]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: Rename select_task_rq() argument
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
84e9dabf 296static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
57310a98
PZ
379#ifdef CONFIG_SMP
380static int root_task_group_empty(void)
381{
382 return 1;
383}
384#endif
385
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
387static inline struct task_group *task_group(struct task_struct *p)
388{
389 return NULL;
390}
29f59db3 391
052f1dc7 392#endif /* CONFIG_GROUP_SCHED */
29f59db3 393
6aa645ea
IM
394/* CFS-related fields in a runqueue */
395struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
398
6aa645ea 399 u64 exec_clock;
e9acbff6 400 u64 min_vruntime;
6aa645ea
IM
401
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
4a55bd5e
PZ
404
405 struct list_head tasks;
406 struct list_head *balance_iterator;
407
408 /*
409 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
410 * It is set to NULL otherwise (i.e when none are currently running).
411 */
4793241b 412 struct sched_entity *curr, *next, *last;
ddc97297 413
5ac5c4d6 414 unsigned int nr_spread_over;
ddc97297 415
62160e3f 416#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
418
41a2d6cf
IM
419 /*
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
423 *
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
426 */
41a2d6cf
IM
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
429
430#ifdef CONFIG_SMP
c09595f6 431 /*
c8cba857 432 * the part of load.weight contributed by tasks
c09595f6 433 */
c8cba857 434 unsigned long task_weight;
c09595f6 435
c8cba857
PZ
436 /*
437 * h_load = weight * f(tg)
438 *
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
441 */
442 unsigned long h_load;
c09595f6 443
c8cba857
PZ
444 /*
445 * this cpu's part of tg->shares
446 */
447 unsigned long shares;
f1d239f7
PZ
448
449 /*
450 * load.weight at the time we set shares
451 */
452 unsigned long rq_weight;
c09595f6 453#endif
6aa645ea
IM
454#endif
455};
1da177e4 456
6aa645ea
IM
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
63489e45 460 unsigned long rt_nr_running;
052f1dc7 461#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
462 struct {
463 int curr; /* highest queued rt task prio */
398a153b 464#ifdef CONFIG_SMP
e864c499 465 int next; /* next highest */
398a153b 466#endif
e864c499 467 } highest_prio;
6f505b16 468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a1ba4d8b 471 unsigned long rt_nr_total;
a22d7fc1 472 int overloaded;
917b627d 473 struct plist_head pushable_tasks;
fa85ae24 474#endif
6f505b16 475 int rt_throttled;
fa85ae24 476 u64 rt_time;
ac086bc2 477 u64 rt_runtime;
ea736ed5 478 /* Nests inside the rq lock: */
ac086bc2 479 spinlock_t rt_runtime_lock;
6f505b16 480
052f1dc7 481#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
482 unsigned long rt_nr_boosted;
483
6f505b16
PZ
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488#endif
6aa645ea
IM
489};
490
57d885fe
GH
491#ifdef CONFIG_SMP
492
493/*
494 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
499 *
57d885fe
GH
500 */
501struct root_domain {
502 atomic_t refcount;
c6c4927b
RR
503 cpumask_var_t span;
504 cpumask_var_t online;
637f5085 505
0eab9146 506 /*
637f5085
GH
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
c6c4927b 510 cpumask_var_t rto_mask;
0eab9146 511 atomic_t rto_count;
6e0534f2
GH
512#ifdef CONFIG_SMP
513 struct cpupri cpupri;
514#endif
57d885fe
GH
515};
516
dc938520
GH
517/*
518 * By default the system creates a single root-domain with all cpus as
519 * members (mimicking the global state we have today).
520 */
57d885fe
GH
521static struct root_domain def_root_domain;
522
523#endif
524
1da177e4
LT
525/*
526 * This is the main, per-CPU runqueue data structure.
527 *
528 * Locking rule: those places that want to lock multiple runqueues
529 * (such as the load balancing or the thread migration code), lock
530 * acquire operations must be ordered by ascending &runqueue.
531 */
70b97a7f 532struct rq {
d8016491
IM
533 /* runqueue lock: */
534 spinlock_t lock;
1da177e4
LT
535
536 /*
537 * nr_running and cpu_load should be in the same cacheline because
538 * remote CPUs use both these fields when doing load calculation.
539 */
540 unsigned long nr_running;
6aa645ea
IM
541 #define CPU_LOAD_IDX_MAX 5
542 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 543#ifdef CONFIG_NO_HZ
15934a37 544 unsigned long last_tick_seen;
46cb4b7c
SS
545 unsigned char in_nohz_recently;
546#endif
d8016491
IM
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
6aa645ea
IM
549 unsigned long nr_load_updates;
550 u64 nr_switches;
23a185ca 551 u64 nr_migrations_in;
6aa645ea
IM
552
553 struct cfs_rq cfs;
6f505b16 554 struct rt_rq rt;
6f505b16 555
6aa645ea 556#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
557 /* list of leaf cfs_rq on this cpu: */
558 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
559#endif
560#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 561 struct list_head leaf_rt_rq_list;
1da177e4 562#endif
1da177e4
LT
563
564 /*
565 * This is part of a global counter where only the total sum
566 * over all CPUs matters. A task can increase this counter on
567 * one CPU and if it got migrated afterwards it may decrease
568 * it on another CPU. Always updated under the runqueue lock:
569 */
570 unsigned long nr_uninterruptible;
571
36c8b586 572 struct task_struct *curr, *idle;
c9819f45 573 unsigned long next_balance;
1da177e4 574 struct mm_struct *prev_mm;
6aa645ea 575
3e51f33f 576 u64 clock;
6aa645ea 577
1da177e4
LT
578 atomic_t nr_iowait;
579
580#ifdef CONFIG_SMP
0eab9146 581 struct root_domain *rd;
1da177e4
LT
582 struct sched_domain *sd;
583
a0a522ce 584 unsigned char idle_at_tick;
1da177e4 585 /* For active balancing */
3f029d3c 586 int post_schedule;
1da177e4
LT
587 int active_balance;
588 int push_cpu;
d8016491
IM
589 /* cpu of this runqueue: */
590 int cpu;
1f11eb6a 591 int online;
1da177e4 592
a8a51d5e 593 unsigned long avg_load_per_task;
1da177e4 594
36c8b586 595 struct task_struct *migration_thread;
1da177e4 596 struct list_head migration_queue;
e9e9250b
PZ
597
598 u64 rt_avg;
599 u64 age_stamp;
1da177e4
LT
600#endif
601
dce48a84
TG
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434 621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 667#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 668
aa9c4c0f 669inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
670{
671 rq->clock = sched_clock_cpu(cpu_of(rq));
672}
673
bf5c91ba
IM
674/*
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 */
677#ifdef CONFIG_SCHED_DEBUG
678# define const_debug __read_mostly
679#else
680# define const_debug static const
681#endif
682
017730c1
IM
683/**
684 * runqueue_is_locked
685 *
686 * Returns true if the current cpu runqueue is locked.
687 * This interface allows printk to be called with the runqueue lock
688 * held and know whether or not it is OK to wake up the klogd.
689 */
690int runqueue_is_locked(void)
691{
692 int cpu = get_cpu();
693 struct rq *rq = cpu_rq(cpu);
694 int ret;
695
696 ret = spin_is_locked(&rq->lock);
697 put_cpu();
698 return ret;
699}
700
bf5c91ba
IM
701/*
702 * Debugging: various feature bits
703 */
f00b45c1
PZ
704
705#define SCHED_FEAT(name, enabled) \
706 __SCHED_FEAT_##name ,
707
bf5c91ba 708enum {
f00b45c1 709#include "sched_features.h"
bf5c91ba
IM
710};
711
f00b45c1
PZ
712#undef SCHED_FEAT
713
714#define SCHED_FEAT(name, enabled) \
715 (1UL << __SCHED_FEAT_##name) * enabled |
716
bf5c91ba 717const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
718#include "sched_features.h"
719 0;
720
721#undef SCHED_FEAT
722
723#ifdef CONFIG_SCHED_DEBUG
724#define SCHED_FEAT(name, enabled) \
725 #name ,
726
983ed7a6 727static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
728#include "sched_features.h"
729 NULL
730};
731
732#undef SCHED_FEAT
733
34f3a814 734static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 735{
f00b45c1
PZ
736 int i;
737
738 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
739 if (!(sysctl_sched_features & (1UL << i)))
740 seq_puts(m, "NO_");
741 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 742 }
34f3a814 743 seq_puts(m, "\n");
f00b45c1 744
34f3a814 745 return 0;
f00b45c1
PZ
746}
747
748static ssize_t
749sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
751{
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
756
757 if (cnt > 63)
758 cnt = 63;
759
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
762
763 buf[cnt] = 0;
764
c24b7c52 765 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
766 neg = 1;
767 cmp += 3;
768 }
769
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
772
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
779 }
780 }
781
782 if (!sched_feat_names[i])
783 return -EINVAL;
784
785 filp->f_pos += cnt;
786
787 return cnt;
788}
789
34f3a814
LZ
790static int sched_feat_open(struct inode *inode, struct file *filp)
791{
792 return single_open(filp, sched_feat_show, NULL);
793}
794
f00b45c1 795static struct file_operations sched_feat_fops = {
34f3a814
LZ
796 .open = sched_feat_open,
797 .write = sched_feat_write,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
f00b45c1
PZ
801};
802
803static __init int sched_init_debug(void)
804{
f00b45c1
PZ
805 debugfs_create_file("sched_features", 0644, NULL, NULL,
806 &sched_feat_fops);
807
808 return 0;
809}
810late_initcall(sched_init_debug);
811
812#endif
813
814#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 815
b82d9fdd
PZ
816/*
817 * Number of tasks to iterate in a single balance run.
818 * Limited because this is done with IRQs disabled.
819 */
820const_debug unsigned int sysctl_sched_nr_migrate = 32;
821
2398f2c6
PZ
822/*
823 * ratelimit for updating the group shares.
55cd5340 824 * default: 0.25ms
2398f2c6 825 */
55cd5340 826unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 827
ffda12a1
PZ
828/*
829 * Inject some fuzzyness into changing the per-cpu group shares
830 * this avoids remote rq-locks at the expense of fairness.
831 * default: 4
832 */
833unsigned int sysctl_sched_shares_thresh = 4;
834
e9e9250b
PZ
835/*
836 * period over which we average the RT time consumption, measured
837 * in ms.
838 *
839 * default: 1s
840 */
841const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
842
fa85ae24 843/*
9f0c1e56 844 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
845 * default: 1s
846 */
9f0c1e56 847unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 848
6892b75e
IM
849static __read_mostly int scheduler_running;
850
9f0c1e56
PZ
851/*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855int sysctl_sched_rt_runtime = 950000;
fa85ae24 856
d0b27fa7
PZ
857static inline u64 global_rt_period(void)
858{
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860}
861
862static inline u64 global_rt_runtime(void)
863{
e26873bb 864 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868}
fa85ae24 869
1da177e4 870#ifndef prepare_arch_switch
4866cde0
NP
871# define prepare_arch_switch(next) do { } while (0)
872#endif
873#ifndef finish_arch_switch
874# define finish_arch_switch(prev) do { } while (0)
875#endif
876
051a1d1a
DA
877static inline int task_current(struct rq *rq, struct task_struct *p)
878{
879 return rq->curr == p;
880}
881
4866cde0 882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 884{
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890}
891
70b97a7f 892static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 893{
da04c035
IM
894#ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897#endif
8a25d5de
IM
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
4866cde0
NP
905 spin_unlock_irq(&rq->lock);
906}
907
908#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 909static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 return p->oncpu;
913#else
051a1d1a 914 return task_current(rq, p);
4866cde0
NP
915#endif
916}
917
70b97a7f 918static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
919{
920#ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927#endif
928#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930#else
931 spin_unlock(&rq->lock);
932#endif
933}
934
70b97a7f 935static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
936{
937#ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945#endif
946#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
1da177e4 948#endif
4866cde0
NP
949}
950#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 951
b29739f9
IM
952/*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
70b97a7f 956static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
957 __acquires(rq->lock)
958{
3a5c359a
AK
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
b29739f9 964 spin_unlock(&rq->lock);
b29739f9 965 }
b29739f9
IM
966}
967
1da177e4
LT
968/*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 970 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
971 * explicitly disabling preemption.
972 */
70b97a7f 973static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
974 __acquires(rq->lock)
975{
70b97a7f 976 struct rq *rq;
1da177e4 977
3a5c359a
AK
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
1da177e4 984 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 985 }
1da177e4
LT
986}
987
ad474cac
ON
988void task_rq_unlock_wait(struct task_struct *p)
989{
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994}
995
a9957449 996static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
997 __releases(rq->lock)
998{
999 spin_unlock(&rq->lock);
1000}
1001
70b97a7f 1002static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1003 __releases(rq->lock)
1004{
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006}
1007
1da177e4 1008/*
cc2a73b5 1009 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1010 */
a9957449 1011static struct rq *this_rq_lock(void)
1da177e4
LT
1012 __acquires(rq->lock)
1013{
70b97a7f 1014 struct rq *rq;
1da177e4
LT
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021}
1022
8f4d37ec
PZ
1023#ifdef CONFIG_SCHED_HRTICK
1024/*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
8f4d37ec
PZ
1034
1035/*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040static inline int hrtick_enabled(struct rq *rq)
1041{
1042 if (!sched_feat(HRTICK))
1043 return 0;
ba42059f 1044 if (!cpu_active(cpu_of(rq)))
b328ca18 1045 return 0;
8f4d37ec
PZ
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049static void hrtick_clear(struct rq *rq)
1050{
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053}
1054
8f4d37ec
PZ
1055/*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060{
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
3e51f33f 1066 update_rq_clock(rq);
8f4d37ec
PZ
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071}
1072
95e904c7 1073#ifdef CONFIG_SMP
31656519
PZ
1074/*
1075 * called from hardirq (IPI) context
1076 */
1077static void __hrtick_start(void *arg)
b328ca18 1078{
31656519 1079 struct rq *rq = arg;
b328ca18 1080
31656519
PZ
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
b328ca18
PZ
1085}
1086
31656519
PZ
1087/*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1093{
31656519
PZ
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1096
cc584b21 1097 hrtimer_set_expires(timer, time);
31656519
PZ
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
6e275637 1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1103 rq->hrtick_csd_pending = 1;
1104 }
b328ca18
PZ
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
31656519 1119 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124}
1125
fa748203 1126static __init void init_hrtick(void)
b328ca18
PZ
1127{
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129}
31656519
PZ
1130#else
1131/*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136static void hrtick_start(struct rq *rq, u64 delay)
1137{
7f1e2ca9 1138 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1139 HRTIMER_MODE_REL_PINNED, 0);
31656519 1140}
b328ca18 1141
006c75f1 1142static inline void init_hrtick(void)
8f4d37ec 1143{
8f4d37ec 1144}
31656519 1145#endif /* CONFIG_SMP */
8f4d37ec 1146
31656519 1147static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1148{
31656519
PZ
1149#ifdef CONFIG_SMP
1150 rq->hrtick_csd_pending = 0;
8f4d37ec 1151
31656519
PZ
1152 rq->hrtick_csd.flags = 0;
1153 rq->hrtick_csd.func = __hrtick_start;
1154 rq->hrtick_csd.info = rq;
1155#endif
8f4d37ec 1156
31656519
PZ
1157 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1158 rq->hrtick_timer.function = hrtick;
8f4d37ec 1159}
006c75f1 1160#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1161static inline void hrtick_clear(struct rq *rq)
1162{
1163}
1164
8f4d37ec
PZ
1165static inline void init_rq_hrtick(struct rq *rq)
1166{
1167}
1168
b328ca18
PZ
1169static inline void init_hrtick(void)
1170{
1171}
006c75f1 1172#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1173
c24d20db
IM
1174/*
1175 * resched_task - mark a task 'to be rescheduled now'.
1176 *
1177 * On UP this means the setting of the need_resched flag, on SMP it
1178 * might also involve a cross-CPU call to trigger the scheduler on
1179 * the target CPU.
1180 */
1181#ifdef CONFIG_SMP
1182
1183#ifndef tsk_is_polling
1184#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185#endif
1186
31656519 1187static void resched_task(struct task_struct *p)
c24d20db
IM
1188{
1189 int cpu;
1190
1191 assert_spin_locked(&task_rq(p)->lock);
1192
5ed0cec0 1193 if (test_tsk_need_resched(p))
c24d20db
IM
1194 return;
1195
5ed0cec0 1196 set_tsk_need_resched(p);
c24d20db
IM
1197
1198 cpu = task_cpu(p);
1199 if (cpu == smp_processor_id())
1200 return;
1201
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(p))
1205 smp_send_reschedule(cpu);
1206}
1207
1208static void resched_cpu(int cpu)
1209{
1210 struct rq *rq = cpu_rq(cpu);
1211 unsigned long flags;
1212
1213 if (!spin_trylock_irqsave(&rq->lock, flags))
1214 return;
1215 resched_task(cpu_curr(cpu));
1216 spin_unlock_irqrestore(&rq->lock, flags);
1217}
06d8308c
TG
1218
1219#ifdef CONFIG_NO_HZ
1220/*
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1229 */
1230void wake_up_idle_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233
1234 if (cpu == smp_processor_id())
1235 return;
1236
1237 /*
1238 * This is safe, as this function is called with the timer
1239 * wheel base lock of (cpu) held. When the CPU is on the way
1240 * to idle and has not yet set rq->curr to idle then it will
1241 * be serialized on the timer wheel base lock and take the new
1242 * timer into account automatically.
1243 */
1244 if (rq->curr != rq->idle)
1245 return;
1246
1247 /*
1248 * We can set TIF_RESCHED on the idle task of the other CPU
1249 * lockless. The worst case is that the other CPU runs the
1250 * idle task through an additional NOOP schedule()
1251 */
5ed0cec0 1252 set_tsk_need_resched(rq->idle);
06d8308c
TG
1253
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(rq->idle))
1257 smp_send_reschedule(cpu);
1258}
6d6bc0ad 1259#endif /* CONFIG_NO_HZ */
06d8308c 1260
e9e9250b
PZ
1261static u64 sched_avg_period(void)
1262{
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264}
1265
1266static void sched_avg_update(struct rq *rq)
1267{
1268 s64 period = sched_avg_period();
1269
1270 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274}
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280}
1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db
IM
1284{
1285 assert_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
e9e9250b
PZ
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291}
6d6bc0ad 1292#endif /* CONFIG_SMP */
c24d20db 1293
45bf76df
IM
1294#if BITS_PER_LONG == 32
1295# define WMULT_CONST (~0UL)
1296#else
1297# define WMULT_CONST (1UL << 32)
1298#endif
1299
1300#define WMULT_SHIFT 32
1301
194081eb
IM
1302/*
1303 * Shift right and round:
1304 */
cf2ab469 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1306
a7be37ac
PZ
1307/*
1308 * delta *= weight / lw
1309 */
cb1c4fc9 1310static unsigned long
45bf76df
IM
1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313{
1314 u64 tmp;
1315
7a232e03
LJ
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
45bf76df
IM
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
194081eb 1328 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1330 WMULT_SHIFT/2);
1331 else
cf2ab469 1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1333
ecf691da 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1338{
1339 lw->weight += inc;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1344{
1345 lw->weight -= dec;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
cce7ade8
PZ
1358#define WEIGHT_IDLEPRIO 3
1359#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
dd41f596
IM
1402static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404/*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413};
1414
e1d1484f
PW
1415#ifdef CONFIG_SMP
1416static unsigned long
1417balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422static int
1423iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
e1d1484f 1426#endif
dd41f596 1427
ef12fefa
BR
1428/* Time spent by the tasks of the cpu accounting group executing in ... */
1429enum cpuacct_stat_index {
1430 CPUACCT_STAT_USER, /* ... user mode */
1431 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1432
1433 CPUACCT_STAT_NSTATS,
1434};
1435
d842de87
SV
1436#ifdef CONFIG_CGROUP_CPUACCT
1437static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1438static void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1440#else
1441static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1442static inline void cpuacct_update_stats(struct task_struct *tsk,
1443 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1444#endif
1445
18d95a28
PZ
1446static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_add(&rq->load, load);
1449}
1450
1451static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1452{
1453 update_load_sub(&rq->load, load);
1454}
1455
7940ca36 1456#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1457typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1458
1459/*
1460 * Iterate the full tree, calling @down when first entering a node and @up when
1461 * leaving it for the final time.
1462 */
eb755805 1463static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1464{
1465 struct task_group *parent, *child;
eb755805 1466 int ret;
c09595f6
PZ
1467
1468 rcu_read_lock();
1469 parent = &root_task_group;
1470down:
eb755805
PZ
1471 ret = (*down)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474 list_for_each_entry_rcu(child, &parent->children, siblings) {
1475 parent = child;
1476 goto down;
1477
1478up:
1479 continue;
1480 }
eb755805
PZ
1481 ret = (*up)(parent, data);
1482 if (ret)
1483 goto out_unlock;
c09595f6
PZ
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
eb755805 1489out_unlock:
c09595f6 1490 rcu_read_unlock();
eb755805
PZ
1491
1492 return ret;
c09595f6
PZ
1493}
1494
eb755805
PZ
1495static int tg_nop(struct task_group *tg, void *data)
1496{
1497 return 0;
c09595f6 1498}
eb755805
PZ
1499#endif
1500
1501#ifdef CONFIG_SMP
f5f08f39
PZ
1502/* Used instead of source_load when we know the type == 0 */
1503static unsigned long weighted_cpuload(const int cpu)
1504{
1505 return cpu_rq(cpu)->load.weight;
1506}
1507
1508/*
1509 * Return a low guess at the load of a migration-source cpu weighted
1510 * according to the scheduling class and "nice" value.
1511 *
1512 * We want to under-estimate the load of migration sources, to
1513 * balance conservatively.
1514 */
1515static unsigned long source_load(int cpu, int type)
1516{
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1519
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1522
1523 return min(rq->cpu_load[type-1], total);
1524}
1525
1526/*
1527 * Return a high guess at the load of a migration-target cpu weighted
1528 * according to the scheduling class and "nice" value.
1529 */
1530static unsigned long target_load(int cpu, int type)
1531{
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long total = weighted_cpuload(cpu);
1534
1535 if (type == 0 || !sched_feat(LB_BIAS))
1536 return total;
1537
1538 return max(rq->cpu_load[type-1], total);
1539}
1540
ae154be1
PZ
1541static struct sched_group *group_of(int cpu)
1542{
1543 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1544
1545 if (!sd)
1546 return NULL;
1547
1548 return sd->groups;
1549}
1550
1551static unsigned long power_of(int cpu)
1552{
1553 struct sched_group *group = group_of(cpu);
1554
1555 if (!group)
1556 return SCHED_LOAD_SCALE;
1557
1558 return group->cpu_power;
1559}
1560
eb755805
PZ
1561static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1562
1563static unsigned long cpu_avg_load_per_task(int cpu)
1564{
1565 struct rq *rq = cpu_rq(cpu);
af6d596f 1566 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1567
4cd42620
SR
1568 if (nr_running)
1569 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1570 else
1571 rq->avg_load_per_task = 0;
eb755805
PZ
1572
1573 return rq->avg_load_per_task;
1574}
1575
1576#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1577
34d76c41
PZ
1578struct update_shares_data {
1579 unsigned long rq_weight[NR_CPUS];
1580};
1581
1582static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1583
c09595f6
PZ
1584static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1585
1586/*
1587 * Calculate and set the cpu's group shares.
1588 */
34d76c41
PZ
1589static void update_group_shares_cpu(struct task_group *tg, int cpu,
1590 unsigned long sd_shares,
1591 unsigned long sd_rq_weight,
1592 struct update_shares_data *usd)
18d95a28 1593{
34d76c41 1594 unsigned long shares, rq_weight;
a5004278 1595 int boost = 0;
c09595f6 1596
34d76c41 1597 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1598 if (!rq_weight) {
1599 boost = 1;
1600 rq_weight = NICE_0_LOAD;
1601 }
c8cba857 1602
c09595f6 1603 /*
a8af7246
PZ
1604 * \Sum_j shares_j * rq_weight_i
1605 * shares_i = -----------------------------
1606 * \Sum_j rq_weight_j
c09595f6 1607 */
ec4e0e2f 1608 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1609 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1610
ffda12a1
PZ
1611 if (abs(shares - tg->se[cpu]->load.weight) >
1612 sysctl_sched_shares_thresh) {
1613 struct rq *rq = cpu_rq(cpu);
1614 unsigned long flags;
c09595f6 1615
ffda12a1 1616 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1617 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1618 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1619 __set_se_shares(tg->se[cpu], shares);
1620 spin_unlock_irqrestore(&rq->lock, flags);
1621 }
18d95a28 1622}
c09595f6
PZ
1623
1624/*
c8cba857
PZ
1625 * Re-compute the task group their per cpu shares over the given domain.
1626 * This needs to be done in a bottom-up fashion because the rq weight of a
1627 * parent group depends on the shares of its child groups.
c09595f6 1628 */
eb755805 1629static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1630{
34d76c41
PZ
1631 unsigned long weight, rq_weight = 0, shares = 0;
1632 struct update_shares_data *usd;
eb755805 1633 struct sched_domain *sd = data;
34d76c41 1634 unsigned long flags;
c8cba857 1635 int i;
c09595f6 1636
34d76c41
PZ
1637 if (!tg->se[0])
1638 return 0;
1639
1640 local_irq_save(flags);
1641 usd = &__get_cpu_var(update_shares_data);
1642
758b2cdc 1643 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1644 weight = tg->cfs_rq[i]->load.weight;
1645 usd->rq_weight[i] = weight;
1646
ec4e0e2f
KC
1647 /*
1648 * If there are currently no tasks on the cpu pretend there
1649 * is one of average load so that when a new task gets to
1650 * run here it will not get delayed by group starvation.
1651 */
ec4e0e2f
KC
1652 if (!weight)
1653 weight = NICE_0_LOAD;
1654
ec4e0e2f 1655 rq_weight += weight;
c8cba857 1656 shares += tg->cfs_rq[i]->shares;
c09595f6 1657 }
c09595f6 1658
c8cba857
PZ
1659 if ((!shares && rq_weight) || shares > tg->shares)
1660 shares = tg->shares;
1661
1662 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1663 shares = tg->shares;
c09595f6 1664
758b2cdc 1665 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1666 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1667
1668 local_irq_restore(flags);
eb755805
PZ
1669
1670 return 0;
c09595f6
PZ
1671}
1672
1673/*
c8cba857
PZ
1674 * Compute the cpu's hierarchical load factor for each task group.
1675 * This needs to be done in a top-down fashion because the load of a child
1676 * group is a fraction of its parents load.
c09595f6 1677 */
eb755805 1678static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1679{
c8cba857 1680 unsigned long load;
eb755805 1681 long cpu = (long)data;
c09595f6 1682
c8cba857
PZ
1683 if (!tg->parent) {
1684 load = cpu_rq(cpu)->load.weight;
1685 } else {
1686 load = tg->parent->cfs_rq[cpu]->h_load;
1687 load *= tg->cfs_rq[cpu]->shares;
1688 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1689 }
c09595f6 1690
c8cba857 1691 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1692
eb755805 1693 return 0;
c09595f6
PZ
1694}
1695
c8cba857 1696static void update_shares(struct sched_domain *sd)
4d8d595d 1697{
e7097159
PZ
1698 s64 elapsed;
1699 u64 now;
1700
1701 if (root_task_group_empty())
1702 return;
1703
1704 now = cpu_clock(raw_smp_processor_id());
1705 elapsed = now - sd->last_update;
2398f2c6
PZ
1706
1707 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1708 sd->last_update = now;
eb755805 1709 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1710 }
4d8d595d
PZ
1711}
1712
3e5459b4
PZ
1713static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1714{
e7097159
PZ
1715 if (root_task_group_empty())
1716 return;
1717
3e5459b4
PZ
1718 spin_unlock(&rq->lock);
1719 update_shares(sd);
1720 spin_lock(&rq->lock);
1721}
1722
eb755805 1723static void update_h_load(long cpu)
c09595f6 1724{
e7097159
PZ
1725 if (root_task_group_empty())
1726 return;
1727
eb755805 1728 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1729}
1730
c09595f6
PZ
1731#else
1732
c8cba857 1733static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1734{
1735}
1736
3e5459b4
PZ
1737static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1738{
1739}
1740
18d95a28
PZ
1741#endif
1742
8f45e2b5
GH
1743#ifdef CONFIG_PREEMPT
1744
b78bb868
PZ
1745static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1746
70574a99 1747/*
8f45e2b5
GH
1748 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1749 * way at the expense of forcing extra atomic operations in all
1750 * invocations. This assures that the double_lock is acquired using the
1751 * same underlying policy as the spinlock_t on this architecture, which
1752 * reduces latency compared to the unfair variant below. However, it
1753 * also adds more overhead and therefore may reduce throughput.
70574a99 1754 */
8f45e2b5
GH
1755static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(this_rq->lock)
1757 __acquires(busiest->lock)
1758 __acquires(this_rq->lock)
1759{
1760 spin_unlock(&this_rq->lock);
1761 double_rq_lock(this_rq, busiest);
1762
1763 return 1;
1764}
1765
1766#else
1767/*
1768 * Unfair double_lock_balance: Optimizes throughput at the expense of
1769 * latency by eliminating extra atomic operations when the locks are
1770 * already in proper order on entry. This favors lower cpu-ids and will
1771 * grant the double lock to lower cpus over higher ids under contention,
1772 * regardless of entry order into the function.
1773 */
1774static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1775 __releases(this_rq->lock)
1776 __acquires(busiest->lock)
1777 __acquires(this_rq->lock)
1778{
1779 int ret = 0;
1780
70574a99
AD
1781 if (unlikely(!spin_trylock(&busiest->lock))) {
1782 if (busiest < this_rq) {
1783 spin_unlock(&this_rq->lock);
1784 spin_lock(&busiest->lock);
1785 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1786 ret = 1;
1787 } else
1788 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1789 }
1790 return ret;
1791}
1792
8f45e2b5
GH
1793#endif /* CONFIG_PREEMPT */
1794
1795/*
1796 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1797 */
1798static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1799{
1800 if (unlikely(!irqs_disabled())) {
1801 /* printk() doesn't work good under rq->lock */
1802 spin_unlock(&this_rq->lock);
1803 BUG_ON(1);
1804 }
1805
1806 return _double_lock_balance(this_rq, busiest);
1807}
1808
70574a99
AD
1809static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1810 __releases(busiest->lock)
1811{
1812 spin_unlock(&busiest->lock);
1813 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1814}
18d95a28
PZ
1815#endif
1816
30432094 1817#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1818static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819{
30432094 1820#ifdef CONFIG_SMP
34e83e85
IM
1821 cfs_rq->shares = shares;
1822#endif
1823}
30432094 1824#endif
e7693a36 1825
dce48a84
TG
1826static void calc_load_account_active(struct rq *this_rq);
1827
dd41f596 1828#include "sched_stats.h"
dd41f596 1829#include "sched_idletask.c"
5522d5d5
IM
1830#include "sched_fair.c"
1831#include "sched_rt.c"
dd41f596
IM
1832#ifdef CONFIG_SCHED_DEBUG
1833# include "sched_debug.c"
1834#endif
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
c09595f6 1840static void inc_nr_running(struct rq *rq)
9c217245
IM
1841{
1842 rq->nr_running++;
9c217245
IM
1843}
1844
c09595f6 1845static void dec_nr_running(struct rq *rq)
9c217245
IM
1846{
1847 rq->nr_running--;
9c217245
IM
1848}
1849
45bf76df
IM
1850static void set_load_weight(struct task_struct *p)
1851{
1852 if (task_has_rt_policy(p)) {
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
45bf76df 1857
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
2087a1ad
GH
1871static void update_avg(u64 *avg, u64 sample)
1872{
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875}
1876
8159f87e 1877static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1878{
831451ac
PZ
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
dd41f596 1882 sched_info_queued(p);
fd390f6a 1883 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1884 p->se.on_rq = 1;
71f8bd46
IM
1885}
1886
69be72c1 1887static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1888{
831451ac
PZ
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
2087a1ad
GH
1898 }
1899
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
14531189 1905/*
dd41f596 1906 * __normal_prio - return the priority that is based on the static prio
14531189 1907 */
14531189
IM
1908static inline int __normal_prio(struct task_struct *p)
1909{
dd41f596 1910 return p->static_prio;
14531189
IM
1911}
1912
b29739f9
IM
1913/*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
36c8b586 1920static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1921{
1922 int prio;
1923
e05606d3 1924 if (task_has_rt_policy(p))
b29739f9
IM
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929}
1930
1931/*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
36c8b586 1938static int effective_prio(struct task_struct *p)
b29739f9
IM
1939{
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949}
1950
1da177e4 1951/*
dd41f596 1952 * activate_task - move a task to the runqueue.
1da177e4 1953 */
dd41f596 1954static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596 1957 rq->nr_uninterruptible--;
1da177e4 1958
8159f87e 1959 enqueue_task(rq, p, wakeup);
c09595f6 1960 inc_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
2e1cb74a 1966static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1967{
d9514f6c 1968 if (task_contributes_to_load(p))
dd41f596
IM
1969 rq->nr_uninterruptible++;
1970
69be72c1 1971 dequeue_task(rq, p, sleep);
c09595f6 1972 dec_nr_running(rq);
1da177e4
LT
1973}
1974
1da177e4
LT
1975/**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
36c8b586 1979inline int task_curr(const struct task_struct *p)
1da177e4
LT
1980{
1981 return cpu_curr(task_cpu(p)) == p;
1982}
1983
dd41f596
IM
1984static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1985{
6f505b16 1986 set_task_rq(p, cpu);
dd41f596 1987#ifdef CONFIG_SMP
ce96b5ac
DA
1988 /*
1989 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1990 * successfuly executed on another CPU. We must ensure that updates of
1991 * per-task data have been completed by this moment.
1992 */
1993 smp_wmb();
dd41f596 1994 task_thread_info(p)->cpu = cpu;
dd41f596 1995#endif
2dd73a4f
PW
1996}
1997
cb469845
SR
1998static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1999 const struct sched_class *prev_class,
2000 int oldprio, int running)
2001{
2002 if (prev_class != p->sched_class) {
2003 if (prev_class->switched_from)
2004 prev_class->switched_from(rq, p, running);
2005 p->sched_class->switched_to(rq, p, running);
2006 } else
2007 p->sched_class->prio_changed(rq, p, oldprio, running);
2008}
2009
1da177e4 2010#ifdef CONFIG_SMP
cc367732
IM
2011/*
2012 * Is this task likely cache-hot:
2013 */
e7693a36 2014static int
cc367732
IM
2015task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2016{
2017 s64 delta;
2018
f540a608
IM
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
4793241b
PZ
2022 if (sched_feat(CACHE_HOT_BUDDY) &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2025 return 1;
2026
cc367732
IM
2027 if (p->sched_class != &fair_sched_class)
2028 return 0;
2029
6bc1665b
IM
2030 if (sysctl_sched_migration_cost == -1)
2031 return 1;
2032 if (sysctl_sched_migration_cost == 0)
2033 return 0;
2034
cc367732
IM
2035 delta = now - p->se.exec_start;
2036
2037 return delta < (s64)sysctl_sched_migration_cost;
2038}
2039
2040
dd41f596 2041void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2042{
dd41f596
IM
2043 int old_cpu = task_cpu(p);
2044 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2045 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2046 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2047 u64 clock_offset;
dd41f596
IM
2048
2049 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2050
de1d7286 2051 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2052
6cfb0d5d
IM
2053#ifdef CONFIG_SCHEDSTATS
2054 if (p->se.wait_start)
2055 p->se.wait_start -= clock_offset;
dd41f596
IM
2056 if (p->se.sleep_start)
2057 p->se.sleep_start -= clock_offset;
2058 if (p->se.block_start)
2059 p->se.block_start -= clock_offset;
6c594c21 2060#endif
cc367732 2061 if (old_cpu != new_cpu) {
6c594c21 2062 p->se.nr_migrations++;
23a185ca 2063 new_rq->nr_migrations_in++;
6c594c21 2064#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2065 if (task_hot(p, old_rq->clock, NULL))
2066 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2067#endif
e5289d4a
PZ
2068 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2069 1, 1, NULL, 0);
6c594c21 2070 }
2830cf8c
SV
2071 p->se.vruntime -= old_cfsrq->min_vruntime -
2072 new_cfsrq->min_vruntime;
dd41f596
IM
2073
2074 __set_task_cpu(p, new_cpu);
c65cc870
IM
2075}
2076
70b97a7f 2077struct migration_req {
1da177e4 2078 struct list_head list;
1da177e4 2079
36c8b586 2080 struct task_struct *task;
1da177e4
LT
2081 int dest_cpu;
2082
1da177e4 2083 struct completion done;
70b97a7f 2084};
1da177e4
LT
2085
2086/*
2087 * The task's runqueue lock must be held.
2088 * Returns true if you have to wait for migration thread.
2089 */
36c8b586 2090static int
70b97a7f 2091migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2092{
70b97a7f 2093 struct rq *rq = task_rq(p);
1da177e4
LT
2094
2095 /*
2096 * If the task is not on a runqueue (and not running), then
2097 * it is sufficient to simply update the task's cpu field.
2098 */
dd41f596 2099 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2100 set_task_cpu(p, dest_cpu);
2101 return 0;
2102 }
2103
2104 init_completion(&req->done);
1da177e4
LT
2105 req->task = p;
2106 req->dest_cpu = dest_cpu;
2107 list_add(&req->list, &rq->migration_queue);
48f24c4d 2108
1da177e4
LT
2109 return 1;
2110}
2111
a26b89f0
MM
2112/*
2113 * wait_task_context_switch - wait for a thread to complete at least one
2114 * context switch.
2115 *
2116 * @p must not be current.
2117 */
2118void wait_task_context_switch(struct task_struct *p)
2119{
2120 unsigned long nvcsw, nivcsw, flags;
2121 int running;
2122 struct rq *rq;
2123
2124 nvcsw = p->nvcsw;
2125 nivcsw = p->nivcsw;
2126 for (;;) {
2127 /*
2128 * The runqueue is assigned before the actual context
2129 * switch. We need to take the runqueue lock.
2130 *
2131 * We could check initially without the lock but it is
2132 * very likely that we need to take the lock in every
2133 * iteration.
2134 */
2135 rq = task_rq_lock(p, &flags);
2136 running = task_running(rq, p);
2137 task_rq_unlock(rq, &flags);
2138
2139 if (likely(!running))
2140 break;
2141 /*
2142 * The switch count is incremented before the actual
2143 * context switch. We thus wait for two switches to be
2144 * sure at least one completed.
2145 */
2146 if ((p->nvcsw - nvcsw) > 1)
2147 break;
2148 if ((p->nivcsw - nivcsw) > 1)
2149 break;
2150
2151 cpu_relax();
2152 }
2153}
2154
1da177e4
LT
2155/*
2156 * wait_task_inactive - wait for a thread to unschedule.
2157 *
85ba2d86
RM
2158 * If @match_state is nonzero, it's the @p->state value just checked and
2159 * not expected to change. If it changes, i.e. @p might have woken up,
2160 * then return zero. When we succeed in waiting for @p to be off its CPU,
2161 * we return a positive number (its total switch count). If a second call
2162 * a short while later returns the same number, the caller can be sure that
2163 * @p has remained unscheduled the whole time.
2164 *
1da177e4
LT
2165 * The caller must ensure that the task *will* unschedule sometime soon,
2166 * else this function might spin for a *long* time. This function can't
2167 * be called with interrupts off, or it may introduce deadlock with
2168 * smp_call_function() if an IPI is sent by the same process we are
2169 * waiting to become inactive.
2170 */
85ba2d86 2171unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2172{
2173 unsigned long flags;
dd41f596 2174 int running, on_rq;
85ba2d86 2175 unsigned long ncsw;
70b97a7f 2176 struct rq *rq;
1da177e4 2177
3a5c359a
AK
2178 for (;;) {
2179 /*
2180 * We do the initial early heuristics without holding
2181 * any task-queue locks at all. We'll only try to get
2182 * the runqueue lock when things look like they will
2183 * work out!
2184 */
2185 rq = task_rq(p);
fa490cfd 2186
3a5c359a
AK
2187 /*
2188 * If the task is actively running on another CPU
2189 * still, just relax and busy-wait without holding
2190 * any locks.
2191 *
2192 * NOTE! Since we don't hold any locks, it's not
2193 * even sure that "rq" stays as the right runqueue!
2194 * But we don't care, since "task_running()" will
2195 * return false if the runqueue has changed and p
2196 * is actually now running somewhere else!
2197 */
85ba2d86
RM
2198 while (task_running(rq, p)) {
2199 if (match_state && unlikely(p->state != match_state))
2200 return 0;
3a5c359a 2201 cpu_relax();
85ba2d86 2202 }
fa490cfd 2203
3a5c359a
AK
2204 /*
2205 * Ok, time to look more closely! We need the rq
2206 * lock now, to be *sure*. If we're wrong, we'll
2207 * just go back and repeat.
2208 */
2209 rq = task_rq_lock(p, &flags);
0a16b607 2210 trace_sched_wait_task(rq, p);
3a5c359a
AK
2211 running = task_running(rq, p);
2212 on_rq = p->se.on_rq;
85ba2d86 2213 ncsw = 0;
f31e11d8 2214 if (!match_state || p->state == match_state)
93dcf55f 2215 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2216 task_rq_unlock(rq, &flags);
fa490cfd 2217
85ba2d86
RM
2218 /*
2219 * If it changed from the expected state, bail out now.
2220 */
2221 if (unlikely(!ncsw))
2222 break;
2223
3a5c359a
AK
2224 /*
2225 * Was it really running after all now that we
2226 * checked with the proper locks actually held?
2227 *
2228 * Oops. Go back and try again..
2229 */
2230 if (unlikely(running)) {
2231 cpu_relax();
2232 continue;
2233 }
fa490cfd 2234
3a5c359a
AK
2235 /*
2236 * It's not enough that it's not actively running,
2237 * it must be off the runqueue _entirely_, and not
2238 * preempted!
2239 *
80dd99b3 2240 * So if it was still runnable (but just not actively
3a5c359a
AK
2241 * running right now), it's preempted, and we should
2242 * yield - it could be a while.
2243 */
2244 if (unlikely(on_rq)) {
2245 schedule_timeout_uninterruptible(1);
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * Ahh, all good. It wasn't running, and it wasn't
2251 * runnable, which means that it will never become
2252 * running in the future either. We're all done!
2253 */
2254 break;
2255 }
85ba2d86
RM
2256
2257 return ncsw;
1da177e4
LT
2258}
2259
2260/***
2261 * kick_process - kick a running thread to enter/exit the kernel
2262 * @p: the to-be-kicked thread
2263 *
2264 * Cause a process which is running on another CPU to enter
2265 * kernel-mode, without any delay. (to get signals handled.)
2266 *
2267 * NOTE: this function doesnt have to take the runqueue lock,
2268 * because all it wants to ensure is that the remote task enters
2269 * the kernel. If the IPI races and the task has been migrated
2270 * to another CPU then no harm is done and the purpose has been
2271 * achieved as well.
2272 */
36c8b586 2273void kick_process(struct task_struct *p)
1da177e4
LT
2274{
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if ((cpu != smp_processor_id()) && task_curr(p))
2280 smp_send_reschedule(cpu);
2281 preempt_enable();
2282}
b43e3521 2283EXPORT_SYMBOL_GPL(kick_process);
476d139c 2284#endif /* CONFIG_SMP */
1da177e4 2285
0793a61d
TG
2286/**
2287 * task_oncpu_function_call - call a function on the cpu on which a task runs
2288 * @p: the task to evaluate
2289 * @func: the function to be called
2290 * @info: the function call argument
2291 *
2292 * Calls the function @func when the task is currently running. This might
2293 * be on the current CPU, which just calls the function directly
2294 */
2295void task_oncpu_function_call(struct task_struct *p,
2296 void (*func) (void *info), void *info)
2297{
2298 int cpu;
2299
2300 preempt_disable();
2301 cpu = task_cpu(p);
2302 if (task_curr(p))
2303 smp_call_function_single(cpu, func, info, 1);
2304 preempt_enable();
2305}
2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2324 unsigned long flags;
70b97a7f 2325 struct rq *rq;
1da177e4 2326
b85d0667
IM
2327 if (!sched_feat(SYNC_WAKEUPS))
2328 sync = 0;
2329
e9c84311
PZ
2330 this_cpu = get_cpu();
2331
04e2f174 2332 smp_wmb();
1da177e4 2333 rq = task_rq_lock(p, &flags);
03e89e45 2334 update_rq_clock(rq);
e9c84311 2335 if (!(p->state & state))
1da177e4
LT
2336 goto out;
2337
dd41f596 2338 if (p->se.on_rq)
1da177e4
LT
2339 goto out_running;
2340
2341 cpu = task_cpu(p);
cc367732 2342 orig_cpu = cpu;
1da177e4
LT
2343
2344#ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2347
e9c84311
PZ
2348 /*
2349 * In order to handle concurrent wakeups and release the rq->lock
2350 * we put the task in TASK_WAKING state.
2351 */
2352 p->state = TASK_WAKING;
2353 task_rq_unlock(rq, &flags);
2354
5f3edc1b 2355 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
e9c84311 2356 if (cpu != orig_cpu)
5d2f5a61 2357 set_task_cpu(p, cpu);
1da177e4 2358
e9c84311
PZ
2359 rq = task_rq_lock(p, &flags);
2360 WARN_ON(p->state != TASK_WAKING);
2361 cpu = task_cpu(p);
1da177e4 2362
e7693a36
GH
2363#ifdef CONFIG_SCHEDSTATS
2364 schedstat_inc(rq, ttwu_count);
2365 if (cpu == this_cpu)
2366 schedstat_inc(rq, ttwu_local);
2367 else {
2368 struct sched_domain *sd;
2369 for_each_domain(this_cpu, sd) {
758b2cdc 2370 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2371 schedstat_inc(sd, ttwu_wake_remote);
2372 break;
2373 }
2374 }
2375 }
6d6bc0ad 2376#endif /* CONFIG_SCHEDSTATS */
e7693a36 2377
1da177e4
LT
2378out_activate:
2379#endif /* CONFIG_SMP */
cc367732
IM
2380 schedstat_inc(p, se.nr_wakeups);
2381 if (sync)
2382 schedstat_inc(p, se.nr_wakeups_sync);
2383 if (orig_cpu != cpu)
2384 schedstat_inc(p, se.nr_wakeups_migrate);
2385 if (cpu == this_cpu)
2386 schedstat_inc(p, se.nr_wakeups_local);
2387 else
2388 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2389 activate_task(rq, p, 1);
1da177e4
LT
2390 success = 1;
2391
831451ac
PZ
2392 /*
2393 * Only attribute actual wakeups done by this task.
2394 */
2395 if (!in_interrupt()) {
2396 struct sched_entity *se = &current->se;
2397 u64 sample = se->sum_exec_runtime;
2398
2399 if (se->last_wakeup)
2400 sample -= se->last_wakeup;
2401 else
2402 sample -= se->start_runtime;
2403 update_avg(&se->avg_wakeup, sample);
2404
2405 se->last_wakeup = se->sum_exec_runtime;
2406 }
2407
1da177e4 2408out_running:
468a15bb 2409 trace_sched_wakeup(rq, p, success);
15afe09b 2410 check_preempt_curr(rq, p, sync);
4ae7d5ce 2411
1da177e4 2412 p->state = TASK_RUNNING;
9a897c5a
SR
2413#ifdef CONFIG_SMP
2414 if (p->sched_class->task_wake_up)
2415 p->sched_class->task_wake_up(rq, p);
2416#endif
1da177e4
LT
2417out:
2418 task_rq_unlock(rq, &flags);
e9c84311 2419 put_cpu();
1da177e4
LT
2420
2421 return success;
2422}
2423
50fa610a
DH
2424/**
2425 * wake_up_process - Wake up a specific process
2426 * @p: The process to be woken up.
2427 *
2428 * Attempt to wake up the nominated process and move it to the set of runnable
2429 * processes. Returns 1 if the process was woken up, 0 if it was already
2430 * running.
2431 *
2432 * It may be assumed that this function implies a write memory barrier before
2433 * changing the task state if and only if any tasks are woken up.
2434 */
7ad5b3a5 2435int wake_up_process(struct task_struct *p)
1da177e4 2436{
d9514f6c 2437 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2438}
1da177e4
LT
2439EXPORT_SYMBOL(wake_up_process);
2440
7ad5b3a5 2441int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2442{
2443 return try_to_wake_up(p, state, 0);
2444}
2445
1da177e4
LT
2446/*
2447 * Perform scheduler related setup for a newly forked process p.
2448 * p is forked by current.
dd41f596
IM
2449 *
2450 * __sched_fork() is basic setup used by init_idle() too:
2451 */
2452static void __sched_fork(struct task_struct *p)
2453{
dd41f596
IM
2454 p->se.exec_start = 0;
2455 p->se.sum_exec_runtime = 0;
f6cf891c 2456 p->se.prev_sum_exec_runtime = 0;
6c594c21 2457 p->se.nr_migrations = 0;
4ae7d5ce
IM
2458 p->se.last_wakeup = 0;
2459 p->se.avg_overlap = 0;
831451ac
PZ
2460 p->se.start_runtime = 0;
2461 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2462
2463#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2468
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2472
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2484
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2494
6cfb0d5d 2495#endif
476d139c 2496
fa717060 2497 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2498 p->se.on_rq = 0;
4a55bd5e 2499 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2500
e107be36
AK
2501#ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503#endif
2504
1da177e4
LT
2505 /*
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
2511 p->state = TASK_RUNNING;
dd41f596
IM
2512}
2513
2514/*
2515 * fork()/clone()-time setup:
2516 */
2517void sched_fork(struct task_struct *p, int clone_flags)
2518{
2519 int cpu = get_cpu();
2520
2521 __sched_fork(p);
2522
b29739f9 2523 /*
b9dc29e7 2524 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2525 */
2526 p->prio = current->normal_prio;
ca94c442 2527
b9dc29e7
MG
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2534
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2537
6c697bdf
MG
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2541 }
2542
b9dc29e7
MG
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
ca94c442 2549
2ddbf952
HS
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
b29739f9 2552
5f3edc1b
PZ
2553#ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555#endif
2556 set_task_cpu(p, cpu);
2557
52f17b6c 2558#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2559 if (likely(sched_info_on()))
52f17b6c 2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2561#endif
d6077cb8 2562#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2563 p->oncpu = 0;
2564#endif
1da177e4 2565#ifdef CONFIG_PREEMPT
4866cde0 2566 /* Want to start with kernel preemption disabled. */
a1261f54 2567 task_thread_info(p)->preempt_count = 1;
1da177e4 2568#endif
917b627d
GH
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570
476d139c 2571 put_cpu();
1da177e4
LT
2572}
2573
2574/*
2575 * wake_up_new_task - wake up a newly created task for the first time.
2576 *
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2580 */
7ad5b3a5 2581void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2582{
2583 unsigned long flags;
dd41f596 2584 struct rq *rq;
1da177e4
LT
2585
2586 rq = task_rq_lock(p, &flags);
147cbb4b 2587 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2588 update_rq_clock(rq);
1da177e4
LT
2589
2590 p->prio = effective_prio(p);
2591
b9dca1e0 2592 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2593 activate_task(rq, p, 0);
1da177e4 2594 } else {
1da177e4 2595 /*
dd41f596
IM
2596 * Let the scheduling class do new task startup
2597 * management (if any):
1da177e4 2598 */
ee0827d8 2599 p->sched_class->task_new(rq, p);
c09595f6 2600 inc_nr_running(rq);
1da177e4 2601 }
c71dd42d 2602 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2603 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2604#ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607#endif
dd41f596 2608 task_rq_unlock(rq, &flags);
1da177e4
LT
2609}
2610
e107be36
AK
2611#ifdef CONFIG_PREEMPT_NOTIFIERS
2612
2613/**
80dd99b3 2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2615 * @notifier: notifier struct to register
e107be36
AK
2616 */
2617void preempt_notifier_register(struct preempt_notifier *notifier)
2618{
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2620}
2621EXPORT_SYMBOL_GPL(preempt_notifier_register);
2622
2623/**
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2625 * @notifier: notifier struct to unregister
e107be36
AK
2626 *
2627 * This is safe to call from within a preemption notifier.
2628 */
2629void preempt_notifier_unregister(struct preempt_notifier *notifier)
2630{
2631 hlist_del(&notifier->link);
2632}
2633EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2634
2635static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636{
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2639
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642}
2643
2644static void
2645fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2647{
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2653}
2654
6d6bc0ad 2655#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2656
2657static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658{
2659}
2660
2661static void
2662fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664{
2665}
2666
6d6bc0ad 2667#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2668
4866cde0
NP
2669/**
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
421cee29 2672 * @prev: the current task that is being switched out
4866cde0
NP
2673 * @next: the task we are going to switch to.
2674 *
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2678 *
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2681 */
e107be36
AK
2682static inline void
2683prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
4866cde0 2685{
e107be36 2686 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2689}
2690
1da177e4
LT
2691/**
2692 * finish_task_switch - clean up after a task-switch
344babaa 2693 * @rq: runqueue associated with task-switch
1da177e4
LT
2694 * @prev: the thread we just switched away from.
2695 *
4866cde0
NP
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2702 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2705 */
a9957449 2706static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2707 __releases(rq->lock)
2708{
1da177e4 2709 struct mm_struct *mm = rq->prev_mm;
55a101f8 2710 long prev_state;
1da177e4
LT
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
c394cc9f 2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
c394cc9f 2719 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2724 */
55a101f8 2725 prev_state = prev->state;
4866cde0 2726 finish_arch_switch(prev);
0793a61d 2727 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2728 finish_lock_switch(rq, prev);
e8fa1362 2729
e107be36 2730 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2731 if (mm)
2732 mmdrop(mm);
c394cc9f 2733 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2734 /*
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
9761eea8 2737 */
c6fd91f0 2738 kprobe_flush_task(prev);
1da177e4 2739 put_task_struct(prev);
c6fd91f0 2740 }
1da177e4
LT
2741}
2742
3f029d3c
GH
2743#ifdef CONFIG_SMP
2744
2745/* assumes rq->lock is held */
2746static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2747{
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2750}
2751
2752/* rq->lock is NOT held, but preemption is disabled */
2753static inline void post_schedule(struct rq *rq)
2754{
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2762
2763 rq->post_schedule = 0;
2764 }
2765}
2766
2767#else
da19ab51 2768
3f029d3c
GH
2769static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770{
2771}
2772
2773static inline void post_schedule(struct rq *rq)
2774{
1da177e4
LT
2775}
2776
3f029d3c
GH
2777#endif
2778
1da177e4
LT
2779/**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
36c8b586 2783asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2784 __releases(rq->lock)
2785{
70b97a7f
IM
2786 struct rq *rq = this_rq();
2787
4866cde0 2788 finish_task_switch(rq, prev);
da19ab51 2789
3f029d3c
GH
2790 /*
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2793 */
2794 post_schedule(rq);
70b97a7f 2795
4866cde0
NP
2796#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799#endif
1da177e4 2800 if (current->set_child_tid)
b488893a 2801 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2802}
2803
2804/*
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2807 */
dd41f596 2808static inline void
70b97a7f 2809context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2810 struct task_struct *next)
1da177e4 2811{
dd41f596 2812 struct mm_struct *mm, *oldmm;
1da177e4 2813
e107be36 2814 prepare_task_switch(rq, prev, next);
0a16b607 2815 trace_sched_switch(rq, prev, next);
dd41f596
IM
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
9226d125
ZA
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
224101ed 2823 arch_start_context_switch(prev);
9226d125 2824
dd41f596 2825 if (unlikely(!mm)) {
1da177e4
LT
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2831
dd41f596 2832 if (unlikely(!prev->mm)) {
1da177e4 2833 prev->active_mm = NULL;
1da177e4
LT
2834 rq->prev_mm = oldmm;
2835 }
3a5f5e48
IM
2836 /*
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2841 */
2842#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2844#endif
1da177e4
LT
2845
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2848
dd41f596
IM
2849 barrier();
2850 /*
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2854 */
2855 finish_task_switch(this_rq(), prev);
1da177e4
LT
2856}
2857
2858/*
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2860 *
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2864 */
2865unsigned long nr_running(void)
2866{
2867 unsigned long i, sum = 0;
2868
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2871
2872 return sum;
2873}
2874
2875unsigned long nr_uninterruptible(void)
2876{
2877 unsigned long i, sum = 0;
2878
0a945022 2879 for_each_possible_cpu(i)
1da177e4
LT
2880 sum += cpu_rq(i)->nr_uninterruptible;
2881
2882 /*
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2885 */
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2888
2889 return sum;
2890}
2891
2892unsigned long long nr_context_switches(void)
2893{
cc94abfc
SR
2894 int i;
2895 unsigned long long sum = 0;
1da177e4 2896
0a945022 2897 for_each_possible_cpu(i)
1da177e4
LT
2898 sum += cpu_rq(i)->nr_switches;
2899
2900 return sum;
2901}
2902
2903unsigned long nr_iowait(void)
2904{
2905 unsigned long i, sum = 0;
2906
0a945022 2907 for_each_possible_cpu(i)
1da177e4
LT
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2909
2910 return sum;
2911}
2912
dce48a84
TG
2913/* Variables and functions for calc_load */
2914static atomic_long_t calc_load_tasks;
2915static unsigned long calc_load_update;
2916unsigned long avenrun[3];
2917EXPORT_SYMBOL(avenrun);
2918
2d02494f
TG
2919/**
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2924 *
2925 * These values are estimates at best, so no need for locking.
2926 */
2927void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2928{
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2932}
2933
dce48a84
TG
2934static unsigned long
2935calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2936{
dce48a84
TG
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2940}
db1b1fef 2941
dce48a84
TG
2942/*
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2945 */
2946void calc_global_load(void)
2947{
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2950
2951 if (time_before(jiffies, upd))
2952 return;
db1b1fef 2953
dce48a84
TG
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2956
dce48a84
TG
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2960
2961 calc_load_update += LOAD_FREQ;
2962}
2963
2964/*
2965 * Either called from update_cpu_load() or from a cpu going idle
2966 */
2967static void calc_load_account_active(struct rq *this_rq)
2968{
2969 long nr_active, delta;
2970
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2973
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2978 }
db1b1fef
JS
2979}
2980
23a185ca
PM
2981/*
2982 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2984 */
23a185ca
PM
2985u64 cpu_nr_migrations(int cpu)
2986{
2987 return cpu_rq(cpu)->nr_migrations_in;
2988}
2989
48f24c4d 2990/*
dd41f596
IM
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
48f24c4d 2993 */
dd41f596 2994static void update_cpu_load(struct rq *this_rq)
48f24c4d 2995{
495eca49 2996 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2997 int i, scale;
2998
2999 this_rq->nr_load_updates++;
dd41f596
IM
3000
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3004
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3006
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
a25707f3
IM
3009 /*
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3013 */
3014 if (new_load > old_load)
3015 new_load += scale-1;
dd41f596
IM
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3017 }
dce48a84
TG
3018
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3022 }
48f24c4d
IM
3023}
3024
dd41f596
IM
3025#ifdef CONFIG_SMP
3026
1da177e4
LT
3027/*
3028 * double_rq_lock - safely lock two runqueues
3029 *
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3032 */
70b97a7f 3033static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3036{
054b9108 3037 BUG_ON(!irqs_disabled());
1da177e4
LT
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
c96d145e 3042 if (rq1 < rq2) {
1da177e4 3043 spin_lock(&rq1->lock);
5e710e37 3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3045 } else {
3046 spin_lock(&rq2->lock);
5e710e37 3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3048 }
3049 }
6e82a3be
IM
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
1da177e4
LT
3052}
3053
3054/*
3055 * double_rq_unlock - safely unlock two runqueues
3056 *
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3059 */
70b97a7f 3060static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3063{
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3069}
3070
1da177e4
LT
3071/*
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3075 * the cpu_allowed mask is restored.
3076 */
36c8b586 3077static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3078{
70b97a7f 3079 struct migration_req req;
1da177e4 3080 unsigned long flags;
70b97a7f 3081 struct rq *rq;
1da177e4
LT
3082
3083 rq = task_rq_lock(p, &flags);
96f874e2 3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3085 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3086 goto out;
3087
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
36c8b586 3092
1da177e4
LT
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
36c8b586 3098
1da177e4
LT
3099 return;
3100 }
3101out:
3102 task_rq_unlock(rq, &flags);
3103}
3104
3105/*
476d139c
NP
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3108 */
3109void sched_exec(void)
3110{
1da177e4 3111 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3113 put_cpu();
476d139c
NP
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
1da177e4
LT
3116}
3117
3118/*
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3121 */
dd41f596
IM
3122static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
1da177e4 3124{
2e1cb74a 3125 deactivate_task(src_rq, p, 0);
1da177e4 3126 set_task_cpu(p, this_cpu);
dd41f596 3127 activate_task(this_rq, p, 0);
1da177e4
LT
3128 /*
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3131 */
15afe09b 3132 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3133}
3134
3135/*
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3137 */
858119e1 3138static
70b97a7f 3139int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3140 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3141 int *all_pinned)
1da177e4 3142{
708dc512 3143 int tsk_cache_hot = 0;
1da177e4
LT
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
96f874e2 3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3151 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3152 return 0;
cc367732 3153 }
81026794
NP
3154 *all_pinned = 0;
3155
cc367732
IM
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3158 return 0;
cc367732 3159 }
1da177e4 3160
da84d961
IM
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
708dc512
LH
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3170#ifdef CONFIG_SCHEDSTATS
708dc512 3171 if (tsk_cache_hot) {
da84d961 3172 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3173 schedstat_inc(p, se.nr_forced_migrations);
3174 }
da84d961
IM
3175#endif
3176 return 1;
3177 }
3178
708dc512 3179 if (tsk_cache_hot) {
cc367732 3180 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3181 return 0;
cc367732 3182 }
1da177e4
LT
3183 return 1;
3184}
3185
e1d1484f
PW
3186static unsigned long
3187balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3191{
051c6764 3192 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
1da177e4 3195
e1d1484f 3196 if (max_load_move == 0)
1da177e4
LT
3197 goto out;
3198
81026794
NP
3199 pinned = 1;
3200
1da177e4 3201 /*
dd41f596 3202 * Start the load-balancing iterator:
1da177e4 3203 */
dd41f596
IM
3204 p = iterator->start(iterator->arg);
3205next:
b82d9fdd 3206 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3207 goto out;
051c6764
PZ
3208
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3211 p = iterator->next(iterator->arg);
3212 goto next;
1da177e4
LT
3213 }
3214
dd41f596 3215 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3216 pulled++;
dd41f596 3217 rem_load_move -= p->se.load.weight;
1da177e4 3218
7e96fa58
GH
3219#ifdef CONFIG_PREEMPT
3220 /*
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3224 */
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227#endif
3228
2dd73a4f 3229 /*
b82d9fdd 3230 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3231 */
e1d1484f 3232 if (rem_load_move > 0) {
a4ac01c3
PW
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
dd41f596
IM
3235 p = iterator->next(iterator->arg);
3236 goto next;
1da177e4
LT
3237 }
3238out:
3239 /*
e1d1484f 3240 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3243 */
3244 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3245
3246 if (all_pinned)
3247 *all_pinned = pinned;
e1d1484f
PW
3248
3249 return max_load_move - rem_load_move;
1da177e4
LT
3250}
3251
dd41f596 3252/*
43010659
PW
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3256 *
3257 * Called with both runqueues locked.
3258 */
3259static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3260 unsigned long max_load_move,
dd41f596
IM
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3263{
5522d5d5 3264 const struct sched_class *class = sched_class_highest;
43010659 3265 unsigned long total_load_moved = 0;
a4ac01c3 3266 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3267
3268 do {
43010659
PW
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3271 max_load_move - total_load_moved,
a4ac01c3 3272 sd, idle, all_pinned, &this_best_prio);
dd41f596 3273 class = class->next;
c4acb2c0 3274
7e96fa58
GH
3275#ifdef CONFIG_PREEMPT
3276 /*
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3280 */
c4acb2c0
GH
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
7e96fa58 3283#endif
43010659 3284 } while (class && max_load_move > total_load_moved);
dd41f596 3285
43010659
PW
3286 return total_load_moved > 0;
3287}
3288
e1d1484f
PW
3289static int
3290iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3293{
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3296
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3300 /*
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3304 */
3305 schedstat_inc(sd, lb_gained[idle]);
3306
3307 return 1;
3308 }
3309 p = iterator->next(iterator->arg);
3310 }
3311
3312 return 0;
3313}
3314
43010659
PW
3315/*
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3324{
5522d5d5 3325 const struct sched_class *class;
43010659 3326
cde7e5ca 3327 for_each_class(class) {
e1d1484f 3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3329 return 1;
cde7e5ca 3330 }
43010659
PW
3331
3332 return 0;
dd41f596 3333}
67bb6c03 3334/********** Helpers for find_busiest_group ************************/
1da177e4 3335/*
222d656d
GS
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
1da177e4 3338 */
222d656d
GS
3339struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3345
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3350
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3355
3356 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3357#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3364#endif
222d656d 3365};
1da177e4 3366
d5ac537e 3367/*
381be78f
GS
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3369 */
3370struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3377};
408ed066 3378
67bb6c03
GS
3379/**
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3382 */
3383static inline unsigned int group_first_cpu(struct sched_group *group)
3384{
3385 return cpumask_first(sched_group_cpus(group));
3386}
3387
3388/**
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3392 */
3393static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3395{
3396 int load_idx;
3397
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
7897986b 3400 load_idx = sd->busy_idx;
67bb6c03
GS
3401 break;
3402
3403 case CPU_NEWLY_IDLE:
7897986b 3404 load_idx = sd->newidle_idx;
67bb6c03
GS
3405 break;
3406 default:
7897986b 3407 load_idx = sd->idle_idx;
67bb6c03
GS
3408 break;
3409 }
1da177e4 3410
67bb6c03
GS
3411 return load_idx;
3412}
1da177e4 3413
1da177e4 3414
c071df18
GS
3415#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3416/**
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3419 *
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3423 */
3424static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3426{
3427 /*
3428 * Busy processors will not participate in power savings
3429 * balance.
3430 */
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3437 }
3438}
783609c6 3439
c071df18
GS
3440/**
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3443 *
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3449 */
3450static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3452{
408ed066 3453
c071df18
GS
3454 if (!sds->power_savings_balance)
3455 return;
1da177e4 3456
c071df18
GS
3457 /*
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3460 */
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
2dd73a4f 3464
c071df18
GS
3465 /*
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3468 */
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
5969fe06 3473
c071df18
GS
3474 /*
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3478 */
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3486 }
783609c6 3487
c071df18
GS
3488 /*
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3492 */
d899a789 3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3494 return;
1da177e4 3495
c071df18
GS
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3501 }
3502}
408ed066 3503
c071df18 3504/**
d5ac537e 3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3510 *
d5ac537e
RD
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3515 *
c071df18
GS
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3518 */
3519static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3521{
3522 if (!sds->power_savings_balance)
3523 return 0;
1da177e4 3524
c071df18
GS
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
783609c6 3528
c071df18
GS
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
1da177e4 3531
c071df18 3532 return 1;
1da177e4 3533
c071df18
GS
3534}
3535#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3538{
3539 return;
3540}
408ed066 3541
c071df18
GS
3542static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3544{
3545 return;
3546}
3547
3548static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550{
3551 return 0;
3552}
3553#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554
d6a59aa3
PZ
3555
3556unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3557{
3558 return SCHED_LOAD_SCALE;
3559}
3560
3561unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3562{
3563 return default_scale_freq_power(sd, cpu);
3564}
3565
3566unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3567{
3568 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3569 unsigned long smt_gain = sd->smt_gain;
3570
3571 smt_gain /= weight;
3572
3573 return smt_gain;
3574}
3575
d6a59aa3
PZ
3576unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3577{
3578 return default_scale_smt_power(sd, cpu);
3579}
3580
e9e9250b
PZ
3581unsigned long scale_rt_power(int cpu)
3582{
3583 struct rq *rq = cpu_rq(cpu);
3584 u64 total, available;
3585
3586 sched_avg_update(rq);
3587
3588 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3589 available = total - rq->rt_avg;
3590
3591 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3592 total = SCHED_LOAD_SCALE;
3593
3594 total >>= SCHED_LOAD_SHIFT;
3595
3596 return div_u64(available, total);
3597}
3598
ab29230e
PZ
3599static void update_cpu_power(struct sched_domain *sd, int cpu)
3600{
3601 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3602 unsigned long power = SCHED_LOAD_SCALE;
3603 struct sched_group *sdg = sd->groups;
ab29230e 3604
8e6598af
PZ
3605 if (sched_feat(ARCH_POWER))
3606 power *= arch_scale_freq_power(sd, cpu);
3607 else
3608 power *= default_scale_freq_power(sd, cpu);
3609
d6a59aa3 3610 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3611
3612 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3613 if (sched_feat(ARCH_POWER))
3614 power *= arch_scale_smt_power(sd, cpu);
3615 else
3616 power *= default_scale_smt_power(sd, cpu);
3617
ab29230e
PZ
3618 power >>= SCHED_LOAD_SHIFT;
3619 }
3620
e9e9250b
PZ
3621 power *= scale_rt_power(cpu);
3622 power >>= SCHED_LOAD_SHIFT;
3623
3624 if (!power)
3625 power = 1;
ab29230e 3626
18a3885f 3627 sdg->cpu_power = power;
ab29230e
PZ
3628}
3629
3630static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3631{
3632 struct sched_domain *child = sd->child;
3633 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3634 unsigned long power;
cc9fba7d
PZ
3635
3636 if (!child) {
ab29230e 3637 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3638 return;
3639 }
3640
d7ea17a7 3641 power = 0;
cc9fba7d
PZ
3642
3643 group = child->groups;
3644 do {
d7ea17a7 3645 power += group->cpu_power;
cc9fba7d
PZ
3646 group = group->next;
3647 } while (group != child->groups);
d7ea17a7
IM
3648
3649 sdg->cpu_power = power;
cc9fba7d 3650}
c071df18 3651
1f8c553d
GS
3652/**
3653 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3654 * @group: sched_group whose statistics are to be updated.
3655 * @this_cpu: Cpu for which load balance is currently performed.
3656 * @idle: Idle status of this_cpu
3657 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3658 * @sd_idle: Idle status of the sched_domain containing group.
3659 * @local_group: Does group contain this_cpu.
3660 * @cpus: Set of cpus considered for load balancing.
3661 * @balance: Should we balance.
3662 * @sgs: variable to hold the statistics for this group.
3663 */
cc9fba7d
PZ
3664static inline void update_sg_lb_stats(struct sched_domain *sd,
3665 struct sched_group *group, int this_cpu,
1f8c553d
GS
3666 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3667 int local_group, const struct cpumask *cpus,
3668 int *balance, struct sg_lb_stats *sgs)
3669{
3670 unsigned long load, max_cpu_load, min_cpu_load;
3671 int i;
3672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3673 unsigned long sum_avg_load_per_task;
3674 unsigned long avg_load_per_task;
3675
cc9fba7d 3676 if (local_group) {
1f8c553d 3677 balance_cpu = group_first_cpu(group);
cc9fba7d 3678 if (balance_cpu == this_cpu)
ab29230e 3679 update_group_power(sd, this_cpu);
cc9fba7d 3680 }
1f8c553d
GS
3681
3682 /* Tally up the load of all CPUs in the group */
3683 sum_avg_load_per_task = avg_load_per_task = 0;
3684 max_cpu_load = 0;
3685 min_cpu_load = ~0UL;
408ed066 3686
1f8c553d
GS
3687 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3688 struct rq *rq = cpu_rq(i);
908a7c1b 3689
1f8c553d
GS
3690 if (*sd_idle && rq->nr_running)
3691 *sd_idle = 0;
5c45bf27 3692
1f8c553d 3693 /* Bias balancing toward cpus of our domain */
1da177e4 3694 if (local_group) {
1f8c553d
GS
3695 if (idle_cpu(i) && !first_idle_cpu) {
3696 first_idle_cpu = 1;
3697 balance_cpu = i;
3698 }
3699
3700 load = target_load(i, load_idx);
3701 } else {
3702 load = source_load(i, load_idx);
3703 if (load > max_cpu_load)
3704 max_cpu_load = load;
3705 if (min_cpu_load > load)
3706 min_cpu_load = load;
1da177e4 3707 }
5c45bf27 3708
1f8c553d
GS
3709 sgs->group_load += load;
3710 sgs->sum_nr_running += rq->nr_running;
3711 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3712
1f8c553d
GS
3713 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3714 }
5c45bf27 3715
1f8c553d
GS
3716 /*
3717 * First idle cpu or the first cpu(busiest) in this sched group
3718 * is eligible for doing load balancing at this and above
3719 * domains. In the newly idle case, we will allow all the cpu's
3720 * to do the newly idle load balance.
3721 */
3722 if (idle != CPU_NEWLY_IDLE && local_group &&
3723 balance_cpu != this_cpu && balance) {
3724 *balance = 0;
3725 return;
3726 }
5c45bf27 3727
1f8c553d 3728 /* Adjust by relative CPU power of the group */
18a3885f 3729 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3730
1f8c553d
GS
3731
3732 /*
3733 * Consider the group unbalanced when the imbalance is larger
3734 * than the average weight of two tasks.
3735 *
3736 * APZ: with cgroup the avg task weight can vary wildly and
3737 * might not be a suitable number - should we keep a
3738 * normalized nr_running number somewhere that negates
3739 * the hierarchy?
3740 */
18a3885f
PZ
3741 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3742 group->cpu_power;
1f8c553d
GS
3743
3744 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3745 sgs->group_imb = 1;
3746
bdb94aa5 3747 sgs->group_capacity =
18a3885f 3748 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3749}
dd41f596 3750
37abe198
GS
3751/**
3752 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3753 * @sd: sched_domain whose statistics are to be updated.
3754 * @this_cpu: Cpu for which load balance is currently performed.
3755 * @idle: Idle status of this_cpu
3756 * @sd_idle: Idle status of the sched_domain containing group.
3757 * @cpus: Set of cpus considered for load balancing.
3758 * @balance: Should we balance.
3759 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3760 */
37abe198
GS
3761static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3762 enum cpu_idle_type idle, int *sd_idle,
3763 const struct cpumask *cpus, int *balance,
3764 struct sd_lb_stats *sds)
1da177e4 3765{
b5d978e0 3766 struct sched_domain *child = sd->child;
222d656d 3767 struct sched_group *group = sd->groups;
37abe198 3768 struct sg_lb_stats sgs;
b5d978e0
PZ
3769 int load_idx, prefer_sibling = 0;
3770
3771 if (child && child->flags & SD_PREFER_SIBLING)
3772 prefer_sibling = 1;
222d656d 3773
c071df18 3774 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3775 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3776
3777 do {
1da177e4 3778 int local_group;
1da177e4 3779
758b2cdc
RR
3780 local_group = cpumask_test_cpu(this_cpu,
3781 sched_group_cpus(group));
381be78f 3782 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3783 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3784 local_group, cpus, balance, &sgs);
1da177e4 3785
37abe198
GS
3786 if (local_group && balance && !(*balance))
3787 return;
783609c6 3788
37abe198 3789 sds->total_load += sgs.group_load;
18a3885f 3790 sds->total_pwr += group->cpu_power;
1da177e4 3791
b5d978e0
PZ
3792 /*
3793 * In case the child domain prefers tasks go to siblings
3794 * first, lower the group capacity to one so that we'll try
3795 * and move all the excess tasks away.
3796 */
3797 if (prefer_sibling)
bdb94aa5 3798 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3799
1da177e4 3800 if (local_group) {
37abe198
GS
3801 sds->this_load = sgs.avg_load;
3802 sds->this = group;
3803 sds->this_nr_running = sgs.sum_nr_running;
3804 sds->this_load_per_task = sgs.sum_weighted_load;
3805 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3806 (sgs.sum_nr_running > sgs.group_capacity ||
3807 sgs.group_imb)) {
37abe198
GS
3808 sds->max_load = sgs.avg_load;
3809 sds->busiest = group;
3810 sds->busiest_nr_running = sgs.sum_nr_running;
3811 sds->busiest_load_per_task = sgs.sum_weighted_load;
3812 sds->group_imb = sgs.group_imb;
48f24c4d 3813 }
5c45bf27 3814
c071df18 3815 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3816 group = group->next;
3817 } while (group != sd->groups);
37abe198 3818}
1da177e4 3819
2e6f44ae
GS
3820/**
3821 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3822 * amongst the groups of a sched_domain, during
3823 * load balancing.
2e6f44ae
GS
3824 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3826 * @imbalance: Variable to store the imbalance.
3827 */
3828static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3829 int this_cpu, unsigned long *imbalance)
3830{
3831 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3832 unsigned int imbn = 2;
3833
3834 if (sds->this_nr_running) {
3835 sds->this_load_per_task /= sds->this_nr_running;
3836 if (sds->busiest_load_per_task >
3837 sds->this_load_per_task)
3838 imbn = 1;
3839 } else
3840 sds->this_load_per_task =
3841 cpu_avg_load_per_task(this_cpu);
1da177e4 3842
2e6f44ae
GS
3843 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3844 sds->busiest_load_per_task * imbn) {
3845 *imbalance = sds->busiest_load_per_task;
3846 return;
3847 }
908a7c1b 3848
1da177e4 3849 /*
2e6f44ae
GS
3850 * OK, we don't have enough imbalance to justify moving tasks,
3851 * however we may be able to increase total CPU power used by
3852 * moving them.
1da177e4 3853 */
2dd73a4f 3854
18a3885f 3855 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3856 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3857 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3858 min(sds->this_load_per_task, sds->this_load);
3859 pwr_now /= SCHED_LOAD_SCALE;
3860
3861 /* Amount of load we'd subtract */
18a3885f
PZ
3862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3863 sds->busiest->cpu_power;
2e6f44ae 3864 if (sds->max_load > tmp)
18a3885f 3865 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3866 min(sds->busiest_load_per_task, sds->max_load - tmp);
3867
3868 /* Amount of load we'd add */
18a3885f 3869 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3870 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3871 tmp = (sds->max_load * sds->busiest->cpu_power) /
3872 sds->this->cpu_power;
2e6f44ae 3873 else
18a3885f
PZ
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->this->cpu_power;
3876 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3877 min(sds->this_load_per_task, sds->this_load + tmp);
3878 pwr_move /= SCHED_LOAD_SCALE;
3879
3880 /* Move if we gain throughput */
3881 if (pwr_move > pwr_now)
3882 *imbalance = sds->busiest_load_per_task;
3883}
dbc523a3
GS
3884
3885/**
3886 * calculate_imbalance - Calculate the amount of imbalance present within the
3887 * groups of a given sched_domain during load balance.
3888 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: Cpu for which currently load balance is being performed.
3890 * @imbalance: The variable to store the imbalance.
3891 */
3892static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3893 unsigned long *imbalance)
3894{
3895 unsigned long max_pull;
2dd73a4f
PW
3896 /*
3897 * In the presence of smp nice balancing, certain scenarios can have
3898 * max load less than avg load(as we skip the groups at or below
3899 * its cpu_power, while calculating max_load..)
3900 */
dbc523a3 3901 if (sds->max_load < sds->avg_load) {
2dd73a4f 3902 *imbalance = 0;
dbc523a3 3903 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3904 }
0c117f1b
SS
3905
3906 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3907 max_pull = min(sds->max_load - sds->avg_load,
3908 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3909
1da177e4 3910 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3911 *imbalance = min(max_pull * sds->busiest->cpu_power,
3912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3913 / SCHED_LOAD_SCALE;
3914
2dd73a4f
PW
3915 /*
3916 * if *imbalance is less than the average load per runnable task
3917 * there is no gaurantee that any tasks will be moved so we'll have
3918 * a think about bumping its value to force at least one task to be
3919 * moved
3920 */
dbc523a3
GS
3921 if (*imbalance < sds->busiest_load_per_task)
3922 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3923
dbc523a3 3924}
37abe198 3925/******* find_busiest_group() helpers end here *********************/
1da177e4 3926
b7bb4c9b
GS
3927/**
3928 * find_busiest_group - Returns the busiest group within the sched_domain
3929 * if there is an imbalance. If there isn't an imbalance, and
3930 * the user has opted for power-savings, it returns a group whose
3931 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3932 * such a group exists.
3933 *
3934 * Also calculates the amount of weighted load which should be moved
3935 * to restore balance.
3936 *
3937 * @sd: The sched_domain whose busiest group is to be returned.
3938 * @this_cpu: The cpu for which load balancing is currently being performed.
3939 * @imbalance: Variable which stores amount of weighted load which should
3940 * be moved to restore balance/put a group to idle.
3941 * @idle: The idle status of this_cpu.
3942 * @sd_idle: The idleness of sd
3943 * @cpus: The set of CPUs under consideration for load-balancing.
3944 * @balance: Pointer to a variable indicating if this_cpu
3945 * is the appropriate cpu to perform load balancing at this_level.
3946 *
3947 * Returns: - the busiest group if imbalance exists.
3948 * - If no imbalance and user has opted for power-savings balance,
3949 * return the least loaded group whose CPUs can be
3950 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3951 */
3952static struct sched_group *
3953find_busiest_group(struct sched_domain *sd, int this_cpu,
3954 unsigned long *imbalance, enum cpu_idle_type idle,
3955 int *sd_idle, const struct cpumask *cpus, int *balance)
3956{
3957 struct sd_lb_stats sds;
1da177e4 3958
37abe198 3959 memset(&sds, 0, sizeof(sds));
1da177e4 3960
37abe198
GS
3961 /*
3962 * Compute the various statistics relavent for load balancing at
3963 * this level.
3964 */
3965 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3966 balance, &sds);
3967
b7bb4c9b
GS
3968 /* Cases where imbalance does not exist from POV of this_cpu */
3969 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3970 * at this level.
3971 * 2) There is no busy sibling group to pull from.
3972 * 3) This group is the busiest group.
3973 * 4) This group is more busy than the avg busieness at this
3974 * sched_domain.
3975 * 5) The imbalance is within the specified limit.
3976 * 6) Any rebalance would lead to ping-pong
3977 */
37abe198
GS
3978 if (balance && !(*balance))
3979 goto ret;
1da177e4 3980
b7bb4c9b
GS
3981 if (!sds.busiest || sds.busiest_nr_running == 0)
3982 goto out_balanced;
1da177e4 3983
b7bb4c9b 3984 if (sds.this_load >= sds.max_load)
1da177e4 3985 goto out_balanced;
1da177e4 3986
222d656d 3987 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3988
b7bb4c9b
GS
3989 if (sds.this_load >= sds.avg_load)
3990 goto out_balanced;
3991
3992 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3993 goto out_balanced;
3994
222d656d
GS
3995 sds.busiest_load_per_task /= sds.busiest_nr_running;
3996 if (sds.group_imb)
3997 sds.busiest_load_per_task =
3998 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3999
1da177e4
LT
4000 /*
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load, as either of these
4004 * actions would just result in more rebalancing later, and ping-pong
4005 * tasks around. Thus we look for the minimum possible imbalance.
4006 * Negative imbalances (*we* are more loaded than anyone else) will
4007 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4008 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4009 * appear as very large values with unsigned longs.
4010 */
222d656d 4011 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4012 goto out_balanced;
4013
dbc523a3
GS
4014 /* Looks like there is an imbalance. Compute it */
4015 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4016 return sds.busiest;
1da177e4
LT
4017
4018out_balanced:
c071df18
GS
4019 /*
4020 * There is no obvious imbalance. But check if we can do some balancing
4021 * to save power.
4022 */
4023 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4024 return sds.busiest;
783609c6 4025ret:
1da177e4
LT
4026 *imbalance = 0;
4027 return NULL;
4028}
4029
4030/*
4031 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4032 */
70b97a7f 4033static struct rq *
d15bcfdb 4034find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4035 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4036{
70b97a7f 4037 struct rq *busiest = NULL, *rq;
2dd73a4f 4038 unsigned long max_load = 0;
1da177e4
LT
4039 int i;
4040
758b2cdc 4041 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4042 unsigned long power = power_of(i);
4043 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4044 unsigned long wl;
0a2966b4 4045
96f874e2 4046 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4047 continue;
4048
48f24c4d 4049 rq = cpu_rq(i);
bdb94aa5
PZ
4050 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4051 wl /= power;
2dd73a4f 4052
bdb94aa5 4053 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4054 continue;
1da177e4 4055
dd41f596
IM
4056 if (wl > max_load) {
4057 max_load = wl;
48f24c4d 4058 busiest = rq;
1da177e4
LT
4059 }
4060 }
4061
4062 return busiest;
4063}
4064
77391d71
NP
4065/*
4066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4067 * so long as it is large enough.
4068 */
4069#define MAX_PINNED_INTERVAL 512
4070
df7c8e84
RR
4071/* Working cpumask for load_balance and load_balance_newidle. */
4072static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4073
1da177e4
LT
4074/*
4075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4076 * tasks if there is an imbalance.
1da177e4 4077 */
70b97a7f 4078static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4079 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4080 int *balance)
1da177e4 4081{
43010659 4082 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4083 struct sched_group *group;
1da177e4 4084 unsigned long imbalance;
70b97a7f 4085 struct rq *busiest;
fe2eea3f 4086 unsigned long flags;
df7c8e84 4087 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4088
96f874e2 4089 cpumask_setall(cpus);
7c16ec58 4090
89c4710e
SS
4091 /*
4092 * When power savings policy is enabled for the parent domain, idle
4093 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4094 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4095 * portraying it as CPU_NOT_IDLE.
89c4710e 4096 */
d15bcfdb 4097 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4099 sd_idle = 1;
1da177e4 4100
2d72376b 4101 schedstat_inc(sd, lb_count[idle]);
1da177e4 4102
0a2966b4 4103redo:
c8cba857 4104 update_shares(sd);
0a2966b4 4105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4106 cpus, balance);
783609c6 4107
06066714 4108 if (*balance == 0)
783609c6 4109 goto out_balanced;
783609c6 4110
1da177e4
LT
4111 if (!group) {
4112 schedstat_inc(sd, lb_nobusyg[idle]);
4113 goto out_balanced;
4114 }
4115
7c16ec58 4116 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4117 if (!busiest) {
4118 schedstat_inc(sd, lb_nobusyq[idle]);
4119 goto out_balanced;
4120 }
4121
db935dbd 4122 BUG_ON(busiest == this_rq);
1da177e4
LT
4123
4124 schedstat_add(sd, lb_imbalance[idle], imbalance);
4125
43010659 4126 ld_moved = 0;
1da177e4
LT
4127 if (busiest->nr_running > 1) {
4128 /*
4129 * Attempt to move tasks. If find_busiest_group has found
4130 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4131 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4132 * correctly treated as an imbalance.
4133 */
fe2eea3f 4134 local_irq_save(flags);
e17224bf 4135 double_rq_lock(this_rq, busiest);
43010659 4136 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4137 imbalance, sd, idle, &all_pinned);
e17224bf 4138 double_rq_unlock(this_rq, busiest);
fe2eea3f 4139 local_irq_restore(flags);
81026794 4140
46cb4b7c
SS
4141 /*
4142 * some other cpu did the load balance for us.
4143 */
43010659 4144 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4145 resched_cpu(this_cpu);
4146
81026794 4147 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4148 if (unlikely(all_pinned)) {
96f874e2
RR
4149 cpumask_clear_cpu(cpu_of(busiest), cpus);
4150 if (!cpumask_empty(cpus))
0a2966b4 4151 goto redo;
81026794 4152 goto out_balanced;
0a2966b4 4153 }
1da177e4 4154 }
81026794 4155
43010659 4156 if (!ld_moved) {
1da177e4
LT
4157 schedstat_inc(sd, lb_failed[idle]);
4158 sd->nr_balance_failed++;
4159
4160 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4161
fe2eea3f 4162 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4163
4164 /* don't kick the migration_thread, if the curr
4165 * task on busiest cpu can't be moved to this_cpu
4166 */
96f874e2
RR
4167 if (!cpumask_test_cpu(this_cpu,
4168 &busiest->curr->cpus_allowed)) {
fe2eea3f 4169 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4170 all_pinned = 1;
4171 goto out_one_pinned;
4172 }
4173
1da177e4
LT
4174 if (!busiest->active_balance) {
4175 busiest->active_balance = 1;
4176 busiest->push_cpu = this_cpu;
81026794 4177 active_balance = 1;
1da177e4 4178 }
fe2eea3f 4179 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4180 if (active_balance)
1da177e4
LT
4181 wake_up_process(busiest->migration_thread);
4182
4183 /*
4184 * We've kicked active balancing, reset the failure
4185 * counter.
4186 */
39507451 4187 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4188 }
81026794 4189 } else
1da177e4
LT
4190 sd->nr_balance_failed = 0;
4191
81026794 4192 if (likely(!active_balance)) {
1da177e4
LT
4193 /* We were unbalanced, so reset the balancing interval */
4194 sd->balance_interval = sd->min_interval;
81026794
NP
4195 } else {
4196 /*
4197 * If we've begun active balancing, start to back off. This
4198 * case may not be covered by the all_pinned logic if there
4199 * is only 1 task on the busy runqueue (because we don't call
4200 * move_tasks).
4201 */
4202 if (sd->balance_interval < sd->max_interval)
4203 sd->balance_interval *= 2;
1da177e4
LT
4204 }
4205
43010659 4206 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4208 ld_moved = -1;
4209
4210 goto out;
1da177e4
LT
4211
4212out_balanced:
1da177e4
LT
4213 schedstat_inc(sd, lb_balanced[idle]);
4214
16cfb1c0 4215 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4216
4217out_one_pinned:
1da177e4 4218 /* tune up the balancing interval */
77391d71
NP
4219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4220 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4221 sd->balance_interval *= 2;
4222
48f24c4d 4223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4224 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4225 ld_moved = -1;
4226 else
4227 ld_moved = 0;
4228out:
c8cba857
PZ
4229 if (ld_moved)
4230 update_shares(sd);
c09595f6 4231 return ld_moved;
1da177e4
LT
4232}
4233
4234/*
4235 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4236 * tasks if there is an imbalance.
4237 *
d15bcfdb 4238 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4239 * this_rq is locked.
4240 */
48f24c4d 4241static int
df7c8e84 4242load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4243{
4244 struct sched_group *group;
70b97a7f 4245 struct rq *busiest = NULL;
1da177e4 4246 unsigned long imbalance;
43010659 4247 int ld_moved = 0;
5969fe06 4248 int sd_idle = 0;
969bb4e4 4249 int all_pinned = 0;
df7c8e84 4250 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4251
96f874e2 4252 cpumask_setall(cpus);
5969fe06 4253
89c4710e
SS
4254 /*
4255 * When power savings policy is enabled for the parent domain, idle
4256 * sibling can pick up load irrespective of busy siblings. In this case,
4257 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4258 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4259 */
4260 if (sd->flags & SD_SHARE_CPUPOWER &&
4261 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4262 sd_idle = 1;
1da177e4 4263
2d72376b 4264 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4265redo:
3e5459b4 4266 update_shares_locked(this_rq, sd);
d15bcfdb 4267 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4268 &sd_idle, cpus, NULL);
1da177e4 4269 if (!group) {
d15bcfdb 4270 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4271 goto out_balanced;
1da177e4
LT
4272 }
4273
7c16ec58 4274 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4275 if (!busiest) {
d15bcfdb 4276 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4277 goto out_balanced;
1da177e4
LT
4278 }
4279
db935dbd
NP
4280 BUG_ON(busiest == this_rq);
4281
d15bcfdb 4282 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4283
43010659 4284 ld_moved = 0;
d6d5cfaf
NP
4285 if (busiest->nr_running > 1) {
4286 /* Attempt to move tasks */
4287 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4288 /* this_rq->clock is already updated */
4289 update_rq_clock(busiest);
43010659 4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4291 imbalance, sd, CPU_NEWLY_IDLE,
4292 &all_pinned);
1b12bbc7 4293 double_unlock_balance(this_rq, busiest);
0a2966b4 4294
969bb4e4 4295 if (unlikely(all_pinned)) {
96f874e2
RR
4296 cpumask_clear_cpu(cpu_of(busiest), cpus);
4297 if (!cpumask_empty(cpus))
0a2966b4
CL
4298 goto redo;
4299 }
d6d5cfaf
NP
4300 }
4301
43010659 4302 if (!ld_moved) {
36dffab6 4303 int active_balance = 0;
ad273b32 4304
d15bcfdb 4305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4308 return -1;
ad273b32
VS
4309
4310 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4311 return -1;
4312
4313 if (sd->nr_balance_failed++ < 2)
4314 return -1;
4315
4316 /*
4317 * The only task running in a non-idle cpu can be moved to this
4318 * cpu in an attempt to completely freeup the other CPU
4319 * package. The same method used to move task in load_balance()
4320 * have been extended for load_balance_newidle() to speedup
4321 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4322 *
4323 * The package power saving logic comes from
4324 * find_busiest_group(). If there are no imbalance, then
4325 * f_b_g() will return NULL. However when sched_mc={1,2} then
4326 * f_b_g() will select a group from which a running task may be
4327 * pulled to this cpu in order to make the other package idle.
4328 * If there is no opportunity to make a package idle and if
4329 * there are no imbalance, then f_b_g() will return NULL and no
4330 * action will be taken in load_balance_newidle().
4331 *
4332 * Under normal task pull operation due to imbalance, there
4333 * will be more than one task in the source run queue and
4334 * move_tasks() will succeed. ld_moved will be true and this
4335 * active balance code will not be triggered.
4336 */
4337
4338 /* Lock busiest in correct order while this_rq is held */
4339 double_lock_balance(this_rq, busiest);
4340
4341 /*
4342 * don't kick the migration_thread, if the curr
4343 * task on busiest cpu can't be moved to this_cpu
4344 */
6ca09dfc 4345 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4346 double_unlock_balance(this_rq, busiest);
4347 all_pinned = 1;
4348 return ld_moved;
4349 }
4350
4351 if (!busiest->active_balance) {
4352 busiest->active_balance = 1;
4353 busiest->push_cpu = this_cpu;
4354 active_balance = 1;
4355 }
4356
4357 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4358 /*
4359 * Should not call ttwu while holding a rq->lock
4360 */
4361 spin_unlock(&this_rq->lock);
ad273b32
VS
4362 if (active_balance)
4363 wake_up_process(busiest->migration_thread);
da8d5089 4364 spin_lock(&this_rq->lock);
ad273b32 4365
5969fe06 4366 } else
16cfb1c0 4367 sd->nr_balance_failed = 0;
1da177e4 4368
3e5459b4 4369 update_shares_locked(this_rq, sd);
43010659 4370 return ld_moved;
16cfb1c0
NP
4371
4372out_balanced:
d15bcfdb 4373 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4376 return -1;
16cfb1c0 4377 sd->nr_balance_failed = 0;
48f24c4d 4378
16cfb1c0 4379 return 0;
1da177e4
LT
4380}
4381
4382/*
4383 * idle_balance is called by schedule() if this_cpu is about to become
4384 * idle. Attempts to pull tasks from other CPUs.
4385 */
70b97a7f 4386static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4387{
4388 struct sched_domain *sd;
efbe027e 4389 int pulled_task = 0;
dd41f596 4390 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4391
4392 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4393 unsigned long interval;
4394
4395 if (!(sd->flags & SD_LOAD_BALANCE))
4396 continue;
4397
4398 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4399 /* If we've pulled tasks over stop searching: */
7c16ec58 4400 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4401 sd);
92c4ca5c
CL
4402
4403 interval = msecs_to_jiffies(sd->balance_interval);
4404 if (time_after(next_balance, sd->last_balance + interval))
4405 next_balance = sd->last_balance + interval;
4406 if (pulled_task)
4407 break;
1da177e4 4408 }
dd41f596 4409 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4410 /*
4411 * We are going idle. next_balance may be set based on
4412 * a busy processor. So reset next_balance.
4413 */
4414 this_rq->next_balance = next_balance;
dd41f596 4415 }
1da177e4
LT
4416}
4417
4418/*
4419 * active_load_balance is run by migration threads. It pushes running tasks
4420 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4421 * running on each physical CPU where possible, and avoids physical /
4422 * logical imbalances.
4423 *
4424 * Called with busiest_rq locked.
4425 */
70b97a7f 4426static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4427{
39507451 4428 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4429 struct sched_domain *sd;
4430 struct rq *target_rq;
39507451 4431
48f24c4d 4432 /* Is there any task to move? */
39507451 4433 if (busiest_rq->nr_running <= 1)
39507451
NP
4434 return;
4435
4436 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4437
4438 /*
39507451 4439 * This condition is "impossible", if it occurs
41a2d6cf 4440 * we need to fix it. Originally reported by
39507451 4441 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4442 */
39507451 4443 BUG_ON(busiest_rq == target_rq);
1da177e4 4444
39507451
NP
4445 /* move a task from busiest_rq to target_rq */
4446 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4447 update_rq_clock(busiest_rq);
4448 update_rq_clock(target_rq);
39507451
NP
4449
4450 /* Search for an sd spanning us and the target CPU. */
c96d145e 4451 for_each_domain(target_cpu, sd) {
39507451 4452 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4453 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4454 break;
c96d145e 4455 }
39507451 4456
48f24c4d 4457 if (likely(sd)) {
2d72376b 4458 schedstat_inc(sd, alb_count);
39507451 4459
43010659
PW
4460 if (move_one_task(target_rq, target_cpu, busiest_rq,
4461 sd, CPU_IDLE))
48f24c4d
IM
4462 schedstat_inc(sd, alb_pushed);
4463 else
4464 schedstat_inc(sd, alb_failed);
4465 }
1b12bbc7 4466 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4467}
4468
46cb4b7c
SS
4469#ifdef CONFIG_NO_HZ
4470static struct {
4471 atomic_t load_balancer;
7d1e6a9b 4472 cpumask_var_t cpu_mask;
f711f609 4473 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4474} nohz ____cacheline_aligned = {
4475 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4476};
4477
eea08f32
AB
4478int get_nohz_load_balancer(void)
4479{
4480 return atomic_read(&nohz.load_balancer);
4481}
4482
f711f609
GS
4483#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4484/**
4485 * lowest_flag_domain - Return lowest sched_domain containing flag.
4486 * @cpu: The cpu whose lowest level of sched domain is to
4487 * be returned.
4488 * @flag: The flag to check for the lowest sched_domain
4489 * for the given cpu.
4490 *
4491 * Returns the lowest sched_domain of a cpu which contains the given flag.
4492 */
4493static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4494{
4495 struct sched_domain *sd;
4496
4497 for_each_domain(cpu, sd)
4498 if (sd && (sd->flags & flag))
4499 break;
4500
4501 return sd;
4502}
4503
4504/**
4505 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4506 * @cpu: The cpu whose domains we're iterating over.
4507 * @sd: variable holding the value of the power_savings_sd
4508 * for cpu.
4509 * @flag: The flag to filter the sched_domains to be iterated.
4510 *
4511 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4512 * set, starting from the lowest sched_domain to the highest.
4513 */
4514#define for_each_flag_domain(cpu, sd, flag) \
4515 for (sd = lowest_flag_domain(cpu, flag); \
4516 (sd && (sd->flags & flag)); sd = sd->parent)
4517
4518/**
4519 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4520 * @ilb_group: group to be checked for semi-idleness
4521 *
4522 * Returns: 1 if the group is semi-idle. 0 otherwise.
4523 *
4524 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4525 * and atleast one non-idle CPU. This helper function checks if the given
4526 * sched_group is semi-idle or not.
4527 */
4528static inline int is_semi_idle_group(struct sched_group *ilb_group)
4529{
4530 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4531 sched_group_cpus(ilb_group));
4532
4533 /*
4534 * A sched_group is semi-idle when it has atleast one busy cpu
4535 * and atleast one idle cpu.
4536 */
4537 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4538 return 0;
4539
4540 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4541 return 0;
4542
4543 return 1;
4544}
4545/**
4546 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4547 * @cpu: The cpu which is nominating a new idle_load_balancer.
4548 *
4549 * Returns: Returns the id of the idle load balancer if it exists,
4550 * Else, returns >= nr_cpu_ids.
4551 *
4552 * This algorithm picks the idle load balancer such that it belongs to a
4553 * semi-idle powersavings sched_domain. The idea is to try and avoid
4554 * completely idle packages/cores just for the purpose of idle load balancing
4555 * when there are other idle cpu's which are better suited for that job.
4556 */
4557static int find_new_ilb(int cpu)
4558{
4559 struct sched_domain *sd;
4560 struct sched_group *ilb_group;
4561
4562 /*
4563 * Have idle load balancer selection from semi-idle packages only
4564 * when power-aware load balancing is enabled
4565 */
4566 if (!(sched_smt_power_savings || sched_mc_power_savings))
4567 goto out_done;
4568
4569 /*
4570 * Optimize for the case when we have no idle CPUs or only one
4571 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4572 */
4573 if (cpumask_weight(nohz.cpu_mask) < 2)
4574 goto out_done;
4575
4576 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4577 ilb_group = sd->groups;
4578
4579 do {
4580 if (is_semi_idle_group(ilb_group))
4581 return cpumask_first(nohz.ilb_grp_nohz_mask);
4582
4583 ilb_group = ilb_group->next;
4584
4585 } while (ilb_group != sd->groups);
4586 }
4587
4588out_done:
4589 return cpumask_first(nohz.cpu_mask);
4590}
4591#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4592static inline int find_new_ilb(int call_cpu)
4593{
6e29ec57 4594 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4595}
4596#endif
4597
7835b98b 4598/*
46cb4b7c
SS
4599 * This routine will try to nominate the ilb (idle load balancing)
4600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4601 * load balancing on behalf of all those cpus. If all the cpus in the system
4602 * go into this tickless mode, then there will be no ilb owner (as there is
4603 * no need for one) and all the cpus will sleep till the next wakeup event
4604 * arrives...
4605 *
4606 * For the ilb owner, tick is not stopped. And this tick will be used
4607 * for idle load balancing. ilb owner will still be part of
4608 * nohz.cpu_mask..
7835b98b 4609 *
46cb4b7c
SS
4610 * While stopping the tick, this cpu will become the ilb owner if there
4611 * is no other owner. And will be the owner till that cpu becomes busy
4612 * or if all cpus in the system stop their ticks at which point
4613 * there is no need for ilb owner.
4614 *
4615 * When the ilb owner becomes busy, it nominates another owner, during the
4616 * next busy scheduler_tick()
4617 */
4618int select_nohz_load_balancer(int stop_tick)
4619{
4620 int cpu = smp_processor_id();
4621
4622 if (stop_tick) {
46cb4b7c
SS
4623 cpu_rq(cpu)->in_nohz_recently = 1;
4624
483b4ee6
SS
4625 if (!cpu_active(cpu)) {
4626 if (atomic_read(&nohz.load_balancer) != cpu)
4627 return 0;
4628
4629 /*
4630 * If we are going offline and still the leader,
4631 * give up!
4632 */
46cb4b7c
SS
4633 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4634 BUG();
483b4ee6 4635
46cb4b7c
SS
4636 return 0;
4637 }
4638
483b4ee6
SS
4639 cpumask_set_cpu(cpu, nohz.cpu_mask);
4640
46cb4b7c 4641 /* time for ilb owner also to sleep */
7d1e6a9b 4642 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4643 if (atomic_read(&nohz.load_balancer) == cpu)
4644 atomic_set(&nohz.load_balancer, -1);
4645 return 0;
4646 }
4647
4648 if (atomic_read(&nohz.load_balancer) == -1) {
4649 /* make me the ilb owner */
4650 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4651 return 1;
e790fb0b
GS
4652 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4653 int new_ilb;
4654
4655 if (!(sched_smt_power_savings ||
4656 sched_mc_power_savings))
4657 return 1;
4658 /*
4659 * Check to see if there is a more power-efficient
4660 * ilb.
4661 */
4662 new_ilb = find_new_ilb(cpu);
4663 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4664 atomic_set(&nohz.load_balancer, -1);
4665 resched_cpu(new_ilb);
4666 return 0;
4667 }
46cb4b7c 4668 return 1;
e790fb0b 4669 }
46cb4b7c 4670 } else {
7d1e6a9b 4671 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4672 return 0;
4673
7d1e6a9b 4674 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4675
4676 if (atomic_read(&nohz.load_balancer) == cpu)
4677 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4678 BUG();
4679 }
4680 return 0;
4681}
4682#endif
4683
4684static DEFINE_SPINLOCK(balancing);
4685
4686/*
7835b98b
CL
4687 * It checks each scheduling domain to see if it is due to be balanced,
4688 * and initiates a balancing operation if so.
4689 *
4690 * Balancing parameters are set up in arch_init_sched_domains.
4691 */
a9957449 4692static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4693{
46cb4b7c
SS
4694 int balance = 1;
4695 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4696 unsigned long interval;
4697 struct sched_domain *sd;
46cb4b7c 4698 /* Earliest time when we have to do rebalance again */
c9819f45 4699 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4700 int update_next_balance = 0;
d07355f5 4701 int need_serialize;
1da177e4 4702
46cb4b7c 4703 for_each_domain(cpu, sd) {
1da177e4
LT
4704 if (!(sd->flags & SD_LOAD_BALANCE))
4705 continue;
4706
4707 interval = sd->balance_interval;
d15bcfdb 4708 if (idle != CPU_IDLE)
1da177e4
LT
4709 interval *= sd->busy_factor;
4710
4711 /* scale ms to jiffies */
4712 interval = msecs_to_jiffies(interval);
4713 if (unlikely(!interval))
4714 interval = 1;
dd41f596
IM
4715 if (interval > HZ*NR_CPUS/10)
4716 interval = HZ*NR_CPUS/10;
4717
d07355f5 4718 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4719
d07355f5 4720 if (need_serialize) {
08c183f3
CL
4721 if (!spin_trylock(&balancing))
4722 goto out;
4723 }
4724
c9819f45 4725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4726 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4727 /*
4728 * We've pulled tasks over so either we're no
5969fe06
NP
4729 * longer idle, or one of our SMT siblings is
4730 * not idle.
4731 */
d15bcfdb 4732 idle = CPU_NOT_IDLE;
1da177e4 4733 }
1bd77f2d 4734 sd->last_balance = jiffies;
1da177e4 4735 }
d07355f5 4736 if (need_serialize)
08c183f3
CL
4737 spin_unlock(&balancing);
4738out:
f549da84 4739 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4740 next_balance = sd->last_balance + interval;
f549da84
SS
4741 update_next_balance = 1;
4742 }
783609c6
SS
4743
4744 /*
4745 * Stop the load balance at this level. There is another
4746 * CPU in our sched group which is doing load balancing more
4747 * actively.
4748 */
4749 if (!balance)
4750 break;
1da177e4 4751 }
f549da84
SS
4752
4753 /*
4754 * next_balance will be updated only when there is a need.
4755 * When the cpu is attached to null domain for ex, it will not be
4756 * updated.
4757 */
4758 if (likely(update_next_balance))
4759 rq->next_balance = next_balance;
46cb4b7c
SS
4760}
4761
4762/*
4763 * run_rebalance_domains is triggered when needed from the scheduler tick.
4764 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4765 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4766 */
4767static void run_rebalance_domains(struct softirq_action *h)
4768{
dd41f596
IM
4769 int this_cpu = smp_processor_id();
4770 struct rq *this_rq = cpu_rq(this_cpu);
4771 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4772 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4773
dd41f596 4774 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4775
4776#ifdef CONFIG_NO_HZ
4777 /*
4778 * If this cpu is the owner for idle load balancing, then do the
4779 * balancing on behalf of the other idle cpus whose ticks are
4780 * stopped.
4781 */
dd41f596
IM
4782 if (this_rq->idle_at_tick &&
4783 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4784 struct rq *rq;
4785 int balance_cpu;
4786
7d1e6a9b
RR
4787 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4788 if (balance_cpu == this_cpu)
4789 continue;
4790
46cb4b7c
SS
4791 /*
4792 * If this cpu gets work to do, stop the load balancing
4793 * work being done for other cpus. Next load
4794 * balancing owner will pick it up.
4795 */
4796 if (need_resched())
4797 break;
4798
de0cf899 4799 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4800
4801 rq = cpu_rq(balance_cpu);
dd41f596
IM
4802 if (time_after(this_rq->next_balance, rq->next_balance))
4803 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4804 }
4805 }
4806#endif
4807}
4808
8a0be9ef
FW
4809static inline int on_null_domain(int cpu)
4810{
4811 return !rcu_dereference(cpu_rq(cpu)->sd);
4812}
4813
46cb4b7c
SS
4814/*
4815 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4816 *
4817 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4818 * idle load balancing owner or decide to stop the periodic load balancing,
4819 * if the whole system is idle.
4820 */
dd41f596 4821static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4822{
46cb4b7c
SS
4823#ifdef CONFIG_NO_HZ
4824 /*
4825 * If we were in the nohz mode recently and busy at the current
4826 * scheduler tick, then check if we need to nominate new idle
4827 * load balancer.
4828 */
4829 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4830 rq->in_nohz_recently = 0;
4831
4832 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4833 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4834 atomic_set(&nohz.load_balancer, -1);
4835 }
4836
4837 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4838 int ilb = find_new_ilb(cpu);
46cb4b7c 4839
434d53b0 4840 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4841 resched_cpu(ilb);
4842 }
4843 }
4844
4845 /*
4846 * If this cpu is idle and doing idle load balancing for all the
4847 * cpus with ticks stopped, is it time for that to stop?
4848 */
4849 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4850 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4851 resched_cpu(cpu);
4852 return;
4853 }
4854
4855 /*
4856 * If this cpu is idle and the idle load balancing is done by
4857 * someone else, then no need raise the SCHED_SOFTIRQ
4858 */
4859 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4860 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4861 return;
4862#endif
8a0be9ef
FW
4863 /* Don't need to rebalance while attached to NULL domain */
4864 if (time_after_eq(jiffies, rq->next_balance) &&
4865 likely(!on_null_domain(cpu)))
46cb4b7c 4866 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4867}
dd41f596
IM
4868
4869#else /* CONFIG_SMP */
4870
1da177e4
LT
4871/*
4872 * on UP we do not need to balance between CPUs:
4873 */
70b97a7f 4874static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4875{
4876}
dd41f596 4877
1da177e4
LT
4878#endif
4879
1da177e4
LT
4880DEFINE_PER_CPU(struct kernel_stat, kstat);
4881
4882EXPORT_PER_CPU_SYMBOL(kstat);
4883
4884/*
c5f8d995 4885 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4886 * @p in case that task is currently running.
c5f8d995
HS
4887 *
4888 * Called with task_rq_lock() held on @rq.
1da177e4 4889 */
c5f8d995
HS
4890static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4891{
4892 u64 ns = 0;
4893
4894 if (task_current(rq, p)) {
4895 update_rq_clock(rq);
4896 ns = rq->clock - p->se.exec_start;
4897 if ((s64)ns < 0)
4898 ns = 0;
4899 }
4900
4901 return ns;
4902}
4903
bb34d92f 4904unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4905{
1da177e4 4906 unsigned long flags;
41b86e9c 4907 struct rq *rq;
bb34d92f 4908 u64 ns = 0;
48f24c4d 4909
41b86e9c 4910 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4911 ns = do_task_delta_exec(p, rq);
4912 task_rq_unlock(rq, &flags);
1508487e 4913
c5f8d995
HS
4914 return ns;
4915}
f06febc9 4916
c5f8d995
HS
4917/*
4918 * Return accounted runtime for the task.
4919 * In case the task is currently running, return the runtime plus current's
4920 * pending runtime that have not been accounted yet.
4921 */
4922unsigned long long task_sched_runtime(struct task_struct *p)
4923{
4924 unsigned long flags;
4925 struct rq *rq;
4926 u64 ns = 0;
4927
4928 rq = task_rq_lock(p, &flags);
4929 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4930 task_rq_unlock(rq, &flags);
4931
4932 return ns;
4933}
48f24c4d 4934
c5f8d995
HS
4935/*
4936 * Return sum_exec_runtime for the thread group.
4937 * In case the task is currently running, return the sum plus current's
4938 * pending runtime that have not been accounted yet.
4939 *
4940 * Note that the thread group might have other running tasks as well,
4941 * so the return value not includes other pending runtime that other
4942 * running tasks might have.
4943 */
4944unsigned long long thread_group_sched_runtime(struct task_struct *p)
4945{
4946 struct task_cputime totals;
4947 unsigned long flags;
4948 struct rq *rq;
4949 u64 ns;
4950
4951 rq = task_rq_lock(p, &flags);
4952 thread_group_cputime(p, &totals);
4953 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4954 task_rq_unlock(rq, &flags);
48f24c4d 4955
1da177e4
LT
4956 return ns;
4957}
4958
1da177e4
LT
4959/*
4960 * Account user cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
1da177e4 4962 * @cputime: the cpu time spent in user space since the last update
457533a7 4963 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4964 */
457533a7
MS
4965void account_user_time(struct task_struct *p, cputime_t cputime,
4966 cputime_t cputime_scaled)
1da177e4
LT
4967{
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969 cputime64_t tmp;
4970
457533a7 4971 /* Add user time to process. */
1da177e4 4972 p->utime = cputime_add(p->utime, cputime);
457533a7 4973 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4974 account_group_user_time(p, cputime);
1da177e4
LT
4975
4976 /* Add user time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (TASK_NICE(p) > 0)
4979 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4980 else
4981 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4982
4983 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4984 /* Account for user time used */
4985 acct_update_integrals(p);
1da177e4
LT
4986}
4987
94886b84
LV
4988/*
4989 * Account guest cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4992 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4993 */
457533a7
MS
4994static void account_guest_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
94886b84
LV
4996{
4997 cputime64_t tmp;
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4999
5000 tmp = cputime_to_cputime64(cputime);
5001
457533a7 5002 /* Add guest time to process. */
94886b84 5003 p->utime = cputime_add(p->utime, cputime);
457533a7 5004 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5005 account_group_user_time(p, cputime);
94886b84
LV
5006 p->gtime = cputime_add(p->gtime, cputime);
5007
457533a7 5008 /* Add guest time to cpustat. */
94886b84
LV
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
5010 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5011}
5012
1da177e4
LT
5013/*
5014 * Account system cpu time to a process.
5015 * @p: the process that the cpu time gets accounted to
5016 * @hardirq_offset: the offset to subtract from hardirq_count()
5017 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5018 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5019 */
5020void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5021 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5022{
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5024 cputime64_t tmp;
5025
983ed7a6 5026 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5027 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5028 return;
5029 }
94886b84 5030
457533a7 5031 /* Add system time to process. */
1da177e4 5032 p->stime = cputime_add(p->stime, cputime);
457533a7 5033 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5034 account_group_system_time(p, cputime);
1da177e4
LT
5035
5036 /* Add system time to cpustat. */
5037 tmp = cputime_to_cputime64(cputime);
5038 if (hardirq_count() - hardirq_offset)
5039 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5040 else if (softirq_count())
5041 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5042 else
79741dd3
MS
5043 cpustat->system = cputime64_add(cpustat->system, tmp);
5044
ef12fefa
BR
5045 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5046
1da177e4
LT
5047 /* Account for system time used */
5048 acct_update_integrals(p);
1da177e4
LT
5049}
5050
c66f08be 5051/*
1da177e4 5052 * Account for involuntary wait time.
1da177e4 5053 * @steal: the cpu time spent in involuntary wait
c66f08be 5054 */
79741dd3 5055void account_steal_time(cputime_t cputime)
c66f08be 5056{
79741dd3
MS
5057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5058 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5059
5060 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5061}
5062
1da177e4 5063/*
79741dd3
MS
5064 * Account for idle time.
5065 * @cputime: the cpu time spent in idle wait
1da177e4 5066 */
79741dd3 5067void account_idle_time(cputime_t cputime)
1da177e4
LT
5068{
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5070 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5071 struct rq *rq = this_rq();
1da177e4 5072
79741dd3
MS
5073 if (atomic_read(&rq->nr_iowait) > 0)
5074 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5075 else
5076 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5077}
5078
79741dd3
MS
5079#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5080
5081/*
5082 * Account a single tick of cpu time.
5083 * @p: the process that the cpu time gets accounted to
5084 * @user_tick: indicates if the tick is a user or a system tick
5085 */
5086void account_process_tick(struct task_struct *p, int user_tick)
5087{
5088 cputime_t one_jiffy = jiffies_to_cputime(1);
5089 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5090 struct rq *rq = this_rq();
5091
5092 if (user_tick)
5093 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5094 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5095 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5096 one_jiffy_scaled);
5097 else
5098 account_idle_time(one_jiffy);
5099}
5100
5101/*
5102 * Account multiple ticks of steal time.
5103 * @p: the process from which the cpu time has been stolen
5104 * @ticks: number of stolen ticks
5105 */
5106void account_steal_ticks(unsigned long ticks)
5107{
5108 account_steal_time(jiffies_to_cputime(ticks));
5109}
5110
5111/*
5112 * Account multiple ticks of idle time.
5113 * @ticks: number of stolen ticks
5114 */
5115void account_idle_ticks(unsigned long ticks)
5116{
5117 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5118}
5119
79741dd3
MS
5120#endif
5121
49048622
BS
5122/*
5123 * Use precise platform statistics if available:
5124 */
5125#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5126cputime_t task_utime(struct task_struct *p)
5127{
5128 return p->utime;
5129}
5130
5131cputime_t task_stime(struct task_struct *p)
5132{
5133 return p->stime;
5134}
5135#else
5136cputime_t task_utime(struct task_struct *p)
5137{
5138 clock_t utime = cputime_to_clock_t(p->utime),
5139 total = utime + cputime_to_clock_t(p->stime);
5140 u64 temp;
5141
5142 /*
5143 * Use CFS's precise accounting:
5144 */
5145 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5146
5147 if (total) {
5148 temp *= utime;
5149 do_div(temp, total);
5150 }
5151 utime = (clock_t)temp;
5152
5153 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5154 return p->prev_utime;
5155}
5156
5157cputime_t task_stime(struct task_struct *p)
5158{
5159 clock_t stime;
5160
5161 /*
5162 * Use CFS's precise accounting. (we subtract utime from
5163 * the total, to make sure the total observed by userspace
5164 * grows monotonically - apps rely on that):
5165 */
5166 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5167 cputime_to_clock_t(task_utime(p));
5168
5169 if (stime >= 0)
5170 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5171
5172 return p->prev_stime;
5173}
5174#endif
5175
5176inline cputime_t task_gtime(struct task_struct *p)
5177{
5178 return p->gtime;
5179}
5180
7835b98b
CL
5181/*
5182 * This function gets called by the timer code, with HZ frequency.
5183 * We call it with interrupts disabled.
5184 *
5185 * It also gets called by the fork code, when changing the parent's
5186 * timeslices.
5187 */
5188void scheduler_tick(void)
5189{
7835b98b
CL
5190 int cpu = smp_processor_id();
5191 struct rq *rq = cpu_rq(cpu);
dd41f596 5192 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5193
5194 sched_clock_tick();
dd41f596
IM
5195
5196 spin_lock(&rq->lock);
3e51f33f 5197 update_rq_clock(rq);
f1a438d8 5198 update_cpu_load(rq);
fa85ae24 5199 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5200 spin_unlock(&rq->lock);
7835b98b 5201
e220d2dc
PZ
5202 perf_counter_task_tick(curr, cpu);
5203
e418e1c2 5204#ifdef CONFIG_SMP
dd41f596
IM
5205 rq->idle_at_tick = idle_cpu(cpu);
5206 trigger_load_balance(rq, cpu);
e418e1c2 5207#endif
1da177e4
LT
5208}
5209
132380a0 5210notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5211{
5212 if (in_lock_functions(addr)) {
5213 addr = CALLER_ADDR2;
5214 if (in_lock_functions(addr))
5215 addr = CALLER_ADDR3;
5216 }
5217 return addr;
5218}
1da177e4 5219
7e49fcce
SR
5220#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5221 defined(CONFIG_PREEMPT_TRACER))
5222
43627582 5223void __kprobes add_preempt_count(int val)
1da177e4 5224{
6cd8a4bb 5225#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5226 /*
5227 * Underflow?
5228 */
9a11b49a
IM
5229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5230 return;
6cd8a4bb 5231#endif
1da177e4 5232 preempt_count() += val;
6cd8a4bb 5233#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5234 /*
5235 * Spinlock count overflowing soon?
5236 */
33859f7f
MOS
5237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5238 PREEMPT_MASK - 10);
6cd8a4bb
SR
5239#endif
5240 if (preempt_count() == val)
5241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5242}
5243EXPORT_SYMBOL(add_preempt_count);
5244
43627582 5245void __kprobes sub_preempt_count(int val)
1da177e4 5246{
6cd8a4bb 5247#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5248 /*
5249 * Underflow?
5250 */
01e3eb82 5251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5252 return;
1da177e4
LT
5253 /*
5254 * Is the spinlock portion underflowing?
5255 */
9a11b49a
IM
5256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5257 !(preempt_count() & PREEMPT_MASK)))
5258 return;
6cd8a4bb 5259#endif
9a11b49a 5260
6cd8a4bb
SR
5261 if (preempt_count() == val)
5262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5263 preempt_count() -= val;
5264}
5265EXPORT_SYMBOL(sub_preempt_count);
5266
5267#endif
5268
5269/*
dd41f596 5270 * Print scheduling while atomic bug:
1da177e4 5271 */
dd41f596 5272static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5273{
838225b4
SS
5274 struct pt_regs *regs = get_irq_regs();
5275
5276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5277 prev->comm, prev->pid, preempt_count());
5278
dd41f596 5279 debug_show_held_locks(prev);
e21f5b15 5280 print_modules();
dd41f596
IM
5281 if (irqs_disabled())
5282 print_irqtrace_events(prev);
838225b4
SS
5283
5284 if (regs)
5285 show_regs(regs);
5286 else
5287 dump_stack();
dd41f596 5288}
1da177e4 5289
dd41f596
IM
5290/*
5291 * Various schedule()-time debugging checks and statistics:
5292 */
5293static inline void schedule_debug(struct task_struct *prev)
5294{
1da177e4 5295 /*
41a2d6cf 5296 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5297 * schedule() atomically, we ignore that path for now.
5298 * Otherwise, whine if we are scheduling when we should not be.
5299 */
3f33a7ce 5300 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5301 __schedule_bug(prev);
5302
1da177e4
LT
5303 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5304
2d72376b 5305 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5306#ifdef CONFIG_SCHEDSTATS
5307 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5308 schedstat_inc(this_rq(), bkl_count);
5309 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5310 }
5311#endif
dd41f596
IM
5312}
5313
df1c99d4
MG
5314static void put_prev_task(struct rq *rq, struct task_struct *prev)
5315{
5316 if (prev->state == TASK_RUNNING) {
5317 u64 runtime = prev->se.sum_exec_runtime;
5318
5319 runtime -= prev->se.prev_sum_exec_runtime;
5320 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5321
5322 /*
5323 * In order to avoid avg_overlap growing stale when we are
5324 * indeed overlapping and hence not getting put to sleep, grow
5325 * the avg_overlap on preemption.
5326 *
5327 * We use the average preemption runtime because that
5328 * correlates to the amount of cache footprint a task can
5329 * build up.
5330 */
5331 update_avg(&prev->se.avg_overlap, runtime);
5332 }
5333 prev->sched_class->put_prev_task(rq, prev);
5334}
5335
dd41f596
IM
5336/*
5337 * Pick up the highest-prio task:
5338 */
5339static inline struct task_struct *
b67802ea 5340pick_next_task(struct rq *rq)
dd41f596 5341{
5522d5d5 5342 const struct sched_class *class;
dd41f596 5343 struct task_struct *p;
1da177e4
LT
5344
5345 /*
dd41f596
IM
5346 * Optimization: we know that if all tasks are in
5347 * the fair class we can call that function directly:
1da177e4 5348 */
dd41f596 5349 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5350 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5351 if (likely(p))
5352 return p;
1da177e4
LT
5353 }
5354
dd41f596
IM
5355 class = sched_class_highest;
5356 for ( ; ; ) {
fb8d4724 5357 p = class->pick_next_task(rq);
dd41f596
IM
5358 if (p)
5359 return p;
5360 /*
5361 * Will never be NULL as the idle class always
5362 * returns a non-NULL p:
5363 */
5364 class = class->next;
5365 }
5366}
1da177e4 5367
dd41f596
IM
5368/*
5369 * schedule() is the main scheduler function.
5370 */
ff743345 5371asmlinkage void __sched schedule(void)
dd41f596
IM
5372{
5373 struct task_struct *prev, *next;
67ca7bde 5374 unsigned long *switch_count;
dd41f596 5375 struct rq *rq;
31656519 5376 int cpu;
dd41f596 5377
ff743345
PZ
5378need_resched:
5379 preempt_disable();
dd41f596
IM
5380 cpu = smp_processor_id();
5381 rq = cpu_rq(cpu);
d6714c22 5382 rcu_sched_qs(cpu);
dd41f596
IM
5383 prev = rq->curr;
5384 switch_count = &prev->nivcsw;
5385
5386 release_kernel_lock(prev);
5387need_resched_nonpreemptible:
5388
5389 schedule_debug(prev);
1da177e4 5390
31656519 5391 if (sched_feat(HRTICK))
f333fdc9 5392 hrtick_clear(rq);
8f4d37ec 5393
8cd162ce 5394 spin_lock_irq(&rq->lock);
3e51f33f 5395 update_rq_clock(rq);
1e819950 5396 clear_tsk_need_resched(prev);
1da177e4 5397
1da177e4 5398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5399 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5400 prev->state = TASK_RUNNING;
16882c1e 5401 else
2e1cb74a 5402 deactivate_task(rq, prev, 1);
dd41f596 5403 switch_count = &prev->nvcsw;
1da177e4
LT
5404 }
5405
3f029d3c 5406 pre_schedule(rq, prev);
f65eda4f 5407
dd41f596 5408 if (unlikely(!rq->nr_running))
1da177e4 5409 idle_balance(cpu, rq);
1da177e4 5410
df1c99d4 5411 put_prev_task(rq, prev);
b67802ea 5412 next = pick_next_task(rq);
1da177e4 5413
1da177e4 5414 if (likely(prev != next)) {
673a90a1 5415 sched_info_switch(prev, next);
564c2b21 5416 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5417
1da177e4
LT
5418 rq->nr_switches++;
5419 rq->curr = next;
5420 ++*switch_count;
5421
dd41f596 5422 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5423 /*
5424 * the context switch might have flipped the stack from under
5425 * us, hence refresh the local variables.
5426 */
5427 cpu = smp_processor_id();
5428 rq = cpu_rq(cpu);
1da177e4
LT
5429 } else
5430 spin_unlock_irq(&rq->lock);
5431
3f029d3c 5432 post_schedule(rq);
1da177e4 5433
8f4d37ec 5434 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5435 goto need_resched_nonpreemptible;
8f4d37ec 5436
1da177e4 5437 preempt_enable_no_resched();
ff743345 5438 if (need_resched())
1da177e4
LT
5439 goto need_resched;
5440}
1da177e4
LT
5441EXPORT_SYMBOL(schedule);
5442
0d66bf6d
PZ
5443#ifdef CONFIG_SMP
5444/*
5445 * Look out! "owner" is an entirely speculative pointer
5446 * access and not reliable.
5447 */
5448int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5449{
5450 unsigned int cpu;
5451 struct rq *rq;
5452
5453 if (!sched_feat(OWNER_SPIN))
5454 return 0;
5455
5456#ifdef CONFIG_DEBUG_PAGEALLOC
5457 /*
5458 * Need to access the cpu field knowing that
5459 * DEBUG_PAGEALLOC could have unmapped it if
5460 * the mutex owner just released it and exited.
5461 */
5462 if (probe_kernel_address(&owner->cpu, cpu))
5463 goto out;
5464#else
5465 cpu = owner->cpu;
5466#endif
5467
5468 /*
5469 * Even if the access succeeded (likely case),
5470 * the cpu field may no longer be valid.
5471 */
5472 if (cpu >= nr_cpumask_bits)
5473 goto out;
5474
5475 /*
5476 * We need to validate that we can do a
5477 * get_cpu() and that we have the percpu area.
5478 */
5479 if (!cpu_online(cpu))
5480 goto out;
5481
5482 rq = cpu_rq(cpu);
5483
5484 for (;;) {
5485 /*
5486 * Owner changed, break to re-assess state.
5487 */
5488 if (lock->owner != owner)
5489 break;
5490
5491 /*
5492 * Is that owner really running on that cpu?
5493 */
5494 if (task_thread_info(rq->curr) != owner || need_resched())
5495 return 0;
5496
5497 cpu_relax();
5498 }
5499out:
5500 return 1;
5501}
5502#endif
5503
1da177e4
LT
5504#ifdef CONFIG_PREEMPT
5505/*
2ed6e34f 5506 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5507 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5508 * occur there and call schedule directly.
5509 */
5510asmlinkage void __sched preempt_schedule(void)
5511{
5512 struct thread_info *ti = current_thread_info();
6478d880 5513
1da177e4
LT
5514 /*
5515 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5516 * we do not want to preempt the current task. Just return..
1da177e4 5517 */
beed33a8 5518 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5519 return;
5520
3a5c359a
AK
5521 do {
5522 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5523 schedule();
3a5c359a 5524 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5525
3a5c359a
AK
5526 /*
5527 * Check again in case we missed a preemption opportunity
5528 * between schedule and now.
5529 */
5530 barrier();
5ed0cec0 5531 } while (need_resched());
1da177e4 5532}
1da177e4
LT
5533EXPORT_SYMBOL(preempt_schedule);
5534
5535/*
2ed6e34f 5536 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5537 * off of irq context.
5538 * Note, that this is called and return with irqs disabled. This will
5539 * protect us against recursive calling from irq.
5540 */
5541asmlinkage void __sched preempt_schedule_irq(void)
5542{
5543 struct thread_info *ti = current_thread_info();
6478d880 5544
2ed6e34f 5545 /* Catch callers which need to be fixed */
1da177e4
LT
5546 BUG_ON(ti->preempt_count || !irqs_disabled());
5547
3a5c359a
AK
5548 do {
5549 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5550 local_irq_enable();
5551 schedule();
5552 local_irq_disable();
3a5c359a 5553 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5554
3a5c359a
AK
5555 /*
5556 * Check again in case we missed a preemption opportunity
5557 * between schedule and now.
5558 */
5559 barrier();
5ed0cec0 5560 } while (need_resched());
1da177e4
LT
5561}
5562
5563#endif /* CONFIG_PREEMPT */
5564
95cdf3b7
IM
5565int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5566 void *key)
1da177e4 5567{
48f24c4d 5568 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5569}
1da177e4
LT
5570EXPORT_SYMBOL(default_wake_function);
5571
5572/*
41a2d6cf
IM
5573 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5574 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5575 * number) then we wake all the non-exclusive tasks and one exclusive task.
5576 *
5577 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5578 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5579 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5580 */
78ddb08f 5581static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5582 int nr_exclusive, int sync, void *key)
1da177e4 5583{
2e45874c 5584 wait_queue_t *curr, *next;
1da177e4 5585
2e45874c 5586 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5587 unsigned flags = curr->flags;
5588
1da177e4 5589 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5590 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5591 break;
5592 }
5593}
5594
5595/**
5596 * __wake_up - wake up threads blocked on a waitqueue.
5597 * @q: the waitqueue
5598 * @mode: which threads
5599 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5600 * @key: is directly passed to the wakeup function
50fa610a
DH
5601 *
5602 * It may be assumed that this function implies a write memory barrier before
5603 * changing the task state if and only if any tasks are woken up.
1da177e4 5604 */
7ad5b3a5 5605void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5606 int nr_exclusive, void *key)
1da177e4
LT
5607{
5608 unsigned long flags;
5609
5610 spin_lock_irqsave(&q->lock, flags);
5611 __wake_up_common(q, mode, nr_exclusive, 0, key);
5612 spin_unlock_irqrestore(&q->lock, flags);
5613}
1da177e4
LT
5614EXPORT_SYMBOL(__wake_up);
5615
5616/*
5617 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5618 */
7ad5b3a5 5619void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5620{
5621 __wake_up_common(q, mode, 1, 0, NULL);
5622}
5623
4ede816a
DL
5624void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5625{
5626 __wake_up_common(q, mode, 1, 0, key);
5627}
5628
1da177e4 5629/**
4ede816a 5630 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5631 * @q: the waitqueue
5632 * @mode: which threads
5633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5634 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5635 *
5636 * The sync wakeup differs that the waker knows that it will schedule
5637 * away soon, so while the target thread will be woken up, it will not
5638 * be migrated to another CPU - ie. the two threads are 'synchronized'
5639 * with each other. This can prevent needless bouncing between CPUs.
5640 *
5641 * On UP it can prevent extra preemption.
50fa610a
DH
5642 *
5643 * It may be assumed that this function implies a write memory barrier before
5644 * changing the task state if and only if any tasks are woken up.
1da177e4 5645 */
4ede816a
DL
5646void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5647 int nr_exclusive, void *key)
1da177e4
LT
5648{
5649 unsigned long flags;
5650 int sync = 1;
5651
5652 if (unlikely(!q))
5653 return;
5654
5655 if (unlikely(!nr_exclusive))
5656 sync = 0;
5657
5658 spin_lock_irqsave(&q->lock, flags);
4ede816a 5659 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5660 spin_unlock_irqrestore(&q->lock, flags);
5661}
4ede816a
DL
5662EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5663
5664/*
5665 * __wake_up_sync - see __wake_up_sync_key()
5666 */
5667void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5668{
5669 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5670}
1da177e4
LT
5671EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5672
65eb3dc6
KD
5673/**
5674 * complete: - signals a single thread waiting on this completion
5675 * @x: holds the state of this particular completion
5676 *
5677 * This will wake up a single thread waiting on this completion. Threads will be
5678 * awakened in the same order in which they were queued.
5679 *
5680 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5681 *
5682 * It may be assumed that this function implies a write memory barrier before
5683 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5684 */
b15136e9 5685void complete(struct completion *x)
1da177e4
LT
5686{
5687 unsigned long flags;
5688
5689 spin_lock_irqsave(&x->wait.lock, flags);
5690 x->done++;
d9514f6c 5691 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5692 spin_unlock_irqrestore(&x->wait.lock, flags);
5693}
5694EXPORT_SYMBOL(complete);
5695
65eb3dc6
KD
5696/**
5697 * complete_all: - signals all threads waiting on this completion
5698 * @x: holds the state of this particular completion
5699 *
5700 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5701 *
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5704 */
b15136e9 5705void complete_all(struct completion *x)
1da177e4
LT
5706{
5707 unsigned long flags;
5708
5709 spin_lock_irqsave(&x->wait.lock, flags);
5710 x->done += UINT_MAX/2;
d9514f6c 5711 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5712 spin_unlock_irqrestore(&x->wait.lock, flags);
5713}
5714EXPORT_SYMBOL(complete_all);
5715
8cbbe86d
AK
5716static inline long __sched
5717do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5718{
1da177e4
LT
5719 if (!x->done) {
5720 DECLARE_WAITQUEUE(wait, current);
5721
5722 wait.flags |= WQ_FLAG_EXCLUSIVE;
5723 __add_wait_queue_tail(&x->wait, &wait);
5724 do {
94d3d824 5725 if (signal_pending_state(state, current)) {
ea71a546
ON
5726 timeout = -ERESTARTSYS;
5727 break;
8cbbe86d
AK
5728 }
5729 __set_current_state(state);
1da177e4
LT
5730 spin_unlock_irq(&x->wait.lock);
5731 timeout = schedule_timeout(timeout);
5732 spin_lock_irq(&x->wait.lock);
ea71a546 5733 } while (!x->done && timeout);
1da177e4 5734 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5735 if (!x->done)
5736 return timeout;
1da177e4
LT
5737 }
5738 x->done--;
ea71a546 5739 return timeout ?: 1;
1da177e4 5740}
1da177e4 5741
8cbbe86d
AK
5742static long __sched
5743wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5744{
1da177e4
LT
5745 might_sleep();
5746
5747 spin_lock_irq(&x->wait.lock);
8cbbe86d 5748 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5749 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5750 return timeout;
5751}
1da177e4 5752
65eb3dc6
KD
5753/**
5754 * wait_for_completion: - waits for completion of a task
5755 * @x: holds the state of this particular completion
5756 *
5757 * This waits to be signaled for completion of a specific task. It is NOT
5758 * interruptible and there is no timeout.
5759 *
5760 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5761 * and interrupt capability. Also see complete().
5762 */
b15136e9 5763void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5764{
5765 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5766}
8cbbe86d 5767EXPORT_SYMBOL(wait_for_completion);
1da177e4 5768
65eb3dc6
KD
5769/**
5770 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5771 * @x: holds the state of this particular completion
5772 * @timeout: timeout value in jiffies
5773 *
5774 * This waits for either a completion of a specific task to be signaled or for a
5775 * specified timeout to expire. The timeout is in jiffies. It is not
5776 * interruptible.
5777 */
b15136e9 5778unsigned long __sched
8cbbe86d 5779wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5780{
8cbbe86d 5781 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5782}
8cbbe86d 5783EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5784
65eb3dc6
KD
5785/**
5786 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5787 * @x: holds the state of this particular completion
5788 *
5789 * This waits for completion of a specific task to be signaled. It is
5790 * interruptible.
5791 */
8cbbe86d 5792int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5793{
51e97990
AK
5794 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5795 if (t == -ERESTARTSYS)
5796 return t;
5797 return 0;
0fec171c 5798}
8cbbe86d 5799EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5800
65eb3dc6
KD
5801/**
5802 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5803 * @x: holds the state of this particular completion
5804 * @timeout: timeout value in jiffies
5805 *
5806 * This waits for either a completion of a specific task to be signaled or for a
5807 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5808 */
b15136e9 5809unsigned long __sched
8cbbe86d
AK
5810wait_for_completion_interruptible_timeout(struct completion *x,
5811 unsigned long timeout)
0fec171c 5812{
8cbbe86d 5813 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5814}
8cbbe86d 5815EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5816
65eb3dc6
KD
5817/**
5818 * wait_for_completion_killable: - waits for completion of a task (killable)
5819 * @x: holds the state of this particular completion
5820 *
5821 * This waits to be signaled for completion of a specific task. It can be
5822 * interrupted by a kill signal.
5823 */
009e577e
MW
5824int __sched wait_for_completion_killable(struct completion *x)
5825{
5826 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5827 if (t == -ERESTARTSYS)
5828 return t;
5829 return 0;
5830}
5831EXPORT_SYMBOL(wait_for_completion_killable);
5832
be4de352
DC
5833/**
5834 * try_wait_for_completion - try to decrement a completion without blocking
5835 * @x: completion structure
5836 *
5837 * Returns: 0 if a decrement cannot be done without blocking
5838 * 1 if a decrement succeeded.
5839 *
5840 * If a completion is being used as a counting completion,
5841 * attempt to decrement the counter without blocking. This
5842 * enables us to avoid waiting if the resource the completion
5843 * is protecting is not available.
5844 */
5845bool try_wait_for_completion(struct completion *x)
5846{
5847 int ret = 1;
5848
5849 spin_lock_irq(&x->wait.lock);
5850 if (!x->done)
5851 ret = 0;
5852 else
5853 x->done--;
5854 spin_unlock_irq(&x->wait.lock);
5855 return ret;
5856}
5857EXPORT_SYMBOL(try_wait_for_completion);
5858
5859/**
5860 * completion_done - Test to see if a completion has any waiters
5861 * @x: completion structure
5862 *
5863 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5864 * 1 if there are no waiters.
5865 *
5866 */
5867bool completion_done(struct completion *x)
5868{
5869 int ret = 1;
5870
5871 spin_lock_irq(&x->wait.lock);
5872 if (!x->done)
5873 ret = 0;
5874 spin_unlock_irq(&x->wait.lock);
5875 return ret;
5876}
5877EXPORT_SYMBOL(completion_done);
5878
8cbbe86d
AK
5879static long __sched
5880sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5881{
0fec171c
IM
5882 unsigned long flags;
5883 wait_queue_t wait;
5884
5885 init_waitqueue_entry(&wait, current);
1da177e4 5886
8cbbe86d 5887 __set_current_state(state);
1da177e4 5888
8cbbe86d
AK
5889 spin_lock_irqsave(&q->lock, flags);
5890 __add_wait_queue(q, &wait);
5891 spin_unlock(&q->lock);
5892 timeout = schedule_timeout(timeout);
5893 spin_lock_irq(&q->lock);
5894 __remove_wait_queue(q, &wait);
5895 spin_unlock_irqrestore(&q->lock, flags);
5896
5897 return timeout;
5898}
5899
5900void __sched interruptible_sleep_on(wait_queue_head_t *q)
5901{
5902 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5903}
1da177e4
LT
5904EXPORT_SYMBOL(interruptible_sleep_on);
5905
0fec171c 5906long __sched
95cdf3b7 5907interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5908{
8cbbe86d 5909 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5910}
1da177e4
LT
5911EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5912
0fec171c 5913void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5914{
8cbbe86d 5915 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5916}
1da177e4
LT
5917EXPORT_SYMBOL(sleep_on);
5918
0fec171c 5919long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5920{
8cbbe86d 5921 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5922}
1da177e4
LT
5923EXPORT_SYMBOL(sleep_on_timeout);
5924
b29739f9
IM
5925#ifdef CONFIG_RT_MUTEXES
5926
5927/*
5928 * rt_mutex_setprio - set the current priority of a task
5929 * @p: task
5930 * @prio: prio value (kernel-internal form)
5931 *
5932 * This function changes the 'effective' priority of a task. It does
5933 * not touch ->normal_prio like __setscheduler().
5934 *
5935 * Used by the rt_mutex code to implement priority inheritance logic.
5936 */
36c8b586 5937void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5938{
5939 unsigned long flags;
83b699ed 5940 int oldprio, on_rq, running;
70b97a7f 5941 struct rq *rq;
cb469845 5942 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5943
5944 BUG_ON(prio < 0 || prio > MAX_PRIO);
5945
5946 rq = task_rq_lock(p, &flags);
a8e504d2 5947 update_rq_clock(rq);
b29739f9 5948
d5f9f942 5949 oldprio = p->prio;
dd41f596 5950 on_rq = p->se.on_rq;
051a1d1a 5951 running = task_current(rq, p);
0e1f3483 5952 if (on_rq)
69be72c1 5953 dequeue_task(rq, p, 0);
0e1f3483
HS
5954 if (running)
5955 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5956
5957 if (rt_prio(prio))
5958 p->sched_class = &rt_sched_class;
5959 else
5960 p->sched_class = &fair_sched_class;
5961
b29739f9
IM
5962 p->prio = prio;
5963
0e1f3483
HS
5964 if (running)
5965 p->sched_class->set_curr_task(rq);
dd41f596 5966 if (on_rq) {
8159f87e 5967 enqueue_task(rq, p, 0);
cb469845
SR
5968
5969 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5970 }
5971 task_rq_unlock(rq, &flags);
5972}
5973
5974#endif
5975
36c8b586 5976void set_user_nice(struct task_struct *p, long nice)
1da177e4 5977{
dd41f596 5978 int old_prio, delta, on_rq;
1da177e4 5979 unsigned long flags;
70b97a7f 5980 struct rq *rq;
1da177e4
LT
5981
5982 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5983 return;
5984 /*
5985 * We have to be careful, if called from sys_setpriority(),
5986 * the task might be in the middle of scheduling on another CPU.
5987 */
5988 rq = task_rq_lock(p, &flags);
a8e504d2 5989 update_rq_clock(rq);
1da177e4
LT
5990 /*
5991 * The RT priorities are set via sched_setscheduler(), but we still
5992 * allow the 'normal' nice value to be set - but as expected
5993 * it wont have any effect on scheduling until the task is
dd41f596 5994 * SCHED_FIFO/SCHED_RR:
1da177e4 5995 */
e05606d3 5996 if (task_has_rt_policy(p)) {
1da177e4
LT
5997 p->static_prio = NICE_TO_PRIO(nice);
5998 goto out_unlock;
5999 }
dd41f596 6000 on_rq = p->se.on_rq;
c09595f6 6001 if (on_rq)
69be72c1 6002 dequeue_task(rq, p, 0);
1da177e4 6003
1da177e4 6004 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6005 set_load_weight(p);
b29739f9
IM
6006 old_prio = p->prio;
6007 p->prio = effective_prio(p);
6008 delta = p->prio - old_prio;
1da177e4 6009
dd41f596 6010 if (on_rq) {
8159f87e 6011 enqueue_task(rq, p, 0);
1da177e4 6012 /*
d5f9f942
AM
6013 * If the task increased its priority or is running and
6014 * lowered its priority, then reschedule its CPU:
1da177e4 6015 */
d5f9f942 6016 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6017 resched_task(rq->curr);
6018 }
6019out_unlock:
6020 task_rq_unlock(rq, &flags);
6021}
1da177e4
LT
6022EXPORT_SYMBOL(set_user_nice);
6023
e43379f1
MM
6024/*
6025 * can_nice - check if a task can reduce its nice value
6026 * @p: task
6027 * @nice: nice value
6028 */
36c8b586 6029int can_nice(const struct task_struct *p, const int nice)
e43379f1 6030{
024f4747
MM
6031 /* convert nice value [19,-20] to rlimit style value [1,40] */
6032 int nice_rlim = 20 - nice;
48f24c4d 6033
e43379f1
MM
6034 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6035 capable(CAP_SYS_NICE));
6036}
6037
1da177e4
LT
6038#ifdef __ARCH_WANT_SYS_NICE
6039
6040/*
6041 * sys_nice - change the priority of the current process.
6042 * @increment: priority increment
6043 *
6044 * sys_setpriority is a more generic, but much slower function that
6045 * does similar things.
6046 */
5add95d4 6047SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6048{
48f24c4d 6049 long nice, retval;
1da177e4
LT
6050
6051 /*
6052 * Setpriority might change our priority at the same moment.
6053 * We don't have to worry. Conceptually one call occurs first
6054 * and we have a single winner.
6055 */
e43379f1
MM
6056 if (increment < -40)
6057 increment = -40;
1da177e4
LT
6058 if (increment > 40)
6059 increment = 40;
6060
2b8f836f 6061 nice = TASK_NICE(current) + increment;
1da177e4
LT
6062 if (nice < -20)
6063 nice = -20;
6064 if (nice > 19)
6065 nice = 19;
6066
e43379f1
MM
6067 if (increment < 0 && !can_nice(current, nice))
6068 return -EPERM;
6069
1da177e4
LT
6070 retval = security_task_setnice(current, nice);
6071 if (retval)
6072 return retval;
6073
6074 set_user_nice(current, nice);
6075 return 0;
6076}
6077
6078#endif
6079
6080/**
6081 * task_prio - return the priority value of a given task.
6082 * @p: the task in question.
6083 *
6084 * This is the priority value as seen by users in /proc.
6085 * RT tasks are offset by -200. Normal tasks are centered
6086 * around 0, value goes from -16 to +15.
6087 */
36c8b586 6088int task_prio(const struct task_struct *p)
1da177e4
LT
6089{
6090 return p->prio - MAX_RT_PRIO;
6091}
6092
6093/**
6094 * task_nice - return the nice value of a given task.
6095 * @p: the task in question.
6096 */
36c8b586 6097int task_nice(const struct task_struct *p)
1da177e4
LT
6098{
6099 return TASK_NICE(p);
6100}
150d8bed 6101EXPORT_SYMBOL(task_nice);
1da177e4
LT
6102
6103/**
6104 * idle_cpu - is a given cpu idle currently?
6105 * @cpu: the processor in question.
6106 */
6107int idle_cpu(int cpu)
6108{
6109 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6110}
6111
1da177e4
LT
6112/**
6113 * idle_task - return the idle task for a given cpu.
6114 * @cpu: the processor in question.
6115 */
36c8b586 6116struct task_struct *idle_task(int cpu)
1da177e4
LT
6117{
6118 return cpu_rq(cpu)->idle;
6119}
6120
6121/**
6122 * find_process_by_pid - find a process with a matching PID value.
6123 * @pid: the pid in question.
6124 */
a9957449 6125static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6126{
228ebcbe 6127 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6128}
6129
6130/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6131static void
6132__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6133{
dd41f596 6134 BUG_ON(p->se.on_rq);
48f24c4d 6135
1da177e4 6136 p->policy = policy;
dd41f596
IM
6137 switch (p->policy) {
6138 case SCHED_NORMAL:
6139 case SCHED_BATCH:
6140 case SCHED_IDLE:
6141 p->sched_class = &fair_sched_class;
6142 break;
6143 case SCHED_FIFO:
6144 case SCHED_RR:
6145 p->sched_class = &rt_sched_class;
6146 break;
6147 }
6148
1da177e4 6149 p->rt_priority = prio;
b29739f9
IM
6150 p->normal_prio = normal_prio(p);
6151 /* we are holding p->pi_lock already */
6152 p->prio = rt_mutex_getprio(p);
2dd73a4f 6153 set_load_weight(p);
1da177e4
LT
6154}
6155
c69e8d9c
DH
6156/*
6157 * check the target process has a UID that matches the current process's
6158 */
6159static bool check_same_owner(struct task_struct *p)
6160{
6161 const struct cred *cred = current_cred(), *pcred;
6162 bool match;
6163
6164 rcu_read_lock();
6165 pcred = __task_cred(p);
6166 match = (cred->euid == pcred->euid ||
6167 cred->euid == pcred->uid);
6168 rcu_read_unlock();
6169 return match;
6170}
6171
961ccddd
RR
6172static int __sched_setscheduler(struct task_struct *p, int policy,
6173 struct sched_param *param, bool user)
1da177e4 6174{
83b699ed 6175 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6176 unsigned long flags;
cb469845 6177 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6178 struct rq *rq;
ca94c442 6179 int reset_on_fork;
1da177e4 6180
66e5393a
SR
6181 /* may grab non-irq protected spin_locks */
6182 BUG_ON(in_interrupt());
1da177e4
LT
6183recheck:
6184 /* double check policy once rq lock held */
ca94c442
LP
6185 if (policy < 0) {
6186 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6187 policy = oldpolicy = p->policy;
ca94c442
LP
6188 } else {
6189 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6190 policy &= ~SCHED_RESET_ON_FORK;
6191
6192 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6193 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6194 policy != SCHED_IDLE)
6195 return -EINVAL;
6196 }
6197
1da177e4
LT
6198 /*
6199 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6200 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6201 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6202 */
6203 if (param->sched_priority < 0 ||
95cdf3b7 6204 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6205 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6206 return -EINVAL;
e05606d3 6207 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6208 return -EINVAL;
6209
37e4ab3f
OC
6210 /*
6211 * Allow unprivileged RT tasks to decrease priority:
6212 */
961ccddd 6213 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6214 if (rt_policy(policy)) {
8dc3e909 6215 unsigned long rlim_rtprio;
8dc3e909
ON
6216
6217 if (!lock_task_sighand(p, &flags))
6218 return -ESRCH;
6219 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6220 unlock_task_sighand(p, &flags);
6221
6222 /* can't set/change the rt policy */
6223 if (policy != p->policy && !rlim_rtprio)
6224 return -EPERM;
6225
6226 /* can't increase priority */
6227 if (param->sched_priority > p->rt_priority &&
6228 param->sched_priority > rlim_rtprio)
6229 return -EPERM;
6230 }
dd41f596
IM
6231 /*
6232 * Like positive nice levels, dont allow tasks to
6233 * move out of SCHED_IDLE either:
6234 */
6235 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6236 return -EPERM;
5fe1d75f 6237
37e4ab3f 6238 /* can't change other user's priorities */
c69e8d9c 6239 if (!check_same_owner(p))
37e4ab3f 6240 return -EPERM;
ca94c442
LP
6241
6242 /* Normal users shall not reset the sched_reset_on_fork flag */
6243 if (p->sched_reset_on_fork && !reset_on_fork)
6244 return -EPERM;
37e4ab3f 6245 }
1da177e4 6246
725aad24 6247 if (user) {
b68aa230 6248#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6249 /*
6250 * Do not allow realtime tasks into groups that have no runtime
6251 * assigned.
6252 */
9a7e0b18
PZ
6253 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6254 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6255 return -EPERM;
b68aa230
PZ
6256#endif
6257
725aad24
JF
6258 retval = security_task_setscheduler(p, policy, param);
6259 if (retval)
6260 return retval;
6261 }
6262
b29739f9
IM
6263 /*
6264 * make sure no PI-waiters arrive (or leave) while we are
6265 * changing the priority of the task:
6266 */
6267 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6268 /*
6269 * To be able to change p->policy safely, the apropriate
6270 * runqueue lock must be held.
6271 */
b29739f9 6272 rq = __task_rq_lock(p);
1da177e4
LT
6273 /* recheck policy now with rq lock held */
6274 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6275 policy = oldpolicy = -1;
b29739f9
IM
6276 __task_rq_unlock(rq);
6277 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6278 goto recheck;
6279 }
2daa3577 6280 update_rq_clock(rq);
dd41f596 6281 on_rq = p->se.on_rq;
051a1d1a 6282 running = task_current(rq, p);
0e1f3483 6283 if (on_rq)
2e1cb74a 6284 deactivate_task(rq, p, 0);
0e1f3483
HS
6285 if (running)
6286 p->sched_class->put_prev_task(rq, p);
f6b53205 6287
ca94c442
LP
6288 p->sched_reset_on_fork = reset_on_fork;
6289
1da177e4 6290 oldprio = p->prio;
dd41f596 6291 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6292
0e1f3483
HS
6293 if (running)
6294 p->sched_class->set_curr_task(rq);
dd41f596
IM
6295 if (on_rq) {
6296 activate_task(rq, p, 0);
cb469845
SR
6297
6298 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6299 }
b29739f9
IM
6300 __task_rq_unlock(rq);
6301 spin_unlock_irqrestore(&p->pi_lock, flags);
6302
95e02ca9
TG
6303 rt_mutex_adjust_pi(p);
6304
1da177e4
LT
6305 return 0;
6306}
961ccddd
RR
6307
6308/**
6309 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6310 * @p: the task in question.
6311 * @policy: new policy.
6312 * @param: structure containing the new RT priority.
6313 *
6314 * NOTE that the task may be already dead.
6315 */
6316int sched_setscheduler(struct task_struct *p, int policy,
6317 struct sched_param *param)
6318{
6319 return __sched_setscheduler(p, policy, param, true);
6320}
1da177e4
LT
6321EXPORT_SYMBOL_GPL(sched_setscheduler);
6322
961ccddd
RR
6323/**
6324 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6325 * @p: the task in question.
6326 * @policy: new policy.
6327 * @param: structure containing the new RT priority.
6328 *
6329 * Just like sched_setscheduler, only don't bother checking if the
6330 * current context has permission. For example, this is needed in
6331 * stop_machine(): we create temporary high priority worker threads,
6332 * but our caller might not have that capability.
6333 */
6334int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6335 struct sched_param *param)
6336{
6337 return __sched_setscheduler(p, policy, param, false);
6338}
6339
95cdf3b7
IM
6340static int
6341do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6342{
1da177e4
LT
6343 struct sched_param lparam;
6344 struct task_struct *p;
36c8b586 6345 int retval;
1da177e4
LT
6346
6347 if (!param || pid < 0)
6348 return -EINVAL;
6349 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6350 return -EFAULT;
5fe1d75f
ON
6351
6352 rcu_read_lock();
6353 retval = -ESRCH;
1da177e4 6354 p = find_process_by_pid(pid);
5fe1d75f
ON
6355 if (p != NULL)
6356 retval = sched_setscheduler(p, policy, &lparam);
6357 rcu_read_unlock();
36c8b586 6358
1da177e4
LT
6359 return retval;
6360}
6361
6362/**
6363 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6364 * @pid: the pid in question.
6365 * @policy: new policy.
6366 * @param: structure containing the new RT priority.
6367 */
5add95d4
HC
6368SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6369 struct sched_param __user *, param)
1da177e4 6370{
c21761f1
JB
6371 /* negative values for policy are not valid */
6372 if (policy < 0)
6373 return -EINVAL;
6374
1da177e4
LT
6375 return do_sched_setscheduler(pid, policy, param);
6376}
6377
6378/**
6379 * sys_sched_setparam - set/change the RT priority of a thread
6380 * @pid: the pid in question.
6381 * @param: structure containing the new RT priority.
6382 */
5add95d4 6383SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6384{
6385 return do_sched_setscheduler(pid, -1, param);
6386}
6387
6388/**
6389 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6390 * @pid: the pid in question.
6391 */
5add95d4 6392SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6393{
36c8b586 6394 struct task_struct *p;
3a5c359a 6395 int retval;
1da177e4
LT
6396
6397 if (pid < 0)
3a5c359a 6398 return -EINVAL;
1da177e4
LT
6399
6400 retval = -ESRCH;
6401 read_lock(&tasklist_lock);
6402 p = find_process_by_pid(pid);
6403 if (p) {
6404 retval = security_task_getscheduler(p);
6405 if (!retval)
ca94c442
LP
6406 retval = p->policy
6407 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6408 }
6409 read_unlock(&tasklist_lock);
1da177e4
LT
6410 return retval;
6411}
6412
6413/**
ca94c442 6414 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6415 * @pid: the pid in question.
6416 * @param: structure containing the RT priority.
6417 */
5add95d4 6418SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6419{
6420 struct sched_param lp;
36c8b586 6421 struct task_struct *p;
3a5c359a 6422 int retval;
1da177e4
LT
6423
6424 if (!param || pid < 0)
3a5c359a 6425 return -EINVAL;
1da177e4
LT
6426
6427 read_lock(&tasklist_lock);
6428 p = find_process_by_pid(pid);
6429 retval = -ESRCH;
6430 if (!p)
6431 goto out_unlock;
6432
6433 retval = security_task_getscheduler(p);
6434 if (retval)
6435 goto out_unlock;
6436
6437 lp.sched_priority = p->rt_priority;
6438 read_unlock(&tasklist_lock);
6439
6440 /*
6441 * This one might sleep, we cannot do it with a spinlock held ...
6442 */
6443 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6444
1da177e4
LT
6445 return retval;
6446
6447out_unlock:
6448 read_unlock(&tasklist_lock);
6449 return retval;
6450}
6451
96f874e2 6452long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6453{
5a16f3d3 6454 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6455 struct task_struct *p;
6456 int retval;
1da177e4 6457
95402b38 6458 get_online_cpus();
1da177e4
LT
6459 read_lock(&tasklist_lock);
6460
6461 p = find_process_by_pid(pid);
6462 if (!p) {
6463 read_unlock(&tasklist_lock);
95402b38 6464 put_online_cpus();
1da177e4
LT
6465 return -ESRCH;
6466 }
6467
6468 /*
6469 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6470 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6471 * usage count and then drop tasklist_lock.
6472 */
6473 get_task_struct(p);
6474 read_unlock(&tasklist_lock);
6475
5a16f3d3
RR
6476 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6477 retval = -ENOMEM;
6478 goto out_put_task;
6479 }
6480 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6481 retval = -ENOMEM;
6482 goto out_free_cpus_allowed;
6483 }
1da177e4 6484 retval = -EPERM;
c69e8d9c 6485 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6486 goto out_unlock;
6487
e7834f8f
DQ
6488 retval = security_task_setscheduler(p, 0, NULL);
6489 if (retval)
6490 goto out_unlock;
6491
5a16f3d3
RR
6492 cpuset_cpus_allowed(p, cpus_allowed);
6493 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6494 again:
5a16f3d3 6495 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6496
8707d8b8 6497 if (!retval) {
5a16f3d3
RR
6498 cpuset_cpus_allowed(p, cpus_allowed);
6499 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6500 /*
6501 * We must have raced with a concurrent cpuset
6502 * update. Just reset the cpus_allowed to the
6503 * cpuset's cpus_allowed
6504 */
5a16f3d3 6505 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6506 goto again;
6507 }
6508 }
1da177e4 6509out_unlock:
5a16f3d3
RR
6510 free_cpumask_var(new_mask);
6511out_free_cpus_allowed:
6512 free_cpumask_var(cpus_allowed);
6513out_put_task:
1da177e4 6514 put_task_struct(p);
95402b38 6515 put_online_cpus();
1da177e4
LT
6516 return retval;
6517}
6518
6519static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6520 struct cpumask *new_mask)
1da177e4 6521{
96f874e2
RR
6522 if (len < cpumask_size())
6523 cpumask_clear(new_mask);
6524 else if (len > cpumask_size())
6525 len = cpumask_size();
6526
1da177e4
LT
6527 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6528}
6529
6530/**
6531 * sys_sched_setaffinity - set the cpu affinity of a process
6532 * @pid: pid of the process
6533 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6534 * @user_mask_ptr: user-space pointer to the new cpu mask
6535 */
5add95d4
HC
6536SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6537 unsigned long __user *, user_mask_ptr)
1da177e4 6538{
5a16f3d3 6539 cpumask_var_t new_mask;
1da177e4
LT
6540 int retval;
6541
5a16f3d3
RR
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6543 return -ENOMEM;
1da177e4 6544
5a16f3d3
RR
6545 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6546 if (retval == 0)
6547 retval = sched_setaffinity(pid, new_mask);
6548 free_cpumask_var(new_mask);
6549 return retval;
1da177e4
LT
6550}
6551
96f874e2 6552long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6553{
36c8b586 6554 struct task_struct *p;
1da177e4 6555 int retval;
1da177e4 6556
95402b38 6557 get_online_cpus();
1da177e4
LT
6558 read_lock(&tasklist_lock);
6559
6560 retval = -ESRCH;
6561 p = find_process_by_pid(pid);
6562 if (!p)
6563 goto out_unlock;
6564
e7834f8f
DQ
6565 retval = security_task_getscheduler(p);
6566 if (retval)
6567 goto out_unlock;
6568
96f874e2 6569 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6570
6571out_unlock:
6572 read_unlock(&tasklist_lock);
95402b38 6573 put_online_cpus();
1da177e4 6574
9531b62f 6575 return retval;
1da177e4
LT
6576}
6577
6578/**
6579 * sys_sched_getaffinity - get the cpu affinity of a process
6580 * @pid: pid of the process
6581 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6582 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6583 */
5add95d4
HC
6584SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6585 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6586{
6587 int ret;
f17c8607 6588 cpumask_var_t mask;
1da177e4 6589
f17c8607 6590 if (len < cpumask_size())
1da177e4
LT
6591 return -EINVAL;
6592
f17c8607
RR
6593 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6594 return -ENOMEM;
1da177e4 6595
f17c8607
RR
6596 ret = sched_getaffinity(pid, mask);
6597 if (ret == 0) {
6598 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6599 ret = -EFAULT;
6600 else
6601 ret = cpumask_size();
6602 }
6603 free_cpumask_var(mask);
1da177e4 6604
f17c8607 6605 return ret;
1da177e4
LT
6606}
6607
6608/**
6609 * sys_sched_yield - yield the current processor to other threads.
6610 *
dd41f596
IM
6611 * This function yields the current CPU to other tasks. If there are no
6612 * other threads running on this CPU then this function will return.
1da177e4 6613 */
5add95d4 6614SYSCALL_DEFINE0(sched_yield)
1da177e4 6615{
70b97a7f 6616 struct rq *rq = this_rq_lock();
1da177e4 6617
2d72376b 6618 schedstat_inc(rq, yld_count);
4530d7ab 6619 current->sched_class->yield_task(rq);
1da177e4
LT
6620
6621 /*
6622 * Since we are going to call schedule() anyway, there's
6623 * no need to preempt or enable interrupts:
6624 */
6625 __release(rq->lock);
8a25d5de 6626 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6627 _raw_spin_unlock(&rq->lock);
6628 preempt_enable_no_resched();
6629
6630 schedule();
6631
6632 return 0;
6633}
6634
d86ee480
PZ
6635static inline int should_resched(void)
6636{
6637 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6638}
6639
e7b38404 6640static void __cond_resched(void)
1da177e4 6641{
e7aaaa69
FW
6642 add_preempt_count(PREEMPT_ACTIVE);
6643 schedule();
6644 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6645}
6646
02b67cc3 6647int __sched _cond_resched(void)
1da177e4 6648{
d86ee480 6649 if (should_resched()) {
1da177e4
LT
6650 __cond_resched();
6651 return 1;
6652 }
6653 return 0;
6654}
02b67cc3 6655EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6656
6657/*
613afbf8 6658 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6659 * call schedule, and on return reacquire the lock.
6660 *
41a2d6cf 6661 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6662 * operations here to prevent schedule() from being called twice (once via
6663 * spin_unlock(), once by hand).
6664 */
613afbf8 6665int __cond_resched_lock(spinlock_t *lock)
1da177e4 6666{
d86ee480 6667 int resched = should_resched();
6df3cecb
JK
6668 int ret = 0;
6669
f607c668
PZ
6670 lockdep_assert_held(lock);
6671
95c354fe 6672 if (spin_needbreak(lock) || resched) {
1da177e4 6673 spin_unlock(lock);
d86ee480 6674 if (resched)
95c354fe
NP
6675 __cond_resched();
6676 else
6677 cpu_relax();
6df3cecb 6678 ret = 1;
1da177e4 6679 spin_lock(lock);
1da177e4 6680 }
6df3cecb 6681 return ret;
1da177e4 6682}
613afbf8 6683EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6684
613afbf8 6685int __sched __cond_resched_softirq(void)
1da177e4
LT
6686{
6687 BUG_ON(!in_softirq());
6688
d86ee480 6689 if (should_resched()) {
98d82567 6690 local_bh_enable();
1da177e4
LT
6691 __cond_resched();
6692 local_bh_disable();
6693 return 1;
6694 }
6695 return 0;
6696}
613afbf8 6697EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6698
1da177e4
LT
6699/**
6700 * yield - yield the current processor to other threads.
6701 *
72fd4a35 6702 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6703 * thread runnable and calls sys_sched_yield().
6704 */
6705void __sched yield(void)
6706{
6707 set_current_state(TASK_RUNNING);
6708 sys_sched_yield();
6709}
1da177e4
LT
6710EXPORT_SYMBOL(yield);
6711
6712/*
41a2d6cf 6713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6714 * that process accounting knows that this is a task in IO wait state.
6715 *
6716 * But don't do that if it is a deliberate, throttling IO wait (this task
6717 * has set its backing_dev_info: the queue against which it should throttle)
6718 */
6719void __sched io_schedule(void)
6720{
54d35f29 6721 struct rq *rq = raw_rq();
1da177e4 6722
0ff92245 6723 delayacct_blkio_start();
1da177e4 6724 atomic_inc(&rq->nr_iowait);
8f0dfc34 6725 current->in_iowait = 1;
1da177e4 6726 schedule();
8f0dfc34 6727 current->in_iowait = 0;
1da177e4 6728 atomic_dec(&rq->nr_iowait);
0ff92245 6729 delayacct_blkio_end();
1da177e4 6730}
1da177e4
LT
6731EXPORT_SYMBOL(io_schedule);
6732
6733long __sched io_schedule_timeout(long timeout)
6734{
54d35f29 6735 struct rq *rq = raw_rq();
1da177e4
LT
6736 long ret;
6737
0ff92245 6738 delayacct_blkio_start();
1da177e4 6739 atomic_inc(&rq->nr_iowait);
8f0dfc34 6740 current->in_iowait = 1;
1da177e4 6741 ret = schedule_timeout(timeout);
8f0dfc34 6742 current->in_iowait = 0;
1da177e4 6743 atomic_dec(&rq->nr_iowait);
0ff92245 6744 delayacct_blkio_end();
1da177e4
LT
6745 return ret;
6746}
6747
6748/**
6749 * sys_sched_get_priority_max - return maximum RT priority.
6750 * @policy: scheduling class.
6751 *
6752 * this syscall returns the maximum rt_priority that can be used
6753 * by a given scheduling class.
6754 */
5add95d4 6755SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6756{
6757 int ret = -EINVAL;
6758
6759 switch (policy) {
6760 case SCHED_FIFO:
6761 case SCHED_RR:
6762 ret = MAX_USER_RT_PRIO-1;
6763 break;
6764 case SCHED_NORMAL:
b0a9499c 6765 case SCHED_BATCH:
dd41f596 6766 case SCHED_IDLE:
1da177e4
LT
6767 ret = 0;
6768 break;
6769 }
6770 return ret;
6771}
6772
6773/**
6774 * sys_sched_get_priority_min - return minimum RT priority.
6775 * @policy: scheduling class.
6776 *
6777 * this syscall returns the minimum rt_priority that can be used
6778 * by a given scheduling class.
6779 */
5add95d4 6780SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6781{
6782 int ret = -EINVAL;
6783
6784 switch (policy) {
6785 case SCHED_FIFO:
6786 case SCHED_RR:
6787 ret = 1;
6788 break;
6789 case SCHED_NORMAL:
b0a9499c 6790 case SCHED_BATCH:
dd41f596 6791 case SCHED_IDLE:
1da177e4
LT
6792 ret = 0;
6793 }
6794 return ret;
6795}
6796
6797/**
6798 * sys_sched_rr_get_interval - return the default timeslice of a process.
6799 * @pid: pid of the process.
6800 * @interval: userspace pointer to the timeslice value.
6801 *
6802 * this syscall writes the default timeslice value of a given process
6803 * into the user-space timespec buffer. A value of '0' means infinity.
6804 */
17da2bd9 6805SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6806 struct timespec __user *, interval)
1da177e4 6807{
36c8b586 6808 struct task_struct *p;
a4ec24b4 6809 unsigned int time_slice;
3a5c359a 6810 int retval;
1da177e4 6811 struct timespec t;
1da177e4
LT
6812
6813 if (pid < 0)
3a5c359a 6814 return -EINVAL;
1da177e4
LT
6815
6816 retval = -ESRCH;
6817 read_lock(&tasklist_lock);
6818 p = find_process_by_pid(pid);
6819 if (!p)
6820 goto out_unlock;
6821
6822 retval = security_task_getscheduler(p);
6823 if (retval)
6824 goto out_unlock;
6825
77034937
IM
6826 /*
6827 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6828 * tasks that are on an otherwise idle runqueue:
6829 */
6830 time_slice = 0;
6831 if (p->policy == SCHED_RR) {
a4ec24b4 6832 time_slice = DEF_TIMESLICE;
1868f958 6833 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6834 struct sched_entity *se = &p->se;
6835 unsigned long flags;
6836 struct rq *rq;
6837
6838 rq = task_rq_lock(p, &flags);
77034937
IM
6839 if (rq->cfs.load.weight)
6840 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6841 task_rq_unlock(rq, &flags);
6842 }
1da177e4 6843 read_unlock(&tasklist_lock);
a4ec24b4 6844 jiffies_to_timespec(time_slice, &t);
1da177e4 6845 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6846 return retval;
3a5c359a 6847
1da177e4
LT
6848out_unlock:
6849 read_unlock(&tasklist_lock);
6850 return retval;
6851}
6852
7c731e0a 6853static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6854
82a1fcb9 6855void sched_show_task(struct task_struct *p)
1da177e4 6856{
1da177e4 6857 unsigned long free = 0;
36c8b586 6858 unsigned state;
1da177e4 6859
1da177e4 6860 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6861 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6862 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6863#if BITS_PER_LONG == 32
1da177e4 6864 if (state == TASK_RUNNING)
cc4ea795 6865 printk(KERN_CONT " running ");
1da177e4 6866 else
cc4ea795 6867 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6868#else
6869 if (state == TASK_RUNNING)
cc4ea795 6870 printk(KERN_CONT " running task ");
1da177e4 6871 else
cc4ea795 6872 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6873#endif
6874#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6875 free = stack_not_used(p);
1da177e4 6876#endif
aa47b7e0
DR
6877 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6878 task_pid_nr(p), task_pid_nr(p->real_parent),
6879 (unsigned long)task_thread_info(p)->flags);
1da177e4 6880
5fb5e6de 6881 show_stack(p, NULL);
1da177e4
LT
6882}
6883
e59e2ae2 6884void show_state_filter(unsigned long state_filter)
1da177e4 6885{
36c8b586 6886 struct task_struct *g, *p;
1da177e4 6887
4bd77321
IM
6888#if BITS_PER_LONG == 32
6889 printk(KERN_INFO
6890 " task PC stack pid father\n");
1da177e4 6891#else
4bd77321
IM
6892 printk(KERN_INFO
6893 " task PC stack pid father\n");
1da177e4
LT
6894#endif
6895 read_lock(&tasklist_lock);
6896 do_each_thread(g, p) {
6897 /*
6898 * reset the NMI-timeout, listing all files on a slow
6899 * console might take alot of time:
6900 */
6901 touch_nmi_watchdog();
39bc89fd 6902 if (!state_filter || (p->state & state_filter))
82a1fcb9 6903 sched_show_task(p);
1da177e4
LT
6904 } while_each_thread(g, p);
6905
04c9167f
JF
6906 touch_all_softlockup_watchdogs();
6907
dd41f596
IM
6908#ifdef CONFIG_SCHED_DEBUG
6909 sysrq_sched_debug_show();
6910#endif
1da177e4 6911 read_unlock(&tasklist_lock);
e59e2ae2
IM
6912 /*
6913 * Only show locks if all tasks are dumped:
6914 */
6915 if (state_filter == -1)
6916 debug_show_all_locks();
1da177e4
LT
6917}
6918
1df21055
IM
6919void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6920{
dd41f596 6921 idle->sched_class = &idle_sched_class;
1df21055
IM
6922}
6923
f340c0d1
IM
6924/**
6925 * init_idle - set up an idle thread for a given CPU
6926 * @idle: task in question
6927 * @cpu: cpu the idle task belongs to
6928 *
6929 * NOTE: this function does not set the idle thread's NEED_RESCHED
6930 * flag, to make booting more robust.
6931 */
5c1e1767 6932void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6933{
70b97a7f 6934 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6935 unsigned long flags;
6936
5cbd54ef
IM
6937 spin_lock_irqsave(&rq->lock, flags);
6938
dd41f596
IM
6939 __sched_fork(idle);
6940 idle->se.exec_start = sched_clock();
6941
b29739f9 6942 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6943 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6944 __set_task_cpu(idle, cpu);
1da177e4 6945
1da177e4 6946 rq->curr = rq->idle = idle;
4866cde0
NP
6947#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6948 idle->oncpu = 1;
6949#endif
1da177e4
LT
6950 spin_unlock_irqrestore(&rq->lock, flags);
6951
6952 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6953#if defined(CONFIG_PREEMPT)
6954 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6955#else
a1261f54 6956 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6957#endif
dd41f596
IM
6958 /*
6959 * The idle tasks have their own, simple scheduling class:
6960 */
6961 idle->sched_class = &idle_sched_class;
fb52607a 6962 ftrace_graph_init_task(idle);
1da177e4
LT
6963}
6964
6965/*
6966 * In a system that switches off the HZ timer nohz_cpu_mask
6967 * indicates which cpus entered this state. This is used
6968 * in the rcu update to wait only for active cpus. For system
6969 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6970 * always be CPU_BITS_NONE.
1da177e4 6971 */
6a7b3dc3 6972cpumask_var_t nohz_cpu_mask;
1da177e4 6973
19978ca6
IM
6974/*
6975 * Increase the granularity value when there are more CPUs,
6976 * because with more CPUs the 'effective latency' as visible
6977 * to users decreases. But the relationship is not linear,
6978 * so pick a second-best guess by going with the log2 of the
6979 * number of CPUs.
6980 *
6981 * This idea comes from the SD scheduler of Con Kolivas:
6982 */
6983static inline void sched_init_granularity(void)
6984{
6985 unsigned int factor = 1 + ilog2(num_online_cpus());
6986 const unsigned long limit = 200000000;
6987
6988 sysctl_sched_min_granularity *= factor;
6989 if (sysctl_sched_min_granularity > limit)
6990 sysctl_sched_min_granularity = limit;
6991
6992 sysctl_sched_latency *= factor;
6993 if (sysctl_sched_latency > limit)
6994 sysctl_sched_latency = limit;
6995
6996 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6997
6998 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6999}
7000
1da177e4
LT
7001#ifdef CONFIG_SMP
7002/*
7003 * This is how migration works:
7004 *
70b97a7f 7005 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7006 * runqueue and wake up that CPU's migration thread.
7007 * 2) we down() the locked semaphore => thread blocks.
7008 * 3) migration thread wakes up (implicitly it forces the migrated
7009 * thread off the CPU)
7010 * 4) it gets the migration request and checks whether the migrated
7011 * task is still in the wrong runqueue.
7012 * 5) if it's in the wrong runqueue then the migration thread removes
7013 * it and puts it into the right queue.
7014 * 6) migration thread up()s the semaphore.
7015 * 7) we wake up and the migration is done.
7016 */
7017
7018/*
7019 * Change a given task's CPU affinity. Migrate the thread to a
7020 * proper CPU and schedule it away if the CPU it's executing on
7021 * is removed from the allowed bitmask.
7022 *
7023 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7024 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7025 * call is not atomic; no spinlocks may be held.
7026 */
96f874e2 7027int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7028{
70b97a7f 7029 struct migration_req req;
1da177e4 7030 unsigned long flags;
70b97a7f 7031 struct rq *rq;
48f24c4d 7032 int ret = 0;
1da177e4
LT
7033
7034 rq = task_rq_lock(p, &flags);
96f874e2 7035 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7036 ret = -EINVAL;
7037 goto out;
7038 }
7039
9985b0ba 7040 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7041 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7042 ret = -EINVAL;
7043 goto out;
7044 }
7045
73fe6aae 7046 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7047 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7048 else {
96f874e2
RR
7049 cpumask_copy(&p->cpus_allowed, new_mask);
7050 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7051 }
7052
1da177e4 7053 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7054 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7055 goto out;
7056
1e5ce4f4 7057 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7058 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7059 struct task_struct *mt = rq->migration_thread;
7060
7061 get_task_struct(mt);
1da177e4
LT
7062 task_rq_unlock(rq, &flags);
7063 wake_up_process(rq->migration_thread);
693525e3 7064 put_task_struct(mt);
1da177e4
LT
7065 wait_for_completion(&req.done);
7066 tlb_migrate_finish(p->mm);
7067 return 0;
7068 }
7069out:
7070 task_rq_unlock(rq, &flags);
48f24c4d 7071
1da177e4
LT
7072 return ret;
7073}
cd8ba7cd 7074EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7075
7076/*
41a2d6cf 7077 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7078 * this because either it can't run here any more (set_cpus_allowed()
7079 * away from this CPU, or CPU going down), or because we're
7080 * attempting to rebalance this task on exec (sched_exec).
7081 *
7082 * So we race with normal scheduler movements, but that's OK, as long
7083 * as the task is no longer on this CPU.
efc30814
KK
7084 *
7085 * Returns non-zero if task was successfully migrated.
1da177e4 7086 */
efc30814 7087static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7088{
70b97a7f 7089 struct rq *rq_dest, *rq_src;
dd41f596 7090 int ret = 0, on_rq;
1da177e4 7091
e761b772 7092 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7093 return ret;
1da177e4
LT
7094
7095 rq_src = cpu_rq(src_cpu);
7096 rq_dest = cpu_rq(dest_cpu);
7097
7098 double_rq_lock(rq_src, rq_dest);
7099 /* Already moved. */
7100 if (task_cpu(p) != src_cpu)
b1e38734 7101 goto done;
1da177e4 7102 /* Affinity changed (again). */
96f874e2 7103 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7104 goto fail;
1da177e4 7105
dd41f596 7106 on_rq = p->se.on_rq;
6e82a3be 7107 if (on_rq)
2e1cb74a 7108 deactivate_task(rq_src, p, 0);
6e82a3be 7109
1da177e4 7110 set_task_cpu(p, dest_cpu);
dd41f596
IM
7111 if (on_rq) {
7112 activate_task(rq_dest, p, 0);
15afe09b 7113 check_preempt_curr(rq_dest, p, 0);
1da177e4 7114 }
b1e38734 7115done:
efc30814 7116 ret = 1;
b1e38734 7117fail:
1da177e4 7118 double_rq_unlock(rq_src, rq_dest);
efc30814 7119 return ret;
1da177e4
LT
7120}
7121
03b042bf
PM
7122#define RCU_MIGRATION_IDLE 0
7123#define RCU_MIGRATION_NEED_QS 1
7124#define RCU_MIGRATION_GOT_QS 2
7125#define RCU_MIGRATION_MUST_SYNC 3
7126
1da177e4
LT
7127/*
7128 * migration_thread - this is a highprio system thread that performs
7129 * thread migration by bumping thread off CPU then 'pushing' onto
7130 * another runqueue.
7131 */
95cdf3b7 7132static int migration_thread(void *data)
1da177e4 7133{
03b042bf 7134 int badcpu;
1da177e4 7135 int cpu = (long)data;
70b97a7f 7136 struct rq *rq;
1da177e4
LT
7137
7138 rq = cpu_rq(cpu);
7139 BUG_ON(rq->migration_thread != current);
7140
7141 set_current_state(TASK_INTERRUPTIBLE);
7142 while (!kthread_should_stop()) {
70b97a7f 7143 struct migration_req *req;
1da177e4 7144 struct list_head *head;
1da177e4 7145
1da177e4
LT
7146 spin_lock_irq(&rq->lock);
7147
7148 if (cpu_is_offline(cpu)) {
7149 spin_unlock_irq(&rq->lock);
371cbb38 7150 break;
1da177e4
LT
7151 }
7152
7153 if (rq->active_balance) {
7154 active_load_balance(rq, cpu);
7155 rq->active_balance = 0;
7156 }
7157
7158 head = &rq->migration_queue;
7159
7160 if (list_empty(head)) {
7161 spin_unlock_irq(&rq->lock);
7162 schedule();
7163 set_current_state(TASK_INTERRUPTIBLE);
7164 continue;
7165 }
70b97a7f 7166 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7167 list_del_init(head->next);
7168
03b042bf
PM
7169 if (req->task != NULL) {
7170 spin_unlock(&rq->lock);
7171 __migrate_task(req->task, cpu, req->dest_cpu);
7172 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7173 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7174 spin_unlock(&rq->lock);
7175 } else {
7176 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7177 spin_unlock(&rq->lock);
7178 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7179 }
674311d5 7180 local_irq_enable();
1da177e4
LT
7181
7182 complete(&req->done);
7183 }
7184 __set_current_state(TASK_RUNNING);
1da177e4 7185
1da177e4
LT
7186 return 0;
7187}
7188
7189#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7190
7191static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7192{
7193 int ret;
7194
7195 local_irq_disable();
7196 ret = __migrate_task(p, src_cpu, dest_cpu);
7197 local_irq_enable();
7198 return ret;
7199}
7200
054b9108 7201/*
3a4fa0a2 7202 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7203 */
48f24c4d 7204static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7205{
70b97a7f 7206 int dest_cpu;
6ca09dfc 7207 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7208
7209again:
7210 /* Look for allowed, online CPU in same node. */
7211 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7213 goto move;
7214
7215 /* Any allowed, online CPU? */
7216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7217 if (dest_cpu < nr_cpu_ids)
7218 goto move;
7219
7220 /* No more Mr. Nice Guy. */
7221 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7222 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7223 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7224
e76bd8d9
RR
7225 /*
7226 * Don't tell them about moving exiting tasks or
7227 * kernel threads (both mm NULL), since they never
7228 * leave kernel.
7229 */
7230 if (p->mm && printk_ratelimit()) {
7231 printk(KERN_INFO "process %d (%s) no "
7232 "longer affine to cpu%d\n",
7233 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7234 }
e76bd8d9
RR
7235 }
7236
7237move:
7238 /* It can have affinity changed while we were choosing. */
7239 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7240 goto again;
1da177e4
LT
7241}
7242
7243/*
7244 * While a dead CPU has no uninterruptible tasks queued at this point,
7245 * it might still have a nonzero ->nr_uninterruptible counter, because
7246 * for performance reasons the counter is not stricly tracking tasks to
7247 * their home CPUs. So we just add the counter to another CPU's counter,
7248 * to keep the global sum constant after CPU-down:
7249 */
70b97a7f 7250static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7251{
1e5ce4f4 7252 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7253 unsigned long flags;
7254
7255 local_irq_save(flags);
7256 double_rq_lock(rq_src, rq_dest);
7257 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7258 rq_src->nr_uninterruptible = 0;
7259 double_rq_unlock(rq_src, rq_dest);
7260 local_irq_restore(flags);
7261}
7262
7263/* Run through task list and migrate tasks from the dead cpu. */
7264static void migrate_live_tasks(int src_cpu)
7265{
48f24c4d 7266 struct task_struct *p, *t;
1da177e4 7267
f7b4cddc 7268 read_lock(&tasklist_lock);
1da177e4 7269
48f24c4d
IM
7270 do_each_thread(t, p) {
7271 if (p == current)
1da177e4
LT
7272 continue;
7273
48f24c4d
IM
7274 if (task_cpu(p) == src_cpu)
7275 move_task_off_dead_cpu(src_cpu, p);
7276 } while_each_thread(t, p);
1da177e4 7277
f7b4cddc 7278 read_unlock(&tasklist_lock);
1da177e4
LT
7279}
7280
dd41f596
IM
7281/*
7282 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7283 * It does so by boosting its priority to highest possible.
7284 * Used by CPU offline code.
1da177e4
LT
7285 */
7286void sched_idle_next(void)
7287{
48f24c4d 7288 int this_cpu = smp_processor_id();
70b97a7f 7289 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7290 struct task_struct *p = rq->idle;
7291 unsigned long flags;
7292
7293 /* cpu has to be offline */
48f24c4d 7294 BUG_ON(cpu_online(this_cpu));
1da177e4 7295
48f24c4d
IM
7296 /*
7297 * Strictly not necessary since rest of the CPUs are stopped by now
7298 * and interrupts disabled on the current cpu.
1da177e4
LT
7299 */
7300 spin_lock_irqsave(&rq->lock, flags);
7301
dd41f596 7302 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7303
94bc9a7b
DA
7304 update_rq_clock(rq);
7305 activate_task(rq, p, 0);
1da177e4
LT
7306
7307 spin_unlock_irqrestore(&rq->lock, flags);
7308}
7309
48f24c4d
IM
7310/*
7311 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7312 * offline.
7313 */
7314void idle_task_exit(void)
7315{
7316 struct mm_struct *mm = current->active_mm;
7317
7318 BUG_ON(cpu_online(smp_processor_id()));
7319
7320 if (mm != &init_mm)
7321 switch_mm(mm, &init_mm, current);
7322 mmdrop(mm);
7323}
7324
054b9108 7325/* called under rq->lock with disabled interrupts */
36c8b586 7326static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7327{
70b97a7f 7328 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7329
7330 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7331 BUG_ON(!p->exit_state);
1da177e4
LT
7332
7333 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7334 BUG_ON(p->state == TASK_DEAD);
1da177e4 7335
48f24c4d 7336 get_task_struct(p);
1da177e4
LT
7337
7338 /*
7339 * Drop lock around migration; if someone else moves it,
41a2d6cf 7340 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7341 * fine.
7342 */
f7b4cddc 7343 spin_unlock_irq(&rq->lock);
48f24c4d 7344 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7345 spin_lock_irq(&rq->lock);
1da177e4 7346
48f24c4d 7347 put_task_struct(p);
1da177e4
LT
7348}
7349
7350/* release_task() removes task from tasklist, so we won't find dead tasks. */
7351static void migrate_dead_tasks(unsigned int dead_cpu)
7352{
70b97a7f 7353 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7354 struct task_struct *next;
48f24c4d 7355
dd41f596
IM
7356 for ( ; ; ) {
7357 if (!rq->nr_running)
7358 break;
a8e504d2 7359 update_rq_clock(rq);
b67802ea 7360 next = pick_next_task(rq);
dd41f596
IM
7361 if (!next)
7362 break;
79c53799 7363 next->sched_class->put_prev_task(rq, next);
dd41f596 7364 migrate_dead(dead_cpu, next);
e692ab53 7365
1da177e4
LT
7366 }
7367}
dce48a84
TG
7368
7369/*
7370 * remove the tasks which were accounted by rq from calc_load_tasks.
7371 */
7372static void calc_global_load_remove(struct rq *rq)
7373{
7374 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7375 rq->calc_load_active = 0;
dce48a84 7376}
1da177e4
LT
7377#endif /* CONFIG_HOTPLUG_CPU */
7378
e692ab53
NP
7379#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7380
7381static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7382 {
7383 .procname = "sched_domain",
c57baf1e 7384 .mode = 0555,
e0361851 7385 },
38605cae 7386 {0, },
e692ab53
NP
7387};
7388
7389static struct ctl_table sd_ctl_root[] = {
e0361851 7390 {
c57baf1e 7391 .ctl_name = CTL_KERN,
e0361851 7392 .procname = "kernel",
c57baf1e 7393 .mode = 0555,
e0361851
AD
7394 .child = sd_ctl_dir,
7395 },
38605cae 7396 {0, },
e692ab53
NP
7397};
7398
7399static struct ctl_table *sd_alloc_ctl_entry(int n)
7400{
7401 struct ctl_table *entry =
5cf9f062 7402 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7403
e692ab53
NP
7404 return entry;
7405}
7406
6382bc90
MM
7407static void sd_free_ctl_entry(struct ctl_table **tablep)
7408{
cd790076 7409 struct ctl_table *entry;
6382bc90 7410
cd790076
MM
7411 /*
7412 * In the intermediate directories, both the child directory and
7413 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7414 * will always be set. In the lowest directory the names are
cd790076
MM
7415 * static strings and all have proc handlers.
7416 */
7417 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7418 if (entry->child)
7419 sd_free_ctl_entry(&entry->child);
cd790076
MM
7420 if (entry->proc_handler == NULL)
7421 kfree(entry->procname);
7422 }
6382bc90
MM
7423
7424 kfree(*tablep);
7425 *tablep = NULL;
7426}
7427
e692ab53 7428static void
e0361851 7429set_table_entry(struct ctl_table *entry,
e692ab53
NP
7430 const char *procname, void *data, int maxlen,
7431 mode_t mode, proc_handler *proc_handler)
7432{
e692ab53
NP
7433 entry->procname = procname;
7434 entry->data = data;
7435 entry->maxlen = maxlen;
7436 entry->mode = mode;
7437 entry->proc_handler = proc_handler;
7438}
7439
7440static struct ctl_table *
7441sd_alloc_ctl_domain_table(struct sched_domain *sd)
7442{
a5d8c348 7443 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7444
ad1cdc1d
MM
7445 if (table == NULL)
7446 return NULL;
7447
e0361851 7448 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7449 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7450 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7451 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7452 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7453 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7454 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7455 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7456 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7458 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7460 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7462 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7464 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7465 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7466 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7467 &sd->cache_nice_tries,
7468 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7469 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7470 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7471 set_table_entry(&table[11], "name", sd->name,
7472 CORENAME_MAX_SIZE, 0444, proc_dostring);
7473 /* &table[12] is terminator */
e692ab53
NP
7474
7475 return table;
7476}
7477
9a4e7159 7478static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7479{
7480 struct ctl_table *entry, *table;
7481 struct sched_domain *sd;
7482 int domain_num = 0, i;
7483 char buf[32];
7484
7485 for_each_domain(cpu, sd)
7486 domain_num++;
7487 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7488 if (table == NULL)
7489 return NULL;
e692ab53
NP
7490
7491 i = 0;
7492 for_each_domain(cpu, sd) {
7493 snprintf(buf, 32, "domain%d", i);
e692ab53 7494 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7495 entry->mode = 0555;
e692ab53
NP
7496 entry->child = sd_alloc_ctl_domain_table(sd);
7497 entry++;
7498 i++;
7499 }
7500 return table;
7501}
7502
7503static struct ctl_table_header *sd_sysctl_header;
6382bc90 7504static void register_sched_domain_sysctl(void)
e692ab53
NP
7505{
7506 int i, cpu_num = num_online_cpus();
7507 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7508 char buf[32];
7509
7378547f
MM
7510 WARN_ON(sd_ctl_dir[0].child);
7511 sd_ctl_dir[0].child = entry;
7512
ad1cdc1d
MM
7513 if (entry == NULL)
7514 return;
7515
97b6ea7b 7516 for_each_online_cpu(i) {
e692ab53 7517 snprintf(buf, 32, "cpu%d", i);
e692ab53 7518 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7519 entry->mode = 0555;
e692ab53 7520 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7521 entry++;
e692ab53 7522 }
7378547f
MM
7523
7524 WARN_ON(sd_sysctl_header);
e692ab53
NP
7525 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7526}
6382bc90 7527
7378547f 7528/* may be called multiple times per register */
6382bc90
MM
7529static void unregister_sched_domain_sysctl(void)
7530{
7378547f
MM
7531 if (sd_sysctl_header)
7532 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7533 sd_sysctl_header = NULL;
7378547f
MM
7534 if (sd_ctl_dir[0].child)
7535 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7536}
e692ab53 7537#else
6382bc90
MM
7538static void register_sched_domain_sysctl(void)
7539{
7540}
7541static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7542{
7543}
7544#endif
7545
1f11eb6a
GH
7546static void set_rq_online(struct rq *rq)
7547{
7548 if (!rq->online) {
7549 const struct sched_class *class;
7550
c6c4927b 7551 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7552 rq->online = 1;
7553
7554 for_each_class(class) {
7555 if (class->rq_online)
7556 class->rq_online(rq);
7557 }
7558 }
7559}
7560
7561static void set_rq_offline(struct rq *rq)
7562{
7563 if (rq->online) {
7564 const struct sched_class *class;
7565
7566 for_each_class(class) {
7567 if (class->rq_offline)
7568 class->rq_offline(rq);
7569 }
7570
c6c4927b 7571 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7572 rq->online = 0;
7573 }
7574}
7575
1da177e4
LT
7576/*
7577 * migration_call - callback that gets triggered when a CPU is added.
7578 * Here we can start up the necessary migration thread for the new CPU.
7579 */
48f24c4d
IM
7580static int __cpuinit
7581migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7582{
1da177e4 7583 struct task_struct *p;
48f24c4d 7584 int cpu = (long)hcpu;
1da177e4 7585 unsigned long flags;
70b97a7f 7586 struct rq *rq;
1da177e4
LT
7587
7588 switch (action) {
5be9361c 7589
1da177e4 7590 case CPU_UP_PREPARE:
8bb78442 7591 case CPU_UP_PREPARE_FROZEN:
dd41f596 7592 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7593 if (IS_ERR(p))
7594 return NOTIFY_BAD;
1da177e4
LT
7595 kthread_bind(p, cpu);
7596 /* Must be high prio: stop_machine expects to yield to it. */
7597 rq = task_rq_lock(p, &flags);
dd41f596 7598 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7599 task_rq_unlock(rq, &flags);
371cbb38 7600 get_task_struct(p);
1da177e4 7601 cpu_rq(cpu)->migration_thread = p;
a468d389 7602 rq->calc_load_update = calc_load_update;
1da177e4 7603 break;
48f24c4d 7604
1da177e4 7605 case CPU_ONLINE:
8bb78442 7606 case CPU_ONLINE_FROZEN:
3a4fa0a2 7607 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7608 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7609
7610 /* Update our root-domain */
7611 rq = cpu_rq(cpu);
7612 spin_lock_irqsave(&rq->lock, flags);
7613 if (rq->rd) {
c6c4927b 7614 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7615
7616 set_rq_online(rq);
1f94ef59
GH
7617 }
7618 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7619 break;
48f24c4d 7620
1da177e4
LT
7621#ifdef CONFIG_HOTPLUG_CPU
7622 case CPU_UP_CANCELED:
8bb78442 7623 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7624 if (!cpu_rq(cpu)->migration_thread)
7625 break;
41a2d6cf 7626 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7627 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7628 cpumask_any(cpu_online_mask));
1da177e4 7629 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7630 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7631 cpu_rq(cpu)->migration_thread = NULL;
7632 break;
48f24c4d 7633
1da177e4 7634 case CPU_DEAD:
8bb78442 7635 case CPU_DEAD_FROZEN:
470fd646 7636 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7637 migrate_live_tasks(cpu);
7638 rq = cpu_rq(cpu);
7639 kthread_stop(rq->migration_thread);
371cbb38 7640 put_task_struct(rq->migration_thread);
1da177e4
LT
7641 rq->migration_thread = NULL;
7642 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7643 spin_lock_irq(&rq->lock);
a8e504d2 7644 update_rq_clock(rq);
2e1cb74a 7645 deactivate_task(rq, rq->idle, 0);
1da177e4 7646 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7647 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7648 rq->idle->sched_class = &idle_sched_class;
1da177e4 7649 migrate_dead_tasks(cpu);
d2da272a 7650 spin_unlock_irq(&rq->lock);
470fd646 7651 cpuset_unlock();
1da177e4
LT
7652 migrate_nr_uninterruptible(rq);
7653 BUG_ON(rq->nr_running != 0);
dce48a84 7654 calc_global_load_remove(rq);
41a2d6cf
IM
7655 /*
7656 * No need to migrate the tasks: it was best-effort if
7657 * they didn't take sched_hotcpu_mutex. Just wake up
7658 * the requestors.
7659 */
1da177e4
LT
7660 spin_lock_irq(&rq->lock);
7661 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7662 struct migration_req *req;
7663
1da177e4 7664 req = list_entry(rq->migration_queue.next,
70b97a7f 7665 struct migration_req, list);
1da177e4 7666 list_del_init(&req->list);
9a2bd244 7667 spin_unlock_irq(&rq->lock);
1da177e4 7668 complete(&req->done);
9a2bd244 7669 spin_lock_irq(&rq->lock);
1da177e4
LT
7670 }
7671 spin_unlock_irq(&rq->lock);
7672 break;
57d885fe 7673
08f503b0
GH
7674 case CPU_DYING:
7675 case CPU_DYING_FROZEN:
57d885fe
GH
7676 /* Update our root-domain */
7677 rq = cpu_rq(cpu);
7678 spin_lock_irqsave(&rq->lock, flags);
7679 if (rq->rd) {
c6c4927b 7680 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7681 set_rq_offline(rq);
57d885fe
GH
7682 }
7683 spin_unlock_irqrestore(&rq->lock, flags);
7684 break;
1da177e4
LT
7685#endif
7686 }
7687 return NOTIFY_OK;
7688}
7689
f38b0820
PM
7690/*
7691 * Register at high priority so that task migration (migrate_all_tasks)
7692 * happens before everything else. This has to be lower priority than
7693 * the notifier in the perf_counter subsystem, though.
1da177e4 7694 */
26c2143b 7695static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7696 .notifier_call = migration_call,
7697 .priority = 10
7698};
7699
7babe8db 7700static int __init migration_init(void)
1da177e4
LT
7701{
7702 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7703 int err;
48f24c4d
IM
7704
7705 /* Start one for the boot CPU: */
07dccf33
AM
7706 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7707 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7708 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7709 register_cpu_notifier(&migration_notifier);
7babe8db 7710
a004cd42 7711 return 0;
1da177e4 7712}
7babe8db 7713early_initcall(migration_init);
1da177e4
LT
7714#endif
7715
7716#ifdef CONFIG_SMP
476f3534 7717
3e9830dc 7718#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7719
7c16ec58 7720static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7721 struct cpumask *groupmask)
1da177e4 7722{
4dcf6aff 7723 struct sched_group *group = sd->groups;
434d53b0 7724 char str[256];
1da177e4 7725
968ea6d8 7726 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7727 cpumask_clear(groupmask);
4dcf6aff
IM
7728
7729 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7730
7731 if (!(sd->flags & SD_LOAD_BALANCE)) {
7732 printk("does not load-balance\n");
7733 if (sd->parent)
7734 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7735 " has parent");
7736 return -1;
41c7ce9a
NP
7737 }
7738
eefd796a 7739 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7740
758b2cdc 7741 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7742 printk(KERN_ERR "ERROR: domain->span does not contain "
7743 "CPU%d\n", cpu);
7744 }
758b2cdc 7745 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7746 printk(KERN_ERR "ERROR: domain->groups does not contain"
7747 " CPU%d\n", cpu);
7748 }
1da177e4 7749
4dcf6aff 7750 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7751 do {
4dcf6aff
IM
7752 if (!group) {
7753 printk("\n");
7754 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7755 break;
7756 }
7757
18a3885f 7758 if (!group->cpu_power) {
4dcf6aff
IM
7759 printk(KERN_CONT "\n");
7760 printk(KERN_ERR "ERROR: domain->cpu_power not "
7761 "set\n");
7762 break;
7763 }
1da177e4 7764
758b2cdc 7765 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7766 printk(KERN_CONT "\n");
7767 printk(KERN_ERR "ERROR: empty group\n");
7768 break;
7769 }
1da177e4 7770
758b2cdc 7771 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7772 printk(KERN_CONT "\n");
7773 printk(KERN_ERR "ERROR: repeated CPUs\n");
7774 break;
7775 }
1da177e4 7776
758b2cdc 7777 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7778
968ea6d8 7779 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7780
7781 printk(KERN_CONT " %s", str);
18a3885f
PZ
7782 if (group->cpu_power != SCHED_LOAD_SCALE) {
7783 printk(KERN_CONT " (cpu_power = %d)",
7784 group->cpu_power);
381512cf 7785 }
1da177e4 7786
4dcf6aff
IM
7787 group = group->next;
7788 } while (group != sd->groups);
7789 printk(KERN_CONT "\n");
1da177e4 7790
758b2cdc 7791 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7792 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7793
758b2cdc
RR
7794 if (sd->parent &&
7795 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7796 printk(KERN_ERR "ERROR: parent span is not a superset "
7797 "of domain->span\n");
7798 return 0;
7799}
1da177e4 7800
4dcf6aff
IM
7801static void sched_domain_debug(struct sched_domain *sd, int cpu)
7802{
d5dd3db1 7803 cpumask_var_t groupmask;
4dcf6aff 7804 int level = 0;
1da177e4 7805
4dcf6aff
IM
7806 if (!sd) {
7807 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7808 return;
7809 }
1da177e4 7810
4dcf6aff
IM
7811 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7812
d5dd3db1 7813 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7814 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7815 return;
7816 }
7817
4dcf6aff 7818 for (;;) {
7c16ec58 7819 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7820 break;
1da177e4
LT
7821 level++;
7822 sd = sd->parent;
33859f7f 7823 if (!sd)
4dcf6aff
IM
7824 break;
7825 }
d5dd3db1 7826 free_cpumask_var(groupmask);
1da177e4 7827}
6d6bc0ad 7828#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7829# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7830#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7831
1a20ff27 7832static int sd_degenerate(struct sched_domain *sd)
245af2c7 7833{
758b2cdc 7834 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7835 return 1;
7836
7837 /* Following flags need at least 2 groups */
7838 if (sd->flags & (SD_LOAD_BALANCE |
7839 SD_BALANCE_NEWIDLE |
7840 SD_BALANCE_FORK |
89c4710e
SS
7841 SD_BALANCE_EXEC |
7842 SD_SHARE_CPUPOWER |
7843 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7844 if (sd->groups != sd->groups->next)
7845 return 0;
7846 }
7847
7848 /* Following flags don't use groups */
c88d5910 7849 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7850 return 0;
7851
7852 return 1;
7853}
7854
48f24c4d
IM
7855static int
7856sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7857{
7858 unsigned long cflags = sd->flags, pflags = parent->flags;
7859
7860 if (sd_degenerate(parent))
7861 return 1;
7862
758b2cdc 7863 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7864 return 0;
7865
245af2c7
SS
7866 /* Flags needing groups don't count if only 1 group in parent */
7867 if (parent->groups == parent->groups->next) {
7868 pflags &= ~(SD_LOAD_BALANCE |
7869 SD_BALANCE_NEWIDLE |
7870 SD_BALANCE_FORK |
89c4710e
SS
7871 SD_BALANCE_EXEC |
7872 SD_SHARE_CPUPOWER |
7873 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7874 if (nr_node_ids == 1)
7875 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7876 }
7877 if (~cflags & pflags)
7878 return 0;
7879
7880 return 1;
7881}
7882
c6c4927b
RR
7883static void free_rootdomain(struct root_domain *rd)
7884{
68e74568
RR
7885 cpupri_cleanup(&rd->cpupri);
7886
c6c4927b
RR
7887 free_cpumask_var(rd->rto_mask);
7888 free_cpumask_var(rd->online);
7889 free_cpumask_var(rd->span);
7890 kfree(rd);
7891}
7892
57d885fe
GH
7893static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7894{
a0490fa3 7895 struct root_domain *old_rd = NULL;
57d885fe 7896 unsigned long flags;
57d885fe
GH
7897
7898 spin_lock_irqsave(&rq->lock, flags);
7899
7900 if (rq->rd) {
a0490fa3 7901 old_rd = rq->rd;
57d885fe 7902
c6c4927b 7903 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7904 set_rq_offline(rq);
57d885fe 7905
c6c4927b 7906 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7907
a0490fa3
IM
7908 /*
7909 * If we dont want to free the old_rt yet then
7910 * set old_rd to NULL to skip the freeing later
7911 * in this function:
7912 */
7913 if (!atomic_dec_and_test(&old_rd->refcount))
7914 old_rd = NULL;
57d885fe
GH
7915 }
7916
7917 atomic_inc(&rd->refcount);
7918 rq->rd = rd;
7919
c6c4927b 7920 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7921 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7922 set_rq_online(rq);
57d885fe
GH
7923
7924 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7925
7926 if (old_rd)
7927 free_rootdomain(old_rd);
57d885fe
GH
7928}
7929
fd5e1b5d 7930static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7931{
36b7b6d4
PE
7932 gfp_t gfp = GFP_KERNEL;
7933
57d885fe
GH
7934 memset(rd, 0, sizeof(*rd));
7935
36b7b6d4
PE
7936 if (bootmem)
7937 gfp = GFP_NOWAIT;
c6c4927b 7938
36b7b6d4 7939 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7940 goto out;
36b7b6d4 7941 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7942 goto free_span;
36b7b6d4 7943 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7944 goto free_online;
6e0534f2 7945
0fb53029 7946 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7947 goto free_rto_mask;
c6c4927b 7948 return 0;
6e0534f2 7949
68e74568
RR
7950free_rto_mask:
7951 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7952free_online:
7953 free_cpumask_var(rd->online);
7954free_span:
7955 free_cpumask_var(rd->span);
0c910d28 7956out:
c6c4927b 7957 return -ENOMEM;
57d885fe
GH
7958}
7959
7960static void init_defrootdomain(void)
7961{
c6c4927b
RR
7962 init_rootdomain(&def_root_domain, true);
7963
57d885fe
GH
7964 atomic_set(&def_root_domain.refcount, 1);
7965}
7966
dc938520 7967static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7968{
7969 struct root_domain *rd;
7970
7971 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7972 if (!rd)
7973 return NULL;
7974
c6c4927b
RR
7975 if (init_rootdomain(rd, false) != 0) {
7976 kfree(rd);
7977 return NULL;
7978 }
57d885fe
GH
7979
7980 return rd;
7981}
7982
1da177e4 7983/*
0eab9146 7984 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7985 * hold the hotplug lock.
7986 */
0eab9146
IM
7987static void
7988cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7989{
70b97a7f 7990 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7991 struct sched_domain *tmp;
7992
7993 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7994 for (tmp = sd; tmp; ) {
245af2c7
SS
7995 struct sched_domain *parent = tmp->parent;
7996 if (!parent)
7997 break;
f29c9b1c 7998
1a848870 7999 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8000 tmp->parent = parent->parent;
1a848870
SS
8001 if (parent->parent)
8002 parent->parent->child = tmp;
f29c9b1c
LZ
8003 } else
8004 tmp = tmp->parent;
245af2c7
SS
8005 }
8006
1a848870 8007 if (sd && sd_degenerate(sd)) {
245af2c7 8008 sd = sd->parent;
1a848870
SS
8009 if (sd)
8010 sd->child = NULL;
8011 }
1da177e4
LT
8012
8013 sched_domain_debug(sd, cpu);
8014
57d885fe 8015 rq_attach_root(rq, rd);
674311d5 8016 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8017}
8018
8019/* cpus with isolated domains */
dcc30a35 8020static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8021
8022/* Setup the mask of cpus configured for isolated domains */
8023static int __init isolated_cpu_setup(char *str)
8024{
968ea6d8 8025 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8026 return 1;
8027}
8028
8927f494 8029__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8030
8031/*
6711cab4
SS
8032 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8033 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8034 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8035 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8036 *
8037 * init_sched_build_groups will build a circular linked list of the groups
8038 * covered by the given span, and will set each group's ->cpumask correctly,
8039 * and ->cpu_power to 0.
8040 */
a616058b 8041static void
96f874e2
RR
8042init_sched_build_groups(const struct cpumask *span,
8043 const struct cpumask *cpu_map,
8044 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8045 struct sched_group **sg,
96f874e2
RR
8046 struct cpumask *tmpmask),
8047 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8048{
8049 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8050 int i;
8051
96f874e2 8052 cpumask_clear(covered);
7c16ec58 8053
abcd083a 8054 for_each_cpu(i, span) {
6711cab4 8055 struct sched_group *sg;
7c16ec58 8056 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8057 int j;
8058
758b2cdc 8059 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8060 continue;
8061
758b2cdc 8062 cpumask_clear(sched_group_cpus(sg));
18a3885f 8063 sg->cpu_power = 0;
1da177e4 8064
abcd083a 8065 for_each_cpu(j, span) {
7c16ec58 8066 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8067 continue;
8068
96f874e2 8069 cpumask_set_cpu(j, covered);
758b2cdc 8070 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8071 }
8072 if (!first)
8073 first = sg;
8074 if (last)
8075 last->next = sg;
8076 last = sg;
8077 }
8078 last->next = first;
8079}
8080
9c1cfda2 8081#define SD_NODES_PER_DOMAIN 16
1da177e4 8082
9c1cfda2 8083#ifdef CONFIG_NUMA
198e2f18 8084
9c1cfda2
JH
8085/**
8086 * find_next_best_node - find the next node to include in a sched_domain
8087 * @node: node whose sched_domain we're building
8088 * @used_nodes: nodes already in the sched_domain
8089 *
41a2d6cf 8090 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8091 * finds the closest node not already in the @used_nodes map.
8092 *
8093 * Should use nodemask_t.
8094 */
c5f59f08 8095static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8096{
8097 int i, n, val, min_val, best_node = 0;
8098
8099 min_val = INT_MAX;
8100
076ac2af 8101 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8102 /* Start at @node */
076ac2af 8103 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8104
8105 if (!nr_cpus_node(n))
8106 continue;
8107
8108 /* Skip already used nodes */
c5f59f08 8109 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8110 continue;
8111
8112 /* Simple min distance search */
8113 val = node_distance(node, n);
8114
8115 if (val < min_val) {
8116 min_val = val;
8117 best_node = n;
8118 }
8119 }
8120
c5f59f08 8121 node_set(best_node, *used_nodes);
9c1cfda2
JH
8122 return best_node;
8123}
8124
8125/**
8126 * sched_domain_node_span - get a cpumask for a node's sched_domain
8127 * @node: node whose cpumask we're constructing
73486722 8128 * @span: resulting cpumask
9c1cfda2 8129 *
41a2d6cf 8130 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8131 * should be one that prevents unnecessary balancing, but also spreads tasks
8132 * out optimally.
8133 */
96f874e2 8134static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8135{
c5f59f08 8136 nodemask_t used_nodes;
48f24c4d 8137 int i;
9c1cfda2 8138
6ca09dfc 8139 cpumask_clear(span);
c5f59f08 8140 nodes_clear(used_nodes);
9c1cfda2 8141
6ca09dfc 8142 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8143 node_set(node, used_nodes);
9c1cfda2
JH
8144
8145 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8146 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8147
6ca09dfc 8148 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8149 }
9c1cfda2 8150}
6d6bc0ad 8151#endif /* CONFIG_NUMA */
9c1cfda2 8152
5c45bf27 8153int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8154
6c99e9ad
RR
8155/*
8156 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8157 *
8158 * ( See the the comments in include/linux/sched.h:struct sched_group
8159 * and struct sched_domain. )
6c99e9ad
RR
8160 */
8161struct static_sched_group {
8162 struct sched_group sg;
8163 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8164};
8165
8166struct static_sched_domain {
8167 struct sched_domain sd;
8168 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8169};
8170
49a02c51
AH
8171struct s_data {
8172#ifdef CONFIG_NUMA
8173 int sd_allnodes;
8174 cpumask_var_t domainspan;
8175 cpumask_var_t covered;
8176 cpumask_var_t notcovered;
8177#endif
8178 cpumask_var_t nodemask;
8179 cpumask_var_t this_sibling_map;
8180 cpumask_var_t this_core_map;
8181 cpumask_var_t send_covered;
8182 cpumask_var_t tmpmask;
8183 struct sched_group **sched_group_nodes;
8184 struct root_domain *rd;
8185};
8186
2109b99e
AH
8187enum s_alloc {
8188 sa_sched_groups = 0,
8189 sa_rootdomain,
8190 sa_tmpmask,
8191 sa_send_covered,
8192 sa_this_core_map,
8193 sa_this_sibling_map,
8194 sa_nodemask,
8195 sa_sched_group_nodes,
8196#ifdef CONFIG_NUMA
8197 sa_notcovered,
8198 sa_covered,
8199 sa_domainspan,
8200#endif
8201 sa_none,
8202};
8203
9c1cfda2 8204/*
48f24c4d 8205 * SMT sched-domains:
9c1cfda2 8206 */
1da177e4 8207#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8208static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8209static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8210
41a2d6cf 8211static int
96f874e2
RR
8212cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8213 struct sched_group **sg, struct cpumask *unused)
1da177e4 8214{
6711cab4 8215 if (sg)
6c99e9ad 8216 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8217 return cpu;
8218}
6d6bc0ad 8219#endif /* CONFIG_SCHED_SMT */
1da177e4 8220
48f24c4d
IM
8221/*
8222 * multi-core sched-domains:
8223 */
1e9f28fa 8224#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8225static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8226static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8227#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8228
8229#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8230static int
96f874e2
RR
8231cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8232 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8233{
6711cab4 8234 int group;
7c16ec58 8235
c69fc56d 8236 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8237 group = cpumask_first(mask);
6711cab4 8238 if (sg)
6c99e9ad 8239 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8240 return group;
1e9f28fa
SS
8241}
8242#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8243static int
96f874e2
RR
8244cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8245 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8246{
6711cab4 8247 if (sg)
6c99e9ad 8248 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8249 return cpu;
8250}
8251#endif
8252
6c99e9ad
RR
8253static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8254static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8255
41a2d6cf 8256static int
96f874e2
RR
8257cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8258 struct sched_group **sg, struct cpumask *mask)
1da177e4 8259{
6711cab4 8260 int group;
48f24c4d 8261#ifdef CONFIG_SCHED_MC
6ca09dfc 8262 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8263 group = cpumask_first(mask);
1e9f28fa 8264#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8265 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8266 group = cpumask_first(mask);
1da177e4 8267#else
6711cab4 8268 group = cpu;
1da177e4 8269#endif
6711cab4 8270 if (sg)
6c99e9ad 8271 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8272 return group;
1da177e4
LT
8273}
8274
8275#ifdef CONFIG_NUMA
1da177e4 8276/*
9c1cfda2
JH
8277 * The init_sched_build_groups can't handle what we want to do with node
8278 * groups, so roll our own. Now each node has its own list of groups which
8279 * gets dynamically allocated.
1da177e4 8280 */
62ea9ceb 8281static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8282static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8283
62ea9ceb 8284static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8285static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8286
96f874e2
RR
8287static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8288 struct sched_group **sg,
8289 struct cpumask *nodemask)
9c1cfda2 8290{
6711cab4
SS
8291 int group;
8292
6ca09dfc 8293 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8294 group = cpumask_first(nodemask);
6711cab4
SS
8295
8296 if (sg)
6c99e9ad 8297 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8298 return group;
1da177e4 8299}
6711cab4 8300
08069033
SS
8301static void init_numa_sched_groups_power(struct sched_group *group_head)
8302{
8303 struct sched_group *sg = group_head;
8304 int j;
8305
8306 if (!sg)
8307 return;
3a5c359a 8308 do {
758b2cdc 8309 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8310 struct sched_domain *sd;
08069033 8311
6c99e9ad 8312 sd = &per_cpu(phys_domains, j).sd;
13318a71 8313 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8314 /*
8315 * Only add "power" once for each
8316 * physical package.
8317 */
8318 continue;
8319 }
08069033 8320
18a3885f 8321 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8322 }
8323 sg = sg->next;
8324 } while (sg != group_head);
08069033 8325}
0601a88d
AH
8326
8327static int build_numa_sched_groups(struct s_data *d,
8328 const struct cpumask *cpu_map, int num)
8329{
8330 struct sched_domain *sd;
8331 struct sched_group *sg, *prev;
8332 int n, j;
8333
8334 cpumask_clear(d->covered);
8335 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8336 if (cpumask_empty(d->nodemask)) {
8337 d->sched_group_nodes[num] = NULL;
8338 goto out;
8339 }
8340
8341 sched_domain_node_span(num, d->domainspan);
8342 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8343
8344 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8345 GFP_KERNEL, num);
8346 if (!sg) {
8347 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8348 num);
8349 return -ENOMEM;
8350 }
8351 d->sched_group_nodes[num] = sg;
8352
8353 for_each_cpu(j, d->nodemask) {
8354 sd = &per_cpu(node_domains, j).sd;
8355 sd->groups = sg;
8356 }
8357
18a3885f 8358 sg->cpu_power = 0;
0601a88d
AH
8359 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8360 sg->next = sg;
8361 cpumask_or(d->covered, d->covered, d->nodemask);
8362
8363 prev = sg;
8364 for (j = 0; j < nr_node_ids; j++) {
8365 n = (num + j) % nr_node_ids;
8366 cpumask_complement(d->notcovered, d->covered);
8367 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8368 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8369 if (cpumask_empty(d->tmpmask))
8370 break;
8371 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8372 if (cpumask_empty(d->tmpmask))
8373 continue;
8374 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8375 GFP_KERNEL, num);
8376 if (!sg) {
8377 printk(KERN_WARNING
8378 "Can not alloc domain group for node %d\n", j);
8379 return -ENOMEM;
8380 }
18a3885f 8381 sg->cpu_power = 0;
0601a88d
AH
8382 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8383 sg->next = prev->next;
8384 cpumask_or(d->covered, d->covered, d->tmpmask);
8385 prev->next = sg;
8386 prev = sg;
8387 }
8388out:
8389 return 0;
8390}
6d6bc0ad 8391#endif /* CONFIG_NUMA */
1da177e4 8392
a616058b 8393#ifdef CONFIG_NUMA
51888ca2 8394/* Free memory allocated for various sched_group structures */
96f874e2
RR
8395static void free_sched_groups(const struct cpumask *cpu_map,
8396 struct cpumask *nodemask)
51888ca2 8397{
a616058b 8398 int cpu, i;
51888ca2 8399
abcd083a 8400 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8401 struct sched_group **sched_group_nodes
8402 = sched_group_nodes_bycpu[cpu];
8403
51888ca2
SV
8404 if (!sched_group_nodes)
8405 continue;
8406
076ac2af 8407 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8408 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8409
6ca09dfc 8410 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8411 if (cpumask_empty(nodemask))
51888ca2
SV
8412 continue;
8413
8414 if (sg == NULL)
8415 continue;
8416 sg = sg->next;
8417next_sg:
8418 oldsg = sg;
8419 sg = sg->next;
8420 kfree(oldsg);
8421 if (oldsg != sched_group_nodes[i])
8422 goto next_sg;
8423 }
8424 kfree(sched_group_nodes);
8425 sched_group_nodes_bycpu[cpu] = NULL;
8426 }
51888ca2 8427}
6d6bc0ad 8428#else /* !CONFIG_NUMA */
96f874e2
RR
8429static void free_sched_groups(const struct cpumask *cpu_map,
8430 struct cpumask *nodemask)
a616058b
SS
8431{
8432}
6d6bc0ad 8433#endif /* CONFIG_NUMA */
51888ca2 8434
89c4710e
SS
8435/*
8436 * Initialize sched groups cpu_power.
8437 *
8438 * cpu_power indicates the capacity of sched group, which is used while
8439 * distributing the load between different sched groups in a sched domain.
8440 * Typically cpu_power for all the groups in a sched domain will be same unless
8441 * there are asymmetries in the topology. If there are asymmetries, group
8442 * having more cpu_power will pickup more load compared to the group having
8443 * less cpu_power.
89c4710e
SS
8444 */
8445static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8446{
8447 struct sched_domain *child;
8448 struct sched_group *group;
f93e65c1
PZ
8449 long power;
8450 int weight;
89c4710e
SS
8451
8452 WARN_ON(!sd || !sd->groups);
8453
13318a71 8454 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8455 return;
8456
8457 child = sd->child;
8458
18a3885f 8459 sd->groups->cpu_power = 0;
5517d86b 8460
f93e65c1
PZ
8461 if (!child) {
8462 power = SCHED_LOAD_SCALE;
8463 weight = cpumask_weight(sched_domain_span(sd));
8464 /*
8465 * SMT siblings share the power of a single core.
a52bfd73
PZ
8466 * Usually multiple threads get a better yield out of
8467 * that one core than a single thread would have,
8468 * reflect that in sd->smt_gain.
f93e65c1 8469 */
a52bfd73
PZ
8470 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8471 power *= sd->smt_gain;
f93e65c1 8472 power /= weight;
a52bfd73
PZ
8473 power >>= SCHED_LOAD_SHIFT;
8474 }
18a3885f 8475 sd->groups->cpu_power += power;
89c4710e
SS
8476 return;
8477 }
8478
89c4710e 8479 /*
f93e65c1 8480 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8481 */
8482 group = child->groups;
8483 do {
18a3885f 8484 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8485 group = group->next;
8486 } while (group != child->groups);
8487}
8488
7c16ec58
MT
8489/*
8490 * Initializers for schedule domains
8491 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8492 */
8493
a5d8c348
IM
8494#ifdef CONFIG_SCHED_DEBUG
8495# define SD_INIT_NAME(sd, type) sd->name = #type
8496#else
8497# define SD_INIT_NAME(sd, type) do { } while (0)
8498#endif
8499
7c16ec58 8500#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8501
7c16ec58
MT
8502#define SD_INIT_FUNC(type) \
8503static noinline void sd_init_##type(struct sched_domain *sd) \
8504{ \
8505 memset(sd, 0, sizeof(*sd)); \
8506 *sd = SD_##type##_INIT; \
1d3504fc 8507 sd->level = SD_LV_##type; \
a5d8c348 8508 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8509}
8510
8511SD_INIT_FUNC(CPU)
8512#ifdef CONFIG_NUMA
8513 SD_INIT_FUNC(ALLNODES)
8514 SD_INIT_FUNC(NODE)
8515#endif
8516#ifdef CONFIG_SCHED_SMT
8517 SD_INIT_FUNC(SIBLING)
8518#endif
8519#ifdef CONFIG_SCHED_MC
8520 SD_INIT_FUNC(MC)
8521#endif
8522
1d3504fc
HS
8523static int default_relax_domain_level = -1;
8524
8525static int __init setup_relax_domain_level(char *str)
8526{
30e0e178
LZ
8527 unsigned long val;
8528
8529 val = simple_strtoul(str, NULL, 0);
8530 if (val < SD_LV_MAX)
8531 default_relax_domain_level = val;
8532
1d3504fc
HS
8533 return 1;
8534}
8535__setup("relax_domain_level=", setup_relax_domain_level);
8536
8537static void set_domain_attribute(struct sched_domain *sd,
8538 struct sched_domain_attr *attr)
8539{
8540 int request;
8541
8542 if (!attr || attr->relax_domain_level < 0) {
8543 if (default_relax_domain_level < 0)
8544 return;
8545 else
8546 request = default_relax_domain_level;
8547 } else
8548 request = attr->relax_domain_level;
8549 if (request < sd->level) {
8550 /* turn off idle balance on this domain */
c88d5910 8551 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8552 } else {
8553 /* turn on idle balance on this domain */
c88d5910 8554 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8555 }
8556}
8557
2109b99e
AH
8558static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8559 const struct cpumask *cpu_map)
8560{
8561 switch (what) {
8562 case sa_sched_groups:
8563 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8564 d->sched_group_nodes = NULL;
8565 case sa_rootdomain:
8566 free_rootdomain(d->rd); /* fall through */
8567 case sa_tmpmask:
8568 free_cpumask_var(d->tmpmask); /* fall through */
8569 case sa_send_covered:
8570 free_cpumask_var(d->send_covered); /* fall through */
8571 case sa_this_core_map:
8572 free_cpumask_var(d->this_core_map); /* fall through */
8573 case sa_this_sibling_map:
8574 free_cpumask_var(d->this_sibling_map); /* fall through */
8575 case sa_nodemask:
8576 free_cpumask_var(d->nodemask); /* fall through */
8577 case sa_sched_group_nodes:
d1b55138 8578#ifdef CONFIG_NUMA
2109b99e
AH
8579 kfree(d->sched_group_nodes); /* fall through */
8580 case sa_notcovered:
8581 free_cpumask_var(d->notcovered); /* fall through */
8582 case sa_covered:
8583 free_cpumask_var(d->covered); /* fall through */
8584 case sa_domainspan:
8585 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8586#endif
2109b99e
AH
8587 case sa_none:
8588 break;
8589 }
8590}
3404c8d9 8591
2109b99e
AH
8592static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8593 const struct cpumask *cpu_map)
8594{
3404c8d9 8595#ifdef CONFIG_NUMA
2109b99e
AH
8596 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8597 return sa_none;
8598 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8599 return sa_domainspan;
8600 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8601 return sa_covered;
8602 /* Allocate the per-node list of sched groups */
8603 d->sched_group_nodes = kcalloc(nr_node_ids,
8604 sizeof(struct sched_group *), GFP_KERNEL);
8605 if (!d->sched_group_nodes) {
d1b55138 8606 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8607 return sa_notcovered;
d1b55138 8608 }
2109b99e 8609 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8610#endif
2109b99e
AH
8611 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8612 return sa_sched_group_nodes;
8613 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8614 return sa_nodemask;
8615 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8616 return sa_this_sibling_map;
8617 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8618 return sa_this_core_map;
8619 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8620 return sa_send_covered;
8621 d->rd = alloc_rootdomain();
8622 if (!d->rd) {
57d885fe 8623 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8624 return sa_tmpmask;
57d885fe 8625 }
2109b99e
AH
8626 return sa_rootdomain;
8627}
57d885fe 8628
7f4588f3
AH
8629static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8630 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8631{
8632 struct sched_domain *sd = NULL;
7c16ec58 8633#ifdef CONFIG_NUMA
7f4588f3 8634 struct sched_domain *parent;
1da177e4 8635
7f4588f3
AH
8636 d->sd_allnodes = 0;
8637 if (cpumask_weight(cpu_map) >
8638 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8639 sd = &per_cpu(allnodes_domains, i).sd;
8640 SD_INIT(sd, ALLNODES);
1d3504fc 8641 set_domain_attribute(sd, attr);
7f4588f3
AH
8642 cpumask_copy(sched_domain_span(sd), cpu_map);
8643 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8644 d->sd_allnodes = 1;
8645 }
8646 parent = sd;
8647
8648 sd = &per_cpu(node_domains, i).sd;
8649 SD_INIT(sd, NODE);
8650 set_domain_attribute(sd, attr);
8651 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8652 sd->parent = parent;
8653 if (parent)
8654 parent->child = sd;
8655 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8656#endif
7f4588f3
AH
8657 return sd;
8658}
1da177e4 8659
87cce662
AH
8660static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8661 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8662 struct sched_domain *parent, int i)
8663{
8664 struct sched_domain *sd;
8665 sd = &per_cpu(phys_domains, i).sd;
8666 SD_INIT(sd, CPU);
8667 set_domain_attribute(sd, attr);
8668 cpumask_copy(sched_domain_span(sd), d->nodemask);
8669 sd->parent = parent;
8670 if (parent)
8671 parent->child = sd;
8672 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8673 return sd;
8674}
1da177e4 8675
410c4081
AH
8676static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8677 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8678 struct sched_domain *parent, int i)
8679{
8680 struct sched_domain *sd = parent;
1e9f28fa 8681#ifdef CONFIG_SCHED_MC
410c4081
AH
8682 sd = &per_cpu(core_domains, i).sd;
8683 SD_INIT(sd, MC);
8684 set_domain_attribute(sd, attr);
8685 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8686 sd->parent = parent;
8687 parent->child = sd;
8688 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8689#endif
410c4081
AH
8690 return sd;
8691}
1e9f28fa 8692
d8173535
AH
8693static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8694 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8695 struct sched_domain *parent, int i)
8696{
8697 struct sched_domain *sd = parent;
1da177e4 8698#ifdef CONFIG_SCHED_SMT
d8173535
AH
8699 sd = &per_cpu(cpu_domains, i).sd;
8700 SD_INIT(sd, SIBLING);
8701 set_domain_attribute(sd, attr);
8702 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8703 sd->parent = parent;
8704 parent->child = sd;
8705 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8706#endif
d8173535
AH
8707 return sd;
8708}
1da177e4 8709
0e8e85c9
AH
8710static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8711 const struct cpumask *cpu_map, int cpu)
8712{
8713 switch (l) {
1da177e4 8714#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8715 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8716 cpumask_and(d->this_sibling_map, cpu_map,
8717 topology_thread_cpumask(cpu));
8718 if (cpu == cpumask_first(d->this_sibling_map))
8719 init_sched_build_groups(d->this_sibling_map, cpu_map,
8720 &cpu_to_cpu_group,
8721 d->send_covered, d->tmpmask);
8722 break;
1da177e4 8723#endif
1e9f28fa 8724#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8725 case SD_LV_MC: /* set up multi-core groups */
8726 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8727 if (cpu == cpumask_first(d->this_core_map))
8728 init_sched_build_groups(d->this_core_map, cpu_map,
8729 &cpu_to_core_group,
8730 d->send_covered, d->tmpmask);
8731 break;
1e9f28fa 8732#endif
86548096
AH
8733 case SD_LV_CPU: /* set up physical groups */
8734 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8735 if (!cpumask_empty(d->nodemask))
8736 init_sched_build_groups(d->nodemask, cpu_map,
8737 &cpu_to_phys_group,
8738 d->send_covered, d->tmpmask);
8739 break;
1da177e4 8740#ifdef CONFIG_NUMA
de616e36
AH
8741 case SD_LV_ALLNODES:
8742 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8743 d->send_covered, d->tmpmask);
8744 break;
8745#endif
0e8e85c9
AH
8746 default:
8747 break;
7c16ec58 8748 }
0e8e85c9 8749}
9c1cfda2 8750
2109b99e
AH
8751/*
8752 * Build sched domains for a given set of cpus and attach the sched domains
8753 * to the individual cpus
8754 */
8755static int __build_sched_domains(const struct cpumask *cpu_map,
8756 struct sched_domain_attr *attr)
8757{
8758 enum s_alloc alloc_state = sa_none;
8759 struct s_data d;
294b0c96 8760 struct sched_domain *sd;
2109b99e 8761 int i;
7c16ec58 8762#ifdef CONFIG_NUMA
2109b99e 8763 d.sd_allnodes = 0;
7c16ec58 8764#endif
9c1cfda2 8765
2109b99e
AH
8766 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8767 if (alloc_state != sa_rootdomain)
8768 goto error;
8769 alloc_state = sa_sched_groups;
9c1cfda2 8770
1da177e4 8771 /*
1a20ff27 8772 * Set up domains for cpus specified by the cpu_map.
1da177e4 8773 */
abcd083a 8774 for_each_cpu(i, cpu_map) {
49a02c51
AH
8775 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8776 cpu_map);
9761eea8 8777
7f4588f3 8778 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8779 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8780 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8781 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8782 }
9c1cfda2 8783
abcd083a 8784 for_each_cpu(i, cpu_map) {
0e8e85c9 8785 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8786 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8787 }
9c1cfda2 8788
1da177e4 8789 /* Set up physical groups */
86548096
AH
8790 for (i = 0; i < nr_node_ids; i++)
8791 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8792
1da177e4
LT
8793#ifdef CONFIG_NUMA
8794 /* Set up node groups */
de616e36
AH
8795 if (d.sd_allnodes)
8796 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8797
0601a88d
AH
8798 for (i = 0; i < nr_node_ids; i++)
8799 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8800 goto error;
1da177e4
LT
8801#endif
8802
8803 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8804#ifdef CONFIG_SCHED_SMT
abcd083a 8805 for_each_cpu(i, cpu_map) {
294b0c96 8806 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8807 init_sched_groups_power(i, sd);
5c45bf27 8808 }
1da177e4 8809#endif
1e9f28fa 8810#ifdef CONFIG_SCHED_MC
abcd083a 8811 for_each_cpu(i, cpu_map) {
294b0c96 8812 sd = &per_cpu(core_domains, i).sd;
89c4710e 8813 init_sched_groups_power(i, sd);
5c45bf27
SS
8814 }
8815#endif
1e9f28fa 8816
abcd083a 8817 for_each_cpu(i, cpu_map) {
294b0c96 8818 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8819 init_sched_groups_power(i, sd);
1da177e4
LT
8820 }
8821
9c1cfda2 8822#ifdef CONFIG_NUMA
076ac2af 8823 for (i = 0; i < nr_node_ids; i++)
49a02c51 8824 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8825
49a02c51 8826 if (d.sd_allnodes) {
6711cab4 8827 struct sched_group *sg;
f712c0c7 8828
96f874e2 8829 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8830 d.tmpmask);
f712c0c7
SS
8831 init_numa_sched_groups_power(sg);
8832 }
9c1cfda2
JH
8833#endif
8834
1da177e4 8835 /* Attach the domains */
abcd083a 8836 for_each_cpu(i, cpu_map) {
1da177e4 8837#ifdef CONFIG_SCHED_SMT
6c99e9ad 8838 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8839#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8840 sd = &per_cpu(core_domains, i).sd;
1da177e4 8841#else
6c99e9ad 8842 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8843#endif
49a02c51 8844 cpu_attach_domain(sd, d.rd, i);
1da177e4 8845 }
51888ca2 8846
2109b99e
AH
8847 d.sched_group_nodes = NULL; /* don't free this we still need it */
8848 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8849 return 0;
51888ca2 8850
51888ca2 8851error:
2109b99e
AH
8852 __free_domain_allocs(&d, alloc_state, cpu_map);
8853 return -ENOMEM;
1da177e4 8854}
029190c5 8855
96f874e2 8856static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8857{
8858 return __build_sched_domains(cpu_map, NULL);
8859}
8860
96f874e2 8861static struct cpumask *doms_cur; /* current sched domains */
029190c5 8862static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8863static struct sched_domain_attr *dattr_cur;
8864 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8865
8866/*
8867 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8868 * cpumask) fails, then fallback to a single sched domain,
8869 * as determined by the single cpumask fallback_doms.
029190c5 8870 */
4212823f 8871static cpumask_var_t fallback_doms;
029190c5 8872
ee79d1bd
HC
8873/*
8874 * arch_update_cpu_topology lets virtualized architectures update the
8875 * cpu core maps. It is supposed to return 1 if the topology changed
8876 * or 0 if it stayed the same.
8877 */
8878int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8879{
ee79d1bd 8880 return 0;
22e52b07
HC
8881}
8882
1a20ff27 8883/*
41a2d6cf 8884 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8885 * For now this just excludes isolated cpus, but could be used to
8886 * exclude other special cases in the future.
1a20ff27 8887 */
96f874e2 8888static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8889{
7378547f
MM
8890 int err;
8891
22e52b07 8892 arch_update_cpu_topology();
029190c5 8893 ndoms_cur = 1;
96f874e2 8894 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8895 if (!doms_cur)
4212823f 8896 doms_cur = fallback_doms;
dcc30a35 8897 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8898 dattr_cur = NULL;
7378547f 8899 err = build_sched_domains(doms_cur);
6382bc90 8900 register_sched_domain_sysctl();
7378547f
MM
8901
8902 return err;
1a20ff27
DG
8903}
8904
96f874e2
RR
8905static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8906 struct cpumask *tmpmask)
1da177e4 8907{
7c16ec58 8908 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8909}
1da177e4 8910
1a20ff27
DG
8911/*
8912 * Detach sched domains from a group of cpus specified in cpu_map
8913 * These cpus will now be attached to the NULL domain
8914 */
96f874e2 8915static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8916{
96f874e2
RR
8917 /* Save because hotplug lock held. */
8918 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8919 int i;
8920
abcd083a 8921 for_each_cpu(i, cpu_map)
57d885fe 8922 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8923 synchronize_sched();
96f874e2 8924 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8925}
8926
1d3504fc
HS
8927/* handle null as "default" */
8928static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8929 struct sched_domain_attr *new, int idx_new)
8930{
8931 struct sched_domain_attr tmp;
8932
8933 /* fast path */
8934 if (!new && !cur)
8935 return 1;
8936
8937 tmp = SD_ATTR_INIT;
8938 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8939 new ? (new + idx_new) : &tmp,
8940 sizeof(struct sched_domain_attr));
8941}
8942
029190c5
PJ
8943/*
8944 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8945 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8946 * doms_new[] to the current sched domain partitioning, doms_cur[].
8947 * It destroys each deleted domain and builds each new domain.
8948 *
96f874e2 8949 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8950 * The masks don't intersect (don't overlap.) We should setup one
8951 * sched domain for each mask. CPUs not in any of the cpumasks will
8952 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8953 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8954 * it as it is.
8955 *
41a2d6cf
IM
8956 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8957 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8958 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8959 * ndoms_new == 1, and partition_sched_domains() will fallback to
8960 * the single partition 'fallback_doms', it also forces the domains
8961 * to be rebuilt.
029190c5 8962 *
96f874e2 8963 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8964 * ndoms_new == 0 is a special case for destroying existing domains,
8965 * and it will not create the default domain.
dfb512ec 8966 *
029190c5
PJ
8967 * Call with hotplug lock held
8968 */
96f874e2
RR
8969/* FIXME: Change to struct cpumask *doms_new[] */
8970void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8971 struct sched_domain_attr *dattr_new)
029190c5 8972{
dfb512ec 8973 int i, j, n;
d65bd5ec 8974 int new_topology;
029190c5 8975
712555ee 8976 mutex_lock(&sched_domains_mutex);
a1835615 8977
7378547f
MM
8978 /* always unregister in case we don't destroy any domains */
8979 unregister_sched_domain_sysctl();
8980
d65bd5ec
HC
8981 /* Let architecture update cpu core mappings. */
8982 new_topology = arch_update_cpu_topology();
8983
dfb512ec 8984 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8985
8986 /* Destroy deleted domains */
8987 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8988 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8989 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8990 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8991 goto match1;
8992 }
8993 /* no match - a current sched domain not in new doms_new[] */
8994 detach_destroy_domains(doms_cur + i);
8995match1:
8996 ;
8997 }
8998
e761b772
MK
8999 if (doms_new == NULL) {
9000 ndoms_cur = 0;
4212823f 9001 doms_new = fallback_doms;
dcc30a35 9002 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9003 WARN_ON_ONCE(dattr_new);
e761b772
MK
9004 }
9005
029190c5
PJ
9006 /* Build new domains */
9007 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9008 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9009 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9010 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9011 goto match2;
9012 }
9013 /* no match - add a new doms_new */
1d3504fc
HS
9014 __build_sched_domains(doms_new + i,
9015 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9016match2:
9017 ;
9018 }
9019
9020 /* Remember the new sched domains */
4212823f 9021 if (doms_cur != fallback_doms)
029190c5 9022 kfree(doms_cur);
1d3504fc 9023 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9024 doms_cur = doms_new;
1d3504fc 9025 dattr_cur = dattr_new;
029190c5 9026 ndoms_cur = ndoms_new;
7378547f
MM
9027
9028 register_sched_domain_sysctl();
a1835615 9029
712555ee 9030 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9031}
9032
5c45bf27 9033#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9034static void arch_reinit_sched_domains(void)
5c45bf27 9035{
95402b38 9036 get_online_cpus();
dfb512ec
MK
9037
9038 /* Destroy domains first to force the rebuild */
9039 partition_sched_domains(0, NULL, NULL);
9040
e761b772 9041 rebuild_sched_domains();
95402b38 9042 put_online_cpus();
5c45bf27
SS
9043}
9044
9045static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9046{
afb8a9b7 9047 unsigned int level = 0;
5c45bf27 9048
afb8a9b7
GS
9049 if (sscanf(buf, "%u", &level) != 1)
9050 return -EINVAL;
9051
9052 /*
9053 * level is always be positive so don't check for
9054 * level < POWERSAVINGS_BALANCE_NONE which is 0
9055 * What happens on 0 or 1 byte write,
9056 * need to check for count as well?
9057 */
9058
9059 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9060 return -EINVAL;
9061
9062 if (smt)
afb8a9b7 9063 sched_smt_power_savings = level;
5c45bf27 9064 else
afb8a9b7 9065 sched_mc_power_savings = level;
5c45bf27 9066
c70f22d2 9067 arch_reinit_sched_domains();
5c45bf27 9068
c70f22d2 9069 return count;
5c45bf27
SS
9070}
9071
5c45bf27 9072#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9073static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9074 char *page)
5c45bf27
SS
9075{
9076 return sprintf(page, "%u\n", sched_mc_power_savings);
9077}
f718cd4a 9078static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9079 const char *buf, size_t count)
5c45bf27
SS
9080{
9081 return sched_power_savings_store(buf, count, 0);
9082}
f718cd4a
AK
9083static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9084 sched_mc_power_savings_show,
9085 sched_mc_power_savings_store);
5c45bf27
SS
9086#endif
9087
9088#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9089static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9090 char *page)
5c45bf27
SS
9091{
9092 return sprintf(page, "%u\n", sched_smt_power_savings);
9093}
f718cd4a 9094static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9095 const char *buf, size_t count)
5c45bf27
SS
9096{
9097 return sched_power_savings_store(buf, count, 1);
9098}
f718cd4a
AK
9099static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9100 sched_smt_power_savings_show,
6707de00
AB
9101 sched_smt_power_savings_store);
9102#endif
9103
39aac648 9104int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9105{
9106 int err = 0;
9107
9108#ifdef CONFIG_SCHED_SMT
9109 if (smt_capable())
9110 err = sysfs_create_file(&cls->kset.kobj,
9111 &attr_sched_smt_power_savings.attr);
9112#endif
9113#ifdef CONFIG_SCHED_MC
9114 if (!err && mc_capable())
9115 err = sysfs_create_file(&cls->kset.kobj,
9116 &attr_sched_mc_power_savings.attr);
9117#endif
9118 return err;
9119}
6d6bc0ad 9120#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9121
e761b772 9122#ifndef CONFIG_CPUSETS
1da177e4 9123/*
e761b772
MK
9124 * Add online and remove offline CPUs from the scheduler domains.
9125 * When cpusets are enabled they take over this function.
1da177e4
LT
9126 */
9127static int update_sched_domains(struct notifier_block *nfb,
9128 unsigned long action, void *hcpu)
e761b772
MK
9129{
9130 switch (action) {
9131 case CPU_ONLINE:
9132 case CPU_ONLINE_FROZEN:
9133 case CPU_DEAD:
9134 case CPU_DEAD_FROZEN:
dfb512ec 9135 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9136 return NOTIFY_OK;
9137
9138 default:
9139 return NOTIFY_DONE;
9140 }
9141}
9142#endif
9143
9144static int update_runtime(struct notifier_block *nfb,
9145 unsigned long action, void *hcpu)
1da177e4 9146{
7def2be1
PZ
9147 int cpu = (int)(long)hcpu;
9148
1da177e4 9149 switch (action) {
1da177e4 9150 case CPU_DOWN_PREPARE:
8bb78442 9151 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9152 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9153 return NOTIFY_OK;
9154
1da177e4 9155 case CPU_DOWN_FAILED:
8bb78442 9156 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9157 case CPU_ONLINE:
8bb78442 9158 case CPU_ONLINE_FROZEN:
7def2be1 9159 enable_runtime(cpu_rq(cpu));
e761b772
MK
9160 return NOTIFY_OK;
9161
1da177e4
LT
9162 default:
9163 return NOTIFY_DONE;
9164 }
1da177e4 9165}
1da177e4
LT
9166
9167void __init sched_init_smp(void)
9168{
dcc30a35
RR
9169 cpumask_var_t non_isolated_cpus;
9170
9171 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9172
434d53b0
MT
9173#if defined(CONFIG_NUMA)
9174 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9175 GFP_KERNEL);
9176 BUG_ON(sched_group_nodes_bycpu == NULL);
9177#endif
95402b38 9178 get_online_cpus();
712555ee 9179 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9180 arch_init_sched_domains(cpu_online_mask);
9181 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9182 if (cpumask_empty(non_isolated_cpus))
9183 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9184 mutex_unlock(&sched_domains_mutex);
95402b38 9185 put_online_cpus();
e761b772
MK
9186
9187#ifndef CONFIG_CPUSETS
1da177e4
LT
9188 /* XXX: Theoretical race here - CPU may be hotplugged now */
9189 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9190#endif
9191
9192 /* RT runtime code needs to handle some hotplug events */
9193 hotcpu_notifier(update_runtime, 0);
9194
b328ca18 9195 init_hrtick();
5c1e1767
NP
9196
9197 /* Move init over to a non-isolated CPU */
dcc30a35 9198 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9199 BUG();
19978ca6 9200 sched_init_granularity();
dcc30a35 9201 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9202
9203 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9204 init_sched_rt_class();
1da177e4
LT
9205}
9206#else
9207void __init sched_init_smp(void)
9208{
19978ca6 9209 sched_init_granularity();
1da177e4
LT
9210}
9211#endif /* CONFIG_SMP */
9212
cd1bb94b
AB
9213const_debug unsigned int sysctl_timer_migration = 1;
9214
1da177e4
LT
9215int in_sched_functions(unsigned long addr)
9216{
1da177e4
LT
9217 return in_lock_functions(addr) ||
9218 (addr >= (unsigned long)__sched_text_start
9219 && addr < (unsigned long)__sched_text_end);
9220}
9221
a9957449 9222static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9223{
9224 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9225 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9226#ifdef CONFIG_FAIR_GROUP_SCHED
9227 cfs_rq->rq = rq;
9228#endif
67e9fb2a 9229 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9230}
9231
fa85ae24
PZ
9232static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9233{
9234 struct rt_prio_array *array;
9235 int i;
9236
9237 array = &rt_rq->active;
9238 for (i = 0; i < MAX_RT_PRIO; i++) {
9239 INIT_LIST_HEAD(array->queue + i);
9240 __clear_bit(i, array->bitmap);
9241 }
9242 /* delimiter for bitsearch: */
9243 __set_bit(MAX_RT_PRIO, array->bitmap);
9244
052f1dc7 9245#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9246 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9247#ifdef CONFIG_SMP
e864c499 9248 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9249#endif
48d5e258 9250#endif
fa85ae24
PZ
9251#ifdef CONFIG_SMP
9252 rt_rq->rt_nr_migratory = 0;
fa85ae24 9253 rt_rq->overloaded = 0;
c20b08e3 9254 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9255#endif
9256
9257 rt_rq->rt_time = 0;
9258 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9259 rt_rq->rt_runtime = 0;
9260 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9261
052f1dc7 9262#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9263 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9264 rt_rq->rq = rq;
9265#endif
fa85ae24
PZ
9266}
9267
6f505b16 9268#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9269static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9270 struct sched_entity *se, int cpu, int add,
9271 struct sched_entity *parent)
6f505b16 9272{
ec7dc8ac 9273 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9274 tg->cfs_rq[cpu] = cfs_rq;
9275 init_cfs_rq(cfs_rq, rq);
9276 cfs_rq->tg = tg;
9277 if (add)
9278 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9279
9280 tg->se[cpu] = se;
354d60c2
DG
9281 /* se could be NULL for init_task_group */
9282 if (!se)
9283 return;
9284
ec7dc8ac
DG
9285 if (!parent)
9286 se->cfs_rq = &rq->cfs;
9287 else
9288 se->cfs_rq = parent->my_q;
9289
6f505b16
PZ
9290 se->my_q = cfs_rq;
9291 se->load.weight = tg->shares;
e05510d0 9292 se->load.inv_weight = 0;
ec7dc8ac 9293 se->parent = parent;
6f505b16 9294}
052f1dc7 9295#endif
6f505b16 9296
052f1dc7 9297#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9298static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9299 struct sched_rt_entity *rt_se, int cpu, int add,
9300 struct sched_rt_entity *parent)
6f505b16 9301{
ec7dc8ac
DG
9302 struct rq *rq = cpu_rq(cpu);
9303
6f505b16
PZ
9304 tg->rt_rq[cpu] = rt_rq;
9305 init_rt_rq(rt_rq, rq);
9306 rt_rq->tg = tg;
9307 rt_rq->rt_se = rt_se;
ac086bc2 9308 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9309 if (add)
9310 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9311
9312 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9313 if (!rt_se)
9314 return;
9315
ec7dc8ac
DG
9316 if (!parent)
9317 rt_se->rt_rq = &rq->rt;
9318 else
9319 rt_se->rt_rq = parent->my_q;
9320
6f505b16 9321 rt_se->my_q = rt_rq;
ec7dc8ac 9322 rt_se->parent = parent;
6f505b16
PZ
9323 INIT_LIST_HEAD(&rt_se->run_list);
9324}
9325#endif
9326
1da177e4
LT
9327void __init sched_init(void)
9328{
dd41f596 9329 int i, j;
434d53b0
MT
9330 unsigned long alloc_size = 0, ptr;
9331
9332#ifdef CONFIG_FAIR_GROUP_SCHED
9333 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9334#endif
9335#ifdef CONFIG_RT_GROUP_SCHED
9336 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9337#endif
9338#ifdef CONFIG_USER_SCHED
9339 alloc_size *= 2;
df7c8e84
RR
9340#endif
9341#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9342 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9343#endif
9344 /*
9345 * As sched_init() is called before page_alloc is setup,
9346 * we use alloc_bootmem().
9347 */
9348 if (alloc_size) {
36b7b6d4 9349 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9350
9351#ifdef CONFIG_FAIR_GROUP_SCHED
9352 init_task_group.se = (struct sched_entity **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
9354
9355 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9357
9358#ifdef CONFIG_USER_SCHED
9359 root_task_group.se = (struct sched_entity **)ptr;
9360 ptr += nr_cpu_ids * sizeof(void **);
9361
9362 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9364#endif /* CONFIG_USER_SCHED */
9365#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9366#ifdef CONFIG_RT_GROUP_SCHED
9367 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9368 ptr += nr_cpu_ids * sizeof(void **);
9369
9370 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9371 ptr += nr_cpu_ids * sizeof(void **);
9372
9373#ifdef CONFIG_USER_SCHED
9374 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
9376
9377 root_task_group.rt_rq = (struct rt_rq **)ptr;
9378 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9379#endif /* CONFIG_USER_SCHED */
9380#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9381#ifdef CONFIG_CPUMASK_OFFSTACK
9382 for_each_possible_cpu(i) {
9383 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9384 ptr += cpumask_size();
9385 }
9386#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9387 }
dd41f596 9388
57d885fe
GH
9389#ifdef CONFIG_SMP
9390 init_defrootdomain();
9391#endif
9392
d0b27fa7
PZ
9393 init_rt_bandwidth(&def_rt_bandwidth,
9394 global_rt_period(), global_rt_runtime());
9395
9396#ifdef CONFIG_RT_GROUP_SCHED
9397 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9398 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9399#ifdef CONFIG_USER_SCHED
9400 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9401 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9402#endif /* CONFIG_USER_SCHED */
9403#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9404
052f1dc7 9405#ifdef CONFIG_GROUP_SCHED
6f505b16 9406 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9407 INIT_LIST_HEAD(&init_task_group.children);
9408
9409#ifdef CONFIG_USER_SCHED
9410 INIT_LIST_HEAD(&root_task_group.children);
9411 init_task_group.parent = &root_task_group;
9412 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9413#endif /* CONFIG_USER_SCHED */
9414#endif /* CONFIG_GROUP_SCHED */
6f505b16 9415
0a945022 9416 for_each_possible_cpu(i) {
70b97a7f 9417 struct rq *rq;
1da177e4
LT
9418
9419 rq = cpu_rq(i);
9420 spin_lock_init(&rq->lock);
7897986b 9421 rq->nr_running = 0;
dce48a84
TG
9422 rq->calc_load_active = 0;
9423 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9424 init_cfs_rq(&rq->cfs, rq);
6f505b16 9425 init_rt_rq(&rq->rt, rq);
dd41f596 9426#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9427 init_task_group.shares = init_task_group_load;
6f505b16 9428 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9429#ifdef CONFIG_CGROUP_SCHED
9430 /*
9431 * How much cpu bandwidth does init_task_group get?
9432 *
9433 * In case of task-groups formed thr' the cgroup filesystem, it
9434 * gets 100% of the cpu resources in the system. This overall
9435 * system cpu resource is divided among the tasks of
9436 * init_task_group and its child task-groups in a fair manner,
9437 * based on each entity's (task or task-group's) weight
9438 * (se->load.weight).
9439 *
9440 * In other words, if init_task_group has 10 tasks of weight
9441 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9442 * then A0's share of the cpu resource is:
9443 *
0d905bca 9444 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9445 *
9446 * We achieve this by letting init_task_group's tasks sit
9447 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9448 */
ec7dc8ac 9449 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9450#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9451 root_task_group.shares = NICE_0_LOAD;
9452 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9453 /*
9454 * In case of task-groups formed thr' the user id of tasks,
9455 * init_task_group represents tasks belonging to root user.
9456 * Hence it forms a sibling of all subsequent groups formed.
9457 * In this case, init_task_group gets only a fraction of overall
9458 * system cpu resource, based on the weight assigned to root
9459 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9460 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9461 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9462 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9463 */
ec7dc8ac 9464 init_tg_cfs_entry(&init_task_group,
84e9dabf 9465 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9466 &per_cpu(init_sched_entity, i), i, 1,
9467 root_task_group.se[i]);
6f505b16 9468
052f1dc7 9469#endif
354d60c2
DG
9470#endif /* CONFIG_FAIR_GROUP_SCHED */
9471
9472 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9473#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9474 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9475#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9476 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9477#elif defined CONFIG_USER_SCHED
eff766a6 9478 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9479 init_tg_rt_entry(&init_task_group,
6f505b16 9480 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9481 &per_cpu(init_sched_rt_entity, i), i, 1,
9482 root_task_group.rt_se[i]);
354d60c2 9483#endif
dd41f596 9484#endif
1da177e4 9485
dd41f596
IM
9486 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9487 rq->cpu_load[j] = 0;
1da177e4 9488#ifdef CONFIG_SMP
41c7ce9a 9489 rq->sd = NULL;
57d885fe 9490 rq->rd = NULL;
3f029d3c 9491 rq->post_schedule = 0;
1da177e4 9492 rq->active_balance = 0;
dd41f596 9493 rq->next_balance = jiffies;
1da177e4 9494 rq->push_cpu = 0;
0a2966b4 9495 rq->cpu = i;
1f11eb6a 9496 rq->online = 0;
1da177e4
LT
9497 rq->migration_thread = NULL;
9498 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9499 rq_attach_root(rq, &def_root_domain);
1da177e4 9500#endif
8f4d37ec 9501 init_rq_hrtick(rq);
1da177e4 9502 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9503 }
9504
2dd73a4f 9505 set_load_weight(&init_task);
b50f60ce 9506
e107be36
AK
9507#ifdef CONFIG_PREEMPT_NOTIFIERS
9508 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9509#endif
9510
c9819f45 9511#ifdef CONFIG_SMP
962cf36c 9512 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9513#endif
9514
b50f60ce
HC
9515#ifdef CONFIG_RT_MUTEXES
9516 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9517#endif
9518
1da177e4
LT
9519 /*
9520 * The boot idle thread does lazy MMU switching as well:
9521 */
9522 atomic_inc(&init_mm.mm_count);
9523 enter_lazy_tlb(&init_mm, current);
9524
9525 /*
9526 * Make us the idle thread. Technically, schedule() should not be
9527 * called from this thread, however somewhere below it might be,
9528 * but because we are the idle thread, we just pick up running again
9529 * when this runqueue becomes "idle".
9530 */
9531 init_idle(current, smp_processor_id());
dce48a84
TG
9532
9533 calc_load_update = jiffies + LOAD_FREQ;
9534
dd41f596
IM
9535 /*
9536 * During early bootup we pretend to be a normal task:
9537 */
9538 current->sched_class = &fair_sched_class;
6892b75e 9539
6a7b3dc3 9540 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9541 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9542#ifdef CONFIG_SMP
7d1e6a9b 9543#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9544 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9545 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9546#endif
4bdddf8f 9547 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9548#endif /* SMP */
6a7b3dc3 9549
0d905bca
IM
9550 perf_counter_init();
9551
6892b75e 9552 scheduler_running = 1;
1da177e4
LT
9553}
9554
9555#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9556static inline int preempt_count_equals(int preempt_offset)
9557{
9558 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9559
9560 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9561}
9562
9563void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9564{
48f24c4d 9565#ifdef in_atomic
1da177e4
LT
9566 static unsigned long prev_jiffy; /* ratelimiting */
9567
e4aafea2
FW
9568 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9569 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9570 return;
9571 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9572 return;
9573 prev_jiffy = jiffies;
9574
9575 printk(KERN_ERR
9576 "BUG: sleeping function called from invalid context at %s:%d\n",
9577 file, line);
9578 printk(KERN_ERR
9579 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9580 in_atomic(), irqs_disabled(),
9581 current->pid, current->comm);
9582
9583 debug_show_held_locks(current);
9584 if (irqs_disabled())
9585 print_irqtrace_events(current);
9586 dump_stack();
1da177e4
LT
9587#endif
9588}
9589EXPORT_SYMBOL(__might_sleep);
9590#endif
9591
9592#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9593static void normalize_task(struct rq *rq, struct task_struct *p)
9594{
9595 int on_rq;
3e51f33f 9596
3a5e4dc1
AK
9597 update_rq_clock(rq);
9598 on_rq = p->se.on_rq;
9599 if (on_rq)
9600 deactivate_task(rq, p, 0);
9601 __setscheduler(rq, p, SCHED_NORMAL, 0);
9602 if (on_rq) {
9603 activate_task(rq, p, 0);
9604 resched_task(rq->curr);
9605 }
9606}
9607
1da177e4
LT
9608void normalize_rt_tasks(void)
9609{
a0f98a1c 9610 struct task_struct *g, *p;
1da177e4 9611 unsigned long flags;
70b97a7f 9612 struct rq *rq;
1da177e4 9613
4cf5d77a 9614 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9615 do_each_thread(g, p) {
178be793
IM
9616 /*
9617 * Only normalize user tasks:
9618 */
9619 if (!p->mm)
9620 continue;
9621
6cfb0d5d 9622 p->se.exec_start = 0;
6cfb0d5d 9623#ifdef CONFIG_SCHEDSTATS
dd41f596 9624 p->se.wait_start = 0;
dd41f596 9625 p->se.sleep_start = 0;
dd41f596 9626 p->se.block_start = 0;
6cfb0d5d 9627#endif
dd41f596
IM
9628
9629 if (!rt_task(p)) {
9630 /*
9631 * Renice negative nice level userspace
9632 * tasks back to 0:
9633 */
9634 if (TASK_NICE(p) < 0 && p->mm)
9635 set_user_nice(p, 0);
1da177e4 9636 continue;
dd41f596 9637 }
1da177e4 9638
4cf5d77a 9639 spin_lock(&p->pi_lock);
b29739f9 9640 rq = __task_rq_lock(p);
1da177e4 9641
178be793 9642 normalize_task(rq, p);
3a5e4dc1 9643
b29739f9 9644 __task_rq_unlock(rq);
4cf5d77a 9645 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9646 } while_each_thread(g, p);
9647
4cf5d77a 9648 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9649}
9650
9651#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9652
9653#ifdef CONFIG_IA64
9654/*
9655 * These functions are only useful for the IA64 MCA handling.
9656 *
9657 * They can only be called when the whole system has been
9658 * stopped - every CPU needs to be quiescent, and no scheduling
9659 * activity can take place. Using them for anything else would
9660 * be a serious bug, and as a result, they aren't even visible
9661 * under any other configuration.
9662 */
9663
9664/**
9665 * curr_task - return the current task for a given cpu.
9666 * @cpu: the processor in question.
9667 *
9668 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9669 */
36c8b586 9670struct task_struct *curr_task(int cpu)
1df5c10a
LT
9671{
9672 return cpu_curr(cpu);
9673}
9674
9675/**
9676 * set_curr_task - set the current task for a given cpu.
9677 * @cpu: the processor in question.
9678 * @p: the task pointer to set.
9679 *
9680 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9681 * are serviced on a separate stack. It allows the architecture to switch the
9682 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9683 * must be called with all CPU's synchronized, and interrupts disabled, the
9684 * and caller must save the original value of the current task (see
9685 * curr_task() above) and restore that value before reenabling interrupts and
9686 * re-starting the system.
9687 *
9688 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9689 */
36c8b586 9690void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9691{
9692 cpu_curr(cpu) = p;
9693}
9694
9695#endif
29f59db3 9696
bccbe08a
PZ
9697#ifdef CONFIG_FAIR_GROUP_SCHED
9698static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9699{
9700 int i;
9701
9702 for_each_possible_cpu(i) {
9703 if (tg->cfs_rq)
9704 kfree(tg->cfs_rq[i]);
9705 if (tg->se)
9706 kfree(tg->se[i]);
6f505b16
PZ
9707 }
9708
9709 kfree(tg->cfs_rq);
9710 kfree(tg->se);
6f505b16
PZ
9711}
9712
ec7dc8ac
DG
9713static
9714int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9715{
29f59db3 9716 struct cfs_rq *cfs_rq;
eab17229 9717 struct sched_entity *se;
9b5b7751 9718 struct rq *rq;
29f59db3
SV
9719 int i;
9720
434d53b0 9721 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9722 if (!tg->cfs_rq)
9723 goto err;
434d53b0 9724 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9725 if (!tg->se)
9726 goto err;
052f1dc7
PZ
9727
9728 tg->shares = NICE_0_LOAD;
29f59db3
SV
9729
9730 for_each_possible_cpu(i) {
9b5b7751 9731 rq = cpu_rq(i);
29f59db3 9732
eab17229
LZ
9733 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9734 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9735 if (!cfs_rq)
9736 goto err;
9737
eab17229
LZ
9738 se = kzalloc_node(sizeof(struct sched_entity),
9739 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9740 if (!se)
9741 goto err;
9742
eab17229 9743 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9744 }
9745
9746 return 1;
9747
9748 err:
9749 return 0;
9750}
9751
9752static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9753{
9754 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9755 &cpu_rq(cpu)->leaf_cfs_rq_list);
9756}
9757
9758static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9759{
9760 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9761}
6d6bc0ad 9762#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9763static inline void free_fair_sched_group(struct task_group *tg)
9764{
9765}
9766
ec7dc8ac
DG
9767static inline
9768int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9769{
9770 return 1;
9771}
9772
9773static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9774{
9775}
9776
9777static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9778{
9779}
6d6bc0ad 9780#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9781
9782#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9783static void free_rt_sched_group(struct task_group *tg)
9784{
9785 int i;
9786
d0b27fa7
PZ
9787 destroy_rt_bandwidth(&tg->rt_bandwidth);
9788
bccbe08a
PZ
9789 for_each_possible_cpu(i) {
9790 if (tg->rt_rq)
9791 kfree(tg->rt_rq[i]);
9792 if (tg->rt_se)
9793 kfree(tg->rt_se[i]);
9794 }
9795
9796 kfree(tg->rt_rq);
9797 kfree(tg->rt_se);
9798}
9799
ec7dc8ac
DG
9800static
9801int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9802{
9803 struct rt_rq *rt_rq;
eab17229 9804 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9805 struct rq *rq;
9806 int i;
9807
434d53b0 9808 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9809 if (!tg->rt_rq)
9810 goto err;
434d53b0 9811 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9812 if (!tg->rt_se)
9813 goto err;
9814
d0b27fa7
PZ
9815 init_rt_bandwidth(&tg->rt_bandwidth,
9816 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9817
9818 for_each_possible_cpu(i) {
9819 rq = cpu_rq(i);
9820
eab17229
LZ
9821 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9822 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9823 if (!rt_rq)
9824 goto err;
29f59db3 9825
eab17229
LZ
9826 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9827 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9828 if (!rt_se)
9829 goto err;
29f59db3 9830
eab17229 9831 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9832 }
9833
bccbe08a
PZ
9834 return 1;
9835
9836 err:
9837 return 0;
9838}
9839
9840static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9841{
9842 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9843 &cpu_rq(cpu)->leaf_rt_rq_list);
9844}
9845
9846static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9847{
9848 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9849}
6d6bc0ad 9850#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9851static inline void free_rt_sched_group(struct task_group *tg)
9852{
9853}
9854
ec7dc8ac
DG
9855static inline
9856int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9857{
9858 return 1;
9859}
9860
9861static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9862{
9863}
9864
9865static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9866{
9867}
6d6bc0ad 9868#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9869
d0b27fa7 9870#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9871static void free_sched_group(struct task_group *tg)
9872{
9873 free_fair_sched_group(tg);
9874 free_rt_sched_group(tg);
9875 kfree(tg);
9876}
9877
9878/* allocate runqueue etc for a new task group */
ec7dc8ac 9879struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9880{
9881 struct task_group *tg;
9882 unsigned long flags;
9883 int i;
9884
9885 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9886 if (!tg)
9887 return ERR_PTR(-ENOMEM);
9888
ec7dc8ac 9889 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9890 goto err;
9891
ec7dc8ac 9892 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9893 goto err;
9894
8ed36996 9895 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9896 for_each_possible_cpu(i) {
bccbe08a
PZ
9897 register_fair_sched_group(tg, i);
9898 register_rt_sched_group(tg, i);
9b5b7751 9899 }
6f505b16 9900 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9901
9902 WARN_ON(!parent); /* root should already exist */
9903
9904 tg->parent = parent;
f473aa5e 9905 INIT_LIST_HEAD(&tg->children);
09f2724a 9906 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9907 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9908
9b5b7751 9909 return tg;
29f59db3
SV
9910
9911err:
6f505b16 9912 free_sched_group(tg);
29f59db3
SV
9913 return ERR_PTR(-ENOMEM);
9914}
9915
9b5b7751 9916/* rcu callback to free various structures associated with a task group */
6f505b16 9917static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9918{
29f59db3 9919 /* now it should be safe to free those cfs_rqs */
6f505b16 9920 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9921}
9922
9b5b7751 9923/* Destroy runqueue etc associated with a task group */
4cf86d77 9924void sched_destroy_group(struct task_group *tg)
29f59db3 9925{
8ed36996 9926 unsigned long flags;
9b5b7751 9927 int i;
29f59db3 9928
8ed36996 9929 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9930 for_each_possible_cpu(i) {
bccbe08a
PZ
9931 unregister_fair_sched_group(tg, i);
9932 unregister_rt_sched_group(tg, i);
9b5b7751 9933 }
6f505b16 9934 list_del_rcu(&tg->list);
f473aa5e 9935 list_del_rcu(&tg->siblings);
8ed36996 9936 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9937
9b5b7751 9938 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9939 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9940}
9941
9b5b7751 9942/* change task's runqueue when it moves between groups.
3a252015
IM
9943 * The caller of this function should have put the task in its new group
9944 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9945 * reflect its new group.
9b5b7751
SV
9946 */
9947void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9948{
9949 int on_rq, running;
9950 unsigned long flags;
9951 struct rq *rq;
9952
9953 rq = task_rq_lock(tsk, &flags);
9954
29f59db3
SV
9955 update_rq_clock(rq);
9956
051a1d1a 9957 running = task_current(rq, tsk);
29f59db3
SV
9958 on_rq = tsk->se.on_rq;
9959
0e1f3483 9960 if (on_rq)
29f59db3 9961 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9962 if (unlikely(running))
9963 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9964
6f505b16 9965 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9966
810b3817
PZ
9967#ifdef CONFIG_FAIR_GROUP_SCHED
9968 if (tsk->sched_class->moved_group)
9969 tsk->sched_class->moved_group(tsk);
9970#endif
9971
0e1f3483
HS
9972 if (unlikely(running))
9973 tsk->sched_class->set_curr_task(rq);
9974 if (on_rq)
7074badb 9975 enqueue_task(rq, tsk, 0);
29f59db3 9976
29f59db3
SV
9977 task_rq_unlock(rq, &flags);
9978}
6d6bc0ad 9979#endif /* CONFIG_GROUP_SCHED */
29f59db3 9980
052f1dc7 9981#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9982static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9983{
9984 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9985 int on_rq;
9986
29f59db3 9987 on_rq = se->on_rq;
62fb1851 9988 if (on_rq)
29f59db3
SV
9989 dequeue_entity(cfs_rq, se, 0);
9990
9991 se->load.weight = shares;
e05510d0 9992 se->load.inv_weight = 0;
29f59db3 9993
62fb1851 9994 if (on_rq)
29f59db3 9995 enqueue_entity(cfs_rq, se, 0);
c09595f6 9996}
62fb1851 9997
c09595f6
PZ
9998static void set_se_shares(struct sched_entity *se, unsigned long shares)
9999{
10000 struct cfs_rq *cfs_rq = se->cfs_rq;
10001 struct rq *rq = cfs_rq->rq;
10002 unsigned long flags;
10003
10004 spin_lock_irqsave(&rq->lock, flags);
10005 __set_se_shares(se, shares);
10006 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10007}
10008
8ed36996
PZ
10009static DEFINE_MUTEX(shares_mutex);
10010
4cf86d77 10011int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10012{
10013 int i;
8ed36996 10014 unsigned long flags;
c61935fd 10015
ec7dc8ac
DG
10016 /*
10017 * We can't change the weight of the root cgroup.
10018 */
10019 if (!tg->se[0])
10020 return -EINVAL;
10021
18d95a28
PZ
10022 if (shares < MIN_SHARES)
10023 shares = MIN_SHARES;
cb4ad1ff
MX
10024 else if (shares > MAX_SHARES)
10025 shares = MAX_SHARES;
62fb1851 10026
8ed36996 10027 mutex_lock(&shares_mutex);
9b5b7751 10028 if (tg->shares == shares)
5cb350ba 10029 goto done;
29f59db3 10030
8ed36996 10031 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10032 for_each_possible_cpu(i)
10033 unregister_fair_sched_group(tg, i);
f473aa5e 10034 list_del_rcu(&tg->siblings);
8ed36996 10035 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10036
10037 /* wait for any ongoing reference to this group to finish */
10038 synchronize_sched();
10039
10040 /*
10041 * Now we are free to modify the group's share on each cpu
10042 * w/o tripping rebalance_share or load_balance_fair.
10043 */
9b5b7751 10044 tg->shares = shares;
c09595f6
PZ
10045 for_each_possible_cpu(i) {
10046 /*
10047 * force a rebalance
10048 */
10049 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10050 set_se_shares(tg->se[i], shares);
c09595f6 10051 }
29f59db3 10052
6b2d7700
SV
10053 /*
10054 * Enable load balance activity on this group, by inserting it back on
10055 * each cpu's rq->leaf_cfs_rq_list.
10056 */
8ed36996 10057 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10058 for_each_possible_cpu(i)
10059 register_fair_sched_group(tg, i);
f473aa5e 10060 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10061 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10062done:
8ed36996 10063 mutex_unlock(&shares_mutex);
9b5b7751 10064 return 0;
29f59db3
SV
10065}
10066
5cb350ba
DG
10067unsigned long sched_group_shares(struct task_group *tg)
10068{
10069 return tg->shares;
10070}
052f1dc7 10071#endif
5cb350ba 10072
052f1dc7 10073#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10074/*
9f0c1e56 10075 * Ensure that the real time constraints are schedulable.
6f505b16 10076 */
9f0c1e56
PZ
10077static DEFINE_MUTEX(rt_constraints_mutex);
10078
10079static unsigned long to_ratio(u64 period, u64 runtime)
10080{
10081 if (runtime == RUNTIME_INF)
9a7e0b18 10082 return 1ULL << 20;
9f0c1e56 10083
9a7e0b18 10084 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10085}
10086
9a7e0b18
PZ
10087/* Must be called with tasklist_lock held */
10088static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10089{
9a7e0b18 10090 struct task_struct *g, *p;
b40b2e8e 10091
9a7e0b18
PZ
10092 do_each_thread(g, p) {
10093 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10094 return 1;
10095 } while_each_thread(g, p);
b40b2e8e 10096
9a7e0b18
PZ
10097 return 0;
10098}
b40b2e8e 10099
9a7e0b18
PZ
10100struct rt_schedulable_data {
10101 struct task_group *tg;
10102 u64 rt_period;
10103 u64 rt_runtime;
10104};
b40b2e8e 10105
9a7e0b18
PZ
10106static int tg_schedulable(struct task_group *tg, void *data)
10107{
10108 struct rt_schedulable_data *d = data;
10109 struct task_group *child;
10110 unsigned long total, sum = 0;
10111 u64 period, runtime;
b40b2e8e 10112
9a7e0b18
PZ
10113 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10114 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10115
9a7e0b18
PZ
10116 if (tg == d->tg) {
10117 period = d->rt_period;
10118 runtime = d->rt_runtime;
b40b2e8e 10119 }
b40b2e8e 10120
98a4826b
PZ
10121#ifdef CONFIG_USER_SCHED
10122 if (tg == &root_task_group) {
10123 period = global_rt_period();
10124 runtime = global_rt_runtime();
10125 }
10126#endif
10127
4653f803
PZ
10128 /*
10129 * Cannot have more runtime than the period.
10130 */
10131 if (runtime > period && runtime != RUNTIME_INF)
10132 return -EINVAL;
6f505b16 10133
4653f803
PZ
10134 /*
10135 * Ensure we don't starve existing RT tasks.
10136 */
9a7e0b18
PZ
10137 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10138 return -EBUSY;
6f505b16 10139
9a7e0b18 10140 total = to_ratio(period, runtime);
6f505b16 10141
4653f803
PZ
10142 /*
10143 * Nobody can have more than the global setting allows.
10144 */
10145 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10146 return -EINVAL;
6f505b16 10147
4653f803
PZ
10148 /*
10149 * The sum of our children's runtime should not exceed our own.
10150 */
9a7e0b18
PZ
10151 list_for_each_entry_rcu(child, &tg->children, siblings) {
10152 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10153 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10154
9a7e0b18
PZ
10155 if (child == d->tg) {
10156 period = d->rt_period;
10157 runtime = d->rt_runtime;
10158 }
6f505b16 10159
9a7e0b18 10160 sum += to_ratio(period, runtime);
9f0c1e56 10161 }
6f505b16 10162
9a7e0b18
PZ
10163 if (sum > total)
10164 return -EINVAL;
10165
10166 return 0;
6f505b16
PZ
10167}
10168
9a7e0b18 10169static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10170{
9a7e0b18
PZ
10171 struct rt_schedulable_data data = {
10172 .tg = tg,
10173 .rt_period = period,
10174 .rt_runtime = runtime,
10175 };
10176
10177 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10178}
10179
d0b27fa7
PZ
10180static int tg_set_bandwidth(struct task_group *tg,
10181 u64 rt_period, u64 rt_runtime)
6f505b16 10182{
ac086bc2 10183 int i, err = 0;
9f0c1e56 10184
9f0c1e56 10185 mutex_lock(&rt_constraints_mutex);
521f1a24 10186 read_lock(&tasklist_lock);
9a7e0b18
PZ
10187 err = __rt_schedulable(tg, rt_period, rt_runtime);
10188 if (err)
9f0c1e56 10189 goto unlock;
ac086bc2
PZ
10190
10191 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10192 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10193 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10194
10195 for_each_possible_cpu(i) {
10196 struct rt_rq *rt_rq = tg->rt_rq[i];
10197
10198 spin_lock(&rt_rq->rt_runtime_lock);
10199 rt_rq->rt_runtime = rt_runtime;
10200 spin_unlock(&rt_rq->rt_runtime_lock);
10201 }
10202 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10203 unlock:
521f1a24 10204 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10205 mutex_unlock(&rt_constraints_mutex);
10206
10207 return err;
6f505b16
PZ
10208}
10209
d0b27fa7
PZ
10210int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10211{
10212 u64 rt_runtime, rt_period;
10213
10214 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10215 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10216 if (rt_runtime_us < 0)
10217 rt_runtime = RUNTIME_INF;
10218
10219 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10220}
10221
9f0c1e56
PZ
10222long sched_group_rt_runtime(struct task_group *tg)
10223{
10224 u64 rt_runtime_us;
10225
d0b27fa7 10226 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10227 return -1;
10228
d0b27fa7 10229 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10230 do_div(rt_runtime_us, NSEC_PER_USEC);
10231 return rt_runtime_us;
10232}
d0b27fa7
PZ
10233
10234int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10235{
10236 u64 rt_runtime, rt_period;
10237
10238 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10239 rt_runtime = tg->rt_bandwidth.rt_runtime;
10240
619b0488
R
10241 if (rt_period == 0)
10242 return -EINVAL;
10243
d0b27fa7
PZ
10244 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10245}
10246
10247long sched_group_rt_period(struct task_group *tg)
10248{
10249 u64 rt_period_us;
10250
10251 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10252 do_div(rt_period_us, NSEC_PER_USEC);
10253 return rt_period_us;
10254}
10255
10256static int sched_rt_global_constraints(void)
10257{
4653f803 10258 u64 runtime, period;
d0b27fa7
PZ
10259 int ret = 0;
10260
ec5d4989
HS
10261 if (sysctl_sched_rt_period <= 0)
10262 return -EINVAL;
10263
4653f803
PZ
10264 runtime = global_rt_runtime();
10265 period = global_rt_period();
10266
10267 /*
10268 * Sanity check on the sysctl variables.
10269 */
10270 if (runtime > period && runtime != RUNTIME_INF)
10271 return -EINVAL;
10b612f4 10272
d0b27fa7 10273 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10274 read_lock(&tasklist_lock);
4653f803 10275 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10276 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10277 mutex_unlock(&rt_constraints_mutex);
10278
10279 return ret;
10280}
54e99124
DG
10281
10282int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10283{
10284 /* Don't accept realtime tasks when there is no way for them to run */
10285 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10286 return 0;
10287
10288 return 1;
10289}
10290
6d6bc0ad 10291#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10292static int sched_rt_global_constraints(void)
10293{
ac086bc2
PZ
10294 unsigned long flags;
10295 int i;
10296
ec5d4989
HS
10297 if (sysctl_sched_rt_period <= 0)
10298 return -EINVAL;
10299
60aa605d
PZ
10300 /*
10301 * There's always some RT tasks in the root group
10302 * -- migration, kstopmachine etc..
10303 */
10304 if (sysctl_sched_rt_runtime == 0)
10305 return -EBUSY;
10306
ac086bc2
PZ
10307 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10308 for_each_possible_cpu(i) {
10309 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10310
10311 spin_lock(&rt_rq->rt_runtime_lock);
10312 rt_rq->rt_runtime = global_rt_runtime();
10313 spin_unlock(&rt_rq->rt_runtime_lock);
10314 }
10315 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10316
d0b27fa7
PZ
10317 return 0;
10318}
6d6bc0ad 10319#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10320
10321int sched_rt_handler(struct ctl_table *table, int write,
10322 struct file *filp, void __user *buffer, size_t *lenp,
10323 loff_t *ppos)
10324{
10325 int ret;
10326 int old_period, old_runtime;
10327 static DEFINE_MUTEX(mutex);
10328
10329 mutex_lock(&mutex);
10330 old_period = sysctl_sched_rt_period;
10331 old_runtime = sysctl_sched_rt_runtime;
10332
10333 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10334
10335 if (!ret && write) {
10336 ret = sched_rt_global_constraints();
10337 if (ret) {
10338 sysctl_sched_rt_period = old_period;
10339 sysctl_sched_rt_runtime = old_runtime;
10340 } else {
10341 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10342 def_rt_bandwidth.rt_period =
10343 ns_to_ktime(global_rt_period());
10344 }
10345 }
10346 mutex_unlock(&mutex);
10347
10348 return ret;
10349}
68318b8e 10350
052f1dc7 10351#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10352
10353/* return corresponding task_group object of a cgroup */
2b01dfe3 10354static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10355{
2b01dfe3
PM
10356 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10357 struct task_group, css);
68318b8e
SV
10358}
10359
10360static struct cgroup_subsys_state *
2b01dfe3 10361cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10362{
ec7dc8ac 10363 struct task_group *tg, *parent;
68318b8e 10364
2b01dfe3 10365 if (!cgrp->parent) {
68318b8e 10366 /* This is early initialization for the top cgroup */
68318b8e
SV
10367 return &init_task_group.css;
10368 }
10369
ec7dc8ac
DG
10370 parent = cgroup_tg(cgrp->parent);
10371 tg = sched_create_group(parent);
68318b8e
SV
10372 if (IS_ERR(tg))
10373 return ERR_PTR(-ENOMEM);
10374
68318b8e
SV
10375 return &tg->css;
10376}
10377
41a2d6cf
IM
10378static void
10379cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10380{
2b01dfe3 10381 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10382
10383 sched_destroy_group(tg);
10384}
10385
41a2d6cf
IM
10386static int
10387cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10388 struct task_struct *tsk)
68318b8e 10389{
b68aa230 10390#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10391 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10392 return -EINVAL;
10393#else
68318b8e
SV
10394 /* We don't support RT-tasks being in separate groups */
10395 if (tsk->sched_class != &fair_sched_class)
10396 return -EINVAL;
b68aa230 10397#endif
68318b8e
SV
10398
10399 return 0;
10400}
10401
10402static void
2b01dfe3 10403cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10404 struct cgroup *old_cont, struct task_struct *tsk)
10405{
10406 sched_move_task(tsk);
10407}
10408
052f1dc7 10409#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10410static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10411 u64 shareval)
68318b8e 10412{
2b01dfe3 10413 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10414}
10415
f4c753b7 10416static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10417{
2b01dfe3 10418 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10419
10420 return (u64) tg->shares;
10421}
6d6bc0ad 10422#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10423
052f1dc7 10424#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10425static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10426 s64 val)
6f505b16 10427{
06ecb27c 10428 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10429}
10430
06ecb27c 10431static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10432{
06ecb27c 10433 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10434}
d0b27fa7
PZ
10435
10436static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10437 u64 rt_period_us)
10438{
10439 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10440}
10441
10442static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10443{
10444 return sched_group_rt_period(cgroup_tg(cgrp));
10445}
6d6bc0ad 10446#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10447
fe5c7cc2 10448static struct cftype cpu_files[] = {
052f1dc7 10449#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10450 {
10451 .name = "shares",
f4c753b7
PM
10452 .read_u64 = cpu_shares_read_u64,
10453 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10454 },
052f1dc7
PZ
10455#endif
10456#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10457 {
9f0c1e56 10458 .name = "rt_runtime_us",
06ecb27c
PM
10459 .read_s64 = cpu_rt_runtime_read,
10460 .write_s64 = cpu_rt_runtime_write,
6f505b16 10461 },
d0b27fa7
PZ
10462 {
10463 .name = "rt_period_us",
f4c753b7
PM
10464 .read_u64 = cpu_rt_period_read_uint,
10465 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10466 },
052f1dc7 10467#endif
68318b8e
SV
10468};
10469
10470static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10471{
fe5c7cc2 10472 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10473}
10474
10475struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10476 .name = "cpu",
10477 .create = cpu_cgroup_create,
10478 .destroy = cpu_cgroup_destroy,
10479 .can_attach = cpu_cgroup_can_attach,
10480 .attach = cpu_cgroup_attach,
10481 .populate = cpu_cgroup_populate,
10482 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10483 .early_init = 1,
10484};
10485
052f1dc7 10486#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10487
10488#ifdef CONFIG_CGROUP_CPUACCT
10489
10490/*
10491 * CPU accounting code for task groups.
10492 *
10493 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10494 * (balbir@in.ibm.com).
10495 */
10496
934352f2 10497/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10498struct cpuacct {
10499 struct cgroup_subsys_state css;
10500 /* cpuusage holds pointer to a u64-type object on every cpu */
10501 u64 *cpuusage;
ef12fefa 10502 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10503 struct cpuacct *parent;
d842de87
SV
10504};
10505
10506struct cgroup_subsys cpuacct_subsys;
10507
10508/* return cpu accounting group corresponding to this container */
32cd756a 10509static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10510{
32cd756a 10511 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10512 struct cpuacct, css);
10513}
10514
10515/* return cpu accounting group to which this task belongs */
10516static inline struct cpuacct *task_ca(struct task_struct *tsk)
10517{
10518 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10519 struct cpuacct, css);
10520}
10521
10522/* create a new cpu accounting group */
10523static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10524 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10525{
10526 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10527 int i;
d842de87
SV
10528
10529 if (!ca)
ef12fefa 10530 goto out;
d842de87
SV
10531
10532 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10533 if (!ca->cpuusage)
10534 goto out_free_ca;
10535
10536 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10537 if (percpu_counter_init(&ca->cpustat[i], 0))
10538 goto out_free_counters;
d842de87 10539
934352f2
BR
10540 if (cgrp->parent)
10541 ca->parent = cgroup_ca(cgrp->parent);
10542
d842de87 10543 return &ca->css;
ef12fefa
BR
10544
10545out_free_counters:
10546 while (--i >= 0)
10547 percpu_counter_destroy(&ca->cpustat[i]);
10548 free_percpu(ca->cpuusage);
10549out_free_ca:
10550 kfree(ca);
10551out:
10552 return ERR_PTR(-ENOMEM);
d842de87
SV
10553}
10554
10555/* destroy an existing cpu accounting group */
41a2d6cf 10556static void
32cd756a 10557cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10558{
32cd756a 10559 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10560 int i;
d842de87 10561
ef12fefa
BR
10562 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10563 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10564 free_percpu(ca->cpuusage);
10565 kfree(ca);
10566}
10567
720f5498
KC
10568static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10569{
b36128c8 10570 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10571 u64 data;
10572
10573#ifndef CONFIG_64BIT
10574 /*
10575 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10576 */
10577 spin_lock_irq(&cpu_rq(cpu)->lock);
10578 data = *cpuusage;
10579 spin_unlock_irq(&cpu_rq(cpu)->lock);
10580#else
10581 data = *cpuusage;
10582#endif
10583
10584 return data;
10585}
10586
10587static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10588{
b36128c8 10589 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10590
10591#ifndef CONFIG_64BIT
10592 /*
10593 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10594 */
10595 spin_lock_irq(&cpu_rq(cpu)->lock);
10596 *cpuusage = val;
10597 spin_unlock_irq(&cpu_rq(cpu)->lock);
10598#else
10599 *cpuusage = val;
10600#endif
10601}
10602
d842de87 10603/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10604static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10605{
32cd756a 10606 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10607 u64 totalcpuusage = 0;
10608 int i;
10609
720f5498
KC
10610 for_each_present_cpu(i)
10611 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10612
10613 return totalcpuusage;
10614}
10615
0297b803
DG
10616static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10617 u64 reset)
10618{
10619 struct cpuacct *ca = cgroup_ca(cgrp);
10620 int err = 0;
10621 int i;
10622
10623 if (reset) {
10624 err = -EINVAL;
10625 goto out;
10626 }
10627
720f5498
KC
10628 for_each_present_cpu(i)
10629 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10630
0297b803
DG
10631out:
10632 return err;
10633}
10634
e9515c3c
KC
10635static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10636 struct seq_file *m)
10637{
10638 struct cpuacct *ca = cgroup_ca(cgroup);
10639 u64 percpu;
10640 int i;
10641
10642 for_each_present_cpu(i) {
10643 percpu = cpuacct_cpuusage_read(ca, i);
10644 seq_printf(m, "%llu ", (unsigned long long) percpu);
10645 }
10646 seq_printf(m, "\n");
10647 return 0;
10648}
10649
ef12fefa
BR
10650static const char *cpuacct_stat_desc[] = {
10651 [CPUACCT_STAT_USER] = "user",
10652 [CPUACCT_STAT_SYSTEM] = "system",
10653};
10654
10655static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10656 struct cgroup_map_cb *cb)
10657{
10658 struct cpuacct *ca = cgroup_ca(cgrp);
10659 int i;
10660
10661 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10662 s64 val = percpu_counter_read(&ca->cpustat[i]);
10663 val = cputime64_to_clock_t(val);
10664 cb->fill(cb, cpuacct_stat_desc[i], val);
10665 }
10666 return 0;
10667}
10668
d842de87
SV
10669static struct cftype files[] = {
10670 {
10671 .name = "usage",
f4c753b7
PM
10672 .read_u64 = cpuusage_read,
10673 .write_u64 = cpuusage_write,
d842de87 10674 },
e9515c3c
KC
10675 {
10676 .name = "usage_percpu",
10677 .read_seq_string = cpuacct_percpu_seq_read,
10678 },
ef12fefa
BR
10679 {
10680 .name = "stat",
10681 .read_map = cpuacct_stats_show,
10682 },
d842de87
SV
10683};
10684
32cd756a 10685static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10686{
32cd756a 10687 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10688}
10689
10690/*
10691 * charge this task's execution time to its accounting group.
10692 *
10693 * called with rq->lock held.
10694 */
10695static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10696{
10697 struct cpuacct *ca;
934352f2 10698 int cpu;
d842de87 10699
c40c6f85 10700 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10701 return;
10702
934352f2 10703 cpu = task_cpu(tsk);
a18b83b7
BR
10704
10705 rcu_read_lock();
10706
d842de87 10707 ca = task_ca(tsk);
d842de87 10708
934352f2 10709 for (; ca; ca = ca->parent) {
b36128c8 10710 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10711 *cpuusage += cputime;
10712 }
a18b83b7
BR
10713
10714 rcu_read_unlock();
d842de87
SV
10715}
10716
ef12fefa
BR
10717/*
10718 * Charge the system/user time to the task's accounting group.
10719 */
10720static void cpuacct_update_stats(struct task_struct *tsk,
10721 enum cpuacct_stat_index idx, cputime_t val)
10722{
10723 struct cpuacct *ca;
10724
10725 if (unlikely(!cpuacct_subsys.active))
10726 return;
10727
10728 rcu_read_lock();
10729 ca = task_ca(tsk);
10730
10731 do {
10732 percpu_counter_add(&ca->cpustat[idx], val);
10733 ca = ca->parent;
10734 } while (ca);
10735 rcu_read_unlock();
10736}
10737
d842de87
SV
10738struct cgroup_subsys cpuacct_subsys = {
10739 .name = "cpuacct",
10740 .create = cpuacct_create,
10741 .destroy = cpuacct_destroy,
10742 .populate = cpuacct_populate,
10743 .subsys_id = cpuacct_subsys_id,
10744};
10745#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10746
10747#ifndef CONFIG_SMP
10748
10749int rcu_expedited_torture_stats(char *page)
10750{
10751 return 0;
10752}
10753EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10754
10755void synchronize_sched_expedited(void)
10756{
10757}
10758EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10759
10760#else /* #ifndef CONFIG_SMP */
10761
10762static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10763static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10764
10765#define RCU_EXPEDITED_STATE_POST -2
10766#define RCU_EXPEDITED_STATE_IDLE -1
10767
10768static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10769
10770int rcu_expedited_torture_stats(char *page)
10771{
10772 int cnt = 0;
10773 int cpu;
10774
10775 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10776 for_each_online_cpu(cpu) {
10777 cnt += sprintf(&page[cnt], " %d:%d",
10778 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10779 }
10780 cnt += sprintf(&page[cnt], "\n");
10781 return cnt;
10782}
10783EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10784
10785static long synchronize_sched_expedited_count;
10786
10787/*
10788 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10789 * approach to force grace period to end quickly. This consumes
10790 * significant time on all CPUs, and is thus not recommended for
10791 * any sort of common-case code.
10792 *
10793 * Note that it is illegal to call this function while holding any
10794 * lock that is acquired by a CPU-hotplug notifier. Failing to
10795 * observe this restriction will result in deadlock.
10796 */
10797void synchronize_sched_expedited(void)
10798{
10799 int cpu;
10800 unsigned long flags;
10801 bool need_full_sync = 0;
10802 struct rq *rq;
10803 struct migration_req *req;
10804 long snap;
10805 int trycount = 0;
10806
10807 smp_mb(); /* ensure prior mod happens before capturing snap. */
10808 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10809 get_online_cpus();
10810 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10811 put_online_cpus();
10812 if (trycount++ < 10)
10813 udelay(trycount * num_online_cpus());
10814 else {
10815 synchronize_sched();
10816 return;
10817 }
10818 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10819 smp_mb(); /* ensure test happens before caller kfree */
10820 return;
10821 }
10822 get_online_cpus();
10823 }
10824 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10825 for_each_online_cpu(cpu) {
10826 rq = cpu_rq(cpu);
10827 req = &per_cpu(rcu_migration_req, cpu);
10828 init_completion(&req->done);
10829 req->task = NULL;
10830 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10831 spin_lock_irqsave(&rq->lock, flags);
10832 list_add(&req->list, &rq->migration_queue);
10833 spin_unlock_irqrestore(&rq->lock, flags);
10834 wake_up_process(rq->migration_thread);
10835 }
10836 for_each_online_cpu(cpu) {
10837 rcu_expedited_state = cpu;
10838 req = &per_cpu(rcu_migration_req, cpu);
10839 rq = cpu_rq(cpu);
10840 wait_for_completion(&req->done);
10841 spin_lock_irqsave(&rq->lock, flags);
10842 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10843 need_full_sync = 1;
10844 req->dest_cpu = RCU_MIGRATION_IDLE;
10845 spin_unlock_irqrestore(&rq->lock, flags);
10846 }
10847 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10848 mutex_unlock(&rcu_sched_expedited_mutex);
10849 put_online_cpus();
10850 if (need_full_sync)
10851 synchronize_sched();
10852}
10853EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10854
10855#endif /* #else #ifndef CONFIG_SMP */