]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
sched: fix wakeup granularity for buddies
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
1da177e4 70
5517d86b 71#include <asm/tlb.h>
838225b4 72#include <asm/irq_regs.h>
1da177e4 73
b035b6de
AD
74/*
75 * Scheduler clock - returns current time in nanosec units.
76 * This is default implementation.
77 * Architectures and sub-architectures can override this.
78 */
79unsigned long long __attribute__((weak)) sched_clock(void)
80{
d6322faf 81 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
82}
83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
141 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
157};
158
052f1dc7 159#ifdef CONFIG_GROUP_SCHED
29f59db3 160
68318b8e
SV
161#include <linux/cgroup.h>
162
29f59db3
SV
163struct cfs_rq;
164
6f505b16
PZ
165static LIST_HEAD(task_groups);
166
29f59db3 167/* task group related information */
4cf86d77 168struct task_group {
052f1dc7 169#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
170 struct cgroup_subsys_state css;
171#endif
052f1dc7
PZ
172
173#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
174 /* schedulable entities of this group on each cpu */
175 struct sched_entity **se;
176 /* runqueue "owned" by this group on each cpu */
177 struct cfs_rq **cfs_rq;
178 unsigned long shares;
052f1dc7
PZ
179#endif
180
181#ifdef CONFIG_RT_GROUP_SCHED
182 struct sched_rt_entity **rt_se;
183 struct rt_rq **rt_rq;
184
185 u64 rt_runtime;
186#endif
6b2d7700 187
ae8393e5 188 struct rcu_head rcu;
6f505b16 189 struct list_head list;
29f59db3
SV
190};
191
052f1dc7 192#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
193/* Default task group's sched entity on each cpu */
194static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
195/* Default task group's cfs_rq on each cpu */
196static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
197
9b5b7751
SV
198static struct sched_entity *init_sched_entity_p[NR_CPUS];
199static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
052f1dc7
PZ
200#endif
201
202#ifdef CONFIG_RT_GROUP_SCHED
203static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
204static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
29f59db3 205
6f505b16
PZ
206static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
207static struct rt_rq *init_rt_rq_p[NR_CPUS];
052f1dc7 208#endif
6f505b16 209
8ed36996 210/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
211 * a task group's cpu shares.
212 */
8ed36996 213static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 214
a1835615
SV
215/* doms_cur_mutex serializes access to doms_cur[] array */
216static DEFINE_MUTEX(doms_cur_mutex);
217
052f1dc7 218#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
219#ifdef CONFIG_USER_SCHED
220# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221#else
222# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
223#endif
224
052f1dc7
PZ
225static int init_task_group_load = INIT_TASK_GROUP_LOAD;
226#endif
227
29f59db3 228/* Default task group.
3a252015 229 * Every task in system belong to this group at bootup.
29f59db3 230 */
4cf86d77 231struct task_group init_task_group = {
052f1dc7 232#ifdef CONFIG_FAIR_GROUP_SCHED
0eab9146 233 .se = init_sched_entity_p,
3a252015 234 .cfs_rq = init_cfs_rq_p,
052f1dc7 235#endif
6f505b16 236
052f1dc7 237#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
238 .rt_se = init_sched_rt_entity_p,
239 .rt_rq = init_rt_rq_p,
24e377a8 240#endif
052f1dc7 241};
29f59db3
SV
242
243/* return group to which a task belongs */
4cf86d77 244static inline struct task_group *task_group(struct task_struct *p)
29f59db3 245{
4cf86d77 246 struct task_group *tg;
9b5b7751 247
052f1dc7 248#ifdef CONFIG_USER_SCHED
24e377a8 249 tg = p->user->tg;
052f1dc7 250#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
251 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
252 struct task_group, css);
24e377a8 253#else
41a2d6cf 254 tg = &init_task_group;
24e377a8 255#endif
9b5b7751 256 return tg;
29f59db3
SV
257}
258
259/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 260static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 261{
052f1dc7 262#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
263 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
264 p->se.parent = task_group(p)->se[cpu];
052f1dc7 265#endif
6f505b16 266
052f1dc7 267#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
268 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
269 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 270#endif
29f59db3
SV
271}
272
a1835615
SV
273static inline void lock_doms_cur(void)
274{
275 mutex_lock(&doms_cur_mutex);
276}
277
278static inline void unlock_doms_cur(void)
279{
280 mutex_unlock(&doms_cur_mutex);
281}
282
29f59db3
SV
283#else
284
6f505b16 285static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
286static inline void lock_doms_cur(void) { }
287static inline void unlock_doms_cur(void) { }
29f59db3 288
052f1dc7 289#endif /* CONFIG_GROUP_SCHED */
29f59db3 290
6aa645ea
IM
291/* CFS-related fields in a runqueue */
292struct cfs_rq {
293 struct load_weight load;
294 unsigned long nr_running;
295
6aa645ea 296 u64 exec_clock;
e9acbff6 297 u64 min_vruntime;
6aa645ea
IM
298
299 struct rb_root tasks_timeline;
300 struct rb_node *rb_leftmost;
301 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
302 /* 'curr' points to currently running entity on this cfs_rq.
303 * It is set to NULL otherwise (i.e when none are currently running).
304 */
aa2ac252 305 struct sched_entity *curr, *next;
ddc97297
PZ
306
307 unsigned long nr_spread_over;
308
62160e3f 309#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
310 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
311
41a2d6cf
IM
312 /*
313 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
314 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
315 * (like users, containers etc.)
316 *
317 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
318 * list is used during load balance.
319 */
41a2d6cf
IM
320 struct list_head leaf_cfs_rq_list;
321 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
322#endif
323};
1da177e4 324
6aa645ea
IM
325/* Real-Time classes' related field in a runqueue: */
326struct rt_rq {
327 struct rt_prio_array active;
63489e45 328 unsigned long rt_nr_running;
052f1dc7 329#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
330 int highest_prio; /* highest queued rt task prio */
331#endif
fa85ae24 332#ifdef CONFIG_SMP
73fe6aae 333 unsigned long rt_nr_migratory;
a22d7fc1 334 int overloaded;
fa85ae24 335#endif
6f505b16 336 int rt_throttled;
fa85ae24 337 u64 rt_time;
6f505b16 338
052f1dc7 339#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
340 unsigned long rt_nr_boosted;
341
6f505b16
PZ
342 struct rq *rq;
343 struct list_head leaf_rt_rq_list;
344 struct task_group *tg;
345 struct sched_rt_entity *rt_se;
346#endif
6aa645ea
IM
347};
348
57d885fe
GH
349#ifdef CONFIG_SMP
350
351/*
352 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
353 * variables. Each exclusive cpuset essentially defines an island domain by
354 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
355 * exclusive cpuset is created, we also create and attach a new root-domain
356 * object.
357 *
57d885fe
GH
358 */
359struct root_domain {
360 atomic_t refcount;
361 cpumask_t span;
362 cpumask_t online;
637f5085 363
0eab9146 364 /*
637f5085
GH
365 * The "RT overload" flag: it gets set if a CPU has more than
366 * one runnable RT task.
367 */
368 cpumask_t rto_mask;
0eab9146 369 atomic_t rto_count;
57d885fe
GH
370};
371
dc938520
GH
372/*
373 * By default the system creates a single root-domain with all cpus as
374 * members (mimicking the global state we have today).
375 */
57d885fe
GH
376static struct root_domain def_root_domain;
377
378#endif
379
1da177e4
LT
380/*
381 * This is the main, per-CPU runqueue data structure.
382 *
383 * Locking rule: those places that want to lock multiple runqueues
384 * (such as the load balancing or the thread migration code), lock
385 * acquire operations must be ordered by ascending &runqueue.
386 */
70b97a7f 387struct rq {
d8016491
IM
388 /* runqueue lock: */
389 spinlock_t lock;
1da177e4
LT
390
391 /*
392 * nr_running and cpu_load should be in the same cacheline because
393 * remote CPUs use both these fields when doing load calculation.
394 */
395 unsigned long nr_running;
6aa645ea
IM
396 #define CPU_LOAD_IDX_MAX 5
397 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 398 unsigned char idle_at_tick;
46cb4b7c 399#ifdef CONFIG_NO_HZ
15934a37 400 unsigned long last_tick_seen;
46cb4b7c
SS
401 unsigned char in_nohz_recently;
402#endif
d8016491
IM
403 /* capture load from *all* tasks on this cpu: */
404 struct load_weight load;
6aa645ea
IM
405 unsigned long nr_load_updates;
406 u64 nr_switches;
407
408 struct cfs_rq cfs;
6f505b16
PZ
409 struct rt_rq rt;
410 u64 rt_period_expire;
48d5e258 411 int rt_throttled;
6f505b16 412
6aa645ea 413#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
414 /* list of leaf cfs_rq on this cpu: */
415 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
416#endif
417#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 418 struct list_head leaf_rt_rq_list;
1da177e4 419#endif
1da177e4
LT
420
421 /*
422 * This is part of a global counter where only the total sum
423 * over all CPUs matters. A task can increase this counter on
424 * one CPU and if it got migrated afterwards it may decrease
425 * it on another CPU. Always updated under the runqueue lock:
426 */
427 unsigned long nr_uninterruptible;
428
36c8b586 429 struct task_struct *curr, *idle;
c9819f45 430 unsigned long next_balance;
1da177e4 431 struct mm_struct *prev_mm;
6aa645ea 432
6aa645ea
IM
433 u64 clock, prev_clock_raw;
434 s64 clock_max_delta;
435
cc203d24 436 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
437 u64 idle_clock;
438 unsigned int clock_deep_idle_events;
529c7726 439 u64 tick_timestamp;
6aa645ea 440
1da177e4
LT
441 atomic_t nr_iowait;
442
443#ifdef CONFIG_SMP
0eab9146 444 struct root_domain *rd;
1da177e4
LT
445 struct sched_domain *sd;
446
447 /* For active balancing */
448 int active_balance;
449 int push_cpu;
d8016491
IM
450 /* cpu of this runqueue: */
451 int cpu;
1da177e4 452
36c8b586 453 struct task_struct *migration_thread;
1da177e4
LT
454 struct list_head migration_queue;
455#endif
456
8f4d37ec
PZ
457#ifdef CONFIG_SCHED_HRTICK
458 unsigned long hrtick_flags;
459 ktime_t hrtick_expire;
460 struct hrtimer hrtick_timer;
461#endif
462
1da177e4
LT
463#ifdef CONFIG_SCHEDSTATS
464 /* latency stats */
465 struct sched_info rq_sched_info;
466
467 /* sys_sched_yield() stats */
480b9434
KC
468 unsigned int yld_exp_empty;
469 unsigned int yld_act_empty;
470 unsigned int yld_both_empty;
471 unsigned int yld_count;
1da177e4
LT
472
473 /* schedule() stats */
480b9434
KC
474 unsigned int sched_switch;
475 unsigned int sched_count;
476 unsigned int sched_goidle;
1da177e4
LT
477
478 /* try_to_wake_up() stats */
480b9434
KC
479 unsigned int ttwu_count;
480 unsigned int ttwu_local;
b8efb561
IM
481
482 /* BKL stats */
480b9434 483 unsigned int bkl_count;
1da177e4 484#endif
fcb99371 485 struct lock_class_key rq_lock_key;
1da177e4
LT
486};
487
f34e3b61 488static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 489
dd41f596
IM
490static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
491{
492 rq->curr->sched_class->check_preempt_curr(rq, p);
493}
494
0a2966b4
CL
495static inline int cpu_of(struct rq *rq)
496{
497#ifdef CONFIG_SMP
498 return rq->cpu;
499#else
500 return 0;
501#endif
502}
503
15934a37
GC
504#ifdef CONFIG_NO_HZ
505static inline bool nohz_on(int cpu)
506{
507 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
508}
509
510static inline u64 max_skipped_ticks(struct rq *rq)
511{
512 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
513}
514
515static inline void update_last_tick_seen(struct rq *rq)
516{
517 rq->last_tick_seen = jiffies;
518}
519#else
520static inline u64 max_skipped_ticks(struct rq *rq)
521{
522 return 1;
523}
524
525static inline void update_last_tick_seen(struct rq *rq)
526{
527}
528#endif
529
20d315d4 530/*
b04a0f4c
IM
531 * Update the per-runqueue clock, as finegrained as the platform can give
532 * us, but without assuming monotonicity, etc.:
20d315d4 533 */
b04a0f4c 534static void __update_rq_clock(struct rq *rq)
20d315d4
IM
535{
536 u64 prev_raw = rq->prev_clock_raw;
537 u64 now = sched_clock();
538 s64 delta = now - prev_raw;
539 u64 clock = rq->clock;
540
b04a0f4c
IM
541#ifdef CONFIG_SCHED_DEBUG
542 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
543#endif
20d315d4
IM
544 /*
545 * Protect against sched_clock() occasionally going backwards:
546 */
547 if (unlikely(delta < 0)) {
548 clock++;
549 rq->clock_warps++;
550 } else {
551 /*
552 * Catch too large forward jumps too:
553 */
15934a37
GC
554 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
555 u64 max_time = rq->tick_timestamp + max_jump;
556
557 if (unlikely(clock + delta > max_time)) {
558 if (clock < max_time)
559 clock = max_time;
529c7726
IM
560 else
561 clock++;
20d315d4
IM
562 rq->clock_overflows++;
563 } else {
564 if (unlikely(delta > rq->clock_max_delta))
565 rq->clock_max_delta = delta;
566 clock += delta;
567 }
568 }
569
570 rq->prev_clock_raw = now;
571 rq->clock = clock;
b04a0f4c 572}
20d315d4 573
b04a0f4c
IM
574static void update_rq_clock(struct rq *rq)
575{
576 if (likely(smp_processor_id() == cpu_of(rq)))
577 __update_rq_clock(rq);
20d315d4
IM
578}
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d
IM
587#define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594
48d5e258
PZ
595unsigned long rt_needs_cpu(int cpu)
596{
597 struct rq *rq = cpu_rq(cpu);
598 u64 delta;
599
600 if (!rq->rt_throttled)
601 return 0;
602
603 if (rq->clock > rq->rt_period_expire)
604 return 1;
605
606 delta = rq->rt_period_expire - rq->clock;
607 do_div(delta, NSEC_PER_SEC / HZ);
608
609 return (unsigned long)delta;
610}
611
bf5c91ba
IM
612/*
613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
614 */
615#ifdef CONFIG_SCHED_DEBUG
616# define const_debug __read_mostly
617#else
618# define const_debug static const
619#endif
620
621/*
622 * Debugging: various feature bits
623 */
624enum {
bbdba7c0 625 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
626 SCHED_FEAT_WAKEUP_PREEMPT = 2,
627 SCHED_FEAT_START_DEBIT = 4,
2070ee01
PZ
628 SCHED_FEAT_HRTICK = 8,
629 SCHED_FEAT_DOUBLE_TICK = 16,
bf5c91ba
IM
630};
631
632const_debug unsigned int sysctl_sched_features =
8401f775 633 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 634 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 635 SCHED_FEAT_START_DEBIT * 1 |
8f4d37ec
PZ
636 SCHED_FEAT_HRTICK * 1 |
637 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
638
639#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
640
b82d9fdd
PZ
641/*
642 * Number of tasks to iterate in a single balance run.
643 * Limited because this is done with IRQs disabled.
644 */
645const_debug unsigned int sysctl_sched_nr_migrate = 32;
646
fa85ae24 647/*
9f0c1e56 648 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
649 * default: 1s
650 */
9f0c1e56 651unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 652
6892b75e
IM
653static __read_mostly int scheduler_running;
654
9f0c1e56
PZ
655/*
656 * part of the period that we allow rt tasks to run in us.
657 * default: 0.95s
658 */
659int sysctl_sched_rt_runtime = 950000;
fa85ae24
PZ
660
661/*
9f0c1e56 662 * single value that denotes runtime == period, ie unlimited time.
fa85ae24 663 */
9f0c1e56 664#define RUNTIME_INF ((u64)~0ULL)
fa85ae24 665
27ec4407
IM
666static const unsigned long long time_sync_thresh = 100000;
667
668static DEFINE_PER_CPU(unsigned long long, time_offset);
669static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
670
e436d800 671/*
27ec4407
IM
672 * Global lock which we take every now and then to synchronize
673 * the CPUs time. This method is not warp-safe, but it's good
674 * enough to synchronize slowly diverging time sources and thus
675 * it's good enough for tracing:
e436d800 676 */
27ec4407
IM
677static DEFINE_SPINLOCK(time_sync_lock);
678static unsigned long long prev_global_time;
679
680static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
681{
682 unsigned long flags;
683
684 spin_lock_irqsave(&time_sync_lock, flags);
685
686 if (time < prev_global_time) {
687 per_cpu(time_offset, cpu) += prev_global_time - time;
688 time = prev_global_time;
689 } else {
690 prev_global_time = time;
691 }
692
693 spin_unlock_irqrestore(&time_sync_lock, flags);
694
695 return time;
696}
697
698static unsigned long long __cpu_clock(int cpu)
e436d800 699{
e436d800
IM
700 unsigned long long now;
701 unsigned long flags;
b04a0f4c 702 struct rq *rq;
e436d800 703
8ced5f69
IM
704 /*
705 * Only call sched_clock() if the scheduler has already been
706 * initialized (some code might call cpu_clock() very early):
707 */
6892b75e
IM
708 if (unlikely(!scheduler_running))
709 return 0;
710
711 local_irq_save(flags);
712 rq = cpu_rq(cpu);
713 update_rq_clock(rq);
b04a0f4c 714 now = rq->clock;
2cd4d0ea 715 local_irq_restore(flags);
e436d800
IM
716
717 return now;
718}
27ec4407
IM
719
720/*
721 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
722 * clock constructed from sched_clock():
723 */
724unsigned long long cpu_clock(int cpu)
725{
726 unsigned long long prev_cpu_time, time, delta_time;
727
728 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
729 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
730 delta_time = time-prev_cpu_time;
731
732 if (unlikely(delta_time > time_sync_thresh))
733 time = __sync_cpu_clock(time, cpu);
734
735 return time;
736}
a58f6f25 737EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 738
1da177e4 739#ifndef prepare_arch_switch
4866cde0
NP
740# define prepare_arch_switch(next) do { } while (0)
741#endif
742#ifndef finish_arch_switch
743# define finish_arch_switch(prev) do { } while (0)
744#endif
745
051a1d1a
DA
746static inline int task_current(struct rq *rq, struct task_struct *p)
747{
748 return rq->curr == p;
749}
750
4866cde0 751#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 752static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 753{
051a1d1a 754 return task_current(rq, p);
4866cde0
NP
755}
756
70b97a7f 757static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
758{
759}
760
70b97a7f 761static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 762{
da04c035
IM
763#ifdef CONFIG_DEBUG_SPINLOCK
764 /* this is a valid case when another task releases the spinlock */
765 rq->lock.owner = current;
766#endif
8a25d5de
IM
767 /*
768 * If we are tracking spinlock dependencies then we have to
769 * fix up the runqueue lock - which gets 'carried over' from
770 * prev into current:
771 */
772 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
773
4866cde0
NP
774 spin_unlock_irq(&rq->lock);
775}
776
777#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 778static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
779{
780#ifdef CONFIG_SMP
781 return p->oncpu;
782#else
051a1d1a 783 return task_current(rq, p);
4866cde0
NP
784#endif
785}
786
70b97a7f 787static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
788{
789#ifdef CONFIG_SMP
790 /*
791 * We can optimise this out completely for !SMP, because the
792 * SMP rebalancing from interrupt is the only thing that cares
793 * here.
794 */
795 next->oncpu = 1;
796#endif
797#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
798 spin_unlock_irq(&rq->lock);
799#else
800 spin_unlock(&rq->lock);
801#endif
802}
803
70b97a7f 804static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
805{
806#ifdef CONFIG_SMP
807 /*
808 * After ->oncpu is cleared, the task can be moved to a different CPU.
809 * We must ensure this doesn't happen until the switch is completely
810 * finished.
811 */
812 smp_wmb();
813 prev->oncpu = 0;
814#endif
815#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
816 local_irq_enable();
1da177e4 817#endif
4866cde0
NP
818}
819#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 820
b29739f9
IM
821/*
822 * __task_rq_lock - lock the runqueue a given task resides on.
823 * Must be called interrupts disabled.
824 */
70b97a7f 825static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
826 __acquires(rq->lock)
827{
3a5c359a
AK
828 for (;;) {
829 struct rq *rq = task_rq(p);
830 spin_lock(&rq->lock);
831 if (likely(rq == task_rq(p)))
832 return rq;
b29739f9 833 spin_unlock(&rq->lock);
b29739f9 834 }
b29739f9
IM
835}
836
1da177e4
LT
837/*
838 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 839 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
840 * explicitly disabling preemption.
841 */
70b97a7f 842static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
843 __acquires(rq->lock)
844{
70b97a7f 845 struct rq *rq;
1da177e4 846
3a5c359a
AK
847 for (;;) {
848 local_irq_save(*flags);
849 rq = task_rq(p);
850 spin_lock(&rq->lock);
851 if (likely(rq == task_rq(p)))
852 return rq;
1da177e4 853 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 854 }
1da177e4
LT
855}
856
a9957449 857static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
858 __releases(rq->lock)
859{
860 spin_unlock(&rq->lock);
861}
862
70b97a7f 863static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
864 __releases(rq->lock)
865{
866 spin_unlock_irqrestore(&rq->lock, *flags);
867}
868
1da177e4 869/*
cc2a73b5 870 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 871 */
a9957449 872static struct rq *this_rq_lock(void)
1da177e4
LT
873 __acquires(rq->lock)
874{
70b97a7f 875 struct rq *rq;
1da177e4
LT
876
877 local_irq_disable();
878 rq = this_rq();
879 spin_lock(&rq->lock);
880
881 return rq;
882}
883
1b9f19c2 884/*
2aa44d05 885 * We are going deep-idle (irqs are disabled):
1b9f19c2 886 */
2aa44d05 887void sched_clock_idle_sleep_event(void)
1b9f19c2 888{
2aa44d05
IM
889 struct rq *rq = cpu_rq(smp_processor_id());
890
891 spin_lock(&rq->lock);
892 __update_rq_clock(rq);
893 spin_unlock(&rq->lock);
894 rq->clock_deep_idle_events++;
895}
896EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
897
898/*
899 * We just idled delta nanoseconds (called with irqs disabled):
900 */
901void sched_clock_idle_wakeup_event(u64 delta_ns)
902{
903 struct rq *rq = cpu_rq(smp_processor_id());
904 u64 now = sched_clock();
1b9f19c2 905
2aa44d05
IM
906 rq->idle_clock += delta_ns;
907 /*
908 * Override the previous timestamp and ignore all
909 * sched_clock() deltas that occured while we idled,
910 * and use the PM-provided delta_ns to advance the
911 * rq clock:
912 */
913 spin_lock(&rq->lock);
914 rq->prev_clock_raw = now;
915 rq->clock += delta_ns;
916 spin_unlock(&rq->lock);
782daeee 917 touch_softlockup_watchdog();
1b9f19c2 918}
2aa44d05 919EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 920
8f4d37ec
PZ
921static void __resched_task(struct task_struct *p, int tif_bit);
922
923static inline void resched_task(struct task_struct *p)
924{
925 __resched_task(p, TIF_NEED_RESCHED);
926}
927
928#ifdef CONFIG_SCHED_HRTICK
929/*
930 * Use HR-timers to deliver accurate preemption points.
931 *
932 * Its all a bit involved since we cannot program an hrt while holding the
933 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
934 * reschedule event.
935 *
936 * When we get rescheduled we reprogram the hrtick_timer outside of the
937 * rq->lock.
938 */
939static inline void resched_hrt(struct task_struct *p)
940{
941 __resched_task(p, TIF_HRTICK_RESCHED);
942}
943
944static inline void resched_rq(struct rq *rq)
945{
946 unsigned long flags;
947
948 spin_lock_irqsave(&rq->lock, flags);
949 resched_task(rq->curr);
950 spin_unlock_irqrestore(&rq->lock, flags);
951}
952
953enum {
954 HRTICK_SET, /* re-programm hrtick_timer */
955 HRTICK_RESET, /* not a new slice */
956};
957
958/*
959 * Use hrtick when:
960 * - enabled by features
961 * - hrtimer is actually high res
962 */
963static inline int hrtick_enabled(struct rq *rq)
964{
965 if (!sched_feat(HRTICK))
966 return 0;
967 return hrtimer_is_hres_active(&rq->hrtick_timer);
968}
969
970/*
971 * Called to set the hrtick timer state.
972 *
973 * called with rq->lock held and irqs disabled
974 */
975static void hrtick_start(struct rq *rq, u64 delay, int reset)
976{
977 assert_spin_locked(&rq->lock);
978
979 /*
980 * preempt at: now + delay
981 */
982 rq->hrtick_expire =
983 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
984 /*
985 * indicate we need to program the timer
986 */
987 __set_bit(HRTICK_SET, &rq->hrtick_flags);
988 if (reset)
989 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
990
991 /*
992 * New slices are called from the schedule path and don't need a
993 * forced reschedule.
994 */
995 if (reset)
996 resched_hrt(rq->curr);
997}
998
999static void hrtick_clear(struct rq *rq)
1000{
1001 if (hrtimer_active(&rq->hrtick_timer))
1002 hrtimer_cancel(&rq->hrtick_timer);
1003}
1004
1005/*
1006 * Update the timer from the possible pending state.
1007 */
1008static void hrtick_set(struct rq *rq)
1009{
1010 ktime_t time;
1011 int set, reset;
1012 unsigned long flags;
1013
1014 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1015
1016 spin_lock_irqsave(&rq->lock, flags);
1017 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1018 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1019 time = rq->hrtick_expire;
1020 clear_thread_flag(TIF_HRTICK_RESCHED);
1021 spin_unlock_irqrestore(&rq->lock, flags);
1022
1023 if (set) {
1024 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1025 if (reset && !hrtimer_active(&rq->hrtick_timer))
1026 resched_rq(rq);
1027 } else
1028 hrtick_clear(rq);
1029}
1030
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
1041 spin_lock(&rq->lock);
1042 __update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 spin_unlock(&rq->lock);
1045
1046 return HRTIMER_NORESTART;
1047}
1048
1049static inline void init_rq_hrtick(struct rq *rq)
1050{
1051 rq->hrtick_flags = 0;
1052 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1053 rq->hrtick_timer.function = hrtick;
1054 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1055}
1056
1057void hrtick_resched(void)
1058{
1059 struct rq *rq;
1060 unsigned long flags;
1061
1062 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1063 return;
1064
1065 local_irq_save(flags);
1066 rq = cpu_rq(smp_processor_id());
1067 hrtick_set(rq);
1068 local_irq_restore(flags);
1069}
1070#else
1071static inline void hrtick_clear(struct rq *rq)
1072{
1073}
1074
1075static inline void hrtick_set(struct rq *rq)
1076{
1077}
1078
1079static inline void init_rq_hrtick(struct rq *rq)
1080{
1081}
1082
1083void hrtick_resched(void)
1084{
1085}
1086#endif
1087
c24d20db
IM
1088/*
1089 * resched_task - mark a task 'to be rescheduled now'.
1090 *
1091 * On UP this means the setting of the need_resched flag, on SMP it
1092 * might also involve a cross-CPU call to trigger the scheduler on
1093 * the target CPU.
1094 */
1095#ifdef CONFIG_SMP
1096
1097#ifndef tsk_is_polling
1098#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1099#endif
1100
8f4d37ec 1101static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1102{
1103 int cpu;
1104
1105 assert_spin_locked(&task_rq(p)->lock);
1106
8f4d37ec 1107 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1108 return;
1109
8f4d37ec 1110 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1111
1112 cpu = task_cpu(p);
1113 if (cpu == smp_processor_id())
1114 return;
1115
1116 /* NEED_RESCHED must be visible before we test polling */
1117 smp_mb();
1118 if (!tsk_is_polling(p))
1119 smp_send_reschedule(cpu);
1120}
1121
1122static void resched_cpu(int cpu)
1123{
1124 struct rq *rq = cpu_rq(cpu);
1125 unsigned long flags;
1126
1127 if (!spin_trylock_irqsave(&rq->lock, flags))
1128 return;
1129 resched_task(cpu_curr(cpu));
1130 spin_unlock_irqrestore(&rq->lock, flags);
1131}
06d8308c
TG
1132
1133#ifdef CONFIG_NO_HZ
1134/*
1135 * When add_timer_on() enqueues a timer into the timer wheel of an
1136 * idle CPU then this timer might expire before the next timer event
1137 * which is scheduled to wake up that CPU. In case of a completely
1138 * idle system the next event might even be infinite time into the
1139 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1140 * leaves the inner idle loop so the newly added timer is taken into
1141 * account when the CPU goes back to idle and evaluates the timer
1142 * wheel for the next timer event.
1143 */
1144void wake_up_idle_cpu(int cpu)
1145{
1146 struct rq *rq = cpu_rq(cpu);
1147
1148 if (cpu == smp_processor_id())
1149 return;
1150
1151 /*
1152 * This is safe, as this function is called with the timer
1153 * wheel base lock of (cpu) held. When the CPU is on the way
1154 * to idle and has not yet set rq->curr to idle then it will
1155 * be serialized on the timer wheel base lock and take the new
1156 * timer into account automatically.
1157 */
1158 if (rq->curr != rq->idle)
1159 return;
1160
1161 /*
1162 * We can set TIF_RESCHED on the idle task of the other CPU
1163 * lockless. The worst case is that the other CPU runs the
1164 * idle task through an additional NOOP schedule()
1165 */
1166 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1167
1168 /* NEED_RESCHED must be visible before we test polling */
1169 smp_mb();
1170 if (!tsk_is_polling(rq->idle))
1171 smp_send_reschedule(cpu);
1172}
1173#endif
1174
c24d20db 1175#else
8f4d37ec 1176static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1177{
1178 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1179 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1180}
1181#endif
1182
45bf76df
IM
1183#if BITS_PER_LONG == 32
1184# define WMULT_CONST (~0UL)
1185#else
1186# define WMULT_CONST (1UL << 32)
1187#endif
1188
1189#define WMULT_SHIFT 32
1190
194081eb
IM
1191/*
1192 * Shift right and round:
1193 */
cf2ab469 1194#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1195
cb1c4fc9 1196static unsigned long
45bf76df
IM
1197calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1198 struct load_weight *lw)
1199{
1200 u64 tmp;
1201
1202 if (unlikely(!lw->inv_weight))
27d11726 1203 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1204
1205 tmp = (u64)delta_exec * weight;
1206 /*
1207 * Check whether we'd overflow the 64-bit multiplication:
1208 */
194081eb 1209 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1211 WMULT_SHIFT/2);
1212 else
cf2ab469 1213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1214
ecf691da 1215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1216}
1217
1218static inline unsigned long
1219calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1220{
1221 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1222}
1223
1091985b 1224static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1225{
1226 lw->weight += inc;
e89996ae 1227 lw->inv_weight = 0;
45bf76df
IM
1228}
1229
1091985b 1230static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1231{
1232 lw->weight -= dec;
e89996ae 1233 lw->inv_weight = 0;
45bf76df
IM
1234}
1235
2dd73a4f
PW
1236/*
1237 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1238 * of tasks with abnormal "nice" values across CPUs the contribution that
1239 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1240 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1241 * scaled version of the new time slice allocation that they receive on time
1242 * slice expiry etc.
1243 */
1244
dd41f596
IM
1245#define WEIGHT_IDLEPRIO 2
1246#define WMULT_IDLEPRIO (1 << 31)
1247
1248/*
1249 * Nice levels are multiplicative, with a gentle 10% change for every
1250 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1251 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1252 * that remained on nice 0.
1253 *
1254 * The "10% effect" is relative and cumulative: from _any_ nice level,
1255 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1256 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1257 * If a task goes up by ~10% and another task goes down by ~10% then
1258 * the relative distance between them is ~25%.)
dd41f596
IM
1259 */
1260static const int prio_to_weight[40] = {
254753dc
IM
1261 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1262 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1263 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1264 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1265 /* 0 */ 1024, 820, 655, 526, 423,
1266 /* 5 */ 335, 272, 215, 172, 137,
1267 /* 10 */ 110, 87, 70, 56, 45,
1268 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1269};
1270
5714d2de
IM
1271/*
1272 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1273 *
1274 * In cases where the weight does not change often, we can use the
1275 * precalculated inverse to speed up arithmetics by turning divisions
1276 * into multiplications:
1277 */
dd41f596 1278static const u32 prio_to_wmult[40] = {
254753dc
IM
1279 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1280 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1281 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1282 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1283 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1284 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1285 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1286 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1287};
2dd73a4f 1288
dd41f596
IM
1289static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1290
1291/*
1292 * runqueue iterator, to support SMP load-balancing between different
1293 * scheduling classes, without having to expose their internal data
1294 * structures to the load-balancing proper:
1295 */
1296struct rq_iterator {
1297 void *arg;
1298 struct task_struct *(*start)(void *);
1299 struct task_struct *(*next)(void *);
1300};
1301
e1d1484f
PW
1302#ifdef CONFIG_SMP
1303static unsigned long
1304balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1305 unsigned long max_load_move, struct sched_domain *sd,
1306 enum cpu_idle_type idle, int *all_pinned,
1307 int *this_best_prio, struct rq_iterator *iterator);
1308
1309static int
1310iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1311 struct sched_domain *sd, enum cpu_idle_type idle,
1312 struct rq_iterator *iterator);
e1d1484f 1313#endif
dd41f596 1314
d842de87
SV
1315#ifdef CONFIG_CGROUP_CPUACCT
1316static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1317#else
1318static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1319#endif
1320
e7693a36
GH
1321#ifdef CONFIG_SMP
1322static unsigned long source_load(int cpu, int type);
1323static unsigned long target_load(int cpu, int type);
1324static unsigned long cpu_avg_load_per_task(int cpu);
1325static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1326#endif /* CONFIG_SMP */
1327
dd41f596 1328#include "sched_stats.h"
dd41f596 1329#include "sched_idletask.c"
5522d5d5
IM
1330#include "sched_fair.c"
1331#include "sched_rt.c"
dd41f596
IM
1332#ifdef CONFIG_SCHED_DEBUG
1333# include "sched_debug.c"
1334#endif
1335
1336#define sched_class_highest (&rt_sched_class)
1337
62fb1851
PZ
1338static inline void inc_load(struct rq *rq, const struct task_struct *p)
1339{
1340 update_load_add(&rq->load, p->se.load.weight);
1341}
1342
1343static inline void dec_load(struct rq *rq, const struct task_struct *p)
1344{
1345 update_load_sub(&rq->load, p->se.load.weight);
1346}
1347
1348static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1349{
1350 rq->nr_running++;
62fb1851 1351 inc_load(rq, p);
9c217245
IM
1352}
1353
62fb1851 1354static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1355{
1356 rq->nr_running--;
62fb1851 1357 dec_load(rq, p);
9c217245
IM
1358}
1359
45bf76df
IM
1360static void set_load_weight(struct task_struct *p)
1361{
1362 if (task_has_rt_policy(p)) {
dd41f596
IM
1363 p->se.load.weight = prio_to_weight[0] * 2;
1364 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1365 return;
1366 }
45bf76df 1367
dd41f596
IM
1368 /*
1369 * SCHED_IDLE tasks get minimal weight:
1370 */
1371 if (p->policy == SCHED_IDLE) {
1372 p->se.load.weight = WEIGHT_IDLEPRIO;
1373 p->se.load.inv_weight = WMULT_IDLEPRIO;
1374 return;
1375 }
71f8bd46 1376
dd41f596
IM
1377 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1378 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1379}
1380
8159f87e 1381static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1382{
dd41f596 1383 sched_info_queued(p);
fd390f6a 1384 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1385 p->se.on_rq = 1;
71f8bd46
IM
1386}
1387
69be72c1 1388static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1389{
f02231e5 1390 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1391 p->se.on_rq = 0;
71f8bd46
IM
1392}
1393
14531189 1394/*
dd41f596 1395 * __normal_prio - return the priority that is based on the static prio
14531189 1396 */
14531189
IM
1397static inline int __normal_prio(struct task_struct *p)
1398{
dd41f596 1399 return p->static_prio;
14531189
IM
1400}
1401
b29739f9
IM
1402/*
1403 * Calculate the expected normal priority: i.e. priority
1404 * without taking RT-inheritance into account. Might be
1405 * boosted by interactivity modifiers. Changes upon fork,
1406 * setprio syscalls, and whenever the interactivity
1407 * estimator recalculates.
1408 */
36c8b586 1409static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1410{
1411 int prio;
1412
e05606d3 1413 if (task_has_rt_policy(p))
b29739f9
IM
1414 prio = MAX_RT_PRIO-1 - p->rt_priority;
1415 else
1416 prio = __normal_prio(p);
1417 return prio;
1418}
1419
1420/*
1421 * Calculate the current priority, i.e. the priority
1422 * taken into account by the scheduler. This value might
1423 * be boosted by RT tasks, or might be boosted by
1424 * interactivity modifiers. Will be RT if the task got
1425 * RT-boosted. If not then it returns p->normal_prio.
1426 */
36c8b586 1427static int effective_prio(struct task_struct *p)
b29739f9
IM
1428{
1429 p->normal_prio = normal_prio(p);
1430 /*
1431 * If we are RT tasks or we were boosted to RT priority,
1432 * keep the priority unchanged. Otherwise, update priority
1433 * to the normal priority:
1434 */
1435 if (!rt_prio(p->prio))
1436 return p->normal_prio;
1437 return p->prio;
1438}
1439
1da177e4 1440/*
dd41f596 1441 * activate_task - move a task to the runqueue.
1da177e4 1442 */
dd41f596 1443static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1444{
d9514f6c 1445 if (task_contributes_to_load(p))
dd41f596 1446 rq->nr_uninterruptible--;
1da177e4 1447
8159f87e 1448 enqueue_task(rq, p, wakeup);
62fb1851 1449 inc_nr_running(p, rq);
1da177e4
LT
1450}
1451
1da177e4
LT
1452/*
1453 * deactivate_task - remove a task from the runqueue.
1454 */
2e1cb74a 1455static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1456{
d9514f6c 1457 if (task_contributes_to_load(p))
dd41f596
IM
1458 rq->nr_uninterruptible++;
1459
69be72c1 1460 dequeue_task(rq, p, sleep);
62fb1851 1461 dec_nr_running(p, rq);
1da177e4
LT
1462}
1463
1da177e4
LT
1464/**
1465 * task_curr - is this task currently executing on a CPU?
1466 * @p: the task in question.
1467 */
36c8b586 1468inline int task_curr(const struct task_struct *p)
1da177e4
LT
1469{
1470 return cpu_curr(task_cpu(p)) == p;
1471}
1472
2dd73a4f
PW
1473/* Used instead of source_load when we know the type == 0 */
1474unsigned long weighted_cpuload(const int cpu)
1475{
495eca49 1476 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1477}
1478
1479static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1480{
6f505b16 1481 set_task_rq(p, cpu);
dd41f596 1482#ifdef CONFIG_SMP
ce96b5ac
DA
1483 /*
1484 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1485 * successfuly executed on another CPU. We must ensure that updates of
1486 * per-task data have been completed by this moment.
1487 */
1488 smp_wmb();
dd41f596 1489 task_thread_info(p)->cpu = cpu;
dd41f596 1490#endif
2dd73a4f
PW
1491}
1492
cb469845
SR
1493static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1494 const struct sched_class *prev_class,
1495 int oldprio, int running)
1496{
1497 if (prev_class != p->sched_class) {
1498 if (prev_class->switched_from)
1499 prev_class->switched_from(rq, p, running);
1500 p->sched_class->switched_to(rq, p, running);
1501 } else
1502 p->sched_class->prio_changed(rq, p, oldprio, running);
1503}
1504
1da177e4 1505#ifdef CONFIG_SMP
c65cc870 1506
cc367732
IM
1507/*
1508 * Is this task likely cache-hot:
1509 */
e7693a36 1510static int
cc367732
IM
1511task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1512{
1513 s64 delta;
1514
f540a608
IM
1515 /*
1516 * Buddy candidates are cache hot:
1517 */
1518 if (&p->se == cfs_rq_of(&p->se)->next)
1519 return 1;
1520
cc367732
IM
1521 if (p->sched_class != &fair_sched_class)
1522 return 0;
1523
6bc1665b
IM
1524 if (sysctl_sched_migration_cost == -1)
1525 return 1;
1526 if (sysctl_sched_migration_cost == 0)
1527 return 0;
1528
cc367732
IM
1529 delta = now - p->se.exec_start;
1530
1531 return delta < (s64)sysctl_sched_migration_cost;
1532}
1533
1534
dd41f596 1535void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1536{
dd41f596
IM
1537 int old_cpu = task_cpu(p);
1538 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1539 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1540 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1541 u64 clock_offset;
dd41f596
IM
1542
1543 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1544
1545#ifdef CONFIG_SCHEDSTATS
1546 if (p->se.wait_start)
1547 p->se.wait_start -= clock_offset;
dd41f596
IM
1548 if (p->se.sleep_start)
1549 p->se.sleep_start -= clock_offset;
1550 if (p->se.block_start)
1551 p->se.block_start -= clock_offset;
cc367732
IM
1552 if (old_cpu != new_cpu) {
1553 schedstat_inc(p, se.nr_migrations);
1554 if (task_hot(p, old_rq->clock, NULL))
1555 schedstat_inc(p, se.nr_forced2_migrations);
1556 }
6cfb0d5d 1557#endif
2830cf8c
SV
1558 p->se.vruntime -= old_cfsrq->min_vruntime -
1559 new_cfsrq->min_vruntime;
dd41f596
IM
1560
1561 __set_task_cpu(p, new_cpu);
c65cc870
IM
1562}
1563
70b97a7f 1564struct migration_req {
1da177e4 1565 struct list_head list;
1da177e4 1566
36c8b586 1567 struct task_struct *task;
1da177e4
LT
1568 int dest_cpu;
1569
1da177e4 1570 struct completion done;
70b97a7f 1571};
1da177e4
LT
1572
1573/*
1574 * The task's runqueue lock must be held.
1575 * Returns true if you have to wait for migration thread.
1576 */
36c8b586 1577static int
70b97a7f 1578migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1579{
70b97a7f 1580 struct rq *rq = task_rq(p);
1da177e4
LT
1581
1582 /*
1583 * If the task is not on a runqueue (and not running), then
1584 * it is sufficient to simply update the task's cpu field.
1585 */
dd41f596 1586 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1587 set_task_cpu(p, dest_cpu);
1588 return 0;
1589 }
1590
1591 init_completion(&req->done);
1da177e4
LT
1592 req->task = p;
1593 req->dest_cpu = dest_cpu;
1594 list_add(&req->list, &rq->migration_queue);
48f24c4d 1595
1da177e4
LT
1596 return 1;
1597}
1598
1599/*
1600 * wait_task_inactive - wait for a thread to unschedule.
1601 *
1602 * The caller must ensure that the task *will* unschedule sometime soon,
1603 * else this function might spin for a *long* time. This function can't
1604 * be called with interrupts off, or it may introduce deadlock with
1605 * smp_call_function() if an IPI is sent by the same process we are
1606 * waiting to become inactive.
1607 */
36c8b586 1608void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1609{
1610 unsigned long flags;
dd41f596 1611 int running, on_rq;
70b97a7f 1612 struct rq *rq;
1da177e4 1613
3a5c359a
AK
1614 for (;;) {
1615 /*
1616 * We do the initial early heuristics without holding
1617 * any task-queue locks at all. We'll only try to get
1618 * the runqueue lock when things look like they will
1619 * work out!
1620 */
1621 rq = task_rq(p);
fa490cfd 1622
3a5c359a
AK
1623 /*
1624 * If the task is actively running on another CPU
1625 * still, just relax and busy-wait without holding
1626 * any locks.
1627 *
1628 * NOTE! Since we don't hold any locks, it's not
1629 * even sure that "rq" stays as the right runqueue!
1630 * But we don't care, since "task_running()" will
1631 * return false if the runqueue has changed and p
1632 * is actually now running somewhere else!
1633 */
1634 while (task_running(rq, p))
1635 cpu_relax();
fa490cfd 1636
3a5c359a
AK
1637 /*
1638 * Ok, time to look more closely! We need the rq
1639 * lock now, to be *sure*. If we're wrong, we'll
1640 * just go back and repeat.
1641 */
1642 rq = task_rq_lock(p, &flags);
1643 running = task_running(rq, p);
1644 on_rq = p->se.on_rq;
1645 task_rq_unlock(rq, &flags);
fa490cfd 1646
3a5c359a
AK
1647 /*
1648 * Was it really running after all now that we
1649 * checked with the proper locks actually held?
1650 *
1651 * Oops. Go back and try again..
1652 */
1653 if (unlikely(running)) {
1654 cpu_relax();
1655 continue;
1656 }
fa490cfd 1657
3a5c359a
AK
1658 /*
1659 * It's not enough that it's not actively running,
1660 * it must be off the runqueue _entirely_, and not
1661 * preempted!
1662 *
1663 * So if it wa still runnable (but just not actively
1664 * running right now), it's preempted, and we should
1665 * yield - it could be a while.
1666 */
1667 if (unlikely(on_rq)) {
1668 schedule_timeout_uninterruptible(1);
1669 continue;
1670 }
fa490cfd 1671
3a5c359a
AK
1672 /*
1673 * Ahh, all good. It wasn't running, and it wasn't
1674 * runnable, which means that it will never become
1675 * running in the future either. We're all done!
1676 */
1677 break;
1678 }
1da177e4
LT
1679}
1680
1681/***
1682 * kick_process - kick a running thread to enter/exit the kernel
1683 * @p: the to-be-kicked thread
1684 *
1685 * Cause a process which is running on another CPU to enter
1686 * kernel-mode, without any delay. (to get signals handled.)
1687 *
1688 * NOTE: this function doesnt have to take the runqueue lock,
1689 * because all it wants to ensure is that the remote task enters
1690 * the kernel. If the IPI races and the task has been migrated
1691 * to another CPU then no harm is done and the purpose has been
1692 * achieved as well.
1693 */
36c8b586 1694void kick_process(struct task_struct *p)
1da177e4
LT
1695{
1696 int cpu;
1697
1698 preempt_disable();
1699 cpu = task_cpu(p);
1700 if ((cpu != smp_processor_id()) && task_curr(p))
1701 smp_send_reschedule(cpu);
1702 preempt_enable();
1703}
1704
1705/*
2dd73a4f
PW
1706 * Return a low guess at the load of a migration-source cpu weighted
1707 * according to the scheduling class and "nice" value.
1da177e4
LT
1708 *
1709 * We want to under-estimate the load of migration sources, to
1710 * balance conservatively.
1711 */
a9957449 1712static unsigned long source_load(int cpu, int type)
1da177e4 1713{
70b97a7f 1714 struct rq *rq = cpu_rq(cpu);
dd41f596 1715 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1716
3b0bd9bc 1717 if (type == 0)
dd41f596 1718 return total;
b910472d 1719
dd41f596 1720 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1721}
1722
1723/*
2dd73a4f
PW
1724 * Return a high guess at the load of a migration-target cpu weighted
1725 * according to the scheduling class and "nice" value.
1da177e4 1726 */
a9957449 1727static unsigned long target_load(int cpu, int type)
1da177e4 1728{
70b97a7f 1729 struct rq *rq = cpu_rq(cpu);
dd41f596 1730 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1731
7897986b 1732 if (type == 0)
dd41f596 1733 return total;
3b0bd9bc 1734
dd41f596 1735 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1736}
1737
1738/*
1739 * Return the average load per task on the cpu's run queue
1740 */
e7693a36 1741static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1742{
70b97a7f 1743 struct rq *rq = cpu_rq(cpu);
dd41f596 1744 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1745 unsigned long n = rq->nr_running;
1746
dd41f596 1747 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1748}
1749
147cbb4b
NP
1750/*
1751 * find_idlest_group finds and returns the least busy CPU group within the
1752 * domain.
1753 */
1754static struct sched_group *
1755find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1756{
1757 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1758 unsigned long min_load = ULONG_MAX, this_load = 0;
1759 int load_idx = sd->forkexec_idx;
1760 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1761
1762 do {
1763 unsigned long load, avg_load;
1764 int local_group;
1765 int i;
1766
da5a5522
BD
1767 /* Skip over this group if it has no CPUs allowed */
1768 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1769 continue;
da5a5522 1770
147cbb4b 1771 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1772
1773 /* Tally up the load of all CPUs in the group */
1774 avg_load = 0;
1775
1776 for_each_cpu_mask(i, group->cpumask) {
1777 /* Bias balancing toward cpus of our domain */
1778 if (local_group)
1779 load = source_load(i, load_idx);
1780 else
1781 load = target_load(i, load_idx);
1782
1783 avg_load += load;
1784 }
1785
1786 /* Adjust by relative CPU power of the group */
5517d86b
ED
1787 avg_load = sg_div_cpu_power(group,
1788 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1789
1790 if (local_group) {
1791 this_load = avg_load;
1792 this = group;
1793 } else if (avg_load < min_load) {
1794 min_load = avg_load;
1795 idlest = group;
1796 }
3a5c359a 1797 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1798
1799 if (!idlest || 100*this_load < imbalance*min_load)
1800 return NULL;
1801 return idlest;
1802}
1803
1804/*
0feaece9 1805 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1806 */
95cdf3b7
IM
1807static int
1808find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1809{
da5a5522 1810 cpumask_t tmp;
147cbb4b
NP
1811 unsigned long load, min_load = ULONG_MAX;
1812 int idlest = -1;
1813 int i;
1814
da5a5522
BD
1815 /* Traverse only the allowed CPUs */
1816 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1817
1818 for_each_cpu_mask(i, tmp) {
2dd73a4f 1819 load = weighted_cpuload(i);
147cbb4b
NP
1820
1821 if (load < min_load || (load == min_load && i == this_cpu)) {
1822 min_load = load;
1823 idlest = i;
1824 }
1825 }
1826
1827 return idlest;
1828}
1829
476d139c
NP
1830/*
1831 * sched_balance_self: balance the current task (running on cpu) in domains
1832 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1833 * SD_BALANCE_EXEC.
1834 *
1835 * Balance, ie. select the least loaded group.
1836 *
1837 * Returns the target CPU number, or the same CPU if no balancing is needed.
1838 *
1839 * preempt must be disabled.
1840 */
1841static int sched_balance_self(int cpu, int flag)
1842{
1843 struct task_struct *t = current;
1844 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1845
c96d145e 1846 for_each_domain(cpu, tmp) {
9761eea8
IM
1847 /*
1848 * If power savings logic is enabled for a domain, stop there.
1849 */
5c45bf27
SS
1850 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1851 break;
476d139c
NP
1852 if (tmp->flags & flag)
1853 sd = tmp;
c96d145e 1854 }
476d139c
NP
1855
1856 while (sd) {
1857 cpumask_t span;
1858 struct sched_group *group;
1a848870
SS
1859 int new_cpu, weight;
1860
1861 if (!(sd->flags & flag)) {
1862 sd = sd->child;
1863 continue;
1864 }
476d139c
NP
1865
1866 span = sd->span;
1867 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1868 if (!group) {
1869 sd = sd->child;
1870 continue;
1871 }
476d139c 1872
da5a5522 1873 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1874 if (new_cpu == -1 || new_cpu == cpu) {
1875 /* Now try balancing at a lower domain level of cpu */
1876 sd = sd->child;
1877 continue;
1878 }
476d139c 1879
1a848870 1880 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1881 cpu = new_cpu;
476d139c
NP
1882 sd = NULL;
1883 weight = cpus_weight(span);
1884 for_each_domain(cpu, tmp) {
1885 if (weight <= cpus_weight(tmp->span))
1886 break;
1887 if (tmp->flags & flag)
1888 sd = tmp;
1889 }
1890 /* while loop will break here if sd == NULL */
1891 }
1892
1893 return cpu;
1894}
1895
1896#endif /* CONFIG_SMP */
1da177e4 1897
1da177e4
LT
1898/***
1899 * try_to_wake_up - wake up a thread
1900 * @p: the to-be-woken-up thread
1901 * @state: the mask of task states that can be woken
1902 * @sync: do a synchronous wakeup?
1903 *
1904 * Put it on the run-queue if it's not already there. The "current"
1905 * thread is always on the run-queue (except when the actual
1906 * re-schedule is in progress), and as such you're allowed to do
1907 * the simpler "current->state = TASK_RUNNING" to mark yourself
1908 * runnable without the overhead of this.
1909 *
1910 * returns failure only if the task is already active.
1911 */
36c8b586 1912static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1913{
cc367732 1914 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1915 unsigned long flags;
1916 long old_state;
70b97a7f 1917 struct rq *rq;
1da177e4 1918
04e2f174 1919 smp_wmb();
1da177e4
LT
1920 rq = task_rq_lock(p, &flags);
1921 old_state = p->state;
1922 if (!(old_state & state))
1923 goto out;
1924
dd41f596 1925 if (p->se.on_rq)
1da177e4
LT
1926 goto out_running;
1927
1928 cpu = task_cpu(p);
cc367732 1929 orig_cpu = cpu;
1da177e4
LT
1930 this_cpu = smp_processor_id();
1931
1932#ifdef CONFIG_SMP
1933 if (unlikely(task_running(rq, p)))
1934 goto out_activate;
1935
5d2f5a61
DA
1936 cpu = p->sched_class->select_task_rq(p, sync);
1937 if (cpu != orig_cpu) {
1938 set_task_cpu(p, cpu);
1da177e4
LT
1939 task_rq_unlock(rq, &flags);
1940 /* might preempt at this point */
1941 rq = task_rq_lock(p, &flags);
1942 old_state = p->state;
1943 if (!(old_state & state))
1944 goto out;
dd41f596 1945 if (p->se.on_rq)
1da177e4
LT
1946 goto out_running;
1947
1948 this_cpu = smp_processor_id();
1949 cpu = task_cpu(p);
1950 }
1951
e7693a36
GH
1952#ifdef CONFIG_SCHEDSTATS
1953 schedstat_inc(rq, ttwu_count);
1954 if (cpu == this_cpu)
1955 schedstat_inc(rq, ttwu_local);
1956 else {
1957 struct sched_domain *sd;
1958 for_each_domain(this_cpu, sd) {
1959 if (cpu_isset(cpu, sd->span)) {
1960 schedstat_inc(sd, ttwu_wake_remote);
1961 break;
1962 }
1963 }
1964 }
e7693a36
GH
1965#endif
1966
1da177e4
LT
1967out_activate:
1968#endif /* CONFIG_SMP */
cc367732
IM
1969 schedstat_inc(p, se.nr_wakeups);
1970 if (sync)
1971 schedstat_inc(p, se.nr_wakeups_sync);
1972 if (orig_cpu != cpu)
1973 schedstat_inc(p, se.nr_wakeups_migrate);
1974 if (cpu == this_cpu)
1975 schedstat_inc(p, se.nr_wakeups_local);
1976 else
1977 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1978 update_rq_clock(rq);
dd41f596 1979 activate_task(rq, p, 1);
1da177e4
LT
1980 success = 1;
1981
1982out_running:
4ae7d5ce
IM
1983 check_preempt_curr(rq, p);
1984
1da177e4 1985 p->state = TASK_RUNNING;
9a897c5a
SR
1986#ifdef CONFIG_SMP
1987 if (p->sched_class->task_wake_up)
1988 p->sched_class->task_wake_up(rq, p);
1989#endif
1da177e4
LT
1990out:
1991 task_rq_unlock(rq, &flags);
1992
1993 return success;
1994}
1995
7ad5b3a5 1996int wake_up_process(struct task_struct *p)
1da177e4 1997{
d9514f6c 1998 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1999}
1da177e4
LT
2000EXPORT_SYMBOL(wake_up_process);
2001
7ad5b3a5 2002int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2003{
2004 return try_to_wake_up(p, state, 0);
2005}
2006
1da177e4
LT
2007/*
2008 * Perform scheduler related setup for a newly forked process p.
2009 * p is forked by current.
dd41f596
IM
2010 *
2011 * __sched_fork() is basic setup used by init_idle() too:
2012 */
2013static void __sched_fork(struct task_struct *p)
2014{
dd41f596
IM
2015 p->se.exec_start = 0;
2016 p->se.sum_exec_runtime = 0;
f6cf891c 2017 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2018 p->se.last_wakeup = 0;
2019 p->se.avg_overlap = 0;
6cfb0d5d
IM
2020
2021#ifdef CONFIG_SCHEDSTATS
2022 p->se.wait_start = 0;
dd41f596
IM
2023 p->se.sum_sleep_runtime = 0;
2024 p->se.sleep_start = 0;
dd41f596
IM
2025 p->se.block_start = 0;
2026 p->se.sleep_max = 0;
2027 p->se.block_max = 0;
2028 p->se.exec_max = 0;
eba1ed4b 2029 p->se.slice_max = 0;
dd41f596 2030 p->se.wait_max = 0;
6cfb0d5d 2031#endif
476d139c 2032
fa717060 2033 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2034 p->se.on_rq = 0;
476d139c 2035
e107be36
AK
2036#ifdef CONFIG_PREEMPT_NOTIFIERS
2037 INIT_HLIST_HEAD(&p->preempt_notifiers);
2038#endif
2039
1da177e4
LT
2040 /*
2041 * We mark the process as running here, but have not actually
2042 * inserted it onto the runqueue yet. This guarantees that
2043 * nobody will actually run it, and a signal or other external
2044 * event cannot wake it up and insert it on the runqueue either.
2045 */
2046 p->state = TASK_RUNNING;
dd41f596
IM
2047}
2048
2049/*
2050 * fork()/clone()-time setup:
2051 */
2052void sched_fork(struct task_struct *p, int clone_flags)
2053{
2054 int cpu = get_cpu();
2055
2056 __sched_fork(p);
2057
2058#ifdef CONFIG_SMP
2059 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2060#endif
02e4bac2 2061 set_task_cpu(p, cpu);
b29739f9
IM
2062
2063 /*
2064 * Make sure we do not leak PI boosting priority to the child:
2065 */
2066 p->prio = current->normal_prio;
2ddbf952
HS
2067 if (!rt_prio(p->prio))
2068 p->sched_class = &fair_sched_class;
b29739f9 2069
52f17b6c 2070#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2071 if (likely(sched_info_on()))
52f17b6c 2072 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2073#endif
d6077cb8 2074#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2075 p->oncpu = 0;
2076#endif
1da177e4 2077#ifdef CONFIG_PREEMPT
4866cde0 2078 /* Want to start with kernel preemption disabled. */
a1261f54 2079 task_thread_info(p)->preempt_count = 1;
1da177e4 2080#endif
476d139c 2081 put_cpu();
1da177e4
LT
2082}
2083
2084/*
2085 * wake_up_new_task - wake up a newly created task for the first time.
2086 *
2087 * This function will do some initial scheduler statistics housekeeping
2088 * that must be done for every newly created context, then puts the task
2089 * on the runqueue and wakes it.
2090 */
7ad5b3a5 2091void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2092{
2093 unsigned long flags;
dd41f596 2094 struct rq *rq;
1da177e4
LT
2095
2096 rq = task_rq_lock(p, &flags);
147cbb4b 2097 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2098 update_rq_clock(rq);
1da177e4
LT
2099
2100 p->prio = effective_prio(p);
2101
b9dca1e0 2102 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2103 activate_task(rq, p, 0);
1da177e4 2104 } else {
1da177e4 2105 /*
dd41f596
IM
2106 * Let the scheduling class do new task startup
2107 * management (if any):
1da177e4 2108 */
ee0827d8 2109 p->sched_class->task_new(rq, p);
62fb1851 2110 inc_nr_running(p, rq);
1da177e4 2111 }
dd41f596 2112 check_preempt_curr(rq, p);
9a897c5a
SR
2113#ifdef CONFIG_SMP
2114 if (p->sched_class->task_wake_up)
2115 p->sched_class->task_wake_up(rq, p);
2116#endif
dd41f596 2117 task_rq_unlock(rq, &flags);
1da177e4
LT
2118}
2119
e107be36
AK
2120#ifdef CONFIG_PREEMPT_NOTIFIERS
2121
2122/**
421cee29
RD
2123 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2124 * @notifier: notifier struct to register
e107be36
AK
2125 */
2126void preempt_notifier_register(struct preempt_notifier *notifier)
2127{
2128 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2129}
2130EXPORT_SYMBOL_GPL(preempt_notifier_register);
2131
2132/**
2133 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2134 * @notifier: notifier struct to unregister
e107be36
AK
2135 *
2136 * This is safe to call from within a preemption notifier.
2137 */
2138void preempt_notifier_unregister(struct preempt_notifier *notifier)
2139{
2140 hlist_del(&notifier->link);
2141}
2142EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2143
2144static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145{
2146 struct preempt_notifier *notifier;
2147 struct hlist_node *node;
2148
2149 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2150 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2151}
2152
2153static void
2154fire_sched_out_preempt_notifiers(struct task_struct *curr,
2155 struct task_struct *next)
2156{
2157 struct preempt_notifier *notifier;
2158 struct hlist_node *node;
2159
2160 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2161 notifier->ops->sched_out(notifier, next);
2162}
2163
2164#else
2165
2166static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2167{
2168}
2169
2170static void
2171fire_sched_out_preempt_notifiers(struct task_struct *curr,
2172 struct task_struct *next)
2173{
2174}
2175
2176#endif
2177
4866cde0
NP
2178/**
2179 * prepare_task_switch - prepare to switch tasks
2180 * @rq: the runqueue preparing to switch
421cee29 2181 * @prev: the current task that is being switched out
4866cde0
NP
2182 * @next: the task we are going to switch to.
2183 *
2184 * This is called with the rq lock held and interrupts off. It must
2185 * be paired with a subsequent finish_task_switch after the context
2186 * switch.
2187 *
2188 * prepare_task_switch sets up locking and calls architecture specific
2189 * hooks.
2190 */
e107be36
AK
2191static inline void
2192prepare_task_switch(struct rq *rq, struct task_struct *prev,
2193 struct task_struct *next)
4866cde0 2194{
e107be36 2195 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2196 prepare_lock_switch(rq, next);
2197 prepare_arch_switch(next);
2198}
2199
1da177e4
LT
2200/**
2201 * finish_task_switch - clean up after a task-switch
344babaa 2202 * @rq: runqueue associated with task-switch
1da177e4
LT
2203 * @prev: the thread we just switched away from.
2204 *
4866cde0
NP
2205 * finish_task_switch must be called after the context switch, paired
2206 * with a prepare_task_switch call before the context switch.
2207 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2208 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2209 *
2210 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2211 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2212 * with the lock held can cause deadlocks; see schedule() for
2213 * details.)
2214 */
a9957449 2215static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2216 __releases(rq->lock)
2217{
1da177e4 2218 struct mm_struct *mm = rq->prev_mm;
55a101f8 2219 long prev_state;
1da177e4
LT
2220
2221 rq->prev_mm = NULL;
2222
2223 /*
2224 * A task struct has one reference for the use as "current".
c394cc9f 2225 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2226 * schedule one last time. The schedule call will never return, and
2227 * the scheduled task must drop that reference.
c394cc9f 2228 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2229 * still held, otherwise prev could be scheduled on another cpu, die
2230 * there before we look at prev->state, and then the reference would
2231 * be dropped twice.
2232 * Manfred Spraul <manfred@colorfullife.com>
2233 */
55a101f8 2234 prev_state = prev->state;
4866cde0
NP
2235 finish_arch_switch(prev);
2236 finish_lock_switch(rq, prev);
9a897c5a
SR
2237#ifdef CONFIG_SMP
2238 if (current->sched_class->post_schedule)
2239 current->sched_class->post_schedule(rq);
2240#endif
e8fa1362 2241
e107be36 2242 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2243 if (mm)
2244 mmdrop(mm);
c394cc9f 2245 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2246 /*
2247 * Remove function-return probe instances associated with this
2248 * task and put them back on the free list.
9761eea8 2249 */
c6fd91f0 2250 kprobe_flush_task(prev);
1da177e4 2251 put_task_struct(prev);
c6fd91f0 2252 }
1da177e4
LT
2253}
2254
2255/**
2256 * schedule_tail - first thing a freshly forked thread must call.
2257 * @prev: the thread we just switched away from.
2258 */
36c8b586 2259asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2260 __releases(rq->lock)
2261{
70b97a7f
IM
2262 struct rq *rq = this_rq();
2263
4866cde0
NP
2264 finish_task_switch(rq, prev);
2265#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2266 /* In this case, finish_task_switch does not reenable preemption */
2267 preempt_enable();
2268#endif
1da177e4 2269 if (current->set_child_tid)
b488893a 2270 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2271}
2272
2273/*
2274 * context_switch - switch to the new MM and the new
2275 * thread's register state.
2276 */
dd41f596 2277static inline void
70b97a7f 2278context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2279 struct task_struct *next)
1da177e4 2280{
dd41f596 2281 struct mm_struct *mm, *oldmm;
1da177e4 2282
e107be36 2283 prepare_task_switch(rq, prev, next);
dd41f596
IM
2284 mm = next->mm;
2285 oldmm = prev->active_mm;
9226d125
ZA
2286 /*
2287 * For paravirt, this is coupled with an exit in switch_to to
2288 * combine the page table reload and the switch backend into
2289 * one hypercall.
2290 */
2291 arch_enter_lazy_cpu_mode();
2292
dd41f596 2293 if (unlikely(!mm)) {
1da177e4
LT
2294 next->active_mm = oldmm;
2295 atomic_inc(&oldmm->mm_count);
2296 enter_lazy_tlb(oldmm, next);
2297 } else
2298 switch_mm(oldmm, mm, next);
2299
dd41f596 2300 if (unlikely(!prev->mm)) {
1da177e4 2301 prev->active_mm = NULL;
1da177e4
LT
2302 rq->prev_mm = oldmm;
2303 }
3a5f5e48
IM
2304 /*
2305 * Since the runqueue lock will be released by the next
2306 * task (which is an invalid locking op but in the case
2307 * of the scheduler it's an obvious special-case), so we
2308 * do an early lockdep release here:
2309 */
2310#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2311 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2312#endif
1da177e4
LT
2313
2314 /* Here we just switch the register state and the stack. */
2315 switch_to(prev, next, prev);
2316
dd41f596
IM
2317 barrier();
2318 /*
2319 * this_rq must be evaluated again because prev may have moved
2320 * CPUs since it called schedule(), thus the 'rq' on its stack
2321 * frame will be invalid.
2322 */
2323 finish_task_switch(this_rq(), prev);
1da177e4
LT
2324}
2325
2326/*
2327 * nr_running, nr_uninterruptible and nr_context_switches:
2328 *
2329 * externally visible scheduler statistics: current number of runnable
2330 * threads, current number of uninterruptible-sleeping threads, total
2331 * number of context switches performed since bootup.
2332 */
2333unsigned long nr_running(void)
2334{
2335 unsigned long i, sum = 0;
2336
2337 for_each_online_cpu(i)
2338 sum += cpu_rq(i)->nr_running;
2339
2340 return sum;
2341}
2342
2343unsigned long nr_uninterruptible(void)
2344{
2345 unsigned long i, sum = 0;
2346
0a945022 2347 for_each_possible_cpu(i)
1da177e4
LT
2348 sum += cpu_rq(i)->nr_uninterruptible;
2349
2350 /*
2351 * Since we read the counters lockless, it might be slightly
2352 * inaccurate. Do not allow it to go below zero though:
2353 */
2354 if (unlikely((long)sum < 0))
2355 sum = 0;
2356
2357 return sum;
2358}
2359
2360unsigned long long nr_context_switches(void)
2361{
cc94abfc
SR
2362 int i;
2363 unsigned long long sum = 0;
1da177e4 2364
0a945022 2365 for_each_possible_cpu(i)
1da177e4
LT
2366 sum += cpu_rq(i)->nr_switches;
2367
2368 return sum;
2369}
2370
2371unsigned long nr_iowait(void)
2372{
2373 unsigned long i, sum = 0;
2374
0a945022 2375 for_each_possible_cpu(i)
1da177e4
LT
2376 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2377
2378 return sum;
2379}
2380
db1b1fef
JS
2381unsigned long nr_active(void)
2382{
2383 unsigned long i, running = 0, uninterruptible = 0;
2384
2385 for_each_online_cpu(i) {
2386 running += cpu_rq(i)->nr_running;
2387 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2388 }
2389
2390 if (unlikely((long)uninterruptible < 0))
2391 uninterruptible = 0;
2392
2393 return running + uninterruptible;
2394}
2395
48f24c4d 2396/*
dd41f596
IM
2397 * Update rq->cpu_load[] statistics. This function is usually called every
2398 * scheduler tick (TICK_NSEC).
48f24c4d 2399 */
dd41f596 2400static void update_cpu_load(struct rq *this_rq)
48f24c4d 2401{
495eca49 2402 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2403 int i, scale;
2404
2405 this_rq->nr_load_updates++;
dd41f596
IM
2406
2407 /* Update our load: */
2408 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2409 unsigned long old_load, new_load;
2410
2411 /* scale is effectively 1 << i now, and >> i divides by scale */
2412
2413 old_load = this_rq->cpu_load[i];
2414 new_load = this_load;
a25707f3
IM
2415 /*
2416 * Round up the averaging division if load is increasing. This
2417 * prevents us from getting stuck on 9 if the load is 10, for
2418 * example.
2419 */
2420 if (new_load > old_load)
2421 new_load += scale-1;
dd41f596
IM
2422 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2423 }
48f24c4d
IM
2424}
2425
dd41f596
IM
2426#ifdef CONFIG_SMP
2427
1da177e4
LT
2428/*
2429 * double_rq_lock - safely lock two runqueues
2430 *
2431 * Note this does not disable interrupts like task_rq_lock,
2432 * you need to do so manually before calling.
2433 */
70b97a7f 2434static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2435 __acquires(rq1->lock)
2436 __acquires(rq2->lock)
2437{
054b9108 2438 BUG_ON(!irqs_disabled());
1da177e4
LT
2439 if (rq1 == rq2) {
2440 spin_lock(&rq1->lock);
2441 __acquire(rq2->lock); /* Fake it out ;) */
2442 } else {
c96d145e 2443 if (rq1 < rq2) {
1da177e4
LT
2444 spin_lock(&rq1->lock);
2445 spin_lock(&rq2->lock);
2446 } else {
2447 spin_lock(&rq2->lock);
2448 spin_lock(&rq1->lock);
2449 }
2450 }
6e82a3be
IM
2451 update_rq_clock(rq1);
2452 update_rq_clock(rq2);
1da177e4
LT
2453}
2454
2455/*
2456 * double_rq_unlock - safely unlock two runqueues
2457 *
2458 * Note this does not restore interrupts like task_rq_unlock,
2459 * you need to do so manually after calling.
2460 */
70b97a7f 2461static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2462 __releases(rq1->lock)
2463 __releases(rq2->lock)
2464{
2465 spin_unlock(&rq1->lock);
2466 if (rq1 != rq2)
2467 spin_unlock(&rq2->lock);
2468 else
2469 __release(rq2->lock);
2470}
2471
2472/*
2473 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2474 */
e8fa1362 2475static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2476 __releases(this_rq->lock)
2477 __acquires(busiest->lock)
2478 __acquires(this_rq->lock)
2479{
e8fa1362
SR
2480 int ret = 0;
2481
054b9108
KK
2482 if (unlikely(!irqs_disabled())) {
2483 /* printk() doesn't work good under rq->lock */
2484 spin_unlock(&this_rq->lock);
2485 BUG_ON(1);
2486 }
1da177e4 2487 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2488 if (busiest < this_rq) {
1da177e4
LT
2489 spin_unlock(&this_rq->lock);
2490 spin_lock(&busiest->lock);
2491 spin_lock(&this_rq->lock);
e8fa1362 2492 ret = 1;
1da177e4
LT
2493 } else
2494 spin_lock(&busiest->lock);
2495 }
e8fa1362 2496 return ret;
1da177e4
LT
2497}
2498
1da177e4
LT
2499/*
2500 * If dest_cpu is allowed for this process, migrate the task to it.
2501 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2502 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2503 * the cpu_allowed mask is restored.
2504 */
36c8b586 2505static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2506{
70b97a7f 2507 struct migration_req req;
1da177e4 2508 unsigned long flags;
70b97a7f 2509 struct rq *rq;
1da177e4
LT
2510
2511 rq = task_rq_lock(p, &flags);
2512 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2513 || unlikely(cpu_is_offline(dest_cpu)))
2514 goto out;
2515
2516 /* force the process onto the specified CPU */
2517 if (migrate_task(p, dest_cpu, &req)) {
2518 /* Need to wait for migration thread (might exit: take ref). */
2519 struct task_struct *mt = rq->migration_thread;
36c8b586 2520
1da177e4
LT
2521 get_task_struct(mt);
2522 task_rq_unlock(rq, &flags);
2523 wake_up_process(mt);
2524 put_task_struct(mt);
2525 wait_for_completion(&req.done);
36c8b586 2526
1da177e4
LT
2527 return;
2528 }
2529out:
2530 task_rq_unlock(rq, &flags);
2531}
2532
2533/*
476d139c
NP
2534 * sched_exec - execve() is a valuable balancing opportunity, because at
2535 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2536 */
2537void sched_exec(void)
2538{
1da177e4 2539 int new_cpu, this_cpu = get_cpu();
476d139c 2540 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2541 put_cpu();
476d139c
NP
2542 if (new_cpu != this_cpu)
2543 sched_migrate_task(current, new_cpu);
1da177e4
LT
2544}
2545
2546/*
2547 * pull_task - move a task from a remote runqueue to the local runqueue.
2548 * Both runqueues must be locked.
2549 */
dd41f596
IM
2550static void pull_task(struct rq *src_rq, struct task_struct *p,
2551 struct rq *this_rq, int this_cpu)
1da177e4 2552{
2e1cb74a 2553 deactivate_task(src_rq, p, 0);
1da177e4 2554 set_task_cpu(p, this_cpu);
dd41f596 2555 activate_task(this_rq, p, 0);
1da177e4
LT
2556 /*
2557 * Note that idle threads have a prio of MAX_PRIO, for this test
2558 * to be always true for them.
2559 */
dd41f596 2560 check_preempt_curr(this_rq, p);
1da177e4
LT
2561}
2562
2563/*
2564 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2565 */
858119e1 2566static
70b97a7f 2567int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2568 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2569 int *all_pinned)
1da177e4
LT
2570{
2571 /*
2572 * We do not migrate tasks that are:
2573 * 1) running (obviously), or
2574 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2575 * 3) are cache-hot on their current CPU.
2576 */
cc367732
IM
2577 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2578 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2579 return 0;
cc367732 2580 }
81026794
NP
2581 *all_pinned = 0;
2582
cc367732
IM
2583 if (task_running(rq, p)) {
2584 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2585 return 0;
cc367732 2586 }
1da177e4 2587
da84d961
IM
2588 /*
2589 * Aggressive migration if:
2590 * 1) task is cache cold, or
2591 * 2) too many balance attempts have failed.
2592 */
2593
6bc1665b
IM
2594 if (!task_hot(p, rq->clock, sd) ||
2595 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2596#ifdef CONFIG_SCHEDSTATS
cc367732 2597 if (task_hot(p, rq->clock, sd)) {
da84d961 2598 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2599 schedstat_inc(p, se.nr_forced_migrations);
2600 }
da84d961
IM
2601#endif
2602 return 1;
2603 }
2604
cc367732
IM
2605 if (task_hot(p, rq->clock, sd)) {
2606 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2607 return 0;
cc367732 2608 }
1da177e4
LT
2609 return 1;
2610}
2611
e1d1484f
PW
2612static unsigned long
2613balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2614 unsigned long max_load_move, struct sched_domain *sd,
2615 enum cpu_idle_type idle, int *all_pinned,
2616 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2617{
b82d9fdd 2618 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2619 struct task_struct *p;
2620 long rem_load_move = max_load_move;
1da177e4 2621
e1d1484f 2622 if (max_load_move == 0)
1da177e4
LT
2623 goto out;
2624
81026794
NP
2625 pinned = 1;
2626
1da177e4 2627 /*
dd41f596 2628 * Start the load-balancing iterator:
1da177e4 2629 */
dd41f596
IM
2630 p = iterator->start(iterator->arg);
2631next:
b82d9fdd 2632 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2633 goto out;
50ddd969 2634 /*
b82d9fdd 2635 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2636 * skip a task if it will be the highest priority task (i.e. smallest
2637 * prio value) on its new queue regardless of its load weight
2638 */
dd41f596
IM
2639 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2640 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2641 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2642 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2643 p = iterator->next(iterator->arg);
2644 goto next;
1da177e4
LT
2645 }
2646
dd41f596 2647 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2648 pulled++;
dd41f596 2649 rem_load_move -= p->se.load.weight;
1da177e4 2650
2dd73a4f 2651 /*
b82d9fdd 2652 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2653 */
e1d1484f 2654 if (rem_load_move > 0) {
a4ac01c3
PW
2655 if (p->prio < *this_best_prio)
2656 *this_best_prio = p->prio;
dd41f596
IM
2657 p = iterator->next(iterator->arg);
2658 goto next;
1da177e4
LT
2659 }
2660out:
2661 /*
e1d1484f 2662 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2663 * so we can safely collect pull_task() stats here rather than
2664 * inside pull_task().
2665 */
2666 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2667
2668 if (all_pinned)
2669 *all_pinned = pinned;
e1d1484f
PW
2670
2671 return max_load_move - rem_load_move;
1da177e4
LT
2672}
2673
dd41f596 2674/*
43010659
PW
2675 * move_tasks tries to move up to max_load_move weighted load from busiest to
2676 * this_rq, as part of a balancing operation within domain "sd".
2677 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2678 *
2679 * Called with both runqueues locked.
2680 */
2681static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2682 unsigned long max_load_move,
dd41f596
IM
2683 struct sched_domain *sd, enum cpu_idle_type idle,
2684 int *all_pinned)
2685{
5522d5d5 2686 const struct sched_class *class = sched_class_highest;
43010659 2687 unsigned long total_load_moved = 0;
a4ac01c3 2688 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2689
2690 do {
43010659
PW
2691 total_load_moved +=
2692 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2693 max_load_move - total_load_moved,
a4ac01c3 2694 sd, idle, all_pinned, &this_best_prio);
dd41f596 2695 class = class->next;
43010659 2696 } while (class && max_load_move > total_load_moved);
dd41f596 2697
43010659
PW
2698 return total_load_moved > 0;
2699}
2700
e1d1484f
PW
2701static int
2702iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2703 struct sched_domain *sd, enum cpu_idle_type idle,
2704 struct rq_iterator *iterator)
2705{
2706 struct task_struct *p = iterator->start(iterator->arg);
2707 int pinned = 0;
2708
2709 while (p) {
2710 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2711 pull_task(busiest, p, this_rq, this_cpu);
2712 /*
2713 * Right now, this is only the second place pull_task()
2714 * is called, so we can safely collect pull_task()
2715 * stats here rather than inside pull_task().
2716 */
2717 schedstat_inc(sd, lb_gained[idle]);
2718
2719 return 1;
2720 }
2721 p = iterator->next(iterator->arg);
2722 }
2723
2724 return 0;
2725}
2726
43010659
PW
2727/*
2728 * move_one_task tries to move exactly one task from busiest to this_rq, as
2729 * part of active balancing operations within "domain".
2730 * Returns 1 if successful and 0 otherwise.
2731 *
2732 * Called with both runqueues locked.
2733 */
2734static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2735 struct sched_domain *sd, enum cpu_idle_type idle)
2736{
5522d5d5 2737 const struct sched_class *class;
43010659
PW
2738
2739 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2740 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2741 return 1;
2742
2743 return 0;
dd41f596
IM
2744}
2745
1da177e4
LT
2746/*
2747 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2748 * domain. It calculates and returns the amount of weighted load which
2749 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2750 */
2751static struct sched_group *
2752find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2753 unsigned long *imbalance, enum cpu_idle_type idle,
2754 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2755{
2756 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2757 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2758 unsigned long max_pull;
2dd73a4f
PW
2759 unsigned long busiest_load_per_task, busiest_nr_running;
2760 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2761 int load_idx, group_imb = 0;
5c45bf27
SS
2762#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2763 int power_savings_balance = 1;
2764 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2765 unsigned long min_nr_running = ULONG_MAX;
2766 struct sched_group *group_min = NULL, *group_leader = NULL;
2767#endif
1da177e4
LT
2768
2769 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2770 busiest_load_per_task = busiest_nr_running = 0;
2771 this_load_per_task = this_nr_running = 0;
d15bcfdb 2772 if (idle == CPU_NOT_IDLE)
7897986b 2773 load_idx = sd->busy_idx;
d15bcfdb 2774 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2775 load_idx = sd->newidle_idx;
2776 else
2777 load_idx = sd->idle_idx;
1da177e4
LT
2778
2779 do {
908a7c1b 2780 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2781 int local_group;
2782 int i;
908a7c1b 2783 int __group_imb = 0;
783609c6 2784 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2785 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2786
2787 local_group = cpu_isset(this_cpu, group->cpumask);
2788
783609c6
SS
2789 if (local_group)
2790 balance_cpu = first_cpu(group->cpumask);
2791
1da177e4 2792 /* Tally up the load of all CPUs in the group */
2dd73a4f 2793 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2794 max_cpu_load = 0;
2795 min_cpu_load = ~0UL;
1da177e4
LT
2796
2797 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2798 struct rq *rq;
2799
2800 if (!cpu_isset(i, *cpus))
2801 continue;
2802
2803 rq = cpu_rq(i);
2dd73a4f 2804
9439aab8 2805 if (*sd_idle && rq->nr_running)
5969fe06
NP
2806 *sd_idle = 0;
2807
1da177e4 2808 /* Bias balancing toward cpus of our domain */
783609c6
SS
2809 if (local_group) {
2810 if (idle_cpu(i) && !first_idle_cpu) {
2811 first_idle_cpu = 1;
2812 balance_cpu = i;
2813 }
2814
a2000572 2815 load = target_load(i, load_idx);
908a7c1b 2816 } else {
a2000572 2817 load = source_load(i, load_idx);
908a7c1b
KC
2818 if (load > max_cpu_load)
2819 max_cpu_load = load;
2820 if (min_cpu_load > load)
2821 min_cpu_load = load;
2822 }
1da177e4
LT
2823
2824 avg_load += load;
2dd73a4f 2825 sum_nr_running += rq->nr_running;
dd41f596 2826 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2827 }
2828
783609c6
SS
2829 /*
2830 * First idle cpu or the first cpu(busiest) in this sched group
2831 * is eligible for doing load balancing at this and above
9439aab8
SS
2832 * domains. In the newly idle case, we will allow all the cpu's
2833 * to do the newly idle load balance.
783609c6 2834 */
9439aab8
SS
2835 if (idle != CPU_NEWLY_IDLE && local_group &&
2836 balance_cpu != this_cpu && balance) {
783609c6
SS
2837 *balance = 0;
2838 goto ret;
2839 }
2840
1da177e4 2841 total_load += avg_load;
5517d86b 2842 total_pwr += group->__cpu_power;
1da177e4
LT
2843
2844 /* Adjust by relative CPU power of the group */
5517d86b
ED
2845 avg_load = sg_div_cpu_power(group,
2846 avg_load * SCHED_LOAD_SCALE);
1da177e4 2847
908a7c1b
KC
2848 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2849 __group_imb = 1;
2850
5517d86b 2851 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2852
1da177e4
LT
2853 if (local_group) {
2854 this_load = avg_load;
2855 this = group;
2dd73a4f
PW
2856 this_nr_running = sum_nr_running;
2857 this_load_per_task = sum_weighted_load;
2858 } else if (avg_load > max_load &&
908a7c1b 2859 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2860 max_load = avg_load;
2861 busiest = group;
2dd73a4f
PW
2862 busiest_nr_running = sum_nr_running;
2863 busiest_load_per_task = sum_weighted_load;
908a7c1b 2864 group_imb = __group_imb;
1da177e4 2865 }
5c45bf27
SS
2866
2867#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2868 /*
2869 * Busy processors will not participate in power savings
2870 * balance.
2871 */
dd41f596
IM
2872 if (idle == CPU_NOT_IDLE ||
2873 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2874 goto group_next;
5c45bf27
SS
2875
2876 /*
2877 * If the local group is idle or completely loaded
2878 * no need to do power savings balance at this domain
2879 */
2880 if (local_group && (this_nr_running >= group_capacity ||
2881 !this_nr_running))
2882 power_savings_balance = 0;
2883
dd41f596 2884 /*
5c45bf27
SS
2885 * If a group is already running at full capacity or idle,
2886 * don't include that group in power savings calculations
dd41f596
IM
2887 */
2888 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2889 || !sum_nr_running)
dd41f596 2890 goto group_next;
5c45bf27 2891
dd41f596 2892 /*
5c45bf27 2893 * Calculate the group which has the least non-idle load.
dd41f596
IM
2894 * This is the group from where we need to pick up the load
2895 * for saving power
2896 */
2897 if ((sum_nr_running < min_nr_running) ||
2898 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2899 first_cpu(group->cpumask) <
2900 first_cpu(group_min->cpumask))) {
dd41f596
IM
2901 group_min = group;
2902 min_nr_running = sum_nr_running;
5c45bf27
SS
2903 min_load_per_task = sum_weighted_load /
2904 sum_nr_running;
dd41f596 2905 }
5c45bf27 2906
dd41f596 2907 /*
5c45bf27 2908 * Calculate the group which is almost near its
dd41f596
IM
2909 * capacity but still has some space to pick up some load
2910 * from other group and save more power
2911 */
2912 if (sum_nr_running <= group_capacity - 1) {
2913 if (sum_nr_running > leader_nr_running ||
2914 (sum_nr_running == leader_nr_running &&
2915 first_cpu(group->cpumask) >
2916 first_cpu(group_leader->cpumask))) {
2917 group_leader = group;
2918 leader_nr_running = sum_nr_running;
2919 }
48f24c4d 2920 }
5c45bf27
SS
2921group_next:
2922#endif
1da177e4
LT
2923 group = group->next;
2924 } while (group != sd->groups);
2925
2dd73a4f 2926 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2927 goto out_balanced;
2928
2929 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2930
2931 if (this_load >= avg_load ||
2932 100*max_load <= sd->imbalance_pct*this_load)
2933 goto out_balanced;
2934
2dd73a4f 2935 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2936 if (group_imb)
2937 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2938
1da177e4
LT
2939 /*
2940 * We're trying to get all the cpus to the average_load, so we don't
2941 * want to push ourselves above the average load, nor do we wish to
2942 * reduce the max loaded cpu below the average load, as either of these
2943 * actions would just result in more rebalancing later, and ping-pong
2944 * tasks around. Thus we look for the minimum possible imbalance.
2945 * Negative imbalances (*we* are more loaded than anyone else) will
2946 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2947 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2948 * appear as very large values with unsigned longs.
2949 */
2dd73a4f
PW
2950 if (max_load <= busiest_load_per_task)
2951 goto out_balanced;
2952
2953 /*
2954 * In the presence of smp nice balancing, certain scenarios can have
2955 * max load less than avg load(as we skip the groups at or below
2956 * its cpu_power, while calculating max_load..)
2957 */
2958 if (max_load < avg_load) {
2959 *imbalance = 0;
2960 goto small_imbalance;
2961 }
0c117f1b
SS
2962
2963 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2964 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2965
1da177e4 2966 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2967 *imbalance = min(max_pull * busiest->__cpu_power,
2968 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2969 / SCHED_LOAD_SCALE;
2970
2dd73a4f
PW
2971 /*
2972 * if *imbalance is less than the average load per runnable task
2973 * there is no gaurantee that any tasks will be moved so we'll have
2974 * a think about bumping its value to force at least one task to be
2975 * moved
2976 */
7fd0d2dd 2977 if (*imbalance < busiest_load_per_task) {
48f24c4d 2978 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2979 unsigned int imbn;
2980
2981small_imbalance:
2982 pwr_move = pwr_now = 0;
2983 imbn = 2;
2984 if (this_nr_running) {
2985 this_load_per_task /= this_nr_running;
2986 if (busiest_load_per_task > this_load_per_task)
2987 imbn = 1;
2988 } else
2989 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2990
dd41f596
IM
2991 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2992 busiest_load_per_task * imbn) {
2dd73a4f 2993 *imbalance = busiest_load_per_task;
1da177e4
LT
2994 return busiest;
2995 }
2996
2997 /*
2998 * OK, we don't have enough imbalance to justify moving tasks,
2999 * however we may be able to increase total CPU power used by
3000 * moving them.
3001 */
3002
5517d86b
ED
3003 pwr_now += busiest->__cpu_power *
3004 min(busiest_load_per_task, max_load);
3005 pwr_now += this->__cpu_power *
3006 min(this_load_per_task, this_load);
1da177e4
LT
3007 pwr_now /= SCHED_LOAD_SCALE;
3008
3009 /* Amount of load we'd subtract */
5517d86b
ED
3010 tmp = sg_div_cpu_power(busiest,
3011 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3012 if (max_load > tmp)
5517d86b 3013 pwr_move += busiest->__cpu_power *
2dd73a4f 3014 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3015
3016 /* Amount of load we'd add */
5517d86b 3017 if (max_load * busiest->__cpu_power <
33859f7f 3018 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3019 tmp = sg_div_cpu_power(this,
3020 max_load * busiest->__cpu_power);
1da177e4 3021 else
5517d86b
ED
3022 tmp = sg_div_cpu_power(this,
3023 busiest_load_per_task * SCHED_LOAD_SCALE);
3024 pwr_move += this->__cpu_power *
3025 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3026 pwr_move /= SCHED_LOAD_SCALE;
3027
3028 /* Move if we gain throughput */
7fd0d2dd
SS
3029 if (pwr_move > pwr_now)
3030 *imbalance = busiest_load_per_task;
1da177e4
LT
3031 }
3032
1da177e4
LT
3033 return busiest;
3034
3035out_balanced:
5c45bf27 3036#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3037 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3038 goto ret;
1da177e4 3039
5c45bf27
SS
3040 if (this == group_leader && group_leader != group_min) {
3041 *imbalance = min_load_per_task;
3042 return group_min;
3043 }
5c45bf27 3044#endif
783609c6 3045ret:
1da177e4
LT
3046 *imbalance = 0;
3047 return NULL;
3048}
3049
3050/*
3051 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3052 */
70b97a7f 3053static struct rq *
d15bcfdb 3054find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 3055 unsigned long imbalance, cpumask_t *cpus)
1da177e4 3056{
70b97a7f 3057 struct rq *busiest = NULL, *rq;
2dd73a4f 3058 unsigned long max_load = 0;
1da177e4
LT
3059 int i;
3060
3061 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3062 unsigned long wl;
0a2966b4
CL
3063
3064 if (!cpu_isset(i, *cpus))
3065 continue;
3066
48f24c4d 3067 rq = cpu_rq(i);
dd41f596 3068 wl = weighted_cpuload(i);
2dd73a4f 3069
dd41f596 3070 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3071 continue;
1da177e4 3072
dd41f596
IM
3073 if (wl > max_load) {
3074 max_load = wl;
48f24c4d 3075 busiest = rq;
1da177e4
LT
3076 }
3077 }
3078
3079 return busiest;
3080}
3081
77391d71
NP
3082/*
3083 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3084 * so long as it is large enough.
3085 */
3086#define MAX_PINNED_INTERVAL 512
3087
1da177e4
LT
3088/*
3089 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3090 * tasks if there is an imbalance.
1da177e4 3091 */
70b97a7f 3092static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3093 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 3094 int *balance)
1da177e4 3095{
43010659 3096 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3097 struct sched_group *group;
1da177e4 3098 unsigned long imbalance;
70b97a7f 3099 struct rq *busiest;
0a2966b4 3100 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 3101 unsigned long flags;
5969fe06 3102
89c4710e
SS
3103 /*
3104 * When power savings policy is enabled for the parent domain, idle
3105 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3106 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3107 * portraying it as CPU_NOT_IDLE.
89c4710e 3108 */
d15bcfdb 3109 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3110 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3111 sd_idle = 1;
1da177e4 3112
2d72376b 3113 schedstat_inc(sd, lb_count[idle]);
1da177e4 3114
0a2966b4
CL
3115redo:
3116 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
3117 &cpus, balance);
3118
06066714 3119 if (*balance == 0)
783609c6 3120 goto out_balanced;
783609c6 3121
1da177e4
LT
3122 if (!group) {
3123 schedstat_inc(sd, lb_nobusyg[idle]);
3124 goto out_balanced;
3125 }
3126
0a2966b4 3127 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3128 if (!busiest) {
3129 schedstat_inc(sd, lb_nobusyq[idle]);
3130 goto out_balanced;
3131 }
3132
db935dbd 3133 BUG_ON(busiest == this_rq);
1da177e4
LT
3134
3135 schedstat_add(sd, lb_imbalance[idle], imbalance);
3136
43010659 3137 ld_moved = 0;
1da177e4
LT
3138 if (busiest->nr_running > 1) {
3139 /*
3140 * Attempt to move tasks. If find_busiest_group has found
3141 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3142 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3143 * correctly treated as an imbalance.
3144 */
fe2eea3f 3145 local_irq_save(flags);
e17224bf 3146 double_rq_lock(this_rq, busiest);
43010659 3147 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3148 imbalance, sd, idle, &all_pinned);
e17224bf 3149 double_rq_unlock(this_rq, busiest);
fe2eea3f 3150 local_irq_restore(flags);
81026794 3151
46cb4b7c
SS
3152 /*
3153 * some other cpu did the load balance for us.
3154 */
43010659 3155 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3156 resched_cpu(this_cpu);
3157
81026794 3158 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3159 if (unlikely(all_pinned)) {
3160 cpu_clear(cpu_of(busiest), cpus);
3161 if (!cpus_empty(cpus))
3162 goto redo;
81026794 3163 goto out_balanced;
0a2966b4 3164 }
1da177e4 3165 }
81026794 3166
43010659 3167 if (!ld_moved) {
1da177e4
LT
3168 schedstat_inc(sd, lb_failed[idle]);
3169 sd->nr_balance_failed++;
3170
3171 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3172
fe2eea3f 3173 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3174
3175 /* don't kick the migration_thread, if the curr
3176 * task on busiest cpu can't be moved to this_cpu
3177 */
3178 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3179 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3180 all_pinned = 1;
3181 goto out_one_pinned;
3182 }
3183
1da177e4
LT
3184 if (!busiest->active_balance) {
3185 busiest->active_balance = 1;
3186 busiest->push_cpu = this_cpu;
81026794 3187 active_balance = 1;
1da177e4 3188 }
fe2eea3f 3189 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3190 if (active_balance)
1da177e4
LT
3191 wake_up_process(busiest->migration_thread);
3192
3193 /*
3194 * We've kicked active balancing, reset the failure
3195 * counter.
3196 */
39507451 3197 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3198 }
81026794 3199 } else
1da177e4
LT
3200 sd->nr_balance_failed = 0;
3201
81026794 3202 if (likely(!active_balance)) {
1da177e4
LT
3203 /* We were unbalanced, so reset the balancing interval */
3204 sd->balance_interval = sd->min_interval;
81026794
NP
3205 } else {
3206 /*
3207 * If we've begun active balancing, start to back off. This
3208 * case may not be covered by the all_pinned logic if there
3209 * is only 1 task on the busy runqueue (because we don't call
3210 * move_tasks).
3211 */
3212 if (sd->balance_interval < sd->max_interval)
3213 sd->balance_interval *= 2;
1da177e4
LT
3214 }
3215
43010659 3216 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3217 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3218 return -1;
43010659 3219 return ld_moved;
1da177e4
LT
3220
3221out_balanced:
1da177e4
LT
3222 schedstat_inc(sd, lb_balanced[idle]);
3223
16cfb1c0 3224 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3225
3226out_one_pinned:
1da177e4 3227 /* tune up the balancing interval */
77391d71
NP
3228 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3229 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3230 sd->balance_interval *= 2;
3231
48f24c4d 3232 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3234 return -1;
1da177e4
LT
3235 return 0;
3236}
3237
3238/*
3239 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3240 * tasks if there is an imbalance.
3241 *
d15bcfdb 3242 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3243 * this_rq is locked.
3244 */
48f24c4d 3245static int
70b97a7f 3246load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3247{
3248 struct sched_group *group;
70b97a7f 3249 struct rq *busiest = NULL;
1da177e4 3250 unsigned long imbalance;
43010659 3251 int ld_moved = 0;
5969fe06 3252 int sd_idle = 0;
969bb4e4 3253 int all_pinned = 0;
0a2966b4 3254 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3255
89c4710e
SS
3256 /*
3257 * When power savings policy is enabled for the parent domain, idle
3258 * sibling can pick up load irrespective of busy siblings. In this case,
3259 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3260 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3261 */
3262 if (sd->flags & SD_SHARE_CPUPOWER &&
3263 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3264 sd_idle = 1;
1da177e4 3265
2d72376b 3266 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3267redo:
d15bcfdb 3268 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3269 &sd_idle, &cpus, NULL);
1da177e4 3270 if (!group) {
d15bcfdb 3271 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3272 goto out_balanced;
1da177e4
LT
3273 }
3274
d15bcfdb 3275 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3276 &cpus);
db935dbd 3277 if (!busiest) {
d15bcfdb 3278 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3279 goto out_balanced;
1da177e4
LT
3280 }
3281
db935dbd
NP
3282 BUG_ON(busiest == this_rq);
3283
d15bcfdb 3284 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3285
43010659 3286 ld_moved = 0;
d6d5cfaf
NP
3287 if (busiest->nr_running > 1) {
3288 /* Attempt to move tasks */
3289 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3290 /* this_rq->clock is already updated */
3291 update_rq_clock(busiest);
43010659 3292 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3293 imbalance, sd, CPU_NEWLY_IDLE,
3294 &all_pinned);
d6d5cfaf 3295 spin_unlock(&busiest->lock);
0a2966b4 3296
969bb4e4 3297 if (unlikely(all_pinned)) {
0a2966b4
CL
3298 cpu_clear(cpu_of(busiest), cpus);
3299 if (!cpus_empty(cpus))
3300 goto redo;
3301 }
d6d5cfaf
NP
3302 }
3303
43010659 3304 if (!ld_moved) {
d15bcfdb 3305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3308 return -1;
3309 } else
16cfb1c0 3310 sd->nr_balance_failed = 0;
1da177e4 3311
43010659 3312 return ld_moved;
16cfb1c0
NP
3313
3314out_balanced:
d15bcfdb 3315 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3316 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3317 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3318 return -1;
16cfb1c0 3319 sd->nr_balance_failed = 0;
48f24c4d 3320
16cfb1c0 3321 return 0;
1da177e4
LT
3322}
3323
3324/*
3325 * idle_balance is called by schedule() if this_cpu is about to become
3326 * idle. Attempts to pull tasks from other CPUs.
3327 */
70b97a7f 3328static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3329{
3330 struct sched_domain *sd;
dd41f596
IM
3331 int pulled_task = -1;
3332 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3333
3334 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3335 unsigned long interval;
3336
3337 if (!(sd->flags & SD_LOAD_BALANCE))
3338 continue;
3339
3340 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3341 /* If we've pulled tasks over stop searching: */
1bd77f2d 3342 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3343 this_rq, sd);
3344
3345 interval = msecs_to_jiffies(sd->balance_interval);
3346 if (time_after(next_balance, sd->last_balance + interval))
3347 next_balance = sd->last_balance + interval;
3348 if (pulled_task)
3349 break;
1da177e4 3350 }
dd41f596 3351 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3352 /*
3353 * We are going idle. next_balance may be set based on
3354 * a busy processor. So reset next_balance.
3355 */
3356 this_rq->next_balance = next_balance;
dd41f596 3357 }
1da177e4
LT
3358}
3359
3360/*
3361 * active_load_balance is run by migration threads. It pushes running tasks
3362 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3363 * running on each physical CPU where possible, and avoids physical /
3364 * logical imbalances.
3365 *
3366 * Called with busiest_rq locked.
3367 */
70b97a7f 3368static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3369{
39507451 3370 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3371 struct sched_domain *sd;
3372 struct rq *target_rq;
39507451 3373
48f24c4d 3374 /* Is there any task to move? */
39507451 3375 if (busiest_rq->nr_running <= 1)
39507451
NP
3376 return;
3377
3378 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3379
3380 /*
39507451 3381 * This condition is "impossible", if it occurs
41a2d6cf 3382 * we need to fix it. Originally reported by
39507451 3383 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3384 */
39507451 3385 BUG_ON(busiest_rq == target_rq);
1da177e4 3386
39507451
NP
3387 /* move a task from busiest_rq to target_rq */
3388 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3389 update_rq_clock(busiest_rq);
3390 update_rq_clock(target_rq);
39507451
NP
3391
3392 /* Search for an sd spanning us and the target CPU. */
c96d145e 3393 for_each_domain(target_cpu, sd) {
39507451 3394 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3395 cpu_isset(busiest_cpu, sd->span))
39507451 3396 break;
c96d145e 3397 }
39507451 3398
48f24c4d 3399 if (likely(sd)) {
2d72376b 3400 schedstat_inc(sd, alb_count);
39507451 3401
43010659
PW
3402 if (move_one_task(target_rq, target_cpu, busiest_rq,
3403 sd, CPU_IDLE))
48f24c4d
IM
3404 schedstat_inc(sd, alb_pushed);
3405 else
3406 schedstat_inc(sd, alb_failed);
3407 }
39507451 3408 spin_unlock(&target_rq->lock);
1da177e4
LT
3409}
3410
46cb4b7c
SS
3411#ifdef CONFIG_NO_HZ
3412static struct {
3413 atomic_t load_balancer;
41a2d6cf 3414 cpumask_t cpu_mask;
46cb4b7c
SS
3415} nohz ____cacheline_aligned = {
3416 .load_balancer = ATOMIC_INIT(-1),
3417 .cpu_mask = CPU_MASK_NONE,
3418};
3419
7835b98b 3420/*
46cb4b7c
SS
3421 * This routine will try to nominate the ilb (idle load balancing)
3422 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3423 * load balancing on behalf of all those cpus. If all the cpus in the system
3424 * go into this tickless mode, then there will be no ilb owner (as there is
3425 * no need for one) and all the cpus will sleep till the next wakeup event
3426 * arrives...
3427 *
3428 * For the ilb owner, tick is not stopped. And this tick will be used
3429 * for idle load balancing. ilb owner will still be part of
3430 * nohz.cpu_mask..
7835b98b 3431 *
46cb4b7c
SS
3432 * While stopping the tick, this cpu will become the ilb owner if there
3433 * is no other owner. And will be the owner till that cpu becomes busy
3434 * or if all cpus in the system stop their ticks at which point
3435 * there is no need for ilb owner.
3436 *
3437 * When the ilb owner becomes busy, it nominates another owner, during the
3438 * next busy scheduler_tick()
3439 */
3440int select_nohz_load_balancer(int stop_tick)
3441{
3442 int cpu = smp_processor_id();
3443
3444 if (stop_tick) {
3445 cpu_set(cpu, nohz.cpu_mask);
3446 cpu_rq(cpu)->in_nohz_recently = 1;
3447
3448 /*
3449 * If we are going offline and still the leader, give up!
3450 */
3451 if (cpu_is_offline(cpu) &&
3452 atomic_read(&nohz.load_balancer) == cpu) {
3453 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3454 BUG();
3455 return 0;
3456 }
3457
3458 /* time for ilb owner also to sleep */
3459 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3460 if (atomic_read(&nohz.load_balancer) == cpu)
3461 atomic_set(&nohz.load_balancer, -1);
3462 return 0;
3463 }
3464
3465 if (atomic_read(&nohz.load_balancer) == -1) {
3466 /* make me the ilb owner */
3467 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3468 return 1;
3469 } else if (atomic_read(&nohz.load_balancer) == cpu)
3470 return 1;
3471 } else {
3472 if (!cpu_isset(cpu, nohz.cpu_mask))
3473 return 0;
3474
3475 cpu_clear(cpu, nohz.cpu_mask);
3476
3477 if (atomic_read(&nohz.load_balancer) == cpu)
3478 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3479 BUG();
3480 }
3481 return 0;
3482}
3483#endif
3484
3485static DEFINE_SPINLOCK(balancing);
3486
3487/*
7835b98b
CL
3488 * It checks each scheduling domain to see if it is due to be balanced,
3489 * and initiates a balancing operation if so.
3490 *
3491 * Balancing parameters are set up in arch_init_sched_domains.
3492 */
a9957449 3493static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3494{
46cb4b7c
SS
3495 int balance = 1;
3496 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3497 unsigned long interval;
3498 struct sched_domain *sd;
46cb4b7c 3499 /* Earliest time when we have to do rebalance again */
c9819f45 3500 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3501 int update_next_balance = 0;
1da177e4 3502
46cb4b7c 3503 for_each_domain(cpu, sd) {
1da177e4
LT
3504 if (!(sd->flags & SD_LOAD_BALANCE))
3505 continue;
3506
3507 interval = sd->balance_interval;
d15bcfdb 3508 if (idle != CPU_IDLE)
1da177e4
LT
3509 interval *= sd->busy_factor;
3510
3511 /* scale ms to jiffies */
3512 interval = msecs_to_jiffies(interval);
3513 if (unlikely(!interval))
3514 interval = 1;
dd41f596
IM
3515 if (interval > HZ*NR_CPUS/10)
3516 interval = HZ*NR_CPUS/10;
3517
1da177e4 3518
08c183f3
CL
3519 if (sd->flags & SD_SERIALIZE) {
3520 if (!spin_trylock(&balancing))
3521 goto out;
3522 }
3523
c9819f45 3524 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3525 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3526 /*
3527 * We've pulled tasks over so either we're no
5969fe06
NP
3528 * longer idle, or one of our SMT siblings is
3529 * not idle.
3530 */
d15bcfdb 3531 idle = CPU_NOT_IDLE;
1da177e4 3532 }
1bd77f2d 3533 sd->last_balance = jiffies;
1da177e4 3534 }
08c183f3
CL
3535 if (sd->flags & SD_SERIALIZE)
3536 spin_unlock(&balancing);
3537out:
f549da84 3538 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3539 next_balance = sd->last_balance + interval;
f549da84
SS
3540 update_next_balance = 1;
3541 }
783609c6
SS
3542
3543 /*
3544 * Stop the load balance at this level. There is another
3545 * CPU in our sched group which is doing load balancing more
3546 * actively.
3547 */
3548 if (!balance)
3549 break;
1da177e4 3550 }
f549da84
SS
3551
3552 /*
3553 * next_balance will be updated only when there is a need.
3554 * When the cpu is attached to null domain for ex, it will not be
3555 * updated.
3556 */
3557 if (likely(update_next_balance))
3558 rq->next_balance = next_balance;
46cb4b7c
SS
3559}
3560
3561/*
3562 * run_rebalance_domains is triggered when needed from the scheduler tick.
3563 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3564 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3565 */
3566static void run_rebalance_domains(struct softirq_action *h)
3567{
dd41f596
IM
3568 int this_cpu = smp_processor_id();
3569 struct rq *this_rq = cpu_rq(this_cpu);
3570 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3571 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3572
dd41f596 3573 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3574
3575#ifdef CONFIG_NO_HZ
3576 /*
3577 * If this cpu is the owner for idle load balancing, then do the
3578 * balancing on behalf of the other idle cpus whose ticks are
3579 * stopped.
3580 */
dd41f596
IM
3581 if (this_rq->idle_at_tick &&
3582 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3583 cpumask_t cpus = nohz.cpu_mask;
3584 struct rq *rq;
3585 int balance_cpu;
3586
dd41f596 3587 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3588 for_each_cpu_mask(balance_cpu, cpus) {
3589 /*
3590 * If this cpu gets work to do, stop the load balancing
3591 * work being done for other cpus. Next load
3592 * balancing owner will pick it up.
3593 */
3594 if (need_resched())
3595 break;
3596
de0cf899 3597 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3598
3599 rq = cpu_rq(balance_cpu);
dd41f596
IM
3600 if (time_after(this_rq->next_balance, rq->next_balance))
3601 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3602 }
3603 }
3604#endif
3605}
3606
3607/*
3608 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3609 *
3610 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3611 * idle load balancing owner or decide to stop the periodic load balancing,
3612 * if the whole system is idle.
3613 */
dd41f596 3614static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3615{
46cb4b7c
SS
3616#ifdef CONFIG_NO_HZ
3617 /*
3618 * If we were in the nohz mode recently and busy at the current
3619 * scheduler tick, then check if we need to nominate new idle
3620 * load balancer.
3621 */
3622 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3623 rq->in_nohz_recently = 0;
3624
3625 if (atomic_read(&nohz.load_balancer) == cpu) {
3626 cpu_clear(cpu, nohz.cpu_mask);
3627 atomic_set(&nohz.load_balancer, -1);
3628 }
3629
3630 if (atomic_read(&nohz.load_balancer) == -1) {
3631 /*
3632 * simple selection for now: Nominate the
3633 * first cpu in the nohz list to be the next
3634 * ilb owner.
3635 *
3636 * TBD: Traverse the sched domains and nominate
3637 * the nearest cpu in the nohz.cpu_mask.
3638 */
3639 int ilb = first_cpu(nohz.cpu_mask);
3640
3641 if (ilb != NR_CPUS)
3642 resched_cpu(ilb);
3643 }
3644 }
3645
3646 /*
3647 * If this cpu is idle and doing idle load balancing for all the
3648 * cpus with ticks stopped, is it time for that to stop?
3649 */
3650 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3651 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3652 resched_cpu(cpu);
3653 return;
3654 }
3655
3656 /*
3657 * If this cpu is idle and the idle load balancing is done by
3658 * someone else, then no need raise the SCHED_SOFTIRQ
3659 */
3660 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3661 cpu_isset(cpu, nohz.cpu_mask))
3662 return;
3663#endif
3664 if (time_after_eq(jiffies, rq->next_balance))
3665 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3666}
dd41f596
IM
3667
3668#else /* CONFIG_SMP */
3669
1da177e4
LT
3670/*
3671 * on UP we do not need to balance between CPUs:
3672 */
70b97a7f 3673static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3674{
3675}
dd41f596 3676
1da177e4
LT
3677#endif
3678
1da177e4
LT
3679DEFINE_PER_CPU(struct kernel_stat, kstat);
3680
3681EXPORT_PER_CPU_SYMBOL(kstat);
3682
3683/*
41b86e9c
IM
3684 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3685 * that have not yet been banked in case the task is currently running.
1da177e4 3686 */
41b86e9c 3687unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3688{
1da177e4 3689 unsigned long flags;
41b86e9c
IM
3690 u64 ns, delta_exec;
3691 struct rq *rq;
48f24c4d 3692
41b86e9c
IM
3693 rq = task_rq_lock(p, &flags);
3694 ns = p->se.sum_exec_runtime;
051a1d1a 3695 if (task_current(rq, p)) {
a8e504d2
IM
3696 update_rq_clock(rq);
3697 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3698 if ((s64)delta_exec > 0)
3699 ns += delta_exec;
3700 }
3701 task_rq_unlock(rq, &flags);
48f24c4d 3702
1da177e4
LT
3703 return ns;
3704}
3705
1da177e4
LT
3706/*
3707 * Account user cpu time to a process.
3708 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3709 * @cputime: the cpu time spent in user space since the last update
3710 */
3711void account_user_time(struct task_struct *p, cputime_t cputime)
3712{
3713 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3714 cputime64_t tmp;
3715
3716 p->utime = cputime_add(p->utime, cputime);
3717
3718 /* Add user time to cpustat. */
3719 tmp = cputime_to_cputime64(cputime);
3720 if (TASK_NICE(p) > 0)
3721 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3722 else
3723 cpustat->user = cputime64_add(cpustat->user, tmp);
3724}
3725
94886b84
LV
3726/*
3727 * Account guest cpu time to a process.
3728 * @p: the process that the cpu time gets accounted to
3729 * @cputime: the cpu time spent in virtual machine since the last update
3730 */
f7402e03 3731static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3732{
3733 cputime64_t tmp;
3734 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3735
3736 tmp = cputime_to_cputime64(cputime);
3737
3738 p->utime = cputime_add(p->utime, cputime);
3739 p->gtime = cputime_add(p->gtime, cputime);
3740
3741 cpustat->user = cputime64_add(cpustat->user, tmp);
3742 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3743}
3744
c66f08be
MN
3745/*
3746 * Account scaled user cpu time to a process.
3747 * @p: the process that the cpu time gets accounted to
3748 * @cputime: the cpu time spent in user space since the last update
3749 */
3750void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3751{
3752 p->utimescaled = cputime_add(p->utimescaled, cputime);
3753}
3754
1da177e4
LT
3755/*
3756 * Account system cpu time to a process.
3757 * @p: the process that the cpu time gets accounted to
3758 * @hardirq_offset: the offset to subtract from hardirq_count()
3759 * @cputime: the cpu time spent in kernel space since the last update
3760 */
3761void account_system_time(struct task_struct *p, int hardirq_offset,
3762 cputime_t cputime)
3763{
3764 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3765 struct rq *rq = this_rq();
1da177e4
LT
3766 cputime64_t tmp;
3767
9778385d
CB
3768 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3769 return account_guest_time(p, cputime);
94886b84 3770
1da177e4
LT
3771 p->stime = cputime_add(p->stime, cputime);
3772
3773 /* Add system time to cpustat. */
3774 tmp = cputime_to_cputime64(cputime);
3775 if (hardirq_count() - hardirq_offset)
3776 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3777 else if (softirq_count())
3778 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3779 else if (p != rq->idle)
1da177e4 3780 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3781 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3782 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3783 else
3784 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3785 /* Account for system time used */
3786 acct_update_integrals(p);
1da177e4
LT
3787}
3788
c66f08be
MN
3789/*
3790 * Account scaled system cpu time to a process.
3791 * @p: the process that the cpu time gets accounted to
3792 * @hardirq_offset: the offset to subtract from hardirq_count()
3793 * @cputime: the cpu time spent in kernel space since the last update
3794 */
3795void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3796{
3797 p->stimescaled = cputime_add(p->stimescaled, cputime);
3798}
3799
1da177e4
LT
3800/*
3801 * Account for involuntary wait time.
3802 * @p: the process from which the cpu time has been stolen
3803 * @steal: the cpu time spent in involuntary wait
3804 */
3805void account_steal_time(struct task_struct *p, cputime_t steal)
3806{
3807 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3808 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3809 struct rq *rq = this_rq();
1da177e4
LT
3810
3811 if (p == rq->idle) {
3812 p->stime = cputime_add(p->stime, steal);
3813 if (atomic_read(&rq->nr_iowait) > 0)
3814 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3815 else
3816 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3817 } else
1da177e4
LT
3818 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3819}
3820
7835b98b
CL
3821/*
3822 * This function gets called by the timer code, with HZ frequency.
3823 * We call it with interrupts disabled.
3824 *
3825 * It also gets called by the fork code, when changing the parent's
3826 * timeslices.
3827 */
3828void scheduler_tick(void)
3829{
7835b98b
CL
3830 int cpu = smp_processor_id();
3831 struct rq *rq = cpu_rq(cpu);
dd41f596 3832 struct task_struct *curr = rq->curr;
529c7726 3833 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3834
3835 spin_lock(&rq->lock);
546fe3c9 3836 __update_rq_clock(rq);
529c7726
IM
3837 /*
3838 * Let rq->clock advance by at least TICK_NSEC:
3839 */
cc203d24 3840 if (unlikely(rq->clock < next_tick)) {
529c7726 3841 rq->clock = next_tick;
cc203d24
GC
3842 rq->clock_underflows++;
3843 }
529c7726 3844 rq->tick_timestamp = rq->clock;
15934a37 3845 update_last_tick_seen(rq);
f1a438d8 3846 update_cpu_load(rq);
fa85ae24
PZ
3847 curr->sched_class->task_tick(rq, curr, 0);
3848 update_sched_rt_period(rq);
dd41f596 3849 spin_unlock(&rq->lock);
7835b98b 3850
e418e1c2 3851#ifdef CONFIG_SMP
dd41f596
IM
3852 rq->idle_at_tick = idle_cpu(cpu);
3853 trigger_load_balance(rq, cpu);
e418e1c2 3854#endif
1da177e4
LT
3855}
3856
1da177e4
LT
3857#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3858
43627582 3859void __kprobes add_preempt_count(int val)
1da177e4
LT
3860{
3861 /*
3862 * Underflow?
3863 */
9a11b49a
IM
3864 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3865 return;
1da177e4
LT
3866 preempt_count() += val;
3867 /*
3868 * Spinlock count overflowing soon?
3869 */
33859f7f
MOS
3870 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3871 PREEMPT_MASK - 10);
1da177e4
LT
3872}
3873EXPORT_SYMBOL(add_preempt_count);
3874
43627582 3875void __kprobes sub_preempt_count(int val)
1da177e4
LT
3876{
3877 /*
3878 * Underflow?
3879 */
9a11b49a
IM
3880 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3881 return;
1da177e4
LT
3882 /*
3883 * Is the spinlock portion underflowing?
3884 */
9a11b49a
IM
3885 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3886 !(preempt_count() & PREEMPT_MASK)))
3887 return;
3888
1da177e4
LT
3889 preempt_count() -= val;
3890}
3891EXPORT_SYMBOL(sub_preempt_count);
3892
3893#endif
3894
3895/*
dd41f596 3896 * Print scheduling while atomic bug:
1da177e4 3897 */
dd41f596 3898static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3899{
838225b4
SS
3900 struct pt_regs *regs = get_irq_regs();
3901
3902 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3903 prev->comm, prev->pid, preempt_count());
3904
dd41f596
IM
3905 debug_show_held_locks(prev);
3906 if (irqs_disabled())
3907 print_irqtrace_events(prev);
838225b4
SS
3908
3909 if (regs)
3910 show_regs(regs);
3911 else
3912 dump_stack();
dd41f596 3913}
1da177e4 3914
dd41f596
IM
3915/*
3916 * Various schedule()-time debugging checks and statistics:
3917 */
3918static inline void schedule_debug(struct task_struct *prev)
3919{
1da177e4 3920 /*
41a2d6cf 3921 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3922 * schedule() atomically, we ignore that path for now.
3923 * Otherwise, whine if we are scheduling when we should not be.
3924 */
dd41f596
IM
3925 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3926 __schedule_bug(prev);
3927
1da177e4
LT
3928 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3929
2d72376b 3930 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3931#ifdef CONFIG_SCHEDSTATS
3932 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3933 schedstat_inc(this_rq(), bkl_count);
3934 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3935 }
3936#endif
dd41f596
IM
3937}
3938
3939/*
3940 * Pick up the highest-prio task:
3941 */
3942static inline struct task_struct *
ff95f3df 3943pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3944{
5522d5d5 3945 const struct sched_class *class;
dd41f596 3946 struct task_struct *p;
1da177e4
LT
3947
3948 /*
dd41f596
IM
3949 * Optimization: we know that if all tasks are in
3950 * the fair class we can call that function directly:
1da177e4 3951 */
dd41f596 3952 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3953 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3954 if (likely(p))
3955 return p;
1da177e4
LT
3956 }
3957
dd41f596
IM
3958 class = sched_class_highest;
3959 for ( ; ; ) {
fb8d4724 3960 p = class->pick_next_task(rq);
dd41f596
IM
3961 if (p)
3962 return p;
3963 /*
3964 * Will never be NULL as the idle class always
3965 * returns a non-NULL p:
3966 */
3967 class = class->next;
3968 }
3969}
1da177e4 3970
dd41f596
IM
3971/*
3972 * schedule() is the main scheduler function.
3973 */
3974asmlinkage void __sched schedule(void)
3975{
3976 struct task_struct *prev, *next;
67ca7bde 3977 unsigned long *switch_count;
dd41f596 3978 struct rq *rq;
dd41f596
IM
3979 int cpu;
3980
3981need_resched:
3982 preempt_disable();
3983 cpu = smp_processor_id();
3984 rq = cpu_rq(cpu);
3985 rcu_qsctr_inc(cpu);
3986 prev = rq->curr;
3987 switch_count = &prev->nivcsw;
3988
3989 release_kernel_lock(prev);
3990need_resched_nonpreemptible:
3991
3992 schedule_debug(prev);
1da177e4 3993
8f4d37ec
PZ
3994 hrtick_clear(rq);
3995
1e819950
IM
3996 /*
3997 * Do the rq-clock update outside the rq lock:
3998 */
3999 local_irq_disable();
c1b3da3e 4000 __update_rq_clock(rq);
1e819950
IM
4001 spin_lock(&rq->lock);
4002 clear_tsk_need_resched(prev);
1da177e4 4003
1da177e4 4004 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4005 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4006 signal_pending(prev))) {
1da177e4 4007 prev->state = TASK_RUNNING;
dd41f596 4008 } else {
2e1cb74a 4009 deactivate_task(rq, prev, 1);
1da177e4 4010 }
dd41f596 4011 switch_count = &prev->nvcsw;
1da177e4
LT
4012 }
4013
9a897c5a
SR
4014#ifdef CONFIG_SMP
4015 if (prev->sched_class->pre_schedule)
4016 prev->sched_class->pre_schedule(rq, prev);
4017#endif
f65eda4f 4018
dd41f596 4019 if (unlikely(!rq->nr_running))
1da177e4 4020 idle_balance(cpu, rq);
1da177e4 4021
31ee529c 4022 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4023 next = pick_next_task(rq, prev);
1da177e4
LT
4024
4025 sched_info_switch(prev, next);
dd41f596 4026
1da177e4 4027 if (likely(prev != next)) {
1da177e4
LT
4028 rq->nr_switches++;
4029 rq->curr = next;
4030 ++*switch_count;
4031
dd41f596 4032 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4033 /*
4034 * the context switch might have flipped the stack from under
4035 * us, hence refresh the local variables.
4036 */
4037 cpu = smp_processor_id();
4038 rq = cpu_rq(cpu);
1da177e4
LT
4039 } else
4040 spin_unlock_irq(&rq->lock);
4041
8f4d37ec
PZ
4042 hrtick_set(rq);
4043
4044 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4045 goto need_resched_nonpreemptible;
8f4d37ec 4046
1da177e4
LT
4047 preempt_enable_no_resched();
4048 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4049 goto need_resched;
4050}
1da177e4
LT
4051EXPORT_SYMBOL(schedule);
4052
4053#ifdef CONFIG_PREEMPT
4054/*
2ed6e34f 4055 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4056 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4057 * occur there and call schedule directly.
4058 */
4059asmlinkage void __sched preempt_schedule(void)
4060{
4061 struct thread_info *ti = current_thread_info();
1da177e4
LT
4062 struct task_struct *task = current;
4063 int saved_lock_depth;
6478d880 4064
1da177e4
LT
4065 /*
4066 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4067 * we do not want to preempt the current task. Just return..
1da177e4 4068 */
beed33a8 4069 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4070 return;
4071
3a5c359a
AK
4072 do {
4073 add_preempt_count(PREEMPT_ACTIVE);
4074
4075 /*
4076 * We keep the big kernel semaphore locked, but we
4077 * clear ->lock_depth so that schedule() doesnt
4078 * auto-release the semaphore:
4079 */
3a5c359a
AK
4080 saved_lock_depth = task->lock_depth;
4081 task->lock_depth = -1;
3a5c359a 4082 schedule();
3a5c359a 4083 task->lock_depth = saved_lock_depth;
3a5c359a 4084 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4085
3a5c359a
AK
4086 /*
4087 * Check again in case we missed a preemption opportunity
4088 * between schedule and now.
4089 */
4090 barrier();
4091 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4092}
1da177e4
LT
4093EXPORT_SYMBOL(preempt_schedule);
4094
4095/*
2ed6e34f 4096 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4097 * off of irq context.
4098 * Note, that this is called and return with irqs disabled. This will
4099 * protect us against recursive calling from irq.
4100 */
4101asmlinkage void __sched preempt_schedule_irq(void)
4102{
4103 struct thread_info *ti = current_thread_info();
1da177e4
LT
4104 struct task_struct *task = current;
4105 int saved_lock_depth;
6478d880 4106
2ed6e34f 4107 /* Catch callers which need to be fixed */
1da177e4
LT
4108 BUG_ON(ti->preempt_count || !irqs_disabled());
4109
3a5c359a
AK
4110 do {
4111 add_preempt_count(PREEMPT_ACTIVE);
4112
4113 /*
4114 * We keep the big kernel semaphore locked, but we
4115 * clear ->lock_depth so that schedule() doesnt
4116 * auto-release the semaphore:
4117 */
3a5c359a
AK
4118 saved_lock_depth = task->lock_depth;
4119 task->lock_depth = -1;
3a5c359a
AK
4120 local_irq_enable();
4121 schedule();
4122 local_irq_disable();
3a5c359a 4123 task->lock_depth = saved_lock_depth;
3a5c359a 4124 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4125
3a5c359a
AK
4126 /*
4127 * Check again in case we missed a preemption opportunity
4128 * between schedule and now.
4129 */
4130 barrier();
4131 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4132}
4133
4134#endif /* CONFIG_PREEMPT */
4135
95cdf3b7
IM
4136int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4137 void *key)
1da177e4 4138{
48f24c4d 4139 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4140}
1da177e4
LT
4141EXPORT_SYMBOL(default_wake_function);
4142
4143/*
41a2d6cf
IM
4144 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4145 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4146 * number) then we wake all the non-exclusive tasks and one exclusive task.
4147 *
4148 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4149 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4150 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4151 */
4152static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4153 int nr_exclusive, int sync, void *key)
4154{
2e45874c 4155 wait_queue_t *curr, *next;
1da177e4 4156
2e45874c 4157 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4158 unsigned flags = curr->flags;
4159
1da177e4 4160 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4161 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4162 break;
4163 }
4164}
4165
4166/**
4167 * __wake_up - wake up threads blocked on a waitqueue.
4168 * @q: the waitqueue
4169 * @mode: which threads
4170 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4171 * @key: is directly passed to the wakeup function
1da177e4 4172 */
7ad5b3a5 4173void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4174 int nr_exclusive, void *key)
1da177e4
LT
4175{
4176 unsigned long flags;
4177
4178 spin_lock_irqsave(&q->lock, flags);
4179 __wake_up_common(q, mode, nr_exclusive, 0, key);
4180 spin_unlock_irqrestore(&q->lock, flags);
4181}
1da177e4
LT
4182EXPORT_SYMBOL(__wake_up);
4183
4184/*
4185 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4186 */
7ad5b3a5 4187void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4188{
4189 __wake_up_common(q, mode, 1, 0, NULL);
4190}
4191
4192/**
67be2dd1 4193 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4194 * @q: the waitqueue
4195 * @mode: which threads
4196 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4197 *
4198 * The sync wakeup differs that the waker knows that it will schedule
4199 * away soon, so while the target thread will be woken up, it will not
4200 * be migrated to another CPU - ie. the two threads are 'synchronized'
4201 * with each other. This can prevent needless bouncing between CPUs.
4202 *
4203 * On UP it can prevent extra preemption.
4204 */
7ad5b3a5 4205void
95cdf3b7 4206__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4207{
4208 unsigned long flags;
4209 int sync = 1;
4210
4211 if (unlikely(!q))
4212 return;
4213
4214 if (unlikely(!nr_exclusive))
4215 sync = 0;
4216
4217 spin_lock_irqsave(&q->lock, flags);
4218 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4219 spin_unlock_irqrestore(&q->lock, flags);
4220}
4221EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4222
b15136e9 4223void complete(struct completion *x)
1da177e4
LT
4224{
4225 unsigned long flags;
4226
4227 spin_lock_irqsave(&x->wait.lock, flags);
4228 x->done++;
d9514f6c 4229 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4230 spin_unlock_irqrestore(&x->wait.lock, flags);
4231}
4232EXPORT_SYMBOL(complete);
4233
b15136e9 4234void complete_all(struct completion *x)
1da177e4
LT
4235{
4236 unsigned long flags;
4237
4238 spin_lock_irqsave(&x->wait.lock, flags);
4239 x->done += UINT_MAX/2;
d9514f6c 4240 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4241 spin_unlock_irqrestore(&x->wait.lock, flags);
4242}
4243EXPORT_SYMBOL(complete_all);
4244
8cbbe86d
AK
4245static inline long __sched
4246do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4247{
1da177e4
LT
4248 if (!x->done) {
4249 DECLARE_WAITQUEUE(wait, current);
4250
4251 wait.flags |= WQ_FLAG_EXCLUSIVE;
4252 __add_wait_queue_tail(&x->wait, &wait);
4253 do {
009e577e
MW
4254 if ((state == TASK_INTERRUPTIBLE &&
4255 signal_pending(current)) ||
4256 (state == TASK_KILLABLE &&
4257 fatal_signal_pending(current))) {
8cbbe86d
AK
4258 __remove_wait_queue(&x->wait, &wait);
4259 return -ERESTARTSYS;
4260 }
4261 __set_current_state(state);
1da177e4
LT
4262 spin_unlock_irq(&x->wait.lock);
4263 timeout = schedule_timeout(timeout);
4264 spin_lock_irq(&x->wait.lock);
4265 if (!timeout) {
4266 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4267 return timeout;
1da177e4
LT
4268 }
4269 } while (!x->done);
4270 __remove_wait_queue(&x->wait, &wait);
4271 }
4272 x->done--;
1da177e4
LT
4273 return timeout;
4274}
1da177e4 4275
8cbbe86d
AK
4276static long __sched
4277wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4278{
1da177e4
LT
4279 might_sleep();
4280
4281 spin_lock_irq(&x->wait.lock);
8cbbe86d 4282 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4283 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4284 return timeout;
4285}
1da177e4 4286
b15136e9 4287void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4288{
4289 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4290}
8cbbe86d 4291EXPORT_SYMBOL(wait_for_completion);
1da177e4 4292
b15136e9 4293unsigned long __sched
8cbbe86d 4294wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4295{
8cbbe86d 4296 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4297}
8cbbe86d 4298EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4299
8cbbe86d 4300int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4301{
51e97990
AK
4302 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4303 if (t == -ERESTARTSYS)
4304 return t;
4305 return 0;
0fec171c 4306}
8cbbe86d 4307EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4308
b15136e9 4309unsigned long __sched
8cbbe86d
AK
4310wait_for_completion_interruptible_timeout(struct completion *x,
4311 unsigned long timeout)
0fec171c 4312{
8cbbe86d 4313 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4314}
8cbbe86d 4315EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4316
009e577e
MW
4317int __sched wait_for_completion_killable(struct completion *x)
4318{
4319 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4320 if (t == -ERESTARTSYS)
4321 return t;
4322 return 0;
4323}
4324EXPORT_SYMBOL(wait_for_completion_killable);
4325
8cbbe86d
AK
4326static long __sched
4327sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4328{
0fec171c
IM
4329 unsigned long flags;
4330 wait_queue_t wait;
4331
4332 init_waitqueue_entry(&wait, current);
1da177e4 4333
8cbbe86d 4334 __set_current_state(state);
1da177e4 4335
8cbbe86d
AK
4336 spin_lock_irqsave(&q->lock, flags);
4337 __add_wait_queue(q, &wait);
4338 spin_unlock(&q->lock);
4339 timeout = schedule_timeout(timeout);
4340 spin_lock_irq(&q->lock);
4341 __remove_wait_queue(q, &wait);
4342 spin_unlock_irqrestore(&q->lock, flags);
4343
4344 return timeout;
4345}
4346
4347void __sched interruptible_sleep_on(wait_queue_head_t *q)
4348{
4349 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4350}
1da177e4
LT
4351EXPORT_SYMBOL(interruptible_sleep_on);
4352
0fec171c 4353long __sched
95cdf3b7 4354interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4355{
8cbbe86d 4356 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4357}
1da177e4
LT
4358EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4359
0fec171c 4360void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4361{
8cbbe86d 4362 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4363}
1da177e4
LT
4364EXPORT_SYMBOL(sleep_on);
4365
0fec171c 4366long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4367{
8cbbe86d 4368 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4369}
1da177e4
LT
4370EXPORT_SYMBOL(sleep_on_timeout);
4371
b29739f9
IM
4372#ifdef CONFIG_RT_MUTEXES
4373
4374/*
4375 * rt_mutex_setprio - set the current priority of a task
4376 * @p: task
4377 * @prio: prio value (kernel-internal form)
4378 *
4379 * This function changes the 'effective' priority of a task. It does
4380 * not touch ->normal_prio like __setscheduler().
4381 *
4382 * Used by the rt_mutex code to implement priority inheritance logic.
4383 */
36c8b586 4384void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4385{
4386 unsigned long flags;
83b699ed 4387 int oldprio, on_rq, running;
70b97a7f 4388 struct rq *rq;
cb469845 4389 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4390
4391 BUG_ON(prio < 0 || prio > MAX_PRIO);
4392
4393 rq = task_rq_lock(p, &flags);
a8e504d2 4394 update_rq_clock(rq);
b29739f9 4395
d5f9f942 4396 oldprio = p->prio;
dd41f596 4397 on_rq = p->se.on_rq;
051a1d1a 4398 running = task_current(rq, p);
0e1f3483 4399 if (on_rq)
69be72c1 4400 dequeue_task(rq, p, 0);
0e1f3483
HS
4401 if (running)
4402 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4403
4404 if (rt_prio(prio))
4405 p->sched_class = &rt_sched_class;
4406 else
4407 p->sched_class = &fair_sched_class;
4408
b29739f9
IM
4409 p->prio = prio;
4410
0e1f3483
HS
4411 if (running)
4412 p->sched_class->set_curr_task(rq);
dd41f596 4413 if (on_rq) {
8159f87e 4414 enqueue_task(rq, p, 0);
cb469845
SR
4415
4416 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4417 }
4418 task_rq_unlock(rq, &flags);
4419}
4420
4421#endif
4422
36c8b586 4423void set_user_nice(struct task_struct *p, long nice)
1da177e4 4424{
dd41f596 4425 int old_prio, delta, on_rq;
1da177e4 4426 unsigned long flags;
70b97a7f 4427 struct rq *rq;
1da177e4
LT
4428
4429 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4430 return;
4431 /*
4432 * We have to be careful, if called from sys_setpriority(),
4433 * the task might be in the middle of scheduling on another CPU.
4434 */
4435 rq = task_rq_lock(p, &flags);
a8e504d2 4436 update_rq_clock(rq);
1da177e4
LT
4437 /*
4438 * The RT priorities are set via sched_setscheduler(), but we still
4439 * allow the 'normal' nice value to be set - but as expected
4440 * it wont have any effect on scheduling until the task is
dd41f596 4441 * SCHED_FIFO/SCHED_RR:
1da177e4 4442 */
e05606d3 4443 if (task_has_rt_policy(p)) {
1da177e4
LT
4444 p->static_prio = NICE_TO_PRIO(nice);
4445 goto out_unlock;
4446 }
dd41f596 4447 on_rq = p->se.on_rq;
62fb1851 4448 if (on_rq) {
69be72c1 4449 dequeue_task(rq, p, 0);
62fb1851
PZ
4450 dec_load(rq, p);
4451 }
1da177e4 4452
1da177e4 4453 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4454 set_load_weight(p);
b29739f9
IM
4455 old_prio = p->prio;
4456 p->prio = effective_prio(p);
4457 delta = p->prio - old_prio;
1da177e4 4458
dd41f596 4459 if (on_rq) {
8159f87e 4460 enqueue_task(rq, p, 0);
62fb1851 4461 inc_load(rq, p);
1da177e4 4462 /*
d5f9f942
AM
4463 * If the task increased its priority or is running and
4464 * lowered its priority, then reschedule its CPU:
1da177e4 4465 */
d5f9f942 4466 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4467 resched_task(rq->curr);
4468 }
4469out_unlock:
4470 task_rq_unlock(rq, &flags);
4471}
1da177e4
LT
4472EXPORT_SYMBOL(set_user_nice);
4473
e43379f1
MM
4474/*
4475 * can_nice - check if a task can reduce its nice value
4476 * @p: task
4477 * @nice: nice value
4478 */
36c8b586 4479int can_nice(const struct task_struct *p, const int nice)
e43379f1 4480{
024f4747
MM
4481 /* convert nice value [19,-20] to rlimit style value [1,40] */
4482 int nice_rlim = 20 - nice;
48f24c4d 4483
e43379f1
MM
4484 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4485 capable(CAP_SYS_NICE));
4486}
4487
1da177e4
LT
4488#ifdef __ARCH_WANT_SYS_NICE
4489
4490/*
4491 * sys_nice - change the priority of the current process.
4492 * @increment: priority increment
4493 *
4494 * sys_setpriority is a more generic, but much slower function that
4495 * does similar things.
4496 */
4497asmlinkage long sys_nice(int increment)
4498{
48f24c4d 4499 long nice, retval;
1da177e4
LT
4500
4501 /*
4502 * Setpriority might change our priority at the same moment.
4503 * We don't have to worry. Conceptually one call occurs first
4504 * and we have a single winner.
4505 */
e43379f1
MM
4506 if (increment < -40)
4507 increment = -40;
1da177e4
LT
4508 if (increment > 40)
4509 increment = 40;
4510
4511 nice = PRIO_TO_NICE(current->static_prio) + increment;
4512 if (nice < -20)
4513 nice = -20;
4514 if (nice > 19)
4515 nice = 19;
4516
e43379f1
MM
4517 if (increment < 0 && !can_nice(current, nice))
4518 return -EPERM;
4519
1da177e4
LT
4520 retval = security_task_setnice(current, nice);
4521 if (retval)
4522 return retval;
4523
4524 set_user_nice(current, nice);
4525 return 0;
4526}
4527
4528#endif
4529
4530/**
4531 * task_prio - return the priority value of a given task.
4532 * @p: the task in question.
4533 *
4534 * This is the priority value as seen by users in /proc.
4535 * RT tasks are offset by -200. Normal tasks are centered
4536 * around 0, value goes from -16 to +15.
4537 */
36c8b586 4538int task_prio(const struct task_struct *p)
1da177e4
LT
4539{
4540 return p->prio - MAX_RT_PRIO;
4541}
4542
4543/**
4544 * task_nice - return the nice value of a given task.
4545 * @p: the task in question.
4546 */
36c8b586 4547int task_nice(const struct task_struct *p)
1da177e4
LT
4548{
4549 return TASK_NICE(p);
4550}
150d8bed 4551EXPORT_SYMBOL(task_nice);
1da177e4
LT
4552
4553/**
4554 * idle_cpu - is a given cpu idle currently?
4555 * @cpu: the processor in question.
4556 */
4557int idle_cpu(int cpu)
4558{
4559 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4560}
4561
1da177e4
LT
4562/**
4563 * idle_task - return the idle task for a given cpu.
4564 * @cpu: the processor in question.
4565 */
36c8b586 4566struct task_struct *idle_task(int cpu)
1da177e4
LT
4567{
4568 return cpu_rq(cpu)->idle;
4569}
4570
4571/**
4572 * find_process_by_pid - find a process with a matching PID value.
4573 * @pid: the pid in question.
4574 */
a9957449 4575static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4576{
228ebcbe 4577 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4578}
4579
4580/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4581static void
4582__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4583{
dd41f596 4584 BUG_ON(p->se.on_rq);
48f24c4d 4585
1da177e4 4586 p->policy = policy;
dd41f596
IM
4587 switch (p->policy) {
4588 case SCHED_NORMAL:
4589 case SCHED_BATCH:
4590 case SCHED_IDLE:
4591 p->sched_class = &fair_sched_class;
4592 break;
4593 case SCHED_FIFO:
4594 case SCHED_RR:
4595 p->sched_class = &rt_sched_class;
4596 break;
4597 }
4598
1da177e4 4599 p->rt_priority = prio;
b29739f9
IM
4600 p->normal_prio = normal_prio(p);
4601 /* we are holding p->pi_lock already */
4602 p->prio = rt_mutex_getprio(p);
2dd73a4f 4603 set_load_weight(p);
1da177e4
LT
4604}
4605
4606/**
72fd4a35 4607 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4608 * @p: the task in question.
4609 * @policy: new policy.
4610 * @param: structure containing the new RT priority.
5fe1d75f 4611 *
72fd4a35 4612 * NOTE that the task may be already dead.
1da177e4 4613 */
95cdf3b7
IM
4614int sched_setscheduler(struct task_struct *p, int policy,
4615 struct sched_param *param)
1da177e4 4616{
83b699ed 4617 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4618 unsigned long flags;
cb469845 4619 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4620 struct rq *rq;
1da177e4 4621
66e5393a
SR
4622 /* may grab non-irq protected spin_locks */
4623 BUG_ON(in_interrupt());
1da177e4
LT
4624recheck:
4625 /* double check policy once rq lock held */
4626 if (policy < 0)
4627 policy = oldpolicy = p->policy;
4628 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4629 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4630 policy != SCHED_IDLE)
b0a9499c 4631 return -EINVAL;
1da177e4
LT
4632 /*
4633 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4634 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4635 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4636 */
4637 if (param->sched_priority < 0 ||
95cdf3b7 4638 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4639 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4640 return -EINVAL;
e05606d3 4641 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4642 return -EINVAL;
4643
37e4ab3f
OC
4644 /*
4645 * Allow unprivileged RT tasks to decrease priority:
4646 */
4647 if (!capable(CAP_SYS_NICE)) {
e05606d3 4648 if (rt_policy(policy)) {
8dc3e909 4649 unsigned long rlim_rtprio;
8dc3e909
ON
4650
4651 if (!lock_task_sighand(p, &flags))
4652 return -ESRCH;
4653 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4654 unlock_task_sighand(p, &flags);
4655
4656 /* can't set/change the rt policy */
4657 if (policy != p->policy && !rlim_rtprio)
4658 return -EPERM;
4659
4660 /* can't increase priority */
4661 if (param->sched_priority > p->rt_priority &&
4662 param->sched_priority > rlim_rtprio)
4663 return -EPERM;
4664 }
dd41f596
IM
4665 /*
4666 * Like positive nice levels, dont allow tasks to
4667 * move out of SCHED_IDLE either:
4668 */
4669 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4670 return -EPERM;
5fe1d75f 4671
37e4ab3f
OC
4672 /* can't change other user's priorities */
4673 if ((current->euid != p->euid) &&
4674 (current->euid != p->uid))
4675 return -EPERM;
4676 }
1da177e4 4677
b68aa230
PZ
4678#ifdef CONFIG_RT_GROUP_SCHED
4679 /*
4680 * Do not allow realtime tasks into groups that have no runtime
4681 * assigned.
4682 */
4683 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4684 return -EPERM;
4685#endif
4686
1da177e4
LT
4687 retval = security_task_setscheduler(p, policy, param);
4688 if (retval)
4689 return retval;
b29739f9
IM
4690 /*
4691 * make sure no PI-waiters arrive (or leave) while we are
4692 * changing the priority of the task:
4693 */
4694 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4695 /*
4696 * To be able to change p->policy safely, the apropriate
4697 * runqueue lock must be held.
4698 */
b29739f9 4699 rq = __task_rq_lock(p);
1da177e4
LT
4700 /* recheck policy now with rq lock held */
4701 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4702 policy = oldpolicy = -1;
b29739f9
IM
4703 __task_rq_unlock(rq);
4704 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4705 goto recheck;
4706 }
2daa3577 4707 update_rq_clock(rq);
dd41f596 4708 on_rq = p->se.on_rq;
051a1d1a 4709 running = task_current(rq, p);
0e1f3483 4710 if (on_rq)
2e1cb74a 4711 deactivate_task(rq, p, 0);
0e1f3483
HS
4712 if (running)
4713 p->sched_class->put_prev_task(rq, p);
f6b53205 4714
1da177e4 4715 oldprio = p->prio;
dd41f596 4716 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4717
0e1f3483
HS
4718 if (running)
4719 p->sched_class->set_curr_task(rq);
dd41f596
IM
4720 if (on_rq) {
4721 activate_task(rq, p, 0);
cb469845
SR
4722
4723 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4724 }
b29739f9
IM
4725 __task_rq_unlock(rq);
4726 spin_unlock_irqrestore(&p->pi_lock, flags);
4727
95e02ca9
TG
4728 rt_mutex_adjust_pi(p);
4729
1da177e4
LT
4730 return 0;
4731}
4732EXPORT_SYMBOL_GPL(sched_setscheduler);
4733
95cdf3b7
IM
4734static int
4735do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4736{
1da177e4
LT
4737 struct sched_param lparam;
4738 struct task_struct *p;
36c8b586 4739 int retval;
1da177e4
LT
4740
4741 if (!param || pid < 0)
4742 return -EINVAL;
4743 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4744 return -EFAULT;
5fe1d75f
ON
4745
4746 rcu_read_lock();
4747 retval = -ESRCH;
1da177e4 4748 p = find_process_by_pid(pid);
5fe1d75f
ON
4749 if (p != NULL)
4750 retval = sched_setscheduler(p, policy, &lparam);
4751 rcu_read_unlock();
36c8b586 4752
1da177e4
LT
4753 return retval;
4754}
4755
4756/**
4757 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4758 * @pid: the pid in question.
4759 * @policy: new policy.
4760 * @param: structure containing the new RT priority.
4761 */
41a2d6cf
IM
4762asmlinkage long
4763sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4764{
c21761f1
JB
4765 /* negative values for policy are not valid */
4766 if (policy < 0)
4767 return -EINVAL;
4768
1da177e4
LT
4769 return do_sched_setscheduler(pid, policy, param);
4770}
4771
4772/**
4773 * sys_sched_setparam - set/change the RT priority of a thread
4774 * @pid: the pid in question.
4775 * @param: structure containing the new RT priority.
4776 */
4777asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4778{
4779 return do_sched_setscheduler(pid, -1, param);
4780}
4781
4782/**
4783 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4784 * @pid: the pid in question.
4785 */
4786asmlinkage long sys_sched_getscheduler(pid_t pid)
4787{
36c8b586 4788 struct task_struct *p;
3a5c359a 4789 int retval;
1da177e4
LT
4790
4791 if (pid < 0)
3a5c359a 4792 return -EINVAL;
1da177e4
LT
4793
4794 retval = -ESRCH;
4795 read_lock(&tasklist_lock);
4796 p = find_process_by_pid(pid);
4797 if (p) {
4798 retval = security_task_getscheduler(p);
4799 if (!retval)
4800 retval = p->policy;
4801 }
4802 read_unlock(&tasklist_lock);
1da177e4
LT
4803 return retval;
4804}
4805
4806/**
4807 * sys_sched_getscheduler - get the RT priority of a thread
4808 * @pid: the pid in question.
4809 * @param: structure containing the RT priority.
4810 */
4811asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4812{
4813 struct sched_param lp;
36c8b586 4814 struct task_struct *p;
3a5c359a 4815 int retval;
1da177e4
LT
4816
4817 if (!param || pid < 0)
3a5c359a 4818 return -EINVAL;
1da177e4
LT
4819
4820 read_lock(&tasklist_lock);
4821 p = find_process_by_pid(pid);
4822 retval = -ESRCH;
4823 if (!p)
4824 goto out_unlock;
4825
4826 retval = security_task_getscheduler(p);
4827 if (retval)
4828 goto out_unlock;
4829
4830 lp.sched_priority = p->rt_priority;
4831 read_unlock(&tasklist_lock);
4832
4833 /*
4834 * This one might sleep, we cannot do it with a spinlock held ...
4835 */
4836 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4837
1da177e4
LT
4838 return retval;
4839
4840out_unlock:
4841 read_unlock(&tasklist_lock);
4842 return retval;
4843}
4844
4845long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4846{
1da177e4 4847 cpumask_t cpus_allowed;
36c8b586
IM
4848 struct task_struct *p;
4849 int retval;
1da177e4 4850
95402b38 4851 get_online_cpus();
1da177e4
LT
4852 read_lock(&tasklist_lock);
4853
4854 p = find_process_by_pid(pid);
4855 if (!p) {
4856 read_unlock(&tasklist_lock);
95402b38 4857 put_online_cpus();
1da177e4
LT
4858 return -ESRCH;
4859 }
4860
4861 /*
4862 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4863 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4864 * usage count and then drop tasklist_lock.
4865 */
4866 get_task_struct(p);
4867 read_unlock(&tasklist_lock);
4868
4869 retval = -EPERM;
4870 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4871 !capable(CAP_SYS_NICE))
4872 goto out_unlock;
4873
e7834f8f
DQ
4874 retval = security_task_setscheduler(p, 0, NULL);
4875 if (retval)
4876 goto out_unlock;
4877
1da177e4
LT
4878 cpus_allowed = cpuset_cpus_allowed(p);
4879 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4880 again:
1da177e4
LT
4881 retval = set_cpus_allowed(p, new_mask);
4882
8707d8b8
PM
4883 if (!retval) {
4884 cpus_allowed = cpuset_cpus_allowed(p);
4885 if (!cpus_subset(new_mask, cpus_allowed)) {
4886 /*
4887 * We must have raced with a concurrent cpuset
4888 * update. Just reset the cpus_allowed to the
4889 * cpuset's cpus_allowed
4890 */
4891 new_mask = cpus_allowed;
4892 goto again;
4893 }
4894 }
1da177e4
LT
4895out_unlock:
4896 put_task_struct(p);
95402b38 4897 put_online_cpus();
1da177e4
LT
4898 return retval;
4899}
4900
4901static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4902 cpumask_t *new_mask)
4903{
4904 if (len < sizeof(cpumask_t)) {
4905 memset(new_mask, 0, sizeof(cpumask_t));
4906 } else if (len > sizeof(cpumask_t)) {
4907 len = sizeof(cpumask_t);
4908 }
4909 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4910}
4911
4912/**
4913 * sys_sched_setaffinity - set the cpu affinity of a process
4914 * @pid: pid of the process
4915 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4916 * @user_mask_ptr: user-space pointer to the new cpu mask
4917 */
4918asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4919 unsigned long __user *user_mask_ptr)
4920{
4921 cpumask_t new_mask;
4922 int retval;
4923
4924 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4925 if (retval)
4926 return retval;
4927
4928 return sched_setaffinity(pid, new_mask);
4929}
4930
4931/*
4932 * Represents all cpu's present in the system
4933 * In systems capable of hotplug, this map could dynamically grow
4934 * as new cpu's are detected in the system via any platform specific
4935 * method, such as ACPI for e.g.
4936 */
4937
4cef0c61 4938cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4939EXPORT_SYMBOL(cpu_present_map);
4940
4941#ifndef CONFIG_SMP
4cef0c61 4942cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4943EXPORT_SYMBOL(cpu_online_map);
4944
4cef0c61 4945cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4946EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4947#endif
4948
4949long sched_getaffinity(pid_t pid, cpumask_t *mask)
4950{
36c8b586 4951 struct task_struct *p;
1da177e4 4952 int retval;
1da177e4 4953
95402b38 4954 get_online_cpus();
1da177e4
LT
4955 read_lock(&tasklist_lock);
4956
4957 retval = -ESRCH;
4958 p = find_process_by_pid(pid);
4959 if (!p)
4960 goto out_unlock;
4961
e7834f8f
DQ
4962 retval = security_task_getscheduler(p);
4963 if (retval)
4964 goto out_unlock;
4965
2f7016d9 4966 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4967
4968out_unlock:
4969 read_unlock(&tasklist_lock);
95402b38 4970 put_online_cpus();
1da177e4 4971
9531b62f 4972 return retval;
1da177e4
LT
4973}
4974
4975/**
4976 * sys_sched_getaffinity - get the cpu affinity of a process
4977 * @pid: pid of the process
4978 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4979 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4980 */
4981asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4982 unsigned long __user *user_mask_ptr)
4983{
4984 int ret;
4985 cpumask_t mask;
4986
4987 if (len < sizeof(cpumask_t))
4988 return -EINVAL;
4989
4990 ret = sched_getaffinity(pid, &mask);
4991 if (ret < 0)
4992 return ret;
4993
4994 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4995 return -EFAULT;
4996
4997 return sizeof(cpumask_t);
4998}
4999
5000/**
5001 * sys_sched_yield - yield the current processor to other threads.
5002 *
dd41f596
IM
5003 * This function yields the current CPU to other tasks. If there are no
5004 * other threads running on this CPU then this function will return.
1da177e4
LT
5005 */
5006asmlinkage long sys_sched_yield(void)
5007{
70b97a7f 5008 struct rq *rq = this_rq_lock();
1da177e4 5009
2d72376b 5010 schedstat_inc(rq, yld_count);
4530d7ab 5011 current->sched_class->yield_task(rq);
1da177e4
LT
5012
5013 /*
5014 * Since we are going to call schedule() anyway, there's
5015 * no need to preempt or enable interrupts:
5016 */
5017 __release(rq->lock);
8a25d5de 5018 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5019 _raw_spin_unlock(&rq->lock);
5020 preempt_enable_no_resched();
5021
5022 schedule();
5023
5024 return 0;
5025}
5026
e7b38404 5027static void __cond_resched(void)
1da177e4 5028{
8e0a43d8
IM
5029#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5030 __might_sleep(__FILE__, __LINE__);
5031#endif
5bbcfd90
IM
5032 /*
5033 * The BKS might be reacquired before we have dropped
5034 * PREEMPT_ACTIVE, which could trigger a second
5035 * cond_resched() call.
5036 */
1da177e4
LT
5037 do {
5038 add_preempt_count(PREEMPT_ACTIVE);
5039 schedule();
5040 sub_preempt_count(PREEMPT_ACTIVE);
5041 } while (need_resched());
5042}
5043
02b67cc3
HX
5044#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5045int __sched _cond_resched(void)
1da177e4 5046{
9414232f
IM
5047 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5048 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5049 __cond_resched();
5050 return 1;
5051 }
5052 return 0;
5053}
02b67cc3
HX
5054EXPORT_SYMBOL(_cond_resched);
5055#endif
1da177e4
LT
5056
5057/*
5058 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5059 * call schedule, and on return reacquire the lock.
5060 *
41a2d6cf 5061 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5062 * operations here to prevent schedule() from being called twice (once via
5063 * spin_unlock(), once by hand).
5064 */
95cdf3b7 5065int cond_resched_lock(spinlock_t *lock)
1da177e4 5066{
95c354fe 5067 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5068 int ret = 0;
5069
95c354fe 5070 if (spin_needbreak(lock) || resched) {
1da177e4 5071 spin_unlock(lock);
95c354fe
NP
5072 if (resched && need_resched())
5073 __cond_resched();
5074 else
5075 cpu_relax();
6df3cecb 5076 ret = 1;
1da177e4 5077 spin_lock(lock);
1da177e4 5078 }
6df3cecb 5079 return ret;
1da177e4 5080}
1da177e4
LT
5081EXPORT_SYMBOL(cond_resched_lock);
5082
5083int __sched cond_resched_softirq(void)
5084{
5085 BUG_ON(!in_softirq());
5086
9414232f 5087 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5088 local_bh_enable();
1da177e4
LT
5089 __cond_resched();
5090 local_bh_disable();
5091 return 1;
5092 }
5093 return 0;
5094}
1da177e4
LT
5095EXPORT_SYMBOL(cond_resched_softirq);
5096
1da177e4
LT
5097/**
5098 * yield - yield the current processor to other threads.
5099 *
72fd4a35 5100 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5101 * thread runnable and calls sys_sched_yield().
5102 */
5103void __sched yield(void)
5104{
5105 set_current_state(TASK_RUNNING);
5106 sys_sched_yield();
5107}
1da177e4
LT
5108EXPORT_SYMBOL(yield);
5109
5110/*
41a2d6cf 5111 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5112 * that process accounting knows that this is a task in IO wait state.
5113 *
5114 * But don't do that if it is a deliberate, throttling IO wait (this task
5115 * has set its backing_dev_info: the queue against which it should throttle)
5116 */
5117void __sched io_schedule(void)
5118{
70b97a7f 5119 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5120
0ff92245 5121 delayacct_blkio_start();
1da177e4
LT
5122 atomic_inc(&rq->nr_iowait);
5123 schedule();
5124 atomic_dec(&rq->nr_iowait);
0ff92245 5125 delayacct_blkio_end();
1da177e4 5126}
1da177e4
LT
5127EXPORT_SYMBOL(io_schedule);
5128
5129long __sched io_schedule_timeout(long timeout)
5130{
70b97a7f 5131 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5132 long ret;
5133
0ff92245 5134 delayacct_blkio_start();
1da177e4
LT
5135 atomic_inc(&rq->nr_iowait);
5136 ret = schedule_timeout(timeout);
5137 atomic_dec(&rq->nr_iowait);
0ff92245 5138 delayacct_blkio_end();
1da177e4
LT
5139 return ret;
5140}
5141
5142/**
5143 * sys_sched_get_priority_max - return maximum RT priority.
5144 * @policy: scheduling class.
5145 *
5146 * this syscall returns the maximum rt_priority that can be used
5147 * by a given scheduling class.
5148 */
5149asmlinkage long sys_sched_get_priority_max(int policy)
5150{
5151 int ret = -EINVAL;
5152
5153 switch (policy) {
5154 case SCHED_FIFO:
5155 case SCHED_RR:
5156 ret = MAX_USER_RT_PRIO-1;
5157 break;
5158 case SCHED_NORMAL:
b0a9499c 5159 case SCHED_BATCH:
dd41f596 5160 case SCHED_IDLE:
1da177e4
LT
5161 ret = 0;
5162 break;
5163 }
5164 return ret;
5165}
5166
5167/**
5168 * sys_sched_get_priority_min - return minimum RT priority.
5169 * @policy: scheduling class.
5170 *
5171 * this syscall returns the minimum rt_priority that can be used
5172 * by a given scheduling class.
5173 */
5174asmlinkage long sys_sched_get_priority_min(int policy)
5175{
5176 int ret = -EINVAL;
5177
5178 switch (policy) {
5179 case SCHED_FIFO:
5180 case SCHED_RR:
5181 ret = 1;
5182 break;
5183 case SCHED_NORMAL:
b0a9499c 5184 case SCHED_BATCH:
dd41f596 5185 case SCHED_IDLE:
1da177e4
LT
5186 ret = 0;
5187 }
5188 return ret;
5189}
5190
5191/**
5192 * sys_sched_rr_get_interval - return the default timeslice of a process.
5193 * @pid: pid of the process.
5194 * @interval: userspace pointer to the timeslice value.
5195 *
5196 * this syscall writes the default timeslice value of a given process
5197 * into the user-space timespec buffer. A value of '0' means infinity.
5198 */
5199asmlinkage
5200long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5201{
36c8b586 5202 struct task_struct *p;
a4ec24b4 5203 unsigned int time_slice;
3a5c359a 5204 int retval;
1da177e4 5205 struct timespec t;
1da177e4
LT
5206
5207 if (pid < 0)
3a5c359a 5208 return -EINVAL;
1da177e4
LT
5209
5210 retval = -ESRCH;
5211 read_lock(&tasklist_lock);
5212 p = find_process_by_pid(pid);
5213 if (!p)
5214 goto out_unlock;
5215
5216 retval = security_task_getscheduler(p);
5217 if (retval)
5218 goto out_unlock;
5219
77034937
IM
5220 /*
5221 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5222 * tasks that are on an otherwise idle runqueue:
5223 */
5224 time_slice = 0;
5225 if (p->policy == SCHED_RR) {
a4ec24b4 5226 time_slice = DEF_TIMESLICE;
1868f958 5227 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5228 struct sched_entity *se = &p->se;
5229 unsigned long flags;
5230 struct rq *rq;
5231
5232 rq = task_rq_lock(p, &flags);
77034937
IM
5233 if (rq->cfs.load.weight)
5234 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5235 task_rq_unlock(rq, &flags);
5236 }
1da177e4 5237 read_unlock(&tasklist_lock);
a4ec24b4 5238 jiffies_to_timespec(time_slice, &t);
1da177e4 5239 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5240 return retval;
3a5c359a 5241
1da177e4
LT
5242out_unlock:
5243 read_unlock(&tasklist_lock);
5244 return retval;
5245}
5246
2ed6e34f 5247static const char stat_nam[] = "RSDTtZX";
36c8b586 5248
82a1fcb9 5249void sched_show_task(struct task_struct *p)
1da177e4 5250{
1da177e4 5251 unsigned long free = 0;
36c8b586 5252 unsigned state;
1da177e4 5253
1da177e4 5254 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5255 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5256 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5257#if BITS_PER_LONG == 32
1da177e4 5258 if (state == TASK_RUNNING)
cc4ea795 5259 printk(KERN_CONT " running ");
1da177e4 5260 else
cc4ea795 5261 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5262#else
5263 if (state == TASK_RUNNING)
cc4ea795 5264 printk(KERN_CONT " running task ");
1da177e4 5265 else
cc4ea795 5266 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5267#endif
5268#ifdef CONFIG_DEBUG_STACK_USAGE
5269 {
10ebffde 5270 unsigned long *n = end_of_stack(p);
1da177e4
LT
5271 while (!*n)
5272 n++;
10ebffde 5273 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5274 }
5275#endif
ba25f9dc 5276 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5277 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5278
5fb5e6de 5279 show_stack(p, NULL);
1da177e4
LT
5280}
5281
e59e2ae2 5282void show_state_filter(unsigned long state_filter)
1da177e4 5283{
36c8b586 5284 struct task_struct *g, *p;
1da177e4 5285
4bd77321
IM
5286#if BITS_PER_LONG == 32
5287 printk(KERN_INFO
5288 " task PC stack pid father\n");
1da177e4 5289#else
4bd77321
IM
5290 printk(KERN_INFO
5291 " task PC stack pid father\n");
1da177e4
LT
5292#endif
5293 read_lock(&tasklist_lock);
5294 do_each_thread(g, p) {
5295 /*
5296 * reset the NMI-timeout, listing all files on a slow
5297 * console might take alot of time:
5298 */
5299 touch_nmi_watchdog();
39bc89fd 5300 if (!state_filter || (p->state & state_filter))
82a1fcb9 5301 sched_show_task(p);
1da177e4
LT
5302 } while_each_thread(g, p);
5303
04c9167f
JF
5304 touch_all_softlockup_watchdogs();
5305
dd41f596
IM
5306#ifdef CONFIG_SCHED_DEBUG
5307 sysrq_sched_debug_show();
5308#endif
1da177e4 5309 read_unlock(&tasklist_lock);
e59e2ae2
IM
5310 /*
5311 * Only show locks if all tasks are dumped:
5312 */
5313 if (state_filter == -1)
5314 debug_show_all_locks();
1da177e4
LT
5315}
5316
1df21055
IM
5317void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5318{
dd41f596 5319 idle->sched_class = &idle_sched_class;
1df21055
IM
5320}
5321
f340c0d1
IM
5322/**
5323 * init_idle - set up an idle thread for a given CPU
5324 * @idle: task in question
5325 * @cpu: cpu the idle task belongs to
5326 *
5327 * NOTE: this function does not set the idle thread's NEED_RESCHED
5328 * flag, to make booting more robust.
5329 */
5c1e1767 5330void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5331{
70b97a7f 5332 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5333 unsigned long flags;
5334
dd41f596
IM
5335 __sched_fork(idle);
5336 idle->se.exec_start = sched_clock();
5337
b29739f9 5338 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5339 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5340 __set_task_cpu(idle, cpu);
1da177e4
LT
5341
5342 spin_lock_irqsave(&rq->lock, flags);
5343 rq->curr = rq->idle = idle;
4866cde0
NP
5344#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5345 idle->oncpu = 1;
5346#endif
1da177e4
LT
5347 spin_unlock_irqrestore(&rq->lock, flags);
5348
5349 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5350 task_thread_info(idle)->preempt_count = 0;
6478d880 5351
dd41f596
IM
5352 /*
5353 * The idle tasks have their own, simple scheduling class:
5354 */
5355 idle->sched_class = &idle_sched_class;
1da177e4
LT
5356}
5357
5358/*
5359 * In a system that switches off the HZ timer nohz_cpu_mask
5360 * indicates which cpus entered this state. This is used
5361 * in the rcu update to wait only for active cpus. For system
5362 * which do not switch off the HZ timer nohz_cpu_mask should
5363 * always be CPU_MASK_NONE.
5364 */
5365cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5366
19978ca6
IM
5367/*
5368 * Increase the granularity value when there are more CPUs,
5369 * because with more CPUs the 'effective latency' as visible
5370 * to users decreases. But the relationship is not linear,
5371 * so pick a second-best guess by going with the log2 of the
5372 * number of CPUs.
5373 *
5374 * This idea comes from the SD scheduler of Con Kolivas:
5375 */
5376static inline void sched_init_granularity(void)
5377{
5378 unsigned int factor = 1 + ilog2(num_online_cpus());
5379 const unsigned long limit = 200000000;
5380
5381 sysctl_sched_min_granularity *= factor;
5382 if (sysctl_sched_min_granularity > limit)
5383 sysctl_sched_min_granularity = limit;
5384
5385 sysctl_sched_latency *= factor;
5386 if (sysctl_sched_latency > limit)
5387 sysctl_sched_latency = limit;
5388
5389 sysctl_sched_wakeup_granularity *= factor;
5390 sysctl_sched_batch_wakeup_granularity *= factor;
5391}
5392
1da177e4
LT
5393#ifdef CONFIG_SMP
5394/*
5395 * This is how migration works:
5396 *
70b97a7f 5397 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5398 * runqueue and wake up that CPU's migration thread.
5399 * 2) we down() the locked semaphore => thread blocks.
5400 * 3) migration thread wakes up (implicitly it forces the migrated
5401 * thread off the CPU)
5402 * 4) it gets the migration request and checks whether the migrated
5403 * task is still in the wrong runqueue.
5404 * 5) if it's in the wrong runqueue then the migration thread removes
5405 * it and puts it into the right queue.
5406 * 6) migration thread up()s the semaphore.
5407 * 7) we wake up and the migration is done.
5408 */
5409
5410/*
5411 * Change a given task's CPU affinity. Migrate the thread to a
5412 * proper CPU and schedule it away if the CPU it's executing on
5413 * is removed from the allowed bitmask.
5414 *
5415 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5416 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5417 * call is not atomic; no spinlocks may be held.
5418 */
36c8b586 5419int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5420{
70b97a7f 5421 struct migration_req req;
1da177e4 5422 unsigned long flags;
70b97a7f 5423 struct rq *rq;
48f24c4d 5424 int ret = 0;
1da177e4
LT
5425
5426 rq = task_rq_lock(p, &flags);
5427 if (!cpus_intersects(new_mask, cpu_online_map)) {
5428 ret = -EINVAL;
5429 goto out;
5430 }
5431
73fe6aae
GH
5432 if (p->sched_class->set_cpus_allowed)
5433 p->sched_class->set_cpus_allowed(p, &new_mask);
5434 else {
0eab9146 5435 p->cpus_allowed = new_mask;
6f505b16 5436 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5437 }
5438
1da177e4
LT
5439 /* Can the task run on the task's current CPU? If so, we're done */
5440 if (cpu_isset(task_cpu(p), new_mask))
5441 goto out;
5442
5443 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5444 /* Need help from migration thread: drop lock and wait. */
5445 task_rq_unlock(rq, &flags);
5446 wake_up_process(rq->migration_thread);
5447 wait_for_completion(&req.done);
5448 tlb_migrate_finish(p->mm);
5449 return 0;
5450 }
5451out:
5452 task_rq_unlock(rq, &flags);
48f24c4d 5453
1da177e4
LT
5454 return ret;
5455}
1da177e4
LT
5456EXPORT_SYMBOL_GPL(set_cpus_allowed);
5457
5458/*
41a2d6cf 5459 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5460 * this because either it can't run here any more (set_cpus_allowed()
5461 * away from this CPU, or CPU going down), or because we're
5462 * attempting to rebalance this task on exec (sched_exec).
5463 *
5464 * So we race with normal scheduler movements, but that's OK, as long
5465 * as the task is no longer on this CPU.
efc30814
KK
5466 *
5467 * Returns non-zero if task was successfully migrated.
1da177e4 5468 */
efc30814 5469static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5470{
70b97a7f 5471 struct rq *rq_dest, *rq_src;
dd41f596 5472 int ret = 0, on_rq;
1da177e4
LT
5473
5474 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5475 return ret;
1da177e4
LT
5476
5477 rq_src = cpu_rq(src_cpu);
5478 rq_dest = cpu_rq(dest_cpu);
5479
5480 double_rq_lock(rq_src, rq_dest);
5481 /* Already moved. */
5482 if (task_cpu(p) != src_cpu)
5483 goto out;
5484 /* Affinity changed (again). */
5485 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5486 goto out;
5487
dd41f596 5488 on_rq = p->se.on_rq;
6e82a3be 5489 if (on_rq)
2e1cb74a 5490 deactivate_task(rq_src, p, 0);
6e82a3be 5491
1da177e4 5492 set_task_cpu(p, dest_cpu);
dd41f596
IM
5493 if (on_rq) {
5494 activate_task(rq_dest, p, 0);
5495 check_preempt_curr(rq_dest, p);
1da177e4 5496 }
efc30814 5497 ret = 1;
1da177e4
LT
5498out:
5499 double_rq_unlock(rq_src, rq_dest);
efc30814 5500 return ret;
1da177e4
LT
5501}
5502
5503/*
5504 * migration_thread - this is a highprio system thread that performs
5505 * thread migration by bumping thread off CPU then 'pushing' onto
5506 * another runqueue.
5507 */
95cdf3b7 5508static int migration_thread(void *data)
1da177e4 5509{
1da177e4 5510 int cpu = (long)data;
70b97a7f 5511 struct rq *rq;
1da177e4
LT
5512
5513 rq = cpu_rq(cpu);
5514 BUG_ON(rq->migration_thread != current);
5515
5516 set_current_state(TASK_INTERRUPTIBLE);
5517 while (!kthread_should_stop()) {
70b97a7f 5518 struct migration_req *req;
1da177e4 5519 struct list_head *head;
1da177e4 5520
1da177e4
LT
5521 spin_lock_irq(&rq->lock);
5522
5523 if (cpu_is_offline(cpu)) {
5524 spin_unlock_irq(&rq->lock);
5525 goto wait_to_die;
5526 }
5527
5528 if (rq->active_balance) {
5529 active_load_balance(rq, cpu);
5530 rq->active_balance = 0;
5531 }
5532
5533 head = &rq->migration_queue;
5534
5535 if (list_empty(head)) {
5536 spin_unlock_irq(&rq->lock);
5537 schedule();
5538 set_current_state(TASK_INTERRUPTIBLE);
5539 continue;
5540 }
70b97a7f 5541 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5542 list_del_init(head->next);
5543
674311d5
NP
5544 spin_unlock(&rq->lock);
5545 __migrate_task(req->task, cpu, req->dest_cpu);
5546 local_irq_enable();
1da177e4
LT
5547
5548 complete(&req->done);
5549 }
5550 __set_current_state(TASK_RUNNING);
5551 return 0;
5552
5553wait_to_die:
5554 /* Wait for kthread_stop */
5555 set_current_state(TASK_INTERRUPTIBLE);
5556 while (!kthread_should_stop()) {
5557 schedule();
5558 set_current_state(TASK_INTERRUPTIBLE);
5559 }
5560 __set_current_state(TASK_RUNNING);
5561 return 0;
5562}
5563
5564#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5565
5566static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5567{
5568 int ret;
5569
5570 local_irq_disable();
5571 ret = __migrate_task(p, src_cpu, dest_cpu);
5572 local_irq_enable();
5573 return ret;
5574}
5575
054b9108 5576/*
3a4fa0a2 5577 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5578 * NOTE: interrupts should be disabled by the caller
5579 */
48f24c4d 5580static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5581{
efc30814 5582 unsigned long flags;
1da177e4 5583 cpumask_t mask;
70b97a7f
IM
5584 struct rq *rq;
5585 int dest_cpu;
1da177e4 5586
3a5c359a
AK
5587 do {
5588 /* On same node? */
5589 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5590 cpus_and(mask, mask, p->cpus_allowed);
5591 dest_cpu = any_online_cpu(mask);
5592
5593 /* On any allowed CPU? */
5594 if (dest_cpu == NR_CPUS)
5595 dest_cpu = any_online_cpu(p->cpus_allowed);
5596
5597 /* No more Mr. Nice Guy. */
5598 if (dest_cpu == NR_CPUS) {
470fd646
CW
5599 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5600 /*
5601 * Try to stay on the same cpuset, where the
5602 * current cpuset may be a subset of all cpus.
5603 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5604 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5605 * called within calls to cpuset_lock/cpuset_unlock.
5606 */
3a5c359a 5607 rq = task_rq_lock(p, &flags);
470fd646 5608 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5609 dest_cpu = any_online_cpu(p->cpus_allowed);
5610 task_rq_unlock(rq, &flags);
1da177e4 5611
3a5c359a
AK
5612 /*
5613 * Don't tell them about moving exiting tasks or
5614 * kernel threads (both mm NULL), since they never
5615 * leave kernel.
5616 */
41a2d6cf 5617 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5618 printk(KERN_INFO "process %d (%s) no "
5619 "longer affine to cpu%d\n",
41a2d6cf
IM
5620 task_pid_nr(p), p->comm, dead_cpu);
5621 }
3a5c359a 5622 }
f7b4cddc 5623 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5624}
5625
5626/*
5627 * While a dead CPU has no uninterruptible tasks queued at this point,
5628 * it might still have a nonzero ->nr_uninterruptible counter, because
5629 * for performance reasons the counter is not stricly tracking tasks to
5630 * their home CPUs. So we just add the counter to another CPU's counter,
5631 * to keep the global sum constant after CPU-down:
5632 */
70b97a7f 5633static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5634{
70b97a7f 5635 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5636 unsigned long flags;
5637
5638 local_irq_save(flags);
5639 double_rq_lock(rq_src, rq_dest);
5640 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5641 rq_src->nr_uninterruptible = 0;
5642 double_rq_unlock(rq_src, rq_dest);
5643 local_irq_restore(flags);
5644}
5645
5646/* Run through task list and migrate tasks from the dead cpu. */
5647static void migrate_live_tasks(int src_cpu)
5648{
48f24c4d 5649 struct task_struct *p, *t;
1da177e4 5650
f7b4cddc 5651 read_lock(&tasklist_lock);
1da177e4 5652
48f24c4d
IM
5653 do_each_thread(t, p) {
5654 if (p == current)
1da177e4
LT
5655 continue;
5656
48f24c4d
IM
5657 if (task_cpu(p) == src_cpu)
5658 move_task_off_dead_cpu(src_cpu, p);
5659 } while_each_thread(t, p);
1da177e4 5660
f7b4cddc 5661 read_unlock(&tasklist_lock);
1da177e4
LT
5662}
5663
dd41f596
IM
5664/*
5665 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5666 * It does so by boosting its priority to highest possible.
5667 * Used by CPU offline code.
1da177e4
LT
5668 */
5669void sched_idle_next(void)
5670{
48f24c4d 5671 int this_cpu = smp_processor_id();
70b97a7f 5672 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5673 struct task_struct *p = rq->idle;
5674 unsigned long flags;
5675
5676 /* cpu has to be offline */
48f24c4d 5677 BUG_ON(cpu_online(this_cpu));
1da177e4 5678
48f24c4d
IM
5679 /*
5680 * Strictly not necessary since rest of the CPUs are stopped by now
5681 * and interrupts disabled on the current cpu.
1da177e4
LT
5682 */
5683 spin_lock_irqsave(&rq->lock, flags);
5684
dd41f596 5685 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5686
94bc9a7b
DA
5687 update_rq_clock(rq);
5688 activate_task(rq, p, 0);
1da177e4
LT
5689
5690 spin_unlock_irqrestore(&rq->lock, flags);
5691}
5692
48f24c4d
IM
5693/*
5694 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5695 * offline.
5696 */
5697void idle_task_exit(void)
5698{
5699 struct mm_struct *mm = current->active_mm;
5700
5701 BUG_ON(cpu_online(smp_processor_id()));
5702
5703 if (mm != &init_mm)
5704 switch_mm(mm, &init_mm, current);
5705 mmdrop(mm);
5706}
5707
054b9108 5708/* called under rq->lock with disabled interrupts */
36c8b586 5709static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5710{
70b97a7f 5711 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5712
5713 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5714 BUG_ON(!p->exit_state);
1da177e4
LT
5715
5716 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5717 BUG_ON(p->state == TASK_DEAD);
1da177e4 5718
48f24c4d 5719 get_task_struct(p);
1da177e4
LT
5720
5721 /*
5722 * Drop lock around migration; if someone else moves it,
41a2d6cf 5723 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5724 * fine.
5725 */
f7b4cddc 5726 spin_unlock_irq(&rq->lock);
48f24c4d 5727 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5728 spin_lock_irq(&rq->lock);
1da177e4 5729
48f24c4d 5730 put_task_struct(p);
1da177e4
LT
5731}
5732
5733/* release_task() removes task from tasklist, so we won't find dead tasks. */
5734static void migrate_dead_tasks(unsigned int dead_cpu)
5735{
70b97a7f 5736 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5737 struct task_struct *next;
48f24c4d 5738
dd41f596
IM
5739 for ( ; ; ) {
5740 if (!rq->nr_running)
5741 break;
a8e504d2 5742 update_rq_clock(rq);
ff95f3df 5743 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5744 if (!next)
5745 break;
5746 migrate_dead(dead_cpu, next);
e692ab53 5747
1da177e4
LT
5748 }
5749}
5750#endif /* CONFIG_HOTPLUG_CPU */
5751
e692ab53
NP
5752#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5753
5754static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5755 {
5756 .procname = "sched_domain",
c57baf1e 5757 .mode = 0555,
e0361851 5758 },
38605cae 5759 {0, },
e692ab53
NP
5760};
5761
5762static struct ctl_table sd_ctl_root[] = {
e0361851 5763 {
c57baf1e 5764 .ctl_name = CTL_KERN,
e0361851 5765 .procname = "kernel",
c57baf1e 5766 .mode = 0555,
e0361851
AD
5767 .child = sd_ctl_dir,
5768 },
38605cae 5769 {0, },
e692ab53
NP
5770};
5771
5772static struct ctl_table *sd_alloc_ctl_entry(int n)
5773{
5774 struct ctl_table *entry =
5cf9f062 5775 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5776
e692ab53
NP
5777 return entry;
5778}
5779
6382bc90
MM
5780static void sd_free_ctl_entry(struct ctl_table **tablep)
5781{
cd790076 5782 struct ctl_table *entry;
6382bc90 5783
cd790076
MM
5784 /*
5785 * In the intermediate directories, both the child directory and
5786 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5787 * will always be set. In the lowest directory the names are
cd790076
MM
5788 * static strings and all have proc handlers.
5789 */
5790 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5791 if (entry->child)
5792 sd_free_ctl_entry(&entry->child);
cd790076
MM
5793 if (entry->proc_handler == NULL)
5794 kfree(entry->procname);
5795 }
6382bc90
MM
5796
5797 kfree(*tablep);
5798 *tablep = NULL;
5799}
5800
e692ab53 5801static void
e0361851 5802set_table_entry(struct ctl_table *entry,
e692ab53
NP
5803 const char *procname, void *data, int maxlen,
5804 mode_t mode, proc_handler *proc_handler)
5805{
e692ab53
NP
5806 entry->procname = procname;
5807 entry->data = data;
5808 entry->maxlen = maxlen;
5809 entry->mode = mode;
5810 entry->proc_handler = proc_handler;
5811}
5812
5813static struct ctl_table *
5814sd_alloc_ctl_domain_table(struct sched_domain *sd)
5815{
ace8b3d6 5816 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5817
ad1cdc1d
MM
5818 if (table == NULL)
5819 return NULL;
5820
e0361851 5821 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5822 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5823 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5824 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5825 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5826 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5827 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5828 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5829 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5830 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5831 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5832 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5833 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5834 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5835 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5836 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5837 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5838 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5839 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5840 &sd->cache_nice_tries,
5841 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5842 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5843 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5844 /* &table[11] is terminator */
e692ab53
NP
5845
5846 return table;
5847}
5848
9a4e7159 5849static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5850{
5851 struct ctl_table *entry, *table;
5852 struct sched_domain *sd;
5853 int domain_num = 0, i;
5854 char buf[32];
5855
5856 for_each_domain(cpu, sd)
5857 domain_num++;
5858 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5859 if (table == NULL)
5860 return NULL;
e692ab53
NP
5861
5862 i = 0;
5863 for_each_domain(cpu, sd) {
5864 snprintf(buf, 32, "domain%d", i);
e692ab53 5865 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5866 entry->mode = 0555;
e692ab53
NP
5867 entry->child = sd_alloc_ctl_domain_table(sd);
5868 entry++;
5869 i++;
5870 }
5871 return table;
5872}
5873
5874static struct ctl_table_header *sd_sysctl_header;
6382bc90 5875static void register_sched_domain_sysctl(void)
e692ab53
NP
5876{
5877 int i, cpu_num = num_online_cpus();
5878 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5879 char buf[32];
5880
7378547f
MM
5881 WARN_ON(sd_ctl_dir[0].child);
5882 sd_ctl_dir[0].child = entry;
5883
ad1cdc1d
MM
5884 if (entry == NULL)
5885 return;
5886
97b6ea7b 5887 for_each_online_cpu(i) {
e692ab53 5888 snprintf(buf, 32, "cpu%d", i);
e692ab53 5889 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5890 entry->mode = 0555;
e692ab53 5891 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5892 entry++;
e692ab53 5893 }
7378547f
MM
5894
5895 WARN_ON(sd_sysctl_header);
e692ab53
NP
5896 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5897}
6382bc90 5898
7378547f 5899/* may be called multiple times per register */
6382bc90
MM
5900static void unregister_sched_domain_sysctl(void)
5901{
7378547f
MM
5902 if (sd_sysctl_header)
5903 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5904 sd_sysctl_header = NULL;
7378547f
MM
5905 if (sd_ctl_dir[0].child)
5906 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5907}
e692ab53 5908#else
6382bc90
MM
5909static void register_sched_domain_sysctl(void)
5910{
5911}
5912static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5913{
5914}
5915#endif
5916
1da177e4
LT
5917/*
5918 * migration_call - callback that gets triggered when a CPU is added.
5919 * Here we can start up the necessary migration thread for the new CPU.
5920 */
48f24c4d
IM
5921static int __cpuinit
5922migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5923{
1da177e4 5924 struct task_struct *p;
48f24c4d 5925 int cpu = (long)hcpu;
1da177e4 5926 unsigned long flags;
70b97a7f 5927 struct rq *rq;
1da177e4
LT
5928
5929 switch (action) {
5be9361c 5930
1da177e4 5931 case CPU_UP_PREPARE:
8bb78442 5932 case CPU_UP_PREPARE_FROZEN:
dd41f596 5933 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5934 if (IS_ERR(p))
5935 return NOTIFY_BAD;
1da177e4
LT
5936 kthread_bind(p, cpu);
5937 /* Must be high prio: stop_machine expects to yield to it. */
5938 rq = task_rq_lock(p, &flags);
dd41f596 5939 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5940 task_rq_unlock(rq, &flags);
5941 cpu_rq(cpu)->migration_thread = p;
5942 break;
48f24c4d 5943
1da177e4 5944 case CPU_ONLINE:
8bb78442 5945 case CPU_ONLINE_FROZEN:
3a4fa0a2 5946 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5947 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5948
5949 /* Update our root-domain */
5950 rq = cpu_rq(cpu);
5951 spin_lock_irqsave(&rq->lock, flags);
5952 if (rq->rd) {
5953 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5954 cpu_set(cpu, rq->rd->online);
5955 }
5956 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5957 break;
48f24c4d 5958
1da177e4
LT
5959#ifdef CONFIG_HOTPLUG_CPU
5960 case CPU_UP_CANCELED:
8bb78442 5961 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5962 if (!cpu_rq(cpu)->migration_thread)
5963 break;
41a2d6cf 5964 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5965 kthread_bind(cpu_rq(cpu)->migration_thread,
5966 any_online_cpu(cpu_online_map));
1da177e4
LT
5967 kthread_stop(cpu_rq(cpu)->migration_thread);
5968 cpu_rq(cpu)->migration_thread = NULL;
5969 break;
48f24c4d 5970
1da177e4 5971 case CPU_DEAD:
8bb78442 5972 case CPU_DEAD_FROZEN:
470fd646 5973 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5974 migrate_live_tasks(cpu);
5975 rq = cpu_rq(cpu);
5976 kthread_stop(rq->migration_thread);
5977 rq->migration_thread = NULL;
5978 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5979 spin_lock_irq(&rq->lock);
a8e504d2 5980 update_rq_clock(rq);
2e1cb74a 5981 deactivate_task(rq, rq->idle, 0);
1da177e4 5982 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5983 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5984 rq->idle->sched_class = &idle_sched_class;
1da177e4 5985 migrate_dead_tasks(cpu);
d2da272a 5986 spin_unlock_irq(&rq->lock);
470fd646 5987 cpuset_unlock();
1da177e4
LT
5988 migrate_nr_uninterruptible(rq);
5989 BUG_ON(rq->nr_running != 0);
5990
41a2d6cf
IM
5991 /*
5992 * No need to migrate the tasks: it was best-effort if
5993 * they didn't take sched_hotcpu_mutex. Just wake up
5994 * the requestors.
5995 */
1da177e4
LT
5996 spin_lock_irq(&rq->lock);
5997 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5998 struct migration_req *req;
5999
1da177e4 6000 req = list_entry(rq->migration_queue.next,
70b97a7f 6001 struct migration_req, list);
1da177e4
LT
6002 list_del_init(&req->list);
6003 complete(&req->done);
6004 }
6005 spin_unlock_irq(&rq->lock);
6006 break;
57d885fe 6007
08f503b0
GH
6008 case CPU_DYING:
6009 case CPU_DYING_FROZEN:
57d885fe
GH
6010 /* Update our root-domain */
6011 rq = cpu_rq(cpu);
6012 spin_lock_irqsave(&rq->lock, flags);
6013 if (rq->rd) {
6014 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6015 cpu_clear(cpu, rq->rd->online);
6016 }
6017 spin_unlock_irqrestore(&rq->lock, flags);
6018 break;
1da177e4
LT
6019#endif
6020 }
6021 return NOTIFY_OK;
6022}
6023
6024/* Register at highest priority so that task migration (migrate_all_tasks)
6025 * happens before everything else.
6026 */
26c2143b 6027static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6028 .notifier_call = migration_call,
6029 .priority = 10
6030};
6031
e6fe6649 6032void __init migration_init(void)
1da177e4
LT
6033{
6034 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6035 int err;
48f24c4d
IM
6036
6037 /* Start one for the boot CPU: */
07dccf33
AM
6038 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6039 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6040 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6041 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6042}
6043#endif
6044
6045#ifdef CONFIG_SMP
476f3534
CL
6046
6047/* Number of possible processor ids */
6048int nr_cpu_ids __read_mostly = NR_CPUS;
6049EXPORT_SYMBOL(nr_cpu_ids);
6050
3e9830dc 6051#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
6052
6053static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 6054{
4dcf6aff
IM
6055 struct sched_group *group = sd->groups;
6056 cpumask_t groupmask;
6057 char str[NR_CPUS];
1da177e4 6058
4dcf6aff
IM
6059 cpumask_scnprintf(str, NR_CPUS, sd->span);
6060 cpus_clear(groupmask);
6061
6062 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6063
6064 if (!(sd->flags & SD_LOAD_BALANCE)) {
6065 printk("does not load-balance\n");
6066 if (sd->parent)
6067 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6068 " has parent");
6069 return -1;
41c7ce9a
NP
6070 }
6071
4dcf6aff
IM
6072 printk(KERN_CONT "span %s\n", str);
6073
6074 if (!cpu_isset(cpu, sd->span)) {
6075 printk(KERN_ERR "ERROR: domain->span does not contain "
6076 "CPU%d\n", cpu);
6077 }
6078 if (!cpu_isset(cpu, group->cpumask)) {
6079 printk(KERN_ERR "ERROR: domain->groups does not contain"
6080 " CPU%d\n", cpu);
6081 }
1da177e4 6082
4dcf6aff 6083 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6084 do {
4dcf6aff
IM
6085 if (!group) {
6086 printk("\n");
6087 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6088 break;
6089 }
6090
4dcf6aff
IM
6091 if (!group->__cpu_power) {
6092 printk(KERN_CONT "\n");
6093 printk(KERN_ERR "ERROR: domain->cpu_power not "
6094 "set\n");
6095 break;
6096 }
1da177e4 6097
4dcf6aff
IM
6098 if (!cpus_weight(group->cpumask)) {
6099 printk(KERN_CONT "\n");
6100 printk(KERN_ERR "ERROR: empty group\n");
6101 break;
6102 }
1da177e4 6103
4dcf6aff
IM
6104 if (cpus_intersects(groupmask, group->cpumask)) {
6105 printk(KERN_CONT "\n");
6106 printk(KERN_ERR "ERROR: repeated CPUs\n");
6107 break;
6108 }
1da177e4 6109
4dcf6aff 6110 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 6111
4dcf6aff
IM
6112 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6113 printk(KERN_CONT " %s", str);
1da177e4 6114
4dcf6aff
IM
6115 group = group->next;
6116 } while (group != sd->groups);
6117 printk(KERN_CONT "\n");
1da177e4 6118
4dcf6aff
IM
6119 if (!cpus_equal(sd->span, groupmask))
6120 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6121
4dcf6aff
IM
6122 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6123 printk(KERN_ERR "ERROR: parent span is not a superset "
6124 "of domain->span\n");
6125 return 0;
6126}
1da177e4 6127
4dcf6aff
IM
6128static void sched_domain_debug(struct sched_domain *sd, int cpu)
6129{
6130 int level = 0;
1da177e4 6131
4dcf6aff
IM
6132 if (!sd) {
6133 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6134 return;
6135 }
1da177e4 6136
4dcf6aff
IM
6137 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6138
6139 for (;;) {
6140 if (sched_domain_debug_one(sd, cpu, level))
6141 break;
1da177e4
LT
6142 level++;
6143 sd = sd->parent;
33859f7f 6144 if (!sd)
4dcf6aff
IM
6145 break;
6146 }
1da177e4
LT
6147}
6148#else
48f24c4d 6149# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6150#endif
6151
1a20ff27 6152static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6153{
6154 if (cpus_weight(sd->span) == 1)
6155 return 1;
6156
6157 /* Following flags need at least 2 groups */
6158 if (sd->flags & (SD_LOAD_BALANCE |
6159 SD_BALANCE_NEWIDLE |
6160 SD_BALANCE_FORK |
89c4710e
SS
6161 SD_BALANCE_EXEC |
6162 SD_SHARE_CPUPOWER |
6163 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6164 if (sd->groups != sd->groups->next)
6165 return 0;
6166 }
6167
6168 /* Following flags don't use groups */
6169 if (sd->flags & (SD_WAKE_IDLE |
6170 SD_WAKE_AFFINE |
6171 SD_WAKE_BALANCE))
6172 return 0;
6173
6174 return 1;
6175}
6176
48f24c4d
IM
6177static int
6178sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6179{
6180 unsigned long cflags = sd->flags, pflags = parent->flags;
6181
6182 if (sd_degenerate(parent))
6183 return 1;
6184
6185 if (!cpus_equal(sd->span, parent->span))
6186 return 0;
6187
6188 /* Does parent contain flags not in child? */
6189 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6190 if (cflags & SD_WAKE_AFFINE)
6191 pflags &= ~SD_WAKE_BALANCE;
6192 /* Flags needing groups don't count if only 1 group in parent */
6193 if (parent->groups == parent->groups->next) {
6194 pflags &= ~(SD_LOAD_BALANCE |
6195 SD_BALANCE_NEWIDLE |
6196 SD_BALANCE_FORK |
89c4710e
SS
6197 SD_BALANCE_EXEC |
6198 SD_SHARE_CPUPOWER |
6199 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6200 }
6201 if (~cflags & pflags)
6202 return 0;
6203
6204 return 1;
6205}
6206
57d885fe
GH
6207static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6208{
6209 unsigned long flags;
6210 const struct sched_class *class;
6211
6212 spin_lock_irqsave(&rq->lock, flags);
6213
6214 if (rq->rd) {
6215 struct root_domain *old_rd = rq->rd;
6216
0eab9146 6217 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6218 if (class->leave_domain)
6219 class->leave_domain(rq);
0eab9146 6220 }
57d885fe 6221
dc938520
GH
6222 cpu_clear(rq->cpu, old_rd->span);
6223 cpu_clear(rq->cpu, old_rd->online);
6224
57d885fe
GH
6225 if (atomic_dec_and_test(&old_rd->refcount))
6226 kfree(old_rd);
6227 }
6228
6229 atomic_inc(&rd->refcount);
6230 rq->rd = rd;
6231
dc938520 6232 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6233 if (cpu_isset(rq->cpu, cpu_online_map))
6234 cpu_set(rq->cpu, rd->online);
dc938520 6235
0eab9146 6236 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6237 if (class->join_domain)
6238 class->join_domain(rq);
0eab9146 6239 }
57d885fe
GH
6240
6241 spin_unlock_irqrestore(&rq->lock, flags);
6242}
6243
dc938520 6244static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6245{
6246 memset(rd, 0, sizeof(*rd));
6247
dc938520
GH
6248 cpus_clear(rd->span);
6249 cpus_clear(rd->online);
57d885fe
GH
6250}
6251
6252static void init_defrootdomain(void)
6253{
dc938520 6254 init_rootdomain(&def_root_domain);
57d885fe
GH
6255 atomic_set(&def_root_domain.refcount, 1);
6256}
6257
dc938520 6258static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6259{
6260 struct root_domain *rd;
6261
6262 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6263 if (!rd)
6264 return NULL;
6265
dc938520 6266 init_rootdomain(rd);
57d885fe
GH
6267
6268 return rd;
6269}
6270
1da177e4 6271/*
0eab9146 6272 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6273 * hold the hotplug lock.
6274 */
0eab9146
IM
6275static void
6276cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6277{
70b97a7f 6278 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6279 struct sched_domain *tmp;
6280
6281 /* Remove the sched domains which do not contribute to scheduling. */
6282 for (tmp = sd; tmp; tmp = tmp->parent) {
6283 struct sched_domain *parent = tmp->parent;
6284 if (!parent)
6285 break;
1a848870 6286 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6287 tmp->parent = parent->parent;
1a848870
SS
6288 if (parent->parent)
6289 parent->parent->child = tmp;
6290 }
245af2c7
SS
6291 }
6292
1a848870 6293 if (sd && sd_degenerate(sd)) {
245af2c7 6294 sd = sd->parent;
1a848870
SS
6295 if (sd)
6296 sd->child = NULL;
6297 }
1da177e4
LT
6298
6299 sched_domain_debug(sd, cpu);
6300
57d885fe 6301 rq_attach_root(rq, rd);
674311d5 6302 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6303}
6304
6305/* cpus with isolated domains */
67af63a6 6306static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6307
6308/* Setup the mask of cpus configured for isolated domains */
6309static int __init isolated_cpu_setup(char *str)
6310{
6311 int ints[NR_CPUS], i;
6312
6313 str = get_options(str, ARRAY_SIZE(ints), ints);
6314 cpus_clear(cpu_isolated_map);
6315 for (i = 1; i <= ints[0]; i++)
6316 if (ints[i] < NR_CPUS)
6317 cpu_set(ints[i], cpu_isolated_map);
6318 return 1;
6319}
6320
8927f494 6321__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6322
6323/*
6711cab4
SS
6324 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6325 * to a function which identifies what group(along with sched group) a CPU
6326 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6327 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6328 *
6329 * init_sched_build_groups will build a circular linked list of the groups
6330 * covered by the given span, and will set each group's ->cpumask correctly,
6331 * and ->cpu_power to 0.
6332 */
a616058b 6333static void
6711cab4
SS
6334init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6335 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6336 struct sched_group **sg))
1da177e4
LT
6337{
6338 struct sched_group *first = NULL, *last = NULL;
6339 cpumask_t covered = CPU_MASK_NONE;
6340 int i;
6341
6342 for_each_cpu_mask(i, span) {
6711cab4
SS
6343 struct sched_group *sg;
6344 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6345 int j;
6346
6347 if (cpu_isset(i, covered))
6348 continue;
6349
6350 sg->cpumask = CPU_MASK_NONE;
5517d86b 6351 sg->__cpu_power = 0;
1da177e4
LT
6352
6353 for_each_cpu_mask(j, span) {
6711cab4 6354 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6355 continue;
6356
6357 cpu_set(j, covered);
6358 cpu_set(j, sg->cpumask);
6359 }
6360 if (!first)
6361 first = sg;
6362 if (last)
6363 last->next = sg;
6364 last = sg;
6365 }
6366 last->next = first;
6367}
6368
9c1cfda2 6369#define SD_NODES_PER_DOMAIN 16
1da177e4 6370
9c1cfda2 6371#ifdef CONFIG_NUMA
198e2f18 6372
9c1cfda2
JH
6373/**
6374 * find_next_best_node - find the next node to include in a sched_domain
6375 * @node: node whose sched_domain we're building
6376 * @used_nodes: nodes already in the sched_domain
6377 *
41a2d6cf 6378 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6379 * finds the closest node not already in the @used_nodes map.
6380 *
6381 * Should use nodemask_t.
6382 */
6383static int find_next_best_node(int node, unsigned long *used_nodes)
6384{
6385 int i, n, val, min_val, best_node = 0;
6386
6387 min_val = INT_MAX;
6388
6389 for (i = 0; i < MAX_NUMNODES; i++) {
6390 /* Start at @node */
6391 n = (node + i) % MAX_NUMNODES;
6392
6393 if (!nr_cpus_node(n))
6394 continue;
6395
6396 /* Skip already used nodes */
6397 if (test_bit(n, used_nodes))
6398 continue;
6399
6400 /* Simple min distance search */
6401 val = node_distance(node, n);
6402
6403 if (val < min_val) {
6404 min_val = val;
6405 best_node = n;
6406 }
6407 }
6408
6409 set_bit(best_node, used_nodes);
6410 return best_node;
6411}
6412
6413/**
6414 * sched_domain_node_span - get a cpumask for a node's sched_domain
6415 * @node: node whose cpumask we're constructing
6416 * @size: number of nodes to include in this span
6417 *
41a2d6cf 6418 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6419 * should be one that prevents unnecessary balancing, but also spreads tasks
6420 * out optimally.
6421 */
6422static cpumask_t sched_domain_node_span(int node)
6423{
9c1cfda2 6424 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6425 cpumask_t span, nodemask;
6426 int i;
9c1cfda2
JH
6427
6428 cpus_clear(span);
6429 bitmap_zero(used_nodes, MAX_NUMNODES);
6430
6431 nodemask = node_to_cpumask(node);
6432 cpus_or(span, span, nodemask);
6433 set_bit(node, used_nodes);
6434
6435 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6436 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6437
9c1cfda2
JH
6438 nodemask = node_to_cpumask(next_node);
6439 cpus_or(span, span, nodemask);
6440 }
6441
6442 return span;
6443}
6444#endif
6445
5c45bf27 6446int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6447
9c1cfda2 6448/*
48f24c4d 6449 * SMT sched-domains:
9c1cfda2 6450 */
1da177e4
LT
6451#ifdef CONFIG_SCHED_SMT
6452static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6453static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6454
41a2d6cf
IM
6455static int
6456cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6457{
6711cab4
SS
6458 if (sg)
6459 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6460 return cpu;
6461}
6462#endif
6463
48f24c4d
IM
6464/*
6465 * multi-core sched-domains:
6466 */
1e9f28fa
SS
6467#ifdef CONFIG_SCHED_MC
6468static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6469static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6470#endif
6471
6472#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6473static int
6474cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6475{
6711cab4 6476 int group;
d5a7430d 6477 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6478 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6479 group = first_cpu(mask);
6480 if (sg)
6481 *sg = &per_cpu(sched_group_core, group);
6482 return group;
1e9f28fa
SS
6483}
6484#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6485static int
6486cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6487{
6711cab4
SS
6488 if (sg)
6489 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6490 return cpu;
6491}
6492#endif
6493
1da177e4 6494static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6495static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6496
41a2d6cf
IM
6497static int
6498cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6499{
6711cab4 6500 int group;
48f24c4d 6501#ifdef CONFIG_SCHED_MC
1e9f28fa 6502 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6503 cpus_and(mask, mask, *cpu_map);
6711cab4 6504 group = first_cpu(mask);
1e9f28fa 6505#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6506 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6507 cpus_and(mask, mask, *cpu_map);
6711cab4 6508 group = first_cpu(mask);
1da177e4 6509#else
6711cab4 6510 group = cpu;
1da177e4 6511#endif
6711cab4
SS
6512 if (sg)
6513 *sg = &per_cpu(sched_group_phys, group);
6514 return group;
1da177e4
LT
6515}
6516
6517#ifdef CONFIG_NUMA
1da177e4 6518/*
9c1cfda2
JH
6519 * The init_sched_build_groups can't handle what we want to do with node
6520 * groups, so roll our own. Now each node has its own list of groups which
6521 * gets dynamically allocated.
1da177e4 6522 */
9c1cfda2 6523static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6524static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6525
9c1cfda2 6526static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6527static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6528
6711cab4
SS
6529static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6530 struct sched_group **sg)
9c1cfda2 6531{
6711cab4
SS
6532 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6533 int group;
6534
6535 cpus_and(nodemask, nodemask, *cpu_map);
6536 group = first_cpu(nodemask);
6537
6538 if (sg)
6539 *sg = &per_cpu(sched_group_allnodes, group);
6540 return group;
1da177e4 6541}
6711cab4 6542
08069033
SS
6543static void init_numa_sched_groups_power(struct sched_group *group_head)
6544{
6545 struct sched_group *sg = group_head;
6546 int j;
6547
6548 if (!sg)
6549 return;
3a5c359a
AK
6550 do {
6551 for_each_cpu_mask(j, sg->cpumask) {
6552 struct sched_domain *sd;
08069033 6553
3a5c359a
AK
6554 sd = &per_cpu(phys_domains, j);
6555 if (j != first_cpu(sd->groups->cpumask)) {
6556 /*
6557 * Only add "power" once for each
6558 * physical package.
6559 */
6560 continue;
6561 }
08069033 6562
3a5c359a
AK
6563 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6564 }
6565 sg = sg->next;
6566 } while (sg != group_head);
08069033 6567}
1da177e4
LT
6568#endif
6569
a616058b 6570#ifdef CONFIG_NUMA
51888ca2
SV
6571/* Free memory allocated for various sched_group structures */
6572static void free_sched_groups(const cpumask_t *cpu_map)
6573{
a616058b 6574 int cpu, i;
51888ca2
SV
6575
6576 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6577 struct sched_group **sched_group_nodes
6578 = sched_group_nodes_bycpu[cpu];
6579
51888ca2
SV
6580 if (!sched_group_nodes)
6581 continue;
6582
6583 for (i = 0; i < MAX_NUMNODES; i++) {
6584 cpumask_t nodemask = node_to_cpumask(i);
6585 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6586
6587 cpus_and(nodemask, nodemask, *cpu_map);
6588 if (cpus_empty(nodemask))
6589 continue;
6590
6591 if (sg == NULL)
6592 continue;
6593 sg = sg->next;
6594next_sg:
6595 oldsg = sg;
6596 sg = sg->next;
6597 kfree(oldsg);
6598 if (oldsg != sched_group_nodes[i])
6599 goto next_sg;
6600 }
6601 kfree(sched_group_nodes);
6602 sched_group_nodes_bycpu[cpu] = NULL;
6603 }
51888ca2 6604}
a616058b
SS
6605#else
6606static void free_sched_groups(const cpumask_t *cpu_map)
6607{
6608}
6609#endif
51888ca2 6610
89c4710e
SS
6611/*
6612 * Initialize sched groups cpu_power.
6613 *
6614 * cpu_power indicates the capacity of sched group, which is used while
6615 * distributing the load between different sched groups in a sched domain.
6616 * Typically cpu_power for all the groups in a sched domain will be same unless
6617 * there are asymmetries in the topology. If there are asymmetries, group
6618 * having more cpu_power will pickup more load compared to the group having
6619 * less cpu_power.
6620 *
6621 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6622 * the maximum number of tasks a group can handle in the presence of other idle
6623 * or lightly loaded groups in the same sched domain.
6624 */
6625static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6626{
6627 struct sched_domain *child;
6628 struct sched_group *group;
6629
6630 WARN_ON(!sd || !sd->groups);
6631
6632 if (cpu != first_cpu(sd->groups->cpumask))
6633 return;
6634
6635 child = sd->child;
6636
5517d86b
ED
6637 sd->groups->__cpu_power = 0;
6638
89c4710e
SS
6639 /*
6640 * For perf policy, if the groups in child domain share resources
6641 * (for example cores sharing some portions of the cache hierarchy
6642 * or SMT), then set this domain groups cpu_power such that each group
6643 * can handle only one task, when there are other idle groups in the
6644 * same sched domain.
6645 */
6646 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6647 (child->flags &
6648 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6649 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6650 return;
6651 }
6652
89c4710e
SS
6653 /*
6654 * add cpu_power of each child group to this groups cpu_power
6655 */
6656 group = child->groups;
6657 do {
5517d86b 6658 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6659 group = group->next;
6660 } while (group != child->groups);
6661}
6662
1da177e4 6663/*
1a20ff27
DG
6664 * Build sched domains for a given set of cpus and attach the sched domains
6665 * to the individual cpus
1da177e4 6666 */
51888ca2 6667static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6668{
6669 int i;
57d885fe 6670 struct root_domain *rd;
d1b55138
JH
6671#ifdef CONFIG_NUMA
6672 struct sched_group **sched_group_nodes = NULL;
6711cab4 6673 int sd_allnodes = 0;
d1b55138
JH
6674
6675 /*
6676 * Allocate the per-node list of sched groups
6677 */
5cf9f062 6678 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6679 GFP_KERNEL);
d1b55138
JH
6680 if (!sched_group_nodes) {
6681 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6682 return -ENOMEM;
d1b55138
JH
6683 }
6684 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6685#endif
1da177e4 6686
dc938520 6687 rd = alloc_rootdomain();
57d885fe
GH
6688 if (!rd) {
6689 printk(KERN_WARNING "Cannot alloc root domain\n");
6690 return -ENOMEM;
6691 }
6692
1da177e4 6693 /*
1a20ff27 6694 * Set up domains for cpus specified by the cpu_map.
1da177e4 6695 */
1a20ff27 6696 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6697 struct sched_domain *sd = NULL, *p;
6698 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6699
1a20ff27 6700 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6701
6702#ifdef CONFIG_NUMA
dd41f596
IM
6703 if (cpus_weight(*cpu_map) >
6704 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6705 sd = &per_cpu(allnodes_domains, i);
6706 *sd = SD_ALLNODES_INIT;
6707 sd->span = *cpu_map;
6711cab4 6708 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6709 p = sd;
6711cab4 6710 sd_allnodes = 1;
9c1cfda2
JH
6711 } else
6712 p = NULL;
6713
1da177e4 6714 sd = &per_cpu(node_domains, i);
1da177e4 6715 *sd = SD_NODE_INIT;
9c1cfda2
JH
6716 sd->span = sched_domain_node_span(cpu_to_node(i));
6717 sd->parent = p;
1a848870
SS
6718 if (p)
6719 p->child = sd;
9c1cfda2 6720 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6721#endif
6722
6723 p = sd;
6724 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6725 *sd = SD_CPU_INIT;
6726 sd->span = nodemask;
6727 sd->parent = p;
1a848870
SS
6728 if (p)
6729 p->child = sd;
6711cab4 6730 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6731
1e9f28fa
SS
6732#ifdef CONFIG_SCHED_MC
6733 p = sd;
6734 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6735 *sd = SD_MC_INIT;
6736 sd->span = cpu_coregroup_map(i);
6737 cpus_and(sd->span, sd->span, *cpu_map);
6738 sd->parent = p;
1a848870 6739 p->child = sd;
6711cab4 6740 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6741#endif
6742
1da177e4
LT
6743#ifdef CONFIG_SCHED_SMT
6744 p = sd;
6745 sd = &per_cpu(cpu_domains, i);
1da177e4 6746 *sd = SD_SIBLING_INIT;
d5a7430d 6747 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6748 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6749 sd->parent = p;
1a848870 6750 p->child = sd;
6711cab4 6751 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6752#endif
6753 }
6754
6755#ifdef CONFIG_SCHED_SMT
6756 /* Set up CPU (sibling) groups */
9c1cfda2 6757 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6758 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6759 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6760 if (i != first_cpu(this_sibling_map))
6761 continue;
6762
dd41f596
IM
6763 init_sched_build_groups(this_sibling_map, cpu_map,
6764 &cpu_to_cpu_group);
1da177e4
LT
6765 }
6766#endif
6767
1e9f28fa
SS
6768#ifdef CONFIG_SCHED_MC
6769 /* Set up multi-core groups */
6770 for_each_cpu_mask(i, *cpu_map) {
6771 cpumask_t this_core_map = cpu_coregroup_map(i);
6772 cpus_and(this_core_map, this_core_map, *cpu_map);
6773 if (i != first_cpu(this_core_map))
6774 continue;
dd41f596
IM
6775 init_sched_build_groups(this_core_map, cpu_map,
6776 &cpu_to_core_group);
1e9f28fa
SS
6777 }
6778#endif
6779
1da177e4
LT
6780 /* Set up physical groups */
6781 for (i = 0; i < MAX_NUMNODES; i++) {
6782 cpumask_t nodemask = node_to_cpumask(i);
6783
1a20ff27 6784 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6785 if (cpus_empty(nodemask))
6786 continue;
6787
6711cab4 6788 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6789 }
6790
6791#ifdef CONFIG_NUMA
6792 /* Set up node groups */
6711cab4 6793 if (sd_allnodes)
dd41f596
IM
6794 init_sched_build_groups(*cpu_map, cpu_map,
6795 &cpu_to_allnodes_group);
9c1cfda2
JH
6796
6797 for (i = 0; i < MAX_NUMNODES; i++) {
6798 /* Set up node groups */
6799 struct sched_group *sg, *prev;
6800 cpumask_t nodemask = node_to_cpumask(i);
6801 cpumask_t domainspan;
6802 cpumask_t covered = CPU_MASK_NONE;
6803 int j;
6804
6805 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6806 if (cpus_empty(nodemask)) {
6807 sched_group_nodes[i] = NULL;
9c1cfda2 6808 continue;
d1b55138 6809 }
9c1cfda2
JH
6810
6811 domainspan = sched_domain_node_span(i);
6812 cpus_and(domainspan, domainspan, *cpu_map);
6813
15f0b676 6814 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6815 if (!sg) {
6816 printk(KERN_WARNING "Can not alloc domain group for "
6817 "node %d\n", i);
6818 goto error;
6819 }
9c1cfda2
JH
6820 sched_group_nodes[i] = sg;
6821 for_each_cpu_mask(j, nodemask) {
6822 struct sched_domain *sd;
9761eea8 6823
9c1cfda2
JH
6824 sd = &per_cpu(node_domains, j);
6825 sd->groups = sg;
9c1cfda2 6826 }
5517d86b 6827 sg->__cpu_power = 0;
9c1cfda2 6828 sg->cpumask = nodemask;
51888ca2 6829 sg->next = sg;
9c1cfda2
JH
6830 cpus_or(covered, covered, nodemask);
6831 prev = sg;
6832
6833 for (j = 0; j < MAX_NUMNODES; j++) {
6834 cpumask_t tmp, notcovered;
6835 int n = (i + j) % MAX_NUMNODES;
6836
6837 cpus_complement(notcovered, covered);
6838 cpus_and(tmp, notcovered, *cpu_map);
6839 cpus_and(tmp, tmp, domainspan);
6840 if (cpus_empty(tmp))
6841 break;
6842
6843 nodemask = node_to_cpumask(n);
6844 cpus_and(tmp, tmp, nodemask);
6845 if (cpus_empty(tmp))
6846 continue;
6847
15f0b676
SV
6848 sg = kmalloc_node(sizeof(struct sched_group),
6849 GFP_KERNEL, i);
9c1cfda2
JH
6850 if (!sg) {
6851 printk(KERN_WARNING
6852 "Can not alloc domain group for node %d\n", j);
51888ca2 6853 goto error;
9c1cfda2 6854 }
5517d86b 6855 sg->__cpu_power = 0;
9c1cfda2 6856 sg->cpumask = tmp;
51888ca2 6857 sg->next = prev->next;
9c1cfda2
JH
6858 cpus_or(covered, covered, tmp);
6859 prev->next = sg;
6860 prev = sg;
6861 }
9c1cfda2 6862 }
1da177e4
LT
6863#endif
6864
6865 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6866#ifdef CONFIG_SCHED_SMT
1a20ff27 6867 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6868 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6869
89c4710e 6870 init_sched_groups_power(i, sd);
5c45bf27 6871 }
1da177e4 6872#endif
1e9f28fa 6873#ifdef CONFIG_SCHED_MC
5c45bf27 6874 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6875 struct sched_domain *sd = &per_cpu(core_domains, i);
6876
89c4710e 6877 init_sched_groups_power(i, sd);
5c45bf27
SS
6878 }
6879#endif
1e9f28fa 6880
5c45bf27 6881 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6882 struct sched_domain *sd = &per_cpu(phys_domains, i);
6883
89c4710e 6884 init_sched_groups_power(i, sd);
1da177e4
LT
6885 }
6886
9c1cfda2 6887#ifdef CONFIG_NUMA
08069033
SS
6888 for (i = 0; i < MAX_NUMNODES; i++)
6889 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6890
6711cab4
SS
6891 if (sd_allnodes) {
6892 struct sched_group *sg;
f712c0c7 6893
6711cab4 6894 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6895 init_numa_sched_groups_power(sg);
6896 }
9c1cfda2
JH
6897#endif
6898
1da177e4 6899 /* Attach the domains */
1a20ff27 6900 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6901 struct sched_domain *sd;
6902#ifdef CONFIG_SCHED_SMT
6903 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6904#elif defined(CONFIG_SCHED_MC)
6905 sd = &per_cpu(core_domains, i);
1da177e4
LT
6906#else
6907 sd = &per_cpu(phys_domains, i);
6908#endif
57d885fe 6909 cpu_attach_domain(sd, rd, i);
1da177e4 6910 }
51888ca2
SV
6911
6912 return 0;
6913
a616058b 6914#ifdef CONFIG_NUMA
51888ca2
SV
6915error:
6916 free_sched_groups(cpu_map);
6917 return -ENOMEM;
a616058b 6918#endif
1da177e4 6919}
029190c5
PJ
6920
6921static cpumask_t *doms_cur; /* current sched domains */
6922static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6923
6924/*
6925 * Special case: If a kmalloc of a doms_cur partition (array of
6926 * cpumask_t) fails, then fallback to a single sched domain,
6927 * as determined by the single cpumask_t fallback_doms.
6928 */
6929static cpumask_t fallback_doms;
6930
22e52b07
HC
6931void __attribute__((weak)) arch_update_cpu_topology(void)
6932{
6933}
6934
1a20ff27 6935/*
41a2d6cf 6936 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6937 * For now this just excludes isolated cpus, but could be used to
6938 * exclude other special cases in the future.
1a20ff27 6939 */
51888ca2 6940static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6941{
7378547f
MM
6942 int err;
6943
22e52b07 6944 arch_update_cpu_topology();
029190c5
PJ
6945 ndoms_cur = 1;
6946 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6947 if (!doms_cur)
6948 doms_cur = &fallback_doms;
6949 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6950 err = build_sched_domains(doms_cur);
6382bc90 6951 register_sched_domain_sysctl();
7378547f
MM
6952
6953 return err;
1a20ff27
DG
6954}
6955
6956static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6957{
51888ca2 6958 free_sched_groups(cpu_map);
9c1cfda2 6959}
1da177e4 6960
1a20ff27
DG
6961/*
6962 * Detach sched domains from a group of cpus specified in cpu_map
6963 * These cpus will now be attached to the NULL domain
6964 */
858119e1 6965static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6966{
6967 int i;
6968
6382bc90
MM
6969 unregister_sched_domain_sysctl();
6970
1a20ff27 6971 for_each_cpu_mask(i, *cpu_map)
57d885fe 6972 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6973 synchronize_sched();
6974 arch_destroy_sched_domains(cpu_map);
6975}
6976
029190c5
PJ
6977/*
6978 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6979 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6980 * doms_new[] to the current sched domain partitioning, doms_cur[].
6981 * It destroys each deleted domain and builds each new domain.
6982 *
6983 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6984 * The masks don't intersect (don't overlap.) We should setup one
6985 * sched domain for each mask. CPUs not in any of the cpumasks will
6986 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6987 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6988 * it as it is.
6989 *
41a2d6cf
IM
6990 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6991 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6992 * failed the kmalloc call, then it can pass in doms_new == NULL,
6993 * and partition_sched_domains() will fallback to the single partition
6994 * 'fallback_doms'.
6995 *
6996 * Call with hotplug lock held
6997 */
6998void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6999{
7000 int i, j;
7001
a1835615
SV
7002 lock_doms_cur();
7003
7378547f
MM
7004 /* always unregister in case we don't destroy any domains */
7005 unregister_sched_domain_sysctl();
7006
029190c5
PJ
7007 if (doms_new == NULL) {
7008 ndoms_new = 1;
7009 doms_new = &fallback_doms;
7010 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7011 }
7012
7013 /* Destroy deleted domains */
7014 for (i = 0; i < ndoms_cur; i++) {
7015 for (j = 0; j < ndoms_new; j++) {
7016 if (cpus_equal(doms_cur[i], doms_new[j]))
7017 goto match1;
7018 }
7019 /* no match - a current sched domain not in new doms_new[] */
7020 detach_destroy_domains(doms_cur + i);
7021match1:
7022 ;
7023 }
7024
7025 /* Build new domains */
7026 for (i = 0; i < ndoms_new; i++) {
7027 for (j = 0; j < ndoms_cur; j++) {
7028 if (cpus_equal(doms_new[i], doms_cur[j]))
7029 goto match2;
7030 }
7031 /* no match - add a new doms_new */
7032 build_sched_domains(doms_new + i);
7033match2:
7034 ;
7035 }
7036
7037 /* Remember the new sched domains */
7038 if (doms_cur != &fallback_doms)
7039 kfree(doms_cur);
7040 doms_cur = doms_new;
7041 ndoms_cur = ndoms_new;
7378547f
MM
7042
7043 register_sched_domain_sysctl();
a1835615
SV
7044
7045 unlock_doms_cur();
029190c5
PJ
7046}
7047
5c45bf27 7048#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7049int arch_reinit_sched_domains(void)
5c45bf27
SS
7050{
7051 int err;
7052
95402b38 7053 get_online_cpus();
5c45bf27
SS
7054 detach_destroy_domains(&cpu_online_map);
7055 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7056 put_online_cpus();
5c45bf27
SS
7057
7058 return err;
7059}
7060
7061static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7062{
7063 int ret;
7064
7065 if (buf[0] != '0' && buf[0] != '1')
7066 return -EINVAL;
7067
7068 if (smt)
7069 sched_smt_power_savings = (buf[0] == '1');
7070 else
7071 sched_mc_power_savings = (buf[0] == '1');
7072
7073 ret = arch_reinit_sched_domains();
7074
7075 return ret ? ret : count;
7076}
7077
5c45bf27
SS
7078#ifdef CONFIG_SCHED_MC
7079static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7080{
7081 return sprintf(page, "%u\n", sched_mc_power_savings);
7082}
48f24c4d
IM
7083static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7084 const char *buf, size_t count)
5c45bf27
SS
7085{
7086 return sched_power_savings_store(buf, count, 0);
7087}
6707de00
AB
7088static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7089 sched_mc_power_savings_store);
5c45bf27
SS
7090#endif
7091
7092#ifdef CONFIG_SCHED_SMT
7093static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7094{
7095 return sprintf(page, "%u\n", sched_smt_power_savings);
7096}
48f24c4d
IM
7097static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7098 const char *buf, size_t count)
5c45bf27
SS
7099{
7100 return sched_power_savings_store(buf, count, 1);
7101}
6707de00
AB
7102static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7103 sched_smt_power_savings_store);
7104#endif
7105
7106int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7107{
7108 int err = 0;
7109
7110#ifdef CONFIG_SCHED_SMT
7111 if (smt_capable())
7112 err = sysfs_create_file(&cls->kset.kobj,
7113 &attr_sched_smt_power_savings.attr);
7114#endif
7115#ifdef CONFIG_SCHED_MC
7116 if (!err && mc_capable())
7117 err = sysfs_create_file(&cls->kset.kobj,
7118 &attr_sched_mc_power_savings.attr);
7119#endif
7120 return err;
7121}
5c45bf27
SS
7122#endif
7123
1da177e4 7124/*
41a2d6cf 7125 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7126 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7127 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7128 * which will prevent rebalancing while the sched domains are recalculated.
7129 */
7130static int update_sched_domains(struct notifier_block *nfb,
7131 unsigned long action, void *hcpu)
7132{
1da177e4
LT
7133 switch (action) {
7134 case CPU_UP_PREPARE:
8bb78442 7135 case CPU_UP_PREPARE_FROZEN:
1da177e4 7136 case CPU_DOWN_PREPARE:
8bb78442 7137 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7138 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7139 return NOTIFY_OK;
7140
7141 case CPU_UP_CANCELED:
8bb78442 7142 case CPU_UP_CANCELED_FROZEN:
1da177e4 7143 case CPU_DOWN_FAILED:
8bb78442 7144 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7145 case CPU_ONLINE:
8bb78442 7146 case CPU_ONLINE_FROZEN:
1da177e4 7147 case CPU_DEAD:
8bb78442 7148 case CPU_DEAD_FROZEN:
1da177e4
LT
7149 /*
7150 * Fall through and re-initialise the domains.
7151 */
7152 break;
7153 default:
7154 return NOTIFY_DONE;
7155 }
7156
7157 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7158 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7159
7160 return NOTIFY_OK;
7161}
1da177e4
LT
7162
7163void __init sched_init_smp(void)
7164{
5c1e1767
NP
7165 cpumask_t non_isolated_cpus;
7166
95402b38 7167 get_online_cpus();
1a20ff27 7168 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7169 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7170 if (cpus_empty(non_isolated_cpus))
7171 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7172 put_online_cpus();
1da177e4
LT
7173 /* XXX: Theoretical race here - CPU may be hotplugged now */
7174 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7175
7176 /* Move init over to a non-isolated CPU */
7177 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7178 BUG();
19978ca6 7179 sched_init_granularity();
1da177e4
LT
7180}
7181#else
7182void __init sched_init_smp(void)
7183{
19978ca6 7184 sched_init_granularity();
1da177e4
LT
7185}
7186#endif /* CONFIG_SMP */
7187
7188int in_sched_functions(unsigned long addr)
7189{
1da177e4
LT
7190 return in_lock_functions(addr) ||
7191 (addr >= (unsigned long)__sched_text_start
7192 && addr < (unsigned long)__sched_text_end);
7193}
7194
a9957449 7195static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7196{
7197 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7198#ifdef CONFIG_FAIR_GROUP_SCHED
7199 cfs_rq->rq = rq;
7200#endif
67e9fb2a 7201 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7202}
7203
fa85ae24
PZ
7204static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7205{
7206 struct rt_prio_array *array;
7207 int i;
7208
7209 array = &rt_rq->active;
7210 for (i = 0; i < MAX_RT_PRIO; i++) {
7211 INIT_LIST_HEAD(array->queue + i);
7212 __clear_bit(i, array->bitmap);
7213 }
7214 /* delimiter for bitsearch: */
7215 __set_bit(MAX_RT_PRIO, array->bitmap);
7216
052f1dc7 7217#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7218 rt_rq->highest_prio = MAX_RT_PRIO;
7219#endif
fa85ae24
PZ
7220#ifdef CONFIG_SMP
7221 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7222 rt_rq->overloaded = 0;
7223#endif
7224
7225 rt_rq->rt_time = 0;
7226 rt_rq->rt_throttled = 0;
6f505b16 7227
052f1dc7 7228#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7229 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7230 rt_rq->rq = rq;
7231#endif
fa85ae24
PZ
7232}
7233
6f505b16
PZ
7234#ifdef CONFIG_FAIR_GROUP_SCHED
7235static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7236 struct cfs_rq *cfs_rq, struct sched_entity *se,
7237 int cpu, int add)
7238{
7239 tg->cfs_rq[cpu] = cfs_rq;
7240 init_cfs_rq(cfs_rq, rq);
7241 cfs_rq->tg = tg;
7242 if (add)
7243 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7244
7245 tg->se[cpu] = se;
7246 se->cfs_rq = &rq->cfs;
7247 se->my_q = cfs_rq;
7248 se->load.weight = tg->shares;
7249 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7250 se->parent = NULL;
7251}
052f1dc7 7252#endif
6f505b16 7253
052f1dc7 7254#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7255static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7256 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7257 int cpu, int add)
7258{
7259 tg->rt_rq[cpu] = rt_rq;
7260 init_rt_rq(rt_rq, rq);
7261 rt_rq->tg = tg;
7262 rt_rq->rt_se = rt_se;
7263 if (add)
7264 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7265
7266 tg->rt_se[cpu] = rt_se;
7267 rt_se->rt_rq = &rq->rt;
7268 rt_se->my_q = rt_rq;
7269 rt_se->parent = NULL;
7270 INIT_LIST_HEAD(&rt_se->run_list);
7271}
7272#endif
7273
1da177e4
LT
7274void __init sched_init(void)
7275{
476f3534 7276 int highest_cpu = 0;
dd41f596
IM
7277 int i, j;
7278
57d885fe
GH
7279#ifdef CONFIG_SMP
7280 init_defrootdomain();
7281#endif
7282
052f1dc7 7283#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7284 list_add(&init_task_group.list, &task_groups);
7285#endif
7286
0a945022 7287 for_each_possible_cpu(i) {
70b97a7f 7288 struct rq *rq;
1da177e4
LT
7289
7290 rq = cpu_rq(i);
7291 spin_lock_init(&rq->lock);
fcb99371 7292 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7293 rq->nr_running = 0;
dd41f596 7294 rq->clock = 1;
15934a37 7295 update_last_tick_seen(rq);
dd41f596 7296 init_cfs_rq(&rq->cfs, rq);
6f505b16 7297 init_rt_rq(&rq->rt, rq);
dd41f596 7298#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7299 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7300 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7301 init_tg_cfs_entry(rq, &init_task_group,
7302 &per_cpu(init_cfs_rq, i),
7303 &per_cpu(init_sched_entity, i), i, 1);
7304
052f1dc7
PZ
7305#endif
7306#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
7307 init_task_group.rt_runtime =
7308 sysctl_sched_rt_runtime * NSEC_PER_USEC;
6f505b16
PZ
7309 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7310 init_tg_rt_entry(rq, &init_task_group,
7311 &per_cpu(init_rt_rq, i),
7312 &per_cpu(init_sched_rt_entity, i), i, 1);
dd41f596 7313#endif
fa85ae24 7314 rq->rt_period_expire = 0;
48d5e258 7315 rq->rt_throttled = 0;
1da177e4 7316
dd41f596
IM
7317 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7318 rq->cpu_load[j] = 0;
1da177e4 7319#ifdef CONFIG_SMP
41c7ce9a 7320 rq->sd = NULL;
57d885fe 7321 rq->rd = NULL;
1da177e4 7322 rq->active_balance = 0;
dd41f596 7323 rq->next_balance = jiffies;
1da177e4 7324 rq->push_cpu = 0;
0a2966b4 7325 rq->cpu = i;
1da177e4
LT
7326 rq->migration_thread = NULL;
7327 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7328 rq_attach_root(rq, &def_root_domain);
1da177e4 7329#endif
8f4d37ec 7330 init_rq_hrtick(rq);
1da177e4 7331 atomic_set(&rq->nr_iowait, 0);
476f3534 7332 highest_cpu = i;
1da177e4
LT
7333 }
7334
2dd73a4f 7335 set_load_weight(&init_task);
b50f60ce 7336
e107be36
AK
7337#ifdef CONFIG_PREEMPT_NOTIFIERS
7338 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7339#endif
7340
c9819f45 7341#ifdef CONFIG_SMP
476f3534 7342 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7343 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7344#endif
7345
b50f60ce
HC
7346#ifdef CONFIG_RT_MUTEXES
7347 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7348#endif
7349
1da177e4
LT
7350 /*
7351 * The boot idle thread does lazy MMU switching as well:
7352 */
7353 atomic_inc(&init_mm.mm_count);
7354 enter_lazy_tlb(&init_mm, current);
7355
7356 /*
7357 * Make us the idle thread. Technically, schedule() should not be
7358 * called from this thread, however somewhere below it might be,
7359 * but because we are the idle thread, we just pick up running again
7360 * when this runqueue becomes "idle".
7361 */
7362 init_idle(current, smp_processor_id());
dd41f596
IM
7363 /*
7364 * During early bootup we pretend to be a normal task:
7365 */
7366 current->sched_class = &fair_sched_class;
6892b75e
IM
7367
7368 scheduler_running = 1;
1da177e4
LT
7369}
7370
7371#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7372void __might_sleep(char *file, int line)
7373{
48f24c4d 7374#ifdef in_atomic
1da177e4
LT
7375 static unsigned long prev_jiffy; /* ratelimiting */
7376
7377 if ((in_atomic() || irqs_disabled()) &&
7378 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7379 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7380 return;
7381 prev_jiffy = jiffies;
91368d73 7382 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7383 " context at %s:%d\n", file, line);
7384 printk("in_atomic():%d, irqs_disabled():%d\n",
7385 in_atomic(), irqs_disabled());
a4c410f0 7386 debug_show_held_locks(current);
3117df04
IM
7387 if (irqs_disabled())
7388 print_irqtrace_events(current);
1da177e4
LT
7389 dump_stack();
7390 }
7391#endif
7392}
7393EXPORT_SYMBOL(__might_sleep);
7394#endif
7395
7396#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7397static void normalize_task(struct rq *rq, struct task_struct *p)
7398{
7399 int on_rq;
7400 update_rq_clock(rq);
7401 on_rq = p->se.on_rq;
7402 if (on_rq)
7403 deactivate_task(rq, p, 0);
7404 __setscheduler(rq, p, SCHED_NORMAL, 0);
7405 if (on_rq) {
7406 activate_task(rq, p, 0);
7407 resched_task(rq->curr);
7408 }
7409}
7410
1da177e4
LT
7411void normalize_rt_tasks(void)
7412{
a0f98a1c 7413 struct task_struct *g, *p;
1da177e4 7414 unsigned long flags;
70b97a7f 7415 struct rq *rq;
1da177e4 7416
4cf5d77a 7417 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7418 do_each_thread(g, p) {
178be793
IM
7419 /*
7420 * Only normalize user tasks:
7421 */
7422 if (!p->mm)
7423 continue;
7424
6cfb0d5d 7425 p->se.exec_start = 0;
6cfb0d5d 7426#ifdef CONFIG_SCHEDSTATS
dd41f596 7427 p->se.wait_start = 0;
dd41f596 7428 p->se.sleep_start = 0;
dd41f596 7429 p->se.block_start = 0;
6cfb0d5d 7430#endif
dd41f596
IM
7431 task_rq(p)->clock = 0;
7432
7433 if (!rt_task(p)) {
7434 /*
7435 * Renice negative nice level userspace
7436 * tasks back to 0:
7437 */
7438 if (TASK_NICE(p) < 0 && p->mm)
7439 set_user_nice(p, 0);
1da177e4 7440 continue;
dd41f596 7441 }
1da177e4 7442
4cf5d77a 7443 spin_lock(&p->pi_lock);
b29739f9 7444 rq = __task_rq_lock(p);
1da177e4 7445
178be793 7446 normalize_task(rq, p);
3a5e4dc1 7447
b29739f9 7448 __task_rq_unlock(rq);
4cf5d77a 7449 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7450 } while_each_thread(g, p);
7451
4cf5d77a 7452 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7453}
7454
7455#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7456
7457#ifdef CONFIG_IA64
7458/*
7459 * These functions are only useful for the IA64 MCA handling.
7460 *
7461 * They can only be called when the whole system has been
7462 * stopped - every CPU needs to be quiescent, and no scheduling
7463 * activity can take place. Using them for anything else would
7464 * be a serious bug, and as a result, they aren't even visible
7465 * under any other configuration.
7466 */
7467
7468/**
7469 * curr_task - return the current task for a given cpu.
7470 * @cpu: the processor in question.
7471 *
7472 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7473 */
36c8b586 7474struct task_struct *curr_task(int cpu)
1df5c10a
LT
7475{
7476 return cpu_curr(cpu);
7477}
7478
7479/**
7480 * set_curr_task - set the current task for a given cpu.
7481 * @cpu: the processor in question.
7482 * @p: the task pointer to set.
7483 *
7484 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7485 * are serviced on a separate stack. It allows the architecture to switch the
7486 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7487 * must be called with all CPU's synchronized, and interrupts disabled, the
7488 * and caller must save the original value of the current task (see
7489 * curr_task() above) and restore that value before reenabling interrupts and
7490 * re-starting the system.
7491 *
7492 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7493 */
36c8b586 7494void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7495{
7496 cpu_curr(cpu) = p;
7497}
7498
7499#endif
29f59db3 7500
052f1dc7 7501#ifdef CONFIG_GROUP_SCHED
29f59db3 7502
bccbe08a
PZ
7503#ifdef CONFIG_FAIR_GROUP_SCHED
7504static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7505{
7506 int i;
7507
7508 for_each_possible_cpu(i) {
7509 if (tg->cfs_rq)
7510 kfree(tg->cfs_rq[i]);
7511 if (tg->se)
7512 kfree(tg->se[i]);
6f505b16
PZ
7513 }
7514
7515 kfree(tg->cfs_rq);
7516 kfree(tg->se);
6f505b16
PZ
7517}
7518
bccbe08a 7519static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7520{
29f59db3
SV
7521 struct cfs_rq *cfs_rq;
7522 struct sched_entity *se;
9b5b7751 7523 struct rq *rq;
29f59db3
SV
7524 int i;
7525
9b5b7751 7526 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7527 if (!tg->cfs_rq)
7528 goto err;
9b5b7751 7529 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7530 if (!tg->se)
7531 goto err;
052f1dc7
PZ
7532
7533 tg->shares = NICE_0_LOAD;
29f59db3
SV
7534
7535 for_each_possible_cpu(i) {
9b5b7751 7536 rq = cpu_rq(i);
29f59db3 7537
6f505b16
PZ
7538 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7539 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7540 if (!cfs_rq)
7541 goto err;
7542
6f505b16
PZ
7543 se = kmalloc_node(sizeof(struct sched_entity),
7544 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7545 if (!se)
7546 goto err;
7547
052f1dc7 7548 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7549 }
7550
7551 return 1;
7552
7553 err:
7554 return 0;
7555}
7556
7557static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7558{
7559 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7560 &cpu_rq(cpu)->leaf_cfs_rq_list);
7561}
7562
7563static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7564{
7565 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7566}
7567#else
7568static inline void free_fair_sched_group(struct task_group *tg)
7569{
7570}
7571
7572static inline int alloc_fair_sched_group(struct task_group *tg)
7573{
7574 return 1;
7575}
7576
7577static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7578{
7579}
7580
7581static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7582{
7583}
052f1dc7
PZ
7584#endif
7585
7586#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7587static void free_rt_sched_group(struct task_group *tg)
7588{
7589 int i;
7590
7591 for_each_possible_cpu(i) {
7592 if (tg->rt_rq)
7593 kfree(tg->rt_rq[i]);
7594 if (tg->rt_se)
7595 kfree(tg->rt_se[i]);
7596 }
7597
7598 kfree(tg->rt_rq);
7599 kfree(tg->rt_se);
7600}
7601
7602static int alloc_rt_sched_group(struct task_group *tg)
7603{
7604 struct rt_rq *rt_rq;
7605 struct sched_rt_entity *rt_se;
7606 struct rq *rq;
7607 int i;
7608
7609 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7610 if (!tg->rt_rq)
7611 goto err;
7612 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7613 if (!tg->rt_se)
7614 goto err;
7615
7616 tg->rt_runtime = 0;
7617
7618 for_each_possible_cpu(i) {
7619 rq = cpu_rq(i);
7620
6f505b16
PZ
7621 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7622 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7623 if (!rt_rq)
7624 goto err;
29f59db3 7625
6f505b16
PZ
7626 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7627 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7628 if (!rt_se)
7629 goto err;
29f59db3 7630
6f505b16 7631 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7632 }
7633
bccbe08a
PZ
7634 return 1;
7635
7636 err:
7637 return 0;
7638}
7639
7640static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7641{
7642 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7643 &cpu_rq(cpu)->leaf_rt_rq_list);
7644}
7645
7646static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7647{
7648 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7649}
7650#else
7651static inline void free_rt_sched_group(struct task_group *tg)
7652{
7653}
7654
7655static inline int alloc_rt_sched_group(struct task_group *tg)
7656{
7657 return 1;
7658}
7659
7660static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7661{
7662}
7663
7664static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7665{
7666}
7667#endif
7668
7669static void free_sched_group(struct task_group *tg)
7670{
7671 free_fair_sched_group(tg);
7672 free_rt_sched_group(tg);
7673 kfree(tg);
7674}
7675
7676/* allocate runqueue etc for a new task group */
7677struct task_group *sched_create_group(void)
7678{
7679 struct task_group *tg;
7680 unsigned long flags;
7681 int i;
7682
7683 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7684 if (!tg)
7685 return ERR_PTR(-ENOMEM);
7686
7687 if (!alloc_fair_sched_group(tg))
7688 goto err;
7689
7690 if (!alloc_rt_sched_group(tg))
7691 goto err;
7692
8ed36996 7693 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7694 for_each_possible_cpu(i) {
bccbe08a
PZ
7695 register_fair_sched_group(tg, i);
7696 register_rt_sched_group(tg, i);
9b5b7751 7697 }
6f505b16 7698 list_add_rcu(&tg->list, &task_groups);
8ed36996 7699 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7700
9b5b7751 7701 return tg;
29f59db3
SV
7702
7703err:
6f505b16 7704 free_sched_group(tg);
29f59db3
SV
7705 return ERR_PTR(-ENOMEM);
7706}
7707
9b5b7751 7708/* rcu callback to free various structures associated with a task group */
6f505b16 7709static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7710{
29f59db3 7711 /* now it should be safe to free those cfs_rqs */
6f505b16 7712 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7713}
7714
9b5b7751 7715/* Destroy runqueue etc associated with a task group */
4cf86d77 7716void sched_destroy_group(struct task_group *tg)
29f59db3 7717{
8ed36996 7718 unsigned long flags;
9b5b7751 7719 int i;
29f59db3 7720
8ed36996 7721 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7722 for_each_possible_cpu(i) {
bccbe08a
PZ
7723 unregister_fair_sched_group(tg, i);
7724 unregister_rt_sched_group(tg, i);
9b5b7751 7725 }
6f505b16 7726 list_del_rcu(&tg->list);
8ed36996 7727 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7728
9b5b7751 7729 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7730 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7731}
7732
9b5b7751 7733/* change task's runqueue when it moves between groups.
3a252015
IM
7734 * The caller of this function should have put the task in its new group
7735 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7736 * reflect its new group.
9b5b7751
SV
7737 */
7738void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7739{
7740 int on_rq, running;
7741 unsigned long flags;
7742 struct rq *rq;
7743
7744 rq = task_rq_lock(tsk, &flags);
7745
29f59db3
SV
7746 update_rq_clock(rq);
7747
051a1d1a 7748 running = task_current(rq, tsk);
29f59db3
SV
7749 on_rq = tsk->se.on_rq;
7750
0e1f3483 7751 if (on_rq)
29f59db3 7752 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7753 if (unlikely(running))
7754 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7755
6f505b16 7756 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7757
810b3817
PZ
7758#ifdef CONFIG_FAIR_GROUP_SCHED
7759 if (tsk->sched_class->moved_group)
7760 tsk->sched_class->moved_group(tsk);
7761#endif
7762
0e1f3483
HS
7763 if (unlikely(running))
7764 tsk->sched_class->set_curr_task(rq);
7765 if (on_rq)
7074badb 7766 enqueue_task(rq, tsk, 0);
29f59db3 7767
29f59db3
SV
7768 task_rq_unlock(rq, &flags);
7769}
7770
052f1dc7 7771#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
7772static void set_se_shares(struct sched_entity *se, unsigned long shares)
7773{
7774 struct cfs_rq *cfs_rq = se->cfs_rq;
7775 struct rq *rq = cfs_rq->rq;
7776 int on_rq;
7777
62fb1851 7778 spin_lock_irq(&rq->lock);
29f59db3
SV
7779
7780 on_rq = se->on_rq;
62fb1851 7781 if (on_rq)
29f59db3
SV
7782 dequeue_entity(cfs_rq, se, 0);
7783
7784 se->load.weight = shares;
7785 se->load.inv_weight = div64_64((1ULL<<32), shares);
7786
62fb1851 7787 if (on_rq)
29f59db3 7788 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
7789
7790 spin_unlock_irq(&rq->lock);
29f59db3
SV
7791}
7792
8ed36996
PZ
7793static DEFINE_MUTEX(shares_mutex);
7794
4cf86d77 7795int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7796{
7797 int i;
8ed36996 7798 unsigned long flags;
c61935fd 7799
62fb1851
PZ
7800 /*
7801 * A weight of 0 or 1 can cause arithmetics problems.
7802 * (The default weight is 1024 - so there's no practical
7803 * limitation from this.)
7804 */
7805 if (shares < 2)
7806 shares = 2;
7807
8ed36996 7808 mutex_lock(&shares_mutex);
9b5b7751 7809 if (tg->shares == shares)
5cb350ba 7810 goto done;
29f59db3 7811
8ed36996 7812 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7813 for_each_possible_cpu(i)
7814 unregister_fair_sched_group(tg, i);
8ed36996 7815 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
7816
7817 /* wait for any ongoing reference to this group to finish */
7818 synchronize_sched();
7819
7820 /*
7821 * Now we are free to modify the group's share on each cpu
7822 * w/o tripping rebalance_share or load_balance_fair.
7823 */
9b5b7751 7824 tg->shares = shares;
62fb1851 7825 for_each_possible_cpu(i)
9b5b7751 7826 set_se_shares(tg->se[i], shares);
29f59db3 7827
6b2d7700
SV
7828 /*
7829 * Enable load balance activity on this group, by inserting it back on
7830 * each cpu's rq->leaf_cfs_rq_list.
7831 */
8ed36996 7832 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7833 for_each_possible_cpu(i)
7834 register_fair_sched_group(tg, i);
8ed36996 7835 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 7836done:
8ed36996 7837 mutex_unlock(&shares_mutex);
9b5b7751 7838 return 0;
29f59db3
SV
7839}
7840
5cb350ba
DG
7841unsigned long sched_group_shares(struct task_group *tg)
7842{
7843 return tg->shares;
7844}
052f1dc7 7845#endif
5cb350ba 7846
052f1dc7 7847#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7848/*
9f0c1e56 7849 * Ensure that the real time constraints are schedulable.
6f505b16 7850 */
9f0c1e56
PZ
7851static DEFINE_MUTEX(rt_constraints_mutex);
7852
7853static unsigned long to_ratio(u64 period, u64 runtime)
7854{
7855 if (runtime == RUNTIME_INF)
7856 return 1ULL << 16;
7857
2692a240 7858 return div64_64(runtime << 16, period);
9f0c1e56
PZ
7859}
7860
7861static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
7862{
7863 struct task_group *tgi;
7864 unsigned long total = 0;
9f0c1e56
PZ
7865 unsigned long global_ratio =
7866 to_ratio(sysctl_sched_rt_period,
7867 sysctl_sched_rt_runtime < 0 ?
7868 RUNTIME_INF : sysctl_sched_rt_runtime);
6f505b16
PZ
7869
7870 rcu_read_lock();
9f0c1e56
PZ
7871 list_for_each_entry_rcu(tgi, &task_groups, list) {
7872 if (tgi == tg)
7873 continue;
6f505b16 7874
9f0c1e56
PZ
7875 total += to_ratio(period, tgi->rt_runtime);
7876 }
7877 rcu_read_unlock();
6f505b16 7878
9f0c1e56 7879 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
7880}
7881
521f1a24
DG
7882/* Must be called with tasklist_lock held */
7883static inline int tg_has_rt_tasks(struct task_group *tg)
7884{
7885 struct task_struct *g, *p;
7886 do_each_thread(g, p) {
7887 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7888 return 1;
7889 } while_each_thread(g, p);
7890 return 0;
7891}
7892
9f0c1e56 7893int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6f505b16 7894{
9f0c1e56
PZ
7895 u64 rt_runtime, rt_period;
7896 int err = 0;
7897
2692a240 7898 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
9f0c1e56
PZ
7899 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7900 if (rt_runtime_us == -1)
2692a240 7901 rt_runtime = RUNTIME_INF;
9f0c1e56
PZ
7902
7903 mutex_lock(&rt_constraints_mutex);
521f1a24
DG
7904 read_lock(&tasklist_lock);
7905 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7906 err = -EBUSY;
7907 goto unlock;
7908 }
9f0c1e56
PZ
7909 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7910 err = -EINVAL;
7911 goto unlock;
7912 }
9f0c1e56
PZ
7913 tg->rt_runtime = rt_runtime;
7914 unlock:
521f1a24 7915 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7916 mutex_unlock(&rt_constraints_mutex);
7917
7918 return err;
6f505b16
PZ
7919}
7920
9f0c1e56
PZ
7921long sched_group_rt_runtime(struct task_group *tg)
7922{
7923 u64 rt_runtime_us;
7924
7925 if (tg->rt_runtime == RUNTIME_INF)
7926 return -1;
7927
7928 rt_runtime_us = tg->rt_runtime;
7929 do_div(rt_runtime_us, NSEC_PER_USEC);
7930 return rt_runtime_us;
7931}
052f1dc7
PZ
7932#endif
7933#endif /* CONFIG_GROUP_SCHED */
68318b8e 7934
052f1dc7 7935#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7936
7937/* return corresponding task_group object of a cgroup */
2b01dfe3 7938static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7939{
2b01dfe3
PM
7940 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7941 struct task_group, css);
68318b8e
SV
7942}
7943
7944static struct cgroup_subsys_state *
2b01dfe3 7945cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7946{
7947 struct task_group *tg;
7948
2b01dfe3 7949 if (!cgrp->parent) {
68318b8e 7950 /* This is early initialization for the top cgroup */
2b01dfe3 7951 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7952 return &init_task_group.css;
7953 }
7954
7955 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7956 if (cgrp->parent->parent)
68318b8e
SV
7957 return ERR_PTR(-EINVAL);
7958
7959 tg = sched_create_group();
7960 if (IS_ERR(tg))
7961 return ERR_PTR(-ENOMEM);
7962
7963 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7964 tg->css.cgroup = cgrp;
68318b8e
SV
7965
7966 return &tg->css;
7967}
7968
41a2d6cf
IM
7969static void
7970cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7971{
2b01dfe3 7972 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7973
7974 sched_destroy_group(tg);
7975}
7976
41a2d6cf
IM
7977static int
7978cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7979 struct task_struct *tsk)
68318b8e 7980{
b68aa230
PZ
7981#ifdef CONFIG_RT_GROUP_SCHED
7982 /* Don't accept realtime tasks when there is no way for them to run */
7983 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7984 return -EINVAL;
7985#else
68318b8e
SV
7986 /* We don't support RT-tasks being in separate groups */
7987 if (tsk->sched_class != &fair_sched_class)
7988 return -EINVAL;
b68aa230 7989#endif
68318b8e
SV
7990
7991 return 0;
7992}
7993
7994static void
2b01dfe3 7995cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7996 struct cgroup *old_cont, struct task_struct *tsk)
7997{
7998 sched_move_task(tsk);
7999}
8000
052f1dc7 8001#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8002static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8003 u64 shareval)
68318b8e 8004{
2b01dfe3 8005 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8006}
8007
2b01dfe3 8008static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8009{
2b01dfe3 8010 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8011
8012 return (u64) tg->shares;
8013}
052f1dc7 8014#endif
68318b8e 8015
052f1dc7 8016#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
8017static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8018 struct file *file,
8019 const char __user *userbuf,
8020 size_t nbytes, loff_t *unused_ppos)
6f505b16 8021{
9f0c1e56
PZ
8022 char buffer[64];
8023 int retval = 0;
8024 s64 val;
8025 char *end;
8026
8027 if (!nbytes)
8028 return -EINVAL;
8029 if (nbytes >= sizeof(buffer))
8030 return -E2BIG;
8031 if (copy_from_user(buffer, userbuf, nbytes))
8032 return -EFAULT;
8033
8034 buffer[nbytes] = 0; /* nul-terminate */
8035
8036 /* strip newline if necessary */
8037 if (nbytes && (buffer[nbytes-1] == '\n'))
8038 buffer[nbytes-1] = 0;
8039 val = simple_strtoll(buffer, &end, 0);
8040 if (*end)
8041 return -EINVAL;
8042
8043 /* Pass to subsystem */
8044 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8045 if (!retval)
8046 retval = nbytes;
8047 return retval;
6f505b16
PZ
8048}
8049
9f0c1e56
PZ
8050static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8051 struct file *file,
8052 char __user *buf, size_t nbytes,
8053 loff_t *ppos)
6f505b16 8054{
9f0c1e56
PZ
8055 char tmp[64];
8056 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8057 int len = sprintf(tmp, "%ld\n", val);
6f505b16 8058
9f0c1e56 8059 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 8060}
052f1dc7 8061#endif
6f505b16 8062
fe5c7cc2 8063static struct cftype cpu_files[] = {
052f1dc7 8064#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8065 {
8066 .name = "shares",
8067 .read_uint = cpu_shares_read_uint,
8068 .write_uint = cpu_shares_write_uint,
8069 },
052f1dc7
PZ
8070#endif
8071#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8072 {
9f0c1e56
PZ
8073 .name = "rt_runtime_us",
8074 .read = cpu_rt_runtime_read,
8075 .write = cpu_rt_runtime_write,
6f505b16 8076 },
052f1dc7 8077#endif
68318b8e
SV
8078};
8079
8080static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8081{
fe5c7cc2 8082 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8083}
8084
8085struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8086 .name = "cpu",
8087 .create = cpu_cgroup_create,
8088 .destroy = cpu_cgroup_destroy,
8089 .can_attach = cpu_cgroup_can_attach,
8090 .attach = cpu_cgroup_attach,
8091 .populate = cpu_cgroup_populate,
8092 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8093 .early_init = 1,
8094};
8095
052f1dc7 8096#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8097
8098#ifdef CONFIG_CGROUP_CPUACCT
8099
8100/*
8101 * CPU accounting code for task groups.
8102 *
8103 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8104 * (balbir@in.ibm.com).
8105 */
8106
8107/* track cpu usage of a group of tasks */
8108struct cpuacct {
8109 struct cgroup_subsys_state css;
8110 /* cpuusage holds pointer to a u64-type object on every cpu */
8111 u64 *cpuusage;
8112};
8113
8114struct cgroup_subsys cpuacct_subsys;
8115
8116/* return cpu accounting group corresponding to this container */
8117static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8118{
8119 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8120 struct cpuacct, css);
8121}
8122
8123/* return cpu accounting group to which this task belongs */
8124static inline struct cpuacct *task_ca(struct task_struct *tsk)
8125{
8126 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8127 struct cpuacct, css);
8128}
8129
8130/* create a new cpu accounting group */
8131static struct cgroup_subsys_state *cpuacct_create(
8132 struct cgroup_subsys *ss, struct cgroup *cont)
8133{
8134 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8135
8136 if (!ca)
8137 return ERR_PTR(-ENOMEM);
8138
8139 ca->cpuusage = alloc_percpu(u64);
8140 if (!ca->cpuusage) {
8141 kfree(ca);
8142 return ERR_PTR(-ENOMEM);
8143 }
8144
8145 return &ca->css;
8146}
8147
8148/* destroy an existing cpu accounting group */
41a2d6cf
IM
8149static void
8150cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
8151{
8152 struct cpuacct *ca = cgroup_ca(cont);
8153
8154 free_percpu(ca->cpuusage);
8155 kfree(ca);
8156}
8157
8158/* return total cpu usage (in nanoseconds) of a group */
8159static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8160{
8161 struct cpuacct *ca = cgroup_ca(cont);
8162 u64 totalcpuusage = 0;
8163 int i;
8164
8165 for_each_possible_cpu(i) {
8166 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8167
8168 /*
8169 * Take rq->lock to make 64-bit addition safe on 32-bit
8170 * platforms.
8171 */
8172 spin_lock_irq(&cpu_rq(i)->lock);
8173 totalcpuusage += *cpuusage;
8174 spin_unlock_irq(&cpu_rq(i)->lock);
8175 }
8176
8177 return totalcpuusage;
8178}
8179
8180static struct cftype files[] = {
8181 {
8182 .name = "usage",
8183 .read_uint = cpuusage_read,
8184 },
8185};
8186
8187static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8188{
8189 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8190}
8191
8192/*
8193 * charge this task's execution time to its accounting group.
8194 *
8195 * called with rq->lock held.
8196 */
8197static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8198{
8199 struct cpuacct *ca;
8200
8201 if (!cpuacct_subsys.active)
8202 return;
8203
8204 ca = task_ca(tsk);
8205 if (ca) {
8206 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8207
8208 *cpuusage += cputime;
8209 }
8210}
8211
8212struct cgroup_subsys cpuacct_subsys = {
8213 .name = "cpuacct",
8214 .create = cpuacct_create,
8215 .destroy = cpuacct_destroy,
8216 .populate = cpuacct_populate,
8217 .subsys_id = cpuacct_subsys_id,
8218};
8219#endif /* CONFIG_CGROUP_CPUACCT */