]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched.c
sched: rt-bandwidth group disable fixes
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
0b148fa0
PZ
207static inline int rt_bandwidth_enabled(void);
208
d0b27fa7
PZ
209static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
210{
211 ktime_t now;
212
0b148fa0 213 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
214 return;
215
216 if (hrtimer_active(&rt_b->rt_period_timer))
217 return;
218
219 spin_lock(&rt_b->rt_runtime_lock);
220 for (;;) {
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 break;
223
224 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
225 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
226 hrtimer_start(&rt_b->rt_period_timer,
227 rt_b->rt_period_timer.expires,
228 HRTIMER_MODE_ABS);
229 }
230 spin_unlock(&rt_b->rt_runtime_lock);
231}
232
233#ifdef CONFIG_RT_GROUP_SCHED
234static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
235{
236 hrtimer_cancel(&rt_b->rt_period_timer);
237}
238#endif
239
712555ee
HC
240/*
241 * sched_domains_mutex serializes calls to arch_init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
243 */
244static DEFINE_MUTEX(sched_domains_mutex);
245
052f1dc7 246#ifdef CONFIG_GROUP_SCHED
29f59db3 247
68318b8e
SV
248#include <linux/cgroup.h>
249
29f59db3
SV
250struct cfs_rq;
251
6f505b16
PZ
252static LIST_HEAD(task_groups);
253
29f59db3 254/* task group related information */
4cf86d77 255struct task_group {
052f1dc7 256#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
257 struct cgroup_subsys_state css;
258#endif
052f1dc7
PZ
259
260#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
261 /* schedulable entities of this group on each cpu */
262 struct sched_entity **se;
263 /* runqueue "owned" by this group on each cpu */
264 struct cfs_rq **cfs_rq;
265 unsigned long shares;
052f1dc7
PZ
266#endif
267
268#ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
d0b27fa7 272 struct rt_bandwidth rt_bandwidth;
052f1dc7 273#endif
6b2d7700 274
ae8393e5 275 struct rcu_head rcu;
6f505b16 276 struct list_head list;
f473aa5e
PZ
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
29f59db3
SV
281};
282
354d60c2 283#ifdef CONFIG_USER_SCHED
eff766a6
PZ
284
285/*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
296static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
302#endif /* CONFIG_RT_GROUP_SCHED */
303#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 304#define root_task_group init_task_group
6d6bc0ad 305#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
313#ifdef CONFIG_USER_SCHED
314# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 315#else /* !CONFIG_USER_SCHED */
052f1dc7 316# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 317#endif /* CONFIG_USER_SCHED */
052f1dc7 318
cb4ad1ff 319/*
2e084786
LJ
320 * A weight of 0 or 1 can cause arithmetics problems.
321 * A weight of a cfs_rq is the sum of weights of which entities
322 * are queued on this cfs_rq, so a weight of a entity should not be
323 * too large, so as the shares value of a task group.
cb4ad1ff
MX
324 * (The default weight is 1024 - so there's no practical
325 * limitation from this.)
326 */
18d95a28 327#define MIN_SHARES 2
2e084786 328#define MAX_SHARES (1UL << 18)
18d95a28 329
052f1dc7
PZ
330static int init_task_group_load = INIT_TASK_GROUP_LOAD;
331#endif
332
29f59db3 333/* Default task group.
3a252015 334 * Every task in system belong to this group at bootup.
29f59db3 335 */
434d53b0 336struct task_group init_task_group;
29f59db3
SV
337
338/* return group to which a task belongs */
4cf86d77 339static inline struct task_group *task_group(struct task_struct *p)
29f59db3 340{
4cf86d77 341 struct task_group *tg;
9b5b7751 342
052f1dc7 343#ifdef CONFIG_USER_SCHED
24e377a8 344 tg = p->user->tg;
052f1dc7 345#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
346 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
347 struct task_group, css);
24e377a8 348#else
41a2d6cf 349 tg = &init_task_group;
24e377a8 350#endif
9b5b7751 351 return tg;
29f59db3
SV
352}
353
354/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 355static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 356{
052f1dc7 357#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
358 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
359 p->se.parent = task_group(p)->se[cpu];
052f1dc7 360#endif
6f505b16 361
052f1dc7 362#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
363 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
364 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 365#endif
29f59db3
SV
366}
367
368#else
369
6f505b16 370static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
371static inline struct task_group *task_group(struct task_struct *p)
372{
373 return NULL;
374}
29f59db3 375
052f1dc7 376#endif /* CONFIG_GROUP_SCHED */
29f59db3 377
6aa645ea
IM
378/* CFS-related fields in a runqueue */
379struct cfs_rq {
380 struct load_weight load;
381 unsigned long nr_running;
382
6aa645ea 383 u64 exec_clock;
e9acbff6 384 u64 min_vruntime;
103638d9 385 u64 pair_start;
6aa645ea
IM
386
387 struct rb_root tasks_timeline;
388 struct rb_node *rb_leftmost;
4a55bd5e
PZ
389
390 struct list_head tasks;
391 struct list_head *balance_iterator;
392
393 /*
394 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
395 * It is set to NULL otherwise (i.e when none are currently running).
396 */
aa2ac252 397 struct sched_entity *curr, *next;
ddc97297
PZ
398
399 unsigned long nr_spread_over;
400
62160e3f 401#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
402 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
403
41a2d6cf
IM
404 /*
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
408 *
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
411 */
41a2d6cf
IM
412 struct list_head leaf_cfs_rq_list;
413 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
414
415#ifdef CONFIG_SMP
c09595f6 416 /*
c8cba857 417 * the part of load.weight contributed by tasks
c09595f6 418 */
c8cba857 419 unsigned long task_weight;
c09595f6 420
c8cba857
PZ
421 /*
422 * h_load = weight * f(tg)
423 *
424 * Where f(tg) is the recursive weight fraction assigned to
425 * this group.
426 */
427 unsigned long h_load;
c09595f6 428
c8cba857
PZ
429 /*
430 * this cpu's part of tg->shares
431 */
432 unsigned long shares;
f1d239f7
PZ
433
434 /*
435 * load.weight at the time we set shares
436 */
437 unsigned long rq_weight;
c09595f6 438#endif
6aa645ea
IM
439#endif
440};
1da177e4 441
6aa645ea
IM
442/* Real-Time classes' related field in a runqueue: */
443struct rt_rq {
444 struct rt_prio_array active;
63489e45 445 unsigned long rt_nr_running;
052f1dc7 446#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
447 int highest_prio; /* highest queued rt task prio */
448#endif
fa85ae24 449#ifdef CONFIG_SMP
73fe6aae 450 unsigned long rt_nr_migratory;
a22d7fc1 451 int overloaded;
fa85ae24 452#endif
6f505b16 453 int rt_throttled;
fa85ae24 454 u64 rt_time;
ac086bc2 455 u64 rt_runtime;
ea736ed5 456 /* Nests inside the rq lock: */
ac086bc2 457 spinlock_t rt_runtime_lock;
6f505b16 458
052f1dc7 459#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
460 unsigned long rt_nr_boosted;
461
6f505b16
PZ
462 struct rq *rq;
463 struct list_head leaf_rt_rq_list;
464 struct task_group *tg;
465 struct sched_rt_entity *rt_se;
466#endif
6aa645ea
IM
467};
468
57d885fe
GH
469#ifdef CONFIG_SMP
470
471/*
472 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
473 * variables. Each exclusive cpuset essentially defines an island domain by
474 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
475 * exclusive cpuset is created, we also create and attach a new root-domain
476 * object.
477 *
57d885fe
GH
478 */
479struct root_domain {
480 atomic_t refcount;
481 cpumask_t span;
482 cpumask_t online;
637f5085 483
0eab9146 484 /*
637f5085
GH
485 * The "RT overload" flag: it gets set if a CPU has more than
486 * one runnable RT task.
487 */
488 cpumask_t rto_mask;
0eab9146 489 atomic_t rto_count;
6e0534f2
GH
490#ifdef CONFIG_SMP
491 struct cpupri cpupri;
492#endif
57d885fe
GH
493};
494
dc938520
GH
495/*
496 * By default the system creates a single root-domain with all cpus as
497 * members (mimicking the global state we have today).
498 */
57d885fe
GH
499static struct root_domain def_root_domain;
500
501#endif
502
1da177e4
LT
503/*
504 * This is the main, per-CPU runqueue data structure.
505 *
506 * Locking rule: those places that want to lock multiple runqueues
507 * (such as the load balancing or the thread migration code), lock
508 * acquire operations must be ordered by ascending &runqueue.
509 */
70b97a7f 510struct rq {
d8016491
IM
511 /* runqueue lock: */
512 spinlock_t lock;
1da177e4
LT
513
514 /*
515 * nr_running and cpu_load should be in the same cacheline because
516 * remote CPUs use both these fields when doing load calculation.
517 */
518 unsigned long nr_running;
6aa645ea
IM
519 #define CPU_LOAD_IDX_MAX 5
520 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 521 unsigned char idle_at_tick;
46cb4b7c 522#ifdef CONFIG_NO_HZ
15934a37 523 unsigned long last_tick_seen;
46cb4b7c
SS
524 unsigned char in_nohz_recently;
525#endif
d8016491
IM
526 /* capture load from *all* tasks on this cpu: */
527 struct load_weight load;
6aa645ea
IM
528 unsigned long nr_load_updates;
529 u64 nr_switches;
530
531 struct cfs_rq cfs;
6f505b16 532 struct rt_rq rt;
6f505b16 533
6aa645ea 534#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
535 /* list of leaf cfs_rq on this cpu: */
536 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
537#endif
538#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 539 struct list_head leaf_rt_rq_list;
1da177e4 540#endif
1da177e4
LT
541
542 /*
543 * This is part of a global counter where only the total sum
544 * over all CPUs matters. A task can increase this counter on
545 * one CPU and if it got migrated afterwards it may decrease
546 * it on another CPU. Always updated under the runqueue lock:
547 */
548 unsigned long nr_uninterruptible;
549
36c8b586 550 struct task_struct *curr, *idle;
c9819f45 551 unsigned long next_balance;
1da177e4 552 struct mm_struct *prev_mm;
6aa645ea 553
3e51f33f 554 u64 clock;
6aa645ea 555
1da177e4
LT
556 atomic_t nr_iowait;
557
558#ifdef CONFIG_SMP
0eab9146 559 struct root_domain *rd;
1da177e4
LT
560 struct sched_domain *sd;
561
562 /* For active balancing */
563 int active_balance;
564 int push_cpu;
d8016491
IM
565 /* cpu of this runqueue: */
566 int cpu;
1f11eb6a 567 int online;
1da177e4 568
a8a51d5e 569 unsigned long avg_load_per_task;
1da177e4 570
36c8b586 571 struct task_struct *migration_thread;
1da177e4
LT
572 struct list_head migration_queue;
573#endif
574
8f4d37ec 575#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
576#ifdef CONFIG_SMP
577 int hrtick_csd_pending;
578 struct call_single_data hrtick_csd;
579#endif
8f4d37ec
PZ
580 struct hrtimer hrtick_timer;
581#endif
582
1da177e4
LT
583#ifdef CONFIG_SCHEDSTATS
584 /* latency stats */
585 struct sched_info rq_sched_info;
586
587 /* sys_sched_yield() stats */
480b9434
KC
588 unsigned int yld_exp_empty;
589 unsigned int yld_act_empty;
590 unsigned int yld_both_empty;
591 unsigned int yld_count;
1da177e4
LT
592
593 /* schedule() stats */
480b9434
KC
594 unsigned int sched_switch;
595 unsigned int sched_count;
596 unsigned int sched_goidle;
1da177e4
LT
597
598 /* try_to_wake_up() stats */
480b9434
KC
599 unsigned int ttwu_count;
600 unsigned int ttwu_local;
b8efb561
IM
601
602 /* BKL stats */
480b9434 603 unsigned int bkl_count;
1da177e4
LT
604#endif
605};
606
f34e3b61 607static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 608
dd41f596
IM
609static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
610{
611 rq->curr->sched_class->check_preempt_curr(rq, p);
612}
613
0a2966b4
CL
614static inline int cpu_of(struct rq *rq)
615{
616#ifdef CONFIG_SMP
617 return rq->cpu;
618#else
619 return 0;
620#endif
621}
622
674311d5
NP
623/*
624 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 625 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
626 *
627 * The domain tree of any CPU may only be accessed from within
628 * preempt-disabled sections.
629 */
48f24c4d
IM
630#define for_each_domain(cpu, __sd) \
631 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
632
633#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
634#define this_rq() (&__get_cpu_var(runqueues))
635#define task_rq(p) cpu_rq(task_cpu(p))
636#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
637
3e51f33f
PZ
638static inline void update_rq_clock(struct rq *rq)
639{
640 rq->clock = sched_clock_cpu(cpu_of(rq));
641}
642
bf5c91ba
IM
643/*
644 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 */
646#ifdef CONFIG_SCHED_DEBUG
647# define const_debug __read_mostly
648#else
649# define const_debug static const
650#endif
651
017730c1
IM
652/**
653 * runqueue_is_locked
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
659int runqueue_is_locked(void)
660{
661 int cpu = get_cpu();
662 struct rq *rq = cpu_rq(cpu);
663 int ret;
664
665 ret = spin_is_locked(&rq->lock);
666 put_cpu();
667 return ret;
668}
669
bf5c91ba
IM
670/*
671 * Debugging: various feature bits
672 */
f00b45c1
PZ
673
674#define SCHED_FEAT(name, enabled) \
675 __SCHED_FEAT_##name ,
676
bf5c91ba 677enum {
f00b45c1 678#include "sched_features.h"
bf5c91ba
IM
679};
680
f00b45c1
PZ
681#undef SCHED_FEAT
682
683#define SCHED_FEAT(name, enabled) \
684 (1UL << __SCHED_FEAT_##name) * enabled |
685
bf5c91ba 686const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
687#include "sched_features.h"
688 0;
689
690#undef SCHED_FEAT
691
692#ifdef CONFIG_SCHED_DEBUG
693#define SCHED_FEAT(name, enabled) \
694 #name ,
695
983ed7a6 696static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
697#include "sched_features.h"
698 NULL
699};
700
701#undef SCHED_FEAT
702
983ed7a6 703static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
704{
705 filp->private_data = inode->i_private;
706 return 0;
707}
708
709static ssize_t
710sched_feat_read(struct file *filp, char __user *ubuf,
711 size_t cnt, loff_t *ppos)
712{
713 char *buf;
714 int r = 0;
715 int len = 0;
716 int i;
717
718 for (i = 0; sched_feat_names[i]; i++) {
719 len += strlen(sched_feat_names[i]);
720 len += 4;
721 }
722
723 buf = kmalloc(len + 2, GFP_KERNEL);
724 if (!buf)
725 return -ENOMEM;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 if (sysctl_sched_features & (1UL << i))
729 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
730 else
c24b7c52 731 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
732 }
733
734 r += sprintf(buf + r, "\n");
735 WARN_ON(r >= len + 2);
736
737 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
738
739 kfree(buf);
740
741 return r;
742}
743
744static ssize_t
745sched_feat_write(struct file *filp, const char __user *ubuf,
746 size_t cnt, loff_t *ppos)
747{
748 char buf[64];
749 char *cmp = buf;
750 int neg = 0;
751 int i;
752
753 if (cnt > 63)
754 cnt = 63;
755
756 if (copy_from_user(&buf, ubuf, cnt))
757 return -EFAULT;
758
759 buf[cnt] = 0;
760
c24b7c52 761 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
762 neg = 1;
763 cmp += 3;
764 }
765
766 for (i = 0; sched_feat_names[i]; i++) {
767 int len = strlen(sched_feat_names[i]);
768
769 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
770 if (neg)
771 sysctl_sched_features &= ~(1UL << i);
772 else
773 sysctl_sched_features |= (1UL << i);
774 break;
775 }
776 }
777
778 if (!sched_feat_names[i])
779 return -EINVAL;
780
781 filp->f_pos += cnt;
782
783 return cnt;
784}
785
786static struct file_operations sched_feat_fops = {
787 .open = sched_feat_open,
788 .read = sched_feat_read,
789 .write = sched_feat_write,
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
0b148fa0
PZ
844static inline int rt_bandwidth_enabled(void)
845{
846 return sysctl_sched_rt_runtime >= 0;
847}
848
1da177e4 849#ifndef prepare_arch_switch
4866cde0
NP
850# define prepare_arch_switch(next) do { } while (0)
851#endif
852#ifndef finish_arch_switch
853# define finish_arch_switch(prev) do { } while (0)
854#endif
855
051a1d1a
DA
856static inline int task_current(struct rq *rq, struct task_struct *p)
857{
858 return rq->curr == p;
859}
860
4866cde0 861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 862static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 863{
051a1d1a 864 return task_current(rq, p);
4866cde0
NP
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869}
870
70b97a7f 871static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 872{
da04c035
IM
873#ifdef CONFIG_DEBUG_SPINLOCK
874 /* this is a valid case when another task releases the spinlock */
875 rq->lock.owner = current;
876#endif
8a25d5de
IM
877 /*
878 * If we are tracking spinlock dependencies then we have to
879 * fix up the runqueue lock - which gets 'carried over' from
880 * prev into current:
881 */
882 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
883
4866cde0
NP
884 spin_unlock_irq(&rq->lock);
885}
886
887#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 888static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 return p->oncpu;
892#else
051a1d1a 893 return task_current(rq, p);
4866cde0
NP
894#endif
895}
896
70b97a7f 897static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * We can optimise this out completely for !SMP, because the
902 * SMP rebalancing from interrupt is the only thing that cares
903 * here.
904 */
905 next->oncpu = 1;
906#endif
907#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
908 spin_unlock_irq(&rq->lock);
909#else
910 spin_unlock(&rq->lock);
911#endif
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
915{
916#ifdef CONFIG_SMP
917 /*
918 * After ->oncpu is cleared, the task can be moved to a different CPU.
919 * We must ensure this doesn't happen until the switch is completely
920 * finished.
921 */
922 smp_wmb();
923 prev->oncpu = 0;
924#endif
925#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
926 local_irq_enable();
1da177e4 927#endif
4866cde0
NP
928}
929#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 930
b29739f9
IM
931/*
932 * __task_rq_lock - lock the runqueue a given task resides on.
933 * Must be called interrupts disabled.
934 */
70b97a7f 935static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
936 __acquires(rq->lock)
937{
3a5c359a
AK
938 for (;;) {
939 struct rq *rq = task_rq(p);
940 spin_lock(&rq->lock);
941 if (likely(rq == task_rq(p)))
942 return rq;
b29739f9 943 spin_unlock(&rq->lock);
b29739f9 944 }
b29739f9
IM
945}
946
1da177e4
LT
947/*
948 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 949 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
950 * explicitly disabling preemption.
951 */
70b97a7f 952static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
953 __acquires(rq->lock)
954{
70b97a7f 955 struct rq *rq;
1da177e4 956
3a5c359a
AK
957 for (;;) {
958 local_irq_save(*flags);
959 rq = task_rq(p);
960 spin_lock(&rq->lock);
961 if (likely(rq == task_rq(p)))
962 return rq;
1da177e4 963 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 964 }
1da177e4
LT
965}
966
a9957449 967static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
968 __releases(rq->lock)
969{
970 spin_unlock(&rq->lock);
971}
972
70b97a7f 973static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
974 __releases(rq->lock)
975{
976 spin_unlock_irqrestore(&rq->lock, *flags);
977}
978
1da177e4 979/*
cc2a73b5 980 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 981 */
a9957449 982static struct rq *this_rq_lock(void)
1da177e4
LT
983 __acquires(rq->lock)
984{
70b97a7f 985 struct rq *rq;
1da177e4
LT
986
987 local_irq_disable();
988 rq = this_rq();
989 spin_lock(&rq->lock);
990
991 return rq;
992}
993
8f4d37ec
PZ
994#ifdef CONFIG_SCHED_HRTICK
995/*
996 * Use HR-timers to deliver accurate preemption points.
997 *
998 * Its all a bit involved since we cannot program an hrt while holding the
999 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1000 * reschedule event.
1001 *
1002 * When we get rescheduled we reprogram the hrtick_timer outside of the
1003 * rq->lock.
1004 */
8f4d37ec
PZ
1005
1006/*
1007 * Use hrtick when:
1008 * - enabled by features
1009 * - hrtimer is actually high res
1010 */
1011static inline int hrtick_enabled(struct rq *rq)
1012{
1013 if (!sched_feat(HRTICK))
1014 return 0;
ba42059f 1015 if (!cpu_active(cpu_of(rq)))
b328ca18 1016 return 0;
8f4d37ec
PZ
1017 return hrtimer_is_hres_active(&rq->hrtick_timer);
1018}
1019
8f4d37ec
PZ
1020static void hrtick_clear(struct rq *rq)
1021{
1022 if (hrtimer_active(&rq->hrtick_timer))
1023 hrtimer_cancel(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026/*
1027 * High-resolution timer tick.
1028 * Runs from hardirq context with interrupts disabled.
1029 */
1030static enum hrtimer_restart hrtick(struct hrtimer *timer)
1031{
1032 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1033
1034 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1035
1036 spin_lock(&rq->lock);
3e51f33f 1037 update_rq_clock(rq);
8f4d37ec
PZ
1038 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1039 spin_unlock(&rq->lock);
1040
1041 return HRTIMER_NORESTART;
1042}
1043
95e904c7 1044#ifdef CONFIG_SMP
31656519
PZ
1045/*
1046 * called from hardirq (IPI) context
1047 */
1048static void __hrtick_start(void *arg)
b328ca18 1049{
31656519 1050 struct rq *rq = arg;
b328ca18 1051
31656519
PZ
1052 spin_lock(&rq->lock);
1053 hrtimer_restart(&rq->hrtick_timer);
1054 rq->hrtick_csd_pending = 0;
1055 spin_unlock(&rq->lock);
b328ca18
PZ
1056}
1057
31656519
PZ
1058/*
1059 * Called to set the hrtick timer state.
1060 *
1061 * called with rq->lock held and irqs disabled
1062 */
1063static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1064{
31656519
PZ
1065 struct hrtimer *timer = &rq->hrtick_timer;
1066 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1067
31656519
PZ
1068 timer->expires = time;
1069
1070 if (rq == this_rq()) {
1071 hrtimer_restart(timer);
1072 } else if (!rq->hrtick_csd_pending) {
1073 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1074 rq->hrtick_csd_pending = 1;
1075 }
b328ca18
PZ
1076}
1077
1078static int
1079hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1080{
1081 int cpu = (int)(long)hcpu;
1082
1083 switch (action) {
1084 case CPU_UP_CANCELED:
1085 case CPU_UP_CANCELED_FROZEN:
1086 case CPU_DOWN_PREPARE:
1087 case CPU_DOWN_PREPARE_FROZEN:
1088 case CPU_DEAD:
1089 case CPU_DEAD_FROZEN:
31656519 1090 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1091 return NOTIFY_OK;
1092 }
1093
1094 return NOTIFY_DONE;
1095}
1096
1097static void init_hrtick(void)
1098{
1099 hotcpu_notifier(hotplug_hrtick, 0);
1100}
31656519
PZ
1101#else
1102/*
1103 * Called to set the hrtick timer state.
1104 *
1105 * called with rq->lock held and irqs disabled
1106 */
1107static void hrtick_start(struct rq *rq, u64 delay)
1108{
1109 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1110}
b328ca18 1111
31656519 1112static void init_hrtick(void)
8f4d37ec 1113{
8f4d37ec 1114}
31656519 1115#endif /* CONFIG_SMP */
8f4d37ec 1116
31656519 1117static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1118{
31656519
PZ
1119#ifdef CONFIG_SMP
1120 rq->hrtick_csd_pending = 0;
8f4d37ec 1121
31656519
PZ
1122 rq->hrtick_csd.flags = 0;
1123 rq->hrtick_csd.func = __hrtick_start;
1124 rq->hrtick_csd.info = rq;
1125#endif
8f4d37ec 1126
31656519
PZ
1127 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1128 rq->hrtick_timer.function = hrtick;
1129 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1130}
1131#else
1132static inline void hrtick_clear(struct rq *rq)
1133{
1134}
1135
8f4d37ec
PZ
1136static inline void init_rq_hrtick(struct rq *rq)
1137{
1138}
1139
b328ca18
PZ
1140static inline void init_hrtick(void)
1141{
1142}
8f4d37ec
PZ
1143#endif
1144
c24d20db
IM
1145/*
1146 * resched_task - mark a task 'to be rescheduled now'.
1147 *
1148 * On UP this means the setting of the need_resched flag, on SMP it
1149 * might also involve a cross-CPU call to trigger the scheduler on
1150 * the target CPU.
1151 */
1152#ifdef CONFIG_SMP
1153
1154#ifndef tsk_is_polling
1155#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1156#endif
1157
31656519 1158static void resched_task(struct task_struct *p)
c24d20db
IM
1159{
1160 int cpu;
1161
1162 assert_spin_locked(&task_rq(p)->lock);
1163
31656519 1164 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1165 return;
1166
31656519 1167 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1168
1169 cpu = task_cpu(p);
1170 if (cpu == smp_processor_id())
1171 return;
1172
1173 /* NEED_RESCHED must be visible before we test polling */
1174 smp_mb();
1175 if (!tsk_is_polling(p))
1176 smp_send_reschedule(cpu);
1177}
1178
1179static void resched_cpu(int cpu)
1180{
1181 struct rq *rq = cpu_rq(cpu);
1182 unsigned long flags;
1183
1184 if (!spin_trylock_irqsave(&rq->lock, flags))
1185 return;
1186 resched_task(cpu_curr(cpu));
1187 spin_unlock_irqrestore(&rq->lock, flags);
1188}
06d8308c
TG
1189
1190#ifdef CONFIG_NO_HZ
1191/*
1192 * When add_timer_on() enqueues a timer into the timer wheel of an
1193 * idle CPU then this timer might expire before the next timer event
1194 * which is scheduled to wake up that CPU. In case of a completely
1195 * idle system the next event might even be infinite time into the
1196 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1197 * leaves the inner idle loop so the newly added timer is taken into
1198 * account when the CPU goes back to idle and evaluates the timer
1199 * wheel for the next timer event.
1200 */
1201void wake_up_idle_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204
1205 if (cpu == smp_processor_id())
1206 return;
1207
1208 /*
1209 * This is safe, as this function is called with the timer
1210 * wheel base lock of (cpu) held. When the CPU is on the way
1211 * to idle and has not yet set rq->curr to idle then it will
1212 * be serialized on the timer wheel base lock and take the new
1213 * timer into account automatically.
1214 */
1215 if (rq->curr != rq->idle)
1216 return;
1217
1218 /*
1219 * We can set TIF_RESCHED on the idle task of the other CPU
1220 * lockless. The worst case is that the other CPU runs the
1221 * idle task through an additional NOOP schedule()
1222 */
1223 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1224
1225 /* NEED_RESCHED must be visible before we test polling */
1226 smp_mb();
1227 if (!tsk_is_polling(rq->idle))
1228 smp_send_reschedule(cpu);
1229}
6d6bc0ad 1230#endif /* CONFIG_NO_HZ */
06d8308c 1231
6d6bc0ad 1232#else /* !CONFIG_SMP */
31656519 1233static void resched_task(struct task_struct *p)
c24d20db
IM
1234{
1235 assert_spin_locked(&task_rq(p)->lock);
31656519 1236 set_tsk_need_resched(p);
c24d20db 1237}
6d6bc0ad 1238#endif /* CONFIG_SMP */
c24d20db 1239
45bf76df
IM
1240#if BITS_PER_LONG == 32
1241# define WMULT_CONST (~0UL)
1242#else
1243# define WMULT_CONST (1UL << 32)
1244#endif
1245
1246#define WMULT_SHIFT 32
1247
194081eb
IM
1248/*
1249 * Shift right and round:
1250 */
cf2ab469 1251#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1252
a7be37ac
PZ
1253/*
1254 * delta *= weight / lw
1255 */
cb1c4fc9 1256static unsigned long
45bf76df
IM
1257calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1258 struct load_weight *lw)
1259{
1260 u64 tmp;
1261
7a232e03
LJ
1262 if (!lw->inv_weight) {
1263 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1264 lw->inv_weight = 1;
1265 else
1266 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1267 / (lw->weight+1);
1268 }
45bf76df
IM
1269
1270 tmp = (u64)delta_exec * weight;
1271 /*
1272 * Check whether we'd overflow the 64-bit multiplication:
1273 */
194081eb 1274 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1275 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1276 WMULT_SHIFT/2);
1277 else
cf2ab469 1278 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1279
ecf691da 1280 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1281}
1282
1091985b 1283static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1284{
1285 lw->weight += inc;
e89996ae 1286 lw->inv_weight = 0;
45bf76df
IM
1287}
1288
1091985b 1289static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1290{
1291 lw->weight -= dec;
e89996ae 1292 lw->inv_weight = 0;
45bf76df
IM
1293}
1294
2dd73a4f
PW
1295/*
1296 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1297 * of tasks with abnormal "nice" values across CPUs the contribution that
1298 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1299 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1300 * scaled version of the new time slice allocation that they receive on time
1301 * slice expiry etc.
1302 */
1303
dd41f596
IM
1304#define WEIGHT_IDLEPRIO 2
1305#define WMULT_IDLEPRIO (1 << 31)
1306
1307/*
1308 * Nice levels are multiplicative, with a gentle 10% change for every
1309 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1310 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1311 * that remained on nice 0.
1312 *
1313 * The "10% effect" is relative and cumulative: from _any_ nice level,
1314 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1315 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1316 * If a task goes up by ~10% and another task goes down by ~10% then
1317 * the relative distance between them is ~25%.)
dd41f596
IM
1318 */
1319static const int prio_to_weight[40] = {
254753dc
IM
1320 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1321 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1322 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1323 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1324 /* 0 */ 1024, 820, 655, 526, 423,
1325 /* 5 */ 335, 272, 215, 172, 137,
1326 /* 10 */ 110, 87, 70, 56, 45,
1327 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1328};
1329
5714d2de
IM
1330/*
1331 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1332 *
1333 * In cases where the weight does not change often, we can use the
1334 * precalculated inverse to speed up arithmetics by turning divisions
1335 * into multiplications:
1336 */
dd41f596 1337static const u32 prio_to_wmult[40] = {
254753dc
IM
1338 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1339 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1340 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1341 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1342 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1343 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1344 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1345 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1346};
2dd73a4f 1347
dd41f596
IM
1348static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1349
1350/*
1351 * runqueue iterator, to support SMP load-balancing between different
1352 * scheduling classes, without having to expose their internal data
1353 * structures to the load-balancing proper:
1354 */
1355struct rq_iterator {
1356 void *arg;
1357 struct task_struct *(*start)(void *);
1358 struct task_struct *(*next)(void *);
1359};
1360
e1d1484f
PW
1361#ifdef CONFIG_SMP
1362static unsigned long
1363balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1364 unsigned long max_load_move, struct sched_domain *sd,
1365 enum cpu_idle_type idle, int *all_pinned,
1366 int *this_best_prio, struct rq_iterator *iterator);
1367
1368static int
1369iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1370 struct sched_domain *sd, enum cpu_idle_type idle,
1371 struct rq_iterator *iterator);
e1d1484f 1372#endif
dd41f596 1373
d842de87
SV
1374#ifdef CONFIG_CGROUP_CPUACCT
1375static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1376#else
1377static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1378#endif
1379
18d95a28
PZ
1380static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1381{
1382 update_load_add(&rq->load, load);
1383}
1384
1385static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1386{
1387 update_load_sub(&rq->load, load);
1388}
1389
e7693a36
GH
1390#ifdef CONFIG_SMP
1391static unsigned long source_load(int cpu, int type);
1392static unsigned long target_load(int cpu, int type);
e7693a36 1393static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1394
a8a51d5e
PZ
1395static unsigned long cpu_avg_load_per_task(int cpu)
1396{
1397 struct rq *rq = cpu_rq(cpu);
1398
1399 if (rq->nr_running)
1400 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1401
1402 return rq->avg_load_per_task;
1403}
18d95a28
PZ
1404
1405#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1406
c8cba857 1407typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1408
1409/*
1410 * Iterate the full tree, calling @down when first entering a node and @up when
1411 * leaving it for the final time.
1412 */
c8cba857
PZ
1413static void
1414walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1415{
1416 struct task_group *parent, *child;
1417
1418 rcu_read_lock();
1419 parent = &root_task_group;
1420down:
b6a86c74 1421 (*down)(parent, cpu, sd);
c09595f6
PZ
1422 list_for_each_entry_rcu(child, &parent->children, siblings) {
1423 parent = child;
1424 goto down;
1425
1426up:
1427 continue;
1428 }
b6a86c74 1429 (*up)(parent, cpu, sd);
c09595f6
PZ
1430
1431 child = parent;
1432 parent = parent->parent;
1433 if (parent)
1434 goto up;
1435 rcu_read_unlock();
1436}
1437
c09595f6
PZ
1438static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1439
1440/*
1441 * Calculate and set the cpu's group shares.
1442 */
1443static void
b6a86c74 1444__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1445 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1446{
c09595f6
PZ
1447 int boost = 0;
1448 unsigned long shares;
1449 unsigned long rq_weight;
1450
c8cba857 1451 if (!tg->se[cpu])
c09595f6
PZ
1452 return;
1453
c8cba857 1454 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1455
1456 /*
1457 * If there are currently no tasks on the cpu pretend there is one of
1458 * average load so that when a new task gets to run here it will not
1459 * get delayed by group starvation.
1460 */
1461 if (!rq_weight) {
1462 boost = 1;
1463 rq_weight = NICE_0_LOAD;
1464 }
1465
c8cba857
PZ
1466 if (unlikely(rq_weight > sd_rq_weight))
1467 rq_weight = sd_rq_weight;
1468
c09595f6
PZ
1469 /*
1470 * \Sum shares * rq_weight
1471 * shares = -----------------------
1472 * \Sum rq_weight
1473 *
1474 */
c8cba857 1475 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1476
1477 /*
1478 * record the actual number of shares, not the boosted amount.
1479 */
c8cba857 1480 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1481 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1482
1483 if (shares < MIN_SHARES)
1484 shares = MIN_SHARES;
1485 else if (shares > MAX_SHARES)
1486 shares = MAX_SHARES;
1487
c8cba857 1488 __set_se_shares(tg->se[cpu], shares);
18d95a28 1489}
c09595f6
PZ
1490
1491/*
c8cba857
PZ
1492 * Re-compute the task group their per cpu shares over the given domain.
1493 * This needs to be done in a bottom-up fashion because the rq weight of a
1494 * parent group depends on the shares of its child groups.
c09595f6
PZ
1495 */
1496static void
c8cba857 1497tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1498{
c8cba857
PZ
1499 unsigned long rq_weight = 0;
1500 unsigned long shares = 0;
1501 int i;
c09595f6 1502
c8cba857
PZ
1503 for_each_cpu_mask(i, sd->span) {
1504 rq_weight += tg->cfs_rq[i]->load.weight;
1505 shares += tg->cfs_rq[i]->shares;
c09595f6 1506 }
c09595f6 1507
c8cba857
PZ
1508 if ((!shares && rq_weight) || shares > tg->shares)
1509 shares = tg->shares;
1510
1511 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1512 shares = tg->shares;
c09595f6 1513
cd80917e
PZ
1514 if (!rq_weight)
1515 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1516
c09595f6
PZ
1517 for_each_cpu_mask(i, sd->span) {
1518 struct rq *rq = cpu_rq(i);
1519 unsigned long flags;
1520
1521 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1522 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1523 spin_unlock_irqrestore(&rq->lock, flags);
1524 }
c09595f6
PZ
1525}
1526
1527/*
c8cba857
PZ
1528 * Compute the cpu's hierarchical load factor for each task group.
1529 * This needs to be done in a top-down fashion because the load of a child
1530 * group is a fraction of its parents load.
c09595f6 1531 */
b6a86c74 1532static void
c8cba857 1533tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1534{
c8cba857 1535 unsigned long load;
c09595f6 1536
c8cba857
PZ
1537 if (!tg->parent) {
1538 load = cpu_rq(cpu)->load.weight;
1539 } else {
1540 load = tg->parent->cfs_rq[cpu]->h_load;
1541 load *= tg->cfs_rq[cpu]->shares;
1542 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1543 }
c09595f6 1544
c8cba857 1545 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1546}
1547
c8cba857
PZ
1548static void
1549tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1550{
c09595f6
PZ
1551}
1552
c8cba857 1553static void update_shares(struct sched_domain *sd)
4d8d595d 1554{
2398f2c6
PZ
1555 u64 now = cpu_clock(raw_smp_processor_id());
1556 s64 elapsed = now - sd->last_update;
1557
1558 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1559 sd->last_update = now;
1560 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1561 }
4d8d595d
PZ
1562}
1563
3e5459b4
PZ
1564static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1565{
1566 spin_unlock(&rq->lock);
1567 update_shares(sd);
1568 spin_lock(&rq->lock);
1569}
1570
c8cba857 1571static void update_h_load(int cpu)
c09595f6 1572{
c8cba857 1573 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1574}
1575
c09595f6
PZ
1576#else
1577
c8cba857 1578static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1579{
1580}
1581
3e5459b4
PZ
1582static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583{
1584}
1585
18d95a28
PZ
1586#endif
1587
18d95a28
PZ
1588#endif
1589
30432094 1590#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1591static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1592{
30432094 1593#ifdef CONFIG_SMP
34e83e85
IM
1594 cfs_rq->shares = shares;
1595#endif
1596}
30432094 1597#endif
e7693a36 1598
dd41f596 1599#include "sched_stats.h"
dd41f596 1600#include "sched_idletask.c"
5522d5d5
IM
1601#include "sched_fair.c"
1602#include "sched_rt.c"
dd41f596
IM
1603#ifdef CONFIG_SCHED_DEBUG
1604# include "sched_debug.c"
1605#endif
1606
1607#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1608#define for_each_class(class) \
1609 for (class = sched_class_highest; class; class = class->next)
dd41f596 1610
c09595f6 1611static void inc_nr_running(struct rq *rq)
9c217245
IM
1612{
1613 rq->nr_running++;
9c217245
IM
1614}
1615
c09595f6 1616static void dec_nr_running(struct rq *rq)
9c217245
IM
1617{
1618 rq->nr_running--;
9c217245
IM
1619}
1620
45bf76df
IM
1621static void set_load_weight(struct task_struct *p)
1622{
1623 if (task_has_rt_policy(p)) {
dd41f596
IM
1624 p->se.load.weight = prio_to_weight[0] * 2;
1625 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1626 return;
1627 }
45bf76df 1628
dd41f596
IM
1629 /*
1630 * SCHED_IDLE tasks get minimal weight:
1631 */
1632 if (p->policy == SCHED_IDLE) {
1633 p->se.load.weight = WEIGHT_IDLEPRIO;
1634 p->se.load.inv_weight = WMULT_IDLEPRIO;
1635 return;
1636 }
71f8bd46 1637
dd41f596
IM
1638 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1639 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1640}
1641
2087a1ad
GH
1642static void update_avg(u64 *avg, u64 sample)
1643{
1644 s64 diff = sample - *avg;
1645 *avg += diff >> 3;
1646}
1647
8159f87e 1648static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1649{
dd41f596 1650 sched_info_queued(p);
fd390f6a 1651 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1652 p->se.on_rq = 1;
71f8bd46
IM
1653}
1654
69be72c1 1655static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1656{
2087a1ad
GH
1657 if (sleep && p->se.last_wakeup) {
1658 update_avg(&p->se.avg_overlap,
1659 p->se.sum_exec_runtime - p->se.last_wakeup);
1660 p->se.last_wakeup = 0;
1661 }
1662
46ac22ba 1663 sched_info_dequeued(p);
f02231e5 1664 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1665 p->se.on_rq = 0;
71f8bd46
IM
1666}
1667
14531189 1668/*
dd41f596 1669 * __normal_prio - return the priority that is based on the static prio
14531189 1670 */
14531189
IM
1671static inline int __normal_prio(struct task_struct *p)
1672{
dd41f596 1673 return p->static_prio;
14531189
IM
1674}
1675
b29739f9
IM
1676/*
1677 * Calculate the expected normal priority: i.e. priority
1678 * without taking RT-inheritance into account. Might be
1679 * boosted by interactivity modifiers. Changes upon fork,
1680 * setprio syscalls, and whenever the interactivity
1681 * estimator recalculates.
1682 */
36c8b586 1683static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1684{
1685 int prio;
1686
e05606d3 1687 if (task_has_rt_policy(p))
b29739f9
IM
1688 prio = MAX_RT_PRIO-1 - p->rt_priority;
1689 else
1690 prio = __normal_prio(p);
1691 return prio;
1692}
1693
1694/*
1695 * Calculate the current priority, i.e. the priority
1696 * taken into account by the scheduler. This value might
1697 * be boosted by RT tasks, or might be boosted by
1698 * interactivity modifiers. Will be RT if the task got
1699 * RT-boosted. If not then it returns p->normal_prio.
1700 */
36c8b586 1701static int effective_prio(struct task_struct *p)
b29739f9
IM
1702{
1703 p->normal_prio = normal_prio(p);
1704 /*
1705 * If we are RT tasks or we were boosted to RT priority,
1706 * keep the priority unchanged. Otherwise, update priority
1707 * to the normal priority:
1708 */
1709 if (!rt_prio(p->prio))
1710 return p->normal_prio;
1711 return p->prio;
1712}
1713
1da177e4 1714/*
dd41f596 1715 * activate_task - move a task to the runqueue.
1da177e4 1716 */
dd41f596 1717static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1718{
d9514f6c 1719 if (task_contributes_to_load(p))
dd41f596 1720 rq->nr_uninterruptible--;
1da177e4 1721
8159f87e 1722 enqueue_task(rq, p, wakeup);
c09595f6 1723 inc_nr_running(rq);
1da177e4
LT
1724}
1725
1da177e4
LT
1726/*
1727 * deactivate_task - remove a task from the runqueue.
1728 */
2e1cb74a 1729static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1730{
d9514f6c 1731 if (task_contributes_to_load(p))
dd41f596
IM
1732 rq->nr_uninterruptible++;
1733
69be72c1 1734 dequeue_task(rq, p, sleep);
c09595f6 1735 dec_nr_running(rq);
1da177e4
LT
1736}
1737
1da177e4
LT
1738/**
1739 * task_curr - is this task currently executing on a CPU?
1740 * @p: the task in question.
1741 */
36c8b586 1742inline int task_curr(const struct task_struct *p)
1da177e4
LT
1743{
1744 return cpu_curr(task_cpu(p)) == p;
1745}
1746
dd41f596
IM
1747static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1748{
6f505b16 1749 set_task_rq(p, cpu);
dd41f596 1750#ifdef CONFIG_SMP
ce96b5ac
DA
1751 /*
1752 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1753 * successfuly executed on another CPU. We must ensure that updates of
1754 * per-task data have been completed by this moment.
1755 */
1756 smp_wmb();
dd41f596 1757 task_thread_info(p)->cpu = cpu;
dd41f596 1758#endif
2dd73a4f
PW
1759}
1760
cb469845
SR
1761static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1762 const struct sched_class *prev_class,
1763 int oldprio, int running)
1764{
1765 if (prev_class != p->sched_class) {
1766 if (prev_class->switched_from)
1767 prev_class->switched_from(rq, p, running);
1768 p->sched_class->switched_to(rq, p, running);
1769 } else
1770 p->sched_class->prio_changed(rq, p, oldprio, running);
1771}
1772
1da177e4 1773#ifdef CONFIG_SMP
c65cc870 1774
e958b360
TG
1775/* Used instead of source_load when we know the type == 0 */
1776static unsigned long weighted_cpuload(const int cpu)
1777{
1778 return cpu_rq(cpu)->load.weight;
1779}
1780
cc367732
IM
1781/*
1782 * Is this task likely cache-hot:
1783 */
e7693a36 1784static int
cc367732
IM
1785task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1786{
1787 s64 delta;
1788
f540a608
IM
1789 /*
1790 * Buddy candidates are cache hot:
1791 */
d25ce4cd 1792 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1793 return 1;
1794
cc367732
IM
1795 if (p->sched_class != &fair_sched_class)
1796 return 0;
1797
6bc1665b
IM
1798 if (sysctl_sched_migration_cost == -1)
1799 return 1;
1800 if (sysctl_sched_migration_cost == 0)
1801 return 0;
1802
cc367732
IM
1803 delta = now - p->se.exec_start;
1804
1805 return delta < (s64)sysctl_sched_migration_cost;
1806}
1807
1808
dd41f596 1809void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1810{
dd41f596
IM
1811 int old_cpu = task_cpu(p);
1812 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1813 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1814 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1815 u64 clock_offset;
dd41f596
IM
1816
1817 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1818
1819#ifdef CONFIG_SCHEDSTATS
1820 if (p->se.wait_start)
1821 p->se.wait_start -= clock_offset;
dd41f596
IM
1822 if (p->se.sleep_start)
1823 p->se.sleep_start -= clock_offset;
1824 if (p->se.block_start)
1825 p->se.block_start -= clock_offset;
cc367732
IM
1826 if (old_cpu != new_cpu) {
1827 schedstat_inc(p, se.nr_migrations);
1828 if (task_hot(p, old_rq->clock, NULL))
1829 schedstat_inc(p, se.nr_forced2_migrations);
1830 }
6cfb0d5d 1831#endif
2830cf8c
SV
1832 p->se.vruntime -= old_cfsrq->min_vruntime -
1833 new_cfsrq->min_vruntime;
dd41f596
IM
1834
1835 __set_task_cpu(p, new_cpu);
c65cc870
IM
1836}
1837
70b97a7f 1838struct migration_req {
1da177e4 1839 struct list_head list;
1da177e4 1840
36c8b586 1841 struct task_struct *task;
1da177e4
LT
1842 int dest_cpu;
1843
1da177e4 1844 struct completion done;
70b97a7f 1845};
1da177e4
LT
1846
1847/*
1848 * The task's runqueue lock must be held.
1849 * Returns true if you have to wait for migration thread.
1850 */
36c8b586 1851static int
70b97a7f 1852migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1853{
70b97a7f 1854 struct rq *rq = task_rq(p);
1da177e4
LT
1855
1856 /*
1857 * If the task is not on a runqueue (and not running), then
1858 * it is sufficient to simply update the task's cpu field.
1859 */
dd41f596 1860 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1861 set_task_cpu(p, dest_cpu);
1862 return 0;
1863 }
1864
1865 init_completion(&req->done);
1da177e4
LT
1866 req->task = p;
1867 req->dest_cpu = dest_cpu;
1868 list_add(&req->list, &rq->migration_queue);
48f24c4d 1869
1da177e4
LT
1870 return 1;
1871}
1872
1873/*
1874 * wait_task_inactive - wait for a thread to unschedule.
1875 *
85ba2d86
RM
1876 * If @match_state is nonzero, it's the @p->state value just checked and
1877 * not expected to change. If it changes, i.e. @p might have woken up,
1878 * then return zero. When we succeed in waiting for @p to be off its CPU,
1879 * we return a positive number (its total switch count). If a second call
1880 * a short while later returns the same number, the caller can be sure that
1881 * @p has remained unscheduled the whole time.
1882 *
1da177e4
LT
1883 * The caller must ensure that the task *will* unschedule sometime soon,
1884 * else this function might spin for a *long* time. This function can't
1885 * be called with interrupts off, or it may introduce deadlock with
1886 * smp_call_function() if an IPI is sent by the same process we are
1887 * waiting to become inactive.
1888 */
85ba2d86 1889unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1890{
1891 unsigned long flags;
dd41f596 1892 int running, on_rq;
85ba2d86 1893 unsigned long ncsw;
70b97a7f 1894 struct rq *rq;
1da177e4 1895
3a5c359a
AK
1896 for (;;) {
1897 /*
1898 * We do the initial early heuristics without holding
1899 * any task-queue locks at all. We'll only try to get
1900 * the runqueue lock when things look like they will
1901 * work out!
1902 */
1903 rq = task_rq(p);
fa490cfd 1904
3a5c359a
AK
1905 /*
1906 * If the task is actively running on another CPU
1907 * still, just relax and busy-wait without holding
1908 * any locks.
1909 *
1910 * NOTE! Since we don't hold any locks, it's not
1911 * even sure that "rq" stays as the right runqueue!
1912 * But we don't care, since "task_running()" will
1913 * return false if the runqueue has changed and p
1914 * is actually now running somewhere else!
1915 */
85ba2d86
RM
1916 while (task_running(rq, p)) {
1917 if (match_state && unlikely(p->state != match_state))
1918 return 0;
3a5c359a 1919 cpu_relax();
85ba2d86 1920 }
fa490cfd 1921
3a5c359a
AK
1922 /*
1923 * Ok, time to look more closely! We need the rq
1924 * lock now, to be *sure*. If we're wrong, we'll
1925 * just go back and repeat.
1926 */
1927 rq = task_rq_lock(p, &flags);
1928 running = task_running(rq, p);
1929 on_rq = p->se.on_rq;
85ba2d86
RM
1930 ncsw = 0;
1931 if (!match_state || p->state == match_state) {
1932 ncsw = p->nivcsw + p->nvcsw;
1933 if (unlikely(!ncsw))
1934 ncsw = 1;
1935 }
3a5c359a 1936 task_rq_unlock(rq, &flags);
fa490cfd 1937
85ba2d86
RM
1938 /*
1939 * If it changed from the expected state, bail out now.
1940 */
1941 if (unlikely(!ncsw))
1942 break;
1943
3a5c359a
AK
1944 /*
1945 * Was it really running after all now that we
1946 * checked with the proper locks actually held?
1947 *
1948 * Oops. Go back and try again..
1949 */
1950 if (unlikely(running)) {
1951 cpu_relax();
1952 continue;
1953 }
fa490cfd 1954
3a5c359a
AK
1955 /*
1956 * It's not enough that it's not actively running,
1957 * it must be off the runqueue _entirely_, and not
1958 * preempted!
1959 *
1960 * So if it wa still runnable (but just not actively
1961 * running right now), it's preempted, and we should
1962 * yield - it could be a while.
1963 */
1964 if (unlikely(on_rq)) {
1965 schedule_timeout_uninterruptible(1);
1966 continue;
1967 }
fa490cfd 1968
3a5c359a
AK
1969 /*
1970 * Ahh, all good. It wasn't running, and it wasn't
1971 * runnable, which means that it will never become
1972 * running in the future either. We're all done!
1973 */
1974 break;
1975 }
85ba2d86
RM
1976
1977 return ncsw;
1da177e4
LT
1978}
1979
1980/***
1981 * kick_process - kick a running thread to enter/exit the kernel
1982 * @p: the to-be-kicked thread
1983 *
1984 * Cause a process which is running on another CPU to enter
1985 * kernel-mode, without any delay. (to get signals handled.)
1986 *
1987 * NOTE: this function doesnt have to take the runqueue lock,
1988 * because all it wants to ensure is that the remote task enters
1989 * the kernel. If the IPI races and the task has been migrated
1990 * to another CPU then no harm is done and the purpose has been
1991 * achieved as well.
1992 */
36c8b586 1993void kick_process(struct task_struct *p)
1da177e4
LT
1994{
1995 int cpu;
1996
1997 preempt_disable();
1998 cpu = task_cpu(p);
1999 if ((cpu != smp_processor_id()) && task_curr(p))
2000 smp_send_reschedule(cpu);
2001 preempt_enable();
2002}
2003
2004/*
2dd73a4f
PW
2005 * Return a low guess at the load of a migration-source cpu weighted
2006 * according to the scheduling class and "nice" value.
1da177e4
LT
2007 *
2008 * We want to under-estimate the load of migration sources, to
2009 * balance conservatively.
2010 */
a9957449 2011static unsigned long source_load(int cpu, int type)
1da177e4 2012{
70b97a7f 2013 struct rq *rq = cpu_rq(cpu);
dd41f596 2014 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2015
93b75217 2016 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2017 return total;
b910472d 2018
dd41f596 2019 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2020}
2021
2022/*
2dd73a4f
PW
2023 * Return a high guess at the load of a migration-target cpu weighted
2024 * according to the scheduling class and "nice" value.
1da177e4 2025 */
a9957449 2026static unsigned long target_load(int cpu, int type)
1da177e4 2027{
70b97a7f 2028 struct rq *rq = cpu_rq(cpu);
dd41f596 2029 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2030
93b75217 2031 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2032 return total;
3b0bd9bc 2033
dd41f596 2034 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2035}
2036
147cbb4b
NP
2037/*
2038 * find_idlest_group finds and returns the least busy CPU group within the
2039 * domain.
2040 */
2041static struct sched_group *
2042find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2043{
2044 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2045 unsigned long min_load = ULONG_MAX, this_load = 0;
2046 int load_idx = sd->forkexec_idx;
2047 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2048
2049 do {
2050 unsigned long load, avg_load;
2051 int local_group;
2052 int i;
2053
da5a5522
BD
2054 /* Skip over this group if it has no CPUs allowed */
2055 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2056 continue;
da5a5522 2057
147cbb4b 2058 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2059
2060 /* Tally up the load of all CPUs in the group */
2061 avg_load = 0;
2062
363ab6f1 2063 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2064 /* Bias balancing toward cpus of our domain */
2065 if (local_group)
2066 load = source_load(i, load_idx);
2067 else
2068 load = target_load(i, load_idx);
2069
2070 avg_load += load;
2071 }
2072
2073 /* Adjust by relative CPU power of the group */
5517d86b
ED
2074 avg_load = sg_div_cpu_power(group,
2075 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2076
2077 if (local_group) {
2078 this_load = avg_load;
2079 this = group;
2080 } else if (avg_load < min_load) {
2081 min_load = avg_load;
2082 idlest = group;
2083 }
3a5c359a 2084 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2085
2086 if (!idlest || 100*this_load < imbalance*min_load)
2087 return NULL;
2088 return idlest;
2089}
2090
2091/*
0feaece9 2092 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2093 */
95cdf3b7 2094static int
7c16ec58
MT
2095find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2096 cpumask_t *tmp)
147cbb4b
NP
2097{
2098 unsigned long load, min_load = ULONG_MAX;
2099 int idlest = -1;
2100 int i;
2101
da5a5522 2102 /* Traverse only the allowed CPUs */
7c16ec58 2103 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2104
363ab6f1 2105 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2106 load = weighted_cpuload(i);
147cbb4b
NP
2107
2108 if (load < min_load || (load == min_load && i == this_cpu)) {
2109 min_load = load;
2110 idlest = i;
2111 }
2112 }
2113
2114 return idlest;
2115}
2116
476d139c
NP
2117/*
2118 * sched_balance_self: balance the current task (running on cpu) in domains
2119 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2120 * SD_BALANCE_EXEC.
2121 *
2122 * Balance, ie. select the least loaded group.
2123 *
2124 * Returns the target CPU number, or the same CPU if no balancing is needed.
2125 *
2126 * preempt must be disabled.
2127 */
2128static int sched_balance_self(int cpu, int flag)
2129{
2130 struct task_struct *t = current;
2131 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2132
c96d145e 2133 for_each_domain(cpu, tmp) {
9761eea8
IM
2134 /*
2135 * If power savings logic is enabled for a domain, stop there.
2136 */
5c45bf27
SS
2137 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2138 break;
476d139c
NP
2139 if (tmp->flags & flag)
2140 sd = tmp;
c96d145e 2141 }
476d139c 2142
039a1c41
PZ
2143 if (sd)
2144 update_shares(sd);
2145
476d139c 2146 while (sd) {
7c16ec58 2147 cpumask_t span, tmpmask;
476d139c 2148 struct sched_group *group;
1a848870
SS
2149 int new_cpu, weight;
2150
2151 if (!(sd->flags & flag)) {
2152 sd = sd->child;
2153 continue;
2154 }
476d139c
NP
2155
2156 span = sd->span;
2157 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2158 if (!group) {
2159 sd = sd->child;
2160 continue;
2161 }
476d139c 2162
7c16ec58 2163 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2164 if (new_cpu == -1 || new_cpu == cpu) {
2165 /* Now try balancing at a lower domain level of cpu */
2166 sd = sd->child;
2167 continue;
2168 }
476d139c 2169
1a848870 2170 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2171 cpu = new_cpu;
476d139c
NP
2172 sd = NULL;
2173 weight = cpus_weight(span);
2174 for_each_domain(cpu, tmp) {
2175 if (weight <= cpus_weight(tmp->span))
2176 break;
2177 if (tmp->flags & flag)
2178 sd = tmp;
2179 }
2180 /* while loop will break here if sd == NULL */
2181 }
2182
2183 return cpu;
2184}
2185
2186#endif /* CONFIG_SMP */
1da177e4 2187
1da177e4
LT
2188/***
2189 * try_to_wake_up - wake up a thread
2190 * @p: the to-be-woken-up thread
2191 * @state: the mask of task states that can be woken
2192 * @sync: do a synchronous wakeup?
2193 *
2194 * Put it on the run-queue if it's not already there. The "current"
2195 * thread is always on the run-queue (except when the actual
2196 * re-schedule is in progress), and as such you're allowed to do
2197 * the simpler "current->state = TASK_RUNNING" to mark yourself
2198 * runnable without the overhead of this.
2199 *
2200 * returns failure only if the task is already active.
2201 */
36c8b586 2202static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2203{
cc367732 2204 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2205 unsigned long flags;
2206 long old_state;
70b97a7f 2207 struct rq *rq;
1da177e4 2208
b85d0667
IM
2209 if (!sched_feat(SYNC_WAKEUPS))
2210 sync = 0;
2211
2398f2c6
PZ
2212#ifdef CONFIG_SMP
2213 if (sched_feat(LB_WAKEUP_UPDATE)) {
2214 struct sched_domain *sd;
2215
2216 this_cpu = raw_smp_processor_id();
2217 cpu = task_cpu(p);
2218
2219 for_each_domain(this_cpu, sd) {
2220 if (cpu_isset(cpu, sd->span)) {
2221 update_shares(sd);
2222 break;
2223 }
2224 }
2225 }
2226#endif
2227
04e2f174 2228 smp_wmb();
1da177e4
LT
2229 rq = task_rq_lock(p, &flags);
2230 old_state = p->state;
2231 if (!(old_state & state))
2232 goto out;
2233
dd41f596 2234 if (p->se.on_rq)
1da177e4
LT
2235 goto out_running;
2236
2237 cpu = task_cpu(p);
cc367732 2238 orig_cpu = cpu;
1da177e4
LT
2239 this_cpu = smp_processor_id();
2240
2241#ifdef CONFIG_SMP
2242 if (unlikely(task_running(rq, p)))
2243 goto out_activate;
2244
5d2f5a61
DA
2245 cpu = p->sched_class->select_task_rq(p, sync);
2246 if (cpu != orig_cpu) {
2247 set_task_cpu(p, cpu);
1da177e4
LT
2248 task_rq_unlock(rq, &flags);
2249 /* might preempt at this point */
2250 rq = task_rq_lock(p, &flags);
2251 old_state = p->state;
2252 if (!(old_state & state))
2253 goto out;
dd41f596 2254 if (p->se.on_rq)
1da177e4
LT
2255 goto out_running;
2256
2257 this_cpu = smp_processor_id();
2258 cpu = task_cpu(p);
2259 }
2260
e7693a36
GH
2261#ifdef CONFIG_SCHEDSTATS
2262 schedstat_inc(rq, ttwu_count);
2263 if (cpu == this_cpu)
2264 schedstat_inc(rq, ttwu_local);
2265 else {
2266 struct sched_domain *sd;
2267 for_each_domain(this_cpu, sd) {
2268 if (cpu_isset(cpu, sd->span)) {
2269 schedstat_inc(sd, ttwu_wake_remote);
2270 break;
2271 }
2272 }
2273 }
6d6bc0ad 2274#endif /* CONFIG_SCHEDSTATS */
e7693a36 2275
1da177e4
LT
2276out_activate:
2277#endif /* CONFIG_SMP */
cc367732
IM
2278 schedstat_inc(p, se.nr_wakeups);
2279 if (sync)
2280 schedstat_inc(p, se.nr_wakeups_sync);
2281 if (orig_cpu != cpu)
2282 schedstat_inc(p, se.nr_wakeups_migrate);
2283 if (cpu == this_cpu)
2284 schedstat_inc(p, se.nr_wakeups_local);
2285 else
2286 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2287 update_rq_clock(rq);
dd41f596 2288 activate_task(rq, p, 1);
1da177e4
LT
2289 success = 1;
2290
2291out_running:
5b82a1b0
MD
2292 trace_mark(kernel_sched_wakeup,
2293 "pid %d state %ld ## rq %p task %p rq->curr %p",
2294 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2295 check_preempt_curr(rq, p);
2296
1da177e4 2297 p->state = TASK_RUNNING;
9a897c5a
SR
2298#ifdef CONFIG_SMP
2299 if (p->sched_class->task_wake_up)
2300 p->sched_class->task_wake_up(rq, p);
2301#endif
1da177e4 2302out:
2087a1ad
GH
2303 current->se.last_wakeup = current->se.sum_exec_runtime;
2304
1da177e4
LT
2305 task_rq_unlock(rq, &flags);
2306
2307 return success;
2308}
2309
7ad5b3a5 2310int wake_up_process(struct task_struct *p)
1da177e4 2311{
d9514f6c 2312 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2313}
1da177e4
LT
2314EXPORT_SYMBOL(wake_up_process);
2315
7ad5b3a5 2316int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2317{
2318 return try_to_wake_up(p, state, 0);
2319}
2320
1da177e4
LT
2321/*
2322 * Perform scheduler related setup for a newly forked process p.
2323 * p is forked by current.
dd41f596
IM
2324 *
2325 * __sched_fork() is basic setup used by init_idle() too:
2326 */
2327static void __sched_fork(struct task_struct *p)
2328{
dd41f596
IM
2329 p->se.exec_start = 0;
2330 p->se.sum_exec_runtime = 0;
f6cf891c 2331 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2332 p->se.last_wakeup = 0;
2333 p->se.avg_overlap = 0;
6cfb0d5d
IM
2334
2335#ifdef CONFIG_SCHEDSTATS
2336 p->se.wait_start = 0;
dd41f596
IM
2337 p->se.sum_sleep_runtime = 0;
2338 p->se.sleep_start = 0;
dd41f596
IM
2339 p->se.block_start = 0;
2340 p->se.sleep_max = 0;
2341 p->se.block_max = 0;
2342 p->se.exec_max = 0;
eba1ed4b 2343 p->se.slice_max = 0;
dd41f596 2344 p->se.wait_max = 0;
6cfb0d5d 2345#endif
476d139c 2346
fa717060 2347 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2348 p->se.on_rq = 0;
4a55bd5e 2349 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2350
e107be36
AK
2351#ifdef CONFIG_PREEMPT_NOTIFIERS
2352 INIT_HLIST_HEAD(&p->preempt_notifiers);
2353#endif
2354
1da177e4
LT
2355 /*
2356 * We mark the process as running here, but have not actually
2357 * inserted it onto the runqueue yet. This guarantees that
2358 * nobody will actually run it, and a signal or other external
2359 * event cannot wake it up and insert it on the runqueue either.
2360 */
2361 p->state = TASK_RUNNING;
dd41f596
IM
2362}
2363
2364/*
2365 * fork()/clone()-time setup:
2366 */
2367void sched_fork(struct task_struct *p, int clone_flags)
2368{
2369 int cpu = get_cpu();
2370
2371 __sched_fork(p);
2372
2373#ifdef CONFIG_SMP
2374 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2375#endif
02e4bac2 2376 set_task_cpu(p, cpu);
b29739f9
IM
2377
2378 /*
2379 * Make sure we do not leak PI boosting priority to the child:
2380 */
2381 p->prio = current->normal_prio;
2ddbf952
HS
2382 if (!rt_prio(p->prio))
2383 p->sched_class = &fair_sched_class;
b29739f9 2384
52f17b6c 2385#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2386 if (likely(sched_info_on()))
52f17b6c 2387 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2388#endif
d6077cb8 2389#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2390 p->oncpu = 0;
2391#endif
1da177e4 2392#ifdef CONFIG_PREEMPT
4866cde0 2393 /* Want to start with kernel preemption disabled. */
a1261f54 2394 task_thread_info(p)->preempt_count = 1;
1da177e4 2395#endif
476d139c 2396 put_cpu();
1da177e4
LT
2397}
2398
2399/*
2400 * wake_up_new_task - wake up a newly created task for the first time.
2401 *
2402 * This function will do some initial scheduler statistics housekeeping
2403 * that must be done for every newly created context, then puts the task
2404 * on the runqueue and wakes it.
2405 */
7ad5b3a5 2406void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2407{
2408 unsigned long flags;
dd41f596 2409 struct rq *rq;
1da177e4
LT
2410
2411 rq = task_rq_lock(p, &flags);
147cbb4b 2412 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2413 update_rq_clock(rq);
1da177e4
LT
2414
2415 p->prio = effective_prio(p);
2416
b9dca1e0 2417 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2418 activate_task(rq, p, 0);
1da177e4 2419 } else {
1da177e4 2420 /*
dd41f596
IM
2421 * Let the scheduling class do new task startup
2422 * management (if any):
1da177e4 2423 */
ee0827d8 2424 p->sched_class->task_new(rq, p);
c09595f6 2425 inc_nr_running(rq);
1da177e4 2426 }
5b82a1b0
MD
2427 trace_mark(kernel_sched_wakeup_new,
2428 "pid %d state %ld ## rq %p task %p rq->curr %p",
2429 p->pid, p->state, rq, p, rq->curr);
dd41f596 2430 check_preempt_curr(rq, p);
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
dd41f596 2435 task_rq_unlock(rq, &flags);
1da177e4
LT
2436}
2437
e107be36
AK
2438#ifdef CONFIG_PREEMPT_NOTIFIERS
2439
2440/**
421cee29
RD
2441 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2442 * @notifier: notifier struct to register
e107be36
AK
2443 */
2444void preempt_notifier_register(struct preempt_notifier *notifier)
2445{
2446 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2447}
2448EXPORT_SYMBOL_GPL(preempt_notifier_register);
2449
2450/**
2451 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2452 * @notifier: notifier struct to unregister
e107be36
AK
2453 *
2454 * This is safe to call from within a preemption notifier.
2455 */
2456void preempt_notifier_unregister(struct preempt_notifier *notifier)
2457{
2458 hlist_del(&notifier->link);
2459}
2460EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2461
2462static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2463{
2464 struct preempt_notifier *notifier;
2465 struct hlist_node *node;
2466
2467 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2468 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2469}
2470
2471static void
2472fire_sched_out_preempt_notifiers(struct task_struct *curr,
2473 struct task_struct *next)
2474{
2475 struct preempt_notifier *notifier;
2476 struct hlist_node *node;
2477
2478 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2479 notifier->ops->sched_out(notifier, next);
2480}
2481
6d6bc0ad 2482#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2483
2484static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485{
2486}
2487
2488static void
2489fire_sched_out_preempt_notifiers(struct task_struct *curr,
2490 struct task_struct *next)
2491{
2492}
2493
6d6bc0ad 2494#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2495
4866cde0
NP
2496/**
2497 * prepare_task_switch - prepare to switch tasks
2498 * @rq: the runqueue preparing to switch
421cee29 2499 * @prev: the current task that is being switched out
4866cde0
NP
2500 * @next: the task we are going to switch to.
2501 *
2502 * This is called with the rq lock held and interrupts off. It must
2503 * be paired with a subsequent finish_task_switch after the context
2504 * switch.
2505 *
2506 * prepare_task_switch sets up locking and calls architecture specific
2507 * hooks.
2508 */
e107be36
AK
2509static inline void
2510prepare_task_switch(struct rq *rq, struct task_struct *prev,
2511 struct task_struct *next)
4866cde0 2512{
e107be36 2513 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2514 prepare_lock_switch(rq, next);
2515 prepare_arch_switch(next);
2516}
2517
1da177e4
LT
2518/**
2519 * finish_task_switch - clean up after a task-switch
344babaa 2520 * @rq: runqueue associated with task-switch
1da177e4
LT
2521 * @prev: the thread we just switched away from.
2522 *
4866cde0
NP
2523 * finish_task_switch must be called after the context switch, paired
2524 * with a prepare_task_switch call before the context switch.
2525 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2526 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2527 *
2528 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2529 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2530 * with the lock held can cause deadlocks; see schedule() for
2531 * details.)
2532 */
a9957449 2533static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2534 __releases(rq->lock)
2535{
1da177e4 2536 struct mm_struct *mm = rq->prev_mm;
55a101f8 2537 long prev_state;
1da177e4
LT
2538
2539 rq->prev_mm = NULL;
2540
2541 /*
2542 * A task struct has one reference for the use as "current".
c394cc9f 2543 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2544 * schedule one last time. The schedule call will never return, and
2545 * the scheduled task must drop that reference.
c394cc9f 2546 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2547 * still held, otherwise prev could be scheduled on another cpu, die
2548 * there before we look at prev->state, and then the reference would
2549 * be dropped twice.
2550 * Manfred Spraul <manfred@colorfullife.com>
2551 */
55a101f8 2552 prev_state = prev->state;
4866cde0
NP
2553 finish_arch_switch(prev);
2554 finish_lock_switch(rq, prev);
9a897c5a
SR
2555#ifdef CONFIG_SMP
2556 if (current->sched_class->post_schedule)
2557 current->sched_class->post_schedule(rq);
2558#endif
e8fa1362 2559
e107be36 2560 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2561 if (mm)
2562 mmdrop(mm);
c394cc9f 2563 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2564 /*
2565 * Remove function-return probe instances associated with this
2566 * task and put them back on the free list.
9761eea8 2567 */
c6fd91f0 2568 kprobe_flush_task(prev);
1da177e4 2569 put_task_struct(prev);
c6fd91f0 2570 }
1da177e4
LT
2571}
2572
2573/**
2574 * schedule_tail - first thing a freshly forked thread must call.
2575 * @prev: the thread we just switched away from.
2576 */
36c8b586 2577asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2578 __releases(rq->lock)
2579{
70b97a7f
IM
2580 struct rq *rq = this_rq();
2581
4866cde0
NP
2582 finish_task_switch(rq, prev);
2583#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2584 /* In this case, finish_task_switch does not reenable preemption */
2585 preempt_enable();
2586#endif
1da177e4 2587 if (current->set_child_tid)
b488893a 2588 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2589}
2590
2591/*
2592 * context_switch - switch to the new MM and the new
2593 * thread's register state.
2594 */
dd41f596 2595static inline void
70b97a7f 2596context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2597 struct task_struct *next)
1da177e4 2598{
dd41f596 2599 struct mm_struct *mm, *oldmm;
1da177e4 2600
e107be36 2601 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2602 trace_mark(kernel_sched_schedule,
2603 "prev_pid %d next_pid %d prev_state %ld "
2604 "## rq %p prev %p next %p",
2605 prev->pid, next->pid, prev->state,
2606 rq, prev, next);
dd41f596
IM
2607 mm = next->mm;
2608 oldmm = prev->active_mm;
9226d125
ZA
2609 /*
2610 * For paravirt, this is coupled with an exit in switch_to to
2611 * combine the page table reload and the switch backend into
2612 * one hypercall.
2613 */
2614 arch_enter_lazy_cpu_mode();
2615
dd41f596 2616 if (unlikely(!mm)) {
1da177e4
LT
2617 next->active_mm = oldmm;
2618 atomic_inc(&oldmm->mm_count);
2619 enter_lazy_tlb(oldmm, next);
2620 } else
2621 switch_mm(oldmm, mm, next);
2622
dd41f596 2623 if (unlikely(!prev->mm)) {
1da177e4 2624 prev->active_mm = NULL;
1da177e4
LT
2625 rq->prev_mm = oldmm;
2626 }
3a5f5e48
IM
2627 /*
2628 * Since the runqueue lock will be released by the next
2629 * task (which is an invalid locking op but in the case
2630 * of the scheduler it's an obvious special-case), so we
2631 * do an early lockdep release here:
2632 */
2633#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2634 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2635#endif
1da177e4
LT
2636
2637 /* Here we just switch the register state and the stack. */
2638 switch_to(prev, next, prev);
2639
dd41f596
IM
2640 barrier();
2641 /*
2642 * this_rq must be evaluated again because prev may have moved
2643 * CPUs since it called schedule(), thus the 'rq' on its stack
2644 * frame will be invalid.
2645 */
2646 finish_task_switch(this_rq(), prev);
1da177e4
LT
2647}
2648
2649/*
2650 * nr_running, nr_uninterruptible and nr_context_switches:
2651 *
2652 * externally visible scheduler statistics: current number of runnable
2653 * threads, current number of uninterruptible-sleeping threads, total
2654 * number of context switches performed since bootup.
2655 */
2656unsigned long nr_running(void)
2657{
2658 unsigned long i, sum = 0;
2659
2660 for_each_online_cpu(i)
2661 sum += cpu_rq(i)->nr_running;
2662
2663 return sum;
2664}
2665
2666unsigned long nr_uninterruptible(void)
2667{
2668 unsigned long i, sum = 0;
2669
0a945022 2670 for_each_possible_cpu(i)
1da177e4
LT
2671 sum += cpu_rq(i)->nr_uninterruptible;
2672
2673 /*
2674 * Since we read the counters lockless, it might be slightly
2675 * inaccurate. Do not allow it to go below zero though:
2676 */
2677 if (unlikely((long)sum < 0))
2678 sum = 0;
2679
2680 return sum;
2681}
2682
2683unsigned long long nr_context_switches(void)
2684{
cc94abfc
SR
2685 int i;
2686 unsigned long long sum = 0;
1da177e4 2687
0a945022 2688 for_each_possible_cpu(i)
1da177e4
LT
2689 sum += cpu_rq(i)->nr_switches;
2690
2691 return sum;
2692}
2693
2694unsigned long nr_iowait(void)
2695{
2696 unsigned long i, sum = 0;
2697
0a945022 2698 for_each_possible_cpu(i)
1da177e4
LT
2699 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2700
2701 return sum;
2702}
2703
db1b1fef
JS
2704unsigned long nr_active(void)
2705{
2706 unsigned long i, running = 0, uninterruptible = 0;
2707
2708 for_each_online_cpu(i) {
2709 running += cpu_rq(i)->nr_running;
2710 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2711 }
2712
2713 if (unlikely((long)uninterruptible < 0))
2714 uninterruptible = 0;
2715
2716 return running + uninterruptible;
2717}
2718
48f24c4d 2719/*
dd41f596
IM
2720 * Update rq->cpu_load[] statistics. This function is usually called every
2721 * scheduler tick (TICK_NSEC).
48f24c4d 2722 */
dd41f596 2723static void update_cpu_load(struct rq *this_rq)
48f24c4d 2724{
495eca49 2725 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2726 int i, scale;
2727
2728 this_rq->nr_load_updates++;
dd41f596
IM
2729
2730 /* Update our load: */
2731 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2732 unsigned long old_load, new_load;
2733
2734 /* scale is effectively 1 << i now, and >> i divides by scale */
2735
2736 old_load = this_rq->cpu_load[i];
2737 new_load = this_load;
a25707f3
IM
2738 /*
2739 * Round up the averaging division if load is increasing. This
2740 * prevents us from getting stuck on 9 if the load is 10, for
2741 * example.
2742 */
2743 if (new_load > old_load)
2744 new_load += scale-1;
dd41f596
IM
2745 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2746 }
48f24c4d
IM
2747}
2748
dd41f596
IM
2749#ifdef CONFIG_SMP
2750
1da177e4
LT
2751/*
2752 * double_rq_lock - safely lock two runqueues
2753 *
2754 * Note this does not disable interrupts like task_rq_lock,
2755 * you need to do so manually before calling.
2756 */
70b97a7f 2757static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2758 __acquires(rq1->lock)
2759 __acquires(rq2->lock)
2760{
054b9108 2761 BUG_ON(!irqs_disabled());
1da177e4
LT
2762 if (rq1 == rq2) {
2763 spin_lock(&rq1->lock);
2764 __acquire(rq2->lock); /* Fake it out ;) */
2765 } else {
c96d145e 2766 if (rq1 < rq2) {
1da177e4 2767 spin_lock(&rq1->lock);
5e710e37 2768 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2769 } else {
2770 spin_lock(&rq2->lock);
5e710e37 2771 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2772 }
2773 }
6e82a3be
IM
2774 update_rq_clock(rq1);
2775 update_rq_clock(rq2);
1da177e4
LT
2776}
2777
2778/*
2779 * double_rq_unlock - safely unlock two runqueues
2780 *
2781 * Note this does not restore interrupts like task_rq_unlock,
2782 * you need to do so manually after calling.
2783 */
70b97a7f 2784static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2785 __releases(rq1->lock)
2786 __releases(rq2->lock)
2787{
2788 spin_unlock(&rq1->lock);
2789 if (rq1 != rq2)
2790 spin_unlock(&rq2->lock);
2791 else
2792 __release(rq2->lock);
2793}
2794
2795/*
2796 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2797 */
e8fa1362 2798static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2799 __releases(this_rq->lock)
2800 __acquires(busiest->lock)
2801 __acquires(this_rq->lock)
2802{
e8fa1362
SR
2803 int ret = 0;
2804
054b9108
KK
2805 if (unlikely(!irqs_disabled())) {
2806 /* printk() doesn't work good under rq->lock */
2807 spin_unlock(&this_rq->lock);
2808 BUG_ON(1);
2809 }
1da177e4 2810 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2811 if (busiest < this_rq) {
1da177e4
LT
2812 spin_unlock(&this_rq->lock);
2813 spin_lock(&busiest->lock);
5e710e37 2814 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2815 ret = 1;
1da177e4 2816 } else
5e710e37 2817 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2818 }
e8fa1362 2819 return ret;
1da177e4
LT
2820}
2821
1b12bbc7
PZ
2822static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2823 __releases(busiest->lock)
2824{
2825 spin_unlock(&busiest->lock);
2826 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2827}
2828
1da177e4
LT
2829/*
2830 * If dest_cpu is allowed for this process, migrate the task to it.
2831 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2832 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2833 * the cpu_allowed mask is restored.
2834 */
36c8b586 2835static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2836{
70b97a7f 2837 struct migration_req req;
1da177e4 2838 unsigned long flags;
70b97a7f 2839 struct rq *rq;
1da177e4
LT
2840
2841 rq = task_rq_lock(p, &flags);
2842 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2843 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2844 goto out;
2845
2846 /* force the process onto the specified CPU */
2847 if (migrate_task(p, dest_cpu, &req)) {
2848 /* Need to wait for migration thread (might exit: take ref). */
2849 struct task_struct *mt = rq->migration_thread;
36c8b586 2850
1da177e4
LT
2851 get_task_struct(mt);
2852 task_rq_unlock(rq, &flags);
2853 wake_up_process(mt);
2854 put_task_struct(mt);
2855 wait_for_completion(&req.done);
36c8b586 2856
1da177e4
LT
2857 return;
2858 }
2859out:
2860 task_rq_unlock(rq, &flags);
2861}
2862
2863/*
476d139c
NP
2864 * sched_exec - execve() is a valuable balancing opportunity, because at
2865 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2866 */
2867void sched_exec(void)
2868{
1da177e4 2869 int new_cpu, this_cpu = get_cpu();
476d139c 2870 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2871 put_cpu();
476d139c
NP
2872 if (new_cpu != this_cpu)
2873 sched_migrate_task(current, new_cpu);
1da177e4
LT
2874}
2875
2876/*
2877 * pull_task - move a task from a remote runqueue to the local runqueue.
2878 * Both runqueues must be locked.
2879 */
dd41f596
IM
2880static void pull_task(struct rq *src_rq, struct task_struct *p,
2881 struct rq *this_rq, int this_cpu)
1da177e4 2882{
2e1cb74a 2883 deactivate_task(src_rq, p, 0);
1da177e4 2884 set_task_cpu(p, this_cpu);
dd41f596 2885 activate_task(this_rq, p, 0);
1da177e4
LT
2886 /*
2887 * Note that idle threads have a prio of MAX_PRIO, for this test
2888 * to be always true for them.
2889 */
dd41f596 2890 check_preempt_curr(this_rq, p);
1da177e4
LT
2891}
2892
2893/*
2894 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2895 */
858119e1 2896static
70b97a7f 2897int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2898 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2899 int *all_pinned)
1da177e4
LT
2900{
2901 /*
2902 * We do not migrate tasks that are:
2903 * 1) running (obviously), or
2904 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2905 * 3) are cache-hot on their current CPU.
2906 */
cc367732
IM
2907 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2908 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2909 return 0;
cc367732 2910 }
81026794
NP
2911 *all_pinned = 0;
2912
cc367732
IM
2913 if (task_running(rq, p)) {
2914 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2915 return 0;
cc367732 2916 }
1da177e4 2917
da84d961
IM
2918 /*
2919 * Aggressive migration if:
2920 * 1) task is cache cold, or
2921 * 2) too many balance attempts have failed.
2922 */
2923
6bc1665b
IM
2924 if (!task_hot(p, rq->clock, sd) ||
2925 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2926#ifdef CONFIG_SCHEDSTATS
cc367732 2927 if (task_hot(p, rq->clock, sd)) {
da84d961 2928 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2929 schedstat_inc(p, se.nr_forced_migrations);
2930 }
da84d961
IM
2931#endif
2932 return 1;
2933 }
2934
cc367732
IM
2935 if (task_hot(p, rq->clock, sd)) {
2936 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2937 return 0;
cc367732 2938 }
1da177e4
LT
2939 return 1;
2940}
2941
e1d1484f
PW
2942static unsigned long
2943balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2944 unsigned long max_load_move, struct sched_domain *sd,
2945 enum cpu_idle_type idle, int *all_pinned,
2946 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2947{
051c6764 2948 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2949 struct task_struct *p;
2950 long rem_load_move = max_load_move;
1da177e4 2951
e1d1484f 2952 if (max_load_move == 0)
1da177e4
LT
2953 goto out;
2954
81026794
NP
2955 pinned = 1;
2956
1da177e4 2957 /*
dd41f596 2958 * Start the load-balancing iterator:
1da177e4 2959 */
dd41f596
IM
2960 p = iterator->start(iterator->arg);
2961next:
b82d9fdd 2962 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2963 goto out;
051c6764
PZ
2964
2965 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2966 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2967 p = iterator->next(iterator->arg);
2968 goto next;
1da177e4
LT
2969 }
2970
dd41f596 2971 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2972 pulled++;
dd41f596 2973 rem_load_move -= p->se.load.weight;
1da177e4 2974
2dd73a4f 2975 /*
b82d9fdd 2976 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2977 */
e1d1484f 2978 if (rem_load_move > 0) {
a4ac01c3
PW
2979 if (p->prio < *this_best_prio)
2980 *this_best_prio = p->prio;
dd41f596
IM
2981 p = iterator->next(iterator->arg);
2982 goto next;
1da177e4
LT
2983 }
2984out:
2985 /*
e1d1484f 2986 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2987 * so we can safely collect pull_task() stats here rather than
2988 * inside pull_task().
2989 */
2990 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2991
2992 if (all_pinned)
2993 *all_pinned = pinned;
e1d1484f
PW
2994
2995 return max_load_move - rem_load_move;
1da177e4
LT
2996}
2997
dd41f596 2998/*
43010659
PW
2999 * move_tasks tries to move up to max_load_move weighted load from busiest to
3000 * this_rq, as part of a balancing operation within domain "sd".
3001 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3002 *
3003 * Called with both runqueues locked.
3004 */
3005static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3006 unsigned long max_load_move,
dd41f596
IM
3007 struct sched_domain *sd, enum cpu_idle_type idle,
3008 int *all_pinned)
3009{
5522d5d5 3010 const struct sched_class *class = sched_class_highest;
43010659 3011 unsigned long total_load_moved = 0;
a4ac01c3 3012 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3013
3014 do {
43010659
PW
3015 total_load_moved +=
3016 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3017 max_load_move - total_load_moved,
a4ac01c3 3018 sd, idle, all_pinned, &this_best_prio);
dd41f596 3019 class = class->next;
c4acb2c0
GH
3020
3021 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3022 break;
3023
43010659 3024 } while (class && max_load_move > total_load_moved);
dd41f596 3025
43010659
PW
3026 return total_load_moved > 0;
3027}
3028
e1d1484f
PW
3029static int
3030iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3031 struct sched_domain *sd, enum cpu_idle_type idle,
3032 struct rq_iterator *iterator)
3033{
3034 struct task_struct *p = iterator->start(iterator->arg);
3035 int pinned = 0;
3036
3037 while (p) {
3038 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3039 pull_task(busiest, p, this_rq, this_cpu);
3040 /*
3041 * Right now, this is only the second place pull_task()
3042 * is called, so we can safely collect pull_task()
3043 * stats here rather than inside pull_task().
3044 */
3045 schedstat_inc(sd, lb_gained[idle]);
3046
3047 return 1;
3048 }
3049 p = iterator->next(iterator->arg);
3050 }
3051
3052 return 0;
3053}
3054
43010659
PW
3055/*
3056 * move_one_task tries to move exactly one task from busiest to this_rq, as
3057 * part of active balancing operations within "domain".
3058 * Returns 1 if successful and 0 otherwise.
3059 *
3060 * Called with both runqueues locked.
3061 */
3062static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3063 struct sched_domain *sd, enum cpu_idle_type idle)
3064{
5522d5d5 3065 const struct sched_class *class;
43010659
PW
3066
3067 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3068 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3069 return 1;
3070
3071 return 0;
dd41f596
IM
3072}
3073
1da177e4
LT
3074/*
3075 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3076 * domain. It calculates and returns the amount of weighted load which
3077 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3078 */
3079static struct sched_group *
3080find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3081 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3082 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3083{
3084 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3085 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3086 unsigned long max_pull;
2dd73a4f
PW
3087 unsigned long busiest_load_per_task, busiest_nr_running;
3088 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3089 int load_idx, group_imb = 0;
5c45bf27
SS
3090#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3091 int power_savings_balance = 1;
3092 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3093 unsigned long min_nr_running = ULONG_MAX;
3094 struct sched_group *group_min = NULL, *group_leader = NULL;
3095#endif
1da177e4
LT
3096
3097 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3098 busiest_load_per_task = busiest_nr_running = 0;
3099 this_load_per_task = this_nr_running = 0;
408ed066 3100
d15bcfdb 3101 if (idle == CPU_NOT_IDLE)
7897986b 3102 load_idx = sd->busy_idx;
d15bcfdb 3103 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3104 load_idx = sd->newidle_idx;
3105 else
3106 load_idx = sd->idle_idx;
1da177e4
LT
3107
3108 do {
908a7c1b 3109 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3110 int local_group;
3111 int i;
908a7c1b 3112 int __group_imb = 0;
783609c6 3113 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3114 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3115 unsigned long sum_avg_load_per_task;
3116 unsigned long avg_load_per_task;
1da177e4
LT
3117
3118 local_group = cpu_isset(this_cpu, group->cpumask);
3119
783609c6
SS
3120 if (local_group)
3121 balance_cpu = first_cpu(group->cpumask);
3122
1da177e4 3123 /* Tally up the load of all CPUs in the group */
2dd73a4f 3124 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3125 sum_avg_load_per_task = avg_load_per_task = 0;
3126
908a7c1b
KC
3127 max_cpu_load = 0;
3128 min_cpu_load = ~0UL;
1da177e4 3129
363ab6f1 3130 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3131 struct rq *rq;
3132
3133 if (!cpu_isset(i, *cpus))
3134 continue;
3135
3136 rq = cpu_rq(i);
2dd73a4f 3137
9439aab8 3138 if (*sd_idle && rq->nr_running)
5969fe06
NP
3139 *sd_idle = 0;
3140
1da177e4 3141 /* Bias balancing toward cpus of our domain */
783609c6
SS
3142 if (local_group) {
3143 if (idle_cpu(i) && !first_idle_cpu) {
3144 first_idle_cpu = 1;
3145 balance_cpu = i;
3146 }
3147
a2000572 3148 load = target_load(i, load_idx);
908a7c1b 3149 } else {
a2000572 3150 load = source_load(i, load_idx);
908a7c1b
KC
3151 if (load > max_cpu_load)
3152 max_cpu_load = load;
3153 if (min_cpu_load > load)
3154 min_cpu_load = load;
3155 }
1da177e4
LT
3156
3157 avg_load += load;
2dd73a4f 3158 sum_nr_running += rq->nr_running;
dd41f596 3159 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3160
3161 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3162 }
3163
783609c6
SS
3164 /*
3165 * First idle cpu or the first cpu(busiest) in this sched group
3166 * is eligible for doing load balancing at this and above
9439aab8
SS
3167 * domains. In the newly idle case, we will allow all the cpu's
3168 * to do the newly idle load balance.
783609c6 3169 */
9439aab8
SS
3170 if (idle != CPU_NEWLY_IDLE && local_group &&
3171 balance_cpu != this_cpu && balance) {
783609c6
SS
3172 *balance = 0;
3173 goto ret;
3174 }
3175
1da177e4 3176 total_load += avg_load;
5517d86b 3177 total_pwr += group->__cpu_power;
1da177e4
LT
3178
3179 /* Adjust by relative CPU power of the group */
5517d86b
ED
3180 avg_load = sg_div_cpu_power(group,
3181 avg_load * SCHED_LOAD_SCALE);
1da177e4 3182
408ed066
PZ
3183
3184 /*
3185 * Consider the group unbalanced when the imbalance is larger
3186 * than the average weight of two tasks.
3187 *
3188 * APZ: with cgroup the avg task weight can vary wildly and
3189 * might not be a suitable number - should we keep a
3190 * normalized nr_running number somewhere that negates
3191 * the hierarchy?
3192 */
3193 avg_load_per_task = sg_div_cpu_power(group,
3194 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3195
3196 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3197 __group_imb = 1;
3198
5517d86b 3199 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3200
1da177e4
LT
3201 if (local_group) {
3202 this_load = avg_load;
3203 this = group;
2dd73a4f
PW
3204 this_nr_running = sum_nr_running;
3205 this_load_per_task = sum_weighted_load;
3206 } else if (avg_load > max_load &&
908a7c1b 3207 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3208 max_load = avg_load;
3209 busiest = group;
2dd73a4f
PW
3210 busiest_nr_running = sum_nr_running;
3211 busiest_load_per_task = sum_weighted_load;
908a7c1b 3212 group_imb = __group_imb;
1da177e4 3213 }
5c45bf27
SS
3214
3215#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 /*
3217 * Busy processors will not participate in power savings
3218 * balance.
3219 */
dd41f596
IM
3220 if (idle == CPU_NOT_IDLE ||
3221 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3222 goto group_next;
5c45bf27
SS
3223
3224 /*
3225 * If the local group is idle or completely loaded
3226 * no need to do power savings balance at this domain
3227 */
3228 if (local_group && (this_nr_running >= group_capacity ||
3229 !this_nr_running))
3230 power_savings_balance = 0;
3231
dd41f596 3232 /*
5c45bf27
SS
3233 * If a group is already running at full capacity or idle,
3234 * don't include that group in power savings calculations
dd41f596
IM
3235 */
3236 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3237 || !sum_nr_running)
dd41f596 3238 goto group_next;
5c45bf27 3239
dd41f596 3240 /*
5c45bf27 3241 * Calculate the group which has the least non-idle load.
dd41f596
IM
3242 * This is the group from where we need to pick up the load
3243 * for saving power
3244 */
3245 if ((sum_nr_running < min_nr_running) ||
3246 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3247 first_cpu(group->cpumask) <
3248 first_cpu(group_min->cpumask))) {
dd41f596
IM
3249 group_min = group;
3250 min_nr_running = sum_nr_running;
5c45bf27
SS
3251 min_load_per_task = sum_weighted_load /
3252 sum_nr_running;
dd41f596 3253 }
5c45bf27 3254
dd41f596 3255 /*
5c45bf27 3256 * Calculate the group which is almost near its
dd41f596
IM
3257 * capacity but still has some space to pick up some load
3258 * from other group and save more power
3259 */
3260 if (sum_nr_running <= group_capacity - 1) {
3261 if (sum_nr_running > leader_nr_running ||
3262 (sum_nr_running == leader_nr_running &&
3263 first_cpu(group->cpumask) >
3264 first_cpu(group_leader->cpumask))) {
3265 group_leader = group;
3266 leader_nr_running = sum_nr_running;
3267 }
48f24c4d 3268 }
5c45bf27
SS
3269group_next:
3270#endif
1da177e4
LT
3271 group = group->next;
3272 } while (group != sd->groups);
3273
2dd73a4f 3274 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3275 goto out_balanced;
3276
3277 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3278
3279 if (this_load >= avg_load ||
3280 100*max_load <= sd->imbalance_pct*this_load)
3281 goto out_balanced;
3282
2dd73a4f 3283 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3284 if (group_imb)
3285 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3286
1da177e4
LT
3287 /*
3288 * We're trying to get all the cpus to the average_load, so we don't
3289 * want to push ourselves above the average load, nor do we wish to
3290 * reduce the max loaded cpu below the average load, as either of these
3291 * actions would just result in more rebalancing later, and ping-pong
3292 * tasks around. Thus we look for the minimum possible imbalance.
3293 * Negative imbalances (*we* are more loaded than anyone else) will
3294 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3295 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3296 * appear as very large values with unsigned longs.
3297 */
2dd73a4f
PW
3298 if (max_load <= busiest_load_per_task)
3299 goto out_balanced;
3300
3301 /*
3302 * In the presence of smp nice balancing, certain scenarios can have
3303 * max load less than avg load(as we skip the groups at or below
3304 * its cpu_power, while calculating max_load..)
3305 */
3306 if (max_load < avg_load) {
3307 *imbalance = 0;
3308 goto small_imbalance;
3309 }
0c117f1b
SS
3310
3311 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3312 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3313
1da177e4 3314 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3315 *imbalance = min(max_pull * busiest->__cpu_power,
3316 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3317 / SCHED_LOAD_SCALE;
3318
2dd73a4f
PW
3319 /*
3320 * if *imbalance is less than the average load per runnable task
3321 * there is no gaurantee that any tasks will be moved so we'll have
3322 * a think about bumping its value to force at least one task to be
3323 * moved
3324 */
7fd0d2dd 3325 if (*imbalance < busiest_load_per_task) {
48f24c4d 3326 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3327 unsigned int imbn;
3328
3329small_imbalance:
3330 pwr_move = pwr_now = 0;
3331 imbn = 2;
3332 if (this_nr_running) {
3333 this_load_per_task /= this_nr_running;
3334 if (busiest_load_per_task > this_load_per_task)
3335 imbn = 1;
3336 } else
408ed066 3337 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3338
408ed066 3339 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3340 busiest_load_per_task * imbn) {
2dd73a4f 3341 *imbalance = busiest_load_per_task;
1da177e4
LT
3342 return busiest;
3343 }
3344
3345 /*
3346 * OK, we don't have enough imbalance to justify moving tasks,
3347 * however we may be able to increase total CPU power used by
3348 * moving them.
3349 */
3350
5517d86b
ED
3351 pwr_now += busiest->__cpu_power *
3352 min(busiest_load_per_task, max_load);
3353 pwr_now += this->__cpu_power *
3354 min(this_load_per_task, this_load);
1da177e4
LT
3355 pwr_now /= SCHED_LOAD_SCALE;
3356
3357 /* Amount of load we'd subtract */
5517d86b
ED
3358 tmp = sg_div_cpu_power(busiest,
3359 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3360 if (max_load > tmp)
5517d86b 3361 pwr_move += busiest->__cpu_power *
2dd73a4f 3362 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3363
3364 /* Amount of load we'd add */
5517d86b 3365 if (max_load * busiest->__cpu_power <
33859f7f 3366 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3367 tmp = sg_div_cpu_power(this,
3368 max_load * busiest->__cpu_power);
1da177e4 3369 else
5517d86b
ED
3370 tmp = sg_div_cpu_power(this,
3371 busiest_load_per_task * SCHED_LOAD_SCALE);
3372 pwr_move += this->__cpu_power *
3373 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3374 pwr_move /= SCHED_LOAD_SCALE;
3375
3376 /* Move if we gain throughput */
7fd0d2dd
SS
3377 if (pwr_move > pwr_now)
3378 *imbalance = busiest_load_per_task;
1da177e4
LT
3379 }
3380
1da177e4
LT
3381 return busiest;
3382
3383out_balanced:
5c45bf27 3384#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3385 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3386 goto ret;
1da177e4 3387
5c45bf27
SS
3388 if (this == group_leader && group_leader != group_min) {
3389 *imbalance = min_load_per_task;
3390 return group_min;
3391 }
5c45bf27 3392#endif
783609c6 3393ret:
1da177e4
LT
3394 *imbalance = 0;
3395 return NULL;
3396}
3397
3398/*
3399 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3400 */
70b97a7f 3401static struct rq *
d15bcfdb 3402find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3403 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3404{
70b97a7f 3405 struct rq *busiest = NULL, *rq;
2dd73a4f 3406 unsigned long max_load = 0;
1da177e4
LT
3407 int i;
3408
363ab6f1 3409 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3410 unsigned long wl;
0a2966b4
CL
3411
3412 if (!cpu_isset(i, *cpus))
3413 continue;
3414
48f24c4d 3415 rq = cpu_rq(i);
dd41f596 3416 wl = weighted_cpuload(i);
2dd73a4f 3417
dd41f596 3418 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3419 continue;
1da177e4 3420
dd41f596
IM
3421 if (wl > max_load) {
3422 max_load = wl;
48f24c4d 3423 busiest = rq;
1da177e4
LT
3424 }
3425 }
3426
3427 return busiest;
3428}
3429
77391d71
NP
3430/*
3431 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3432 * so long as it is large enough.
3433 */
3434#define MAX_PINNED_INTERVAL 512
3435
1da177e4
LT
3436/*
3437 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3438 * tasks if there is an imbalance.
1da177e4 3439 */
70b97a7f 3440static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3441 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3442 int *balance, cpumask_t *cpus)
1da177e4 3443{
43010659 3444 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3445 struct sched_group *group;
1da177e4 3446 unsigned long imbalance;
70b97a7f 3447 struct rq *busiest;
fe2eea3f 3448 unsigned long flags;
5969fe06 3449
7c16ec58
MT
3450 cpus_setall(*cpus);
3451
89c4710e
SS
3452 /*
3453 * When power savings policy is enabled for the parent domain, idle
3454 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3455 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3456 * portraying it as CPU_NOT_IDLE.
89c4710e 3457 */
d15bcfdb 3458 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3459 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3460 sd_idle = 1;
1da177e4 3461
2d72376b 3462 schedstat_inc(sd, lb_count[idle]);
1da177e4 3463
0a2966b4 3464redo:
c8cba857 3465 update_shares(sd);
0a2966b4 3466 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3467 cpus, balance);
783609c6 3468
06066714 3469 if (*balance == 0)
783609c6 3470 goto out_balanced;
783609c6 3471
1da177e4
LT
3472 if (!group) {
3473 schedstat_inc(sd, lb_nobusyg[idle]);
3474 goto out_balanced;
3475 }
3476
7c16ec58 3477 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3478 if (!busiest) {
3479 schedstat_inc(sd, lb_nobusyq[idle]);
3480 goto out_balanced;
3481 }
3482
db935dbd 3483 BUG_ON(busiest == this_rq);
1da177e4
LT
3484
3485 schedstat_add(sd, lb_imbalance[idle], imbalance);
3486
43010659 3487 ld_moved = 0;
1da177e4
LT
3488 if (busiest->nr_running > 1) {
3489 /*
3490 * Attempt to move tasks. If find_busiest_group has found
3491 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3492 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3493 * correctly treated as an imbalance.
3494 */
fe2eea3f 3495 local_irq_save(flags);
e17224bf 3496 double_rq_lock(this_rq, busiest);
43010659 3497 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3498 imbalance, sd, idle, &all_pinned);
e17224bf 3499 double_rq_unlock(this_rq, busiest);
fe2eea3f 3500 local_irq_restore(flags);
81026794 3501
46cb4b7c
SS
3502 /*
3503 * some other cpu did the load balance for us.
3504 */
43010659 3505 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3506 resched_cpu(this_cpu);
3507
81026794 3508 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3509 if (unlikely(all_pinned)) {
7c16ec58
MT
3510 cpu_clear(cpu_of(busiest), *cpus);
3511 if (!cpus_empty(*cpus))
0a2966b4 3512 goto redo;
81026794 3513 goto out_balanced;
0a2966b4 3514 }
1da177e4 3515 }
81026794 3516
43010659 3517 if (!ld_moved) {
1da177e4
LT
3518 schedstat_inc(sd, lb_failed[idle]);
3519 sd->nr_balance_failed++;
3520
3521 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3522
fe2eea3f 3523 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3524
3525 /* don't kick the migration_thread, if the curr
3526 * task on busiest cpu can't be moved to this_cpu
3527 */
3528 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3529 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3530 all_pinned = 1;
3531 goto out_one_pinned;
3532 }
3533
1da177e4
LT
3534 if (!busiest->active_balance) {
3535 busiest->active_balance = 1;
3536 busiest->push_cpu = this_cpu;
81026794 3537 active_balance = 1;
1da177e4 3538 }
fe2eea3f 3539 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3540 if (active_balance)
1da177e4
LT
3541 wake_up_process(busiest->migration_thread);
3542
3543 /*
3544 * We've kicked active balancing, reset the failure
3545 * counter.
3546 */
39507451 3547 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3548 }
81026794 3549 } else
1da177e4
LT
3550 sd->nr_balance_failed = 0;
3551
81026794 3552 if (likely(!active_balance)) {
1da177e4
LT
3553 /* We were unbalanced, so reset the balancing interval */
3554 sd->balance_interval = sd->min_interval;
81026794
NP
3555 } else {
3556 /*
3557 * If we've begun active balancing, start to back off. This
3558 * case may not be covered by the all_pinned logic if there
3559 * is only 1 task on the busy runqueue (because we don't call
3560 * move_tasks).
3561 */
3562 if (sd->balance_interval < sd->max_interval)
3563 sd->balance_interval *= 2;
1da177e4
LT
3564 }
3565
43010659 3566 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3567 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3568 ld_moved = -1;
3569
3570 goto out;
1da177e4
LT
3571
3572out_balanced:
1da177e4
LT
3573 schedstat_inc(sd, lb_balanced[idle]);
3574
16cfb1c0 3575 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3576
3577out_one_pinned:
1da177e4 3578 /* tune up the balancing interval */
77391d71
NP
3579 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3580 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3581 sd->balance_interval *= 2;
3582
48f24c4d 3583 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3584 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3585 ld_moved = -1;
3586 else
3587 ld_moved = 0;
3588out:
c8cba857
PZ
3589 if (ld_moved)
3590 update_shares(sd);
c09595f6 3591 return ld_moved;
1da177e4
LT
3592}
3593
3594/*
3595 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3596 * tasks if there is an imbalance.
3597 *
d15bcfdb 3598 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3599 * this_rq is locked.
3600 */
48f24c4d 3601static int
7c16ec58
MT
3602load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3603 cpumask_t *cpus)
1da177e4
LT
3604{
3605 struct sched_group *group;
70b97a7f 3606 struct rq *busiest = NULL;
1da177e4 3607 unsigned long imbalance;
43010659 3608 int ld_moved = 0;
5969fe06 3609 int sd_idle = 0;
969bb4e4 3610 int all_pinned = 0;
7c16ec58
MT
3611
3612 cpus_setall(*cpus);
5969fe06 3613
89c4710e
SS
3614 /*
3615 * When power savings policy is enabled for the parent domain, idle
3616 * sibling can pick up load irrespective of busy siblings. In this case,
3617 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3618 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3619 */
3620 if (sd->flags & SD_SHARE_CPUPOWER &&
3621 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3622 sd_idle = 1;
1da177e4 3623
2d72376b 3624 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3625redo:
3e5459b4 3626 update_shares_locked(this_rq, sd);
d15bcfdb 3627 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3628 &sd_idle, cpus, NULL);
1da177e4 3629 if (!group) {
d15bcfdb 3630 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3631 goto out_balanced;
1da177e4
LT
3632 }
3633
7c16ec58 3634 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3635 if (!busiest) {
d15bcfdb 3636 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3637 goto out_balanced;
1da177e4
LT
3638 }
3639
db935dbd
NP
3640 BUG_ON(busiest == this_rq);
3641
d15bcfdb 3642 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3643
43010659 3644 ld_moved = 0;
d6d5cfaf
NP
3645 if (busiest->nr_running > 1) {
3646 /* Attempt to move tasks */
3647 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3648 /* this_rq->clock is already updated */
3649 update_rq_clock(busiest);
43010659 3650 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3651 imbalance, sd, CPU_NEWLY_IDLE,
3652 &all_pinned);
1b12bbc7 3653 double_unlock_balance(this_rq, busiest);
0a2966b4 3654
969bb4e4 3655 if (unlikely(all_pinned)) {
7c16ec58
MT
3656 cpu_clear(cpu_of(busiest), *cpus);
3657 if (!cpus_empty(*cpus))
0a2966b4
CL
3658 goto redo;
3659 }
d6d5cfaf
NP
3660 }
3661
43010659 3662 if (!ld_moved) {
d15bcfdb 3663 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3664 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3665 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3666 return -1;
3667 } else
16cfb1c0 3668 sd->nr_balance_failed = 0;
1da177e4 3669
3e5459b4 3670 update_shares_locked(this_rq, sd);
43010659 3671 return ld_moved;
16cfb1c0
NP
3672
3673out_balanced:
d15bcfdb 3674 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3675 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3676 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3677 return -1;
16cfb1c0 3678 sd->nr_balance_failed = 0;
48f24c4d 3679
16cfb1c0 3680 return 0;
1da177e4
LT
3681}
3682
3683/*
3684 * idle_balance is called by schedule() if this_cpu is about to become
3685 * idle. Attempts to pull tasks from other CPUs.
3686 */
70b97a7f 3687static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3688{
3689 struct sched_domain *sd;
dd41f596
IM
3690 int pulled_task = -1;
3691 unsigned long next_balance = jiffies + HZ;
7c16ec58 3692 cpumask_t tmpmask;
1da177e4
LT
3693
3694 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3695 unsigned long interval;
3696
3697 if (!(sd->flags & SD_LOAD_BALANCE))
3698 continue;
3699
3700 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3701 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3702 pulled_task = load_balance_newidle(this_cpu, this_rq,
3703 sd, &tmpmask);
92c4ca5c
CL
3704
3705 interval = msecs_to_jiffies(sd->balance_interval);
3706 if (time_after(next_balance, sd->last_balance + interval))
3707 next_balance = sd->last_balance + interval;
3708 if (pulled_task)
3709 break;
1da177e4 3710 }
dd41f596 3711 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3712 /*
3713 * We are going idle. next_balance may be set based on
3714 * a busy processor. So reset next_balance.
3715 */
3716 this_rq->next_balance = next_balance;
dd41f596 3717 }
1da177e4
LT
3718}
3719
3720/*
3721 * active_load_balance is run by migration threads. It pushes running tasks
3722 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3723 * running on each physical CPU where possible, and avoids physical /
3724 * logical imbalances.
3725 *
3726 * Called with busiest_rq locked.
3727 */
70b97a7f 3728static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3729{
39507451 3730 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3731 struct sched_domain *sd;
3732 struct rq *target_rq;
39507451 3733
48f24c4d 3734 /* Is there any task to move? */
39507451 3735 if (busiest_rq->nr_running <= 1)
39507451
NP
3736 return;
3737
3738 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3739
3740 /*
39507451 3741 * This condition is "impossible", if it occurs
41a2d6cf 3742 * we need to fix it. Originally reported by
39507451 3743 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3744 */
39507451 3745 BUG_ON(busiest_rq == target_rq);
1da177e4 3746
39507451
NP
3747 /* move a task from busiest_rq to target_rq */
3748 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3749 update_rq_clock(busiest_rq);
3750 update_rq_clock(target_rq);
39507451
NP
3751
3752 /* Search for an sd spanning us and the target CPU. */
c96d145e 3753 for_each_domain(target_cpu, sd) {
39507451 3754 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3755 cpu_isset(busiest_cpu, sd->span))
39507451 3756 break;
c96d145e 3757 }
39507451 3758
48f24c4d 3759 if (likely(sd)) {
2d72376b 3760 schedstat_inc(sd, alb_count);
39507451 3761
43010659
PW
3762 if (move_one_task(target_rq, target_cpu, busiest_rq,
3763 sd, CPU_IDLE))
48f24c4d
IM
3764 schedstat_inc(sd, alb_pushed);
3765 else
3766 schedstat_inc(sd, alb_failed);
3767 }
1b12bbc7 3768 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3769}
3770
46cb4b7c
SS
3771#ifdef CONFIG_NO_HZ
3772static struct {
3773 atomic_t load_balancer;
41a2d6cf 3774 cpumask_t cpu_mask;
46cb4b7c
SS
3775} nohz ____cacheline_aligned = {
3776 .load_balancer = ATOMIC_INIT(-1),
3777 .cpu_mask = CPU_MASK_NONE,
3778};
3779
7835b98b 3780/*
46cb4b7c
SS
3781 * This routine will try to nominate the ilb (idle load balancing)
3782 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3783 * load balancing on behalf of all those cpus. If all the cpus in the system
3784 * go into this tickless mode, then there will be no ilb owner (as there is
3785 * no need for one) and all the cpus will sleep till the next wakeup event
3786 * arrives...
3787 *
3788 * For the ilb owner, tick is not stopped. And this tick will be used
3789 * for idle load balancing. ilb owner will still be part of
3790 * nohz.cpu_mask..
7835b98b 3791 *
46cb4b7c
SS
3792 * While stopping the tick, this cpu will become the ilb owner if there
3793 * is no other owner. And will be the owner till that cpu becomes busy
3794 * or if all cpus in the system stop their ticks at which point
3795 * there is no need for ilb owner.
3796 *
3797 * When the ilb owner becomes busy, it nominates another owner, during the
3798 * next busy scheduler_tick()
3799 */
3800int select_nohz_load_balancer(int stop_tick)
3801{
3802 int cpu = smp_processor_id();
3803
3804 if (stop_tick) {
3805 cpu_set(cpu, nohz.cpu_mask);
3806 cpu_rq(cpu)->in_nohz_recently = 1;
3807
3808 /*
3809 * If we are going offline and still the leader, give up!
3810 */
e761b772 3811 if (!cpu_active(cpu) &&
46cb4b7c
SS
3812 atomic_read(&nohz.load_balancer) == cpu) {
3813 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3814 BUG();
3815 return 0;
3816 }
3817
3818 /* time for ilb owner also to sleep */
3819 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3820 if (atomic_read(&nohz.load_balancer) == cpu)
3821 atomic_set(&nohz.load_balancer, -1);
3822 return 0;
3823 }
3824
3825 if (atomic_read(&nohz.load_balancer) == -1) {
3826 /* make me the ilb owner */
3827 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3828 return 1;
3829 } else if (atomic_read(&nohz.load_balancer) == cpu)
3830 return 1;
3831 } else {
3832 if (!cpu_isset(cpu, nohz.cpu_mask))
3833 return 0;
3834
3835 cpu_clear(cpu, nohz.cpu_mask);
3836
3837 if (atomic_read(&nohz.load_balancer) == cpu)
3838 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3839 BUG();
3840 }
3841 return 0;
3842}
3843#endif
3844
3845static DEFINE_SPINLOCK(balancing);
3846
3847/*
7835b98b
CL
3848 * It checks each scheduling domain to see if it is due to be balanced,
3849 * and initiates a balancing operation if so.
3850 *
3851 * Balancing parameters are set up in arch_init_sched_domains.
3852 */
a9957449 3853static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3854{
46cb4b7c
SS
3855 int balance = 1;
3856 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3857 unsigned long interval;
3858 struct sched_domain *sd;
46cb4b7c 3859 /* Earliest time when we have to do rebalance again */
c9819f45 3860 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3861 int update_next_balance = 0;
d07355f5 3862 int need_serialize;
7c16ec58 3863 cpumask_t tmp;
1da177e4 3864
46cb4b7c 3865 for_each_domain(cpu, sd) {
1da177e4
LT
3866 if (!(sd->flags & SD_LOAD_BALANCE))
3867 continue;
3868
3869 interval = sd->balance_interval;
d15bcfdb 3870 if (idle != CPU_IDLE)
1da177e4
LT
3871 interval *= sd->busy_factor;
3872
3873 /* scale ms to jiffies */
3874 interval = msecs_to_jiffies(interval);
3875 if (unlikely(!interval))
3876 interval = 1;
dd41f596
IM
3877 if (interval > HZ*NR_CPUS/10)
3878 interval = HZ*NR_CPUS/10;
3879
d07355f5 3880 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3881
d07355f5 3882 if (need_serialize) {
08c183f3
CL
3883 if (!spin_trylock(&balancing))
3884 goto out;
3885 }
3886
c9819f45 3887 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3888 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3889 /*
3890 * We've pulled tasks over so either we're no
5969fe06
NP
3891 * longer idle, or one of our SMT siblings is
3892 * not idle.
3893 */
d15bcfdb 3894 idle = CPU_NOT_IDLE;
1da177e4 3895 }
1bd77f2d 3896 sd->last_balance = jiffies;
1da177e4 3897 }
d07355f5 3898 if (need_serialize)
08c183f3
CL
3899 spin_unlock(&balancing);
3900out:
f549da84 3901 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3902 next_balance = sd->last_balance + interval;
f549da84
SS
3903 update_next_balance = 1;
3904 }
783609c6
SS
3905
3906 /*
3907 * Stop the load balance at this level. There is another
3908 * CPU in our sched group which is doing load balancing more
3909 * actively.
3910 */
3911 if (!balance)
3912 break;
1da177e4 3913 }
f549da84
SS
3914
3915 /*
3916 * next_balance will be updated only when there is a need.
3917 * When the cpu is attached to null domain for ex, it will not be
3918 * updated.
3919 */
3920 if (likely(update_next_balance))
3921 rq->next_balance = next_balance;
46cb4b7c
SS
3922}
3923
3924/*
3925 * run_rebalance_domains is triggered when needed from the scheduler tick.
3926 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3927 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3928 */
3929static void run_rebalance_domains(struct softirq_action *h)
3930{
dd41f596
IM
3931 int this_cpu = smp_processor_id();
3932 struct rq *this_rq = cpu_rq(this_cpu);
3933 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3934 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3935
dd41f596 3936 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3937
3938#ifdef CONFIG_NO_HZ
3939 /*
3940 * If this cpu is the owner for idle load balancing, then do the
3941 * balancing on behalf of the other idle cpus whose ticks are
3942 * stopped.
3943 */
dd41f596
IM
3944 if (this_rq->idle_at_tick &&
3945 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3946 cpumask_t cpus = nohz.cpu_mask;
3947 struct rq *rq;
3948 int balance_cpu;
3949
dd41f596 3950 cpu_clear(this_cpu, cpus);
363ab6f1 3951 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3952 /*
3953 * If this cpu gets work to do, stop the load balancing
3954 * work being done for other cpus. Next load
3955 * balancing owner will pick it up.
3956 */
3957 if (need_resched())
3958 break;
3959
de0cf899 3960 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3961
3962 rq = cpu_rq(balance_cpu);
dd41f596
IM
3963 if (time_after(this_rq->next_balance, rq->next_balance))
3964 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3965 }
3966 }
3967#endif
3968}
3969
3970/*
3971 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3972 *
3973 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3974 * idle load balancing owner or decide to stop the periodic load balancing,
3975 * if the whole system is idle.
3976 */
dd41f596 3977static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3978{
46cb4b7c
SS
3979#ifdef CONFIG_NO_HZ
3980 /*
3981 * If we were in the nohz mode recently and busy at the current
3982 * scheduler tick, then check if we need to nominate new idle
3983 * load balancer.
3984 */
3985 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3986 rq->in_nohz_recently = 0;
3987
3988 if (atomic_read(&nohz.load_balancer) == cpu) {
3989 cpu_clear(cpu, nohz.cpu_mask);
3990 atomic_set(&nohz.load_balancer, -1);
3991 }
3992
3993 if (atomic_read(&nohz.load_balancer) == -1) {
3994 /*
3995 * simple selection for now: Nominate the
3996 * first cpu in the nohz list to be the next
3997 * ilb owner.
3998 *
3999 * TBD: Traverse the sched domains and nominate
4000 * the nearest cpu in the nohz.cpu_mask.
4001 */
4002 int ilb = first_cpu(nohz.cpu_mask);
4003
434d53b0 4004 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4005 resched_cpu(ilb);
4006 }
4007 }
4008
4009 /*
4010 * If this cpu is idle and doing idle load balancing for all the
4011 * cpus with ticks stopped, is it time for that to stop?
4012 */
4013 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4014 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4015 resched_cpu(cpu);
4016 return;
4017 }
4018
4019 /*
4020 * If this cpu is idle and the idle load balancing is done by
4021 * someone else, then no need raise the SCHED_SOFTIRQ
4022 */
4023 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4024 cpu_isset(cpu, nohz.cpu_mask))
4025 return;
4026#endif
4027 if (time_after_eq(jiffies, rq->next_balance))
4028 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4029}
dd41f596
IM
4030
4031#else /* CONFIG_SMP */
4032
1da177e4
LT
4033/*
4034 * on UP we do not need to balance between CPUs:
4035 */
70b97a7f 4036static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4037{
4038}
dd41f596 4039
1da177e4
LT
4040#endif
4041
1da177e4
LT
4042DEFINE_PER_CPU(struct kernel_stat, kstat);
4043
4044EXPORT_PER_CPU_SYMBOL(kstat);
4045
4046/*
41b86e9c
IM
4047 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4048 * that have not yet been banked in case the task is currently running.
1da177e4 4049 */
41b86e9c 4050unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4051{
1da177e4 4052 unsigned long flags;
41b86e9c
IM
4053 u64 ns, delta_exec;
4054 struct rq *rq;
48f24c4d 4055
41b86e9c
IM
4056 rq = task_rq_lock(p, &flags);
4057 ns = p->se.sum_exec_runtime;
051a1d1a 4058 if (task_current(rq, p)) {
a8e504d2
IM
4059 update_rq_clock(rq);
4060 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4061 if ((s64)delta_exec > 0)
4062 ns += delta_exec;
4063 }
4064 task_rq_unlock(rq, &flags);
48f24c4d 4065
1da177e4
LT
4066 return ns;
4067}
4068
1da177e4
LT
4069/*
4070 * Account user cpu time to a process.
4071 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4072 * @cputime: the cpu time spent in user space since the last update
4073 */
4074void account_user_time(struct task_struct *p, cputime_t cputime)
4075{
4076 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4077 cputime64_t tmp;
4078
4079 p->utime = cputime_add(p->utime, cputime);
4080
4081 /* Add user time to cpustat. */
4082 tmp = cputime_to_cputime64(cputime);
4083 if (TASK_NICE(p) > 0)
4084 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4085 else
4086 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4087 /* Account for user time used */
4088 acct_update_integrals(p);
1da177e4
LT
4089}
4090
94886b84
LV
4091/*
4092 * Account guest cpu time to a process.
4093 * @p: the process that the cpu time gets accounted to
4094 * @cputime: the cpu time spent in virtual machine since the last update
4095 */
f7402e03 4096static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4097{
4098 cputime64_t tmp;
4099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4100
4101 tmp = cputime_to_cputime64(cputime);
4102
4103 p->utime = cputime_add(p->utime, cputime);
4104 p->gtime = cputime_add(p->gtime, cputime);
4105
4106 cpustat->user = cputime64_add(cpustat->user, tmp);
4107 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4108}
4109
c66f08be
MN
4110/*
4111 * Account scaled user cpu time to a process.
4112 * @p: the process that the cpu time gets accounted to
4113 * @cputime: the cpu time spent in user space since the last update
4114 */
4115void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4116{
4117 p->utimescaled = cputime_add(p->utimescaled, cputime);
4118}
4119
1da177e4
LT
4120/*
4121 * Account system cpu time to a process.
4122 * @p: the process that the cpu time gets accounted to
4123 * @hardirq_offset: the offset to subtract from hardirq_count()
4124 * @cputime: the cpu time spent in kernel space since the last update
4125 */
4126void account_system_time(struct task_struct *p, int hardirq_offset,
4127 cputime_t cputime)
4128{
4129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4130 struct rq *rq = this_rq();
1da177e4
LT
4131 cputime64_t tmp;
4132
983ed7a6
HH
4133 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4134 account_guest_time(p, cputime);
4135 return;
4136 }
94886b84 4137
1da177e4
LT
4138 p->stime = cputime_add(p->stime, cputime);
4139
4140 /* Add system time to cpustat. */
4141 tmp = cputime_to_cputime64(cputime);
4142 if (hardirq_count() - hardirq_offset)
4143 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4144 else if (softirq_count())
4145 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4146 else if (p != rq->idle)
1da177e4 4147 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4148 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4149 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4150 else
4151 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4152 /* Account for system time used */
4153 acct_update_integrals(p);
1da177e4
LT
4154}
4155
c66f08be
MN
4156/*
4157 * Account scaled system cpu time to a process.
4158 * @p: the process that the cpu time gets accounted to
4159 * @hardirq_offset: the offset to subtract from hardirq_count()
4160 * @cputime: the cpu time spent in kernel space since the last update
4161 */
4162void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4163{
4164 p->stimescaled = cputime_add(p->stimescaled, cputime);
4165}
4166
1da177e4
LT
4167/*
4168 * Account for involuntary wait time.
4169 * @p: the process from which the cpu time has been stolen
4170 * @steal: the cpu time spent in involuntary wait
4171 */
4172void account_steal_time(struct task_struct *p, cputime_t steal)
4173{
4174 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4175 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4176 struct rq *rq = this_rq();
1da177e4
LT
4177
4178 if (p == rq->idle) {
4179 p->stime = cputime_add(p->stime, steal);
4180 if (atomic_read(&rq->nr_iowait) > 0)
4181 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4182 else
4183 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4184 } else
1da177e4
LT
4185 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4186}
4187
7835b98b
CL
4188/*
4189 * This function gets called by the timer code, with HZ frequency.
4190 * We call it with interrupts disabled.
4191 *
4192 * It also gets called by the fork code, when changing the parent's
4193 * timeslices.
4194 */
4195void scheduler_tick(void)
4196{
7835b98b
CL
4197 int cpu = smp_processor_id();
4198 struct rq *rq = cpu_rq(cpu);
dd41f596 4199 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4200
4201 sched_clock_tick();
dd41f596
IM
4202
4203 spin_lock(&rq->lock);
3e51f33f 4204 update_rq_clock(rq);
f1a438d8 4205 update_cpu_load(rq);
fa85ae24 4206 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4207 spin_unlock(&rq->lock);
7835b98b 4208
e418e1c2 4209#ifdef CONFIG_SMP
dd41f596
IM
4210 rq->idle_at_tick = idle_cpu(cpu);
4211 trigger_load_balance(rq, cpu);
e418e1c2 4212#endif
1da177e4
LT
4213}
4214
6cd8a4bb
SR
4215#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4216 defined(CONFIG_PREEMPT_TRACER))
4217
4218static inline unsigned long get_parent_ip(unsigned long addr)
4219{
4220 if (in_lock_functions(addr)) {
4221 addr = CALLER_ADDR2;
4222 if (in_lock_functions(addr))
4223 addr = CALLER_ADDR3;
4224 }
4225 return addr;
4226}
1da177e4 4227
43627582 4228void __kprobes add_preempt_count(int val)
1da177e4 4229{
6cd8a4bb 4230#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4231 /*
4232 * Underflow?
4233 */
9a11b49a
IM
4234 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4235 return;
6cd8a4bb 4236#endif
1da177e4 4237 preempt_count() += val;
6cd8a4bb 4238#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4239 /*
4240 * Spinlock count overflowing soon?
4241 */
33859f7f
MOS
4242 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4243 PREEMPT_MASK - 10);
6cd8a4bb
SR
4244#endif
4245 if (preempt_count() == val)
4246 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4247}
4248EXPORT_SYMBOL(add_preempt_count);
4249
43627582 4250void __kprobes sub_preempt_count(int val)
1da177e4 4251{
6cd8a4bb 4252#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4253 /*
4254 * Underflow?
4255 */
9a11b49a
IM
4256 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4257 return;
1da177e4
LT
4258 /*
4259 * Is the spinlock portion underflowing?
4260 */
9a11b49a
IM
4261 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4262 !(preempt_count() & PREEMPT_MASK)))
4263 return;
6cd8a4bb 4264#endif
9a11b49a 4265
6cd8a4bb
SR
4266 if (preempt_count() == val)
4267 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4268 preempt_count() -= val;
4269}
4270EXPORT_SYMBOL(sub_preempt_count);
4271
4272#endif
4273
4274/*
dd41f596 4275 * Print scheduling while atomic bug:
1da177e4 4276 */
dd41f596 4277static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4278{
838225b4
SS
4279 struct pt_regs *regs = get_irq_regs();
4280
4281 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4282 prev->comm, prev->pid, preempt_count());
4283
dd41f596 4284 debug_show_held_locks(prev);
e21f5b15 4285 print_modules();
dd41f596
IM
4286 if (irqs_disabled())
4287 print_irqtrace_events(prev);
838225b4
SS
4288
4289 if (regs)
4290 show_regs(regs);
4291 else
4292 dump_stack();
dd41f596 4293}
1da177e4 4294
dd41f596
IM
4295/*
4296 * Various schedule()-time debugging checks and statistics:
4297 */
4298static inline void schedule_debug(struct task_struct *prev)
4299{
1da177e4 4300 /*
41a2d6cf 4301 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4302 * schedule() atomically, we ignore that path for now.
4303 * Otherwise, whine if we are scheduling when we should not be.
4304 */
3f33a7ce 4305 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4306 __schedule_bug(prev);
4307
1da177e4
LT
4308 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4309
2d72376b 4310 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4311#ifdef CONFIG_SCHEDSTATS
4312 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4313 schedstat_inc(this_rq(), bkl_count);
4314 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4315 }
4316#endif
dd41f596
IM
4317}
4318
4319/*
4320 * Pick up the highest-prio task:
4321 */
4322static inline struct task_struct *
ff95f3df 4323pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4324{
5522d5d5 4325 const struct sched_class *class;
dd41f596 4326 struct task_struct *p;
1da177e4
LT
4327
4328 /*
dd41f596
IM
4329 * Optimization: we know that if all tasks are in
4330 * the fair class we can call that function directly:
1da177e4 4331 */
dd41f596 4332 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4333 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4334 if (likely(p))
4335 return p;
1da177e4
LT
4336 }
4337
dd41f596
IM
4338 class = sched_class_highest;
4339 for ( ; ; ) {
fb8d4724 4340 p = class->pick_next_task(rq);
dd41f596
IM
4341 if (p)
4342 return p;
4343 /*
4344 * Will never be NULL as the idle class always
4345 * returns a non-NULL p:
4346 */
4347 class = class->next;
4348 }
4349}
1da177e4 4350
dd41f596
IM
4351/*
4352 * schedule() is the main scheduler function.
4353 */
4354asmlinkage void __sched schedule(void)
4355{
4356 struct task_struct *prev, *next;
67ca7bde 4357 unsigned long *switch_count;
dd41f596 4358 struct rq *rq;
31656519 4359 int cpu;
dd41f596
IM
4360
4361need_resched:
4362 preempt_disable();
4363 cpu = smp_processor_id();
4364 rq = cpu_rq(cpu);
4365 rcu_qsctr_inc(cpu);
4366 prev = rq->curr;
4367 switch_count = &prev->nivcsw;
4368
4369 release_kernel_lock(prev);
4370need_resched_nonpreemptible:
4371
4372 schedule_debug(prev);
1da177e4 4373
31656519 4374 if (sched_feat(HRTICK))
f333fdc9 4375 hrtick_clear(rq);
8f4d37ec 4376
1e819950
IM
4377 /*
4378 * Do the rq-clock update outside the rq lock:
4379 */
4380 local_irq_disable();
3e51f33f 4381 update_rq_clock(rq);
1e819950
IM
4382 spin_lock(&rq->lock);
4383 clear_tsk_need_resched(prev);
1da177e4 4384
1da177e4 4385 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4386 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4387 prev->state = TASK_RUNNING;
16882c1e 4388 else
2e1cb74a 4389 deactivate_task(rq, prev, 1);
dd41f596 4390 switch_count = &prev->nvcsw;
1da177e4
LT
4391 }
4392
9a897c5a
SR
4393#ifdef CONFIG_SMP
4394 if (prev->sched_class->pre_schedule)
4395 prev->sched_class->pre_schedule(rq, prev);
4396#endif
f65eda4f 4397
dd41f596 4398 if (unlikely(!rq->nr_running))
1da177e4 4399 idle_balance(cpu, rq);
1da177e4 4400
31ee529c 4401 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4402 next = pick_next_task(rq, prev);
1da177e4 4403
1da177e4 4404 if (likely(prev != next)) {
673a90a1
DS
4405 sched_info_switch(prev, next);
4406
1da177e4
LT
4407 rq->nr_switches++;
4408 rq->curr = next;
4409 ++*switch_count;
4410
dd41f596 4411 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4412 /*
4413 * the context switch might have flipped the stack from under
4414 * us, hence refresh the local variables.
4415 */
4416 cpu = smp_processor_id();
4417 rq = cpu_rq(cpu);
1da177e4
LT
4418 } else
4419 spin_unlock_irq(&rq->lock);
4420
8f4d37ec 4421 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4422 goto need_resched_nonpreemptible;
8f4d37ec 4423
1da177e4
LT
4424 preempt_enable_no_resched();
4425 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4426 goto need_resched;
4427}
1da177e4
LT
4428EXPORT_SYMBOL(schedule);
4429
4430#ifdef CONFIG_PREEMPT
4431/*
2ed6e34f 4432 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4433 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4434 * occur there and call schedule directly.
4435 */
4436asmlinkage void __sched preempt_schedule(void)
4437{
4438 struct thread_info *ti = current_thread_info();
6478d880 4439
1da177e4
LT
4440 /*
4441 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4442 * we do not want to preempt the current task. Just return..
1da177e4 4443 */
beed33a8 4444 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4445 return;
4446
3a5c359a
AK
4447 do {
4448 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4449 schedule();
3a5c359a 4450 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4451
3a5c359a
AK
4452 /*
4453 * Check again in case we missed a preemption opportunity
4454 * between schedule and now.
4455 */
4456 barrier();
4457 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4458}
1da177e4
LT
4459EXPORT_SYMBOL(preempt_schedule);
4460
4461/*
2ed6e34f 4462 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4463 * off of irq context.
4464 * Note, that this is called and return with irqs disabled. This will
4465 * protect us against recursive calling from irq.
4466 */
4467asmlinkage void __sched preempt_schedule_irq(void)
4468{
4469 struct thread_info *ti = current_thread_info();
6478d880 4470
2ed6e34f 4471 /* Catch callers which need to be fixed */
1da177e4
LT
4472 BUG_ON(ti->preempt_count || !irqs_disabled());
4473
3a5c359a
AK
4474 do {
4475 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4476 local_irq_enable();
4477 schedule();
4478 local_irq_disable();
3a5c359a 4479 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4480
3a5c359a
AK
4481 /*
4482 * Check again in case we missed a preemption opportunity
4483 * between schedule and now.
4484 */
4485 barrier();
4486 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4487}
4488
4489#endif /* CONFIG_PREEMPT */
4490
95cdf3b7
IM
4491int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4492 void *key)
1da177e4 4493{
48f24c4d 4494 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4495}
1da177e4
LT
4496EXPORT_SYMBOL(default_wake_function);
4497
4498/*
41a2d6cf
IM
4499 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4500 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4501 * number) then we wake all the non-exclusive tasks and one exclusive task.
4502 *
4503 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4504 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4505 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4506 */
4507static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4508 int nr_exclusive, int sync, void *key)
4509{
2e45874c 4510 wait_queue_t *curr, *next;
1da177e4 4511
2e45874c 4512 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4513 unsigned flags = curr->flags;
4514
1da177e4 4515 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4516 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4517 break;
4518 }
4519}
4520
4521/**
4522 * __wake_up - wake up threads blocked on a waitqueue.
4523 * @q: the waitqueue
4524 * @mode: which threads
4525 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4526 * @key: is directly passed to the wakeup function
1da177e4 4527 */
7ad5b3a5 4528void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4529 int nr_exclusive, void *key)
1da177e4
LT
4530{
4531 unsigned long flags;
4532
4533 spin_lock_irqsave(&q->lock, flags);
4534 __wake_up_common(q, mode, nr_exclusive, 0, key);
4535 spin_unlock_irqrestore(&q->lock, flags);
4536}
1da177e4
LT
4537EXPORT_SYMBOL(__wake_up);
4538
4539/*
4540 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4541 */
7ad5b3a5 4542void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4543{
4544 __wake_up_common(q, mode, 1, 0, NULL);
4545}
4546
4547/**
67be2dd1 4548 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4549 * @q: the waitqueue
4550 * @mode: which threads
4551 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4552 *
4553 * The sync wakeup differs that the waker knows that it will schedule
4554 * away soon, so while the target thread will be woken up, it will not
4555 * be migrated to another CPU - ie. the two threads are 'synchronized'
4556 * with each other. This can prevent needless bouncing between CPUs.
4557 *
4558 * On UP it can prevent extra preemption.
4559 */
7ad5b3a5 4560void
95cdf3b7 4561__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4562{
4563 unsigned long flags;
4564 int sync = 1;
4565
4566 if (unlikely(!q))
4567 return;
4568
4569 if (unlikely(!nr_exclusive))
4570 sync = 0;
4571
4572 spin_lock_irqsave(&q->lock, flags);
4573 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4574 spin_unlock_irqrestore(&q->lock, flags);
4575}
4576EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4577
b15136e9 4578void complete(struct completion *x)
1da177e4
LT
4579{
4580 unsigned long flags;
4581
4582 spin_lock_irqsave(&x->wait.lock, flags);
4583 x->done++;
d9514f6c 4584 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4585 spin_unlock_irqrestore(&x->wait.lock, flags);
4586}
4587EXPORT_SYMBOL(complete);
4588
b15136e9 4589void complete_all(struct completion *x)
1da177e4
LT
4590{
4591 unsigned long flags;
4592
4593 spin_lock_irqsave(&x->wait.lock, flags);
4594 x->done += UINT_MAX/2;
d9514f6c 4595 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4596 spin_unlock_irqrestore(&x->wait.lock, flags);
4597}
4598EXPORT_SYMBOL(complete_all);
4599
8cbbe86d
AK
4600static inline long __sched
4601do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4602{
1da177e4
LT
4603 if (!x->done) {
4604 DECLARE_WAITQUEUE(wait, current);
4605
4606 wait.flags |= WQ_FLAG_EXCLUSIVE;
4607 __add_wait_queue_tail(&x->wait, &wait);
4608 do {
009e577e
MW
4609 if ((state == TASK_INTERRUPTIBLE &&
4610 signal_pending(current)) ||
4611 (state == TASK_KILLABLE &&
4612 fatal_signal_pending(current))) {
ea71a546
ON
4613 timeout = -ERESTARTSYS;
4614 break;
8cbbe86d
AK
4615 }
4616 __set_current_state(state);
1da177e4
LT
4617 spin_unlock_irq(&x->wait.lock);
4618 timeout = schedule_timeout(timeout);
4619 spin_lock_irq(&x->wait.lock);
ea71a546 4620 } while (!x->done && timeout);
1da177e4 4621 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4622 if (!x->done)
4623 return timeout;
1da177e4
LT
4624 }
4625 x->done--;
ea71a546 4626 return timeout ?: 1;
1da177e4 4627}
1da177e4 4628
8cbbe86d
AK
4629static long __sched
4630wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4631{
1da177e4
LT
4632 might_sleep();
4633
4634 spin_lock_irq(&x->wait.lock);
8cbbe86d 4635 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4636 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4637 return timeout;
4638}
1da177e4 4639
b15136e9 4640void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4641{
4642 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4643}
8cbbe86d 4644EXPORT_SYMBOL(wait_for_completion);
1da177e4 4645
b15136e9 4646unsigned long __sched
8cbbe86d 4647wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4648{
8cbbe86d 4649 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4650}
8cbbe86d 4651EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4652
8cbbe86d 4653int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4654{
51e97990
AK
4655 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4656 if (t == -ERESTARTSYS)
4657 return t;
4658 return 0;
0fec171c 4659}
8cbbe86d 4660EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4661
b15136e9 4662unsigned long __sched
8cbbe86d
AK
4663wait_for_completion_interruptible_timeout(struct completion *x,
4664 unsigned long timeout)
0fec171c 4665{
8cbbe86d 4666 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4667}
8cbbe86d 4668EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4669
009e577e
MW
4670int __sched wait_for_completion_killable(struct completion *x)
4671{
4672 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4673 if (t == -ERESTARTSYS)
4674 return t;
4675 return 0;
4676}
4677EXPORT_SYMBOL(wait_for_completion_killable);
4678
be4de352
DC
4679/**
4680 * try_wait_for_completion - try to decrement a completion without blocking
4681 * @x: completion structure
4682 *
4683 * Returns: 0 if a decrement cannot be done without blocking
4684 * 1 if a decrement succeeded.
4685 *
4686 * If a completion is being used as a counting completion,
4687 * attempt to decrement the counter without blocking. This
4688 * enables us to avoid waiting if the resource the completion
4689 * is protecting is not available.
4690 */
4691bool try_wait_for_completion(struct completion *x)
4692{
4693 int ret = 1;
4694
4695 spin_lock_irq(&x->wait.lock);
4696 if (!x->done)
4697 ret = 0;
4698 else
4699 x->done--;
4700 spin_unlock_irq(&x->wait.lock);
4701 return ret;
4702}
4703EXPORT_SYMBOL(try_wait_for_completion);
4704
4705/**
4706 * completion_done - Test to see if a completion has any waiters
4707 * @x: completion structure
4708 *
4709 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4710 * 1 if there are no waiters.
4711 *
4712 */
4713bool completion_done(struct completion *x)
4714{
4715 int ret = 1;
4716
4717 spin_lock_irq(&x->wait.lock);
4718 if (!x->done)
4719 ret = 0;
4720 spin_unlock_irq(&x->wait.lock);
4721 return ret;
4722}
4723EXPORT_SYMBOL(completion_done);
4724
8cbbe86d
AK
4725static long __sched
4726sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4727{
0fec171c
IM
4728 unsigned long flags;
4729 wait_queue_t wait;
4730
4731 init_waitqueue_entry(&wait, current);
1da177e4 4732
8cbbe86d 4733 __set_current_state(state);
1da177e4 4734
8cbbe86d
AK
4735 spin_lock_irqsave(&q->lock, flags);
4736 __add_wait_queue(q, &wait);
4737 spin_unlock(&q->lock);
4738 timeout = schedule_timeout(timeout);
4739 spin_lock_irq(&q->lock);
4740 __remove_wait_queue(q, &wait);
4741 spin_unlock_irqrestore(&q->lock, flags);
4742
4743 return timeout;
4744}
4745
4746void __sched interruptible_sleep_on(wait_queue_head_t *q)
4747{
4748 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4749}
1da177e4
LT
4750EXPORT_SYMBOL(interruptible_sleep_on);
4751
0fec171c 4752long __sched
95cdf3b7 4753interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4754{
8cbbe86d 4755 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4756}
1da177e4
LT
4757EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4758
0fec171c 4759void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4760{
8cbbe86d 4761 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4762}
1da177e4
LT
4763EXPORT_SYMBOL(sleep_on);
4764
0fec171c 4765long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4766{
8cbbe86d 4767 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4768}
1da177e4
LT
4769EXPORT_SYMBOL(sleep_on_timeout);
4770
b29739f9
IM
4771#ifdef CONFIG_RT_MUTEXES
4772
4773/*
4774 * rt_mutex_setprio - set the current priority of a task
4775 * @p: task
4776 * @prio: prio value (kernel-internal form)
4777 *
4778 * This function changes the 'effective' priority of a task. It does
4779 * not touch ->normal_prio like __setscheduler().
4780 *
4781 * Used by the rt_mutex code to implement priority inheritance logic.
4782 */
36c8b586 4783void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4784{
4785 unsigned long flags;
83b699ed 4786 int oldprio, on_rq, running;
70b97a7f 4787 struct rq *rq;
cb469845 4788 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4789
4790 BUG_ON(prio < 0 || prio > MAX_PRIO);
4791
4792 rq = task_rq_lock(p, &flags);
a8e504d2 4793 update_rq_clock(rq);
b29739f9 4794
d5f9f942 4795 oldprio = p->prio;
dd41f596 4796 on_rq = p->se.on_rq;
051a1d1a 4797 running = task_current(rq, p);
0e1f3483 4798 if (on_rq)
69be72c1 4799 dequeue_task(rq, p, 0);
0e1f3483
HS
4800 if (running)
4801 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4802
4803 if (rt_prio(prio))
4804 p->sched_class = &rt_sched_class;
4805 else
4806 p->sched_class = &fair_sched_class;
4807
b29739f9
IM
4808 p->prio = prio;
4809
0e1f3483
HS
4810 if (running)
4811 p->sched_class->set_curr_task(rq);
dd41f596 4812 if (on_rq) {
8159f87e 4813 enqueue_task(rq, p, 0);
cb469845
SR
4814
4815 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4816 }
4817 task_rq_unlock(rq, &flags);
4818}
4819
4820#endif
4821
36c8b586 4822void set_user_nice(struct task_struct *p, long nice)
1da177e4 4823{
dd41f596 4824 int old_prio, delta, on_rq;
1da177e4 4825 unsigned long flags;
70b97a7f 4826 struct rq *rq;
1da177e4
LT
4827
4828 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4829 return;
4830 /*
4831 * We have to be careful, if called from sys_setpriority(),
4832 * the task might be in the middle of scheduling on another CPU.
4833 */
4834 rq = task_rq_lock(p, &flags);
a8e504d2 4835 update_rq_clock(rq);
1da177e4
LT
4836 /*
4837 * The RT priorities are set via sched_setscheduler(), but we still
4838 * allow the 'normal' nice value to be set - but as expected
4839 * it wont have any effect on scheduling until the task is
dd41f596 4840 * SCHED_FIFO/SCHED_RR:
1da177e4 4841 */
e05606d3 4842 if (task_has_rt_policy(p)) {
1da177e4
LT
4843 p->static_prio = NICE_TO_PRIO(nice);
4844 goto out_unlock;
4845 }
dd41f596 4846 on_rq = p->se.on_rq;
c09595f6 4847 if (on_rq)
69be72c1 4848 dequeue_task(rq, p, 0);
1da177e4 4849
1da177e4 4850 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4851 set_load_weight(p);
b29739f9
IM
4852 old_prio = p->prio;
4853 p->prio = effective_prio(p);
4854 delta = p->prio - old_prio;
1da177e4 4855
dd41f596 4856 if (on_rq) {
8159f87e 4857 enqueue_task(rq, p, 0);
1da177e4 4858 /*
d5f9f942
AM
4859 * If the task increased its priority or is running and
4860 * lowered its priority, then reschedule its CPU:
1da177e4 4861 */
d5f9f942 4862 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4863 resched_task(rq->curr);
4864 }
4865out_unlock:
4866 task_rq_unlock(rq, &flags);
4867}
1da177e4
LT
4868EXPORT_SYMBOL(set_user_nice);
4869
e43379f1
MM
4870/*
4871 * can_nice - check if a task can reduce its nice value
4872 * @p: task
4873 * @nice: nice value
4874 */
36c8b586 4875int can_nice(const struct task_struct *p, const int nice)
e43379f1 4876{
024f4747
MM
4877 /* convert nice value [19,-20] to rlimit style value [1,40] */
4878 int nice_rlim = 20 - nice;
48f24c4d 4879
e43379f1
MM
4880 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4881 capable(CAP_SYS_NICE));
4882}
4883
1da177e4
LT
4884#ifdef __ARCH_WANT_SYS_NICE
4885
4886/*
4887 * sys_nice - change the priority of the current process.
4888 * @increment: priority increment
4889 *
4890 * sys_setpriority is a more generic, but much slower function that
4891 * does similar things.
4892 */
4893asmlinkage long sys_nice(int increment)
4894{
48f24c4d 4895 long nice, retval;
1da177e4
LT
4896
4897 /*
4898 * Setpriority might change our priority at the same moment.
4899 * We don't have to worry. Conceptually one call occurs first
4900 * and we have a single winner.
4901 */
e43379f1
MM
4902 if (increment < -40)
4903 increment = -40;
1da177e4
LT
4904 if (increment > 40)
4905 increment = 40;
4906
4907 nice = PRIO_TO_NICE(current->static_prio) + increment;
4908 if (nice < -20)
4909 nice = -20;
4910 if (nice > 19)
4911 nice = 19;
4912
e43379f1
MM
4913 if (increment < 0 && !can_nice(current, nice))
4914 return -EPERM;
4915
1da177e4
LT
4916 retval = security_task_setnice(current, nice);
4917 if (retval)
4918 return retval;
4919
4920 set_user_nice(current, nice);
4921 return 0;
4922}
4923
4924#endif
4925
4926/**
4927 * task_prio - return the priority value of a given task.
4928 * @p: the task in question.
4929 *
4930 * This is the priority value as seen by users in /proc.
4931 * RT tasks are offset by -200. Normal tasks are centered
4932 * around 0, value goes from -16 to +15.
4933 */
36c8b586 4934int task_prio(const struct task_struct *p)
1da177e4
LT
4935{
4936 return p->prio - MAX_RT_PRIO;
4937}
4938
4939/**
4940 * task_nice - return the nice value of a given task.
4941 * @p: the task in question.
4942 */
36c8b586 4943int task_nice(const struct task_struct *p)
1da177e4
LT
4944{
4945 return TASK_NICE(p);
4946}
150d8bed 4947EXPORT_SYMBOL(task_nice);
1da177e4
LT
4948
4949/**
4950 * idle_cpu - is a given cpu idle currently?
4951 * @cpu: the processor in question.
4952 */
4953int idle_cpu(int cpu)
4954{
4955 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4956}
4957
1da177e4
LT
4958/**
4959 * idle_task - return the idle task for a given cpu.
4960 * @cpu: the processor in question.
4961 */
36c8b586 4962struct task_struct *idle_task(int cpu)
1da177e4
LT
4963{
4964 return cpu_rq(cpu)->idle;
4965}
4966
4967/**
4968 * find_process_by_pid - find a process with a matching PID value.
4969 * @pid: the pid in question.
4970 */
a9957449 4971static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4972{
228ebcbe 4973 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4974}
4975
4976/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4977static void
4978__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4979{
dd41f596 4980 BUG_ON(p->se.on_rq);
48f24c4d 4981
1da177e4 4982 p->policy = policy;
dd41f596
IM
4983 switch (p->policy) {
4984 case SCHED_NORMAL:
4985 case SCHED_BATCH:
4986 case SCHED_IDLE:
4987 p->sched_class = &fair_sched_class;
4988 break;
4989 case SCHED_FIFO:
4990 case SCHED_RR:
4991 p->sched_class = &rt_sched_class;
4992 break;
4993 }
4994
1da177e4 4995 p->rt_priority = prio;
b29739f9
IM
4996 p->normal_prio = normal_prio(p);
4997 /* we are holding p->pi_lock already */
4998 p->prio = rt_mutex_getprio(p);
2dd73a4f 4999 set_load_weight(p);
1da177e4
LT
5000}
5001
961ccddd
RR
5002static int __sched_setscheduler(struct task_struct *p, int policy,
5003 struct sched_param *param, bool user)
1da177e4 5004{
83b699ed 5005 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5006 unsigned long flags;
cb469845 5007 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5008 struct rq *rq;
1da177e4 5009
66e5393a
SR
5010 /* may grab non-irq protected spin_locks */
5011 BUG_ON(in_interrupt());
1da177e4
LT
5012recheck:
5013 /* double check policy once rq lock held */
5014 if (policy < 0)
5015 policy = oldpolicy = p->policy;
5016 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5017 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5018 policy != SCHED_IDLE)
b0a9499c 5019 return -EINVAL;
1da177e4
LT
5020 /*
5021 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5022 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5023 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5024 */
5025 if (param->sched_priority < 0 ||
95cdf3b7 5026 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5027 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5028 return -EINVAL;
e05606d3 5029 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5030 return -EINVAL;
5031
37e4ab3f
OC
5032 /*
5033 * Allow unprivileged RT tasks to decrease priority:
5034 */
961ccddd 5035 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5036 if (rt_policy(policy)) {
8dc3e909 5037 unsigned long rlim_rtprio;
8dc3e909
ON
5038
5039 if (!lock_task_sighand(p, &flags))
5040 return -ESRCH;
5041 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5042 unlock_task_sighand(p, &flags);
5043
5044 /* can't set/change the rt policy */
5045 if (policy != p->policy && !rlim_rtprio)
5046 return -EPERM;
5047
5048 /* can't increase priority */
5049 if (param->sched_priority > p->rt_priority &&
5050 param->sched_priority > rlim_rtprio)
5051 return -EPERM;
5052 }
dd41f596
IM
5053 /*
5054 * Like positive nice levels, dont allow tasks to
5055 * move out of SCHED_IDLE either:
5056 */
5057 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5058 return -EPERM;
5fe1d75f 5059
37e4ab3f
OC
5060 /* can't change other user's priorities */
5061 if ((current->euid != p->euid) &&
5062 (current->euid != p->uid))
5063 return -EPERM;
5064 }
1da177e4 5065
725aad24 5066 if (user) {
b68aa230 5067#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5068 /*
5069 * Do not allow realtime tasks into groups that have no runtime
5070 * assigned.
5071 */
5072 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5073 return -EPERM;
b68aa230
PZ
5074#endif
5075
725aad24
JF
5076 retval = security_task_setscheduler(p, policy, param);
5077 if (retval)
5078 return retval;
5079 }
5080
b29739f9
IM
5081 /*
5082 * make sure no PI-waiters arrive (or leave) while we are
5083 * changing the priority of the task:
5084 */
5085 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5086 /*
5087 * To be able to change p->policy safely, the apropriate
5088 * runqueue lock must be held.
5089 */
b29739f9 5090 rq = __task_rq_lock(p);
1da177e4
LT
5091 /* recheck policy now with rq lock held */
5092 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5093 policy = oldpolicy = -1;
b29739f9
IM
5094 __task_rq_unlock(rq);
5095 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5096 goto recheck;
5097 }
2daa3577 5098 update_rq_clock(rq);
dd41f596 5099 on_rq = p->se.on_rq;
051a1d1a 5100 running = task_current(rq, p);
0e1f3483 5101 if (on_rq)
2e1cb74a 5102 deactivate_task(rq, p, 0);
0e1f3483
HS
5103 if (running)
5104 p->sched_class->put_prev_task(rq, p);
f6b53205 5105
1da177e4 5106 oldprio = p->prio;
dd41f596 5107 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5108
0e1f3483
HS
5109 if (running)
5110 p->sched_class->set_curr_task(rq);
dd41f596
IM
5111 if (on_rq) {
5112 activate_task(rq, p, 0);
cb469845
SR
5113
5114 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5115 }
b29739f9
IM
5116 __task_rq_unlock(rq);
5117 spin_unlock_irqrestore(&p->pi_lock, flags);
5118
95e02ca9
TG
5119 rt_mutex_adjust_pi(p);
5120
1da177e4
LT
5121 return 0;
5122}
961ccddd
RR
5123
5124/**
5125 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5126 * @p: the task in question.
5127 * @policy: new policy.
5128 * @param: structure containing the new RT priority.
5129 *
5130 * NOTE that the task may be already dead.
5131 */
5132int sched_setscheduler(struct task_struct *p, int policy,
5133 struct sched_param *param)
5134{
5135 return __sched_setscheduler(p, policy, param, true);
5136}
1da177e4
LT
5137EXPORT_SYMBOL_GPL(sched_setscheduler);
5138
961ccddd
RR
5139/**
5140 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5141 * @p: the task in question.
5142 * @policy: new policy.
5143 * @param: structure containing the new RT priority.
5144 *
5145 * Just like sched_setscheduler, only don't bother checking if the
5146 * current context has permission. For example, this is needed in
5147 * stop_machine(): we create temporary high priority worker threads,
5148 * but our caller might not have that capability.
5149 */
5150int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5151 struct sched_param *param)
5152{
5153 return __sched_setscheduler(p, policy, param, false);
5154}
5155
95cdf3b7
IM
5156static int
5157do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5158{
1da177e4
LT
5159 struct sched_param lparam;
5160 struct task_struct *p;
36c8b586 5161 int retval;
1da177e4
LT
5162
5163 if (!param || pid < 0)
5164 return -EINVAL;
5165 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5166 return -EFAULT;
5fe1d75f
ON
5167
5168 rcu_read_lock();
5169 retval = -ESRCH;
1da177e4 5170 p = find_process_by_pid(pid);
5fe1d75f
ON
5171 if (p != NULL)
5172 retval = sched_setscheduler(p, policy, &lparam);
5173 rcu_read_unlock();
36c8b586 5174
1da177e4
LT
5175 return retval;
5176}
5177
5178/**
5179 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5180 * @pid: the pid in question.
5181 * @policy: new policy.
5182 * @param: structure containing the new RT priority.
5183 */
41a2d6cf
IM
5184asmlinkage long
5185sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5186{
c21761f1
JB
5187 /* negative values for policy are not valid */
5188 if (policy < 0)
5189 return -EINVAL;
5190
1da177e4
LT
5191 return do_sched_setscheduler(pid, policy, param);
5192}
5193
5194/**
5195 * sys_sched_setparam - set/change the RT priority of a thread
5196 * @pid: the pid in question.
5197 * @param: structure containing the new RT priority.
5198 */
5199asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5200{
5201 return do_sched_setscheduler(pid, -1, param);
5202}
5203
5204/**
5205 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5206 * @pid: the pid in question.
5207 */
5208asmlinkage long sys_sched_getscheduler(pid_t pid)
5209{
36c8b586 5210 struct task_struct *p;
3a5c359a 5211 int retval;
1da177e4
LT
5212
5213 if (pid < 0)
3a5c359a 5214 return -EINVAL;
1da177e4
LT
5215
5216 retval = -ESRCH;
5217 read_lock(&tasklist_lock);
5218 p = find_process_by_pid(pid);
5219 if (p) {
5220 retval = security_task_getscheduler(p);
5221 if (!retval)
5222 retval = p->policy;
5223 }
5224 read_unlock(&tasklist_lock);
1da177e4
LT
5225 return retval;
5226}
5227
5228/**
5229 * sys_sched_getscheduler - get the RT priority of a thread
5230 * @pid: the pid in question.
5231 * @param: structure containing the RT priority.
5232 */
5233asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5234{
5235 struct sched_param lp;
36c8b586 5236 struct task_struct *p;
3a5c359a 5237 int retval;
1da177e4
LT
5238
5239 if (!param || pid < 0)
3a5c359a 5240 return -EINVAL;
1da177e4
LT
5241
5242 read_lock(&tasklist_lock);
5243 p = find_process_by_pid(pid);
5244 retval = -ESRCH;
5245 if (!p)
5246 goto out_unlock;
5247
5248 retval = security_task_getscheduler(p);
5249 if (retval)
5250 goto out_unlock;
5251
5252 lp.sched_priority = p->rt_priority;
5253 read_unlock(&tasklist_lock);
5254
5255 /*
5256 * This one might sleep, we cannot do it with a spinlock held ...
5257 */
5258 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5259
1da177e4
LT
5260 return retval;
5261
5262out_unlock:
5263 read_unlock(&tasklist_lock);
5264 return retval;
5265}
5266
b53e921b 5267long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5268{
1da177e4 5269 cpumask_t cpus_allowed;
b53e921b 5270 cpumask_t new_mask = *in_mask;
36c8b586
IM
5271 struct task_struct *p;
5272 int retval;
1da177e4 5273
95402b38 5274 get_online_cpus();
1da177e4
LT
5275 read_lock(&tasklist_lock);
5276
5277 p = find_process_by_pid(pid);
5278 if (!p) {
5279 read_unlock(&tasklist_lock);
95402b38 5280 put_online_cpus();
1da177e4
LT
5281 return -ESRCH;
5282 }
5283
5284 /*
5285 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5286 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5287 * usage count and then drop tasklist_lock.
5288 */
5289 get_task_struct(p);
5290 read_unlock(&tasklist_lock);
5291
5292 retval = -EPERM;
5293 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5294 !capable(CAP_SYS_NICE))
5295 goto out_unlock;
5296
e7834f8f
DQ
5297 retval = security_task_setscheduler(p, 0, NULL);
5298 if (retval)
5299 goto out_unlock;
5300
f9a86fcb 5301 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5302 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5303 again:
7c16ec58 5304 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5305
8707d8b8 5306 if (!retval) {
f9a86fcb 5307 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5308 if (!cpus_subset(new_mask, cpus_allowed)) {
5309 /*
5310 * We must have raced with a concurrent cpuset
5311 * update. Just reset the cpus_allowed to the
5312 * cpuset's cpus_allowed
5313 */
5314 new_mask = cpus_allowed;
5315 goto again;
5316 }
5317 }
1da177e4
LT
5318out_unlock:
5319 put_task_struct(p);
95402b38 5320 put_online_cpus();
1da177e4
LT
5321 return retval;
5322}
5323
5324static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5325 cpumask_t *new_mask)
5326{
5327 if (len < sizeof(cpumask_t)) {
5328 memset(new_mask, 0, sizeof(cpumask_t));
5329 } else if (len > sizeof(cpumask_t)) {
5330 len = sizeof(cpumask_t);
5331 }
5332 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5333}
5334
5335/**
5336 * sys_sched_setaffinity - set the cpu affinity of a process
5337 * @pid: pid of the process
5338 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5339 * @user_mask_ptr: user-space pointer to the new cpu mask
5340 */
5341asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5342 unsigned long __user *user_mask_ptr)
5343{
5344 cpumask_t new_mask;
5345 int retval;
5346
5347 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5348 if (retval)
5349 return retval;
5350
b53e921b 5351 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5352}
5353
1da177e4
LT
5354long sched_getaffinity(pid_t pid, cpumask_t *mask)
5355{
36c8b586 5356 struct task_struct *p;
1da177e4 5357 int retval;
1da177e4 5358
95402b38 5359 get_online_cpus();
1da177e4
LT
5360 read_lock(&tasklist_lock);
5361
5362 retval = -ESRCH;
5363 p = find_process_by_pid(pid);
5364 if (!p)
5365 goto out_unlock;
5366
e7834f8f
DQ
5367 retval = security_task_getscheduler(p);
5368 if (retval)
5369 goto out_unlock;
5370
2f7016d9 5371 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5372
5373out_unlock:
5374 read_unlock(&tasklist_lock);
95402b38 5375 put_online_cpus();
1da177e4 5376
9531b62f 5377 return retval;
1da177e4
LT
5378}
5379
5380/**
5381 * sys_sched_getaffinity - get the cpu affinity of a process
5382 * @pid: pid of the process
5383 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5384 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5385 */
5386asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5387 unsigned long __user *user_mask_ptr)
5388{
5389 int ret;
5390 cpumask_t mask;
5391
5392 if (len < sizeof(cpumask_t))
5393 return -EINVAL;
5394
5395 ret = sched_getaffinity(pid, &mask);
5396 if (ret < 0)
5397 return ret;
5398
5399 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5400 return -EFAULT;
5401
5402 return sizeof(cpumask_t);
5403}
5404
5405/**
5406 * sys_sched_yield - yield the current processor to other threads.
5407 *
dd41f596
IM
5408 * This function yields the current CPU to other tasks. If there are no
5409 * other threads running on this CPU then this function will return.
1da177e4
LT
5410 */
5411asmlinkage long sys_sched_yield(void)
5412{
70b97a7f 5413 struct rq *rq = this_rq_lock();
1da177e4 5414
2d72376b 5415 schedstat_inc(rq, yld_count);
4530d7ab 5416 current->sched_class->yield_task(rq);
1da177e4
LT
5417
5418 /*
5419 * Since we are going to call schedule() anyway, there's
5420 * no need to preempt or enable interrupts:
5421 */
5422 __release(rq->lock);
8a25d5de 5423 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5424 _raw_spin_unlock(&rq->lock);
5425 preempt_enable_no_resched();
5426
5427 schedule();
5428
5429 return 0;
5430}
5431
e7b38404 5432static void __cond_resched(void)
1da177e4 5433{
8e0a43d8
IM
5434#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5435 __might_sleep(__FILE__, __LINE__);
5436#endif
5bbcfd90
IM
5437 /*
5438 * The BKS might be reacquired before we have dropped
5439 * PREEMPT_ACTIVE, which could trigger a second
5440 * cond_resched() call.
5441 */
1da177e4
LT
5442 do {
5443 add_preempt_count(PREEMPT_ACTIVE);
5444 schedule();
5445 sub_preempt_count(PREEMPT_ACTIVE);
5446 } while (need_resched());
5447}
5448
02b67cc3 5449int __sched _cond_resched(void)
1da177e4 5450{
9414232f
IM
5451 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5452 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5453 __cond_resched();
5454 return 1;
5455 }
5456 return 0;
5457}
02b67cc3 5458EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5459
5460/*
5461 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5462 * call schedule, and on return reacquire the lock.
5463 *
41a2d6cf 5464 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5465 * operations here to prevent schedule() from being called twice (once via
5466 * spin_unlock(), once by hand).
5467 */
95cdf3b7 5468int cond_resched_lock(spinlock_t *lock)
1da177e4 5469{
95c354fe 5470 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5471 int ret = 0;
5472
95c354fe 5473 if (spin_needbreak(lock) || resched) {
1da177e4 5474 spin_unlock(lock);
95c354fe
NP
5475 if (resched && need_resched())
5476 __cond_resched();
5477 else
5478 cpu_relax();
6df3cecb 5479 ret = 1;
1da177e4 5480 spin_lock(lock);
1da177e4 5481 }
6df3cecb 5482 return ret;
1da177e4 5483}
1da177e4
LT
5484EXPORT_SYMBOL(cond_resched_lock);
5485
5486int __sched cond_resched_softirq(void)
5487{
5488 BUG_ON(!in_softirq());
5489
9414232f 5490 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5491 local_bh_enable();
1da177e4
LT
5492 __cond_resched();
5493 local_bh_disable();
5494 return 1;
5495 }
5496 return 0;
5497}
1da177e4
LT
5498EXPORT_SYMBOL(cond_resched_softirq);
5499
1da177e4
LT
5500/**
5501 * yield - yield the current processor to other threads.
5502 *
72fd4a35 5503 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5504 * thread runnable and calls sys_sched_yield().
5505 */
5506void __sched yield(void)
5507{
5508 set_current_state(TASK_RUNNING);
5509 sys_sched_yield();
5510}
1da177e4
LT
5511EXPORT_SYMBOL(yield);
5512
5513/*
41a2d6cf 5514 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5515 * that process accounting knows that this is a task in IO wait state.
5516 *
5517 * But don't do that if it is a deliberate, throttling IO wait (this task
5518 * has set its backing_dev_info: the queue against which it should throttle)
5519 */
5520void __sched io_schedule(void)
5521{
70b97a7f 5522 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5523
0ff92245 5524 delayacct_blkio_start();
1da177e4
LT
5525 atomic_inc(&rq->nr_iowait);
5526 schedule();
5527 atomic_dec(&rq->nr_iowait);
0ff92245 5528 delayacct_blkio_end();
1da177e4 5529}
1da177e4
LT
5530EXPORT_SYMBOL(io_schedule);
5531
5532long __sched io_schedule_timeout(long timeout)
5533{
70b97a7f 5534 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5535 long ret;
5536
0ff92245 5537 delayacct_blkio_start();
1da177e4
LT
5538 atomic_inc(&rq->nr_iowait);
5539 ret = schedule_timeout(timeout);
5540 atomic_dec(&rq->nr_iowait);
0ff92245 5541 delayacct_blkio_end();
1da177e4
LT
5542 return ret;
5543}
5544
5545/**
5546 * sys_sched_get_priority_max - return maximum RT priority.
5547 * @policy: scheduling class.
5548 *
5549 * this syscall returns the maximum rt_priority that can be used
5550 * by a given scheduling class.
5551 */
5552asmlinkage long sys_sched_get_priority_max(int policy)
5553{
5554 int ret = -EINVAL;
5555
5556 switch (policy) {
5557 case SCHED_FIFO:
5558 case SCHED_RR:
5559 ret = MAX_USER_RT_PRIO-1;
5560 break;
5561 case SCHED_NORMAL:
b0a9499c 5562 case SCHED_BATCH:
dd41f596 5563 case SCHED_IDLE:
1da177e4
LT
5564 ret = 0;
5565 break;
5566 }
5567 return ret;
5568}
5569
5570/**
5571 * sys_sched_get_priority_min - return minimum RT priority.
5572 * @policy: scheduling class.
5573 *
5574 * this syscall returns the minimum rt_priority that can be used
5575 * by a given scheduling class.
5576 */
5577asmlinkage long sys_sched_get_priority_min(int policy)
5578{
5579 int ret = -EINVAL;
5580
5581 switch (policy) {
5582 case SCHED_FIFO:
5583 case SCHED_RR:
5584 ret = 1;
5585 break;
5586 case SCHED_NORMAL:
b0a9499c 5587 case SCHED_BATCH:
dd41f596 5588 case SCHED_IDLE:
1da177e4
LT
5589 ret = 0;
5590 }
5591 return ret;
5592}
5593
5594/**
5595 * sys_sched_rr_get_interval - return the default timeslice of a process.
5596 * @pid: pid of the process.
5597 * @interval: userspace pointer to the timeslice value.
5598 *
5599 * this syscall writes the default timeslice value of a given process
5600 * into the user-space timespec buffer. A value of '0' means infinity.
5601 */
5602asmlinkage
5603long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5604{
36c8b586 5605 struct task_struct *p;
a4ec24b4 5606 unsigned int time_slice;
3a5c359a 5607 int retval;
1da177e4 5608 struct timespec t;
1da177e4
LT
5609
5610 if (pid < 0)
3a5c359a 5611 return -EINVAL;
1da177e4
LT
5612
5613 retval = -ESRCH;
5614 read_lock(&tasklist_lock);
5615 p = find_process_by_pid(pid);
5616 if (!p)
5617 goto out_unlock;
5618
5619 retval = security_task_getscheduler(p);
5620 if (retval)
5621 goto out_unlock;
5622
77034937
IM
5623 /*
5624 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5625 * tasks that are on an otherwise idle runqueue:
5626 */
5627 time_slice = 0;
5628 if (p->policy == SCHED_RR) {
a4ec24b4 5629 time_slice = DEF_TIMESLICE;
1868f958 5630 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5631 struct sched_entity *se = &p->se;
5632 unsigned long flags;
5633 struct rq *rq;
5634
5635 rq = task_rq_lock(p, &flags);
77034937
IM
5636 if (rq->cfs.load.weight)
5637 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5638 task_rq_unlock(rq, &flags);
5639 }
1da177e4 5640 read_unlock(&tasklist_lock);
a4ec24b4 5641 jiffies_to_timespec(time_slice, &t);
1da177e4 5642 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5643 return retval;
3a5c359a 5644
1da177e4
LT
5645out_unlock:
5646 read_unlock(&tasklist_lock);
5647 return retval;
5648}
5649
7c731e0a 5650static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5651
82a1fcb9 5652void sched_show_task(struct task_struct *p)
1da177e4 5653{
1da177e4 5654 unsigned long free = 0;
36c8b586 5655 unsigned state;
1da177e4 5656
1da177e4 5657 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5658 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5659 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5660#if BITS_PER_LONG == 32
1da177e4 5661 if (state == TASK_RUNNING)
cc4ea795 5662 printk(KERN_CONT " running ");
1da177e4 5663 else
cc4ea795 5664 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5665#else
5666 if (state == TASK_RUNNING)
cc4ea795 5667 printk(KERN_CONT " running task ");
1da177e4 5668 else
cc4ea795 5669 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5670#endif
5671#ifdef CONFIG_DEBUG_STACK_USAGE
5672 {
10ebffde 5673 unsigned long *n = end_of_stack(p);
1da177e4
LT
5674 while (!*n)
5675 n++;
10ebffde 5676 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5677 }
5678#endif
ba25f9dc 5679 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5680 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5681
5fb5e6de 5682 show_stack(p, NULL);
1da177e4
LT
5683}
5684
e59e2ae2 5685void show_state_filter(unsigned long state_filter)
1da177e4 5686{
36c8b586 5687 struct task_struct *g, *p;
1da177e4 5688
4bd77321
IM
5689#if BITS_PER_LONG == 32
5690 printk(KERN_INFO
5691 " task PC stack pid father\n");
1da177e4 5692#else
4bd77321
IM
5693 printk(KERN_INFO
5694 " task PC stack pid father\n");
1da177e4
LT
5695#endif
5696 read_lock(&tasklist_lock);
5697 do_each_thread(g, p) {
5698 /*
5699 * reset the NMI-timeout, listing all files on a slow
5700 * console might take alot of time:
5701 */
5702 touch_nmi_watchdog();
39bc89fd 5703 if (!state_filter || (p->state & state_filter))
82a1fcb9 5704 sched_show_task(p);
1da177e4
LT
5705 } while_each_thread(g, p);
5706
04c9167f
JF
5707 touch_all_softlockup_watchdogs();
5708
dd41f596
IM
5709#ifdef CONFIG_SCHED_DEBUG
5710 sysrq_sched_debug_show();
5711#endif
1da177e4 5712 read_unlock(&tasklist_lock);
e59e2ae2
IM
5713 /*
5714 * Only show locks if all tasks are dumped:
5715 */
5716 if (state_filter == -1)
5717 debug_show_all_locks();
1da177e4
LT
5718}
5719
1df21055
IM
5720void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5721{
dd41f596 5722 idle->sched_class = &idle_sched_class;
1df21055
IM
5723}
5724
f340c0d1
IM
5725/**
5726 * init_idle - set up an idle thread for a given CPU
5727 * @idle: task in question
5728 * @cpu: cpu the idle task belongs to
5729 *
5730 * NOTE: this function does not set the idle thread's NEED_RESCHED
5731 * flag, to make booting more robust.
5732 */
5c1e1767 5733void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5734{
70b97a7f 5735 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5736 unsigned long flags;
5737
dd41f596
IM
5738 __sched_fork(idle);
5739 idle->se.exec_start = sched_clock();
5740
b29739f9 5741 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5742 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5743 __set_task_cpu(idle, cpu);
1da177e4
LT
5744
5745 spin_lock_irqsave(&rq->lock, flags);
5746 rq->curr = rq->idle = idle;
4866cde0
NP
5747#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5748 idle->oncpu = 1;
5749#endif
1da177e4
LT
5750 spin_unlock_irqrestore(&rq->lock, flags);
5751
5752 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5753#if defined(CONFIG_PREEMPT)
5754 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5755#else
a1261f54 5756 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5757#endif
dd41f596
IM
5758 /*
5759 * The idle tasks have their own, simple scheduling class:
5760 */
5761 idle->sched_class = &idle_sched_class;
1da177e4
LT
5762}
5763
5764/*
5765 * In a system that switches off the HZ timer nohz_cpu_mask
5766 * indicates which cpus entered this state. This is used
5767 * in the rcu update to wait only for active cpus. For system
5768 * which do not switch off the HZ timer nohz_cpu_mask should
5769 * always be CPU_MASK_NONE.
5770 */
5771cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5772
19978ca6
IM
5773/*
5774 * Increase the granularity value when there are more CPUs,
5775 * because with more CPUs the 'effective latency' as visible
5776 * to users decreases. But the relationship is not linear,
5777 * so pick a second-best guess by going with the log2 of the
5778 * number of CPUs.
5779 *
5780 * This idea comes from the SD scheduler of Con Kolivas:
5781 */
5782static inline void sched_init_granularity(void)
5783{
5784 unsigned int factor = 1 + ilog2(num_online_cpus());
5785 const unsigned long limit = 200000000;
5786
5787 sysctl_sched_min_granularity *= factor;
5788 if (sysctl_sched_min_granularity > limit)
5789 sysctl_sched_min_granularity = limit;
5790
5791 sysctl_sched_latency *= factor;
5792 if (sysctl_sched_latency > limit)
5793 sysctl_sched_latency = limit;
5794
5795 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5796
5797 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5798}
5799
1da177e4
LT
5800#ifdef CONFIG_SMP
5801/*
5802 * This is how migration works:
5803 *
70b97a7f 5804 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5805 * runqueue and wake up that CPU's migration thread.
5806 * 2) we down() the locked semaphore => thread blocks.
5807 * 3) migration thread wakes up (implicitly it forces the migrated
5808 * thread off the CPU)
5809 * 4) it gets the migration request and checks whether the migrated
5810 * task is still in the wrong runqueue.
5811 * 5) if it's in the wrong runqueue then the migration thread removes
5812 * it and puts it into the right queue.
5813 * 6) migration thread up()s the semaphore.
5814 * 7) we wake up and the migration is done.
5815 */
5816
5817/*
5818 * Change a given task's CPU affinity. Migrate the thread to a
5819 * proper CPU and schedule it away if the CPU it's executing on
5820 * is removed from the allowed bitmask.
5821 *
5822 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5823 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5824 * call is not atomic; no spinlocks may be held.
5825 */
cd8ba7cd 5826int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5827{
70b97a7f 5828 struct migration_req req;
1da177e4 5829 unsigned long flags;
70b97a7f 5830 struct rq *rq;
48f24c4d 5831 int ret = 0;
1da177e4
LT
5832
5833 rq = task_rq_lock(p, &flags);
cd8ba7cd 5834 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5835 ret = -EINVAL;
5836 goto out;
5837 }
5838
9985b0ba
DR
5839 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5840 !cpus_equal(p->cpus_allowed, *new_mask))) {
5841 ret = -EINVAL;
5842 goto out;
5843 }
5844
73fe6aae 5845 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5846 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5847 else {
cd8ba7cd
MT
5848 p->cpus_allowed = *new_mask;
5849 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5850 }
5851
1da177e4 5852 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5853 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5854 goto out;
5855
cd8ba7cd 5856 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5857 /* Need help from migration thread: drop lock and wait. */
5858 task_rq_unlock(rq, &flags);
5859 wake_up_process(rq->migration_thread);
5860 wait_for_completion(&req.done);
5861 tlb_migrate_finish(p->mm);
5862 return 0;
5863 }
5864out:
5865 task_rq_unlock(rq, &flags);
48f24c4d 5866
1da177e4
LT
5867 return ret;
5868}
cd8ba7cd 5869EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5870
5871/*
41a2d6cf 5872 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5873 * this because either it can't run here any more (set_cpus_allowed()
5874 * away from this CPU, or CPU going down), or because we're
5875 * attempting to rebalance this task on exec (sched_exec).
5876 *
5877 * So we race with normal scheduler movements, but that's OK, as long
5878 * as the task is no longer on this CPU.
efc30814
KK
5879 *
5880 * Returns non-zero if task was successfully migrated.
1da177e4 5881 */
efc30814 5882static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5883{
70b97a7f 5884 struct rq *rq_dest, *rq_src;
dd41f596 5885 int ret = 0, on_rq;
1da177e4 5886
e761b772 5887 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5888 return ret;
1da177e4
LT
5889
5890 rq_src = cpu_rq(src_cpu);
5891 rq_dest = cpu_rq(dest_cpu);
5892
5893 double_rq_lock(rq_src, rq_dest);
5894 /* Already moved. */
5895 if (task_cpu(p) != src_cpu)
b1e38734 5896 goto done;
1da177e4
LT
5897 /* Affinity changed (again). */
5898 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5899 goto fail;
1da177e4 5900
dd41f596 5901 on_rq = p->se.on_rq;
6e82a3be 5902 if (on_rq)
2e1cb74a 5903 deactivate_task(rq_src, p, 0);
6e82a3be 5904
1da177e4 5905 set_task_cpu(p, dest_cpu);
dd41f596
IM
5906 if (on_rq) {
5907 activate_task(rq_dest, p, 0);
5908 check_preempt_curr(rq_dest, p);
1da177e4 5909 }
b1e38734 5910done:
efc30814 5911 ret = 1;
b1e38734 5912fail:
1da177e4 5913 double_rq_unlock(rq_src, rq_dest);
efc30814 5914 return ret;
1da177e4
LT
5915}
5916
5917/*
5918 * migration_thread - this is a highprio system thread that performs
5919 * thread migration by bumping thread off CPU then 'pushing' onto
5920 * another runqueue.
5921 */
95cdf3b7 5922static int migration_thread(void *data)
1da177e4 5923{
1da177e4 5924 int cpu = (long)data;
70b97a7f 5925 struct rq *rq;
1da177e4
LT
5926
5927 rq = cpu_rq(cpu);
5928 BUG_ON(rq->migration_thread != current);
5929
5930 set_current_state(TASK_INTERRUPTIBLE);
5931 while (!kthread_should_stop()) {
70b97a7f 5932 struct migration_req *req;
1da177e4 5933 struct list_head *head;
1da177e4 5934
1da177e4
LT
5935 spin_lock_irq(&rq->lock);
5936
5937 if (cpu_is_offline(cpu)) {
5938 spin_unlock_irq(&rq->lock);
5939 goto wait_to_die;
5940 }
5941
5942 if (rq->active_balance) {
5943 active_load_balance(rq, cpu);
5944 rq->active_balance = 0;
5945 }
5946
5947 head = &rq->migration_queue;
5948
5949 if (list_empty(head)) {
5950 spin_unlock_irq(&rq->lock);
5951 schedule();
5952 set_current_state(TASK_INTERRUPTIBLE);
5953 continue;
5954 }
70b97a7f 5955 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5956 list_del_init(head->next);
5957
674311d5
NP
5958 spin_unlock(&rq->lock);
5959 __migrate_task(req->task, cpu, req->dest_cpu);
5960 local_irq_enable();
1da177e4
LT
5961
5962 complete(&req->done);
5963 }
5964 __set_current_state(TASK_RUNNING);
5965 return 0;
5966
5967wait_to_die:
5968 /* Wait for kthread_stop */
5969 set_current_state(TASK_INTERRUPTIBLE);
5970 while (!kthread_should_stop()) {
5971 schedule();
5972 set_current_state(TASK_INTERRUPTIBLE);
5973 }
5974 __set_current_state(TASK_RUNNING);
5975 return 0;
5976}
5977
5978#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5979
5980static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5981{
5982 int ret;
5983
5984 local_irq_disable();
5985 ret = __migrate_task(p, src_cpu, dest_cpu);
5986 local_irq_enable();
5987 return ret;
5988}
5989
054b9108 5990/*
3a4fa0a2 5991 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5992 * NOTE: interrupts should be disabled by the caller
5993 */
48f24c4d 5994static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5995{
efc30814 5996 unsigned long flags;
1da177e4 5997 cpumask_t mask;
70b97a7f
IM
5998 struct rq *rq;
5999 int dest_cpu;
1da177e4 6000
3a5c359a
AK
6001 do {
6002 /* On same node? */
6003 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6004 cpus_and(mask, mask, p->cpus_allowed);
6005 dest_cpu = any_online_cpu(mask);
6006
6007 /* On any allowed CPU? */
434d53b0 6008 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6009 dest_cpu = any_online_cpu(p->cpus_allowed);
6010
6011 /* No more Mr. Nice Guy. */
434d53b0 6012 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6013 cpumask_t cpus_allowed;
6014
6015 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6016 /*
6017 * Try to stay on the same cpuset, where the
6018 * current cpuset may be a subset of all cpus.
6019 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6020 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6021 * called within calls to cpuset_lock/cpuset_unlock.
6022 */
3a5c359a 6023 rq = task_rq_lock(p, &flags);
470fd646 6024 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6025 dest_cpu = any_online_cpu(p->cpus_allowed);
6026 task_rq_unlock(rq, &flags);
1da177e4 6027
3a5c359a
AK
6028 /*
6029 * Don't tell them about moving exiting tasks or
6030 * kernel threads (both mm NULL), since they never
6031 * leave kernel.
6032 */
41a2d6cf 6033 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6034 printk(KERN_INFO "process %d (%s) no "
6035 "longer affine to cpu%d\n",
41a2d6cf
IM
6036 task_pid_nr(p), p->comm, dead_cpu);
6037 }
3a5c359a 6038 }
f7b4cddc 6039 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6040}
6041
6042/*
6043 * While a dead CPU has no uninterruptible tasks queued at this point,
6044 * it might still have a nonzero ->nr_uninterruptible counter, because
6045 * for performance reasons the counter is not stricly tracking tasks to
6046 * their home CPUs. So we just add the counter to another CPU's counter,
6047 * to keep the global sum constant after CPU-down:
6048 */
70b97a7f 6049static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6050{
7c16ec58 6051 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6052 unsigned long flags;
6053
6054 local_irq_save(flags);
6055 double_rq_lock(rq_src, rq_dest);
6056 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6057 rq_src->nr_uninterruptible = 0;
6058 double_rq_unlock(rq_src, rq_dest);
6059 local_irq_restore(flags);
6060}
6061
6062/* Run through task list and migrate tasks from the dead cpu. */
6063static void migrate_live_tasks(int src_cpu)
6064{
48f24c4d 6065 struct task_struct *p, *t;
1da177e4 6066
f7b4cddc 6067 read_lock(&tasklist_lock);
1da177e4 6068
48f24c4d
IM
6069 do_each_thread(t, p) {
6070 if (p == current)
1da177e4
LT
6071 continue;
6072
48f24c4d
IM
6073 if (task_cpu(p) == src_cpu)
6074 move_task_off_dead_cpu(src_cpu, p);
6075 } while_each_thread(t, p);
1da177e4 6076
f7b4cddc 6077 read_unlock(&tasklist_lock);
1da177e4
LT
6078}
6079
dd41f596
IM
6080/*
6081 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6082 * It does so by boosting its priority to highest possible.
6083 * Used by CPU offline code.
1da177e4
LT
6084 */
6085void sched_idle_next(void)
6086{
48f24c4d 6087 int this_cpu = smp_processor_id();
70b97a7f 6088 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6089 struct task_struct *p = rq->idle;
6090 unsigned long flags;
6091
6092 /* cpu has to be offline */
48f24c4d 6093 BUG_ON(cpu_online(this_cpu));
1da177e4 6094
48f24c4d
IM
6095 /*
6096 * Strictly not necessary since rest of the CPUs are stopped by now
6097 * and interrupts disabled on the current cpu.
1da177e4
LT
6098 */
6099 spin_lock_irqsave(&rq->lock, flags);
6100
dd41f596 6101 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6102
94bc9a7b
DA
6103 update_rq_clock(rq);
6104 activate_task(rq, p, 0);
1da177e4
LT
6105
6106 spin_unlock_irqrestore(&rq->lock, flags);
6107}
6108
48f24c4d
IM
6109/*
6110 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6111 * offline.
6112 */
6113void idle_task_exit(void)
6114{
6115 struct mm_struct *mm = current->active_mm;
6116
6117 BUG_ON(cpu_online(smp_processor_id()));
6118
6119 if (mm != &init_mm)
6120 switch_mm(mm, &init_mm, current);
6121 mmdrop(mm);
6122}
6123
054b9108 6124/* called under rq->lock with disabled interrupts */
36c8b586 6125static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6126{
70b97a7f 6127 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6128
6129 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6130 BUG_ON(!p->exit_state);
1da177e4
LT
6131
6132 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6133 BUG_ON(p->state == TASK_DEAD);
1da177e4 6134
48f24c4d 6135 get_task_struct(p);
1da177e4
LT
6136
6137 /*
6138 * Drop lock around migration; if someone else moves it,
41a2d6cf 6139 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6140 * fine.
6141 */
f7b4cddc 6142 spin_unlock_irq(&rq->lock);
48f24c4d 6143 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6144 spin_lock_irq(&rq->lock);
1da177e4 6145
48f24c4d 6146 put_task_struct(p);
1da177e4
LT
6147}
6148
6149/* release_task() removes task from tasklist, so we won't find dead tasks. */
6150static void migrate_dead_tasks(unsigned int dead_cpu)
6151{
70b97a7f 6152 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6153 struct task_struct *next;
48f24c4d 6154
dd41f596
IM
6155 for ( ; ; ) {
6156 if (!rq->nr_running)
6157 break;
a8e504d2 6158 update_rq_clock(rq);
ff95f3df 6159 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6160 if (!next)
6161 break;
79c53799 6162 next->sched_class->put_prev_task(rq, next);
dd41f596 6163 migrate_dead(dead_cpu, next);
e692ab53 6164
1da177e4
LT
6165 }
6166}
6167#endif /* CONFIG_HOTPLUG_CPU */
6168
e692ab53
NP
6169#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6170
6171static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6172 {
6173 .procname = "sched_domain",
c57baf1e 6174 .mode = 0555,
e0361851 6175 },
38605cae 6176 {0, },
e692ab53
NP
6177};
6178
6179static struct ctl_table sd_ctl_root[] = {
e0361851 6180 {
c57baf1e 6181 .ctl_name = CTL_KERN,
e0361851 6182 .procname = "kernel",
c57baf1e 6183 .mode = 0555,
e0361851
AD
6184 .child = sd_ctl_dir,
6185 },
38605cae 6186 {0, },
e692ab53
NP
6187};
6188
6189static struct ctl_table *sd_alloc_ctl_entry(int n)
6190{
6191 struct ctl_table *entry =
5cf9f062 6192 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6193
e692ab53
NP
6194 return entry;
6195}
6196
6382bc90
MM
6197static void sd_free_ctl_entry(struct ctl_table **tablep)
6198{
cd790076 6199 struct ctl_table *entry;
6382bc90 6200
cd790076
MM
6201 /*
6202 * In the intermediate directories, both the child directory and
6203 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6204 * will always be set. In the lowest directory the names are
cd790076
MM
6205 * static strings and all have proc handlers.
6206 */
6207 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6208 if (entry->child)
6209 sd_free_ctl_entry(&entry->child);
cd790076
MM
6210 if (entry->proc_handler == NULL)
6211 kfree(entry->procname);
6212 }
6382bc90
MM
6213
6214 kfree(*tablep);
6215 *tablep = NULL;
6216}
6217
e692ab53 6218static void
e0361851 6219set_table_entry(struct ctl_table *entry,
e692ab53
NP
6220 const char *procname, void *data, int maxlen,
6221 mode_t mode, proc_handler *proc_handler)
6222{
e692ab53
NP
6223 entry->procname = procname;
6224 entry->data = data;
6225 entry->maxlen = maxlen;
6226 entry->mode = mode;
6227 entry->proc_handler = proc_handler;
6228}
6229
6230static struct ctl_table *
6231sd_alloc_ctl_domain_table(struct sched_domain *sd)
6232{
ace8b3d6 6233 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6234
ad1cdc1d
MM
6235 if (table == NULL)
6236 return NULL;
6237
e0361851 6238 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6239 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6240 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6241 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6242 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6243 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6244 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6245 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6246 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6247 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6248 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6249 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6250 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6251 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6252 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6253 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6254 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6255 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6256 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6257 &sd->cache_nice_tries,
6258 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6259 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6260 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6261 /* &table[11] is terminator */
e692ab53
NP
6262
6263 return table;
6264}
6265
9a4e7159 6266static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6267{
6268 struct ctl_table *entry, *table;
6269 struct sched_domain *sd;
6270 int domain_num = 0, i;
6271 char buf[32];
6272
6273 for_each_domain(cpu, sd)
6274 domain_num++;
6275 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6276 if (table == NULL)
6277 return NULL;
e692ab53
NP
6278
6279 i = 0;
6280 for_each_domain(cpu, sd) {
6281 snprintf(buf, 32, "domain%d", i);
e692ab53 6282 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6283 entry->mode = 0555;
e692ab53
NP
6284 entry->child = sd_alloc_ctl_domain_table(sd);
6285 entry++;
6286 i++;
6287 }
6288 return table;
6289}
6290
6291static struct ctl_table_header *sd_sysctl_header;
6382bc90 6292static void register_sched_domain_sysctl(void)
e692ab53
NP
6293{
6294 int i, cpu_num = num_online_cpus();
6295 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6296 char buf[32];
6297
7378547f
MM
6298 WARN_ON(sd_ctl_dir[0].child);
6299 sd_ctl_dir[0].child = entry;
6300
ad1cdc1d
MM
6301 if (entry == NULL)
6302 return;
6303
97b6ea7b 6304 for_each_online_cpu(i) {
e692ab53 6305 snprintf(buf, 32, "cpu%d", i);
e692ab53 6306 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6307 entry->mode = 0555;
e692ab53 6308 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6309 entry++;
e692ab53 6310 }
7378547f
MM
6311
6312 WARN_ON(sd_sysctl_header);
e692ab53
NP
6313 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6314}
6382bc90 6315
7378547f 6316/* may be called multiple times per register */
6382bc90
MM
6317static void unregister_sched_domain_sysctl(void)
6318{
7378547f
MM
6319 if (sd_sysctl_header)
6320 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6321 sd_sysctl_header = NULL;
7378547f
MM
6322 if (sd_ctl_dir[0].child)
6323 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6324}
e692ab53 6325#else
6382bc90
MM
6326static void register_sched_domain_sysctl(void)
6327{
6328}
6329static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6330{
6331}
6332#endif
6333
1f11eb6a
GH
6334static void set_rq_online(struct rq *rq)
6335{
6336 if (!rq->online) {
6337 const struct sched_class *class;
6338
6339 cpu_set(rq->cpu, rq->rd->online);
6340 rq->online = 1;
6341
6342 for_each_class(class) {
6343 if (class->rq_online)
6344 class->rq_online(rq);
6345 }
6346 }
6347}
6348
6349static void set_rq_offline(struct rq *rq)
6350{
6351 if (rq->online) {
6352 const struct sched_class *class;
6353
6354 for_each_class(class) {
6355 if (class->rq_offline)
6356 class->rq_offline(rq);
6357 }
6358
6359 cpu_clear(rq->cpu, rq->rd->online);
6360 rq->online = 0;
6361 }
6362}
6363
1da177e4
LT
6364/*
6365 * migration_call - callback that gets triggered when a CPU is added.
6366 * Here we can start up the necessary migration thread for the new CPU.
6367 */
48f24c4d
IM
6368static int __cpuinit
6369migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6370{
1da177e4 6371 struct task_struct *p;
48f24c4d 6372 int cpu = (long)hcpu;
1da177e4 6373 unsigned long flags;
70b97a7f 6374 struct rq *rq;
1da177e4
LT
6375
6376 switch (action) {
5be9361c 6377
1da177e4 6378 case CPU_UP_PREPARE:
8bb78442 6379 case CPU_UP_PREPARE_FROZEN:
dd41f596 6380 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6381 if (IS_ERR(p))
6382 return NOTIFY_BAD;
1da177e4
LT
6383 kthread_bind(p, cpu);
6384 /* Must be high prio: stop_machine expects to yield to it. */
6385 rq = task_rq_lock(p, &flags);
dd41f596 6386 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6387 task_rq_unlock(rq, &flags);
6388 cpu_rq(cpu)->migration_thread = p;
6389 break;
48f24c4d 6390
1da177e4 6391 case CPU_ONLINE:
8bb78442 6392 case CPU_ONLINE_FROZEN:
3a4fa0a2 6393 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6394 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6395
6396 /* Update our root-domain */
6397 rq = cpu_rq(cpu);
6398 spin_lock_irqsave(&rq->lock, flags);
6399 if (rq->rd) {
6400 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6401
6402 set_rq_online(rq);
1f94ef59
GH
6403 }
6404 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6405 break;
48f24c4d 6406
1da177e4
LT
6407#ifdef CONFIG_HOTPLUG_CPU
6408 case CPU_UP_CANCELED:
8bb78442 6409 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6410 if (!cpu_rq(cpu)->migration_thread)
6411 break;
41a2d6cf 6412 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6413 kthread_bind(cpu_rq(cpu)->migration_thread,
6414 any_online_cpu(cpu_online_map));
1da177e4
LT
6415 kthread_stop(cpu_rq(cpu)->migration_thread);
6416 cpu_rq(cpu)->migration_thread = NULL;
6417 break;
48f24c4d 6418
1da177e4 6419 case CPU_DEAD:
8bb78442 6420 case CPU_DEAD_FROZEN:
470fd646 6421 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6422 migrate_live_tasks(cpu);
6423 rq = cpu_rq(cpu);
6424 kthread_stop(rq->migration_thread);
6425 rq->migration_thread = NULL;
6426 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6427 spin_lock_irq(&rq->lock);
a8e504d2 6428 update_rq_clock(rq);
2e1cb74a 6429 deactivate_task(rq, rq->idle, 0);
1da177e4 6430 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6431 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6432 rq->idle->sched_class = &idle_sched_class;
1da177e4 6433 migrate_dead_tasks(cpu);
d2da272a 6434 spin_unlock_irq(&rq->lock);
470fd646 6435 cpuset_unlock();
1da177e4
LT
6436 migrate_nr_uninterruptible(rq);
6437 BUG_ON(rq->nr_running != 0);
6438
41a2d6cf
IM
6439 /*
6440 * No need to migrate the tasks: it was best-effort if
6441 * they didn't take sched_hotcpu_mutex. Just wake up
6442 * the requestors.
6443 */
1da177e4
LT
6444 spin_lock_irq(&rq->lock);
6445 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6446 struct migration_req *req;
6447
1da177e4 6448 req = list_entry(rq->migration_queue.next,
70b97a7f 6449 struct migration_req, list);
1da177e4
LT
6450 list_del_init(&req->list);
6451 complete(&req->done);
6452 }
6453 spin_unlock_irq(&rq->lock);
6454 break;
57d885fe 6455
08f503b0
GH
6456 case CPU_DYING:
6457 case CPU_DYING_FROZEN:
57d885fe
GH
6458 /* Update our root-domain */
6459 rq = cpu_rq(cpu);
6460 spin_lock_irqsave(&rq->lock, flags);
6461 if (rq->rd) {
6462 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6463 set_rq_offline(rq);
57d885fe
GH
6464 }
6465 spin_unlock_irqrestore(&rq->lock, flags);
6466 break;
1da177e4
LT
6467#endif
6468 }
6469 return NOTIFY_OK;
6470}
6471
6472/* Register at highest priority so that task migration (migrate_all_tasks)
6473 * happens before everything else.
6474 */
26c2143b 6475static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6476 .notifier_call = migration_call,
6477 .priority = 10
6478};
6479
7babe8db 6480static int __init migration_init(void)
1da177e4
LT
6481{
6482 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6483 int err;
48f24c4d
IM
6484
6485 /* Start one for the boot CPU: */
07dccf33
AM
6486 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6487 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6488 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6489 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6490
6491 return err;
1da177e4 6492}
7babe8db 6493early_initcall(migration_init);
1da177e4
LT
6494#endif
6495
6496#ifdef CONFIG_SMP
476f3534 6497
3e9830dc 6498#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6499
099f98c8
GS
6500static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6501{
6502 switch (lvl) {
6503 case SD_LV_NONE:
6504 return "NONE";
6505 case SD_LV_SIBLING:
6506 return "SIBLING";
6507 case SD_LV_MC:
6508 return "MC";
6509 case SD_LV_CPU:
6510 return "CPU";
6511 case SD_LV_NODE:
6512 return "NODE";
6513 case SD_LV_ALLNODES:
6514 return "ALLNODES";
6515 case SD_LV_MAX:
6516 return "MAX";
6517
6518 }
6519 return "MAX";
6520}
6521
7c16ec58
MT
6522static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6523 cpumask_t *groupmask)
1da177e4 6524{
4dcf6aff 6525 struct sched_group *group = sd->groups;
434d53b0 6526 char str[256];
1da177e4 6527
434d53b0 6528 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6529 cpus_clear(*groupmask);
4dcf6aff
IM
6530
6531 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6532
6533 if (!(sd->flags & SD_LOAD_BALANCE)) {
6534 printk("does not load-balance\n");
6535 if (sd->parent)
6536 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6537 " has parent");
6538 return -1;
41c7ce9a
NP
6539 }
6540
099f98c8
GS
6541 printk(KERN_CONT "span %s level %s\n",
6542 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6543
6544 if (!cpu_isset(cpu, sd->span)) {
6545 printk(KERN_ERR "ERROR: domain->span does not contain "
6546 "CPU%d\n", cpu);
6547 }
6548 if (!cpu_isset(cpu, group->cpumask)) {
6549 printk(KERN_ERR "ERROR: domain->groups does not contain"
6550 " CPU%d\n", cpu);
6551 }
1da177e4 6552
4dcf6aff 6553 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6554 do {
4dcf6aff
IM
6555 if (!group) {
6556 printk("\n");
6557 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6558 break;
6559 }
6560
4dcf6aff
IM
6561 if (!group->__cpu_power) {
6562 printk(KERN_CONT "\n");
6563 printk(KERN_ERR "ERROR: domain->cpu_power not "
6564 "set\n");
6565 break;
6566 }
1da177e4 6567
4dcf6aff
IM
6568 if (!cpus_weight(group->cpumask)) {
6569 printk(KERN_CONT "\n");
6570 printk(KERN_ERR "ERROR: empty group\n");
6571 break;
6572 }
1da177e4 6573
7c16ec58 6574 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6575 printk(KERN_CONT "\n");
6576 printk(KERN_ERR "ERROR: repeated CPUs\n");
6577 break;
6578 }
1da177e4 6579
7c16ec58 6580 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6581
434d53b0 6582 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6583 printk(KERN_CONT " %s", str);
1da177e4 6584
4dcf6aff
IM
6585 group = group->next;
6586 } while (group != sd->groups);
6587 printk(KERN_CONT "\n");
1da177e4 6588
7c16ec58 6589 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6590 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6591
7c16ec58 6592 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6593 printk(KERN_ERR "ERROR: parent span is not a superset "
6594 "of domain->span\n");
6595 return 0;
6596}
1da177e4 6597
4dcf6aff
IM
6598static void sched_domain_debug(struct sched_domain *sd, int cpu)
6599{
7c16ec58 6600 cpumask_t *groupmask;
4dcf6aff 6601 int level = 0;
1da177e4 6602
4dcf6aff
IM
6603 if (!sd) {
6604 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6605 return;
6606 }
1da177e4 6607
4dcf6aff
IM
6608 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6609
7c16ec58
MT
6610 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6611 if (!groupmask) {
6612 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6613 return;
6614 }
6615
4dcf6aff 6616 for (;;) {
7c16ec58 6617 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6618 break;
1da177e4
LT
6619 level++;
6620 sd = sd->parent;
33859f7f 6621 if (!sd)
4dcf6aff
IM
6622 break;
6623 }
7c16ec58 6624 kfree(groupmask);
1da177e4 6625}
6d6bc0ad 6626#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6627# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6628#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6629
1a20ff27 6630static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6631{
6632 if (cpus_weight(sd->span) == 1)
6633 return 1;
6634
6635 /* Following flags need at least 2 groups */
6636 if (sd->flags & (SD_LOAD_BALANCE |
6637 SD_BALANCE_NEWIDLE |
6638 SD_BALANCE_FORK |
89c4710e
SS
6639 SD_BALANCE_EXEC |
6640 SD_SHARE_CPUPOWER |
6641 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6642 if (sd->groups != sd->groups->next)
6643 return 0;
6644 }
6645
6646 /* Following flags don't use groups */
6647 if (sd->flags & (SD_WAKE_IDLE |
6648 SD_WAKE_AFFINE |
6649 SD_WAKE_BALANCE))
6650 return 0;
6651
6652 return 1;
6653}
6654
48f24c4d
IM
6655static int
6656sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6657{
6658 unsigned long cflags = sd->flags, pflags = parent->flags;
6659
6660 if (sd_degenerate(parent))
6661 return 1;
6662
6663 if (!cpus_equal(sd->span, parent->span))
6664 return 0;
6665
6666 /* Does parent contain flags not in child? */
6667 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6668 if (cflags & SD_WAKE_AFFINE)
6669 pflags &= ~SD_WAKE_BALANCE;
6670 /* Flags needing groups don't count if only 1 group in parent */
6671 if (parent->groups == parent->groups->next) {
6672 pflags &= ~(SD_LOAD_BALANCE |
6673 SD_BALANCE_NEWIDLE |
6674 SD_BALANCE_FORK |
89c4710e
SS
6675 SD_BALANCE_EXEC |
6676 SD_SHARE_CPUPOWER |
6677 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6678 }
6679 if (~cflags & pflags)
6680 return 0;
6681
6682 return 1;
6683}
6684
57d885fe
GH
6685static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6686{
6687 unsigned long flags;
57d885fe
GH
6688
6689 spin_lock_irqsave(&rq->lock, flags);
6690
6691 if (rq->rd) {
6692 struct root_domain *old_rd = rq->rd;
6693
1f11eb6a
GH
6694 if (cpu_isset(rq->cpu, old_rd->online))
6695 set_rq_offline(rq);
57d885fe 6696
dc938520 6697 cpu_clear(rq->cpu, old_rd->span);
dc938520 6698
57d885fe
GH
6699 if (atomic_dec_and_test(&old_rd->refcount))
6700 kfree(old_rd);
6701 }
6702
6703 atomic_inc(&rd->refcount);
6704 rq->rd = rd;
6705
dc938520 6706 cpu_set(rq->cpu, rd->span);
1f94ef59 6707 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6708 set_rq_online(rq);
57d885fe
GH
6709
6710 spin_unlock_irqrestore(&rq->lock, flags);
6711}
6712
dc938520 6713static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6714{
6715 memset(rd, 0, sizeof(*rd));
6716
dc938520
GH
6717 cpus_clear(rd->span);
6718 cpus_clear(rd->online);
6e0534f2
GH
6719
6720 cpupri_init(&rd->cpupri);
57d885fe
GH
6721}
6722
6723static void init_defrootdomain(void)
6724{
dc938520 6725 init_rootdomain(&def_root_domain);
57d885fe
GH
6726 atomic_set(&def_root_domain.refcount, 1);
6727}
6728
dc938520 6729static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6730{
6731 struct root_domain *rd;
6732
6733 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6734 if (!rd)
6735 return NULL;
6736
dc938520 6737 init_rootdomain(rd);
57d885fe
GH
6738
6739 return rd;
6740}
6741
1da177e4 6742/*
0eab9146 6743 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6744 * hold the hotplug lock.
6745 */
0eab9146
IM
6746static void
6747cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6748{
70b97a7f 6749 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6750 struct sched_domain *tmp;
6751
6752 /* Remove the sched domains which do not contribute to scheduling. */
6753 for (tmp = sd; tmp; tmp = tmp->parent) {
6754 struct sched_domain *parent = tmp->parent;
6755 if (!parent)
6756 break;
1a848870 6757 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6758 tmp->parent = parent->parent;
1a848870
SS
6759 if (parent->parent)
6760 parent->parent->child = tmp;
6761 }
245af2c7
SS
6762 }
6763
1a848870 6764 if (sd && sd_degenerate(sd)) {
245af2c7 6765 sd = sd->parent;
1a848870
SS
6766 if (sd)
6767 sd->child = NULL;
6768 }
1da177e4
LT
6769
6770 sched_domain_debug(sd, cpu);
6771
57d885fe 6772 rq_attach_root(rq, rd);
674311d5 6773 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6774}
6775
6776/* cpus with isolated domains */
67af63a6 6777static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6778
6779/* Setup the mask of cpus configured for isolated domains */
6780static int __init isolated_cpu_setup(char *str)
6781{
13b40c1e
MT
6782 static int __initdata ints[NR_CPUS];
6783 int i;
1da177e4
LT
6784
6785 str = get_options(str, ARRAY_SIZE(ints), ints);
6786 cpus_clear(cpu_isolated_map);
6787 for (i = 1; i <= ints[0]; i++)
6788 if (ints[i] < NR_CPUS)
6789 cpu_set(ints[i], cpu_isolated_map);
6790 return 1;
6791}
6792
8927f494 6793__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6794
6795/*
6711cab4
SS
6796 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6797 * to a function which identifies what group(along with sched group) a CPU
6798 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6799 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6800 *
6801 * init_sched_build_groups will build a circular linked list of the groups
6802 * covered by the given span, and will set each group's ->cpumask correctly,
6803 * and ->cpu_power to 0.
6804 */
a616058b 6805static void
7c16ec58 6806init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6807 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6808 struct sched_group **sg,
6809 cpumask_t *tmpmask),
6810 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6811{
6812 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6813 int i;
6814
7c16ec58
MT
6815 cpus_clear(*covered);
6816
363ab6f1 6817 for_each_cpu_mask_nr(i, *span) {
6711cab4 6818 struct sched_group *sg;
7c16ec58 6819 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6820 int j;
6821
7c16ec58 6822 if (cpu_isset(i, *covered))
1da177e4
LT
6823 continue;
6824
7c16ec58 6825 cpus_clear(sg->cpumask);
5517d86b 6826 sg->__cpu_power = 0;
1da177e4 6827
363ab6f1 6828 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6829 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6830 continue;
6831
7c16ec58 6832 cpu_set(j, *covered);
1da177e4
LT
6833 cpu_set(j, sg->cpumask);
6834 }
6835 if (!first)
6836 first = sg;
6837 if (last)
6838 last->next = sg;
6839 last = sg;
6840 }
6841 last->next = first;
6842}
6843
9c1cfda2 6844#define SD_NODES_PER_DOMAIN 16
1da177e4 6845
9c1cfda2 6846#ifdef CONFIG_NUMA
198e2f18 6847
9c1cfda2
JH
6848/**
6849 * find_next_best_node - find the next node to include in a sched_domain
6850 * @node: node whose sched_domain we're building
6851 * @used_nodes: nodes already in the sched_domain
6852 *
41a2d6cf 6853 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6854 * finds the closest node not already in the @used_nodes map.
6855 *
6856 * Should use nodemask_t.
6857 */
c5f59f08 6858static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6859{
6860 int i, n, val, min_val, best_node = 0;
6861
6862 min_val = INT_MAX;
6863
076ac2af 6864 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6865 /* Start at @node */
076ac2af 6866 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6867
6868 if (!nr_cpus_node(n))
6869 continue;
6870
6871 /* Skip already used nodes */
c5f59f08 6872 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6873 continue;
6874
6875 /* Simple min distance search */
6876 val = node_distance(node, n);
6877
6878 if (val < min_val) {
6879 min_val = val;
6880 best_node = n;
6881 }
6882 }
6883
c5f59f08 6884 node_set(best_node, *used_nodes);
9c1cfda2
JH
6885 return best_node;
6886}
6887
6888/**
6889 * sched_domain_node_span - get a cpumask for a node's sched_domain
6890 * @node: node whose cpumask we're constructing
73486722 6891 * @span: resulting cpumask
9c1cfda2 6892 *
41a2d6cf 6893 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6894 * should be one that prevents unnecessary balancing, but also spreads tasks
6895 * out optimally.
6896 */
4bdbaad3 6897static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6898{
c5f59f08 6899 nodemask_t used_nodes;
c5f59f08 6900 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6901 int i;
9c1cfda2 6902
4bdbaad3 6903 cpus_clear(*span);
c5f59f08 6904 nodes_clear(used_nodes);
9c1cfda2 6905
4bdbaad3 6906 cpus_or(*span, *span, *nodemask);
c5f59f08 6907 node_set(node, used_nodes);
9c1cfda2
JH
6908
6909 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6910 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6911
c5f59f08 6912 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6913 cpus_or(*span, *span, *nodemask);
9c1cfda2 6914 }
9c1cfda2 6915}
6d6bc0ad 6916#endif /* CONFIG_NUMA */
9c1cfda2 6917
5c45bf27 6918int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6919
9c1cfda2 6920/*
48f24c4d 6921 * SMT sched-domains:
9c1cfda2 6922 */
1da177e4
LT
6923#ifdef CONFIG_SCHED_SMT
6924static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6925static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6926
41a2d6cf 6927static int
7c16ec58
MT
6928cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6929 cpumask_t *unused)
1da177e4 6930{
6711cab4
SS
6931 if (sg)
6932 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6933 return cpu;
6934}
6d6bc0ad 6935#endif /* CONFIG_SCHED_SMT */
1da177e4 6936
48f24c4d
IM
6937/*
6938 * multi-core sched-domains:
6939 */
1e9f28fa
SS
6940#ifdef CONFIG_SCHED_MC
6941static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6942static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6943#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6944
6945#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6946static int
7c16ec58
MT
6947cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6948 cpumask_t *mask)
1e9f28fa 6949{
6711cab4 6950 int group;
7c16ec58
MT
6951
6952 *mask = per_cpu(cpu_sibling_map, cpu);
6953 cpus_and(*mask, *mask, *cpu_map);
6954 group = first_cpu(*mask);
6711cab4
SS
6955 if (sg)
6956 *sg = &per_cpu(sched_group_core, group);
6957 return group;
1e9f28fa
SS
6958}
6959#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6960static int
7c16ec58
MT
6961cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6962 cpumask_t *unused)
1e9f28fa 6963{
6711cab4
SS
6964 if (sg)
6965 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6966 return cpu;
6967}
6968#endif
6969
1da177e4 6970static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6971static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6972
41a2d6cf 6973static int
7c16ec58
MT
6974cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6975 cpumask_t *mask)
1da177e4 6976{
6711cab4 6977 int group;
48f24c4d 6978#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6979 *mask = cpu_coregroup_map(cpu);
6980 cpus_and(*mask, *mask, *cpu_map);
6981 group = first_cpu(*mask);
1e9f28fa 6982#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6983 *mask = per_cpu(cpu_sibling_map, cpu);
6984 cpus_and(*mask, *mask, *cpu_map);
6985 group = first_cpu(*mask);
1da177e4 6986#else
6711cab4 6987 group = cpu;
1da177e4 6988#endif
6711cab4
SS
6989 if (sg)
6990 *sg = &per_cpu(sched_group_phys, group);
6991 return group;
1da177e4
LT
6992}
6993
6994#ifdef CONFIG_NUMA
1da177e4 6995/*
9c1cfda2
JH
6996 * The init_sched_build_groups can't handle what we want to do with node
6997 * groups, so roll our own. Now each node has its own list of groups which
6998 * gets dynamically allocated.
1da177e4 6999 */
9c1cfda2 7000static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7001static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7002
9c1cfda2 7003static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7004static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7005
6711cab4 7006static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7007 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7008{
6711cab4
SS
7009 int group;
7010
7c16ec58
MT
7011 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7012 cpus_and(*nodemask, *nodemask, *cpu_map);
7013 group = first_cpu(*nodemask);
6711cab4
SS
7014
7015 if (sg)
7016 *sg = &per_cpu(sched_group_allnodes, group);
7017 return group;
1da177e4 7018}
6711cab4 7019
08069033
SS
7020static void init_numa_sched_groups_power(struct sched_group *group_head)
7021{
7022 struct sched_group *sg = group_head;
7023 int j;
7024
7025 if (!sg)
7026 return;
3a5c359a 7027 do {
363ab6f1 7028 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7029 struct sched_domain *sd;
08069033 7030
3a5c359a
AK
7031 sd = &per_cpu(phys_domains, j);
7032 if (j != first_cpu(sd->groups->cpumask)) {
7033 /*
7034 * Only add "power" once for each
7035 * physical package.
7036 */
7037 continue;
7038 }
08069033 7039
3a5c359a
AK
7040 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7041 }
7042 sg = sg->next;
7043 } while (sg != group_head);
08069033 7044}
6d6bc0ad 7045#endif /* CONFIG_NUMA */
1da177e4 7046
a616058b 7047#ifdef CONFIG_NUMA
51888ca2 7048/* Free memory allocated for various sched_group structures */
7c16ec58 7049static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7050{
a616058b 7051 int cpu, i;
51888ca2 7052
363ab6f1 7053 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7054 struct sched_group **sched_group_nodes
7055 = sched_group_nodes_bycpu[cpu];
7056
51888ca2
SV
7057 if (!sched_group_nodes)
7058 continue;
7059
076ac2af 7060 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7061 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7062
7c16ec58
MT
7063 *nodemask = node_to_cpumask(i);
7064 cpus_and(*nodemask, *nodemask, *cpu_map);
7065 if (cpus_empty(*nodemask))
51888ca2
SV
7066 continue;
7067
7068 if (sg == NULL)
7069 continue;
7070 sg = sg->next;
7071next_sg:
7072 oldsg = sg;
7073 sg = sg->next;
7074 kfree(oldsg);
7075 if (oldsg != sched_group_nodes[i])
7076 goto next_sg;
7077 }
7078 kfree(sched_group_nodes);
7079 sched_group_nodes_bycpu[cpu] = NULL;
7080 }
51888ca2 7081}
6d6bc0ad 7082#else /* !CONFIG_NUMA */
7c16ec58 7083static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7084{
7085}
6d6bc0ad 7086#endif /* CONFIG_NUMA */
51888ca2 7087
89c4710e
SS
7088/*
7089 * Initialize sched groups cpu_power.
7090 *
7091 * cpu_power indicates the capacity of sched group, which is used while
7092 * distributing the load between different sched groups in a sched domain.
7093 * Typically cpu_power for all the groups in a sched domain will be same unless
7094 * there are asymmetries in the topology. If there are asymmetries, group
7095 * having more cpu_power will pickup more load compared to the group having
7096 * less cpu_power.
7097 *
7098 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7099 * the maximum number of tasks a group can handle in the presence of other idle
7100 * or lightly loaded groups in the same sched domain.
7101 */
7102static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7103{
7104 struct sched_domain *child;
7105 struct sched_group *group;
7106
7107 WARN_ON(!sd || !sd->groups);
7108
7109 if (cpu != first_cpu(sd->groups->cpumask))
7110 return;
7111
7112 child = sd->child;
7113
5517d86b
ED
7114 sd->groups->__cpu_power = 0;
7115
89c4710e
SS
7116 /*
7117 * For perf policy, if the groups in child domain share resources
7118 * (for example cores sharing some portions of the cache hierarchy
7119 * or SMT), then set this domain groups cpu_power such that each group
7120 * can handle only one task, when there are other idle groups in the
7121 * same sched domain.
7122 */
7123 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7124 (child->flags &
7125 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7126 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7127 return;
7128 }
7129
89c4710e
SS
7130 /*
7131 * add cpu_power of each child group to this groups cpu_power
7132 */
7133 group = child->groups;
7134 do {
5517d86b 7135 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7136 group = group->next;
7137 } while (group != child->groups);
7138}
7139
7c16ec58
MT
7140/*
7141 * Initializers for schedule domains
7142 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7143 */
7144
7145#define SD_INIT(sd, type) sd_init_##type(sd)
7146#define SD_INIT_FUNC(type) \
7147static noinline void sd_init_##type(struct sched_domain *sd) \
7148{ \
7149 memset(sd, 0, sizeof(*sd)); \
7150 *sd = SD_##type##_INIT; \
1d3504fc 7151 sd->level = SD_LV_##type; \
7c16ec58
MT
7152}
7153
7154SD_INIT_FUNC(CPU)
7155#ifdef CONFIG_NUMA
7156 SD_INIT_FUNC(ALLNODES)
7157 SD_INIT_FUNC(NODE)
7158#endif
7159#ifdef CONFIG_SCHED_SMT
7160 SD_INIT_FUNC(SIBLING)
7161#endif
7162#ifdef CONFIG_SCHED_MC
7163 SD_INIT_FUNC(MC)
7164#endif
7165
7166/*
7167 * To minimize stack usage kmalloc room for cpumasks and share the
7168 * space as the usage in build_sched_domains() dictates. Used only
7169 * if the amount of space is significant.
7170 */
7171struct allmasks {
7172 cpumask_t tmpmask; /* make this one first */
7173 union {
7174 cpumask_t nodemask;
7175 cpumask_t this_sibling_map;
7176 cpumask_t this_core_map;
7177 };
7178 cpumask_t send_covered;
7179
7180#ifdef CONFIG_NUMA
7181 cpumask_t domainspan;
7182 cpumask_t covered;
7183 cpumask_t notcovered;
7184#endif
7185};
7186
7187#if NR_CPUS > 128
7188#define SCHED_CPUMASK_ALLOC 1
7189#define SCHED_CPUMASK_FREE(v) kfree(v)
7190#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7191#else
7192#define SCHED_CPUMASK_ALLOC 0
7193#define SCHED_CPUMASK_FREE(v)
7194#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7195#endif
7196
7197#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7198 ((unsigned long)(a) + offsetof(struct allmasks, v))
7199
1d3504fc
HS
7200static int default_relax_domain_level = -1;
7201
7202static int __init setup_relax_domain_level(char *str)
7203{
30e0e178
LZ
7204 unsigned long val;
7205
7206 val = simple_strtoul(str, NULL, 0);
7207 if (val < SD_LV_MAX)
7208 default_relax_domain_level = val;
7209
1d3504fc
HS
7210 return 1;
7211}
7212__setup("relax_domain_level=", setup_relax_domain_level);
7213
7214static void set_domain_attribute(struct sched_domain *sd,
7215 struct sched_domain_attr *attr)
7216{
7217 int request;
7218
7219 if (!attr || attr->relax_domain_level < 0) {
7220 if (default_relax_domain_level < 0)
7221 return;
7222 else
7223 request = default_relax_domain_level;
7224 } else
7225 request = attr->relax_domain_level;
7226 if (request < sd->level) {
7227 /* turn off idle balance on this domain */
7228 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7229 } else {
7230 /* turn on idle balance on this domain */
7231 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7232 }
7233}
7234
1da177e4 7235/*
1a20ff27
DG
7236 * Build sched domains for a given set of cpus and attach the sched domains
7237 * to the individual cpus
1da177e4 7238 */
1d3504fc
HS
7239static int __build_sched_domains(const cpumask_t *cpu_map,
7240 struct sched_domain_attr *attr)
1da177e4
LT
7241{
7242 int i;
57d885fe 7243 struct root_domain *rd;
7c16ec58
MT
7244 SCHED_CPUMASK_DECLARE(allmasks);
7245 cpumask_t *tmpmask;
d1b55138
JH
7246#ifdef CONFIG_NUMA
7247 struct sched_group **sched_group_nodes = NULL;
6711cab4 7248 int sd_allnodes = 0;
d1b55138
JH
7249
7250 /*
7251 * Allocate the per-node list of sched groups
7252 */
076ac2af 7253 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7254 GFP_KERNEL);
d1b55138
JH
7255 if (!sched_group_nodes) {
7256 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7257 return -ENOMEM;
d1b55138 7258 }
d1b55138 7259#endif
1da177e4 7260
dc938520 7261 rd = alloc_rootdomain();
57d885fe
GH
7262 if (!rd) {
7263 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7264#ifdef CONFIG_NUMA
7265 kfree(sched_group_nodes);
7266#endif
57d885fe
GH
7267 return -ENOMEM;
7268 }
7269
7c16ec58
MT
7270#if SCHED_CPUMASK_ALLOC
7271 /* get space for all scratch cpumask variables */
7272 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7273 if (!allmasks) {
7274 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7275 kfree(rd);
7276#ifdef CONFIG_NUMA
7277 kfree(sched_group_nodes);
7278#endif
7279 return -ENOMEM;
7280 }
7281#endif
7282 tmpmask = (cpumask_t *)allmasks;
7283
7284
7285#ifdef CONFIG_NUMA
7286 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7287#endif
7288
1da177e4 7289 /*
1a20ff27 7290 * Set up domains for cpus specified by the cpu_map.
1da177e4 7291 */
363ab6f1 7292 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7293 struct sched_domain *sd = NULL, *p;
7c16ec58 7294 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7295
7c16ec58
MT
7296 *nodemask = node_to_cpumask(cpu_to_node(i));
7297 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7298
7299#ifdef CONFIG_NUMA
dd41f596 7300 if (cpus_weight(*cpu_map) >
7c16ec58 7301 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7302 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7303 SD_INIT(sd, ALLNODES);
1d3504fc 7304 set_domain_attribute(sd, attr);
9c1cfda2 7305 sd->span = *cpu_map;
7c16ec58 7306 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7307 p = sd;
6711cab4 7308 sd_allnodes = 1;
9c1cfda2
JH
7309 } else
7310 p = NULL;
7311
1da177e4 7312 sd = &per_cpu(node_domains, i);
7c16ec58 7313 SD_INIT(sd, NODE);
1d3504fc 7314 set_domain_attribute(sd, attr);
4bdbaad3 7315 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7316 sd->parent = p;
1a848870
SS
7317 if (p)
7318 p->child = sd;
9c1cfda2 7319 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7320#endif
7321
7322 p = sd;
7323 sd = &per_cpu(phys_domains, i);
7c16ec58 7324 SD_INIT(sd, CPU);
1d3504fc 7325 set_domain_attribute(sd, attr);
7c16ec58 7326 sd->span = *nodemask;
1da177e4 7327 sd->parent = p;
1a848870
SS
7328 if (p)
7329 p->child = sd;
7c16ec58 7330 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7331
1e9f28fa
SS
7332#ifdef CONFIG_SCHED_MC
7333 p = sd;
7334 sd = &per_cpu(core_domains, i);
7c16ec58 7335 SD_INIT(sd, MC);
1d3504fc 7336 set_domain_attribute(sd, attr);
1e9f28fa
SS
7337 sd->span = cpu_coregroup_map(i);
7338 cpus_and(sd->span, sd->span, *cpu_map);
7339 sd->parent = p;
1a848870 7340 p->child = sd;
7c16ec58 7341 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7342#endif
7343
1da177e4
LT
7344#ifdef CONFIG_SCHED_SMT
7345 p = sd;
7346 sd = &per_cpu(cpu_domains, i);
7c16ec58 7347 SD_INIT(sd, SIBLING);
1d3504fc 7348 set_domain_attribute(sd, attr);
d5a7430d 7349 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7350 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7351 sd->parent = p;
1a848870 7352 p->child = sd;
7c16ec58 7353 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7354#endif
7355 }
7356
7357#ifdef CONFIG_SCHED_SMT
7358 /* Set up CPU (sibling) groups */
363ab6f1 7359 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7360 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7361 SCHED_CPUMASK_VAR(send_covered, allmasks);
7362
7363 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7364 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7365 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7366 continue;
7367
dd41f596 7368 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7369 &cpu_to_cpu_group,
7370 send_covered, tmpmask);
1da177e4
LT
7371 }
7372#endif
7373
1e9f28fa
SS
7374#ifdef CONFIG_SCHED_MC
7375 /* Set up multi-core groups */
363ab6f1 7376 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7377 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7378 SCHED_CPUMASK_VAR(send_covered, allmasks);
7379
7380 *this_core_map = cpu_coregroup_map(i);
7381 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7382 if (i != first_cpu(*this_core_map))
1e9f28fa 7383 continue;
7c16ec58 7384
dd41f596 7385 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7386 &cpu_to_core_group,
7387 send_covered, tmpmask);
1e9f28fa
SS
7388 }
7389#endif
7390
1da177e4 7391 /* Set up physical groups */
076ac2af 7392 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7393 SCHED_CPUMASK_VAR(nodemask, allmasks);
7394 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7395
7c16ec58
MT
7396 *nodemask = node_to_cpumask(i);
7397 cpus_and(*nodemask, *nodemask, *cpu_map);
7398 if (cpus_empty(*nodemask))
1da177e4
LT
7399 continue;
7400
7c16ec58
MT
7401 init_sched_build_groups(nodemask, cpu_map,
7402 &cpu_to_phys_group,
7403 send_covered, tmpmask);
1da177e4
LT
7404 }
7405
7406#ifdef CONFIG_NUMA
7407 /* Set up node groups */
7c16ec58
MT
7408 if (sd_allnodes) {
7409 SCHED_CPUMASK_VAR(send_covered, allmasks);
7410
7411 init_sched_build_groups(cpu_map, cpu_map,
7412 &cpu_to_allnodes_group,
7413 send_covered, tmpmask);
7414 }
9c1cfda2 7415
076ac2af 7416 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7417 /* Set up node groups */
7418 struct sched_group *sg, *prev;
7c16ec58
MT
7419 SCHED_CPUMASK_VAR(nodemask, allmasks);
7420 SCHED_CPUMASK_VAR(domainspan, allmasks);
7421 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7422 int j;
7423
7c16ec58
MT
7424 *nodemask = node_to_cpumask(i);
7425 cpus_clear(*covered);
7426
7427 cpus_and(*nodemask, *nodemask, *cpu_map);
7428 if (cpus_empty(*nodemask)) {
d1b55138 7429 sched_group_nodes[i] = NULL;
9c1cfda2 7430 continue;
d1b55138 7431 }
9c1cfda2 7432
4bdbaad3 7433 sched_domain_node_span(i, domainspan);
7c16ec58 7434 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7435
15f0b676 7436 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7437 if (!sg) {
7438 printk(KERN_WARNING "Can not alloc domain group for "
7439 "node %d\n", i);
7440 goto error;
7441 }
9c1cfda2 7442 sched_group_nodes[i] = sg;
363ab6f1 7443 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7444 struct sched_domain *sd;
9761eea8 7445
9c1cfda2
JH
7446 sd = &per_cpu(node_domains, j);
7447 sd->groups = sg;
9c1cfda2 7448 }
5517d86b 7449 sg->__cpu_power = 0;
7c16ec58 7450 sg->cpumask = *nodemask;
51888ca2 7451 sg->next = sg;
7c16ec58 7452 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7453 prev = sg;
7454
076ac2af 7455 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7456 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7457 int n = (i + j) % nr_node_ids;
c5f59f08 7458 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7459
7c16ec58
MT
7460 cpus_complement(*notcovered, *covered);
7461 cpus_and(*tmpmask, *notcovered, *cpu_map);
7462 cpus_and(*tmpmask, *tmpmask, *domainspan);
7463 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7464 break;
7465
7c16ec58
MT
7466 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7467 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7468 continue;
7469
15f0b676
SV
7470 sg = kmalloc_node(sizeof(struct sched_group),
7471 GFP_KERNEL, i);
9c1cfda2
JH
7472 if (!sg) {
7473 printk(KERN_WARNING
7474 "Can not alloc domain group for node %d\n", j);
51888ca2 7475 goto error;
9c1cfda2 7476 }
5517d86b 7477 sg->__cpu_power = 0;
7c16ec58 7478 sg->cpumask = *tmpmask;
51888ca2 7479 sg->next = prev->next;
7c16ec58 7480 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7481 prev->next = sg;
7482 prev = sg;
7483 }
9c1cfda2 7484 }
1da177e4
LT
7485#endif
7486
7487 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7488#ifdef CONFIG_SCHED_SMT
363ab6f1 7489 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7490 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7491
89c4710e 7492 init_sched_groups_power(i, sd);
5c45bf27 7493 }
1da177e4 7494#endif
1e9f28fa 7495#ifdef CONFIG_SCHED_MC
363ab6f1 7496 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7497 struct sched_domain *sd = &per_cpu(core_domains, i);
7498
89c4710e 7499 init_sched_groups_power(i, sd);
5c45bf27
SS
7500 }
7501#endif
1e9f28fa 7502
363ab6f1 7503 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7504 struct sched_domain *sd = &per_cpu(phys_domains, i);
7505
89c4710e 7506 init_sched_groups_power(i, sd);
1da177e4
LT
7507 }
7508
9c1cfda2 7509#ifdef CONFIG_NUMA
076ac2af 7510 for (i = 0; i < nr_node_ids; i++)
08069033 7511 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7512
6711cab4
SS
7513 if (sd_allnodes) {
7514 struct sched_group *sg;
f712c0c7 7515
7c16ec58
MT
7516 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7517 tmpmask);
f712c0c7
SS
7518 init_numa_sched_groups_power(sg);
7519 }
9c1cfda2
JH
7520#endif
7521
1da177e4 7522 /* Attach the domains */
363ab6f1 7523 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7524 struct sched_domain *sd;
7525#ifdef CONFIG_SCHED_SMT
7526 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7527#elif defined(CONFIG_SCHED_MC)
7528 sd = &per_cpu(core_domains, i);
1da177e4
LT
7529#else
7530 sd = &per_cpu(phys_domains, i);
7531#endif
57d885fe 7532 cpu_attach_domain(sd, rd, i);
1da177e4 7533 }
51888ca2 7534
7c16ec58 7535 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7536 return 0;
7537
a616058b 7538#ifdef CONFIG_NUMA
51888ca2 7539error:
7c16ec58
MT
7540 free_sched_groups(cpu_map, tmpmask);
7541 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7542 return -ENOMEM;
a616058b 7543#endif
1da177e4 7544}
029190c5 7545
1d3504fc
HS
7546static int build_sched_domains(const cpumask_t *cpu_map)
7547{
7548 return __build_sched_domains(cpu_map, NULL);
7549}
7550
029190c5
PJ
7551static cpumask_t *doms_cur; /* current sched domains */
7552static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7553static struct sched_domain_attr *dattr_cur;
7554 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7555
7556/*
7557 * Special case: If a kmalloc of a doms_cur partition (array of
7558 * cpumask_t) fails, then fallback to a single sched domain,
7559 * as determined by the single cpumask_t fallback_doms.
7560 */
7561static cpumask_t fallback_doms;
7562
22e52b07
HC
7563void __attribute__((weak)) arch_update_cpu_topology(void)
7564{
7565}
7566
1a20ff27 7567/*
41a2d6cf 7568 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7569 * For now this just excludes isolated cpus, but could be used to
7570 * exclude other special cases in the future.
1a20ff27 7571 */
51888ca2 7572static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7573{
7378547f
MM
7574 int err;
7575
22e52b07 7576 arch_update_cpu_topology();
029190c5
PJ
7577 ndoms_cur = 1;
7578 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7579 if (!doms_cur)
7580 doms_cur = &fallback_doms;
7581 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7582 dattr_cur = NULL;
7378547f 7583 err = build_sched_domains(doms_cur);
6382bc90 7584 register_sched_domain_sysctl();
7378547f
MM
7585
7586 return err;
1a20ff27
DG
7587}
7588
7c16ec58
MT
7589static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7590 cpumask_t *tmpmask)
1da177e4 7591{
7c16ec58 7592 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7593}
1da177e4 7594
1a20ff27
DG
7595/*
7596 * Detach sched domains from a group of cpus specified in cpu_map
7597 * These cpus will now be attached to the NULL domain
7598 */
858119e1 7599static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7600{
7c16ec58 7601 cpumask_t tmpmask;
1a20ff27
DG
7602 int i;
7603
6382bc90
MM
7604 unregister_sched_domain_sysctl();
7605
363ab6f1 7606 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7607 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7608 synchronize_sched();
7c16ec58 7609 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7610}
7611
1d3504fc
HS
7612/* handle null as "default" */
7613static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7614 struct sched_domain_attr *new, int idx_new)
7615{
7616 struct sched_domain_attr tmp;
7617
7618 /* fast path */
7619 if (!new && !cur)
7620 return 1;
7621
7622 tmp = SD_ATTR_INIT;
7623 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7624 new ? (new + idx_new) : &tmp,
7625 sizeof(struct sched_domain_attr));
7626}
7627
029190c5
PJ
7628/*
7629 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7630 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7631 * doms_new[] to the current sched domain partitioning, doms_cur[].
7632 * It destroys each deleted domain and builds each new domain.
7633 *
7634 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7635 * The masks don't intersect (don't overlap.) We should setup one
7636 * sched domain for each mask. CPUs not in any of the cpumasks will
7637 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7638 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7639 * it as it is.
7640 *
41a2d6cf
IM
7641 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7642 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7643 * failed the kmalloc call, then it can pass in doms_new == NULL,
7644 * and partition_sched_domains() will fallback to the single partition
e761b772 7645 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5
PJ
7646 *
7647 * Call with hotplug lock held
7648 */
1d3504fc
HS
7649void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7650 struct sched_domain_attr *dattr_new)
029190c5
PJ
7651{
7652 int i, j;
7653
712555ee 7654 mutex_lock(&sched_domains_mutex);
a1835615 7655
7378547f
MM
7656 /* always unregister in case we don't destroy any domains */
7657 unregister_sched_domain_sysctl();
7658
e761b772
MK
7659 if (doms_new == NULL)
7660 ndoms_new = 0;
029190c5
PJ
7661
7662 /* Destroy deleted domains */
7663 for (i = 0; i < ndoms_cur; i++) {
7664 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7665 if (cpus_equal(doms_cur[i], doms_new[j])
7666 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7667 goto match1;
7668 }
7669 /* no match - a current sched domain not in new doms_new[] */
7670 detach_destroy_domains(doms_cur + i);
7671match1:
7672 ;
7673 }
7674
e761b772
MK
7675 if (doms_new == NULL) {
7676 ndoms_cur = 0;
7677 ndoms_new = 1;
7678 doms_new = &fallback_doms;
7679 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7680 dattr_new = NULL;
7681 }
7682
029190c5
PJ
7683 /* Build new domains */
7684 for (i = 0; i < ndoms_new; i++) {
7685 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7686 if (cpus_equal(doms_new[i], doms_cur[j])
7687 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7688 goto match2;
7689 }
7690 /* no match - add a new doms_new */
1d3504fc
HS
7691 __build_sched_domains(doms_new + i,
7692 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7693match2:
7694 ;
7695 }
7696
7697 /* Remember the new sched domains */
7698 if (doms_cur != &fallback_doms)
7699 kfree(doms_cur);
1d3504fc 7700 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7701 doms_cur = doms_new;
1d3504fc 7702 dattr_cur = dattr_new;
029190c5 7703 ndoms_cur = ndoms_new;
7378547f
MM
7704
7705 register_sched_domain_sysctl();
a1835615 7706
712555ee 7707 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7708}
7709
5c45bf27 7710#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7711int arch_reinit_sched_domains(void)
5c45bf27 7712{
95402b38 7713 get_online_cpus();
e761b772 7714 rebuild_sched_domains();
95402b38 7715 put_online_cpus();
e761b772 7716 return 0;
5c45bf27
SS
7717}
7718
7719static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7720{
7721 int ret;
7722
7723 if (buf[0] != '0' && buf[0] != '1')
7724 return -EINVAL;
7725
7726 if (smt)
7727 sched_smt_power_savings = (buf[0] == '1');
7728 else
7729 sched_mc_power_savings = (buf[0] == '1');
7730
7731 ret = arch_reinit_sched_domains();
7732
7733 return ret ? ret : count;
7734}
7735
5c45bf27 7736#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7737static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7738 char *page)
5c45bf27
SS
7739{
7740 return sprintf(page, "%u\n", sched_mc_power_savings);
7741}
f718cd4a 7742static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7743 const char *buf, size_t count)
5c45bf27
SS
7744{
7745 return sched_power_savings_store(buf, count, 0);
7746}
f718cd4a
AK
7747static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7748 sched_mc_power_savings_show,
7749 sched_mc_power_savings_store);
5c45bf27
SS
7750#endif
7751
7752#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7753static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7754 char *page)
5c45bf27
SS
7755{
7756 return sprintf(page, "%u\n", sched_smt_power_savings);
7757}
f718cd4a 7758static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7759 const char *buf, size_t count)
5c45bf27
SS
7760{
7761 return sched_power_savings_store(buf, count, 1);
7762}
f718cd4a
AK
7763static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7764 sched_smt_power_savings_show,
6707de00
AB
7765 sched_smt_power_savings_store);
7766#endif
7767
7768int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7769{
7770 int err = 0;
7771
7772#ifdef CONFIG_SCHED_SMT
7773 if (smt_capable())
7774 err = sysfs_create_file(&cls->kset.kobj,
7775 &attr_sched_smt_power_savings.attr);
7776#endif
7777#ifdef CONFIG_SCHED_MC
7778 if (!err && mc_capable())
7779 err = sysfs_create_file(&cls->kset.kobj,
7780 &attr_sched_mc_power_savings.attr);
7781#endif
7782 return err;
7783}
6d6bc0ad 7784#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7785
e761b772 7786#ifndef CONFIG_CPUSETS
1da177e4 7787/*
e761b772
MK
7788 * Add online and remove offline CPUs from the scheduler domains.
7789 * When cpusets are enabled they take over this function.
1da177e4
LT
7790 */
7791static int update_sched_domains(struct notifier_block *nfb,
7792 unsigned long action, void *hcpu)
e761b772
MK
7793{
7794 switch (action) {
7795 case CPU_ONLINE:
7796 case CPU_ONLINE_FROZEN:
7797 case CPU_DEAD:
7798 case CPU_DEAD_FROZEN:
7799 partition_sched_domains(0, NULL, NULL);
7800 return NOTIFY_OK;
7801
7802 default:
7803 return NOTIFY_DONE;
7804 }
7805}
7806#endif
7807
7808static int update_runtime(struct notifier_block *nfb,
7809 unsigned long action, void *hcpu)
1da177e4 7810{
7def2be1
PZ
7811 int cpu = (int)(long)hcpu;
7812
1da177e4 7813 switch (action) {
1da177e4 7814 case CPU_DOWN_PREPARE:
8bb78442 7815 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7816 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7817 return NOTIFY_OK;
7818
1da177e4 7819 case CPU_DOWN_FAILED:
8bb78442 7820 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7821 case CPU_ONLINE:
8bb78442 7822 case CPU_ONLINE_FROZEN:
7def2be1 7823 enable_runtime(cpu_rq(cpu));
e761b772
MK
7824 return NOTIFY_OK;
7825
1da177e4
LT
7826 default:
7827 return NOTIFY_DONE;
7828 }
1da177e4 7829}
1da177e4
LT
7830
7831void __init sched_init_smp(void)
7832{
5c1e1767
NP
7833 cpumask_t non_isolated_cpus;
7834
434d53b0
MT
7835#if defined(CONFIG_NUMA)
7836 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7837 GFP_KERNEL);
7838 BUG_ON(sched_group_nodes_bycpu == NULL);
7839#endif
95402b38 7840 get_online_cpus();
712555ee 7841 mutex_lock(&sched_domains_mutex);
1a20ff27 7842 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7843 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7844 if (cpus_empty(non_isolated_cpus))
7845 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7846 mutex_unlock(&sched_domains_mutex);
95402b38 7847 put_online_cpus();
e761b772
MK
7848
7849#ifndef CONFIG_CPUSETS
1da177e4
LT
7850 /* XXX: Theoretical race here - CPU may be hotplugged now */
7851 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7852#endif
7853
7854 /* RT runtime code needs to handle some hotplug events */
7855 hotcpu_notifier(update_runtime, 0);
7856
b328ca18 7857 init_hrtick();
5c1e1767
NP
7858
7859 /* Move init over to a non-isolated CPU */
7c16ec58 7860 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7861 BUG();
19978ca6 7862 sched_init_granularity();
1da177e4
LT
7863}
7864#else
7865void __init sched_init_smp(void)
7866{
19978ca6 7867 sched_init_granularity();
1da177e4
LT
7868}
7869#endif /* CONFIG_SMP */
7870
7871int in_sched_functions(unsigned long addr)
7872{
1da177e4
LT
7873 return in_lock_functions(addr) ||
7874 (addr >= (unsigned long)__sched_text_start
7875 && addr < (unsigned long)__sched_text_end);
7876}
7877
a9957449 7878static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7879{
7880 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7881 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7882#ifdef CONFIG_FAIR_GROUP_SCHED
7883 cfs_rq->rq = rq;
7884#endif
67e9fb2a 7885 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7886}
7887
fa85ae24
PZ
7888static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7889{
7890 struct rt_prio_array *array;
7891 int i;
7892
7893 array = &rt_rq->active;
7894 for (i = 0; i < MAX_RT_PRIO; i++) {
7895 INIT_LIST_HEAD(array->queue + i);
7896 __clear_bit(i, array->bitmap);
7897 }
7898 /* delimiter for bitsearch: */
7899 __set_bit(MAX_RT_PRIO, array->bitmap);
7900
052f1dc7 7901#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7902 rt_rq->highest_prio = MAX_RT_PRIO;
7903#endif
fa85ae24
PZ
7904#ifdef CONFIG_SMP
7905 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7906 rt_rq->overloaded = 0;
7907#endif
7908
7909 rt_rq->rt_time = 0;
7910 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7911 rt_rq->rt_runtime = 0;
7912 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7913
052f1dc7 7914#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7915 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7916 rt_rq->rq = rq;
7917#endif
fa85ae24
PZ
7918}
7919
6f505b16 7920#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7921static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7922 struct sched_entity *se, int cpu, int add,
7923 struct sched_entity *parent)
6f505b16 7924{
ec7dc8ac 7925 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7926 tg->cfs_rq[cpu] = cfs_rq;
7927 init_cfs_rq(cfs_rq, rq);
7928 cfs_rq->tg = tg;
7929 if (add)
7930 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7931
7932 tg->se[cpu] = se;
354d60c2
DG
7933 /* se could be NULL for init_task_group */
7934 if (!se)
7935 return;
7936
ec7dc8ac
DG
7937 if (!parent)
7938 se->cfs_rq = &rq->cfs;
7939 else
7940 se->cfs_rq = parent->my_q;
7941
6f505b16
PZ
7942 se->my_q = cfs_rq;
7943 se->load.weight = tg->shares;
e05510d0 7944 se->load.inv_weight = 0;
ec7dc8ac 7945 se->parent = parent;
6f505b16 7946}
052f1dc7 7947#endif
6f505b16 7948
052f1dc7 7949#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7950static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7951 struct sched_rt_entity *rt_se, int cpu, int add,
7952 struct sched_rt_entity *parent)
6f505b16 7953{
ec7dc8ac
DG
7954 struct rq *rq = cpu_rq(cpu);
7955
6f505b16
PZ
7956 tg->rt_rq[cpu] = rt_rq;
7957 init_rt_rq(rt_rq, rq);
7958 rt_rq->tg = tg;
7959 rt_rq->rt_se = rt_se;
ac086bc2 7960 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7961 if (add)
7962 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7963
7964 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7965 if (!rt_se)
7966 return;
7967
ec7dc8ac
DG
7968 if (!parent)
7969 rt_se->rt_rq = &rq->rt;
7970 else
7971 rt_se->rt_rq = parent->my_q;
7972
6f505b16 7973 rt_se->my_q = rt_rq;
ec7dc8ac 7974 rt_se->parent = parent;
6f505b16
PZ
7975 INIT_LIST_HEAD(&rt_se->run_list);
7976}
7977#endif
7978
1da177e4
LT
7979void __init sched_init(void)
7980{
dd41f596 7981 int i, j;
434d53b0
MT
7982 unsigned long alloc_size = 0, ptr;
7983
7984#ifdef CONFIG_FAIR_GROUP_SCHED
7985 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7986#endif
7987#ifdef CONFIG_RT_GROUP_SCHED
7988 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7989#endif
7990#ifdef CONFIG_USER_SCHED
7991 alloc_size *= 2;
434d53b0
MT
7992#endif
7993 /*
7994 * As sched_init() is called before page_alloc is setup,
7995 * we use alloc_bootmem().
7996 */
7997 if (alloc_size) {
5a9d3225 7998 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7999
8000#ifdef CONFIG_FAIR_GROUP_SCHED
8001 init_task_group.se = (struct sched_entity **)ptr;
8002 ptr += nr_cpu_ids * sizeof(void **);
8003
8004 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8005 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8006
8007#ifdef CONFIG_USER_SCHED
8008 root_task_group.se = (struct sched_entity **)ptr;
8009 ptr += nr_cpu_ids * sizeof(void **);
8010
8011 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8012 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8013#endif /* CONFIG_USER_SCHED */
8014#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8015#ifdef CONFIG_RT_GROUP_SCHED
8016 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8017 ptr += nr_cpu_ids * sizeof(void **);
8018
8019 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8020 ptr += nr_cpu_ids * sizeof(void **);
8021
8022#ifdef CONFIG_USER_SCHED
8023 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8024 ptr += nr_cpu_ids * sizeof(void **);
8025
8026 root_task_group.rt_rq = (struct rt_rq **)ptr;
8027 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8028#endif /* CONFIG_USER_SCHED */
8029#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8030 }
dd41f596 8031
57d885fe
GH
8032#ifdef CONFIG_SMP
8033 init_defrootdomain();
8034#endif
8035
d0b27fa7
PZ
8036 init_rt_bandwidth(&def_rt_bandwidth,
8037 global_rt_period(), global_rt_runtime());
8038
8039#ifdef CONFIG_RT_GROUP_SCHED
8040 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8041 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8042#ifdef CONFIG_USER_SCHED
8043 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8044 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8045#endif /* CONFIG_USER_SCHED */
8046#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8047
052f1dc7 8048#ifdef CONFIG_GROUP_SCHED
6f505b16 8049 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8050 INIT_LIST_HEAD(&init_task_group.children);
8051
8052#ifdef CONFIG_USER_SCHED
8053 INIT_LIST_HEAD(&root_task_group.children);
8054 init_task_group.parent = &root_task_group;
8055 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8056#endif /* CONFIG_USER_SCHED */
8057#endif /* CONFIG_GROUP_SCHED */
6f505b16 8058
0a945022 8059 for_each_possible_cpu(i) {
70b97a7f 8060 struct rq *rq;
1da177e4
LT
8061
8062 rq = cpu_rq(i);
8063 spin_lock_init(&rq->lock);
7897986b 8064 rq->nr_running = 0;
dd41f596 8065 init_cfs_rq(&rq->cfs, rq);
6f505b16 8066 init_rt_rq(&rq->rt, rq);
dd41f596 8067#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8068 init_task_group.shares = init_task_group_load;
6f505b16 8069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8070#ifdef CONFIG_CGROUP_SCHED
8071 /*
8072 * How much cpu bandwidth does init_task_group get?
8073 *
8074 * In case of task-groups formed thr' the cgroup filesystem, it
8075 * gets 100% of the cpu resources in the system. This overall
8076 * system cpu resource is divided among the tasks of
8077 * init_task_group and its child task-groups in a fair manner,
8078 * based on each entity's (task or task-group's) weight
8079 * (se->load.weight).
8080 *
8081 * In other words, if init_task_group has 10 tasks of weight
8082 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8083 * then A0's share of the cpu resource is:
8084 *
8085 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8086 *
8087 * We achieve this by letting init_task_group's tasks sit
8088 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8089 */
ec7dc8ac 8090 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8091#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8092 root_task_group.shares = NICE_0_LOAD;
8093 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8094 /*
8095 * In case of task-groups formed thr' the user id of tasks,
8096 * init_task_group represents tasks belonging to root user.
8097 * Hence it forms a sibling of all subsequent groups formed.
8098 * In this case, init_task_group gets only a fraction of overall
8099 * system cpu resource, based on the weight assigned to root
8100 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8101 * by letting tasks of init_task_group sit in a separate cfs_rq
8102 * (init_cfs_rq) and having one entity represent this group of
8103 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8104 */
ec7dc8ac 8105 init_tg_cfs_entry(&init_task_group,
6f505b16 8106 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8107 &per_cpu(init_sched_entity, i), i, 1,
8108 root_task_group.se[i]);
6f505b16 8109
052f1dc7 8110#endif
354d60c2
DG
8111#endif /* CONFIG_FAIR_GROUP_SCHED */
8112
8113 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8114#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8115 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8116#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8117 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8118#elif defined CONFIG_USER_SCHED
eff766a6 8119 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8120 init_tg_rt_entry(&init_task_group,
6f505b16 8121 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8122 &per_cpu(init_sched_rt_entity, i), i, 1,
8123 root_task_group.rt_se[i]);
354d60c2 8124#endif
dd41f596 8125#endif
1da177e4 8126
dd41f596
IM
8127 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8128 rq->cpu_load[j] = 0;
1da177e4 8129#ifdef CONFIG_SMP
41c7ce9a 8130 rq->sd = NULL;
57d885fe 8131 rq->rd = NULL;
1da177e4 8132 rq->active_balance = 0;
dd41f596 8133 rq->next_balance = jiffies;
1da177e4 8134 rq->push_cpu = 0;
0a2966b4 8135 rq->cpu = i;
1f11eb6a 8136 rq->online = 0;
1da177e4
LT
8137 rq->migration_thread = NULL;
8138 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8139 rq_attach_root(rq, &def_root_domain);
1da177e4 8140#endif
8f4d37ec 8141 init_rq_hrtick(rq);
1da177e4 8142 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8143 }
8144
2dd73a4f 8145 set_load_weight(&init_task);
b50f60ce 8146
e107be36
AK
8147#ifdef CONFIG_PREEMPT_NOTIFIERS
8148 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8149#endif
8150
c9819f45 8151#ifdef CONFIG_SMP
962cf36c 8152 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8153#endif
8154
b50f60ce
HC
8155#ifdef CONFIG_RT_MUTEXES
8156 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8157#endif
8158
1da177e4
LT
8159 /*
8160 * The boot idle thread does lazy MMU switching as well:
8161 */
8162 atomic_inc(&init_mm.mm_count);
8163 enter_lazy_tlb(&init_mm, current);
8164
8165 /*
8166 * Make us the idle thread. Technically, schedule() should not be
8167 * called from this thread, however somewhere below it might be,
8168 * but because we are the idle thread, we just pick up running again
8169 * when this runqueue becomes "idle".
8170 */
8171 init_idle(current, smp_processor_id());
dd41f596
IM
8172 /*
8173 * During early bootup we pretend to be a normal task:
8174 */
8175 current->sched_class = &fair_sched_class;
6892b75e
IM
8176
8177 scheduler_running = 1;
1da177e4
LT
8178}
8179
8180#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8181void __might_sleep(char *file, int line)
8182{
48f24c4d 8183#ifdef in_atomic
1da177e4
LT
8184 static unsigned long prev_jiffy; /* ratelimiting */
8185
8186 if ((in_atomic() || irqs_disabled()) &&
8187 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8188 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8189 return;
8190 prev_jiffy = jiffies;
91368d73 8191 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8192 " context at %s:%d\n", file, line);
8193 printk("in_atomic():%d, irqs_disabled():%d\n",
8194 in_atomic(), irqs_disabled());
a4c410f0 8195 debug_show_held_locks(current);
3117df04
IM
8196 if (irqs_disabled())
8197 print_irqtrace_events(current);
1da177e4
LT
8198 dump_stack();
8199 }
8200#endif
8201}
8202EXPORT_SYMBOL(__might_sleep);
8203#endif
8204
8205#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8206static void normalize_task(struct rq *rq, struct task_struct *p)
8207{
8208 int on_rq;
3e51f33f 8209
3a5e4dc1
AK
8210 update_rq_clock(rq);
8211 on_rq = p->se.on_rq;
8212 if (on_rq)
8213 deactivate_task(rq, p, 0);
8214 __setscheduler(rq, p, SCHED_NORMAL, 0);
8215 if (on_rq) {
8216 activate_task(rq, p, 0);
8217 resched_task(rq->curr);
8218 }
8219}
8220
1da177e4
LT
8221void normalize_rt_tasks(void)
8222{
a0f98a1c 8223 struct task_struct *g, *p;
1da177e4 8224 unsigned long flags;
70b97a7f 8225 struct rq *rq;
1da177e4 8226
4cf5d77a 8227 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8228 do_each_thread(g, p) {
178be793
IM
8229 /*
8230 * Only normalize user tasks:
8231 */
8232 if (!p->mm)
8233 continue;
8234
6cfb0d5d 8235 p->se.exec_start = 0;
6cfb0d5d 8236#ifdef CONFIG_SCHEDSTATS
dd41f596 8237 p->se.wait_start = 0;
dd41f596 8238 p->se.sleep_start = 0;
dd41f596 8239 p->se.block_start = 0;
6cfb0d5d 8240#endif
dd41f596
IM
8241
8242 if (!rt_task(p)) {
8243 /*
8244 * Renice negative nice level userspace
8245 * tasks back to 0:
8246 */
8247 if (TASK_NICE(p) < 0 && p->mm)
8248 set_user_nice(p, 0);
1da177e4 8249 continue;
dd41f596 8250 }
1da177e4 8251
4cf5d77a 8252 spin_lock(&p->pi_lock);
b29739f9 8253 rq = __task_rq_lock(p);
1da177e4 8254
178be793 8255 normalize_task(rq, p);
3a5e4dc1 8256
b29739f9 8257 __task_rq_unlock(rq);
4cf5d77a 8258 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8259 } while_each_thread(g, p);
8260
4cf5d77a 8261 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8262}
8263
8264#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8265
8266#ifdef CONFIG_IA64
8267/*
8268 * These functions are only useful for the IA64 MCA handling.
8269 *
8270 * They can only be called when the whole system has been
8271 * stopped - every CPU needs to be quiescent, and no scheduling
8272 * activity can take place. Using them for anything else would
8273 * be a serious bug, and as a result, they aren't even visible
8274 * under any other configuration.
8275 */
8276
8277/**
8278 * curr_task - return the current task for a given cpu.
8279 * @cpu: the processor in question.
8280 *
8281 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8282 */
36c8b586 8283struct task_struct *curr_task(int cpu)
1df5c10a
LT
8284{
8285 return cpu_curr(cpu);
8286}
8287
8288/**
8289 * set_curr_task - set the current task for a given cpu.
8290 * @cpu: the processor in question.
8291 * @p: the task pointer to set.
8292 *
8293 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8294 * are serviced on a separate stack. It allows the architecture to switch the
8295 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8296 * must be called with all CPU's synchronized, and interrupts disabled, the
8297 * and caller must save the original value of the current task (see
8298 * curr_task() above) and restore that value before reenabling interrupts and
8299 * re-starting the system.
8300 *
8301 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8302 */
36c8b586 8303void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8304{
8305 cpu_curr(cpu) = p;
8306}
8307
8308#endif
29f59db3 8309
bccbe08a
PZ
8310#ifdef CONFIG_FAIR_GROUP_SCHED
8311static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8312{
8313 int i;
8314
8315 for_each_possible_cpu(i) {
8316 if (tg->cfs_rq)
8317 kfree(tg->cfs_rq[i]);
8318 if (tg->se)
8319 kfree(tg->se[i]);
6f505b16
PZ
8320 }
8321
8322 kfree(tg->cfs_rq);
8323 kfree(tg->se);
6f505b16
PZ
8324}
8325
ec7dc8ac
DG
8326static
8327int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8328{
29f59db3 8329 struct cfs_rq *cfs_rq;
ec7dc8ac 8330 struct sched_entity *se, *parent_se;
9b5b7751 8331 struct rq *rq;
29f59db3
SV
8332 int i;
8333
434d53b0 8334 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8335 if (!tg->cfs_rq)
8336 goto err;
434d53b0 8337 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8338 if (!tg->se)
8339 goto err;
052f1dc7
PZ
8340
8341 tg->shares = NICE_0_LOAD;
29f59db3
SV
8342
8343 for_each_possible_cpu(i) {
9b5b7751 8344 rq = cpu_rq(i);
29f59db3 8345
6f505b16
PZ
8346 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8347 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8348 if (!cfs_rq)
8349 goto err;
8350
6f505b16
PZ
8351 se = kmalloc_node(sizeof(struct sched_entity),
8352 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8353 if (!se)
8354 goto err;
8355
ec7dc8ac
DG
8356 parent_se = parent ? parent->se[i] : NULL;
8357 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8358 }
8359
8360 return 1;
8361
8362 err:
8363 return 0;
8364}
8365
8366static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8367{
8368 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8369 &cpu_rq(cpu)->leaf_cfs_rq_list);
8370}
8371
8372static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8373{
8374 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8375}
6d6bc0ad 8376#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8377static inline void free_fair_sched_group(struct task_group *tg)
8378{
8379}
8380
ec7dc8ac
DG
8381static inline
8382int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8383{
8384 return 1;
8385}
8386
8387static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8388{
8389}
8390
8391static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8392{
8393}
6d6bc0ad 8394#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8395
8396#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8397static void free_rt_sched_group(struct task_group *tg)
8398{
8399 int i;
8400
d0b27fa7
PZ
8401 destroy_rt_bandwidth(&tg->rt_bandwidth);
8402
bccbe08a
PZ
8403 for_each_possible_cpu(i) {
8404 if (tg->rt_rq)
8405 kfree(tg->rt_rq[i]);
8406 if (tg->rt_se)
8407 kfree(tg->rt_se[i]);
8408 }
8409
8410 kfree(tg->rt_rq);
8411 kfree(tg->rt_se);
8412}
8413
ec7dc8ac
DG
8414static
8415int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8416{
8417 struct rt_rq *rt_rq;
ec7dc8ac 8418 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8419 struct rq *rq;
8420 int i;
8421
434d53b0 8422 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8423 if (!tg->rt_rq)
8424 goto err;
434d53b0 8425 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8426 if (!tg->rt_se)
8427 goto err;
8428
d0b27fa7
PZ
8429 init_rt_bandwidth(&tg->rt_bandwidth,
8430 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8431
8432 for_each_possible_cpu(i) {
8433 rq = cpu_rq(i);
8434
6f505b16
PZ
8435 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8436 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8437 if (!rt_rq)
8438 goto err;
29f59db3 8439
6f505b16
PZ
8440 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8441 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8442 if (!rt_se)
8443 goto err;
29f59db3 8444
ec7dc8ac
DG
8445 parent_se = parent ? parent->rt_se[i] : NULL;
8446 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8447 }
8448
bccbe08a
PZ
8449 return 1;
8450
8451 err:
8452 return 0;
8453}
8454
8455static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8456{
8457 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8458 &cpu_rq(cpu)->leaf_rt_rq_list);
8459}
8460
8461static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8462{
8463 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8464}
6d6bc0ad 8465#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8466static inline void free_rt_sched_group(struct task_group *tg)
8467{
8468}
8469
ec7dc8ac
DG
8470static inline
8471int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8472{
8473 return 1;
8474}
8475
8476static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8477{
8478}
8479
8480static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8481{
8482}
6d6bc0ad 8483#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8484
d0b27fa7 8485#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8486static void free_sched_group(struct task_group *tg)
8487{
8488 free_fair_sched_group(tg);
8489 free_rt_sched_group(tg);
8490 kfree(tg);
8491}
8492
8493/* allocate runqueue etc for a new task group */
ec7dc8ac 8494struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8495{
8496 struct task_group *tg;
8497 unsigned long flags;
8498 int i;
8499
8500 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8501 if (!tg)
8502 return ERR_PTR(-ENOMEM);
8503
ec7dc8ac 8504 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8505 goto err;
8506
ec7dc8ac 8507 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8508 goto err;
8509
8ed36996 8510 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8511 for_each_possible_cpu(i) {
bccbe08a
PZ
8512 register_fair_sched_group(tg, i);
8513 register_rt_sched_group(tg, i);
9b5b7751 8514 }
6f505b16 8515 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8516
8517 WARN_ON(!parent); /* root should already exist */
8518
8519 tg->parent = parent;
f473aa5e 8520 INIT_LIST_HEAD(&tg->children);
09f2724a 8521 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8522 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8523
9b5b7751 8524 return tg;
29f59db3
SV
8525
8526err:
6f505b16 8527 free_sched_group(tg);
29f59db3
SV
8528 return ERR_PTR(-ENOMEM);
8529}
8530
9b5b7751 8531/* rcu callback to free various structures associated with a task group */
6f505b16 8532static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8533{
29f59db3 8534 /* now it should be safe to free those cfs_rqs */
6f505b16 8535 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8536}
8537
9b5b7751 8538/* Destroy runqueue etc associated with a task group */
4cf86d77 8539void sched_destroy_group(struct task_group *tg)
29f59db3 8540{
8ed36996 8541 unsigned long flags;
9b5b7751 8542 int i;
29f59db3 8543
8ed36996 8544 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8545 for_each_possible_cpu(i) {
bccbe08a
PZ
8546 unregister_fair_sched_group(tg, i);
8547 unregister_rt_sched_group(tg, i);
9b5b7751 8548 }
6f505b16 8549 list_del_rcu(&tg->list);
f473aa5e 8550 list_del_rcu(&tg->siblings);
8ed36996 8551 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8552
9b5b7751 8553 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8554 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8555}
8556
9b5b7751 8557/* change task's runqueue when it moves between groups.
3a252015
IM
8558 * The caller of this function should have put the task in its new group
8559 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8560 * reflect its new group.
9b5b7751
SV
8561 */
8562void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8563{
8564 int on_rq, running;
8565 unsigned long flags;
8566 struct rq *rq;
8567
8568 rq = task_rq_lock(tsk, &flags);
8569
29f59db3
SV
8570 update_rq_clock(rq);
8571
051a1d1a 8572 running = task_current(rq, tsk);
29f59db3
SV
8573 on_rq = tsk->se.on_rq;
8574
0e1f3483 8575 if (on_rq)
29f59db3 8576 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8577 if (unlikely(running))
8578 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8579
6f505b16 8580 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8581
810b3817
PZ
8582#ifdef CONFIG_FAIR_GROUP_SCHED
8583 if (tsk->sched_class->moved_group)
8584 tsk->sched_class->moved_group(tsk);
8585#endif
8586
0e1f3483
HS
8587 if (unlikely(running))
8588 tsk->sched_class->set_curr_task(rq);
8589 if (on_rq)
7074badb 8590 enqueue_task(rq, tsk, 0);
29f59db3 8591
29f59db3
SV
8592 task_rq_unlock(rq, &flags);
8593}
6d6bc0ad 8594#endif /* CONFIG_GROUP_SCHED */
29f59db3 8595
052f1dc7 8596#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8597static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8598{
8599 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8600 int on_rq;
8601
29f59db3 8602 on_rq = se->on_rq;
62fb1851 8603 if (on_rq)
29f59db3
SV
8604 dequeue_entity(cfs_rq, se, 0);
8605
8606 se->load.weight = shares;
e05510d0 8607 se->load.inv_weight = 0;
29f59db3 8608
62fb1851 8609 if (on_rq)
29f59db3 8610 enqueue_entity(cfs_rq, se, 0);
c09595f6 8611}
62fb1851 8612
c09595f6
PZ
8613static void set_se_shares(struct sched_entity *se, unsigned long shares)
8614{
8615 struct cfs_rq *cfs_rq = se->cfs_rq;
8616 struct rq *rq = cfs_rq->rq;
8617 unsigned long flags;
8618
8619 spin_lock_irqsave(&rq->lock, flags);
8620 __set_se_shares(se, shares);
8621 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8622}
8623
8ed36996
PZ
8624static DEFINE_MUTEX(shares_mutex);
8625
4cf86d77 8626int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8627{
8628 int i;
8ed36996 8629 unsigned long flags;
c61935fd 8630
ec7dc8ac
DG
8631 /*
8632 * We can't change the weight of the root cgroup.
8633 */
8634 if (!tg->se[0])
8635 return -EINVAL;
8636
18d95a28
PZ
8637 if (shares < MIN_SHARES)
8638 shares = MIN_SHARES;
cb4ad1ff
MX
8639 else if (shares > MAX_SHARES)
8640 shares = MAX_SHARES;
62fb1851 8641
8ed36996 8642 mutex_lock(&shares_mutex);
9b5b7751 8643 if (tg->shares == shares)
5cb350ba 8644 goto done;
29f59db3 8645
8ed36996 8646 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8647 for_each_possible_cpu(i)
8648 unregister_fair_sched_group(tg, i);
f473aa5e 8649 list_del_rcu(&tg->siblings);
8ed36996 8650 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8651
8652 /* wait for any ongoing reference to this group to finish */
8653 synchronize_sched();
8654
8655 /*
8656 * Now we are free to modify the group's share on each cpu
8657 * w/o tripping rebalance_share or load_balance_fair.
8658 */
9b5b7751 8659 tg->shares = shares;
c09595f6
PZ
8660 for_each_possible_cpu(i) {
8661 /*
8662 * force a rebalance
8663 */
8664 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8665 set_se_shares(tg->se[i], shares);
c09595f6 8666 }
29f59db3 8667
6b2d7700
SV
8668 /*
8669 * Enable load balance activity on this group, by inserting it back on
8670 * each cpu's rq->leaf_cfs_rq_list.
8671 */
8ed36996 8672 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8673 for_each_possible_cpu(i)
8674 register_fair_sched_group(tg, i);
f473aa5e 8675 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8676 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8677done:
8ed36996 8678 mutex_unlock(&shares_mutex);
9b5b7751 8679 return 0;
29f59db3
SV
8680}
8681
5cb350ba
DG
8682unsigned long sched_group_shares(struct task_group *tg)
8683{
8684 return tg->shares;
8685}
052f1dc7 8686#endif
5cb350ba 8687
052f1dc7 8688#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8689/*
9f0c1e56 8690 * Ensure that the real time constraints are schedulable.
6f505b16 8691 */
9f0c1e56
PZ
8692static DEFINE_MUTEX(rt_constraints_mutex);
8693
8694static unsigned long to_ratio(u64 period, u64 runtime)
8695{
8696 if (runtime == RUNTIME_INF)
8697 return 1ULL << 16;
8698
6f6d6a1a 8699 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8700}
8701
b40b2e8e
PZ
8702#ifdef CONFIG_CGROUP_SCHED
8703static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8704{
10b612f4 8705 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8706 unsigned long total = 0;
8707
8708 if (!parent) {
8709 if (global_rt_period() < period)
8710 return 0;
8711
8712 return to_ratio(period, runtime) <
8713 to_ratio(global_rt_period(), global_rt_runtime());
8714 }
8715
8716 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8717 return 0;
8718
8719 rcu_read_lock();
8720 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8721 if (tgi == tg)
8722 continue;
8723
8724 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8725 tgi->rt_bandwidth.rt_runtime);
8726 }
8727 rcu_read_unlock();
8728
10b612f4 8729 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8730 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8731 parent->rt_bandwidth.rt_runtime);
8732}
8733#elif defined CONFIG_USER_SCHED
9f0c1e56 8734static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8735{
8736 struct task_group *tgi;
8737 unsigned long total = 0;
9f0c1e56 8738 unsigned long global_ratio =
d0b27fa7 8739 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8740
8741 rcu_read_lock();
9f0c1e56
PZ
8742 list_for_each_entry_rcu(tgi, &task_groups, list) {
8743 if (tgi == tg)
8744 continue;
6f505b16 8745
d0b27fa7
PZ
8746 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8747 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8748 }
8749 rcu_read_unlock();
6f505b16 8750
9f0c1e56 8751 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8752}
b40b2e8e 8753#endif
6f505b16 8754
521f1a24
DG
8755/* Must be called with tasklist_lock held */
8756static inline int tg_has_rt_tasks(struct task_group *tg)
8757{
8758 struct task_struct *g, *p;
8759 do_each_thread(g, p) {
8760 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8761 return 1;
8762 } while_each_thread(g, p);
8763 return 0;
8764}
8765
d0b27fa7
PZ
8766static int tg_set_bandwidth(struct task_group *tg,
8767 u64 rt_period, u64 rt_runtime)
6f505b16 8768{
ac086bc2 8769 int i, err = 0;
9f0c1e56 8770
9f0c1e56 8771 mutex_lock(&rt_constraints_mutex);
521f1a24 8772 read_lock(&tasklist_lock);
ac086bc2 8773 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8774 err = -EBUSY;
8775 goto unlock;
8776 }
9f0c1e56
PZ
8777 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8778 err = -EINVAL;
8779 goto unlock;
8780 }
ac086bc2
PZ
8781
8782 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8783 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8784 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8785
8786 for_each_possible_cpu(i) {
8787 struct rt_rq *rt_rq = tg->rt_rq[i];
8788
8789 spin_lock(&rt_rq->rt_runtime_lock);
8790 rt_rq->rt_runtime = rt_runtime;
8791 spin_unlock(&rt_rq->rt_runtime_lock);
8792 }
8793 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8794 unlock:
521f1a24 8795 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8796 mutex_unlock(&rt_constraints_mutex);
8797
8798 return err;
6f505b16
PZ
8799}
8800
d0b27fa7
PZ
8801int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8802{
8803 u64 rt_runtime, rt_period;
8804
8805 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8806 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8807 if (rt_runtime_us < 0)
8808 rt_runtime = RUNTIME_INF;
8809
8810 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8811}
8812
9f0c1e56
PZ
8813long sched_group_rt_runtime(struct task_group *tg)
8814{
8815 u64 rt_runtime_us;
8816
d0b27fa7 8817 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8818 return -1;
8819
d0b27fa7 8820 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8821 do_div(rt_runtime_us, NSEC_PER_USEC);
8822 return rt_runtime_us;
8823}
d0b27fa7
PZ
8824
8825int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8826{
8827 u64 rt_runtime, rt_period;
8828
8829 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8830 rt_runtime = tg->rt_bandwidth.rt_runtime;
8831
619b0488
R
8832 if (rt_period == 0)
8833 return -EINVAL;
8834
d0b27fa7
PZ
8835 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8836}
8837
8838long sched_group_rt_period(struct task_group *tg)
8839{
8840 u64 rt_period_us;
8841
8842 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8843 do_div(rt_period_us, NSEC_PER_USEC);
8844 return rt_period_us;
8845}
8846
8847static int sched_rt_global_constraints(void)
8848{
10b612f4
PZ
8849 struct task_group *tg = &root_task_group;
8850 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8851 int ret = 0;
8852
10b612f4
PZ
8853 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8854 rt_runtime = tg->rt_bandwidth.rt_runtime;
8855
d0b27fa7 8856 mutex_lock(&rt_constraints_mutex);
10b612f4 8857 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8858 ret = -EINVAL;
8859 mutex_unlock(&rt_constraints_mutex);
8860
8861 return ret;
8862}
6d6bc0ad 8863#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8864static int sched_rt_global_constraints(void)
8865{
ac086bc2
PZ
8866 unsigned long flags;
8867 int i;
8868
8869 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8870 for_each_possible_cpu(i) {
8871 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8872
8873 spin_lock(&rt_rq->rt_runtime_lock);
8874 rt_rq->rt_runtime = global_rt_runtime();
8875 spin_unlock(&rt_rq->rt_runtime_lock);
8876 }
8877 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8878
d0b27fa7
PZ
8879 return 0;
8880}
6d6bc0ad 8881#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8882
8883int sched_rt_handler(struct ctl_table *table, int write,
8884 struct file *filp, void __user *buffer, size_t *lenp,
8885 loff_t *ppos)
8886{
8887 int ret;
8888 int old_period, old_runtime;
8889 static DEFINE_MUTEX(mutex);
8890
8891 mutex_lock(&mutex);
8892 old_period = sysctl_sched_rt_period;
8893 old_runtime = sysctl_sched_rt_runtime;
8894
8895 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8896
8897 if (!ret && write) {
8898 ret = sched_rt_global_constraints();
8899 if (ret) {
8900 sysctl_sched_rt_period = old_period;
8901 sysctl_sched_rt_runtime = old_runtime;
8902 } else {
8903 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8904 def_rt_bandwidth.rt_period =
8905 ns_to_ktime(global_rt_period());
8906 }
8907 }
8908 mutex_unlock(&mutex);
8909
8910 return ret;
8911}
68318b8e 8912
052f1dc7 8913#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8914
8915/* return corresponding task_group object of a cgroup */
2b01dfe3 8916static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8917{
2b01dfe3
PM
8918 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8919 struct task_group, css);
68318b8e
SV
8920}
8921
8922static struct cgroup_subsys_state *
2b01dfe3 8923cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8924{
ec7dc8ac 8925 struct task_group *tg, *parent;
68318b8e 8926
2b01dfe3 8927 if (!cgrp->parent) {
68318b8e 8928 /* This is early initialization for the top cgroup */
2b01dfe3 8929 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8930 return &init_task_group.css;
8931 }
8932
ec7dc8ac
DG
8933 parent = cgroup_tg(cgrp->parent);
8934 tg = sched_create_group(parent);
68318b8e
SV
8935 if (IS_ERR(tg))
8936 return ERR_PTR(-ENOMEM);
8937
8938 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8939 tg->css.cgroup = cgrp;
68318b8e
SV
8940
8941 return &tg->css;
8942}
8943
41a2d6cf
IM
8944static void
8945cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8946{
2b01dfe3 8947 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8948
8949 sched_destroy_group(tg);
8950}
8951
41a2d6cf
IM
8952static int
8953cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8954 struct task_struct *tsk)
68318b8e 8955{
b68aa230
PZ
8956#ifdef CONFIG_RT_GROUP_SCHED
8957 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8958 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8959 return -EINVAL;
8960#else
68318b8e
SV
8961 /* We don't support RT-tasks being in separate groups */
8962 if (tsk->sched_class != &fair_sched_class)
8963 return -EINVAL;
b68aa230 8964#endif
68318b8e
SV
8965
8966 return 0;
8967}
8968
8969static void
2b01dfe3 8970cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8971 struct cgroup *old_cont, struct task_struct *tsk)
8972{
8973 sched_move_task(tsk);
8974}
8975
052f1dc7 8976#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8977static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8978 u64 shareval)
68318b8e 8979{
2b01dfe3 8980 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8981}
8982
f4c753b7 8983static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8984{
2b01dfe3 8985 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8986
8987 return (u64) tg->shares;
8988}
6d6bc0ad 8989#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8990
052f1dc7 8991#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8992static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8993 s64 val)
6f505b16 8994{
06ecb27c 8995 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8996}
8997
06ecb27c 8998static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8999{
06ecb27c 9000 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9001}
d0b27fa7
PZ
9002
9003static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9004 u64 rt_period_us)
9005{
9006 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9007}
9008
9009static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9010{
9011 return sched_group_rt_period(cgroup_tg(cgrp));
9012}
6d6bc0ad 9013#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9014
fe5c7cc2 9015static struct cftype cpu_files[] = {
052f1dc7 9016#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9017 {
9018 .name = "shares",
f4c753b7
PM
9019 .read_u64 = cpu_shares_read_u64,
9020 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9021 },
052f1dc7
PZ
9022#endif
9023#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9024 {
9f0c1e56 9025 .name = "rt_runtime_us",
06ecb27c
PM
9026 .read_s64 = cpu_rt_runtime_read,
9027 .write_s64 = cpu_rt_runtime_write,
6f505b16 9028 },
d0b27fa7
PZ
9029 {
9030 .name = "rt_period_us",
f4c753b7
PM
9031 .read_u64 = cpu_rt_period_read_uint,
9032 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9033 },
052f1dc7 9034#endif
68318b8e
SV
9035};
9036
9037static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9038{
fe5c7cc2 9039 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9040}
9041
9042struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9043 .name = "cpu",
9044 .create = cpu_cgroup_create,
9045 .destroy = cpu_cgroup_destroy,
9046 .can_attach = cpu_cgroup_can_attach,
9047 .attach = cpu_cgroup_attach,
9048 .populate = cpu_cgroup_populate,
9049 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9050 .early_init = 1,
9051};
9052
052f1dc7 9053#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9054
9055#ifdef CONFIG_CGROUP_CPUACCT
9056
9057/*
9058 * CPU accounting code for task groups.
9059 *
9060 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9061 * (balbir@in.ibm.com).
9062 */
9063
9064/* track cpu usage of a group of tasks */
9065struct cpuacct {
9066 struct cgroup_subsys_state css;
9067 /* cpuusage holds pointer to a u64-type object on every cpu */
9068 u64 *cpuusage;
9069};
9070
9071struct cgroup_subsys cpuacct_subsys;
9072
9073/* return cpu accounting group corresponding to this container */
32cd756a 9074static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9075{
32cd756a 9076 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9077 struct cpuacct, css);
9078}
9079
9080/* return cpu accounting group to which this task belongs */
9081static inline struct cpuacct *task_ca(struct task_struct *tsk)
9082{
9083 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9084 struct cpuacct, css);
9085}
9086
9087/* create a new cpu accounting group */
9088static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9089 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9090{
9091 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9092
9093 if (!ca)
9094 return ERR_PTR(-ENOMEM);
9095
9096 ca->cpuusage = alloc_percpu(u64);
9097 if (!ca->cpuusage) {
9098 kfree(ca);
9099 return ERR_PTR(-ENOMEM);
9100 }
9101
9102 return &ca->css;
9103}
9104
9105/* destroy an existing cpu accounting group */
41a2d6cf 9106static void
32cd756a 9107cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9108{
32cd756a 9109 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9110
9111 free_percpu(ca->cpuusage);
9112 kfree(ca);
9113}
9114
9115/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9116static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9117{
32cd756a 9118 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9119 u64 totalcpuusage = 0;
9120 int i;
9121
9122 for_each_possible_cpu(i) {
9123 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9124
9125 /*
9126 * Take rq->lock to make 64-bit addition safe on 32-bit
9127 * platforms.
9128 */
9129 spin_lock_irq(&cpu_rq(i)->lock);
9130 totalcpuusage += *cpuusage;
9131 spin_unlock_irq(&cpu_rq(i)->lock);
9132 }
9133
9134 return totalcpuusage;
9135}
9136
0297b803
DG
9137static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9138 u64 reset)
9139{
9140 struct cpuacct *ca = cgroup_ca(cgrp);
9141 int err = 0;
9142 int i;
9143
9144 if (reset) {
9145 err = -EINVAL;
9146 goto out;
9147 }
9148
9149 for_each_possible_cpu(i) {
9150 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9151
9152 spin_lock_irq(&cpu_rq(i)->lock);
9153 *cpuusage = 0;
9154 spin_unlock_irq(&cpu_rq(i)->lock);
9155 }
9156out:
9157 return err;
9158}
9159
d842de87
SV
9160static struct cftype files[] = {
9161 {
9162 .name = "usage",
f4c753b7
PM
9163 .read_u64 = cpuusage_read,
9164 .write_u64 = cpuusage_write,
d842de87
SV
9165 },
9166};
9167
32cd756a 9168static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9169{
32cd756a 9170 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9171}
9172
9173/*
9174 * charge this task's execution time to its accounting group.
9175 *
9176 * called with rq->lock held.
9177 */
9178static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9179{
9180 struct cpuacct *ca;
9181
9182 if (!cpuacct_subsys.active)
9183 return;
9184
9185 ca = task_ca(tsk);
9186 if (ca) {
9187 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9188
9189 *cpuusage += cputime;
9190 }
9191}
9192
9193struct cgroup_subsys cpuacct_subsys = {
9194 .name = "cpuacct",
9195 .create = cpuacct_create,
9196 .destroy = cpuacct_destroy,
9197 .populate = cpuacct_populate,
9198 .subsys_id = cpuacct_subsys_id,
9199};
9200#endif /* CONFIG_CGROUP_CPUACCT */