD_BALANCE_EXEC |
6555 SD_SHARE_CPUPOWER |
6556 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6557 if (nr_node_ids == 1)
6558 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6559 }
6560 if (~cflags & pflags)
6561 return 0;
6562
6563 return 1;
6564}
6565
c6c4927b
RR
6566static void free_rootdomain(struct root_domain *rd)
6567{
047106ad
PZ
6568 synchronize_sched();
6569
68e74568
RR
6570 cpupri_cleanup(&rd->cpupri);
6571
c6c4927b
RR
6572 free_cpumask_var(rd->rto_mask);
6573 free_cpumask_var(rd->online);
6574 free_cpumask_var(rd->span);
6575 kfree(rd);
6576}
6577
57d885fe
GH
6578static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6579{
a0490fa3 6580 struct root_domain *old_rd = NULL;
57d885fe 6581 unsigned long flags;
57d885fe 6582
05fa785c 6583 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6584
6585 if (rq->rd) {
a0490fa3 6586 old_rd = rq->rd;
57d885fe 6587
c6c4927b 6588 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6589 set_rq_offline(rq);
57d885fe 6590
c6c4927b 6591 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6592
a0490fa3
IM
6593 /*
6594 * If we dont want to free the old_rt yet then
6595 * set old_rd to NULL to skip the freeing later
6596 * in this function:
6597 */
6598 if (!atomic_dec_and_test(&old_rd->refcount))
6599 old_rd = NULL;
57d885fe
GH
6600 }
6601
6602 atomic_inc(&rd->refcount);
6603 rq->rd = rd;
6604
c6c4927b 6605 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6606 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6607 set_rq_online(rq);
57d885fe 6608
05fa785c 6609 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6610
6611 if (old_rd)
6612 free_rootdomain(old_rd);
57d885fe
GH
6613}
6614
68c38fc3 6615static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6616{
6617 memset(rd, 0, sizeof(*rd));
6618
68c38fc3 6619 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6620 goto out;
68c38fc3 6621 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6622 goto free_span;
68c38fc3 6623 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6624 goto free_online;
6e0534f2 6625
68c38fc3 6626 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6627 goto free_rto_mask;
c6c4927b 6628 return 0;
6e0534f2 6629
68e74568
RR
6630free_rto_mask:
6631 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6632free_online:
6633 free_cpumask_var(rd->online);
6634free_span:
6635 free_cpumask_var(rd->span);
0c910d28 6636out:
c6c4927b 6637 return -ENOMEM;
57d885fe
GH
6638}
6639
6640static void init_defrootdomain(void)
6641{
68c38fc3 6642 init_rootdomain(&def_root_domain);
c6c4927b 6643
57d885fe
GH
6644 atomic_set(&def_root_domain.refcount, 1);
6645}
6646
dc938520 6647static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6648{
6649 struct root_domain *rd;
6650
6651 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6652 if (!rd)
6653 return NULL;
6654
68c38fc3 6655 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6656 kfree(rd);
6657 return NULL;
6658 }
57d885fe
GH
6659
6660 return rd;
6661}
6662
1da177e4 6663/*
0eab9146 6664 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6665 * hold the hotplug lock.
6666 */
0eab9146
IM
6667static void
6668cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6669{
70b97a7f 6670 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6671 struct sched_domain *tmp;
6672
669c55e9
PZ
6673 for (tmp = sd; tmp; tmp = tmp->parent)
6674 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6675
245af2c7 6676 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6677 for (tmp = sd; tmp; ) {
245af2c7
SS
6678 struct sched_domain *parent = tmp->parent;
6679 if (!parent)
6680 break;
f29c9b1c 6681
1a848870 6682 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6683 tmp->parent = parent->parent;
1a848870
SS
6684 if (parent->parent)
6685 parent->parent->child = tmp;
f29c9b1c
LZ
6686 } else
6687 tmp = tmp->parent;
245af2c7
SS
6688 }
6689
1a848870 6690 if (sd && sd_degenerate(sd)) {
245af2c7 6691 sd = sd->parent;
1a848870
SS
6692 if (sd)
6693 sd->child = NULL;
6694 }
1da177e4
LT
6695
6696 sched_domain_debug(sd, cpu);
6697
57d885fe 6698 rq_attach_root(rq, rd);
674311d5 6699 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6700}
6701
6702/* cpus with isolated domains */
dcc30a35 6703static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6704
6705/* Setup the mask of cpus configured for isolated domains */
6706static int __init isolated_cpu_setup(char *str)
6707{
bdddd296 6708 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6709 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6710 return 1;
6711}
6712
8927f494 6713__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6714
6715/*
6711cab4
SS
6716 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6717 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6718 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6719 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6720 *
6721 * init_sched_build_groups will build a circular linked list of the groups
6722 * covered by the given span, and will set each group's ->cpumask correctly,
6723 * and ->cpu_power to 0.
6724 */
a616058b 6725static void
96f874e2
RR
6726init_sched_build_groups(const struct cpumask *span,
6727 const struct cpumask *cpu_map,
6728 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6729 struct sched_group **sg,
96f874e2
RR
6730 struct cpumask *tmpmask),
6731 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6732{
6733 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6734 int i;
6735
96f874e2 6736 cpumask_clear(covered);
7c16ec58 6737
abcd083a 6738 for_each_cpu(i, span) {
6711cab4 6739 struct sched_group *sg;
7c16ec58 6740 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6741 int j;
6742
758b2cdc 6743 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6744 continue;
6745
758b2cdc 6746 cpumask_clear(sched_group_cpus(sg));
18a3885f 6747 sg->cpu_power = 0;
1da177e4 6748
abcd083a 6749 for_each_cpu(j, span) {
7c16ec58 6750 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6751 continue;
6752
96f874e2 6753 cpumask_set_cpu(j, covered);
758b2cdc 6754 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6755 }
6756 if (!first)
6757 first = sg;
6758 if (last)
6759 last->next = sg;
6760 last = sg;
6761 }
6762 last->next = first;
6763}
6764
9c1cfda2 6765#define SD_NODES_PER_DOMAIN 16
1da177e4 6766
9c1cfda2 6767#ifdef CONFIG_NUMA
198e2f18 6768
9c1cfda2
JH
6769/**
6770 * find_next_best_node - find the next node to include in a sched_domain
6771 * @node: node whose sched_domain we're building
6772 * @used_nodes: nodes already in the sched_domain
6773 *
41a2d6cf 6774 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6775 * finds the closest node not already in the @used_nodes map.
6776 *
6777 * Should use nodemask_t.
6778 */
c5f59f08 6779static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6780{
6781 int i, n, val, min_val, best_node = 0;
6782
6783 min_val = INT_MAX;
6784
076ac2af 6785 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6786 /* Start at @node */
076ac2af 6787 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6788
6789 if (!nr_cpus_node(n))
6790 continue;
6791
6792 /* Skip already used nodes */
c5f59f08 6793 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6794 continue;
6795
6796 /* Simple min distance search */
6797 val = node_distance(node, n);
6798
6799 if (val < min_val) {
6800 min_val = val;
6801 best_node = n;
6802 }
6803 }
6804
c5f59f08 6805 node_set(best_node, *used_nodes);
9c1cfda2
JH
6806 return best_node;
6807}
6808
6809/**
6810 * sched_domain_node_span - get a cpumask for a node's sched_domain
6811 * @node: node whose cpumask we're constructing
73486722 6812 * @span: resulting cpumask
9c1cfda2 6813 *
41a2d6cf 6814 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6815 * should be one that prevents unnecessary balancing, but also spreads tasks
6816 * out optimally.
6817 */
96f874e2 6818static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6819{
c5f59f08 6820 nodemask_t used_nodes;
48f24c4d 6821 int i;
9c1cfda2 6822
6ca09dfc 6823 cpumask_clear(span);
c5f59f08 6824 nodes_clear(used_nodes);
9c1cfda2 6825
6ca09dfc 6826 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6827 node_set(node, used_nodes);
9c1cfda2
JH
6828
6829 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6830 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6831
6ca09dfc 6832 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6833 }
9c1cfda2 6834}
6d6bc0ad 6835#endif /* CONFIG_NUMA */
9c1cfda2 6836
5c45bf27 6837int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6838
6c99e9ad
RR
6839/*
6840 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6841 *
6842 * ( See the the comments in include/linux/sched.h:struct sched_group
6843 * and struct sched_domain. )
6c99e9ad
RR
6844 */
6845struct static_sched_group {
6846 struct sched_group sg;
6847 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6848};
6849
6850struct static_sched_domain {
6851 struct sched_domain sd;
6852 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6853};
6854
49a02c51
AH
6855struct s_data {
6856#ifdef CONFIG_NUMA
6857 int sd_allnodes;
6858 cpumask_var_t domainspan;
6859 cpumask_var_t covered;
6860 cpumask_var_t notcovered;
6861#endif
6862 cpumask_var_t nodemask;
6863 cpumask_var_t this_sibling_map;
6864 cpumask_var_t this_core_map;
01a08546 6865 cpumask_var_t this_book_map;
49a02c51
AH
6866 cpumask_var_t send_covered;
6867 cpumask_var_t tmpmask;
6868 struct sched_group **sched_group_nodes;
6869 struct root_domain *rd;
6870};
6871
2109b99e
AH
6872enum s_alloc {
6873 sa_sched_groups = 0,
6874 sa_rootdomain,
6875 sa_tmpmask,
6876 sa_send_covered,
01a08546 6877 sa_this_book_map,
2109b99e
AH
6878 sa_this_core_map,
6879 sa_this_sibling_map,
6880 sa_nodemask,
6881 sa_sched_group_nodes,
6882#ifdef CONFIG_NUMA
6883 sa_notcovered,
6884 sa_covered,
6885 sa_domainspan,
6886#endif
6887 sa_none,
6888};
6889
9c1cfda2 6890/*
48f24c4d 6891 * SMT sched-domains:
9c1cfda2 6892 */
1da177e4 6893#ifdef CONFIG_SCHED_SMT
6c99e9ad 6894static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6895static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6896
41a2d6cf 6897static int
96f874e2
RR
6898cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6899 struct sched_group **sg, struct cpumask *unused)
1da177e4 6900{
6711cab4 6901 if (sg)
1871e52c 6902 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6903 return cpu;
6904}
6d6bc0ad 6905#endif /* CONFIG_SCHED_SMT */
1da177e4 6906
48f24c4d
IM
6907/*
6908 * multi-core sched-domains:
6909 */
1e9f28fa 6910#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6911static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6912static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6913
41a2d6cf 6914static int
96f874e2
RR
6915cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6916 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6917{
6711cab4 6918 int group;
f269893c 6919#ifdef CONFIG_SCHED_SMT
c69fc56d 6920 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6921 group = cpumask_first(mask);
f269893c
HC
6922#else
6923 group = cpu;
6924#endif
6711cab4 6925 if (sg)
6c99e9ad 6926 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6927 return group;
1e9f28fa 6928}
f269893c 6929#endif /* CONFIG_SCHED_MC */
1e9f28fa 6930
01a08546
HC
6931/*
6932 * book sched-domains:
6933 */
6934#ifdef CONFIG_SCHED_BOOK
6935static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6936static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6937
41a2d6cf 6938static int
01a08546
HC
6939cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6940 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6941{
01a08546
HC
6942 int group = cpu;
6943#ifdef CONFIG_SCHED_MC
6944 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6945 group = cpumask_first(mask);
6946#elif defined(CONFIG_SCHED_SMT)
6947 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6948 group = cpumask_first(mask);
6949#endif
6711cab4 6950 if (sg)
01a08546
HC
6951 *sg = &per_cpu(sched_group_book, group).sg;
6952 return group;
1e9f28fa 6953}
01a08546 6954#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6955
6c99e9ad
RR
6956static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6957static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6958
41a2d6cf 6959static int
96f874e2
RR
6960cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6961 struct sched_group **sg, struct cpumask *mask)
1da177e4 6962{
6711cab4 6963 int group;
01a08546
HC
6964#ifdef CONFIG_SCHED_BOOK
6965 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6966 group = cpumask_first(mask);
6967#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6968 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6969 group = cpumask_first(mask);
1e9f28fa 6970#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6971 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6972 group = cpumask_first(mask);
1da177e4 6973#else
6711cab4 6974 group = cpu;
1da177e4 6975#endif
6711cab4 6976 if (sg)
6c99e9ad 6977 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6978 return group;
1da177e4
LT
6979}
6980
6981#ifdef CONFIG_NUMA
1da177e4 6982/*
9c1cfda2
JH
6983 * The init_sched_build_groups can't handle what we want to do with node
6984 * groups, so roll our own. Now each node has its own list of groups which
6985 * gets dynamically allocated.
1da177e4 6986 */
62ea9ceb 6987static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6988static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6989
62ea9ceb 6990static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6991static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6992
96f874e2
RR
6993static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6994 struct sched_group **sg,
6995 struct cpumask *nodemask)
9c1cfda2 6996{
6711cab4
SS
6997 int group;
6998
6ca09dfc 6999 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7000 group = cpumask_first(nodemask);
6711cab4
SS
7001
7002 if (sg)
6c99e9ad 7003 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7004 return group;
1da177e4 7005}
6711cab4 7006
08069033
SS
7007static void init_numa_sched_groups_power(struct sched_group *group_head)
7008{
7009 struct sched_group *sg = group_head;
7010 int j;
7011
7012 if (!sg)
7013 return;
3a5c359a 7014 do {
758b2cdc 7015 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7016 struct sched_domain *sd;
08069033 7017
6c99e9ad 7018 sd = &per_cpu(phys_domains, j).sd;
13318a71 7019 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7020 /*
7021 * Only add "power" once for each
7022 * physical package.
7023 */
7024 continue;
7025 }
08069033 7026
18a3885f 7027 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7028 }
7029 sg = sg->next;
7030 } while (sg != group_head);
08069033 7031}
0601a88d
AH
7032
7033static int build_numa_sched_groups(struct s_data *d,
7034 const struct cpumask *cpu_map, int num)
7035{
7036 struct sched_domain *sd;
7037 struct sched_group *sg, *prev;
7038 int n, j;
7039
7040 cpumask_clear(d->covered);
7041 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7042 if (cpumask_empty(d->nodemask)) {
7043 d->sched_group_nodes[num] = NULL;
7044 goto out;
7045 }
7046
7047 sched_domain_node_span(num, d->domainspan);
7048 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7049
7050 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7051 GFP_KERNEL, num);
7052 if (!sg) {
3df0fc5b
PZ
7053 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7054 num);
0601a88d
AH
7055 return -ENOMEM;
7056 }
7057 d->sched_group_nodes[num] = sg;
7058
7059 for_each_cpu(j, d->nodemask) {
7060 sd = &per_cpu(node_domains, j).sd;
7061 sd->groups = sg;
7062 }
7063
18a3885f 7064 sg->cpu_power = 0;
0601a88d
AH
7065 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7066 sg->next = sg;
7067 cpumask_or(d->covered, d->covered, d->nodemask);
7068
7069 prev = sg;
7070 for (j = 0; j < nr_node_ids; j++) {
7071 n = (num + j) % nr_node_ids;
7072 cpumask_complement(d->notcovered, d->covered);
7073 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7074 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7075 if (cpumask_empty(d->tmpmask))
7076 break;
7077 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7078 if (cpumask_empty(d->tmpmask))
7079 continue;
7080 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7081 GFP_KERNEL, num);
7082 if (!sg) {
3df0fc5b
PZ
7083 printk(KERN_WARNING
7084 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7085 return -ENOMEM;
7086 }
18a3885f 7087 sg->cpu_power = 0;
0601a88d
AH
7088 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7089 sg->next = prev->next;
7090 cpumask_or(d->covered, d->covered, d->tmpmask);
7091 prev->next = sg;
7092 prev = sg;
7093 }
7094out:
7095 return 0;
7096}
6d6bc0ad 7097#endif /* CONFIG_NUMA */
1da177e4 7098
a616058b 7099#ifdef CONFIG_NUMA
51888ca2 7100/* Free memory allocated for various sched_group structures */
96f874e2
RR
7101static void free_sched_groups(const struct cpumask *cpu_map,
7102 struct cpumask *nodemask)
51888ca2 7103{
a616058b 7104 int cpu, i;
51888ca2 7105
abcd083a 7106 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7107 struct sched_group **sched_group_nodes
7108 = sched_group_nodes_bycpu[cpu];
7109
51888ca2
SV
7110 if (!sched_group_nodes)
7111 continue;
7112
076ac2af 7113 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7114 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7115
6ca09dfc 7116 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7117 if (cpumask_empty(nodemask))
51888ca2
SV
7118 continue;
7119
7120 if (sg == NULL)
7121 continue;
7122 sg = sg->next;
7123next_sg:
7124 oldsg = sg;
7125 sg = sg->next;
7126 kfree(oldsg);
7127 if (oldsg != sched_group_nodes[i])
7128 goto next_sg;
7129 }
7130 kfree(sched_group_nodes);
7131 sched_group_nodes_bycpu[cpu] = NULL;
7132 }
51888ca2 7133}
6d6bc0ad 7134#else /* !CONFIG_NUMA */
96f874e2
RR
7135static void free_sched_groups(const struct cpumask *cpu_map,
7136 struct cpumask *nodemask)
a616058b
SS
7137{
7138}
6d6bc0ad 7139#endif /* CONFIG_NUMA */
51888ca2 7140
89c4710e
SS
7141/*
7142 * Initialize sched groups cpu_power.
7143 *
7144 * cpu_power indicates the capacity of sched group, which is used while
7145 * distributing the load between different sched groups in a sched domain.
7146 * Typically cpu_power for all the groups in a sched domain will be same unless
7147 * there are asymmetries in the topology. If there are asymmetries, group
7148 * having more cpu_power will pickup more load compared to the group having
7149 * less cpu_power.
89c4710e
SS
7150 */
7151static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7152{
7153 struct sched_domain *child;
7154 struct sched_group *group;
f93e65c1
PZ
7155 long power;
7156 int weight;
89c4710e
SS
7157
7158 WARN_ON(!sd || !sd->groups);
7159
13318a71 7160 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7161 return;
7162
aae6d3dd
SS
7163 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7164
89c4710e
SS
7165 child = sd->child;
7166
18a3885f 7167 sd->groups->cpu_power = 0;
5517d86b 7168
f93e65c1
PZ
7169 if (!child) {
7170 power = SCHED_LOAD_SCALE;
7171 weight = cpumask_weight(sched_domain_span(sd));
7172 /*
7173 * SMT siblings share the power of a single core.
a52bfd73
PZ
7174 * Usually multiple threads get a better yield out of
7175 * that one core than a single thread would have,
7176 * reflect that in sd->smt_gain.
f93e65c1 7177 */
a52bfd73
PZ
7178 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7179 power *= sd->smt_gain;
f93e65c1 7180 power /= weight;
a52bfd73
PZ
7181 power >>= SCHED_LOAD_SHIFT;
7182 }
18a3885f 7183 sd->groups->cpu_power += power;
89c4710e
SS
7184 return;
7185 }
7186
89c4710e 7187 /*
f93e65c1 7188 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7189 */
7190 group = child->groups;
7191 do {
18a3885f 7192 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7193 group = group->next;
7194 } while (group != child->groups);
7195}
7196
7c16ec58
MT
7197/*
7198 * Initializers for schedule domains
7199 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7200 */
7201
a5d8c348
IM
7202#ifdef CONFIG_SCHED_DEBUG
7203# define SD_INIT_NAME(sd, type) sd->name = #type
7204#else
7205# define SD_INIT_NAME(sd, type) do { } while (0)
7206#endif
7207
7c16ec58 7208#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7209
7c16ec58
MT
7210#define SD_INIT_FUNC(type) \
7211static noinline void sd_init_##type(struct sched_domain *sd) \
7212{ \
7213 memset(sd, 0, sizeof(*sd)); \
7214 *sd = SD_##type##_INIT; \
1d3504fc 7215 sd->level = SD_LV_##type; \
a5d8c348 7216 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7217}
7218
7219SD_INIT_FUNC(CPU)
7220#ifdef CONFIG_NUMA
7221 SD_INIT_FUNC(ALLNODES)
7222 SD_INIT_FUNC(NODE)
7223#endif
7224#ifdef CONFIG_SCHED_SMT
7225 SD_INIT_FUNC(SIBLING)
7226#endif
7227#ifdef CONFIG_SCHED_MC
7228 SD_INIT_FUNC(MC)
7229#endif
01a08546
HC
7230#ifdef CONFIG_SCHED_BOOK
7231 SD_INIT_FUNC(BOOK)
7232#endif
7c16ec58 7233
1d3504fc
HS
7234static int default_relax_domain_level = -1;
7235
7236static int __init setup_relax_domain_level(char *str)
7237{
30e0e178
LZ
7238 unsigned long val;
7239
7240 val = simple_strtoul(str, NULL, 0);
7241 if (val < SD_LV_MAX)
7242 default_relax_domain_level = val;
7243
1d3504fc
HS
7244 return 1;
7245}
7246__setup("relax_domain_level=", setup_relax_domain_level);
7247
7248static void set_domain_attribute(struct sched_domain *sd,
7249 struct sched_domain_attr *attr)
7250{
7251 int request;
7252
7253 if (!attr || attr->relax_domain_level < 0) {
7254 if (default_relax_domain_level < 0)
7255 return;
7256 else
7257 request = default_relax_domain_level;
7258 } else
7259 request = attr->relax_domain_level;
7260 if (request < sd->level) {
7261 /* turn off idle balance on this domain */
c88d5910 7262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7263 } else {
7264 /* turn on idle balance on this domain */
c88d5910 7265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7266 }
7267}
7268
2109b99e
AH
7269static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7270 const struct cpumask *cpu_map)
7271{
7272 switch (what) {
7273 case sa_sched_groups:
7274 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7275 d->sched_group_nodes = NULL;
7276 case sa_rootdomain:
7277 free_rootdomain(d->rd); /* fall through */
7278 case sa_tmpmask:
7279 free_cpumask_var(d->tmpmask); /* fall through */
7280 case sa_send_covered:
7281 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7282 case sa_this_book_map:
7283 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7284 case sa_this_core_map:
7285 free_cpumask_var(d->this_core_map); /* fall through */
7286 case sa_this_sibling_map:
7287 free_cpumask_var(d->this_sibling_map); /* fall through */
7288 case sa_nodemask:
7289 free_cpumask_var(d->nodemask); /* fall through */
7290 case sa_sched_group_nodes:
d1b55138 7291#ifdef CONFIG_NUMA
2109b99e
AH
7292 kfree(d->sched_group_nodes); /* fall through */
7293 case sa_notcovered:
7294 free_cpumask_var(d->notcovered); /* fall through */
7295 case sa_covered:
7296 free_cpumask_var(d->covered); /* fall through */
7297 case sa_domainspan:
7298 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7299#endif
2109b99e
AH
7300 case sa_none:
7301 break;
7302 }
7303}
3404c8d9 7304
2109b99e
AH
7305static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7306 const struct cpumask *cpu_map)
7307{
3404c8d9 7308#ifdef CONFIG_NUMA
2109b99e
AH
7309 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7310 return sa_none;
7311 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7312 return sa_domainspan;
7313 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7314 return sa_covered;
7315 /* Allocate the per-node list of sched groups */
7316 d->sched_group_nodes = kcalloc(nr_node_ids,
7317 sizeof(struct sched_group *), GFP_KERNEL);
7318 if (!d->sched_group_nodes) {
3df0fc5b 7319 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7320 return sa_notcovered;
d1b55138 7321 }
2109b99e 7322 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7323#endif
2109b99e
AH
7324 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7325 return sa_sched_group_nodes;
7326 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7327 return sa_nodemask;
7328 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7329 return sa_this_sibling_map;
01a08546 7330 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7331 return sa_this_core_map;
01a08546
HC
7332 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7333 return sa_this_book_map;
2109b99e
AH
7334 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7335 return sa_send_covered;
7336 d->rd = alloc_rootdomain();
7337 if (!d->rd) {
3df0fc5b 7338 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7339 return sa_tmpmask;
57d885fe 7340 }
2109b99e
AH
7341 return sa_rootdomain;
7342}
57d885fe 7343
7f4588f3
AH
7344static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7345 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7346{
7347 struct sched_domain *sd = NULL;
7c16ec58 7348#ifdef CONFIG_NUMA
7f4588f3 7349 struct sched_domain *parent;
1da177e4 7350
7f4588f3
AH
7351 d->sd_allnodes = 0;
7352 if (cpumask_weight(cpu_map) >
7353 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7354 sd = &per_cpu(allnodes_domains, i).sd;
7355 SD_INIT(sd, ALLNODES);
1d3504fc 7356 set_domain_attribute(sd, attr);
7f4588f3
AH
7357 cpumask_copy(sched_domain_span(sd), cpu_map);
7358 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7359 d->sd_allnodes = 1;
7360 }
7361 parent = sd;
7362
7363 sd = &per_cpu(node_domains, i).sd;
7364 SD_INIT(sd, NODE);
7365 set_domain_attribute(sd, attr);
7366 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7367 sd->parent = parent;
7368 if (parent)
7369 parent->child = sd;
7370 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7371#endif
7f4588f3
AH
7372 return sd;
7373}
1da177e4 7374
87cce662
AH
7375static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7376 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7377 struct sched_domain *parent, int i)
7378{
7379 struct sched_domain *sd;
7380 sd = &per_cpu(phys_domains, i).sd;
7381 SD_INIT(sd, CPU);
7382 set_domain_attribute(sd, attr);
7383 cpumask_copy(sched_domain_span(sd), d->nodemask);
7384 sd->parent = parent;
7385 if (parent)
7386 parent->child = sd;
7387 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7388 return sd;
7389}
1da177e4 7390
01a08546
HC
7391static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7392 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7393 struct sched_domain *parent, int i)
7394{
7395 struct sched_domain *sd = parent;
7396#ifdef CONFIG_SCHED_BOOK
7397 sd = &per_cpu(book_domains, i).sd;
7398 SD_INIT(sd, BOOK);
7399 set_domain_attribute(sd, attr);
7400 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7401 sd->parent = parent;
7402 parent->child = sd;
7403 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7404#endif
7405 return sd;
7406}
7407
410c4081
AH
7408static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7410 struct sched_domain *parent, int i)
7411{
7412 struct sched_domain *sd = parent;
1e9f28fa 7413#ifdef CONFIG_SCHED_MC
410c4081
AH
7414 sd = &per_cpu(core_domains, i).sd;
7415 SD_INIT(sd, MC);
7416 set_domain_attribute(sd, attr);
7417 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7418 sd->parent = parent;
7419 parent->child = sd;
7420 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7421#endif
410c4081
AH
7422 return sd;
7423}
1e9f28fa 7424
d8173535
AH
7425static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7426 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7427 struct sched_domain *parent, int i)
7428{
7429 struct sched_domain *sd = parent;
1da177e4 7430#ifdef CONFIG_SCHED_SMT
d8173535
AH
7431 sd = &per_cpu(cpu_domains, i).sd;
7432 SD_INIT(sd, SIBLING);
7433 set_domain_attribute(sd, attr);
7434 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7435 sd->parent = parent;
7436 parent->child = sd;
7437 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7438#endif
d8173535
AH
7439 return sd;
7440}
1da177e4 7441
0e8e85c9
AH
7442static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7443 const struct cpumask *cpu_map, int cpu)
7444{
7445 switch (l) {
1da177e4 7446#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7447 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7448 cpumask_and(d->this_sibling_map, cpu_map,
7449 topology_thread_cpumask(cpu));
7450 if (cpu == cpumask_first(d->this_sibling_map))
7451 init_sched_build_groups(d->this_sibling_map, cpu_map,
7452 &cpu_to_cpu_group,
7453 d->send_covered, d->tmpmask);
7454 break;
1da177e4 7455#endif
1e9f28fa 7456#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7457 case SD_LV_MC: /* set up multi-core groups */
7458 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7459 if (cpu == cpumask_first(d->this_core_map))
7460 init_sched_build_groups(d->this_core_map, cpu_map,
7461 &cpu_to_core_group,
7462 d->send_covered, d->tmpmask);
7463 break;
01a08546
HC
7464#endif
7465#ifdef CONFIG_SCHED_BOOK
7466 case SD_LV_BOOK: /* set up book groups */
7467 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7468 if (cpu == cpumask_first(d->this_book_map))
7469 init_sched_build_groups(d->this_book_map, cpu_map,
7470 &cpu_to_book_group,
7471 d->send_covered, d->tmpmask);
7472 break;
1e9f28fa 7473#endif
86548096
AH
7474 case SD_LV_CPU: /* set up physical groups */
7475 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7476 if (!cpumask_empty(d->nodemask))
7477 init_sched_build_groups(d->nodemask, cpu_map,
7478 &cpu_to_phys_group,
7479 d->send_covered, d->tmpmask);
7480 break;
1da177e4 7481#ifdef CONFIG_NUMA
de616e36
AH
7482 case SD_LV_ALLNODES:
7483 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7484 d->send_covered, d->tmpmask);
7485 break;
7486#endif
0e8e85c9
AH
7487 default:
7488 break;
7c16ec58 7489 }
0e8e85c9 7490}
9c1cfda2 7491
2109b99e
AH
7492/*
7493 * Build sched domains for a given set of cpus and attach the sched domains
7494 * to the individual cpus
7495 */
7496static int __build_sched_domains(const struct cpumask *cpu_map,
7497 struct sched_domain_attr *attr)
7498{
7499 enum s_alloc alloc_state = sa_none;
7500 struct s_data d;
294b0c96 7501 struct sched_domain *sd;
2109b99e 7502 int i;
7c16ec58 7503#ifdef CONFIG_NUMA
2109b99e 7504 d.sd_allnodes = 0;
7c16ec58 7505#endif
9c1cfda2 7506
2109b99e
AH
7507 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7508 if (alloc_state != sa_rootdomain)
7509 goto error;
7510 alloc_state = sa_sched_groups;
9c1cfda2 7511
1da177e4 7512 /*
1a20ff27 7513 * Set up domains for cpus specified by the cpu_map.
1da177e4 7514 */
abcd083a 7515 for_each_cpu(i, cpu_map) {
49a02c51
AH
7516 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7517 cpu_map);
9761eea8 7518
7f4588f3 7519 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7520 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7521 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7522 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7523 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7524 }
9c1cfda2 7525
abcd083a 7526 for_each_cpu(i, cpu_map) {
0e8e85c9 7527 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7528 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7529 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7530 }
9c1cfda2 7531
1da177e4 7532 /* Set up physical groups */
86548096
AH
7533 for (i = 0; i < nr_node_ids; i++)
7534 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7535
1da177e4
LT
7536#ifdef CONFIG_NUMA
7537 /* Set up node groups */
de616e36
AH
7538 if (d.sd_allnodes)
7539 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7540
0601a88d
AH
7541 for (i = 0; i < nr_node_ids; i++)
7542 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7543 goto error;
1da177e4
LT
7544#endif
7545
7546 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7547#ifdef CONFIG_SCHED_SMT
abcd083a 7548 for_each_cpu(i, cpu_map) {
294b0c96 7549 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7550 init_sched_groups_power(i, sd);
5c45bf27 7551 }
1da177e4 7552#endif
1e9f28fa 7553#ifdef CONFIG_SCHED_MC
abcd083a 7554 for_each_cpu(i, cpu_map) {
294b0c96 7555 sd = &per_cpu(core_domains, i).sd;
89c4710e 7556 init_sched_groups_power(i, sd);
5c45bf27
SS
7557 }
7558#endif
01a08546
HC
7559#ifdef CONFIG_SCHED_BOOK
7560 for_each_cpu(i, cpu_map) {
7561 sd = &per_cpu(book_domains, i).sd;
7562 init_sched_groups_power(i, sd);
7563 }
7564#endif
1e9f28fa 7565
abcd083a 7566 for_each_cpu(i, cpu_map) {
294b0c96 7567 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7568 init_sched_groups_power(i, sd);
1da177e4
LT
7569 }
7570
9c1cfda2 7571#ifdef CONFIG_NUMA
076ac2af 7572 for (i = 0; i < nr_node_ids; i++)
49a02c51 7573 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7574
49a02c51 7575 if (d.sd_allnodes) {
6711cab4 7576 struct sched_group *sg;
f712c0c7 7577
96f874e2 7578 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7579 d.tmpmask);
f712c0c7
SS
7580 init_numa_sched_groups_power(sg);
7581 }
9c1cfda2
JH
7582#endif
7583
1da177e4 7584 /* Attach the domains */
abcd083a 7585 for_each_cpu(i, cpu_map) {
1da177e4 7586#ifdef CONFIG_SCHED_SMT
6c99e9ad 7587 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7588#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7589 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7590#elif defined(CONFIG_SCHED_BOOK)
7591 sd = &per_cpu(book_domains, i).sd;
1da177e4 7592#else
6c99e9ad 7593 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7594#endif
49a02c51 7595 cpu_attach_domain(sd, d.rd, i);
1da177e4 7596 }
51888ca2 7597
2109b99e
AH
7598 d.sched_group_nodes = NULL; /* don't free this we still need it */
7599 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7600 return 0;
51888ca2 7601
51888ca2 7602error:
2109b99e
AH
7603 __free_domain_allocs(&d, alloc_state, cpu_map);
7604 return -ENOMEM;
1da177e4 7605}
029190c5 7606
96f874e2 7607static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7608{
7609 return __build_sched_domains(cpu_map, NULL);
7610}
7611
acc3f5d7 7612static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7613static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7614static struct sched_domain_attr *dattr_cur;
7615 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7616
7617/*
7618 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7619 * cpumask) fails, then fallback to a single sched domain,
7620 * as determined by the single cpumask fallback_doms.
029190c5 7621 */
4212823f 7622static cpumask_var_t fallback_doms;
029190c5 7623
ee79d1bd
HC
7624/*
7625 * arch_update_cpu_topology lets virtualized architectures update the
7626 * cpu core maps. It is supposed to return 1 if the topology changed
7627 * or 0 if it stayed the same.
7628 */
7629int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7630{
ee79d1bd 7631 return 0;
22e52b07
HC
7632}
7633
acc3f5d7
RR
7634cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7635{
7636 int i;
7637 cpumask_var_t *doms;
7638
7639 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7640 if (!doms)
7641 return NULL;
7642 for (i = 0; i < ndoms; i++) {
7643 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7644 free_sched_domains(doms, i);
7645 return NULL;
7646 }
7647 }
7648 return doms;
7649}
7650
7651void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7652{
7653 unsigned int i;
7654 for (i = 0; i < ndoms; i++)
7655 free_cpumask_var(doms[i]);
7656 kfree(doms);
7657}
7658
1a20ff27 7659/*
41a2d6cf 7660 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7661 * For now this just excludes isolated cpus, but could be used to
7662 * exclude other special cases in the future.
1a20ff27 7663 */
96f874e2 7664static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7665{
7378547f
MM
7666 int err;
7667
22e52b07 7668 arch_update_cpu_topology();
029190c5 7669 ndoms_cur = 1;
acc3f5d7 7670 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7671 if (!doms_cur)
acc3f5d7
RR
7672 doms_cur = &fallback_doms;
7673 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7674 dattr_cur = NULL;
acc3f5d7 7675 err = build_sched_domains(doms_cur[0]);
6382bc90 7676 register_sched_domain_sysctl();
7378547f
MM
7677
7678 return err;
1a20ff27
DG
7679}
7680
96f874e2
RR
7681static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7682 struct cpumask *tmpmask)
1da177e4 7683{
7c16ec58 7684 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7685}
1da177e4 7686
1a20ff27
DG
7687/*
7688 * Detach sched domains from a group of cpus specified in cpu_map
7689 * These cpus will now be attached to the NULL domain
7690 */
96f874e2 7691static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7692{
96f874e2
RR
7693 /* Save because hotplug lock held. */
7694 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7695 int i;
7696
abcd083a 7697 for_each_cpu(i, cpu_map)
57d885fe 7698 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7699 synchronize_sched();
96f874e2 7700 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7701}
7702
1d3504fc
HS
7703/* handle null as "default" */
7704static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7705 struct sched_domain_attr *new, int idx_new)
7706{
7707 struct sched_domain_attr tmp;
7708
7709 /* fast path */
7710 if (!new && !cur)
7711 return 1;
7712
7713 tmp = SD_ATTR_INIT;
7714 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7715 new ? (new + idx_new) : &tmp,
7716 sizeof(struct sched_domain_attr));
7717}
7718
029190c5
PJ
7719/*
7720 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7721 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7722 * doms_new[] to the current sched domain partitioning, doms_cur[].
7723 * It destroys each deleted domain and builds each new domain.
7724 *
acc3f5d7 7725 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7726 * The masks don't intersect (don't overlap.) We should setup one
7727 * sched domain for each mask. CPUs not in any of the cpumasks will
7728 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7729 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7730 * it as it is.
7731 *
acc3f5d7
RR
7732 * The passed in 'doms_new' should be allocated using
7733 * alloc_sched_domains. This routine takes ownership of it and will
7734 * free_sched_domains it when done with it. If the caller failed the
7735 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7736 * and partition_sched_domains() will fallback to the single partition
7737 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7738 *
96f874e2 7739 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7740 * ndoms_new == 0 is a special case for destroying existing domains,
7741 * and it will not create the default domain.
dfb512ec 7742 *
029190c5
PJ
7743 * Call with hotplug lock held
7744 */
acc3f5d7 7745void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7746 struct sched_domain_attr *dattr_new)
029190c5 7747{
dfb512ec 7748 int i, j, n;
d65bd5ec 7749 int new_topology;
029190c5 7750
712555ee 7751 mutex_lock(&sched_domains_mutex);
a1835615 7752
7378547f
MM
7753 /* always unregister in case we don't destroy any domains */
7754 unregister_sched_domain_sysctl();
7755
d65bd5ec
HC
7756 /* Let architecture update cpu core mappings. */
7757 new_topology = arch_update_cpu_topology();
7758
dfb512ec 7759 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7760
7761 /* Destroy deleted domains */
7762 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7763 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7764 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7765 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7766 goto match1;
7767 }
7768 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7769 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7770match1:
7771 ;
7772 }
7773
e761b772
MK
7774 if (doms_new == NULL) {
7775 ndoms_cur = 0;
acc3f5d7 7776 doms_new = &fallback_doms;
6ad4c188 7777 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7778 WARN_ON_ONCE(dattr_new);
e761b772
MK
7779 }
7780
029190c5
PJ
7781 /* Build new domains */
7782 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7783 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7784 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7785 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7786 goto match2;
7787 }
7788 /* no match - add a new doms_new */
acc3f5d7 7789 __build_sched_domains(doms_new[i],
1d3504fc 7790 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7791match2:
7792 ;
7793 }
7794
7795 /* Remember the new sched domains */
acc3f5d7
RR
7796 if (doms_cur != &fallback_doms)
7797 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7798 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7799 doms_cur = doms_new;
1d3504fc 7800 dattr_cur = dattr_new;
029190c5 7801 ndoms_cur = ndoms_new;
7378547f
MM
7802
7803 register_sched_domain_sysctl();
a1835615 7804
712555ee 7805 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7806}
7807
5c45bf27 7808#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7809static void arch_reinit_sched_domains(void)
5c45bf27 7810{
95402b38 7811 get_online_cpus();
dfb512ec
MK
7812
7813 /* Destroy domains first to force the rebuild */
7814 partition_sched_domains(0, NULL, NULL);
7815
e761b772 7816 rebuild_sched_domains();
95402b38 7817 put_online_cpus();
5c45bf27
SS
7818}
7819
7820static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7821{
afb8a9b7 7822 unsigned int level = 0;
5c45bf27 7823
afb8a9b7
GS
7824 if (sscanf(buf, "%u", &level) != 1)
7825 return -EINVAL;
7826
7827 /*
7828 * level is always be positive so don't check for
7829 * level < POWERSAVINGS_BALANCE_NONE which is 0
7830 * What happens on 0 or 1 byte write,
7831 * need to check for count as well?
7832 */
7833
7834 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7835 return -EINVAL;
7836
7837 if (smt)
afb8a9b7 7838 sched_smt_power_savings = level;
5c45bf27 7839 else
afb8a9b7 7840 sched_mc_power_savings = level;
5c45bf27 7841
c70f22d2 7842 arch_reinit_sched_domains();
5c45bf27 7843
c70f22d2 7844 return count;
5c45bf27
SS
7845}
7846
5c45bf27 7847#ifdef CONFIG_SCHED_MC
f718cd4a 7848static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7849 struct sysdev_class_attribute *attr,
f718cd4a 7850 char *page)
5c45bf27
SS
7851{
7852 return sprintf(page, "%u\n", sched_mc_power_savings);
7853}
f718cd4a 7854static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7855 struct sysdev_class_attribute *attr,
48f24c4d 7856 const char *buf, size_t count)
5c45bf27
SS
7857{
7858 return sched_power_savings_store(buf, count, 0);
7859}
f718cd4a
AK
7860static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7861 sched_mc_power_savings_show,
7862 sched_mc_power_savings_store);
5c45bf27
SS
7863#endif
7864
7865#ifdef CONFIG_SCHED_SMT
f718cd4a 7866static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7867 struct sysdev_class_attribute *attr,
f718cd4a 7868 char *page)
5c45bf27
SS
7869{
7870 return sprintf(page, "%u\n", sched_smt_power_savings);
7871}
f718cd4a 7872static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7873 struct sysdev_class_attribute *attr,
48f24c4d 7874 const char *buf, size_t count)
5c45bf27
SS
7875{
7876 return sched_power_savings_store(buf, count, 1);
7877}
f718cd4a
AK
7878static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7879 sched_smt_power_savings_show,
6707de00
AB
7880 sched_smt_power_savings_store);
7881#endif
7882
39aac648 7883int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7884{
7885 int err = 0;
7886
7887#ifdef CONFIG_SCHED_SMT
7888 if (smt_capable())
7889 err = sysfs_create_file(&cls->kset.kobj,
7890 &attr_sched_smt_power_savings.attr);
7891#endif
7892#ifdef CONFIG_SCHED_MC
7893 if (!err && mc_capable())
7894 err = sysfs_create_file(&cls->kset.kobj,
7895 &attr_sched_mc_power_savings.attr);
7896#endif
7897 return err;
7898}
6d6bc0ad 7899#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7900
1da177e4 7901/*
3a101d05
TH
7902 * Update cpusets according to cpu_active mask. If cpusets are
7903 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7904 * around partition_sched_domains().
1da177e4 7905 */
0b2e918a
TH
7906static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7907 void *hcpu)
e761b772 7908{
3a101d05 7909 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7910 case CPU_ONLINE:
6ad4c188 7911 case CPU_DOWN_FAILED:
3a101d05 7912 cpuset_update_active_cpus();
e761b772 7913 return NOTIFY_OK;
3a101d05
TH
7914 default:
7915 return NOTIFY_DONE;
7916 }
7917}
e761b772 7918
0b2e918a
TH
7919static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7920 void *hcpu)
3a101d05
TH
7921{
7922 switch (action & ~CPU_TASKS_FROZEN) {
7923 case CPU_DOWN_PREPARE:
7924 cpuset_update_active_cpus();
7925 return NOTIFY_OK;
e761b772
MK
7926 default:
7927 return NOTIFY_DONE;
7928 }
7929}
e761b772
MK
7930
7931static int update_runtime(struct notifier_block *nfb,
7932 unsigned long action, void *hcpu)
1da177e4 7933{
7def2be1
PZ
7934 int cpu = (int)(long)hcpu;
7935
1da177e4 7936 switch (action) {
1da177e4 7937 case CPU_DOWN_PREPARE:
8bb78442 7938 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7939 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7940 return NOTIFY_OK;
7941
1da177e4 7942 case CPU_DOWN_FAILED:
8bb78442 7943 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7944 case CPU_ONLINE:
8bb78442 7945 case CPU_ONLINE_FROZEN:
7def2be1 7946 enable_runtime(cpu_rq(cpu));
e761b772
MK
7947 return NOTIFY_OK;
7948
1da177e4
LT
7949 default:
7950 return NOTIFY_DONE;
7951 }
1da177e4 7952}
1da177e4
LT
7953
7954void __init sched_init_smp(void)
7955{
dcc30a35
RR
7956 cpumask_var_t non_isolated_cpus;
7957
7958 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7959 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7960
434d53b0
MT
7961#if defined(CONFIG_NUMA)
7962 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7963 GFP_KERNEL);
7964 BUG_ON(sched_group_nodes_bycpu == NULL);
7965#endif
95402b38 7966 get_online_cpus();
712555ee 7967 mutex_lock(&sched_domains_mutex);
6ad4c188 7968 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7969 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7970 if (cpumask_empty(non_isolated_cpus))
7971 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7972 mutex_unlock(&sched_domains_mutex);
95402b38 7973 put_online_cpus();
e761b772 7974
3a101d05
TH
7975 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7976 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7977
7978 /* RT runtime code needs to handle some hotplug events */
7979 hotcpu_notifier(update_runtime, 0);
7980
b328ca18 7981 init_hrtick();
5c1e1767
NP
7982
7983 /* Move init over to a non-isolated CPU */
dcc30a35 7984 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7985 BUG();
19978ca6 7986 sched_init_granularity();
dcc30a35 7987 free_cpumask_var(non_isolated_cpus);
4212823f 7988
0e3900e6 7989 init_sched_rt_class();
1da177e4
LT
7990}
7991#else
7992void __init sched_init_smp(void)
7993{
19978ca6 7994 sched_init_granularity();
1da177e4
LT
7995}
7996#endif /* CONFIG_SMP */
7997
cd1bb94b
AB
7998const_debug unsigned int sysctl_timer_migration = 1;
7999
1da177e4
LT
8000int in_sched_functions(unsigned long addr)
8001{
1da177e4
LT
8002 return in_lock_functions(addr) ||
8003 (addr >= (unsigned long)__sched_text_start
8004 && addr < (unsigned long)__sched_text_end);
8005}
8006
a9957449 8007static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8008{
8009 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8010 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8011#ifdef CONFIG_FAIR_GROUP_SCHED
8012 cfs_rq->rq = rq;
f07333bf 8013 /* allow initial update_cfs_load() to truncate */
6ea72f12 8014#ifdef CONFIG_SMP
f07333bf 8015 cfs_rq->load_stamp = 1;
6ea72f12 8016#endif
dd41f596 8017#endif
67e9fb2a 8018 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8019}
8020
fa85ae24
PZ
8021static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8022{
8023 struct rt_prio_array *array;
8024 int i;
8025
8026 array = &rt_rq->active;
8027 for (i = 0; i < MAX_RT_PRIO; i++) {
8028 INIT_LIST_HEAD(array->queue + i);
8029 __clear_bit(i, array->bitmap);
8030 }
8031 /* delimiter for bitsearch: */
8032 __set_bit(MAX_RT_PRIO, array->bitmap);
8033
052f1dc7 8034#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8035 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8036#ifdef CONFIG_SMP
e864c499 8037 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8038#endif
48d5e258 8039#endif
fa85ae24
PZ
8040#ifdef CONFIG_SMP
8041 rt_rq->rt_nr_migratory = 0;
fa85ae24 8042 rt_rq->overloaded = 0;
05fa785c 8043 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8044#endif
8045
8046 rt_rq->rt_time = 0;
8047 rt_rq->rt_throttled = 0;
ac086bc2 8048 rt_rq->rt_runtime = 0;
0986b11b 8049 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8050
052f1dc7 8051#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8052 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8053 rt_rq->rq = rq;
8054#endif
fa85ae24
PZ
8055}
8056
6f505b16 8057#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8058static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8059 struct sched_entity *se, int cpu,
ec7dc8ac 8060 struct sched_entity *parent)
6f505b16 8061{
ec7dc8ac 8062 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8063 tg->cfs_rq[cpu] = cfs_rq;
8064 init_cfs_rq(cfs_rq, rq);
8065 cfs_rq->tg = tg;
6f505b16
PZ
8066
8067 tg->se[cpu] = se;
07e06b01 8068 /* se could be NULL for root_task_group */
354d60c2
DG
8069 if (!se)
8070 return;
8071
ec7dc8ac
DG
8072 if (!parent)
8073 se->cfs_rq = &rq->cfs;
8074 else
8075 se->cfs_rq = parent->my_q;
8076
6f505b16 8077 se->my_q = cfs_rq;
9437178f 8078 update_load_set(&se->load, 0);
ec7dc8ac 8079 se->parent = parent;
6f505b16 8080}
052f1dc7 8081#endif
6f505b16 8082
052f1dc7 8083#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8084static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8085 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8086 struct sched_rt_entity *parent)
6f505b16 8087{
ec7dc8ac
DG
8088 struct rq *rq = cpu_rq(cpu);
8089
6f505b16
PZ
8090 tg->rt_rq[cpu] = rt_rq;
8091 init_rt_rq(rt_rq, rq);
8092 rt_rq->tg = tg;
ac086bc2 8093 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8094
8095 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8096 if (!rt_se)
8097 return;
8098
ec7dc8ac
DG
8099 if (!parent)
8100 rt_se->rt_rq = &rq->rt;
8101 else
8102 rt_se->rt_rq = parent->my_q;
8103
6f505b16 8104 rt_se->my_q = rt_rq;
ec7dc8ac 8105 rt_se->parent = parent;
6f505b16
PZ
8106 INIT_LIST_HEAD(&rt_se->run_list);
8107}
8108#endif
8109
1da177e4
LT
8110void __init sched_init(void)
8111{
dd41f596 8112 int i, j;
434d53b0
MT
8113 unsigned long alloc_size = 0, ptr;
8114
8115#ifdef CONFIG_FAIR_GROUP_SCHED
8116 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8117#endif
8118#ifdef CONFIG_RT_GROUP_SCHED
8119 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8120#endif
df7c8e84 8121#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8122 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8123#endif
434d53b0 8124 if (alloc_size) {
36b7b6d4 8125 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8126
8127#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8128 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8129 ptr += nr_cpu_ids * sizeof(void **);
8130
07e06b01 8131 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8132 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8133
6d6bc0ad 8134#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8135#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8136 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8137 ptr += nr_cpu_ids * sizeof(void **);
8138
07e06b01 8139 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8140 ptr += nr_cpu_ids * sizeof(void **);
8141
6d6bc0ad 8142#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8143#ifdef CONFIG_CPUMASK_OFFSTACK
8144 for_each_possible_cpu(i) {
8145 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8146 ptr += cpumask_size();
8147 }
8148#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8149 }
dd41f596 8150
57d885fe
GH
8151#ifdef CONFIG_SMP
8152 init_defrootdomain();
8153#endif
8154
d0b27fa7
PZ
8155 init_rt_bandwidth(&def_rt_bandwidth,
8156 global_rt_period(), global_rt_runtime());
8157
8158#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8159 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8160 global_rt_period(), global_rt_runtime());
6d6bc0ad 8161#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8162
7c941438 8163#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8164 list_add(&root_task_group.list, &task_groups);
8165 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8166 autogroup_init(&init_task);
7c941438 8167#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8168
0a945022 8169 for_each_possible_cpu(i) {
70b97a7f 8170 struct rq *rq;
1da177e4
LT
8171
8172 rq = cpu_rq(i);
05fa785c 8173 raw_spin_lock_init(&rq->lock);
7897986b 8174 rq->nr_running = 0;
dce48a84
TG
8175 rq->calc_load_active = 0;
8176 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8177 init_cfs_rq(&rq->cfs, rq);
6f505b16 8178 init_rt_rq(&rq->rt, rq);
dd41f596 8179#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8180 root_task_group.shares = root_task_group_load;
6f505b16 8181 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8182 /*
07e06b01 8183 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8184 *
8185 * In case of task-groups formed thr' the cgroup filesystem, it
8186 * gets 100% of the cpu resources in the system. This overall
8187 * system cpu resource is divided among the tasks of
07e06b01 8188 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8189 * based on each entity's (task or task-group's) weight
8190 * (se->load.weight).
8191 *
07e06b01 8192 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8193 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8194 * then A0's share of the cpu resource is:
8195 *
0d905bca 8196 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8197 *
07e06b01
YZ
8198 * We achieve this by letting root_task_group's tasks sit
8199 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8200 */
07e06b01 8201 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8202#endif /* CONFIG_FAIR_GROUP_SCHED */
8203
8204 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8205#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8206 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8207 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8208#endif
1da177e4 8209
dd41f596
IM
8210 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8211 rq->cpu_load[j] = 0;
fdf3e95d
VP
8212
8213 rq->last_load_update_tick = jiffies;
8214
1da177e4 8215#ifdef CONFIG_SMP
41c7ce9a 8216 rq->sd = NULL;
57d885fe 8217 rq->rd = NULL;
e51fd5e2 8218 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8219 rq->post_schedule = 0;
1da177e4 8220 rq->active_balance = 0;
dd41f596 8221 rq->next_balance = jiffies;
1da177e4 8222 rq->push_cpu = 0;
0a2966b4 8223 rq->cpu = i;
1f11eb6a 8224 rq->online = 0;
eae0c9df
MG
8225 rq->idle_stamp = 0;
8226 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8227 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8228#ifdef CONFIG_NO_HZ
8229 rq->nohz_balance_kick = 0;
8230 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8231#endif
1da177e4 8232#endif
8f4d37ec 8233 init_rq_hrtick(rq);
1da177e4 8234 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8235 }
8236
2dd73a4f 8237 set_load_weight(&init_task);
b50f60ce 8238
e107be36
AK
8239#ifdef CONFIG_PREEMPT_NOTIFIERS
8240 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8241#endif
8242
c9819f45 8243#ifdef CONFIG_SMP
962cf36c 8244 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8245#endif
8246
b50f60ce 8247#ifdef CONFIG_RT_MUTEXES
1d615482 8248 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8249#endif
8250
1da177e4
LT
8251 /*
8252 * The boot idle thread does lazy MMU switching as well:
8253 */
8254 atomic_inc(&init_mm.mm_count);
8255 enter_lazy_tlb(&init_mm, current);
8256
8257 /*
8258 * Make us the idle thread. Technically, schedule() should not be
8259 * called from this thread, however somewhere below it might be,
8260 * but because we are the idle thread, we just pick up running again
8261 * when this runqueue becomes "idle".
8262 */
8263 init_idle(current, smp_processor_id());
dce48a84
TG
8264
8265 calc_load_update = jiffies + LOAD_FREQ;
8266
dd41f596
IM
8267 /*
8268 * During early bootup we pretend to be a normal task:
8269 */
8270 current->sched_class = &fair_sched_class;
6892b75e 8271
6a7b3dc3 8272 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8273 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8274#ifdef CONFIG_SMP
7d1e6a9b 8275#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8276 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8277 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8278 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8279 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8280 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8281#endif
bdddd296
RR
8282 /* May be allocated at isolcpus cmdline parse time */
8283 if (cpu_isolated_map == NULL)
8284 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8285#endif /* SMP */
6a7b3dc3 8286
6892b75e 8287 scheduler_running = 1;
1da177e4
LT
8288}
8289
8290#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8291static inline int preempt_count_equals(int preempt_offset)
8292{
234da7bc 8293 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8294
4ba8216c 8295 return (nested == preempt_offset);
e4aafea2
FW
8296}
8297
d894837f 8298void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8299{
48f24c4d 8300#ifdef in_atomic
1da177e4
LT
8301 static unsigned long prev_jiffy; /* ratelimiting */
8302
e4aafea2
FW
8303 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8304 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8305 return;
8306 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8307 return;
8308 prev_jiffy = jiffies;
8309
3df0fc5b
PZ
8310 printk(KERN_ERR
8311 "BUG: sleeping function called from invalid context at %s:%d\n",
8312 file, line);
8313 printk(KERN_ERR
8314 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8315 in_atomic(), irqs_disabled(),
8316 current->pid, current->comm);
aef745fc
IM
8317
8318 debug_show_held_locks(current);
8319 if (irqs_disabled())
8320 print_irqtrace_events(current);
8321 dump_stack();
1da177e4
LT
8322#endif
8323}
8324EXPORT_SYMBOL(__might_sleep);
8325#endif
8326
8327#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8328static void normalize_task(struct rq *rq, struct task_struct *p)
8329{
da7a735e
PZ
8330 const struct sched_class *prev_class = p->sched_class;
8331 int old_prio = p->prio;
3a5e4dc1 8332 int on_rq;
3e51f33f 8333
fd2f4419 8334 on_rq = p->on_rq;
3a5e4dc1
AK
8335 if (on_rq)
8336 deactivate_task(rq, p, 0);
8337 __setscheduler(rq, p, SCHED_NORMAL, 0);
8338 if (on_rq) {
8339 activate_task(rq, p, 0);
8340 resched_task(rq->curr);
8341 }
da7a735e
PZ
8342
8343 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8344}
8345
1da177e4
LT
8346void normalize_rt_tasks(void)
8347{
a0f98a1c 8348 struct task_struct *g, *p;
1da177e4 8349 unsigned long flags;
70b97a7f 8350 struct rq *rq;
1da177e4 8351
4cf5d77a 8352 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8353 do_each_thread(g, p) {
178be793
IM
8354 /*
8355 * Only normalize user tasks:
8356 */
8357 if (!p->mm)
8358 continue;
8359
6cfb0d5d 8360 p->se.exec_start = 0;
6cfb0d5d 8361#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8362 p->se.statistics.wait_start = 0;
8363 p->se.statistics.sleep_start = 0;
8364 p->se.statistics.block_start = 0;
6cfb0d5d 8365#endif
dd41f596
IM
8366
8367 if (!rt_task(p)) {
8368 /*
8369 * Renice negative nice level userspace
8370 * tasks back to 0:
8371 */
8372 if (TASK_NICE(p) < 0 && p->mm)
8373 set_user_nice(p, 0);
1da177e4 8374 continue;
dd41f596 8375 }
1da177e4 8376
1d615482 8377 raw_spin_lock(&p->pi_lock);
b29739f9 8378 rq = __task_rq_lock(p);
1da177e4 8379
178be793 8380 normalize_task(rq, p);
3a5e4dc1 8381
b29739f9 8382 __task_rq_unlock(rq);
1d615482 8383 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8384 } while_each_thread(g, p);
8385
4cf5d77a 8386 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8387}
8388
8389#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8390
67fc4e0c 8391#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8392/*
67fc4e0c 8393 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8394 *
8395 * They can only be called when the whole system has been
8396 * stopped - every CPU needs to be quiescent, and no scheduling
8397 * activity can take place. Using them for anything else would
8398 * be a serious bug, and as a result, they aren't even visible
8399 * under any other configuration.
8400 */
8401
8402/**
8403 * curr_task - return the current task for a given cpu.
8404 * @cpu: the processor in question.
8405 *
8406 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8407 */
36c8b586 8408struct task_struct *curr_task(int cpu)
1df5c10a
LT
8409{
8410 return cpu_curr(cpu);
8411}
8412
67fc4e0c
JW
8413#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8414
8415#ifdef CONFIG_IA64
1df5c10a
LT
8416/**
8417 * set_curr_task - set the current task for a given cpu.
8418 * @cpu: the processor in question.
8419 * @p: the task pointer to set.
8420 *
8421 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8422 * are serviced on a separate stack. It allows the architecture to switch the
8423 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8424 * must be called with all CPU's synchronized, and interrupts disabled, the
8425 * and caller must save the original value of the current task (see
8426 * curr_task() above) and restore that value before reenabling interrupts and
8427 * re-starting the system.
8428 *
8429 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8430 */
36c8b586 8431void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8432{
8433 cpu_curr(cpu) = p;
8434}
8435
8436#endif
29f59db3 8437
bccbe08a
PZ
8438#ifdef CONFIG_FAIR_GROUP_SCHED
8439static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8440{
8441 int i;
8442
8443 for_each_possible_cpu(i) {
8444 if (tg->cfs_rq)
8445 kfree(tg->cfs_rq[i]);
8446 if (tg->se)
8447 kfree(tg->se[i]);
6f505b16
PZ
8448 }
8449
8450 kfree(tg->cfs_rq);
8451 kfree(tg->se);
6f505b16
PZ
8452}
8453
ec7dc8ac
DG
8454static
8455int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8456{
29f59db3 8457 struct cfs_rq *cfs_rq;
eab17229 8458 struct sched_entity *se;
29f59db3
SV
8459 int i;
8460
434d53b0 8461 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8462 if (!tg->cfs_rq)
8463 goto err;
434d53b0 8464 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8465 if (!tg->se)
8466 goto err;
052f1dc7
PZ
8467
8468 tg->shares = NICE_0_LOAD;
29f59db3
SV
8469
8470 for_each_possible_cpu(i) {
eab17229
LZ
8471 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8472 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8473 if (!cfs_rq)
8474 goto err;
8475
eab17229
LZ
8476 se = kzalloc_node(sizeof(struct sched_entity),
8477 GFP_KERNEL, cpu_to_node(i));
29f59db3 8478 if (!se)
dfc12eb2 8479 goto err_free_rq;
29f59db3 8480
3d4b47b4 8481 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8482 }
8483
8484 return 1;
8485
49246274 8486err_free_rq:
dfc12eb2 8487 kfree(cfs_rq);
49246274 8488err:
bccbe08a
PZ
8489 return 0;
8490}
8491
bccbe08a
PZ
8492static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8493{
3d4b47b4
PZ
8494 struct rq *rq = cpu_rq(cpu);
8495 unsigned long flags;
3d4b47b4
PZ
8496
8497 /*
8498 * Only empty task groups can be destroyed; so we can speculatively
8499 * check on_list without danger of it being re-added.
8500 */
8501 if (!tg->cfs_rq[cpu]->on_list)
8502 return;
8503
8504 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8505 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8506 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8507}
6d6bc0ad 8508#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8509static inline void free_fair_sched_group(struct task_group *tg)
8510{
8511}
8512
ec7dc8ac
DG
8513static inline
8514int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8515{
8516 return 1;
8517}
8518
bccbe08a
PZ
8519static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8520{
8521}
6d6bc0ad 8522#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8523
8524#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8525static void free_rt_sched_group(struct task_group *tg)
8526{
8527 int i;
8528
d0b27fa7
PZ
8529 destroy_rt_bandwidth(&tg->rt_bandwidth);
8530
bccbe08a
PZ
8531 for_each_possible_cpu(i) {
8532 if (tg->rt_rq)
8533 kfree(tg->rt_rq[i]);
8534 if (tg->rt_se)
8535 kfree(tg->rt_se[i]);
8536 }
8537
8538 kfree(tg->rt_rq);
8539 kfree(tg->rt_se);
8540}
8541
ec7dc8ac
DG
8542static
8543int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8544{
8545 struct rt_rq *rt_rq;
eab17229 8546 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8547 struct rq *rq;
8548 int i;
8549
434d53b0 8550 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8551 if (!tg->rt_rq)
8552 goto err;
434d53b0 8553 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8554 if (!tg->rt_se)
8555 goto err;
8556
d0b27fa7
PZ
8557 init_rt_bandwidth(&tg->rt_bandwidth,
8558 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8559
8560 for_each_possible_cpu(i) {
8561 rq = cpu_rq(i);
8562
eab17229
LZ
8563 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8564 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8565 if (!rt_rq)
8566 goto err;
29f59db3 8567
eab17229
LZ
8568 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8569 GFP_KERNEL, cpu_to_node(i));
6f505b16 8570 if (!rt_se)
dfc12eb2 8571 goto err_free_rq;
29f59db3 8572
3d4b47b4 8573 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8574 }
8575
bccbe08a
PZ
8576 return 1;
8577
49246274 8578err_free_rq:
dfc12eb2 8579 kfree(rt_rq);
49246274 8580err:
bccbe08a
PZ
8581 return 0;
8582}
6d6bc0ad 8583#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8584static inline void free_rt_sched_group(struct task_group *tg)
8585{
8586}
8587
ec7dc8ac
DG
8588static inline
8589int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8590{
8591 return 1;
8592}
6d6bc0ad 8593#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8594
7c941438 8595#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8596static void free_sched_group(struct task_group *tg)
8597{
8598 free_fair_sched_group(tg);
8599 free_rt_sched_group(tg);
e9aa1dd1 8600 autogroup_free(tg);
bccbe08a
PZ
8601 kfree(tg);
8602}
8603
8604/* allocate runqueue etc for a new task group */
ec7dc8ac 8605struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8606{
8607 struct task_group *tg;
8608 unsigned long flags;
bccbe08a
PZ
8609
8610 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8611 if (!tg)
8612 return ERR_PTR(-ENOMEM);
8613
ec7dc8ac 8614 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8615 goto err;
8616
ec7dc8ac 8617 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8618 goto err;
8619
8ed36996 8620 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8621 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8622
8623 WARN_ON(!parent); /* root should already exist */
8624
8625 tg->parent = parent;
f473aa5e 8626 INIT_LIST_HEAD(&tg->children);
09f2724a 8627 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8628 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8629
9b5b7751 8630 return tg;
29f59db3
SV
8631
8632err:
6f505b16 8633 free_sched_group(tg);
29f59db3
SV
8634 return ERR_PTR(-ENOMEM);
8635}
8636
9b5b7751 8637/* rcu callback to free various structures associated with a task group */
6f505b16 8638static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8639{
29f59db3 8640 /* now it should be safe to free those cfs_rqs */
6f505b16 8641 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8642}
8643
9b5b7751 8644/* Destroy runqueue etc associated with a task group */
4cf86d77 8645void sched_destroy_group(struct task_group *tg)
29f59db3 8646{
8ed36996 8647 unsigned long flags;
9b5b7751 8648 int i;
29f59db3 8649
3d4b47b4
PZ
8650 /* end participation in shares distribution */
8651 for_each_possible_cpu(i)
bccbe08a 8652 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8653
8654 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8655 list_del_rcu(&tg->list);
f473aa5e 8656 list_del_rcu(&tg->siblings);
8ed36996 8657 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8658
9b5b7751 8659 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8660 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8661}
8662
9b5b7751 8663/* change task's runqueue when it moves between groups.
3a252015
IM
8664 * The caller of this function should have put the task in its new group
8665 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8666 * reflect its new group.
9b5b7751
SV
8667 */
8668void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8669{
8670 int on_rq, running;
8671 unsigned long flags;
8672 struct rq *rq;
8673
8674 rq = task_rq_lock(tsk, &flags);
8675
051a1d1a 8676 running = task_current(rq, tsk);
fd2f4419 8677 on_rq = tsk->on_rq;
29f59db3 8678
0e1f3483 8679 if (on_rq)
29f59db3 8680 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8681 if (unlikely(running))
8682 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8683
810b3817 8684#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8685 if (tsk->sched_class->task_move_group)
8686 tsk->sched_class->task_move_group(tsk, on_rq);
8687 else
810b3817 8688#endif
b2b5ce02 8689 set_task_rq(tsk, task_cpu(tsk));
810b3817 8690
0e1f3483
HS
8691 if (unlikely(running))
8692 tsk->sched_class->set_curr_task(rq);
8693 if (on_rq)
371fd7e7 8694 enqueue_task(rq, tsk, 0);
29f59db3 8695
0122ec5b 8696 task_rq_unlock(rq, tsk, &flags);
29f59db3 8697}
7c941438 8698#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8699
052f1dc7 8700#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8701static DEFINE_MUTEX(shares_mutex);
8702
4cf86d77 8703int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8704{
8705 int i;
8ed36996 8706 unsigned long flags;
c61935fd 8707
ec7dc8ac
DG
8708 /*
8709 * We can't change the weight of the root cgroup.
8710 */
8711 if (!tg->se[0])
8712 return -EINVAL;
8713
18d95a28
PZ
8714 if (shares < MIN_SHARES)
8715 shares = MIN_SHARES;
cb4ad1ff
MX
8716 else if (shares > MAX_SHARES)
8717 shares = MAX_SHARES;
62fb1851 8718
8ed36996 8719 mutex_lock(&shares_mutex);
9b5b7751 8720 if (tg->shares == shares)
5cb350ba 8721 goto done;
29f59db3 8722
9b5b7751 8723 tg->shares = shares;
c09595f6 8724 for_each_possible_cpu(i) {
9437178f
PT
8725 struct rq *rq = cpu_rq(i);
8726 struct sched_entity *se;
8727
8728 se = tg->se[i];
8729 /* Propagate contribution to hierarchy */
8730 raw_spin_lock_irqsave(&rq->lock, flags);
8731 for_each_sched_entity(se)
6d5ab293 8732 update_cfs_shares(group_cfs_rq(se));
9437178f 8733 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8734 }
29f59db3 8735
5cb350ba 8736done:
8ed36996 8737 mutex_unlock(&shares_mutex);
9b5b7751 8738 return 0;
29f59db3
SV
8739}
8740
5cb350ba
DG
8741unsigned long sched_group_shares(struct task_group *tg)
8742{
8743 return tg->shares;
8744}
052f1dc7 8745#endif
5cb350ba 8746
052f1dc7 8747#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8748/*
9f0c1e56 8749 * Ensure that the real time constraints are schedulable.
6f505b16 8750 */
9f0c1e56
PZ
8751static DEFINE_MUTEX(rt_constraints_mutex);
8752
8753static unsigned long to_ratio(u64 period, u64 runtime)
8754{
8755 if (runtime == RUNTIME_INF)
9a7e0b18 8756 return 1ULL << 20;
9f0c1e56 8757
9a7e0b18 8758 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8759}
8760
9a7e0b18
PZ
8761/* Must be called with tasklist_lock held */
8762static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8763{
9a7e0b18 8764 struct task_struct *g, *p;
b40b2e8e 8765
9a7e0b18
PZ
8766 do_each_thread(g, p) {
8767 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8768 return 1;
8769 } while_each_thread(g, p);
b40b2e8e 8770
9a7e0b18
PZ
8771 return 0;
8772}
b40b2e8e 8773
9a7e0b18
PZ
8774struct rt_schedulable_data {
8775 struct task_group *tg;
8776 u64 rt_period;
8777 u64 rt_runtime;
8778};
b40b2e8e 8779
9a7e0b18
PZ
8780static int tg_schedulable(struct task_group *tg, void *data)
8781{
8782 struct rt_schedulable_data *d = data;
8783 struct task_group *child;
8784 unsigned long total, sum = 0;
8785 u64 period, runtime;
b40b2e8e 8786
9a7e0b18
PZ
8787 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8788 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8789
9a7e0b18
PZ
8790 if (tg == d->tg) {
8791 period = d->rt_period;
8792 runtime = d->rt_runtime;
b40b2e8e 8793 }
b40b2e8e 8794
4653f803
PZ
8795 /*
8796 * Cannot have more runtime than the period.
8797 */
8798 if (runtime > period && runtime != RUNTIME_INF)
8799 return -EINVAL;
6f505b16 8800
4653f803
PZ
8801 /*
8802 * Ensure we don't starve existing RT tasks.
8803 */
9a7e0b18
PZ
8804 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8805 return -EBUSY;
6f505b16 8806
9a7e0b18 8807 total = to_ratio(period, runtime);
6f505b16 8808
4653f803
PZ
8809 /*
8810 * Nobody can have more than the global setting allows.
8811 */
8812 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8813 return -EINVAL;
6f505b16 8814
4653f803
PZ
8815 /*
8816 * The sum of our children's runtime should not exceed our own.
8817 */
9a7e0b18
PZ
8818 list_for_each_entry_rcu(child, &tg->children, siblings) {
8819 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8820 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8821
9a7e0b18
PZ
8822 if (child == d->tg) {
8823 period = d->rt_period;
8824 runtime = d->rt_runtime;
8825 }
6f505b16 8826
9a7e0b18 8827 sum += to_ratio(period, runtime);
9f0c1e56 8828 }
6f505b16 8829
9a7e0b18
PZ
8830 if (sum > total)
8831 return -EINVAL;
8832
8833 return 0;
6f505b16
PZ
8834}
8835
9a7e0b18 8836static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8837{
9a7e0b18
PZ
8838 struct rt_schedulable_data data = {
8839 .tg = tg,
8840 .rt_period = period,
8841 .rt_runtime = runtime,
8842 };
8843
8844 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8845}
8846
d0b27fa7
PZ
8847static int tg_set_bandwidth(struct task_group *tg,
8848 u64 rt_period, u64 rt_runtime)
6f505b16 8849{
ac086bc2 8850 int i, err = 0;
9f0c1e56 8851
9f0c1e56 8852 mutex_lock(&rt_constraints_mutex);
521f1a24 8853 read_lock(&tasklist_lock);
9a7e0b18
PZ
8854 err = __rt_schedulable(tg, rt_period, rt_runtime);
8855 if (err)
9f0c1e56 8856 goto unlock;
ac086bc2 8857
0986b11b 8858 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8859 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8860 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8861
8862 for_each_possible_cpu(i) {
8863 struct rt_rq *rt_rq = tg->rt_rq[i];
8864
0986b11b 8865 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8866 rt_rq->rt_runtime = rt_runtime;
0986b11b 8867 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8868 }
0986b11b 8869 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8870unlock:
521f1a24 8871 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8872 mutex_unlock(&rt_constraints_mutex);
8873
8874 return err;
6f505b16
PZ
8875}
8876
d0b27fa7
PZ
8877int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8878{
8879 u64 rt_runtime, rt_period;
8880
8881 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8882 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8883 if (rt_runtime_us < 0)
8884 rt_runtime = RUNTIME_INF;
8885
8886 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8887}
8888
9f0c1e56
PZ
8889long sched_group_rt_runtime(struct task_group *tg)
8890{
8891 u64 rt_runtime_us;
8892
d0b27fa7 8893 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8894 return -1;
8895
d0b27fa7 8896 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8897 do_div(rt_runtime_us, NSEC_PER_USEC);
8898 return rt_runtime_us;
8899}
d0b27fa7
PZ
8900
8901int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8902{
8903 u64 rt_runtime, rt_period;
8904
8905 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8906 rt_runtime = tg->rt_bandwidth.rt_runtime;
8907
619b0488
R
8908 if (rt_period == 0)
8909 return -EINVAL;
8910
d0b27fa7
PZ
8911 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8912}
8913
8914long sched_group_rt_period(struct task_group *tg)
8915{
8916 u64 rt_period_us;
8917
8918 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8919 do_div(rt_period_us, NSEC_PER_USEC);
8920 return rt_period_us;
8921}
8922
8923static int sched_rt_global_constraints(void)
8924{
4653f803 8925 u64 runtime, period;
d0b27fa7
PZ
8926 int ret = 0;
8927
ec5d4989
HS
8928 if (sysctl_sched_rt_period <= 0)
8929 return -EINVAL;
8930
4653f803
PZ
8931 runtime = global_rt_runtime();
8932 period = global_rt_period();
8933
8934 /*
8935 * Sanity check on the sysctl variables.
8936 */
8937 if (runtime > period && runtime != RUNTIME_INF)
8938 return -EINVAL;
10b612f4 8939
d0b27fa7 8940 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8941 read_lock(&tasklist_lock);
4653f803 8942 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8943 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8944 mutex_unlock(&rt_constraints_mutex);
8945
8946 return ret;
8947}
54e99124
DG
8948
8949int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8950{
8951 /* Don't accept realtime tasks when there is no way for them to run */
8952 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8953 return 0;
8954
8955 return 1;
8956}
8957
6d6bc0ad 8958#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8959static int sched_rt_global_constraints(void)
8960{
ac086bc2
PZ
8961 unsigned long flags;
8962 int i;
8963
ec5d4989
HS
8964 if (sysctl_sched_rt_period <= 0)
8965 return -EINVAL;
8966
60aa605d
PZ
8967 /*
8968 * There's always some RT tasks in the root group
8969 * -- migration, kstopmachine etc..
8970 */
8971 if (sysctl_sched_rt_runtime == 0)
8972 return -EBUSY;
8973
0986b11b 8974 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8975 for_each_possible_cpu(i) {
8976 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8977
0986b11b 8978 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8979 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8980 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8981 }
0986b11b 8982 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8983
d0b27fa7
PZ
8984 return 0;
8985}
6d6bc0ad 8986#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8987
8988int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8989 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8990 loff_t *ppos)
8991{
8992 int ret;
8993 int old_period, old_runtime;
8994 static DEFINE_MUTEX(mutex);
8995
8996 mutex_lock(&mutex);
8997 old_period = sysctl_sched_rt_period;
8998 old_runtime = sysctl_sched_rt_runtime;
8999
8d65af78 9000 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9001
9002 if (!ret && write) {
9003 ret = sched_rt_global_constraints();
9004 if (ret) {
9005 sysctl_sched_rt_period = old_period;
9006 sysctl_sched_rt_runtime = old_runtime;
9007 } else {
9008 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9009 def_rt_bandwidth.rt_period =
9010 ns_to_ktime(global_rt_period());
9011 }
9012 }
9013 mutex_unlock(&mutex);
9014
9015 return ret;
9016}
68318b8e 9017
052f1dc7 9018#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9019
9020/* return corresponding task_group object of a cgroup */
2b01dfe3 9021static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9022{
2b01dfe3
PM
9023 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9024 struct task_group, css);
68318b8e
SV
9025}
9026
9027static struct cgroup_subsys_state *
2b01dfe3 9028cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9029{
ec7dc8ac 9030 struct task_group *tg, *parent;
68318b8e 9031
2b01dfe3 9032 if (!cgrp->parent) {
68318b8e 9033 /* This is early initialization for the top cgroup */
07e06b01 9034 return &root_task_group.css;
68318b8e
SV
9035 }
9036
ec7dc8ac
DG
9037 parent = cgroup_tg(cgrp->parent);
9038 tg = sched_create_group(parent);
68318b8e
SV
9039 if (IS_ERR(tg))
9040 return ERR_PTR(-ENOMEM);
9041
68318b8e
SV
9042 return &tg->css;
9043}
9044
41a2d6cf
IM
9045static void
9046cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9047{
2b01dfe3 9048 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9049
9050 sched_destroy_group(tg);
9051}
9052
41a2d6cf 9053static int
be367d09 9054cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9055{
b68aa230 9056#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9057 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9058 return -EINVAL;
9059#else
68318b8e
SV
9060 /* We don't support RT-tasks being in separate groups */
9061 if (tsk->sched_class != &fair_sched_class)
9062 return -EINVAL;
b68aa230 9063#endif
be367d09
BB
9064 return 0;
9065}
68318b8e 9066
be367d09
BB
9067static int
9068cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9069 struct task_struct *tsk, bool threadgroup)
9070{
9071 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9072 if (retval)
9073 return retval;
9074 if (threadgroup) {
9075 struct task_struct *c;
9076 rcu_read_lock();
9077 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9078 retval = cpu_cgroup_can_attach_task(cgrp, c);
9079 if (retval) {
9080 rcu_read_unlock();
9081 return retval;
9082 }
9083 }
9084 rcu_read_unlock();
9085 }
68318b8e
SV
9086 return 0;
9087}
9088
9089static void
2b01dfe3 9090cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9091 struct cgroup *old_cont, struct task_struct *tsk,
9092 bool threadgroup)
68318b8e
SV
9093{
9094 sched_move_task(tsk);
be367d09
BB
9095 if (threadgroup) {
9096 struct task_struct *c;
9097 rcu_read_lock();
9098 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9099 sched_move_task(c);
9100 }
9101 rcu_read_unlock();
9102 }
68318b8e
SV
9103}
9104
068c5cc5 9105static void
d41d5a01
PZ
9106cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9107 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9108{
9109 /*
9110 * cgroup_exit() is called in the copy_process() failure path.
9111 * Ignore this case since the task hasn't ran yet, this avoids
9112 * trying to poke a half freed task state from generic code.
9113 */
9114 if (!(task->flags & PF_EXITING))
9115 return;
9116
9117 sched_move_task(task);
9118}
9119
052f1dc7 9120#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9121static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9122 u64 shareval)
68318b8e 9123{
2b01dfe3 9124 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9125}
9126
f4c753b7 9127static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9128{
2b01dfe3 9129 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9130
9131 return (u64) tg->shares;
9132}
6d6bc0ad 9133#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9134
052f1dc7 9135#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9136static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9137 s64 val)
6f505b16 9138{
06ecb27c 9139 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9140}
9141
06ecb27c 9142static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9143{
06ecb27c 9144 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9145}
d0b27fa7
PZ
9146
9147static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9148 u64 rt_period_us)
9149{
9150 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9151}
9152
9153static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9154{
9155 return sched_group_rt_period(cgroup_tg(cgrp));
9156}
6d6bc0ad 9157#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9158
fe5c7cc2 9159static struct cftype cpu_files[] = {
052f1dc7 9160#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9161 {
9162 .name = "shares",
f4c753b7
PM
9163 .read_u64 = cpu_shares_read_u64,
9164 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9165 },
052f1dc7
PZ
9166#endif
9167#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9168 {
9f0c1e56 9169 .name = "rt_runtime_us",
06ecb27c
PM
9170 .read_s64 = cpu_rt_runtime_read,
9171 .write_s64 = cpu_rt_runtime_write,
6f505b16 9172 },
d0b27fa7
PZ
9173 {
9174 .name = "rt_period_us",
f4c753b7
PM
9175 .read_u64 = cpu_rt_period_read_uint,
9176 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9177 },
052f1dc7 9178#endif
68318b8e
SV
9179};
9180
9181static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9182{
fe5c7cc2 9183 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9184}
9185
9186struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9187 .name = "cpu",
9188 .create = cpu_cgroup_create,
9189 .destroy = cpu_cgroup_destroy,
9190 .can_attach = cpu_cgroup_can_attach,
9191 .attach = cpu_cgroup_attach,
068c5cc5 9192 .exit = cpu_cgroup_exit,
38605cae
IM
9193 .populate = cpu_cgroup_populate,
9194 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9195 .early_init = 1,
9196};
9197
052f1dc7 9198#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9199
9200#ifdef CONFIG_CGROUP_CPUACCT
9201
9202/*
9203 * CPU accounting code for task groups.
9204 *
9205 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9206 * (balbir@in.ibm.com).
9207 */
9208
934352f2 9209/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9210struct cpuacct {
9211 struct cgroup_subsys_state css;
9212 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9213 u64 __percpu *cpuusage;
ef12fefa 9214 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9215 struct cpuacct *parent;
d842de87
SV
9216};
9217
9218struct cgroup_subsys cpuacct_subsys;
9219
9220/* return cpu accounting group corresponding to this container */
32cd756a 9221static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9222{
32cd756a 9223 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9224 struct cpuacct, css);
9225}
9226
9227/* return cpu accounting group to which this task belongs */
9228static inline struct cpuacct *task_ca(struct task_struct *tsk)
9229{
9230 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9231 struct cpuacct, css);
9232}
9233
9234/* create a new cpu accounting group */
9235static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9236 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9237{
9238 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9239 int i;
d842de87
SV
9240
9241 if (!ca)
ef12fefa 9242 goto out;
d842de87
SV
9243
9244 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9245 if (!ca->cpuusage)
9246 goto out_free_ca;
9247
9248 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9249 if (percpu_counter_init(&ca->cpustat[i], 0))
9250 goto out_free_counters;
d842de87 9251
934352f2
BR
9252 if (cgrp->parent)
9253 ca->parent = cgroup_ca(cgrp->parent);
9254
d842de87 9255 return &ca->css;
ef12fefa
BR
9256
9257out_free_counters:
9258 while (--i >= 0)
9259 percpu_counter_destroy(&ca->cpustat[i]);
9260 free_percpu(ca->cpuusage);
9261out_free_ca:
9262 kfree(ca);
9263out:
9264 return ERR_PTR(-ENOMEM);
d842de87
SV
9265}
9266
9267/* destroy an existing cpu accounting group */
41a2d6cf 9268static void
32cd756a 9269cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9270{
32cd756a 9271 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9272 int i;
d842de87 9273
ef12fefa
BR
9274 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9275 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9276 free_percpu(ca->cpuusage);
9277 kfree(ca);
9278}
9279
720f5498
KC
9280static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9281{
b36128c8 9282 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9283 u64 data;
9284
9285#ifndef CONFIG_64BIT
9286 /*
9287 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9288 */
05fa785c 9289 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9290 data = *cpuusage;
05fa785c 9291 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9292#else
9293 data = *cpuusage;
9294#endif
9295
9296 return data;
9297}
9298
9299static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9300{
b36128c8 9301 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9302
9303#ifndef CONFIG_64BIT
9304 /*
9305 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9306 */
05fa785c 9307 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9308 *cpuusage = val;
05fa785c 9309 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9310#else
9311 *cpuusage = val;
9312#endif
9313}
9314
d842de87 9315/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9316static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9317{
32cd756a 9318 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9319 u64 totalcpuusage = 0;
9320 int i;
9321
720f5498
KC
9322 for_each_present_cpu(i)
9323 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9324
9325 return totalcpuusage;
9326}
9327
0297b803
DG
9328static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9329 u64 reset)
9330{
9331 struct cpuacct *ca = cgroup_ca(cgrp);
9332 int err = 0;
9333 int i;
9334
9335 if (reset) {
9336 err = -EINVAL;
9337 goto out;
9338 }
9339
720f5498
KC
9340 for_each_present_cpu(i)
9341 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9342
0297b803
DG
9343out:
9344 return err;
9345}
9346
e9515c3c
KC
9347static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9348 struct seq_file *m)
9349{
9350 struct cpuacct *ca = cgroup_ca(cgroup);
9351 u64 percpu;
9352 int i;
9353
9354 for_each_present_cpu(i) {
9355 percpu = cpuacct_cpuusage_read(ca, i);
9356 seq_printf(m, "%llu ", (unsigned long long) percpu);
9357 }
9358 seq_printf(m, "\n");
9359 return 0;
9360}
9361
ef12fefa
BR
9362static const char *cpuacct_stat_desc[] = {
9363 [CPUACCT_STAT_USER] = "user",
9364 [CPUACCT_STAT_SYSTEM] = "system",
9365};
9366
9367static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9368 struct cgroup_map_cb *cb)
9369{
9370 struct cpuacct *ca = cgroup_ca(cgrp);
9371 int i;
9372
9373 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9374 s64 val = percpu_counter_read(&ca->cpustat[i]);
9375 val = cputime64_to_clock_t(val);
9376 cb->fill(cb, cpuacct_stat_desc[i], val);
9377 }
9378 return 0;
9379}
9380
d842de87
SV
9381static struct cftype files[] = {
9382 {
9383 .name = "usage",
f4c753b7
PM
9384 .read_u64 = cpuusage_read,
9385 .write_u64 = cpuusage_write,
d842de87 9386 },
e9515c3c
KC
9387 {
9388 .name = "usage_percpu",
9389 .read_seq_string = cpuacct_percpu_seq_read,
9390 },
ef12fefa
BR
9391 {
9392 .name = "stat",
9393 .read_map = cpuacct_stats_show,
9394 },
d842de87
SV
9395};
9396
32cd756a 9397static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9398{
32cd756a 9399 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9400}
9401
9402/*
9403 * charge this task's execution time to its accounting group.
9404 *
9405 * called with rq->lock held.
9406 */
9407static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9408{
9409 struct cpuacct *ca;
934352f2 9410 int cpu;
d842de87 9411
c40c6f85 9412 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9413 return;
9414
934352f2 9415 cpu = task_cpu(tsk);
a18b83b7
BR
9416
9417 rcu_read_lock();
9418
d842de87 9419 ca = task_ca(tsk);
d842de87 9420
934352f2 9421 for (; ca; ca = ca->parent) {
b36128c8 9422 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9423 *cpuusage += cputime;
9424 }
a18b83b7
BR
9425
9426 rcu_read_unlock();
d842de87
SV
9427}
9428
fa535a77
AB
9429/*
9430 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9431 * in cputime_t units. As a result, cpuacct_update_stats calls
9432 * percpu_counter_add with values large enough to always overflow the
9433 * per cpu batch limit causing bad SMP scalability.
9434 *
9435 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9436 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9437 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9438 */
9439#ifdef CONFIG_SMP
9440#define CPUACCT_BATCH \
9441 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9442#else
9443#define CPUACCT_BATCH 0
9444#endif
9445
ef12fefa
BR
9446/*
9447 * Charge the system/user time to the task's accounting group.
9448 */
9449static void cpuacct_update_stats(struct task_struct *tsk,
9450 enum cpuacct_stat_index idx, cputime_t val)
9451{
9452 struct cpuacct *ca;
fa535a77 9453 int batch = CPUACCT_BATCH;
ef12fefa
BR
9454
9455 if (unlikely(!cpuacct_subsys.active))
9456 return;
9457
9458 rcu_read_lock();
9459 ca = task_ca(tsk);
9460
9461 do {
fa535a77 9462 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9463 ca = ca->parent;
9464 } while (ca);
9465 rcu_read_unlock();
9466}
9467
d842de87
SV
9468struct cgroup_subsys cpuacct_subsys = {
9469 .name = "cpuacct",
9470 .create = cpuacct_create,
9471 .destroy = cpuacct_destroy,
9472 .populate = cpuacct_populate,
9473 .subsys_id = cpuacct_subsys_id,
9474};
9475#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9476