]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched.c
sched: Serialize p->cpus_allowed and ttwu() using p->pi_lock
[mirror_ubuntu-kernels.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
a64692a3 560
1e5a7405 561static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 562
0a2966b4
CL
563static inline int cpu_of(struct rq *rq)
564{
565#ifdef CONFIG_SMP
566 return rq->cpu;
567#else
568 return 0;
569#endif
570}
571
497f0ab3 572#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
674311d5
NP
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 579 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
48f24c4d 584#define for_each_domain(cpu, __sd) \
497f0ab3 585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
586
587#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588#define this_rq() (&__get_cpu_var(runqueues))
589#define task_rq(p) cpu_rq(task_cpu(p))
590#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 591#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 592
dc61b1d6
PZ
593#ifdef CONFIG_CGROUP_SCHED
594
595/*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603static inline struct task_group *task_group(struct task_struct *p)
604{
5091faa4 605 struct task_group *tg;
dc61b1d6
PZ
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
dc61b1d6
PZ
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1 662/**
1fd06bb1 663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 664 * @cpu: the processor in question.
017730c1 665 *
017730c1
IM
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
7740191c 726 char *cmp;
f00b45c1
PZ
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
7740191c 737 cmp = strstrip(buf);
f00b45c1 738
524429c3 739 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
7740191c 745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
e9e9250b
PZ
794/*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
fa85ae24 802/*
9f0c1e56 803 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
804 * default: 1s
805 */
9f0c1e56 806unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 807
6892b75e
IM
808static __read_mostly int scheduler_running;
809
9f0c1e56
PZ
810/*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814int sysctl_sched_rt_runtime = 950000;
fa85ae24 815
d0b27fa7
PZ
816static inline u64 global_rt_period(void)
817{
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819}
820
821static inline u64 global_rt_runtime(void)
822{
e26873bb 823 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827}
fa85ae24 828
1da177e4 829#ifndef prepare_arch_switch
4866cde0
NP
830# define prepare_arch_switch(next) do { } while (0)
831#endif
832#ifndef finish_arch_switch
833# define finish_arch_switch(prev) do { } while (0)
834#endif
835
051a1d1a
DA
836static inline int task_current(struct rq *rq, struct task_struct *p)
837{
838 return rq->curr == p;
839}
840
70b97a7f 841static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 842{
3ca7a440
PZ
843#ifdef CONFIG_SMP
844 return p->on_cpu;
845#else
051a1d1a 846 return task_current(rq, p);
3ca7a440 847#endif
4866cde0
NP
848}
849
3ca7a440 850#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860#endif
4866cde0
NP
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
3ca7a440
PZ
865#ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873#endif
da04c035
IM
874#ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877#endif
8a25d5de
IM
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
05fa785c 885 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
886}
887
888#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
3ca7a440 897 next->on_cpu = 1;
4866cde0
NP
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
3ca7a440 910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
3ca7a440 915 prev->on_cpu = 0;
4866cde0
NP
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2069dd75
PZ
1355static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356{
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359}
1360
2dd73a4f
PW
1361/*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
cce7ade8
PZ
1370#define WEIGHT_IDLEPRIO 3
1371#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1372
1373/*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
dd41f596
IM
1384 */
1385static const int prio_to_weight[40] = {
254753dc
IM
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1394};
1395
5714d2de
IM
1396/*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
dd41f596 1403static const u32 prio_to_wmult[40] = {
254753dc
IM
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1412};
2dd73a4f 1413
ef12fefa
BR
1414/* Time spent by the tasks of the cpu accounting group executing in ... */
1415enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420};
1421
d842de87
SV
1422#ifdef CONFIG_CGROUP_CPUACCT
1423static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1424static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1426#else
1427static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1428static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1430#endif
1431
18d95a28
PZ
1432static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433{
1434 update_load_add(&rq->load, load);
1435}
1436
1437static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_sub(&rq->load, load);
1440}
1441
7940ca36 1442#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1443typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1444
1445/*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
eb755805 1449static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1450{
1451 struct task_group *parent, *child;
eb755805 1452 int ret;
c09595f6
PZ
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456down:
eb755805
PZ
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464up:
1465 continue;
1466 }
eb755805
PZ
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
eb755805 1475out_unlock:
c09595f6 1476 rcu_read_unlock();
eb755805
PZ
1477
1478 return ret;
c09595f6
PZ
1479}
1480
eb755805
PZ
1481static int tg_nop(struct task_group *tg, void *data)
1482{
1483 return 0;
c09595f6 1484}
eb755805
PZ
1485#endif
1486
1487#ifdef CONFIG_SMP
f5f08f39
PZ
1488/* Used instead of source_load when we know the type == 0 */
1489static unsigned long weighted_cpuload(const int cpu)
1490{
1491 return cpu_rq(cpu)->load.weight;
1492}
1493
1494/*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501static unsigned long source_load(int cpu, int type)
1502{
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510}
1511
1512/*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516static unsigned long target_load(int cpu, int type)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525}
1526
ae154be1
PZ
1527static unsigned long power_of(int cpu)
1528{
e51fd5e2 1529 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1530}
1531
eb755805
PZ
1532static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534static unsigned long cpu_avg_load_per_task(int cpu)
1535{
1536 struct rq *rq = cpu_rq(cpu);
af6d596f 1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1538
4cd42620
SR
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1541 else
1542 rq->avg_load_per_task = 0;
eb755805
PZ
1543
1544 return rq->avg_load_per_task;
1545}
1546
1547#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1548
c09595f6 1549/*
c8cba857
PZ
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
c09595f6 1553 */
eb755805 1554static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1555{
c8cba857 1556 unsigned long load;
eb755805 1557 long cpu = (long)data;
c09595f6 1558
c8cba857
PZ
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1563 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
c09595f6 1566
c8cba857 1567 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1568
eb755805 1569 return 0;
c09595f6
PZ
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
18d95a28
PZ
1577#endif
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
d95f4122
MG
1696#else /* CONFIG_SMP */
1697
1698/*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707{
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712}
1713
1714/*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723{
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727}
1728
18d95a28
PZ
1729#endif
1730
74f5187a 1731static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1732static void update_sysctl(void);
acb4a848 1733static int get_update_sysctl_factor(void);
fdf3e95d 1734static void update_cpu_load(struct rq *this_rq);
dce48a84 1735
cd29fe6f
PZ
1736static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737{
1738 set_task_rq(p, cpu);
1739#ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747#endif
1748}
dce48a84 1749
1e3c88bd 1750static const struct sched_class rt_sched_class;
dd41f596 1751
34f971f6 1752#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1753#define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
dd41f596 1755
1e3c88bd
PZ
1756#include "sched_stats.h"
1757
c09595f6 1758static void inc_nr_running(struct rq *rq)
9c217245
IM
1759{
1760 rq->nr_running++;
9c217245
IM
1761}
1762
c09595f6 1763static void dec_nr_running(struct rq *rq)
9c217245
IM
1764{
1765 rq->nr_running--;
9c217245
IM
1766}
1767
45bf76df
IM
1768static void set_load_weight(struct task_struct *p)
1769{
dd41f596
IM
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
71f8bd46 1778
dd41f596
IM
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1781}
1782
371fd7e7 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1784{
a64692a3 1785 update_rq_clock(rq);
dd41f596 1786 sched_info_queued(p);
371fd7e7 1787 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1788}
1789
371fd7e7 1790static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1791{
a64692a3 1792 update_rq_clock(rq);
46ac22ba 1793 sched_info_dequeued(p);
371fd7e7 1794 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1795}
1796
1e3c88bd
PZ
1797/*
1798 * activate_task - move a task to the runqueue.
1799 */
371fd7e7 1800static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1801{
1802 if (task_contributes_to_load(p))
1803 rq->nr_uninterruptible--;
1804
371fd7e7 1805 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1806 inc_nr_running(rq);
1807}
1808
1809/*
1810 * deactivate_task - remove a task from the runqueue.
1811 */
371fd7e7 1812static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1813{
1814 if (task_contributes_to_load(p))
1815 rq->nr_uninterruptible++;
1816
371fd7e7 1817 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1818 dec_nr_running(rq);
1819}
1820
b52bfee4
VP
1821#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822
305e6835
VP
1823/*
1824 * There are no locks covering percpu hardirq/softirq time.
1825 * They are only modified in account_system_vtime, on corresponding CPU
1826 * with interrupts disabled. So, writes are safe.
1827 * They are read and saved off onto struct rq in update_rq_clock().
1828 * This may result in other CPU reading this CPU's irq time and can
1829 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1830 * or new value with a side effect of accounting a slice of irq time to wrong
1831 * task when irq is in progress while we read rq->clock. That is a worthy
1832 * compromise in place of having locks on each irq in account_system_time.
305e6835 1833 */
b52bfee4
VP
1834static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1835static DEFINE_PER_CPU(u64, cpu_softirq_time);
1836
1837static DEFINE_PER_CPU(u64, irq_start_time);
1838static int sched_clock_irqtime;
1839
1840void enable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 1;
1843}
1844
1845void disable_sched_clock_irqtime(void)
1846{
1847 sched_clock_irqtime = 0;
1848}
1849
8e92c201
PZ
1850#ifndef CONFIG_64BIT
1851static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1852
1853static inline void irq_time_write_begin(void)
1854{
1855 __this_cpu_inc(irq_time_seq.sequence);
1856 smp_wmb();
1857}
1858
1859static inline void irq_time_write_end(void)
1860{
1861 smp_wmb();
1862 __this_cpu_inc(irq_time_seq.sequence);
1863}
1864
1865static inline u64 irq_time_read(int cpu)
1866{
1867 u64 irq_time;
1868 unsigned seq;
1869
1870 do {
1871 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1872 irq_time = per_cpu(cpu_softirq_time, cpu) +
1873 per_cpu(cpu_hardirq_time, cpu);
1874 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1875
1876 return irq_time;
1877}
1878#else /* CONFIG_64BIT */
1879static inline void irq_time_write_begin(void)
1880{
1881}
1882
1883static inline void irq_time_write_end(void)
1884{
1885}
1886
1887static inline u64 irq_time_read(int cpu)
305e6835 1888{
305e6835
VP
1889 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1890}
8e92c201 1891#endif /* CONFIG_64BIT */
305e6835 1892
fe44d621
PZ
1893/*
1894 * Called before incrementing preempt_count on {soft,}irq_enter
1895 * and before decrementing preempt_count on {soft,}irq_exit.
1896 */
b52bfee4
VP
1897void account_system_vtime(struct task_struct *curr)
1898{
1899 unsigned long flags;
fe44d621 1900 s64 delta;
b52bfee4 1901 int cpu;
b52bfee4
VP
1902
1903 if (!sched_clock_irqtime)
1904 return;
1905
1906 local_irq_save(flags);
1907
b52bfee4 1908 cpu = smp_processor_id();
fe44d621
PZ
1909 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1910 __this_cpu_add(irq_start_time, delta);
1911
8e92c201 1912 irq_time_write_begin();
b52bfee4
VP
1913 /*
1914 * We do not account for softirq time from ksoftirqd here.
1915 * We want to continue accounting softirq time to ksoftirqd thread
1916 * in that case, so as not to confuse scheduler with a special task
1917 * that do not consume any time, but still wants to run.
1918 */
1919 if (hardirq_count())
fe44d621 1920 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1921 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1922 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1923
8e92c201 1924 irq_time_write_end();
b52bfee4
VP
1925 local_irq_restore(flags);
1926}
b7dadc38 1927EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1928
fe44d621 1929static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1930{
fe44d621
PZ
1931 s64 irq_delta;
1932
8e92c201 1933 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1934
1935 /*
1936 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1937 * this case when a previous update_rq_clock() happened inside a
1938 * {soft,}irq region.
1939 *
1940 * When this happens, we stop ->clock_task and only update the
1941 * prev_irq_time stamp to account for the part that fit, so that a next
1942 * update will consume the rest. This ensures ->clock_task is
1943 * monotonic.
1944 *
1945 * It does however cause some slight miss-attribution of {soft,}irq
1946 * time, a more accurate solution would be to update the irq_time using
1947 * the current rq->clock timestamp, except that would require using
1948 * atomic ops.
1949 */
1950 if (irq_delta > delta)
1951 irq_delta = delta;
1952
1953 rq->prev_irq_time += irq_delta;
1954 delta -= irq_delta;
1955 rq->clock_task += delta;
1956
1957 if (irq_delta && sched_feat(NONIRQ_POWER))
1958 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1959}
1960
abb74cef
VP
1961static int irqtime_account_hi_update(void)
1962{
1963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1964 unsigned long flags;
1965 u64 latest_ns;
1966 int ret = 0;
1967
1968 local_irq_save(flags);
1969 latest_ns = this_cpu_read(cpu_hardirq_time);
1970 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1971 ret = 1;
1972 local_irq_restore(flags);
1973 return ret;
1974}
1975
1976static int irqtime_account_si_update(void)
1977{
1978 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1979 unsigned long flags;
1980 u64 latest_ns;
1981 int ret = 0;
1982
1983 local_irq_save(flags);
1984 latest_ns = this_cpu_read(cpu_softirq_time);
1985 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1986 ret = 1;
1987 local_irq_restore(flags);
1988 return ret;
1989}
1990
fe44d621 1991#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1992
abb74cef
VP
1993#define sched_clock_irqtime (0)
1994
fe44d621 1995static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1996{
fe44d621 1997 rq->clock_task += delta;
305e6835
VP
1998}
1999
fe44d621 2000#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2001
1e3c88bd
PZ
2002#include "sched_idletask.c"
2003#include "sched_fair.c"
2004#include "sched_rt.c"
5091faa4 2005#include "sched_autogroup.c"
34f971f6 2006#include "sched_stoptask.c"
1e3c88bd
PZ
2007#ifdef CONFIG_SCHED_DEBUG
2008# include "sched_debug.c"
2009#endif
2010
34f971f6
PZ
2011void sched_set_stop_task(int cpu, struct task_struct *stop)
2012{
2013 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2014 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2015
2016 if (stop) {
2017 /*
2018 * Make it appear like a SCHED_FIFO task, its something
2019 * userspace knows about and won't get confused about.
2020 *
2021 * Also, it will make PI more or less work without too
2022 * much confusion -- but then, stop work should not
2023 * rely on PI working anyway.
2024 */
2025 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2026
2027 stop->sched_class = &stop_sched_class;
2028 }
2029
2030 cpu_rq(cpu)->stop = stop;
2031
2032 if (old_stop) {
2033 /*
2034 * Reset it back to a normal scheduling class so that
2035 * it can die in pieces.
2036 */
2037 old_stop->sched_class = &rt_sched_class;
2038 }
2039}
2040
14531189 2041/*
dd41f596 2042 * __normal_prio - return the priority that is based on the static prio
14531189 2043 */
14531189
IM
2044static inline int __normal_prio(struct task_struct *p)
2045{
dd41f596 2046 return p->static_prio;
14531189
IM
2047}
2048
b29739f9
IM
2049/*
2050 * Calculate the expected normal priority: i.e. priority
2051 * without taking RT-inheritance into account. Might be
2052 * boosted by interactivity modifiers. Changes upon fork,
2053 * setprio syscalls, and whenever the interactivity
2054 * estimator recalculates.
2055 */
36c8b586 2056static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2057{
2058 int prio;
2059
e05606d3 2060 if (task_has_rt_policy(p))
b29739f9
IM
2061 prio = MAX_RT_PRIO-1 - p->rt_priority;
2062 else
2063 prio = __normal_prio(p);
2064 return prio;
2065}
2066
2067/*
2068 * Calculate the current priority, i.e. the priority
2069 * taken into account by the scheduler. This value might
2070 * be boosted by RT tasks, or might be boosted by
2071 * interactivity modifiers. Will be RT if the task got
2072 * RT-boosted. If not then it returns p->normal_prio.
2073 */
36c8b586 2074static int effective_prio(struct task_struct *p)
b29739f9
IM
2075{
2076 p->normal_prio = normal_prio(p);
2077 /*
2078 * If we are RT tasks or we were boosted to RT priority,
2079 * keep the priority unchanged. Otherwise, update priority
2080 * to the normal priority:
2081 */
2082 if (!rt_prio(p->prio))
2083 return p->normal_prio;
2084 return p->prio;
2085}
2086
1da177e4
LT
2087/**
2088 * task_curr - is this task currently executing on a CPU?
2089 * @p: the task in question.
2090 */
36c8b586 2091inline int task_curr(const struct task_struct *p)
1da177e4
LT
2092{
2093 return cpu_curr(task_cpu(p)) == p;
2094}
2095
cb469845
SR
2096static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2097 const struct sched_class *prev_class,
da7a735e 2098 int oldprio)
cb469845
SR
2099{
2100 if (prev_class != p->sched_class) {
2101 if (prev_class->switched_from)
da7a735e
PZ
2102 prev_class->switched_from(rq, p);
2103 p->sched_class->switched_to(rq, p);
2104 } else if (oldprio != p->prio)
2105 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2106}
2107
1e5a7405
PZ
2108static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2109{
2110 const struct sched_class *class;
2111
2112 if (p->sched_class == rq->curr->sched_class) {
2113 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2114 } else {
2115 for_each_class(class) {
2116 if (class == rq->curr->sched_class)
2117 break;
2118 if (class == p->sched_class) {
2119 resched_task(rq->curr);
2120 break;
2121 }
2122 }
2123 }
2124
2125 /*
2126 * A queue event has occurred, and we're going to schedule. In
2127 * this case, we can save a useless back to back clock update.
2128 */
fd2f4419 2129 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2130 rq->skip_clock_update = 1;
2131}
2132
1da177e4 2133#ifdef CONFIG_SMP
cc367732
IM
2134/*
2135 * Is this task likely cache-hot:
2136 */
e7693a36 2137static int
cc367732
IM
2138task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2139{
2140 s64 delta;
2141
e6c8fba7
PZ
2142 if (p->sched_class != &fair_sched_class)
2143 return 0;
2144
ef8002f6
NR
2145 if (unlikely(p->policy == SCHED_IDLE))
2146 return 0;
2147
f540a608
IM
2148 /*
2149 * Buddy candidates are cache hot:
2150 */
f685ceac 2151 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2152 (&p->se == cfs_rq_of(&p->se)->next ||
2153 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2154 return 1;
2155
6bc1665b
IM
2156 if (sysctl_sched_migration_cost == -1)
2157 return 1;
2158 if (sysctl_sched_migration_cost == 0)
2159 return 0;
2160
cc367732
IM
2161 delta = now - p->se.exec_start;
2162
2163 return delta < (s64)sysctl_sched_migration_cost;
2164}
2165
dd41f596 2166void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2167{
e2912009
PZ
2168#ifdef CONFIG_SCHED_DEBUG
2169 /*
2170 * We should never call set_task_cpu() on a blocked task,
2171 * ttwu() will sort out the placement.
2172 */
077614ee
PZ
2173 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2174 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2175#endif
2176
de1d7286 2177 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2178
0c69774e
PZ
2179 if (task_cpu(p) != new_cpu) {
2180 p->se.nr_migrations++;
2181 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2182 }
dd41f596
IM
2183
2184 __set_task_cpu(p, new_cpu);
c65cc870
IM
2185}
2186
969c7921 2187struct migration_arg {
36c8b586 2188 struct task_struct *task;
1da177e4 2189 int dest_cpu;
70b97a7f 2190};
1da177e4 2191
969c7921
TH
2192static int migration_cpu_stop(void *data);
2193
1da177e4
LT
2194/*
2195 * The task's runqueue lock must be held.
2196 * Returns true if you have to wait for migration thread.
2197 */
b7a2b39d 2198static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2199{
1da177e4
LT
2200 /*
2201 * If the task is not on a runqueue (and not running), then
e2912009 2202 * the next wake-up will properly place the task.
1da177e4 2203 */
fd2f4419 2204 return p->on_rq || task_running(rq, p);
1da177e4
LT
2205}
2206
2207/*
2208 * wait_task_inactive - wait for a thread to unschedule.
2209 *
85ba2d86
RM
2210 * If @match_state is nonzero, it's the @p->state value just checked and
2211 * not expected to change. If it changes, i.e. @p might have woken up,
2212 * then return zero. When we succeed in waiting for @p to be off its CPU,
2213 * we return a positive number (its total switch count). If a second call
2214 * a short while later returns the same number, the caller can be sure that
2215 * @p has remained unscheduled the whole time.
2216 *
1da177e4
LT
2217 * The caller must ensure that the task *will* unschedule sometime soon,
2218 * else this function might spin for a *long* time. This function can't
2219 * be called with interrupts off, or it may introduce deadlock with
2220 * smp_call_function() if an IPI is sent by the same process we are
2221 * waiting to become inactive.
2222 */
85ba2d86 2223unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2224{
2225 unsigned long flags;
dd41f596 2226 int running, on_rq;
85ba2d86 2227 unsigned long ncsw;
70b97a7f 2228 struct rq *rq;
1da177e4 2229
3a5c359a
AK
2230 for (;;) {
2231 /*
2232 * We do the initial early heuristics without holding
2233 * any task-queue locks at all. We'll only try to get
2234 * the runqueue lock when things look like they will
2235 * work out!
2236 */
2237 rq = task_rq(p);
fa490cfd 2238
3a5c359a
AK
2239 /*
2240 * If the task is actively running on another CPU
2241 * still, just relax and busy-wait without holding
2242 * any locks.
2243 *
2244 * NOTE! Since we don't hold any locks, it's not
2245 * even sure that "rq" stays as the right runqueue!
2246 * But we don't care, since "task_running()" will
2247 * return false if the runqueue has changed and p
2248 * is actually now running somewhere else!
2249 */
85ba2d86
RM
2250 while (task_running(rq, p)) {
2251 if (match_state && unlikely(p->state != match_state))
2252 return 0;
3a5c359a 2253 cpu_relax();
85ba2d86 2254 }
fa490cfd 2255
3a5c359a
AK
2256 /*
2257 * Ok, time to look more closely! We need the rq
2258 * lock now, to be *sure*. If we're wrong, we'll
2259 * just go back and repeat.
2260 */
2261 rq = task_rq_lock(p, &flags);
27a9da65 2262 trace_sched_wait_task(p);
3a5c359a 2263 running = task_running(rq, p);
fd2f4419 2264 on_rq = p->on_rq;
85ba2d86 2265 ncsw = 0;
f31e11d8 2266 if (!match_state || p->state == match_state)
93dcf55f 2267 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2268 task_rq_unlock(rq, &flags);
fa490cfd 2269
85ba2d86
RM
2270 /*
2271 * If it changed from the expected state, bail out now.
2272 */
2273 if (unlikely(!ncsw))
2274 break;
2275
3a5c359a
AK
2276 /*
2277 * Was it really running after all now that we
2278 * checked with the proper locks actually held?
2279 *
2280 * Oops. Go back and try again..
2281 */
2282 if (unlikely(running)) {
2283 cpu_relax();
2284 continue;
2285 }
fa490cfd 2286
3a5c359a
AK
2287 /*
2288 * It's not enough that it's not actively running,
2289 * it must be off the runqueue _entirely_, and not
2290 * preempted!
2291 *
80dd99b3 2292 * So if it was still runnable (but just not actively
3a5c359a
AK
2293 * running right now), it's preempted, and we should
2294 * yield - it could be a while.
2295 */
2296 if (unlikely(on_rq)) {
8eb90c30
TG
2297 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2298
2299 set_current_state(TASK_UNINTERRUPTIBLE);
2300 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2301 continue;
2302 }
fa490cfd 2303
3a5c359a
AK
2304 /*
2305 * Ahh, all good. It wasn't running, and it wasn't
2306 * runnable, which means that it will never become
2307 * running in the future either. We're all done!
2308 */
2309 break;
2310 }
85ba2d86
RM
2311
2312 return ncsw;
1da177e4
LT
2313}
2314
2315/***
2316 * kick_process - kick a running thread to enter/exit the kernel
2317 * @p: the to-be-kicked thread
2318 *
2319 * Cause a process which is running on another CPU to enter
2320 * kernel-mode, without any delay. (to get signals handled.)
2321 *
25985edc 2322 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2323 * because all it wants to ensure is that the remote task enters
2324 * the kernel. If the IPI races and the task has been migrated
2325 * to another CPU then no harm is done and the purpose has been
2326 * achieved as well.
2327 */
36c8b586 2328void kick_process(struct task_struct *p)
1da177e4
LT
2329{
2330 int cpu;
2331
2332 preempt_disable();
2333 cpu = task_cpu(p);
2334 if ((cpu != smp_processor_id()) && task_curr(p))
2335 smp_send_reschedule(cpu);
2336 preempt_enable();
2337}
b43e3521 2338EXPORT_SYMBOL_GPL(kick_process);
476d139c 2339#endif /* CONFIG_SMP */
1da177e4 2340
970b13ba 2341#ifdef CONFIG_SMP
30da688e 2342/*
013fdb80 2343 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2344 */
5da9a0fb
PZ
2345static int select_fallback_rq(int cpu, struct task_struct *p)
2346{
2347 int dest_cpu;
2348 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2349
2350 /* Look for allowed, online CPU in same node. */
2351 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2352 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2353 return dest_cpu;
2354
2355 /* Any allowed, online CPU? */
2356 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2357 if (dest_cpu < nr_cpu_ids)
2358 return dest_cpu;
2359
2360 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2361 dest_cpu = cpuset_cpus_allowed_fallback(p);
2362 /*
2363 * Don't tell them about moving exiting tasks or
2364 * kernel threads (both mm NULL), since they never
2365 * leave kernel.
2366 */
2367 if (p->mm && printk_ratelimit()) {
2368 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2369 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2370 }
2371
2372 return dest_cpu;
2373}
2374
e2912009 2375/*
013fdb80 2376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2377 */
970b13ba 2378static inline
0017d735 2379int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2380{
0017d735 2381 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2382
2383 /*
2384 * In order not to call set_task_cpu() on a blocking task we need
2385 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2386 * cpu.
2387 *
2388 * Since this is common to all placement strategies, this lives here.
2389 *
2390 * [ this allows ->select_task() to simply return task_cpu(p) and
2391 * not worry about this generic constraint ]
2392 */
2393 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2394 !cpu_online(cpu)))
5da9a0fb 2395 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2396
2397 return cpu;
970b13ba 2398}
09a40af5
MG
2399
2400static void update_avg(u64 *avg, u64 sample)
2401{
2402 s64 diff = sample - *avg;
2403 *avg += diff >> 3;
2404}
970b13ba
PZ
2405#endif
2406
d7c01d27
PZ
2407static void
2408ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2409{
d7c01d27
PZ
2410#ifdef CONFIG_SCHEDSTATS
2411#ifdef CONFIG_SMP
2412 int this_cpu = smp_processor_id();
2413
2414 if (cpu == this_cpu) {
2415 schedstat_inc(rq, ttwu_local);
2416 schedstat_inc(p, se.statistics.nr_wakeups_local);
2417 } else {
2418 struct sched_domain *sd;
2419
2420 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2421 for_each_domain(this_cpu, sd) {
2422 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2423 schedstat_inc(sd, ttwu_wake_remote);
2424 break;
2425 }
2426 }
2427 }
2428#endif /* CONFIG_SMP */
2429
2430 schedstat_inc(rq, ttwu_count);
9ed3811a 2431 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2432
2433 if (wake_flags & WF_SYNC)
9ed3811a 2434 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2435
2436 if (cpu != task_cpu(p))
9ed3811a 2437 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2438
d7c01d27
PZ
2439#endif /* CONFIG_SCHEDSTATS */
2440}
2441
2442static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2443{
9ed3811a 2444 activate_task(rq, p, en_flags);
fd2f4419 2445 p->on_rq = 1;
c2f7115e
PZ
2446
2447 /* if a worker is waking up, notify workqueue */
2448 if (p->flags & PF_WQ_WORKER)
2449 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2450}
2451
89363381
PZ
2452static void
2453ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2454{
89363381 2455 trace_sched_wakeup(p, true);
9ed3811a
TH
2456 check_preempt_curr(rq, p, wake_flags);
2457
2458 p->state = TASK_RUNNING;
2459#ifdef CONFIG_SMP
2460 if (p->sched_class->task_woken)
2461 p->sched_class->task_woken(rq, p);
2462
2463 if (unlikely(rq->idle_stamp)) {
2464 u64 delta = rq->clock - rq->idle_stamp;
2465 u64 max = 2*sysctl_sched_migration_cost;
2466
2467 if (delta > max)
2468 rq->avg_idle = max;
2469 else
2470 update_avg(&rq->avg_idle, delta);
2471 rq->idle_stamp = 0;
2472 }
2473#endif
2474}
2475
2476/**
1da177e4 2477 * try_to_wake_up - wake up a thread
9ed3811a 2478 * @p: the thread to be awakened
1da177e4 2479 * @state: the mask of task states that can be woken
9ed3811a 2480 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2481 *
2482 * Put it on the run-queue if it's not already there. The "current"
2483 * thread is always on the run-queue (except when the actual
2484 * re-schedule is in progress), and as such you're allowed to do
2485 * the simpler "current->state = TASK_RUNNING" to mark yourself
2486 * runnable without the overhead of this.
2487 *
9ed3811a
TH
2488 * Returns %true if @p was woken up, %false if it was already running
2489 * or @state didn't match @p's state.
1da177e4 2490 */
7d478721
PZ
2491static int try_to_wake_up(struct task_struct *p, unsigned int state,
2492 int wake_flags)
1da177e4 2493{
cc367732 2494 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2495 unsigned long flags;
371fd7e7 2496 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2497 struct rq *rq;
1da177e4 2498
e9c84311 2499 this_cpu = get_cpu();
2398f2c6 2500
04e2f174 2501 smp_wmb();
013fdb80
PZ
2502 raw_spin_lock_irqsave(&p->pi_lock, flags);
2503 rq = __task_rq_lock(p);
e9c84311 2504 if (!(p->state & state))
1da177e4
LT
2505 goto out;
2506
d7c01d27
PZ
2507 cpu = task_cpu(p);
2508
fd2f4419 2509 if (p->on_rq)
1da177e4
LT
2510 goto out_running;
2511
cc367732 2512 orig_cpu = cpu;
1da177e4
LT
2513#ifdef CONFIG_SMP
2514 if (unlikely(task_running(rq, p)))
2515 goto out_activate;
2516
e9c84311
PZ
2517 /*
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
eb24073b
IM
2520 *
2521 * First fix up the nr_uninterruptible count:
e9c84311 2522 */
cc87f76a
PZ
2523 if (task_contributes_to_load(p)) {
2524 if (likely(cpu_online(orig_cpu)))
2525 rq->nr_uninterruptible--;
2526 else
2527 this_rq()->nr_uninterruptible--;
2528 }
e9c84311 2529 p->state = TASK_WAKING;
efbbd05a 2530
371fd7e7 2531 if (p->sched_class->task_waking) {
efbbd05a 2532 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2533 en_flags |= ENQUEUE_WAKING;
2534 }
efbbd05a 2535
0017d735
PZ
2536 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2537 if (cpu != orig_cpu)
5d2f5a61 2538 set_task_cpu(p, cpu);
0017d735 2539 __task_rq_unlock(rq);
ab19cb23 2540
0970d299
PZ
2541 rq = cpu_rq(cpu);
2542 raw_spin_lock(&rq->lock);
f5dc3753 2543
0970d299
PZ
2544 /*
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2549 */
2550 WARN_ON(task_cpu(p) != cpu);
e9c84311 2551 WARN_ON(p->state != TASK_WAKING);
1da177e4
LT
2552
2553out_activate:
2554#endif /* CONFIG_SMP */
d7c01d27 2555 ttwu_activate(rq, p, en_flags);
1da177e4 2556out_running:
89363381 2557 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2558 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2559 success = 1;
1da177e4 2560out:
013fdb80
PZ
2561 __task_rq_unlock(rq);
2562 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2563 put_cpu();
1da177e4
LT
2564
2565 return success;
2566}
2567
21aa9af0
TH
2568/**
2569 * try_to_wake_up_local - try to wake up a local task with rq lock held
2570 * @p: the thread to be awakened
2571 *
b595076a 2572 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2573 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2574 * the current task. this_rq() stays locked over invocation.
2575 */
2576static void try_to_wake_up_local(struct task_struct *p)
2577{
2578 struct rq *rq = task_rq(p);
21aa9af0
TH
2579
2580 BUG_ON(rq != this_rq());
2581 BUG_ON(p == current);
2582 lockdep_assert_held(&rq->lock);
2583
2584 if (!(p->state & TASK_NORMAL))
2585 return;
2586
fd2f4419 2587 if (!p->on_rq)
d7c01d27
PZ
2588 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2589
89363381 2590 ttwu_post_activation(p, rq, 0);
d7c01d27 2591 ttwu_stat(rq, p, smp_processor_id(), 0);
21aa9af0
TH
2592}
2593
50fa610a
DH
2594/**
2595 * wake_up_process - Wake up a specific process
2596 * @p: The process to be woken up.
2597 *
2598 * Attempt to wake up the nominated process and move it to the set of runnable
2599 * processes. Returns 1 if the process was woken up, 0 if it was already
2600 * running.
2601 *
2602 * It may be assumed that this function implies a write memory barrier before
2603 * changing the task state if and only if any tasks are woken up.
2604 */
7ad5b3a5 2605int wake_up_process(struct task_struct *p)
1da177e4 2606{
d9514f6c 2607 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2608}
1da177e4
LT
2609EXPORT_SYMBOL(wake_up_process);
2610
7ad5b3a5 2611int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2612{
2613 return try_to_wake_up(p, state, 0);
2614}
2615
1da177e4
LT
2616/*
2617 * Perform scheduler related setup for a newly forked process p.
2618 * p is forked by current.
dd41f596
IM
2619 *
2620 * __sched_fork() is basic setup used by init_idle() too:
2621 */
2622static void __sched_fork(struct task_struct *p)
2623{
fd2f4419
PZ
2624 p->on_rq = 0;
2625
2626 p->se.on_rq = 0;
dd41f596
IM
2627 p->se.exec_start = 0;
2628 p->se.sum_exec_runtime = 0;
f6cf891c 2629 p->se.prev_sum_exec_runtime = 0;
6c594c21 2630 p->se.nr_migrations = 0;
da7a735e 2631 p->se.vruntime = 0;
fd2f4419 2632 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2633
2634#ifdef CONFIG_SCHEDSTATS
41acab88 2635 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2636#endif
476d139c 2637
fa717060 2638 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2639
e107be36
AK
2640#ifdef CONFIG_PREEMPT_NOTIFIERS
2641 INIT_HLIST_HEAD(&p->preempt_notifiers);
2642#endif
dd41f596
IM
2643}
2644
2645/*
2646 * fork()/clone()-time setup:
2647 */
2648void sched_fork(struct task_struct *p, int clone_flags)
2649{
2650 int cpu = get_cpu();
2651
2652 __sched_fork(p);
06b83b5f 2653 /*
0017d735 2654 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2655 * nobody will actually run it, and a signal or other external
2656 * event cannot wake it up and insert it on the runqueue either.
2657 */
0017d735 2658 p->state = TASK_RUNNING;
dd41f596 2659
b9dc29e7
MG
2660 /*
2661 * Revert to default priority/policy on fork if requested.
2662 */
2663 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2664 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2665 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2666 p->normal_prio = p->static_prio;
2667 }
b9dc29e7 2668
6c697bdf
MG
2669 if (PRIO_TO_NICE(p->static_prio) < 0) {
2670 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2671 p->normal_prio = p->static_prio;
6c697bdf
MG
2672 set_load_weight(p);
2673 }
2674
b9dc29e7
MG
2675 /*
2676 * We don't need the reset flag anymore after the fork. It has
2677 * fulfilled its duty:
2678 */
2679 p->sched_reset_on_fork = 0;
2680 }
ca94c442 2681
f83f9ac2
PW
2682 /*
2683 * Make sure we do not leak PI boosting priority to the child.
2684 */
2685 p->prio = current->normal_prio;
2686
2ddbf952
HS
2687 if (!rt_prio(p->prio))
2688 p->sched_class = &fair_sched_class;
b29739f9 2689
cd29fe6f
PZ
2690 if (p->sched_class->task_fork)
2691 p->sched_class->task_fork(p);
2692
86951599
PZ
2693 /*
2694 * The child is not yet in the pid-hash so no cgroup attach races,
2695 * and the cgroup is pinned to this child due to cgroup_fork()
2696 * is ran before sched_fork().
2697 *
2698 * Silence PROVE_RCU.
2699 */
2700 rcu_read_lock();
5f3edc1b 2701 set_task_cpu(p, cpu);
86951599 2702 rcu_read_unlock();
5f3edc1b 2703
52f17b6c 2704#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2705 if (likely(sched_info_on()))
52f17b6c 2706 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2707#endif
3ca7a440
PZ
2708#if defined(CONFIG_SMP)
2709 p->on_cpu = 0;
4866cde0 2710#endif
1da177e4 2711#ifdef CONFIG_PREEMPT
4866cde0 2712 /* Want to start with kernel preemption disabled. */
a1261f54 2713 task_thread_info(p)->preempt_count = 1;
1da177e4 2714#endif
806c09a7 2715#ifdef CONFIG_SMP
917b627d 2716 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2717#endif
917b627d 2718
476d139c 2719 put_cpu();
1da177e4
LT
2720}
2721
2722/*
2723 * wake_up_new_task - wake up a newly created task for the first time.
2724 *
2725 * This function will do some initial scheduler statistics housekeeping
2726 * that must be done for every newly created context, then puts the task
2727 * on the runqueue and wakes it.
2728 */
7ad5b3a5 2729void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2730{
2731 unsigned long flags;
dd41f596 2732 struct rq *rq;
c890692b 2733 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2734
2735#ifdef CONFIG_SMP
0017d735
PZ
2736 rq = task_rq_lock(p, &flags);
2737 p->state = TASK_WAKING;
2738
fabf318e
PZ
2739 /*
2740 * Fork balancing, do it here and not earlier because:
2741 * - cpus_allowed can change in the fork path
2742 * - any previously selected cpu might disappear through hotplug
2743 *
0017d735
PZ
2744 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2745 * without people poking at ->cpus_allowed.
fabf318e 2746 */
0017d735 2747 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2748 set_task_cpu(p, cpu);
1da177e4 2749
06b83b5f 2750 p->state = TASK_RUNNING;
0017d735
PZ
2751 task_rq_unlock(rq, &flags);
2752#endif
2753
2754 rq = task_rq_lock(p, &flags);
cd29fe6f 2755 activate_task(rq, p, 0);
fd2f4419 2756 p->on_rq = 1;
89363381 2757 trace_sched_wakeup_new(p, true);
a7558e01 2758 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2759#ifdef CONFIG_SMP
efbbd05a
PZ
2760 if (p->sched_class->task_woken)
2761 p->sched_class->task_woken(rq, p);
9a897c5a 2762#endif
dd41f596 2763 task_rq_unlock(rq, &flags);
fabf318e 2764 put_cpu();
1da177e4
LT
2765}
2766
e107be36
AK
2767#ifdef CONFIG_PREEMPT_NOTIFIERS
2768
2769/**
80dd99b3 2770 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2771 * @notifier: notifier struct to register
e107be36
AK
2772 */
2773void preempt_notifier_register(struct preempt_notifier *notifier)
2774{
2775 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2776}
2777EXPORT_SYMBOL_GPL(preempt_notifier_register);
2778
2779/**
2780 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2781 * @notifier: notifier struct to unregister
e107be36
AK
2782 *
2783 * This is safe to call from within a preemption notifier.
2784 */
2785void preempt_notifier_unregister(struct preempt_notifier *notifier)
2786{
2787 hlist_del(&notifier->link);
2788}
2789EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2790
2791static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2792{
2793 struct preempt_notifier *notifier;
2794 struct hlist_node *node;
2795
2796 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2797 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2798}
2799
2800static void
2801fire_sched_out_preempt_notifiers(struct task_struct *curr,
2802 struct task_struct *next)
2803{
2804 struct preempt_notifier *notifier;
2805 struct hlist_node *node;
2806
2807 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2808 notifier->ops->sched_out(notifier, next);
2809}
2810
6d6bc0ad 2811#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2812
2813static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2814{
2815}
2816
2817static void
2818fire_sched_out_preempt_notifiers(struct task_struct *curr,
2819 struct task_struct *next)
2820{
2821}
2822
6d6bc0ad 2823#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2824
4866cde0
NP
2825/**
2826 * prepare_task_switch - prepare to switch tasks
2827 * @rq: the runqueue preparing to switch
421cee29 2828 * @prev: the current task that is being switched out
4866cde0
NP
2829 * @next: the task we are going to switch to.
2830 *
2831 * This is called with the rq lock held and interrupts off. It must
2832 * be paired with a subsequent finish_task_switch after the context
2833 * switch.
2834 *
2835 * prepare_task_switch sets up locking and calls architecture specific
2836 * hooks.
2837 */
e107be36
AK
2838static inline void
2839prepare_task_switch(struct rq *rq, struct task_struct *prev,
2840 struct task_struct *next)
4866cde0 2841{
fe4b04fa
PZ
2842 sched_info_switch(prev, next);
2843 perf_event_task_sched_out(prev, next);
e107be36 2844 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2845 prepare_lock_switch(rq, next);
2846 prepare_arch_switch(next);
fe4b04fa 2847 trace_sched_switch(prev, next);
4866cde0
NP
2848}
2849
1da177e4
LT
2850/**
2851 * finish_task_switch - clean up after a task-switch
344babaa 2852 * @rq: runqueue associated with task-switch
1da177e4
LT
2853 * @prev: the thread we just switched away from.
2854 *
4866cde0
NP
2855 * finish_task_switch must be called after the context switch, paired
2856 * with a prepare_task_switch call before the context switch.
2857 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2858 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2859 *
2860 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2861 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2862 * with the lock held can cause deadlocks; see schedule() for
2863 * details.)
2864 */
a9957449 2865static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2866 __releases(rq->lock)
2867{
1da177e4 2868 struct mm_struct *mm = rq->prev_mm;
55a101f8 2869 long prev_state;
1da177e4
LT
2870
2871 rq->prev_mm = NULL;
2872
2873 /*
2874 * A task struct has one reference for the use as "current".
c394cc9f 2875 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2876 * schedule one last time. The schedule call will never return, and
2877 * the scheduled task must drop that reference.
c394cc9f 2878 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2879 * still held, otherwise prev could be scheduled on another cpu, die
2880 * there before we look at prev->state, and then the reference would
2881 * be dropped twice.
2882 * Manfred Spraul <manfred@colorfullife.com>
2883 */
55a101f8 2884 prev_state = prev->state;
4866cde0 2885 finish_arch_switch(prev);
8381f65d
JI
2886#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2887 local_irq_disable();
2888#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2889 perf_event_task_sched_in(current);
8381f65d
JI
2890#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2891 local_irq_enable();
2892#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2893 finish_lock_switch(rq, prev);
e8fa1362 2894
e107be36 2895 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2896 if (mm)
2897 mmdrop(mm);
c394cc9f 2898 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2899 /*
2900 * Remove function-return probe instances associated with this
2901 * task and put them back on the free list.
9761eea8 2902 */
c6fd91f0 2903 kprobe_flush_task(prev);
1da177e4 2904 put_task_struct(prev);
c6fd91f0 2905 }
1da177e4
LT
2906}
2907
3f029d3c
GH
2908#ifdef CONFIG_SMP
2909
2910/* assumes rq->lock is held */
2911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2912{
2913 if (prev->sched_class->pre_schedule)
2914 prev->sched_class->pre_schedule(rq, prev);
2915}
2916
2917/* rq->lock is NOT held, but preemption is disabled */
2918static inline void post_schedule(struct rq *rq)
2919{
2920 if (rq->post_schedule) {
2921 unsigned long flags;
2922
05fa785c 2923 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2924 if (rq->curr->sched_class->post_schedule)
2925 rq->curr->sched_class->post_schedule(rq);
05fa785c 2926 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2927
2928 rq->post_schedule = 0;
2929 }
2930}
2931
2932#else
da19ab51 2933
3f029d3c
GH
2934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2935{
2936}
2937
2938static inline void post_schedule(struct rq *rq)
2939{
1da177e4
LT
2940}
2941
3f029d3c
GH
2942#endif
2943
1da177e4
LT
2944/**
2945 * schedule_tail - first thing a freshly forked thread must call.
2946 * @prev: the thread we just switched away from.
2947 */
36c8b586 2948asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2949 __releases(rq->lock)
2950{
70b97a7f
IM
2951 struct rq *rq = this_rq();
2952
4866cde0 2953 finish_task_switch(rq, prev);
da19ab51 2954
3f029d3c
GH
2955 /*
2956 * FIXME: do we need to worry about rq being invalidated by the
2957 * task_switch?
2958 */
2959 post_schedule(rq);
70b97a7f 2960
4866cde0
NP
2961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2962 /* In this case, finish_task_switch does not reenable preemption */
2963 preempt_enable();
2964#endif
1da177e4 2965 if (current->set_child_tid)
b488893a 2966 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2967}
2968
2969/*
2970 * context_switch - switch to the new MM and the new
2971 * thread's register state.
2972 */
dd41f596 2973static inline void
70b97a7f 2974context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2975 struct task_struct *next)
1da177e4 2976{
dd41f596 2977 struct mm_struct *mm, *oldmm;
1da177e4 2978
e107be36 2979 prepare_task_switch(rq, prev, next);
fe4b04fa 2980
dd41f596
IM
2981 mm = next->mm;
2982 oldmm = prev->active_mm;
9226d125
ZA
2983 /*
2984 * For paravirt, this is coupled with an exit in switch_to to
2985 * combine the page table reload and the switch backend into
2986 * one hypercall.
2987 */
224101ed 2988 arch_start_context_switch(prev);
9226d125 2989
31915ab4 2990 if (!mm) {
1da177e4
LT
2991 next->active_mm = oldmm;
2992 atomic_inc(&oldmm->mm_count);
2993 enter_lazy_tlb(oldmm, next);
2994 } else
2995 switch_mm(oldmm, mm, next);
2996
31915ab4 2997 if (!prev->mm) {
1da177e4 2998 prev->active_mm = NULL;
1da177e4
LT
2999 rq->prev_mm = oldmm;
3000 }
3a5f5e48
IM
3001 /*
3002 * Since the runqueue lock will be released by the next
3003 * task (which is an invalid locking op but in the case
3004 * of the scheduler it's an obvious special-case), so we
3005 * do an early lockdep release here:
3006 */
3007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3009#endif
1da177e4
LT
3010
3011 /* Here we just switch the register state and the stack. */
3012 switch_to(prev, next, prev);
3013
dd41f596
IM
3014 barrier();
3015 /*
3016 * this_rq must be evaluated again because prev may have moved
3017 * CPUs since it called schedule(), thus the 'rq' on its stack
3018 * frame will be invalid.
3019 */
3020 finish_task_switch(this_rq(), prev);
1da177e4
LT
3021}
3022
3023/*
3024 * nr_running, nr_uninterruptible and nr_context_switches:
3025 *
3026 * externally visible scheduler statistics: current number of runnable
3027 * threads, current number of uninterruptible-sleeping threads, total
3028 * number of context switches performed since bootup.
3029 */
3030unsigned long nr_running(void)
3031{
3032 unsigned long i, sum = 0;
3033
3034 for_each_online_cpu(i)
3035 sum += cpu_rq(i)->nr_running;
3036
3037 return sum;
f711f609 3038}
1da177e4
LT
3039
3040unsigned long nr_uninterruptible(void)
f711f609 3041{
1da177e4 3042 unsigned long i, sum = 0;
f711f609 3043
0a945022 3044 for_each_possible_cpu(i)
1da177e4 3045 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3046
3047 /*
1da177e4
LT
3048 * Since we read the counters lockless, it might be slightly
3049 * inaccurate. Do not allow it to go below zero though:
f711f609 3050 */
1da177e4
LT
3051 if (unlikely((long)sum < 0))
3052 sum = 0;
f711f609 3053
1da177e4 3054 return sum;
f711f609 3055}
f711f609 3056
1da177e4 3057unsigned long long nr_context_switches(void)
46cb4b7c 3058{
cc94abfc
SR
3059 int i;
3060 unsigned long long sum = 0;
46cb4b7c 3061
0a945022 3062 for_each_possible_cpu(i)
1da177e4 3063 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3064
1da177e4
LT
3065 return sum;
3066}
483b4ee6 3067
1da177e4
LT
3068unsigned long nr_iowait(void)
3069{
3070 unsigned long i, sum = 0;
483b4ee6 3071
0a945022 3072 for_each_possible_cpu(i)
1da177e4 3073 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3074
1da177e4
LT
3075 return sum;
3076}
483b4ee6 3077
8c215bd3 3078unsigned long nr_iowait_cpu(int cpu)
69d25870 3079{
8c215bd3 3080 struct rq *this = cpu_rq(cpu);
69d25870
AV
3081 return atomic_read(&this->nr_iowait);
3082}
46cb4b7c 3083
69d25870
AV
3084unsigned long this_cpu_load(void)
3085{
3086 struct rq *this = this_rq();
3087 return this->cpu_load[0];
3088}
e790fb0b 3089
46cb4b7c 3090
dce48a84
TG
3091/* Variables and functions for calc_load */
3092static atomic_long_t calc_load_tasks;
3093static unsigned long calc_load_update;
3094unsigned long avenrun[3];
3095EXPORT_SYMBOL(avenrun);
46cb4b7c 3096
74f5187a
PZ
3097static long calc_load_fold_active(struct rq *this_rq)
3098{
3099 long nr_active, delta = 0;
3100
3101 nr_active = this_rq->nr_running;
3102 nr_active += (long) this_rq->nr_uninterruptible;
3103
3104 if (nr_active != this_rq->calc_load_active) {
3105 delta = nr_active - this_rq->calc_load_active;
3106 this_rq->calc_load_active = nr_active;
3107 }
3108
3109 return delta;
3110}
3111
0f004f5a
PZ
3112static unsigned long
3113calc_load(unsigned long load, unsigned long exp, unsigned long active)
3114{
3115 load *= exp;
3116 load += active * (FIXED_1 - exp);
3117 load += 1UL << (FSHIFT - 1);
3118 return load >> FSHIFT;
3119}
3120
74f5187a
PZ
3121#ifdef CONFIG_NO_HZ
3122/*
3123 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3124 *
3125 * When making the ILB scale, we should try to pull this in as well.
3126 */
3127static atomic_long_t calc_load_tasks_idle;
3128
3129static void calc_load_account_idle(struct rq *this_rq)
3130{
3131 long delta;
3132
3133 delta = calc_load_fold_active(this_rq);
3134 if (delta)
3135 atomic_long_add(delta, &calc_load_tasks_idle);
3136}
3137
3138static long calc_load_fold_idle(void)
3139{
3140 long delta = 0;
3141
3142 /*
3143 * Its got a race, we don't care...
3144 */
3145 if (atomic_long_read(&calc_load_tasks_idle))
3146 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3147
3148 return delta;
3149}
0f004f5a
PZ
3150
3151/**
3152 * fixed_power_int - compute: x^n, in O(log n) time
3153 *
3154 * @x: base of the power
3155 * @frac_bits: fractional bits of @x
3156 * @n: power to raise @x to.
3157 *
3158 * By exploiting the relation between the definition of the natural power
3159 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3160 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3161 * (where: n_i \elem {0, 1}, the binary vector representing n),
3162 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3163 * of course trivially computable in O(log_2 n), the length of our binary
3164 * vector.
3165 */
3166static unsigned long
3167fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3168{
3169 unsigned long result = 1UL << frac_bits;
3170
3171 if (n) for (;;) {
3172 if (n & 1) {
3173 result *= x;
3174 result += 1UL << (frac_bits - 1);
3175 result >>= frac_bits;
3176 }
3177 n >>= 1;
3178 if (!n)
3179 break;
3180 x *= x;
3181 x += 1UL << (frac_bits - 1);
3182 x >>= frac_bits;
3183 }
3184
3185 return result;
3186}
3187
3188/*
3189 * a1 = a0 * e + a * (1 - e)
3190 *
3191 * a2 = a1 * e + a * (1 - e)
3192 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3193 * = a0 * e^2 + a * (1 - e) * (1 + e)
3194 *
3195 * a3 = a2 * e + a * (1 - e)
3196 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3197 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3198 *
3199 * ...
3200 *
3201 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3202 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3203 * = a0 * e^n + a * (1 - e^n)
3204 *
3205 * [1] application of the geometric series:
3206 *
3207 * n 1 - x^(n+1)
3208 * S_n := \Sum x^i = -------------
3209 * i=0 1 - x
3210 */
3211static unsigned long
3212calc_load_n(unsigned long load, unsigned long exp,
3213 unsigned long active, unsigned int n)
3214{
3215
3216 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3217}
3218
3219/*
3220 * NO_HZ can leave us missing all per-cpu ticks calling
3221 * calc_load_account_active(), but since an idle CPU folds its delta into
3222 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3223 * in the pending idle delta if our idle period crossed a load cycle boundary.
3224 *
3225 * Once we've updated the global active value, we need to apply the exponential
3226 * weights adjusted to the number of cycles missed.
3227 */
3228static void calc_global_nohz(unsigned long ticks)
3229{
3230 long delta, active, n;
3231
3232 if (time_before(jiffies, calc_load_update))
3233 return;
3234
3235 /*
3236 * If we crossed a calc_load_update boundary, make sure to fold
3237 * any pending idle changes, the respective CPUs might have
3238 * missed the tick driven calc_load_account_active() update
3239 * due to NO_HZ.
3240 */
3241 delta = calc_load_fold_idle();
3242 if (delta)
3243 atomic_long_add(delta, &calc_load_tasks);
3244
3245 /*
3246 * If we were idle for multiple load cycles, apply them.
3247 */
3248 if (ticks >= LOAD_FREQ) {
3249 n = ticks / LOAD_FREQ;
3250
3251 active = atomic_long_read(&calc_load_tasks);
3252 active = active > 0 ? active * FIXED_1 : 0;
3253
3254 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3255 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3256 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3257
3258 calc_load_update += n * LOAD_FREQ;
3259 }
3260
3261 /*
3262 * Its possible the remainder of the above division also crosses
3263 * a LOAD_FREQ period, the regular check in calc_global_load()
3264 * which comes after this will take care of that.
3265 *
3266 * Consider us being 11 ticks before a cycle completion, and us
3267 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3268 * age us 4 cycles, and the test in calc_global_load() will
3269 * pick up the final one.
3270 */
3271}
74f5187a
PZ
3272#else
3273static void calc_load_account_idle(struct rq *this_rq)
3274{
3275}
3276
3277static inline long calc_load_fold_idle(void)
3278{
3279 return 0;
3280}
0f004f5a
PZ
3281
3282static void calc_global_nohz(unsigned long ticks)
3283{
3284}
74f5187a
PZ
3285#endif
3286
2d02494f
TG
3287/**
3288 * get_avenrun - get the load average array
3289 * @loads: pointer to dest load array
3290 * @offset: offset to add
3291 * @shift: shift count to shift the result left
3292 *
3293 * These values are estimates at best, so no need for locking.
3294 */
3295void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3296{
3297 loads[0] = (avenrun[0] + offset) << shift;
3298 loads[1] = (avenrun[1] + offset) << shift;
3299 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3300}
46cb4b7c 3301
46cb4b7c 3302/*
dce48a84
TG
3303 * calc_load - update the avenrun load estimates 10 ticks after the
3304 * CPUs have updated calc_load_tasks.
7835b98b 3305 */
0f004f5a 3306void calc_global_load(unsigned long ticks)
7835b98b 3307{
dce48a84 3308 long active;
1da177e4 3309
0f004f5a
PZ
3310 calc_global_nohz(ticks);
3311
3312 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3313 return;
1da177e4 3314
dce48a84
TG
3315 active = atomic_long_read(&calc_load_tasks);
3316 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3317
dce48a84
TG
3318 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3319 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3320 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3321
dce48a84
TG
3322 calc_load_update += LOAD_FREQ;
3323}
1da177e4 3324
dce48a84 3325/*
74f5187a
PZ
3326 * Called from update_cpu_load() to periodically update this CPU's
3327 * active count.
dce48a84
TG
3328 */
3329static void calc_load_account_active(struct rq *this_rq)
3330{
74f5187a 3331 long delta;
08c183f3 3332
74f5187a
PZ
3333 if (time_before(jiffies, this_rq->calc_load_update))
3334 return;
783609c6 3335
74f5187a
PZ
3336 delta = calc_load_fold_active(this_rq);
3337 delta += calc_load_fold_idle();
3338 if (delta)
dce48a84 3339 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3340
3341 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3342}
3343
fdf3e95d
VP
3344/*
3345 * The exact cpuload at various idx values, calculated at every tick would be
3346 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3347 *
3348 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3349 * on nth tick when cpu may be busy, then we have:
3350 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3351 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3352 *
3353 * decay_load_missed() below does efficient calculation of
3354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3355 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3356 *
3357 * The calculation is approximated on a 128 point scale.
3358 * degrade_zero_ticks is the number of ticks after which load at any
3359 * particular idx is approximated to be zero.
3360 * degrade_factor is a precomputed table, a row for each load idx.
3361 * Each column corresponds to degradation factor for a power of two ticks,
3362 * based on 128 point scale.
3363 * Example:
3364 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3365 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3366 *
3367 * With this power of 2 load factors, we can degrade the load n times
3368 * by looking at 1 bits in n and doing as many mult/shift instead of
3369 * n mult/shifts needed by the exact degradation.
3370 */
3371#define DEGRADE_SHIFT 7
3372static const unsigned char
3373 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3374static const unsigned char
3375 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3376 {0, 0, 0, 0, 0, 0, 0, 0},
3377 {64, 32, 8, 0, 0, 0, 0, 0},
3378 {96, 72, 40, 12, 1, 0, 0},
3379 {112, 98, 75, 43, 15, 1, 0},
3380 {120, 112, 98, 76, 45, 16, 2} };
3381
3382/*
3383 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3384 * would be when CPU is idle and so we just decay the old load without
3385 * adding any new load.
3386 */
3387static unsigned long
3388decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3389{
3390 int j = 0;
3391
3392 if (!missed_updates)
3393 return load;
3394
3395 if (missed_updates >= degrade_zero_ticks[idx])
3396 return 0;
3397
3398 if (idx == 1)
3399 return load >> missed_updates;
3400
3401 while (missed_updates) {
3402 if (missed_updates % 2)
3403 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3404
3405 missed_updates >>= 1;
3406 j++;
3407 }
3408 return load;
3409}
3410
46cb4b7c 3411/*
dd41f596 3412 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3413 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3414 * every tick. We fix it up based on jiffies.
46cb4b7c 3415 */
dd41f596 3416static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3417{
495eca49 3418 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3419 unsigned long curr_jiffies = jiffies;
3420 unsigned long pending_updates;
dd41f596 3421 int i, scale;
46cb4b7c 3422
dd41f596 3423 this_rq->nr_load_updates++;
46cb4b7c 3424
fdf3e95d
VP
3425 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3426 if (curr_jiffies == this_rq->last_load_update_tick)
3427 return;
3428
3429 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3430 this_rq->last_load_update_tick = curr_jiffies;
3431
dd41f596 3432 /* Update our load: */
fdf3e95d
VP
3433 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3434 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3435 unsigned long old_load, new_load;
7d1e6a9b 3436
dd41f596 3437 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3438
dd41f596 3439 old_load = this_rq->cpu_load[i];
fdf3e95d 3440 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3441 new_load = this_load;
a25707f3
IM
3442 /*
3443 * Round up the averaging division if load is increasing. This
3444 * prevents us from getting stuck on 9 if the load is 10, for
3445 * example.
3446 */
3447 if (new_load > old_load)
fdf3e95d
VP
3448 new_load += scale - 1;
3449
3450 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3451 }
da2b71ed
SS
3452
3453 sched_avg_update(this_rq);
fdf3e95d
VP
3454}
3455
3456static void update_cpu_load_active(struct rq *this_rq)
3457{
3458 update_cpu_load(this_rq);
46cb4b7c 3459
74f5187a 3460 calc_load_account_active(this_rq);
46cb4b7c
SS
3461}
3462
dd41f596 3463#ifdef CONFIG_SMP
8a0be9ef 3464
46cb4b7c 3465/*
38022906
PZ
3466 * sched_exec - execve() is a valuable balancing opportunity, because at
3467 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3468 */
38022906 3469void sched_exec(void)
46cb4b7c 3470{
38022906 3471 struct task_struct *p = current;
1da177e4 3472 unsigned long flags;
70b97a7f 3473 struct rq *rq;
0017d735 3474 int dest_cpu;
46cb4b7c 3475
1da177e4 3476 rq = task_rq_lock(p, &flags);
0017d735
PZ
3477 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3478 if (dest_cpu == smp_processor_id())
3479 goto unlock;
38022906 3480
46cb4b7c 3481 /*
38022906 3482 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3483 */
30da688e 3484 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3485 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3486 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3487
1da177e4 3488 task_rq_unlock(rq, &flags);
969c7921 3489 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3490 return;
3491 }
0017d735 3492unlock:
1da177e4 3493 task_rq_unlock(rq, &flags);
1da177e4 3494}
dd41f596 3495
1da177e4
LT
3496#endif
3497
1da177e4
LT
3498DEFINE_PER_CPU(struct kernel_stat, kstat);
3499
3500EXPORT_PER_CPU_SYMBOL(kstat);
3501
3502/*
c5f8d995 3503 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3504 * @p in case that task is currently running.
c5f8d995
HS
3505 *
3506 * Called with task_rq_lock() held on @rq.
1da177e4 3507 */
c5f8d995
HS
3508static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3509{
3510 u64 ns = 0;
3511
3512 if (task_current(rq, p)) {
3513 update_rq_clock(rq);
305e6835 3514 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3515 if ((s64)ns < 0)
3516 ns = 0;
3517 }
3518
3519 return ns;
3520}
3521
bb34d92f 3522unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3523{
1da177e4 3524 unsigned long flags;
41b86e9c 3525 struct rq *rq;
bb34d92f 3526 u64 ns = 0;
48f24c4d 3527
41b86e9c 3528 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3529 ns = do_task_delta_exec(p, rq);
3530 task_rq_unlock(rq, &flags);
1508487e 3531
c5f8d995
HS
3532 return ns;
3533}
f06febc9 3534
c5f8d995
HS
3535/*
3536 * Return accounted runtime for the task.
3537 * In case the task is currently running, return the runtime plus current's
3538 * pending runtime that have not been accounted yet.
3539 */
3540unsigned long long task_sched_runtime(struct task_struct *p)
3541{
3542 unsigned long flags;
3543 struct rq *rq;
3544 u64 ns = 0;
3545
3546 rq = task_rq_lock(p, &flags);
3547 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3548 task_rq_unlock(rq, &flags);
3549
3550 return ns;
3551}
48f24c4d 3552
c5f8d995
HS
3553/*
3554 * Return sum_exec_runtime for the thread group.
3555 * In case the task is currently running, return the sum plus current's
3556 * pending runtime that have not been accounted yet.
3557 *
3558 * Note that the thread group might have other running tasks as well,
3559 * so the return value not includes other pending runtime that other
3560 * running tasks might have.
3561 */
3562unsigned long long thread_group_sched_runtime(struct task_struct *p)
3563{
3564 struct task_cputime totals;
3565 unsigned long flags;
3566 struct rq *rq;
3567 u64 ns;
3568
3569 rq = task_rq_lock(p, &flags);
3570 thread_group_cputime(p, &totals);
3571 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3572 task_rq_unlock(rq, &flags);
48f24c4d 3573
1da177e4
LT
3574 return ns;
3575}
3576
1da177e4
LT
3577/*
3578 * Account user cpu time to a process.
3579 * @p: the process that the cpu time gets accounted to
1da177e4 3580 * @cputime: the cpu time spent in user space since the last update
457533a7 3581 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3582 */
457533a7
MS
3583void account_user_time(struct task_struct *p, cputime_t cputime,
3584 cputime_t cputime_scaled)
1da177e4
LT
3585{
3586 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3587 cputime64_t tmp;
3588
457533a7 3589 /* Add user time to process. */
1da177e4 3590 p->utime = cputime_add(p->utime, cputime);
457533a7 3591 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3592 account_group_user_time(p, cputime);
1da177e4
LT
3593
3594 /* Add user time to cpustat. */
3595 tmp = cputime_to_cputime64(cputime);
3596 if (TASK_NICE(p) > 0)
3597 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3598 else
3599 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3600
3601 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3602 /* Account for user time used */
3603 acct_update_integrals(p);
1da177e4
LT
3604}
3605
94886b84
LV
3606/*
3607 * Account guest cpu time to a process.
3608 * @p: the process that the cpu time gets accounted to
3609 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3610 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3611 */
457533a7
MS
3612static void account_guest_time(struct task_struct *p, cputime_t cputime,
3613 cputime_t cputime_scaled)
94886b84
LV
3614{
3615 cputime64_t tmp;
3616 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3617
3618 tmp = cputime_to_cputime64(cputime);
3619
457533a7 3620 /* Add guest time to process. */
94886b84 3621 p->utime = cputime_add(p->utime, cputime);
457533a7 3622 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3623 account_group_user_time(p, cputime);
94886b84
LV
3624 p->gtime = cputime_add(p->gtime, cputime);
3625
457533a7 3626 /* Add guest time to cpustat. */
ce0e7b28
RO
3627 if (TASK_NICE(p) > 0) {
3628 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3629 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3630 } else {
3631 cpustat->user = cputime64_add(cpustat->user, tmp);
3632 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3633 }
94886b84
LV
3634}
3635
70a89a66
VP
3636/*
3637 * Account system cpu time to a process and desired cpustat field
3638 * @p: the process that the cpu time gets accounted to
3639 * @cputime: the cpu time spent in kernel space since the last update
3640 * @cputime_scaled: cputime scaled by cpu frequency
3641 * @target_cputime64: pointer to cpustat field that has to be updated
3642 */
3643static inline
3644void __account_system_time(struct task_struct *p, cputime_t cputime,
3645 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3646{
3647 cputime64_t tmp = cputime_to_cputime64(cputime);
3648
3649 /* Add system time to process. */
3650 p->stime = cputime_add(p->stime, cputime);
3651 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3652 account_group_system_time(p, cputime);
3653
3654 /* Add system time to cpustat. */
3655 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3656 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3657
3658 /* Account for system time used */
3659 acct_update_integrals(p);
3660}
3661
1da177e4
LT
3662/*
3663 * Account system cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
3665 * @hardirq_offset: the offset to subtract from hardirq_count()
3666 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3667 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3668 */
3669void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3670 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3671{
3672 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3673 cputime64_t *target_cputime64;
1da177e4 3674
983ed7a6 3675 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3676 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3677 return;
3678 }
94886b84 3679
1da177e4 3680 if (hardirq_count() - hardirq_offset)
70a89a66 3681 target_cputime64 = &cpustat->irq;
75e1056f 3682 else if (in_serving_softirq())
70a89a66 3683 target_cputime64 = &cpustat->softirq;
1da177e4 3684 else
70a89a66 3685 target_cputime64 = &cpustat->system;
ef12fefa 3686
70a89a66 3687 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3688}
3689
c66f08be 3690/*
1da177e4 3691 * Account for involuntary wait time.
544b4a1f 3692 * @cputime: the cpu time spent in involuntary wait
c66f08be 3693 */
79741dd3 3694void account_steal_time(cputime_t cputime)
c66f08be 3695{
79741dd3
MS
3696 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3697 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3698
3699 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3700}
3701
1da177e4 3702/*
79741dd3
MS
3703 * Account for idle time.
3704 * @cputime: the cpu time spent in idle wait
1da177e4 3705 */
79741dd3 3706void account_idle_time(cputime_t cputime)
1da177e4
LT
3707{
3708 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3709 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3710 struct rq *rq = this_rq();
1da177e4 3711
79741dd3
MS
3712 if (atomic_read(&rq->nr_iowait) > 0)
3713 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3714 else
3715 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3716}
3717
79741dd3
MS
3718#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3719
abb74cef
VP
3720#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3721/*
3722 * Account a tick to a process and cpustat
3723 * @p: the process that the cpu time gets accounted to
3724 * @user_tick: is the tick from userspace
3725 * @rq: the pointer to rq
3726 *
3727 * Tick demultiplexing follows the order
3728 * - pending hardirq update
3729 * - pending softirq update
3730 * - user_time
3731 * - idle_time
3732 * - system time
3733 * - check for guest_time
3734 * - else account as system_time
3735 *
3736 * Check for hardirq is done both for system and user time as there is
3737 * no timer going off while we are on hardirq and hence we may never get an
3738 * opportunity to update it solely in system time.
3739 * p->stime and friends are only updated on system time and not on irq
3740 * softirq as those do not count in task exec_runtime any more.
3741 */
3742static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3743 struct rq *rq)
3744{
3745 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3746 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748
3749 if (irqtime_account_hi_update()) {
3750 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3751 } else if (irqtime_account_si_update()) {
3752 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3753 } else if (this_cpu_ksoftirqd() == p) {
3754 /*
3755 * ksoftirqd time do not get accounted in cpu_softirq_time.
3756 * So, we have to handle it separately here.
3757 * Also, p->stime needs to be updated for ksoftirqd.
3758 */
3759 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3760 &cpustat->softirq);
abb74cef
VP
3761 } else if (user_tick) {
3762 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3763 } else if (p == rq->idle) {
3764 account_idle_time(cputime_one_jiffy);
3765 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3766 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3767 } else {
3768 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3769 &cpustat->system);
3770 }
3771}
3772
3773static void irqtime_account_idle_ticks(int ticks)
3774{
3775 int i;
3776 struct rq *rq = this_rq();
3777
3778 for (i = 0; i < ticks; i++)
3779 irqtime_account_process_tick(current, 0, rq);
3780}
544b4a1f 3781#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3782static void irqtime_account_idle_ticks(int ticks) {}
3783static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3784 struct rq *rq) {}
544b4a1f 3785#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3786
3787/*
3788 * Account a single tick of cpu time.
3789 * @p: the process that the cpu time gets accounted to
3790 * @user_tick: indicates if the tick is a user or a system tick
3791 */
3792void account_process_tick(struct task_struct *p, int user_tick)
3793{
a42548a1 3794 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3795 struct rq *rq = this_rq();
3796
abb74cef
VP
3797 if (sched_clock_irqtime) {
3798 irqtime_account_process_tick(p, user_tick, rq);
3799 return;
3800 }
3801
79741dd3 3802 if (user_tick)
a42548a1 3803 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3804 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3805 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3806 one_jiffy_scaled);
3807 else
a42548a1 3808 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3809}
3810
3811/*
3812 * Account multiple ticks of steal time.
3813 * @p: the process from which the cpu time has been stolen
3814 * @ticks: number of stolen ticks
3815 */
3816void account_steal_ticks(unsigned long ticks)
3817{
3818 account_steal_time(jiffies_to_cputime(ticks));
3819}
3820
3821/*
3822 * Account multiple ticks of idle time.
3823 * @ticks: number of stolen ticks
3824 */
3825void account_idle_ticks(unsigned long ticks)
3826{
abb74cef
VP
3827
3828 if (sched_clock_irqtime) {
3829 irqtime_account_idle_ticks(ticks);
3830 return;
3831 }
3832
79741dd3 3833 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3834}
3835
79741dd3
MS
3836#endif
3837
49048622
BS
3838/*
3839 * Use precise platform statistics if available:
3840 */
3841#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3842void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3843{
d99ca3b9
HS
3844 *ut = p->utime;
3845 *st = p->stime;
49048622
BS
3846}
3847
0cf55e1e 3848void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3849{
0cf55e1e
HS
3850 struct task_cputime cputime;
3851
3852 thread_group_cputime(p, &cputime);
3853
3854 *ut = cputime.utime;
3855 *st = cputime.stime;
49048622
BS
3856}
3857#else
761b1d26
HS
3858
3859#ifndef nsecs_to_cputime
b7b20df9 3860# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3861#endif
3862
d180c5bc 3863void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3864{
d99ca3b9 3865 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3866
3867 /*
3868 * Use CFS's precise accounting:
3869 */
d180c5bc 3870 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3871
3872 if (total) {
e75e863d 3873 u64 temp = rtime;
d180c5bc 3874
e75e863d 3875 temp *= utime;
49048622 3876 do_div(temp, total);
d180c5bc
HS
3877 utime = (cputime_t)temp;
3878 } else
3879 utime = rtime;
49048622 3880
d180c5bc
HS
3881 /*
3882 * Compare with previous values, to keep monotonicity:
3883 */
761b1d26 3884 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3885 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3886
d99ca3b9
HS
3887 *ut = p->prev_utime;
3888 *st = p->prev_stime;
49048622
BS
3889}
3890
0cf55e1e
HS
3891/*
3892 * Must be called with siglock held.
3893 */
3894void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3895{
0cf55e1e
HS
3896 struct signal_struct *sig = p->signal;
3897 struct task_cputime cputime;
3898 cputime_t rtime, utime, total;
49048622 3899
0cf55e1e 3900 thread_group_cputime(p, &cputime);
49048622 3901
0cf55e1e
HS
3902 total = cputime_add(cputime.utime, cputime.stime);
3903 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3904
0cf55e1e 3905 if (total) {
e75e863d 3906 u64 temp = rtime;
49048622 3907
e75e863d 3908 temp *= cputime.utime;
0cf55e1e
HS
3909 do_div(temp, total);
3910 utime = (cputime_t)temp;
3911 } else
3912 utime = rtime;
3913
3914 sig->prev_utime = max(sig->prev_utime, utime);
3915 sig->prev_stime = max(sig->prev_stime,
3916 cputime_sub(rtime, sig->prev_utime));
3917
3918 *ut = sig->prev_utime;
3919 *st = sig->prev_stime;
49048622 3920}
49048622 3921#endif
49048622 3922
7835b98b
CL
3923/*
3924 * This function gets called by the timer code, with HZ frequency.
3925 * We call it with interrupts disabled.
3926 *
3927 * It also gets called by the fork code, when changing the parent's
3928 * timeslices.
3929 */
3930void scheduler_tick(void)
3931{
7835b98b
CL
3932 int cpu = smp_processor_id();
3933 struct rq *rq = cpu_rq(cpu);
dd41f596 3934 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3935
3936 sched_clock_tick();
dd41f596 3937
05fa785c 3938 raw_spin_lock(&rq->lock);
3e51f33f 3939 update_rq_clock(rq);
fdf3e95d 3940 update_cpu_load_active(rq);
fa85ae24 3941 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3942 raw_spin_unlock(&rq->lock);
7835b98b 3943
e9d2b064 3944 perf_event_task_tick();
e220d2dc 3945
e418e1c2 3946#ifdef CONFIG_SMP
dd41f596
IM
3947 rq->idle_at_tick = idle_cpu(cpu);
3948 trigger_load_balance(rq, cpu);
e418e1c2 3949#endif
1da177e4
LT
3950}
3951
132380a0 3952notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3953{
3954 if (in_lock_functions(addr)) {
3955 addr = CALLER_ADDR2;
3956 if (in_lock_functions(addr))
3957 addr = CALLER_ADDR3;
3958 }
3959 return addr;
3960}
1da177e4 3961
7e49fcce
SR
3962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3963 defined(CONFIG_PREEMPT_TRACER))
3964
43627582 3965void __kprobes add_preempt_count(int val)
1da177e4 3966{
6cd8a4bb 3967#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3968 /*
3969 * Underflow?
3970 */
9a11b49a
IM
3971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3972 return;
6cd8a4bb 3973#endif
1da177e4 3974 preempt_count() += val;
6cd8a4bb 3975#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3976 /*
3977 * Spinlock count overflowing soon?
3978 */
33859f7f
MOS
3979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3980 PREEMPT_MASK - 10);
6cd8a4bb
SR
3981#endif
3982 if (preempt_count() == val)
3983 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3984}
3985EXPORT_SYMBOL(add_preempt_count);
3986
43627582 3987void __kprobes sub_preempt_count(int val)
1da177e4 3988{
6cd8a4bb 3989#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3990 /*
3991 * Underflow?
3992 */
01e3eb82 3993 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3994 return;
1da177e4
LT
3995 /*
3996 * Is the spinlock portion underflowing?
3997 */
9a11b49a
IM
3998 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3999 !(preempt_count() & PREEMPT_MASK)))
4000 return;
6cd8a4bb 4001#endif
9a11b49a 4002
6cd8a4bb
SR
4003 if (preempt_count() == val)
4004 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4005 preempt_count() -= val;
4006}
4007EXPORT_SYMBOL(sub_preempt_count);
4008
4009#endif
4010
4011/*
dd41f596 4012 * Print scheduling while atomic bug:
1da177e4 4013 */
dd41f596 4014static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4015{
838225b4
SS
4016 struct pt_regs *regs = get_irq_regs();
4017
3df0fc5b
PZ
4018 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4019 prev->comm, prev->pid, preempt_count());
838225b4 4020
dd41f596 4021 debug_show_held_locks(prev);
e21f5b15 4022 print_modules();
dd41f596
IM
4023 if (irqs_disabled())
4024 print_irqtrace_events(prev);
838225b4
SS
4025
4026 if (regs)
4027 show_regs(regs);
4028 else
4029 dump_stack();
dd41f596 4030}
1da177e4 4031
dd41f596
IM
4032/*
4033 * Various schedule()-time debugging checks and statistics:
4034 */
4035static inline void schedule_debug(struct task_struct *prev)
4036{
1da177e4 4037 /*
41a2d6cf 4038 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4039 * schedule() atomically, we ignore that path for now.
4040 * Otherwise, whine if we are scheduling when we should not be.
4041 */
3f33a7ce 4042 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4043 __schedule_bug(prev);
4044
1da177e4
LT
4045 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4046
2d72376b 4047 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4048#ifdef CONFIG_SCHEDSTATS
4049 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4050 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4051 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4052 }
4053#endif
dd41f596
IM
4054}
4055
6cecd084 4056static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4057{
fd2f4419 4058 if (prev->on_rq)
a64692a3 4059 update_rq_clock(rq);
6cecd084 4060 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4061}
4062
dd41f596
IM
4063/*
4064 * Pick up the highest-prio task:
4065 */
4066static inline struct task_struct *
b67802ea 4067pick_next_task(struct rq *rq)
dd41f596 4068{
5522d5d5 4069 const struct sched_class *class;
dd41f596 4070 struct task_struct *p;
1da177e4
LT
4071
4072 /*
dd41f596
IM
4073 * Optimization: we know that if all tasks are in
4074 * the fair class we can call that function directly:
1da177e4 4075 */
dd41f596 4076 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4077 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4078 if (likely(p))
4079 return p;
1da177e4
LT
4080 }
4081
34f971f6 4082 for_each_class(class) {
fb8d4724 4083 p = class->pick_next_task(rq);
dd41f596
IM
4084 if (p)
4085 return p;
dd41f596 4086 }
34f971f6
PZ
4087
4088 BUG(); /* the idle class will always have a runnable task */
dd41f596 4089}
1da177e4 4090
dd41f596
IM
4091/*
4092 * schedule() is the main scheduler function.
4093 */
ff743345 4094asmlinkage void __sched schedule(void)
dd41f596
IM
4095{
4096 struct task_struct *prev, *next;
67ca7bde 4097 unsigned long *switch_count;
dd41f596 4098 struct rq *rq;
31656519 4099 int cpu;
dd41f596 4100
ff743345
PZ
4101need_resched:
4102 preempt_disable();
dd41f596
IM
4103 cpu = smp_processor_id();
4104 rq = cpu_rq(cpu);
25502a6c 4105 rcu_note_context_switch(cpu);
dd41f596 4106 prev = rq->curr;
dd41f596 4107
dd41f596 4108 schedule_debug(prev);
1da177e4 4109
31656519 4110 if (sched_feat(HRTICK))
f333fdc9 4111 hrtick_clear(rq);
8f4d37ec 4112
05fa785c 4113 raw_spin_lock_irq(&rq->lock);
1da177e4 4114
246d86b5 4115 switch_count = &prev->nivcsw;
1da177e4 4116 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4117 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4118 prev->state = TASK_RUNNING;
21aa9af0
TH
4119 } else {
4120 /*
4121 * If a worker is going to sleep, notify and
4122 * ask workqueue whether it wants to wake up a
4123 * task to maintain concurrency. If so, wake
4124 * up the task.
4125 */
4126 if (prev->flags & PF_WQ_WORKER) {
4127 struct task_struct *to_wakeup;
4128
4129 to_wakeup = wq_worker_sleeping(prev, cpu);
4130 if (to_wakeup)
4131 try_to_wake_up_local(to_wakeup);
4132 }
fd2f4419 4133
371fd7e7 4134 deactivate_task(rq, prev, DEQUEUE_SLEEP);
fd2f4419 4135 prev->on_rq = 0;
6631e635
LT
4136
4137 /*
4138 * If we are going to sleep and we have plugged IO queued, make
4139 * sure to submit it to avoid deadlocks.
4140 */
4141 if (blk_needs_flush_plug(prev)) {
4142 raw_spin_unlock(&rq->lock);
4143 blk_flush_plug(prev);
4144 raw_spin_lock(&rq->lock);
4145 }
21aa9af0 4146 }
dd41f596 4147 switch_count = &prev->nvcsw;
1da177e4
LT
4148 }
4149
3f029d3c 4150 pre_schedule(rq, prev);
f65eda4f 4151
dd41f596 4152 if (unlikely(!rq->nr_running))
1da177e4 4153 idle_balance(cpu, rq);
1da177e4 4154
df1c99d4 4155 put_prev_task(rq, prev);
b67802ea 4156 next = pick_next_task(rq);
f26f9aff
MG
4157 clear_tsk_need_resched(prev);
4158 rq->skip_clock_update = 0;
1da177e4 4159
1da177e4 4160 if (likely(prev != next)) {
1da177e4
LT
4161 rq->nr_switches++;
4162 rq->curr = next;
4163 ++*switch_count;
4164
dd41f596 4165 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4166 /*
246d86b5
ON
4167 * The context switch have flipped the stack from under us
4168 * and restored the local variables which were saved when
4169 * this task called schedule() in the past. prev == current
4170 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4171 */
4172 cpu = smp_processor_id();
4173 rq = cpu_rq(cpu);
1da177e4 4174 } else
05fa785c 4175 raw_spin_unlock_irq(&rq->lock);
1da177e4 4176
3f029d3c 4177 post_schedule(rq);
1da177e4 4178
1da177e4 4179 preempt_enable_no_resched();
ff743345 4180 if (need_resched())
1da177e4
LT
4181 goto need_resched;
4182}
1da177e4
LT
4183EXPORT_SYMBOL(schedule);
4184
c08f7829 4185#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4186
c6eb3dda
PZ
4187static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4188{
4189 bool ret = false;
0d66bf6d 4190
c6eb3dda
PZ
4191 rcu_read_lock();
4192 if (lock->owner != owner)
4193 goto fail;
0d66bf6d
PZ
4194
4195 /*
c6eb3dda
PZ
4196 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4197 * lock->owner still matches owner, if that fails, owner might
4198 * point to free()d memory, if it still matches, the rcu_read_lock()
4199 * ensures the memory stays valid.
0d66bf6d 4200 */
c6eb3dda 4201 barrier();
0d66bf6d 4202
c6eb3dda
PZ
4203 ret = owner->on_cpu;
4204fail:
4205 rcu_read_unlock();
0d66bf6d 4206
c6eb3dda
PZ
4207 return ret;
4208}
0d66bf6d 4209
c6eb3dda
PZ
4210/*
4211 * Look out! "owner" is an entirely speculative pointer
4212 * access and not reliable.
4213 */
4214int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4215{
4216 if (!sched_feat(OWNER_SPIN))
4217 return 0;
0d66bf6d 4218
c6eb3dda
PZ
4219 while (owner_running(lock, owner)) {
4220 if (need_resched())
0d66bf6d
PZ
4221 return 0;
4222
335d7afb 4223 arch_mutex_cpu_relax();
0d66bf6d 4224 }
4b402210 4225
c6eb3dda
PZ
4226 /*
4227 * If the owner changed to another task there is likely
4228 * heavy contention, stop spinning.
4229 */
4230 if (lock->owner)
4231 return 0;
4232
0d66bf6d
PZ
4233 return 1;
4234}
4235#endif
4236
1da177e4
LT
4237#ifdef CONFIG_PREEMPT
4238/*
2ed6e34f 4239 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4240 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4241 * occur there and call schedule directly.
4242 */
d1f74e20 4243asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4244{
4245 struct thread_info *ti = current_thread_info();
6478d880 4246
1da177e4
LT
4247 /*
4248 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4249 * we do not want to preempt the current task. Just return..
1da177e4 4250 */
beed33a8 4251 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4252 return;
4253
3a5c359a 4254 do {
d1f74e20 4255 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4256 schedule();
d1f74e20 4257 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4258
3a5c359a
AK
4259 /*
4260 * Check again in case we missed a preemption opportunity
4261 * between schedule and now.
4262 */
4263 barrier();
5ed0cec0 4264 } while (need_resched());
1da177e4 4265}
1da177e4
LT
4266EXPORT_SYMBOL(preempt_schedule);
4267
4268/*
2ed6e34f 4269 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4270 * off of irq context.
4271 * Note, that this is called and return with irqs disabled. This will
4272 * protect us against recursive calling from irq.
4273 */
4274asmlinkage void __sched preempt_schedule_irq(void)
4275{
4276 struct thread_info *ti = current_thread_info();
6478d880 4277
2ed6e34f 4278 /* Catch callers which need to be fixed */
1da177e4
LT
4279 BUG_ON(ti->preempt_count || !irqs_disabled());
4280
3a5c359a
AK
4281 do {
4282 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4283 local_irq_enable();
4284 schedule();
4285 local_irq_disable();
3a5c359a 4286 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4287
3a5c359a
AK
4288 /*
4289 * Check again in case we missed a preemption opportunity
4290 * between schedule and now.
4291 */
4292 barrier();
5ed0cec0 4293 } while (need_resched());
1da177e4
LT
4294}
4295
4296#endif /* CONFIG_PREEMPT */
4297
63859d4f 4298int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4299 void *key)
1da177e4 4300{
63859d4f 4301 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4302}
1da177e4
LT
4303EXPORT_SYMBOL(default_wake_function);
4304
4305/*
41a2d6cf
IM
4306 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4307 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4308 * number) then we wake all the non-exclusive tasks and one exclusive task.
4309 *
4310 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4311 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4312 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4313 */
78ddb08f 4314static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4315 int nr_exclusive, int wake_flags, void *key)
1da177e4 4316{
2e45874c 4317 wait_queue_t *curr, *next;
1da177e4 4318
2e45874c 4319 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4320 unsigned flags = curr->flags;
4321
63859d4f 4322 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4323 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4324 break;
4325 }
4326}
4327
4328/**
4329 * __wake_up - wake up threads blocked on a waitqueue.
4330 * @q: the waitqueue
4331 * @mode: which threads
4332 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4333 * @key: is directly passed to the wakeup function
50fa610a
DH
4334 *
4335 * It may be assumed that this function implies a write memory barrier before
4336 * changing the task state if and only if any tasks are woken up.
1da177e4 4337 */
7ad5b3a5 4338void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4339 int nr_exclusive, void *key)
1da177e4
LT
4340{
4341 unsigned long flags;
4342
4343 spin_lock_irqsave(&q->lock, flags);
4344 __wake_up_common(q, mode, nr_exclusive, 0, key);
4345 spin_unlock_irqrestore(&q->lock, flags);
4346}
1da177e4
LT
4347EXPORT_SYMBOL(__wake_up);
4348
4349/*
4350 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4351 */
7ad5b3a5 4352void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4353{
4354 __wake_up_common(q, mode, 1, 0, NULL);
4355}
22c43c81 4356EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4357
4ede816a
DL
4358void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4359{
4360 __wake_up_common(q, mode, 1, 0, key);
4361}
bf294b41 4362EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4363
1da177e4 4364/**
4ede816a 4365 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4366 * @q: the waitqueue
4367 * @mode: which threads
4368 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4369 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4370 *
4371 * The sync wakeup differs that the waker knows that it will schedule
4372 * away soon, so while the target thread will be woken up, it will not
4373 * be migrated to another CPU - ie. the two threads are 'synchronized'
4374 * with each other. This can prevent needless bouncing between CPUs.
4375 *
4376 * On UP it can prevent extra preemption.
50fa610a
DH
4377 *
4378 * It may be assumed that this function implies a write memory barrier before
4379 * changing the task state if and only if any tasks are woken up.
1da177e4 4380 */
4ede816a
DL
4381void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4382 int nr_exclusive, void *key)
1da177e4
LT
4383{
4384 unsigned long flags;
7d478721 4385 int wake_flags = WF_SYNC;
1da177e4
LT
4386
4387 if (unlikely(!q))
4388 return;
4389
4390 if (unlikely(!nr_exclusive))
7d478721 4391 wake_flags = 0;
1da177e4
LT
4392
4393 spin_lock_irqsave(&q->lock, flags);
7d478721 4394 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4395 spin_unlock_irqrestore(&q->lock, flags);
4396}
4ede816a
DL
4397EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4398
4399/*
4400 * __wake_up_sync - see __wake_up_sync_key()
4401 */
4402void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4403{
4404 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4405}
1da177e4
LT
4406EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4407
65eb3dc6
KD
4408/**
4409 * complete: - signals a single thread waiting on this completion
4410 * @x: holds the state of this particular completion
4411 *
4412 * This will wake up a single thread waiting on this completion. Threads will be
4413 * awakened in the same order in which they were queued.
4414 *
4415 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4416 *
4417 * It may be assumed that this function implies a write memory barrier before
4418 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4419 */
b15136e9 4420void complete(struct completion *x)
1da177e4
LT
4421{
4422 unsigned long flags;
4423
4424 spin_lock_irqsave(&x->wait.lock, flags);
4425 x->done++;
d9514f6c 4426 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4427 spin_unlock_irqrestore(&x->wait.lock, flags);
4428}
4429EXPORT_SYMBOL(complete);
4430
65eb3dc6
KD
4431/**
4432 * complete_all: - signals all threads waiting on this completion
4433 * @x: holds the state of this particular completion
4434 *
4435 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4436 *
4437 * It may be assumed that this function implies a write memory barrier before
4438 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4439 */
b15136e9 4440void complete_all(struct completion *x)
1da177e4
LT
4441{
4442 unsigned long flags;
4443
4444 spin_lock_irqsave(&x->wait.lock, flags);
4445 x->done += UINT_MAX/2;
d9514f6c 4446 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4447 spin_unlock_irqrestore(&x->wait.lock, flags);
4448}
4449EXPORT_SYMBOL(complete_all);
4450
8cbbe86d
AK
4451static inline long __sched
4452do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4453{
1da177e4
LT
4454 if (!x->done) {
4455 DECLARE_WAITQUEUE(wait, current);
4456
a93d2f17 4457 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4458 do {
94d3d824 4459 if (signal_pending_state(state, current)) {
ea71a546
ON
4460 timeout = -ERESTARTSYS;
4461 break;
8cbbe86d
AK
4462 }
4463 __set_current_state(state);
1da177e4
LT
4464 spin_unlock_irq(&x->wait.lock);
4465 timeout = schedule_timeout(timeout);
4466 spin_lock_irq(&x->wait.lock);
ea71a546 4467 } while (!x->done && timeout);
1da177e4 4468 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4469 if (!x->done)
4470 return timeout;
1da177e4
LT
4471 }
4472 x->done--;
ea71a546 4473 return timeout ?: 1;
1da177e4 4474}
1da177e4 4475
8cbbe86d
AK
4476static long __sched
4477wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4478{
1da177e4
LT
4479 might_sleep();
4480
4481 spin_lock_irq(&x->wait.lock);
8cbbe86d 4482 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4483 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4484 return timeout;
4485}
1da177e4 4486
65eb3dc6
KD
4487/**
4488 * wait_for_completion: - waits for completion of a task
4489 * @x: holds the state of this particular completion
4490 *
4491 * This waits to be signaled for completion of a specific task. It is NOT
4492 * interruptible and there is no timeout.
4493 *
4494 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4495 * and interrupt capability. Also see complete().
4496 */
b15136e9 4497void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4498{
4499 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4500}
8cbbe86d 4501EXPORT_SYMBOL(wait_for_completion);
1da177e4 4502
65eb3dc6
KD
4503/**
4504 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4505 * @x: holds the state of this particular completion
4506 * @timeout: timeout value in jiffies
4507 *
4508 * This waits for either a completion of a specific task to be signaled or for a
4509 * specified timeout to expire. The timeout is in jiffies. It is not
4510 * interruptible.
4511 */
b15136e9 4512unsigned long __sched
8cbbe86d 4513wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4514{
8cbbe86d 4515 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4516}
8cbbe86d 4517EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4518
65eb3dc6
KD
4519/**
4520 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4521 * @x: holds the state of this particular completion
4522 *
4523 * This waits for completion of a specific task to be signaled. It is
4524 * interruptible.
4525 */
8cbbe86d 4526int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4527{
51e97990
AK
4528 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4529 if (t == -ERESTARTSYS)
4530 return t;
4531 return 0;
0fec171c 4532}
8cbbe86d 4533EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4534
65eb3dc6
KD
4535/**
4536 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4537 * @x: holds the state of this particular completion
4538 * @timeout: timeout value in jiffies
4539 *
4540 * This waits for either a completion of a specific task to be signaled or for a
4541 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4542 */
6bf41237 4543long __sched
8cbbe86d
AK
4544wait_for_completion_interruptible_timeout(struct completion *x,
4545 unsigned long timeout)
0fec171c 4546{
8cbbe86d 4547 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4548}
8cbbe86d 4549EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4550
65eb3dc6
KD
4551/**
4552 * wait_for_completion_killable: - waits for completion of a task (killable)
4553 * @x: holds the state of this particular completion
4554 *
4555 * This waits to be signaled for completion of a specific task. It can be
4556 * interrupted by a kill signal.
4557 */
009e577e
MW
4558int __sched wait_for_completion_killable(struct completion *x)
4559{
4560 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4561 if (t == -ERESTARTSYS)
4562 return t;
4563 return 0;
4564}
4565EXPORT_SYMBOL(wait_for_completion_killable);
4566
0aa12fb4
SW
4567/**
4568 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4569 * @x: holds the state of this particular completion
4570 * @timeout: timeout value in jiffies
4571 *
4572 * This waits for either a completion of a specific task to be
4573 * signaled or for a specified timeout to expire. It can be
4574 * interrupted by a kill signal. The timeout is in jiffies.
4575 */
6bf41237 4576long __sched
0aa12fb4
SW
4577wait_for_completion_killable_timeout(struct completion *x,
4578 unsigned long timeout)
4579{
4580 return wait_for_common(x, timeout, TASK_KILLABLE);
4581}
4582EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4583
be4de352
DC
4584/**
4585 * try_wait_for_completion - try to decrement a completion without blocking
4586 * @x: completion structure
4587 *
4588 * Returns: 0 if a decrement cannot be done without blocking
4589 * 1 if a decrement succeeded.
4590 *
4591 * If a completion is being used as a counting completion,
4592 * attempt to decrement the counter without blocking. This
4593 * enables us to avoid waiting if the resource the completion
4594 * is protecting is not available.
4595 */
4596bool try_wait_for_completion(struct completion *x)
4597{
7539a3b3 4598 unsigned long flags;
be4de352
DC
4599 int ret = 1;
4600
7539a3b3 4601 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4602 if (!x->done)
4603 ret = 0;
4604 else
4605 x->done--;
7539a3b3 4606 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4607 return ret;
4608}
4609EXPORT_SYMBOL(try_wait_for_completion);
4610
4611/**
4612 * completion_done - Test to see if a completion has any waiters
4613 * @x: completion structure
4614 *
4615 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4616 * 1 if there are no waiters.
4617 *
4618 */
4619bool completion_done(struct completion *x)
4620{
7539a3b3 4621 unsigned long flags;
be4de352
DC
4622 int ret = 1;
4623
7539a3b3 4624 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4625 if (!x->done)
4626 ret = 0;
7539a3b3 4627 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4628 return ret;
4629}
4630EXPORT_SYMBOL(completion_done);
4631
8cbbe86d
AK
4632static long __sched
4633sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4634{
0fec171c
IM
4635 unsigned long flags;
4636 wait_queue_t wait;
4637
4638 init_waitqueue_entry(&wait, current);
1da177e4 4639
8cbbe86d 4640 __set_current_state(state);
1da177e4 4641
8cbbe86d
AK
4642 spin_lock_irqsave(&q->lock, flags);
4643 __add_wait_queue(q, &wait);
4644 spin_unlock(&q->lock);
4645 timeout = schedule_timeout(timeout);
4646 spin_lock_irq(&q->lock);
4647 __remove_wait_queue(q, &wait);
4648 spin_unlock_irqrestore(&q->lock, flags);
4649
4650 return timeout;
4651}
4652
4653void __sched interruptible_sleep_on(wait_queue_head_t *q)
4654{
4655 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4656}
1da177e4
LT
4657EXPORT_SYMBOL(interruptible_sleep_on);
4658
0fec171c 4659long __sched
95cdf3b7 4660interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4661{
8cbbe86d 4662 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4663}
1da177e4
LT
4664EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4665
0fec171c 4666void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4667{
8cbbe86d 4668 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4669}
1da177e4
LT
4670EXPORT_SYMBOL(sleep_on);
4671
0fec171c 4672long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4673{
8cbbe86d 4674 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4675}
1da177e4
LT
4676EXPORT_SYMBOL(sleep_on_timeout);
4677
b29739f9
IM
4678#ifdef CONFIG_RT_MUTEXES
4679
4680/*
4681 * rt_mutex_setprio - set the current priority of a task
4682 * @p: task
4683 * @prio: prio value (kernel-internal form)
4684 *
4685 * This function changes the 'effective' priority of a task. It does
4686 * not touch ->normal_prio like __setscheduler().
4687 *
4688 * Used by the rt_mutex code to implement priority inheritance logic.
4689 */
36c8b586 4690void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4691{
4692 unsigned long flags;
83b699ed 4693 int oldprio, on_rq, running;
70b97a7f 4694 struct rq *rq;
83ab0aa0 4695 const struct sched_class *prev_class;
b29739f9
IM
4696
4697 BUG_ON(prio < 0 || prio > MAX_PRIO);
4698
013fdb80
PZ
4699 lockdep_assert_held(&p->pi_lock);
4700
b29739f9
IM
4701 rq = task_rq_lock(p, &flags);
4702
a8027073 4703 trace_sched_pi_setprio(p, prio);
d5f9f942 4704 oldprio = p->prio;
83ab0aa0 4705 prev_class = p->sched_class;
fd2f4419 4706 on_rq = p->on_rq;
051a1d1a 4707 running = task_current(rq, p);
0e1f3483 4708 if (on_rq)
69be72c1 4709 dequeue_task(rq, p, 0);
0e1f3483
HS
4710 if (running)
4711 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4712
4713 if (rt_prio(prio))
4714 p->sched_class = &rt_sched_class;
4715 else
4716 p->sched_class = &fair_sched_class;
4717
b29739f9
IM
4718 p->prio = prio;
4719
0e1f3483
HS
4720 if (running)
4721 p->sched_class->set_curr_task(rq);
da7a735e 4722 if (on_rq)
371fd7e7 4723 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4724
da7a735e 4725 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4726 task_rq_unlock(rq, &flags);
4727}
4728
4729#endif
4730
36c8b586 4731void set_user_nice(struct task_struct *p, long nice)
1da177e4 4732{
dd41f596 4733 int old_prio, delta, on_rq;
1da177e4 4734 unsigned long flags;
70b97a7f 4735 struct rq *rq;
1da177e4
LT
4736
4737 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4738 return;
4739 /*
4740 * We have to be careful, if called from sys_setpriority(),
4741 * the task might be in the middle of scheduling on another CPU.
4742 */
4743 rq = task_rq_lock(p, &flags);
4744 /*
4745 * The RT priorities are set via sched_setscheduler(), but we still
4746 * allow the 'normal' nice value to be set - but as expected
4747 * it wont have any effect on scheduling until the task is
dd41f596 4748 * SCHED_FIFO/SCHED_RR:
1da177e4 4749 */
e05606d3 4750 if (task_has_rt_policy(p)) {
1da177e4
LT
4751 p->static_prio = NICE_TO_PRIO(nice);
4752 goto out_unlock;
4753 }
fd2f4419 4754 on_rq = p->on_rq;
c09595f6 4755 if (on_rq)
69be72c1 4756 dequeue_task(rq, p, 0);
1da177e4 4757
1da177e4 4758 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4759 set_load_weight(p);
b29739f9
IM
4760 old_prio = p->prio;
4761 p->prio = effective_prio(p);
4762 delta = p->prio - old_prio;
1da177e4 4763
dd41f596 4764 if (on_rq) {
371fd7e7 4765 enqueue_task(rq, p, 0);
1da177e4 4766 /*
d5f9f942
AM
4767 * If the task increased its priority or is running and
4768 * lowered its priority, then reschedule its CPU:
1da177e4 4769 */
d5f9f942 4770 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4771 resched_task(rq->curr);
4772 }
4773out_unlock:
4774 task_rq_unlock(rq, &flags);
4775}
1da177e4
LT
4776EXPORT_SYMBOL(set_user_nice);
4777
e43379f1
MM
4778/*
4779 * can_nice - check if a task can reduce its nice value
4780 * @p: task
4781 * @nice: nice value
4782 */
36c8b586 4783int can_nice(const struct task_struct *p, const int nice)
e43379f1 4784{
024f4747
MM
4785 /* convert nice value [19,-20] to rlimit style value [1,40] */
4786 int nice_rlim = 20 - nice;
48f24c4d 4787
78d7d407 4788 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4789 capable(CAP_SYS_NICE));
4790}
4791
1da177e4
LT
4792#ifdef __ARCH_WANT_SYS_NICE
4793
4794/*
4795 * sys_nice - change the priority of the current process.
4796 * @increment: priority increment
4797 *
4798 * sys_setpriority is a more generic, but much slower function that
4799 * does similar things.
4800 */
5add95d4 4801SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4802{
48f24c4d 4803 long nice, retval;
1da177e4
LT
4804
4805 /*
4806 * Setpriority might change our priority at the same moment.
4807 * We don't have to worry. Conceptually one call occurs first
4808 * and we have a single winner.
4809 */
e43379f1
MM
4810 if (increment < -40)
4811 increment = -40;
1da177e4
LT
4812 if (increment > 40)
4813 increment = 40;
4814
2b8f836f 4815 nice = TASK_NICE(current) + increment;
1da177e4
LT
4816 if (nice < -20)
4817 nice = -20;
4818 if (nice > 19)
4819 nice = 19;
4820
e43379f1
MM
4821 if (increment < 0 && !can_nice(current, nice))
4822 return -EPERM;
4823
1da177e4
LT
4824 retval = security_task_setnice(current, nice);
4825 if (retval)
4826 return retval;
4827
4828 set_user_nice(current, nice);
4829 return 0;
4830}
4831
4832#endif
4833
4834/**
4835 * task_prio - return the priority value of a given task.
4836 * @p: the task in question.
4837 *
4838 * This is the priority value as seen by users in /proc.
4839 * RT tasks are offset by -200. Normal tasks are centered
4840 * around 0, value goes from -16 to +15.
4841 */
36c8b586 4842int task_prio(const struct task_struct *p)
1da177e4
LT
4843{
4844 return p->prio - MAX_RT_PRIO;
4845}
4846
4847/**
4848 * task_nice - return the nice value of a given task.
4849 * @p: the task in question.
4850 */
36c8b586 4851int task_nice(const struct task_struct *p)
1da177e4
LT
4852{
4853 return TASK_NICE(p);
4854}
150d8bed 4855EXPORT_SYMBOL(task_nice);
1da177e4
LT
4856
4857/**
4858 * idle_cpu - is a given cpu idle currently?
4859 * @cpu: the processor in question.
4860 */
4861int idle_cpu(int cpu)
4862{
4863 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4864}
4865
1da177e4
LT
4866/**
4867 * idle_task - return the idle task for a given cpu.
4868 * @cpu: the processor in question.
4869 */
36c8b586 4870struct task_struct *idle_task(int cpu)
1da177e4
LT
4871{
4872 return cpu_rq(cpu)->idle;
4873}
4874
4875/**
4876 * find_process_by_pid - find a process with a matching PID value.
4877 * @pid: the pid in question.
4878 */
a9957449 4879static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4880{
228ebcbe 4881 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4882}
4883
4884/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4885static void
4886__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4887{
1da177e4
LT
4888 p->policy = policy;
4889 p->rt_priority = prio;
b29739f9
IM
4890 p->normal_prio = normal_prio(p);
4891 /* we are holding p->pi_lock already */
4892 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4893 if (rt_prio(p->prio))
4894 p->sched_class = &rt_sched_class;
4895 else
4896 p->sched_class = &fair_sched_class;
2dd73a4f 4897 set_load_weight(p);
1da177e4
LT
4898}
4899
c69e8d9c
DH
4900/*
4901 * check the target process has a UID that matches the current process's
4902 */
4903static bool check_same_owner(struct task_struct *p)
4904{
4905 const struct cred *cred = current_cred(), *pcred;
4906 bool match;
4907
4908 rcu_read_lock();
4909 pcred = __task_cred(p);
b0e77598
SH
4910 if (cred->user->user_ns == pcred->user->user_ns)
4911 match = (cred->euid == pcred->euid ||
4912 cred->euid == pcred->uid);
4913 else
4914 match = false;
c69e8d9c
DH
4915 rcu_read_unlock();
4916 return match;
4917}
4918
961ccddd 4919static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4920 const struct sched_param *param, bool user)
1da177e4 4921{
83b699ed 4922 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4923 unsigned long flags;
83ab0aa0 4924 const struct sched_class *prev_class;
70b97a7f 4925 struct rq *rq;
ca94c442 4926 int reset_on_fork;
1da177e4 4927
66e5393a
SR
4928 /* may grab non-irq protected spin_locks */
4929 BUG_ON(in_interrupt());
1da177e4
LT
4930recheck:
4931 /* double check policy once rq lock held */
ca94c442
LP
4932 if (policy < 0) {
4933 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4934 policy = oldpolicy = p->policy;
ca94c442
LP
4935 } else {
4936 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4937 policy &= ~SCHED_RESET_ON_FORK;
4938
4939 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4940 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4941 policy != SCHED_IDLE)
4942 return -EINVAL;
4943 }
4944
1da177e4
LT
4945 /*
4946 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4947 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4948 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4949 */
4950 if (param->sched_priority < 0 ||
95cdf3b7 4951 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4952 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4953 return -EINVAL;
e05606d3 4954 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4955 return -EINVAL;
4956
37e4ab3f
OC
4957 /*
4958 * Allow unprivileged RT tasks to decrease priority:
4959 */
961ccddd 4960 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4961 if (rt_policy(policy)) {
a44702e8
ON
4962 unsigned long rlim_rtprio =
4963 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4964
4965 /* can't set/change the rt policy */
4966 if (policy != p->policy && !rlim_rtprio)
4967 return -EPERM;
4968
4969 /* can't increase priority */
4970 if (param->sched_priority > p->rt_priority &&
4971 param->sched_priority > rlim_rtprio)
4972 return -EPERM;
4973 }
c02aa73b 4974
dd41f596 4975 /*
c02aa73b
DH
4976 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4977 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4978 */
c02aa73b
DH
4979 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4980 if (!can_nice(p, TASK_NICE(p)))
4981 return -EPERM;
4982 }
5fe1d75f 4983
37e4ab3f 4984 /* can't change other user's priorities */
c69e8d9c 4985 if (!check_same_owner(p))
37e4ab3f 4986 return -EPERM;
ca94c442
LP
4987
4988 /* Normal users shall not reset the sched_reset_on_fork flag */
4989 if (p->sched_reset_on_fork && !reset_on_fork)
4990 return -EPERM;
37e4ab3f 4991 }
1da177e4 4992
725aad24 4993 if (user) {
b0ae1981 4994 retval = security_task_setscheduler(p);
725aad24
JF
4995 if (retval)
4996 return retval;
4997 }
4998
b29739f9
IM
4999 /*
5000 * make sure no PI-waiters arrive (or leave) while we are
5001 * changing the priority of the task:
5002 */
1d615482 5003 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5004 /*
25985edc 5005 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5006 * runqueue lock must be held.
5007 */
b29739f9 5008 rq = __task_rq_lock(p);
dc61b1d6 5009
34f971f6
PZ
5010 /*
5011 * Changing the policy of the stop threads its a very bad idea
5012 */
5013 if (p == rq->stop) {
5014 __task_rq_unlock(rq);
5015 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5016 return -EINVAL;
5017 }
5018
a51e9198
DF
5019 /*
5020 * If not changing anything there's no need to proceed further:
5021 */
5022 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5023 param->sched_priority == p->rt_priority))) {
5024
5025 __task_rq_unlock(rq);
5026 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5027 return 0;
5028 }
5029
dc61b1d6
PZ
5030#ifdef CONFIG_RT_GROUP_SCHED
5031 if (user) {
5032 /*
5033 * Do not allow realtime tasks into groups that have no runtime
5034 * assigned.
5035 */
5036 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5037 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5038 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5039 __task_rq_unlock(rq);
5040 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5041 return -EPERM;
5042 }
5043 }
5044#endif
5045
1da177e4
LT
5046 /* recheck policy now with rq lock held */
5047 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5048 policy = oldpolicy = -1;
b29739f9 5049 __task_rq_unlock(rq);
1d615482 5050 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5051 goto recheck;
5052 }
fd2f4419 5053 on_rq = p->on_rq;
051a1d1a 5054 running = task_current(rq, p);
0e1f3483 5055 if (on_rq)
2e1cb74a 5056 deactivate_task(rq, p, 0);
0e1f3483
HS
5057 if (running)
5058 p->sched_class->put_prev_task(rq, p);
f6b53205 5059
ca94c442
LP
5060 p->sched_reset_on_fork = reset_on_fork;
5061
1da177e4 5062 oldprio = p->prio;
83ab0aa0 5063 prev_class = p->sched_class;
dd41f596 5064 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5065
0e1f3483
HS
5066 if (running)
5067 p->sched_class->set_curr_task(rq);
da7a735e 5068 if (on_rq)
dd41f596 5069 activate_task(rq, p, 0);
cb469845 5070
da7a735e 5071 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5072 __task_rq_unlock(rq);
1d615482 5073 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5074
95e02ca9
TG
5075 rt_mutex_adjust_pi(p);
5076
1da177e4
LT
5077 return 0;
5078}
961ccddd
RR
5079
5080/**
5081 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5082 * @p: the task in question.
5083 * @policy: new policy.
5084 * @param: structure containing the new RT priority.
5085 *
5086 * NOTE that the task may be already dead.
5087 */
5088int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5089 const struct sched_param *param)
961ccddd
RR
5090{
5091 return __sched_setscheduler(p, policy, param, true);
5092}
1da177e4
LT
5093EXPORT_SYMBOL_GPL(sched_setscheduler);
5094
961ccddd
RR
5095/**
5096 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5097 * @p: the task in question.
5098 * @policy: new policy.
5099 * @param: structure containing the new RT priority.
5100 *
5101 * Just like sched_setscheduler, only don't bother checking if the
5102 * current context has permission. For example, this is needed in
5103 * stop_machine(): we create temporary high priority worker threads,
5104 * but our caller might not have that capability.
5105 */
5106int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5107 const struct sched_param *param)
961ccddd
RR
5108{
5109 return __sched_setscheduler(p, policy, param, false);
5110}
5111
95cdf3b7
IM
5112static int
5113do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5114{
1da177e4
LT
5115 struct sched_param lparam;
5116 struct task_struct *p;
36c8b586 5117 int retval;
1da177e4
LT
5118
5119 if (!param || pid < 0)
5120 return -EINVAL;
5121 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5122 return -EFAULT;
5fe1d75f
ON
5123
5124 rcu_read_lock();
5125 retval = -ESRCH;
1da177e4 5126 p = find_process_by_pid(pid);
5fe1d75f
ON
5127 if (p != NULL)
5128 retval = sched_setscheduler(p, policy, &lparam);
5129 rcu_read_unlock();
36c8b586 5130
1da177e4
LT
5131 return retval;
5132}
5133
5134/**
5135 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5136 * @pid: the pid in question.
5137 * @policy: new policy.
5138 * @param: structure containing the new RT priority.
5139 */
5add95d4
HC
5140SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5141 struct sched_param __user *, param)
1da177e4 5142{
c21761f1
JB
5143 /* negative values for policy are not valid */
5144 if (policy < 0)
5145 return -EINVAL;
5146
1da177e4
LT
5147 return do_sched_setscheduler(pid, policy, param);
5148}
5149
5150/**
5151 * sys_sched_setparam - set/change the RT priority of a thread
5152 * @pid: the pid in question.
5153 * @param: structure containing the new RT priority.
5154 */
5add95d4 5155SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5156{
5157 return do_sched_setscheduler(pid, -1, param);
5158}
5159
5160/**
5161 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5162 * @pid: the pid in question.
5163 */
5add95d4 5164SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5165{
36c8b586 5166 struct task_struct *p;
3a5c359a 5167 int retval;
1da177e4
LT
5168
5169 if (pid < 0)
3a5c359a 5170 return -EINVAL;
1da177e4
LT
5171
5172 retval = -ESRCH;
5fe85be0 5173 rcu_read_lock();
1da177e4
LT
5174 p = find_process_by_pid(pid);
5175 if (p) {
5176 retval = security_task_getscheduler(p);
5177 if (!retval)
ca94c442
LP
5178 retval = p->policy
5179 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5180 }
5fe85be0 5181 rcu_read_unlock();
1da177e4
LT
5182 return retval;
5183}
5184
5185/**
ca94c442 5186 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5187 * @pid: the pid in question.
5188 * @param: structure containing the RT priority.
5189 */
5add95d4 5190SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5191{
5192 struct sched_param lp;
36c8b586 5193 struct task_struct *p;
3a5c359a 5194 int retval;
1da177e4
LT
5195
5196 if (!param || pid < 0)
3a5c359a 5197 return -EINVAL;
1da177e4 5198
5fe85be0 5199 rcu_read_lock();
1da177e4
LT
5200 p = find_process_by_pid(pid);
5201 retval = -ESRCH;
5202 if (!p)
5203 goto out_unlock;
5204
5205 retval = security_task_getscheduler(p);
5206 if (retval)
5207 goto out_unlock;
5208
5209 lp.sched_priority = p->rt_priority;
5fe85be0 5210 rcu_read_unlock();
1da177e4
LT
5211
5212 /*
5213 * This one might sleep, we cannot do it with a spinlock held ...
5214 */
5215 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5216
1da177e4
LT
5217 return retval;
5218
5219out_unlock:
5fe85be0 5220 rcu_read_unlock();
1da177e4
LT
5221 return retval;
5222}
5223
96f874e2 5224long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5225{
5a16f3d3 5226 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5227 struct task_struct *p;
5228 int retval;
1da177e4 5229
95402b38 5230 get_online_cpus();
23f5d142 5231 rcu_read_lock();
1da177e4
LT
5232
5233 p = find_process_by_pid(pid);
5234 if (!p) {
23f5d142 5235 rcu_read_unlock();
95402b38 5236 put_online_cpus();
1da177e4
LT
5237 return -ESRCH;
5238 }
5239
23f5d142 5240 /* Prevent p going away */
1da177e4 5241 get_task_struct(p);
23f5d142 5242 rcu_read_unlock();
1da177e4 5243
5a16f3d3
RR
5244 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5245 retval = -ENOMEM;
5246 goto out_put_task;
5247 }
5248 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5249 retval = -ENOMEM;
5250 goto out_free_cpus_allowed;
5251 }
1da177e4 5252 retval = -EPERM;
b0e77598 5253 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5254 goto out_unlock;
5255
b0ae1981 5256 retval = security_task_setscheduler(p);
e7834f8f
DQ
5257 if (retval)
5258 goto out_unlock;
5259
5a16f3d3
RR
5260 cpuset_cpus_allowed(p, cpus_allowed);
5261 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5262again:
5a16f3d3 5263 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5264
8707d8b8 5265 if (!retval) {
5a16f3d3
RR
5266 cpuset_cpus_allowed(p, cpus_allowed);
5267 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5268 /*
5269 * We must have raced with a concurrent cpuset
5270 * update. Just reset the cpus_allowed to the
5271 * cpuset's cpus_allowed
5272 */
5a16f3d3 5273 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5274 goto again;
5275 }
5276 }
1da177e4 5277out_unlock:
5a16f3d3
RR
5278 free_cpumask_var(new_mask);
5279out_free_cpus_allowed:
5280 free_cpumask_var(cpus_allowed);
5281out_put_task:
1da177e4 5282 put_task_struct(p);
95402b38 5283 put_online_cpus();
1da177e4
LT
5284 return retval;
5285}
5286
5287static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5288 struct cpumask *new_mask)
1da177e4 5289{
96f874e2
RR
5290 if (len < cpumask_size())
5291 cpumask_clear(new_mask);
5292 else if (len > cpumask_size())
5293 len = cpumask_size();
5294
1da177e4
LT
5295 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5296}
5297
5298/**
5299 * sys_sched_setaffinity - set the cpu affinity of a process
5300 * @pid: pid of the process
5301 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5302 * @user_mask_ptr: user-space pointer to the new cpu mask
5303 */
5add95d4
HC
5304SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5305 unsigned long __user *, user_mask_ptr)
1da177e4 5306{
5a16f3d3 5307 cpumask_var_t new_mask;
1da177e4
LT
5308 int retval;
5309
5a16f3d3
RR
5310 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5311 return -ENOMEM;
1da177e4 5312
5a16f3d3
RR
5313 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5314 if (retval == 0)
5315 retval = sched_setaffinity(pid, new_mask);
5316 free_cpumask_var(new_mask);
5317 return retval;
1da177e4
LT
5318}
5319
96f874e2 5320long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5321{
36c8b586 5322 struct task_struct *p;
31605683 5323 unsigned long flags;
1da177e4 5324 int retval;
1da177e4 5325
95402b38 5326 get_online_cpus();
23f5d142 5327 rcu_read_lock();
1da177e4
LT
5328
5329 retval = -ESRCH;
5330 p = find_process_by_pid(pid);
5331 if (!p)
5332 goto out_unlock;
5333
e7834f8f
DQ
5334 retval = security_task_getscheduler(p);
5335 if (retval)
5336 goto out_unlock;
5337
013fdb80 5338 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5339 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5340 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5341
5342out_unlock:
23f5d142 5343 rcu_read_unlock();
95402b38 5344 put_online_cpus();
1da177e4 5345
9531b62f 5346 return retval;
1da177e4
LT
5347}
5348
5349/**
5350 * sys_sched_getaffinity - get the cpu affinity of a process
5351 * @pid: pid of the process
5352 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5353 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5354 */
5add95d4
HC
5355SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5356 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5357{
5358 int ret;
f17c8607 5359 cpumask_var_t mask;
1da177e4 5360
84fba5ec 5361 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5362 return -EINVAL;
5363 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5364 return -EINVAL;
5365
f17c8607
RR
5366 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5367 return -ENOMEM;
1da177e4 5368
f17c8607
RR
5369 ret = sched_getaffinity(pid, mask);
5370 if (ret == 0) {
8bc037fb 5371 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5372
5373 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5374 ret = -EFAULT;
5375 else
cd3d8031 5376 ret = retlen;
f17c8607
RR
5377 }
5378 free_cpumask_var(mask);
1da177e4 5379
f17c8607 5380 return ret;
1da177e4
LT
5381}
5382
5383/**
5384 * sys_sched_yield - yield the current processor to other threads.
5385 *
dd41f596
IM
5386 * This function yields the current CPU to other tasks. If there are no
5387 * other threads running on this CPU then this function will return.
1da177e4 5388 */
5add95d4 5389SYSCALL_DEFINE0(sched_yield)
1da177e4 5390{
70b97a7f 5391 struct rq *rq = this_rq_lock();
1da177e4 5392
2d72376b 5393 schedstat_inc(rq, yld_count);
4530d7ab 5394 current->sched_class->yield_task(rq);
1da177e4
LT
5395
5396 /*
5397 * Since we are going to call schedule() anyway, there's
5398 * no need to preempt or enable interrupts:
5399 */
5400 __release(rq->lock);
8a25d5de 5401 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5402 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5403 preempt_enable_no_resched();
5404
5405 schedule();
5406
5407 return 0;
5408}
5409
d86ee480
PZ
5410static inline int should_resched(void)
5411{
5412 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5413}
5414
e7b38404 5415static void __cond_resched(void)
1da177e4 5416{
e7aaaa69
FW
5417 add_preempt_count(PREEMPT_ACTIVE);
5418 schedule();
5419 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5420}
5421
02b67cc3 5422int __sched _cond_resched(void)
1da177e4 5423{
d86ee480 5424 if (should_resched()) {
1da177e4
LT
5425 __cond_resched();
5426 return 1;
5427 }
5428 return 0;
5429}
02b67cc3 5430EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5431
5432/*
613afbf8 5433 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5434 * call schedule, and on return reacquire the lock.
5435 *
41a2d6cf 5436 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5437 * operations here to prevent schedule() from being called twice (once via
5438 * spin_unlock(), once by hand).
5439 */
613afbf8 5440int __cond_resched_lock(spinlock_t *lock)
1da177e4 5441{
d86ee480 5442 int resched = should_resched();
6df3cecb
JK
5443 int ret = 0;
5444
f607c668
PZ
5445 lockdep_assert_held(lock);
5446
95c354fe 5447 if (spin_needbreak(lock) || resched) {
1da177e4 5448 spin_unlock(lock);
d86ee480 5449 if (resched)
95c354fe
NP
5450 __cond_resched();
5451 else
5452 cpu_relax();
6df3cecb 5453 ret = 1;
1da177e4 5454 spin_lock(lock);
1da177e4 5455 }
6df3cecb 5456 return ret;
1da177e4 5457}
613afbf8 5458EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5459
613afbf8 5460int __sched __cond_resched_softirq(void)
1da177e4
LT
5461{
5462 BUG_ON(!in_softirq());
5463
d86ee480 5464 if (should_resched()) {
98d82567 5465 local_bh_enable();
1da177e4
LT
5466 __cond_resched();
5467 local_bh_disable();
5468 return 1;
5469 }
5470 return 0;
5471}
613afbf8 5472EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5473
1da177e4
LT
5474/**
5475 * yield - yield the current processor to other threads.
5476 *
72fd4a35 5477 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5478 * thread runnable and calls sys_sched_yield().
5479 */
5480void __sched yield(void)
5481{
5482 set_current_state(TASK_RUNNING);
5483 sys_sched_yield();
5484}
1da177e4
LT
5485EXPORT_SYMBOL(yield);
5486
d95f4122
MG
5487/**
5488 * yield_to - yield the current processor to another thread in
5489 * your thread group, or accelerate that thread toward the
5490 * processor it's on.
16addf95
RD
5491 * @p: target task
5492 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5493 *
5494 * It's the caller's job to ensure that the target task struct
5495 * can't go away on us before we can do any checks.
5496 *
5497 * Returns true if we indeed boosted the target task.
5498 */
5499bool __sched yield_to(struct task_struct *p, bool preempt)
5500{
5501 struct task_struct *curr = current;
5502 struct rq *rq, *p_rq;
5503 unsigned long flags;
5504 bool yielded = 0;
5505
5506 local_irq_save(flags);
5507 rq = this_rq();
5508
5509again:
5510 p_rq = task_rq(p);
5511 double_rq_lock(rq, p_rq);
5512 while (task_rq(p) != p_rq) {
5513 double_rq_unlock(rq, p_rq);
5514 goto again;
5515 }
5516
5517 if (!curr->sched_class->yield_to_task)
5518 goto out;
5519
5520 if (curr->sched_class != p->sched_class)
5521 goto out;
5522
5523 if (task_running(p_rq, p) || p->state)
5524 goto out;
5525
5526 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5527 if (yielded) {
d95f4122 5528 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5529 /*
5530 * Make p's CPU reschedule; pick_next_entity takes care of
5531 * fairness.
5532 */
5533 if (preempt && rq != p_rq)
5534 resched_task(p_rq->curr);
5535 }
d95f4122
MG
5536
5537out:
5538 double_rq_unlock(rq, p_rq);
5539 local_irq_restore(flags);
5540
5541 if (yielded)
5542 schedule();
5543
5544 return yielded;
5545}
5546EXPORT_SYMBOL_GPL(yield_to);
5547
1da177e4 5548/*
41a2d6cf 5549 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5550 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5551 */
5552void __sched io_schedule(void)
5553{
54d35f29 5554 struct rq *rq = raw_rq();
1da177e4 5555
0ff92245 5556 delayacct_blkio_start();
1da177e4 5557 atomic_inc(&rq->nr_iowait);
73c10101 5558 blk_flush_plug(current);
8f0dfc34 5559 current->in_iowait = 1;
1da177e4 5560 schedule();
8f0dfc34 5561 current->in_iowait = 0;
1da177e4 5562 atomic_dec(&rq->nr_iowait);
0ff92245 5563 delayacct_blkio_end();
1da177e4 5564}
1da177e4
LT
5565EXPORT_SYMBOL(io_schedule);
5566
5567long __sched io_schedule_timeout(long timeout)
5568{
54d35f29 5569 struct rq *rq = raw_rq();
1da177e4
LT
5570 long ret;
5571
0ff92245 5572 delayacct_blkio_start();
1da177e4 5573 atomic_inc(&rq->nr_iowait);
73c10101 5574 blk_flush_plug(current);
8f0dfc34 5575 current->in_iowait = 1;
1da177e4 5576 ret = schedule_timeout(timeout);
8f0dfc34 5577 current->in_iowait = 0;
1da177e4 5578 atomic_dec(&rq->nr_iowait);
0ff92245 5579 delayacct_blkio_end();
1da177e4
LT
5580 return ret;
5581}
5582
5583/**
5584 * sys_sched_get_priority_max - return maximum RT priority.
5585 * @policy: scheduling class.
5586 *
5587 * this syscall returns the maximum rt_priority that can be used
5588 * by a given scheduling class.
5589 */
5add95d4 5590SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5591{
5592 int ret = -EINVAL;
5593
5594 switch (policy) {
5595 case SCHED_FIFO:
5596 case SCHED_RR:
5597 ret = MAX_USER_RT_PRIO-1;
5598 break;
5599 case SCHED_NORMAL:
b0a9499c 5600 case SCHED_BATCH:
dd41f596 5601 case SCHED_IDLE:
1da177e4
LT
5602 ret = 0;
5603 break;
5604 }
5605 return ret;
5606}
5607
5608/**
5609 * sys_sched_get_priority_min - return minimum RT priority.
5610 * @policy: scheduling class.
5611 *
5612 * this syscall returns the minimum rt_priority that can be used
5613 * by a given scheduling class.
5614 */
5add95d4 5615SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5616{
5617 int ret = -EINVAL;
5618
5619 switch (policy) {
5620 case SCHED_FIFO:
5621 case SCHED_RR:
5622 ret = 1;
5623 break;
5624 case SCHED_NORMAL:
b0a9499c 5625 case SCHED_BATCH:
dd41f596 5626 case SCHED_IDLE:
1da177e4
LT
5627 ret = 0;
5628 }
5629 return ret;
5630}
5631
5632/**
5633 * sys_sched_rr_get_interval - return the default timeslice of a process.
5634 * @pid: pid of the process.
5635 * @interval: userspace pointer to the timeslice value.
5636 *
5637 * this syscall writes the default timeslice value of a given process
5638 * into the user-space timespec buffer. A value of '0' means infinity.
5639 */
17da2bd9 5640SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5641 struct timespec __user *, interval)
1da177e4 5642{
36c8b586 5643 struct task_struct *p;
a4ec24b4 5644 unsigned int time_slice;
dba091b9
TG
5645 unsigned long flags;
5646 struct rq *rq;
3a5c359a 5647 int retval;
1da177e4 5648 struct timespec t;
1da177e4
LT
5649
5650 if (pid < 0)
3a5c359a 5651 return -EINVAL;
1da177e4
LT
5652
5653 retval = -ESRCH;
1a551ae7 5654 rcu_read_lock();
1da177e4
LT
5655 p = find_process_by_pid(pid);
5656 if (!p)
5657 goto out_unlock;
5658
5659 retval = security_task_getscheduler(p);
5660 if (retval)
5661 goto out_unlock;
5662
dba091b9
TG
5663 rq = task_rq_lock(p, &flags);
5664 time_slice = p->sched_class->get_rr_interval(rq, p);
5665 task_rq_unlock(rq, &flags);
a4ec24b4 5666
1a551ae7 5667 rcu_read_unlock();
a4ec24b4 5668 jiffies_to_timespec(time_slice, &t);
1da177e4 5669 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5670 return retval;
3a5c359a 5671
1da177e4 5672out_unlock:
1a551ae7 5673 rcu_read_unlock();
1da177e4
LT
5674 return retval;
5675}
5676
7c731e0a 5677static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5678
82a1fcb9 5679void sched_show_task(struct task_struct *p)
1da177e4 5680{
1da177e4 5681 unsigned long free = 0;
36c8b586 5682 unsigned state;
1da177e4 5683
1da177e4 5684 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5685 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5686 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5687#if BITS_PER_LONG == 32
1da177e4 5688 if (state == TASK_RUNNING)
3df0fc5b 5689 printk(KERN_CONT " running ");
1da177e4 5690 else
3df0fc5b 5691 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5692#else
5693 if (state == TASK_RUNNING)
3df0fc5b 5694 printk(KERN_CONT " running task ");
1da177e4 5695 else
3df0fc5b 5696 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5697#endif
5698#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5699 free = stack_not_used(p);
1da177e4 5700#endif
3df0fc5b 5701 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5702 task_pid_nr(p), task_pid_nr(p->real_parent),
5703 (unsigned long)task_thread_info(p)->flags);
1da177e4 5704
5fb5e6de 5705 show_stack(p, NULL);
1da177e4
LT
5706}
5707
e59e2ae2 5708void show_state_filter(unsigned long state_filter)
1da177e4 5709{
36c8b586 5710 struct task_struct *g, *p;
1da177e4 5711
4bd77321 5712#if BITS_PER_LONG == 32
3df0fc5b
PZ
5713 printk(KERN_INFO
5714 " task PC stack pid father\n");
1da177e4 5715#else
3df0fc5b
PZ
5716 printk(KERN_INFO
5717 " task PC stack pid father\n");
1da177e4
LT
5718#endif
5719 read_lock(&tasklist_lock);
5720 do_each_thread(g, p) {
5721 /*
5722 * reset the NMI-timeout, listing all files on a slow
25985edc 5723 * console might take a lot of time:
1da177e4
LT
5724 */
5725 touch_nmi_watchdog();
39bc89fd 5726 if (!state_filter || (p->state & state_filter))
82a1fcb9 5727 sched_show_task(p);
1da177e4
LT
5728 } while_each_thread(g, p);
5729
04c9167f
JF
5730 touch_all_softlockup_watchdogs();
5731
dd41f596
IM
5732#ifdef CONFIG_SCHED_DEBUG
5733 sysrq_sched_debug_show();
5734#endif
1da177e4 5735 read_unlock(&tasklist_lock);
e59e2ae2
IM
5736 /*
5737 * Only show locks if all tasks are dumped:
5738 */
93335a21 5739 if (!state_filter)
e59e2ae2 5740 debug_show_all_locks();
1da177e4
LT
5741}
5742
1df21055
IM
5743void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5744{
dd41f596 5745 idle->sched_class = &idle_sched_class;
1df21055
IM
5746}
5747
f340c0d1
IM
5748/**
5749 * init_idle - set up an idle thread for a given CPU
5750 * @idle: task in question
5751 * @cpu: cpu the idle task belongs to
5752 *
5753 * NOTE: this function does not set the idle thread's NEED_RESCHED
5754 * flag, to make booting more robust.
5755 */
5c1e1767 5756void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5757{
70b97a7f 5758 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5759 unsigned long flags;
5760
05fa785c 5761 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5762
dd41f596 5763 __sched_fork(idle);
06b83b5f 5764 idle->state = TASK_RUNNING;
dd41f596
IM
5765 idle->se.exec_start = sched_clock();
5766
96f874e2 5767 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5768 /*
5769 * We're having a chicken and egg problem, even though we are
5770 * holding rq->lock, the cpu isn't yet set to this cpu so the
5771 * lockdep check in task_group() will fail.
5772 *
5773 * Similar case to sched_fork(). / Alternatively we could
5774 * use task_rq_lock() here and obtain the other rq->lock.
5775 *
5776 * Silence PROVE_RCU
5777 */
5778 rcu_read_lock();
dd41f596 5779 __set_task_cpu(idle, cpu);
6506cf6c 5780 rcu_read_unlock();
1da177e4 5781
1da177e4 5782 rq->curr = rq->idle = idle;
3ca7a440
PZ
5783#if defined(CONFIG_SMP)
5784 idle->on_cpu = 1;
4866cde0 5785#endif
05fa785c 5786 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5787
5788 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5789#if defined(CONFIG_PREEMPT)
5790 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5791#else
a1261f54 5792 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5793#endif
dd41f596
IM
5794 /*
5795 * The idle tasks have their own, simple scheduling class:
5796 */
5797 idle->sched_class = &idle_sched_class;
868baf07 5798 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5799}
5800
5801/*
5802 * In a system that switches off the HZ timer nohz_cpu_mask
5803 * indicates which cpus entered this state. This is used
5804 * in the rcu update to wait only for active cpus. For system
5805 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5806 * always be CPU_BITS_NONE.
1da177e4 5807 */
6a7b3dc3 5808cpumask_var_t nohz_cpu_mask;
1da177e4 5809
19978ca6
IM
5810/*
5811 * Increase the granularity value when there are more CPUs,
5812 * because with more CPUs the 'effective latency' as visible
5813 * to users decreases. But the relationship is not linear,
5814 * so pick a second-best guess by going with the log2 of the
5815 * number of CPUs.
5816 *
5817 * This idea comes from the SD scheduler of Con Kolivas:
5818 */
acb4a848 5819static int get_update_sysctl_factor(void)
19978ca6 5820{
4ca3ef71 5821 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5822 unsigned int factor;
5823
5824 switch (sysctl_sched_tunable_scaling) {
5825 case SCHED_TUNABLESCALING_NONE:
5826 factor = 1;
5827 break;
5828 case SCHED_TUNABLESCALING_LINEAR:
5829 factor = cpus;
5830 break;
5831 case SCHED_TUNABLESCALING_LOG:
5832 default:
5833 factor = 1 + ilog2(cpus);
5834 break;
5835 }
19978ca6 5836
acb4a848
CE
5837 return factor;
5838}
19978ca6 5839
acb4a848
CE
5840static void update_sysctl(void)
5841{
5842 unsigned int factor = get_update_sysctl_factor();
19978ca6 5843
0bcdcf28
CE
5844#define SET_SYSCTL(name) \
5845 (sysctl_##name = (factor) * normalized_sysctl_##name)
5846 SET_SYSCTL(sched_min_granularity);
5847 SET_SYSCTL(sched_latency);
5848 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5849#undef SET_SYSCTL
5850}
55cd5340 5851
0bcdcf28
CE
5852static inline void sched_init_granularity(void)
5853{
5854 update_sysctl();
19978ca6
IM
5855}
5856
1da177e4
LT
5857#ifdef CONFIG_SMP
5858/*
5859 * This is how migration works:
5860 *
969c7921
TH
5861 * 1) we invoke migration_cpu_stop() on the target CPU using
5862 * stop_one_cpu().
5863 * 2) stopper starts to run (implicitly forcing the migrated thread
5864 * off the CPU)
5865 * 3) it checks whether the migrated task is still in the wrong runqueue.
5866 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5867 * it and puts it into the right queue.
969c7921
TH
5868 * 5) stopper completes and stop_one_cpu() returns and the migration
5869 * is done.
1da177e4
LT
5870 */
5871
5872/*
5873 * Change a given task's CPU affinity. Migrate the thread to a
5874 * proper CPU and schedule it away if the CPU it's executing on
5875 * is removed from the allowed bitmask.
5876 *
5877 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5878 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5879 * call is not atomic; no spinlocks may be held.
5880 */
96f874e2 5881int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5882{
5883 unsigned long flags;
70b97a7f 5884 struct rq *rq;
969c7921 5885 unsigned int dest_cpu;
48f24c4d 5886 int ret = 0;
1da177e4 5887
013fdb80
PZ
5888 raw_spin_lock_irqsave(&p->pi_lock, flags);
5889 rq = __task_rq_lock(p);
e2912009 5890
6ad4c188 5891 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5892 ret = -EINVAL;
5893 goto out;
5894 }
5895
9985b0ba 5896 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5897 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5898 ret = -EINVAL;
5899 goto out;
5900 }
5901
73fe6aae 5902 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5903 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5904 else {
96f874e2
RR
5905 cpumask_copy(&p->cpus_allowed, new_mask);
5906 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5907 }
5908
1da177e4 5909 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5910 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5911 goto out;
5912
969c7921 5913 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5914 if (migrate_task(p, rq)) {
969c7921 5915 struct migration_arg arg = { p, dest_cpu };
1da177e4 5916 /* Need help from migration thread: drop lock and wait. */
013fdb80
PZ
5917 __task_rq_unlock(rq);
5918 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
969c7921 5919 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5920 tlb_migrate_finish(p->mm);
5921 return 0;
5922 }
5923out:
013fdb80
PZ
5924 __task_rq_unlock(rq);
5925 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
48f24c4d 5926
1da177e4
LT
5927 return ret;
5928}
cd8ba7cd 5929EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5930
5931/*
41a2d6cf 5932 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5933 * this because either it can't run here any more (set_cpus_allowed()
5934 * away from this CPU, or CPU going down), or because we're
5935 * attempting to rebalance this task on exec (sched_exec).
5936 *
5937 * So we race with normal scheduler movements, but that's OK, as long
5938 * as the task is no longer on this CPU.
efc30814
KK
5939 *
5940 * Returns non-zero if task was successfully migrated.
1da177e4 5941 */
efc30814 5942static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5943{
70b97a7f 5944 struct rq *rq_dest, *rq_src;
e2912009 5945 int ret = 0;
1da177e4 5946
e761b772 5947 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5948 return ret;
1da177e4
LT
5949
5950 rq_src = cpu_rq(src_cpu);
5951 rq_dest = cpu_rq(dest_cpu);
5952
5953 double_rq_lock(rq_src, rq_dest);
5954 /* Already moved. */
5955 if (task_cpu(p) != src_cpu)
b1e38734 5956 goto done;
1da177e4 5957 /* Affinity changed (again). */
96f874e2 5958 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5959 goto fail;
1da177e4 5960
e2912009
PZ
5961 /*
5962 * If we're not on a rq, the next wake-up will ensure we're
5963 * placed properly.
5964 */
fd2f4419 5965 if (p->on_rq) {
2e1cb74a 5966 deactivate_task(rq_src, p, 0);
e2912009 5967 set_task_cpu(p, dest_cpu);
dd41f596 5968 activate_task(rq_dest, p, 0);
15afe09b 5969 check_preempt_curr(rq_dest, p, 0);
1da177e4 5970 }
b1e38734 5971done:
efc30814 5972 ret = 1;
b1e38734 5973fail:
1da177e4 5974 double_rq_unlock(rq_src, rq_dest);
efc30814 5975 return ret;
1da177e4
LT
5976}
5977
5978/*
969c7921
TH
5979 * migration_cpu_stop - this will be executed by a highprio stopper thread
5980 * and performs thread migration by bumping thread off CPU then
5981 * 'pushing' onto another runqueue.
1da177e4 5982 */
969c7921 5983static int migration_cpu_stop(void *data)
1da177e4 5984{
969c7921 5985 struct migration_arg *arg = data;
f7b4cddc 5986
969c7921
TH
5987 /*
5988 * The original target cpu might have gone down and we might
5989 * be on another cpu but it doesn't matter.
5990 */
f7b4cddc 5991 local_irq_disable();
969c7921 5992 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5993 local_irq_enable();
1da177e4 5994 return 0;
f7b4cddc
ON
5995}
5996
1da177e4 5997#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5998
054b9108 5999/*
48c5ccae
PZ
6000 * Ensures that the idle task is using init_mm right before its cpu goes
6001 * offline.
054b9108 6002 */
48c5ccae 6003void idle_task_exit(void)
1da177e4 6004{
48c5ccae 6005 struct mm_struct *mm = current->active_mm;
e76bd8d9 6006
48c5ccae 6007 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6008
48c5ccae
PZ
6009 if (mm != &init_mm)
6010 switch_mm(mm, &init_mm, current);
6011 mmdrop(mm);
1da177e4
LT
6012}
6013
6014/*
6015 * While a dead CPU has no uninterruptible tasks queued at this point,
6016 * it might still have a nonzero ->nr_uninterruptible counter, because
6017 * for performance reasons the counter is not stricly tracking tasks to
6018 * their home CPUs. So we just add the counter to another CPU's counter,
6019 * to keep the global sum constant after CPU-down:
6020 */
70b97a7f 6021static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6022{
6ad4c188 6023 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6024
1da177e4
LT
6025 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6026 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6027}
6028
dd41f596 6029/*
48c5ccae 6030 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6031 */
48c5ccae 6032static void calc_global_load_remove(struct rq *rq)
1da177e4 6033{
48c5ccae
PZ
6034 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6035 rq->calc_load_active = 0;
1da177e4
LT
6036}
6037
48f24c4d 6038/*
48c5ccae
PZ
6039 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6040 * try_to_wake_up()->select_task_rq().
6041 *
6042 * Called with rq->lock held even though we'er in stop_machine() and
6043 * there's no concurrency possible, we hold the required locks anyway
6044 * because of lock validation efforts.
1da177e4 6045 */
48c5ccae 6046static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6047{
70b97a7f 6048 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6049 struct task_struct *next, *stop = rq->stop;
6050 int dest_cpu;
1da177e4
LT
6051
6052 /*
48c5ccae
PZ
6053 * Fudge the rq selection such that the below task selection loop
6054 * doesn't get stuck on the currently eligible stop task.
6055 *
6056 * We're currently inside stop_machine() and the rq is either stuck
6057 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6058 * either way we should never end up calling schedule() until we're
6059 * done here.
1da177e4 6060 */
48c5ccae 6061 rq->stop = NULL;
48f24c4d 6062
dd41f596 6063 for ( ; ; ) {
48c5ccae
PZ
6064 /*
6065 * There's this thread running, bail when that's the only
6066 * remaining thread.
6067 */
6068 if (rq->nr_running == 1)
dd41f596 6069 break;
48c5ccae 6070
b67802ea 6071 next = pick_next_task(rq);
48c5ccae 6072 BUG_ON(!next);
79c53799 6073 next->sched_class->put_prev_task(rq, next);
e692ab53 6074
48c5ccae
PZ
6075 /* Find suitable destination for @next, with force if needed. */
6076 dest_cpu = select_fallback_rq(dead_cpu, next);
6077 raw_spin_unlock(&rq->lock);
6078
6079 __migrate_task(next, dead_cpu, dest_cpu);
6080
6081 raw_spin_lock(&rq->lock);
1da177e4 6082 }
dce48a84 6083
48c5ccae 6084 rq->stop = stop;
dce48a84 6085}
48c5ccae 6086
1da177e4
LT
6087#endif /* CONFIG_HOTPLUG_CPU */
6088
e692ab53
NP
6089#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6090
6091static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6092 {
6093 .procname = "sched_domain",
c57baf1e 6094 .mode = 0555,
e0361851 6095 },
56992309 6096 {}
e692ab53
NP
6097};
6098
6099static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6100 {
6101 .procname = "kernel",
c57baf1e 6102 .mode = 0555,
e0361851
AD
6103 .child = sd_ctl_dir,
6104 },
56992309 6105 {}
e692ab53
NP
6106};
6107
6108static struct ctl_table *sd_alloc_ctl_entry(int n)
6109{
6110 struct ctl_table *entry =
5cf9f062 6111 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6112
e692ab53
NP
6113 return entry;
6114}
6115
6382bc90
MM
6116static void sd_free_ctl_entry(struct ctl_table **tablep)
6117{
cd790076 6118 struct ctl_table *entry;
6382bc90 6119
cd790076
MM
6120 /*
6121 * In the intermediate directories, both the child directory and
6122 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6123 * will always be set. In the lowest directory the names are
cd790076
MM
6124 * static strings and all have proc handlers.
6125 */
6126 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6127 if (entry->child)
6128 sd_free_ctl_entry(&entry->child);
cd790076
MM
6129 if (entry->proc_handler == NULL)
6130 kfree(entry->procname);
6131 }
6382bc90
MM
6132
6133 kfree(*tablep);
6134 *tablep = NULL;
6135}
6136
e692ab53 6137static void
e0361851 6138set_table_entry(struct ctl_table *entry,
e692ab53
NP
6139 const char *procname, void *data, int maxlen,
6140 mode_t mode, proc_handler *proc_handler)
6141{
e692ab53
NP
6142 entry->procname = procname;
6143 entry->data = data;
6144 entry->maxlen = maxlen;
6145 entry->mode = mode;
6146 entry->proc_handler = proc_handler;
6147}
6148
6149static struct ctl_table *
6150sd_alloc_ctl_domain_table(struct sched_domain *sd)
6151{
a5d8c348 6152 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6153
ad1cdc1d
MM
6154 if (table == NULL)
6155 return NULL;
6156
e0361851 6157 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6158 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6159 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6160 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6161 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6162 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6163 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6164 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6165 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6166 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6167 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6168 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6169 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6171 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6172 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6173 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6174 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6175 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6176 &sd->cache_nice_tries,
6177 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6178 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6179 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6180 set_table_entry(&table[11], "name", sd->name,
6181 CORENAME_MAX_SIZE, 0444, proc_dostring);
6182 /* &table[12] is terminator */
e692ab53
NP
6183
6184 return table;
6185}
6186
9a4e7159 6187static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6188{
6189 struct ctl_table *entry, *table;
6190 struct sched_domain *sd;
6191 int domain_num = 0, i;
6192 char buf[32];
6193
6194 for_each_domain(cpu, sd)
6195 domain_num++;
6196 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6197 if (table == NULL)
6198 return NULL;
e692ab53
NP
6199
6200 i = 0;
6201 for_each_domain(cpu, sd) {
6202 snprintf(buf, 32, "domain%d", i);
e692ab53 6203 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6204 entry->mode = 0555;
e692ab53
NP
6205 entry->child = sd_alloc_ctl_domain_table(sd);
6206 entry++;
6207 i++;
6208 }
6209 return table;
6210}
6211
6212static struct ctl_table_header *sd_sysctl_header;
6382bc90 6213static void register_sched_domain_sysctl(void)
e692ab53 6214{
6ad4c188 6215 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6216 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6217 char buf[32];
6218
7378547f
MM
6219 WARN_ON(sd_ctl_dir[0].child);
6220 sd_ctl_dir[0].child = entry;
6221
ad1cdc1d
MM
6222 if (entry == NULL)
6223 return;
6224
6ad4c188 6225 for_each_possible_cpu(i) {
e692ab53 6226 snprintf(buf, 32, "cpu%d", i);
e692ab53 6227 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6228 entry->mode = 0555;
e692ab53 6229 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6230 entry++;
e692ab53 6231 }
7378547f
MM
6232
6233 WARN_ON(sd_sysctl_header);
e692ab53
NP
6234 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6235}
6382bc90 6236
7378547f 6237/* may be called multiple times per register */
6382bc90
MM
6238static void unregister_sched_domain_sysctl(void)
6239{
7378547f
MM
6240 if (sd_sysctl_header)
6241 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6242 sd_sysctl_header = NULL;
7378547f
MM
6243 if (sd_ctl_dir[0].child)
6244 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6245}
e692ab53 6246#else
6382bc90
MM
6247static void register_sched_domain_sysctl(void)
6248{
6249}
6250static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6251{
6252}
6253#endif
6254
1f11eb6a
GH
6255static void set_rq_online(struct rq *rq)
6256{
6257 if (!rq->online) {
6258 const struct sched_class *class;
6259
c6c4927b 6260 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6261 rq->online = 1;
6262
6263 for_each_class(class) {
6264 if (class->rq_online)
6265 class->rq_online(rq);
6266 }
6267 }
6268}
6269
6270static void set_rq_offline(struct rq *rq)
6271{
6272 if (rq->online) {
6273 const struct sched_class *class;
6274
6275 for_each_class(class) {
6276 if (class->rq_offline)
6277 class->rq_offline(rq);
6278 }
6279
c6c4927b 6280 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6281 rq->online = 0;
6282 }
6283}
6284
1da177e4
LT
6285/*
6286 * migration_call - callback that gets triggered when a CPU is added.
6287 * Here we can start up the necessary migration thread for the new CPU.
6288 */
48f24c4d
IM
6289static int __cpuinit
6290migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6291{
48f24c4d 6292 int cpu = (long)hcpu;
1da177e4 6293 unsigned long flags;
969c7921 6294 struct rq *rq = cpu_rq(cpu);
1da177e4 6295
48c5ccae 6296 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6297
1da177e4 6298 case CPU_UP_PREPARE:
a468d389 6299 rq->calc_load_update = calc_load_update;
1da177e4 6300 break;
48f24c4d 6301
1da177e4 6302 case CPU_ONLINE:
1f94ef59 6303 /* Update our root-domain */
05fa785c 6304 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6305 if (rq->rd) {
c6c4927b 6306 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6307
6308 set_rq_online(rq);
1f94ef59 6309 }
05fa785c 6310 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6311 break;
48f24c4d 6312
1da177e4 6313#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6314 case CPU_DYING:
57d885fe 6315 /* Update our root-domain */
05fa785c 6316 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6317 if (rq->rd) {
c6c4927b 6318 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6319 set_rq_offline(rq);
57d885fe 6320 }
48c5ccae
PZ
6321 migrate_tasks(cpu);
6322 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6323 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6324
6325 migrate_nr_uninterruptible(rq);
6326 calc_global_load_remove(rq);
57d885fe 6327 break;
1da177e4
LT
6328#endif
6329 }
49c022e6
PZ
6330
6331 update_max_interval();
6332
1da177e4
LT
6333 return NOTIFY_OK;
6334}
6335
f38b0820
PM
6336/*
6337 * Register at high priority so that task migration (migrate_all_tasks)
6338 * happens before everything else. This has to be lower priority than
cdd6c482 6339 * the notifier in the perf_event subsystem, though.
1da177e4 6340 */
26c2143b 6341static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6342 .notifier_call = migration_call,
50a323b7 6343 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6344};
6345
3a101d05
TH
6346static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6347 unsigned long action, void *hcpu)
6348{
6349 switch (action & ~CPU_TASKS_FROZEN) {
6350 case CPU_ONLINE:
6351 case CPU_DOWN_FAILED:
6352 set_cpu_active((long)hcpu, true);
6353 return NOTIFY_OK;
6354 default:
6355 return NOTIFY_DONE;
6356 }
6357}
6358
6359static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6360 unsigned long action, void *hcpu)
6361{
6362 switch (action & ~CPU_TASKS_FROZEN) {
6363 case CPU_DOWN_PREPARE:
6364 set_cpu_active((long)hcpu, false);
6365 return NOTIFY_OK;
6366 default:
6367 return NOTIFY_DONE;
6368 }
6369}
6370
7babe8db 6371static int __init migration_init(void)
1da177e4
LT
6372{
6373 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6374 int err;
48f24c4d 6375
3a101d05 6376 /* Initialize migration for the boot CPU */
07dccf33
AM
6377 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6378 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6379 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6380 register_cpu_notifier(&migration_notifier);
7babe8db 6381
3a101d05
TH
6382 /* Register cpu active notifiers */
6383 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6384 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6385
a004cd42 6386 return 0;
1da177e4 6387}
7babe8db 6388early_initcall(migration_init);
1da177e4
LT
6389#endif
6390
6391#ifdef CONFIG_SMP
476f3534 6392
3e9830dc 6393#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6394
f6630114
MT
6395static __read_mostly int sched_domain_debug_enabled;
6396
6397static int __init sched_domain_debug_setup(char *str)
6398{
6399 sched_domain_debug_enabled = 1;
6400
6401 return 0;
6402}
6403early_param("sched_debug", sched_domain_debug_setup);
6404
7c16ec58 6405static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6406 struct cpumask *groupmask)
1da177e4 6407{
4dcf6aff 6408 struct sched_group *group = sd->groups;
434d53b0 6409 char str[256];
1da177e4 6410
968ea6d8 6411 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6412 cpumask_clear(groupmask);
4dcf6aff
IM
6413
6414 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6415
6416 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6417 printk("does not load-balance\n");
4dcf6aff 6418 if (sd->parent)
3df0fc5b
PZ
6419 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6420 " has parent");
4dcf6aff 6421 return -1;
41c7ce9a
NP
6422 }
6423
3df0fc5b 6424 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6425
758b2cdc 6426 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6427 printk(KERN_ERR "ERROR: domain->span does not contain "
6428 "CPU%d\n", cpu);
4dcf6aff 6429 }
758b2cdc 6430 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6431 printk(KERN_ERR "ERROR: domain->groups does not contain"
6432 " CPU%d\n", cpu);
4dcf6aff 6433 }
1da177e4 6434
4dcf6aff 6435 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6436 do {
4dcf6aff 6437 if (!group) {
3df0fc5b
PZ
6438 printk("\n");
6439 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6440 break;
6441 }
6442
18a3885f 6443 if (!group->cpu_power) {
3df0fc5b
PZ
6444 printk(KERN_CONT "\n");
6445 printk(KERN_ERR "ERROR: domain->cpu_power not "
6446 "set\n");
4dcf6aff
IM
6447 break;
6448 }
1da177e4 6449
758b2cdc 6450 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6451 printk(KERN_CONT "\n");
6452 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6453 break;
6454 }
1da177e4 6455
758b2cdc 6456 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6457 printk(KERN_CONT "\n");
6458 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6459 break;
6460 }
1da177e4 6461
758b2cdc 6462 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6463
968ea6d8 6464 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6465
3df0fc5b 6466 printk(KERN_CONT " %s", str);
18a3885f 6467 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6468 printk(KERN_CONT " (cpu_power = %d)",
6469 group->cpu_power);
381512cf 6470 }
1da177e4 6471
4dcf6aff
IM
6472 group = group->next;
6473 } while (group != sd->groups);
3df0fc5b 6474 printk(KERN_CONT "\n");
1da177e4 6475
758b2cdc 6476 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6477 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6478
758b2cdc
RR
6479 if (sd->parent &&
6480 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6481 printk(KERN_ERR "ERROR: parent span is not a superset "
6482 "of domain->span\n");
4dcf6aff
IM
6483 return 0;
6484}
1da177e4 6485
4dcf6aff
IM
6486static void sched_domain_debug(struct sched_domain *sd, int cpu)
6487{
d5dd3db1 6488 cpumask_var_t groupmask;
4dcf6aff 6489 int level = 0;
1da177e4 6490
f6630114
MT
6491 if (!sched_domain_debug_enabled)
6492 return;
6493
4dcf6aff
IM
6494 if (!sd) {
6495 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6496 return;
6497 }
1da177e4 6498
4dcf6aff
IM
6499 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6500
d5dd3db1 6501 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6502 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6503 return;
6504 }
6505
4dcf6aff 6506 for (;;) {
7c16ec58 6507 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6508 break;
1da177e4
LT
6509 level++;
6510 sd = sd->parent;
33859f7f 6511 if (!sd)
4dcf6aff
IM
6512 break;
6513 }
d5dd3db1 6514 free_cpumask_var(groupmask);
1da177e4 6515}
6d6bc0ad 6516#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6517# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6518#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6519
1a20ff27 6520static int sd_degenerate(struct sched_domain *sd)
245af2c7 6521{
758b2cdc 6522 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6523 return 1;
6524
6525 /* Following flags need at least 2 groups */
6526 if (sd->flags & (SD_LOAD_BALANCE |
6527 SD_BALANCE_NEWIDLE |
6528 SD_BALANCE_FORK |
89c4710e
SS
6529 SD_BALANCE_EXEC |
6530 SD_SHARE_CPUPOWER |
6531 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6532 if (sd->groups != sd->groups->next)
6533 return 0;
6534 }
6535
6536 /* Following flags don't use groups */
c88d5910 6537 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6538 return 0;
6539
6540 return 1;
6541}
6542
48f24c4d
IM
6543static int
6544sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6545{
6546 unsigned long cflags = sd->flags, pflags = parent->flags;
6547
6548 if (sd_degenerate(parent))
6549 return 1;
6550
758b2cdc 6551 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6552 return 0;
6553
245af2c7
SS
6554 /* Flags needing groups don't count if only 1 group in parent */
6555 if (parent->groups == parent->groups->next) {
6556 pflags &= ~(SD_LOAD_BALANCE |
6557 SD_BALANCE_NEWIDLE |
6558 SD_BALANCE_FORK |
89c4710e
SS
6559 SD_BALANCE_EXEC |
6560 SD_SHARE_CPUPOWER |
6561 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6562 if (nr_node_ids == 1)
6563 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6564 }
6565 if (~cflags & pflags)
6566 return 0;
6567
6568 return 1;
6569}
6570
c6c4927b
RR
6571static void free_rootdomain(struct root_domain *rd)
6572{
047106ad
PZ
6573 synchronize_sched();
6574
68e74568
RR
6575 cpupri_cleanup(&rd->cpupri);
6576
c6c4927b
RR
6577 free_cpumask_var(rd->rto_mask);
6578 free_cpumask_var(rd->online);
6579 free_cpumask_var(rd->span);
6580 kfree(rd);
6581}
6582
57d885fe
GH
6583static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6584{
a0490fa3 6585 struct root_domain *old_rd = NULL;
57d885fe 6586 unsigned long flags;
57d885fe 6587
05fa785c 6588 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6589
6590 if (rq->rd) {
a0490fa3 6591 old_rd = rq->rd;
57d885fe 6592
c6c4927b 6593 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6594 set_rq_offline(rq);
57d885fe 6595
c6c4927b 6596 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6597
a0490fa3
IM
6598 /*
6599 * If we dont want to free the old_rt yet then
6600 * set old_rd to NULL to skip the freeing later
6601 * in this function:
6602 */
6603 if (!atomic_dec_and_test(&old_rd->refcount))
6604 old_rd = NULL;
57d885fe
GH
6605 }
6606
6607 atomic_inc(&rd->refcount);
6608 rq->rd = rd;
6609
c6c4927b 6610 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6611 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6612 set_rq_online(rq);
57d885fe 6613
05fa785c 6614 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6615
6616 if (old_rd)
6617 free_rootdomain(old_rd);
57d885fe
GH
6618}
6619
68c38fc3 6620static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6621{
6622 memset(rd, 0, sizeof(*rd));
6623
68c38fc3 6624 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6625 goto out;
68c38fc3 6626 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6627 goto free_span;
68c38fc3 6628 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6629 goto free_online;
6e0534f2 6630
68c38fc3 6631 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6632 goto free_rto_mask;
c6c4927b 6633 return 0;
6e0534f2 6634
68e74568
RR
6635free_rto_mask:
6636 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6637free_online:
6638 free_cpumask_var(rd->online);
6639free_span:
6640 free_cpumask_var(rd->span);
0c910d28 6641out:
c6c4927b 6642 return -ENOMEM;
57d885fe
GH
6643}
6644
6645static void init_defrootdomain(void)
6646{
68c38fc3 6647 init_rootdomain(&def_root_domain);
c6c4927b 6648
57d885fe
GH
6649 atomic_set(&def_root_domain.refcount, 1);
6650}
6651
dc938520 6652static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6653{
6654 struct root_domain *rd;
6655
6656 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6657 if (!rd)
6658 return NULL;
6659
68c38fc3 6660 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6661 kfree(rd);
6662 return NULL;
6663 }
57d885fe
GH
6664
6665 return rd;
6666}
6667
1da177e4 6668/*
0eab9146 6669 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6670 * hold the hotplug lock.
6671 */
0eab9146
IM
6672static void
6673cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6674{
70b97a7f 6675 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6676 struct sched_domain *tmp;
6677
669c55e9
PZ
6678 for (tmp = sd; tmp; tmp = tmp->parent)
6679 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6680
245af2c7 6681 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6682 for (tmp = sd; tmp; ) {
245af2c7
SS
6683 struct sched_domain *parent = tmp->parent;
6684 if (!parent)
6685 break;
f29c9b1c 6686
1a848870 6687 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6688 tmp->parent = parent->parent;
1a848870
SS
6689 if (parent->parent)
6690 parent->parent->child = tmp;
f29c9b1c
LZ
6691 } else
6692 tmp = tmp->parent;
245af2c7
SS
6693 }
6694
1a848870 6695 if (sd && sd_degenerate(sd)) {
245af2c7 6696 sd = sd->parent;
1a848870
SS
6697 if (sd)
6698 sd->child = NULL;
6699 }
1da177e4
LT
6700
6701 sched_domain_debug(sd, cpu);
6702
57d885fe 6703 rq_attach_root(rq, rd);
674311d5 6704 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6705}
6706
6707/* cpus with isolated domains */
dcc30a35 6708static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6709
6710/* Setup the mask of cpus configured for isolated domains */
6711static int __init isolated_cpu_setup(char *str)
6712{
bdddd296 6713 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6714 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6715 return 1;
6716}
6717
8927f494 6718__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6719
6720/*
6711cab4
SS
6721 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6722 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6723 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6724 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6725 *
6726 * init_sched_build_groups will build a circular linked list of the groups
6727 * covered by the given span, and will set each group's ->cpumask correctly,
6728 * and ->cpu_power to 0.
6729 */
a616058b 6730static void
96f874e2
RR
6731init_sched_build_groups(const struct cpumask *span,
6732 const struct cpumask *cpu_map,
6733 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6734 struct sched_group **sg,
96f874e2
RR
6735 struct cpumask *tmpmask),
6736 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6737{
6738 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6739 int i;
6740
96f874e2 6741 cpumask_clear(covered);
7c16ec58 6742
abcd083a 6743 for_each_cpu(i, span) {
6711cab4 6744 struct sched_group *sg;
7c16ec58 6745 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6746 int j;
6747
758b2cdc 6748 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6749 continue;
6750
758b2cdc 6751 cpumask_clear(sched_group_cpus(sg));
18a3885f 6752 sg->cpu_power = 0;
1da177e4 6753
abcd083a 6754 for_each_cpu(j, span) {
7c16ec58 6755 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6756 continue;
6757
96f874e2 6758 cpumask_set_cpu(j, covered);
758b2cdc 6759 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6760 }
6761 if (!first)
6762 first = sg;
6763 if (last)
6764 last->next = sg;
6765 last = sg;
6766 }
6767 last->next = first;
6768}
6769
9c1cfda2 6770#define SD_NODES_PER_DOMAIN 16
1da177e4 6771
9c1cfda2 6772#ifdef CONFIG_NUMA
198e2f18 6773
9c1cfda2
JH
6774/**
6775 * find_next_best_node - find the next node to include in a sched_domain
6776 * @node: node whose sched_domain we're building
6777 * @used_nodes: nodes already in the sched_domain
6778 *
41a2d6cf 6779 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6780 * finds the closest node not already in the @used_nodes map.
6781 *
6782 * Should use nodemask_t.
6783 */
c5f59f08 6784static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6785{
6786 int i, n, val, min_val, best_node = 0;
6787
6788 min_val = INT_MAX;
6789
076ac2af 6790 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6791 /* Start at @node */
076ac2af 6792 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6793
6794 if (!nr_cpus_node(n))
6795 continue;
6796
6797 /* Skip already used nodes */
c5f59f08 6798 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6799 continue;
6800
6801 /* Simple min distance search */
6802 val = node_distance(node, n);
6803
6804 if (val < min_val) {
6805 min_val = val;
6806 best_node = n;
6807 }
6808 }
6809
c5f59f08 6810 node_set(best_node, *used_nodes);
9c1cfda2
JH
6811 return best_node;
6812}
6813
6814/**
6815 * sched_domain_node_span - get a cpumask for a node's sched_domain
6816 * @node: node whose cpumask we're constructing
73486722 6817 * @span: resulting cpumask
9c1cfda2 6818 *
41a2d6cf 6819 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6820 * should be one that prevents unnecessary balancing, but also spreads tasks
6821 * out optimally.
6822 */
96f874e2 6823static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6824{
c5f59f08 6825 nodemask_t used_nodes;
48f24c4d 6826 int i;
9c1cfda2 6827
6ca09dfc 6828 cpumask_clear(span);
c5f59f08 6829 nodes_clear(used_nodes);
9c1cfda2 6830
6ca09dfc 6831 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6832 node_set(node, used_nodes);
9c1cfda2
JH
6833
6834 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6835 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6836
6ca09dfc 6837 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6838 }
9c1cfda2 6839}
6d6bc0ad 6840#endif /* CONFIG_NUMA */
9c1cfda2 6841
5c45bf27 6842int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6843
6c99e9ad
RR
6844/*
6845 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6846 *
6847 * ( See the the comments in include/linux/sched.h:struct sched_group
6848 * and struct sched_domain. )
6c99e9ad
RR
6849 */
6850struct static_sched_group {
6851 struct sched_group sg;
6852 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6853};
6854
6855struct static_sched_domain {
6856 struct sched_domain sd;
6857 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6858};
6859
49a02c51
AH
6860struct s_data {
6861#ifdef CONFIG_NUMA
6862 int sd_allnodes;
6863 cpumask_var_t domainspan;
6864 cpumask_var_t covered;
6865 cpumask_var_t notcovered;
6866#endif
6867 cpumask_var_t nodemask;
6868 cpumask_var_t this_sibling_map;
6869 cpumask_var_t this_core_map;
01a08546 6870 cpumask_var_t this_book_map;
49a02c51
AH
6871 cpumask_var_t send_covered;
6872 cpumask_var_t tmpmask;
6873 struct sched_group **sched_group_nodes;
6874 struct root_domain *rd;
6875};
6876
2109b99e
AH
6877enum s_alloc {
6878 sa_sched_groups = 0,
6879 sa_rootdomain,
6880 sa_tmpmask,
6881 sa_send_covered,
01a08546 6882 sa_this_book_map,
2109b99e
AH
6883 sa_this_core_map,
6884 sa_this_sibling_map,
6885 sa_nodemask,
6886 sa_sched_group_nodes,
6887#ifdef CONFIG_NUMA
6888 sa_notcovered,
6889 sa_covered,
6890 sa_domainspan,
6891#endif
6892 sa_none,
6893};
6894
9c1cfda2 6895/*
48f24c4d 6896 * SMT sched-domains:
9c1cfda2 6897 */
1da177e4 6898#ifdef CONFIG_SCHED_SMT
6c99e9ad 6899static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6900static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6901
41a2d6cf 6902static int
96f874e2
RR
6903cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6904 struct sched_group **sg, struct cpumask *unused)
1da177e4 6905{
6711cab4 6906 if (sg)
1871e52c 6907 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6908 return cpu;
6909}
6d6bc0ad 6910#endif /* CONFIG_SCHED_SMT */
1da177e4 6911
48f24c4d
IM
6912/*
6913 * multi-core sched-domains:
6914 */
1e9f28fa 6915#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6916static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6917static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6918
41a2d6cf 6919static int
96f874e2
RR
6920cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6921 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6922{
6711cab4 6923 int group;
f269893c 6924#ifdef CONFIG_SCHED_SMT
c69fc56d 6925 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6926 group = cpumask_first(mask);
f269893c
HC
6927#else
6928 group = cpu;
6929#endif
6711cab4 6930 if (sg)
6c99e9ad 6931 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6932 return group;
1e9f28fa 6933}
f269893c 6934#endif /* CONFIG_SCHED_MC */
1e9f28fa 6935
01a08546
HC
6936/*
6937 * book sched-domains:
6938 */
6939#ifdef CONFIG_SCHED_BOOK
6940static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6941static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6942
41a2d6cf 6943static int
01a08546
HC
6944cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6945 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6946{
01a08546
HC
6947 int group = cpu;
6948#ifdef CONFIG_SCHED_MC
6949 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6950 group = cpumask_first(mask);
6951#elif defined(CONFIG_SCHED_SMT)
6952 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6953 group = cpumask_first(mask);
6954#endif
6711cab4 6955 if (sg)
01a08546
HC
6956 *sg = &per_cpu(sched_group_book, group).sg;
6957 return group;
1e9f28fa 6958}
01a08546 6959#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6960
6c99e9ad
RR
6961static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6962static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6963
41a2d6cf 6964static int
96f874e2
RR
6965cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6966 struct sched_group **sg, struct cpumask *mask)
1da177e4 6967{
6711cab4 6968 int group;
01a08546
HC
6969#ifdef CONFIG_SCHED_BOOK
6970 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6971 group = cpumask_first(mask);
6972#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6973 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6974 group = cpumask_first(mask);
1e9f28fa 6975#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6976 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6977 group = cpumask_first(mask);
1da177e4 6978#else
6711cab4 6979 group = cpu;
1da177e4 6980#endif
6711cab4 6981 if (sg)
6c99e9ad 6982 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6983 return group;
1da177e4
LT
6984}
6985
6986#ifdef CONFIG_NUMA
1da177e4 6987/*
9c1cfda2
JH
6988 * The init_sched_build_groups can't handle what we want to do with node
6989 * groups, so roll our own. Now each node has its own list of groups which
6990 * gets dynamically allocated.
1da177e4 6991 */
62ea9ceb 6992static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6993static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6994
62ea9ceb 6995static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6996static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6997
96f874e2
RR
6998static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6999 struct sched_group **sg,
7000 struct cpumask *nodemask)
9c1cfda2 7001{
6711cab4
SS
7002 int group;
7003
6ca09dfc 7004 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7005 group = cpumask_first(nodemask);
6711cab4
SS
7006
7007 if (sg)
6c99e9ad 7008 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7009 return group;
1da177e4 7010}
6711cab4 7011
08069033
SS
7012static void init_numa_sched_groups_power(struct sched_group *group_head)
7013{
7014 struct sched_group *sg = group_head;
7015 int j;
7016
7017 if (!sg)
7018 return;
3a5c359a 7019 do {
758b2cdc 7020 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7021 struct sched_domain *sd;
08069033 7022
6c99e9ad 7023 sd = &per_cpu(phys_domains, j).sd;
13318a71 7024 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7025 /*
7026 * Only add "power" once for each
7027 * physical package.
7028 */
7029 continue;
7030 }
08069033 7031
18a3885f 7032 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7033 }
7034 sg = sg->next;
7035 } while (sg != group_head);
08069033 7036}
0601a88d
AH
7037
7038static int build_numa_sched_groups(struct s_data *d,
7039 const struct cpumask *cpu_map, int num)
7040{
7041 struct sched_domain *sd;
7042 struct sched_group *sg, *prev;
7043 int n, j;
7044
7045 cpumask_clear(d->covered);
7046 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7047 if (cpumask_empty(d->nodemask)) {
7048 d->sched_group_nodes[num] = NULL;
7049 goto out;
7050 }
7051
7052 sched_domain_node_span(num, d->domainspan);
7053 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7054
7055 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7056 GFP_KERNEL, num);
7057 if (!sg) {
3df0fc5b
PZ
7058 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7059 num);
0601a88d
AH
7060 return -ENOMEM;
7061 }
7062 d->sched_group_nodes[num] = sg;
7063
7064 for_each_cpu(j, d->nodemask) {
7065 sd = &per_cpu(node_domains, j).sd;
7066 sd->groups = sg;
7067 }
7068
18a3885f 7069 sg->cpu_power = 0;
0601a88d
AH
7070 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7071 sg->next = sg;
7072 cpumask_or(d->covered, d->covered, d->nodemask);
7073
7074 prev = sg;
7075 for (j = 0; j < nr_node_ids; j++) {
7076 n = (num + j) % nr_node_ids;
7077 cpumask_complement(d->notcovered, d->covered);
7078 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7079 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7080 if (cpumask_empty(d->tmpmask))
7081 break;
7082 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7083 if (cpumask_empty(d->tmpmask))
7084 continue;
7085 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7086 GFP_KERNEL, num);
7087 if (!sg) {
3df0fc5b
PZ
7088 printk(KERN_WARNING
7089 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7090 return -ENOMEM;
7091 }
18a3885f 7092 sg->cpu_power = 0;
0601a88d
AH
7093 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7094 sg->next = prev->next;
7095 cpumask_or(d->covered, d->covered, d->tmpmask);
7096 prev->next = sg;
7097 prev = sg;
7098 }
7099out:
7100 return 0;
7101}
6d6bc0ad 7102#endif /* CONFIG_NUMA */
1da177e4 7103
a616058b 7104#ifdef CONFIG_NUMA
51888ca2 7105/* Free memory allocated for various sched_group structures */
96f874e2
RR
7106static void free_sched_groups(const struct cpumask *cpu_map,
7107 struct cpumask *nodemask)
51888ca2 7108{
a616058b 7109 int cpu, i;
51888ca2 7110
abcd083a 7111 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7112 struct sched_group **sched_group_nodes
7113 = sched_group_nodes_bycpu[cpu];
7114
51888ca2
SV
7115 if (!sched_group_nodes)
7116 continue;
7117
076ac2af 7118 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7119 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7120
6ca09dfc 7121 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7122 if (cpumask_empty(nodemask))
51888ca2
SV
7123 continue;
7124
7125 if (sg == NULL)
7126 continue;
7127 sg = sg->next;
7128next_sg:
7129 oldsg = sg;
7130 sg = sg->next;
7131 kfree(oldsg);
7132 if (oldsg != sched_group_nodes[i])
7133 goto next_sg;
7134 }
7135 kfree(sched_group_nodes);
7136 sched_group_nodes_bycpu[cpu] = NULL;
7137 }
51888ca2 7138}
6d6bc0ad 7139#else /* !CONFIG_NUMA */
96f874e2
RR
7140static void free_sched_groups(const struct cpumask *cpu_map,
7141 struct cpumask *nodemask)
a616058b
SS
7142{
7143}
6d6bc0ad 7144#endif /* CONFIG_NUMA */
51888ca2 7145
89c4710e
SS
7146/*
7147 * Initialize sched groups cpu_power.
7148 *
7149 * cpu_power indicates the capacity of sched group, which is used while
7150 * distributing the load between different sched groups in a sched domain.
7151 * Typically cpu_power for all the groups in a sched domain will be same unless
7152 * there are asymmetries in the topology. If there are asymmetries, group
7153 * having more cpu_power will pickup more load compared to the group having
7154 * less cpu_power.
89c4710e
SS
7155 */
7156static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7157{
7158 struct sched_domain *child;
7159 struct sched_group *group;
f93e65c1
PZ
7160 long power;
7161 int weight;
89c4710e
SS
7162
7163 WARN_ON(!sd || !sd->groups);
7164
13318a71 7165 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7166 return;
7167
aae6d3dd
SS
7168 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7169
89c4710e
SS
7170 child = sd->child;
7171
18a3885f 7172 sd->groups->cpu_power = 0;
5517d86b 7173
f93e65c1
PZ
7174 if (!child) {
7175 power = SCHED_LOAD_SCALE;
7176 weight = cpumask_weight(sched_domain_span(sd));
7177 /*
7178 * SMT siblings share the power of a single core.
a52bfd73
PZ
7179 * Usually multiple threads get a better yield out of
7180 * that one core than a single thread would have,
7181 * reflect that in sd->smt_gain.
f93e65c1 7182 */
a52bfd73
PZ
7183 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7184 power *= sd->smt_gain;
f93e65c1 7185 power /= weight;
a52bfd73
PZ
7186 power >>= SCHED_LOAD_SHIFT;
7187 }
18a3885f 7188 sd->groups->cpu_power += power;
89c4710e
SS
7189 return;
7190 }
7191
89c4710e 7192 /*
f93e65c1 7193 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7194 */
7195 group = child->groups;
7196 do {
18a3885f 7197 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7198 group = group->next;
7199 } while (group != child->groups);
7200}
7201
7c16ec58
MT
7202/*
7203 * Initializers for schedule domains
7204 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7205 */
7206
a5d8c348
IM
7207#ifdef CONFIG_SCHED_DEBUG
7208# define SD_INIT_NAME(sd, type) sd->name = #type
7209#else
7210# define SD_INIT_NAME(sd, type) do { } while (0)
7211#endif
7212
7c16ec58 7213#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7214
7c16ec58
MT
7215#define SD_INIT_FUNC(type) \
7216static noinline void sd_init_##type(struct sched_domain *sd) \
7217{ \
7218 memset(sd, 0, sizeof(*sd)); \
7219 *sd = SD_##type##_INIT; \
1d3504fc 7220 sd->level = SD_LV_##type; \
a5d8c348 7221 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7222}
7223
7224SD_INIT_FUNC(CPU)
7225#ifdef CONFIG_NUMA
7226 SD_INIT_FUNC(ALLNODES)
7227 SD_INIT_FUNC(NODE)
7228#endif
7229#ifdef CONFIG_SCHED_SMT
7230 SD_INIT_FUNC(SIBLING)
7231#endif
7232#ifdef CONFIG_SCHED_MC
7233 SD_INIT_FUNC(MC)
7234#endif
01a08546
HC
7235#ifdef CONFIG_SCHED_BOOK
7236 SD_INIT_FUNC(BOOK)
7237#endif
7c16ec58 7238
1d3504fc
HS
7239static int default_relax_domain_level = -1;
7240
7241static int __init setup_relax_domain_level(char *str)
7242{
30e0e178
LZ
7243 unsigned long val;
7244
7245 val = simple_strtoul(str, NULL, 0);
7246 if (val < SD_LV_MAX)
7247 default_relax_domain_level = val;
7248
1d3504fc
HS
7249 return 1;
7250}
7251__setup("relax_domain_level=", setup_relax_domain_level);
7252
7253static void set_domain_attribute(struct sched_domain *sd,
7254 struct sched_domain_attr *attr)
7255{
7256 int request;
7257
7258 if (!attr || attr->relax_domain_level < 0) {
7259 if (default_relax_domain_level < 0)
7260 return;
7261 else
7262 request = default_relax_domain_level;
7263 } else
7264 request = attr->relax_domain_level;
7265 if (request < sd->level) {
7266 /* turn off idle balance on this domain */
c88d5910 7267 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7268 } else {
7269 /* turn on idle balance on this domain */
c88d5910 7270 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7271 }
7272}
7273
2109b99e
AH
7274static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7275 const struct cpumask *cpu_map)
7276{
7277 switch (what) {
7278 case sa_sched_groups:
7279 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7280 d->sched_group_nodes = NULL;
7281 case sa_rootdomain:
7282 free_rootdomain(d->rd); /* fall through */
7283 case sa_tmpmask:
7284 free_cpumask_var(d->tmpmask); /* fall through */
7285 case sa_send_covered:
7286 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7287 case sa_this_book_map:
7288 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7289 case sa_this_core_map:
7290 free_cpumask_var(d->this_core_map); /* fall through */
7291 case sa_this_sibling_map:
7292 free_cpumask_var(d->this_sibling_map); /* fall through */
7293 case sa_nodemask:
7294 free_cpumask_var(d->nodemask); /* fall through */
7295 case sa_sched_group_nodes:
d1b55138 7296#ifdef CONFIG_NUMA
2109b99e
AH
7297 kfree(d->sched_group_nodes); /* fall through */
7298 case sa_notcovered:
7299 free_cpumask_var(d->notcovered); /* fall through */
7300 case sa_covered:
7301 free_cpumask_var(d->covered); /* fall through */
7302 case sa_domainspan:
7303 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7304#endif
2109b99e
AH
7305 case sa_none:
7306 break;
7307 }
7308}
3404c8d9 7309
2109b99e
AH
7310static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7311 const struct cpumask *cpu_map)
7312{
3404c8d9 7313#ifdef CONFIG_NUMA
2109b99e
AH
7314 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7315 return sa_none;
7316 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7317 return sa_domainspan;
7318 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7319 return sa_covered;
7320 /* Allocate the per-node list of sched groups */
7321 d->sched_group_nodes = kcalloc(nr_node_ids,
7322 sizeof(struct sched_group *), GFP_KERNEL);
7323 if (!d->sched_group_nodes) {
3df0fc5b 7324 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7325 return sa_notcovered;
d1b55138 7326 }
2109b99e 7327 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7328#endif
2109b99e
AH
7329 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7330 return sa_sched_group_nodes;
7331 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7332 return sa_nodemask;
7333 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7334 return sa_this_sibling_map;
01a08546 7335 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7336 return sa_this_core_map;
01a08546
HC
7337 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7338 return sa_this_book_map;
2109b99e
AH
7339 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7340 return sa_send_covered;
7341 d->rd = alloc_rootdomain();
7342 if (!d->rd) {
3df0fc5b 7343 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7344 return sa_tmpmask;
57d885fe 7345 }
2109b99e
AH
7346 return sa_rootdomain;
7347}
57d885fe 7348
7f4588f3
AH
7349static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7350 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7351{
7352 struct sched_domain *sd = NULL;
7c16ec58 7353#ifdef CONFIG_NUMA
7f4588f3 7354 struct sched_domain *parent;
1da177e4 7355
7f4588f3
AH
7356 d->sd_allnodes = 0;
7357 if (cpumask_weight(cpu_map) >
7358 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7359 sd = &per_cpu(allnodes_domains, i).sd;
7360 SD_INIT(sd, ALLNODES);
1d3504fc 7361 set_domain_attribute(sd, attr);
7f4588f3
AH
7362 cpumask_copy(sched_domain_span(sd), cpu_map);
7363 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7364 d->sd_allnodes = 1;
7365 }
7366 parent = sd;
7367
7368 sd = &per_cpu(node_domains, i).sd;
7369 SD_INIT(sd, NODE);
7370 set_domain_attribute(sd, attr);
7371 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7372 sd->parent = parent;
7373 if (parent)
7374 parent->child = sd;
7375 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7376#endif
7f4588f3
AH
7377 return sd;
7378}
1da177e4 7379
87cce662
AH
7380static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7381 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7382 struct sched_domain *parent, int i)
7383{
7384 struct sched_domain *sd;
7385 sd = &per_cpu(phys_domains, i).sd;
7386 SD_INIT(sd, CPU);
7387 set_domain_attribute(sd, attr);
7388 cpumask_copy(sched_domain_span(sd), d->nodemask);
7389 sd->parent = parent;
7390 if (parent)
7391 parent->child = sd;
7392 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7393 return sd;
7394}
1da177e4 7395
01a08546
HC
7396static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7397 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7398 struct sched_domain *parent, int i)
7399{
7400 struct sched_domain *sd = parent;
7401#ifdef CONFIG_SCHED_BOOK
7402 sd = &per_cpu(book_domains, i).sd;
7403 SD_INIT(sd, BOOK);
7404 set_domain_attribute(sd, attr);
7405 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7406 sd->parent = parent;
7407 parent->child = sd;
7408 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7409#endif
7410 return sd;
7411}
7412
410c4081
AH
7413static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7414 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7415 struct sched_domain *parent, int i)
7416{
7417 struct sched_domain *sd = parent;
1e9f28fa 7418#ifdef CONFIG_SCHED_MC
410c4081
AH
7419 sd = &per_cpu(core_domains, i).sd;
7420 SD_INIT(sd, MC);
7421 set_domain_attribute(sd, attr);
7422 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7423 sd->parent = parent;
7424 parent->child = sd;
7425 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7426#endif
410c4081
AH
7427 return sd;
7428}
1e9f28fa 7429
d8173535
AH
7430static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7431 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7432 struct sched_domain *parent, int i)
7433{
7434 struct sched_domain *sd = parent;
1da177e4 7435#ifdef CONFIG_SCHED_SMT
d8173535
AH
7436 sd = &per_cpu(cpu_domains, i).sd;
7437 SD_INIT(sd, SIBLING);
7438 set_domain_attribute(sd, attr);
7439 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7440 sd->parent = parent;
7441 parent->child = sd;
7442 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7443#endif
d8173535
AH
7444 return sd;
7445}
1da177e4 7446
0e8e85c9
AH
7447static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7448 const struct cpumask *cpu_map, int cpu)
7449{
7450 switch (l) {
1da177e4 7451#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7452 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7453 cpumask_and(d->this_sibling_map, cpu_map,
7454 topology_thread_cpumask(cpu));
7455 if (cpu == cpumask_first(d->this_sibling_map))
7456 init_sched_build_groups(d->this_sibling_map, cpu_map,
7457 &cpu_to_cpu_group,
7458 d->send_covered, d->tmpmask);
7459 break;
1da177e4 7460#endif
1e9f28fa 7461#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7462 case SD_LV_MC: /* set up multi-core groups */
7463 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7464 if (cpu == cpumask_first(d->this_core_map))
7465 init_sched_build_groups(d->this_core_map, cpu_map,
7466 &cpu_to_core_group,
7467 d->send_covered, d->tmpmask);
7468 break;
01a08546
HC
7469#endif
7470#ifdef CONFIG_SCHED_BOOK
7471 case SD_LV_BOOK: /* set up book groups */
7472 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7473 if (cpu == cpumask_first(d->this_book_map))
7474 init_sched_build_groups(d->this_book_map, cpu_map,
7475 &cpu_to_book_group,
7476 d->send_covered, d->tmpmask);
7477 break;
1e9f28fa 7478#endif
86548096
AH
7479 case SD_LV_CPU: /* set up physical groups */
7480 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7481 if (!cpumask_empty(d->nodemask))
7482 init_sched_build_groups(d->nodemask, cpu_map,
7483 &cpu_to_phys_group,
7484 d->send_covered, d->tmpmask);
7485 break;
1da177e4 7486#ifdef CONFIG_NUMA
de616e36
AH
7487 case SD_LV_ALLNODES:
7488 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7489 d->send_covered, d->tmpmask);
7490 break;
7491#endif
0e8e85c9
AH
7492 default:
7493 break;
7c16ec58 7494 }
0e8e85c9 7495}
9c1cfda2 7496
2109b99e
AH
7497/*
7498 * Build sched domains for a given set of cpus and attach the sched domains
7499 * to the individual cpus
7500 */
7501static int __build_sched_domains(const struct cpumask *cpu_map,
7502 struct sched_domain_attr *attr)
7503{
7504 enum s_alloc alloc_state = sa_none;
7505 struct s_data d;
294b0c96 7506 struct sched_domain *sd;
2109b99e 7507 int i;
7c16ec58 7508#ifdef CONFIG_NUMA
2109b99e 7509 d.sd_allnodes = 0;
7c16ec58 7510#endif
9c1cfda2 7511
2109b99e
AH
7512 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7513 if (alloc_state != sa_rootdomain)
7514 goto error;
7515 alloc_state = sa_sched_groups;
9c1cfda2 7516
1da177e4 7517 /*
1a20ff27 7518 * Set up domains for cpus specified by the cpu_map.
1da177e4 7519 */
abcd083a 7520 for_each_cpu(i, cpu_map) {
49a02c51
AH
7521 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7522 cpu_map);
9761eea8 7523
7f4588f3 7524 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7525 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7526 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7527 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7528 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7529 }
9c1cfda2 7530
abcd083a 7531 for_each_cpu(i, cpu_map) {
0e8e85c9 7532 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7533 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7534 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7535 }
9c1cfda2 7536
1da177e4 7537 /* Set up physical groups */
86548096
AH
7538 for (i = 0; i < nr_node_ids; i++)
7539 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7540
1da177e4
LT
7541#ifdef CONFIG_NUMA
7542 /* Set up node groups */
de616e36
AH
7543 if (d.sd_allnodes)
7544 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7545
0601a88d
AH
7546 for (i = 0; i < nr_node_ids; i++)
7547 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7548 goto error;
1da177e4
LT
7549#endif
7550
7551 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7552#ifdef CONFIG_SCHED_SMT
abcd083a 7553 for_each_cpu(i, cpu_map) {
294b0c96 7554 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7555 init_sched_groups_power(i, sd);
5c45bf27 7556 }
1da177e4 7557#endif
1e9f28fa 7558#ifdef CONFIG_SCHED_MC
abcd083a 7559 for_each_cpu(i, cpu_map) {
294b0c96 7560 sd = &per_cpu(core_domains, i).sd;
89c4710e 7561 init_sched_groups_power(i, sd);
5c45bf27
SS
7562 }
7563#endif
01a08546
HC
7564#ifdef CONFIG_SCHED_BOOK
7565 for_each_cpu(i, cpu_map) {
7566 sd = &per_cpu(book_domains, i).sd;
7567 init_sched_groups_power(i, sd);
7568 }
7569#endif
1e9f28fa 7570
abcd083a 7571 for_each_cpu(i, cpu_map) {
294b0c96 7572 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7573 init_sched_groups_power(i, sd);
1da177e4
LT
7574 }
7575
9c1cfda2 7576#ifdef CONFIG_NUMA
076ac2af 7577 for (i = 0; i < nr_node_ids; i++)
49a02c51 7578 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7579
49a02c51 7580 if (d.sd_allnodes) {
6711cab4 7581 struct sched_group *sg;
f712c0c7 7582
96f874e2 7583 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7584 d.tmpmask);
f712c0c7
SS
7585 init_numa_sched_groups_power(sg);
7586 }
9c1cfda2
JH
7587#endif
7588
1da177e4 7589 /* Attach the domains */
abcd083a 7590 for_each_cpu(i, cpu_map) {
1da177e4 7591#ifdef CONFIG_SCHED_SMT
6c99e9ad 7592 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7593#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7594 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7595#elif defined(CONFIG_SCHED_BOOK)
7596 sd = &per_cpu(book_domains, i).sd;
1da177e4 7597#else
6c99e9ad 7598 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7599#endif
49a02c51 7600 cpu_attach_domain(sd, d.rd, i);
1da177e4 7601 }
51888ca2 7602
2109b99e
AH
7603 d.sched_group_nodes = NULL; /* don't free this we still need it */
7604 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7605 return 0;
51888ca2 7606
51888ca2 7607error:
2109b99e
AH
7608 __free_domain_allocs(&d, alloc_state, cpu_map);
7609 return -ENOMEM;
1da177e4 7610}
029190c5 7611
96f874e2 7612static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7613{
7614 return __build_sched_domains(cpu_map, NULL);
7615}
7616
acc3f5d7 7617static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7618static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7619static struct sched_domain_attr *dattr_cur;
7620 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7621
7622/*
7623 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7624 * cpumask) fails, then fallback to a single sched domain,
7625 * as determined by the single cpumask fallback_doms.
029190c5 7626 */
4212823f 7627static cpumask_var_t fallback_doms;
029190c5 7628
ee79d1bd
HC
7629/*
7630 * arch_update_cpu_topology lets virtualized architectures update the
7631 * cpu core maps. It is supposed to return 1 if the topology changed
7632 * or 0 if it stayed the same.
7633 */
7634int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7635{
ee79d1bd 7636 return 0;
22e52b07
HC
7637}
7638
acc3f5d7
RR
7639cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7640{
7641 int i;
7642 cpumask_var_t *doms;
7643
7644 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7645 if (!doms)
7646 return NULL;
7647 for (i = 0; i < ndoms; i++) {
7648 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7649 free_sched_domains(doms, i);
7650 return NULL;
7651 }
7652 }
7653 return doms;
7654}
7655
7656void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7657{
7658 unsigned int i;
7659 for (i = 0; i < ndoms; i++)
7660 free_cpumask_var(doms[i]);
7661 kfree(doms);
7662}
7663
1a20ff27 7664/*
41a2d6cf 7665 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7666 * For now this just excludes isolated cpus, but could be used to
7667 * exclude other special cases in the future.
1a20ff27 7668 */
96f874e2 7669static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7670{
7378547f
MM
7671 int err;
7672
22e52b07 7673 arch_update_cpu_topology();
029190c5 7674 ndoms_cur = 1;
acc3f5d7 7675 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7676 if (!doms_cur)
acc3f5d7
RR
7677 doms_cur = &fallback_doms;
7678 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7679 dattr_cur = NULL;
acc3f5d7 7680 err = build_sched_domains(doms_cur[0]);
6382bc90 7681 register_sched_domain_sysctl();
7378547f
MM
7682
7683 return err;
1a20ff27
DG
7684}
7685
96f874e2
RR
7686static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7687 struct cpumask *tmpmask)
1da177e4 7688{
7c16ec58 7689 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7690}
1da177e4 7691
1a20ff27
DG
7692/*
7693 * Detach sched domains from a group of cpus specified in cpu_map
7694 * These cpus will now be attached to the NULL domain
7695 */
96f874e2 7696static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7697{
96f874e2
RR
7698 /* Save because hotplug lock held. */
7699 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7700 int i;
7701
abcd083a 7702 for_each_cpu(i, cpu_map)
57d885fe 7703 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7704 synchronize_sched();
96f874e2 7705 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7706}
7707
1d3504fc
HS
7708/* handle null as "default" */
7709static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7710 struct sched_domain_attr *new, int idx_new)
7711{
7712 struct sched_domain_attr tmp;
7713
7714 /* fast path */
7715 if (!new && !cur)
7716 return 1;
7717
7718 tmp = SD_ATTR_INIT;
7719 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7720 new ? (new + idx_new) : &tmp,
7721 sizeof(struct sched_domain_attr));
7722}
7723
029190c5
PJ
7724/*
7725 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7726 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7727 * doms_new[] to the current sched domain partitioning, doms_cur[].
7728 * It destroys each deleted domain and builds each new domain.
7729 *
acc3f5d7 7730 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7731 * The masks don't intersect (don't overlap.) We should setup one
7732 * sched domain for each mask. CPUs not in any of the cpumasks will
7733 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7734 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7735 * it as it is.
7736 *
acc3f5d7
RR
7737 * The passed in 'doms_new' should be allocated using
7738 * alloc_sched_domains. This routine takes ownership of it and will
7739 * free_sched_domains it when done with it. If the caller failed the
7740 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7741 * and partition_sched_domains() will fallback to the single partition
7742 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7743 *
96f874e2 7744 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7745 * ndoms_new == 0 is a special case for destroying existing domains,
7746 * and it will not create the default domain.
dfb512ec 7747 *
029190c5
PJ
7748 * Call with hotplug lock held
7749 */
acc3f5d7 7750void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7751 struct sched_domain_attr *dattr_new)
029190c5 7752{
dfb512ec 7753 int i, j, n;
d65bd5ec 7754 int new_topology;
029190c5 7755
712555ee 7756 mutex_lock(&sched_domains_mutex);
a1835615 7757
7378547f
MM
7758 /* always unregister in case we don't destroy any domains */
7759 unregister_sched_domain_sysctl();
7760
d65bd5ec
HC
7761 /* Let architecture update cpu core mappings. */
7762 new_topology = arch_update_cpu_topology();
7763
dfb512ec 7764 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7765
7766 /* Destroy deleted domains */
7767 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7768 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7769 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7770 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7771 goto match1;
7772 }
7773 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7774 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7775match1:
7776 ;
7777 }
7778
e761b772
MK
7779 if (doms_new == NULL) {
7780 ndoms_cur = 0;
acc3f5d7 7781 doms_new = &fallback_doms;
6ad4c188 7782 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7783 WARN_ON_ONCE(dattr_new);
e761b772
MK
7784 }
7785
029190c5
PJ
7786 /* Build new domains */
7787 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7788 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7789 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7790 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7791 goto match2;
7792 }
7793 /* no match - add a new doms_new */
acc3f5d7 7794 __build_sched_domains(doms_new[i],
1d3504fc 7795 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7796match2:
7797 ;
7798 }
7799
7800 /* Remember the new sched domains */
acc3f5d7
RR
7801 if (doms_cur != &fallback_doms)
7802 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7803 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7804 doms_cur = doms_new;
1d3504fc 7805 dattr_cur = dattr_new;
029190c5 7806 ndoms_cur = ndoms_new;
7378547f
MM
7807
7808 register_sched_domain_sysctl();
a1835615 7809
712555ee 7810 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7811}
7812
5c45bf27 7813#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7814static void arch_reinit_sched_domains(void)
5c45bf27 7815{
95402b38 7816 get_online_cpus();
dfb512ec
MK
7817
7818 /* Destroy domains first to force the rebuild */
7819 partition_sched_domains(0, NULL, NULL);
7820
e761b772 7821 rebuild_sched_domains();
95402b38 7822 put_online_cpus();
5c45bf27
SS
7823}
7824
7825static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7826{
afb8a9b7 7827 unsigned int level = 0;
5c45bf27 7828
afb8a9b7
GS
7829 if (sscanf(buf, "%u", &level) != 1)
7830 return -EINVAL;
7831
7832 /*
7833 * level is always be positive so don't check for
7834 * level < POWERSAVINGS_BALANCE_NONE which is 0
7835 * What happens on 0 or 1 byte write,
7836 * need to check for count as well?
7837 */
7838
7839 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7840 return -EINVAL;
7841
7842 if (smt)
afb8a9b7 7843 sched_smt_power_savings = level;
5c45bf27 7844 else
afb8a9b7 7845 sched_mc_power_savings = level;
5c45bf27 7846
c70f22d2 7847 arch_reinit_sched_domains();
5c45bf27 7848
c70f22d2 7849 return count;
5c45bf27
SS
7850}
7851
5c45bf27 7852#ifdef CONFIG_SCHED_MC
f718cd4a 7853static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7854 struct sysdev_class_attribute *attr,
f718cd4a 7855 char *page)
5c45bf27
SS
7856{
7857 return sprintf(page, "%u\n", sched_mc_power_savings);
7858}
f718cd4a 7859static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7860 struct sysdev_class_attribute *attr,
48f24c4d 7861 const char *buf, size_t count)
5c45bf27
SS
7862{
7863 return sched_power_savings_store(buf, count, 0);
7864}
f718cd4a
AK
7865static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7866 sched_mc_power_savings_show,
7867 sched_mc_power_savings_store);
5c45bf27
SS
7868#endif
7869
7870#ifdef CONFIG_SCHED_SMT
f718cd4a 7871static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7872 struct sysdev_class_attribute *attr,
f718cd4a 7873 char *page)
5c45bf27
SS
7874{
7875 return sprintf(page, "%u\n", sched_smt_power_savings);
7876}
f718cd4a 7877static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7878 struct sysdev_class_attribute *attr,
48f24c4d 7879 const char *buf, size_t count)
5c45bf27
SS
7880{
7881 return sched_power_savings_store(buf, count, 1);
7882}
f718cd4a
AK
7883static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7884 sched_smt_power_savings_show,
6707de00
AB
7885 sched_smt_power_savings_store);
7886#endif
7887
39aac648 7888int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7889{
7890 int err = 0;
7891
7892#ifdef CONFIG_SCHED_SMT
7893 if (smt_capable())
7894 err = sysfs_create_file(&cls->kset.kobj,
7895 &attr_sched_smt_power_savings.attr);
7896#endif
7897#ifdef CONFIG_SCHED_MC
7898 if (!err && mc_capable())
7899 err = sysfs_create_file(&cls->kset.kobj,
7900 &attr_sched_mc_power_savings.attr);
7901#endif
7902 return err;
7903}
6d6bc0ad 7904#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7905
1da177e4 7906/*
3a101d05
TH
7907 * Update cpusets according to cpu_active mask. If cpusets are
7908 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7909 * around partition_sched_domains().
1da177e4 7910 */
0b2e918a
TH
7911static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7912 void *hcpu)
e761b772 7913{
3a101d05 7914 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7915 case CPU_ONLINE:
6ad4c188 7916 case CPU_DOWN_FAILED:
3a101d05 7917 cpuset_update_active_cpus();
e761b772 7918 return NOTIFY_OK;
3a101d05
TH
7919 default:
7920 return NOTIFY_DONE;
7921 }
7922}
e761b772 7923
0b2e918a
TH
7924static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7925 void *hcpu)
3a101d05
TH
7926{
7927 switch (action & ~CPU_TASKS_FROZEN) {
7928 case CPU_DOWN_PREPARE:
7929 cpuset_update_active_cpus();
7930 return NOTIFY_OK;
e761b772
MK
7931 default:
7932 return NOTIFY_DONE;
7933 }
7934}
e761b772
MK
7935
7936static int update_runtime(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
1da177e4 7938{
7def2be1
PZ
7939 int cpu = (int)(long)hcpu;
7940
1da177e4 7941 switch (action) {
1da177e4 7942 case CPU_DOWN_PREPARE:
8bb78442 7943 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7944 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7945 return NOTIFY_OK;
7946
1da177e4 7947 case CPU_DOWN_FAILED:
8bb78442 7948 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7949 case CPU_ONLINE:
8bb78442 7950 case CPU_ONLINE_FROZEN:
7def2be1 7951 enable_runtime(cpu_rq(cpu));
e761b772
MK
7952 return NOTIFY_OK;
7953
1da177e4
LT
7954 default:
7955 return NOTIFY_DONE;
7956 }
1da177e4 7957}
1da177e4
LT
7958
7959void __init sched_init_smp(void)
7960{
dcc30a35
RR
7961 cpumask_var_t non_isolated_cpus;
7962
7963 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7964 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7965
434d53b0
MT
7966#if defined(CONFIG_NUMA)
7967 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7968 GFP_KERNEL);
7969 BUG_ON(sched_group_nodes_bycpu == NULL);
7970#endif
95402b38 7971 get_online_cpus();
712555ee 7972 mutex_lock(&sched_domains_mutex);
6ad4c188 7973 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7974 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7975 if (cpumask_empty(non_isolated_cpus))
7976 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7977 mutex_unlock(&sched_domains_mutex);
95402b38 7978 put_online_cpus();
e761b772 7979
3a101d05
TH
7980 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7981 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7982
7983 /* RT runtime code needs to handle some hotplug events */
7984 hotcpu_notifier(update_runtime, 0);
7985
b328ca18 7986 init_hrtick();
5c1e1767
NP
7987
7988 /* Move init over to a non-isolated CPU */
dcc30a35 7989 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7990 BUG();
19978ca6 7991 sched_init_granularity();
dcc30a35 7992 free_cpumask_var(non_isolated_cpus);
4212823f 7993
0e3900e6 7994 init_sched_rt_class();
1da177e4
LT
7995}
7996#else
7997void __init sched_init_smp(void)
7998{
19978ca6 7999 sched_init_granularity();
1da177e4
LT
8000}
8001#endif /* CONFIG_SMP */
8002
cd1bb94b
AB
8003const_debug unsigned int sysctl_timer_migration = 1;
8004
1da177e4
LT
8005int in_sched_functions(unsigned long addr)
8006{
1da177e4
LT
8007 return in_lock_functions(addr) ||
8008 (addr >= (unsigned long)__sched_text_start
8009 && addr < (unsigned long)__sched_text_end);
8010}
8011
a9957449 8012static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8013{
8014 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8015 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8016#ifdef CONFIG_FAIR_GROUP_SCHED
8017 cfs_rq->rq = rq;
f07333bf 8018 /* allow initial update_cfs_load() to truncate */
6ea72f12 8019#ifdef CONFIG_SMP
f07333bf 8020 cfs_rq->load_stamp = 1;
6ea72f12 8021#endif
dd41f596 8022#endif
67e9fb2a 8023 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8024}
8025
fa85ae24
PZ
8026static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8027{
8028 struct rt_prio_array *array;
8029 int i;
8030
8031 array = &rt_rq->active;
8032 for (i = 0; i < MAX_RT_PRIO; i++) {
8033 INIT_LIST_HEAD(array->queue + i);
8034 __clear_bit(i, array->bitmap);
8035 }
8036 /* delimiter for bitsearch: */
8037 __set_bit(MAX_RT_PRIO, array->bitmap);
8038
052f1dc7 8039#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8040 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8041#ifdef CONFIG_SMP
e864c499 8042 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8043#endif
48d5e258 8044#endif
fa85ae24
PZ
8045#ifdef CONFIG_SMP
8046 rt_rq->rt_nr_migratory = 0;
fa85ae24 8047 rt_rq->overloaded = 0;
05fa785c 8048 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8049#endif
8050
8051 rt_rq->rt_time = 0;
8052 rt_rq->rt_throttled = 0;
ac086bc2 8053 rt_rq->rt_runtime = 0;
0986b11b 8054 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8055
052f1dc7 8056#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8057 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8058 rt_rq->rq = rq;
8059#endif
fa85ae24
PZ
8060}
8061
6f505b16 8062#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8063static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8064 struct sched_entity *se, int cpu,
ec7dc8ac 8065 struct sched_entity *parent)
6f505b16 8066{
ec7dc8ac 8067 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8068 tg->cfs_rq[cpu] = cfs_rq;
8069 init_cfs_rq(cfs_rq, rq);
8070 cfs_rq->tg = tg;
6f505b16
PZ
8071
8072 tg->se[cpu] = se;
07e06b01 8073 /* se could be NULL for root_task_group */
354d60c2
DG
8074 if (!se)
8075 return;
8076
ec7dc8ac
DG
8077 if (!parent)
8078 se->cfs_rq = &rq->cfs;
8079 else
8080 se->cfs_rq = parent->my_q;
8081
6f505b16 8082 se->my_q = cfs_rq;
9437178f 8083 update_load_set(&se->load, 0);
ec7dc8ac 8084 se->parent = parent;
6f505b16 8085}
052f1dc7 8086#endif
6f505b16 8087
052f1dc7 8088#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8089static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8090 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8091 struct sched_rt_entity *parent)
6f505b16 8092{
ec7dc8ac
DG
8093 struct rq *rq = cpu_rq(cpu);
8094
6f505b16
PZ
8095 tg->rt_rq[cpu] = rt_rq;
8096 init_rt_rq(rt_rq, rq);
8097 rt_rq->tg = tg;
ac086bc2 8098 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8099
8100 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8101 if (!rt_se)
8102 return;
8103
ec7dc8ac
DG
8104 if (!parent)
8105 rt_se->rt_rq = &rq->rt;
8106 else
8107 rt_se->rt_rq = parent->my_q;
8108
6f505b16 8109 rt_se->my_q = rt_rq;
ec7dc8ac 8110 rt_se->parent = parent;
6f505b16
PZ
8111 INIT_LIST_HEAD(&rt_se->run_list);
8112}
8113#endif
8114
1da177e4
LT
8115void __init sched_init(void)
8116{
dd41f596 8117 int i, j;
434d53b0
MT
8118 unsigned long alloc_size = 0, ptr;
8119
8120#ifdef CONFIG_FAIR_GROUP_SCHED
8121 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8122#endif
8123#ifdef CONFIG_RT_GROUP_SCHED
8124 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8125#endif
df7c8e84 8126#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8127 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8128#endif
434d53b0 8129 if (alloc_size) {
36b7b6d4 8130 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8131
8132#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8133 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8134 ptr += nr_cpu_ids * sizeof(void **);
8135
07e06b01 8136 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8137 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8138
6d6bc0ad 8139#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8140#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8141 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
07e06b01 8144 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8145 ptr += nr_cpu_ids * sizeof(void **);
8146
6d6bc0ad 8147#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8148#ifdef CONFIG_CPUMASK_OFFSTACK
8149 for_each_possible_cpu(i) {
8150 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8151 ptr += cpumask_size();
8152 }
8153#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8154 }
dd41f596 8155
57d885fe
GH
8156#ifdef CONFIG_SMP
8157 init_defrootdomain();
8158#endif
8159
d0b27fa7
PZ
8160 init_rt_bandwidth(&def_rt_bandwidth,
8161 global_rt_period(), global_rt_runtime());
8162
8163#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8164 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8165 global_rt_period(), global_rt_runtime());
6d6bc0ad 8166#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8167
7c941438 8168#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8169 list_add(&root_task_group.list, &task_groups);
8170 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8171 autogroup_init(&init_task);
7c941438 8172#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8173
0a945022 8174 for_each_possible_cpu(i) {
70b97a7f 8175 struct rq *rq;
1da177e4
LT
8176
8177 rq = cpu_rq(i);
05fa785c 8178 raw_spin_lock_init(&rq->lock);
7897986b 8179 rq->nr_running = 0;
dce48a84
TG
8180 rq->calc_load_active = 0;
8181 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8182 init_cfs_rq(&rq->cfs, rq);
6f505b16 8183 init_rt_rq(&rq->rt, rq);
dd41f596 8184#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8185 root_task_group.shares = root_task_group_load;
6f505b16 8186 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8187 /*
07e06b01 8188 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8189 *
8190 * In case of task-groups formed thr' the cgroup filesystem, it
8191 * gets 100% of the cpu resources in the system. This overall
8192 * system cpu resource is divided among the tasks of
07e06b01 8193 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8194 * based on each entity's (task or task-group's) weight
8195 * (se->load.weight).
8196 *
07e06b01 8197 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8198 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8199 * then A0's share of the cpu resource is:
8200 *
0d905bca 8201 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8202 *
07e06b01
YZ
8203 * We achieve this by letting root_task_group's tasks sit
8204 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8205 */
07e06b01 8206 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8207#endif /* CONFIG_FAIR_GROUP_SCHED */
8208
8209 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8210#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8211 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8212 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8213#endif
1da177e4 8214
dd41f596
IM
8215 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8216 rq->cpu_load[j] = 0;
fdf3e95d
VP
8217
8218 rq->last_load_update_tick = jiffies;
8219
1da177e4 8220#ifdef CONFIG_SMP
41c7ce9a 8221 rq->sd = NULL;
57d885fe 8222 rq->rd = NULL;
e51fd5e2 8223 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8224 rq->post_schedule = 0;
1da177e4 8225 rq->active_balance = 0;
dd41f596 8226 rq->next_balance = jiffies;
1da177e4 8227 rq->push_cpu = 0;
0a2966b4 8228 rq->cpu = i;
1f11eb6a 8229 rq->online = 0;
eae0c9df
MG
8230 rq->idle_stamp = 0;
8231 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8232 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8233#ifdef CONFIG_NO_HZ
8234 rq->nohz_balance_kick = 0;
8235 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8236#endif
1da177e4 8237#endif
8f4d37ec 8238 init_rq_hrtick(rq);
1da177e4 8239 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8240 }
8241
2dd73a4f 8242 set_load_weight(&init_task);
b50f60ce 8243
e107be36
AK
8244#ifdef CONFIG_PREEMPT_NOTIFIERS
8245 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8246#endif
8247
c9819f45 8248#ifdef CONFIG_SMP
962cf36c 8249 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8250#endif
8251
b50f60ce 8252#ifdef CONFIG_RT_MUTEXES
1d615482 8253 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8254#endif
8255
1da177e4
LT
8256 /*
8257 * The boot idle thread does lazy MMU switching as well:
8258 */
8259 atomic_inc(&init_mm.mm_count);
8260 enter_lazy_tlb(&init_mm, current);
8261
8262 /*
8263 * Make us the idle thread. Technically, schedule() should not be
8264 * called from this thread, however somewhere below it might be,
8265 * but because we are the idle thread, we just pick up running again
8266 * when this runqueue becomes "idle".
8267 */
8268 init_idle(current, smp_processor_id());
dce48a84
TG
8269
8270 calc_load_update = jiffies + LOAD_FREQ;
8271
dd41f596
IM
8272 /*
8273 * During early bootup we pretend to be a normal task:
8274 */
8275 current->sched_class = &fair_sched_class;
6892b75e 8276
6a7b3dc3 8277 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8278 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8279#ifdef CONFIG_SMP
7d1e6a9b 8280#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8281 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8282 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8283 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8284 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8285 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8286#endif
bdddd296
RR
8287 /* May be allocated at isolcpus cmdline parse time */
8288 if (cpu_isolated_map == NULL)
8289 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8290#endif /* SMP */
6a7b3dc3 8291
6892b75e 8292 scheduler_running = 1;
1da177e4
LT
8293}
8294
8295#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8296static inline int preempt_count_equals(int preempt_offset)
8297{
234da7bc 8298 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8299
4ba8216c 8300 return (nested == preempt_offset);
e4aafea2
FW
8301}
8302
d894837f 8303void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8304{
48f24c4d 8305#ifdef in_atomic
1da177e4
LT
8306 static unsigned long prev_jiffy; /* ratelimiting */
8307
e4aafea2
FW
8308 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8309 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8310 return;
8311 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8312 return;
8313 prev_jiffy = jiffies;
8314
3df0fc5b
PZ
8315 printk(KERN_ERR
8316 "BUG: sleeping function called from invalid context at %s:%d\n",
8317 file, line);
8318 printk(KERN_ERR
8319 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8320 in_atomic(), irqs_disabled(),
8321 current->pid, current->comm);
aef745fc
IM
8322
8323 debug_show_held_locks(current);
8324 if (irqs_disabled())
8325 print_irqtrace_events(current);
8326 dump_stack();
1da177e4
LT
8327#endif
8328}
8329EXPORT_SYMBOL(__might_sleep);
8330#endif
8331
8332#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8333static void normalize_task(struct rq *rq, struct task_struct *p)
8334{
da7a735e
PZ
8335 const struct sched_class *prev_class = p->sched_class;
8336 int old_prio = p->prio;
3a5e4dc1 8337 int on_rq;
3e51f33f 8338
fd2f4419 8339 on_rq = p->on_rq;
3a5e4dc1
AK
8340 if (on_rq)
8341 deactivate_task(rq, p, 0);
8342 __setscheduler(rq, p, SCHED_NORMAL, 0);
8343 if (on_rq) {
8344 activate_task(rq, p, 0);
8345 resched_task(rq->curr);
8346 }
da7a735e
PZ
8347
8348 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8349}
8350
1da177e4
LT
8351void normalize_rt_tasks(void)
8352{
a0f98a1c 8353 struct task_struct *g, *p;
1da177e4 8354 unsigned long flags;
70b97a7f 8355 struct rq *rq;
1da177e4 8356
4cf5d77a 8357 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8358 do_each_thread(g, p) {
178be793
IM
8359 /*
8360 * Only normalize user tasks:
8361 */
8362 if (!p->mm)
8363 continue;
8364
6cfb0d5d 8365 p->se.exec_start = 0;
6cfb0d5d 8366#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8367 p->se.statistics.wait_start = 0;
8368 p->se.statistics.sleep_start = 0;
8369 p->se.statistics.block_start = 0;
6cfb0d5d 8370#endif
dd41f596
IM
8371
8372 if (!rt_task(p)) {
8373 /*
8374 * Renice negative nice level userspace
8375 * tasks back to 0:
8376 */
8377 if (TASK_NICE(p) < 0 && p->mm)
8378 set_user_nice(p, 0);
1da177e4 8379 continue;
dd41f596 8380 }
1da177e4 8381
1d615482 8382 raw_spin_lock(&p->pi_lock);
b29739f9 8383 rq = __task_rq_lock(p);
1da177e4 8384
178be793 8385 normalize_task(rq, p);
3a5e4dc1 8386
b29739f9 8387 __task_rq_unlock(rq);
1d615482 8388 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8389 } while_each_thread(g, p);
8390
4cf5d77a 8391 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8392}
8393
8394#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8395
67fc4e0c 8396#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8397/*
67fc4e0c 8398 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8399 *
8400 * They can only be called when the whole system has been
8401 * stopped - every CPU needs to be quiescent, and no scheduling
8402 * activity can take place. Using them for anything else would
8403 * be a serious bug, and as a result, they aren't even visible
8404 * under any other configuration.
8405 */
8406
8407/**
8408 * curr_task - return the current task for a given cpu.
8409 * @cpu: the processor in question.
8410 *
8411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8412 */
36c8b586 8413struct task_struct *curr_task(int cpu)
1df5c10a
LT
8414{
8415 return cpu_curr(cpu);
8416}
8417
67fc4e0c
JW
8418#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8419
8420#ifdef CONFIG_IA64
1df5c10a
LT
8421/**
8422 * set_curr_task - set the current task for a given cpu.
8423 * @cpu: the processor in question.
8424 * @p: the task pointer to set.
8425 *
8426 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8427 * are serviced on a separate stack. It allows the architecture to switch the
8428 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8429 * must be called with all CPU's synchronized, and interrupts disabled, the
8430 * and caller must save the original value of the current task (see
8431 * curr_task() above) and restore that value before reenabling interrupts and
8432 * re-starting the system.
8433 *
8434 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8435 */
36c8b586 8436void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8437{
8438 cpu_curr(cpu) = p;
8439}
8440
8441#endif
29f59db3 8442
bccbe08a
PZ
8443#ifdef CONFIG_FAIR_GROUP_SCHED
8444static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8445{
8446 int i;
8447
8448 for_each_possible_cpu(i) {
8449 if (tg->cfs_rq)
8450 kfree(tg->cfs_rq[i]);
8451 if (tg->se)
8452 kfree(tg->se[i]);
6f505b16
PZ
8453 }
8454
8455 kfree(tg->cfs_rq);
8456 kfree(tg->se);
6f505b16
PZ
8457}
8458
ec7dc8ac
DG
8459static
8460int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8461{
29f59db3 8462 struct cfs_rq *cfs_rq;
eab17229 8463 struct sched_entity *se;
29f59db3
SV
8464 int i;
8465
434d53b0 8466 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8467 if (!tg->cfs_rq)
8468 goto err;
434d53b0 8469 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8470 if (!tg->se)
8471 goto err;
052f1dc7
PZ
8472
8473 tg->shares = NICE_0_LOAD;
29f59db3
SV
8474
8475 for_each_possible_cpu(i) {
eab17229
LZ
8476 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8477 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8478 if (!cfs_rq)
8479 goto err;
8480
eab17229
LZ
8481 se = kzalloc_node(sizeof(struct sched_entity),
8482 GFP_KERNEL, cpu_to_node(i));
29f59db3 8483 if (!se)
dfc12eb2 8484 goto err_free_rq;
29f59db3 8485
3d4b47b4 8486 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8487 }
8488
8489 return 1;
8490
49246274 8491err_free_rq:
dfc12eb2 8492 kfree(cfs_rq);
49246274 8493err:
bccbe08a
PZ
8494 return 0;
8495}
8496
bccbe08a
PZ
8497static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8498{
3d4b47b4
PZ
8499 struct rq *rq = cpu_rq(cpu);
8500 unsigned long flags;
3d4b47b4
PZ
8501
8502 /*
8503 * Only empty task groups can be destroyed; so we can speculatively
8504 * check on_list without danger of it being re-added.
8505 */
8506 if (!tg->cfs_rq[cpu]->on_list)
8507 return;
8508
8509 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8510 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8511 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8512}
6d6bc0ad 8513#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8514static inline void free_fair_sched_group(struct task_group *tg)
8515{
8516}
8517
ec7dc8ac
DG
8518static inline
8519int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8520{
8521 return 1;
8522}
8523
bccbe08a
PZ
8524static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8525{
8526}
6d6bc0ad 8527#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8528
8529#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8530static void free_rt_sched_group(struct task_group *tg)
8531{
8532 int i;
8533
d0b27fa7
PZ
8534 destroy_rt_bandwidth(&tg->rt_bandwidth);
8535
bccbe08a
PZ
8536 for_each_possible_cpu(i) {
8537 if (tg->rt_rq)
8538 kfree(tg->rt_rq[i]);
8539 if (tg->rt_se)
8540 kfree(tg->rt_se[i]);
8541 }
8542
8543 kfree(tg->rt_rq);
8544 kfree(tg->rt_se);
8545}
8546
ec7dc8ac
DG
8547static
8548int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8549{
8550 struct rt_rq *rt_rq;
eab17229 8551 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8552 struct rq *rq;
8553 int i;
8554
434d53b0 8555 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8556 if (!tg->rt_rq)
8557 goto err;
434d53b0 8558 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8559 if (!tg->rt_se)
8560 goto err;
8561
d0b27fa7
PZ
8562 init_rt_bandwidth(&tg->rt_bandwidth,
8563 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8564
8565 for_each_possible_cpu(i) {
8566 rq = cpu_rq(i);
8567
eab17229
LZ
8568 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8569 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8570 if (!rt_rq)
8571 goto err;
29f59db3 8572
eab17229
LZ
8573 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8574 GFP_KERNEL, cpu_to_node(i));
6f505b16 8575 if (!rt_se)
dfc12eb2 8576 goto err_free_rq;
29f59db3 8577
3d4b47b4 8578 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8579 }
8580
bccbe08a
PZ
8581 return 1;
8582
49246274 8583err_free_rq:
dfc12eb2 8584 kfree(rt_rq);
49246274 8585err:
bccbe08a
PZ
8586 return 0;
8587}
6d6bc0ad 8588#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8589static inline void free_rt_sched_group(struct task_group *tg)
8590{
8591}
8592
ec7dc8ac
DG
8593static inline
8594int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8595{
8596 return 1;
8597}
6d6bc0ad 8598#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8599
7c941438 8600#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8601static void free_sched_group(struct task_group *tg)
8602{
8603 free_fair_sched_group(tg);
8604 free_rt_sched_group(tg);
e9aa1dd1 8605 autogroup_free(tg);
bccbe08a
PZ
8606 kfree(tg);
8607}
8608
8609/* allocate runqueue etc for a new task group */
ec7dc8ac 8610struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8611{
8612 struct task_group *tg;
8613 unsigned long flags;
bccbe08a
PZ
8614
8615 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8616 if (!tg)
8617 return ERR_PTR(-ENOMEM);
8618
ec7dc8ac 8619 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8620 goto err;
8621
ec7dc8ac 8622 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8623 goto err;
8624
8ed36996 8625 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8626 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8627
8628 WARN_ON(!parent); /* root should already exist */
8629
8630 tg->parent = parent;
f473aa5e 8631 INIT_LIST_HEAD(&tg->children);
09f2724a 8632 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8633 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8634
9b5b7751 8635 return tg;
29f59db3
SV
8636
8637err:
6f505b16 8638 free_sched_group(tg);
29f59db3
SV
8639 return ERR_PTR(-ENOMEM);
8640}
8641
9b5b7751 8642/* rcu callback to free various structures associated with a task group */
6f505b16 8643static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8644{
29f59db3 8645 /* now it should be safe to free those cfs_rqs */
6f505b16 8646 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8647}
8648
9b5b7751 8649/* Destroy runqueue etc associated with a task group */
4cf86d77 8650void sched_destroy_group(struct task_group *tg)
29f59db3 8651{
8ed36996 8652 unsigned long flags;
9b5b7751 8653 int i;
29f59db3 8654
3d4b47b4
PZ
8655 /* end participation in shares distribution */
8656 for_each_possible_cpu(i)
bccbe08a 8657 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8658
8659 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8660 list_del_rcu(&tg->list);
f473aa5e 8661 list_del_rcu(&tg->siblings);
8ed36996 8662 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8663
9b5b7751 8664 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8665 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8666}
8667
9b5b7751 8668/* change task's runqueue when it moves between groups.
3a252015
IM
8669 * The caller of this function should have put the task in its new group
8670 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8671 * reflect its new group.
9b5b7751
SV
8672 */
8673void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8674{
8675 int on_rq, running;
8676 unsigned long flags;
8677 struct rq *rq;
8678
8679 rq = task_rq_lock(tsk, &flags);
8680
051a1d1a 8681 running = task_current(rq, tsk);
fd2f4419 8682 on_rq = tsk->on_rq;
29f59db3 8683
0e1f3483 8684 if (on_rq)
29f59db3 8685 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8686 if (unlikely(running))
8687 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8688
810b3817 8689#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8690 if (tsk->sched_class->task_move_group)
8691 tsk->sched_class->task_move_group(tsk, on_rq);
8692 else
810b3817 8693#endif
b2b5ce02 8694 set_task_rq(tsk, task_cpu(tsk));
810b3817 8695
0e1f3483
HS
8696 if (unlikely(running))
8697 tsk->sched_class->set_curr_task(rq);
8698 if (on_rq)
371fd7e7 8699 enqueue_task(rq, tsk, 0);
29f59db3 8700
29f59db3
SV
8701 task_rq_unlock(rq, &flags);
8702}
7c941438 8703#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8704
052f1dc7 8705#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8706static DEFINE_MUTEX(shares_mutex);
8707
4cf86d77 8708int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8709{
8710 int i;
8ed36996 8711 unsigned long flags;
c61935fd 8712
ec7dc8ac
DG
8713 /*
8714 * We can't change the weight of the root cgroup.
8715 */
8716 if (!tg->se[0])
8717 return -EINVAL;
8718
18d95a28
PZ
8719 if (shares < MIN_SHARES)
8720 shares = MIN_SHARES;
cb4ad1ff
MX
8721 else if (shares > MAX_SHARES)
8722 shares = MAX_SHARES;
62fb1851 8723
8ed36996 8724 mutex_lock(&shares_mutex);
9b5b7751 8725 if (tg->shares == shares)
5cb350ba 8726 goto done;
29f59db3 8727
9b5b7751 8728 tg->shares = shares;
c09595f6 8729 for_each_possible_cpu(i) {
9437178f
PT
8730 struct rq *rq = cpu_rq(i);
8731 struct sched_entity *se;
8732
8733 se = tg->se[i];
8734 /* Propagate contribution to hierarchy */
8735 raw_spin_lock_irqsave(&rq->lock, flags);
8736 for_each_sched_entity(se)
6d5ab293 8737 update_cfs_shares(group_cfs_rq(se));
9437178f 8738 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8739 }
29f59db3 8740
5cb350ba 8741done:
8ed36996 8742 mutex_unlock(&shares_mutex);
9b5b7751 8743 return 0;
29f59db3
SV
8744}
8745
5cb350ba
DG
8746unsigned long sched_group_shares(struct task_group *tg)
8747{
8748 return tg->shares;
8749}
052f1dc7 8750#endif
5cb350ba 8751
052f1dc7 8752#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8753/*
9f0c1e56 8754 * Ensure that the real time constraints are schedulable.
6f505b16 8755 */
9f0c1e56
PZ
8756static DEFINE_MUTEX(rt_constraints_mutex);
8757
8758static unsigned long to_ratio(u64 period, u64 runtime)
8759{
8760 if (runtime == RUNTIME_INF)
9a7e0b18 8761 return 1ULL << 20;
9f0c1e56 8762
9a7e0b18 8763 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8764}
8765
9a7e0b18
PZ
8766/* Must be called with tasklist_lock held */
8767static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8768{
9a7e0b18 8769 struct task_struct *g, *p;
b40b2e8e 8770
9a7e0b18
PZ
8771 do_each_thread(g, p) {
8772 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8773 return 1;
8774 } while_each_thread(g, p);
b40b2e8e 8775
9a7e0b18
PZ
8776 return 0;
8777}
b40b2e8e 8778
9a7e0b18
PZ
8779struct rt_schedulable_data {
8780 struct task_group *tg;
8781 u64 rt_period;
8782 u64 rt_runtime;
8783};
b40b2e8e 8784
9a7e0b18
PZ
8785static int tg_schedulable(struct task_group *tg, void *data)
8786{
8787 struct rt_schedulable_data *d = data;
8788 struct task_group *child;
8789 unsigned long total, sum = 0;
8790 u64 period, runtime;
b40b2e8e 8791
9a7e0b18
PZ
8792 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8793 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8794
9a7e0b18
PZ
8795 if (tg == d->tg) {
8796 period = d->rt_period;
8797 runtime = d->rt_runtime;
b40b2e8e 8798 }
b40b2e8e 8799
4653f803
PZ
8800 /*
8801 * Cannot have more runtime than the period.
8802 */
8803 if (runtime > period && runtime != RUNTIME_INF)
8804 return -EINVAL;
6f505b16 8805
4653f803
PZ
8806 /*
8807 * Ensure we don't starve existing RT tasks.
8808 */
9a7e0b18
PZ
8809 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8810 return -EBUSY;
6f505b16 8811
9a7e0b18 8812 total = to_ratio(period, runtime);
6f505b16 8813
4653f803
PZ
8814 /*
8815 * Nobody can have more than the global setting allows.
8816 */
8817 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8818 return -EINVAL;
6f505b16 8819
4653f803
PZ
8820 /*
8821 * The sum of our children's runtime should not exceed our own.
8822 */
9a7e0b18
PZ
8823 list_for_each_entry_rcu(child, &tg->children, siblings) {
8824 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8825 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8826
9a7e0b18
PZ
8827 if (child == d->tg) {
8828 period = d->rt_period;
8829 runtime = d->rt_runtime;
8830 }
6f505b16 8831
9a7e0b18 8832 sum += to_ratio(period, runtime);
9f0c1e56 8833 }
6f505b16 8834
9a7e0b18
PZ
8835 if (sum > total)
8836 return -EINVAL;
8837
8838 return 0;
6f505b16
PZ
8839}
8840
9a7e0b18 8841static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8842{
9a7e0b18
PZ
8843 struct rt_schedulable_data data = {
8844 .tg = tg,
8845 .rt_period = period,
8846 .rt_runtime = runtime,
8847 };
8848
8849 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8850}
8851
d0b27fa7
PZ
8852static int tg_set_bandwidth(struct task_group *tg,
8853 u64 rt_period, u64 rt_runtime)
6f505b16 8854{
ac086bc2 8855 int i, err = 0;
9f0c1e56 8856
9f0c1e56 8857 mutex_lock(&rt_constraints_mutex);
521f1a24 8858 read_lock(&tasklist_lock);
9a7e0b18
PZ
8859 err = __rt_schedulable(tg, rt_period, rt_runtime);
8860 if (err)
9f0c1e56 8861 goto unlock;
ac086bc2 8862
0986b11b 8863 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8864 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8865 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8866
8867 for_each_possible_cpu(i) {
8868 struct rt_rq *rt_rq = tg->rt_rq[i];
8869
0986b11b 8870 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8871 rt_rq->rt_runtime = rt_runtime;
0986b11b 8872 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8873 }
0986b11b 8874 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8875unlock:
521f1a24 8876 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8877 mutex_unlock(&rt_constraints_mutex);
8878
8879 return err;
6f505b16
PZ
8880}
8881
d0b27fa7
PZ
8882int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8883{
8884 u64 rt_runtime, rt_period;
8885
8886 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8887 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8888 if (rt_runtime_us < 0)
8889 rt_runtime = RUNTIME_INF;
8890
8891 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8892}
8893
9f0c1e56
PZ
8894long sched_group_rt_runtime(struct task_group *tg)
8895{
8896 u64 rt_runtime_us;
8897
d0b27fa7 8898 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8899 return -1;
8900
d0b27fa7 8901 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8902 do_div(rt_runtime_us, NSEC_PER_USEC);
8903 return rt_runtime_us;
8904}
d0b27fa7
PZ
8905
8906int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8907{
8908 u64 rt_runtime, rt_period;
8909
8910 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8911 rt_runtime = tg->rt_bandwidth.rt_runtime;
8912
619b0488
R
8913 if (rt_period == 0)
8914 return -EINVAL;
8915
d0b27fa7
PZ
8916 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8917}
8918
8919long sched_group_rt_period(struct task_group *tg)
8920{
8921 u64 rt_period_us;
8922
8923 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8924 do_div(rt_period_us, NSEC_PER_USEC);
8925 return rt_period_us;
8926}
8927
8928static int sched_rt_global_constraints(void)
8929{
4653f803 8930 u64 runtime, period;
d0b27fa7
PZ
8931 int ret = 0;
8932
ec5d4989
HS
8933 if (sysctl_sched_rt_period <= 0)
8934 return -EINVAL;
8935
4653f803
PZ
8936 runtime = global_rt_runtime();
8937 period = global_rt_period();
8938
8939 /*
8940 * Sanity check on the sysctl variables.
8941 */
8942 if (runtime > period && runtime != RUNTIME_INF)
8943 return -EINVAL;
10b612f4 8944
d0b27fa7 8945 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8946 read_lock(&tasklist_lock);
4653f803 8947 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8948 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8949 mutex_unlock(&rt_constraints_mutex);
8950
8951 return ret;
8952}
54e99124
DG
8953
8954int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8955{
8956 /* Don't accept realtime tasks when there is no way for them to run */
8957 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8958 return 0;
8959
8960 return 1;
8961}
8962
6d6bc0ad 8963#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8964static int sched_rt_global_constraints(void)
8965{
ac086bc2
PZ
8966 unsigned long flags;
8967 int i;
8968
ec5d4989
HS
8969 if (sysctl_sched_rt_period <= 0)
8970 return -EINVAL;
8971
60aa605d
PZ
8972 /*
8973 * There's always some RT tasks in the root group
8974 * -- migration, kstopmachine etc..
8975 */
8976 if (sysctl_sched_rt_runtime == 0)
8977 return -EBUSY;
8978
0986b11b 8979 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8980 for_each_possible_cpu(i) {
8981 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8982
0986b11b 8983 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8984 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8985 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8986 }
0986b11b 8987 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8988
d0b27fa7
PZ
8989 return 0;
8990}
6d6bc0ad 8991#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8992
8993int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8994 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8995 loff_t *ppos)
8996{
8997 int ret;
8998 int old_period, old_runtime;
8999 static DEFINE_MUTEX(mutex);
9000
9001 mutex_lock(&mutex);
9002 old_period = sysctl_sched_rt_period;
9003 old_runtime = sysctl_sched_rt_runtime;
9004
8d65af78 9005 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9006
9007 if (!ret && write) {
9008 ret = sched_rt_global_constraints();
9009 if (ret) {
9010 sysctl_sched_rt_period = old_period;
9011 sysctl_sched_rt_runtime = old_runtime;
9012 } else {
9013 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9014 def_rt_bandwidth.rt_period =
9015 ns_to_ktime(global_rt_period());
9016 }
9017 }
9018 mutex_unlock(&mutex);
9019
9020 return ret;
9021}
68318b8e 9022
052f1dc7 9023#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9024
9025/* return corresponding task_group object of a cgroup */
2b01dfe3 9026static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9027{
2b01dfe3
PM
9028 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9029 struct task_group, css);
68318b8e
SV
9030}
9031
9032static struct cgroup_subsys_state *
2b01dfe3 9033cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9034{
ec7dc8ac 9035 struct task_group *tg, *parent;
68318b8e 9036
2b01dfe3 9037 if (!cgrp->parent) {
68318b8e 9038 /* This is early initialization for the top cgroup */
07e06b01 9039 return &root_task_group.css;
68318b8e
SV
9040 }
9041
ec7dc8ac
DG
9042 parent = cgroup_tg(cgrp->parent);
9043 tg = sched_create_group(parent);
68318b8e
SV
9044 if (IS_ERR(tg))
9045 return ERR_PTR(-ENOMEM);
9046
68318b8e
SV
9047 return &tg->css;
9048}
9049
41a2d6cf
IM
9050static void
9051cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9052{
2b01dfe3 9053 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9054
9055 sched_destroy_group(tg);
9056}
9057
41a2d6cf 9058static int
be367d09 9059cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9060{
b68aa230 9061#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9062 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9063 return -EINVAL;
9064#else
68318b8e
SV
9065 /* We don't support RT-tasks being in separate groups */
9066 if (tsk->sched_class != &fair_sched_class)
9067 return -EINVAL;
b68aa230 9068#endif
be367d09
BB
9069 return 0;
9070}
68318b8e 9071
be367d09
BB
9072static int
9073cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9074 struct task_struct *tsk, bool threadgroup)
9075{
9076 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9077 if (retval)
9078 return retval;
9079 if (threadgroup) {
9080 struct task_struct *c;
9081 rcu_read_lock();
9082 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9083 retval = cpu_cgroup_can_attach_task(cgrp, c);
9084 if (retval) {
9085 rcu_read_unlock();
9086 return retval;
9087 }
9088 }
9089 rcu_read_unlock();
9090 }
68318b8e
SV
9091 return 0;
9092}
9093
9094static void
2b01dfe3 9095cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9096 struct cgroup *old_cont, struct task_struct *tsk,
9097 bool threadgroup)
68318b8e
SV
9098{
9099 sched_move_task(tsk);
be367d09
BB
9100 if (threadgroup) {
9101 struct task_struct *c;
9102 rcu_read_lock();
9103 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9104 sched_move_task(c);
9105 }
9106 rcu_read_unlock();
9107 }
68318b8e
SV
9108}
9109
068c5cc5 9110static void
d41d5a01
PZ
9111cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9112 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9113{
9114 /*
9115 * cgroup_exit() is called in the copy_process() failure path.
9116 * Ignore this case since the task hasn't ran yet, this avoids
9117 * trying to poke a half freed task state from generic code.
9118 */
9119 if (!(task->flags & PF_EXITING))
9120 return;
9121
9122 sched_move_task(task);
9123}
9124
052f1dc7 9125#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9126static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9127 u64 shareval)
68318b8e 9128{
2b01dfe3 9129 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9130}
9131
f4c753b7 9132static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9133{
2b01dfe3 9134 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9135
9136 return (u64) tg->shares;
9137}
6d6bc0ad 9138#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9139
052f1dc7 9140#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9141static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9142 s64 val)
6f505b16 9143{
06ecb27c 9144 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9145}
9146
06ecb27c 9147static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9148{
06ecb27c 9149 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9150}
d0b27fa7
PZ
9151
9152static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9153 u64 rt_period_us)
9154{
9155 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9156}
9157
9158static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9159{
9160 return sched_group_rt_period(cgroup_tg(cgrp));
9161}
6d6bc0ad 9162#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9163
fe5c7cc2 9164static struct cftype cpu_files[] = {
052f1dc7 9165#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9166 {
9167 .name = "shares",
f4c753b7
PM
9168 .read_u64 = cpu_shares_read_u64,
9169 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9170 },
052f1dc7
PZ
9171#endif
9172#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9173 {
9f0c1e56 9174 .name = "rt_runtime_us",
06ecb27c
PM
9175 .read_s64 = cpu_rt_runtime_read,
9176 .write_s64 = cpu_rt_runtime_write,
6f505b16 9177 },
d0b27fa7
PZ
9178 {
9179 .name = "rt_period_us",
f4c753b7
PM
9180 .read_u64 = cpu_rt_period_read_uint,
9181 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9182 },
052f1dc7 9183#endif
68318b8e
SV
9184};
9185
9186static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9187{
fe5c7cc2 9188 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9189}
9190
9191struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9192 .name = "cpu",
9193 .create = cpu_cgroup_create,
9194 .destroy = cpu_cgroup_destroy,
9195 .can_attach = cpu_cgroup_can_attach,
9196 .attach = cpu_cgroup_attach,
068c5cc5 9197 .exit = cpu_cgroup_exit,
38605cae
IM
9198 .populate = cpu_cgroup_populate,
9199 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9200 .early_init = 1,
9201};
9202
052f1dc7 9203#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9204
9205#ifdef CONFIG_CGROUP_CPUACCT
9206
9207/*
9208 * CPU accounting code for task groups.
9209 *
9210 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9211 * (balbir@in.ibm.com).
9212 */
9213
934352f2 9214/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9215struct cpuacct {
9216 struct cgroup_subsys_state css;
9217 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9218 u64 __percpu *cpuusage;
ef12fefa 9219 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9220 struct cpuacct *parent;
d842de87
SV
9221};
9222
9223struct cgroup_subsys cpuacct_subsys;
9224
9225/* return cpu accounting group corresponding to this container */
32cd756a 9226static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9227{
32cd756a 9228 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9229 struct cpuacct, css);
9230}
9231
9232/* return cpu accounting group to which this task belongs */
9233static inline struct cpuacct *task_ca(struct task_struct *tsk)
9234{
9235 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9236 struct cpuacct, css);
9237}
9238
9239/* create a new cpu accounting group */
9240static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9241 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9242{
9243 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9244 int i;
d842de87
SV
9245
9246 if (!ca)
ef12fefa 9247 goto out;
d842de87
SV
9248
9249 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9250 if (!ca->cpuusage)
9251 goto out_free_ca;
9252
9253 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9254 if (percpu_counter_init(&ca->cpustat[i], 0))
9255 goto out_free_counters;
d842de87 9256
934352f2
BR
9257 if (cgrp->parent)
9258 ca->parent = cgroup_ca(cgrp->parent);
9259
d842de87 9260 return &ca->css;
ef12fefa
BR
9261
9262out_free_counters:
9263 while (--i >= 0)
9264 percpu_counter_destroy(&ca->cpustat[i]);
9265 free_percpu(ca->cpuusage);
9266out_free_ca:
9267 kfree(ca);
9268out:
9269 return ERR_PTR(-ENOMEM);
d842de87
SV
9270}
9271
9272/* destroy an existing cpu accounting group */
41a2d6cf 9273static void
32cd756a 9274cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9275{
32cd756a 9276 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9277 int i;
d842de87 9278
ef12fefa
BR
9279 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9280 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9281 free_percpu(ca->cpuusage);
9282 kfree(ca);
9283}
9284
720f5498
KC
9285static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9286{
b36128c8 9287 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9288 u64 data;
9289
9290#ifndef CONFIG_64BIT
9291 /*
9292 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9293 */
05fa785c 9294 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9295 data = *cpuusage;
05fa785c 9296 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9297#else
9298 data = *cpuusage;
9299#endif
9300
9301 return data;
9302}
9303
9304static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9305{
b36128c8 9306 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9307
9308#ifndef CONFIG_64BIT
9309 /*
9310 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9311 */
05fa785c 9312 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9313 *cpuusage = val;
05fa785c 9314 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9315#else
9316 *cpuusage = val;
9317#endif
9318}
9319
d842de87 9320/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9321static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9322{
32cd756a 9323 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9324 u64 totalcpuusage = 0;
9325 int i;
9326
720f5498
KC
9327 for_each_present_cpu(i)
9328 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9329
9330 return totalcpuusage;
9331}
9332
0297b803
DG
9333static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9334 u64 reset)
9335{
9336 struct cpuacct *ca = cgroup_ca(cgrp);
9337 int err = 0;
9338 int i;
9339
9340 if (reset) {
9341 err = -EINVAL;
9342 goto out;
9343 }
9344
720f5498
KC
9345 for_each_present_cpu(i)
9346 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9347
0297b803
DG
9348out:
9349 return err;
9350}
9351
e9515c3c
KC
9352static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9353 struct seq_file *m)
9354{
9355 struct cpuacct *ca = cgroup_ca(cgroup);
9356 u64 percpu;
9357 int i;
9358
9359 for_each_present_cpu(i) {
9360 percpu = cpuacct_cpuusage_read(ca, i);
9361 seq_printf(m, "%llu ", (unsigned long long) percpu);
9362 }
9363 seq_printf(m, "\n");
9364 return 0;
9365}
9366
ef12fefa
BR
9367static const char *cpuacct_stat_desc[] = {
9368 [CPUACCT_STAT_USER] = "user",
9369 [CPUACCT_STAT_SYSTEM] = "system",
9370};
9371
9372static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9373 struct cgroup_map_cb *cb)
9374{
9375 struct cpuacct *ca = cgroup_ca(cgrp);
9376 int i;
9377
9378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9379 s64 val = percpu_counter_read(&ca->cpustat[i]);
9380 val = cputime64_to_clock_t(val);
9381 cb->fill(cb, cpuacct_stat_desc[i], val);
9382 }
9383 return 0;
9384}
9385
d842de87
SV
9386static struct cftype files[] = {
9387 {
9388 .name = "usage",
f4c753b7
PM
9389 .read_u64 = cpuusage_read,
9390 .write_u64 = cpuusage_write,
d842de87 9391 },
e9515c3c
KC
9392 {
9393 .name = "usage_percpu",
9394 .read_seq_string = cpuacct_percpu_seq_read,
9395 },
ef12fefa
BR
9396 {
9397 .name = "stat",
9398 .read_map = cpuacct_stats_show,
9399 },
d842de87
SV
9400};
9401
32cd756a 9402static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9403{
32cd756a 9404 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9405}
9406
9407/*
9408 * charge this task's execution time to its accounting group.
9409 *
9410 * called with rq->lock held.
9411 */
9412static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9413{
9414 struct cpuacct *ca;
934352f2 9415 int cpu;
d842de87 9416
c40c6f85 9417 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9418 return;
9419
934352f2 9420 cpu = task_cpu(tsk);
a18b83b7
BR
9421
9422 rcu_read_lock();
9423
d842de87 9424 ca = task_ca(tsk);
d842de87 9425
934352f2 9426 for (; ca; ca = ca->parent) {
b36128c8 9427 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9428 *cpuusage += cputime;
9429 }
a18b83b7
BR
9430
9431 rcu_read_unlock();
d842de87
SV
9432}
9433
fa535a77
AB
9434/*
9435 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9436 * in cputime_t units. As a result, cpuacct_update_stats calls
9437 * percpu_counter_add with values large enough to always overflow the
9438 * per cpu batch limit causing bad SMP scalability.
9439 *
9440 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9441 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9442 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9443 */
9444#ifdef CONFIG_SMP
9445#define CPUACCT_BATCH \
9446 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9447#else
9448#define CPUACCT_BATCH 0
9449#endif
9450
ef12fefa
BR
9451/*
9452 * Charge the system/user time to the task's accounting group.
9453 */
9454static void cpuacct_update_stats(struct task_struct *tsk,
9455 enum cpuacct_stat_index idx, cputime_t val)
9456{
9457 struct cpuacct *ca;
fa535a77 9458 int batch = CPUACCT_BATCH;
ef12fefa
BR
9459
9460 if (unlikely(!cpuacct_subsys.active))
9461 return;
9462
9463 rcu_read_lock();
9464 ca = task_ca(tsk);
9465
9466 do {
fa535a77 9467 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9468 ca = ca->parent;
9469 } while (ca);
9470 rcu_read_unlock();
9471}
9472
d842de87
SV
9473struct cgroup_subsys cpuacct_subsys = {
9474 .name = "cpuacct",
9475 .create = cpuacct_create,
9476 .destroy = cpuacct_destroy,
9477 .populate = cpuacct_populate,
9478 .subsys_id = cpuacct_subsys_id,
9479};
9480#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9481